remove an unused macro and an unused declaration
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
4b95cf5c 3// Copyright (C) 2009-2014 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
a6d1ef57 2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
43819297 2123 copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
ebabffbd 2270 Arm_address view_address,
364c7fa5
ILT
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
4a657b0d
DK
2273
2274 // Scan the relocs during a relocatable link.
2275 void
ad0f2072 2276 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2277 Layout* layout,
6fa2a40b 2278 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
7404fe1b 2289 // Emit relocations for a section.
4a657b0d 2290 void
7404fe1b
AM
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
62fe925a
RM
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
7404fe1b
AM
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
4a657b0d 2304
5c388529
DK
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 void
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2311 size_t relnum,
2312 Output_section* output_section,
62fe925a
RM
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
5c388529
DK
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2317 view_address,
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2e702c99 2320
4a657b0d
DK
2321 // Return whether SYM is defined by the ABI.
2322 bool
2c54b4f4 2323 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
c8761b9a
DK
2326 // Return whether there is a GOT section.
2327 bool
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2330
94cdfcff
DK
2331 // Return the size of the GOT section.
2332 section_size_type
0e70b911 2333 got_size() const
94cdfcff
DK
2334 {
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2337 }
2338
0e70b911
CC
2339 // Return the number of entries in the GOT.
2340 unsigned int
2341 got_entry_count() const
2342 {
2343 if (!this->has_got_section())
2344 return 0;
2345 return this->got_size() / 4;
2346 }
2347
2348 // Return the number of entries in the PLT.
2349 unsigned int
2350 plt_entry_count() const;
2351
2352 // Return the offset of the first non-reserved PLT entry.
2353 unsigned int
2354 first_plt_entry_offset() const;
2355
2356 // Return the size of each PLT entry.
2357 unsigned int
2358 plt_entry_size() const;
2359
4a657b0d 2360 // Map platform-specific reloc types
a6d1ef57 2361 static unsigned int
ca09d69a 2362 get_real_reloc_type(unsigned int r_type);
4a657b0d 2363
55da9579
DK
2364 //
2365 // Methods to support stub-generations.
2366 //
2e702c99 2367
55da9579
DK
2368 // Return the stub factory
2369 const Stub_factory&
2370 stub_factory() const
2371 { return this->stub_factory_; }
2372
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2376
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2ea97941 2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2381
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2385
eb44217c
DK
2386 // Scan a section for stub generation.
2387 void
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2391 section_size_type);
2392
2e702c99 2393 // Relocate a stub.
43d12afe 2394 void
2fb7225c 2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2396 Output_section*, unsigned char*, Arm_address,
2397 section_size_type);
2e702c99 2398
b569affa 2399 // Get the default ARM target.
43d12afe 2400 static Target_arm<big_endian>*
b569affa
DK
2401 default_target()
2402 {
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
b569affa
DK
2407 }
2408
20138696
DK
2409 // Whether NAME belongs to a mapping symbol.
2410 static bool
2411 is_mapping_symbol_name(const char* name)
2412 {
2413 return (name
2414 && name[0] == '$'
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2417 }
2418
a120bc7f
DK
2419 // Whether we work around the Cortex-A8 erratum.
2420 bool
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2423
85fdf906
AH
2424 // Whether we merge exidx entries in debuginfo.
2425 bool
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2428
a2162063
ILT
2429 // Whether we fix R_ARM_V4BX relocation.
2430 // 0 - do not fix
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2433 General_options::Fix_v4bx
a2162063 2434 fix_v4bx() const
9b2fd367 2435 { return parameters->options().fix_v4bx(); }
a2162063 2436
44272192
DK
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2438 void
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2442
41263c05
DK
2443 // Apply Cortex-A8 workaround to a branch.
2444 void
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2447
d5b40221 2448 protected:
2e702c99
RM
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2453
eb44217c
DK
2454 // Make an ELF object.
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459 Object*
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2463
2464 Object*
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2468
2469 Object*
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2473
2474 // Make an output section.
2475 Output_section*
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2479
d5b40221 2480 void
3bfcb652 2481 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2482
eb44217c
DK
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2485 bool
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2488
2489 bool
f625ae50 2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2491
a0351a69
DK
2492 // Determine whether an object attribute tag takes an integer, a
2493 // string or both.
2494 int
2495 do_attribute_arg_type(int tag) const;
2496
2497 // Reorder tags during output.
2498 int
2499 do_attributes_order(int num) const;
2500
0d31c79d
DK
2501 // This is called when the target is selected as the default.
2502 void
2503 do_select_as_default_target()
2504 {
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2507 // as the default.
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2510 }
2511
b3ce541e
ILT
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2515 virtual bool
2516 do_can_check_for_function_pointers() const
2517 { return true; }
2518
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2521 virtual bool
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523 {
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527 }
2e702c99 2528
647f1574
DK
2529 virtual void
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2531
2e702c99
RM
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534 {
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536 }
2537
4a657b0d
DK
2538 private:
2539 // The class which scans relocations.
2540 class Scan
2541 {
2542 public:
2543 Scan()
bec53400 2544 : issued_non_pic_error_(false)
4a657b0d
DK
2545 { }
2546
95a2c8d6
RS
2547 static inline int
2548 get_reference_flags(unsigned int r_type);
2549
4a657b0d 2550 inline void
ad0f2072 2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2552 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2556 const elfcpp::Sym<32, big_endian>& lsym,
2557 bool is_discarded);
4a657b0d
DK
2558
2559 inline void
ad0f2072 2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2561 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 Symbol* gsym);
2566
21bb3914
ST
2567 inline bool
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2569 Sized_relobj_file<32, big_endian>* ,
2570 unsigned int ,
2571 Output_section* ,
2572 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2573 unsigned int ,
2e702c99 2574 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2575
2576 inline bool
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2578 Sized_relobj_file<32, big_endian>* ,
2579 unsigned int ,
2580 Output_section* ,
2581 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2582 unsigned int , Symbol*);
21bb3914 2583
4a657b0d
DK
2584 private:
2585 static void
6fa2a40b 2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2587 unsigned int r_type);
2588
2589 static void
6fa2a40b 2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2591 unsigned int r_type, Symbol*);
bec53400
DK
2592
2593 void
2594 check_non_pic(Relobj*, unsigned int r_type);
2595
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2598 static bool
2599 symbol_needs_plt_entry(const Symbol* sym)
2600 {
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2603 return false;
2604
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2611 }
2612
8a75a161
DK
2613 inline bool
2614 possible_function_pointer_reloc(unsigned int r_type);
2615
bec53400
DK
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
4a657b0d
DK
2618 };
2619
2620 // The class which implements relocation.
2621 class Relocate
2622 {
2623 public:
2624 Relocate()
2625 { }
2626
2627 ~Relocate()
2628 { }
2629
bec53400
DK
2630 // Return whether the static relocation needs to be applied.
2631 inline bool
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2633 unsigned int r_type,
bec53400
DK
2634 bool is_32bit,
2635 Output_section* output_section);
2636
4a657b0d
DK
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2639 inline bool
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
ebabffbd 2645 unsigned char*, Arm_address,
4a657b0d 2646 section_size_type);
c121c671
DK
2647
2648 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2649 // reloc. This means the relocation type accesses a symbol not via
2650 // GOT or PLT.
c121c671 2651 static inline bool
ca09d69a 2652 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2653 {
2654 switch (r_type)
2655 {
f4e5969c
DK
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2666
2667 // These relocate types may use PLT entries.
c121c671 2668 case elfcpp::R_ARM_CALL:
f4e5969c 2669 case elfcpp::R_ARM_THM_CALL:
c121c671 2670 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
c121c671 2677 return false;
f4e5969c
DK
2678
2679 default:
2680 return true;
c121c671
DK
2681 }
2682 }
f96accdf
DK
2683
2684 private:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691 section_size_type);
2692
4a657b0d
DK
2693 };
2694
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2698 {
2699 public:
2700 unsigned int
2701 get_size_for_reloc(unsigned int, Relobj*);
2702 };
2703
f96accdf
DK
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2708
94cdfcff 2709 // Get the GOT section, creating it if necessary.
4a54abbb 2710 Arm_output_data_got<big_endian>*
94cdfcff
DK
2711 got_section(Symbol_table*, Layout*);
2712
2713 // Get the GOT PLT section.
2714 Output_data_space*
2715 got_plt_section() const
2716 {
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2719 }
2720
2721 // Create a PLT entry for a global symbol.
2722 void
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
f96accdf
DK
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726 void
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729 // Create a GOT entry for the TLS module index.
2730 unsigned int
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2732 Sized_relobj_file<32, big_endian>* object);
f96accdf 2733
94cdfcff
DK
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2736 plt_section() const
2737 {
2738 gold_assert(this->plt_ != NULL);
2739 return this->plt_;
2740 }
2741
2742 // Get the dynamic reloc section, creating it if necessary.
2743 Reloc_section*
2744 rel_dyn_section(Layout*);
2745
f96accdf
DK
2746 // Get the section to use for TLS_DESC relocations.
2747 Reloc_section*
2748 rel_tls_desc_section(Layout*) const;
2749
94cdfcff
DK
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2753 bool
2754 may_need_copy_reloc(Symbol* gsym)
2755 {
966d4097
DK
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
94cdfcff
DK
2758 }
2759
2760 // Add a potential copy relocation.
2761 void
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2763 Sized_relobj_file<32, big_endian>* object,
2ea97941 2764 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766 {
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2ea97941 2769 object, shndx, output_section, reloc,
94cdfcff
DK
2770 this->rel_dyn_section(layout));
2771 }
2772
d5b40221
DK
2773 // Whether two EABI versions are compatible.
2774 static bool
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2779 void
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
a0351a69
DK
2782 // Get the secondary compatible architecture.
2783 static int
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786 // Set the secondary compatible architecture.
2787 static void
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790 static int
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793 // Helper to print AEABI enum tag value.
2794 static std::string
2795 aeabi_enum_name(unsigned int);
2796
2797 // Return string value for TAG_CPU_name.
2798 static std::string
2799 tag_cpu_name_value(unsigned int);
2800
679af368
ILT
2801 // Query attributes object to see if integer divide instructions may be
2802 // present in an object.
2803 static bool
2804 attributes_accept_div(int arch, int profile,
2805 const Object_attribute* div_attr);
2806
2807 // Query attributes object to see if integer divide instructions are
2808 // forbidden to be in the object. This is not the inverse of
2809 // attributes_accept_div.
2810 static bool
2811 attributes_forbid_div(const Object_attribute* div_attr);
2812
a0351a69
DK
2813 // Merge object attributes from input object and those in the output.
2814 void
2815 merge_object_attributes(const char*, const Attributes_section_data*);
2816
2817 // Helper to get an AEABI object attribute
2818 Object_attribute*
2819 get_aeabi_object_attribute(int tag) const
2820 {
2821 Attributes_section_data* pasd = this->attributes_section_data_;
2822 gold_assert(pasd != NULL);
2823 Object_attribute* attr =
2824 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2825 gold_assert(attr != NULL);
2826 return attr;
2827 }
2828
eb44217c
DK
2829 //
2830 // Methods to support stub-generations.
2831 //
d5b40221 2832
eb44217c
DK
2833 // Group input sections for stub generation.
2834 void
f625ae50 2835 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2836
eb44217c
DK
2837 // Scan a relocation for stub generation.
2838 void
2839 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2840 const Sized_symbol<32>*, unsigned int,
2841 const Symbol_value<32>*,
2842 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2843
eb44217c
DK
2844 // Scan a relocation section for stub.
2845 template<int sh_type>
2846 void
2847 scan_reloc_section_for_stubs(
2848 const Relocate_info<32, big_endian>* relinfo,
2849 const unsigned char* prelocs,
2850 size_t reloc_count,
2851 Output_section* output_section,
2852 bool needs_special_offset_handling,
2853 const unsigned char* view,
2854 elfcpp::Elf_types<32>::Elf_Addr view_address,
2855 section_size_type);
d5b40221 2856
2b328d4e
DK
2857 // Fix .ARM.exidx section coverage.
2858 void
131687b4 2859 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2860 Arm_output_section<big_endian>*, Symbol_table*,
2861 const Task*);
2b328d4e
DK
2862
2863 // Functors for STL set.
2864 struct output_section_address_less_than
2865 {
2866 bool
2867 operator()(const Output_section* s1, const Output_section* s2) const
2868 { return s1->address() < s2->address(); }
2869 };
2870
4a657b0d
DK
2871 // Information about this specific target which we pass to the
2872 // general Target structure.
2873 static const Target::Target_info arm_info;
94cdfcff
DK
2874
2875 // The types of GOT entries needed for this platform.
0e70b911
CC
2876 // These values are exposed to the ABI in an incremental link.
2877 // Do not renumber existing values without changing the version
2878 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2879 enum Got_type
2880 {
f96accdf
DK
2881 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2882 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2883 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2884 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2885 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2886 };
2887
55da9579
DK
2888 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2889
2890 // Map input section to Arm_input_section.
5ac169d4 2891 typedef Unordered_map<Section_id,
55da9579 2892 Arm_input_section<big_endian>*,
5ac169d4 2893 Section_id_hash>
55da9579 2894 Arm_input_section_map;
2e702c99 2895
a120bc7f
DK
2896 // Map output addresses to relocs for Cortex-A8 erratum.
2897 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2898 Cortex_a8_relocs_info;
2899
94cdfcff 2900 // The GOT section.
4a54abbb 2901 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2902 // The PLT section.
2903 Output_data_plt_arm<big_endian>* plt_;
2904 // The GOT PLT section.
2905 Output_data_space* got_plt_;
2906 // The dynamic reloc section.
2907 Reloc_section* rel_dyn_;
2908 // Relocs saved to avoid a COPY reloc.
2909 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
2910 // Offset of the GOT entry for the TLS module index.
2911 unsigned int got_mod_index_offset_;
2912 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2913 bool tls_base_symbol_defined_;
55da9579
DK
2914 // Vector of Stub_tables created.
2915 Stub_table_list stub_tables_;
2916 // Stub factory.
2917 const Stub_factory &stub_factory_;
b569affa
DK
2918 // Whether we force PIC branch veneers.
2919 bool should_force_pic_veneer_;
eb44217c
DK
2920 // Map for locating Arm_input_sections.
2921 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2922 // Attributes section data in output.
2923 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2924 // Whether we want to fix code for Cortex-A8 erratum.
2925 bool fix_cortex_a8_;
2926 // Map addresses to relocs for Cortex-A8 erratum.
2927 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2928};
2929
2930template<bool big_endian>
2931const Target::Target_info Target_arm<big_endian>::arm_info =
2932{
2933 32, // size
2934 big_endian, // is_big_endian
2935 elfcpp::EM_ARM, // machine_code
2936 false, // has_make_symbol
2937 false, // has_resolve
2938 false, // has_code_fill
2939 true, // is_default_stack_executable
b3ce541e 2940 false, // can_icf_inline_merge_sections
4a657b0d
DK
2941 '\0', // wrap_char
2942 "/usr/lib/libc.so.1", // dynamic_linker
2943 0x8000, // default_text_segment_address
2944 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2945 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2946 false, // isolate_execinstr
2947 0, // rosegment_gap
8a5e3e08
ILT
2948 elfcpp::SHN_UNDEF, // small_common_shndx
2949 elfcpp::SHN_UNDEF, // large_common_shndx
2950 0, // small_common_section_flags
05a352e6
DK
2951 0, // large_common_section_flags
2952 ".ARM.attributes", // attributes_section
a67858e0
CC
2953 "aeabi", // attributes_vendor
2954 "_start" // entry_symbol_name
4a657b0d
DK
2955};
2956
c121c671
DK
2957// Arm relocate functions class
2958//
2959
2960template<bool big_endian>
2961class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2962{
2963 public:
2964 typedef enum
2965 {
2966 STATUS_OKAY, // No error during relocation.
9b547ce6 2967 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2968 STATUS_BAD_RELOC // Relocation cannot be applied.
2969 } Status;
2970
2971 private:
2972 typedef Relocate_functions<32, big_endian> Base;
2973 typedef Arm_relocate_functions<big_endian> This;
2974
fd3c5f0b
ILT
2975 // Encoding of imm16 argument for movt and movw ARM instructions
2976 // from ARM ARM:
2e702c99 2977 //
fd3c5f0b
ILT
2978 // imm16 := imm4 | imm12
2979 //
2e702c99 2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
2981 // +-------+---------------+-------+-------+-----------------------+
2982 // | | |imm4 | |imm12 |
2983 // +-------+---------------+-------+-------+-----------------------+
2984
2985 // Extract the relocation addend from VAL based on the ARM
2986 // instruction encoding described above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 extract_arm_movw_movt_addend(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val)
2990 {
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
bef2b434 2993 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
2994 }
2995
2996 // Insert X into VAL based on the ARM instruction encoding described
2997 // above.
2998 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2999 insert_val_arm_movw_movt(
3000 typename elfcpp::Swap<32, big_endian>::Valtype val,
3001 typename elfcpp::Swap<32, big_endian>::Valtype x)
3002 {
3003 val &= 0xfff0f000;
3004 val |= x & 0x0fff;
3005 val |= (x & 0xf000) << 4;
3006 return val;
3007 }
3008
3009 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3010 // from ARM ARM:
2e702c99 3011 //
fd3c5f0b
ILT
3012 // imm16 := imm4 | i | imm3 | imm8
3013 //
2e702c99 3014 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3015 // +---------+-+-----------+-------++-+-----+-------+---------------+
3016 // | |i| |imm4 || |imm3 | |imm8 |
3017 // +---------+-+-----------+-------++-+-----+-------+---------------+
3018
3019 // Extract the relocation addend from VAL based on the Thumb2
3020 // instruction encoding described above.
3021 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3022 extract_thumb_movw_movt_addend(
3023 typename elfcpp::Swap<32, big_endian>::Valtype val)
3024 {
3025 // According to the Elf ABI for ARM Architecture the immediate
3026 // field is sign-extended to form the addend.
bef2b434
ILT
3027 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3028 | ((val >> 15) & 0x0800)
3029 | ((val >> 4) & 0x0700)
3030 | (val & 0x00ff));
fd3c5f0b
ILT
3031 }
3032
3033 // Insert X into VAL based on the Thumb2 instruction encoding
3034 // described above.
3035 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3036 insert_val_thumb_movw_movt(
3037 typename elfcpp::Swap<32, big_endian>::Valtype val,
3038 typename elfcpp::Swap<32, big_endian>::Valtype x)
3039 {
3040 val &= 0xfbf08f00;
3041 val |= (x & 0xf000) << 4;
3042 val |= (x & 0x0800) << 15;
3043 val |= (x & 0x0700) << 4;
3044 val |= (x & 0x00ff);
3045 return val;
3046 }
3047
b10d2873
ILT
3048 // Calculate the smallest constant Kn for the specified residual.
3049 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3050 static uint32_t
3051 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3052 {
3053 int32_t msb;
3054
3055 if (residual == 0)
3056 return 0;
3057 // Determine the most significant bit in the residual and
3058 // align the resulting value to a 2-bit boundary.
3059 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3060 ;
3061 // The desired shift is now (msb - 6), or zero, whichever
3062 // is the greater.
3063 return (((msb - 6) < 0) ? 0 : (msb - 6));
3064 }
3065
3066 // Calculate the final residual for the specified group index.
3067 // If the passed group index is less than zero, the method will return
3068 // the value of the specified residual without any change.
3069 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3070 static typename elfcpp::Swap<32, big_endian>::Valtype
3071 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3072 const int group)
3073 {
3074 for (int n = 0; n <= group; n++)
3075 {
3076 // Calculate which part of the value to mask.
3077 uint32_t shift = calc_grp_kn(residual);
3078 // Calculate the residual for the next time around.
3079 residual &= ~(residual & (0xff << shift));
3080 }
3081
3082 return residual;
3083 }
3084
3085 // Calculate the value of Gn for the specified group index.
3086 // We return it in the form of an encoded constant-and-rotation.
3087 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3088 static typename elfcpp::Swap<32, big_endian>::Valtype
3089 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3090 const int group)
3091 {
3092 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3093 uint32_t shift = 0;
3094
3095 for (int n = 0; n <= group; n++)
3096 {
3097 // Calculate which part of the value to mask.
3098 shift = calc_grp_kn(residual);
3099 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3100 gn = residual & (0xff << shift);
3101 // Calculate the residual for the next time around.
3102 residual &= ~gn;
3103 }
3104 // Return Gn in the form of an encoded constant-and-rotation.
3105 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3106 }
3107
1521477a 3108 public:
d204b6e9
DK
3109 // Handle ARM long branches.
3110 static typename This::Status
3111 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3112 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3113 const Arm_relobj<big_endian>*, unsigned int,
3114 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3115
51938283
DK
3116 // Handle THUMB long branches.
3117 static typename This::Status
3118 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3119 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3120 const Arm_relobj<big_endian>*, unsigned int,
3121 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3122
5e445df6 3123
089d69dc
DK
3124 // Return the branch offset of a 32-bit THUMB branch.
3125 static inline int32_t
3126 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3127 {
3128 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3129 // involving the J1 and J2 bits.
3130 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3131 uint32_t upper = upper_insn & 0x3ffU;
3132 uint32_t lower = lower_insn & 0x7ffU;
3133 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3134 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3135 uint32_t i1 = j1 ^ s ? 0 : 1;
3136 uint32_t i2 = j2 ^ s ? 0 : 1;
3137
bef2b434
ILT
3138 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3139 | (upper << 12) | (lower << 1));
089d69dc
DK
3140 }
3141
3142 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3143 // UPPER_INSN is the original upper instruction of the branch. Caller is
3144 // responsible for overflow checking and BLX offset adjustment.
3145 static inline uint16_t
3146 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3147 {
3148 uint32_t s = offset < 0 ? 1 : 0;
3149 uint32_t bits = static_cast<uint32_t>(offset);
3150 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3151 }
3152
3153 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3154 // LOWER_INSN is the original lower instruction of the branch. Caller is
3155 // responsible for overflow checking and BLX offset adjustment.
3156 static inline uint16_t
3157 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3158 {
3159 uint32_t s = offset < 0 ? 1 : 0;
3160 uint32_t bits = static_cast<uint32_t>(offset);
3161 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3162 | ((((bits >> 23) & 1) ^ !s) << 13)
3163 | ((((bits >> 22) & 1) ^ !s) << 11)
3164 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3165 }
3166
3167 // Return the branch offset of a 32-bit THUMB conditional branch.
3168 static inline int32_t
3169 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3170 {
3171 uint32_t s = (upper_insn & 0x0400U) >> 10;
3172 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3173 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3174 uint32_t lower = (lower_insn & 0x07ffU);
3175 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3176
bef2b434 3177 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3178 }
3179
3180 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3181 // instruction. UPPER_INSN is the original upper instruction of the branch.
3182 // Caller is responsible for overflow checking.
3183 static inline uint16_t
3184 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3185 {
3186 uint32_t s = offset < 0 ? 1 : 0;
3187 uint32_t bits = static_cast<uint32_t>(offset);
3188 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3189 }
3190
3191 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3192 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3193 // The caller is responsible for overflow checking.
089d69dc
DK
3194 static inline uint16_t
3195 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3196 {
3197 uint32_t bits = static_cast<uint32_t>(offset);
3198 uint32_t j2 = (bits & 0x00080000U) >> 19;
3199 uint32_t j1 = (bits & 0x00040000U) >> 18;
3200 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3201
3202 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3203 }
3204
5e445df6
ILT
3205 // R_ARM_ABS8: S + A
3206 static inline typename This::Status
ca09d69a 3207 abs8(unsigned char* view,
6fa2a40b 3208 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3209 const Symbol_value<32>* psymval)
5e445df6
ILT
3210 {
3211 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3212 Valtype* wv = reinterpret_cast<Valtype*>(view);
3213 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3214 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3215 Arm_address x = psymval->value(object, addend);
bef2b434 3216 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3217 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3218
3219 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3220 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3221 ? This::STATUS_OVERFLOW
3222 : This::STATUS_OKAY);
3223 }
3224
be8fcb75
ILT
3225 // R_ARM_THM_ABS5: S + A
3226 static inline typename This::Status
ca09d69a 3227 thm_abs5(unsigned char* view,
6fa2a40b 3228 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3229 const Symbol_value<32>* psymval)
3230 {
3231 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3232 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3233 Valtype* wv = reinterpret_cast<Valtype*>(view);
3234 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3235 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3236 Reltype x = psymval->value(object, addend);
bef2b434 3237 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3238 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3239 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3240 ? This::STATUS_OVERFLOW
3241 : This::STATUS_OKAY);
3242 }
3243
3244 // R_ARM_ABS12: S + A
3245 static inline typename This::Status
ca09d69a 3246 abs12(unsigned char* view,
6fa2a40b 3247 const Sized_relobj_file<32, big_endian>* object,
51938283 3248 const Symbol_value<32>* psymval)
be8fcb75
ILT
3249 {
3250 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3251 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3252 Valtype* wv = reinterpret_cast<Valtype*>(view);
3253 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3254 Reltype addend = val & 0x0fffU;
2daedcd6 3255 Reltype x = psymval->value(object, addend);
bef2b434 3256 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3257 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3258 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3259 ? This::STATUS_OVERFLOW
3260 : This::STATUS_OKAY);
3261 }
3262
3263 // R_ARM_ABS16: S + A
3264 static inline typename This::Status
ca09d69a 3265 abs16(unsigned char* view,
6fa2a40b 3266 const Sized_relobj_file<32, big_endian>* object,
51938283 3267 const Symbol_value<32>* psymval)
be8fcb75 3268 {
f6cccc2c 3269 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3270 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3271 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3272 Arm_address x = psymval->value(object, addend);
bef2b434 3273 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3274 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3275
3276 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3277 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3278 ? This::STATUS_OVERFLOW
3279 : This::STATUS_OKAY);
3280 }
3281
c121c671
DK
3282 // R_ARM_ABS32: (S + A) | T
3283 static inline typename This::Status
ca09d69a 3284 abs32(unsigned char* view,
6fa2a40b 3285 const Sized_relobj_file<32, big_endian>* object,
c121c671 3286 const Symbol_value<32>* psymval,
2daedcd6 3287 Arm_address thumb_bit)
c121c671 3288 {
f6cccc2c
DK
3289 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3290 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3291 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3292 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3293 return This::STATUS_OKAY;
3294 }
3295
3296 // R_ARM_REL32: (S + A) | T - P
3297 static inline typename This::Status
ca09d69a 3298 rel32(unsigned char* view,
6fa2a40b 3299 const Sized_relobj_file<32, big_endian>* object,
c121c671 3300 const Symbol_value<32>* psymval,
ebabffbd 3301 Arm_address address,
2daedcd6 3302 Arm_address thumb_bit)
c121c671 3303 {
f6cccc2c
DK
3304 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3305 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3306 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3307 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3308 return This::STATUS_OKAY;
3309 }
3310
089d69dc
DK
3311 // R_ARM_THM_JUMP24: (S + A) | T - P
3312 static typename This::Status
ca09d69a 3313 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3314 const Symbol_value<32>* psymval, Arm_address address,
3315 Arm_address thumb_bit);
3316
800d0f56
ILT
3317 // R_ARM_THM_JUMP6: S + A – P
3318 static inline typename This::Status
ca09d69a 3319 thm_jump6(unsigned char* view,
6fa2a40b 3320 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3321 const Symbol_value<32>* psymval,
3322 Arm_address address)
3323 {
3324 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3325 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3326 Valtype* wv = reinterpret_cast<Valtype*>(view);
3327 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3328 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3329 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3330 Reltype x = (psymval->value(object, addend) - address);
3331 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3332 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3333 // CZB does only forward jumps.
3334 return ((x > 0x007e)
3335 ? This::STATUS_OVERFLOW
3336 : This::STATUS_OKAY);
3337 }
3338
3339 // R_ARM_THM_JUMP8: S + A – P
3340 static inline typename This::Status
ca09d69a 3341 thm_jump8(unsigned char* view,
6fa2a40b 3342 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3343 const Symbol_value<32>* psymval,
3344 Arm_address address)
3345 {
3346 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3347 Valtype* wv = reinterpret_cast<Valtype*>(view);
3348 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3349 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3350 int32_t x = (psymval->value(object, addend) - address);
3351 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3352 | ((x & 0x01fe) >> 1)));
57eb9b50 3353 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3354 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3355 ? This::STATUS_OVERFLOW
3356 : This::STATUS_OKAY);
3357 }
3358
3359 // R_ARM_THM_JUMP11: S + A – P
3360 static inline typename This::Status
ca09d69a 3361 thm_jump11(unsigned char* view,
6fa2a40b 3362 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3363 const Symbol_value<32>* psymval,
3364 Arm_address address)
3365 {
3366 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3367 Valtype* wv = reinterpret_cast<Valtype*>(view);
3368 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3369 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3370 int32_t x = (psymval->value(object, addend) - address);
3371 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3372 | ((x & 0x0ffe) >> 1)));
57eb9b50 3373 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3374 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3375 ? This::STATUS_OVERFLOW
3376 : This::STATUS_OKAY);
3377 }
3378
c121c671
DK
3379 // R_ARM_BASE_PREL: B(S) + A - P
3380 static inline typename This::Status
3381 base_prel(unsigned char* view,
ebabffbd
DK
3382 Arm_address origin,
3383 Arm_address address)
c121c671
DK
3384 {
3385 Base::rel32(view, origin - address);
3386 return STATUS_OKAY;
3387 }
3388
be8fcb75
ILT
3389 // R_ARM_BASE_ABS: B(S) + A
3390 static inline typename This::Status
3391 base_abs(unsigned char* view,
f4e5969c 3392 Arm_address origin)
be8fcb75
ILT
3393 {
3394 Base::rel32(view, origin);
3395 return STATUS_OKAY;
3396 }
3397
c121c671
DK
3398 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3399 static inline typename This::Status
3400 got_brel(unsigned char* view,
3401 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3402 {
3403 Base::rel32(view, got_offset);
3404 return This::STATUS_OKAY;
3405 }
3406
f4e5969c 3407 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3408 static inline typename This::Status
ca09d69a 3409 got_prel(unsigned char* view,
f4e5969c 3410 Arm_address got_entry,
ebabffbd 3411 Arm_address address)
7f5309a5 3412 {
f4e5969c 3413 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3414 return This::STATUS_OKAY;
3415 }
3416
c121c671
DK
3417 // R_ARM_PREL: (S + A) | T - P
3418 static inline typename This::Status
ca09d69a 3419 prel31(unsigned char* view,
6fa2a40b 3420 const Sized_relobj_file<32, big_endian>* object,
c121c671 3421 const Symbol_value<32>* psymval,
ebabffbd 3422 Arm_address address,
2daedcd6 3423 Arm_address thumb_bit)
c121c671 3424 {
f6cccc2c
DK
3425 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3426 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3427 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3428 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3429 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3430 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3431 return (Bits<31>::has_overflow32(x)
3432 ? This::STATUS_OVERFLOW
3433 : This::STATUS_OKAY);
c121c671 3434 }
fd3c5f0b 3435
5c57f1be 3436 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3437 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3438 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3439 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3440 static inline typename This::Status
5c57f1be 3441 movw(unsigned char* view,
6fa2a40b 3442 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3443 const Symbol_value<32>* psymval,
3444 Arm_address relative_address_base,
3445 Arm_address thumb_bit,
3446 bool check_overflow)
02961d7e
ILT
3447 {
3448 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3451 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3452 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3453 - relative_address_base);
02961d7e
ILT
3454 val = This::insert_val_arm_movw_movt(val, x);
3455 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3456 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3457 ? This::STATUS_OVERFLOW
3458 : This::STATUS_OKAY);
02961d7e
ILT
3459 }
3460
5c57f1be 3461 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3462 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3463 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3464 static inline typename This::Status
5c57f1be 3465 movt(unsigned char* view,
6fa2a40b 3466 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3467 const Symbol_value<32>* psymval,
3468 Arm_address relative_address_base)
c2a122b6
ILT
3469 {
3470 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3471 Valtype* wv = reinterpret_cast<Valtype*>(view);
3472 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3473 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3474 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3475 val = This::insert_val_arm_movw_movt(val, x);
3476 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3477 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3478 return This::STATUS_OKAY;
3479 }
3480
5c57f1be 3481 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3482 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3483 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3484 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3485 static inline typename This::Status
ca09d69a 3486 thm_movw(unsigned char* view,
6fa2a40b 3487 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3488 const Symbol_value<32>* psymval,
3489 Arm_address relative_address_base,
3490 Arm_address thumb_bit,
3491 bool check_overflow)
02961d7e
ILT
3492 {
3493 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3494 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3495 Valtype* wv = reinterpret_cast<Valtype*>(view);
3496 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3497 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3498 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3499 Reltype x =
3500 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3501 val = This::insert_val_thumb_movw_movt(val, x);
3502 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3503 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3504 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3505 ? This::STATUS_OVERFLOW
5c57f1be 3506 : This::STATUS_OKAY);
02961d7e
ILT
3507 }
3508
5c57f1be 3509 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3510 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3511 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3512 static inline typename This::Status
5c57f1be 3513 thm_movt(unsigned char* view,
6fa2a40b 3514 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3515 const Symbol_value<32>* psymval,
3516 Arm_address relative_address_base)
c2a122b6
ILT
3517 {
3518 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3519 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3520 Valtype* wv = reinterpret_cast<Valtype*>(view);
3521 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3522 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3523 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3524 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3525 val = This::insert_val_thumb_movw_movt(val, x);
3526 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3527 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3528 return This::STATUS_OKAY;
3529 }
a2162063 3530
11b861d5
DK
3531 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3532 static inline typename This::Status
3533 thm_alu11(unsigned char* view,
6fa2a40b 3534 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3535 const Symbol_value<32>* psymval,
3536 Arm_address address,
3537 Arm_address thumb_bit)
3538 {
3539 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3540 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3541 Valtype* wv = reinterpret_cast<Valtype*>(view);
3542 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3543 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3544
3545 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3546 // -----------------------------------------------------------------------
3547 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3548 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3549 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3550 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3551 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3552 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3553
3554 // Determine a sign for the addend.
3555 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3556 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3557 // Thumb2 addend encoding:
3558 // imm12 := i | imm3 | imm8
3559 int32_t addend = (insn & 0xff)
3560 | ((insn & 0x00007000) >> 4)
3561 | ((insn & 0x04000000) >> 15);
3562 // Apply a sign to the added.
3563 addend *= sign;
3564
3565 int32_t x = (psymval->value(object, addend) | thumb_bit)
3566 - (address & 0xfffffffc);
3567 Reltype val = abs(x);
3568 // Mask out the value and a distinct part of the ADD/SUB opcode
3569 // (bits 7:5 of opword).
3570 insn = (insn & 0xfb0f8f00)
3571 | (val & 0xff)
3572 | ((val & 0x700) << 4)
3573 | ((val & 0x800) << 15);
3574 // Set the opcode according to whether the value to go in the
3575 // place is negative.
3576 if (x < 0)
3577 insn |= 0x00a00000;
3578
3579 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3580 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3581 return ((val > 0xfff) ?
2e702c99 3582 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3583 }
3584
3585 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3586 static inline typename This::Status
3587 thm_pc8(unsigned char* view,
6fa2a40b 3588 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3589 const Symbol_value<32>* psymval,
3590 Arm_address address)
3591 {
3592 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3593 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3594 Valtype* wv = reinterpret_cast<Valtype*>(view);
3595 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3596 Reltype addend = ((insn & 0x00ff) << 2);
3597 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3598 Reltype val = abs(x);
3599 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3600
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3602 return ((val > 0x03fc)
3603 ? This::STATUS_OVERFLOW
3604 : This::STATUS_OKAY);
3605 }
3606
3607 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3608 static inline typename This::Status
3609 thm_pc12(unsigned char* view,
6fa2a40b 3610 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3611 const Symbol_value<32>* psymval,
3612 Arm_address address)
3613 {
3614 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3615 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3616 Valtype* wv = reinterpret_cast<Valtype*>(view);
3617 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3618 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3619 // Determine a sign for the addend (positive if the U bit is 1).
3620 const int sign = (insn & 0x00800000) ? 1 : -1;
3621 int32_t addend = (insn & 0xfff);
3622 // Apply a sign to the added.
3623 addend *= sign;
3624
3625 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3626 Reltype val = abs(x);
3627 // Mask out and apply the value and the U bit.
3628 insn = (insn & 0xff7ff000) | (val & 0xfff);
3629 // Set the U bit according to whether the value to go in the
3630 // place is positive.
3631 if (x >= 0)
3632 insn |= 0x00800000;
3633
3634 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3635 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3636 return ((val > 0xfff) ?
2e702c99 3637 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3638 }
3639
a2162063
ILT
3640 // R_ARM_V4BX
3641 static inline typename This::Status
3642 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3643 unsigned char* view,
a2162063
ILT
3644 const Arm_relobj<big_endian>* object,
3645 const Arm_address address,
3646 const bool is_interworking)
3647 {
3648
3649 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3650 Valtype* wv = reinterpret_cast<Valtype*>(view);
3651 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3652
3653 // Ensure that we have a BX instruction.
3654 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3655 const uint32_t reg = (val & 0xf);
3656 if (is_interworking && reg != 0xf)
3657 {
3658 Stub_table<big_endian>* stub_table =
3659 object->stub_table(relinfo->data_shndx);
3660 gold_assert(stub_table != NULL);
3661
3662 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3663 gold_assert(stub != NULL);
3664
3665 int32_t veneer_address =
3666 stub_table->address() + stub->offset() - 8 - address;
3667 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3668 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3669 // Replace with a branch to veneer (B <addr>)
3670 val = (val & 0xf0000000) | 0x0a000000
3671 | ((veneer_address >> 2) & 0x00ffffff);
3672 }
3673 else
3674 {
3675 // Preserve Rm (lowest four bits) and the condition code
3676 // (highest four bits). Other bits encode MOV PC,Rm.
3677 val = (val & 0xf000000f) | 0x01a0f000;
3678 }
3679 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3680 return This::STATUS_OKAY;
3681 }
b10d2873
ILT
3682
3683 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3684 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3685 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3686 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3687 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3688 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3689 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3690 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3691 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3692 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3693 static inline typename This::Status
3694 arm_grp_alu(unsigned char* view,
6fa2a40b 3695 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3696 const Symbol_value<32>* psymval,
3697 const int group,
3698 Arm_address address,
3699 Arm_address thumb_bit,
3700 bool check_overflow)
3701 {
5c57f1be 3702 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3703 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3704 Valtype* wv = reinterpret_cast<Valtype*>(view);
3705 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3706
3707 // ALU group relocations are allowed only for the ADD/SUB instructions.
3708 // (0x00800000 - ADD, 0x00400000 - SUB)
3709 const Valtype opcode = insn & 0x01e00000;
3710 if (opcode != 0x00800000 && opcode != 0x00400000)
3711 return This::STATUS_BAD_RELOC;
3712
3713 // Determine a sign for the addend.
3714 const int sign = (opcode == 0x00800000) ? 1 : -1;
3715 // shifter = rotate_imm * 2
3716 const uint32_t shifter = (insn & 0xf00) >> 7;
3717 // Initial addend value.
3718 int32_t addend = insn & 0xff;
3719 // Rotate addend right by shifter.
3720 addend = (addend >> shifter) | (addend << (32 - shifter));
3721 // Apply a sign to the added.
3722 addend *= sign;
3723
3724 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3725 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3726 // Check for overflow if required
3727 if (check_overflow
3728 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3729 return This::STATUS_OVERFLOW;
3730
3731 // Mask out the value and the ADD/SUB part of the opcode; take care
3732 // not to destroy the S bit.
