ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gold / aarch64.cc
CommitLineData
053a4d68
JY
1// aarch64.cc -- aarch64 target support for gold.
2
b90efa5b 3// Copyright (C) 2014-2015 Free Software Foundation, Inc.
9363c7c3 4// Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
053a4d68
JY
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "aarch64.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "freebsd.h"
42#include "nacl.h"
43#include "gc.h"
44#include "icf.h"
9363c7c3 45#include "aarch64-reloc-property.h"
053a4d68
JY
46
47// The first three .got.plt entries are reserved.
48const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
49
83a01957 50
053a4d68
JY
51namespace
52{
53
54using namespace gold;
55
56template<int size, bool big_endian>
57class Output_data_plt_aarch64;
58
59template<int size, bool big_endian>
60class Output_data_plt_aarch64_standard;
61
62template<int size, bool big_endian>
63class Target_aarch64;
64
9363c7c3
JY
65template<int size, bool big_endian>
66class AArch64_relocate_functions;
67
053a4d68
JY
68// Output_data_got_aarch64 class.
69
70template<int size, bool big_endian>
71class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
72{
73 public:
74 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
75 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
9363c7c3
JY
76 : Output_data_got<size, big_endian>(),
77 symbol_table_(symtab), layout_(layout)
053a4d68
JY
78 { }
79
8e33481e
HS
80 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
81 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
82 // applied in a static link.
83 void
84 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
85 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
86
87
88 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
89 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
90 // relocation that needs to be applied in a static link.
91 void
92 add_static_reloc(unsigned int got_offset, unsigned int r_type,
93 Sized_relobj_file<size, big_endian>* relobj,
94 unsigned int index)
95 {
96 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
97 index));
98 }
99
100
053a4d68
JY
101 protected:
102 // Write out the GOT table.
103 void
104 do_write(Output_file* of) {
105 // The first entry in the GOT is the address of the .dynamic section.
106 gold_assert(this->data_size() >= size / 8);
107 Output_section* dynamic = this->layout_->dynamic_section();
108 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
109 this->replace_constant(0, dynamic_addr);
110 Output_data_got<size, big_endian>::do_write(of);
8e33481e
HS
111
112 // Handling static relocs
113 if (this->static_relocs_.empty())
114 return;
115
116 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
117
118 gold_assert(parameters->doing_static_link());
119 const off_t offset = this->offset();
120 const section_size_type oview_size =
121 convert_to_section_size_type(this->data_size());
122 unsigned char* const oview = of->get_output_view(offset, oview_size);
123
124 Output_segment* tls_segment = this->layout_->tls_segment();
125 gold_assert(tls_segment != NULL);
126
127 AArch64_address aligned_tcb_address =
83a01957 128 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
8e33481e
HS
129 tls_segment->maximum_alignment());
130
131 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
132 {
133 Static_reloc& reloc(this->static_relocs_[i]);
134 AArch64_address value;
135
136 if (!reloc.symbol_is_global())
137 {
138 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
139 const Symbol_value<size>* psymval =
140 reloc.relobj()->local_symbol(reloc.index());
141
142 // We are doing static linking. Issue an error and skip this
143 // relocation if the symbol is undefined or in a discarded_section.
144 bool is_ordinary;
145 unsigned int shndx = psymval->input_shndx(&is_ordinary);
146 if ((shndx == elfcpp::SHN_UNDEF)
147 || (is_ordinary
148 && shndx != elfcpp::SHN_UNDEF
149 && !object->is_section_included(shndx)
150 && !this->symbol_table_->is_section_folded(object, shndx)))
151 {
152 gold_error(_("undefined or discarded local symbol %u from "
153 " object %s in GOT"),
154 reloc.index(), reloc.relobj()->name().c_str());
155 continue;
156 }
157 value = psymval->value(object, 0);
158 }
159 else
160 {
161 const Symbol* gsym = reloc.symbol();
162 gold_assert(gsym != NULL);
163 if (gsym->is_forwarder())
164 gsym = this->symbol_table_->resolve_forwards(gsym);
165
166 // We are doing static linking. Issue an error and skip this
167 // relocation if the symbol is undefined or in a discarded_section
168 // unless it is a weakly_undefined symbol.
169 if ((gsym->is_defined_in_discarded_section()
170 || gsym->is_undefined())
171 && !gsym->is_weak_undefined())
172 {
173 gold_error(_("undefined or discarded symbol %s in GOT"),
174 gsym->name());
175 continue;
176 }
177
178 if (!gsym->is_weak_undefined())
179 {
180 const Sized_symbol<size>* sym =
181 static_cast<const Sized_symbol<size>*>(gsym);
182 value = sym->value();
183 }
184 else
185 value = 0;
186 }
187
188 unsigned got_offset = reloc.got_offset();
189 gold_assert(got_offset < oview_size);
190
191 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
192 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
193 Valtype x;
194 switch (reloc.r_type())
195 {
196 case elfcpp::R_AARCH64_TLS_DTPREL64:
197 x = value;
198 break;
199 case elfcpp::R_AARCH64_TLS_TPREL64:
200 x = value + aligned_tcb_address;
201 break;
202 default:
203 gold_unreachable();
204 }
205 elfcpp::Swap<size, big_endian>::writeval(wv, x);
206 }
207
208 of->write_output_view(offset, oview_size, oview);
053a4d68
JY
209 }
210
211 private:
9363c7c3
JY
212 // Symbol table of the output object.
213 Symbol_table* symbol_table_;
053a4d68
JY
214 // A pointer to the Layout class, so that we can find the .dynamic
215 // section when we write out the GOT section.
216 Layout* layout_;
8e33481e 217
8e33481e
HS
218 // This class represent dynamic relocations that need to be applied by
219 // gold because we are using TLS relocations in a static link.
220 class Static_reloc
221 {
222 public:
223 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
224 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
225 { this->u_.global.symbol = gsym; }
226
227 Static_reloc(unsigned int got_offset, unsigned int r_type,
228 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
229 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
230 {
231 this->u_.local.relobj = relobj;
232 this->u_.local.index = index;
233 }
234
235 // Return the GOT offset.
236 unsigned int
237 got_offset() const
238 { return this->got_offset_; }
239
240 // Relocation type.
241 unsigned int
242 r_type() const
243 { return this->r_type_; }
244
245 // Whether the symbol is global or not.
246 bool
247 symbol_is_global() const
248 { return this->symbol_is_global_; }
249
250 // For a relocation against a global symbol, the global symbol.
251 Symbol*
252 symbol() const
253 {
254 gold_assert(this->symbol_is_global_);
255 return this->u_.global.symbol;
256 }
257
258 // For a relocation against a local symbol, the defining object.
259 Sized_relobj_file<size, big_endian>*
260 relobj() const
261 {
262 gold_assert(!this->symbol_is_global_);
263 return this->u_.local.relobj;
264 }
265
266 // For a relocation against a local symbol, the local symbol index.
267 unsigned int
268 index() const
269 {
270 gold_assert(!this->symbol_is_global_);
271 return this->u_.local.index;
272 }
273
274 private:
275 // GOT offset of the entry to which this relocation is applied.
276 unsigned int got_offset_;
277 // Type of relocation.
278 unsigned int r_type_;
279 // Whether this relocation is against a global symbol.
280 bool symbol_is_global_;
281 // A global or local symbol.
282 union
283 {
83a01957
HS
284 struct
285 {
286 // For a global symbol, the symbol itself.
287 Symbol* symbol;
288 } global;
289 struct
290 {
291 // For a local symbol, the object defining the symbol.
292 Sized_relobj_file<size, big_endian>* relobj;
293 // For a local symbol, the symbol index.
294 unsigned int index;
295 } local;
296 } u_;
297 }; // End of inner class Static_reloc
298
299 std::vector<Static_reloc> static_relocs_;
300}; // End of Output_data_got_aarch64
301
302
303template<int size, bool big_endian>
304class AArch64_input_section;
305
306
307template<int size, bool big_endian>
308class AArch64_output_section;
309
310
311// Reloc stub class.
312
313template<int size, bool big_endian>
314class Reloc_stub
315{
316 public:
317 typedef Reloc_stub<size, big_endian> This;
318 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
319
320 // Do not change the value of the enums, they are used to index into
321 // stub_insns array.
322 typedef enum
323 {
324 ST_NONE = 0,
325
326 // Using adrp/add pair, 4 insns (including alignment) without mem access,
327 // the fastest stub. This has a limited jump distance, which is tested by
328 // aarch64_valid_for_adrp_p.
329 ST_ADRP_BRANCH = 1,
330
331 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
332 // unlimited in jump distance.
333 ST_LONG_BRANCH_ABS = 2,
334
335 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1 mem
336 // access, slowest one. Only used in position independent executables.
337 ST_LONG_BRANCH_PCREL = 3,
338
339 } Stub_type;
340
341 // Branch range. This is used to calculate the section group size, as well as
342 // determine whether a stub is needed.
343 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
344 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
345
346 // Constant used to determine if an offset fits in the adrp instruction
347 // encoding.
348 static const int MAX_ADRP_IMM = (1 << 20) - 1;
349 static const int MIN_ADRP_IMM = -(1 << 20);
350
351 static const int BYTES_PER_INSN = 4;
352 static const int STUB_ADDR_ALIGN = 4;
353
354 // Determine whether the offset fits in the jump/branch instruction.
355 static bool
356 aarch64_valid_branch_offset_p(int64_t offset)
357 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
358
359 // Determine whether the offset fits in the adrp immediate field.
360 static bool
361 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
362 {
363 typedef AArch64_relocate_functions<size, big_endian> Reloc;
364 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
365 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
366 }
367
368 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
369 // needed.
370 static Stub_type
371 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
372 AArch64_address target);
373
374 Reloc_stub(Stub_type stub_type)
375 : stub_type_(stub_type), offset_(invalid_offset),
376 destination_address_(invalid_address)
377 { }
378
379 ~Reloc_stub()
380 { }
381
382 // Return offset of code stub from beginning of its containing stub table.
383 section_offset_type
384 offset() const
385 {
386 gold_assert(this->offset_ != invalid_offset);
387 return this->offset_;
388 }
389
390 // Set offset of code stub from beginning of its containing stub table.
391 void
392 set_offset(section_offset_type offset)
393 { this->offset_ = offset; }
394
395 // Return destination address.
396 AArch64_address
397 destination_address() const
398 {
399 gold_assert(this->destination_address_ != this->invalid_address);
400 return this->destination_address_;
401 }
402
403 // Set destination address.
404 void
405 set_destination_address(AArch64_address address)
406 {
407 gold_assert(address != this->invalid_address);
408 this->destination_address_ = address;
409 }
410
411 // Reset the destination address.
412 void
413 reset_destination_address()
414 { this->destination_address_ = this->invalid_address; }
415
416 // Return the stub type.
417 Stub_type
418 stub_type() const
419 { return stub_type_; }
420
421 // Return the stub size.
422 uint32_t
423 stub_size() const
424 { return this->stub_insn_number() * BYTES_PER_INSN; }
425
426 // Return the instruction number of this stub instance.
427 int
428 stub_insn_number() const
429 { return stub_insns_[this->stub_type_][0]; }
430
431 // Note the first "insn" is the number of total insns in this array.
432 const uint32_t*
433 stub_insns() const
434 { return stub_insns_[this->stub_type_]; }
435
436 // Write stub to output file.
437 void
438 write(unsigned char* view, section_size_type view_size)
439 { this->do_write(view, view_size); }
440
441 // The key class used to index the stub instance in the stub table's stub map.
442 class Key
443 {
444 public:
445 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
446 unsigned int r_sym, int32_t addend)
447 : stub_type_(stub_type), addend_(addend)
448 {
449 if (symbol != NULL)
450 {
451 this->r_sym_ = Reloc_stub::invalid_index;
452 this->u_.symbol = symbol;
453 }
454 else
455 {
456 gold_assert(relobj != NULL && r_sym != invalid_index);
457 this->r_sym_ = r_sym;
458 this->u_.relobj = relobj;
459 }
460 }
461
462 ~Key()
463 { }
464
465 // Return stub type.
466 Stub_type
467 stub_type() const
468 { return this->stub_type_; }
469
470 // Return the local symbol index or invalid_index.
471 unsigned int
472 r_sym() const
473 { return this->r_sym_; }
474
475 // Return the symbol if there is one.
476 const Symbol*
477 symbol() const
478 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
479
480 // Return the relobj if there is one.
481 const Relobj*
482 relobj() const
483 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
484
485 // Whether this equals to another key k.
486 bool
487 eq(const Key& k) const
488 {
489 return ((this->stub_type_ == k.stub_type_)
490 && (this->r_sym_ == k.r_sym_)
491 && ((this->r_sym_ != Reloc_stub::invalid_index)
492 ? (this->u_.relobj == k.u_.relobj)
493 : (this->u_.symbol == k.u_.symbol))
494 && (this->addend_ == k.addend_));
495 }
496
497 // Return a hash value.
498 size_t
499 hash_value() const
500 {
501 size_t name_hash_value = gold::string_hash<char>(
502 (this->r_sym_ != Reloc_stub::invalid_index)
503 ? this->u_.relobj->name().c_str()
504 : this->u_.symbol->name());
505 // We only have 4 stub types.
506 size_t stub_type_hash_value = 0x03 & this->stub_type_;
507 return (name_hash_value
508 ^ stub_type_hash_value
509 ^ ((this->r_sym_ & 0x3fff) << 2)
510 ^ ((this->addend_ & 0xffff) << 16));
511 }
512
513 // Functors for STL associative containers.
514 struct hash
515 {
516 size_t
517 operator()(const Key& k) const
518 { return k.hash_value(); }
519 };
520
521 struct equal_to
522 {
523 bool
524 operator()(const Key& k1, const Key& k2) const
525 { return k1.eq(k2); }
526 };
527
9726c3c1 528 private:
83a01957
HS
529 // Stub type.
530 const Stub_type stub_type_;
531 // If this is a local symbol, this is the index in the defining object.
532 // Otherwise, it is invalid_index for a global symbol.
533 unsigned int r_sym_;
534 // If r_sym_ is an invalid index, this points to a global symbol.
535 // Otherwise, it points to a relobj. We used the unsized and target
536 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
537 // Arm_relobj, in order to avoid making the stub class a template
538 // as most of the stub machinery is endianness-neutral. However, it
539 // may require a bit of casting done by users of this class.
540 union
541 {
542 const Symbol* symbol;
543 const Relobj* relobj;
544 } u_;
545 // Addend associated with a reloc.
546 int32_t addend_;
547 }; // End of inner class Reloc_stub::Key
548
549 protected:
550 // This may be overridden in the child class.
551 virtual void
552 do_write(unsigned char*, section_size_type);
553
554 private:
555 static const section_offset_type invalid_offset =
556 static_cast<section_offset_type>(-1);
557 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
558 static const AArch64_address invalid_address =
559 static_cast<AArch64_address>(-1);
560
561 static const uint32_t stub_insns_[][10];
562
563 const Stub_type stub_type_;
564 section_offset_type offset_;
565 AArch64_address destination_address_;
566}; // End of Reloc_stub
567
568
569// Write data to output file.
570
571template<int size, bool big_endian>
572void
573Reloc_stub<size, big_endian>::
574do_write(unsigned char* view, section_size_type)
575{
576 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
577 const uint32_t* insns = this->stub_insns();
578 uint32_t num_insns = this->stub_insn_number();
579 Insntype* ip = reinterpret_cast<Insntype*>(view);
580 for (uint32_t i = 1; i <= num_insns; ++i)
581 elfcpp::Swap<32, big_endian>::writeval(ip + i - 1, insns[i]);
582}
583
584
585// Stubs instructions definition.
586
587template<int size, bool big_endian>
588const uint32_t
589Reloc_stub<size, big_endian>::stub_insns_[][10] =
590 {
591 // The first element of each group is the num of the insns.
592
593 // ST_NONE
594 {0, 0},
595
596 // ST_ADRP_BRANCH
597 {
598 4,
599 0x90000010, /* adrp ip0, X */
600 /* ADR_PREL_PG_HI21(X) */
601 0x91000210, /* add ip0, ip0, :lo12:X */
602 /* ADD_ABS_LO12_NC(X) */
603 0xd61f0200, /* br ip0 */
604 0x00000000, /* alignment padding */
605 },
606
607 // ST_LONG_BRANCH_ABS
608 {
609 4,
610 0x58000050, /* ldr ip0, 0x8 */
611 0xd61f0200, /* br ip0 */
612 0x00000000, /* address field */
613 0x00000000, /* address fields */
614 },
615
616 // ST_LONG_BRANCH_PCREL
617 {
618 8,
619 0x58000090, /* ldr ip0, 0x10 */
620 0x10000011, /* adr ip1, #0 */
621 0x8b110210, /* add ip0, ip0, ip1 */
622 0xd61f0200, /* br ip0 */
623 0x00000000, /* address field */
624 0x00000000, /* address field */
625 0x00000000, /* alignment padding */
626 0x00000000, /* alignment padding */
627 }
628 };
629
630
631// Determine the stub type for a certain relocation or ST_NONE, if no stub is
632// needed.
633
634template<int size, bool big_endian>
635inline
636typename Reloc_stub<size, big_endian>::Stub_type
637Reloc_stub<size, big_endian>::stub_type_for_reloc(
638 unsigned int r_type, AArch64_address location, AArch64_address dest)
639{
640 int64_t branch_offset = 0;
641 switch(r_type)
642 {
643 case elfcpp::R_AARCH64_CALL26:
644 case elfcpp::R_AARCH64_JUMP26:
645 branch_offset = dest - location;
646 break;
647 default:
9726c3c1 648 gold_unreachable();
83a01957
HS
649 }
650
651 if (aarch64_valid_branch_offset_p(branch_offset))
652 return ST_NONE;
653
654 if (aarch64_valid_for_adrp_p(location, dest))
655 return ST_ADRP_BRANCH;
656
657 if (parameters->options().output_is_position_independent()
658 && parameters->options().output_is_executable())
659 return ST_LONG_BRANCH_PCREL;
660
661 return ST_LONG_BRANCH_ABS;
662}
663
664// A class to hold stubs for the ARM target.
665
666template<int size, bool big_endian>
667class Stub_table : public Output_data
668{
669 public:
670 typedef Target_aarch64<size, big_endian> The_target_aarch64;
671 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
672 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
673 typedef Reloc_stub<size, big_endian> The_reloc_stub;
674 typedef typename The_reloc_stub::Key The_reloc_stub_key;
675 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
676 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
677 typedef Stub_table<size, big_endian> The_stub_table;
678 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
679 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
680 Reloc_stub_map;
681 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
682 typedef Relocate_info<size, big_endian> The_relocate_info;
683
684 Stub_table(The_aarch64_input_section* owner)
685 : Output_data(), owner_(owner), reloc_stubs_size_(0), prev_data_size_(0)
686 { }
687
688 ~Stub_table()
689 { }
690
691 The_aarch64_input_section*
692 owner() const
693 { return owner_; }
694
695 // Whether this stub table is empty.
696 bool
697 empty() const
698 { return reloc_stubs_.empty(); }
699
700 // Return the current data size.
701 off_t
702 current_data_size() const
703 { return this->current_data_size_for_child(); }
704
705 // Add a STUB using KEY. The caller is responsible for avoiding addition
706 // if a STUB with the same key has already been added.
707 void
708 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
709
710 // Finalize stubs. No-op here, just for completeness.
711 void
712 finalize_stubs()
713 { }
714
715 // Look up a relocation stub using KEY. Return NULL if there is none.
716 The_reloc_stub*
717 find_reloc_stub(The_reloc_stub_key& key)
718 {
719 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
720 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
721 }
722
723 // Relocate stubs in this stub table.
724 void
725 relocate_stubs(const The_relocate_info*,
726 The_target_aarch64*,
727 Output_section*,
728 unsigned char*,
729 AArch64_address,
730 section_size_type);
731
732 // Update data size at the end of a relaxation pass. Return true if data size
733 // is different from that of the previous relaxation pass.
734 bool
735 update_data_size_changed_p()
736 {
737 // No addralign changed here.
738 off_t s = this->reloc_stubs_size_;
739 bool changed = (s != this->prev_data_size_);
740 this->prev_data_size_ = s;
741 return changed;
742 }
743
744 protected:
745 // Write out section contents.
746 void
747 do_write(Output_file*);
748
749 // Return the required alignment.
750 uint64_t
751 do_addralign() const
752 { return The_reloc_stub::STUB_ADDR_ALIGN; }
753
754 // Reset address and file offset.
755 void
756 do_reset_address_and_file_offset()
757 { this->set_current_data_size_for_child(this->prev_data_size_); }
758
759 // Set final data size.
760 void
761 set_final_data_size()
762 { this->set_data_size(this->current_data_size()); }
763
764 private:
765 // Relocate one stub.
766 void
767 relocate_stub(The_reloc_stub*,
768 const The_relocate_info*,
769 The_target_aarch64*,
770 Output_section*,
771 unsigned char*,
772 AArch64_address,
773 section_size_type);
774
775 private:
776 // Owner of this stub table.
777 The_aarch64_input_section* owner_;
778 // The relocation stubs.
779 Reloc_stub_map reloc_stubs_;
780 // Size of reloc stubs.
781 off_t reloc_stubs_size_;
782 // data size of this in the previous pass.
783 off_t prev_data_size_;
784}; // End of Stub_table
785
786
787// Add a STUB using KEY. The caller is responsible for avoiding addition
788// if a STUB with the same key has already been added.
789
790template<int size, bool big_endian>
791void
792Stub_table<size, big_endian>::add_reloc_stub(
793 The_reloc_stub* stub, const The_reloc_stub_key& key)
794{
795 gold_assert(stub->stub_type() == key.stub_type());
796 this->reloc_stubs_[key] = stub;
797
798 // Assign stub offset early. We can do this because we never remove
799 // reloc stubs and they are in the beginning of the stub table.
800 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
801 The_reloc_stub::STUB_ADDR_ALIGN);
802 stub->set_offset(this->reloc_stubs_size_);
803 this->reloc_stubs_size_ += stub->stub_size();
804}
805
806
807// Relocate all stubs in this stub table.
808
809template<int size, bool big_endian>
810void
811Stub_table<size, big_endian>::
812relocate_stubs(const The_relocate_info* relinfo,
813 The_target_aarch64* target_aarch64,
814 Output_section* output_section,
815 unsigned char* view,
816 AArch64_address address,
817 section_size_type view_size)
818{
819 // "view_size" is the total size of the stub_table.
820 gold_assert(address == this->address() &&
821 view_size == static_cast<section_size_type>(this->data_size()));
822 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
823 p != this->reloc_stubs_.end(); ++p)
824 relocate_stub(p->second, relinfo, target_aarch64, output_section,
825 view, address, view_size);
826}
827
828
829// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
830
831template<int size, bool big_endian>
832void
833Stub_table<size, big_endian>::
834relocate_stub(The_reloc_stub* stub,
835 const The_relocate_info* relinfo,
836 The_target_aarch64* target_aarch64,
837 Output_section* output_section,
838 unsigned char* view,
839 AArch64_address address,
840 section_size_type view_size)
841{
842 // "offset" is the offset from the beginning of the stub_table.
843 section_size_type offset = stub->offset();
844 section_size_type stub_size = stub->stub_size();
845 // "view_size" is the total size of the stub_table.
846 gold_assert(offset + stub_size <= view_size);
847
848 target_aarch64->relocate_stub(stub, relinfo, output_section,
849 view + offset, address + offset, view_size);
850}
851
852
853// Write out the stubs to file.
854
855template<int size, bool big_endian>
856void
857Stub_table<size, big_endian>::do_write(Output_file* of)
858{
859 off_t offset = this->offset();
860 const section_size_type oview_size =
861 convert_to_section_size_type(this->data_size());
862 unsigned char* const oview = of->get_output_view(offset, oview_size);
863
864 // Write relocation stubs.
865 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
866 p != this->reloc_stubs_.end(); ++p)
867 {
868 The_reloc_stub* stub = p->second;
869 AArch64_address address = this->address() + stub->offset();
870 gold_assert(address ==
871 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
872 stub->write(oview + stub->offset(), stub->stub_size());
873 }
874
875 of->write_output_view(this->offset(), oview_size, oview);
876}
877
878
879// AArch64_relobj class.
880
881template<int size, bool big_endian>
882class AArch64_relobj : public Sized_relobj_file<size, big_endian>
883{
884 public:
885 typedef AArch64_relobj<size, big_endian> This;
886 typedef Target_aarch64<size, big_endian> The_target_aarch64;
887 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
888 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
889 typedef Stub_table<size, big_endian> The_stub_table;
890 typedef std::vector<The_stub_table*> Stub_table_list;
891 static const AArch64_address invalid_address =
892 static_cast<AArch64_address>(-1);
893
894 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
895 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
896 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
897 stub_tables_()
898 { }
899
900 ~AArch64_relobj()
901 { }
902
903 // Return the stub table of the SHNDX-th section if there is one.
904 The_stub_table*
905 stub_table(unsigned int shndx) const
906 {
907 gold_assert(shndx < this->stub_tables_.size());
908 return this->stub_tables_[shndx];
909 }
910
911 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
912 void
913 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
914 {
915 gold_assert(shndx < this->stub_tables_.size());
916 this->stub_tables_[shndx] = stub_table;
917 }
918
919 // Scan all relocation sections for stub generation.
920 void
921 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
922 const Layout*);
923
924 // Whether a section is a scannable text section.
925 bool
926 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
927 const Output_section*, const Symbol_table*);
928
929 // Convert regular input section with index SHNDX to a relaxed section.
930 void
931 convert_input_section_to_relaxed_section(unsigned /* shndx */)
932 {
933 // The stubs have relocations and we need to process them after writing
934 // out the stubs. So relocation now must follow section write.
935 this->set_relocs_must_follow_section_writes();
936 }
937
938 protected:
939 // Post constructor setup.
940 void
941 do_setup()
942 {
943 // Call parent's setup method.
944 Sized_relobj_file<size, big_endian>::do_setup();
945
946 // Initialize look-up tables.
947 this->stub_tables_.resize(this->shnum());
948 }
949
950 virtual void
951 do_relocate_sections(
952 const Symbol_table* symtab, const Layout* layout,
953 const unsigned char* pshdrs, Output_file* of,
954 typename Sized_relobj_file<size, big_endian>::Views* pviews);
955
956 private:
957 // Whether a section needs to be scanned for relocation stubs.
958 bool
959 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
960 const Relobj::Output_sections&,
961 const Symbol_table*, const unsigned char*);
962
963 // List of stub tables.
964 Stub_table_list stub_tables_;
965}; // End of AArch64_relobj
966
967
968// Relocate sections.
969
970template<int size, bool big_endian>
971void
972AArch64_relobj<size, big_endian>::do_relocate_sections(
973 const Symbol_table* symtab, const Layout* layout,
974 const unsigned char* pshdrs, Output_file* of,
975 typename Sized_relobj_file<size, big_endian>::Views* pviews)
976{
977 // Call parent to relocate sections.
978 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
979 pshdrs, of, pviews);
980
981 // We do not generate stubs if doing a relocatable link.
982 if (parameters->options().relocatable())
983 return;
984
985 Relocate_info<size, big_endian> relinfo;
986 relinfo.symtab = symtab;
987 relinfo.layout = layout;
988 relinfo.object = this;
989
990 // Relocate stub tables.