3733 insn &= 0xff1ff000;
3734 // Set the opcode according to whether the value to go in the
3735 // place is negative.
3736 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3737 // Encode the offset (encoded Gn).
3738 insn |= gn;
3739
3740 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3741 return This::STATUS_OKAY;
3742 }
3743
3744 // R_ARM_LDR_PC_G0: S + A - P
3745 // R_ARM_LDR_PC_G1: S + A - P
3746 // R_ARM_LDR_PC_G2: S + A - P
3747 // R_ARM_LDR_SB_G0: S + A - B(S)
3748 // R_ARM_LDR_SB_G1: S + A - B(S)
3749 // R_ARM_LDR_SB_G2: S + A - B(S)
3750 static inline typename This::Status
3751 arm_grp_ldr(unsigned char* view,
6fa2a40b 3752 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3753 const Symbol_value<32>* psymval,
3754 const int group,
3755 Arm_address address)
3756 {
5c57f1be 3757 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3758 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3759 Valtype* wv = reinterpret_cast<Valtype*>(view);
3760 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3761
3762 const int sign = (insn & 0x00800000) ? 1 : -1;
3763 int32_t addend = (insn & 0xfff) * sign;
3764 int32_t x = (psymval->value(object, addend) - address);
3765 // Calculate the relevant G(n-1) value to obtain this stage residual.
3766 Valtype residual =
3767 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3768 if (residual >= 0x1000)
3769 return This::STATUS_OVERFLOW;
3770
3771 // Mask out the value and U bit.
3772 insn &= 0xff7ff000;
3773 // Set the U bit for non-negative values.
3774 if (x >= 0)
3775 insn |= 0x00800000;
3776 insn |= residual;
3777
3778 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3779 return This::STATUS_OKAY;
3780 }
3781
3782 // R_ARM_LDRS_PC_G0: S + A - P
3783 // R_ARM_LDRS_PC_G1: S + A - P
3784 // R_ARM_LDRS_PC_G2: S + A - P
3785 // R_ARM_LDRS_SB_G0: S + A - B(S)
3786 // R_ARM_LDRS_SB_G1: S + A - B(S)
3787 // R_ARM_LDRS_SB_G2: S + A - B(S)
3788 static inline typename This::Status
3789 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3790 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3791 const Symbol_value<32>* psymval,
3792 const int group,
3793 Arm_address address)
3794 {
5c57f1be 3795 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3796 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3797 Valtype* wv = reinterpret_cast<Valtype*>(view);
3798 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3799
3800 const int sign = (insn & 0x00800000) ? 1 : -1;
3801 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3802 int32_t x = (psymval->value(object, addend) - address);
3803 // Calculate the relevant G(n-1) value to obtain this stage residual.
3804 Valtype residual =
3805 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3806 if (residual >= 0x100)
3807 return This::STATUS_OVERFLOW;
3808
3809 // Mask out the value and U bit.
3810 insn &= 0xff7ff0f0;
3811 // Set the U bit for non-negative values.
3812 if (x >= 0)
3813 insn |= 0x00800000;
3814 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3815
3816 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3817 return This::STATUS_OKAY;
3818 }
3819
3820 // R_ARM_LDC_PC_G0: S + A - P
3821 // R_ARM_LDC_PC_G1: S + A - P
3822 // R_ARM_LDC_PC_G2: S + A - P
3823 // R_ARM_LDC_SB_G0: S + A - B(S)
3824 // R_ARM_LDC_SB_G1: S + A - B(S)
3825 // R_ARM_LDC_SB_G2: S + A - B(S)
3826 static inline typename This::Status
3827 arm_grp_ldc(unsigned char* view,
6fa2a40b 3828 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3829 const Symbol_value<32>* psymval,
3830 const int group,
3831 Arm_address address)
3832 {
5c57f1be 3833 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3834 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3835 Valtype* wv = reinterpret_cast<Valtype*>(view);
3836 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3837
3838 const int sign = (insn & 0x00800000) ? 1 : -1;
3839 int32_t addend = ((insn & 0xff) << 2) * sign;
3840 int32_t x = (psymval->value(object, addend) - address);
3841 // Calculate the relevant G(n-1) value to obtain this stage residual.
3842 Valtype residual =
3843 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3844 if ((residual & 0x3) != 0 || residual >= 0x400)
3845 return This::STATUS_OVERFLOW;
3846
3847 // Mask out the value and U bit.
3848 insn &= 0xff7fff00;
3849 // Set the U bit for non-negative values.
3850 if (x >= 0)
3851 insn |= 0x00800000;
3852 insn |= (residual >> 2);
3853
3854 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3855 return This::STATUS_OKAY;
3856 }
c121c671
DK
3857};
3858
d204b6e9
DK
3859// Relocate ARM long branches. This handles relocation types
3860// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3861// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3862// undefined and we do not use PLT in this relocation. In such a case,
3863// the branch is converted into an NOP.
3864
3865template<bool big_endian>
3866typename Arm_relocate_functions<big_endian>::Status
3867Arm_relocate_functions<big_endian>::arm_branch_common(
3868 unsigned int r_type,
3869 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3870 unsigned char* view,
d204b6e9
DK
3871 const Sized_symbol<32>* gsym,
3872 const Arm_relobj<big_endian>* object,
3873 unsigned int r_sym,
3874 const Symbol_value<32>* psymval,
3875 Arm_address address,
3876 Arm_address thumb_bit,
3877 bool is_weakly_undefined_without_plt)
3878{
3879 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3880 Valtype* wv = reinterpret_cast<Valtype*>(view);
3881 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3882
d204b6e9 3883 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3884 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3885 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3886 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3887 && ((val & 0x0f000000UL) == 0x0b000000UL);
3888 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3889 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3890
3891 // Check that the instruction is valid.
3892 if (r_type == elfcpp::R_ARM_CALL)
3893 {
3894 if (!insn_is_uncond_bl && !insn_is_blx)
3895 return This::STATUS_BAD_RELOC;
3896 }
3897 else if (r_type == elfcpp::R_ARM_JUMP24)
3898 {
3899 if (!insn_is_b && !insn_is_cond_bl)
3900 return This::STATUS_BAD_RELOC;
3901 }
3902 else if (r_type == elfcpp::R_ARM_PLT32)
3903 {
3904 if (!insn_is_any_branch)
3905 return This::STATUS_BAD_RELOC;
3906 }
3907 else if (r_type == elfcpp::R_ARM_XPC25)
3908 {
3909 // FIXME: AAELF document IH0044C does not say much about it other
3910 // than it being obsolete.
3911 if (!insn_is_any_branch)
3912 return This::STATUS_BAD_RELOC;
3913 }
3914 else
3915 gold_unreachable();
3916
3917 // A branch to an undefined weak symbol is turned into a jump to
3918 // the next instruction unless a PLT entry will be created.
3919 // Do the same for local undefined symbols.
3920 // The jump to the next instruction is optimized as a NOP depending
3921 // on the architecture.
3922 const Target_arm<big_endian>* arm_target =
3923 Target_arm<big_endian>::default_target();
3924 if (is_weakly_undefined_without_plt)
3925 {
5c388529 3926 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3927 Valtype cond = val & 0xf0000000U;
3928 if (arm_target->may_use_arm_nop())
3929 val = cond | 0x0320f000;
3930 else
3931 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3932 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3933 return This::STATUS_OKAY;
3934 }
2e702c99 3935
bef2b434 3936 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3937 Valtype branch_target = psymval->value(object, addend);
3938 int32_t branch_offset = branch_target - address;
3939
3940 // We need a stub if the branch offset is too large or if we need
3941 // to switch mode.
cd6eab1c 3942 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3943 Reloc_stub* stub = NULL;
5c388529
DK
3944
3945 if (!parameters->options().relocatable()
bef2b434 3946 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3947 || ((thumb_bit != 0)
3948 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3949 {
2a2b6d42
DK
3950 Valtype unadjusted_branch_target = psymval->value(object, 0);
3951
d204b6e9 3952 Stub_type stub_type =
2a2b6d42
DK
3953 Reloc_stub::stub_type_for_reloc(r_type, address,
3954 unadjusted_branch_target,
d204b6e9
DK
3955 (thumb_bit != 0));
3956 if (stub_type != arm_stub_none)
3957 {
2ea97941 3958 Stub_table<big_endian>* stub_table =
d204b6e9 3959 object->stub_table(relinfo->data_shndx);
2ea97941 3960 gold_assert(stub_table != NULL);
d204b6e9
DK
3961
3962 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3963 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3964 gold_assert(stub != NULL);
3965 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3966 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3967 branch_offset = branch_target - address;
bef2b434 3968 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
3969 }
3970 }
3971
3972 // At this point, if we still need to switch mode, the instruction
3973 // must either be a BLX or a BL that can be converted to a BLX.
3974 if (thumb_bit != 0)
3975 {
3976 // Turn BL to BLX.
3977 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3978 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3979 }
3980
bef2b434 3981 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 3982 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
3983 return (Bits<26>::has_overflow32(branch_offset)
3984 ? This::STATUS_OVERFLOW
3985 : This::STATUS_OKAY);
d204b6e9
DK
3986}
3987
51938283
DK
3988// Relocate THUMB long branches. This handles relocation types
3989// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3990// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3991// undefined and we do not use PLT in this relocation. In such a case,
3992// the branch is converted into an NOP.
3993
3994template<bool big_endian>
3995typename Arm_relocate_functions<big_endian>::Status
3996Arm_relocate_functions<big_endian>::thumb_branch_common(
3997 unsigned int r_type,
3998 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3999 unsigned char* view,
51938283
DK
4000 const Sized_symbol<32>* gsym,
4001 const Arm_relobj<big_endian>* object,
4002 unsigned int r_sym,
4003 const Symbol_value<32>* psymval,
4004 Arm_address address,
4005 Arm_address thumb_bit,
4006 bool is_weakly_undefined_without_plt)
4007{
4008 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4009 Valtype* wv = reinterpret_cast<Valtype*>(view);
4010 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4011 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4012
4013 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4014 // into account.
4015 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4016 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4017
51938283
DK
4018 // Check that the instruction is valid.
4019 if (r_type == elfcpp::R_ARM_THM_CALL)
4020 {
4021 if (!is_bl_insn && !is_blx_insn)
4022 return This::STATUS_BAD_RELOC;
4023 }
4024 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4025 {
4026 // This cannot be a BLX.
4027 if (!is_bl_insn)
4028 return This::STATUS_BAD_RELOC;
4029 }
4030 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4031 {
4032 // Check for Thumb to Thumb call.
4033 if (!is_blx_insn)
4034 return This::STATUS_BAD_RELOC;
4035 if (thumb_bit != 0)
4036 {
4037 gold_warning(_("%s: Thumb BLX instruction targets "
4038 "thumb function '%s'."),
4039 object->name().c_str(),
2e702c99 4040 (gsym ? gsym->name() : "(local)"));
51938283
DK
4041 // Convert BLX to BL.
4042 lower_insn |= 0x1000U;
4043 }
4044 }
4045 else
4046 gold_unreachable();
4047
4048 // A branch to an undefined weak symbol is turned into a jump to
4049 // the next instruction unless a PLT entry will be created.
4050 // The jump to the next instruction is optimized as a NOP.W for
4051 // Thumb-2 enabled architectures.
4052 const Target_arm<big_endian>* arm_target =
4053 Target_arm<big_endian>::default_target();
4054 if (is_weakly_undefined_without_plt)
4055 {
5c388529 4056 gold_assert(!parameters->options().relocatable());
51938283
DK
4057 if (arm_target->may_use_thumb2_nop())
4058 {
4059 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4060 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4061 }
4062 else
4063 {
4064 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4065 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4066 }
4067 return This::STATUS_OKAY;
4068 }
2e702c99 4069
089d69dc 4070 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4071 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4072
4073 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4074 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4075 if (thumb_bit == 0 && may_use_blx)
bef2b434 4076 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4077
51938283
DK
4078 int32_t branch_offset = branch_target - address;
4079
4080 // We need a stub if the branch offset is too large or if we need
4081 // to switch mode.
51938283 4082 bool thumb2 = arm_target->using_thumb2();
5c388529 4083 if (!parameters->options().relocatable()
bef2b434
ILT
4084 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4085 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4086 || ((thumb_bit == 0)
4087 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4088 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4089 {
2a2b6d42
DK
4090 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4091
51938283 4092 Stub_type stub_type =
2a2b6d42
DK
4093 Reloc_stub::stub_type_for_reloc(r_type, address,
4094 unadjusted_branch_target,
51938283 4095 (thumb_bit != 0));
2a2b6d42 4096
51938283
DK
4097 if (stub_type != arm_stub_none)
4098 {
2ea97941 4099 Stub_table<big_endian>* stub_table =
51938283 4100 object->stub_table(relinfo->data_shndx);
2ea97941 4101 gold_assert(stub_table != NULL);
51938283
DK
4102
4103 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4104 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4105 gold_assert(stub != NULL);
4106 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4107 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4108 if (thumb_bit == 0 && may_use_blx)
bef2b434 4109 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4110 branch_offset = branch_target - address;
4111 }
4112 }
4113
4114 // At this point, if we still need to switch mode, the instruction
4115 // must either be a BLX or a BL that can be converted to a BLX.
4116 if (thumb_bit == 0)
4117 {
4118 gold_assert(may_use_blx
4119 && (r_type == elfcpp::R_ARM_THM_CALL
4120 || r_type == elfcpp::R_ARM_THM_XPC22));
4121 // Make sure this is a BLX.
4122 lower_insn &= ~0x1000U;
4123 }
4124 else
4125 {
4126 // Make sure this is a BL.
4127 lower_insn |= 0x1000U;
4128 }
4129
a2c7281b
DK
4130 // For a BLX instruction, make sure that the relocation is rounded up
4131 // to a word boundary. This follows the semantics of the instruction
4132 // which specifies that bit 1 of the target address will come from bit
4133 // 1 of the base address.
51938283 4134 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4135 gold_assert((branch_offset & 3) == 0);
51938283
DK
4136
4137 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4138 // We use the Thumb-2 encoding, which is safe even if dealing with
4139 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4140 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4141 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4142
4143 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4144 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4145
bef2b434 4146 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4147
51938283 4148 return ((thumb2
bef2b434
ILT
4149 ? Bits<25>::has_overflow32(branch_offset)
4150 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4151 ? This::STATUS_OVERFLOW
4152 : This::STATUS_OKAY);
4153}
4154
4155// Relocate THUMB-2 long conditional branches.
4156// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4157// undefined and we do not use PLT in this relocation. In such a case,
4158// the branch is converted into an NOP.
4159
4160template<bool big_endian>
4161typename Arm_relocate_functions<big_endian>::Status
4162Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4163 unsigned char* view,
089d69dc
DK
4164 const Arm_relobj<big_endian>* object,
4165 const Symbol_value<32>* psymval,
4166 Arm_address address,
4167 Arm_address thumb_bit)
4168{
4169 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4170 Valtype* wv = reinterpret_cast<Valtype*>(view);
4171 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4172 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4173 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4174
4175 Arm_address branch_target = psymval->value(object, addend);
4176 int32_t branch_offset = branch_target - address;
4177
4178 // ??? Should handle interworking? GCC might someday try to
4179 // use this for tail calls.
4180 // FIXME: We do support thumb entry to PLT yet.
4181 if (thumb_bit == 0)
4182 {
4183 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4184 return This::STATUS_BAD_RELOC;
4185 }
4186
4187 // Put RELOCATION back into the insn.
4188 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4189 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4190
4191 // Put the relocated value back in the object file:
4192 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4193 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4194
bef2b434 4195 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4196 ? This::STATUS_OVERFLOW
4197 : This::STATUS_OKAY);
4198}
4199
94cdfcff
DK
4200// Get the GOT section, creating it if necessary.
4201
4202template<bool big_endian>
4a54abbb 4203Arm_output_data_got<big_endian>*
94cdfcff
DK
4204Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4205{
4206 if (this->got_ == NULL)
4207 {
4208 gold_assert(symtab != NULL && layout != NULL);
4209
7b8957f8
DK
4210 // When using -z now, we can treat .got as a relro section.
4211 // Without -z now, it is modified after program startup by lazy
4212 // PLT relocations.
4213 bool is_got_relro = parameters->options().now();
4214 Output_section_order got_order = (is_got_relro
4215 ? ORDER_RELRO_LAST
4216 : ORDER_DATA);
4217
4218 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4219 // .got.plt sections in output. The output .got section contains both
4220 // PLT and non-PLT GOT entries.
4a54abbb 4221 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4222
82742395 4223 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4224 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4225 this->got_, got_order, is_got_relro);
22f0da72 4226
94cdfcff
DK
4227 // The old GNU linker creates a .got.plt section. We just
4228 // create another set of data in the .got section. Note that we
4229 // always create a PLT if we create a GOT, although the PLT
4230 // might be empty.
4231 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4232 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4233 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4234 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4235
4236 // The first three entries are reserved.
4237 this->got_plt_->set_current_data_size(3 * 4);
4238
4239 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4240 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4241 Symbol_table::PREDEFINED,
94cdfcff
DK
4242 this->got_plt_,
4243 0, 0, elfcpp::STT_OBJECT,
4244 elfcpp::STB_LOCAL,
4245 elfcpp::STV_HIDDEN, 0,
4246 false, false);
4247 }
4248 return this->got_;
4249}
4250
4251// Get the dynamic reloc section, creating it if necessary.
4252
4253template<bool big_endian>
4254typename Target_arm<big_endian>::Reloc_section*
4255Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4256{
4257 if (this->rel_dyn_ == NULL)
4258 {
4259 gold_assert(layout != NULL);
4260 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4261 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4262 elfcpp::SHF_ALLOC, this->rel_dyn_,
4263 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4264 }
4265 return this->rel_dyn_;
4266}
4267
b569affa
DK
4268// Insn_template methods.
4269
4270// Return byte size of an instruction template.
4271
4272size_t
4273Insn_template::size() const
4274{
4275 switch (this->type())
4276 {
4277 case THUMB16_TYPE:
2fb7225c 4278 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4279 return 2;
4280 case ARM_TYPE:
4281 case THUMB32_TYPE:
4282 case DATA_TYPE:
4283 return 4;
4284 default:
4285 gold_unreachable();
4286 }
4287}
4288
4289// Return alignment of an instruction template.
4290
4291unsigned
4292Insn_template::alignment() const
4293{
4294 switch (this->type())
4295 {
4296 case THUMB16_TYPE:
2fb7225c 4297 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4298 case THUMB32_TYPE:
4299 return 2;
4300 case ARM_TYPE:
4301 case DATA_TYPE:
4302 return 4;
4303 default:
4304 gold_unreachable();
4305 }
4306}
4307
4308// Stub_template methods.
4309
4310Stub_template::Stub_template(
2ea97941
ILT
4311 Stub_type type, const Insn_template* insns,
4312 size_t insn_count)
4313 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4314 entry_in_thumb_mode_(false), relocs_()
4315{
2ea97941 4316 off_t offset = 0;
b569affa
DK
4317
4318 // Compute byte size and alignment of stub template.
2ea97941 4319 for (size_t i = 0; i < insn_count; i++)
b569affa 4320 {
2ea97941
ILT
4321 unsigned insn_alignment = insns[i].alignment();
4322 size_t insn_size = insns[i].size();
4323 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4324 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4325 switch (insns[i].type())
b569affa
DK
4326 {
4327 case Insn_template::THUMB16_TYPE:
089d69dc 4328 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4329 if (i == 0)
4330 this->entry_in_thumb_mode_ = true;
4331 break;
4332
4333 case Insn_template::THUMB32_TYPE:
2e702c99 4334 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4335 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4336 if (i == 0)
4337 this->entry_in_thumb_mode_ = true;
2e702c99 4338 break;
b569affa
DK
4339
4340 case Insn_template::ARM_TYPE:
4341 // Handle cases where the target is encoded within the
4342 // instruction.
2ea97941
ILT
4343 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4344 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4345 break;
4346
4347 case Insn_template::DATA_TYPE:
4348 // Entry point cannot be data.
4349 gold_assert(i != 0);
2ea97941 4350 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4351 break;
4352
4353 default:
4354 gold_unreachable();
4355 }
2e702c99 4356 offset += insn_size;
b569affa 4357 }
2ea97941 4358 this->size_ = offset;
b569affa
DK
4359}
4360
bb0d3eb0
DK
4361// Stub methods.
4362
7296d933 4363// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4364
4365template<bool big_endian>
4366void inline
4367Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4368{
4369 const Stub_template* stub_template = this->stub_template();
4370 const Insn_template* insns = stub_template->insns();
4371
4372 // FIXME: We do not handle BE8 encoding yet.
4373 unsigned char* pov = view;
4374 for (size_t i = 0; i < stub_template->insn_count(); i++)
4375 {
4376 switch (insns[i].type())
4377 {
4378 case Insn_template::THUMB16_TYPE:
4379 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4380 break;
4381 case Insn_template::THUMB16_SPECIAL_TYPE:
4382 elfcpp::Swap<16, big_endian>::writeval(
4383 pov,
4384 this->thumb16_special(i));
4385 break;
4386 case Insn_template::THUMB32_TYPE:
4387 {
4388 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4389 uint32_t lo = insns[i].data() & 0xffff;
4390 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4391 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4392 }
2e702c99 4393 break;
bb0d3eb0
DK
4394 case Insn_template::ARM_TYPE:
4395 case Insn_template::DATA_TYPE:
4396 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4397 break;
4398 default:
4399 gold_unreachable();
4400 }
4401 pov += insns[i].size();
4402 }
4403 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4404}
bb0d3eb0 4405
b569affa
DK
4406// Reloc_stub::Key methods.
4407
4408// Dump a Key as a string for debugging.
4409
4410std::string
4411Reloc_stub::Key::name() const
4412{
4413 if (this->r_sym_ == invalid_index)
4414 {
4415 // Global symbol key name
4416 // <stub-type>:<symbol name>:<addend>.
4417 const std::string sym_name = this->u_.symbol->name();
4418 // We need to print two hex number and two colons. So just add 100 bytes
4419 // to the symbol name size.
4420 size_t len = sym_name.size() + 100;
4421 char* buffer = new char[len];
4422 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4423 sym_name.c_str(), this->addend_);
4424 gold_assert(c > 0 && c < static_cast<int>(len));
4425 delete[] buffer;
4426 return std::string(buffer);
4427 }
4428 else
4429 {
4430 // local symbol key name
4431 // <stub-type>:<object>:<r_sym>:<addend>.
4432 const size_t len = 200;
4433 char buffer[len];
4434 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4435 this->u_.relobj, this->r_sym_, this->addend_);
4436 gold_assert(c > 0 && c < static_cast<int>(len));
4437 return std::string(buffer);
4438 }
4439}
4440
4441// Reloc_stub methods.
4442
4443// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4444// LOCATION to DESTINATION.
4445// This code is based on the arm_type_of_stub function in
9b547ce6 4446// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4447// class simple.
4448
4449Stub_type
4450Reloc_stub::stub_type_for_reloc(
4451 unsigned int r_type,
4452 Arm_address location,
4453 Arm_address destination,
4454 bool target_is_thumb)
4455{
4456 Stub_type stub_type = arm_stub_none;
4457
4458 // This is a bit ugly but we want to avoid using a templated class for
4459 // big and little endianities.
4460 bool may_use_blx;
4461 bool should_force_pic_veneer;
4462 bool thumb2;
4463 bool thumb_only;
4464 if (parameters->target().is_big_endian())
4465 {
43d12afe 4466 const Target_arm<true>* big_endian_target =
b569affa 4467 Target_arm<true>::default_target();
cd6eab1c 4468 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4469 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4470 thumb2 = big_endian_target->using_thumb2();
4471 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4472 }
4473 else
4474 {
43d12afe 4475 const Target_arm<false>* little_endian_target =
b569affa 4476 Target_arm<false>::default_target();
cd6eab1c 4477 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4478 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4479 thumb2 = little_endian_target->using_thumb2();
4480 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4481 }
4482
a2c7281b 4483 int64_t branch_offset;
90cff06f
DK
4484 bool output_is_position_independent =
4485 parameters->options().output_is_position_independent();
b569affa
DK
4486 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4487 {
a2c7281b
DK
4488 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4489 // base address (instruction address + 4).
4490 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4491 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4492 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4493
b569affa
DK
4494 // Handle cases where:
4495 // - this call goes too far (different Thumb/Thumb2 max
4496 // distance)
4497 // - it's a Thumb->Arm call and blx is not available, or it's a
4498 // Thumb->Arm branch (not bl). A stub is needed in this case.
4499 if ((!thumb2
4500 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4502 || (thumb2
4503 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4504 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4505 || ((!target_is_thumb)
4506 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4507 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4508 {
4509 if (target_is_thumb)
4510 {
4511 // Thumb to thumb.
4512 if (!thumb_only)
4513 {
90cff06f 4514 stub_type = (output_is_position_independent
51938283 4515 || should_force_pic_veneer)
b569affa
DK
4516 // PIC stubs.
4517 ? ((may_use_blx
4518 && (r_type == elfcpp::R_ARM_THM_CALL))
4519 // V5T and above. Stub starts with ARM code, so
4520 // we must be able to switch mode before
4521 // reaching it, which is only possible for 'bl'
4522 // (ie R_ARM_THM_CALL relocation).
4523 ? arm_stub_long_branch_any_thumb_pic
4524 // On V4T, use Thumb code only.
4525 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4526
4527 // non-PIC stubs.
4528 : ((may_use_blx
4529 && (r_type == elfcpp::R_ARM_THM_CALL))
4530 ? arm_stub_long_branch_any_any // V5T and above.
4531 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4532 }
4533 else
4534 {
90cff06f 4535 stub_type = (output_is_position_independent
51938283 4536 || should_force_pic_veneer)
b569affa
DK
4537 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4538 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4539 }
4540 }
4541 else
4542 {
4543 // Thumb to arm.
2e702c99 4544
b569affa
DK
4545 // FIXME: We should check that the input section is from an
4546 // object that has interwork enabled.
4547
90cff06f 4548 stub_type = (output_is_position_independent
b569affa
DK
4549 || should_force_pic_veneer)
4550 // PIC stubs.
4551 ? ((may_use_blx
4552 && (r_type == elfcpp::R_ARM_THM_CALL))
4553 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4554 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4555
4556 // non-PIC stubs.
4557 : ((may_use_blx
4558 && (r_type == elfcpp::R_ARM_THM_CALL))
4559 ? arm_stub_long_branch_any_any // V5T and above.
4560 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4561
4562 // Handle v4t short branches.
4563 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4564 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4565 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4566 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4567 }
4568 }
4569 }
4570 else if (r_type == elfcpp::R_ARM_CALL
4571 || r_type == elfcpp::R_ARM_JUMP24
4572 || r_type == elfcpp::R_ARM_PLT32)
4573 {
a2c7281b 4574 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4575 if (target_is_thumb)
4576 {
4577 // Arm to thumb.
4578
4579 // FIXME: We should check that the input section is from an
4580 // object that has interwork enabled.
4581
4582 // We have an extra 2-bytes reach because of
4583 // the mode change (bit 24 (H) of BLX encoding).
4584 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4585 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4586 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4587 || (r_type == elfcpp::R_ARM_JUMP24)
4588 || (r_type == elfcpp::R_ARM_PLT32))
4589 {
90cff06f 4590 stub_type = (output_is_position_independent
b569affa
DK
4591 || should_force_pic_veneer)
4592 // PIC stubs.
4593 ? (may_use_blx
4594 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4595 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4596
4597 // non-PIC stubs.
4598 : (may_use_blx
4599 ? arm_stub_long_branch_any_any // V5T and above.
4600 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4601 }
4602 }
4603 else
4604 {
4605 // Arm to arm.
4606 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4607 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4608 {
90cff06f 4609 stub_type = (output_is_position_independent
b569affa
DK
4610 || should_force_pic_veneer)
4611 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4612 : arm_stub_long_branch_any_any; /// non-PIC.
4613 }
4614 }
4615 }
4616
4617 return stub_type;
4618}
4619
bb0d3eb0 4620// Cortex_a8_stub methods.
b569affa 4621
bb0d3eb0
DK
4622// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4623// I is the position of the instruction template in the stub template.
b569affa 4624
bb0d3eb0
DK
4625uint16_t
4626Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4627{
bb0d3eb0
DK
4628 // The only use of this is to copy condition code from a conditional
4629 // branch being worked around to the corresponding conditional branch in
4630 // to the stub.
4631 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4632 && i == 0);
4633 uint16_t data = this->stub_template()->insns()[i].data();
4634 gold_assert((data & 0xff00U) == 0xd000U);
4635 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4636 return data;
b569affa
DK
4637}
4638
4639// Stub_factory methods.
4640
4641Stub_factory::Stub_factory()
4642{
4643 // The instruction template sequences are declared as static
4644 // objects and initialized first time the constructor runs.
2e702c99 4645
b569affa
DK
4646 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4647 // to reach the stub if necessary.
4648 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4649 {
4650 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4651 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4652 // dcd R_ARM_ABS32(X)
b569affa 4653 };
2e702c99 4654
b569affa
DK
4655 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4656 // available.
4657 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4658 {
4659 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4660 Insn_template::arm_insn(0xe12fff1c), // bx ip
4661 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4662 // dcd R_ARM_ABS32(X)
b569affa 4663 };
2e702c99 4664
b569affa
DK
4665 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4666 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4667 {
4668 Insn_template::thumb16_insn(0xb401), // push {r0}
4669 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4670 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4671 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4672 Insn_template::thumb16_insn(0x4760), // bx ip
4673 Insn_template::thumb16_insn(0xbf00), // nop
4674 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4675 // dcd R_ARM_ABS32(X)
b569affa 4676 };
2e702c99 4677
b569affa
DK
4678 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4679 // allowed.
4680 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4681 {
4682 Insn_template::thumb16_insn(0x4778), // bx pc
4683 Insn_template::thumb16_insn(0x46c0), // nop
4684 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4685 Insn_template::arm_insn(0xe12fff1c), // bx ip
4686 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4687 // dcd R_ARM_ABS32(X)
b569affa 4688 };
2e702c99 4689
b569affa
DK
4690 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4691 // available.
4692 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4693 {
4694 Insn_template::thumb16_insn(0x4778), // bx pc
4695 Insn_template::thumb16_insn(0x46c0), // nop
4696 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4697 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4698 // dcd R_ARM_ABS32(X)
b569affa 4699 };
2e702c99 4700
b569affa
DK
4701 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4702 // one, when the destination is close enough.
4703 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4704 {
4705 Insn_template::thumb16_insn(0x4778), // bx pc
4706 Insn_template::thumb16_insn(0x46c0), // nop
4707 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4708 };
2e702c99 4709
b569affa
DK
4710 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4711 // blx to reach the stub if necessary.
4712 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4713 {
4714 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4715 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4716 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4717 // dcd R_ARM_REL32(X-4)
b569affa 4718 };
2e702c99 4719
b569affa
DK
4720 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4721 // blx to reach the stub if necessary. We can not add into pc;
4722 // it is not guaranteed to mode switch (different in ARMv6 and
4723 // ARMv7).
4724 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4725 {
4726 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4727 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4728 Insn_template::arm_insn(0xe12fff1c), // bx ip
4729 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4730 // dcd R_ARM_REL32(X)
b569affa 4731 };
2e702c99 4732
b569affa
DK
4733 // V4T ARM -> ARM long branch stub, PIC.
4734 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4735 {
4736 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4737 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4738 Insn_template::arm_insn(0xe12fff1c), // bx ip
4739 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4740 // dcd R_ARM_REL32(X)
b569affa 4741 };
2e702c99 4742
b569affa
DK
4743 // V4T Thumb -> ARM long branch stub, PIC.
4744 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4745 {
4746 Insn_template::thumb16_insn(0x4778), // bx pc
4747 Insn_template::thumb16_insn(0x46c0), // nop
4748 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4749 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4750 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4751 // dcd R_ARM_REL32(X)
b569affa 4752 };
2e702c99 4753
b569affa
DK
4754 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4755 // architectures.
4756 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4757 {
4758 Insn_template::thumb16_insn(0xb401), // push {r0}
4759 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4760 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4761 Insn_template::thumb16_insn(0x4484), // add ip, r0
4762 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4763 Insn_template::thumb16_insn(0x4760), // bx ip
4764 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4765 // dcd R_ARM_REL32(X)
b569affa 4766 };
2e702c99 4767
b569affa
DK
4768 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4769 // allowed.
4770 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4771 {
4772 Insn_template::thumb16_insn(0x4778), // bx pc
4773 Insn_template::thumb16_insn(0x46c0), // nop
4774 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4775 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4776 Insn_template::arm_insn(0xe12fff1c), // bx ip
4777 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4778 // dcd R_ARM_REL32(X)
b569affa 4779 };
2e702c99 4780
b569affa 4781 // Cortex-A8 erratum-workaround stubs.
2e702c99 4782
b569affa
DK
4783 // Stub used for conditional branches (which may be beyond +/-1MB away,
4784 // so we can't use a conditional branch to reach this stub).
2e702c99 4785
b569affa
DK
4786 // original code:
4787 //
4788 // b<cond> X
4789 // after:
4790 //
4791 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4792 {
4793 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4794 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4795 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4796 // b.w X
b569affa 4797 };
2e702c99 4798
b569affa 4799 // Stub used for b.w and bl.w instructions.
2e702c99 4800
b569affa
DK
4801 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4802 {
4803 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4804 };
2e702c99 4805
b569affa
DK
4806 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4807 {
4808 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4809 };
2e702c99 4810
b569affa
DK
4811 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4812 // instruction (which switches to ARM mode) to point to this stub. Jump to
4813 // the real destination using an ARM-mode branch.
bb0d3eb0 4814 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4815 {
4816 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4817 };
4818
a2162063
ILT
4819 // Stub used to provide an interworking for R_ARM_V4BX relocation
4820 // (bx r[n] instruction).
4821 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4822 {
4823 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4824 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4825 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4826 };
4827
b569affa
DK
4828 // Fill in the stub template look-up table. Stub templates are constructed
4829 // per instance of Stub_factory for fast look-up without locking
4830 // in a thread-enabled environment.
4831
4832 this->stub_templates_[arm_stub_none] =
4833 new Stub_template(arm_stub_none, NULL, 0);
4834
4835#define DEF_STUB(x) \
4836 do \
4837 { \
4838 size_t array_size \
4839 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4840 Stub_type type = arm_stub_##x; \
4841 this->stub_templates_[type] = \
4842 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4843 } \
4844 while (0);
4845
4846 DEF_STUBS
4847#undef DEF_STUB
4848}
4849
56ee5e00
DK
4850// Stub_table methods.
4851
9b547ce6 4852// Remove all Cortex-A8 stub.
56ee5e00
DK
4853
4854template<bool big_endian>
4855void
2fb7225c
DK
4856Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4857{
4858 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4859 p != this->cortex_a8_stubs_.end();
4860 ++p)
4861 delete p->second;
4862 this->cortex_a8_stubs_.clear();
4863}
4864
4865// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4866
4867template<bool big_endian>
4868void
4869Stub_table<big_endian>::relocate_stub(
4870 Stub* stub,
4871 const Relocate_info<32, big_endian>* relinfo,
4872 Target_arm<big_endian>* arm_target,
4873 Output_section* output_section,
4874 unsigned char* view,
4875 Arm_address address,
4876 section_size_type view_size)
56ee5e00 4877{
2ea97941 4878 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4879 if (stub_template->reloc_count() != 0)
4880 {
4881 // Adjust view to cover the stub only.
4882 section_size_type offset = stub->offset();
4883 section_size_type stub_size = stub_template->size();
4884 gold_assert(offset + stub_size <= view_size);
4885
4886 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4887 address + offset, stub_size);
4888 }
56ee5e00
DK
4889}
4890
2fb7225c
DK
4891// Relocate all stubs in this stub table.
4892
56ee5e00
DK
4893template<bool big_endian>
4894void
4895Stub_table<big_endian>::relocate_stubs(
4896 const Relocate_info<32, big_endian>* relinfo,
4897 Target_arm<big_endian>* arm_target,
2ea97941 4898 Output_section* output_section,
56ee5e00 4899 unsigned char* view,
2ea97941 4900 Arm_address address,
56ee5e00
DK
4901 section_size_type view_size)
4902{
4903 // If we are passed a view bigger than the stub table's. we need to
4904 // adjust the view.
2ea97941 4905 gold_assert(address == this->address()
56ee5e00
DK
4906 && (view_size
4907 == static_cast<section_size_type>(this->data_size())));
4908
2fb7225c
DK
4909 // Relocate all relocation stubs.
4910 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4911 p != this->reloc_stubs_.end();
4912 ++p)
4913 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4914 address, view_size);
4915
4916 // Relocate all Cortex-A8 stubs.
4917 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4918 p != this->cortex_a8_stubs_.end();
4919 ++p)
4920 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4921 address, view_size);
a2162063
ILT
4922
4923 // Relocate all ARM V4BX stubs.
4924 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4925 p != this->arm_v4bx_stubs_.end();
4926 ++p)
4927 {
4928 if (*p != NULL)
4929 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4930 address, view_size);
4931 }
2fb7225c
DK
4932}
4933
4934// Write out the stubs to file.
4935
4936template<bool big_endian>
4937void
4938Stub_table<big_endian>::do_write(Output_file* of)
4939{
4940 off_t offset = this->offset();
4941 const section_size_type oview_size =
4942 convert_to_section_size_type(this->data_size());
4943 unsigned char* const oview = of->get_output_view(offset, oview_size);
4944
4945 // Write relocation stubs.
56ee5e00
DK
4946 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4947 p != this->reloc_stubs_.end();
4948 ++p)
4949 {
4950 Reloc_stub* stub = p->second;
2fb7225c
DK
4951 Arm_address address = this->address() + stub->offset();
4952 gold_assert(address
4953 == align_address(address,
4954 stub->stub_template()->alignment()));
4955 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4956 big_endian);
56ee5e00 4957 }
2fb7225c
DK
4958
4959 // Write Cortex-A8 stubs.
4960 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4961 p != this->cortex_a8_stubs_.end();
4962 ++p)
4963 {
4964 Cortex_a8_stub* stub = p->second;
4965 Arm_address address = this->address() + stub->offset();
4966 gold_assert(address
4967 == align_address(address,
4968 stub->stub_template()->alignment()));
4969 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4970 big_endian);
4971 }
4972
a2162063
ILT
4973 // Write ARM V4BX relocation stubs.
4974 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4975 p != this->arm_v4bx_stubs_.end();
4976 ++p)
4977 {
4978 if (*p == NULL)
4979 continue;
4980
4981 Arm_address address = this->address() + (*p)->offset();
4982 gold_assert(address
4983 == align_address(address,
4984 (*p)->stub_template()->alignment()));
4985 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4986 big_endian);
4987 }
4988
2fb7225c 4989 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4990}
4991
2fb7225c
DK
4992// Update the data size and address alignment of the stub table at the end
4993// of a relaxation pass. Return true if either the data size or the
4994// alignment changed in this relaxation pass.
4995
4996template<bool big_endian>
4997bool
4998Stub_table<big_endian>::update_data_size_and_addralign()
4999{
2fb7225c 5000 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5001 off_t size = this->reloc_stubs_size_;
5002 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5003
5004 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5005 p != this->cortex_a8_stubs_.end();
5006 ++p)
5007 {
5008 const Stub_template* stub_template = p->second->stub_template();
5009 addralign = std::max(addralign, stub_template->alignment());
5010 size = (align_address(size, stub_template->alignment())
5011 + stub_template->size());
5012 }
5013
a2162063
ILT
5014 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5015 p != this->arm_v4bx_stubs_.end();
5016 ++p)
5017 {
5018 if (*p == NULL)
5019 continue;
5020
5021 const Stub_template* stub_template = (*p)->stub_template();
5022 addralign = std::max(addralign, stub_template->alignment());
5023 size = (align_address(size, stub_template->alignment())
5024 + stub_template->size());
5025 }
5026
2fb7225c
DK
5027 // Check if either data size or alignment changed in this pass.
5028 // Update prev_data_size_ and prev_addralign_. These will be used
5029 // as the current data size and address alignment for the next pass.
5030 bool changed = size != this->prev_data_size_;
2e702c99 5031 this->prev_data_size_ = size;
2fb7225c
DK
5032
5033 if (addralign != this->prev_addralign_)
5034 changed = true;
5035 this->prev_addralign_ = addralign;
5036
5037 return changed;
5038}
5039
5040// Finalize the stubs. This sets the offsets of the stubs within the stub
5041// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5042
5043template<bool big_endian>
5044void
2fb7225c 5045Stub_table<big_endian>::finalize_stubs()
56ee5e00 5046{
d099120c 5047 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5048 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5049 p != this->cortex_a8_stubs_.end();
5050 ++p)
5051 {
5052 Cortex_a8_stub* stub = p->second;
5053 const Stub_template* stub_template = stub->stub_template();
5054 uint64_t stub_addralign = stub_template->alignment();
5055 off = align_address(off, stub_addralign);
5056 stub->set_offset(off);
5057 off += stub_template->size();
5058
5059 // Mark input section so that we can determine later if a code section
5060 // needs the Cortex-A8 workaround quickly.
5061 Arm_relobj<big_endian>* arm_relobj =
5062 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5063 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5064 }
5065
a2162063
ILT
5066 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5067 p != this->arm_v4bx_stubs_.end();
5068 ++p)
5069 {
5070 if (*p == NULL)
5071 continue;
5072
5073 const Stub_template* stub_template = (*p)->stub_template();
5074 uint64_t stub_addralign = stub_template->alignment();
5075 off = align_address(off, stub_addralign);
5076 (*p)->set_offset(off);
5077 off += stub_template->size();
5078 }
5079
2fb7225c 5080 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5081}
5082
2fb7225c
DK
5083// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5084// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5085// of the address range seen by the linker.
56ee5e00
DK
5086
5087template<bool big_endian>
5088void
2fb7225c
DK
5089Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5090 Target_arm<big_endian>* arm_target,
5091 unsigned char* view,
5092 Arm_address view_address,
5093 section_size_type view_size)
56ee5e00 5094{
2fb7225c
DK
5095 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5096 for (Cortex_a8_stub_list::const_iterator p =
5097 this->cortex_a8_stubs_.lower_bound(view_address);
5098 ((p != this->cortex_a8_stubs_.end())
5099 && (p->first < (view_address + view_size)));
5100 ++p)
56ee5e00 5101 {
2fb7225c
DK
5102 // We do not store the THUMB bit in the LSB of either the branch address
5103 // or the stub offset. There is no need to strip the LSB.
5104 Arm_address branch_address = p->first;
5105 const Cortex_a8_stub* stub = p->second;
5106 Arm_address stub_address = this->address() + stub->offset();
5107
5108 // Offset of the branch instruction relative to this view.
5109 section_size_type offset =
5110 convert_to_section_size_type(branch_address - view_address);
5111 gold_assert((offset + 4) <= view_size);
5112
5113 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5114 view + offset, branch_address);
5115 }
56ee5e00
DK
5116}
5117
10ad9fe5
DK
5118// Arm_input_section methods.
5119
5120// Initialize an Arm_input_section.
5121
5122template<bool big_endian>
5123void
5124Arm_input_section<big_endian>::init()
5125{
2ea97941
ILT
5126 Relobj* relobj = this->relobj();
5127 unsigned int shndx = this->shndx();
10ad9fe5 5128
f625ae50
DK
5129 // We have to cache original size, alignment and contents to avoid locking
5130 // the original file.
6625d24e
DK
5131 this->original_addralign_ =
5132 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5133
5134 // This is not efficient but we expect only a small number of relaxed
5135 // input sections for stubs.
5136 section_size_type section_size;
5137 const unsigned char* section_contents =
5138 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5139 this->original_size_ =
5140 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5141
f625ae50
DK
5142 gold_assert(this->original_contents_ == NULL);
5143 this->original_contents_ = new unsigned char[section_size];
5144 memcpy(this->original_contents_, section_contents, section_size);
5145
10ad9fe5
DK
5146 // We want to make this look like the original input section after
5147 // output sections are finalized.
2ea97941
ILT
5148 Output_section* os = relobj->output_section(shndx);
5149 off_t offset = relobj->output_section_offset(shndx);
5150 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5151 this->set_address(os->address() + offset);
5152 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5153
5154 this->set_current_data_size(this->original_size_);
5155 this->finalize_data_size();
5156}
5157
5158template<bool big_endian>
5159void
5160Arm_input_section<big_endian>::do_write(Output_file* of)
5161{
5162 // We have to write out the original section content.
f625ae50
DK
5163 gold_assert(this->original_contents_ != NULL);
5164 of->write(this->offset(), this->original_contents_,
2e702c99 5165 this->original_size_);
10ad9fe5
DK
5166
5167 // If this owns a stub table and it is not empty, write it.
5168 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5169 this->stub_table_->write(of);
5170}
5171
5172// Finalize data size.
5173
5174template<bool big_endian>
5175void
5176Arm_input_section<big_endian>::set_final_data_size()
5177{
153e7da4
DK
5178 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5179
10ad9fe5
DK
5180 if (this->is_stub_table_owner())
5181 {
6625d24e 5182 this->stub_table_->finalize_data_size();
153e7da4 5183 off = align_address(off, this->stub_table_->addralign());
153e7da4 5184 off += this->stub_table_->data_size();
10ad9fe5 5185 }
153e7da4 5186 this->set_data_size(off);
10ad9fe5
DK
5187}
5188
5189// Reset address and file offset.
5190
5191template<bool big_endian>
5192void
5193Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5194{
5195 // Size of the original input section contents.
5196 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5197
5198 // If this is a stub table owner, account for the stub table size.
5199 if (this->is_stub_table_owner())
5200 {
2ea97941 5201 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5202
5203 // Reset the stub table's address and file offset. The
5204 // current data size for child will be updated after that.
5205 stub_table_->reset_address_and_file_offset();
5206 off = align_address(off, stub_table_->addralign());
2ea97941 5207 off += stub_table->current_data_size();
10ad9fe5
DK
5208 }
5209
5210 this->set_current_data_size(off);
5211}
5212
af2cdeae
DK
5213// Arm_exidx_cantunwind methods.
5214
7296d933 5215// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5216
5217template<bool big_endian>
5218void
5219Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5220{
5221 off_t offset = this->offset();
5222 const section_size_type oview_size = 8;
5223 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5224
af2cdeae
DK
5225 Output_section* os = this->relobj_->output_section(this->shndx_);
5226 gold_assert(os != NULL);
5227
5228 Arm_relobj<big_endian>* arm_relobj =
5229 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5230 Arm_address output_offset =
5231 arm_relobj->get_output_section_offset(this->shndx_);
5232 Arm_address section_start;
f625ae50
DK
5233 section_size_type section_size;
5234
5235 // Find out the end of the text section referred by this.
7296d933 5236 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5237 {
5238 section_start = os->address() + output_offset;
5239 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5240 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5241 gold_assert(exidx_input_section != NULL);
5242 section_size =
5243 convert_to_section_size_type(exidx_input_section->text_size());
5244 }
af2cdeae
DK
5245 else
5246 {
5247 // Currently this only happens for a relaxed section.
5248 const Output_relaxed_input_section* poris =
5249 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5250 gold_assert(poris != NULL);
5251 section_start = poris->address();
f625ae50 5252 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5253 }
5254
5255 // We always append this to the end of an EXIDX section.
f625ae50 5256 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5257
5258 // Write out the entry. The first word either points to the beginning
5259 // or after the end of a text section. The second word is the special
5260 // EXIDX_CANTUNWIND value.
e7eca48c 5261 uint32_t prel31_offset = output_address - this->address();
bef2b434 5262 if (Bits<31>::has_overflow32(offset))
e7eca48c 5263 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5264 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5265 prel31_offset & 0x7fffffffU);
5266 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5267 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5268
5269 of->write_output_view(this->offset(), oview_size, oview);
5270}
5271
5272// Arm_exidx_merged_section methods.
5273
5274// Constructor for Arm_exidx_merged_section.
5275// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5276// SECTION_OFFSET_MAP points to a section offset map describing how
5277// parts of the input section are mapped to output. DELETED_BYTES is
5278// the number of bytes deleted from the EXIDX input section.
5279
5280Arm_exidx_merged_section::Arm_exidx_merged_section(
5281 const Arm_exidx_input_section& exidx_input_section,
5282 const Arm_exidx_section_offset_map& section_offset_map,
5283 uint32_t deleted_bytes)
5284 : Output_relaxed_input_section(exidx_input_section.relobj(),
5285 exidx_input_section.shndx(),
5286 exidx_input_section.addralign()),
5287 exidx_input_section_(exidx_input_section),
5288 section_offset_map_(section_offset_map)
5289{
f625ae50
DK
5290 // If we retain or discard the whole EXIDX input section, we would
5291 // not be here.
5292 gold_assert(deleted_bytes != 0
5293 && deleted_bytes != this->exidx_input_section_.size());
5294
af2cdeae 5295 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5296 uint32_t size = exidx_input_section.size() - deleted_bytes;
5297 this->set_data_size(size);
af2cdeae 5298 this->fix_data_size();
f625ae50
DK
5299
5300 // Allocate buffer for section contents and build contents.
5301 this->section_contents_ = new unsigned char[size];
5302}
5303
5304// Build the contents of a merged EXIDX output section.
5305
5306void
5307Arm_exidx_merged_section::build_contents(
5308 const unsigned char* original_contents,
5309 section_size_type original_size)
5310{
5311 // Go over spans of input offsets and write only those that are not
5312 // discarded.
5313 section_offset_type in_start = 0;
5314 section_offset_type out_start = 0;
5315 section_offset_type in_max =
5316 convert_types<section_offset_type>(original_size);
5317 section_offset_type out_max =
5318 convert_types<section_offset_type>(this->data_size());
5319 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5320 this->section_offset_map_.begin();
f625ae50
DK
5321 p != this->section_offset_map_.end();
5322 ++p)
5323 {
5324 section_offset_type in_end = p->first;
5325 gold_assert(in_end >= in_start);
5326 section_offset_type out_end = p->second;
5327 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5328 if (out_end != -1)
5329 {
5330 size_t out_chunk_size =
5331 convert_types<size_t>(out_end - out_start + 1);
5332
5333 gold_assert(out_chunk_size == in_chunk_size
5334 && in_end < in_max && out_end < out_max);
5335
5336 memcpy(this->section_contents_ + out_start,
5337 original_contents + in_start,
5338 out_chunk_size);
5339 out_start += out_chunk_size;
5340 }
5341 in_start += in_chunk_size;
5342 }
af2cdeae
DK
5343}
5344
5345// Given an input OBJECT, an input section index SHNDX within that
5346// object, and an OFFSET relative to the start of that input
5347// section, return whether or not the corresponding offset within
5348// the output section is known. If this function returns true, it
5349// sets *POUTPUT to the output offset. The value -1 indicates that
5350// this input offset is being discarded.
5351
5352bool
5353Arm_exidx_merged_section::do_output_offset(
5354 const Relobj* relobj,
5355 unsigned int shndx,
5356 section_offset_type offset,
5357 section_offset_type* poutput) const
5358{
5359 // We only handle offsets for the original EXIDX input section.
5360 if (relobj != this->exidx_input_section_.relobj()
5361 || shndx != this->exidx_input_section_.shndx())
5362 return false;
5363
c7f3c371
DK
5364 section_offset_type section_size =
5365 convert_types<section_offset_type>(this->exidx_input_section_.size());
5366 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5367 // Input offset is out of valid range.
5368 *poutput = -1;
5369 else
5370 {
5371 // We need to look up the section offset map to determine the output
5372 // offset. Find the reference point in map that is first offset
5373 // bigger than or equal to this offset.
5374 Arm_exidx_section_offset_map::const_iterator p =
5375 this->section_offset_map_.lower_bound(offset);
5376
5377 // The section offset maps are build such that this should not happen if
5378 // input offset is in the valid range.
5379 gold_assert(p != this->section_offset_map_.end());
5380
5381 // We need to check if this is dropped.
5382 section_offset_type ref = p->first;
5383 section_offset_type mapped_ref = p->second;
5384
5385 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5386 // Offset is present in output.
5387 *poutput = mapped_ref + (offset - ref);
5388 else
5389 // Offset is discarded owing to EXIDX entry merging.
5390 *poutput = -1;
5391 }
2e702c99 5392
af2cdeae
DK
5393 return true;
5394}
5395
5396// Write this to output file OF.
5397
5398void
5399Arm_exidx_merged_section::do_write(Output_file* of)
5400{
af2cdeae
DK
5401 off_t offset = this->offset();
5402 const section_size_type oview_size = this->data_size();
5403 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5404
af2cdeae
DK
5405 Output_section* os = this->relobj()->output_section(this->shndx());
5406 gold_assert(os != NULL);
5407
f625ae50 5408 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5409 of->write_output_view(this->offset(), oview_size, oview);
5410}
5411
80d0d023
DK
5412// Arm_exidx_fixup methods.
5413
5414// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5415// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5416// points to the end of the last seen EXIDX section.
5417
5418void
5419Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5420{
5421 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5422 && this->last_input_section_ != NULL)
5423 {
5424 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5425 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5426 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5427 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5428 this->exidx_output_section_->add_output_section_data(cantunwind);
5429 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5430 }
5431}
5432
5433// Process an EXIDX section entry in input. Return whether this entry
5434// can be deleted in the output. SECOND_WORD in the second word of the
5435// EXIDX entry.
5436
5437bool
5438Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5439{
5440 bool delete_entry;
5441 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5442 {
5443 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5444 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5445 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5446 }
5447 else if ((second_word & 0x80000000) != 0)
5448 {
5449 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5450 delete_entry = (merge_exidx_entries_
5451 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5452 && this->last_inlined_entry_ == second_word);
5453 this->last_unwind_type_ = UT_INLINED_ENTRY;
5454 this->last_inlined_entry_ = second_word;
5455 }
5456 else
5457 {
5458 // Normal table entry. In theory we could merge these too,
5459 // but duplicate entries are likely to be much less common.
5460 delete_entry = false;
5461 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5462 }
5463 return delete_entry;
5464}
5465
5466// Update the current section offset map during EXIDX section fix-up.
5467// If there is no map, create one. INPUT_OFFSET is the offset of a
5468// reference point, DELETED_BYTES is the number of deleted by in the
5469// section so far. If DELETE_ENTRY is true, the reference point and
5470// all offsets after the previous reference point are discarded.
5471
5472void
5473Arm_exidx_fixup::update_offset_map(
5474 section_offset_type input_offset,
5475 section_size_type deleted_bytes,
5476 bool delete_entry)
5477{
5478 if (this->section_offset_map_ == NULL)
5479 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5480 section_offset_type output_offset;
5481 if (delete_entry)
5482 output_offset = Arm_exidx_input_section::invalid_offset;
5483 else
5484 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5485 (*this->section_offset_map_)[input_offset] = output_offset;
5486}
5487
5488// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5489// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5490// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5491// If some entries are merged, also store a pointer to a newly created
5492// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5493// owns the map and is responsible for releasing it after use.
80d0d023
DK
5494
5495template<bool big_endian>
5496uint32_t
5497Arm_exidx_fixup::process_exidx_section(
5498 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5499 const unsigned char* section_contents,
5500 section_size_type section_size,
80d0d023
DK
5501 Arm_exidx_section_offset_map** psection_offset_map)
5502{
5503 Relobj* relobj = exidx_input_section->relobj();
5504 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5505
5506 if ((section_size % 8) != 0)
5507 {
5508 // Something is wrong with this section. Better not touch it.
5509 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5510 relobj->name().c_str(), shndx);
5511 this->last_input_section_ = exidx_input_section;
5512 this->last_unwind_type_ = UT_NONE;
5513 return 0;
5514 }
2e702c99 5515
80d0d023
DK
5516 uint32_t deleted_bytes = 0;
5517 bool prev_delete_entry = false;
5518 gold_assert(this->section_offset_map_ == NULL);
5519
5520 for (section_size_type i = 0; i < section_size; i += 8)
5521 {
5522 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5523 const Valtype* wv =
5524 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5525 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5526
5527 bool delete_entry = this->process_exidx_entry(second_word);
5528
5529 // Entry deletion causes changes in output offsets. We use a std::map
5530 // to record these. And entry (x, y) means input offset x
5531 // is mapped to output offset y. If y is invalid_offset, then x is
5532 // dropped in the output. Because of the way std::map::lower_bound
5533 // works, we record the last offset in a region w.r.t to keeping or
5534 // dropping. If there is no entry (x0, y0) for an input offset x0,
5535 // the output offset y0 of it is determined by the output offset y1 of
5536 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5537 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5538 // y0 is also -1.
5539 if (delete_entry != prev_delete_entry && i != 0)
5540 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5541
5542 // Update total deleted bytes for this entry.
5543 if (delete_entry)
5544 deleted_bytes += 8;
5545
5546 prev_delete_entry = delete_entry;
5547 }
2e702c99 5548
80d0d023
DK
5549 // If section offset map is not NULL, make an entry for the end of
5550 // section.
5551 if (this->section_offset_map_ != NULL)
5552 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5553
5554 *psection_offset_map = this->section_offset_map_;
5555 this->section_offset_map_ = NULL;
5556 this->last_input_section_ = exidx_input_section;
2e702c99 5557
546c7457
DK
5558 // Set the first output text section so that we can link the EXIDX output
5559 // section to it. Ignore any EXIDX input section that is completely merged.
5560 if (this->first_output_text_section_ == NULL
5561 && deleted_bytes != section_size)
5562 {
5563 unsigned int link = exidx_input_section->link();
5564 Output_section* os = relobj->output_section(link);
5565 gold_assert(os != NULL);
5566 this->first_output_text_section_ = os;
5567 }
5568
80d0d023
DK
5569 return deleted_bytes;
5570}
5571
07f508a2
DK
5572// Arm_output_section methods.
5573
5574// Create a stub group for input sections from BEGIN to END. OWNER
5575// points to the input section to be the owner a new stub table.
5576
5577template<bool big_endian>
5578void
5579Arm_output_section<big_endian>::create_stub_group(
5580 Input_section_list::const_iterator begin,
5581 Input_section_list::const_iterator end,
5582 Input_section_list::const_iterator owner,
5583 Target_arm<big_endian>* target,
f625ae50
DK
5584 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5585 const Task* task)
07f508a2 5586{
2b328d4e
DK
5587 // We use a different kind of relaxed section in an EXIDX section.
5588 // The static casting from Output_relaxed_input_section to
5589 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5590 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5591 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5592
07f508a2
DK
5593 // Currently we convert ordinary input sections into relaxed sections only
5594 // at this point but we may want to support creating relaxed input section
5595 // very early. So we check here to see if owner is already a relaxed
5596 // section.
2e702c99 5597
07f508a2
DK
5598 Arm_input_section<big_endian>* arm_input_section;
5599 if (owner->is_relaxed_input_section())
5600 {
5601 arm_input_section =
5602 Arm_input_section<big_endian>::as_arm_input_section(
5603 owner->relaxed_input_section());
5604 }
5605 else
5606 {
5607 gold_assert(owner->is_input_section());
f625ae50
DK
5608 // Create a new relaxed input section. We need to lock the original
5609 // file.
5610 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5611 arm_input_section =
5612 target->new_arm_input_section(owner->relobj(), owner->shndx());
5613 new_relaxed_sections->push_back(arm_input_section);
5614 }
5615
5616 // Create a stub table.
2ea97941 5617 Stub_table<big_endian>* stub_table =
07f508a2
DK
5618 target->new_stub_table(arm_input_section);
5619
2ea97941 5620 arm_input_section->set_stub_table(stub_table);
2e702c99 5621
07f508a2
DK
5622 Input_section_list::const_iterator p = begin;
5623 Input_section_list::const_iterator prev_p;
5624
5625 // Look for input sections or relaxed input sections in [begin ... end].
5626 do
5627 {
5628 if (p->is_input_section() || p->is_relaxed_input_section())
5629 {
5630 // The stub table information for input sections live
5631 // in their objects.
5632 Arm_relobj<big_endian>* arm_relobj =
5633 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5634 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5635 }
5636 prev_p = p++;
5637 }
5638 while (prev_p != end);
5639}
5640
5641// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5642// of stub groups. We grow a stub group by adding input section until the
5643// size is just below GROUP_SIZE. The last input section will be converted
5644// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5645// input section after the stub table, effectively double the group size.
2e702c99 5646//
07f508a2
DK
5647// This is similar to the group_sections() function in elf32-arm.c but is
5648// implemented differently.
5649
5650template<bool big_endian>
5651void
5652Arm_output_section<big_endian>::group_sections(
5653 section_size_type group_size,
5654 bool stubs_always_after_branch,
f625ae50
DK
5655 Target_arm<big_endian>* target,
5656 const Task* task)
07f508a2 5657{
07f508a2
DK
5658 // States for grouping.
5659 typedef enum
5660 {
5661 // No group is being built.
5662 NO_GROUP,
5663 // A group is being built but the stub table is not found yet.
5664 // We keep group a stub group until the size is just under GROUP_SIZE.
5665 // The last input section in the group will be used as the stub table.
5666 FINDING_STUB_SECTION,
5667 // A group is being built and we have already found a stub table.
5668 // We enter this state to grow a stub group by adding input section
5669 // after the stub table. This effectively doubles the group size.
5670 HAS_STUB_SECTION
5671 } State;
5672
5673 // Any newly created relaxed sections are stored here.
5674 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5675
5676 State state = NO_GROUP;
5677 section_size_type off = 0;
5678 section_size_type group_begin_offset = 0;
5679 section_size_type group_end_offset = 0;
5680 section_size_type stub_table_end_offset = 0;
5681 Input_section_list::const_iterator group_begin =
5682 this->input_sections().end();
2ea97941 5683 Input_section_list::const_iterator stub_table =
07f508a2
DK
5684 this->input_sections().end();
5685 Input_section_list::const_iterator group_end = this->input_sections().end();
5686 for (Input_section_list::const_iterator p = this->input_sections().begin();
5687 p != this->input_sections().end();
5688 ++p)
5689 {
5690 section_size_type section_begin_offset =
5691 align_address(off, p->addralign());
5692 section_size_type section_end_offset =
2e702c99
RM
5693 section_begin_offset + p->data_size();
5694
9b547ce6 5695 // Check to see if we should group the previously seen sections.
e9bbb538 5696 switch (state)
07f508a2
DK
5697 {
5698 case NO_GROUP:
5699 break;
5700
5701 case FINDING_STUB_SECTION:
5702 // Adding this section makes the group larger than GROUP_SIZE.
5703 if (section_end_offset - group_begin_offset >= group_size)
5704 {
5705 if (stubs_always_after_branch)
2e702c99 5706 {
07f508a2
DK
5707 gold_assert(group_end != this->input_sections().end());
5708 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5709 target, &new_relaxed_sections,
5710 task);
07f508a2
DK
5711 state = NO_GROUP;
5712 }
5713 else
5714 {
5715 // But wait, there's more! Input sections up to
5716 // stub_group_size bytes after the stub table can be
5717 // handled by it too.
5718 state = HAS_STUB_SECTION;
2ea97941 5719 stub_table = group_end;
07f508a2
DK
5720 stub_table_end_offset = group_end_offset;
5721 }
5722 }
5723 break;
5724
5725 case HAS_STUB_SECTION:
5726 // Adding this section makes the post stub-section group larger
5727 // than GROUP_SIZE.
5728 if (section_end_offset - stub_table_end_offset >= group_size)
5729 {
5730 gold_assert(group_end != this->input_sections().end());
2ea97941 5731 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5732 target, &new_relaxed_sections, task);
07f508a2
DK
5733 state = NO_GROUP;
5734 }
5735 break;
5736
5737 default:
5738 gold_unreachable();
2e702c99 5739 }
07f508a2
DK
5740
5741 // If we see an input section and currently there is no group, start
f625ae50
DK
5742 // a new one. Skip any empty sections. We look at the data size
5743 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5744 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5745 && (p->data_size() != 0))
07f508a2
DK
5746 {
5747 if (state == NO_GROUP)
5748 {
5749 state = FINDING_STUB_SECTION;
5750 group_begin = p;
5751 group_begin_offset = section_begin_offset;
5752 }
5753
5754 // Keep track of the last input section seen.
5755 group_end = p;
5756 group_end_offset = section_end_offset;
5757 }
5758
5759 off = section_end_offset;
5760 }
5761
5762 // Create a stub group for any ungrouped sections.
5763 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5764 {
5765 gold_assert(group_end != this->input_sections().end());
5766 this->create_stub_group(group_begin, group_end,
5767 (state == FINDING_STUB_SECTION
5768 ? group_end
2ea97941 5769 : stub_table),
f625ae50 5770 target, &new_relaxed_sections, task);
07f508a2
DK
5771 }
5772
5773 // Convert input section into relaxed input section in a batch.
5774 if (!new_relaxed_sections.empty())
5775 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5776
5777 // Update the section offsets
5778 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5779 {
5780 Arm_relobj<big_endian>* arm_relobj =
5781 Arm_relobj<big_endian>::as_arm_relobj(
5782 new_relaxed_sections[i]->relobj());
2ea97941 5783 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5784 // Tell Arm_relobj that this input section is converted.
2ea97941 5785 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5786 }
5787}
5788
2b328d4e
DK
5789// Append non empty text sections in this to LIST in ascending
5790// order of their position in this.
5791
5792template<bool big_endian>
5793void
5794Arm_output_section<big_endian>::append_text_sections_to_list(
5795 Text_section_list* list)
5796{
2b328d4e
DK
5797 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5798
5799 for (Input_section_list::const_iterator p = this->input_sections().begin();
5800 p != this->input_sections().end();
5801 ++p)
5802 {
5803 // We only care about plain or relaxed input sections. We also
5804 // ignore any merged sections.
a60af0db 5805 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5806 list->push_back(Text_section_list::value_type(p->relobj(),
5807 p->shndx()));
5808 }
5809}
5810
5811template<bool big_endian>
5812void
5813Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5814 Layout* layout,
2b328d4e 5815 const Text_section_list& sorted_text_sections,
85fdf906 5816 Symbol_table* symtab,
f625ae50
DK
5817 bool merge_exidx_entries,
5818 const Task* task)
2b328d4e
DK
5819{
5820 // We should only do this for the EXIDX output section.
5821 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5822
5823 // We don't want the relaxation loop to undo these changes, so we discard
5824 // the current saved states and take another one after the fix-up.
5825 this->discard_states();
5826
5827 // Remove all input sections.
5828 uint64_t address = this->address();
6625d24e
DK
5829 typedef std::list<Output_section::Input_section> Input_section_list;
5830 Input_section_list input_sections;
2b328d4e
DK
5831 this->reset_address_and_file_offset();
5832 this->get_input_sections(address, std::string(""), &input_sections);
5833
5834 if (!this->input_sections().empty())
5835 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5836
2b328d4e
DK
5837 // Go through all the known input sections and record them.
5838 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5839 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5840 Section_id_hash> Text_to_exidx_map;
5841 Text_to_exidx_map text_to_exidx_map;
5842 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5843 p != input_sections.end();
5844 ++p)
5845 {
5846 // This should never happen. At this point, we should only see
5847 // plain EXIDX input sections.
5848 gold_assert(!p->is_relaxed_input_section());
6625d24e 5849 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5850 }
5851
85fdf906 5852 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5853
5854 // Go over the sorted text sections.
6625d24e 5855 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5856 Section_id_set processed_input_sections;
5857 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5858 p != sorted_text_sections.end();
5859 ++p)
5860 {
5861 Relobj* relobj = p->first;
5862 unsigned int shndx = p->second;
5863
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5866 const Arm_exidx_input_section* exidx_input_section =
5867 arm_relobj->exidx_input_section_by_link(shndx);
5868
131687b4
DK
5869 // If this text section has no EXIDX section or if the EXIDX section
5870 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5871 // of the last seen EXIDX section.
5872 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5873 {
5874 exidx_fixup.add_exidx_cantunwind_as_needed();
5875 continue;
5876 }
5877
5878 Relobj* exidx_relobj = exidx_input_section->relobj();
5879 unsigned int exidx_shndx = exidx_input_section->shndx();
5880 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5881 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5882 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5883 {
5884 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5885 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5886 // issue a warning instead. We assume the user knows what he
5887 // or she is doing. Otherwise, this is an error.
5888 if (layout->script_options()->saw_sections_clause())
5889 gold_warning(_("unwinding may not work because EXIDX input section"
5890 " %u of %s is not in EXIDX output section"),
5891 exidx_shndx, exidx_relobj->name().c_str());
5892 else
5893 gold_error(_("unwinding may not work because EXIDX input section"
5894 " %u of %s is not in EXIDX output section"),
5895 exidx_shndx, exidx_relobj->name().c_str());
5896
2b328d4e
DK
5897 exidx_fixup.add_exidx_cantunwind_as_needed();
5898 continue;
5899 }
5900
f625ae50
DK
5901 // We need to access the contents of the EXIDX section, lock the
5902 // object here.
5903 Task_lock_obj<Object> tl(task, exidx_relobj);
5904 section_size_type exidx_size;
5905 const unsigned char* exidx_contents =
2e702c99 5906 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5907
2b328d4e
DK
5908 // Fix up coverage and append input section to output data list.
5909 Arm_exidx_section_offset_map* section_offset_map = NULL;
5910 uint32_t deleted_bytes =
2e702c99 5911 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5912 exidx_contents,
5913 exidx_size,
2b328d4e
DK
5914 &section_offset_map);
5915
5916 if (deleted_bytes == exidx_input_section->size())
5917 {
5918 // The whole EXIDX section got merged. Remove it from output.
5919 gold_assert(section_offset_map == NULL);
5920 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5921
5922 // All local symbols defined in this input section will be dropped.
5923 // We need to adjust output local symbol count.
5924 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5925 }
5926 else if (deleted_bytes > 0)
5927 {
5928 // Some entries are merged. We need to convert this EXIDX input
5929 // section into a relaxed section.
5930 gold_assert(section_offset_map != NULL);
f625ae50 5931
2b328d4e
DK
5932 Arm_exidx_merged_section* merged_section =
5933 new Arm_exidx_merged_section(*exidx_input_section,
5934 *section_offset_map, deleted_bytes);
f625ae50
DK
5935 merged_section->build_contents(exidx_contents, exidx_size);
5936
d06fb4d1
DK
5937 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5938 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5939 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5940
5941 // All local symbols defined in discarded portions of this input
5942 // section will be dropped. We need to adjust output local symbol
5943 // count.
5944 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5945 }
5946 else
5947 {
5948 // Just add back the EXIDX input section.
5949 gold_assert(section_offset_map == NULL);
6625d24e
DK
5950 const Output_section::Input_section* pis = iter->second;
5951 gold_assert(pis->is_input_section());
5952 this->add_script_input_section(*pis);
2b328d4e
DK
5953 }
5954
2e702c99 5955 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
5956 }
5957
5958 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5959 exidx_fixup.add_exidx_cantunwind_as_needed();
5960
5961 // Remove any known EXIDX input sections that are not processed.
6625d24e 5962 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5963 p != input_sections.end();
5964 ++p)
5965 {
5966 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5967 == processed_input_sections.end())
5968 {
131687b4
DK
5969 // We discard a known EXIDX section because its linked
5970 // text section has been folded by ICF. We also discard an
5971 // EXIDX section with error, the output does not matter in this
5972 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5973 Arm_relobj<big_endian>* arm_relobj =
5974 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5975 const Arm_exidx_input_section* exidx_input_section =
5976 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5977 gold_assert(exidx_input_section != NULL);
131687b4
DK
5978 if (!exidx_input_section->has_errors())
5979 {
5980 unsigned int text_shndx = exidx_input_section->link();
5981 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5982 }
2b328d4e 5983
04ceb17c
DK
5984 // Remove this from link. We also need to recount the
5985 // local symbols.
2b328d4e 5986 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5987 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5988 }
5989 }
2e702c99 5990
546c7457
DK
5991 // Link exidx output section to the first seen output section and
5992 // set correct entry size.
5993 this->set_link_section(exidx_fixup.first_output_text_section());
5994 this->set_entsize(8);
5995
2b328d4e
DK
5996 // Make changes permanent.
5997 this->save_states();
5998 this->set_section_offsets_need_adjustment();
5999}
6000
131687b4
DK
6001// Link EXIDX output sections to text output sections.
6002
6003template<bool big_endian>
6004void
6005Arm_output_section<big_endian>::set_exidx_section_link()
6006{
6007 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6008 if (!this->input_sections().empty())
6009 {
6010 Input_section_list::const_iterator p = this->input_sections().begin();
6011 Arm_relobj<big_endian>* arm_relobj =
6012 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6013 unsigned exidx_shndx = p->shndx();
6014 const Arm_exidx_input_section* exidx_input_section =
6015 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6016 gold_assert(exidx_input_section != NULL);
6017 unsigned int text_shndx = exidx_input_section->link();
6018 Output_section* os = arm_relobj->output_section(text_shndx);
6019 this->set_link_section(os);
6020 }
6021}
6022
8ffa3667
DK
6023// Arm_relobj methods.
6024
cf846138
DK
6025// Determine if an input section is scannable for stub processing. SHDR is
6026// the header of the section and SHNDX is the section index. OS is the output
6027// section for the input section and SYMTAB is the global symbol table used to
6028// look up ICF information.
6029
6030template<bool big_endian>
6031bool
6032Arm_relobj<big_endian>::section_is_scannable(
6033 const elfcpp::Shdr<32, big_endian>& shdr,
6034 unsigned int shndx,
6035 const Output_section* os,
ca09d69a 6036 const Symbol_table* symtab)
cf846138
DK
6037{
6038 // Skip any empty sections, unallocated sections or sections whose
6039 // type are not SHT_PROGBITS.
6040 if (shdr.get_sh_size() == 0
6041 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6042 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6043 return false;
6044
6045 // Skip any discarded or ICF'ed sections.
6046 if (os == NULL || symtab->is_section_folded(this, shndx))
6047 return false;
6048
6049 // If this requires special offset handling, check to see if it is
6050 // a relaxed section. If this is not, then it is a merged section that
6051 // we cannot handle.
6052 if (this->is_output_section_offset_invalid(shndx))
6053 {
6054 const Output_relaxed_input_section* poris =
6055 os->find_relaxed_input_section(this, shndx);
6056 if (poris == NULL)
6057 return false;
6058 }
6059
6060 return true;
6061}
6062
44272192
DK
6063// Determine if we want to scan the SHNDX-th section for relocation stubs.
6064// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6065
6066template<bool big_endian>
6067bool
6068Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6069 const elfcpp::Shdr<32, big_endian>& shdr,
6070 const Relobj::Output_sections& out_sections,
ca09d69a 6071 const Symbol_table* symtab,
2b328d4e 6072 const unsigned char* pshdrs)
44272192
DK
6073{
6074 unsigned int sh_type = shdr.get_sh_type();
6075 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6076 return false;
6077
6078 // Ignore empty section.
6079 off_t sh_size = shdr.get_sh_size();
6080 if (sh_size == 0)
6081 return false;
6082
44272192
DK
6083 // Ignore reloc section with unexpected symbol table. The
6084 // error will be reported in the final link.
6085 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6086 return false;
6087
b521dfe4
DK
6088 unsigned int reloc_size;
6089 if (sh_type == elfcpp::SHT_REL)
6090 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6091 else
6092 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6093
6094 // Ignore reloc section with unexpected entsize or uneven size.
6095 // The error will be reported in the final link.
6096 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6097 return false;
6098
cf846138
DK
6099 // Ignore reloc section with bad info. This error will be
6100 // reported in the final link.
6101 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6102 if (index >= this->shnum())
6103 return false;
6104
6105 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6106 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6107 return this->section_is_scannable(text_shdr, index,
6108 out_sections[index], symtab);
44272192
DK
6109}
6110
cb1be87e
DK
6111// Return the output address of either a plain input section or a relaxed
6112// input section. SHNDX is the section index. We define and use this
6113// instead of calling Output_section::output_address because that is slow
6114// for large output.
6115
6116template<bool big_endian>
6117Arm_address
6118Arm_relobj<big_endian>::simple_input_section_output_address(
6119 unsigned int shndx,
6120 Output_section* os)
6121{
6122 if (this->is_output_section_offset_invalid(shndx))
6123 {
6124 const Output_relaxed_input_section* poris =
6125 os->find_relaxed_input_section(this, shndx);
6126 // We do not handle merged sections here.
6127 gold_assert(poris != NULL);
6128 return poris->address();
6129 }
6130 else
6131 return os->address() + this->get_output_section_offset(shndx);
6132}
6133
44272192
DK
6134// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6135// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6136
6137template<bool big_endian>
6138bool
6139Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6140 const elfcpp::Shdr<32, big_endian>& shdr,
6141 unsigned int shndx,
6142 Output_section* os,
6143 const Symbol_table* symtab)
6144{
cf846138 6145 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6146 return false;
6147
44272192
DK
6148 // If the section does not cross any 4K-boundaries, it does not need to
6149 // be scanned.
cb1be87e 6150 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6151 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6152 return false;
6153
6154 return true;
6155}
6156
6157// Scan a section for Cortex-A8 workaround.
6158
6159template<bool big_endian>
6160void
6161Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6162 const elfcpp::Shdr<32, big_endian>& shdr,
6163 unsigned int shndx,
6164 Output_section* os,
6165 Target_arm<big_endian>* arm_target)
6166{
c8761b9a
DK
6167 // Look for the first mapping symbol in this section. It should be
6168 // at (shndx, 0).
6169 Mapping_symbol_position section_start(shndx, 0);
6170 typename Mapping_symbols_info::const_iterator p =
6171 this->mapping_symbols_info_.lower_bound(section_start);
6172
6173 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6174 // section. Issue a warning if section is marked as containing
6175 // instructions.
c8761b9a 6176 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6177 {
6178 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6179 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6180 "erratum because it has no mapping symbols."),
6181 shndx, this->name().c_str());
6182 return;
6183 }
c8761b9a 6184
cb1be87e
DK
6185 Arm_address output_address =
6186 this->simple_input_section_output_address(shndx, os);
44272192
DK
6187
6188 // Get the section contents.
6189 section_size_type input_view_size = 0;
6190 const unsigned char* input_view =
6191 this->section_contents(shndx, &input_view_size, false);
6192
6193 // We need to go through the mapping symbols to determine what to
6194 // scan. There are two reasons. First, we should look at THUMB code and
6195 // THUMB code only. Second, we only want to look at the 4K-page boundary
6196 // to speed up the scanning.
2e702c99 6197
44272192
DK
6198 while (p != this->mapping_symbols_info_.end()
6199 && p->first.first == shndx)
6200 {
6201 typename Mapping_symbols_info::const_iterator next =
6202 this->mapping_symbols_info_.upper_bound(p->first);
6203
6204 // Only scan part of a section with THUMB code.