991 unsigned int shnum = this->shnum();
992 The_target_aarch64* target = The_target_aarch64::current_target();
993
994 for (unsigned int i = 1; i < shnum; ++i)
995 {
996 The_aarch64_input_section* aarch64_input_section =
997 target->find_aarch64_input_section(this, i);
998 if (aarch64_input_section != NULL
999 && aarch64_input_section->is_stub_table_owner()
1000 && !aarch64_input_section->stub_table()->empty())
1001 {
1002 Output_section* os = this->output_section(i);
1003 gold_assert(os != NULL);
1004
1005 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1006 relinfo.reloc_shdr = NULL;
1007 relinfo.data_shndx = i;
1008 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1009
1010 typename Sized_relobj_file<size, big_endian>::View_size&
1011 view_struct = (*pviews)[i];
1012 gold_assert(view_struct.view != NULL);
1013
1014 The_stub_table* stub_table = aarch64_input_section->stub_table();
1015 off_t offset = stub_table->address() - view_struct.address;
1016 unsigned char* view = view_struct.view + offset;
1017 AArch64_address address = stub_table->address();
1018 section_size_type view_size = stub_table->data_size();
1019 stub_table->relocate_stubs(&relinfo, target, os, view, address,
1020 view_size);
1021 }
1022 }
1023}
1024
1025
1026// Determine if an input section is scannable for stub processing. SHDR is
1027// the header of the section and SHNDX is the section index. OS is the output
1028// section for the input section and SYMTAB is the global symbol table used to
1029// look up ICF information.
1030
1031template<int size, bool big_endian>
1032bool
1033AArch64_relobj<size, big_endian>::text_section_is_scannable(
1034 const elfcpp::Shdr<size, big_endian>& text_shdr,
1035 unsigned int text_shndx,
1036 const Output_section* os,
1037 const Symbol_table* symtab)
1038{
1039 // Skip any empty sections, unallocated sections or sections whose
1040 // type are not SHT_PROGBITS.
1041 if (text_shdr.get_sh_size() == 0
1042 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1043 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1044 return false;
1045
1046 // Skip any discarded or ICF'ed sections.
1047 if (os == NULL || symtab->is_section_folded(this, text_shndx))
1048 return false;
1049
1050 // Skip exception frame.
1051 if (strcmp(os->name(), ".eh_frame") == 0)
1052 return false ;
1053
1054 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1055 os->find_relaxed_input_section(this, text_shndx) != NULL);
1056
1057 return true;
1058}
1059
1060
1061// Determine if we want to scan the SHNDX-th section for relocation stubs.
1062// This is a helper for AArch64_relobj::scan_sections_for_stubs().
1063
1064template<int size, bool big_endian>
1065bool
1066AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
1067 const elfcpp::Shdr<size, big_endian>& shdr,
1068 const Relobj::Output_sections& out_sections,
1069 const Symbol_table* symtab,
1070 const unsigned char* pshdrs)
1071{
1072 unsigned int sh_type = shdr.get_sh_type();
1073 if (sh_type != elfcpp::SHT_RELA)
1074 return false;
1075
1076 // Ignore empty section.
1077 off_t sh_size = shdr.get_sh_size();
1078 if (sh_size == 0)
1079 return false;
1080
1081 // Ignore reloc section with unexpected symbol table. The
1082 // error will be reported in the final link.
1083 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
1084 return false;
1085
1086 gold_assert(sh_type == elfcpp::SHT_RELA);
1087 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1088
1089 // Ignore reloc section with unexpected entsize or uneven size.
1090 // The error will be reported in the final link.
1091 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
1092 return false;
1093
1094 // Ignore reloc section with bad info. This error will be
1095 // reported in the final link.
1096 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
1097 if (text_shndx >= this->shnum())
1098 return false;
1099
1100 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1101 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
1102 text_shndx * shdr_size);
1103 return this->text_section_is_scannable(text_shdr, text_shndx,
1104 out_sections[text_shndx], symtab);
1105}
1106
1107
1108// Scan relocations for stub generation.
1109
1110template<int size, bool big_endian>
1111void
1112AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
1113 The_target_aarch64* target,
1114 const Symbol_table* symtab,
1115 const Layout* layout)
1116{
1117 unsigned int shnum = this->shnum();
1118 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1119
1120 // Read the section headers.
1121 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
1122 shnum * shdr_size,
1123 true, true);
1124
1125 // To speed up processing, we set up hash tables for fast lookup of
1126 // input offsets to output addresses.
1127 this->initialize_input_to_output_maps();
1128
1129 const Relobj::Output_sections& out_sections(this->output_sections());
1130
1131 Relocate_info<size, big_endian> relinfo;
1132 relinfo.symtab = symtab;
1133 relinfo.layout = layout;
1134 relinfo.object = this;
1135
1136 // Do relocation stubs scanning.
1137 const unsigned char* p = pshdrs + shdr_size;
1138 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
1139 {
1140 const elfcpp::Shdr<size, big_endian> shdr(p);
1141 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
1142 pshdrs))
1143 {
1144 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
1145 AArch64_address output_offset =
1146 this->get_output_section_offset(index);
1147 AArch64_address output_address;
1148 if (output_offset != invalid_address)
1149 {
1150 output_address = out_sections[index]->address() + output_offset;
1151 }
1152 else
1153 {
1154 // Currently this only happens for a relaxed section.
1155 const Output_relaxed_input_section* poris =
1156 out_sections[index]->find_relaxed_input_section(this, index);
1157 gold_assert(poris != NULL);
1158 output_address = poris->address();
1159 }
1160
1161 // Get the relocations.
1162 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
1163 shdr.get_sh_size(),
1164 true, false);
1165
1166 // Get the section contents.
1167 section_size_type input_view_size = 0;
1168 const unsigned char* input_view =
1169 this->section_contents(index, &input_view_size, false);
1170
1171 relinfo.reloc_shndx = i;
1172 relinfo.data_shndx = index;
1173 unsigned int sh_type = shdr.get_sh_type();
1174 unsigned int reloc_size;
1175 gold_assert (sh_type == elfcpp::SHT_RELA);
1176 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1177
1178 Output_section* os = out_sections[index];
1179 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
1180 shdr.get_sh_size() / reloc_size,
1181 os,
1182 output_offset == invalid_address,
1183 input_view, output_address,
1184 input_view_size);
1185 }
1186 }
1187}
1188
1189
1190// A class to wrap an ordinary input section containing executable code.
1191
1192template<int size, bool big_endian>
1193class AArch64_input_section : public Output_relaxed_input_section
1194{
1195 public:
1196 typedef Stub_table<size, big_endian> The_stub_table;
1197
1198 AArch64_input_section(Relobj* relobj, unsigned int shndx)
1199 : Output_relaxed_input_section(relobj, shndx, 1),
1200 stub_table_(NULL),
1201 original_contents_(NULL), original_size_(0),
1202 original_addralign_(1)
1203 { }
1204
1205 ~AArch64_input_section()
1206 { delete[] this->original_contents_; }
1207
1208 // Initialize.
1209 void
1210 init();
1211
1212 // Set the stub_table.
1213 void
1214 set_stub_table(The_stub_table* st)
1215 { this->stub_table_ = st; }
1216
1217 // Whether this is a stub table owner.
1218 bool
1219 is_stub_table_owner() const
1220 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1221
1222 // Return the original size of the section.
1223 uint32_t
1224 original_size() const
1225 { return this->original_size_; }
1226
1227 // Return the stub table.
1228 The_stub_table*
1229 stub_table()
1230 { return stub_table_; }
1231
1232 protected:
1233 // Write out this input section.
1234 void
1235 do_write(Output_file*);
1236
1237 // Return required alignment of this.
1238 uint64_t
1239 do_addralign() const
1240 {
1241 if (this->is_stub_table_owner())
1242 return std::max(this->stub_table_->addralign(),
1243 static_cast<uint64_t>(this->original_addralign_));
1244 else
1245 return this->original_addralign_;
1246 }
1247
1248 // Finalize data size.
1249 void
1250 set_final_data_size();
1251
1252 // Reset address and file offset.
1253 void
1254 do_reset_address_and_file_offset();
1255
1256 // Output offset.
1257 bool
1258 do_output_offset(const Relobj* object, unsigned int shndx,
1259 section_offset_type offset,
1260 section_offset_type* poutput) const
1261 {
1262 if ((object == this->relobj())
1263 && (shndx == this->shndx())
1264 && (offset >= 0)
1265 && (offset <=
1266 convert_types<section_offset_type, uint32_t>(this->original_size_)))
1267 {
1268 *poutput = offset;
1269 return true;
1270 }
1271 else
1272 return false;
1273 }
1274
1275 private:
1276 // Copying is not allowed.
1277 AArch64_input_section(const AArch64_input_section&);
1278 AArch64_input_section& operator=(const AArch64_input_section&);
1279
1280 // The relocation stubs.
1281 The_stub_table* stub_table_;
1282 // Original section contents. We have to make a copy here since the file
1283 // containing the original section may not be locked when we need to access
1284 // the contents.
1285 unsigned char* original_contents_;
1286 // Section size of the original input section.
1287 uint32_t original_size_;
1288 // Address alignment of the original input section.
1289 uint32_t original_addralign_;
1290}; // End of AArch64_input_section
1291
1292
1293// Finalize data size.
1294
1295template<int size, bool big_endian>
1296void
1297AArch64_input_section<size, big_endian>::set_final_data_size()
1298{
1299 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1300
1301 if (this->is_stub_table_owner())
1302 {
1303 this->stub_table_->finalize_data_size();
1304 off = align_address(off, this->stub_table_->addralign());
1305 off += this->stub_table_->data_size();
1306 }
1307 this->set_data_size(off);
1308}
1309
1310
1311// Reset address and file offset.
1312
1313template<int size, bool big_endian>
1314void
1315AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
1316{
1317 // Size of the original input section contents.
1318 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
1319
1320 // If this is a stub table owner, account for the stub table size.
1321 if (this->is_stub_table_owner())
1322 {
1323 The_stub_table* stub_table = this->stub_table_;
1324
1325 // Reset the stub table's address and file offset. The
1326 // current data size for child will be updated after that.
1327 stub_table_->reset_address_and_file_offset();
1328 off = align_address(off, stub_table_->addralign());
1329 off += stub_table->current_data_size();
1330 }
1331
1332 this->set_current_data_size(off);
1333}
1334
1335
1336// Initialize an Arm_input_section.
1337
1338template<int size, bool big_endian>
1339void
1340AArch64_input_section<size, big_endian>::init()
1341{
1342 Relobj* relobj = this->relobj();
1343 unsigned int shndx = this->shndx();
1344
1345 // We have to cache original size, alignment and contents to avoid locking
1346 // the original file.
1347 this->original_addralign_ =
1348 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
1349
1350 // This is not efficient but we expect only a small number of relaxed
1351 // input sections for stubs.
1352 section_size_type section_size;
1353 const unsigned char* section_contents =
1354 relobj->section_contents(shndx, &section_size, false);
1355 this->original_size_ =
1356 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
1357
1358 gold_assert(this->original_contents_ == NULL);
1359 this->original_contents_ = new unsigned char[section_size];
1360 memcpy(this->original_contents_, section_contents, section_size);
1361
1362 // We want to make this look like the original input section after
1363 // output sections are finalized.
1364 Output_section* os = relobj->output_section(shndx);
1365 off_t offset = relobj->output_section_offset(shndx);
1366 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
1367 this->set_address(os->address() + offset);
1368 this->set_file_offset(os->offset() + offset);
1369 this->set_current_data_size(this->original_size_);
1370 this->finalize_data_size();
1371}
1372
1373
1374// Write data to output file.
1375
1376template<int size, bool big_endian>
1377void
1378AArch64_input_section<size, big_endian>::do_write(Output_file* of)
1379{
1380 // We have to write out the original section content.
1381 gold_assert(this->original_contents_ != NULL);
1382 of->write(this->offset(), this->original_contents_,
1383 this->original_size_);
1384
1385 // If this owns a stub table and it is not empty, write it.
1386 if (this->is_stub_table_owner() && !this->stub_table_->empty())
1387 this->stub_table_->write(of);
1388}
1389
1390
1391// Arm output section class. This is defined mainly to add a number of stub
1392// generation methods.
1393
1394template<int size, bool big_endian>
1395class AArch64_output_section : public Output_section
1396{
1397 public:
1398 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1399 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1400 typedef Stub_table<size, big_endian> The_stub_table;
1401 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1402
1403 public:
1404 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
1405 elfcpp::Elf_Xword flags)
1406 : Output_section(name, type, flags)
1407 { }
1408
1409 ~AArch64_output_section() {}
1410
1411 // Group input sections for stub generation.
1412 void
1413 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
1414 const Task*);
1415
1416 private:
1417 typedef Output_section::Input_section Input_section;
1418 typedef Output_section::Input_section_list Input_section_list;
1419
1420 // Create a stub group.
1421 void
1422 create_stub_group(Input_section_list::const_iterator,
1423 Input_section_list::const_iterator,
1424 Input_section_list::const_iterator,
1425 The_target_aarch64*,
1426 std::vector<Output_relaxed_input_section*>&,
1427 const Task*);
1428}; // End of AArch64_output_section
1429
1430
1431// Create a stub group for input sections from FIRST to LAST. OWNER points to
1432// the input section that will be the owner of the stub table.
1433
1434template<int size, bool big_endian> void
1435AArch64_output_section<size, big_endian>::create_stub_group(
1436 Input_section_list::const_iterator first,
1437 Input_section_list::const_iterator last,
1438 Input_section_list::const_iterator owner,
1439 The_target_aarch64* target,
1440 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
1441 const Task* task)
1442{
1443 // Currently we convert ordinary input sections into relaxed sections only
1444 // at this point.
1445 The_aarch64_input_section* input_section;
1446 if (owner->is_relaxed_input_section())
1447 gold_unreachable();
1448 else
1449 {
1450 gold_assert(owner->is_input_section());
1451 // Create a new relaxed input section. We need to lock the original
1452 // file.
1453 Task_lock_obj<Object> tl(task, owner->relobj());
1454 input_section =
1455 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
1456 new_relaxed_sections.push_back(input_section);
1457 }
1458
1459 // Create a stub table.
1460 The_stub_table* stub_table =
1461 target->new_stub_table(input_section);
1462
1463 input_section->set_stub_table(stub_table);
1464
1465 Input_section_list::const_iterator p = first;
1466 // Look for input sections or relaxed input sections in [first ... last].
1467 do
1468 {
1469 if (p->is_input_section() || p->is_relaxed_input_section())
1470 {
1471 // The stub table information for input sections live
1472 // in their objects.
1473 The_aarch64_relobj* aarch64_relobj =
1474 static_cast<The_aarch64_relobj*>(p->relobj());
1475 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
1476 }
1477 }
1478 while (p++ != last);
1479}
1480
1481
1482// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
1483// stub groups. We grow a stub group by adding input section until the size is
1484// just below GROUP_SIZE. The last input section will be converted into a stub
1485// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
1486// after the stub table, effectively doubling the group size.
1487//
1488// This is similar to the group_sections() function in elf32-arm.c but is
1489// implemented differently.
1490
1491template<int size, bool big_endian>
1492void AArch64_output_section<size, big_endian>::group_sections(
1493 section_size_type group_size,
1494 bool stubs_always_after_branch,
1495 Target_aarch64<size, big_endian>* target,
1496 const Task* task)
1497{
1498 typedef enum
1499 {
1500 NO_GROUP,
1501 FINDING_STUB_SECTION,
1502 HAS_STUB_SECTION
1503 } State;
1504
1505 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
1506
1507 State state = NO_GROUP;
1508 section_size_type off = 0;
1509 section_size_type group_begin_offset = 0;
1510 section_size_type group_end_offset = 0;
1511 section_size_type stub_table_end_offset = 0;
1512 Input_section_list::const_iterator group_begin =
1513 this->input_sections().end();
1514 Input_section_list::const_iterator stub_table =
1515 this->input_sections().end();
1516 Input_section_list::const_iterator group_end = this->input_sections().end();
1517 for (Input_section_list::const_iterator p = this->input_sections().begin();
1518 p != this->input_sections().end();
1519 ++p)
1520 {
1521 section_size_type section_begin_offset =
1522 align_address(off, p->addralign());
1523 section_size_type section_end_offset =
1524 section_begin_offset + p->data_size();
1525
1526 // Check to see if we should group the previously seen sections.
1527 switch (state)
1528 {
1529 case NO_GROUP:
1530 break;
1531
1532 case FINDING_STUB_SECTION:
1533 // Adding this section makes the group larger than GROUP_SIZE.
1534 if (section_end_offset - group_begin_offset >= group_size)
1535 {
1536 if (stubs_always_after_branch)
1537 {
1538 gold_assert(group_end != this->input_sections().end());
1539 this->create_stub_group(group_begin, group_end, group_end,
1540 target, new_relaxed_sections,
1541 task);
1542 state = NO_GROUP;
1543 }
1544 else
1545 {
1546 // Input sections up to stub_group_size bytes after the stub
1547 // table can be handled by it too.
1548 state = HAS_STUB_SECTION;
1549 stub_table = group_end;
1550 stub_table_end_offset = group_end_offset;
1551 }
1552 }
1553 break;
1554
1555 case HAS_STUB_SECTION:
1556 // Adding this section makes the post stub-section group larger
1557 // than GROUP_SIZE.
1558 gold_unreachable();
1559 // NOT SUPPORTED YET. For completeness only.
1560 if (section_end_offset - stub_table_end_offset >= group_size)
1561 {
1562 gold_assert(group_end != this->input_sections().end());
1563 this->create_stub_group(group_begin, group_end, stub_table,
1564 target, new_relaxed_sections, task);
1565 state = NO_GROUP;
1566 }
1567 break;
1568
1569 default:
1570 gold_unreachable();
1571 }
1572
1573 // If we see an input section and currently there is no group, start
1574 // a new one. Skip any empty sections. We look at the data size
1575 // instead of calling p->relobj()->section_size() to avoid locking.
1576 if ((p->is_input_section() || p->is_relaxed_input_section())
1577 && (p->data_size() != 0))
1578 {
1579 if (state == NO_GROUP)
1580 {
1581 state = FINDING_STUB_SECTION;
1582 group_begin = p;
1583 group_begin_offset = section_begin_offset;
1584 }
1585
1586 // Keep track of the last input section seen.
1587 group_end = p;
1588 group_end_offset = section_end_offset;
1589 }
1590
1591 off = section_end_offset;
1592 }
1593
1594 // Create a stub group for any ungrouped sections.
1595 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
1596 {
1597 gold_assert(group_end != this->input_sections().end());
1598 this->create_stub_group(group_begin, group_end,
1599 (state == FINDING_STUB_SECTION
1600 ? group_end
1601 : stub_table),
1602 target, new_relaxed_sections, task);
1603 }
8e33481e 1604
83a01957
HS
1605 if (!new_relaxed_sections.empty())
1606 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
1607
1608 // Update the section offsets
1609 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
1610 {
1611 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
1612 new_relaxed_sections[i]->relobj());
1613 unsigned int shndx = new_relaxed_sections[i]->shndx();
1614 // Tell AArch64_relobj that this input section is converted.
1615 relobj->convert_input_section_to_relaxed_section(shndx);
1616 }
1617} // End of AArch64_output_section::group_sections
3a531937 1618
053a4d68 1619
9363c7c3
JY
1620AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
1621
3a531937 1622
053a4d68
JY
1623// The aarch64 target class.
1624// See the ABI at
1625// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
1626template<int size, bool big_endian>
1627class Target_aarch64 : public Sized_target<size, big_endian>
1628{
1629 public:
83a01957 1630 typedef Target_aarch64<size, big_endian> This;
053a4d68
JY
1631 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
1632 Reloc_section;
83a01957 1633 typedef Relocate_info<size, big_endian> The_relocate_info;
053a4d68 1634 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
1635 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1636 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1637 typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
1638 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
1639 typedef Stub_table<size, big_endian> The_stub_table;
1640 typedef std::vector<The_stub_table*> Stub_table_list;
1641 typedef typename Stub_table_list::iterator Stub_table_iterator;
1642 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1643 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
1644 typedef Unordered_map<Section_id,
1645 AArch64_input_section<size, big_endian>*,
1646 Section_id_hash> AArch64_input_section_map;
8e33481e 1647 const static int TCB_SIZE = size / 8 * 2;
053a4d68
JY
1648
1649 Target_aarch64(const Target::Target_info* info = &aarch64_info)
1650 : Sized_target<size, big_endian>(info),
3a531937
JY
1651 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
1652 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
1653 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
83a01957
HS
1654 got_mod_index_offset_(-1U),
1655 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
0bf32ea9 1656 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
053a4d68
JY
1657 { }
1658
1659 // Scan the relocations to determine unreferenced sections for
1660 // garbage collection.
1661 void
1662 gc_process_relocs(Symbol_table* symtab,
1663 Layout* layout,
1664 Sized_relobj_file<size, big_endian>* object,
1665 unsigned int data_shndx,
1666 unsigned int sh_type,
1667 const unsigned char* prelocs,
1668 size_t reloc_count,
1669 Output_section* output_section,
1670 bool needs_special_offset_handling,
1671 size_t local_symbol_count,
1672 const unsigned char* plocal_symbols);
1673
1674 // Scan the relocations to look for symbol adjustments.
1675 void
1676 scan_relocs(Symbol_table* symtab,
1677 Layout* layout,
1678 Sized_relobj_file<size, big_endian>* object,
1679 unsigned int data_shndx,
1680 unsigned int sh_type,
1681 const unsigned char* prelocs,
1682 size_t reloc_count,
1683 Output_section* output_section,
1684 bool needs_special_offset_handling,
1685 size_t local_symbol_count,
1686 const unsigned char* plocal_symbols);
1687
1688 // Finalize the sections.
1689 void
1690 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
1691
3a531937
JY
1692 // Return the value to use for a dynamic which requires special
1693 // treatment.
1694 uint64_t
1695 do_dynsym_value(const Symbol*) const;
1696
053a4d68
JY
1697 // Relocate a section.
1698 void
1699 relocate_section(const Relocate_info<size, big_endian>*,
1700 unsigned int sh_type,
1701 const unsigned char* prelocs,
1702 size_t reloc_count,
1703 Output_section* output_section,
1704 bool needs_special_offset_handling,
1705 unsigned char* view,
1706 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1707 section_size_type view_size,
1708 const Reloc_symbol_changes*);
1709
1710 // Scan the relocs during a relocatable link.
1711 void
1712 scan_relocatable_relocs(Symbol_table* symtab,
1713 Layout* layout,
1714 Sized_relobj_file<size, big_endian>* object,
1715 unsigned int data_shndx,
1716 unsigned int sh_type,
1717 const unsigned char* prelocs,
1718 size_t reloc_count,
1719 Output_section* output_section,
1720 bool needs_special_offset_handling,
1721 size_t local_symbol_count,
1722 const unsigned char* plocal_symbols,
1723 Relocatable_relocs*);
1724
1725 // Relocate a section during a relocatable link.
1726 void
1727 relocate_relocs(
1728 const Relocate_info<size, big_endian>*,
1729 unsigned int sh_type,
1730 const unsigned char* prelocs,
1731 size_t reloc_count,
1732 Output_section* output_section,
1733 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
1734 const Relocatable_relocs*,
1735 unsigned char* view,
1736 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
1737 section_size_type view_size,
1738 unsigned char* reloc_view,
1739 section_size_type reloc_view_size);
1740
3a531937
JY
1741 // Return the symbol index to use for a target specific relocation.
1742 // The only target specific relocation is R_AARCH64_TLSDESC for a
1743 // local symbol, which is an absolute reloc.
1744 unsigned int
1745 do_reloc_symbol_index(void*, unsigned int r_type) const
1746 {
1747 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
1748 return 0;
1749 }
1750
1751 // Return the addend to use for a target specific relocation.
1752 typename elfcpp::Elf_types<size>::Elf_Addr
1753 do_reloc_addend(void* arg, unsigned int r_type,
1754 typename elfcpp::Elf_types<size>::Elf_Addr addend) const;
1755
9363c7c3
JY
1756 // Return the PLT section.
1757 uint64_t
1758 do_plt_address_for_global(const Symbol* gsym) const
1759 { return this->plt_section()->address_for_global(gsym); }
1760
1761 uint64_t
1762 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
1763 { return this->plt_section()->address_for_local(relobj, symndx); }
1764
9726c3c1
HS
1765 // This function should be defined in targets that can use relocation
1766 // types to determine (implemented in local_reloc_may_be_function_pointer
1767 // and global_reloc_may_be_function_pointer)
1768 // if a function's pointer is taken. ICF uses this in safe mode to only
1769 // fold those functions whose pointer is defintely not taken.
1770 bool
1771 do_can_check_for_function_pointers() const
1772 { return true; }
1773
053a4d68
JY
1774 // Return the number of entries in the PLT.
1775 unsigned int
1776 plt_entry_count() const;
1777
1778 //Return the offset of the first non-reserved PLT entry.
1779 unsigned int
1780 first_plt_entry_offset() const;
1781
1782 // Return the size of each PLT entry.
1783 unsigned int
1784 plt_entry_size() const;
1785
83a01957
HS
1786 // Create a stub table.
1787 The_stub_table*
1788 new_stub_table(The_aarch64_input_section*);
1789
1790 // Create an aarch64 input section.
1791 The_aarch64_input_section*
1792 new_aarch64_input_section(Relobj*, unsigned int);
1793
1794 // Find an aarch64 input section instance for a given OBJ and SHNDX.
1795 The_aarch64_input_section*
1796 find_aarch64_input_section(Relobj*, unsigned int) const;
1797
1798 // Return the thread control block size.
8e33481e
HS
1799 unsigned int
1800 tcb_size() const { return This::TCB_SIZE; }
1801
83a01957
HS
1802 // Scan a section for stub generation.
1803 void
1804 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
1805 const unsigned char*, size_t, Output_section*,
1806 bool, const unsigned char*,
1807 Address,
1808 section_size_type);
1809
1810 // Scan a relocation section for stub.
1811 template<int sh_type>
1812 void
1813 scan_reloc_section_for_stubs(
1814 const The_relocate_info* relinfo,
1815 const unsigned char* prelocs,
1816 size_t reloc_count,
1817 Output_section* output_section,
1818 bool needs_special_offset_handling,
1819 const unsigned char* view,
1820 Address view_address,
1821 section_size_type);
1822
1823 // Relocate a single stub.
1824 void
1825 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
1826 Output_section*, unsigned char*, Address,
1827 section_size_type);
1828
1829 // Get the default AArch64 target.
1830 static This*
1831 current_target()
1832 {
1833 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
1834 && parameters->target().get_size() == size
1835 && parameters->target().is_big_endian() == big_endian);
1836 return static_cast<This*>(parameters->sized_target<size, big_endian>());
1837 }
1838
9363c7c3
JY
1839 protected:
1840 void
1841 do_select_as_default_target()
1842 {
1843 gold_assert(aarch64_reloc_property_table == NULL);
1844 aarch64_reloc_property_table = new AArch64_reloc_property_table();
1845 }
1846
3a531937
JY
1847 // Add a new reloc argument, returning the index in the vector.
1848 size_t
1849 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
1850 unsigned int r_sym)
1851 {
1852 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
1853 return this->tlsdesc_reloc_info_.size() - 1;
1854 }
1855
9363c7c3 1856 virtual Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
1857 do_make_data_plt(Layout* layout,
1858 Output_data_got_aarch64<size, big_endian>* got,
1859 Output_data_space* got_plt,
1860 Output_data_space* got_irelative)
9363c7c3 1861 {
3a531937
JY
1862 return new Output_data_plt_aarch64_standard<size, big_endian>(
1863 layout, got, got_plt, got_irelative);
9363c7c3
JY
1864 }
1865
83a01957
HS
1866
1867 // do_make_elf_object to override the same function in the base class.