6205 if (p->second == 't')
6206 {
6207 // Determine the end of this range.
6208 section_size_type span_start =
6209 convert_to_section_size_type(p->first.second);
6210 section_size_type span_end;
6211 if (next != this->mapping_symbols_info_.end()
6212 && next->first.first == shndx)
6213 span_end = convert_to_section_size_type(next->first.second);
6214 else
6215 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6216
44272192
DK
6217 if (((span_start + output_address) & ~0xfffUL)
6218 != ((span_end + output_address - 1) & ~0xfffUL))
6219 {
6220 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6221 span_start, span_end,
6222 input_view,
6223 output_address);
6224 }
6225 }
6226
2e702c99 6227 p = next;
44272192
DK
6228 }
6229}
6230
8ffa3667
DK
6231// Scan relocations for stub generation.
6232
6233template<bool big_endian>
6234void
6235Arm_relobj<big_endian>::scan_sections_for_stubs(
6236 Target_arm<big_endian>* arm_target,
6237 const Symbol_table* symtab,
2ea97941 6238 const Layout* layout)
8ffa3667 6239{
2ea97941
ILT
6240 unsigned int shnum = this->shnum();
6241 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6242
6243 // Read the section headers.
6244 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6245 shnum * shdr_size,
8ffa3667
DK
6246 true, true);
6247
6248 // To speed up processing, we set up hash tables for fast lookup of
6249 // input offsets to output addresses.
6250 this->initialize_input_to_output_maps();
6251
6252 const Relobj::Output_sections& out_sections(this->output_sections());
6253
6254 Relocate_info<32, big_endian> relinfo;
8ffa3667 6255 relinfo.symtab = symtab;
2ea97941 6256 relinfo.layout = layout;
8ffa3667
DK
6257 relinfo.object = this;
6258
44272192 6259 // Do relocation stubs scanning.
2ea97941
ILT
6260 const unsigned char* p = pshdrs + shdr_size;
6261 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6262 {
44272192 6263 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6264 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6265 pshdrs))
8ffa3667 6266 {
44272192
DK
6267 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6268 Arm_address output_offset = this->get_output_section_offset(index);
6269 Arm_address output_address;
7296d933 6270 if (output_offset != invalid_address)
44272192
DK
6271 output_address = out_sections[index]->address() + output_offset;
6272 else
6273 {
6274 // Currently this only happens for a relaxed section.
6275 const Output_relaxed_input_section* poris =
6276 out_sections[index]->find_relaxed_input_section(this, index);
6277 gold_assert(poris != NULL);
6278 output_address = poris->address();
6279 }
8ffa3667 6280
44272192
DK
6281 // Get the relocations.
6282 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6283 shdr.get_sh_size(),
6284 true, false);
6285
6286 // Get the section contents. This does work for the case in which
6287 // we modify the contents of an input section. We need to pass the
6288 // output view under such circumstances.
6289 section_size_type input_view_size = 0;
6290 const unsigned char* input_view =
6291 this->section_contents(index, &input_view_size, false);
6292
6293 relinfo.reloc_shndx = i;
6294 relinfo.data_shndx = index;
6295 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6296 unsigned int reloc_size;
6297 if (sh_type == elfcpp::SHT_REL)
6298 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6299 else
6300 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6301
6302 Output_section* os = out_sections[index];
6303 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6304 shdr.get_sh_size() / reloc_size,
6305 os,
6306 output_offset == invalid_address,
6307 input_view, output_address,
6308 input_view_size);
8ffa3667 6309 }
44272192 6310 }
8ffa3667 6311
44272192
DK
6312 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6313 // after its relocation section, if there is one, is processed for
6314 // relocation stubs. Merging this loop with the one above would have been
6315 // complicated since we would have had to make sure that relocation stub
6316 // scanning is done first.
6317 if (arm_target->fix_cortex_a8())
6318 {
6319 const unsigned char* p = pshdrs + shdr_size;
6320 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6321 {
44272192
DK
6322 const elfcpp::Shdr<32, big_endian> shdr(p);
6323 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6324 out_sections[i],
6325 symtab))
6326 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6327 arm_target);
8ffa3667 6328 }
8ffa3667
DK
6329 }
6330
6331 // After we've done the relocations, we release the hash tables,
6332 // since we no longer need them.
6333 this->free_input_to_output_maps();
6334}
6335
6336// Count the local symbols. The ARM backend needs to know if a symbol
6337// is a THUMB function or not. For global symbols, it is easy because
6338// the Symbol object keeps the ELF symbol type. For local symbol it is
6339// harder because we cannot access this information. So we override the
6340// do_count_local_symbol in parent and scan local symbols to mark
6341// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6342// slow down other ports by calling a per symbol target hook inside
2e702c99 6343// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6344
6345template<bool big_endian>
6346void
6347Arm_relobj<big_endian>::do_count_local_symbols(
6348 Stringpool_template<char>* pool,
6349 Stringpool_template<char>* dynpool)
6350{
6351 // We need to fix-up the values of any local symbols whose type are
6352 // STT_ARM_TFUNC.
2e702c99 6353
8ffa3667 6354 // Ask parent to count the local symbols.
6fa2a40b 6355 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6356 const unsigned int loccount = this->local_symbol_count();
6357 if (loccount == 0)
6358 return;
6359
9b547ce6 6360 // Initialize the thumb function bit-vector.
8ffa3667
DK
6361 std::vector<bool> empty_vector(loccount, false);
6362 this->local_symbol_is_thumb_function_.swap(empty_vector);
6363
6364 // Read the symbol table section header.
2ea97941 6365 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6366 elfcpp::Shdr<32, big_endian>
2ea97941 6367 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6368 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6369
6370 // Read the local symbols.
2ea97941 6371 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6372 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6373 off_t locsize = loccount * sym_size;
8ffa3667
DK
6374 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6375 locsize, true, true);
6376
20138696
DK
6377 // For mapping symbol processing, we need to read the symbol names.
6378 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6379 if (strtab_shndx >= this->shnum())
6380 {
6381 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6382 return;
6383 }
6384
6385 elfcpp::Shdr<32, big_endian>
6386 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6387 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6388 {
6389 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6390 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6391 return;
6392 }
6393 const char* pnames =
6394 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6395 strtabshdr.get_sh_size(),
6396 false, false));
6397
8ffa3667
DK
6398 // Loop over the local symbols and mark any local symbols pointing
6399 // to THUMB functions.
6400
6401 // Skip the first dummy symbol.
2ea97941 6402 psyms += sym_size;
6fa2a40b 6403 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6404 this->local_values();
2ea97941 6405 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6406 {
6407 elfcpp::Sym<32, big_endian> sym(psyms);
6408 elfcpp::STT st_type = sym.get_st_type();
6409 Symbol_value<32>& lv((*plocal_values)[i]);
6410 Arm_address input_value = lv.input_value();
6411
20138696
DK
6412 // Check to see if this is a mapping symbol.
6413 const char* sym_name = pnames + sym.get_st_name();
6414 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6415 {
24af6f92
DK
6416 bool is_ordinary;
6417 unsigned int input_shndx =
6418 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6419 gold_assert(is_ordinary);
20138696
DK
6420
6421 // Strip of LSB in case this is a THUMB symbol.
6422 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6423 this->mapping_symbols_info_[msp] = sym_name[1];
6424 }
6425
8ffa3667
DK
6426 if (st_type == elfcpp::STT_ARM_TFUNC
6427 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6428 {
6429 // This is a THUMB function. Mark this and canonicalize the
6430 // symbol value by setting LSB.
6431 this->local_symbol_is_thumb_function_[i] = true;
6432 if ((input_value & 1) == 0)
6433 lv.set_input_value(input_value | 1);
6434 }
6435 }
6436}
6437
6438// Relocate sections.
6439template<bool big_endian>
6440void
6441Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6442 const Symbol_table* symtab,
2ea97941 6443 const Layout* layout,
8ffa3667 6444 const unsigned char* pshdrs,
aa98ff75 6445 Output_file* of,
6fa2a40b 6446 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6447{
6448 // Call parent to relocate sections.
6fa2a40b 6449 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6450 pshdrs, of, pviews);
8ffa3667
DK
6451
6452 // We do not generate stubs if doing a relocatable link.
6453 if (parameters->options().relocatable())
6454 return;
6455
6456 // Relocate stub tables.
2ea97941 6457 unsigned int shnum = this->shnum();
8ffa3667
DK
6458
6459 Target_arm<big_endian>* arm_target =
6460 Target_arm<big_endian>::default_target();
6461
6462 Relocate_info<32, big_endian> relinfo;
8ffa3667 6463 relinfo.symtab = symtab;
2ea97941 6464 relinfo.layout = layout;
8ffa3667
DK
6465 relinfo.object = this;
6466
2ea97941 6467 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6468 {
6469 Arm_input_section<big_endian>* arm_input_section =
6470 arm_target->find_arm_input_section(this, i);
6471
41263c05
DK
6472 if (arm_input_section != NULL
6473 && arm_input_section->is_stub_table_owner()
6474 && !arm_input_section->stub_table()->empty())
6475 {
6476 // We cannot discard a section if it owns a stub table.
6477 Output_section* os = this->output_section(i);
6478 gold_assert(os != NULL);
6479
6480 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6481 relinfo.reloc_shdr = NULL;
6482 relinfo.data_shndx = i;
6483 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6484
6485 gold_assert((*pviews)[i].view != NULL);
6486
6487 // We are passed the output section view. Adjust it to cover the
6488 // stub table only.
6489 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6490 gold_assert((stub_table->address() >= (*pviews)[i].address)
6491 && ((stub_table->address() + stub_table->data_size())
6492 <= (*pviews)[i].address + (*pviews)[i].view_size));
6493
6494 off_t offset = stub_table->address() - (*pviews)[i].address;
6495 unsigned char* view = (*pviews)[i].view + offset;
6496 Arm_address address = stub_table->address();
6497 section_size_type view_size = stub_table->data_size();
2e702c99 6498
41263c05
DK
6499 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6500 view_size);
6501 }
6502
6503 // Apply Cortex A8 workaround if applicable.
6504 if (this->section_has_cortex_a8_workaround(i))
6505 {
6506 unsigned char* view = (*pviews)[i].view;
6507 Arm_address view_address = (*pviews)[i].address;
6508 section_size_type view_size = (*pviews)[i].view_size;
6509 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6510
6511 // Adjust view to cover section.
6512 Output_section* os = this->output_section(i);
6513 gold_assert(os != NULL);
cb1be87e
DK
6514 Arm_address section_address =
6515 this->simple_input_section_output_address(i, os);
41263c05
DK
6516 uint64_t section_size = this->section_size(i);
6517
6518 gold_assert(section_address >= view_address
6519 && ((section_address + section_size)
6520 <= (view_address + view_size)));
6521
6522 unsigned char* section_view = view + (section_address - view_address);
6523
6524 // Apply the Cortex-A8 workaround to the output address range
6525 // corresponding to this input section.
6526 stub_table->apply_cortex_a8_workaround_to_address_range(
6527 arm_target,
6528 section_view,
6529 section_address,
6530 section_size);
6531 }
8ffa3667
DK
6532 }
6533}
6534
9b547ce6 6535// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6536// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6537// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6538// its section header. However, some tools are broken and the link is not
6539// always set. LD just drops such an EXIDX section silently, causing the
6540// associated code not unwindabled. Here we try a little bit harder to
6541// discover the linked code section.
6542//
6543// PSHDR points to the section header of a relocation section of an EXIDX
6544// section. If we can find a linked text section, return true and
6545// store the text section index in the location PSHNDX. Otherwise
6546// return false.
a0351a69
DK
6547
6548template<bool big_endian>
c8761b9a
DK
6549bool
6550Arm_relobj<big_endian>::find_linked_text_section(
6551 const unsigned char* pshdr,
6552 const unsigned char* psyms,
6553 unsigned int* pshndx)
a0351a69 6554{
c8761b9a 6555 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6556
c8761b9a
DK
6557 // If there is no relocation, we cannot find the linked text section.
6558 size_t reloc_size;
6559 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6560 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6561 else
6562 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6563 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6564
c8761b9a
DK
6565 // Get the relocations.
6566 const unsigned char* prelocs =
2e702c99 6567 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6568
c8761b9a
DK
6569 // Find the REL31 relocation for the first word of the first EXIDX entry.
6570 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6571 {
c8761b9a
DK
6572 Arm_address r_offset;
6573 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6574 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6575 {
6576 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6577 r_info = reloc.get_r_info();
6578 r_offset = reloc.get_r_offset();
6579 }
6580 else
6581 {
6582 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6583 r_info = reloc.get_r_info();
6584 r_offset = reloc.get_r_offset();
6585 }
6586
6587 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6588 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6589 continue;
6590
6591 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6592 if (r_sym == 0
6593 || r_sym >= this->local_symbol_count()
6594 || r_offset != 0)
6595 continue;
6596
6597 // This is the relocation for the first word of the first EXIDX entry.
6598 // We expect to see a local section symbol.
6599 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6600 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6601 if (sym.get_st_type() == elfcpp::STT_SECTION)
6602 {
24af6f92
DK
6603 bool is_ordinary;
6604 *pshndx =
6605 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6606 gold_assert(is_ordinary);
c8761b9a
DK
6607 return true;
6608 }
6609 else
6610 return false;
993d07c1 6611 }
c8761b9a
DK
6612
6613 return false;
6614}
6615
6616// Make an EXIDX input section object for an EXIDX section whose index is
6617// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6618// is the section index of the linked text section.
6619
6620template<bool big_endian>
6621void
6622Arm_relobj<big_endian>::make_exidx_input_section(
6623 unsigned int shndx,
6624 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6625 unsigned int text_shndx,
6626 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6627{
993d07c1
DK
6628 // Create an Arm_exidx_input_section object for this EXIDX section.
6629 Arm_exidx_input_section* exidx_input_section =
6630 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6631 shdr.get_sh_addralign(),
6632 text_shdr.get_sh_size());
993d07c1 6633
993d07c1
DK
6634 gold_assert(this->exidx_section_map_[shndx] == NULL);
6635 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6636
6637 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6638 {
6639 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6640 this->section_name(shndx).c_str(), shndx, text_shndx,
6641 this->name().c_str());
6642 exidx_input_section->set_has_errors();
2e702c99 6643 }
131687b4
DK
6644 else if (this->exidx_section_map_[text_shndx] != NULL)
6645 {
6646 unsigned other_exidx_shndx =
6647 this->exidx_section_map_[text_shndx]->shndx();
6648 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6649 "%s(%u) in %s"),
6650 this->section_name(shndx).c_str(), shndx,
6651 this->section_name(other_exidx_shndx).c_str(),
6652 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6653 text_shndx, this->name().c_str());
6654 exidx_input_section->set_has_errors();
6655 }
6656 else
6657 this->exidx_section_map_[text_shndx] = exidx_input_section;
6658
6659 // Check section flags of text section.
6660 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6661 {
6662 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6663 " in %s"),
6664 this->section_name(shndx).c_str(), shndx,
6665 this->section_name(text_shndx).c_str(), text_shndx,
6666 this->name().c_str());
6667 exidx_input_section->set_has_errors();
6668 }
6669 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6670 // I would like to make this an error but currently ld just ignores
131687b4
DK
6671 // this.
6672 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6673 "%s(%u) in %s"),
6674 this->section_name(shndx).c_str(), shndx,
6675 this->section_name(text_shndx).c_str(), text_shndx,
6676 this->name().c_str());
a0351a69
DK
6677}
6678
d5b40221
DK
6679// Read the symbol information.
6680
6681template<bool big_endian>
6682void
6683Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6684{
6685 // Call parent class to read symbol information.
6fa2a40b 6686 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6687
7296d933
DK
6688 // If this input file is a binary file, it has no processor
6689 // specific flags and attributes section.
6690 Input_file::Format format = this->input_file()->format();
6691 if (format != Input_file::FORMAT_ELF)
6692 {
6693 gold_assert(format == Input_file::FORMAT_BINARY);
6694 this->merge_flags_and_attributes_ = false;
6695 return;
6696 }
6697
d5b40221
DK
6698 // Read processor-specific flags in ELF file header.
6699 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6700 elfcpp::Elf_sizes<32>::ehdr_size,
6701 true, false);
6702 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6703 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6704
6705 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6706 // sections.
c8761b9a 6707 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6708 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6709 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6710 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6711 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6712 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6713 {
6714 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6715
6716 // Sometimes an object has no contents except the section name string
6717 // table and an empty symbol table with the undefined symbol. We
6718 // don't want to merge processor-specific flags from such an object.
6719 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6720 {
6721 // Symbol table is not empty.
6722 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6723 elfcpp::Elf_sizes<32>::sym_size;
6724 if (shdr.get_sh_size() > sym_size)
6725 must_merge_flags_and_attributes = true;
6726 }
6727 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6728 // If this is neither an empty symbol table nor a string table,
6729 // be conservative.
6730 must_merge_flags_and_attributes = true;
6731
993d07c1
DK
6732 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6733 {
2e702c99 6734 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6735 section_offset_type section_offset = shdr.get_sh_offset();
6736 section_size_type section_size =
6737 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6738 const unsigned char* view =
6739 this->get_view(section_offset, section_size, true, false);
993d07c1 6740 this->attributes_section_data_ =
f625ae50 6741 new Attributes_section_data(view, section_size);
993d07c1
DK
6742 }
6743 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6744 {
6745 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6746 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6747 deferred_exidx_sections.push_back(i);
6748 else
131687b4
DK
6749 {
6750 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6751 + text_shndx * shdr_size);
6752 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6753 }
c9484ea5
DK
6754 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6755 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6756 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6757 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6758 }
6759 }
6760
7296d933
DK
6761 // This is rare.
6762 if (!must_merge_flags_and_attributes)
6763 {
131687b4 6764 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6765 this->merge_flags_and_attributes_ = false;
6766 return;
6767 }
6768
2e702c99 6769 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6770 // We look at the first relocation to figure out the linked sections.
6771 if (!deferred_exidx_sections.empty())
6772 {
6773 // We need to go over the section headers again to find the mapping
6774 // from sections being relocated to their relocation sections. This is
6775 // a bit inefficient as we could do that in the loop above. However,
6776 // we do not expect any deferred EXIDX sections normally. So we do not
6777 // want to slow down the most common path.
6778 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6779 Reloc_map reloc_map;
6780 ps = pshdrs + shdr_size;
6781 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6782 {
6783 elfcpp::Shdr<32, big_endian> shdr(ps);
6784 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6785 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6786 {
6787 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6788 if (info_shndx >= this->shnum())
6789 gold_error(_("relocation section %u has invalid info %u"),
6790 i, info_shndx);
6791 Reloc_map::value_type value(info_shndx, i);
6792 std::pair<Reloc_map::iterator, bool> result =
6793 reloc_map.insert(value);
6794 if (!result.second)
6795 gold_error(_("section %u has multiple relocation sections "
6796 "%u and %u"),
6797 info_shndx, i, reloc_map[info_shndx]);
6798 }
6799 }
6800
6801 // Read the symbol table section header.
6802 const unsigned int symtab_shndx = this->symtab_shndx();
6803 elfcpp::Shdr<32, big_endian>
6804 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6805 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6806
6807 // Read the local symbols.
6808 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6809 const unsigned int loccount = this->local_symbol_count();
6810 gold_assert(loccount == symtabshdr.get_sh_info());
6811 off_t locsize = loccount * sym_size;
6812 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6813 locsize, true, true);
6814
2e702c99 6815 // Process the deferred EXIDX sections.
f625ae50 6816 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6817 {
6818 unsigned int shndx = deferred_exidx_sections[i];
6819 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6820 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6821 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6822 if (it != reloc_map.end())
6823 find_linked_text_section(pshdrs + it->second * shdr_size,
6824 psyms, &text_shndx);
6825 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6826 + text_shndx * shdr_size);
6827 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6828 }
993d07c1 6829 }
d5b40221
DK
6830}
6831
99e5bff2 6832// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6833// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6834// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6835// references, the .ARM.exidx sections and any .ARM.extab sections they use
6836// will be garbage-collected incorrectly. Hence we override the same function
6837// in the base class to handle these implicit references.
6838
6839template<bool big_endian>
6840void
6841Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6842 Layout* layout,
6843 Read_relocs_data* rd)
6844{
6845 // First, call base class method to process relocations in this object.
6fa2a40b 6846 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6847
4a54abbb
DK
6848 // If --gc-sections is not specified, there is nothing more to do.
6849 // This happens when --icf is used but --gc-sections is not.
6850 if (!parameters->options().gc_sections())
6851 return;
2e702c99 6852
99e5bff2
DK
6853 unsigned int shnum = this->shnum();
6854 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6855 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6856 shnum * shdr_size,
6857 true, true);
6858
6859 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6860 // to these from the linked text sections.
6861 const unsigned char* ps = pshdrs + shdr_size;
6862 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6863 {
6864 elfcpp::Shdr<32, big_endian> shdr(ps);
6865 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6866 {
6867 // Found an .ARM.exidx section, add it to the set of reachable
6868 // sections from its linked text section.
6869 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6870 symtab->gc()->add_reference(this, text_shndx, this, i);
6871 }
6872 }
6873}
6874
e7eca48c
DK
6875// Update output local symbol count. Owing to EXIDX entry merging, some local
6876// symbols will be removed in output. Adjust output local symbol count
6877// accordingly. We can only changed the static output local symbol count. It
6878// is too late to change the dynamic symbols.
6879
6880template<bool big_endian>
6881void
6882Arm_relobj<big_endian>::update_output_local_symbol_count()
6883{
6884 // Caller should check that this needs updating. We want caller checking
6885 // because output_local_symbol_count_needs_update() is most likely inlined.
6886 gold_assert(this->output_local_symbol_count_needs_update_);
6887
6888 gold_assert(this->symtab_shndx() != -1U);
6889 if (this->symtab_shndx() == 0)
6890 {
6891 // This object has no symbols. Weird but legal.
6892 return;
6893 }
6894
6895 // Read the symbol table section header.
6896 const unsigned int symtab_shndx = this->symtab_shndx();
6897 elfcpp::Shdr<32, big_endian>
6898 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6899 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6900
6901 // Read the local symbols.
6902 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6903 const unsigned int loccount = this->local_symbol_count();
6904 gold_assert(loccount == symtabshdr.get_sh_info());
6905 off_t locsize = loccount * sym_size;
6906 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6907 locsize, true, true);
6908
6909 // Loop over the local symbols.
6910
6fa2a40b 6911 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6912 Output_sections;
6913 const Output_sections& out_sections(this->output_sections());
6914 unsigned int shnum = this->shnum();
6915 unsigned int count = 0;
6916 // Skip the first, dummy, symbol.
6917 psyms += sym_size;
6918 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6919 {
6920 elfcpp::Sym<32, big_endian> sym(psyms);
6921
6922 Symbol_value<32>& lv((*this->local_values())[i]);
6923
6924 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6925 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6926 continue;
6927
6928 bool is_ordinary;
6929 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6930 &is_ordinary);
6931
6932 if (shndx < shnum)
6933 {
6934 Output_section* os = out_sections[shndx];
6935
6936 // This local symbol no longer has an output section. Discard it.
6937 if (os == NULL)
6938 {
6939 lv.set_no_output_symtab_entry();
6940 continue;
6941 }
6942
6943 // Currently we only discard parts of EXIDX input sections.
6944 // We explicitly check for a merged EXIDX input section to avoid
6945 // calling Output_section_data::output_offset unless necessary.
6946 if ((this->get_output_section_offset(shndx) == invalid_address)
6947 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6948 {
6949 section_offset_type output_offset =
6950 os->output_offset(this, shndx, lv.input_value());
6951 if (output_offset == -1)
6952 {
6953 // This symbol is defined in a part of an EXIDX input section
6954 // that is discarded due to entry merging.
6955 lv.set_no_output_symtab_entry();
6956 continue;
2e702c99 6957 }
e7eca48c
DK
6958 }
6959 }
6960
6961 ++count;
6962 }
6963
6964 this->set_output_local_symbol_count(count);
6965 this->output_local_symbol_count_needs_update_ = false;
6966}
6967
d5b40221
DK
6968// Arm_dynobj methods.
6969
6970// Read the symbol information.
6971
6972template<bool big_endian>
6973void
6974Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6975{
6976 // Call parent class to read symbol information.
6977 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6978
6979 // Read processor-specific flags in ELF file header.
6980 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6981 elfcpp::Elf_sizes<32>::ehdr_size,
6982 true, false);
6983 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6984 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6985
6986 // Read the attributes section if there is one.
6987 // We read from the end because gas seems to put it near the end of
6988 // the section headers.
6989 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6990 const unsigned char* ps =
993d07c1
DK
6991 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6992 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6993 {
6994 elfcpp::Shdr<32, big_endian> shdr(ps);
6995 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6996 {
6997 section_offset_type section_offset = shdr.get_sh_offset();
6998 section_size_type section_size =
6999 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7000 const unsigned char* view =
7001 this->get_view(section_offset, section_size, true, false);
993d07c1 7002 this->attributes_section_data_ =
f625ae50 7003 new Attributes_section_data(view, section_size);
993d07c1
DK
7004 break;
7005 }
7006 }
d5b40221
DK
7007}
7008
e9bbb538
DK
7009// Stub_addend_reader methods.
7010
7011// Read the addend of a REL relocation of type R_TYPE at VIEW.
7012
7013template<bool big_endian>
7014elfcpp::Elf_types<32>::Elf_Swxword
7015Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7016 unsigned int r_type,
7017 const unsigned char* view,
7018 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7019{
2c54b4f4 7020 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7021
e9bbb538
DK
7022 switch (r_type)
7023 {
7024 case elfcpp::R_ARM_CALL:
7025 case elfcpp::R_ARM_JUMP24:
7026 case elfcpp::R_ARM_PLT32:
7027 {
7028 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7029 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7030 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7031 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7032 }
7033
7034 case elfcpp::R_ARM_THM_CALL:
7035 case elfcpp::R_ARM_THM_JUMP24:
7036 case elfcpp::R_ARM_THM_XPC22:
7037 {
e9bbb538
DK
7038 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7039 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7040 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7041 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7042 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7043 }
7044
7045 case elfcpp::R_ARM_THM_JUMP19:
7046 {
7047 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7048 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7049 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7050 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7051 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7052 }
7053
7054 default:
7055 gold_unreachable();
7056 }
7057}
7058
4a54abbb
DK
7059// Arm_output_data_got methods.
7060
7061// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7062// The first one is initialized to be 1, which is the module index for
7063// the main executable and the second one 0. A reloc of the type
7064// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7065// be applied by gold. GSYM is a global symbol.
7066//
7067template<bool big_endian>
7068void
7069Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7070 unsigned int got_type,
7071 Symbol* gsym)
7072{
7073 if (gsym->has_got_offset(got_type))
7074 return;
7075
7076 // We are doing a static link. Just mark it as belong to module 1,
7077 // the executable.
7078 unsigned int got_offset = this->add_constant(1);
2e702c99 7079 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7080 got_offset = this->add_constant(0);
7081 this->static_relocs_.push_back(Static_reloc(got_offset,
7082 elfcpp::R_ARM_TLS_DTPOFF32,
7083 gsym));
7084}
7085
7086// Same as the above but for a local symbol.
7087
7088template<bool big_endian>
7089void
7090Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7091 unsigned int got_type,
6fa2a40b 7092 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7093 unsigned int index)
7094{
7095 if (object->local_has_got_offset(index, got_type))
7096 return;
7097
7098 // We are doing a static link. Just mark it as belong to module 1,
7099 // the executable.
7100 unsigned int got_offset = this->add_constant(1);
7101 object->set_local_got_offset(index, got_type, got_offset);
7102 got_offset = this->add_constant(0);
2e702c99
RM
7103 this->static_relocs_.push_back(Static_reloc(got_offset,
7104 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7105 object, index));
7106}
7107
7108template<bool big_endian>
7109void
7110Arm_output_data_got<big_endian>::do_write(Output_file* of)
7111{
7112 // Call parent to write out GOT.
7113 Output_data_got<32, big_endian>::do_write(of);
7114
7115 // We are done if there is no fix up.
7116 if (this->static_relocs_.empty())
7117 return;
7118
7119 gold_assert(parameters->doing_static_link());
7120
7121 const off_t offset = this->offset();
7122 const section_size_type oview_size =
7123 convert_to_section_size_type(this->data_size());
7124 unsigned char* const oview = of->get_output_view(offset, oview_size);
7125
7126 Output_segment* tls_segment = this->layout_->tls_segment();
7127 gold_assert(tls_segment != NULL);
2e702c99 7128
4a54abbb
DK
7129 // The thread pointer $tp points to the TCB, which is followed by the
7130 // TLS. So we need to adjust $tp relative addressing by this amount.
7131 Arm_address aligned_tcb_size =
7132 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7133
7134 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7135 {
7136 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7137
4a54abbb
DK
7138 Arm_address value;
7139 if (!reloc.symbol_is_global())
7140 {
6fa2a40b 7141 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7142 const Symbol_value<32>* psymval =
7143 reloc.relobj()->local_symbol(reloc.index());
7144
7145 // We are doing static linking. Issue an error and skip this
7146 // relocation if the symbol is undefined or in a discarded_section.
7147 bool is_ordinary;
7148 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7149 if ((shndx == elfcpp::SHN_UNDEF)
7150 || (is_ordinary
7151 && shndx != elfcpp::SHN_UNDEF
7152 && !object->is_section_included(shndx)
7153 && !this->symbol_table_->is_section_folded(object, shndx)))
7154 {
7155 gold_error(_("undefined or discarded local symbol %u from "
7156 " object %s in GOT"),
7157 reloc.index(), reloc.relobj()->name().c_str());
7158 continue;
7159 }
2e702c99 7160
4a54abbb
DK
7161 value = psymval->value(object, 0);
7162 }
7163 else
7164 {
7165 const Symbol* gsym = reloc.symbol();
7166 gold_assert(gsym != NULL);
7167 if (gsym->is_forwarder())
7168 gsym = this->symbol_table_->resolve_forwards(gsym);
7169
7170 // We are doing static linking. Issue an error and skip this
7171 // relocation if the symbol is undefined or in a discarded_section
7172 // unless it is a weakly_undefined symbol.
7173 if ((gsym->is_defined_in_discarded_section()
7174 || gsym->is_undefined())
7175 && !gsym->is_weak_undefined())
7176 {
7177 gold_error(_("undefined or discarded symbol %s in GOT"),
7178 gsym->name());
7179 continue;
7180 }
7181
7182 if (!gsym->is_weak_undefined())
7183 {
7184 const Sized_symbol<32>* sym =
7185 static_cast<const Sized_symbol<32>*>(gsym);
7186 value = sym->value();
7187 }
7188 else
7189 value = 0;
7190 }
7191
7192 unsigned got_offset = reloc.got_offset();
7193 gold_assert(got_offset < oview_size);
7194
7195 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7196 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7197 Valtype x;
7198 switch (reloc.r_type())
7199 {
7200 case elfcpp::R_ARM_TLS_DTPOFF32:
7201 x = value;
7202 break;
7203 case elfcpp::R_ARM_TLS_TPOFF32:
7204 x = value + aligned_tcb_size;
7205 break;
7206 default:
7207 gold_unreachable();
7208 }
7209 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7210 }
7211
7212 of->write_output_view(offset, oview_size, oview);
7213}
7214
94cdfcff 7215// A class to handle the PLT data.
2e702c99
RM
7216// This is an abstract base class that handles most of the linker details
7217// but does not know the actual contents of PLT entries. The derived
7218// classes below fill in those details.
94cdfcff
DK
7219
7220template<bool big_endian>
7221class Output_data_plt_arm : public Output_section_data
7222{
7223 public:
7224 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7225 Reloc_section;
7226
2e702c99 7227 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
94cdfcff
DK
7228
7229 // Add an entry to the PLT.
7230 void
7231 add_entry(Symbol* gsym);
7232
7233 // Return the .rel.plt section data.
7234 const Reloc_section*
7235 rel_plt() const
7236 { return this->rel_; }
7237
0e70b911
CC
7238 // Return the number of PLT entries.
7239 unsigned int
7240 entry_count() const
7241 { return this->count_; }
7242
7243 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7244 unsigned int
7245 first_plt_entry_offset() const
7246 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7247
7248 // Return the size of a PLT entry.
2e702c99
RM
7249 unsigned int
7250 get_plt_entry_size() const
7251 { return this->do_get_plt_entry_size(); }
0e70b911 7252
94cdfcff 7253 protected:
2e702c99
RM
7254 // Fill in the first PLT entry.
7255 void
7256 fill_first_plt_entry(unsigned char* pov,
7257 Arm_address got_address,
7258 Arm_address plt_address)
7259 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7260
7261 void
7262 fill_plt_entry(unsigned char* pov,
7263 Arm_address got_address,
7264 Arm_address plt_address,
7265 unsigned int got_offset,
7266 unsigned int plt_offset)
7267 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7268
7269 virtual unsigned int
7270 do_first_plt_entry_offset() const = 0;
7271
7272 virtual unsigned int
7273 do_get_plt_entry_size() const = 0;
7274
7275 virtual void
7276 do_fill_first_plt_entry(unsigned char* pov,
7277 Arm_address got_address,
7278 Arm_address plt_address) = 0;
7279
7280 virtual void
7281 do_fill_plt_entry(unsigned char* pov,
7282 Arm_address got_address,
7283 Arm_address plt_address,
7284 unsigned int got_offset,
7285 unsigned int plt_offset) = 0;
7286
94cdfcff
DK
7287 void
7288 do_adjust_output_section(Output_section* os);
7289
7290 // Write to a map file.
7291 void
7292 do_print_to_mapfile(Mapfile* mapfile) const
7293 { mapfile->print_output_data(this, _("** PLT")); }
7294
7295 private:
94cdfcff
DK
7296 // Set the final size.
7297 void
7298 set_final_data_size()
7299 {
2e702c99
RM
7300 this->set_data_size(this->first_plt_entry_offset()
7301 + this->count_ * this->get_plt_entry_size());
94cdfcff
DK
7302 }
7303
7304 // Write out the PLT data.
7305 void
7306 do_write(Output_file*);
7307
7308 // The reloc section.
7309 Reloc_section* rel_;
7310 // The .got.plt section.
7311 Output_data_space* got_plt_;
7312 // The number of PLT entries.
7313 unsigned int count_;
7314};
7315
7316// Create the PLT section. The ordinary .got section is an argument,
7317// since we need to refer to the start. We also create our own .got
7318// section just for PLT entries.
7319
7320template<bool big_endian>
2ea97941 7321Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
2e702c99 7322 uint64_t addralign,
94cdfcff 7323 Output_data_space* got_plt)
2e702c99 7324 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
94cdfcff
DK
7325{
7326 this->rel_ = new Reloc_section(false);
2ea97941 7327 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7328 elfcpp::SHF_ALLOC, this->rel_,
7329 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7330}
7331
7332template<bool big_endian>
7333void
7334Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7335{
7336 os->set_entsize(0);
7337}
7338
7339// Add an entry to the PLT.
7340
7341template<bool big_endian>
7342void
7343Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7344{
7345 gold_assert(!gsym->has_plt_offset());
7346
7347 // Note that when setting the PLT offset we skip the initial
7348 // reserved PLT entry.
2e702c99
RM
7349 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7350 + this->first_plt_entry_offset());
94cdfcff
DK
7351
7352 ++this->count_;
7353
7354 section_offset_type got_offset = this->got_plt_->current_data_size();
7355
7356 // Every PLT entry needs a GOT entry which points back to the PLT
7357 // entry (this will be changed by the dynamic linker, normally
7358 // lazily when the function is called).
7359 this->got_plt_->set_current_data_size(got_offset + 4);
7360
7361 // Every PLT entry needs a reloc.
7362 gsym->set_needs_dynsym_entry();
7363 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7364 got_offset);
7365
7366 // Note that we don't need to save the symbol. The contents of the
7367 // PLT are independent of which symbols are used. The symbols only
7368 // appear in the relocations.
7369}
7370
2e702c99
RM
7371template<bool big_endian>
7372class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7373{
7374 public:
7375 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7376 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7377 { }
7378
7379 protected:
7380 // Return the offset of the first non-reserved PLT entry.
7381 virtual unsigned int
7382 do_first_plt_entry_offset() const
7383 { return sizeof(first_plt_entry); }
7384
7385 // Return the size of a PLT entry.
7386 virtual unsigned int
7387 do_get_plt_entry_size() const
7388 { return sizeof(plt_entry); }
7389
7390 virtual void
7391 do_fill_first_plt_entry(unsigned char* pov,
7392 Arm_address got_address,
7393 Arm_address plt_address);
7394
7395 virtual void
7396 do_fill_plt_entry(unsigned char* pov,
7397 Arm_address got_address,
7398 Arm_address plt_address,
7399 unsigned int got_offset,
7400 unsigned int plt_offset);
7401
7402 private:
7403 // Template for the first PLT entry.
7404 static const uint32_t first_plt_entry[5];
7405
7406 // Template for subsequent PLT entries.
7407 static const uint32_t plt_entry[3];
7408};
7409
94cdfcff
DK
7410// ARM PLTs.
7411// FIXME: This is not very flexible. Right now this has only been tested
7412// on armv5te. If we are to support additional architecture features like
7413// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7414
7415// The first entry in the PLT.
7416template<bool big_endian>
2e702c99 7417const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7418{
7419 0xe52de004, // str lr, [sp, #-4]!
7420 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7421 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7422 0xe5bef008, // ldr pc, [lr, #8]!
7423 0x00000000, // &GOT[0] - .
7424};
7425
2e702c99
RM
7426template<bool big_endian>
7427void
7428Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7429 unsigned char* pov,
7430 Arm_address got_address,
7431 Arm_address plt_address)
7432{
7433 // Write first PLT entry. All but the last word are constants.
7434 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7435 / sizeof(plt_entry[0]));
7436 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7437 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7438 // Last word in first PLT entry is &GOT[0] - .
7439 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7440 got_address - (plt_address + 16));
7441}
7442
94cdfcff
DK
7443// Subsequent entries in the PLT.
7444
7445template<bool big_endian>
2e702c99 7446const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7447{
7448 0xe28fc600, // add ip, pc, #0xNN00000
7449 0xe28cca00, // add ip, ip, #0xNN000
7450 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7451};
7452
2e702c99
RM
7453template<bool big_endian>
7454void
7455Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7456 unsigned char* pov,
7457 Arm_address got_address,
7458 Arm_address plt_address,
7459 unsigned int got_offset,
7460 unsigned int plt_offset)
7461{
7462 int32_t offset = ((got_address + got_offset)
7463 - (plt_address + plt_offset + 8));
7464
7465 gold_assert(offset >= 0 && offset < 0x0fffffff);
7466 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7467 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7468 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7469 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7470 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7471 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7472}
7473
94cdfcff
DK
7474// Write out the PLT. This uses the hand-coded instructions above,
7475// and adjusts them as needed. This is all specified by the arm ELF
7476// Processor Supplement.
7477
7478template<bool big_endian>
7479void
7480Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7481{
2ea97941 7482 const off_t offset = this->offset();
94cdfcff
DK
7483 const section_size_type oview_size =
7484 convert_to_section_size_type(this->data_size());
2ea97941 7485 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7486
7487 const off_t got_file_offset = this->got_plt_->offset();
7488 const section_size_type got_size =
7489 convert_to_section_size_type(this->got_plt_->data_size());
7490 unsigned char* const got_view = of->get_output_view(got_file_offset,
7491 got_size);
7492 unsigned char* pov = oview;
7493
ebabffbd
DK
7494 Arm_address plt_address = this->address();
7495 Arm_address got_address = this->got_plt_->address();
94cdfcff 7496
2e702c99
RM
7497 // Write first PLT entry.
7498 this->fill_first_plt_entry(pov, got_address, plt_address);
7499 pov += this->first_plt_entry_offset();
94cdfcff
DK
7500
7501 unsigned char* got_pov = got_view;
7502
7503 memset(got_pov, 0, 12);
7504 got_pov += 12;
7505
2e702c99 7506 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff
DK
7507 unsigned int got_offset = 12;
7508 const unsigned int count = this->count_;
7509 for (unsigned int i = 0;
7510 i < count;
7511 ++i,
2e702c99 7512 pov += this->get_plt_entry_size(),
94cdfcff 7513 got_pov += 4,
2e702c99 7514 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7515 got_offset += 4)
7516 {
7517 // Set and adjust the PLT entry itself.
2e702c99
RM
7518 this->fill_plt_entry(pov, got_address, plt_address,
7519 got_offset, plt_offset);
94cdfcff
DK
7520
7521 // Set the entry in the GOT.
7522 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7523 }
7524
7525 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7526 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7527
2ea97941 7528 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7529 of->write_output_view(got_file_offset, got_size, got_view);
7530}
7531
7532// Create a PLT entry for a global symbol.
7533
7534template<bool big_endian>
7535void
2ea97941 7536Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7537 Symbol* gsym)
7538{
7539 if (gsym->has_plt_offset())
7540 return;
7541
7542 if (this->plt_ == NULL)
7543 {
7544 // Create the GOT sections first.
2ea97941 7545 this->got_section(symtab, layout);
94cdfcff 7546
2e702c99
RM
7547 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7548
2ea97941
ILT
7549 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7550 (elfcpp::SHF_ALLOC
7551 | elfcpp::SHF_EXECINSTR),
22f0da72 7552 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7553 }
7554 this->plt_->add_entry(gsym);
7555}
7556
0e70b911
CC
7557// Return the number of entries in the PLT.
7558
7559template<bool big_endian>
7560unsigned int
7561Target_arm<big_endian>::plt_entry_count() const
7562{
7563 if (this->plt_ == NULL)
7564 return 0;
7565 return this->plt_->entry_count();
7566}
7567
7568// Return the offset of the first non-reserved PLT entry.
7569
7570template<bool big_endian>
7571unsigned int
7572Target_arm<big_endian>::first_plt_entry_offset() const
7573{
2e702c99 7574 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7575}
7576
7577// Return the size of each PLT entry.
7578
7579template<bool big_endian>
7580unsigned int
7581Target_arm<big_endian>::plt_entry_size() const
7582{
2e702c99 7583 return this->plt_->get_plt_entry_size();
0e70b911
CC
7584}
7585
f96accdf
DK
7586// Get the section to use for TLS_DESC relocations.
7587
7588template<bool big_endian>
7589typename Target_arm<big_endian>::Reloc_section*
7590Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7591{
7592 return this->plt_section()->rel_tls_desc(layout);
7593}
7594
7595// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7596
7597template<bool big_endian>
7598void
7599Target_arm<big_endian>::define_tls_base_symbol(
7600 Symbol_table* symtab,
7601 Layout* layout)
7602{
7603 if (this->tls_base_symbol_defined_)
7604 return;
7605
7606 Output_segment* tls_segment = layout->tls_segment();
7607 if (tls_segment != NULL)
7608 {
7609 bool is_exec = parameters->options().output_is_executable();
7610 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7611 Symbol_table::PREDEFINED,
7612 tls_segment, 0, 0,
7613 elfcpp::STT_TLS,
7614 elfcpp::STB_LOCAL,
7615 elfcpp::STV_HIDDEN, 0,
7616 (is_exec
7617 ? Symbol::SEGMENT_END
7618 : Symbol::SEGMENT_START),
7619 true);
7620 }
7621 this->tls_base_symbol_defined_ = true;
7622}
7623
7624// Create a GOT entry for the TLS module index.
7625
7626template<bool big_endian>
7627unsigned int
7628Target_arm<big_endian>::got_mod_index_entry(
7629 Symbol_table* symtab,
7630 Layout* layout,
6fa2a40b 7631 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7632{
7633 if (this->got_mod_index_offset_ == -1U)
7634 {
7635 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7636 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7637 unsigned int got_offset;
7638 if (!parameters->doing_static_link())
7639 {
7640 got_offset = got->add_constant(0);
7641 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7642 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7643 got_offset);
7644 }
7645 else
7646 {
7647 // We are doing a static link. Just mark it as belong to module 1,
7648 // the executable.
7649 got_offset = got->add_constant(1);
7650 }
7651
f96accdf
DK
7652 got->add_constant(0);
7653 this->got_mod_index_offset_ = got_offset;
7654 }
7655 return this->got_mod_index_offset_;
7656}
7657
7658// Optimize the TLS relocation type based on what we know about the
7659// symbol. IS_FINAL is true if the final address of this symbol is
7660// known at link time.
7661
7662template<bool big_endian>
7663tls::Tls_optimization
7664Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7665{
7666 // FIXME: Currently we do not do any TLS optimization.
7667 return tls::TLSOPT_NONE;
7668}
7669
95a2c8d6
RS
7670// Get the Reference_flags for a particular relocation.
7671
7672template<bool big_endian>
7673int
7674Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7675{
7676 switch (r_type)
7677 {
7678 case elfcpp::R_ARM_NONE:
7679 case elfcpp::R_ARM_V4BX:
7680 case elfcpp::R_ARM_GNU_VTENTRY:
7681 case elfcpp::R_ARM_GNU_VTINHERIT:
7682 // No symbol reference.
7683 return 0;
7684
7685 case elfcpp::R_ARM_ABS32:
7686 case elfcpp::R_ARM_ABS16:
7687 case elfcpp::R_ARM_ABS12:
7688 case elfcpp::R_ARM_THM_ABS5:
7689 case elfcpp::R_ARM_ABS8:
7690 case elfcpp::R_ARM_BASE_ABS:
7691 case elfcpp::R_ARM_MOVW_ABS_NC:
7692 case elfcpp::R_ARM_MOVT_ABS:
7693 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7694 case elfcpp::R_ARM_THM_MOVT_ABS:
7695 case elfcpp::R_ARM_ABS32_NOI:
7696 return Symbol::ABSOLUTE_REF;
7697
7698 case elfcpp::R_ARM_REL32:
7699 case elfcpp::R_ARM_LDR_PC_G0:
7700 case elfcpp::R_ARM_SBREL32:
7701 case elfcpp::R_ARM_THM_PC8:
7702 case elfcpp::R_ARM_BASE_PREL:
7703 case elfcpp::R_ARM_MOVW_PREL_NC:
7704 case elfcpp::R_ARM_MOVT_PREL:
7705 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7706 case elfcpp::R_ARM_THM_MOVT_PREL:
7707 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7708 case elfcpp::R_ARM_THM_PC12:
7709 case elfcpp::R_ARM_REL32_NOI:
7710 case elfcpp::R_ARM_ALU_PC_G0_NC:
7711 case elfcpp::R_ARM_ALU_PC_G0:
7712 case elfcpp::R_ARM_ALU_PC_G1_NC:
7713 case elfcpp::R_ARM_ALU_PC_G1:
7714 case elfcpp::R_ARM_ALU_PC_G2:
7715 case elfcpp::R_ARM_LDR_PC_G1:
7716 case elfcpp::R_ARM_LDR_PC_G2:
7717 case elfcpp::R_ARM_LDRS_PC_G0:
7718 case elfcpp::R_ARM_LDRS_PC_G1:
7719 case elfcpp::R_ARM_LDRS_PC_G2:
7720 case elfcpp::R_ARM_LDC_PC_G0:
7721 case elfcpp::R_ARM_LDC_PC_G1:
7722 case elfcpp::R_ARM_LDC_PC_G2:
7723 case elfcpp::R_ARM_ALU_SB_G0_NC:
7724 case elfcpp::R_ARM_ALU_SB_G0:
7725 case elfcpp::R_ARM_ALU_SB_G1_NC:
7726 case elfcpp::R_ARM_ALU_SB_G1:
7727 case elfcpp::R_ARM_ALU_SB_G2:
7728 case elfcpp::R_ARM_LDR_SB_G0:
7729 case elfcpp::R_ARM_LDR_SB_G1:
7730 case elfcpp::R_ARM_LDR_SB_G2:
7731 case elfcpp::R_ARM_LDRS_SB_G0:
7732 case elfcpp::R_ARM_LDRS_SB_G1:
7733 case elfcpp::R_ARM_LDRS_SB_G2:
7734 case elfcpp::R_ARM_LDC_SB_G0:
7735 case elfcpp::R_ARM_LDC_SB_G1:
7736 case elfcpp::R_ARM_LDC_SB_G2:
7737 case elfcpp::R_ARM_MOVW_BREL_NC:
7738 case elfcpp::R_ARM_MOVT_BREL:
7739 case elfcpp::R_ARM_MOVW_BREL:
7740 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7741 case elfcpp::R_ARM_THM_MOVT_BREL:
7742 case elfcpp::R_ARM_THM_MOVW_BREL:
7743 case elfcpp::R_ARM_GOTOFF32:
7744 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7745 case elfcpp::R_ARM_SBREL31:
7746 return Symbol::RELATIVE_REF;
7747
7748 case elfcpp::R_ARM_PLT32:
7749 case elfcpp::R_ARM_CALL:
7750 case elfcpp::R_ARM_JUMP24:
7751 case elfcpp::R_ARM_THM_CALL:
7752 case elfcpp::R_ARM_THM_JUMP24:
7753 case elfcpp::R_ARM_THM_JUMP19:
7754 case elfcpp::R_ARM_THM_JUMP6:
7755 case elfcpp::R_ARM_THM_JUMP11:
7756 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7757 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7758 // in unwind tables. It may point to functions via PLTs.
7759 // So we treat it like call/jump relocations above.
7760 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7761 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7762
7763 case elfcpp::R_ARM_GOT_BREL:
7764 case elfcpp::R_ARM_GOT_ABS:
7765 case elfcpp::R_ARM_GOT_PREL:
7766 // Absolute in GOT.
7767 return Symbol::ABSOLUTE_REF;
7768
7769 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7770 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7771 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7772 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7773 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7774 return Symbol::TLS_REF;
7775
7776 case elfcpp::R_ARM_TARGET1:
7777 case elfcpp::R_ARM_TARGET2:
7778 case elfcpp::R_ARM_COPY:
7779 case elfcpp::R_ARM_GLOB_DAT:
7780 case elfcpp::R_ARM_JUMP_SLOT:
7781 case elfcpp::R_ARM_RELATIVE:
7782 case elfcpp::R_ARM_PC24:
7783 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7784 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7785 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7786 default:
7787 // Not expected. We will give an error later.
7788 return 0;
7789 }
7790}
7791
4a657b0d
DK
7792// Report an unsupported relocation against a local symbol.
7793
7794template<bool big_endian>
7795void
7796Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7797 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7798 unsigned int r_type)
7799{
7800 gold_error(_("%s: unsupported reloc %u against local symbol"),
7801 object->name().c_str(), r_type);
7802}
7803
bec53400
DK
7804// We are about to emit a dynamic relocation of type R_TYPE. If the
7805// dynamic linker does not support it, issue an error. The GNU linker
7806// only issues a non-PIC error for an allocated read-only section.
7807// Here we know the section is allocated, but we don't know that it is
7808// read-only. But we check for all the relocation types which the
7809// glibc dynamic linker supports, so it seems appropriate to issue an
7810// error even if the section is not read-only.
7811
7812template<bool big_endian>
7813void
7814Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7815 unsigned int r_type)
7816{
7817 switch (r_type)
7818 {
7819 // These are the relocation types supported by glibc for ARM.
7820 case elfcpp::R_ARM_RELATIVE:
7821 case elfcpp::R_ARM_COPY:
7822 case elfcpp::R_ARM_GLOB_DAT:
7823 case elfcpp::R_ARM_JUMP_SLOT:
7824 case elfcpp::R_ARM_ABS32:
be8fcb75 7825 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7826 case elfcpp::R_ARM_PC24:
7827 // FIXME: The following 3 types are not supported by Android's dynamic
7828 // linker.
7829 case elfcpp::R_ARM_TLS_DTPMOD32:
7830 case elfcpp::R_ARM_TLS_DTPOFF32:
7831 case elfcpp::R_ARM_TLS_TPOFF32:
7832 return;
7833
7834 default:
c8761b9a
DK
7835 {
7836 // This prevents us from issuing more than one error per reloc
7837 // section. But we can still wind up issuing more than one
7838 // error per object file.
7839 if (this->issued_non_pic_error_)
7840 return;
7841 const Arm_reloc_property* reloc_property =
7842 arm_reloc_property_table->get_reloc_property(r_type);
7843 gold_assert(reloc_property != NULL);
7844 object->error(_("requires unsupported dynamic reloc %s; "
7845 "recompile with -fPIC"),
7846 reloc_property->name().c_str());
7847 this->issued_non_pic_error_ = true;
bec53400 7848 return;
c8761b9a 7849 }
bec53400
DK
7850
7851 case elfcpp::R_ARM_NONE:
7852 gold_unreachable();
7853 }
7854}
7855
4a657b0d 7856// Scan a relocation for a local symbol.
bec53400
DK
7857// FIXME: This only handles a subset of relocation types used by Android
7858// on ARM v5te devices.
4a657b0d
DK
7859
7860template<bool big_endian>
7861inline void
ad0f2072 7862Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7863 Layout* layout,
bec53400 7864 Target_arm* target,
6fa2a40b 7865 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7866 unsigned int data_shndx,
7867 Output_section* output_section,
7868 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7869 unsigned int r_type,
bfdfa4cd
AM
7870 const elfcpp::Sym<32, big_endian>& lsym,
7871 bool is_discarded)
4a657b0d 7872{
bfdfa4cd
AM
7873 if (is_discarded)
7874 return;
7875
a6d1ef57 7876 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7877 switch (r_type)
7878 {
7879 case elfcpp::R_ARM_NONE:
e4782e83
DK
7880 case elfcpp::R_ARM_V4BX:
7881 case elfcpp::R_ARM_GNU_VTENTRY:
7882 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7883 break;
7884
bec53400 7885 case elfcpp::R_ARM_ABS32:
be8fcb75 7886 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7887 // If building a shared library (or a position-independent
7888 // executable), we need to create a dynamic relocation for
7889 // this location. The relocation applied at link time will
7890 // apply the link-time value, so we flag the location with
7891 // an R_ARM_RELATIVE relocation so the dynamic loader can
7892 // relocate it easily.
7893 if (parameters->options().output_is_position_independent())
7894 {
2ea97941 7895 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 7896 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
7897 // If we are to add more other reloc types than R_ARM_ABS32,
7898 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
7899 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7900 output_section, data_shndx,
7901 reloc.get_r_offset());
7902 }
7903 break;
7904
e4782e83
DK
7905 case elfcpp::R_ARM_ABS16:
7906 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7907 case elfcpp::R_ARM_THM_ABS5:
7908 case elfcpp::R_ARM_ABS8:
be8fcb75 7909 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7910 case elfcpp::R_ARM_MOVW_ABS_NC:
7911 case elfcpp::R_ARM_MOVT_ABS:
7912 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7913 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7914 // If building a shared library (or a position-independent
7915 // executable), we need to create a dynamic relocation for
7916 // this location. Because the addend needs to remain in the
7917 // data section, we need to be careful not to apply this
7918 // relocation statically.
7919 if (parameters->options().output_is_position_independent())
2e702c99 7920 {
e4782e83 7921 check_non_pic(object, r_type);
2e702c99 7922 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 7923 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 7924 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
7925 rel_dyn->add_local(object, r_sym, r_type, output_section,
7926 data_shndx, reloc.get_r_offset());
2e702c99
RM
7927 else
7928 {
7929 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
7930 unsigned int shndx = lsym.get_st_shndx();
7931 bool is_ordinary;
7932 shndx = object->adjust_sym_shndx(r_sym, shndx,
7933 &is_ordinary);
7934 if (!is_ordinary)
7935 object->error(_("section symbol %u has bad shndx %u"),
7936 r_sym, shndx);
7937 else
7938 rel_dyn->add_local_section(object, shndx,
7939 r_type, output_section,
7940 data_shndx, reloc.get_r_offset());
2e702c99
RM
7941 }
7942 }
e4782e83
DK
7943 break;
7944
e4782e83
DK
7945 case elfcpp::R_ARM_REL32:
7946 case elfcpp::R_ARM_LDR_PC_G0:
7947 case elfcpp::R_ARM_SBREL32:
7948 case elfcpp::R_ARM_THM_CALL:
7949 case elfcpp::R_ARM_THM_PC8:
7950 case elfcpp::R_ARM_BASE_PREL:
7951 case elfcpp::R_ARM_PLT32:
7952 case elfcpp::R_ARM_CALL:
7953 case elfcpp::R_ARM_JUMP24:
7954 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7955 case elfcpp::R_ARM_SBREL31:
7956 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7957 case elfcpp::R_ARM_MOVW_PREL_NC:
7958 case elfcpp::R_ARM_MOVT_PREL:
7959 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7960 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7961 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7962 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7963 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7964 case elfcpp::R_ARM_THM_PC12:
7965 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7966 case elfcpp::R_ARM_ALU_PC_G0_NC:
7967 case elfcpp::R_ARM_ALU_PC_G0:
7968 case elfcpp::R_ARM_ALU_PC_G1_NC:
7969 case elfcpp::R_ARM_ALU_PC_G1:
7970 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7971 case elfcpp::R_ARM_LDR_PC_G1:
7972 case elfcpp::R_ARM_LDR_PC_G2:
7973 case elfcpp::R_ARM_LDRS_PC_G0:
7974 case elfcpp::R_ARM_LDRS_PC_G1:
7975 case elfcpp::R_ARM_LDRS_PC_G2:
7976 case elfcpp::R_ARM_LDC_PC_G0:
7977 case elfcpp::R_ARM_LDC_PC_G1:
7978 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7979 case elfcpp::R_ARM_ALU_SB_G0_NC:
7980 case elfcpp::R_ARM_ALU_SB_G0:
7981 case elfcpp::R_ARM_ALU_SB_G1_NC:
7982 case elfcpp::R_ARM_ALU_SB_G1:
7983 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7984 case elfcpp::R_ARM_LDR_SB_G0:
7985 case elfcpp::R_ARM_LDR_SB_G1:
7986 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7987 case elfcpp::R_ARM_LDRS_SB_G0:
7988 case elfcpp::R_ARM_LDRS_SB_G1:
7989 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7990 case elfcpp::R_ARM_LDC_SB_G0:
7991 case elfcpp::R_ARM_LDC_SB_G1:
7992 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7993 case elfcpp::R_ARM_MOVW_BREL_NC:
7994 case elfcpp::R_ARM_MOVT_BREL:
7995 case elfcpp::R_ARM_MOVW_BREL:
7996 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7997 case elfcpp::R_ARM_THM_MOVT_BREL:
7998 case elfcpp::R_ARM_THM_MOVW_BREL:
7999 case elfcpp::R_ARM_THM_JUMP11:
8000 case elfcpp::R_ARM_THM_JUMP8:
8001 // We don't need to do anything for a relative addressing relocation
8002 // against a local symbol if it does not reference the GOT.
bec53400
DK
8003 break;
8004
8005 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8006 case elfcpp::R_ARM_GOTOFF12:
bec53400 8007 // We need a GOT section:
2ea97941 8008 target->got_section(symtab, layout);
bec53400
DK
8009 break;
8010
bec53400 8011 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8012 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8013 {
8014 // The symbol requires a GOT entry.
4a54abbb 8015 Arm_output_data_got<big_endian>* got =
2ea97941 8016 target->got_section(symtab, layout);
bec53400
DK
8017 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8018 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8019 {
8020 // If we are generating a shared object, we need to add a
8021 // dynamic RELATIVE relocation for this symbol's GOT entry.
8022 if (parameters->options().output_is_position_independent())
8023 {
2ea97941
ILT
8024 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8025 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8026 rel_dyn->add_local_relative(
2ea97941
ILT
8027 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8028 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8029 }
8030 }
8031 }
8032 break;
8033
8034 case elfcpp::R_ARM_TARGET1:
e4782e83 8035 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8036 // This should have been mapped to another type already.
8037 // Fall through.
8038 case elfcpp::R_ARM_COPY:
8039 case elfcpp::R_ARM_GLOB_DAT:
8040 case elfcpp::R_ARM_JUMP_SLOT:
8041 case elfcpp::R_ARM_RELATIVE:
8042 // These are relocations which should only be seen by the
8043 // dynamic linker, and should never be seen here.
8044 gold_error(_("%s: unexpected reloc %u in object file"),
8045 object->name().c_str(), r_type);
8046 break;
8047
f96accdf
DK
8048
8049 // These are initial TLS relocs, which are expected when
8050 // linking.
8051 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8052 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8053 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8054 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8055 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8056 {
8057 bool output_is_shared = parameters->options().shared();
8058 const tls::Tls_optimization optimized_type
2e702c99 8059 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8060 r_type);
8061 switch (r_type)
8062 {
8063 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8064 if (optimized_type == tls::TLSOPT_NONE)
8065 {
2e702c99
RM
8066 // Create a pair of GOT entries for the module index and
8067 // dtv-relative offset.
8068 Arm_output_data_got<big_endian>* got
8069 = target->got_section(symtab, layout);
8070 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8071 unsigned int shndx = lsym.get_st_shndx();
8072 bool is_ordinary;
8073 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8074 if (!is_ordinary)
4a54abbb
DK
8075 {
8076 object->error(_("local symbol %u has bad shndx %u"),
8077 r_sym, shndx);
8078 break;
8079 }
8080
8081 if (!parameters->doing_static_link())
f96accdf
DK
8082 got->add_local_pair_with_rel(object, r_sym, shndx,
8083 GOT_TYPE_TLS_PAIR,
8084 target->rel_dyn_section(layout),
bd73a62d 8085 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8086 else
8087 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8088 object, r_sym);
f96accdf
DK
8089 }
8090 else
8091 // FIXME: TLS optimization not supported yet.
8092 gold_unreachable();
8093 break;
8094
8095 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8096 if (optimized_type == tls::TLSOPT_NONE)
8097 {
2e702c99
RM
8098 // Create a GOT entry for the module index.
8099 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8100 }
8101 else
8102 // FIXME: TLS optimization not supported yet.
8103 gold_unreachable();
8104 break;
8105
8106 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8107 break;
8108
8109 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8110 layout->set_has_static_tls();
8111 if (optimized_type == tls::TLSOPT_NONE)
8112 {
4a54abbb
DK
8113 // Create a GOT entry for the tp-relative offset.
8114 Arm_output_data_got<big_endian>* got
8115 = target->got_section(symtab, layout);
8116 unsigned int r_sym =
8117 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8118 if (!parameters->doing_static_link())
8119 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8120 target->rel_dyn_section(layout),
8121 elfcpp::R_ARM_TLS_TPOFF32);
8122 else if (!object->local_has_got_offset(r_sym,
8123 GOT_TYPE_TLS_OFFSET))
8124 {
8125 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8126 unsigned int got_offset =
8127 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8128 got->add_static_reloc(got_offset,
8129 elfcpp::R_ARM_TLS_TPOFF32, object,
8130 r_sym);
8131 }
f96accdf
DK
8132 }
8133 else
8134 // FIXME: TLS optimization not supported yet.
8135 gold_unreachable();
8136 break;
8137
8138 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8139 layout->set_has_static_tls();
8140 if (output_is_shared)
8141 {
2e702c99
RM
8142 // We need to create a dynamic relocation.
8143 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8144 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8145 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8146 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8147 output_section, data_shndx,
8148 reloc.get_r_offset());
8149 }
8150 break;
8151
8152 default:
8153 gold_unreachable();
8154 }
8155 }
8156 break;
8157
3cef7179
ILT
8158 case elfcpp::R_ARM_PC24:
8159 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8160 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8161 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8162 default:
8163 unsupported_reloc_local(object, r_type);
8164 break;
8165 }
8166}
8167
8168// Report an unsupported relocation against a global symbol.
8169
8170template<bool big_endian>
8171void
8172Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8173 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8174 unsigned int r_type,
8175 Symbol* gsym)
8176{
8177 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8178 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8179}
8180
8a75a161
DK
8181template<bool big_endian>
8182inline bool
8183Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8184 unsigned int r_type)
8185{
8186 switch (r_type)
8187 {
8188 case elfcpp::R_ARM_PC24:
8189 case elfcpp::R_ARM_THM_CALL:
8190 case elfcpp::R_ARM_PLT32:
8191 case elfcpp::R_ARM_CALL:
8192 case elfcpp::R_ARM_JUMP24:
8193 case elfcpp::R_ARM_THM_JUMP24:
8194 case elfcpp::R_ARM_SBREL31:
8195 case elfcpp::R_ARM_PREL31:
8196 case elfcpp::R_ARM_THM_JUMP19:
8197 case elfcpp::R_ARM_THM_JUMP6:
8198 case elfcpp::R_ARM_THM_JUMP11:
8199 case elfcpp::R_ARM_THM_JUMP8:
8200 // All the relocations above are branches except SBREL31 and PREL31.
8201 return false;
8202
8203 default:
8204 // Be conservative and assume this is a function pointer.
8205 return true;
8206 }
8207}
8208
8209template<bool big_endian>
8210inline bool
8211Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8212 Symbol_table*,
8213 Layout*,
8214 Target_arm<big_endian>* target,
6fa2a40b 8215 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8216 unsigned int,
8217 Output_section*,
8218 const elfcpp::Rel<32, big_endian>&,
8219 unsigned int r_type,
8220 const elfcpp::Sym<32, big_endian>&)
8221{
8222 r_type = target->get_real_reloc_type(r_type);
8223 return possible_function_pointer_reloc(r_type);
8224}
8225
8226template<bool big_endian>
8227inline bool
8228Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8229 Symbol_table*,
8230 Layout*,
8231 Target_arm<big_endian>* target,
6fa2a40b 8232 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8233 unsigned int,
8234 Output_section*,
8235 const elfcpp::Rel<32, big_endian>&,
8236 unsigned int r_type,
8237 Symbol* gsym)
8238{
8239 // GOT is not a function.
8240 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8241 return false;
8242
8243 r_type = target->get_real_reloc_type(r_type);
8244 return possible_function_pointer_reloc(r_type);
8245}
8246
4a657b0d
DK
8247// Scan a relocation for a global symbol.
8248
8249template<bool big_endian>
8250inline void
ad0f2072 8251Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8252 Layout* layout,
bec53400 8253 Target_arm* target,
6fa2a40b 8254 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8255 unsigned int data_shndx,
8256 Output_section* output_section,
8257 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8258 unsigned int r_type,
8259 Symbol* gsym)
8260{
c8761b9a
DK
8261 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8262 // section. We check here to avoid creating a dynamic reloc against
8263 // _GLOBAL_OFFSET_TABLE_.
8264 if (!target->has_got_section()
8265 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8266 target->got_section(symtab, layout);
8267
a6d1ef57 8268 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8269 switch (r_type)
8270 {
8271 case elfcpp::R_ARM_NONE:
e4782e83
DK
8272 case elfcpp::R_ARM_V4BX:
8273 case elfcpp::R_ARM_GNU_VTENTRY:
8274 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8275 break;
8276
bec53400 8277 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8278 case elfcpp::R_ARM_ABS16:
8279 case elfcpp::R_ARM_ABS12:
8280 case elfcpp::R_ARM_THM_ABS5:
8281 case elfcpp::R_ARM_ABS8:
8282 case elfcpp::R_ARM_BASE_ABS:
8283 case elfcpp::R_ARM_MOVW_ABS_NC:
8284 case elfcpp::R_ARM_MOVT_ABS:
8285 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8286 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8287 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8288 // Absolute addressing relocations.
bec53400 8289 {
2e702c99
RM
8290 // Make a PLT entry if necessary.
8291 if (this->symbol_needs_plt_entry(gsym))
8292 {
8293 target->make_plt_entry(symtab, layout, gsym);
8294 // Since this is not a PC-relative relocation, we may be
8295 // taking the address of a function. In that case we need to
8296 // set the entry in the dynamic symbol table to the address of
8297 // the PLT entry.
8298 if (gsym->is_from_dynobj() && !parameters->options().shared())
8299 gsym->set_needs_dynsym_value();
8300 }
8301 // Make a dynamic relocation if necessary.
8302 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8303 {
8304 if (gsym->may_need_copy_reloc())
8305 {
8306 target->copy_reloc(symtab, layout, object,
8307 data_shndx, output_section, gsym, reloc);
8308 }
8309 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8310 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8311 && gsym->can_use_relative_reloc(false))
8312 {
8313 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8314 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8315 output_section, object,
8316 data_shndx, reloc.get_r_offset());
8317 }
8318 else
8319 {
e4782e83 8320 check_non_pic(object, r_type);
2e702c99
RM
8321 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8322 rel_dyn->add_global(gsym, r_type, output_section, object,
8323 data_shndx, reloc.get_r_offset());
8324 }
8325 }
bec53400
DK
8326 }
8327 break;
8328
e4782e83
DK
8329 case elfcpp::R_ARM_GOTOFF32:
8330 case elfcpp::R_ARM_GOTOFF12:
8331 // We need a GOT section.
8332 target->got_section(symtab, layout);
8333 break;
2e702c99 8334
e4782e83
DK
8335 case elfcpp::R_ARM_REL32:
8336 case elfcpp::R_ARM_LDR_PC_G0:
8337 case elfcpp::R_ARM_SBREL32:
8338 case elfcpp::R_ARM_THM_PC8:
8339 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8340 case elfcpp::R_ARM_MOVW_PREL_NC:
8341 case elfcpp::R_ARM_MOVT_PREL:
8342 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8343 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8344 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8345 case elfcpp::R_ARM_THM_PC12:
8346 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8347 case elfcpp::R_ARM_ALU_PC_G0_NC:
8348 case elfcpp::R_ARM_ALU_PC_G0:
8349 case elfcpp::R_ARM_ALU_PC_G1_NC:
8350 case elfcpp::R_ARM_ALU_PC_G1:
8351 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8352 case elfcpp::R_ARM_LDR_PC_G1:
8353 case elfcpp::R_ARM_LDR_PC_G2:
8354 case elfcpp::R_ARM_LDRS_PC_G0:
8355 case elfcpp::R_ARM_LDRS_PC_G1:
8356 case elfcpp::R_ARM_LDRS_PC_G2:
8357 case elfcpp::R_ARM_LDC_PC_G0:
8358 case elfcpp::R_ARM_LDC_PC_G1:
8359 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8360 case elfcpp::R_ARM_ALU_SB_G0_NC:
8361 case elfcpp::R_ARM_ALU_SB_G0:
8362 case elfcpp::R_ARM_ALU_SB_G1_NC:
8363 case elfcpp::R_ARM_ALU_SB_G1:
8364 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8365 case elfcpp::R_ARM_LDR_SB_G0:
8366 case elfcpp::R_ARM_LDR_SB_G1:
8367 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8368 case elfcpp::R_ARM_LDRS_SB_G0:
8369 case elfcpp::R_ARM_LDRS_SB_G1:
8370 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8371 case elfcpp::R_ARM_LDC_SB_G0:
8372 case elfcpp::R_ARM_LDC_SB_G1:
8373 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8374 case elfcpp::R_ARM_MOVW_BREL_NC:
8375 case elfcpp::R_ARM_MOVT_BREL:
8376 case elfcpp::R_ARM_MOVW_BREL:
8377 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8378 case elfcpp::R_ARM_THM_MOVT_BREL:
8379 case elfcpp::R_ARM_THM_MOVW_BREL:
8380 // Relative addressing relocations.
bec53400
DK
8381 {
8382 // Make a dynamic relocation if necessary.
95a2c8d6 8383 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8384 {
8385 if (target->may_need_copy_reloc(gsym))
8386 {
2ea97941 8387 target->copy_reloc(symtab, layout, object,
bec53400
DK
8388 data_shndx, output_section, gsym, reloc);
8389 }
8390 else
8391 {
8392 check_non_pic(object, r_type);
2ea97941 8393 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8394 rel_dyn->add_global(gsym, r_type, output_section, object,
8395 data_shndx, reloc.get_r_offset());
8396 }
8397 }
8398 }
8399 break;
8400
f4e5969c 8401 case elfcpp::R_ARM_THM_CALL:
bec53400 8402 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8403 case elfcpp::R_ARM_CALL:
8404 case elfcpp::R_ARM_JUMP24:
8405 case elfcpp::R_ARM_THM_JUMP24:
8406 case elfcpp::R_ARM_SBREL31:
c9a2c125 8407 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8408 case elfcpp::R_ARM_THM_JUMP19:
8409 case elfcpp::R_ARM_THM_JUMP6:
8410 case elfcpp::R_ARM_THM_JUMP11:
8411 case elfcpp::R_ARM_THM_JUMP8:
8412 // All the relocation above are branches except for the PREL31 ones.
8413 // A PREL31 relocation can point to a personality function in a shared
8414 // library. In that case we want to use a PLT because we want to
9b547ce6 8415 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8416 // do not support dynamic PREL31 relocations. An REL31 relocation may
8417 // point to a function whose unwinding behaviour is being described but
8418 // we will not mistakenly generate a PLT for that because we should use
8419 // a local section symbol.
8420
bec53400
DK
8421 // If the symbol is fully resolved, this is just a relative
8422 // local reloc. Otherwise we need a PLT entry.
8423 if (gsym->final_value_is_known())
8424 break;
8425 // If building a shared library, we can also skip the PLT entry
8426 // if the symbol is defined in the output file and is protected
8427 // or hidden.
8428 if (gsym->is_defined()
8429 && !gsym->is_from_dynobj()
8430 && !gsym->is_preemptible())
8431 break;
2ea97941 8432 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8433 break;
8434
bec53400 8435 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8436 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8437 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8438 {
8439 // The symbol requires a GOT entry.
4a54abbb 8440 Arm_output_data_got<big_endian>* got =
2ea97941 8441 target->got_section(symtab, layout);
bec53400
DK
8442 if (gsym->final_value_is_known())
8443 got->add_global(gsym, GOT_TYPE_STANDARD);
8444 else
8445 {
8446 // If this symbol is not fully resolved, we need to add a
8447 // GOT entry with a dynamic relocation.
2ea97941 8448 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8449 if (gsym->is_from_dynobj()
8450 || gsym->is_undefined()
fa40b62a
DK
8451 || gsym->is_preemptible()
8452 || (gsym->visibility() == elfcpp::STV_PROTECTED
8453 && parameters->options().shared()))
bec53400
DK
8454 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8455 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8456 else
8457 {
8458 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8459 rel_dyn->add_global_relative(
8460 gsym, elfcpp::R_ARM_RELATIVE, got,
8461 gsym->got_offset(GOT_TYPE_STANDARD));
8462 }
8463 }
8464 }
8465 break;
8466
8467 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8468 case elfcpp::R_ARM_TARGET2:
8469 // These should have been mapped to other types already.
bec53400
DK
8470 // Fall through.
8471 case elfcpp::R_ARM_COPY:
8472 case elfcpp::R_ARM_GLOB_DAT:
8473 case elfcpp::R_ARM_JUMP_SLOT:
8474 case elfcpp::R_ARM_RELATIVE:
8475 // These are relocations which should only be seen by the
8476 // dynamic linker, and should never be seen here.
8477 gold_error(_("%s: unexpected reloc %u in object file"),
8478 object->name().c_str(), r_type);
8479 break;
8480
f96accdf
DK
8481 // These are initial tls relocs, which are expected when
8482 // linking.
8483 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8484 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8485 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8486 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8487 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8488 {
8489 const bool is_final = gsym->final_value_is_known();
8490 const tls::Tls_optimization optimized_type
2e702c99 8491 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8492 switch (r_type)
8493 {
8494 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8495 if (optimized_type == tls::TLSOPT_NONE)
8496 {
2e702c99
RM
8497 // Create a pair of GOT entries for the module index and
8498 // dtv-relative offset.
8499 Arm_output_data_got<big_endian>* got
8500 = target->got_section(symtab, layout);
4a54abbb
DK
8501 if (!parameters->doing_static_link())
8502 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8503 target->rel_dyn_section(layout),
8504 elfcpp::R_ARM_TLS_DTPMOD32,
8505 elfcpp::R_ARM_TLS_DTPOFF32);
8506 else
8507 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8508 }
8509 else
8510 // FIXME: TLS optimization not supported yet.
8511 gold_unreachable();
8512 break;
8513
8514 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8515 if (optimized_type == tls::TLSOPT_NONE)
8516 {
2e702c99
RM
8517 // Create a GOT entry for the module index.
8518 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8519 }
8520 else
8521 // FIXME: TLS optimization not supported yet.
8522 gold_unreachable();
8523 break;
8524
8525 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8526 break;
8527
8528 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8529 layout->set_has_static_tls();
8530 if (optimized_type == tls::TLSOPT_NONE)
8531 {
4a54abbb
DK
8532 // Create a GOT entry for the tp-relative offset.
8533 Arm_output_data_got<big_endian>* got
8534 = target->got_section(symtab, layout);
8535 if (!parameters->doing_static_link())
8536 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8537 target->rel_dyn_section(layout),
8538 elfcpp::R_ARM_TLS_TPOFF32);
8539 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8540 {
8541 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8542 unsigned int got_offset =
8543 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8544 got->add_static_reloc(got_offset,
8545 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8546 }
f96accdf
DK
8547 }
8548 else
8549 // FIXME: TLS optimization not supported yet.
8550 gold_unreachable();
8551 break;
8552
8553 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8554 layout->set_has_static_tls();
8555 if (parameters->options().shared())
8556 {
2e702c99
RM
8557 // We need to create a dynamic relocation.
8558 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8559 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 8560 output_section, object,
2e702c99 8561 data_shndx, reloc.get_r_offset());
f96accdf
DK
8562 }
8563 break;
8564
8565 default:
8566 gold_unreachable();
8567 }
8568 }
8569 break;
8570
3cef7179
ILT
8571 case elfcpp::R_ARM_PC24:
8572 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8573 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8574 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8575 default:
8576 unsupported_reloc_global(object, r_type, gsym);
8577 break;
8578 }
8579}
8580
8581// Process relocations for gc.
8582
8583template<bool big_endian>
8584void
6fa2a40b
CC
8585Target_arm<big_endian>::gc_process_relocs(
8586 Symbol_table* symtab,
8587 Layout* layout,
8588 Sized_relobj_file<32, big_endian>* object,
8589 unsigned int data_shndx,
8590 unsigned int,
8591 const unsigned char* prelocs,
8592 size_t reloc_count,
8593 Output_section* output_section,
8594 bool needs_special_offset_handling,
8595 size_t local_symbol_count,
8596 const unsigned char* plocal_symbols)
4a657b0d
DK
8597{
8598 typedef Target_arm<big_endian> Arm;
2ea97941 8599 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8600
41cbeecc 8601 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8602 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8603 symtab,
2ea97941 8604 layout,
4a657b0d
DK
8605 this,
8606 object,
8607 data_shndx,
8608 prelocs,
8609 reloc_count,
8610 output_section,
8611 needs_special_offset_handling,
8612 local_symbol_count,
8613 plocal_symbols);
8614}
8615
8616// Scan relocations for a section.