1868 Object*
1869 do_make_elf_object(const std::string&, Input_file*, off_t,
1870 const elfcpp::Ehdr<size, big_endian>&);
1871
9363c7c3 1872 Output_data_plt_aarch64<size, big_endian>*
3a531937
JY
1873 make_data_plt(Layout* layout,
1874 Output_data_got_aarch64<size, big_endian>* got,
1875 Output_data_space* got_plt,
1876 Output_data_space* got_irelative)
9363c7c3 1877 {
3a531937 1878 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
9363c7c3
JY
1879 }
1880
83a01957
HS
1881 // We only need to generate stubs, and hence perform relaxation if we are
1882 // not doing relocatable linking.
1883 virtual bool
1884 do_may_relax() const
1885 { return !parameters->options().relocatable(); }
1886
1887 // Relaxation hook. This is where we do stub generation.
1888 virtual bool
1889 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
1890
1891 void
1892 group_sections(Layout* layout,
1893 section_size_type group_size,
1894 bool stubs_always_after_branch,
1895 const Task* task);
1896
1897 void
1898 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
1899 const Sized_symbol<size>*, unsigned int,
1900 const Symbol_value<size>*,
1901 typename elfcpp::Elf_types<size>::Elf_Swxword,
1902 Address Elf_Addr);
1903
1904 // Make an output section.
1905 Output_section*
1906 do_make_output_section(const char* name, elfcpp::Elf_Word type,
1907 elfcpp::Elf_Xword flags)
1908 { return new The_aarch64_output_section(name, type, flags); }
1909
053a4d68
JY
1910 private:
1911 // The class which scans relocations.
1912 class Scan
1913 {
1914 public:
1915 Scan()
1916 : issued_non_pic_error_(false)
1917 { }
1918
053a4d68
JY
1919 inline void
1920 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1921 Sized_relobj_file<size, big_endian>* object,
1922 unsigned int data_shndx,
1923 Output_section* output_section,
1924 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1925 const elfcpp::Sym<size, big_endian>& lsym,
1926 bool is_discarded);
1927
1928 inline void
1929 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
1930 Sized_relobj_file<size, big_endian>* object,
1931 unsigned int data_shndx,
1932 Output_section* output_section,
1933 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1934 Symbol* gsym);
1935
1936 inline bool
1937 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
1938 Target_aarch64<size, big_endian>* ,
1939 Sized_relobj_file<size, big_endian>* ,
1940 unsigned int ,
1941 Output_section* ,
1942 const elfcpp::Rela<size, big_endian>& ,
1943 unsigned int r_type,
1944 const elfcpp::Sym<size, big_endian>&);
053a4d68
JY
1945
1946 inline bool
1947 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
9363c7c3
JY
1948 Target_aarch64<size, big_endian>* ,
1949 Sized_relobj_file<size, big_endian>* ,
1950 unsigned int ,
1951 Output_section* ,
1952 const elfcpp::Rela<size, big_endian>& ,
1953 unsigned int r_type,
1954 Symbol* gsym);
053a4d68
JY
1955
1956 private:
1957 static void
1958 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1959 unsigned int r_type);
1960
1961 static void
1962 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1963 unsigned int r_type, Symbol*);
1964
1965 inline bool
1966 possible_function_pointer_reloc(unsigned int r_type);
1967
1968 void
1969 check_non_pic(Relobj*, unsigned int r_type);
1970
9726c3c1
HS
1971 bool
1972 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
1973 unsigned int r_type);
1974
053a4d68
JY
1975 // Whether we have issued an error about a non-PIC compilation.
1976 bool issued_non_pic_error_;
1977 };
1978
1979 // The class which implements relocation.
1980 class Relocate
1981 {
1982 public:
1983 Relocate()
3a531937 1984 : skip_call_tls_get_addr_(false)
053a4d68
JY
1985 { }
1986
1987 ~Relocate()
1988 { }
1989
1990 // Do a relocation. Return false if the caller should not issue
1991 // any warnings about this relocation.
1992 inline bool
1993 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
1994 Output_section*,
1995 size_t relnum, const elfcpp::Rela<size, big_endian>&,
1996 unsigned int r_type, const Sized_symbol<size>*,
1997 const Symbol_value<size>*,
1998 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1999 section_size_type);
2000
8e33481e 2001 private:
83a01957
HS
2002 inline typename AArch64_relocate_functions<size, big_endian>::Status
2003 relocate_tls(const Relocate_info<size, big_endian>*,
8e33481e
HS
2004 Target_aarch64<size, big_endian>*,
2005 size_t,
2006 const elfcpp::Rela<size, big_endian>&,
2007 unsigned int r_type, const Sized_symbol<size>*,
2008 const Symbol_value<size>*,
2009 unsigned char*,
2010 typename elfcpp::Elf_types<size>::Elf_Addr);
2011
83a01957 2012 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2013 tls_gd_to_le(
83a01957 2014 const Relocate_info<size, big_endian>*,
3a531937
JY
2015 Target_aarch64<size, big_endian>*,
2016 const elfcpp::Rela<size, big_endian>&,
2017 unsigned int,
2018 unsigned char*,
2019 const Symbol_value<size>*);
2020
9726c3c1
HS
2021 inline typename AArch64_relocate_functions<size, big_endian>::Status
2022 tls_ld_to_le(
2023 const Relocate_info<size, big_endian>*,
2024 Target_aarch64<size, big_endian>*,
2025 const elfcpp::Rela<size, big_endian>&,
2026 unsigned int,
2027 unsigned char*,
2028 const Symbol_value<size>*);
2029
83a01957 2030 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2031 tls_ie_to_le(
83a01957 2032 const Relocate_info<size, big_endian>*,
3a531937
JY
2033 Target_aarch64<size, big_endian>*,
2034 const elfcpp::Rela<size, big_endian>&,
2035 unsigned int,
2036 unsigned char*,
2037 const Symbol_value<size>*);
2038
83a01957 2039 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2040 tls_desc_gd_to_le(
83a01957 2041 const Relocate_info<size, big_endian>*,
3a531937
JY
2042 Target_aarch64<size, big_endian>*,
2043 const elfcpp::Rela<size, big_endian>&,
2044 unsigned int,
2045 unsigned char*,
2046 const Symbol_value<size>*);
2047
83a01957 2048 inline typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 2049 tls_desc_gd_to_ie(
83a01957 2050 const Relocate_info<size, big_endian>*,
3a531937
JY
2051 Target_aarch64<size, big_endian>*,
2052 const elfcpp::Rela<size, big_endian>&,
2053 unsigned int,
2054 unsigned char*,
2055 const Symbol_value<size>*,
2056 typename elfcpp::Elf_types<size>::Elf_Addr,
2057 typename elfcpp::Elf_types<size>::Elf_Addr);
2058
2059 bool skip_call_tls_get_addr_;
2060
8e33481e 2061 }; // End of class Relocate
053a4d68
JY
2062
2063 // A class which returns the size required for a relocation type,
2064 // used while scanning relocs during a relocatable link.
2065 class Relocatable_size_for_reloc
2066 {
2067 public:
2068 unsigned int
2069 get_size_for_reloc(unsigned int, Relobj*);
2070 };
2071
2072 // Adjust TLS relocation type based on the options and whether this
2073 // is a local symbol.
2074 static tls::Tls_optimization
2075 optimize_tls_reloc(bool is_final, int r_type);
2076
2077 // Get the GOT section, creating it if necessary.
2078 Output_data_got_aarch64<size, big_endian>*
2079 got_section(Symbol_table*, Layout*);
2080
2081 // Get the GOT PLT section.
2082 Output_data_space*
2083 got_plt_section() const
2084 {
2085 gold_assert(this->got_plt_ != NULL);
2086 return this->got_plt_;
2087 }
2088
3a531937
JY
2089 // Get the GOT section for TLSDESC entries.
2090 Output_data_got<size, big_endian>*
2091 got_tlsdesc_section() const
2092 {
2093 gold_assert(this->got_tlsdesc_ != NULL);
2094 return this->got_tlsdesc_;
2095 }
2096
053a4d68
JY
2097 // Create the PLT section.
2098 void
2099 make_plt_section(Symbol_table* symtab, Layout* layout);
2100
2101 // Create a PLT entry for a global symbol.
2102 void
2103 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2104
3a531937
JY
2105 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2106 void
2107 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2108 Sized_relobj_file<size, big_endian>* relobj,
2109 unsigned int local_sym_index);
2110
2111 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2112 void
2113 define_tls_base_symbol(Symbol_table*, Layout*);
2114
2115 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
2116 void
2117 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
2118
2119 // Create a GOT entry for the TLS module index.
2120 unsigned int
2121 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2122 Sized_relobj_file<size, big_endian>* object);
2123
053a4d68
JY
2124 // Get the PLT section.
2125 Output_data_plt_aarch64<size, big_endian>*
2126 plt_section() const
2127 {
2128 gold_assert(this->plt_ != NULL);
2129 return this->plt_;
2130 }
2131
2132 // Get the dynamic reloc section, creating it if necessary.
2133 Reloc_section*
2134 rela_dyn_section(Layout*);
2135
3a531937
JY
2136 // Get the section to use for TLSDESC relocations.
2137 Reloc_section*
2138 rela_tlsdesc_section(Layout*) const;
2139
2140 // Get the section to use for IRELATIVE relocations.
2141 Reloc_section*
2142 rela_irelative_section(Layout*);
2143
053a4d68
JY
2144 // Add a potential copy relocation.
2145 void
2146 copy_reloc(Symbol_table* symtab, Layout* layout,
2147 Sized_relobj_file<size, big_endian>* object,
2148 unsigned int shndx, Output_section* output_section,
2149 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
2150 {
2151 this->copy_relocs_.copy_reloc(symtab, layout,
2152 symtab->get_sized_symbol<size>(sym),
2153 object, shndx, output_section,
2154 reloc, this->rela_dyn_section(layout));
2155 }
2156
2157 // Information about this specific target which we pass to the
2158 // general Target structure.
2159 static const Target::Target_info aarch64_info;
2160
2161 // The types of GOT entries needed for this platform.
2162 // These values are exposed to the ABI in an incremental link.
2163 // Do not renumber existing values without changing the version
2164 // number of the .gnu_incremental_inputs section.
2165 enum Got_type
2166 {
2167 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2168 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
2169 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
2170 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
2171 };
2172
3a531937
JY
2173 // This type is used as the argument to the target specific
2174 // relocation routines. The only target specific reloc is
2175 // R_AARCh64_TLSDESC against a local symbol.
2176 struct Tlsdesc_info
2177 {
2178 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
2179 unsigned int a_r_sym)
2180 : object(a_object), r_sym(a_r_sym)
2181 { }
2182
2183 // The object in which the local symbol is defined.
2184 Sized_relobj_file<size, big_endian>* object;
2185 // The local symbol index in the object.
2186 unsigned int r_sym;
2187 };
2188
053a4d68
JY
2189 // The GOT section.
2190 Output_data_got_aarch64<size, big_endian>* got_;
2191 // The PLT section.
2192 Output_data_plt_aarch64<size, big_endian>* plt_;
2193 // The GOT PLT section.
2194 Output_data_space* got_plt_;
3a531937
JY
2195 // The GOT section for IRELATIVE relocations.
2196 Output_data_space* got_irelative_;
2197 // The GOT section for TLSDESC relocations.
2198 Output_data_got<size, big_endian>* got_tlsdesc_;
053a4d68
JY
2199 // The _GLOBAL_OFFSET_TABLE_ symbol.
2200 Symbol* global_offset_table_;
2201 // The dynamic reloc section.
2202 Reloc_section* rela_dyn_;
3a531937
JY
2203 // The section to use for IRELATIVE relocs.
2204 Reloc_section* rela_irelative_;
053a4d68
JY
2205 // Relocs saved to avoid a COPY reloc.
2206 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3a531937
JY
2207 // Offset of the GOT entry for the TLS module index.
2208 unsigned int got_mod_index_offset_;
2209 // We handle R_AARCH64_TLSDESC against a local symbol as a target
2210 // specific relocation. Here we store the object and local symbol
2211 // index for the relocation.
2212 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
2213 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2214 bool tls_base_symbol_defined_;
83a01957
HS
2215 // List of stub_tables
2216 Stub_table_list stub_tables_;
0bf32ea9
JY
2217 // Actual stub group size
2218 section_size_type stub_group_size_;
83a01957 2219 AArch64_input_section_map aarch64_input_section_map_;
8e33481e 2220}; // End of Target_aarch64
053a4d68 2221
3a531937 2222
053a4d68
JY
2223template<>
2224const Target::Target_info Target_aarch64<64, false>::aarch64_info =
2225{
2226 64, // size
2227 false, // is_big_endian
2228 elfcpp::EM_AARCH64, // machine_code
2229 false, // has_make_symbol
2230 false, // has_resolve
2231 false, // has_code_fill
2232 true, // is_default_stack_executable
9726c3c1 2233 true, // can_icf_inline_merge_sections
053a4d68
JY
2234 '\0', // wrap_char
2235 "/lib/ld.so.1", // program interpreter
2236 0x400000, // default_text_segment_address
2237 0x1000, // abi_pagesize (overridable by -z max-page-size)
2238 0x1000, // common_pagesize (overridable by -z common-page-size)
2239 false, // isolate_execinstr
2240 0, // rosegment_gap
2241 elfcpp::SHN_UNDEF, // small_common_shndx
2242 elfcpp::SHN_UNDEF, // large_common_shndx
2243 0, // small_common_section_flags
2244 0, // large_common_section_flags
2245 NULL, // attributes_section
2246 NULL, // attributes_vendor
2247 "_start" // entry_symbol_name
2248};
2249
2250template<>
2251const Target::Target_info Target_aarch64<32, false>::aarch64_info =
2252{
2253 32, // size
2254 false, // is_big_endian
2255 elfcpp::EM_AARCH64, // machine_code
2256 false, // has_make_symbol
2257 false, // has_resolve
2258 false, // has_code_fill
2259 true, // is_default_stack_executable
2260 false, // can_icf_inline_merge_sections
2261 '\0', // wrap_char
2262 "/lib/ld.so.1", // program interpreter
2263 0x400000, // default_text_segment_address
2264 0x1000, // abi_pagesize (overridable by -z max-page-size)
2265 0x1000, // common_pagesize (overridable by -z common-page-size)
2266 false, // isolate_execinstr
2267 0, // rosegment_gap
2268 elfcpp::SHN_UNDEF, // small_common_shndx
2269 elfcpp::SHN_UNDEF, // large_common_shndx
2270 0, // small_common_section_flags
2271 0, // large_common_section_flags
2272 NULL, // attributes_section
2273 NULL, // attributes_vendor
2274 "_start" // entry_symbol_name
2275};
2276
2277template<>
2278const Target::Target_info Target_aarch64<64, true>::aarch64_info =
2279{
2280 64, // size
2281 true, // is_big_endian
2282 elfcpp::EM_AARCH64, // machine_code
2283 false, // has_make_symbol
2284 false, // has_resolve
2285 false, // has_code_fill
2286 true, // is_default_stack_executable
9726c3c1 2287 true, // can_icf_inline_merge_sections
053a4d68
JY
2288 '\0', // wrap_char
2289 "/lib/ld.so.1", // program interpreter
2290 0x400000, // default_text_segment_address
2291 0x1000, // abi_pagesize (overridable by -z max-page-size)
2292 0x1000, // common_pagesize (overridable by -z common-page-size)
2293 false, // isolate_execinstr
2294 0, // rosegment_gap
2295 elfcpp::SHN_UNDEF, // small_common_shndx
2296 elfcpp::SHN_UNDEF, // large_common_shndx
2297 0, // small_common_section_flags
2298 0, // large_common_section_flags
2299 NULL, // attributes_section
2300 NULL, // attributes_vendor
2301 "_start" // entry_symbol_name
2302};
2303
2304template<>
2305const Target::Target_info Target_aarch64<32, true>::aarch64_info =
2306{
2307 32, // size
2308 true, // is_big_endian
2309 elfcpp::EM_AARCH64, // machine_code
2310 false, // has_make_symbol
2311 false, // has_resolve
2312 false, // has_code_fill
2313 true, // is_default_stack_executable
2314 false, // can_icf_inline_merge_sections
2315 '\0', // wrap_char
2316 "/lib/ld.so.1", // program interpreter
2317 0x400000, // default_text_segment_address
2318 0x1000, // abi_pagesize (overridable by -z max-page-size)
2319 0x1000, // common_pagesize (overridable by -z common-page-size)
2320 false, // isolate_execinstr
2321 0, // rosegment_gap
2322 elfcpp::SHN_UNDEF, // small_common_shndx
2323 elfcpp::SHN_UNDEF, // large_common_shndx
2324 0, // small_common_section_flags
2325 0, // large_common_section_flags
2326 NULL, // attributes_section
2327 NULL, // attributes_vendor
2328 "_start" // entry_symbol_name
2329};
2330
2331// Get the GOT section, creating it if necessary.
2332
2333template<int size, bool big_endian>
2334Output_data_got_aarch64<size, big_endian>*
2335Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
9363c7c3 2336 Layout* layout)
053a4d68
JY
2337{
2338 if (this->got_ == NULL)
2339 {
2340 gold_assert(symtab != NULL && layout != NULL);
2341
2342 // When using -z now, we can treat .got.plt as a relro section.
2343 // Without -z now, it is modified after program startup by lazy
2344 // PLT relocations.
2345 bool is_got_plt_relro = parameters->options().now();
2346 Output_section_order got_order = (is_got_plt_relro
2347 ? ORDER_RELRO
2348 : ORDER_RELRO_LAST);
2349 Output_section_order got_plt_order = (is_got_plt_relro
2350 ? ORDER_RELRO
2351 : ORDER_NON_RELRO_FIRST);
2352
2353 // Layout of .got and .got.plt sections.
2354 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
2355 // ...
2356 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
2357 // .gotplt[1] reserved for ld.so (resolver)
2358 // .gotplt[2] reserved
2359
2360 // Generate .got section.
2361 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
9363c7c3 2362 layout);
053a4d68 2363 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
9363c7c3
JY
2364 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
2365 this->got_, got_order, true);
053a4d68
JY
2366 // The first word of GOT is reserved for the address of .dynamic.
2367 // We put 0 here now. The value will be replaced later in
2368 // Output_data_got_aarch64::do_write.
2369 this->got_->add_constant(0);
2370
2371 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2372 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
2373 // even if there is a .got.plt section.
2374 this->global_offset_table_ =
9363c7c3
JY
2375 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2376 Symbol_table::PREDEFINED,
2377 this->got_,
2378 0, 0, elfcpp::STT_OBJECT,
2379 elfcpp::STB_LOCAL,
2380 elfcpp::STV_HIDDEN, 0,
2381 false, false);
053a4d68
JY
2382
2383 // Generate .got.plt section.
2384 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
2385 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
9363c7c3
JY
2386 (elfcpp::SHF_ALLOC
2387 | elfcpp::SHF_WRITE),
2388 this->got_plt_, got_plt_order,
2389 is_got_plt_relro);
053a4d68
JY
2390
2391 // The first three entries are reserved.
9363c7c3
JY
2392 this->got_plt_->set_current_data_size(
2393 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
053a4d68 2394
3a531937
JY
2395 // If there are any IRELATIVE relocations, they get GOT entries
2396 // in .got.plt after the jump slot entries.
2397 this->got_irelative_ = new Output_data_space(size / 8,
2398 "** GOT IRELATIVE PLT");
2399 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2400 (elfcpp::SHF_ALLOC
2401 | elfcpp::SHF_WRITE),
2402 this->got_irelative_,
2403 got_plt_order,
2404 is_got_plt_relro);
2405
2406 // If there are any TLSDESC relocations, they get GOT entries in
2407 // .got.plt after the jump slot and IRELATIVE entries.
2408 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
2409 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2410 (elfcpp::SHF_ALLOC
2411 | elfcpp::SHF_WRITE),
2412 this->got_tlsdesc_,
2413 got_plt_order,
2414 is_got_plt_relro);
2415
053a4d68 2416 if (!is_got_plt_relro)
9363c7c3
JY
2417 {
2418 // Those bytes can go into the relro segment.
2419 layout->increase_relro(
2420 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
2421 }
053a4d68
JY
2422
2423 }
2424 return this->got_;
2425}
2426
2427// Get the dynamic reloc section, creating it if necessary.
2428
2429template<int size, bool big_endian>
2430typename Target_aarch64<size, big_endian>::Reloc_section*
2431Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
2432{
2433 if (this->rela_dyn_ == NULL)
2434 {
2435 gold_assert(layout != NULL);
2436 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2437 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2438 elfcpp::SHF_ALLOC, this->rela_dyn_,
2439 ORDER_DYNAMIC_RELOCS, false);
2440 }
2441 return this->rela_dyn_;
2442}
2443
3a531937
JY
2444// Get the section to use for IRELATIVE relocs, creating it if
2445// necessary. These go in .rela.dyn, but only after all other dynamic
2446// relocations. They need to follow the other dynamic relocations so
2447// that they can refer to global variables initialized by those
2448// relocs.
2449
2450template<int size, bool big_endian>
2451typename Target_aarch64<size, big_endian>::Reloc_section*
2452Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
2453{
2454 if (this->rela_irelative_ == NULL)
2455 {
2456 // Make sure we have already created the dynamic reloc section.
2457 this->rela_dyn_section(layout);
2458 this->rela_irelative_ = new Reloc_section(false);
2459 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2460 elfcpp::SHF_ALLOC, this->rela_irelative_,
2461 ORDER_DYNAMIC_RELOCS, false);
2462 gold_assert(this->rela_dyn_->output_section()
2463 == this->rela_irelative_->output_section());
2464 }
2465 return this->rela_irelative_;
2466}
2467
2468
83a01957
HS
2469// do_make_elf_object to override the same function in the base class. We need
2470// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
2471// store backend specific information. Hence we need to have our own ELF object
2472// creation.
2473
2474template<int size, bool big_endian>
2475Object*
2476Target_aarch64<size, big_endian>::do_make_elf_object(
2477 const std::string& name,
2478 Input_file* input_file,
2479 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2480{
2481 int et = ehdr.get_e_type();
2482 // ET_EXEC files are valid input for --just-symbols/-R,
2483 // and we treat them as relocatable objects.
2484 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
2485 return Sized_target<size, big_endian>::do_make_elf_object(
2486 name, input_file, offset, ehdr);
2487 else if (et == elfcpp::ET_REL)
2488 {
2489 AArch64_relobj<size, big_endian>* obj =
2490 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
2491 obj->setup();
2492 return obj;
2493 }
2494 else if (et == elfcpp::ET_DYN)
2495 {
2496 // Keep base implementation.
2497 Sized_dynobj<size, big_endian>* obj =
2498 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2499 obj->setup();
2500 return obj;
2501 }
2502 else
2503 {
2504 gold_error(_("%s: unsupported ELF file type %d"),
2505 name.c_str(), et);
2506 return NULL;
2507 }
2508}
2509
2510
2511// Scan a relocation for stub generation.
2512
2513template<int size, bool big_endian>
2514void
2515Target_aarch64<size, big_endian>::scan_reloc_for_stub(
2516 const Relocate_info<size, big_endian>* relinfo,
2517 unsigned int r_type,
2518 const Sized_symbol<size>* gsym,
2519 unsigned int r_sym,
2520 const Symbol_value<size>* psymval,
2521 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
2522 Address address)
2523{
2524 const AArch64_relobj<size, big_endian>* aarch64_relobj =
2525 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2526
2527 Symbol_value<size> symval;
2528 if (gsym != NULL)
2529 {
2530 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
2531 get_reloc_property(r_type);
2532 if (gsym->use_plt_offset(arp->reference_flags()))
2533 {
2534 // This uses a PLT, change the symbol value.
2535 symval.set_output_value(this->plt_section()->address()
2536 + gsym->plt_offset());
2537 psymval = &symval;
2538 }
2539 else if (gsym->is_undefined())
2540 // There is no need to generate a stub symbol is undefined.
2541 return;
2542 }
2543
2544 // Get the symbol value.
2545 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
2546
2547 // Owing to pipelining, the PC relative branches below actually skip
2548 // two instructions when the branch offset is 0.
2549 Address destination = static_cast<Address>(-1);
2550 switch (r_type)
2551 {
2552 case elfcpp::R_AARCH64_CALL26:
2553 case elfcpp::R_AARCH64_JUMP26:
2554 destination = value + addend;
2555 break;
2556 default:
9726c3c1 2557 gold_unreachable();
83a01957
HS
2558 }
2559
2560 typename The_reloc_stub::Stub_type stub_type = The_reloc_stub::
2561 stub_type_for_reloc(r_type, address, destination);
2562 if (stub_type == The_reloc_stub::ST_NONE)
2563 return ;
2564
2565 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
2566 gold_assert(stub_table != NULL);
2567
2568 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
2569 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
2570 if (stub == NULL)
2571 {
2572 stub = new The_reloc_stub(stub_type);
2573 stub_table->add_reloc_stub(stub, key);
2574 }
2575 stub->set_destination_address(destination);
2576} // End of Target_aarch64::scan_reloc_for_stub
2577
2578
2579// This function scans a relocation section for stub generation.
2580// The template parameter Relocate must be a class type which provides
2581// a single function, relocate(), which implements the machine
2582// specific part of a relocation.
2583
2584// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
2585// SHT_REL or SHT_RELA.
2586
2587// PRELOCS points to the relocation data. RELOC_COUNT is the number
2588// of relocs. OUTPUT_SECTION is the output section.
2589// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
2590// mapped to output offsets.
2591
2592// VIEW is the section data, VIEW_ADDRESS is its memory address, and
2593// VIEW_SIZE is the size. These refer to the input section, unless
2594// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
2595// the output section.
2596
2597template<int size, bool big_endian>
2598template<int sh_type>
2599void inline
2600Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
2601 const Relocate_info<size, big_endian>* relinfo,
2602 const unsigned char* prelocs,
2603 size_t reloc_count,
2604 Output_section* /*output_section*/,
2605 bool /*needs_special_offset_handling*/,
2606 const unsigned char* /*view*/,
2607 Address view_address,
2608 section_size_type)
2609{
2610 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
2611
2612 const int reloc_size =
2613 Reloc_types<sh_type,size,big_endian>::reloc_size;
2614 AArch64_relobj<size, big_endian>* object =
2615 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
2616 unsigned int local_count = object->local_symbol_count();
2617
2618 gold::Default_comdat_behavior default_comdat_behavior;
2619 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
2620
2621 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2622 {
2623 Reltype reloc(prelocs);
2624 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
2625 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2626 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2627 if (r_type != elfcpp::R_AARCH64_CALL26
2628 && r_type != elfcpp::R_AARCH64_JUMP26)
2629 continue;
2630
2631 section_offset_type offset =
2632 convert_to_section_size_type(reloc.get_r_offset());
2633
2634 // Get the addend.
2635 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
2636 reloc.get_r_addend();
2637
2638 const Sized_symbol<size>* sym;
2639 Symbol_value<size> symval;
2640 const Symbol_value<size> *psymval;
2641 bool is_defined_in_discarded_section;
2642 unsigned int shndx;
2643 if (r_sym < local_count)
2644 {
2645 sym = NULL;
2646 psymval = object->local_symbol(r_sym);
2647
2648 // If the local symbol belongs to a section we are discarding,
2649 // and that section is a debug section, try to find the
2650 // corresponding kept section and map this symbol to its
2651 // counterpart in the kept section. The symbol must not
2652 // correspond to a section we are folding.
2653 bool is_ordinary;
2654 shndx = psymval->input_shndx(&is_ordinary);
2655 is_defined_in_discarded_section =
2656 (is_ordinary
2657 && shndx != elfcpp::SHN_UNDEF
2658 && !object->is_section_included(shndx)
2659 && !relinfo->symtab->is_section_folded(object, shndx));
2660
2661 // We need to compute the would-be final value of this local
2662 // symbol.