8617
8618template<bool big_endian>
8619void
ad0f2072 8620Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8621 Layout* layout,
6fa2a40b 8622 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8623 unsigned int data_shndx,
8624 unsigned int sh_type,
8625 const unsigned char* prelocs,
8626 size_t reloc_count,
8627 Output_section* output_section,
8628 bool needs_special_offset_handling,
8629 size_t local_symbol_count,
8630 const unsigned char* plocal_symbols)
8631{
2ea97941 8632 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8633 if (sh_type == elfcpp::SHT_RELA)
8634 {
8635 gold_error(_("%s: unsupported RELA reloc section"),
8636 object->name().c_str());
8637 return;
8638 }
8639
2ea97941 8640 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8641 symtab,
2ea97941 8642 layout,
4a657b0d
DK
8643 this,
8644 object,
8645 data_shndx,
8646 prelocs,
8647 reloc_count,
8648 output_section,
8649 needs_special_offset_handling,
8650 local_symbol_count,
8651 plocal_symbols);
8652}
8653
8654// Finalize the sections.
8655
8656template<bool big_endian>
8657void
d5b40221 8658Target_arm<big_endian>::do_finalize_sections(
2ea97941 8659 Layout* layout,
f59f41f3 8660 const Input_objects* input_objects,
647f1574 8661 Symbol_table*)
4a657b0d 8662{
3e235302 8663 bool merged_any_attributes = false;
d5b40221
DK
8664 // Merge processor-specific flags.
8665 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8666 p != input_objects->relobj_end();
8667 ++p)
8668 {
8669 Arm_relobj<big_endian>* arm_relobj =
8670 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8671 if (arm_relobj->merge_flags_and_attributes())
8672 {
8673 this->merge_processor_specific_flags(
8674 arm_relobj->name(),
8675 arm_relobj->processor_specific_flags());
8676 this->merge_object_attributes(arm_relobj->name().c_str(),
8677 arm_relobj->attributes_section_data());
3e235302 8678 merged_any_attributes = true;
7296d933 8679 }
2e702c99 8680 }
d5b40221
DK
8681
8682 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8683 p != input_objects->dynobj_end();
8684 ++p)
8685 {
8686 Arm_dynobj<big_endian>* arm_dynobj =
8687 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8688 this->merge_processor_specific_flags(
8689 arm_dynobj->name(),
8690 arm_dynobj->processor_specific_flags());
a0351a69
DK
8691 this->merge_object_attributes(arm_dynobj->name().c_str(),
8692 arm_dynobj->attributes_section_data());
3e235302 8693 merged_any_attributes = true;
d5b40221
DK
8694 }
8695
da59ad79
DK
8696 // Create an empty uninitialized attribute section if we still don't have it
8697 // at this moment. This happens if there is no attributes sections in all
8698 // inputs.
8699 if (this->attributes_section_data_ == NULL)
8700 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8701
41263c05 8702 const Object_attribute* cpu_arch_attr =
a0351a69 8703 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8704 // Check if we need to use Cortex-A8 workaround.
8705 if (parameters->options().user_set_fix_cortex_a8())
8706 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8707 else
8708 {
8709 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8710 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 8711 // profile.
41263c05
DK
8712 const Object_attribute* cpu_arch_profile_attr =
8713 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8714 this->fix_cortex_a8_ =
8715 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
8716 && (cpu_arch_profile_attr->int_value() == 'A'
8717 || cpu_arch_profile_attr->int_value() == 0));
41263c05 8718 }
2e702c99 8719
a2162063
ILT
8720 // Check if we can use V4BX interworking.
8721 // The V4BX interworking stub contains BX instruction,
8722 // which is not specified for some profiles.
9b2fd367 8723 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8724 && !this->may_use_v4t_interworking())
a2162063 8725 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 8726 "the target profile does not support BX instruction"));
a2162063 8727
94cdfcff 8728 // Fill in some more dynamic tags.
ea715a34
ILT
8729 const Reloc_section* rel_plt = (this->plt_ == NULL
8730 ? NULL
8731 : this->plt_->rel_plt());
8732 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8733 this->rel_dyn_, true, false);
94cdfcff
DK
8734
8735 // Emit any relocs we saved in an attempt to avoid generating COPY
8736 // relocs.
8737 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8738 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8739
f59f41f3 8740 // Handle the .ARM.exidx section.
2ea97941 8741 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8742
731ca54a
RÁE
8743 if (!parameters->options().relocatable())
8744 {
8745 if (exidx_section != NULL
2e702c99
RM
8746 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8747 {
8748 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8749 // the .ARM.exidx section.
8750 if (!layout->script_options()->saw_phdrs_clause())
8751 {
8752 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8753 0)
8754 == NULL);
8755 Output_segment* exidx_segment =
8756 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8757 exidx_segment->add_output_section_to_nonload(exidx_section,
8758 elfcpp::PF_R);
8759 }
8760 }
11af873f 8761 }
a0351a69 8762
3e235302
DK
8763 // Create an .ARM.attributes section if we have merged any attributes
8764 // from inputs.
8765 if (merged_any_attributes)
7296d933
DK
8766 {
8767 Output_attributes_section_data* attributes_section =
8768 new Output_attributes_section_data(*this->attributes_section_data_);
8769 layout->add_output_section_data(".ARM.attributes",
8770 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8771 attributes_section, ORDER_INVALID,
7296d933
DK
8772 false);
8773 }
131687b4
DK
8774
8775 // Fix up links in section EXIDX headers.
8776 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8777 p != layout->section_list().end();
8778 ++p)
8779 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8780 {
8781 Arm_output_section<big_endian>* os =
8782 Arm_output_section<big_endian>::as_arm_output_section(*p);
8783 os->set_exidx_section_link();
8784 }
4a657b0d
DK
8785}
8786
bec53400
DK
8787// Return whether a direct absolute static relocation needs to be applied.
8788// In cases where Scan::local() or Scan::global() has created
8789// a dynamic relocation other than R_ARM_RELATIVE, the addend
8790// of the relocation is carried in the data, and we must not
8791// apply the static relocation.
8792
8793template<bool big_endian>
8794inline bool
8795Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8796 const Sized_symbol<32>* gsym,
95a2c8d6 8797 unsigned int r_type,
bec53400
DK
8798 bool is_32bit,
8799 Output_section* output_section)
8800{
8801 // If the output section is not allocated, then we didn't call
8802 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8803 // the reloc here.
8804 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8805 return true;
8806
95a2c8d6
RS
8807 int ref_flags = Scan::get_reference_flags(r_type);
8808
bec53400
DK
8809 // For local symbols, we will have created a non-RELATIVE dynamic
8810 // relocation only if (a) the output is position independent,
8811 // (b) the relocation is absolute (not pc- or segment-relative), and
8812 // (c) the relocation is not 32 bits wide.
8813 if (gsym == NULL)
8814 return !(parameters->options().output_is_position_independent()
8815 && (ref_flags & Symbol::ABSOLUTE_REF)
8816 && !is_32bit);
8817
8818 // For global symbols, we use the same helper routines used in the
8819 // scan pass. If we did not create a dynamic relocation, or if we
8820 // created a RELATIVE dynamic relocation, we should apply the static
8821 // relocation.
8822 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8823 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8824 && gsym->can_use_relative_reloc(ref_flags
8825 & Symbol::FUNCTION_CALL);
8826 return !has_dyn || is_rel;
8827}
8828
4a657b0d
DK
8829// Perform a relocation.
8830
8831template<bool big_endian>
8832inline bool
8833Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8834 const Relocate_info<32, big_endian>* relinfo,
8835 Target_arm* target,
ca09d69a 8836 Output_section* output_section,
c121c671
DK
8837 size_t relnum,
8838 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8839 unsigned int r_type,
c121c671
DK
8840 const Sized_symbol<32>* gsym,
8841 const Symbol_value<32>* psymval,
8842 unsigned char* view,
ebabffbd 8843 Arm_address address,
f96accdf 8844 section_size_type view_size)
4a657b0d 8845{
0e804863
ILT
8846 if (view == NULL)
8847 return true;
8848
c121c671
DK
8849 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8850
a6d1ef57 8851 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8852 const Arm_reloc_property* reloc_property =
8853 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8854 if (reloc_property == NULL)
8855 {
8856 std::string reloc_name =
8857 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8858 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8859 _("cannot relocate %s in object file"),
8860 reloc_name.c_str());
8861 return true;
8862 }
c121c671 8863
2daedcd6
DK
8864 const Arm_relobj<big_endian>* object =
8865 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8866
2daedcd6
DK
8867 // If the final branch target of a relocation is THUMB instruction, this
8868 // is 1. Otherwise it is 0.
8869 Arm_address thumb_bit = 0;
c121c671 8870 Symbol_value<32> symval;
d204b6e9 8871 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8872 bool have_got_offset = false;
8873 unsigned int got_offset = 0;
8874
8875 // If the relocation uses the GOT entry of a symbol instead of the symbol
8876 // itself, we don't care about whether the symbol is defined or what kind
8877 // of symbol it is.
8878 if (reloc_property->uses_got_entry())
8879 {
8880 // Get the GOT offset.
8881 // The GOT pointer points to the end of the GOT section.
8882 // We need to subtract the size of the GOT section to get
8883 // the actual offset to use in the relocation.
8884 // TODO: We should move GOT offset computing code in TLS relocations
8885 // to here.
8886 switch (r_type)
8887 {
8888 case elfcpp::R_ARM_GOT_BREL:
8889 case elfcpp::R_ARM_GOT_PREL:
8890 if (gsym != NULL)
8891 {
8892 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8893 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8894 - target->got_size());
8895 }
8896 else
8897 {
8898 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8899 gold_assert(object->local_has_got_offset(r_sym,
8900 GOT_TYPE_STANDARD));
8901 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8902 - target->got_size());
8903 }
8904 have_got_offset = true;
8905 break;
8906
8907 default:
8908 break;
8909 }
8910 }
8911 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8912 {
2daedcd6
DK
8913 if (gsym != NULL)
8914 {
8915 // This is a global symbol. Determine if we use PLT and if the
8916 // final target is THUMB.
95a2c8d6 8917 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8918 {
8919 // This uses a PLT, change the symbol value.
8920 symval.set_output_value(target->plt_section()->address()
8921 + gsym->plt_offset());
8922 psymval = &symval;
8923 }
d204b6e9
DK
8924 else if (gsym->is_weak_undefined())
8925 {
8926 // This is a weakly undefined symbol and we do not use PLT
8927 // for this relocation. A branch targeting this symbol will
8928 // be converted into an NOP.
8929 is_weakly_undefined_without_plt = true;
8930 }
b2286c10
DK
8931 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8932 {
8933 // This relocation uses the symbol value but the symbol is
8934 // undefined. Exit early and have the caller reporting an
8935 // error.
8936 return true;
8937 }
2daedcd6
DK
8938 else
8939 {
8940 // Set thumb bit if symbol:
8941 // -Has type STT_ARM_TFUNC or
8942 // -Has type STT_FUNC, is defined and with LSB in value set.
8943 thumb_bit =
8944 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8945 || (gsym->type() == elfcpp::STT_FUNC
8946 && !gsym->is_undefined()
8947 && ((psymval->value(object, 0) & 1) != 0)))
8948 ? 1
8949 : 0);
8950 }
8951 }
8952 else
8953 {
2e702c99
RM
8954 // This is a local symbol. Determine if the final target is THUMB.
8955 // We saved this information when all the local symbols were read.
2daedcd6
DK
8956 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8957 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8958 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8959 }
8960 }
8961 else
8962 {
8963 // This is a fake relocation synthesized for a stub. It does not have
8964 // a real symbol. We just look at the LSB of the symbol value to
8965 // determine if the target is THUMB or not.
8966 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8967 }
8968
2daedcd6
DK
8969 // Strip LSB if this points to a THUMB target.
8970 if (thumb_bit != 0
2e702c99 8971 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8972 && ((psymval->value(object, 0) & 1) != 0))
8973 {
8974 Arm_address stripped_value =
8975 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8976 symval.set_output_value(stripped_value);
8977 psymval = &symval;
2e702c99 8978 }
2daedcd6 8979
d204b6e9
DK
8980 // To look up relocation stubs, we need to pass the symbol table index of
8981 // a local symbol.
8982 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8983
b10d2873
ILT
8984 // Get the addressing origin of the output segment defining the
8985 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8986 Arm_address sym_origin = 0;
5c57f1be 8987 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8988 {
8989 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8990 // R_ARM_BASE_ABS with the NULL symbol will give the
8991 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8992 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8993 sym_origin = target->got_plt_section()->address();
8994 else if (gsym == NULL)
8995 sym_origin = 0;
8996 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8997 sym_origin = gsym->output_segment()->vaddr();
8998 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8999 sym_origin = gsym->output_data()->address();
9000
9001 // TODO: Assumes the segment base to be zero for the global symbols
9002 // till the proper support for the segment-base-relative addressing
9003 // will be implemented. This is consistent with GNU ld.
9004 }
9005
5c57f1be
DK
9006 // For relative addressing relocation, find out the relative address base.
9007 Arm_address relative_address_base = 0;
9008 switch(reloc_property->relative_address_base())
9009 {
9010 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9011 // Relocations with relative address bases RAB_TLS and RAB_tp are
9012 // handled by relocate_tls. So we do not need to do anything here.
9013 case Arm_reloc_property::RAB_TLS:
9014 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9015 break;
9016 case Arm_reloc_property::RAB_B_S:
9017 relative_address_base = sym_origin;
9018 break;
9019 case Arm_reloc_property::RAB_GOT_ORG:
9020 relative_address_base = target->got_plt_section()->address();
9021 break;
9022 case Arm_reloc_property::RAB_P:
9023 relative_address_base = address;
9024 break;
9025 case Arm_reloc_property::RAB_Pa:
9026 relative_address_base = address & 0xfffffffcU;
9027 break;
9028 default:
2e702c99 9029 gold_unreachable();
5c57f1be 9030 }
2e702c99 9031
c121c671
DK
9032 typename Arm_relocate_functions::Status reloc_status =
9033 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9034 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9035 switch (r_type)
9036 {
9037 case elfcpp::R_ARM_NONE:
9038 break;
9039
5e445df6 9040 case elfcpp::R_ARM_ABS8:
95a2c8d6 9041 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9042 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9043 break;
9044
9045 case elfcpp::R_ARM_ABS12:
95a2c8d6 9046 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9047 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9048 break;
9049
9050 case elfcpp::R_ARM_ABS16:
95a2c8d6 9051 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9052 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9053 break;
9054
c121c671 9055 case elfcpp::R_ARM_ABS32:
95a2c8d6 9056 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9057 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9058 thumb_bit);
c121c671
DK
9059 break;
9060
be8fcb75 9061 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9062 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9063 // No thumb bit for this relocation: (S + A)
9064 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9065 0);
be8fcb75
ILT
9066 break;
9067
fd3c5f0b 9068 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9069 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9070 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9071 0, thumb_bit,
9072 check_overflow);
fd3c5f0b
ILT
9073 break;
9074
9075 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9076 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9077 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9078 break;
9079
9080 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9081 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9082 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9083 0, thumb_bit, false);
fd3c5f0b
ILT
9084 break;
9085
9086 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9087 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9088 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9089 psymval, 0);
fd3c5f0b
ILT
9090 break;
9091
c2a122b6 9092 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9093 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9094 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9095 reloc_status =
9096 Arm_relocate_functions::movw(view, object, psymval,
9097 relative_address_base, thumb_bit,
9098 check_overflow);
c2a122b6
ILT
9099 break;
9100
9101 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9102 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9103 reloc_status =
9104 Arm_relocate_functions::movt(view, object, psymval,
9105 relative_address_base);
c2a122b6
ILT
9106 break;
9107
9108 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9109 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9110 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9111 reloc_status =
9112 Arm_relocate_functions::thm_movw(view, object, psymval,
9113 relative_address_base,
9114 thumb_bit, check_overflow);
c2a122b6
ILT
9115 break;
9116
9117 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9118 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9119 reloc_status =
9120 Arm_relocate_functions::thm_movt(view, object, psymval,
9121 relative_address_base);
02961d7e 9122 break;
2e702c99 9123
c121c671
DK
9124 case elfcpp::R_ARM_REL32:
9125 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9126 address, thumb_bit);
c121c671
DK
9127 break;
9128
be8fcb75 9129 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9130 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9131 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9132 break;
9133
1521477a 9134 // Thumb long branches.
c121c671 9135 case elfcpp::R_ARM_THM_CALL:
51938283 9136 case elfcpp::R_ARM_THM_XPC22:
1521477a 9137 case elfcpp::R_ARM_THM_JUMP24:
51938283 9138 reloc_status =
1521477a
DK
9139 Arm_relocate_functions::thumb_branch_common(
9140 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9141 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9142 break;
9143
c121c671
DK
9144 case elfcpp::R_ARM_GOTOFF32:
9145 {
ebabffbd 9146 Arm_address got_origin;
c121c671
DK
9147 got_origin = target->got_plt_section()->address();
9148 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9149 got_origin, thumb_bit);
c121c671
DK
9150 }
9151 break;
9152
9153 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9154 gold_assert(gsym != NULL);
9155 reloc_status =
9156 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9157 break;
9158
be8fcb75 9159 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9160 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9161 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9162 break;
9163
c121c671
DK
9164 case elfcpp::R_ARM_GOT_BREL:
9165 gold_assert(have_got_offset);
9166 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9167 break;
9168
7f5309a5
ILT
9169 case elfcpp::R_ARM_GOT_PREL:
9170 gold_assert(have_got_offset);
9171 // Get the address origin for GOT PLT, which is allocated right
9172 // after the GOT section, to calculate an absolute address of
9173 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9174 Arm_address got_origin;
7f5309a5
ILT
9175 got_origin = target->got_plt_section()->address();
9176 reloc_status = Arm_relocate_functions::got_prel(view,
9177 got_origin + got_offset,
9178 address);
9179 break;
9180
c121c671 9181 case elfcpp::R_ARM_PLT32:
1521477a
DK
9182 case elfcpp::R_ARM_CALL:
9183 case elfcpp::R_ARM_JUMP24:
9184 case elfcpp::R_ARM_XPC25:
c121c671
DK
9185 gold_assert(gsym == NULL
9186 || gsym->has_plt_offset()
9187 || gsym->final_value_is_known()
9188 || (gsym->is_defined()
9189 && !gsym->is_from_dynobj()
9190 && !gsym->is_preemptible()));
d204b6e9 9191 reloc_status =
2e702c99 9192 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9193 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9194 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9195 break;
9196
41263c05
DK
9197 case elfcpp::R_ARM_THM_JUMP19:
9198 reloc_status =
9199 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9200 thumb_bit);
9201 break;
9202
800d0f56
ILT
9203 case elfcpp::R_ARM_THM_JUMP6:
9204 reloc_status =
9205 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9206 break;
9207
9208 case elfcpp::R_ARM_THM_JUMP8:
9209 reloc_status =
9210 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9211 break;
9212
9213 case elfcpp::R_ARM_THM_JUMP11:
9214 reloc_status =
9215 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9216 break;
9217
c121c671
DK
9218 case elfcpp::R_ARM_PREL31:
9219 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9220 address, thumb_bit);
c121c671
DK
9221 break;
9222
a2162063 9223 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9224 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9225 {
9226 const bool is_v4bx_interworking =
9227 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9228 reloc_status =
9229 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9230 is_v4bx_interworking);
9231 }
a2162063
ILT
9232 break;
9233
11b861d5
DK
9234 case elfcpp::R_ARM_THM_PC8:
9235 reloc_status =
9236 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9237 break;
9238
9239 case elfcpp::R_ARM_THM_PC12:
9240 reloc_status =
9241 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9242 break;
9243
9244 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9245 reloc_status =
9246 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9247 thumb_bit);
9248 break;
9249
b10d2873 9250 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9251 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9252 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9253 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9254 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9255 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9256 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9257 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9258 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9259 case elfcpp::R_ARM_ALU_SB_G2:
9260 reloc_status =
5c57f1be
DK
9261 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9262 reloc_property->group_index(),
9263 relative_address_base,
9264 thumb_bit, check_overflow);
b10d2873
ILT
9265 break;
9266
9267 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9268 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9269 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9270 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9271 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9272 case elfcpp::R_ARM_LDR_SB_G2:
9273 reloc_status =
5c57f1be
DK
9274 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9275 reloc_property->group_index(),
9276 relative_address_base);
b10d2873
ILT
9277 break;
9278
9279 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9280 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9281 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9282 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9283 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9284 case elfcpp::R_ARM_LDRS_SB_G2:
9285 reloc_status =
5c57f1be
DK
9286 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9287 reloc_property->group_index(),
9288 relative_address_base);
b10d2873
ILT
9289 break;
9290
9291 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9292 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9293 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9294 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9295 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9296 case elfcpp::R_ARM_LDC_SB_G2:
9297 reloc_status =
5c57f1be
DK
9298 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9299 reloc_property->group_index(),
9300 relative_address_base);
c121c671
DK
9301 break;
9302
f96accdf
DK
9303 // These are initial tls relocs, which are expected when
9304 // linking.
9305 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9306 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9307 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9308 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9309 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9310 reloc_status =
9311 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9312 view, address, view_size);
9313 break;
9314
3cef7179
ILT
9315 // The known and unknown unsupported and/or deprecated relocations.
9316 case elfcpp::R_ARM_PC24:
9317 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9318 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9319 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9320 default:
3cef7179
ILT
9321 // Just silently leave the method. We should get an appropriate error
9322 // message in the scan methods.
9323 break;
c121c671
DK
9324 }
9325
9326 // Report any errors.
9327 switch (reloc_status)
9328 {
9329 case Arm_relocate_functions::STATUS_OKAY:
9330 break;
9331 case Arm_relocate_functions::STATUS_OVERFLOW:
9332 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9333 _("relocation overflow in %s"),
9334 reloc_property->name().c_str());
c121c671
DK
9335 break;
9336 case Arm_relocate_functions::STATUS_BAD_RELOC:
9337 gold_error_at_location(
9338 relinfo,
9339 relnum,
9340 rel.get_r_offset(),
a2c7281b
DK
9341 _("unexpected opcode while processing relocation %s"),
9342 reloc_property->name().c_str());
c121c671 9343 break;
4a657b0d
DK
9344 default:
9345 gold_unreachable();
9346 }
9347
9348 return true;
9349}
9350
f96accdf
DK
9351// Perform a TLS relocation.
9352
9353template<bool big_endian>
9354inline typename Arm_relocate_functions<big_endian>::Status
9355Target_arm<big_endian>::Relocate::relocate_tls(
9356 const Relocate_info<32, big_endian>* relinfo,
9357 Target_arm<big_endian>* target,
9358 size_t relnum,
9359 const elfcpp::Rel<32, big_endian>& rel,
9360 unsigned int r_type,
9361 const Sized_symbol<32>* gsym,
9362 const Symbol_value<32>* psymval,
9363 unsigned char* view,
4a54abbb 9364 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9365 section_size_type /*view_size*/ )
9366{
9367 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9368 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9369 Output_segment* tls_segment = relinfo->layout->tls_segment();
9370
6fa2a40b 9371 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9372
9373 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9374
9375 const bool is_final = (gsym == NULL
9376 ? !parameters->options().shared()
9377 : gsym->final_value_is_known());
9378 const tls::Tls_optimization optimized_type
9379 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9380 switch (r_type)
9381 {
9382 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9383 {
9384 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9385 unsigned int got_offset;
9386 if (gsym != NULL)
9387 {
9388 gold_assert(gsym->has_got_offset(got_type));
9389 got_offset = gsym->got_offset(got_type) - target->got_size();
9390 }
9391 else
9392 {
9393 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9394 gold_assert(object->local_has_got_offset(r_sym, got_type));
9395 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9396 - target->got_size());
2e702c99
RM
9397 }
9398 if (optimized_type == tls::TLSOPT_NONE)
9399 {
4a54abbb
DK
9400 Arm_address got_entry =
9401 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9402
9403 // Relocate the field with the PC relative offset of the pair of
9404 // GOT entries.
29ab395d 9405 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9406 return ArmRelocFuncs::STATUS_OKAY;
9407 }
9408 }
f96accdf
DK
9409 break;
9410
9411 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9412 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9413 {
9414 // Relocate the field with the offset of the GOT entry for
9415 // the module index.
9416 unsigned int got_offset;
9417 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9418 - target->got_size());
4a54abbb
DK
9419 Arm_address got_entry =
9420 target->got_plt_section()->address() + got_offset;
9421
2e702c99
RM
9422 // Relocate the field with the PC relative offset of the pair of
9423 // GOT entries.
9424 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9425 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9426 }
f96accdf
DK
9427 break;
9428
9429 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9430 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9431 return ArmRelocFuncs::STATUS_OKAY;
9432
9433 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9434 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9435 {
9436 // Relocate the field with the offset of the GOT entry for
9437 // the tp-relative offset of the symbol.
f96accdf 9438 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9439 unsigned int got_offset;
9440 if (gsym != NULL)
9441 {
9442 gold_assert(gsym->has_got_offset(got_type));
9443 got_offset = gsym->got_offset(got_type);
9444 }
9445 else
9446 {
9447 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9448 gold_assert(object->local_has_got_offset(r_sym, got_type));
9449 got_offset = object->local_got_offset(r_sym, got_type);
9450 }
9451
9452 // All GOT offsets are relative to the end of the GOT.
9453 got_offset -= target->got_size();
4a54abbb
DK
9454
9455 Arm_address got_entry =
9456 target->got_plt_section()->address() + got_offset;
9457
2e702c99 9458 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9459 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9460 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9461 }
f96accdf
DK
9462 break;
9463
9464 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9465 // If we're creating a shared library, a dynamic relocation will
9466 // have been created for this location, so do not apply it now.
9467 if (!parameters->options().shared())
2e702c99
RM
9468 {
9469 gold_assert(tls_segment != NULL);
4a54abbb
DK
9470
9471 // $tp points to the TCB, which is followed by the TLS, so we
9472 // need to add TCB size to the offset.
9473 Arm_address aligned_tcb_size =
9474 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9475 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9476
2e702c99 9477 }
f96accdf 9478 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9479
f96accdf
DK
9480 default:
9481 gold_unreachable();
9482 }
9483
9484 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9485 _("unsupported reloc %u"),
9486 r_type);
9487 return ArmRelocFuncs::STATUS_BAD_RELOC;
9488}
9489
4a657b0d
DK
9490// Relocate section data.
9491
9492template<bool big_endian>
9493void
9494Target_arm<big_endian>::relocate_section(
9495 const Relocate_info<32, big_endian>* relinfo,
9496 unsigned int sh_type,
9497 const unsigned char* prelocs,
9498 size_t reloc_count,
9499 Output_section* output_section,
9500 bool needs_special_offset_handling,
9501 unsigned char* view,
ebabffbd 9502 Arm_address address,
364c7fa5
ILT
9503 section_size_type view_size,
9504 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9505{
9506 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9507 gold_assert(sh_type == elfcpp::SHT_REL);
9508
218c5831
DK
9509 // See if we are relocating a relaxed input section. If so, the view
9510 // covers the whole output section and we need to adjust accordingly.
9511 if (needs_special_offset_handling)
43d12afe 9512 {
218c5831
DK
9513 const Output_relaxed_input_section* poris =
9514 output_section->find_relaxed_input_section(relinfo->object,
9515 relinfo->data_shndx);
9516 if (poris != NULL)
9517 {
9518 Arm_address section_address = poris->address();
9519 section_size_type section_size = poris->data_size();
9520
9521 gold_assert((section_address >= address)
9522 && ((section_address + section_size)
9523 <= (address + view_size)));
9524
9525 off_t offset = section_address - address;
9526 view += offset;
9527 address += offset;
9528 view_size = section_size;
9529 }
43d12afe
DK
9530 }
9531
4a657b0d 9532 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 9533 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
9534 relinfo,
9535 this,
9536 prelocs,
9537 reloc_count,
9538 output_section,
9539 needs_special_offset_handling,
9540 view,
9541 address,
364c7fa5
ILT
9542 view_size,
9543 reloc_symbol_changes);
4a657b0d
DK
9544}
9545
9546// Return the size of a relocation while scanning during a relocatable
9547// link.
9548
9549template<bool big_endian>
9550unsigned int
9551Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9552 unsigned int r_type,
9553 Relobj* object)
9554{
a6d1ef57 9555 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9556 const Arm_reloc_property* arp =
9557 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9558 if (arp != NULL)
9559 return arp->size();
9560 else
4a657b0d 9561 {
5c57f1be
DK
9562 std::string reloc_name =
9563 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9564 gold_error(_("%s: unexpected %s in object file"),
9565 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9566 return 0;
9567 }
9568}
9569
9570// Scan the relocs during a relocatable link.
9571
9572template<bool big_endian>
9573void
9574Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9575 Symbol_table* symtab,
2ea97941 9576 Layout* layout,
6fa2a40b 9577 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9578 unsigned int data_shndx,
9579 unsigned int sh_type,
9580 const unsigned char* prelocs,
9581 size_t reloc_count,
9582 Output_section* output_section,
9583 bool needs_special_offset_handling,
9584 size_t local_symbol_count,
9585 const unsigned char* plocal_symbols,
9586 Relocatable_relocs* rr)
9587{
9588 gold_assert(sh_type == elfcpp::SHT_REL);
9589
5c388529 9590 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9591 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9592
9593 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9594 Scan_relocatable_relocs>(
4a657b0d 9595 symtab,
2ea97941 9596 layout,
4a657b0d
DK
9597 object,
9598 data_shndx,
9599 prelocs,
9600 reloc_count,
9601 output_section,
9602 needs_special_offset_handling,
9603 local_symbol_count,
9604 plocal_symbols,
9605 rr);
9606}
9607
7404fe1b 9608// Emit relocations for a section.
4a657b0d
DK
9609
9610template<bool big_endian>
9611void
7404fe1b 9612Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
9613 const Relocate_info<32, big_endian>* relinfo,
9614 unsigned int sh_type,
9615 const unsigned char* prelocs,
9616 size_t reloc_count,
9617 Output_section* output_section,
62fe925a 9618 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
9619 const Relocatable_relocs* rr,
9620 unsigned char* view,
ebabffbd 9621 Arm_address view_address,
4a657b0d
DK
9622 section_size_type view_size,
9623 unsigned char* reloc_view,
9624 section_size_type reloc_view_size)
9625{
9626 gold_assert(sh_type == elfcpp::SHT_REL);
9627
7404fe1b 9628 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
9629 relinfo,
9630 prelocs,
9631 reloc_count,
9632 output_section,
9633 offset_in_output_section,
9634 rr,
9635 view,
9636 view_address,
9637 view_size,
9638 reloc_view,
9639 reloc_view_size);
9640}
9641
5c388529
DK
9642// Perform target-specific processing in a relocatable link. This is
9643// only used if we use the relocation strategy RELOC_SPECIAL.
9644
9645template<bool big_endian>
9646void
9647Target_arm<big_endian>::relocate_special_relocatable(
9648 const Relocate_info<32, big_endian>* relinfo,
9649 unsigned int sh_type,
9650 const unsigned char* preloc_in,
9651 size_t relnum,
9652 Output_section* output_section,
62fe925a 9653 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
9654 unsigned char* view,
9655 elfcpp::Elf_types<32>::Elf_Addr view_address,
9656 section_size_type,
9657 unsigned char* preloc_out)
9658{
9659 // We can only handle REL type relocation sections.
9660 gold_assert(sh_type == elfcpp::SHT_REL);
9661
9662 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9663 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9664 Reltype_write;
9665 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9666
9667 const Arm_relobj<big_endian>* object =
9668 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9669 const unsigned int local_count = object->local_symbol_count();
9670
9671 Reltype reloc(preloc_in);
9672 Reltype_write reloc_write(preloc_out);
9673
9674 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9675 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9676 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9677
9678 const Arm_reloc_property* arp =
9679 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9680 gold_assert(arp != NULL);
9681
9682 // Get the new symbol index.
9683 // We only use RELOC_SPECIAL strategy in local relocations.
9684 gold_assert(r_sym < local_count);
9685
9686 // We are adjusting a section symbol. We need to find
9687 // the symbol table index of the section symbol for
9688 // the output section corresponding to input section
9689 // in which this symbol is defined.
9690 bool is_ordinary;
9691 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9692 gold_assert(is_ordinary);
9693 Output_section* os = object->output_section(shndx);
9694 gold_assert(os != NULL);
9695 gold_assert(os->needs_symtab_index());
9696 unsigned int new_symndx = os->symtab_index();
9697
9698 // Get the new offset--the location in the output section where
9699 // this relocation should be applied.
9700
9701 Arm_address offset = reloc.get_r_offset();
9702 Arm_address new_offset;
9703 if (offset_in_output_section != invalid_address)
9704 new_offset = offset + offset_in_output_section;
9705 else
9706 {
9707 section_offset_type sot_offset =
2e702c99 9708 convert_types<section_offset_type, Arm_address>(offset);
5c388529 9709 section_offset_type new_sot_offset =
2e702c99
RM
9710 output_section->output_offset(object, relinfo->data_shndx,
9711 sot_offset);
5c388529
DK
9712 gold_assert(new_sot_offset != -1);
9713 new_offset = new_sot_offset;
9714 }
9715
9716 // In an object file, r_offset is an offset within the section.
9717 // In an executable or dynamic object, generated by
9718 // --emit-relocs, r_offset is an absolute address.
9719 if (!parameters->options().relocatable())
9720 {
9721 new_offset += view_address;
9722 if (offset_in_output_section != invalid_address)
2e702c99 9723 new_offset -= offset_in_output_section;
5c388529
DK
9724 }
9725
9726 reloc_write.put_r_offset(new_offset);
9727 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9728
9729 // Handle the reloc addend.
9730 // The relocation uses a section symbol in the input file.
9731 // We are adjusting it to use a section symbol in the output
9732 // file. The input section symbol refers to some address in
9733 // the input section. We need the relocation in the output
9734 // file to refer to that same address. This adjustment to
9735 // the addend is the same calculation we use for a simple
9736 // absolute relocation for the input section symbol.
9737
9738 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9739
9740 // Handle THUMB bit.
9741 Symbol_value<32> symval;
9742 Arm_address thumb_bit =
9743 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9744 if (thumb_bit != 0
2e702c99 9745 && arp->uses_thumb_bit()
5c388529
DK
9746 && ((psymval->value(object, 0) & 1) != 0))
9747 {
9748 Arm_address stripped_value =
9749 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9750 symval.set_output_value(stripped_value);
9751 psymval = &symval;
2e702c99 9752 }
5c388529
DK
9753
9754 unsigned char* paddend = view + offset;
9755 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9756 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9757 switch (r_type)
9758 {
9759 case elfcpp::R_ARM_ABS8:
9760 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9761 psymval);
9762 break;
9763
9764 case elfcpp::R_ARM_ABS12:
9765 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9766 psymval);
9767 break;
9768
9769 case elfcpp::R_ARM_ABS16:
9770 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9771 psymval);
9772 break;
9773
9774 case elfcpp::R_ARM_THM_ABS5:
9775 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9776 object,
9777 psymval);
9778 break;
9779
9780 case elfcpp::R_ARM_MOVW_ABS_NC:
9781 case elfcpp::R_ARM_MOVW_PREL_NC:
9782 case elfcpp::R_ARM_MOVW_BREL_NC:
9783 case elfcpp::R_ARM_MOVW_BREL:
9784 reloc_status = Arm_relocate_functions<big_endian>::movw(
9785 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9786 break;
9787
9788 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9789 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9790 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9791 case elfcpp::R_ARM_THM_MOVW_BREL:
9792 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9793 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9794 break;
9795
9796 case elfcpp::R_ARM_THM_CALL:
9797 case elfcpp::R_ARM_THM_XPC22:
9798 case elfcpp::R_ARM_THM_JUMP24:
9799 reloc_status =
9800 Arm_relocate_functions<big_endian>::thumb_branch_common(
9801 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9802 false);
9803 break;
9804
9805 case elfcpp::R_ARM_PLT32:
9806 case elfcpp::R_ARM_CALL:
9807 case elfcpp::R_ARM_JUMP24:
9808 case elfcpp::R_ARM_XPC25:
9809 reloc_status =
2e702c99 9810 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
9811 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9812 false);
9813 break;
9814
9815 case elfcpp::R_ARM_THM_JUMP19:
9816 reloc_status =
9817 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9818 psymval, 0, thumb_bit);
9819 break;
9820
9821 case elfcpp::R_ARM_THM_JUMP6:
9822 reloc_status =
9823 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9824 0);
9825 break;
9826
9827 case elfcpp::R_ARM_THM_JUMP8:
9828 reloc_status =
9829 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9830 0);
9831 break;
9832
9833 case elfcpp::R_ARM_THM_JUMP11:
9834 reloc_status =
9835 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9836 0);
9837 break;
9838
9839 case elfcpp::R_ARM_PREL31:
9840 reloc_status =
9841 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9842 thumb_bit);
9843 break;
9844
9845 case elfcpp::R_ARM_THM_PC8:
9846 reloc_status =
9847 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9848 0);
9849 break;
9850
9851 case elfcpp::R_ARM_THM_PC12:
9852 reloc_status =
9853 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9854 0);
9855 break;
9856
9857 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9858 reloc_status =
9859 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9860 0, thumb_bit);
9861 break;
9862
9863 // These relocation truncate relocation results so we cannot handle them
9864 // in a relocatable link.
9865 case elfcpp::R_ARM_MOVT_ABS:
9866 case elfcpp::R_ARM_THM_MOVT_ABS:
9867 case elfcpp::R_ARM_MOVT_PREL:
9868 case elfcpp::R_ARM_MOVT_BREL:
9869 case elfcpp::R_ARM_THM_MOVT_PREL:
9870 case elfcpp::R_ARM_THM_MOVT_BREL:
9871 case elfcpp::R_ARM_ALU_PC_G0_NC:
9872 case elfcpp::R_ARM_ALU_PC_G0:
9873 case elfcpp::R_ARM_ALU_PC_G1_NC:
9874 case elfcpp::R_ARM_ALU_PC_G1:
9875 case elfcpp::R_ARM_ALU_PC_G2:
9876 case elfcpp::R_ARM_ALU_SB_G0_NC:
9877 case elfcpp::R_ARM_ALU_SB_G0:
9878 case elfcpp::R_ARM_ALU_SB_G1_NC:
9879 case elfcpp::R_ARM_ALU_SB_G1:
9880 case elfcpp::R_ARM_ALU_SB_G2:
9881 case elfcpp::R_ARM_LDR_PC_G0:
9882 case elfcpp::R_ARM_LDR_PC_G1:
9883 case elfcpp::R_ARM_LDR_PC_G2:
9884 case elfcpp::R_ARM_LDR_SB_G0:
9885 case elfcpp::R_ARM_LDR_SB_G1:
9886 case elfcpp::R_ARM_LDR_SB_G2:
9887 case elfcpp::R_ARM_LDRS_PC_G0:
9888 case elfcpp::R_ARM_LDRS_PC_G1:
9889 case elfcpp::R_ARM_LDRS_PC_G2:
9890 case elfcpp::R_ARM_LDRS_SB_G0:
9891 case elfcpp::R_ARM_LDRS_SB_G1:
9892 case elfcpp::R_ARM_LDRS_SB_G2:
9893 case elfcpp::R_ARM_LDC_PC_G0:
9894 case elfcpp::R_ARM_LDC_PC_G1:
9895 case elfcpp::R_ARM_LDC_PC_G2:
9896 case elfcpp::R_ARM_LDC_SB_G0:
9897 case elfcpp::R_ARM_LDC_SB_G1:
9898 case elfcpp::R_ARM_LDC_SB_G2:
9899 gold_error(_("cannot handle %s in a relocatable link"),
9900 arp->name().c_str());
9901 break;
9902
9903 default:
9904 gold_unreachable();
9905 }
9906
9907 // Report any errors.