2663 if (!is_defined_in_discarded_section)
2664 {
2665 typedef Sized_relobj_file<size, big_endian> ObjType;
2666 typename ObjType::Compute_final_local_value_status status =
2667 object->compute_final_local_value(r_sym, psymval, &symval,
2668 relinfo->symtab);
2669 if (status == ObjType::CFLV_OK)
2670 {
2671 // Currently we cannot handle a branch to a target in
2672 // a merged section. If this is the case, issue an error
2673 // and also free the merge symbol value.
2674 if (!symval.has_output_value())
2675 {
2676 const std::string& section_name =
2677 object->section_name(shndx);
2678 object->error(_("cannot handle branch to local %u "
2679 "in a merged section %s"),
2680 r_sym, section_name.c_str());
2681 }
2682 psymval = &symval;
2683 }
2684 else
2685 {
2686 // We cannot determine the final value.
2687 continue;
2688 }
2689 }
2690 }
2691 else
2692 {
2693 const Symbol* gsym;
2694 gsym = object->global_symbol(r_sym);
2695 gold_assert(gsym != NULL);
2696 if (gsym->is_forwarder())
2697 gsym = relinfo->symtab->resolve_forwards(gsym);
2698
2699 sym = static_cast<const Sized_symbol<size>*>(gsym);
2700 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
2701 symval.set_output_symtab_index(sym->symtab_index());
2702 else
2703 symval.set_no_output_symtab_entry();
2704
2705 // We need to compute the would-be final value of this global
2706 // symbol.
2707 const Symbol_table* symtab = relinfo->symtab;
2708 const Sized_symbol<size>* sized_symbol =
2709 symtab->get_sized_symbol<size>(gsym);
2710 Symbol_table::Compute_final_value_status status;
2711 typename elfcpp::Elf_types<size>::Elf_Addr value =
2712 symtab->compute_final_value<size>(sized_symbol, &status);
2713
2714 // Skip this if the symbol has not output section.
2715 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
2716 continue;
2717 symval.set_output_value(value);
2718
2719 if (gsym->type() == elfcpp::STT_TLS)
2720 symval.set_is_tls_symbol();
2721 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2722 symval.set_is_ifunc_symbol();
2723 psymval = &symval;
2724
2725 is_defined_in_discarded_section =
2726 (gsym->is_defined_in_discarded_section()
2727 && gsym->is_undefined());
2728 shndx = 0;
2729 }
2730
2731 Symbol_value<size> symval2;
2732 if (is_defined_in_discarded_section)
2733 {
2734 if (comdat_behavior == CB_UNDETERMINED)
2735 {
2736 std::string name = object->section_name(relinfo->data_shndx);
2737 comdat_behavior = default_comdat_behavior.get(name.c_str());
2738 }
2739 if (comdat_behavior == CB_PRETEND)
2740 {
2741 bool found;
2742 typename elfcpp::Elf_types<size>::Elf_Addr value =
2743 object->map_to_kept_section(shndx, &found);
2744 if (found)
2745 symval2.set_output_value(value + psymval->input_value());
2746 else
2747 symval2.set_output_value(0);
2748 }
2749 else
2750 {
2751 if (comdat_behavior == CB_WARNING)
2752 gold_warning_at_location(relinfo, i, offset,
2753 _("relocation refers to discarded "
2754 "section"));
2755 symval2.set_output_value(0);
2756 }
2757 symval2.set_no_output_symtab_entry();
2758 psymval = &symval2;
2759 }
2760
2761 // If symbol is a section symbol, we don't know the actual type of
2762 // destination. Give up.
2763 if (psymval->is_section_symbol())
2764 continue;
2765
2766 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2767 addend, view_address + offset);
2768 } // End of iterating relocs in a section
2769} // End of Target_aarch64::scan_reloc_section_for_stubs
2770
2771
2772// Scan an input section for stub generation.
2773
2774template<int size, bool big_endian>
2775void
2776Target_aarch64<size, big_endian>::scan_section_for_stubs(
2777 const Relocate_info<size, big_endian>* relinfo,
2778 unsigned int sh_type,
2779 const unsigned char* prelocs,
2780 size_t reloc_count,
2781 Output_section* output_section,
2782 bool needs_special_offset_handling,
2783 const unsigned char* view,
2784 Address view_address,
2785 section_size_type view_size)
2786{
2787 gold_assert(sh_type == elfcpp::SHT_RELA);
2788 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
2789 relinfo,
2790 prelocs,
2791 reloc_count,
2792 output_section,
2793 needs_special_offset_handling,
2794 view,
2795 view_address,
2796 view_size);
2797}
2798
2799
2800// Relocate a single stub.
2801
2802template<int size, bool big_endian>
2803void Target_aarch64<size, big_endian>::
2804relocate_stub(The_reloc_stub* stub,
2805 const The_relocate_info*,
2806 Output_section*,
2807 unsigned char* view,
2808 Address address,
2809 section_size_type)
2810{
2811 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
2812 typedef typename The_reloc_functions::Status The_reloc_functions_status;
2813 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
2814
2815 Insntype* ip = reinterpret_cast<Insntype*>(view);
2816 int insn_number = stub->stub_insn_number();
2817 const uint32_t* insns = stub->stub_insns();
2818 // Check the insns are really those stub insns.
2819 for (int i = 0; i < insn_number; ++i)
2820 {
2821 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
2822 gold_assert(((uint32_t)insn == insns[i+1]));
2823 }
2824
2825 Address dest = stub->destination_address();
2826
2827 switch(stub->stub_type())
2828 {
2829 case The_reloc_stub::ST_ADRP_BRANCH:
2830 {
2831 // 1st reloc is ADR_PREL_PG_HI21
2832 The_reloc_functions_status status =
2833 The_reloc_functions::adrp(view, dest, address);
2834 // An error should never arise in the above step. If so, please
2835 // check 'aarch64_valid_for_adrp_p'.
2836 gold_assert(status == The_reloc_functions::STATUS_OKAY);
2837
2838 // 2nd reloc is ADD_ABS_LO12_NC
2839 const AArch64_reloc_property* arp =
2840 aarch64_reloc_property_table->get_reloc_property(
2841 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
2842 gold_assert(arp != NULL);
2843 status = The_reloc_functions::template
2844 rela_general<32>(view + 4, dest, 0, arp);
2845 // An error should never arise, it is an "_NC" relocation.
2846 gold_assert(status == The_reloc_functions::STATUS_OKAY);
2847 }
2848 break;
2849
2850 case The_reloc_stub::ST_LONG_BRANCH_ABS:
2851 // 1st reloc is R_AARCH64_PREL64, at offset 8
2852 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
2853 break;
2854
2855 case The_reloc_stub::ST_LONG_BRANCH_PCREL:
2856 {
2857 // "PC" calculation is the 2nd insn in the stub.
2858 uint64_t offset = dest - (address + 4);
2859 // Offset is placed at offset 4 and 5.
2860 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
2861 }
2862 break;
2863
2864 default:
9726c3c1 2865 gold_unreachable();
83a01957
HS
2866 }
2867}
2868
2869
053a4d68
JY
2870// A class to handle the PLT data.
2871// This is an abstract base class that handles most of the linker details
2872// but does not know the actual contents of PLT entries. The derived
2873// classes below fill in those details.
2874
2875template<int size, bool big_endian>
2876class Output_data_plt_aarch64 : public Output_section_data
2877{
2878 public:
2879 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2880 Reloc_section;
2881 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2882
2883 Output_data_plt_aarch64(Layout* layout,
9363c7c3 2884 uint64_t addralign,
3a531937
JY
2885 Output_data_got_aarch64<size, big_endian>* got,
2886 Output_data_space* got_plt,
2887 Output_data_space* got_irelative)
9726c3c1 2888 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3a531937
JY
2889 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
2890 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
053a4d68
JY
2891 { this->init(layout); }
2892
2893 // Initialize the PLT section.
2894 void
2895 init(Layout* layout);
2896
2897 // Add an entry to the PLT.
2898 void
9726c3c1
HS
2899 add_entry(Symbol_table*, Layout*, Symbol* gsym);
2900
2901 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
2902 unsigned int
2903 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
2904 Sized_relobj_file<size, big_endian>* relobj,
2905 unsigned int local_sym_index);
2906
2907 // Add the relocation for a PLT entry.
2908 void
2909 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
2910 unsigned int got_offset);
053a4d68 2911
3a531937
JY
2912 // Add the reserved TLSDESC_PLT entry to the PLT.
2913 void
2914 reserve_tlsdesc_entry(unsigned int got_offset)
2915 { this->tlsdesc_got_offset_ = got_offset; }
2916
2917 // Return true if a TLSDESC_PLT entry has been reserved.
2918 bool
2919 has_tlsdesc_entry() const
2920 { return this->tlsdesc_got_offset_ != -1U; }
2921
2922 // Return the GOT offset for the reserved TLSDESC_PLT entry.
2923 unsigned int
2924 get_tlsdesc_got_offset() const
2925 { return this->tlsdesc_got_offset_; }
2926
2927 // Return the PLT offset of the reserved TLSDESC_PLT entry.
2928 unsigned int
2929 get_tlsdesc_plt_offset() const
2930 {
2931 return (this->first_plt_entry_offset() +
2932 (this->count_ + this->irelative_count_)
2933 * this->get_plt_entry_size());
2934 }
2935
053a4d68
JY
2936 // Return the .rela.plt section data.
2937 Reloc_section*
2938 rela_plt()
2939 { return this->rel_; }
2940
3a531937
JY
2941 // Return where the TLSDESC relocations should go.
2942 Reloc_section*
2943 rela_tlsdesc(Layout*);
2944
2945 // Return where the IRELATIVE relocations should go in the PLT
2946 // relocations.
2947 Reloc_section*
2948 rela_irelative(Symbol_table*, Layout*);
2949
9363c7c3
JY
2950 // Return whether we created a section for IRELATIVE relocations.
2951 bool
2952 has_irelative_section() const
2953 { return this->irelative_rel_ != NULL; }
2954
053a4d68
JY
2955 // Return the number of PLT entries.
2956 unsigned int
2957 entry_count() const
3a531937 2958 { return this->count_ + this->irelative_count_; }
053a4d68
JY
2959
2960 // Return the offset of the first non-reserved PLT entry.
2961 unsigned int
3a531937 2962 first_plt_entry_offset() const
053a4d68
JY
2963 { return this->do_first_plt_entry_offset(); }
2964
2965 // Return the size of a PLT entry.
2966 unsigned int
2967 get_plt_entry_size() const
2968 { return this->do_get_plt_entry_size(); }
2969
3a531937
JY
2970 // Return the reserved tlsdesc entry size.
2971 unsigned int
2972 get_plt_tlsdesc_entry_size() const
2973 { return this->do_get_plt_tlsdesc_entry_size(); }
2974
9363c7c3
JY
2975 // Return the PLT address to use for a global symbol.
2976 uint64_t
2977 address_for_global(const Symbol*);
2978
2979 // Return the PLT address to use for a local symbol.
2980 uint64_t
2981 address_for_local(const Relobj*, unsigned int symndx);
2982
053a4d68
JY
2983 protected:
2984 // Fill in the first PLT entry.
2985 void
2986 fill_first_plt_entry(unsigned char* pov,
2987 Address got_address,
2988 Address plt_address)
2989 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
2990
2991 // Fill in a normal PLT entry.
2992 void
2993 fill_plt_entry(unsigned char* pov,
2994 Address got_address,
2995 Address plt_address,
2996 unsigned int got_offset,
2997 unsigned int plt_offset)
2998 {
2999 this->do_fill_plt_entry(pov, got_address, plt_address,
3000 got_offset, plt_offset);
3001 }
3002
3a531937
JY
3003 // Fill in the reserved TLSDESC PLT entry.
3004 void
3005 fill_tlsdesc_entry(unsigned char* pov,
3006 Address gotplt_address,
3007 Address plt_address,
3008 Address got_base,
3009 unsigned int tlsdesc_got_offset,
3010 unsigned int plt_offset)
3011 {
3012 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3013 tlsdesc_got_offset, plt_offset);
3014 }
3015
053a4d68
JY
3016 virtual unsigned int
3017 do_first_plt_entry_offset() const = 0;
3018
3019 virtual unsigned int
3020 do_get_plt_entry_size() const = 0;
3021
3a531937
JY
3022 virtual unsigned int
3023 do_get_plt_tlsdesc_entry_size() const = 0;
3024
053a4d68
JY
3025 virtual void
3026 do_fill_first_plt_entry(unsigned char* pov,
3027 Address got_addr,
3028 Address plt_addr) = 0;
3029
3030 virtual void
3031 do_fill_plt_entry(unsigned char* pov,
3032 Address got_address,
3033 Address plt_address,
3034 unsigned int got_offset,
3035 unsigned int plt_offset) = 0;
3036
3a531937
JY
3037 virtual void
3038 do_fill_tlsdesc_entry(unsigned char* pov,
3039 Address gotplt_address,
3040 Address plt_address,
3041 Address got_base,
3042 unsigned int tlsdesc_got_offset,
3043 unsigned int plt_offset) = 0;
3044
053a4d68
JY
3045 void
3046 do_adjust_output_section(Output_section* os);
3047
3048 // Write to a map file.
3049 void
3050 do_print_to_mapfile(Mapfile* mapfile) const
3051 { mapfile->print_output_data(this, _("** PLT")); }
3052
3053 private:
3054 // Set the final size.
3055 void
3056 set_final_data_size();
3057
3058 // Write out the PLT data.
3059 void
3060 do_write(Output_file*);
3061
3062 // The reloc section.
3063 Reloc_section* rel_;
3a531937
JY
3064
3065 // The TLSDESC relocs, if necessary. These must follow the regular
3066 // PLT relocs.
3067 Reloc_section* tlsdesc_rel_;
3068
9363c7c3
JY
3069 // The IRELATIVE relocs, if necessary. These must follow the
3070 // regular PLT relocations.
3071 Reloc_section* irelative_rel_;
3a531937 3072
053a4d68
JY
3073 // The .got section.
3074 Output_data_got_aarch64<size, big_endian>* got_;
3a531937 3075
053a4d68
JY
3076 // The .got.plt section.
3077 Output_data_space* got_plt_;
3a531937
JY
3078
3079 // The part of the .got.plt section used for IRELATIVE relocs.
3080 Output_data_space* got_irelative_;
3081
053a4d68
JY
3082 // The number of PLT entries.
3083 unsigned int count_;
3a531937
JY
3084
3085 // Number of PLT entries with R_X86_64_IRELATIVE relocs. These
3086 // follow the regular PLT entries.
3087 unsigned int irelative_count_;
3088
3089 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
3090 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
3091 // indicates an offset is not allocated.
3092 unsigned int tlsdesc_got_offset_;
053a4d68
JY
3093};
3094
3095// Initialize the PLT section.
3096
3097template<int size, bool big_endian>
3098void
3099Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
3100{
3101 this->rel_ = new Reloc_section(false);
3102 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3103 elfcpp::SHF_ALLOC, this->rel_,
3104 ORDER_DYNAMIC_PLT_RELOCS, false);
3105}
3106
3107template<int size, bool big_endian>
3108void
3109Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
3110 Output_section* os)
3111{
3112 os->set_entsize(this->get_plt_entry_size());
3113}
3114
3115// Add an entry to the PLT.
3116
3117template<int size, bool big_endian>
3118void
9726c3c1
HS
3119Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
3120 Layout* layout, Symbol* gsym)
053a4d68
JY
3121{
3122 gold_assert(!gsym->has_plt_offset());
9363c7c3 3123
9726c3c1
HS
3124 unsigned int* pcount;
3125 unsigned int plt_reserved;
3126 Output_section_data_build* got;
9363c7c3 3127
9726c3c1
HS
3128 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3129 && gsym->can_use_relative_reloc(false))
3130 {
3131 pcount = &this->irelative_count_;
3132 plt_reserved = 0;
3133 got = this->got_irelative_;
3134 }
3135 else
3136 {
3137 pcount = &this->count_;
3138 plt_reserved = this->first_plt_entry_offset();
3139 got = this->got_plt_;
3140 }
9363c7c3 3141
9726c3c1
HS
3142 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
3143 + plt_reserved);
3144
3145 ++*pcount;
3146
3147 section_offset_type got_offset = got->current_data_size();
9363c7c3
JY
3148
3149 // Every PLT entry needs a GOT entry which points back to the PLT
3150 // entry (this will be changed by the dynamic linker, normally
3151 // lazily when the function is called).
9726c3c1 3152 got->set_current_data_size(got_offset + size / 8);
9363c7c3
JY
3153
3154 // Every PLT entry needs a reloc.
9726c3c1 3155 this->add_relocation(symtab, layout, gsym, got_offset);
9363c7c3
JY
3156
3157 // Note that we don't need to save the symbol. The contents of the
3158 // PLT are independent of which symbols are used. The symbols only
3159 // appear in the relocations.
3160}
3161
9726c3c1
HS
3162// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
3163// the PLT offset.
3164
3165template<int size, bool big_endian>
3166unsigned int
3167Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
3168 Symbol_table* symtab,
3169 Layout* layout,
3170 Sized_relobj_file<size, big_endian>* relobj,
3171 unsigned int local_sym_index)
3172{
3173 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
3174 ++this->irelative_count_;
3175
3176 section_offset_type got_offset = this->got_irelative_->current_data_size();
3177
3178 // Every PLT entry needs a GOT entry which points back to the PLT
3179 // entry.
3180 this->got_irelative_->set_current_data_size(got_offset + size / 8);
3181
3182 // Every PLT entry needs a reloc.
3183 Reloc_section* rela = this->rela_irelative(symtab, layout);
3184 rela->add_symbolless_local_addend(relobj, local_sym_index,
3185 elfcpp::R_AARCH64_IRELATIVE,
3186 this->got_irelative_, got_offset, 0);
3187
3188 return plt_offset;
3189}
3190
3191// Add the relocation for a PLT entry.
3192
3193template<int size, bool big_endian>
3194void
3195Output_data_plt_aarch64<size, big_endian>::add_relocation(
3196 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
3197{
3198 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3199 && gsym->can_use_relative_reloc(false))
3200 {
3201 Reloc_section* rela = this->rela_irelative(symtab, layout);
3202 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
3203 this->got_irelative_, got_offset, 0);
3204 }
3205 else
3206 {
3207 gsym->set_needs_dynsym_entry();
3208 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
3209 got_offset, 0);
3210 }
3211}
3212
3a531937
JY
3213// Return where the TLSDESC relocations should go, creating it if
3214// necessary. These follow the JUMP_SLOT relocations.
3215
3216template<int size, bool big_endian>
3217typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3218Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
3219{
3220 if (this->tlsdesc_rel_ == NULL)
3221 {
3222 this->tlsdesc_rel_ = new Reloc_section(false);
3223 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3224 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
3225 ORDER_DYNAMIC_PLT_RELOCS, false);
3226 gold_assert(this->tlsdesc_rel_->output_section()
3227 == this->rel_->output_section());
3228 }
3229 return this->tlsdesc_rel_;
3230}
3231
3232// Return where the IRELATIVE relocations should go in the PLT. These
3233// follow the JUMP_SLOT and the TLSDESC relocations.
3234
3235template<int size, bool big_endian>
3236typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
3237Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
3238 Layout* layout)
3239{
3240 if (this->irelative_rel_ == NULL)
3241 {
3242 // Make sure we have a place for the TLSDESC relocations, in
3243 // case we see any later on.
3244 this->rela_tlsdesc(layout);
3245 this->irelative_rel_ = new Reloc_section(false);
3246 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3247 elfcpp::SHF_ALLOC, this->irelative_rel_,
3248 ORDER_DYNAMIC_PLT_RELOCS, false);
3249 gold_assert(this->irelative_rel_->output_section()
3250 == this->rel_->output_section());
3251
3252 if (parameters->doing_static_link())
3253 {
3254 // A statically linked executable will only have a .rela.plt
3255 // section to hold R_AARCH64_IRELATIVE relocs for
3256 // STT_GNU_IFUNC symbols. The library will use these
3257 // symbols to locate the IRELATIVE relocs at program startup
3258 // time.
3259 symtab->define_in_output_data("__rela_iplt_start", NULL,
3260 Symbol_table::PREDEFINED,
3261 this->irelative_rel_, 0, 0,
3262 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3263 elfcpp::STV_HIDDEN, 0, false, true);
3264 symtab->define_in_output_data("__rela_iplt_end", NULL,
3265 Symbol_table::PREDEFINED,
3266 this->irelative_rel_, 0, 0,
3267 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
3268 elfcpp::STV_HIDDEN, 0, true, true);
3269 }
3270 }
3271 return this->irelative_rel_;
3272}
3273
9363c7c3
JY
3274// Return the PLT address to use for a global symbol.
3275
3276template<int size, bool big_endian>
3277uint64_t
3278Output_data_plt_aarch64<size, big_endian>::address_for_global(
3279 const Symbol* gsym)
3280{
3281 uint64_t offset = 0;
3282 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3283 && gsym->can_use_relative_reloc(false))
3284 offset = (this->first_plt_entry_offset() +
3285 this->count_ * this->get_plt_entry_size());
3286 return this->address() + offset + gsym->plt_offset();
3287}
3288
3289// Return the PLT address to use for a local symbol. These are always
3290// IRELATIVE relocs.
3291
3292template<int size, bool big_endian>
3293uint64_t
3294Output_data_plt_aarch64<size, big_endian>::address_for_local(
3295 const Relobj* object,
3296 unsigned int r_sym)
3297{
3298 return (this->address()
3299 + this->first_plt_entry_offset()
3300 + this->count_ * this->get_plt_entry_size()
3301 + object->local_plt_offset(r_sym));
053a4d68
JY
3302}
3303
3304// Set the final size.
9363c7c3 3305
053a4d68
JY
3306template<int size, bool big_endian>
3307void
3308Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
3309{
3a531937
JY
3310 unsigned int count = this->count_ + this->irelative_count_;
3311 unsigned int extra_size = 0;
3312 if (this->has_tlsdesc_entry())
3313 extra_size += this->get_plt_tlsdesc_entry_size();
053a4d68 3314 this->set_data_size(this->first_plt_entry_offset()
3a531937
JY
3315 + count * this->get_plt_entry_size()
3316 + extra_size);
053a4d68
JY
3317}
3318
3319template<int size, bool big_endian>
3320class Output_data_plt_aarch64_standard :
3321 public Output_data_plt_aarch64<size, big_endian>
3322{
3323 public:
3324 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3a531937
JY
3325 Output_data_plt_aarch64_standard(
3326 Layout* layout,
3327 Output_data_got_aarch64<size, big_endian>* got,
3328 Output_data_space* got_plt,
3329 Output_data_space* got_irelative)
053a4d68 3330 : Output_data_plt_aarch64<size, big_endian>(layout,
9363c7c3 3331 size == 32 ? 4 : 8,
3a531937
JY
3332 got, got_plt,
3333 got_irelative)
053a4d68
JY
3334 { }
3335
3336 protected:
3337 // Return the offset of the first non-reserved PLT entry.
3338 virtual unsigned int
3339 do_first_plt_entry_offset() const
3340 { return this->first_plt_entry_size; }
3341
3342 // Return the size of a PLT entry
3343 virtual unsigned int
3344 do_get_plt_entry_size() const
3345 { return this->plt_entry_size; }
3346
3a531937
JY
3347 // Return the size of a tlsdesc entry
3348 virtual unsigned int
3349 do_get_plt_tlsdesc_entry_size() const
3350 { return this->plt_tlsdesc_entry_size; }
3351
053a4d68
JY
3352 virtual void
3353 do_fill_first_plt_entry(unsigned char* pov,
9363c7c3
JY
3354 Address got_address,
3355 Address plt_address);
053a4d68
JY
3356
3357 virtual void
3358 do_fill_plt_entry(unsigned char* pov,
9363c7c3
JY
3359 Address got_address,
3360 Address plt_address,
3361 unsigned int got_offset,
3362 unsigned int plt_offset);
053a4d68 3363
3a531937
JY
3364 virtual void
3365 do_fill_tlsdesc_entry(unsigned char* pov,
3366 Address gotplt_address,
3367 Address plt_address,
3368 Address got_base,
3369 unsigned int tlsdesc_got_offset,
3370 unsigned int plt_offset);
3371
053a4d68
JY
3372 private:
3373 // The size of the first plt entry size.
3374 static const int first_plt_entry_size = 32;
3375 // The size of the plt entry size.
3376 static const int plt_entry_size = 16;
3a531937
JY
3377 // The size of the plt tlsdesc entry size.
3378 static const int plt_tlsdesc_entry_size = 32;
053a4d68
JY
3379 // Template for the first PLT entry.
3380 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
3381 // Template for subsequent PLT entries.
3382 static const uint32_t plt_entry[plt_entry_size / 4];
3a531937
JY
3383 // The reserved TLSDESC entry in the PLT for an executable.
3384 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
053a4d68
JY
3385};
3386
3387// The first entry in the PLT for an executable.
3388
3389template<>
3390const uint32_t
3391Output_data_plt_aarch64_standard<32, false>::
3392 first_plt_entry[first_plt_entry_size / 4] =
3393{
3394 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3395 0x90000010, /* adrp x16, PLT_GOT+0x8 */
3396 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
3397 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
3398 0xd61f0220, /* br x17 */
3399 0xd503201f, /* nop */
3400 0xd503201f, /* nop */
3401 0xd503201f, /* nop */
3402};
3403
83a01957 3404
053a4d68
JY
3405template<>
3406const uint32_t
3407Output_data_plt_aarch64_standard<32, true>::
3408 first_plt_entry[first_plt_entry_size / 4] =
3409{
3410 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3411 0x90000010, /* adrp x16, PLT_GOT+0x8 */
3412 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
3413 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
3414 0xd61f0220, /* br x17 */
3415 0xd503201f, /* nop */
3416 0xd503201f, /* nop */
3417 0xd503201f, /* nop */
3418};
3419
83a01957 3420
053a4d68
JY
3421template<>
3422const uint32_t
3423Output_data_plt_aarch64_standard<64, false>::
3424 first_plt_entry[first_plt_entry_size / 4] =
3425{
3426 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3427 0x90000010, /* adrp x16, PLT_GOT+16 */
3428 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
3429 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
3430 0xd61f0220, /* br x17 */
3431 0xd503201f, /* nop */
3432 0xd503201f, /* nop */
3433 0xd503201f, /* nop */
3434};
3435
83a01957 3436
053a4d68
JY
3437template<>
3438const uint32_t
3439Output_data_plt_aarch64_standard<64, true>::
3440 first_plt_entry[first_plt_entry_size / 4] =
3441{
3442 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
3443 0x90000010, /* adrp x16, PLT_GOT+16 */
3444 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
3445 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
3446 0xd61f0220, /* br x17 */
3447 0xd503201f, /* nop */
3448 0xd503201f, /* nop */
3449 0xd503201f, /* nop */
3450};
3451
83a01957 3452
053a4d68
JY
3453template<>
3454const uint32_t
3455Output_data_plt_aarch64_standard<32, false>::
3456 plt_entry[plt_entry_size / 4] =
3457{
3458 0x90000010, /* adrp x16, PLTGOT + n * 4 */
3459 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
3460 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
3461 0xd61f0220, /* br x17. */
3462};
3463
83a01957 3464
053a4d68
JY
3465template<>
3466const uint32_t
3467Output_data_plt_aarch64_standard<32, true>::
3468 plt_entry[plt_entry_size / 4] =
3469{
3470 0x90000010, /* adrp x16, PLTGOT + n * 4 */
3471 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
3472 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
3473 0xd61f0220, /* br x17. */
3474};
3475
83a01957 3476
053a4d68
JY
3477template<>
3478const uint32_t
3479Output_data_plt_aarch64_standard<64, false>::
3480 plt_entry[plt_entry_size / 4] =
3481{
3482 0x90000010, /* adrp x16, PLTGOT + n * 8 */
3483 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
3484 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
3485 0xd61f0220, /* br x17. */
3486};
3487
83a01957 3488
053a4d68
JY
3489template<>
3490const uint32_t
3491Output_data_plt_aarch64_standard<64, true>::
3492 plt_entry[plt_entry_size / 4] =
3493{
3494 0x90000010, /* adrp x16, PLTGOT + n * 8 */
3495 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
3496 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
3497 0xd61f0220, /* br x17. */
3498};
3499
83a01957 3500
053a4d68
JY
3501template<int size, bool big_endian>
3502void
3503Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
3504 unsigned char* pov,
9363c7c3
JY
3505 Address got_address,
3506 Address plt_address)
053a4d68
JY
3507{
3508 // PLT0 of the small PLT looks like this in ELF64 -
3509 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
3510 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
3511 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
3512 // symbol resolver
3513 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
3514 // GOTPLT entry for this.
3515 // br x17
3516 // PLT0 will be slightly different in ELF32 due to different got entry
3517 // size.
3518 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
9363c7c3
JY
3519 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
3520
3521 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
3522 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
3523 // FIXME: This only works for 64bit
3524 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
3525 gotplt_2nd_ent, plt_address + 4);
3526
3527 // Fill in R_AARCH64_LDST8_LO12
3528 elfcpp::Swap<32, big_endian>::writeval(
3529 pov + 8,
3530 ((this->first_plt_entry[2] & 0xffc003ff)
3531 | ((gotplt_2nd_ent & 0xff8) << 7)));
3532
3533 // Fill in R_AARCH64_ADD_ABS_LO12
3534 elfcpp::Swap<32, big_endian>::writeval(
3535 pov + 12,
3536 ((this->first_plt_entry[3] & 0xffc003ff)
3537 | ((gotplt_2nd_ent & 0xfff) << 10)));
053a4d68
JY
3538}
3539
83a01957 3540
053a4d68 3541// Subsequent entries in the PLT for an executable.
9363c7c3 3542// FIXME: This only works for 64bit
053a4d68
JY
3543
3544template<int size, bool big_endian>
3545void
3546Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
3547 unsigned char* pov,
9363c7c3
JY
3548 Address got_address,
3549 Address plt_address,
3550 unsigned int got_offset,
3551 unsigned int plt_offset)
053a4d68
JY
3552{
3553 memcpy(pov, this->plt_entry, this->plt_entry_size);
9363c7c3
JY
3554
3555 Address gotplt_entry_address = got_address + got_offset;
3556 Address plt_entry_address = plt_address + plt_offset;
3557
3558 // Fill in R_AARCH64_PCREL_ADR_HI21
3559 AArch64_relocate_functions<size, big_endian>::adrp(
3560 pov,
3561 gotplt_entry_address,
3562 plt_entry_address);
3563
3564 // Fill in R_AARCH64_LDST64_ABS_LO12
3565 elfcpp::Swap<32, big_endian>::writeval(
3566 pov + 4,
3567 ((this->plt_entry[1] & 0xffc003ff)
3568 | ((gotplt_entry_address & 0xff8) << 7)));
3569
3570 // Fill in R_AARCH64_ADD_ABS_LO12
3571 elfcpp::Swap<32, big_endian>::writeval(
3572 pov + 8,
3573 ((this->plt_entry[2] & 0xffc003ff)
3574 | ((gotplt_entry_address & 0xfff) <<10)));
3575
053a4d68
JY
3576}
3577
3a531937
JY
3578
3579template<>
3580const uint32_t
3581Output_data_plt_aarch64_standard<32, false>::
3582 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3583{
3584 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3585 0x90000002, /* adrp x2, 0 */
3586 0x90000003, /* adrp x3, 0 */
3587 0xb9400042, /* ldr w2, [w2, #0] */
3588 0x11000063, /* add w3, w3, 0 */
3589 0xd61f0040, /* br x2 */
3590 0xd503201f, /* nop */
3591 0xd503201f, /* nop */
3592};
3593
3594template<>
3595const uint32_t
3596Output_data_plt_aarch64_standard<32, true>::
3597 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3598{
3599 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3600 0x90000002, /* adrp x2, 0 */
3601 0x90000003, /* adrp x3, 0 */
3602 0xb9400042, /* ldr w2, [w2, #0] */
3603 0x11000063, /* add w3, w3, 0 */
3604 0xd61f0040, /* br x2 */
3605 0xd503201f, /* nop */
3606 0xd503201f, /* nop */
3607};
3608
3609template<>
3610const uint32_t
3611Output_data_plt_aarch64_standard<64, false>::
3612 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3613{
3614 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3615 0x90000002, /* adrp x2, 0 */
3616 0x90000003, /* adrp x3, 0 */
3617 0xf9400042, /* ldr x2, [x2, #0] */
3618 0x91000063, /* add x3, x3, 0 */
3619 0xd61f0040, /* br x2 */
3620 0xd503201f, /* nop */
3621 0xd503201f, /* nop */
3622};
3623
3624template<>
3625const uint32_t
3626Output_data_plt_aarch64_standard<64, true>::
3627 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
3628{
3629 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
3630 0x90000002, /* adrp x2, 0 */
3631 0x90000003, /* adrp x3, 0 */
3632 0xf9400042, /* ldr x2, [x2, #0] */
3633 0x91000063, /* add x3, x3, 0 */
3634 0xd61f0040, /* br x2 */
3635 0xd503201f, /* nop */
3636 0xd503201f, /* nop */
3637};
3638
3639template<int size, bool big_endian>
3640void
3641Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
3642 unsigned char* pov,
3643 Address gotplt_address,
3644 Address plt_address,
3645 Address got_base,
3646 unsigned int tlsdesc_got_offset,
3647 unsigned int plt_offset)
3648{
3649 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
3650
3651 // move DT_TLSDESC_GOT address into x2
3652 // move .got.plt address into x3
3653 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
3654 Address plt_entry_address = plt_address + plt_offset;
3655
3656 // R_AARCH64_ADR_PREL_PG_HI21
3657 AArch64_relocate_functions<size, big_endian>::adrp(
3658 pov + 4,
3659 tlsdesc_got_entry,
3660 plt_entry_address + 4);
3661
3662 // R_AARCH64_ADR_PREL_PG_HI21
3663 AArch64_relocate_functions<size, big_endian>::adrp(
3664 pov + 8,
3665 gotplt_address,
3666 plt_entry_address + 8);
3667
3668 // R_AARCH64_LDST64_ABS_LO12
3669 elfcpp::Swap<32, big_endian>::writeval(
3670 pov + 12,
3671 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
3672 | ((tlsdesc_got_entry & 0xff8) << 7)));
3673
3674 // R_AARCH64_ADD_ABS_LO12
3675 elfcpp::Swap<32, big_endian>::writeval(
3676 pov + 16,
3677 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
3678 | ((gotplt_address & 0xfff) << 10)));
3679}
3680
053a4d68
JY
3681// Write out the PLT. This uses the hand-coded instructions above,
3682// and adjusts them as needed. This is specified by the AMD64 ABI.
3683
3684template<int size, bool big_endian>
3685void
3686Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
3687{
3688 const off_t offset = this->offset();
3689 const section_size_type oview_size =
3690 convert_to_section_size_type(this->data_size());
3691 unsigned char* const oview = of->get_output_view(offset, oview_size);
3692
3693 const off_t got_file_offset = this->got_plt_->offset();
9726c3c1
HS
3694 gold_assert(got_file_offset + this->got_plt_->data_size()
3695 == this->got_irelative_->offset());
3696
053a4d68 3697 const section_size_type got_size =
9726c3c1
HS
3698 convert_to_section_size_type(this->got_plt_->data_size()
3699 + this->got_irelative_->data_size());
053a4d68
JY
3700 unsigned char* const got_view = of->get_output_view(got_file_offset,
3701 got_size);
3702
3703 unsigned char* pov = oview;
3704
3705 // The base address of the .plt section.
3706 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
053a4d68 3707 // The base address of the PLT portion of the .got section.
3a531937
JY
3708 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
3709 = this->got_plt_->address();
053a4d68 3710
3a531937 3711 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
053a4d68
JY
3712 pov += this->first_plt_entry_offset();
3713
3714 // The first three entries in .got.plt are reserved.
3715 unsigned char* got_pov = got_view;
3716 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
3717 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3718
3719 unsigned int plt_offset = this->first_plt_entry_offset();
3720 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
3a531937 3721 const unsigned int count = this->count_ + this->irelative_count_;
053a4d68
JY
3722 for (unsigned int plt_index = 0;
3723 plt_index < count;
3724 ++plt_index,
3725 pov += this->get_plt_entry_size(),
3726 got_pov += size / 8,
3727 plt_offset += this->get_plt_entry_size(),
3728 got_offset += size / 8)
3729 {
3730 // Set and adjust the PLT entry itself.
3a531937 3731 this->fill_plt_entry(pov, gotplt_address, plt_address,
9363c7c3 3732 got_offset, plt_offset);
053a4d68 3733
9363c7c3
JY
3734 // Set the entry in the GOT, which points to plt0.
3735 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
053a4d68
JY
3736 }
3737
3a531937
JY
3738 if (this->has_tlsdesc_entry())
3739 {
3740 // Set and adjust the reserved TLSDESC PLT entry.
3741 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
3742 // The base address of the .base section.
3743 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
3744 this->got_->address();
3745 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
3746 tlsdesc_got_offset, plt_offset);
3747 pov += this->get_plt_tlsdesc_entry_size();
3748 }
3749
053a4d68
JY
3750 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
3751 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
3752
3753 of->write_output_view(offset, oview_size, oview);
3754 of->write_output_view(got_file_offset, got_size, got_view);
3755}
3756
9363c7c3
JY
3757// Telling how to update the immediate field of an instruction.
3758struct AArch64_howto
3759{
3760 // The immediate field mask.
3761 elfcpp::Elf_Xword dst_mask;
3762
3763 // The offset to apply relocation immediate
3764 int doffset;
3765
3766 // The second part offset, if the immediate field has two parts.
3767 // -1 if the immediate field has only one part.
3768 int doffset2;
3769};
3770
3771static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
3772{
3773 {0, -1, -1}, // DATA
3774 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
3775 {0xffffe0, 5, -1}, // LD [23:5]-imm19
3776 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
3777 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
3778 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
3779 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
3780 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
3781 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
3782 {0x3ffffff, 0, -1}, // B [25:0]-imm26
3783 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
3784};
3785
3786// AArch64 relocate function class
3787
3788template<int size, bool big_endian>
3789class AArch64_relocate_functions
3790{
3791 public:
3792 typedef enum
3793 {
3794 STATUS_OKAY, // No error during relocation.
3795 STATUS_OVERFLOW, // Relocation overflow.
3796 STATUS_BAD_RELOC, // Relocation cannot be applied.
3797 } Status;
3798
9363c7c3
JY
3799 typedef AArch64_relocate_functions<size, big_endian> This;
3800 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
83a01957
HS
3801 typedef Relocate_info<size, big_endian> The_relocate_info;
3802 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
3803 typedef Reloc_stub<size, big_endian> The_reloc_stub;
3804 typedef typename The_reloc_stub::Stub_type The_reloc_stub_type;
3805 typedef Stub_table<size, big_endian> The_stub_table;
3806 typedef elfcpp::Rela<size, big_endian> The_rela;
9726c3c1 3807 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
9363c7c3
JY
3808
3809 // Return the page address of the address.
3810 // Page(address) = address & ~0xFFF
3811
9726c3c1 3812 static inline AArch64_valtype
9363c7c3
JY
3813 Page(Address address)
3814 {
3815 return (address & (~static_cast<Address>(0xFFF)));
3816 }
3817
83a01957 3818 private:
9363c7c3
JY
3819 // Update instruction (pointed by view) with selected bits (immed).
3820 // val = (val & ~dst_mask) | (immed << doffset)
3821
3822 template<int valsize>
3823 static inline void
3824 update_view(unsigned char* view,
9726c3c1 3825 AArch64_valtype immed,
9363c7c3
JY
3826 elfcpp::Elf_Xword doffset,
3827 elfcpp::Elf_Xword dst_mask)
3828 {
3829 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3830 Valtype* wv = reinterpret_cast<Valtype*>(view);
3831 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3832
3833 // Clear immediate fields.
3834 val &= ~dst_mask;
3835 elfcpp::Swap<valsize, big_endian>::writeval(wv,
3836 static_cast<Valtype>(val | (immed << doffset)));
3837 }
3838
3839 // Update two parts of an instruction (pointed by view) with selected
3840 // bits (immed1 and immed2).
3841 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
3842
3843 template<int valsize>
3844 static inline void
3845 update_view_two_parts(
3846 unsigned char* view,
9726c3c1
HS
3847 AArch64_valtype immed1,
3848 AArch64_valtype immed2,
9363c7c3
JY
3849 elfcpp::Elf_Xword doffset1,
3850 elfcpp::Elf_Xword doffset2,
3851 elfcpp::Elf_Xword dst_mask)
3852 {
3853 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
3854 Valtype* wv = reinterpret_cast<Valtype*>(view);
3855 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
3856 val &= ~dst_mask;
3857 elfcpp::Swap<valsize, big_endian>::writeval(wv,
3858 static_cast<Valtype>(val | (immed1 << doffset1) |
3859 (immed2 << doffset2)));
3860 }
3861
9726c3c1 3862 // Update adr or adrp instruction with immed.
9363c7c3
JY
3863 // In adr and adrp: [30:29] immlo [23:5] immhi
3864
3865 static inline void
9726c3c1 3866 update_adr(unsigned char* view, AArch64_valtype immed)
9363c7c3
JY
3867 {
3868 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
9363c7c3
JY
3869 This::template update_view_two_parts<32>(
3870 view,
3871 immed & 0x3,
3872 (immed & 0x1ffffc) >> 2,
3873 29,
3874 5,
3875 dst_mask);
3876 }
3877
3a531937
JY
3878 // Update movz/movn instruction with bits immed.
3879 // Set instruction to movz if is_movz is true, otherwise set instruction
3880 // to movn.
9726c3c1 3881
3a531937
JY
3882 static inline void
3883 update_movnz(unsigned char* view,
9726c3c1 3884 AArch64_valtype immed,
3a531937
JY
3885 bool is_movz)
3886 {
3887 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3888 Valtype* wv = reinterpret_cast<Valtype*>(view);
3889 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3890
3891 const elfcpp::Elf_Xword doffset =
3892 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
3893 const elfcpp::Elf_Xword dst_mask =
3894 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
3895
3896 // Clear immediate fields and opc code.
9726c3c1 3897 val &= ~(dst_mask | (0x3 << 29));
3a531937
JY
3898
3899 // Set instruction to movz or movn.
3900 // movz: [30:29] is 10 movn: [30:29] is 00
3901 if (is_movz)
9726c3c1 3902 val |= (0x2 << 29);
3a531937
JY
3903
3904 elfcpp::Swap<32, big_endian>::writeval(wv,
3905 static_cast<Valtype>(val | (immed << doffset)));
3906 }
3907
9726c3c1
HS
3908 // Update selected bits in text.
3909
3910 template<int valsize>
3911 static inline typename This::Status
3912 reloc_common(unsigned char* view, Address x,
3913 const AArch64_reloc_property* reloc_property)
3914 {
3915 // Select bits from X.
3916 Address immed = reloc_property->select_x_value(x);
3917
3918 // Update view.
3919 const AArch64_reloc_property::Reloc_inst inst =
3920 reloc_property->reloc_inst();
3921 // If it is a data relocation or instruction has 2 parts of immediate
3922 // fields, you should not call pcrela_general.
3923 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
3924 aarch64_howto[inst].doffset != -1);
3925 This::template update_view<valsize>(view, immed,
3926 aarch64_howto[inst].doffset,
3927 aarch64_howto[inst].dst_mask);
3928
3929 // Do check overflow or alignment if needed.
3930 return (reloc_property->checkup_x_value(x)
3931 ? This::STATUS_OKAY
3932 : This::STATUS_OVERFLOW);
3933 }
3934
9363c7c3
JY
3935 public:
3936
3937 // Do a simple rela relocation at unaligned addresses.
3938
3939 template<int valsize>
3940 static inline typename This::Status
3941 rela_ua(unsigned char* view,
3942 const Sized_relobj_file<size, big_endian>* object,
3943 const Symbol_value<size>* psymval,
9726c3c1 3944 AArch64_valtype addend,
9363c7c3
JY
3945 const AArch64_reloc_property* reloc_property)
3946 {
3947 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3948 Valtype;
3949 typename elfcpp::Elf_types<size>::Elf_Addr x =
3950 psymval->value(object, addend);
3951 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3952 static_cast<Valtype>(x));
3953 return (reloc_property->checkup_x_value(x)
3954 ? This::STATUS_OKAY
3955 : This::STATUS_OVERFLOW);
3956 }
3957
3958 // Do a simple pc-relative relocation at unaligned addresses.
3959
3960 template<int valsize>
3961 static inline typename This::Status
3962 pcrela_ua(unsigned char* view,
3963 const Sized_relobj_file<size, big_endian>* object,
3964 const Symbol_value<size>* psymval,
9726c3c1 3965 AArch64_valtype addend,
9363c7c3
JY
3966 Address address,
3967 const AArch64_reloc_property* reloc_property)
3968 {
3969 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
3970 Valtype;
3a531937 3971 Address x = psymval->value(object, addend) - address;
9363c7c3
JY
3972 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
3973 static_cast<Valtype>(x));
3974 return (reloc_property->checkup_x_value(x)
3975 ? This::STATUS_OKAY
3976 : This::STATUS_OVERFLOW);
3977 }
3978
3979 // Do a simple rela relocation at aligned addresses.
3980
3981 template<int valsize>
3982 static inline typename This::Status
3983 rela(
3984 unsigned char* view,
3985 const Sized_relobj_file<size, big_endian>* object,
3986 const Symbol_value<size>* psymval,
9726c3c1 3987 AArch64_valtype addend,
9363c7c3
JY
3988 const AArch64_reloc_property* reloc_property)
3989 {
9726c3c1 3990 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
9363c7c3 3991 Valtype* wv = reinterpret_cast<Valtype*>(view);
3a531937 3992 Address x = psymval->value(object, addend);
9726c3c1 3993 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
9363c7c3
JY
3994 return (reloc_property->checkup_x_value(x)
3995 ? This::STATUS_OKAY
3996 : This::STATUS_OVERFLOW);
3997 }
3998
3999 // Do relocate. Update selected bits in text.
4000 // new_val = (val & ~dst_mask) | (immed << doffset)
4001
4002 template<int valsize>
4003 static inline typename This::Status
4004 rela_general(unsigned char* view,
4005 const Sized_relobj_file<size, big_endian>* object,
4006 const Symbol_value<size>* psymval,
9726c3c1 4007 AArch64_valtype addend,
9363c7c3
JY
4008 const AArch64_reloc_property* reloc_property)
4009 {
4010 // Calculate relocation.
83a01957 4011 Address x = psymval->value(object, addend);
9726c3c1 4012 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
4013 }
4014
4015 // Do relocate. Update selected bits in text.
4016 // new val = (val & ~dst_mask) | (immed << doffset)
4017
4018 template<int valsize>
4019 static inline typename This::Status
4020 rela_general(
4021 unsigned char* view,
9726c3c1
HS
4022 AArch64_valtype s,
4023 AArch64_valtype addend,
9363c7c3
JY
4024 const AArch64_reloc_property* reloc_property)
4025 {
4026 // Calculate relocation.
4027 Address x = s + addend;
9726c3c1 4028 return This::template reloc_common<valsize>(view, x, reloc_property);
9363c7c3
JY
4029 }
4030
4031 // Do address relative relocate. Update selected bits in text.
4032 // new val = (val & ~dst_mask) | (immed << doffset)
4033
4034 template<int valsize>
4035 static inline typename This::Status
4036 pcrela_general(
4037 unsigned char* view,
4038 const Sized_relobj_file<size, big_endian>* object,
4039 const Symbol_value<size>* psymval,
9726c3c1 4040 AArch64_valtype addend,
9363c7c3
JY
4041 Address address,
4042 const AArch64_reloc_property* reloc_property)
4043 {
4044 // Calculate relocation.
3a531937 4045 Address x = psymval->value(object, addend) - address;
9726c3c1
HS
4046 return This::template reloc_common<valsize>(view, x, reloc_property);
4047 }
9363c7c3 4048
9363c7c3 4049
9726c3c1 4050 // Calculate (S + A) - address, update adr instruction.
9363c7c3 4051
9726c3c1
HS
4052 static inline typename This::Status
4053 adr(unsigned char* view,
4054 const Sized_relobj_file<size, big_endian>* object,
4055 const Symbol_value<size>* psymval,
4056 Address addend,
4057 Address address,
4058 const AArch64_reloc_property* /* reloc_property */)
4059 {
4060 AArch64_valtype x = psymval->value(object, addend) - address;
4061 // Pick bits [20:0] of X.
4062 AArch64_valtype immed = x & 0x1fffff;
4063 update_adr(view, immed);
4064 // Check -2^20 <= X < 2^20
4065 return (size == 64 && Bits<21>::has_overflow((x))
4066 ? This::STATUS_OVERFLOW
4067 : This::STATUS_OKAY);
9363c7c3
JY
4068 }
4069
4070 // Calculate PG(S+A) - PG(address), update adrp instruction.
4071 // R_AARCH64_ADR_PREL_PG_HI21
4072
4073 static inline typename This::Status
4074 adrp(
4075 unsigned char* view,
4076 Address sa,
4077 Address address)
4078 {
9726c3c1
HS
4079 AArch64_valtype x = This::Page(sa) - This::Page(address);
4080 // Pick [32:12] of X.
4081 AArch64_valtype immed = (x >> 12) & 0x1fffff;
4082 update_adr(view, immed);
83a01957
HS
4083 // Check -2^32 <= X < 2^32
4084 return (size == 64 && Bits<33>::has_overflow((x))
9363c7c3
JY
4085 ? This::STATUS_OVERFLOW
4086 : This::STATUS_OKAY);
4087 }
4088
4089 // Calculate PG(S+A) - PG(address), update adrp instruction.
4090 // R_AARCH64_ADR_PREL_PG_HI21
4091
4092 static inline typename This::Status
4093 adrp(unsigned char* view,
4094 const Sized_relobj_file<size, big_endian>* object,
4095 const Symbol_value<size>* psymval,
4096 Address addend,
4097 Address address,
4098 const AArch64_reloc_property* reloc_property)
4099 {
4100 Address sa = psymval->value(object, addend);
9726c3c1
HS
4101 AArch64_valtype x = This::Page(sa) - This::Page(address);
4102 // Pick [32:12] of X.
4103 AArch64_valtype immed = (x >> 12) & 0x1fffff;
4104 update_adr(view, immed);
9363c7c3
JY
4105 return (reloc_property->checkup_x_value(x)
4106 ? This::STATUS_OKAY
4107 : This::STATUS_OVERFLOW);
4108 }
4109
3a531937
JY
4110 // Update mov[n/z] instruction. Check overflow if needed.
4111 // If X >=0, set the instruction to movz and its immediate value to the
4112 // selected bits S.
4113 // If X < 0, set the instruction to movn and its immediate value to
4114 // NOT (selected bits of).
4115
4116 static inline typename This::Status
4117 movnz(unsigned char* view,
9726c3c1 4118 AArch64_valtype x,
3a531937
JY
4119 const AArch64_reloc_property* reloc_property)
4120 {
4121 // Select bits from X.
9726c3c1
HS
4122 Address immed;
4123 bool is_movz;
4124 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
4125 if (static_cast<SignedW>(x) >= 0)
4126 {
4127 immed = reloc_property->select_x_value(x);
4128 is_movz = true;
4129 }
4130 else
3a531937 4131 {
9726c3c1 4132 immed = reloc_property->select_x_value(~x);;
3a531937
JY
4133 is_movz = false;
4134 }
4135
4136 // Update movnz instruction.
4137 update_movnz(view, immed, is_movz);
4138
4139 // Do check overflow or alignment if needed.
4140 return (reloc_property->checkup_x_value(x)
4141 ? This::STATUS_OKAY
4142 : This::STATUS_OVERFLOW);
4143 }
4144
83a01957
HS
4145 static inline bool
4146 maybe_apply_stub(unsigned int,
4147 const The_relocate_info*,
4148 const The_rela&,
4149 unsigned char*,
4150 Address,
4151 const Sized_symbol<size>*,
4152 const Symbol_value<size>*,
0bf32ea9
JY
4153 const Sized_relobj_file<size, big_endian>*,
4154 section_size_type);
83a01957 4155
3a531937
JY
4156}; // End of AArch64_relocate_functions
4157
4158
83a01957
HS
4159// For a certain relocation type (usually jump/branch), test to see if the
4160// destination needs a stub to fulfil. If so, re-route the destination of the
4161// original instruction to the stub, note, at this time, the stub has already
4162// been generated.
4163
4164template<int size, bool big_endian>
4165bool
4166AArch64_relocate_functions<size, big_endian>::
4167maybe_apply_stub(unsigned int r_type,
4168 const The_relocate_info* relinfo,
4169 const The_rela& rela,
4170 unsigned char* view,
4171 Address address,
4172 const Sized_symbol<size>* gsym,
4173 const Symbol_value<size>* psymval,
0bf32ea9
JY
4174 const Sized_relobj_file<size, big_endian>* object,
4175 section_size_type current_group_size)
83a01957
HS
4176{
4177 if (parameters->options().relocatable())
4178 return false;
4179
4180 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
4181 Address branch_target = psymval->value(object, 0) + addend;
4182 The_reloc_stub_type stub_type = The_reloc_stub::
4183 stub_type_for_reloc(r_type, address, branch_target);
4184 if (stub_type == The_reloc_stub::ST_NONE)
4185 return false;
4186
4187 const The_aarch64_relobj* aarch64_relobj =
4188 static_cast<const The_aarch64_relobj*>(object);
4189 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
4190 gold_assert(stub_table != NULL);
4191
4192 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4193 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
4194 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
4195 gold_assert(stub != NULL);
4196
4197 Address new_branch_target = stub_table->address() + stub->offset();
4198 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
4199 new_branch_target - address;
4200 const AArch64_reloc_property* arp =
4201 aarch64_reloc_property_table->get_reloc_property(r_type);
4202 gold_assert(arp != NULL);
aed56ec5 4203 typename This::Status status = This::template
83a01957
HS
4204 rela_general<32>(view, branch_offset, 0, arp);
4205 if (status != This::STATUS_OKAY)
4206 gold_error(_("Stub is too far away, try a smaller value "
0bf32ea9 4207 "for '--stub-group-size'. The current value is 0x%lx."),
add6016b 4208 static_cast<unsigned long>(current_group_size));
83a01957
HS
4209 return true;
4210}
4211
4212
4213// Group input sections for stub generation.
4214//
4215// We group input sections in an output section so that the total size,
4216// including any padding space due to alignment is smaller than GROUP_SIZE
4217// unless the only input section in group is bigger than GROUP_SIZE already.
4218// Then an ARM stub table is created to follow the last input section
4219// in group. For each group an ARM stub table is created an is placed
4220// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
4221// extend the group after the stub table.