9908 switch (reloc_status)
9909 {
9910 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9911 break;
9912 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9913 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9914 _("relocation overflow in %s"),
9915 arp->name().c_str());
9916 break;
9917 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9918 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9919 _("unexpected opcode while processing relocation %s"),
9920 arp->name().c_str());
9921 break;
9922 default:
9923 gold_unreachable();
9924 }
9925}
9926
94cdfcff
DK
9927// Return the value to use for a dynamic symbol which requires special
9928// treatment. This is how we support equality comparisons of function
9929// pointers across shared library boundaries, as described in the
9930// processor specific ABI supplement.
9931
4a657b0d
DK
9932template<bool big_endian>
9933uint64_t
94cdfcff 9934Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9935{
94cdfcff
DK
9936 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9937 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9938}
9939
9940// Map platform-specific relocs to real relocs
9941//
9942template<bool big_endian>
9943unsigned int
ca09d69a 9944Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9945{
9946 switch (r_type)
9947 {
9948 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9949 // This is either R_ARM_ABS32 or R_ARM_REL32;
9950 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9951
9952 case elfcpp::R_ARM_TARGET2:
9b547ce6 9953 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9954 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9955
9956 default:
9957 return r_type;
9958 }
9959}
9960
d5b40221
DK
9961// Whether if two EABI versions V1 and V2 are compatible.
9962
9963template<bool big_endian>
9964bool
9965Target_arm<big_endian>::are_eabi_versions_compatible(
9966 elfcpp::Elf_Word v1,
9967 elfcpp::Elf_Word v2)
9968{
9969 // v4 and v5 are the same spec before and after it was released,
9970 // so allow mixing them.
106e8a6c
DK
9971 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9972 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9973 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9974 return true;
9975
9976 return v1 == v2;
9977}
9978
9979// Combine FLAGS from an input object called NAME and the processor-specific
9980// flags in the ELF header of the output. Much of this is adapted from the
9981// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9982// in bfd/elf32-arm.c.
9983
9984template<bool big_endian>
9985void
9986Target_arm<big_endian>::merge_processor_specific_flags(
9987 const std::string& name,
9988 elfcpp::Elf_Word flags)
9989{
9990 if (this->are_processor_specific_flags_set())
9991 {
9992 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9993
9994 // Nothing to merge if flags equal to those in output.
9995 if (flags == out_flags)
9996 return;
9997
9998 // Complain about various flag mismatches.
9999 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10000 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10001 if (!this->are_eabi_versions_compatible(version1, version2)
10002 && parameters->options().warn_mismatch())
d5b40221
DK
10003 gold_error(_("Source object %s has EABI version %d but output has "
10004 "EABI version %d."),
10005 name.c_str(),
10006 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10007 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10008 }
10009 else
10010 {
10011 // If the input is the default architecture and had the default
10012 // flags then do not bother setting the flags for the output
10013 // architecture, instead allow future merges to do this. If no
10014 // future merges ever set these flags then they will retain their
10015 // uninitialised values, which surprise surprise, correspond
10016 // to the default values.
10017 if (flags == 0)
10018 return;
10019
10020 // This is the first time, just copy the flags.
10021 // We only copy the EABI version for now.
10022 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10023 }
10024}
10025
10026// Adjust ELF file header.
10027template<bool big_endian>
10028void
10029Target_arm<big_endian>::do_adjust_elf_header(
10030 unsigned char* view,
3bfcb652 10031 int len)
d5b40221
DK
10032{
10033 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10034
10035 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10036 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10037 unsigned char e_ident[elfcpp::EI_NIDENT];
10038 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10039
3bfcb652 10040 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10041 == elfcpp::EF_ARM_EABI_UNKNOWN)
10042 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10043 else
10044 e_ident[elfcpp::EI_OSABI] = 0;
10045 e_ident[elfcpp::EI_ABIVERSION] = 0;
10046
10047 // FIXME: Do EF_ARM_BE8 adjustment.
10048
3bfcb652
NC
10049 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10050 // as appropriate.
10051 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10052 {
10053 elfcpp::Elf_Half type = ehdr.get_e_type();
10054 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10055 {
10056 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10057 if (attr->int_value())
10058 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10059 else
10060 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10061 this->set_processor_specific_flags(flags);
10062 }
10063 }
d5b40221
DK
10064 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10065 oehdr.put_e_ident(e_ident);
10066}
10067
10068// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10069// We need to use a target-specific sub-class of
10070// Sized_relobj_file<32, big_endian> to store ARM specific information.
10071// Hence we need to have our own ELF object creation.
d5b40221
DK
10072
10073template<bool big_endian>
10074Object*
10075Target_arm<big_endian>::do_make_elf_object(
10076 const std::string& name,
10077 Input_file* input_file,
2ea97941 10078 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10079{
10080 int et = ehdr.get_e_type();
f4a8b6d7
DK
10081 // ET_EXEC files are valid input for --just-symbols/-R,
10082 // and we treat them as relocatable objects.
10083 if (et == elfcpp::ET_REL
10084 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10085 {
10086 Arm_relobj<big_endian>* obj =
2e702c99 10087 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10088 obj->setup();
10089 return obj;
10090 }
10091 else if (et == elfcpp::ET_DYN)
10092 {
10093 Sized_dynobj<32, big_endian>* obj =
2e702c99 10094 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10095 obj->setup();
10096 return obj;
10097 }
10098 else
10099 {
10100 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10101 name.c_str(), et);
d5b40221
DK
10102 return NULL;
10103 }
10104}
10105
a0351a69
DK
10106// Read the architecture from the Tag_also_compatible_with attribute, if any.
10107// Returns -1 if no architecture could be read.
10108// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10109
10110template<bool big_endian>
10111int
10112Target_arm<big_endian>::get_secondary_compatible_arch(
10113 const Attributes_section_data* pasd)
10114{
ca09d69a 10115 const Object_attribute* known_attributes =
a0351a69
DK
10116 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10117
10118 // Note: the tag and its argument below are uleb128 values, though
10119 // currently-defined values fit in one byte for each.
10120 const std::string& sv =
10121 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10122 if (sv.size() == 2
10123 && sv.data()[0] == elfcpp::Tag_CPU_arch
10124 && (sv.data()[1] & 128) != 128)
10125 return sv.data()[1];
10126
10127 // This tag is "safely ignorable", so don't complain if it looks funny.
10128 return -1;
10129}
10130
10131// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10132// The tag is removed if ARCH is -1.
10133// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10134
10135template<bool big_endian>
10136void
10137Target_arm<big_endian>::set_secondary_compatible_arch(
10138 Attributes_section_data* pasd,
10139 int arch)
10140{
ca09d69a 10141 Object_attribute* known_attributes =
a0351a69
DK
10142 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10143
10144 if (arch == -1)
10145 {
10146 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10147 return;
10148 }
10149
10150 // Note: the tag and its argument below are uleb128 values, though
10151 // currently-defined values fit in one byte for each.
10152 char sv[3];
10153 sv[0] = elfcpp::Tag_CPU_arch;
10154 gold_assert(arch != 0);
10155 sv[1] = arch;
10156 sv[2] = '\0';
10157
10158 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10159}
10160
10161// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10162// into account.
10163// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10164
10165template<bool big_endian>
10166int
10167Target_arm<big_endian>::tag_cpu_arch_combine(
10168 const char* name,
10169 int oldtag,
10170 int* secondary_compat_out,
10171 int newtag,
10172 int secondary_compat)
10173{
10174#define T(X) elfcpp::TAG_CPU_ARCH_##X
10175 static const int v6t2[] =
10176 {
10177 T(V6T2), // PRE_V4.
10178 T(V6T2), // V4.
10179 T(V6T2), // V4T.
10180 T(V6T2), // V5T.
10181 T(V6T2), // V5TE.
10182 T(V6T2), // V5TEJ.
10183 T(V6T2), // V6.
10184 T(V7), // V6KZ.
10185 T(V6T2) // V6T2.
10186 };
10187 static const int v6k[] =
10188 {
10189 T(V6K), // PRE_V4.
10190 T(V6K), // V4.
10191 T(V6K), // V4T.
10192 T(V6K), // V5T.
10193 T(V6K), // V5TE.
10194 T(V6K), // V5TEJ.
10195 T(V6K), // V6.
10196 T(V6KZ), // V6KZ.
10197 T(V7), // V6T2.
10198 T(V6K) // V6K.
10199 };
10200 static const int v7[] =
10201 {
10202 T(V7), // PRE_V4.
10203 T(V7), // V4.
10204 T(V7), // V4T.
10205 T(V7), // V5T.
10206 T(V7), // V5TE.
10207 T(V7), // V5TEJ.
10208 T(V7), // V6.
10209 T(V7), // V6KZ.
10210 T(V7), // V6T2.
10211 T(V7), // V6K.
10212 T(V7) // V7.
10213 };
10214 static const int v6_m[] =
10215 {
10216 -1, // PRE_V4.
10217 -1, // V4.
10218 T(V6K), // V4T.
10219 T(V6K), // V5T.
10220 T(V6K), // V5TE.
10221 T(V6K), // V5TEJ.
10222 T(V6K), // V6.
10223 T(V6KZ), // V6KZ.
10224 T(V7), // V6T2.
10225 T(V6K), // V6K.
10226 T(V7), // V7.
10227 T(V6_M) // V6_M.
10228 };
10229 static const int v6s_m[] =
10230 {
10231 -1, // PRE_V4.
10232 -1, // V4.
10233 T(V6K), // V4T.
10234 T(V6K), // V5T.
10235 T(V6K), // V5TE.
10236 T(V6K), // V5TEJ.
10237 T(V6K), // V6.
10238 T(V6KZ), // V6KZ.
10239 T(V7), // V6T2.
10240 T(V6K), // V6K.
10241 T(V7), // V7.
10242 T(V6S_M), // V6_M.
10243 T(V6S_M) // V6S_M.
10244 };
10245 static const int v7e_m[] =
10246 {
10247 -1, // PRE_V4.
10248 -1, // V4.
10249 T(V7E_M), // V4T.
10250 T(V7E_M), // V5T.
10251 T(V7E_M), // V5TE.
10252 T(V7E_M), // V5TEJ.
10253 T(V7E_M), // V6.
10254 T(V7E_M), // V6KZ.
10255 T(V7E_M), // V6T2.
10256 T(V7E_M), // V6K.
10257 T(V7E_M), // V7.
10258 T(V7E_M), // V6_M.
10259 T(V7E_M), // V6S_M.
10260 T(V7E_M) // V7E_M.
10261 };
10262 static const int v4t_plus_v6_m[] =
10263 {
10264 -1, // PRE_V4.
10265 -1, // V4.
10266 T(V4T), // V4T.
10267 T(V5T), // V5T.
10268 T(V5TE), // V5TE.
10269 T(V5TEJ), // V5TEJ.
10270 T(V6), // V6.
10271 T(V6KZ), // V6KZ.
10272 T(V6T2), // V6T2.
10273 T(V6K), // V6K.
10274 T(V7), // V7.
10275 T(V6_M), // V6_M.
10276 T(V6S_M), // V6S_M.
10277 T(V7E_M), // V7E_M.
10278 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10279 };
ca09d69a 10280 static const int* comb[] =
a0351a69
DK
10281 {
10282 v6t2,
10283 v6k,
10284 v7,
10285 v6_m,
10286 v6s_m,
10287 v7e_m,
10288 // Pseudo-architecture.
10289 v4t_plus_v6_m
10290 };
10291
10292 // Check we've not got a higher architecture than we know about.
10293
f62a3ca7 10294 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10295 {
10296 gold_error(_("%s: unknown CPU architecture"), name);
10297 return -1;
10298 }
10299
10300 // Override old tag if we have a Tag_also_compatible_with on the output.
10301
10302 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10303 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10304 oldtag = T(V4T_PLUS_V6_M);
10305
10306 // And override the new tag if we have a Tag_also_compatible_with on the
10307 // input.
10308
10309 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10310 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10311 newtag = T(V4T_PLUS_V6_M);
10312
10313 // Architectures before V6KZ add features monotonically.
10314 int tagh = std::max(oldtag, newtag);
10315 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10316 return tagh;
10317
10318 int tagl = std::min(oldtag, newtag);
10319 int result = comb[tagh - T(V6T2)][tagl];
10320
10321 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10322 // as the canonical version.
10323 if (result == T(V4T_PLUS_V6_M))
10324 {
10325 result = T(V4T);
10326 *secondary_compat_out = T(V6_M);
10327 }
10328 else
10329 *secondary_compat_out = -1;
10330
10331 if (result == -1)
10332 {
10333 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10334 name, oldtag, newtag);
10335 return -1;
10336 }
10337
10338 return result;
10339#undef T
10340}
10341
10342// Helper to print AEABI enum tag value.
10343
10344template<bool big_endian>
10345std::string
10346Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10347{
ca09d69a 10348 static const char* aeabi_enum_names[] =
a0351a69
DK
10349 { "", "variable-size", "32-bit", "" };
10350 const size_t aeabi_enum_names_size =
10351 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10352
10353 if (value < aeabi_enum_names_size)
10354 return std::string(aeabi_enum_names[value]);
10355 else
10356 {
10357 char buffer[100];
10358 sprintf(buffer, "<unknown value %u>", value);
10359 return std::string(buffer);
10360 }
10361}
10362
10363// Return the string value to store in TAG_CPU_name.
10364
10365template<bool big_endian>
10366std::string
10367Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10368{
ca09d69a 10369 static const char* name_table[] = {
a0351a69
DK
10370 // These aren't real CPU names, but we can't guess
10371 // that from the architecture version alone.
10372 "Pre v4",
10373 "ARM v4",
10374 "ARM v4T",
10375 "ARM v5T",
10376 "ARM v5TE",
10377 "ARM v5TEJ",
10378 "ARM v6",
10379 "ARM v6KZ",
10380 "ARM v6T2",
10381 "ARM v6K",
10382 "ARM v7",
10383 "ARM v6-M",
10384 "ARM v6S-M",
10385 "ARM v7E-M"
10386 };
10387 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10388
10389 if (value < name_table_size)
10390 return std::string(name_table[value]);
10391 else
10392 {
10393 char buffer[100];
10394 sprintf(buffer, "<unknown CPU value %u>", value);
10395 return std::string(buffer);
2e702c99 10396 }
a0351a69
DK
10397}
10398
679af368
ILT
10399// Query attributes object to see if integer divide instructions may be
10400// present in an object.
10401
10402template<bool big_endian>
10403bool
10404Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10405 const Object_attribute* div_attr)
10406{
10407 switch (div_attr->int_value())
10408 {
10409 case 0:
10410 // Integer divide allowed if instruction contained in
10411 // archetecture.
10412 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10413 return true;
10414 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10415 return true;
10416 else
10417 return false;
10418
10419 case 1:
10420 // Integer divide explicitly prohibited.
10421 return false;
10422
10423 default:
10424 // Unrecognised case - treat as allowing divide everywhere.
10425 case 2:
10426 // Integer divide allowed in ARM state.
10427 return true;
10428 }
10429}
10430
10431// Query attributes object to see if integer divide instructions are
10432// forbidden to be in the object. This is not the inverse of
10433// attributes_accept_div.
10434
10435template<bool big_endian>
10436bool
10437Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10438{
10439 return div_attr->int_value() == 1;
10440}
10441
a0351a69
DK
10442// Merge object attributes from input file called NAME with those of the
10443// output. The input object attributes are in the object pointed by PASD.
10444
10445template<bool big_endian>
10446void
10447Target_arm<big_endian>::merge_object_attributes(
10448 const char* name,
10449 const Attributes_section_data* pasd)
10450{
10451 // Return if there is no attributes section data.
10452 if (pasd == NULL)
10453 return;
10454
10455 // If output has no object attributes, just copy.
da59ad79 10456 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10457 if (this->attributes_section_data_ == NULL)
10458 {
10459 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10460 Object_attribute* out_attr =
10461 this->attributes_section_data_->known_attributes(vendor);
10462
10463 // We do not output objects with Tag_MPextension_use_legacy - we move
10464 // the attribute's value to Tag_MPextension_use. */
10465 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10466 {
10467 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10468 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10469 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10470 {
10471 gold_error(_("%s has both the current and legacy "
10472 "Tag_MPextension_use attributes"),
10473 name);
10474 }
10475
10476 out_attr[elfcpp::Tag_MPextension_use] =
10477 out_attr[elfcpp::Tag_MPextension_use_legacy];
10478 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10479 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10480 }
10481
a0351a69
DK
10482 return;
10483 }
10484
a0351a69
DK
10485 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10486 Object_attribute* out_attr =
10487 this->attributes_section_data_->known_attributes(vendor);
10488
10489 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10490 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10491 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10492 {
10493 // Ignore mismatches if the object doesn't use floating point. */
10494 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10495 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10496 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10497 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10498 && parameters->options().warn_mismatch())
2e702c99 10499 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
10500 name);
10501 }
10502
10503 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10504 {
10505 // Merge this attribute with existing attributes.
10506 switch (i)
10507 {
10508 case elfcpp::Tag_CPU_raw_name:
10509 case elfcpp::Tag_CPU_name:
10510 // These are merged after Tag_CPU_arch.
10511 break;
10512
10513 case elfcpp::Tag_ABI_optimization_goals:
10514 case elfcpp::Tag_ABI_FP_optimization_goals:
10515 // Use the first value seen.
10516 break;
10517
10518 case elfcpp::Tag_CPU_arch:
10519 {
10520 unsigned int saved_out_attr = out_attr->int_value();
10521 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10522 int secondary_compat =
10523 this->get_secondary_compatible_arch(pasd);
10524 int secondary_compat_out =
10525 this->get_secondary_compatible_arch(
10526 this->attributes_section_data_);
10527 out_attr[i].set_int_value(
10528 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10529 &secondary_compat_out,
10530 in_attr[i].int_value(),
10531 secondary_compat));
10532 this->set_secondary_compatible_arch(this->attributes_section_data_,
10533 secondary_compat_out);
10534
10535 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10536 if (out_attr[i].int_value() == saved_out_attr)
10537 ; // Leave the names alone.
10538 else if (out_attr[i].int_value() == in_attr[i].int_value())
10539 {
10540 // The output architecture has been changed to match the
10541 // input architecture. Use the input names.
10542 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10543 in_attr[elfcpp::Tag_CPU_name].string_value());
10544 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10545 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10546 }
10547 else
10548 {
10549 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10550 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10551 }
10552
10553 // If we still don't have a value for Tag_CPU_name,
10554 // make one up now. Tag_CPU_raw_name remains blank.
10555 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10556 {
10557 const std::string cpu_name =
10558 this->tag_cpu_name_value(out_attr[i].int_value());
10559 // FIXME: If we see an unknown CPU, this will be set
10560 // to "<unknown CPU n>", where n is the attribute value.
10561 // This is different from BFD, which leaves the name alone.
10562 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10563 }
10564 }
10565 break;
10566
10567 case elfcpp::Tag_ARM_ISA_use:
10568 case elfcpp::Tag_THUMB_ISA_use:
10569 case elfcpp::Tag_WMMX_arch:
10570 case elfcpp::Tag_Advanced_SIMD_arch:
10571 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10572 case elfcpp::Tag_ABI_FP_rounding:
10573 case elfcpp::Tag_ABI_FP_exceptions:
10574 case elfcpp::Tag_ABI_FP_user_exceptions:
10575 case elfcpp::Tag_ABI_FP_number_model:
10576 case elfcpp::Tag_VFP_HP_extension:
10577 case elfcpp::Tag_CPU_unaligned_access:
10578 case elfcpp::Tag_T2EE_use:
10579 case elfcpp::Tag_Virtualization_use:
10580 case elfcpp::Tag_MPextension_use:
10581 // Use the largest value specified.
10582 if (in_attr[i].int_value() > out_attr[i].int_value())
10583 out_attr[i].set_int_value(in_attr[i].int_value());
10584 break;
10585
10586 case elfcpp::Tag_ABI_align8_preserved:
10587 case elfcpp::Tag_ABI_PCS_RO_data:
10588 // Use the smallest value specified.
10589 if (in_attr[i].int_value() < out_attr[i].int_value())
10590 out_attr[i].set_int_value(in_attr[i].int_value());
10591 break;
10592
10593 case elfcpp::Tag_ABI_align8_needed:
10594 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10595 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10596 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10597 == 0)))
10598 {
9b547ce6 10599 // This error message should be enabled once all non-conforming
a0351a69
DK
10600 // binaries in the toolchain have had the attributes set
10601 // properly.
10602 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10603 // name);
10604 }
10605 // Fall through.
10606 case elfcpp::Tag_ABI_FP_denormal:
10607 case elfcpp::Tag_ABI_PCS_GOT_use:
10608 {
10609 // These tags have 0 = don't care, 1 = strong requirement,
10610 // 2 = weak requirement.
10611 static const int order_021[3] = {0, 2, 1};
10612
10613 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10614 // value if greater than 2 (for future-proofing).
10615 if ((in_attr[i].int_value() > 2
10616 && in_attr[i].int_value() > out_attr[i].int_value())
10617 || (in_attr[i].int_value() <= 2
10618 && out_attr[i].int_value() <= 2
10619 && (order_021[in_attr[i].int_value()]
10620 > order_021[out_attr[i].int_value()])))
10621 out_attr[i].set_int_value(in_attr[i].int_value());
10622 }
10623 break;
10624
10625 case elfcpp::Tag_CPU_arch_profile:
10626 if (out_attr[i].int_value() != in_attr[i].int_value())
10627 {
10628 // 0 will merge with anything.
10629 // 'A' and 'S' merge to 'A'.
10630 // 'R' and 'S' merge to 'R'.
10631 // 'M' and 'A|R|S' is an error.
10632 if (out_attr[i].int_value() == 0
10633 || (out_attr[i].int_value() == 'S'
10634 && (in_attr[i].int_value() == 'A'
10635 || in_attr[i].int_value() == 'R')))
10636 out_attr[i].set_int_value(in_attr[i].int_value());
10637 else if (in_attr[i].int_value() == 0
10638 || (in_attr[i].int_value() == 'S'
10639 && (out_attr[i].int_value() == 'A'
10640 || out_attr[i].int_value() == 'R')))
10641 ; // Do nothing.
7296d933 10642 else if (parameters->options().warn_mismatch())
a0351a69
DK
10643 {
10644 gold_error
10645 (_("conflicting architecture profiles %c/%c"),
10646 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10647 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10648 }
10649 }
10650 break;
10651 case elfcpp::Tag_VFP_arch:
10652 {
10653 static const struct
10654 {
10655 int ver;
10656 int regs;
10657 } vfp_versions[7] =
10658 {
10659 {0, 0},
10660 {1, 16},
10661 {2, 16},
10662 {3, 32},
10663 {3, 16},
10664 {4, 32},
10665 {4, 16}
10666 };
10667
10668 // Values greater than 6 aren't defined, so just pick the
10669 // biggest.
10670 if (in_attr[i].int_value() > 6
10671 && in_attr[i].int_value() > out_attr[i].int_value())
10672 {
10673 *out_attr = *in_attr;
10674 break;
10675 }
10676 // The output uses the superset of input features
10677 // (ISA version) and registers.
10678 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10679 vfp_versions[out_attr[i].int_value()].ver);
10680 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10681 vfp_versions[out_attr[i].int_value()].regs);
10682 // This assumes all possible supersets are also a valid
10683 // options.
10684 int newval;
10685 for (newval = 6; newval > 0; newval--)
10686 {
10687 if (regs == vfp_versions[newval].regs
10688 && ver == vfp_versions[newval].ver)
10689 break;
10690 }
10691 out_attr[i].set_int_value(newval);
10692 }
10693 break;
10694 case elfcpp::Tag_PCS_config:
10695 if (out_attr[i].int_value() == 0)
10696 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10697 else if (in_attr[i].int_value() != 0
10698 && out_attr[i].int_value() != 0
10699 && parameters->options().warn_mismatch())
a0351a69
DK
10700 {
10701 // It's sometimes ok to mix different configs, so this is only
10702 // a warning.
10703 gold_warning(_("%s: conflicting platform configuration"), name);
10704 }
10705 break;
10706 case elfcpp::Tag_ABI_PCS_R9_use:
10707 if (in_attr[i].int_value() != out_attr[i].int_value()
10708 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10709 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10710 && parameters->options().warn_mismatch())
a0351a69
DK
10711 {
10712 gold_error(_("%s: conflicting use of R9"), name);
10713 }
10714 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10715 out_attr[i].set_int_value(in_attr[i].int_value());
10716 break;
10717 case elfcpp::Tag_ABI_PCS_RW_data:
10718 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10719 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10720 != elfcpp::AEABI_R9_SB)
10721 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10722 != elfcpp::AEABI_R9_unused)
10723 && parameters->options().warn_mismatch())
a0351a69
DK
10724 {
10725 gold_error(_("%s: SB relative addressing conflicts with use "
10726 "of R9"),
7296d933 10727 name);
a0351a69
DK
10728 }
10729 // Use the smallest value specified.
10730 if (in_attr[i].int_value() < out_attr[i].int_value())
10731 out_attr[i].set_int_value(in_attr[i].int_value());
10732 break;
10733 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10734 if (out_attr[i].int_value()
10735 && in_attr[i].int_value()
7296d933 10736 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10737 && parameters->options().warn_mismatch()
10738 && parameters->options().wchar_size_warning())
a0351a69
DK
10739 {
10740 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10741 "use %u-byte wchar_t; use of wchar_t values "
10742 "across objects may fail"),
10743 name, in_attr[i].int_value(),
10744 out_attr[i].int_value());
10745 }
10746 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10747 out_attr[i].set_int_value(in_attr[i].int_value());
10748 break;
10749 case elfcpp::Tag_ABI_enum_size:
10750 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10751 {
10752 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10753 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10754 {
10755 // The existing object is compatible with anything.
10756 // Use whatever requirements the new object has.
10757 out_attr[i].set_int_value(in_attr[i].int_value());
10758 }
a0351a69 10759 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10760 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10761 && parameters->options().warn_mismatch()
10762 && parameters->options().enum_size_warning())
a0351a69
DK
10763 {
10764 unsigned int in_value = in_attr[i].int_value();
10765 unsigned int out_value = out_attr[i].int_value();
10766 gold_warning(_("%s uses %s enums yet the output is to use "
10767 "%s enums; use of enum values across objects "
10768 "may fail"),
10769 name,
10770 this->aeabi_enum_name(in_value).c_str(),
10771 this->aeabi_enum_name(out_value).c_str());
10772 }
10773 }
10774 break;
10775 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10776 // Already done.
a0351a69
DK
10777 break;
10778 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10779 if (in_attr[i].int_value() != out_attr[i].int_value()
10780 && parameters->options().warn_mismatch())
a0351a69
DK
10781 {
10782 gold_error(_("%s uses iWMMXt register arguments, output does "
10783 "not"),
10784 name);
10785 }
10786 break;
10787 case Object_attribute::Tag_compatibility:
10788 // Merged in target-independent code.
10789 break;
10790 case elfcpp::Tag_ABI_HardFP_use:
10791 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10792 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10793 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10794 out_attr[i].set_int_value(3);
10795 else if (in_attr[i].int_value() > out_attr[i].int_value())
10796 out_attr[i].set_int_value(in_attr[i].int_value());
10797 break;
10798 case elfcpp::Tag_ABI_FP_16bit_format:
10799 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10800 {
7296d933
DK
10801 if (in_attr[i].int_value() != out_attr[i].int_value()
10802 && parameters->options().warn_mismatch())
a0351a69
DK
10803 gold_error(_("fp16 format mismatch between %s and output"),
10804 name);
10805 }
10806 if (in_attr[i].int_value() != 0)
10807 out_attr[i].set_int_value(in_attr[i].int_value());
10808 break;
10809
da59ad79 10810 case elfcpp::Tag_DIV_use:
679af368
ILT
10811 {
10812 // A value of zero on input means that the divide
10813 // instruction may be used if available in the base
10814 // architecture as specified via Tag_CPU_arch and
10815 // Tag_CPU_arch_profile. A value of 1 means that the user
10816 // did not want divide instructions. A value of 2
10817 // explicitly means that divide instructions were allowed
10818 // in ARM and Thumb state.
10819 int arch = this->
10820 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
10821 int_value();
10822 int profile = this->
10823 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
10824 int_value();
10825 if (in_attr[i].int_value() == out_attr[i].int_value())
10826 {
10827 // Do nothing.
10828 }
10829 else if (attributes_forbid_div(&in_attr[i])
43819297 10830 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
10831 out_attr[i].set_int_value(1);
10832 else if (attributes_forbid_div(&out_attr[i])
10833 && attributes_accept_div(arch, profile, &in_attr[i]))
10834 out_attr[i].set_int_value(in_attr[i].int_value());
10835 else if (in_attr[i].int_value() == 2)
10836 out_attr[i].set_int_value(in_attr[i].int_value());
10837 }
da59ad79
DK
10838 break;
10839
10840 case elfcpp::Tag_MPextension_use_legacy:
10841 // We don't output objects with Tag_MPextension_use_legacy - we
10842 // move the value to Tag_MPextension_use.
10843 if (in_attr[i].int_value() != 0
10844 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10845 {
10846 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10847 != in_attr[i].int_value())
10848 {
10849 gold_error(_("%s has has both the current and legacy "
2e702c99 10850 "Tag_MPextension_use attributes"),
da59ad79
DK
10851 name);
10852 }
10853 }
10854
10855 if (in_attr[i].int_value()
10856 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10857 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10858
10859 break;
10860
a0351a69
DK
10861 case elfcpp::Tag_nodefaults:
10862 // This tag is set if it exists, but the value is unused (and is
10863 // typically zero). We don't actually need to do anything here -
10864 // the merge happens automatically when the type flags are merged
10865 // below.
10866 break;
10867 case elfcpp::Tag_also_compatible_with:
10868 // Already done in Tag_CPU_arch.
10869 break;
10870 case elfcpp::Tag_conformance:
10871 // Keep the attribute if it matches. Throw it away otherwise.
10872 // No attribute means no claim to conform.
10873 if (in_attr[i].string_value() != out_attr[i].string_value())
10874 out_attr[i].set_string_value("");
10875 break;
10876
10877 default:
10878 {
10879 const char* err_object = NULL;
10880
10881 // The "known_obj_attributes" table does contain some undefined
10882 // attributes. Ensure that there are unused.
10883 if (out_attr[i].int_value() != 0
10884 || out_attr[i].string_value() != "")
10885 err_object = "output";
10886 else if (in_attr[i].int_value() != 0
10887 || in_attr[i].string_value() != "")
10888 err_object = name;
10889
7296d933
DK
10890 if (err_object != NULL
10891 && parameters->options().warn_mismatch())
a0351a69
DK
10892 {
10893 // Attribute numbers >=64 (mod 128) can be safely ignored.
10894 if ((i & 127) < 64)
10895 gold_error(_("%s: unknown mandatory EABI object attribute "
10896 "%d"),
10897 err_object, i);
10898 else
10899 gold_warning(_("%s: unknown EABI object attribute %d"),
10900 err_object, i);
10901 }
10902
10903 // Only pass on attributes that match in both inputs.
10904 if (!in_attr[i].matches(out_attr[i]))
10905 {
10906 out_attr[i].set_int_value(0);
10907 out_attr[i].set_string_value("");
10908 }
10909 }
10910 }
10911
10912 // If out_attr was copied from in_attr then it won't have a type yet.
10913 if (in_attr[i].type() && !out_attr[i].type())
10914 out_attr[i].set_type(in_attr[i].type());
10915 }
10916
10917 // Merge Tag_compatibility attributes and any common GNU ones.
10918 this->attributes_section_data_->merge(name, pasd);
10919
10920 // Check for any attributes not known on ARM.
10921 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10922 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10923 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10924 Other_attributes* out_other_attributes =
10925 this->attributes_section_data_->other_attributes(vendor);
10926 Other_attributes::iterator out_iter = out_other_attributes->begin();
10927
10928 while (in_iter != in_other_attributes->end()
10929 || out_iter != out_other_attributes->end())
10930 {
10931 const char* err_object = NULL;
10932 int err_tag = 0;
10933
10934 // The tags for each list are in numerical order.
10935 // If the tags are equal, then merge.
10936 if (out_iter != out_other_attributes->end()
10937 && (in_iter == in_other_attributes->end()
10938 || in_iter->first > out_iter->first))
10939 {
10940 // This attribute only exists in output. We can't merge, and we
10941 // don't know what the tag means, so delete it.
10942 err_object = "output";
10943 err_tag = out_iter->first;
10944 int saved_tag = out_iter->first;
10945 delete out_iter->second;
2e702c99 10946 out_other_attributes->erase(out_iter);
a0351a69
DK
10947 out_iter = out_other_attributes->upper_bound(saved_tag);
10948 }
10949 else if (in_iter != in_other_attributes->end()
10950 && (out_iter != out_other_attributes->end()
10951 || in_iter->first < out_iter->first))
10952 {
10953 // This attribute only exists in input. We can't merge, and we
10954 // don't know what the tag means, so ignore it.
10955 err_object = name;
10956 err_tag = in_iter->first;
10957 ++in_iter;
10958 }
10959 else // The tags are equal.
10960 {
10961 // As present, all attributes in the list are unknown, and
10962 // therefore can't be merged meaningfully.
10963 err_object = "output";
10964 err_tag = out_iter->first;
10965
10966 // Only pass on attributes that match in both inputs.
10967 if (!in_iter->second->matches(*(out_iter->second)))
10968 {
10969 // No match. Delete the attribute.
10970 int saved_tag = out_iter->first;
10971 delete out_iter->second;
10972 out_other_attributes->erase(out_iter);
10973 out_iter = out_other_attributes->upper_bound(saved_tag);
10974 }
10975 else
10976 {
10977 // Matched. Keep the attribute and move to the next.
10978 ++out_iter;
10979 ++in_iter;
10980 }
10981 }
10982
7296d933 10983 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10984 {
10985 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10986 if ((err_tag & 127) < 64)
10987 {
10988 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10989 err_object, err_tag);
10990 }
10991 else
10992 {
10993 gold_warning(_("%s: unknown EABI object attribute %d"),
10994 err_object, err_tag);
10995 }
10996 }
10997 }
10998}
10999
55da9579
DK
11000// Stub-generation methods for Target_arm.
11001
11002// Make a new Arm_input_section object.
11003
11004template<bool big_endian>
11005Arm_input_section<big_endian>*
11006Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11007 Relobj* relobj,
11008 unsigned int shndx)
55da9579 11009{
5ac169d4 11010 Section_id sid(relobj, shndx);
55da9579
DK
11011
11012 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11013 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11014 arm_input_section->init();
11015
11016 // Register new Arm_input_section in map for look-up.
11017 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11018 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11019
11020 // Make sure that it we have not created another Arm_input_section
11021 // for this input section already.
11022 gold_assert(ins.second);
11023
2e702c99 11024 return arm_input_section;
55da9579
DK
11025}
11026
11027// Find the Arm_input_section object corresponding to the SHNDX-th input
11028// section of RELOBJ.
11029
11030template<bool big_endian>
11031Arm_input_section<big_endian>*
11032Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11033 Relobj* relobj,
11034 unsigned int shndx) const
55da9579 11035{
5ac169d4 11036 Section_id sid(relobj, shndx);
55da9579 11037 typename Arm_input_section_map::const_iterator p =
5ac169d4 11038 this->arm_input_section_map_.find(sid);
55da9579
DK
11039 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11040}
11041
11042// Make a new stub table.
11043
11044template<bool big_endian>
11045Stub_table<big_endian>*
11046Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11047{
2ea97941 11048 Stub_table<big_endian>* stub_table =
55da9579 11049 new Stub_table<big_endian>(owner);
2ea97941 11050 this->stub_tables_.push_back(stub_table);
55da9579 11051
2ea97941
ILT
11052 stub_table->set_address(owner->address() + owner->data_size());
11053 stub_table->set_file_offset(owner->offset() + owner->data_size());
11054 stub_table->finalize_data_size();
55da9579 11055
2ea97941 11056 return stub_table;
55da9579
DK
11057}
11058
eb44217c
DK
11059// Scan a relocation for stub generation.
11060
11061template<bool big_endian>
11062void
11063Target_arm<big_endian>::scan_reloc_for_stub(
11064 const Relocate_info<32, big_endian>* relinfo,
11065 unsigned int r_type,
11066 const Sized_symbol<32>* gsym,
11067 unsigned int r_sym,
11068 const Symbol_value<32>* psymval,
11069 elfcpp::Elf_types<32>::Elf_Swxword addend,
11070 Arm_address address)
11071{
eb44217c
DK
11072 const Arm_relobj<big_endian>* arm_relobj =
11073 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11074
11075 bool target_is_thumb;
11076 Symbol_value<32> symval;
11077 if (gsym != NULL)
11078 {
11079 // This is a global symbol. Determine if we use PLT and if the
11080 // final target is THUMB.
95a2c8d6 11081 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11082 {
11083 // This uses a PLT, change the symbol value.
11084 symval.set_output_value(this->plt_section()->address()
11085 + gsym->plt_offset());
11086 psymval = &symval;
11087 target_is_thumb = false;
11088 }
11089 else if (gsym->is_undefined())
11090 // There is no need to generate a stub symbol is undefined.
11091 return;
11092 else
11093 {
11094 target_is_thumb =
11095 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11096 || (gsym->type() == elfcpp::STT_FUNC
11097 && !gsym->is_undefined()
11098 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11099 }
11100 }
11101 else
11102 {
11103 // This is a local symbol. Determine if the final target is THUMB.
11104 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11105 }
11106
11107 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11108 const Arm_reloc_property* reloc_property =
11109 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11110 gold_assert(reloc_property != NULL);
eb44217c 11111 if (target_is_thumb
5c57f1be 11112 && reloc_property->uses_thumb_bit()
eb44217c
DK
11113 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11114 {
11115 Arm_address stripped_value =
11116 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11117 symval.set_output_value(stripped_value);
11118 psymval = &symval;
2e702c99 11119 }
eb44217c
DK
11120
11121 // Get the symbol value.
11122 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11123
11124 // Owing to pipelining, the PC relative branches below actually skip
11125 // two instructions when the branch offset is 0.
11126 Arm_address destination;
11127 switch (r_type)
11128 {
11129 case elfcpp::R_ARM_CALL:
11130 case elfcpp::R_ARM_JUMP24:
11131 case elfcpp::R_ARM_PLT32:
11132 // ARM branches.
11133 destination = value + addend + 8;
11134 break;
11135 case elfcpp::R_ARM_THM_CALL:
11136 case elfcpp::R_ARM_THM_XPC22:
11137 case elfcpp::R_ARM_THM_JUMP24:
11138 case elfcpp::R_ARM_THM_JUMP19:
11139 // THUMB branches.
11140 destination = value + addend + 4;
11141 break;
11142 default:
11143 gold_unreachable();
11144 }
11145
a120bc7f 11146 Reloc_stub* stub = NULL;
eb44217c
DK
11147 Stub_type stub_type =
11148 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11149 target_is_thumb);
a120bc7f
DK
11150 if (stub_type != arm_stub_none)
11151 {
11152 // Try looking up an existing stub from a stub table.
2e702c99 11153 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11154 arm_relobj->stub_table(relinfo->data_shndx);
11155 gold_assert(stub_table != NULL);
2e702c99 11156
a120bc7f
DK
11157 // Locate stub by destination.
11158 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11159
a120bc7f
DK
11160 // Create a stub if there is not one already
11161 stub = stub_table->find_reloc_stub(stub_key);
11162 if (stub == NULL)
11163 {
11164 // create a new stub and add it to stub table.