4222
4223template<int size, bool big_endian>
4224void
4225Target_aarch64<size, big_endian>::group_sections(
4226 Layout* layout,
4227 section_size_type group_size,
4228 bool stubs_always_after_branch,
4229 const Task* task)
4230{
4231 // Group input sections and insert stub table
4232 Layout::Section_list section_list;
4233 layout->get_executable_sections(&section_list);
4234 for (Layout::Section_list::const_iterator p = section_list.begin();
4235 p != section_list.end();
4236 ++p)
4237 {
4238 AArch64_output_section<size, big_endian>* output_section =
4239 static_cast<AArch64_output_section<size, big_endian>*>(*p);
4240 output_section->group_sections(group_size, stubs_always_after_branch,
4241 this, task);
4242 }
4243}
4244
4245
4246// Find the AArch64_input_section object corresponding to the SHNDX-th input
4247// section of RELOBJ.
4248
4249template<int size, bool big_endian>
4250AArch64_input_section<size, big_endian>*
4251Target_aarch64<size, big_endian>::find_aarch64_input_section(
4252 Relobj* relobj, unsigned int shndx) const
4253{
4254 Section_id sid(relobj, shndx);
4255 typename AArch64_input_section_map::const_iterator p =
4256 this->aarch64_input_section_map_.find(sid);
4257 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
4258}
4259
4260
4261// Make a new AArch64_input_section object.
4262
4263template<int size, bool big_endian>
4264AArch64_input_section<size, big_endian>*
4265Target_aarch64<size, big_endian>::new_aarch64_input_section(
4266 Relobj* relobj, unsigned int shndx)
4267{
4268 Section_id sid(relobj, shndx);
4269
4270 AArch64_input_section<size, big_endian>* input_section =
4271 new AArch64_input_section<size, big_endian>(relobj, shndx);
4272 input_section->init();
4273
4274 // Register new AArch64_input_section in map for look-up.
4275 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
4276 this->aarch64_input_section_map_.insert(
4277 std::make_pair(sid, input_section));
4278
4279 // Make sure that it we have not created another AArch64_input_section
4280 // for this input section already.
4281 gold_assert(ins.second);
4282
4283 return input_section;
4284}
4285
4286
4287// Relaxation hook. This is where we do stub generation.
4288
4289template<int size, bool big_endian>
4290bool
4291Target_aarch64<size, big_endian>::do_relax(
4292 int pass,
4293 const Input_objects* input_objects,
4294 Symbol_table* symtab,
4295 Layout* layout ,
4296 const Task* task)
4297{
4298 gold_assert(!parameters->options().relocatable());
4299 if (pass == 1)
4300 {
0bf32ea9
JY
4301 // We don't handle negative stub_group_size right now.
4302 this->stub_group_size_ = abs(parameters->options().stub_group_size());
4303 if (this->stub_group_size_ == 1)
83a01957
HS
4304 {
4305 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
4306 // will fail to link. The user will have to relink with an explicit
4307 // group size option.
0bf32ea9
JY
4308 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
4309 4096 * 4;
83a01957 4310 }
0bf32ea9 4311 group_sections(layout, this->stub_group_size_, true, task);
83a01957
HS
4312 }
4313 else
4314 {
4315 // If this is not the first pass, addresses and file offsets have
4316 // been reset at this point, set them here.
4317 for (Stub_table_iterator sp = this->stub_tables_.begin();
4318 sp != this->stub_tables_.end(); ++sp)
4319 {
4320 The_stub_table* stt = *sp;
4321 The_aarch64_input_section* owner = stt->owner();
4322 off_t off = align_address(owner->original_size(),
4323 stt->addralign());
4324 stt->set_address_and_file_offset(owner->address() + off,
4325 owner->offset() + off);
4326 }
4327 }
4328
4329 // Scan relocs for relocation stubs
4330 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
4331 op != input_objects->relobj_end();
4332 ++op)
4333 {
4334 The_aarch64_relobj* aarch64_relobj =
4335 static_cast<The_aarch64_relobj*>(*op);
4336 // Lock the object so we can read from it. This is only called
4337 // single-threaded from Layout::finalize, so it is OK to lock.
4338 Task_lock_obj<Object> tl(task, aarch64_relobj);
4339 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
4340 }
4341
4342 bool any_stub_table_changed = false;
4343 for (Stub_table_iterator siter = this->stub_tables_.begin();
4344 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
4345 {
4346 The_stub_table* stub_table = *siter;
4347 if (stub_table->update_data_size_changed_p())
4348 {
4349 The_aarch64_input_section* owner = stub_table->owner();
4350 uint64_t address = owner->address();
4351 off_t offset = owner->offset();
4352 owner->reset_address_and_file_offset();
4353 owner->set_address_and_file_offset(address, offset);
4354
4355 any_stub_table_changed = true;
4356 }
4357 }
4358
4359 // Do not continue relaxation.
4360 bool continue_relaxation = any_stub_table_changed;
4361 if (!continue_relaxation)
4362 for (Stub_table_iterator sp = this->stub_tables_.begin();
4363 (sp != this->stub_tables_.end());
4364 ++sp)
4365 (*sp)->finalize_stubs();
4366
4367 return continue_relaxation;
4368}
4369
4370
4371// Make a new Stub_table.
4372
4373template<int size, bool big_endian>
4374Stub_table<size, big_endian>*
4375Target_aarch64<size, big_endian>::new_stub_table(
4376 AArch64_input_section<size, big_endian>* owner)
4377{
4378 Stub_table<size, big_endian>* stub_table =
4379 new Stub_table<size, big_endian>(owner);
4380 stub_table->set_address(align_address(
4381 owner->address() + owner->data_size(), 8));
4382 stub_table->set_file_offset(owner->offset() + owner->data_size());
4383 stub_table->finalize_data_size();
4384
4385 this->stub_tables_.push_back(stub_table);
4386
4387 return stub_table;
4388}
4389
4390
3a531937
JY
4391template<int size, bool big_endian>
4392typename elfcpp::Elf_types<size>::Elf_Addr
4393Target_aarch64<size, big_endian>::do_reloc_addend(
4394 void* arg, unsigned int r_type,
4395 typename elfcpp::Elf_types<size>::Elf_Addr) const
4396{
4397 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
4398 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
4399 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
4400 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
4401 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
4402 gold_assert(psymval->is_tls_symbol());
4403 // The value of a TLS symbol is the offset in the TLS segment.
4404 return psymval->value(ti.object, 0);
4405}
9363c7c3 4406
053a4d68
JY
4407// Return the number of entries in the PLT.
4408
4409template<int size, bool big_endian>
4410unsigned int
4411Target_aarch64<size, big_endian>::plt_entry_count() const
4412{
4413 if (this->plt_ == NULL)
4414 return 0;
4415 return this->plt_->entry_count();
4416}
4417
4418// Return the offset of the first non-reserved PLT entry.
4419
4420template<int size, bool big_endian>
4421unsigned int
4422Target_aarch64<size, big_endian>::first_plt_entry_offset() const
4423{
4424 return this->plt_->first_plt_entry_offset();
4425}
4426
4427// Return the size of each PLT entry.
4428
4429template<int size, bool big_endian>
4430unsigned int
4431Target_aarch64<size, big_endian>::plt_entry_size() const
4432{
4433 return this->plt_->get_plt_entry_size();
4434}
4435
3a531937 4436// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
053a4d68
JY
4437
4438template<int size, bool big_endian>
3a531937
JY
4439void
4440Target_aarch64<size, big_endian>::define_tls_base_symbol(
4441 Symbol_table* symtab, Layout* layout)
053a4d68 4442{
3a531937
JY
4443 if (this->tls_base_symbol_defined_)
4444 return;
4445
4446 Output_segment* tls_segment = layout->tls_segment();
4447 if (tls_segment != NULL)
4448 {
4449 bool is_exec = parameters->options().output_is_executable();
4450 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
4451 Symbol_table::PREDEFINED,
4452 tls_segment, 0, 0,
4453 elfcpp::STT_TLS,
4454 elfcpp::STB_LOCAL,
4455 elfcpp::STV_HIDDEN, 0,
4456 (is_exec
4457 ? Symbol::SEGMENT_END
4458 : Symbol::SEGMENT_START),
4459 true);
4460 }
4461 this->tls_base_symbol_defined_ = true;
053a4d68
JY
4462}
4463
3a531937 4464// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
053a4d68
JY
4465
4466template<int size, bool big_endian>
3a531937
JY
4467void
4468Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
4469 Symbol_table* symtab, Layout* layout)
053a4d68 4470{
3a531937
JY
4471 if (this->plt_ == NULL)
4472 this->make_plt_section(symtab, layout);
4473
4474 if (!this->plt_->has_tlsdesc_entry())
053a4d68 4475 {
3a531937
JY
4476 // Allocate the TLSDESC_GOT entry.
4477 Output_data_got_aarch64<size, big_endian>* got =
4478 this->got_section(symtab, layout);
4479 unsigned int got_offset = got->add_constant(0);
4480
4481 // Allocate the TLSDESC_PLT entry.
4482 this->plt_->reserve_tlsdesc_entry(got_offset);
053a4d68 4483 }
053a4d68
JY
4484}
4485
3a531937 4486// Create a GOT entry for the TLS module index.
053a4d68
JY
4487
4488template<int size, bool big_endian>
3a531937
JY
4489unsigned int
4490Target_aarch64<size, big_endian>::got_mod_index_entry(
4491 Symbol_table* symtab, Layout* layout,
4492 Sized_relobj_file<size, big_endian>* object)
4493{
4494 if (this->got_mod_index_offset_ == -1U)
4495 {
4496 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4497 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
4498 Output_data_got_aarch64<size, big_endian>* got =
4499 this->got_section(symtab, layout);
4500 unsigned int got_offset = got->add_constant(0);
4501 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
4502 got_offset, 0);
4503 got->add_constant(0);
4504 this->got_mod_index_offset_ = got_offset;
4505 }
4506 return this->got_mod_index_offset_;
4507}
4508
4509// Optimize the TLS relocation type based on what we know about the
4510// symbol. IS_FINAL is true if the final address of this symbol is
4511// known at link time.
4512
4513template<int size, bool big_endian>
4514tls::Tls_optimization
4515Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
4516 int r_type)
4517{
4518 // If we are generating a shared library, then we can't do anything
4519 // in the linker
4520 if (parameters->options().shared())
4521 return tls::TLSOPT_NONE;
4522
4523 switch (r_type)
4524 {
4525 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4526 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4527 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
4528 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
4529 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4530 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4531 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4532 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
4533 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
4534 case elfcpp::R_AARCH64_TLSDESC_LDR:
4535 case elfcpp::R_AARCH64_TLSDESC_ADD:
4536 case elfcpp::R_AARCH64_TLSDESC_CALL:
4537 // These are General-Dynamic which permits fully general TLS
4538 // access. Since we know that we are generating an executable,
4539 // we can convert this to Initial-Exec. If we also know that
4540 // this is a local symbol, we can further switch to Local-Exec.
4541 if (is_final)
4542 return tls::TLSOPT_TO_LE;
4543 return tls::TLSOPT_TO_IE;
4544
9726c3c1
HS
4545 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4546 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4547 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4548 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4549 // These are Local-Dynamic, which refer to local symbols in the
4550 // dynamic TLS block. Since we know that we generating an
4551 // executable, we can switch to Local-Exec.
4552 return tls::TLSOPT_TO_LE;
4553
3a531937
JY
4554 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4555 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4556 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4557 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4558 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4559 // These are Initial-Exec relocs which get the thread offset
4560 // from the GOT. If we know that we are linking against the
4561 // local symbol, we can switch to Local-Exec, which links the
4562 // thread offset into the instruction.
4563 if (is_final)
4564 return tls::TLSOPT_TO_LE;
4565 return tls::TLSOPT_NONE;
4566
4567 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
4568 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
4569 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4570 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
4571 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4572 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4573 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4574 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4575 // When we already have Local-Exec, there is nothing further we
4576 // can do.
4577 return tls::TLSOPT_NONE;
4578
4579 default:
4580 gold_unreachable();
4581 }
4582}
4583
4584// Returns true if this relocation type could be that of a function pointer.
4585
4586template<int size, bool big_endian>
4587inline bool
4588Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
4589 unsigned int r_type)
4590{
4591 switch (r_type)
4592 {
9726c3c1
HS
4593 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
4594 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
4595 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
4596 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
4597 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
3a531937
JY
4598 {
4599 return true;
4600 }
4601 }
4602 return false;
4603}
4604
4605// For safe ICF, scan a relocation for a local symbol to check if it
4606// corresponds to a function pointer being taken. In that case mark
4607// the function whose pointer was taken as not foldable.
4608
4609template<int size, bool big_endian>
4610inline bool
4611Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
4612 Symbol_table* ,
053a4d68
JY
4613 Layout* ,
4614 Target_aarch64<size, big_endian>* ,
4615 Sized_relobj_file<size, big_endian>* ,
4616 unsigned int ,
4617 Output_section* ,
4618 const elfcpp::Rela<size, big_endian>& ,
4619 unsigned int r_type,
4620 const elfcpp::Sym<size, big_endian>&)
4621{
9726c3c1 4622 // When building a shared library, do not fold any local symbols.
053a4d68 4623 return (parameters->options().shared()
9363c7c3 4624 || possible_function_pointer_reloc(r_type));
053a4d68
JY
4625}
4626
4627// For safe ICF, scan a relocation for a global symbol to check if it
4628// corresponds to a function pointer being taken. In that case mark
4629// the function whose pointer was taken as not foldable.
4630
4631template<int size, bool big_endian>
4632inline bool
4633Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
4634 Symbol_table* ,
4635 Layout* ,
4636 Target_aarch64<size, big_endian>* ,
4637 Sized_relobj_file<size, big_endian>* ,
4638 unsigned int ,
4639 Output_section* ,
4640 const elfcpp::Rela<size, big_endian>& ,
4641 unsigned int r_type,
4642 Symbol* gsym)
4643{
4644 // When building a shared library, do not fold symbols whose visibility
4645 // is hidden, internal or protected.
4646 return ((parameters->options().shared()
9363c7c3
JY
4647 && (gsym->visibility() == elfcpp::STV_INTERNAL
4648 || gsym->visibility() == elfcpp::STV_PROTECTED
4649 || gsym->visibility() == elfcpp::STV_HIDDEN))
4650 || possible_function_pointer_reloc(r_type));
053a4d68
JY
4651}
4652
4653// Report an unsupported relocation against a local symbol.
4654
4655template<int size, bool big_endian>
4656void
4657Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
4658 Sized_relobj_file<size, big_endian>* object,
4659 unsigned int r_type)
4660{
4661 gold_error(_("%s: unsupported reloc %u against local symbol"),
4662 object->name().c_str(), r_type);
4663}
4664
4665// We are about to emit a dynamic relocation of type R_TYPE. If the
4666// dynamic linker does not support it, issue an error.
4667
4668template<int size, bool big_endian>
4669void
4670Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
9363c7c3 4671 unsigned int r_type)
053a4d68
JY
4672{
4673 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
4674
4675 switch (r_type)
4676 {
4677 // These are the relocation types supported by glibc for AARCH64.
4678 case elfcpp::R_AARCH64_NONE:
4679 case elfcpp::R_AARCH64_COPY:
4680 case elfcpp::R_AARCH64_GLOB_DAT:
4681 case elfcpp::R_AARCH64_JUMP_SLOT:
4682 case elfcpp::R_AARCH64_RELATIVE:
4683 case elfcpp::R_AARCH64_TLS_DTPREL64:
4684 case elfcpp::R_AARCH64_TLS_DTPMOD64:
4685 case elfcpp::R_AARCH64_TLS_TPREL64:
4686 case elfcpp::R_AARCH64_TLSDESC:
4687 case elfcpp::R_AARCH64_IRELATIVE:
4688 case elfcpp::R_AARCH64_ABS32:
4689 case elfcpp::R_AARCH64_ABS64:
4690 return;
4691
4692 default:
4693 break;
4694 }
4695
4696 // This prevents us from issuing more than one error per reloc
4697 // section. But we can still wind up issuing more than one
4698 // error per object file.
4699 if (this->issued_non_pic_error_)
4700 return;
4701 gold_assert(parameters->options().output_is_position_independent());
4702 object->error(_("requires unsupported dynamic reloc; "
9363c7c3 4703 "recompile with -fPIC"));
053a4d68
JY
4704 this->issued_non_pic_error_ = true;
4705 return;
4706}
4707
9726c3c1
HS
4708// Return whether we need to make a PLT entry for a relocation of the
4709// given type against a STT_GNU_IFUNC symbol.
4710
4711template<int size, bool big_endian>
4712bool
4713Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
4714 Sized_relobj_file<size, big_endian>* object,
4715 unsigned int r_type)
4716{
4717 const AArch64_reloc_property* arp =
4718 aarch64_reloc_property_table->get_reloc_property(r_type);
4719 gold_assert(arp != NULL);
4720
4721 int flags = arp->reference_flags();
4722 if (flags & Symbol::TLS_REF)
4723 {
4724 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
4725 object->name().c_str(), arp->name().c_str());
4726 return false;
4727 }
4728 return flags != 0;
4729}
4730
053a4d68
JY
4731// Scan a relocation for a local symbol.
4732
4733template<int size, bool big_endian>
4734inline void
4735Target_aarch64<size, big_endian>::Scan::local(
8e33481e
HS
4736 Symbol_table* symtab,
4737 Layout* layout,
4738 Target_aarch64<size, big_endian>* target,
9363c7c3 4739 Sized_relobj_file<size, big_endian>* object,
8e33481e
HS
4740 unsigned int data_shndx,
4741 Output_section* output_section,
4742 const elfcpp::Rela<size, big_endian>& rela,
053a4d68 4743 unsigned int r_type,
9726c3c1 4744 const elfcpp::Sym<size, big_endian>& lsym,
053a4d68
JY
4745 bool is_discarded)
4746{
4747 if (is_discarded)
4748 return;
4749
8e33481e 4750 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3a531937
JY
4751 Reloc_section;
4752 Output_data_got_aarch64<size, big_endian>* got =
4753 target->got_section(symtab, layout);
4754 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8e33481e 4755
9726c3c1
HS
4756 // A local STT_GNU_IFUNC symbol may require a PLT entry.
4757 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
4758 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
4759 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
4760
053a4d68
JY
4761 switch (r_type)
4762 {
9363c7c3
JY
4763 case elfcpp::R_AARCH64_ABS32:
4764 case elfcpp::R_AARCH64_ABS16:
8e33481e
HS
4765 if (parameters->options().output_is_position_independent())
4766 {
4767 gold_error(_("%s: unsupported reloc %u in pos independent link."),
4768 object->name().c_str(), r_type);
4769 }
4770 break;
4771
4772 case elfcpp::R_AARCH64_ABS64:
9363c7c3
JY
4773 // If building a shared library or pie, we need to mark this as a dynmic
4774 // reloction, so that the dynamic loader can relocate it.
9363c7c3
JY
4775 if (parameters->options().output_is_position_independent())
4776 {
8e33481e 4777 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
8e33481e
HS
4778 rela_dyn->add_local_relative(object, r_sym,
4779 elfcpp::R_AARCH64_RELATIVE,
4780 output_section,
4781 data_shndx,
4782 rela.get_r_offset(),
4783 rela.get_r_addend(),
9726c3c1 4784 is_ifunc);
9363c7c3
JY
4785 }
4786 break;
4787
8e33481e
HS
4788 case elfcpp::R_AARCH64_PREL64:
4789 case elfcpp::R_AARCH64_PREL32:
4790 case elfcpp::R_AARCH64_PREL16:
4791 break;
4792
3a531937
JY
4793 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
4794 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
4795 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
4796 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
4797 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
4798 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
4799 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
4800 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
4801 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 4802 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
3a531937 4803 break;
053a4d68 4804
8e33481e
HS
4805 // Control flow, pc-relative. We don't need to do anything for a relative
4806 // addressing relocation against a local symbol if it does not reference
4807 // the GOT.
4808 case elfcpp::R_AARCH64_TSTBR14:
4809 case elfcpp::R_AARCH64_CONDBR19:
4810 case elfcpp::R_AARCH64_JUMP26:
4811 case elfcpp::R_AARCH64_CALL26:
4812 break;
4813
4814 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4815 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4816 {
3a531937
JY
4817 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4818 optimize_tls_reloc(!parameters->options().shared(), r_type);
4819 if (tlsopt == tls::TLSOPT_TO_LE)
4820 break;
4821
8e33481e
HS
4822 layout->set_has_static_tls();
4823 // Create a GOT entry for the tp-relative offset.
8e33481e
HS
4824 if (!parameters->doing_static_link())
4825 {
4826 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
4827 target->rela_dyn_section(layout),
4828 elfcpp::R_AARCH64_TLS_TPREL64);
4829 }
4830 else if (!object->local_has_got_offset(r_sym,
4831 GOT_TYPE_TLS_OFFSET))
4832 {
4833 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
4834 unsigned int got_offset =
4835 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
4836 const elfcpp::Elf_Xword addend = rela.get_r_addend();
4837 gold_assert(addend == 0);
4838 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
4839 object, r_sym);
4840 }
4841 }
4842 break;
4843
3a531937
JY
4844 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
4845 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
4846 {
4847 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4848 optimize_tls_reloc(!parameters->options().shared(), r_type);
4849 if (tlsopt == tls::TLSOPT_TO_LE)
4850 {
4851 layout->set_has_static_tls();
4852 break;
4853 }
4854 gold_assert(tlsopt == tls::TLSOPT_NONE);
4855
4856 got->add_local_pair_with_rel(object,r_sym, data_shndx,
4857 GOT_TYPE_TLS_PAIR,
4858 target->rela_dyn_section(layout),
4859 elfcpp::R_AARCH64_TLS_DTPMOD64);
4860 }
4861 break;
4862
8e33481e
HS
4863 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
4864 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
4865 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
4866 {
4867 layout->set_has_static_tls();
4868 bool output_is_shared = parameters->options().shared();
4869 if (output_is_shared)
3a531937 4870 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
8e33481e
HS
4871 object->name().c_str(), r_type);
4872 }
9363c7c3
JY
4873 break;
4874
9726c3c1
HS
4875 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
4876 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
4877 {
4878 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4879 optimize_tls_reloc(!parameters->options().shared(), r_type);
4880 if (tlsopt == tls::TLSOPT_NONE)
4881 {
4882 // Create a GOT entry for the module index.
4883 target->got_mod_index_entry(symtab, layout, object);
4884 }
4885 else if (tlsopt != tls::TLSOPT_TO_LE)
4886 unsupported_reloc_local(object, r_type);
4887 }
4888 break;
4889
4890 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
4891 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
4892 break;
4893
3a531937
JY
4894 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
4895 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
4896 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
4897 {
4898 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
4899 optimize_tls_reloc(!parameters->options().shared(), r_type);
4900 target->define_tls_base_symbol(symtab, layout);
4901 if (tlsopt == tls::TLSOPT_NONE)
4902 {
4903 // Create reserved PLT and GOT entries for the resolver.
4904 target->reserve_tlsdesc_entries(symtab, layout);
4905
4906 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
4907 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
4908 // entry needs to be in an area in .got.plt, not .got. Call
4909 // got_section to make sure the section has been created.
4910 target->got_section(symtab, layout);
4911 Output_data_got<size, big_endian>* got =
4912 target->got_tlsdesc_section();
4913 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4914 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
4915 {
4916 unsigned int got_offset = got->add_constant(0);
4917 got->add_constant(0);
4918 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
4919 got_offset);
4920 Reloc_section* rt = target->rela_tlsdesc_section(layout);
4921 // We store the arguments we need in a vector, and use
4922 // the index into the vector as the parameter to pass
4923 // to the target specific routines.
4924 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
4925 void* arg = reinterpret_cast<void*>(intarg);
4926 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
4927 got, got_offset, 0);
4928 }
4929 }
4930 else if (tlsopt != tls::TLSOPT_TO_LE)
4931 unsupported_reloc_local(object, r_type);
4932 }
4933 break;
4934
4935 case elfcpp::R_AARCH64_TLSDESC_CALL:
4936 break;
4937
9363c7c3
JY
4938 default:
4939 unsupported_reloc_local(object, r_type);
053a4d68
JY
4940 }
4941}
4942
4943
4944// Report an unsupported relocation against a global symbol.
4945
4946template<int size, bool big_endian>
4947void
4948Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
4949 Sized_relobj_file<size, big_endian>* object,
4950 unsigned int r_type,
4951 Symbol* gsym)
4952{
4953 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4954 object->name().c_str(), r_type, gsym->demangled_name().c_str());
4955}
4956
4957template<int size, bool big_endian>
4958inline void
4959Target_aarch64<size, big_endian>::Scan::global(
9363c7c3
JY
4960 Symbol_table* symtab,
4961 Layout* layout,
4962 Target_aarch64<size, big_endian>* target,
8e33481e
HS
4963 Sized_relobj_file<size, big_endian> * object,
4964 unsigned int data_shndx,
4965 Output_section* output_section,
4966 const elfcpp::Rela<size, big_endian>& rela,
9363c7c3
JY
4967 unsigned int r_type,
4968 Symbol* gsym)
053a4d68 4969{
9726c3c1
HS
4970 // A STT_GNU_IFUNC symbol may require a PLT entry.
4971 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4972 && this->reloc_needs_plt_for_ifunc(object, r_type))
4973 target->make_plt_entry(symtab, layout, gsym);
4974
8e33481e
HS
4975 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
4976 Reloc_section;
3a531937
JY
4977 const AArch64_reloc_property* arp =
4978 aarch64_reloc_property_table->get_reloc_property(r_type);
4979 gold_assert(arp != NULL);
4980
9363c7c3
JY
4981 switch (r_type)
4982 {
8e33481e
HS
4983 case elfcpp::R_AARCH64_ABS16:
4984 case elfcpp::R_AARCH64_ABS32:
9363c7c3 4985 case elfcpp::R_AARCH64_ABS64:
8e33481e
HS
4986 {
4987 // Make a PLT entry if necessary.
4988 if (gsym->needs_plt_entry())
4989 {
4990 target->make_plt_entry(symtab, layout, gsym);
4991 // Since this is not a PC-relative relocation, we may be
4992 // taking the address of a function. In that case we need to
4993 // set the entry in the dynamic symbol table to the address of
4994 // the PLT entry.
4995 if (gsym->is_from_dynobj() && !parameters->options().shared())
4996 gsym->set_needs_dynsym_value();
4997 }
4998 // Make a dynamic relocation if necessary.
8e33481e
HS
4999 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5000 {
5001 if (!parameters->options().output_is_position_independent()
5002 && gsym->may_need_copy_reloc())
5003 {
3a531937
JY
5004 target->copy_reloc(symtab, layout, object,
5005 data_shndx, output_section, gsym, rela);
8e33481e 5006 }
9726c3c1
HS
5007 else if (r_type == elfcpp::R_AARCH64_ABS64
5008 && gsym->type() == elfcpp::STT_GNU_IFUNC
5009 && gsym->can_use_relative_reloc(false)
5010 && !gsym->is_from_dynobj()
5011 && !gsym->is_undefined()
5012 && !gsym->is_preemptible())
5013 {
5014 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
5015 // symbol. This makes a function address in a PIE executable
5016 // match the address in a shared library that it links against.
5017 Reloc_section* rela_dyn =
5018 target->rela_irelative_section(layout);
5019 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
5020 rela_dyn->add_symbolless_global_addend(gsym, r_type,
5021 output_section, object,
5022 data_shndx,
5023 rela.get_r_offset(),
5024 rela.get_r_addend());
5025 }
8e33481e
HS
5026 else if (r_type == elfcpp::R_AARCH64_ABS64
5027 && gsym->can_use_relative_reloc(false))
5028 {
5029 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5030 rela_dyn->add_global_relative(gsym,
5031 elfcpp::R_AARCH64_RELATIVE,
5032 output_section,
5033 object,
5034 data_shndx,
5035 rela.get_r_offset(),
5036 rela.get_r_addend(),
5037 false);
5038 }
5039 else
5040 {
5041 check_non_pic(object, r_type);
5042 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
5043 rela_dyn = target->rela_dyn_section(layout);
5044 rela_dyn->add_global(
5045 gsym, r_type, output_section, object,
5046 data_shndx, rela.get_r_offset(),rela.get_r_addend());
5047 }
5048 }
5049 }
5050 break;
5051
5052 case elfcpp::R_AARCH64_PREL16:
5053 case elfcpp::R_AARCH64_PREL32:
5054 case elfcpp::R_AARCH64_PREL64:
9363c7c3
JY
5055 // This is used to fill the GOT absolute address.
5056 if (gsym->needs_plt_entry())
5057 {
5058 target->make_plt_entry(symtab, layout, gsym);
5059 }
5060 break;
5061
3a531937
JY
5062 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
5063 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
5064 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
5065 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5066 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
5067 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
5068 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
5069 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
5070 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
8e33481e 5071 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
9363c7c3 5072 {
3a531937
JY
5073 if (gsym->needs_plt_entry())
5074 target->make_plt_entry(symtab, layout, gsym);
5075 // Make a dynamic relocation if necessary.
5076 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
5077 {
5078 if (parameters->options().output_is_executable()
5079 && gsym->may_need_copy_reloc())
5080 {
5081 target->copy_reloc(symtab, layout, object,
5082 data_shndx, output_section, gsym, rela);
5083 }
5084 }
9363c7c3
JY
5085 break;
5086 }
5087
5088 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5089 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5090 {
5091 // This pair of relocations is used to access a specific GOT entry.
5092 // Note a GOT entry is an *address* to a symbol.
5093 // The symbol requires a GOT entry
5094 Output_data_got_aarch64<size, big_endian>* got =
5095 target->got_section(symtab, layout);
5096 if (gsym->final_value_is_known())
5097 {
9726c3c1
HS
5098 // For a STT_GNU_IFUNC symbol we want the PLT address.
5099 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
5100 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5101 else
5102 got->add_global(gsym, GOT_TYPE_STANDARD);
9363c7c3
JY
5103 }
5104 else
5105 {
9726c3c1
HS
5106 // If this symbol is not fully resolved, we need to add a dynamic
5107 // relocation for it.
9363c7c3 5108 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
9726c3c1
HS
5109
5110 // Use a GLOB_DAT rather than a RELATIVE reloc if:
5111 //
5112 // 1) The symbol may be defined in some other module.
5113 // 2) We are building a shared library and this is a protected
5114 // symbol; using GLOB_DAT means that the dynamic linker can use
5115 // the address of the PLT in the main executable when appropriate
5116 // so that function address comparisons work.
5117 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
5118 // again so that function address comparisons work.
9363c7c3
JY
5119 if (gsym->is_from_dynobj()
5120 || gsym->is_undefined()
5121 || gsym->is_preemptible()
5122 || (gsym->visibility() == elfcpp::STV_PROTECTED
9726c3c1
HS
5123 && parameters->options().shared())
5124 || (gsym->type() == elfcpp::STT_GNU_IFUNC
5125 && parameters->options().output_is_position_independent()))
9363c7c3
JY
5126 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
5127 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
5128 else
5129 {
9726c3c1
HS
5130 // For a STT_GNU_IFUNC symbol we want to write the PLT
5131 // offset into the GOT, so that function pointer
5132 // comparisons work correctly.
5133 bool is_new;
5134 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
5135 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
5136 else
5137 {
5138 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
5139 // Tell the dynamic linker to use the PLT address
5140 // when resolving relocations.
5141 if (gsym->is_from_dynobj()
5142 && !parameters->options().shared())
5143 gsym->set_needs_dynsym_value();
5144 }
5145 if (is_new)
3a531937
JY
5146 {
5147 rela_dyn->add_global_relative(
5148 gsym, elfcpp::R_AARCH64_RELATIVE,
5149 got,
5150 gsym->got_offset(GOT_TYPE_STANDARD),
5151 0,
5152 false);
5153 }
9363c7c3
JY
5154 }
5155 }
5156 break;
5157 }
5158
8e33481e
HS
5159 case elfcpp::R_AARCH64_TSTBR14:
5160 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
5161 case elfcpp::R_AARCH64_JUMP26:
5162 case elfcpp::R_AARCH64_CALL26:
5163 {
5164 if (gsym->final_value_is_known())
5165 break;
5166
5167 if (gsym->is_defined() &&
5168 !gsym->is_from_dynobj() &&
5169 !gsym->is_preemptible())
5170 break;
5171
5172 // Make plt entry for function call.
9363c7c3
JY
5173 target->make_plt_entry(symtab, layout, gsym);
5174 break;
5175 }
5176
3a531937
JY
5177 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5178 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
5179 {
5180 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5181 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5182 if (tlsopt == tls::TLSOPT_TO_LE)
5183 {
5184 layout->set_has_static_tls();
5185 break;
5186 }
5187 gold_assert(tlsopt == tls::TLSOPT_NONE);
5188
5189 // General dynamic.
5190 Output_data_got_aarch64<size, big_endian>* got =
5191 target->got_section(symtab, layout);
5192 // Create 2 consecutive entries for module index and offset.
5193 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
5194 target->rela_dyn_section(layout),
5195 elfcpp::R_AARCH64_TLS_DTPMOD64,
5196 elfcpp::R_AARCH64_TLS_DTPREL64);
5197 }
5198 break;
5199
9726c3c1
HS
5200 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5201 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
5202 {
5203 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5204 optimize_tls_reloc(!parameters->options().shared(), r_type);
5205 if (tlsopt == tls::TLSOPT_NONE)
5206 {
5207 // Create a GOT entry for the module index.
5208 target->got_mod_index_entry(symtab, layout, object);
5209 }
5210 else if (tlsopt != tls::TLSOPT_TO_LE)
5211 unsupported_reloc_local(object, r_type);
5212 }
5213 break;
5214
5215 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5216 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC: // Other local dynamic
5217 break;
5218
8e33481e 5219 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 5220 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
8e33481e 5221 {
9726c3c1 5222 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
3a531937
JY
5223 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5224 if (tlsopt == tls::TLSOPT_TO_LE)
5225 break;
5226
8e33481e
HS
5227 layout->set_has_static_tls();
5228 // Create a GOT entry for the tp-relative offset.
5229 Output_data_got_aarch64<size, big_endian>* got
5230 = target->got_section(symtab, layout);
5231 if (!parameters->doing_static_link())
5232 {
5233 got->add_global_with_rel(
5234 gsym, GOT_TYPE_TLS_OFFSET,
5235 target->rela_dyn_section(layout),
5236 elfcpp::R_AARCH64_TLS_TPREL64);
5237 }
5238 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
5239 {
5240 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
5241 unsigned int got_offset =
5242 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
5243 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5244 gold_assert(addend == 0);
5245 got->add_static_reloc(got_offset,
5246 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
5247 }
5248 }
5249 break;
5250
5251 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5252 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
3a531937 5253 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
8e33481e
HS
5254 layout->set_has_static_tls();
5255 if (parameters->options().shared())
5256 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
5257 object->name().c_str(), r_type);
5258 break;
5259
3a531937
JY
5260 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5261 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5262 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
5263 {
5264 target->define_tls_base_symbol(symtab, layout);
5265 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5266 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
5267 if (tlsopt == tls::TLSOPT_NONE)
5268 {
5269 // Create reserved PLT and GOT entries for the resolver.
5270 target->reserve_tlsdesc_entries(symtab, layout);
5271
5272 // Create a double GOT entry with an R_AARCH64_TLSDESC
5273 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
5274 // entry needs to be in an area in .got.plt, not .got. Call
5275 // got_section to make sure the section has been created.
5276 target->got_section(symtab, layout);
5277 Output_data_got<size, big_endian>* got =
5278 target->got_tlsdesc_section();
5279 Reloc_section* rt = target->rela_tlsdesc_section(layout);
5280 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
5281 elfcpp::R_AARCH64_TLSDESC, 0);
5282 }
5283 else if (tlsopt == tls::TLSOPT_TO_IE)
5284 {
5285 // Create a GOT entry for the tp-relative offset.
5286 Output_data_got<size, big_endian>* got
5287 = target->got_section(symtab, layout);
5288 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
5289 target->rela_dyn_section(layout),
5290 elfcpp::R_AARCH64_TLS_TPREL64);
5291 }
5292 else if (tlsopt != tls::TLSOPT_TO_LE)
5293 unsupported_reloc_global(object, r_type, gsym);
5294 }
5295 break;
5296
5297 case elfcpp::R_AARCH64_TLSDESC_CALL:
5298 break;
5299
9363c7c3 5300 default:
8e33481e 5301 gold_error(_("%s: unsupported reloc type in global scan"),
3a531937
JY
5302 aarch64_reloc_property_table->
5303 reloc_name_in_error_message(r_type).c_str());
9363c7c3 5304 }
053a4d68 5305 return;
9363c7c3
JY
5306} // End of Scan::global
5307
3a531937 5308
9363c7c3
JY
5309// Create the PLT section.
5310template<int size, bool big_endian>
5311void
5312Target_aarch64<size, big_endian>::make_plt_section(
5313 Symbol_table* symtab, Layout* layout)
5314{
5315 if (this->plt_ == NULL)
5316 {
5317 // Create the GOT section first.
5318 this->got_section(symtab, layout);
5319
3a531937
JY
5320 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
5321 this->got_irelative_);
9363c7c3
JY
5322
5323 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
5324 (elfcpp::SHF_ALLOC
5325 | elfcpp::SHF_EXECINSTR),
5326 this->plt_, ORDER_PLT, false);
5327
5328 // Make the sh_info field of .rela.plt point to .plt.
5329 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
5330 rela_plt_os->set_info_section(this->plt_->output_section());
5331 }
5332}
5333
3a531937
JY
5334// Return the section for TLSDESC relocations.
5335
5336template<int size, bool big_endian>
5337typename Target_aarch64<size, big_endian>::Reloc_section*
5338Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
5339{
5340 return this->plt_section()->rela_tlsdesc(layout);
5341}
5342
9363c7c3
JY
5343// Create a PLT entry for a global symbol.
5344
5345template<int size, bool big_endian>
5346void
5347Target_aarch64<size, big_endian>::make_plt_entry(
5348 Symbol_table* symtab,
5349 Layout* layout,
5350 Symbol* gsym)
5351{
5352 if (gsym->has_plt_offset())
5353 return;
5354
5355 if (this->plt_ == NULL)
5356 this->make_plt_section(symtab, layout);
5357
9726c3c1
HS
5358 this->plt_->add_entry(symtab, layout, gsym);
5359}
5360
5361// Make a PLT entry for a local STT_GNU_IFUNC symbol.
5362
5363template<int size, bool big_endian>
5364void
5365Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
5366 Symbol_table* symtab, Layout* layout,
5367 Sized_relobj_file<size, big_endian>* relobj,
5368 unsigned int local_sym_index)
5369{
5370 if (relobj->local_has_plt_offset(local_sym_index))
5371 return;
5372 if (this->plt_ == NULL)
5373 this->make_plt_section(symtab, layout);
5374 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
5375 relobj,
5376 local_sym_index);
5377 relobj->set_local_plt_offset(local_sym_index, plt_offset);
053a4d68
JY
5378}
5379
5380template<int size, bool big_endian>
5381void
5382Target_aarch64<size, big_endian>::gc_process_relocs(
5383 Symbol_table* symtab,
5384 Layout* layout,
5385 Sized_relobj_file<size, big_endian>* object,
5386 unsigned int data_shndx,
5387 unsigned int sh_type,
5388 const unsigned char* prelocs,
5389 size_t reloc_count,
5390 Output_section* output_section,
5391 bool needs_special_offset_handling,
5392 size_t local_symbol_count,
5393 const unsigned char* plocal_symbols)
5394{
5395 if (sh_type == elfcpp::SHT_REL)
5396 {
5397 return;
5398 }
5399
9363c7c3
JY
5400 gold::gc_process_relocs<
5401 size, big_endian,
5402 Target_aarch64<size, big_endian>,
5403 elfcpp::SHT_RELA,
5404 typename Target_aarch64<size, big_endian>::Scan,
5405 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
053a4d68
JY
5406 symtab,
5407 layout,
5408 this,
5409 object,
5410 data_shndx,
5411 prelocs,
5412 reloc_count,
5413 output_section,
5414 needs_special_offset_handling,
5415 local_symbol_count,
5416 plocal_symbols);
5417}
5418
5419// Scan relocations for a section.
5420
5421template<int size, bool big_endian>
5422void
5423Target_aarch64<size, big_endian>::scan_relocs(
5424 Symbol_table* symtab,
5425 Layout* layout,
5426 Sized_relobj_file<size, big_endian>* object,
5427 unsigned int data_shndx,
5428 unsigned int sh_type,
5429 const unsigned char* prelocs,
5430 size_t reloc_count,
5431 Output_section* output_section,
5432 bool needs_special_offset_handling,
5433 size_t local_symbol_count,
5434 const unsigned char* plocal_symbols)
5435{
5436 if (sh_type == elfcpp::SHT_REL)
5437 {
5438 gold_error(_("%s: unsupported REL reloc section"),
5439 object->name().c_str());
5440 return;
5441 }
9363c7c3 5442 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
053a4d68
JY
5443 symtab,
5444 layout,
5445 this,
5446 object,
5447 data_shndx,
5448 prelocs,
5449 reloc_count,
5450 output_section,
5451 needs_special_offset_handling,
5452 local_symbol_count,
5453 plocal_symbols);
5454}
5455
3a531937
JY
5456// Return the value to use for a dynamic which requires special
5457// treatment. This is how we support equality comparisons of function
5458// pointers across shared library boundaries, as described in the
5459// processor specific ABI supplement.
5460
83a01957 5461template<int size, bool big_endian>
3a531937 5462uint64_t
83a01957 5463Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
3a531937
JY
5464{
5465 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5466 return this->plt_address_for_global(gsym);
5467}
5468
83a01957 5469
053a4d68
JY
5470// Finalize the sections.
5471
5472template<int size, bool big_endian>
5473void
5474Target_aarch64<size, big_endian>::do_finalize_sections(
9363c7c3 5475 Layout* layout,
053a4d68 5476 const Input_objects*,
9363c7c3 5477 Symbol_table* symtab)
053a4d68 5478{
9363c7c3
JY
5479 const Reloc_section* rel_plt = (this->plt_ == NULL
5480 ? NULL
5481 : this->plt_->rela_plt());
5482 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
5483 this->rela_dyn_, true, false);
5484
3a531937
JY
5485 // Emit any relocs we saved in an attempt to avoid generating COPY
5486 // relocs.
5487 if (this->copy_relocs_.any_saved_relocs())
5488 this->copy_relocs_.emit(this->rela_dyn_section(layout));
5489
5490 // Fill in some more dynamic tags.
5491 Output_data_dynamic* const odyn = layout->dynamic_data();
5492 if (odyn != NULL)
5493 {
5494 if (this->plt_ != NULL
5495 && this->plt_->output_section() != NULL
5496 && this->plt_ ->has_tlsdesc_entry())
5497 {
5498 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
5499 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
5500 this->got_->finalize_data_size();
5501 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
5502 this->plt_, plt_offset);
5503 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
5504 this->got_, got_offset);
5505 }
5506 }
5507
9363c7c3
JY
5508 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
5509 // the .got.plt section.
5510 Symbol* sym = this->global_offset_table_;
5511 if (sym != NULL)
5512 {
5513 uint64_t data_size = this->got_plt_->current_data_size();
5514 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
5515
5516 // If the .got section is more than 0x8000 bytes, we add
5517 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
5518 // bit relocations have a greater chance of working.
5519 if (data_size >= 0x8000)
5520 symtab->get_sized_symbol<size>(sym)->set_value(
5521 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
5522 }
5523
5524 if (parameters->doing_static_link()
5525 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
5526 {
5527 // If linking statically, make sure that the __rela_iplt symbols
5528 // were defined if necessary, even if we didn't create a PLT.
5529 static const Define_symbol_in_segment syms[] =
5530 {
5531 {
5532 "__rela_iplt_start", // name
5533 elfcpp::PT_LOAD, // segment_type
5534 elfcpp::PF_W, // segment_flags_set
5535 elfcpp::PF(0), // segment_flags_clear
5536 0, // value
5537 0, // size
5538 elfcpp::STT_NOTYPE, // type
5539 elfcpp::STB_GLOBAL, // binding
5540 elfcpp::STV_HIDDEN, // visibility
5541 0, // nonvis
5542 Symbol::SEGMENT_START, // offset_from_base
5543 true // only_if_ref
5544 },
5545 {
5546 "__rela_iplt_end", // name
5547 elfcpp::PT_LOAD, // segment_type
5548 elfcpp::PF_W, // segment_flags_set
5549 elfcpp::PF(0), // segment_flags_clear
5550 0, // value
5551 0, // size
5552 elfcpp::STT_NOTYPE, // type
5553 elfcpp::STB_GLOBAL, // binding
5554 elfcpp::STV_HIDDEN, // visibility
5555 0, // nonvis
5556 Symbol::SEGMENT_START, // offset_from_base
5557 true // only_if_ref
5558 }
5559 };
5560
5561 symtab->define_symbols(layout, 2, syms,
5562 layout->script_options()->saw_sections_clause());
5563 }
5564
053a4d68
JY
5565 return;
5566}
5567
5568// Perform a relocation.
5569
5570template<int size, bool big_endian>
5571inline bool
5572Target_aarch64<size, big_endian>::Relocate::relocate(
9363c7c3
JY
5573 const Relocate_info<size, big_endian>* relinfo,
5574 Target_aarch64<size, big_endian>* target,
053a4d68 5575 Output_section* ,
9363c7c3
JY
5576 size_t relnum,
5577 const elfcpp::Rela<size, big_endian>& rela,
5578 unsigned int r_type,
5579 const Sized_symbol<size>* gsym,
5580 const Symbol_value<size>* psymval,
5581 unsigned char* view,
5582 typename elfcpp::Elf_types<size>::Elf_Addr address,
053a4d68
JY
5583 section_size_type /* view_size */)
5584{
9363c7c3
JY
5585 if (view == NULL)
5586 return true;
5587
5588 typedef AArch64_relocate_functions<size, big_endian> Reloc;
5589
5590 const AArch64_reloc_property* reloc_property =
5591 aarch64_reloc_property_table->get_reloc_property(r_type);
5592
5593 if (reloc_property == NULL)
5594 {
5595 std::string reloc_name =
5596 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
5597 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5598 _("cannot relocate %s in object file"),
5599 reloc_name.c_str());
5600 return true;
5601 }
5602
5603 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
5604
5605 // Pick the value to use for symbols defined in the PLT.
5606 Symbol_value<size> symval;
5607 if (gsym != NULL
5608 && gsym->use_plt_offset(reloc_property->reference_flags()))
5609 {
5610 symval.set_output_value(target->plt_address_for_global(gsym));
5611 psymval = &symval;
5612 }
5613 else if (gsym == NULL && psymval->is_ifunc_symbol())
5614 {
5615 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5616 if (object->local_has_plt_offset(r_sym))
5617 {
5618 symval.set_output_value(target->plt_address_for_local(object, r_sym));
5619 psymval = &symval;
5620 }
5621 }
5622
5623 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5624
5625 // Get the GOT offset if needed.
5626 // For aarch64, the GOT pointer points to the start of the GOT section.
5627 bool have_got_offset = false;
5628 int got_offset = 0;
5629 int got_base = (target->got_ != NULL
5630 ? (target->got_->current_data_size() >= 0x8000
5631 ? 0x8000 : 0)
5632 : 0);
5633 switch (r_type)
5634 {
5635 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
5636 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
5637 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
5638 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
5639 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
5640 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
5641 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
5642 case elfcpp::R_AARCH64_GOTREL64:
5643 case elfcpp::R_AARCH64_GOTREL32:
5644 case elfcpp::R_AARCH64_GOT_LD_PREL19:
5645 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
5646 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5647 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5648 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
5649 if (gsym != NULL)
5650 {
5651 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
5652 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
5653 }
5654 else
5655 {
5656 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5657 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
5658 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
5659 - got_base);
5660 }
5661 have_got_offset = true;
5662 break;
8e33481e 5663
9363c7c3
JY
5664 default:
5665 break;
5666 }
5667
5668 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
5669 typename elfcpp::Elf_types<size>::Elf_Addr value;
5670 switch (r_type)
5671 {
5672 case elfcpp::R_AARCH64_NONE:
5673 break;
5674
5675 case elfcpp::R_AARCH64_ABS64:
5676 reloc_status = Reloc::template rela_ua<64>(
5677 view, object, psymval, addend, reloc_property);
5678 break;
5679
5680 case elfcpp::R_AARCH64_ABS32:
5681 reloc_status = Reloc::template rela_ua<32>(
5682 view, object, psymval, addend, reloc_property);
5683 break;
5684
5685 case elfcpp::R_AARCH64_ABS16:
5686 reloc_status = Reloc::template rela_ua<16>(
5687 view, object, psymval, addend, reloc_property);
5688 break;
5689
5690 case elfcpp::R_AARCH64_PREL64:
5691 reloc_status = Reloc::template pcrela_ua<64>(
5692 view, object, psymval, addend, address, reloc_property);
83a01957 5693 break;
9363c7c3
JY
5694
5695 case elfcpp::R_AARCH64_PREL32:
5696 reloc_status = Reloc::template pcrela_ua<32>(
5697 view, object, psymval, addend, address, reloc_property);
83a01957 5698 break;
9363c7c3
JY
5699
5700 case elfcpp::R_AARCH64_PREL16:
5701 reloc_status = Reloc::template pcrela_ua<16>(
5702 view, object, psymval, addend, address, reloc_property);
83a01957 5703 break;
9363c7c3 5704
9726c3c1
HS
5705 case elfcpp::R_AARCH64_LD_PREL_LO19:
5706 reloc_status = Reloc::template pcrela_general<32>(
5707 view, object, psymval, addend, address, reloc_property);
5708 break;
5709
5710 case elfcpp::R_AARCH64_ADR_PREL_LO21:
5711 reloc_status = Reloc::adr(view, object, psymval, addend,
5712 address, reloc_property);
5713 break;
5714
9363c7c3
JY
5715 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5716 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5717 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
5718 reloc_property);
5719 break;
5720
5721 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
5722 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
5723 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
5724 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
5725 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
5726 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5727 reloc_status = Reloc::template rela_general<32>(
5728 view, object, psymval, addend, reloc_property);
5729 break;
5730
3a531937
JY
5731 case elfcpp::R_AARCH64_CALL26:
5732 if (this->skip_call_tls_get_addr_)
5733 {
5734 // Double check that the TLSGD insn has been optimized away.
5735 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
5736 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
5737 reinterpret_cast<Insntype*>(view));
5738 gold_assert((insn & 0xff000000) == 0x91000000);
5739
5740 reloc_status = Reloc::STATUS_OKAY;
5741 this->skip_call_tls_get_addr_ = false;
5742 // Return false to stop further processing this reloc.
5743 return false;
5744 }
83a01957
HS
5745 // Fallthrough
5746 case elfcpp::R_AARCH64_JUMP26:
5747 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
0bf32ea9
JY
5748 gsym, psymval, object,
5749 target->stub_group_size_))
83a01957
HS
5750 break;
5751 // Fallthrough
8e33481e
HS
5752 case elfcpp::R_AARCH64_TSTBR14:
5753 case elfcpp::R_AARCH64_CONDBR19:
9363c7c3
JY
5754 reloc_status = Reloc::template pcrela_general<32>(
5755 view, object, psymval, addend, address, reloc_property);
5756 break;
5757
5758 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5759 gold_assert(have_got_offset);
5760 value = target->got_->address() + got_base + got_offset;
5761 reloc_status = Reloc::adrp(view, value + addend, address);
5762 break;
5763
5764 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5765 gold_assert(have_got_offset);
5766 value = target->got_->address() + got_base + got_offset;
5767 reloc_status = Reloc::template rela_general<32>(
5768 view, value, addend, reloc_property);
5769 break;
5770
3a531937
JY
5771 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5772 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
9726c3c1
HS
5773 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5774 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5775 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5776 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8e33481e
HS
5777 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5778 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8e33481e
HS
5779 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5780 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5781 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
3a531937
JY
5782 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5783 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5784 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5785 case elfcpp::R_AARCH64_TLSDESC_CALL:
8e33481e
HS
5786 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
5787 gsym, psymval, view, address);
5788 break;
5789
3a531937
JY
5790 // These are dynamic relocations, which are unexpected when linking.
5791 case elfcpp::R_AARCH64_COPY:
5792 case elfcpp::R_AARCH64_GLOB_DAT:
5793 case elfcpp::R_AARCH64_JUMP_SLOT:
5794 case elfcpp::R_AARCH64_RELATIVE:
5795 case elfcpp::R_AARCH64_IRELATIVE:
5796 case elfcpp::R_AARCH64_TLS_DTPREL64:
5797 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5798 case elfcpp::R_AARCH64_TLS_TPREL64:
5799 case elfcpp::R_AARCH64_TLSDESC:
9363c7c3 5800 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3a531937 5801 _("unexpected reloc %u in object file"),
9363c7c3
JY
5802 r_type);
5803 break;
3a531937
JY
5804
5805 default:
5806 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5807 _("unsupported reloc %s"),
5808 reloc_property->name().c_str());
5809 break;
9363c7c3
JY
5810 }
5811
5812 // Report any errors.
5813 switch (reloc_status)
5814 {
5815 case Reloc::STATUS_OKAY:
5816 break;
5817 case Reloc::STATUS_OVERFLOW:
5818 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5819 _("relocation overflow in %s"),
5820 reloc_property->name().c_str());
5821 break;
5822 case Reloc::STATUS_BAD_RELOC:
5823 gold_error_at_location(
5824 relinfo,
5825 relnum,
5826 rela.get_r_offset(),
5827 _("unexpected opcode while processing relocation %s"),
5828 reloc_property->name().c_str());
5829 break;
5830 default:
5831 gold_unreachable();
5832 }
5833
053a4d68
JY
5834 return true;
5835}
5836
3a531937 5837
8e33481e
HS
5838template<int size, bool big_endian>
5839inline
83a01957 5840typename AArch64_relocate_functions<size, big_endian>::Status
8e33481e 5841Target_aarch64<size, big_endian>::Relocate::relocate_tls(
83a01957 5842 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
5843 Target_aarch64<size, big_endian>* target,
5844 size_t relnum,
5845 const elfcpp::Rela<size, big_endian>& rela,
5846 unsigned int r_type, const Sized_symbol<size>* gsym,
5847 const Symbol_value<size>* psymval,
5848 unsigned char* view,
8e33481e
HS
5849 typename elfcpp::Elf_types<size>::Elf_Addr address)
5850{
83a01957 5851 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937 5852 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
8e33481e 5853
3a531937
JY
5854 Output_segment* tls_segment = relinfo->layout->tls_segment();
5855 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5856 const AArch64_reloc_property* reloc_property =
5857 aarch64_reloc_property_table->get_reloc_property(r_type);
8e33481e
HS
5858 gold_assert(reloc_property != NULL);
5859
3a531937
JY
5860 const bool is_final = (gsym == NULL
5861 ? !parameters->options().shared()
5862 : gsym->final_value_is_known());
5863 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5864 optimize_tls_reloc(is_final, r_type);
5865
83a01957 5866 Sized_relobj_file<size, big_endian>* object = relinfo->object;
3a531937 5867 int tls_got_offset_type;
8e33481e
HS
5868 switch (r_type)
5869 {
3a531937
JY
5870 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5871 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
5872 {
5873 if (tlsopt == tls::TLSOPT_TO_LE)
5874 {
5875 if (tls_segment == NULL)
5876 {
5877 gold_assert(parameters->errors()->error_count() > 0
5878 || issue_undefined_symbol_error(gsym));
5879 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5880 }
5881 return tls_gd_to_le(relinfo, target, rela, r_type, view,
5882 psymval);
5883 }
5884 else if (tlsopt == tls::TLSOPT_NONE)
5885 {
5886 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
5887 // Firstly get the address for the got entry.