11165 stub = this->stub_factory().make_reloc_stub(stub_type);
11166 stub_table->add_reloc_stub(stub, stub_key);
11167 }
11168
11169 // Record the destination address.
11170 stub->set_destination_address(destination
11171 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11172 }
11173
a120bc7f
DK
11174 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11175 if (this->fix_cortex_a8_
11176 && (r_type == elfcpp::R_ARM_THM_JUMP24
11177 || r_type == elfcpp::R_ARM_THM_JUMP19
11178 || r_type == elfcpp::R_ARM_THM_CALL
11179 || r_type == elfcpp::R_ARM_THM_XPC22)
11180 && (address & 0xfffU) == 0xffeU)
11181 {
11182 // Found a candidate. Note we haven't checked the destination is
11183 // within 4K here: if we do so (and don't create a record) we can't
11184 // tell that a branch should have been relocated when scanning later.
11185 this->cortex_a8_relocs_info_[address] =
11186 new Cortex_a8_reloc(stub, r_type,
11187 destination | (target_is_thumb ? 1 : 0));
11188 }
eb44217c
DK
11189}
11190
11191// This function scans a relocation sections for stub generation.
11192// The template parameter Relocate must be a class type which provides
11193// a single function, relocate(), which implements the machine
11194// specific part of a relocation.
11195
11196// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11197// SHT_REL or SHT_RELA.
11198
11199// PRELOCS points to the relocation data. RELOC_COUNT is the number
11200// of relocs. OUTPUT_SECTION is the output section.
11201// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11202// mapped to output offsets.
11203
11204// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11205// VIEW_SIZE is the size. These refer to the input section, unless
11206// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11207// the output section.
11208
11209template<bool big_endian>
11210template<int sh_type>
11211void inline
11212Target_arm<big_endian>::scan_reloc_section_for_stubs(
11213 const Relocate_info<32, big_endian>* relinfo,
11214 const unsigned char* prelocs,
11215 size_t reloc_count,
11216 Output_section* output_section,
11217 bool needs_special_offset_handling,
11218 const unsigned char* view,
11219 elfcpp::Elf_types<32>::Elf_Addr view_address,
11220 section_size_type)
11221{
11222 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11223 const int reloc_size =
11224 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11225
11226 Arm_relobj<big_endian>* arm_object =
11227 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11228 unsigned int local_count = arm_object->local_symbol_count();
11229
168a4726 11230 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11231 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11232
11233 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11234 {
11235 Reltype reloc(prelocs);
11236
11237 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11238 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11239 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11240
11241 r_type = this->get_real_reloc_type(r_type);
11242
11243 // Only a few relocation types need stubs.
11244 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11245 && (r_type != elfcpp::R_ARM_JUMP24)
11246 && (r_type != elfcpp::R_ARM_PLT32)
11247 && (r_type != elfcpp::R_ARM_THM_CALL)
11248 && (r_type != elfcpp::R_ARM_THM_XPC22)
11249 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11250 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11251 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11252 continue;
11253
2ea97941 11254 section_offset_type offset =
eb44217c
DK
11255 convert_to_section_size_type(reloc.get_r_offset());
11256
11257 if (needs_special_offset_handling)
11258 {
2ea97941
ILT
11259 offset = output_section->output_offset(relinfo->object,
11260 relinfo->data_shndx,
11261 offset);
11262 if (offset == -1)
eb44217c
DK
11263 continue;
11264 }
11265
2fd9ae7a 11266 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11267 if (r_type == elfcpp::R_ARM_V4BX)
11268 {
2fd9ae7a
DK
11269 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11270 {
11271 // Get the BX instruction.
11272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11273 const Valtype* wv =
11274 reinterpret_cast<const Valtype*>(view + offset);
11275 elfcpp::Elf_types<32>::Elf_Swxword insn =
11276 elfcpp::Swap<32, big_endian>::readval(wv);
11277 const uint32_t reg = (insn & 0xf);
11278
11279 if (reg < 0xf)
11280 {
11281 // Try looking up an existing stub from a stub table.
11282 Stub_table<big_endian>* stub_table =
11283 arm_object->stub_table(relinfo->data_shndx);
11284 gold_assert(stub_table != NULL);
11285
11286 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11287 {
11288 // create a new stub and add it to stub table.
11289 Arm_v4bx_stub* stub =
2e702c99 11290 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11291 gold_assert(stub != NULL);
11292 stub_table->add_arm_v4bx_stub(stub);
11293 }
11294 }
11295 }
a2162063
ILT
11296 continue;
11297 }
11298
eb44217c
DK
11299 // Get the addend.
11300 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11301 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11302 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11303
11304 const Sized_symbol<32>* sym;
11305
11306 Symbol_value<32> symval;
11307 const Symbol_value<32> *psymval;
aa98ff75
DK
11308 bool is_defined_in_discarded_section;
11309 unsigned int shndx;
eb44217c
DK
11310 if (r_sym < local_count)
11311 {
11312 sym = NULL;
11313 psymval = arm_object->local_symbol(r_sym);
11314
2e702c99
RM
11315 // If the local symbol belongs to a section we are discarding,
11316 // and that section is a debug section, try to find the
11317 // corresponding kept section and map this symbol to its
11318 // counterpart in the kept section. The symbol must not
11319 // correspond to a section we are folding.
eb44217c 11320 bool is_ordinary;
aa98ff75
DK
11321 shndx = psymval->input_shndx(&is_ordinary);
11322 is_defined_in_discarded_section =
11323 (is_ordinary
11324 && shndx != elfcpp::SHN_UNDEF
11325 && !arm_object->is_section_included(shndx)
11326 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11327
11328 // We need to compute the would-be final value of this local
11329 // symbol.
11330 if (!is_defined_in_discarded_section)
eb44217c 11331 {
6fa2a40b 11332 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11333 typename ObjType::Compute_final_local_value_status status =
11334 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11335 relinfo->symtab);
aa98ff75
DK
11336 if (status == ObjType::CFLV_OK)
11337 {
11338 // Currently we cannot handle a branch to a target in
11339 // a merged section. If this is the case, issue an error
11340 // and also free the merge symbol value.
11341 if (!symval.has_output_value())
11342 {
11343 const std::string& section_name =
11344 arm_object->section_name(shndx);
11345 arm_object->error(_("cannot handle branch to local %u "
11346 "in a merged section %s"),
11347 r_sym, section_name.c_str());
11348 }
11349 psymval = &symval;
11350 }
eb44217c 11351 else
aa98ff75
DK
11352 {
11353 // We cannot determine the final value.
2e702c99 11354 continue;
aa98ff75 11355 }
eb44217c
DK
11356 }
11357 }
11358 else
11359 {
aa98ff75
DK
11360 const Symbol* gsym;
11361 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11362 gold_assert(gsym != NULL);
11363 if (gsym->is_forwarder())
11364 gsym = relinfo->symtab->resolve_forwards(gsym);
11365
11366 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11367 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11368 symval.set_output_symtab_index(sym->symtab_index());
11369 else
11370 symval.set_no_output_symtab_entry();
11371
11372 // We need to compute the would-be final value of this global
11373 // symbol.
11374 const Symbol_table* symtab = relinfo->symtab;
11375 const Sized_symbol<32>* sized_symbol =
11376 symtab->get_sized_symbol<32>(gsym);
11377 Symbol_table::Compute_final_value_status status;
11378 Arm_address value =
11379 symtab->compute_final_value<32>(sized_symbol, &status);
11380
11381 // Skip this if the symbol has not output section.
11382 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11383 continue;
eb44217c 11384 symval.set_output_value(value);
aa98ff75
DK
11385
11386 if (gsym->type() == elfcpp::STT_TLS)
11387 symval.set_is_tls_symbol();
11388 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11389 symval.set_is_ifunc_symbol();
eb44217c 11390 psymval = &symval;
aa98ff75
DK
11391
11392 is_defined_in_discarded_section =
11393 (gsym->is_defined_in_discarded_section()
11394 && gsym->is_undefined());
11395 shndx = 0;
11396 }
11397
11398 Symbol_value<32> symval2;
11399 if (is_defined_in_discarded_section)
11400 {
11401 if (comdat_behavior == CB_UNDETERMINED)
11402 {
11403 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11404 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11405 }
11406 if (comdat_behavior == CB_PRETEND)
11407 {
11408 // FIXME: This case does not work for global symbols.
11409 // We have no place to store the original section index.
11410 // Fortunately this does not matter for comdat sections,
11411 // only for sections explicitly discarded by a linker
11412 // script.
11413 bool found;
11414 typename elfcpp::Elf_types<32>::Elf_Addr value =
11415 arm_object->map_to_kept_section(shndx, &found);
11416 if (found)
11417 symval2.set_output_value(value + psymval->input_value());
11418 else
11419 symval2.set_output_value(0);
11420 }
11421 else
11422 {
11423 if (comdat_behavior == CB_WARNING)
11424 gold_warning_at_location(relinfo, i, offset,
11425 _("relocation refers to discarded "
11426 "section"));
11427 symval2.set_output_value(0);
11428 }
11429 symval2.set_no_output_symtab_entry();
11430 psymval = &symval2;
eb44217c
DK
11431 }
11432
11433 // If symbol is a section symbol, we don't know the actual type of
11434 // destination. Give up.
11435 if (psymval->is_section_symbol())
11436 continue;
11437
11438 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11439 addend, view_address + offset);
eb44217c
DK
11440 }
11441}
11442
11443// Scan an input section for stub generation.
11444
11445template<bool big_endian>
11446void
11447Target_arm<big_endian>::scan_section_for_stubs(
11448 const Relocate_info<32, big_endian>* relinfo,
11449 unsigned int sh_type,
11450 const unsigned char* prelocs,
11451 size_t reloc_count,
11452 Output_section* output_section,
11453 bool needs_special_offset_handling,
11454 const unsigned char* view,
11455 Arm_address view_address,
11456 section_size_type view_size)
11457{
11458 if (sh_type == elfcpp::SHT_REL)
11459 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11460 relinfo,
11461 prelocs,
11462 reloc_count,
11463 output_section,
11464 needs_special_offset_handling,
11465 view,
11466 view_address,
11467 view_size);
11468 else if (sh_type == elfcpp::SHT_RELA)
11469 // We do not support RELA type relocations yet. This is provided for
11470 // completeness.
11471 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11472 relinfo,
11473 prelocs,
11474 reloc_count,
11475 output_section,
11476 needs_special_offset_handling,
11477 view,
11478 view_address,
11479 view_size);
11480 else
11481 gold_unreachable();
11482}
11483
11484// Group input sections for stub generation.
11485//
9b547ce6 11486// We group input sections in an output section so that the total size,
eb44217c
DK
11487// including any padding space due to alignment is smaller than GROUP_SIZE
11488// unless the only input section in group is bigger than GROUP_SIZE already.
11489// Then an ARM stub table is created to follow the last input section
11490// in group. For each group an ARM stub table is created an is placed
9b547ce6 11491// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11492// extend the group after the stub table.
11493
11494template<bool big_endian>
11495void
11496Target_arm<big_endian>::group_sections(
2ea97941 11497 Layout* layout,
eb44217c 11498 section_size_type group_size,
f625ae50
DK
11499 bool stubs_always_after_branch,
11500 const Task* task)
eb44217c
DK
11501{
11502 // Group input sections and insert stub table
11503 Layout::Section_list section_list;
ec661b9d 11504 layout->get_executable_sections(&section_list);
eb44217c
DK
11505 for (Layout::Section_list::const_iterator p = section_list.begin();
11506 p != section_list.end();
11507 ++p)
11508 {
11509 Arm_output_section<big_endian>* output_section =
11510 Arm_output_section<big_endian>::as_arm_output_section(*p);
11511 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11512 this, task);
eb44217c
DK
11513 }
11514}
11515
11516// Relaxation hook. This is where we do stub generation.
11517
11518template<bool big_endian>
11519bool
11520Target_arm<big_endian>::do_relax(
11521 int pass,
11522 const Input_objects* input_objects,
11523 Symbol_table* symtab,
f625ae50
DK
11524 Layout* layout,
11525 const Task* task)
eb44217c
DK
11526{
11527 // No need to generate stubs if this is a relocatable link.
11528 gold_assert(!parameters->options().relocatable());
11529
11530 // If this is the first pass, we need to group input sections into
11531 // stub groups.
2b328d4e 11532 bool done_exidx_fixup = false;
6625d24e 11533 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11534 if (pass == 1)
11535 {
11536 // Determine the stub group size. The group size is the absolute
11537 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11538 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11539 // the stubbed branches.
11540 int32_t stub_group_size_param =
11541 parameters->options().stub_group_size();
11542 bool stubs_always_after_branch = stub_group_size_param < 0;
11543 section_size_type stub_group_size = abs(stub_group_size_param);
11544
11545 if (stub_group_size == 1)
11546 {
11547 // Default value.
11548 // Thumb branch range is +-4MB has to be used as the default
11549 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11550 // code, so the worst case has to be taken into account). If we are
11551 // fixing cortex-a8 errata, the branch range has to be even smaller,
11552 // since wide conditional branch has a range of +-1MB only.
eb44217c 11553 //
25bbe950 11554 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11555 // 12-byte stubs. If we exceed that, then we will fail to link.
11556 // The user will have to relink with an explicit group size
11557 // option.
25bbe950
DK
11558 stub_group_size = 4145152;
11559 }
11560
11561 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11562 // page as the first half of a 32-bit branch straddling two 4K pages.
11563 // This is a crude way of enforcing that. In addition, long conditional
11564 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11565 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11566 // cortex-A8 stubs from long conditional branches.
11567 if (this->fix_cortex_a8_)
11568 {
11569 stubs_always_after_branch = true;
11570 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11571 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11572 }
11573
f625ae50 11574 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 11575
2b328d4e 11576 // Also fix .ARM.exidx section coverage.
131687b4
DK
11577 Arm_output_section<big_endian>* exidx_output_section = NULL;
11578 for (Layout::Section_list::const_iterator p =
11579 layout->section_list().begin();
11580 p != layout->section_list().end();
11581 ++p)
11582 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11583 {
11584 if (exidx_output_section == NULL)
11585 exidx_output_section =
11586 Arm_output_section<big_endian>::as_arm_output_section(*p);
11587 else
11588 // We cannot handle this now.
11589 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11590 "non-relocatable link"),
11591 exidx_output_section->name(),
11592 (*p)->name());
11593 }
11594
11595 if (exidx_output_section != NULL)
2b328d4e 11596 {
131687b4 11597 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11598 symtab, task);
2b328d4e
DK
11599 done_exidx_fixup = true;
11600 }
eb44217c 11601 }
6625d24e
DK
11602 else
11603 {
11604 // If this is not the first pass, addresses and file offsets have
11605 // been reset at this point, set them here.
11606 for (Stub_table_iterator sp = this->stub_tables_.begin();
11607 sp != this->stub_tables_.end();
11608 ++sp)
11609 {
11610 Arm_input_section<big_endian>* owner = (*sp)->owner();
11611 off_t off = align_address(owner->original_size(),
11612 (*sp)->addralign());
11613 (*sp)->set_address_and_file_offset(owner->address() + off,
11614 owner->offset() + off);
11615 }
11616 }
eb44217c 11617
44272192
DK
11618 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11619 // beginning of each relaxation pass, just blow away all the stubs.
11620 // Alternatively, we could selectively remove only the stubs and reloc
11621 // information for code sections that have moved since the last pass.
11622 // That would require more book-keeping.
a120bc7f
DK
11623 if (this->fix_cortex_a8_)
11624 {
11625 // Clear all Cortex-A8 reloc information.
11626 for (typename Cortex_a8_relocs_info::const_iterator p =
11627 this->cortex_a8_relocs_info_.begin();
11628 p != this->cortex_a8_relocs_info_.end();
11629 ++p)
11630 delete p->second;
11631 this->cortex_a8_relocs_info_.clear();
44272192
DK
11632
11633 // Remove all Cortex-A8 stubs.
11634 for (Stub_table_iterator sp = this->stub_tables_.begin();
11635 sp != this->stub_tables_.end();
11636 ++sp)
11637 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 11638 }
2e702c99 11639
44272192 11640 // Scan relocs for relocation stubs
eb44217c
DK
11641 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11642 op != input_objects->relobj_end();
11643 ++op)
11644 {
11645 Arm_relobj<big_endian>* arm_relobj =
11646 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11647 // Lock the object so we can read from it. This is only called
11648 // single-threaded from Layout::finalize, so it is OK to lock.
11649 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11650 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11651 }
11652
2fb7225c
DK
11653 // Check all stub tables to see if any of them have their data sizes
11654 // or addresses alignments changed. These are the only things that
11655 // matter.
eb44217c 11656 bool any_stub_table_changed = false;
8923b24c 11657 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11658 for (Stub_table_iterator sp = this->stub_tables_.begin();
11659 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11660 ++sp)
11661 {
2fb7225c 11662 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11663 {
11664 // Update data size of stub table owner.
11665 Arm_input_section<big_endian>* owner = (*sp)->owner();
11666 uint64_t address = owner->address();
11667 off_t offset = owner->offset();
11668 owner->reset_address_and_file_offset();
11669 owner->set_address_and_file_offset(address, offset);
11670
11671 sections_needing_adjustment.insert(owner->output_section());
11672 any_stub_table_changed = true;
11673 }
11674 }
11675
11676 // Output_section_data::output_section() returns a const pointer but we
11677 // need to update output sections, so we record all output sections needing
11678 // update above and scan the sections here to find out what sections need
11679 // to be updated.
f625ae50 11680 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11681 p != layout->section_list().end();
11682 ++p)
11683 {
11684 if (sections_needing_adjustment.find(*p)
11685 != sections_needing_adjustment.end())
11686 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11687 }
11688
2b328d4e
DK
11689 // Stop relaxation if no EXIDX fix-up and no stub table change.
11690 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11691
2fb7225c 11692 // Finalize the stubs in the last relaxation pass.
2b328d4e 11693 if (!continue_relaxation)
e7eca48c
DK
11694 {
11695 for (Stub_table_iterator sp = this->stub_tables_.begin();
11696 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11697 ++sp)
11698 (*sp)->finalize_stubs();
11699
11700 // Update output local symbol counts of objects if necessary.
11701 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11702 op != input_objects->relobj_end();
11703 ++op)
11704 {
11705 Arm_relobj<big_endian>* arm_relobj =
11706 Arm_relobj<big_endian>::as_arm_relobj(*op);
11707
11708 // Update output local symbol counts. We need to discard local
11709 // symbols defined in parts of input sections that are discarded by
11710 // relaxation.
11711 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11712 {
11713 // We need to lock the object's file to update it.
11714 Task_lock_obj<Object> tl(task, arm_relobj);
11715 arm_relobj->update_output_local_symbol_count();
11716 }
e7eca48c
DK
11717 }
11718 }
2fb7225c 11719
2b328d4e 11720 return continue_relaxation;
eb44217c
DK
11721}
11722
43d12afe
DK
11723// Relocate a stub.
11724
11725template<bool big_endian>
11726void
11727Target_arm<big_endian>::relocate_stub(
2fb7225c 11728 Stub* stub,
43d12afe
DK
11729 const Relocate_info<32, big_endian>* relinfo,
11730 Output_section* output_section,
11731 unsigned char* view,
11732 Arm_address address,
11733 section_size_type view_size)
11734{
11735 Relocate relocate;
2ea97941
ILT
11736 const Stub_template* stub_template = stub->stub_template();
11737 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11738 {
2ea97941
ILT
11739 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11740 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11741
11742 unsigned int r_type = insn->r_type();
2ea97941 11743 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11744 section_size_type reloc_size = insn->size();
11745 gold_assert(reloc_offset + reloc_size <= view_size);
11746
11747 // This is the address of the stub destination.
41263c05 11748 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11749 Symbol_value<32> symval;
11750 symval.set_output_value(target);
11751
11752 // Synthesize a fake reloc just in case. We don't have a symbol so
11753 // we use 0.
11754 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11755 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11756 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11757 reloc_write.put_r_offset(reloc_offset);
11758 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11759 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11760
11761 relocate.relocate(relinfo, this, output_section,
11762 this->fake_relnum_for_stubs, rel, r_type,
11763 NULL, &symval, view + reloc_offset,
11764 address + reloc_offset, reloc_size);
11765 }
11766}
11767
a0351a69
DK
11768// Determine whether an object attribute tag takes an integer, a
11769// string or both.
11770
11771template<bool big_endian>
11772int
11773Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11774{
11775 if (tag == Object_attribute::Tag_compatibility)
11776 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11777 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11778 else if (tag == elfcpp::Tag_nodefaults)
11779 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11780 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11781 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11782 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11783 else if (tag < 32)
11784 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11785 else
11786 return ((tag & 1) != 0
11787 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11788 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11789}
11790
11791// Reorder attributes.
11792//
11793// The ABI defines that Tag_conformance should be emitted first, and that
11794// Tag_nodefaults should be second (if either is defined). This sets those
11795// two positions, and bumps up the position of all the remaining tags to
11796// compensate.
11797
11798template<bool big_endian>
11799int
11800Target_arm<big_endian>::do_attributes_order(int num) const
11801{
11802 // Reorder the known object attributes in output. We want to move
11803 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11804 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11805 if (num == 4)
11806 return elfcpp::Tag_conformance;
11807 if (num == 5)
11808 return elfcpp::Tag_nodefaults;
11809 if ((num - 2) < elfcpp::Tag_nodefaults)
11810 return num - 2;
11811 if ((num - 1) < elfcpp::Tag_conformance)
11812 return num - 1;
11813 return num;
11814}
4a657b0d 11815
44272192
DK
11816// Scan a span of THUMB code for Cortex-A8 erratum.
11817
11818template<bool big_endian>
11819void
11820Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11821 Arm_relobj<big_endian>* arm_relobj,
11822 unsigned int shndx,
11823 section_size_type span_start,
11824 section_size_type span_end,
11825 const unsigned char* view,
11826 Arm_address address)
11827{
11828 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11829 //
11830 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11831 // The branch target is in the same 4KB region as the
11832 // first half of the branch.
11833 // The instruction before the branch is a 32-bit
11834 // length non-branch instruction.
11835 section_size_type i = span_start;
11836 bool last_was_32bit = false;
11837 bool last_was_branch = false;
11838 while (i < span_end)
11839 {
11840 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11841 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11842 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11843 bool is_blx = false, is_b = false;
11844 bool is_bl = false, is_bcc = false;
11845
11846 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11847 if (insn_32bit)
11848 {
11849 // Load the rest of the insn (in manual-friendly order).
11850 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11851
11852 // Encoding T4: B<c>.W.
11853 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11854 // Encoding T1: BL<c>.W.
2e702c99
RM
11855 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11856 // Encoding T2: BLX<c>.W.
11857 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
11858 // Encoding T3: B<c>.W (not permitted in IT block).
11859 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11860 && (insn & 0x07f00000U) != 0x03800000U);
11861 }
11862
11863 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 11864
44272192
DK
11865 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11866 // page boundary and it follows 32-bit non-branch instruction,
11867 // we need to work around.
11868 if (is_32bit_branch
11869 && ((address + i) & 0xfffU) == 0xffeU
11870 && last_was_32bit
11871 && !last_was_branch)
11872 {
11873 // Check to see if there is a relocation stub for this branch.
11874 bool force_target_arm = false;
11875 bool force_target_thumb = false;
11876 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11877 Cortex_a8_relocs_info::const_iterator p =
11878 this->cortex_a8_relocs_info_.find(address + i);
11879
11880 if (p != this->cortex_a8_relocs_info_.end())
11881 {
11882 cortex_a8_reloc = p->second;
11883 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11884
11885 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11886 && !target_is_thumb)
11887 force_target_arm = true;
11888 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11889 && target_is_thumb)
11890 force_target_thumb = true;
11891 }
11892
11893 off_t offset;
11894 Stub_type stub_type = arm_stub_none;
11895
11896 // Check if we have an offending branch instruction.
11897 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11898 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 11899 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
11900
11901 if (cortex_a8_reloc != NULL
11902 && cortex_a8_reloc->reloc_stub() != NULL)
11903 // We've already made a stub for this instruction, e.g.
11904 // it's a long branch or a Thumb->ARM stub. Assume that
11905 // stub will suffice to work around the A8 erratum (see
11906 // setting of always_after_branch above).
11907 ;
11908 else if (is_bcc)
11909 {
11910 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11911 lower_insn);
11912 stub_type = arm_stub_a8_veneer_b_cond;
11913 }
11914 else if (is_b || is_bl || is_blx)
11915 {
11916 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11917 lower_insn);
11918 if (is_blx)
2e702c99 11919 offset &= ~3;
44272192
DK
11920
11921 stub_type = (is_blx
11922 ? arm_stub_a8_veneer_blx
11923 : (is_bl
11924 ? arm_stub_a8_veneer_bl
11925 : arm_stub_a8_veneer_b));
11926 }
11927
11928 if (stub_type != arm_stub_none)
11929 {
11930 Arm_address pc_for_insn = address + i + 4;
11931
11932 // The original instruction is a BL, but the target is
11933 // an ARM instruction. If we were not making a stub,
11934 // the BL would have been converted to a BLX. Use the
11935 // BLX stub instead in that case.
cd6eab1c 11936 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11937 && stub_type == arm_stub_a8_veneer_bl)
11938 {
11939 stub_type = arm_stub_a8_veneer_blx;
11940 is_blx = true;
11941 is_bl = false;
11942 }
11943 // Conversely, if the original instruction was
11944 // BLX but the target is Thumb mode, use the BL stub.
11945 else if (force_target_thumb
11946 && stub_type == arm_stub_a8_veneer_blx)
11947 {
11948 stub_type = arm_stub_a8_veneer_bl;
11949 is_blx = false;
11950 is_bl = true;
11951 }
11952
11953 if (is_blx)
11954 pc_for_insn &= ~3;
11955
2e702c99 11956 // If we found a relocation, use the proper destination,
44272192
DK
11957 // not the offset in the (unrelocated) instruction.
11958 // Note this is always done if we switched the stub type above.
2e702c99
RM
11959 if (cortex_a8_reloc != NULL)
11960 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 11961
2e702c99 11962 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
11963
11964 // Add a new stub if destination address in in the same page.
2e702c99
RM
11965 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11966 {
44272192
DK
11967 Cortex_a8_stub* stub =
11968 this->stub_factory_.make_cortex_a8_stub(stub_type,
11969 arm_relobj, shndx,
11970 address + i,
11971 target, insn);
11972 Stub_table<big_endian>* stub_table =
11973 arm_relobj->stub_table(shndx);
11974 gold_assert(stub_table != NULL);
11975 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
11976 }
11977 }
11978 }
44272192
DK
11979
11980 i += insn_32bit ? 4 : 2;
11981 last_was_32bit = insn_32bit;
11982 last_was_branch = is_32bit_branch;
11983 }
11984}
11985
41263c05
DK
11986// Apply the Cortex-A8 workaround.
11987
11988template<bool big_endian>
11989void
11990Target_arm<big_endian>::apply_cortex_a8_workaround(
11991 const Cortex_a8_stub* stub,
11992 Arm_address stub_address,
11993 unsigned char* insn_view,
11994 Arm_address insn_address)
11995{
11996 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11997 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11998 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11999 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12000 off_t branch_offset = stub_address - (insn_address + 4);
12001
2c54b4f4 12002 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12003 switch (stub->stub_template()->type())
12004 {
12005 case arm_stub_a8_veneer_b_cond:
9b547ce6 12006 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12007 // branch to the stub. We use the THUMB-2 encoding here.
12008 upper_insn = 0xf000U;
12009 lower_insn = 0xb800U;
12010 // Fall through
41263c05
DK
12011 case arm_stub_a8_veneer_b:
12012 case arm_stub_a8_veneer_bl:
12013 case arm_stub_a8_veneer_blx:
12014 if ((lower_insn & 0x5000U) == 0x4000U)
12015 // For a BLX instruction, make sure that the relocation is
12016 // rounded up to a word boundary. This follows the semantics of
12017 // the instruction which specifies that bit 1 of the target
12018 // address will come from bit 1 of the base address.
12019 branch_offset = (branch_offset + 2) & ~3;
12020
12021 // Put BRANCH_OFFSET back into the insn.
bef2b434 12022 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12023 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12024 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12025 break;
12026
12027 default:
12028 gold_unreachable();
12029 }
12030
12031 // Put the relocated value back in the object file:
12032 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12033 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12034}
12035
2e702c99
RM
12036// Target selector for ARM. Note this is never instantiated directly.
12037// It's only used in Target_selector_arm_nacl, below.
12038
4a657b0d
DK
12039template<bool big_endian>
12040class Target_selector_arm : public Target_selector
12041{
12042 public:
12043 Target_selector_arm()
12044 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12045 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12046 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12047 { }
12048
12049 Target*
12050 do_instantiate_target()
12051 { return new Target_arm<big_endian>(); }
12052};
12053
2b328d4e
DK
12054// Fix .ARM.exidx section coverage.
12055
12056template<bool big_endian>
12057void
12058Target_arm<big_endian>::fix_exidx_coverage(
12059 Layout* layout,
131687b4 12060 const Input_objects* input_objects,
2b328d4e 12061 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12062 Symbol_table* symtab,
12063 const Task* task)
2b328d4e
DK
12064{
12065 // We need to look at all the input sections in output in ascending
12066 // order of of output address. We do that by building a sorted list
12067 // of output sections by addresses. Then we looks at the output sections
12068 // in order. The input sections in an output section are already sorted
12069 // by addresses within the output section.
12070
12071 typedef std::set<Output_section*, output_section_address_less_than>
12072 Sorted_output_section_list;
12073 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12074
12075 // Find out all the output sections of input sections pointed by
12076 // EXIDX input sections.
12077 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12078 p != input_objects->relobj_end();
2b328d4e
DK
12079 ++p)
12080 {
131687b4
DK
12081 Arm_relobj<big_endian>* arm_relobj =
12082 Arm_relobj<big_endian>::as_arm_relobj(*p);
12083 std::vector<unsigned int> shndx_list;
12084 arm_relobj->get_exidx_shndx_list(&shndx_list);
12085 for (size_t i = 0; i < shndx_list.size(); ++i)
12086 {
12087 const Arm_exidx_input_section* exidx_input_section =
12088 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12089 gold_assert(exidx_input_section != NULL);
12090 if (!exidx_input_section->has_errors())
12091 {
12092 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12093 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12094 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12095 sorted_output_sections.insert(os);
12096 }
12097 }
2b328d4e
DK
12098 }
12099
12100 // Go over the output sections in ascending order of output addresses.
12101 typedef typename Arm_output_section<big_endian>::Text_section_list
12102 Text_section_list;
12103 Text_section_list sorted_text_sections;
f625ae50 12104 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12105 sorted_output_sections.begin();
12106 p != sorted_output_sections.end();
12107 ++p)
12108 {
12109 Arm_output_section<big_endian>* arm_output_section =
12110 Arm_output_section<big_endian>::as_arm_output_section(*p);
12111 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12112 }
2b328d4e 12113
85fdf906 12114 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12115 merge_exidx_entries(), task);
2b328d4e
DK
12116}
12117
647f1574
DK
12118template<bool big_endian>
12119void
12120Target_arm<big_endian>::do_define_standard_symbols(
12121 Symbol_table* symtab,
12122 Layout* layout)
12123{
12124 // Handle the .ARM.exidx section.
12125 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12126
12127 if (exidx_section != NULL)
12128 {
12129 // Create __exidx_start and __exidx_end symbols.
12130 symtab->define_in_output_data("__exidx_start",
12131 NULL, // version
12132 Symbol_table::PREDEFINED,
12133 exidx_section,
12134 0, // value
12135 0, // symsize
12136 elfcpp::STT_NOTYPE,
12137 elfcpp::STB_GLOBAL,
12138 elfcpp::STV_HIDDEN,
12139 0, // nonvis
12140 false, // offset_is_from_end
12141 true); // only_if_ref
12142
12143 symtab->define_in_output_data("__exidx_end",
12144 NULL, // version
12145 Symbol_table::PREDEFINED,
12146 exidx_section,
2e702c99 12147 0, // value
647f1574
DK
12148 0, // symsize
12149 elfcpp::STT_NOTYPE,
12150 elfcpp::STB_GLOBAL,
12151 elfcpp::STV_HIDDEN,
12152 0, // nonvis
12153 true, // offset_is_from_end
12154 true); // only_if_ref
12155 }
12156 else
12157 {
12158 // Define __exidx_start and __exidx_end even when .ARM.exidx
12159 // section is missing to match ld's behaviour.
12160 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12161 Symbol_table::PREDEFINED,
12162 0, 0, elfcpp::STT_OBJECT,
12163 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12164 true, false);
647f1574 12165 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12166 Symbol_table::PREDEFINED,
12167 0, 0, elfcpp::STT_OBJECT,
12168 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12169 true, false);
647f1574
DK
12170 }
12171}
12172
2e702c99
RM
12173// NaCl variant. It uses different PLT contents.
12174
12175template<bool big_endian>
12176class Output_data_plt_arm_nacl;
12177
12178template<bool big_endian>
12179class Target_arm_nacl : public Target_arm<big_endian>
12180{
12181 public:
12182 Target_arm_nacl()
12183 : Target_arm<big_endian>(&arm_nacl_info)
12184 { }
12185
12186 protected:
12187 virtual Output_data_plt_arm<big_endian>*
12188 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12189 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12190
12191 private:
12192 static const Target::Target_info arm_nacl_info;
12193};
12194
12195template<bool big_endian>
12196const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12197{
12198 32, // size
12199 big_endian, // is_big_endian
12200 elfcpp::EM_ARM, // machine_code
12201 false, // has_make_symbol
12202 false, // has_resolve
12203 false, // has_code_fill
12204 true, // is_default_stack_executable
12205 false, // can_icf_inline_merge_sections
12206 '\0', // wrap_char
12207 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12208 0x20000, // default_text_segment_address
12209 0x10000, // abi_pagesize (overridable by -z max-page-size)
12210 0x10000, // common_pagesize (overridable by -z common-page-size)
12211 true, // isolate_execinstr
12212 0x10000000, // rosegment_gap
12213 elfcpp::SHN_UNDEF, // small_common_shndx
12214 elfcpp::SHN_UNDEF, // large_common_shndx
12215 0, // small_common_section_flags
12216 0, // large_common_section_flags
12217 ".ARM.attributes", // attributes_section
a67858e0
CC
12218 "aeabi", // attributes_vendor
12219 "_start" // entry_symbol_name
2e702c99
RM
12220};
12221
12222template<bool big_endian>
12223class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12224{
12225 public:
12226 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12227 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12228 { }
12229
12230 protected:
12231 // Return the offset of the first non-reserved PLT entry.
12232 virtual unsigned int
12233 do_first_plt_entry_offset() const
12234 { return sizeof(first_plt_entry); }
12235
12236 // Return the size of a PLT entry.
12237 virtual unsigned int
12238 do_get_plt_entry_size() const
12239 { return sizeof(plt_entry); }
12240
12241 virtual void
12242 do_fill_first_plt_entry(unsigned char* pov,
12243 Arm_address got_address,
12244 Arm_address plt_address);
12245
12246 virtual void
12247 do_fill_plt_entry(unsigned char* pov,
12248 Arm_address got_address,
12249 Arm_address plt_address,
12250 unsigned int got_offset,
12251 unsigned int plt_offset);
12252
12253 private:
12254 inline uint32_t arm_movw_immediate(uint32_t value)
12255 {
12256 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12257 }
12258
12259 inline uint32_t arm_movt_immediate(uint32_t value)
12260 {
12261 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12262 }
12263
12264 // Template for the first PLT entry.
12265 static const uint32_t first_plt_entry[16];
12266
12267 // Template for subsequent PLT entries.
12268 static const uint32_t plt_entry[4];
12269};
12270
12271// The first entry in the PLT.
12272template<bool big_endian>
12273const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12274{
12275 // First bundle:
12276 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12277 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12278 0xe08cc00f, // add ip, ip, pc
12279 0xe52dc008, // str ip, [sp, #-8]!
12280 // Second bundle:
edccdf7c 12281 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12282 0xe59cc000, // ldr ip, [ip]
12283 0xe3ccc13f, // bic ip, ip, #0xc000000f
12284 0xe12fff1c, // bx ip
12285 // Third bundle:
12286 0xe320f000, // nop
12287 0xe320f000, // nop
12288 0xe320f000, // nop
12289 // .Lplt_tail:
12290 0xe50dc004, // str ip, [sp, #-4]
12291 // Fourth bundle:
edccdf7c 12292 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12293 0xe59cc000, // ldr ip, [ip]
12294 0xe3ccc13f, // bic ip, ip, #0xc000000f
12295 0xe12fff1c, // bx ip
12296};
12297
12298template<bool big_endian>
12299void
12300Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12301 unsigned char* pov,
12302 Arm_address got_address,
12303 Arm_address plt_address)
12304{
12305 // Write first PLT entry. All but first two words are constants.
12306 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12307 / sizeof(first_plt_entry[0]));
12308
12309 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12310
12311 elfcpp::Swap<32, big_endian>::writeval
12312 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12313 elfcpp::Swap<32, big_endian>::writeval
12314 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12315
12316 for (size_t i = 2; i < num_first_plt_words; ++i)
12317 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12318}
12319
12320// Subsequent entries in the PLT.
12321
12322template<bool big_endian>
12323const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12324{
12325 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12326 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12327 0xe08cc00f, // add ip, ip, pc
12328 0xea000000, // b .Lplt_tail
12329};
12330
12331template<bool big_endian>
12332void
12333Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12334 unsigned char* pov,
12335 Arm_address got_address,
12336 Arm_address plt_address,
12337 unsigned int got_offset,
12338 unsigned int plt_offset)
12339{
12340 // Calculate the displacement between the PLT slot and the
12341 // common tail that's part of the special initial PLT slot.
12342 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12343 - (plt_address + plt_offset
12344 + sizeof(plt_entry) + sizeof(uint32_t)));
12345 gold_assert((tail_displacement & 3) == 0);
12346 tail_displacement >>= 2;
12347
12348 gold_assert ((tail_displacement & 0xff000000) == 0
12349 || (-tail_displacement & 0xff000000) == 0);
12350
12351 // Calculate the displacement between the PLT slot and the entry
12352 // in the GOT. The offset accounts for the value produced by
12353 // adding to pc in the penultimate instruction of the PLT stub.
12354 const int32_t got_displacement = (got_address + got_offset
12355 - (plt_address + sizeof(plt_entry)));
12356
12357 elfcpp::Swap<32, big_endian>::writeval
12358 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12359 elfcpp::Swap<32, big_endian>::writeval
12360 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12361 elfcpp::Swap<32, big_endian>::writeval
12362 (pov + 8, plt_entry[2]);
12363 elfcpp::Swap<32, big_endian>::writeval
12364 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12365}
12366
12367// Target selectors.
12368
12369template<bool big_endian>
12370class Target_selector_arm_nacl
12371 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12372 Target_arm_nacl<big_endian> >
12373{
12374 public:
12375 Target_selector_arm_nacl()
12376 : Target_selector_nacl<Target_selector_arm<big_endian>,
12377 Target_arm_nacl<big_endian> >(
12378 "arm",
12379 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12380 big_endian ? "armelfb_nacl" : "armelf_nacl")
12381 { }
12382};
12383
12384Target_selector_arm_nacl<false> target_selector_arm;
12385Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12386
12387} // End anonymous namespace.
This page took 1.016395 seconds and 4 git commands to generate.