5888 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5889 if (gsym != NULL)
5890 {
5891 gold_assert(gsym->has_got_offset(tls_got_offset_type));
5892 got_entry_address = target->got_->address() +
5893 gsym->got_offset(tls_got_offset_type);
5894 }
5895 else
5896 {
5897 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5898 gold_assert(
5899 object->local_has_got_offset(r_sym, tls_got_offset_type));
5900 got_entry_address = target->got_->address() +
5901 object->local_got_offset(r_sym, tls_got_offset_type);
5902 }
5903
5904 // Relocate the address into adrp/ld, adrp/add pair.
5905 switch (r_type)
5906 {
5907 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5908 return aarch64_reloc_funcs::adrp(
5909 view, got_entry_address + addend, address);
5910
5911 break;
5912
5913 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5914 return aarch64_reloc_funcs::template rela_general<32>(
5915 view, got_entry_address, addend, reloc_property);
5916 break;
5917
5918 default:
9726c3c1 5919 gold_unreachable();
3a531937
JY
5920 }
5921 }
5922 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
5923 _("unsupported gd_to_ie relaxation on %u"),
5924 r_type);
5925 }
5926 break;
5927
9726c3c1
HS
5928 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5929 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
5930 {
5931 if (tlsopt == tls::TLSOPT_TO_LE)
5932 {
5933 if (tls_segment == NULL)
5934 {
5935 gold_assert(parameters->errors()->error_count() > 0
5936 || issue_undefined_symbol_error(gsym));
5937 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5938 }
5939 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
5940 psymval);
5941 }
5942
5943 gold_assert(tlsopt == tls::TLSOPT_NONE);
5944 // Relocate the field with the offset of the GOT entry for
5945 // the module index.
5946 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
5947 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
5948 target->got_->address());
5949
5950 switch (r_type)
5951 {
5952 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5953 return aarch64_reloc_funcs::adrp(
5954 view, got_entry_address + addend, address);
5955 break;
5956
5957 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5958 return aarch64_reloc_funcs::template rela_general<32>(
5959 view, got_entry_address, addend, reloc_property);
5960 break;
5961
5962 default:
5963 gold_unreachable();
5964 }
5965 }
5966 break;
5967
5968 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5969 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC: // Other local-dynamic
5970 {
5971 AArch64_address value = psymval->value(object, 0);
5972 if (tlsopt == tls::TLSOPT_TO_LE)
5973 {
5974 if (tls_segment == NULL)
5975 {
5976 gold_assert(parameters->errors()->error_count() > 0
5977 || issue_undefined_symbol_error(gsym));
5978 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
5979 }
5980 // If building executable, _TLS_MODULE_BASE_ points to segment
5981 // end. Thus we must subtract it from value.
5982 value -= tls_segment->memsz();
5983 }
5984 switch (r_type)
5985 {
5986 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5987 return aarch64_reloc_funcs::movnz(view, value + addend,
5988 reloc_property);
5989 break;
5990
5991 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5992 return aarch64_reloc_funcs::template rela_general<32>(
5993 view, value, addend, reloc_property);
5994 break;
5995
5996 default:
5997 gold_unreachable();
5998 }
5999 // We should never reach here.
6000 }
6001 break;
6002
8e33481e 6003 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
3a531937 6004 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
8e33481e 6005 {
3a531937
JY
6006 if (tlsopt == tls::TLSOPT_TO_LE)
6007 {
6008 if (tls_segment == NULL)
6009 {
6010 gold_assert(parameters->errors()->error_count() > 0
6011 || issue_undefined_symbol_error(gsym));
6012 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6013 }
6014 return tls_ie_to_le(relinfo, target, rela, r_type, view,
6015 psymval);
6016 }
6017 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
6018
6019 // Firstly get the address for the got entry.
8e33481e
HS
6020 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6021 if (gsym != NULL)
6022 {
3a531937 6023 gold_assert(gsym->has_got_offset(tls_got_offset_type));
8e33481e 6024 got_entry_address = target->got_->address() +
3a531937 6025 gsym->got_offset(tls_got_offset_type);
8e33481e
HS
6026 }
6027 else
6028 {
6029 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6030 gold_assert(
3a531937 6031 object->local_has_got_offset(r_sym, tls_got_offset_type));
8e33481e 6032 got_entry_address = target->got_->address() +
3a531937 6033 object->local_got_offset(r_sym, tls_got_offset_type);
8e33481e 6034 }
3a531937
JY
6035 // Relocate the address into adrp/ld, adrp/add pair.
6036 switch (r_type)
8e33481e 6037 {
3a531937
JY
6038 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6039 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6040 address);
6041 break;
6042 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6043 return aarch64_reloc_funcs::template rela_general<32>(
6044 view, got_entry_address, addend, reloc_property);
6045 default:
9726c3c1 6046 gold_unreachable();
8e33481e 6047 }
8e33481e 6048 }
3a531937 6049 // We shall never reach here.
8e33481e
HS
6050 break;
6051
6052 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6053 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6054 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6055 {
8e33481e 6056 gold_assert(tls_segment != NULL);
3a531937 6057 AArch64_address value = psymval->value(object, 0);
8e33481e
HS
6058
6059 if (!parameters->options().shared())
6060 {
3a531937
JY
6061 AArch64_address aligned_tcb_size =
6062 align_address(target->tcb_size(),
6063 tls_segment->maximum_alignment());
8e33481e
HS
6064 return aarch64_reloc_funcs::template
6065 rela_general<32>(view,
6066 value + aligned_tcb_size,
6067 addend,
6068 reloc_property);
6069 }
6070 else
6071 gold_error(_("%s: unsupported reloc %u "
6072 "in non-static TLSLE mode."),
6073 object->name().c_str(), r_type);
6074 }
6075 break;
6076
3a531937
JY
6077 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6078 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6079 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6080 case elfcpp::R_AARCH64_TLSDESC_CALL:
6081 {
6082 if (tlsopt == tls::TLSOPT_TO_LE)
6083 {
6084 if (tls_segment == NULL)
6085 {
6086 gold_assert(parameters->errors()->error_count() > 0
6087 || issue_undefined_symbol_error(gsym));
6088 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6089 }
6090 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
6091 view, psymval);
6092 }
6093 else
6094 {
6095 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
6096 ? GOT_TYPE_TLS_OFFSET
6097 : GOT_TYPE_TLS_DESC);
6098 unsigned int got_tlsdesc_offset = 0;
6099 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
6100 && tlsopt == tls::TLSOPT_NONE)
6101 {
6102 // We created GOT entries in the .got.tlsdesc portion of the
6103 // .got.plt section, but the offset stored in the symbol is the
6104 // offset within .got.tlsdesc.
6105 got_tlsdesc_offset = (target->got_->data_size()
6106 + target->got_plt_section()->data_size());
6107 }
6108 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6109 if (gsym != NULL)
6110 {
6111 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6112 got_entry_address = target->got_->address()
6113 + got_tlsdesc_offset
6114 + gsym->got_offset(tls_got_offset_type);
6115 }
6116 else
6117 {
6118 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6119 gold_assert(
6120 object->local_has_got_offset(r_sym, tls_got_offset_type));
6121 got_entry_address = target->got_->address() +
6122 got_tlsdesc_offset +
6123 object->local_got_offset(r_sym, tls_got_offset_type);
6124 }
6125 if (tlsopt == tls::TLSOPT_TO_IE)
6126 {
6127 if (tls_segment == NULL)
6128 {
6129 gold_assert(parameters->errors()->error_count() > 0
6130 || issue_undefined_symbol_error(gsym));
6131 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6132 }
6133 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
6134 view, psymval, got_entry_address,
6135 address);
6136 }
6137
6138 // Now do tlsdesc relocation.
6139 switch (r_type)
6140 {
6141 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6142 return aarch64_reloc_funcs::adrp(view,
6143 got_entry_address + addend,
6144 address);
6145 break;
6146 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6147 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6148 return aarch64_reloc_funcs::template rela_general<32>(
6149 view, got_entry_address, addend, reloc_property);
6150 break;
6151 case elfcpp::R_AARCH64_TLSDESC_CALL:
6152 return aarch64_reloc_funcs::STATUS_OKAY;
6153 break;
6154 default:
6155 gold_unreachable();
6156 }
6157 }
6158 }
6159 break;
6160
8e33481e
HS
6161 default:
6162 gold_error(_("%s: unsupported TLS reloc %u."),
6163 object->name().c_str(), r_type);
6164 }
6165 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
3a531937
JY
6166} // End of relocate_tls.
6167
6168
6169template<int size, bool big_endian>
6170inline
83a01957 6171typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6172Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
83a01957 6173 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6174 Target_aarch64<size, big_endian>* target,
6175 const elfcpp::Rela<size, big_endian>& rela,
6176 unsigned int r_type,
6177 unsigned char* view,
6178 const Symbol_value<size>* psymval)
6179{
83a01957 6180 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6181 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6182 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6183
6184 Insntype* ip = reinterpret_cast<Insntype*>(view);
6185 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6186 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6187 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6188
6189 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
6190 {
6191 // This is the 2nd relocs, optimization should already have been
6192 // done.
6193 gold_assert((insn1 & 0xfff00000) == 0x91400000);
6194 return aarch64_reloc_funcs::STATUS_OKAY;
6195 }
6196
6197 // The original sequence is -
6198 // 90000000 adrp x0, 0 <main>
6199 // 91000000 add x0, x0, #0x0
6200 // 94000000 bl 0 <__tls_get_addr>
6201 // optimized to sequence -
6202 // d53bd040 mrs x0, tpidr_el0
6203 // 91400000 add x0, x0, #0x0, lsl #12
6204 // 91000000 add x0, x0, #0x0
6205
6206 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6207 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
6208 // have to change "bl tls_get_addr", which does not have a corresponding tls
6209 // relocation type. So before proceeding, we need to make sure compiler
6210 // does not change the sequence.
6211 if(!(insn1 == 0x90000000 // adrp x0,0
6212 && insn2 == 0x91000000 // add x0, x0, #0x0
6213 && insn3 == 0x94000000)) // bl 0
6214 {
6215 // Ideally we should give up gd_to_le relaxation and do gd access.
6216 // However the gd_to_le relaxation decision has been made early
6217 // in the scan stage, where we did not allocate any GOT entry for
6218 // this symbol. Therefore we have to exit and report error now.
6219 gold_error(_("unexpected reloc insn sequence while relaxing "
6220 "tls gd to le for reloc %u."), r_type);
6221 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6222 }
6223
6224 // Write new insns.
6225 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
6226 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
6227 insn3 = 0x91000000; // add x0, x0, #0x0
6228 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6229 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6230 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6231
6232 // Calculate tprel value.
6233 Output_segment* tls_segment = relinfo->layout->tls_segment();
6234 gold_assert(tls_segment != NULL);
6235 AArch64_address value = psymval->value(relinfo->object, 0);
6236 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6237 AArch64_address aligned_tcb_size =
6238 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6239 AArch64_address x = value + aligned_tcb_size;
6240
6241 // After new insns are written, apply TLSLE relocs.
6242 const AArch64_reloc_property* rp1 =
6243 aarch64_reloc_property_table->get_reloc_property(
6244 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6245 const AArch64_reloc_property* rp2 =
6246 aarch64_reloc_property_table->get_reloc_property(
6247 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6248 gold_assert(rp1 != NULL && rp2 != NULL);
6249
6250 typename aarch64_reloc_funcs::Status s1 =
6251 aarch64_reloc_funcs::template rela_general<32>(view + 4,
6252 x,
6253 addend,
6254 rp1);
6255 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6256 return s1;
6257
6258 typename aarch64_reloc_funcs::Status s2 =
6259 aarch64_reloc_funcs::template rela_general<32>(view + 8,
6260 x,
6261 addend,
6262 rp2);
6263
6264 this->skip_call_tls_get_addr_ = true;
6265 return s2;
6266} // End of tls_gd_to_le
6267
6268
9726c3c1
HS
6269template<int size, bool big_endian>
6270inline
6271typename AArch64_relocate_functions<size, big_endian>::Status
6272Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
6273 const Relocate_info<size, big_endian>* relinfo,
6274 Target_aarch64<size, big_endian>* target,
6275 const elfcpp::Rela<size, big_endian>& rela,
6276 unsigned int r_type,
6277 unsigned char* view,
6278 const Symbol_value<size>* psymval)
6279{
6280 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6282 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6283
6284 Insntype* ip = reinterpret_cast<Insntype*>(view);
6285 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
6286 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
6287 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
6288
6289 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
6290 {
6291 // This is the 2nd relocs, optimization should already have been
6292 // done.
6293 gold_assert((insn1 & 0xfff00000) == 0x91400000);
6294 return aarch64_reloc_funcs::STATUS_OKAY;
6295 }
6296
6297 // The original sequence is -
6298 // 90000000 adrp x0, 0 <main>
6299 // 91000000 add x0, x0, #0x0
6300 // 94000000 bl 0 <__tls_get_addr>
6301 // optimized to sequence -
6302 // d53bd040 mrs x0, tpidr_el0
6303 // 91400000 add x0, x0, #0x0, lsl #12
6304 // 91000000 add x0, x0, #0x0
6305
6306 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
6307 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
6308 // have to change "bl tls_get_addr", which does not have a corresponding tls
6309 // relocation type. So before proceeding, we need to make sure compiler
6310 // does not change the sequence.
6311 if(!(insn1 == 0x90000000 // adrp x0,0
6312 && insn2 == 0x91000000 // add x0, x0, #0x0
6313 && insn3 == 0x94000000)) // bl 0
6314 {
6315 // Ideally we should give up gd_to_le relaxation and do gd access.
6316 // However the gd_to_le relaxation decision has been made early
6317 // in the scan stage, where we did not allocate any GOT entry for
6318 // this symbol. Therefore we have to exit and report error now.
6319 gold_error(_("unexpected reloc insn sequence while relaxing "
6320 "tls gd to le for reloc %u."), r_type);
6321 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6322 }
6323
6324 // Write new insns.
6325 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
6326 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
6327 insn3 = 0x91000000; // add x0, x0, #0x0
6328 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
6329 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
6330 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
6331
6332 // Calculate tprel value.
6333 Output_segment* tls_segment = relinfo->layout->tls_segment();
6334 gold_assert(tls_segment != NULL);
6335 AArch64_address value = psymval->value(relinfo->object, 0);
6336 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6337 AArch64_address aligned_tcb_size =
6338 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6339 AArch64_address x = value + aligned_tcb_size;
6340
6341 // After new insns are written, apply TLSLE relocs.
6342 const AArch64_reloc_property* rp1 =
6343 aarch64_reloc_property_table->get_reloc_property(
6344 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
6345 const AArch64_reloc_property* rp2 =
6346 aarch64_reloc_property_table->get_reloc_property(
6347 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
6348 gold_assert(rp1 != NULL && rp2 != NULL);
6349
6350 typename aarch64_reloc_funcs::Status s1 =
6351 aarch64_reloc_funcs::template rela_general<32>(view + 4,
6352 x,
6353 addend,
6354 rp1);
6355 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
6356 return s1;
6357
6358 typename aarch64_reloc_funcs::Status s2 =
6359 aarch64_reloc_funcs::template rela_general<32>(view + 8,
6360 x,
6361 addend,
6362 rp2);
6363
6364 this->skip_call_tls_get_addr_ = true;
6365 return s2;
6366
6367} // End of tls_ld_to_le
6368
3a531937
JY
6369template<int size, bool big_endian>
6370inline
83a01957 6371typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6372Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
83a01957 6373 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6374 Target_aarch64<size, big_endian>* target,
6375 const elfcpp::Rela<size, big_endian>& rela,
6376 unsigned int r_type,
6377 unsigned char* view,
6378 const Symbol_value<size>* psymval)
6379{
6380 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6381 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6382 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6383
6384 AArch64_address value = psymval->value(relinfo->object, 0);
6385 Output_segment* tls_segment = relinfo->layout->tls_segment();
6386 AArch64_address aligned_tcb_address =
6387 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6388 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6389 AArch64_address x = value + addend + aligned_tcb_address;
6390 // "x" is the offset to tp, we can only do this if x is within
6391 // range [0, 2^32-1]
6392 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
6393 {
6394 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
6395 r_type);
6396 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6397 }
6398
6399 Insntype* ip = reinterpret_cast<Insntype*>(view);
6400 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6401 unsigned int regno;
6402 Insntype newinsn;
6403 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
6404 {
6405 // Generate movz.
6406 regno = (insn & 0x1f);
6407 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
6408 }
6409 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
6410 {
6411 // Generate movk.
6412 regno = (insn & 0x1f);
6413 gold_assert(regno == ((insn >> 5) & 0x1f));
6414 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
6415 }
6416 else
9726c3c1 6417 gold_unreachable();
3a531937
JY
6418
6419 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6420 return aarch64_reloc_funcs::STATUS_OKAY;
6421} // End of tls_ie_to_le
6422
6423
6424template<int size, bool big_endian>
6425inline
83a01957 6426typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6427Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
83a01957 6428 const Relocate_info<size, big_endian>* relinfo,
3a531937
JY
6429 Target_aarch64<size, big_endian>* target,
6430 const elfcpp::Rela<size, big_endian>& rela,
6431 unsigned int r_type,
6432 unsigned char* view,
6433 const Symbol_value<size>* psymval)
6434{
6435 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6436 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6437 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6438
6439 // TLSDESC-GD sequence is like:
6440 // adrp x0, :tlsdesc:v1
6441 // ldr x1, [x0, #:tlsdesc_lo12:v1]
6442 // add x0, x0, :tlsdesc_lo12:v1
6443 // .tlsdesccall v1
6444 // blr x1
6445 // After desc_gd_to_le optimization, the sequence will be like:
6446 // movz x0, #0x0, lsl #16
6447 // movk x0, #0x10
6448 // nop
6449 // nop
6450
6451 // Calculate tprel value.
6452 Output_segment* tls_segment = relinfo->layout->tls_segment();
6453 gold_assert(tls_segment != NULL);
6454 Insntype* ip = reinterpret_cast<Insntype*>(view);
6455 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6456 AArch64_address value = psymval->value(relinfo->object, addend);
6457 AArch64_address aligned_tcb_size =
6458 align_address(target->tcb_size(), tls_segment->maximum_alignment());
6459 AArch64_address x = value + aligned_tcb_size;
6460 // x is the offset to tp, we can only do this if x is within range
6461 // [0, 2^32-1]. If x is out of range, fail and exit.
6462 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
6463 {
6464 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
6465 "We Can't do gd_to_le relaxation.\n"), r_type);
6466 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6467 }
6468 Insntype newinsn;
6469 switch (r_type)
6470 {
6471 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6472 case elfcpp::R_AARCH64_TLSDESC_CALL:
6473 // Change to nop
6474 newinsn = 0xd503201f;
6475 break;
6476
6477 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6478 // Change to movz.
6479 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
6480 break;
6481
6482 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6483 // Change to movk.
6484 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
6485 break;
6486
6487 default:
6488 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
6489 r_type);
6490 gold_unreachable();
6491 }
6492 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6493 return aarch64_reloc_funcs::STATUS_OKAY;
6494} // End of tls_desc_gd_to_le
6495
6496
6497template<int size, bool big_endian>
6498inline
83a01957 6499typename AArch64_relocate_functions<size, big_endian>::Status
3a531937 6500Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
83a01957 6501 const Relocate_info<size, big_endian>* /* relinfo */,
3a531937
JY
6502 Target_aarch64<size, big_endian>* /* target */,
6503 const elfcpp::Rela<size, big_endian>& rela,
6504 unsigned int r_type,
6505 unsigned char* view,
6506 const Symbol_value<size>* /* psymval */,
6507 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
6508 typename elfcpp::Elf_types<size>::Elf_Addr address)
6509{
6510 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
83a01957 6511 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
3a531937
JY
6512
6513 // TLSDESC-GD sequence is like:
6514 // adrp x0, :tlsdesc:v1
6515 // ldr x1, [x0, #:tlsdesc_lo12:v1]
6516 // add x0, x0, :tlsdesc_lo12:v1
6517 // .tlsdesccall v1
6518 // blr x1
6519 // After desc_gd_to_ie optimization, the sequence will be like:
6520 // adrp x0, :tlsie:v1
6521 // ldr x0, [x0, :tlsie_lo12:v1]
6522 // nop
6523 // nop
6524
6525 Insntype* ip = reinterpret_cast<Insntype*>(view);
6526 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6527 Insntype newinsn;
6528 switch (r_type)
6529 {
6530 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6531 case elfcpp::R_AARCH64_TLSDESC_CALL:
6532 // Change to nop
6533 newinsn = 0xd503201f;
6534 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
6535 break;
6536
6537 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6538 {
6539 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
6540 address);
6541 }
6542 break;
6543
6544 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6545 {
bb779192
HS
6546 // Set ldr target register to be x0.
6547 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
6548 insn &= 0xffffffe0;
6549 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
6550 // Do relocation.
3a531937
JY
6551 const AArch64_reloc_property* reloc_property =
6552 aarch64_reloc_property_table->get_reloc_property(
6553 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6554 return aarch64_reloc_funcs::template rela_general<32>(
6555 view, got_entry_address, addend, reloc_property);
6556 }
6557 break;
8e33481e 6558
3a531937
JY
6559 default:
6560 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
6561 r_type);
6562 gold_unreachable();
6563 }
6564 return aarch64_reloc_funcs::STATUS_OKAY;
6565} // End of tls_desc_gd_to_ie
8e33481e 6566
053a4d68
JY
6567// Relocate section data.
6568
6569template<int size, bool big_endian>
6570void
6571Target_aarch64<size, big_endian>::relocate_section(
9363c7c3 6572 const Relocate_info<size, big_endian>* relinfo,
053a4d68 6573 unsigned int sh_type,
9363c7c3
JY
6574 const unsigned char* prelocs,
6575 size_t reloc_count,
6576 Output_section* output_section,
6577 bool needs_special_offset_handling,
6578 unsigned char* view,
6579 typename elfcpp::Elf_types<size>::Elf_Addr address,
6580 section_size_type view_size,
6581 const Reloc_symbol_changes* reloc_symbol_changes)
053a4d68 6582{
053a4d68 6583 gold_assert(sh_type == elfcpp::SHT_RELA);
9363c7c3
JY
6584 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
6585 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
6586 AArch64_relocate, gold::Default_comdat_behavior>(
6587 relinfo,
6588 this,
6589 prelocs,
6590 reloc_count,
6591 output_section,
6592 needs_special_offset_handling,
6593 view,
6594 address,
6595 view_size,
6596 reloc_symbol_changes);
053a4d68
JY
6597}
6598
6599// Return the size of a relocation while scanning during a relocatable
6600// link.
6601
6602template<int size, bool big_endian>
6603unsigned int
6604Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
6605get_size_for_reloc(
6606 unsigned int ,
6607 Relobj* )
6608{
6609 // We will never support SHT_REL relocations.
6610 gold_unreachable();
6611 return 0;
6612}
6613
6614// Scan the relocs during a relocatable link.
6615
6616template<int size, bool big_endian>
6617void
6618Target_aarch64<size, big_endian>::scan_relocatable_relocs(
8e33481e
HS
6619 Symbol_table* symtab,
6620 Layout* layout,
6621 Sized_relobj_file<size, big_endian>* object,
6622 unsigned int data_shndx,
053a4d68 6623 unsigned int sh_type,
8e33481e
HS
6624 const unsigned char* prelocs,
6625 size_t reloc_count,
6626 Output_section* output_section,
6627 bool needs_special_offset_handling,
6628 size_t local_symbol_count,
6629 const unsigned char* plocal_symbols,
6630 Relocatable_relocs* rr)
053a4d68 6631{
053a4d68 6632 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
6633
6634 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
6635 Relocatable_size_for_reloc> Scan_relocatable_relocs;
6636
6637 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
6638 Scan_relocatable_relocs>(
6639 symtab,
6640 layout,
6641 object,
6642 data_shndx,
6643 prelocs,
6644 reloc_count,
6645 output_section,
6646 needs_special_offset_handling,
6647 local_symbol_count,
6648 plocal_symbols,
6649 rr);
053a4d68
JY
6650}
6651
6652// Relocate a section during a relocatable link.
6653
6654template<int size, bool big_endian>
6655void
6656Target_aarch64<size, big_endian>::relocate_relocs(
8e33481e 6657 const Relocate_info<size, big_endian>* relinfo,
053a4d68 6658 unsigned int sh_type,
8e33481e
HS
6659 const unsigned char* prelocs,
6660 size_t reloc_count,
6661 Output_section* output_section,
6662 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
6663 const Relocatable_relocs* rr,
6664 unsigned char* view,
6665 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
6666 section_size_type view_size,
6667 unsigned char* reloc_view,
6668 section_size_type reloc_view_size)
053a4d68 6669{
053a4d68 6670 gold_assert(sh_type == elfcpp::SHT_RELA);
8e33481e
HS
6671
6672 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
6673 relinfo,
6674 prelocs,
6675 reloc_count,
6676 output_section,
6677 offset_in_output_section,
6678 rr,
6679 view,
6680 view_address,
6681 view_size,
6682 reloc_view,
6683 reloc_view_size);
053a4d68
JY
6684}
6685
83a01957 6686
053a4d68
JY
6687// The selector for aarch64 object files.
6688
6689template<int size, bool big_endian>
6690class Target_selector_aarch64 : public Target_selector
6691{
6692 public:
9363c7c3 6693 Target_selector_aarch64();
053a4d68
JY
6694
6695 virtual Target*
6696 do_instantiate_target()
6697 { return new Target_aarch64<size, big_endian>(); }
6698};
6699
9363c7c3
JY
6700template<>
6701Target_selector_aarch64<32, true>::Target_selector_aarch64()
6702 : Target_selector(elfcpp::EM_AARCH64, 32, true,
6703 "elf32-bigaarch64", "aarch64_elf32_be_vec")
6704{ }
6705
6706template<>
6707Target_selector_aarch64<32, false>::Target_selector_aarch64()
6708 : Target_selector(elfcpp::EM_AARCH64, 32, false,
6709 "elf32-littleaarch64", "aarch64_elf32_le_vec")
6710{ }
6711
6712template<>
6713Target_selector_aarch64<64, true>::Target_selector_aarch64()
6714 : Target_selector(elfcpp::EM_AARCH64, 64, true,
6715 "elf64-bigaarch64", "aarch64_elf64_be_vec")
6716{ }
6717
6718template<>
6719Target_selector_aarch64<64, false>::Target_selector_aarch64()
6720 : Target_selector(elfcpp::EM_AARCH64, 64, false,
6721 "elf64-littleaarch64", "aarch64_elf64_le_vec")
6722{ }
6723
053a4d68
JY
6724Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
6725Target_selector_aarch64<32, false> target_selector_aarch64elf32;
6726Target_selector_aarch64<64, true> target_selector_aarch64elfb;
6727Target_selector_aarch64<64, false> target_selector_aarch64elf;
6728
053a4d68 6729} // End anonymous namespace.
This page took 0.445276 seconds and 4 git commands to generate.