* compressed_output.cc (zlib_decompress): Fix signature in
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b10d2873 3// Copyright 2009, 2010 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
119// returning a static instance of Arm_reloc_property_table, it will very
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
129Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
b569affa 604 // Arm_relobj. This is done to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 private:
7296d933 1068 // Implement do_write for a given endianness.
af2cdeae
DK
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1072
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1077};
1078
1079// During EXIDX coverage fix-up, we compact an EXIDX section. The
1080// Offset map is used to map input section offset within the EXIDX section
1081// to the output offset from the start of this EXIDX section.
1082
1083typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1085
1086// Arm_exidx_merged_section class. This represents an EXIDX input section
1087// with some of its entries merged.
1088
1089class Arm_exidx_merged_section : public Output_relaxed_input_section
1090{
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1101
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1106
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1111
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1116
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1120
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1126};
1127
10ad9fe5
DK
1128// A class to wrap an ordinary input section containing executable code.
1129
1130template<bool big_endian>
1131class Arm_input_section : public Output_relaxed_input_section
1132{
1133 public:
2ea97941
ILT
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
10ad9fe5
DK
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1137 { }
1138
1139 ~Arm_input_section()
1140 { }
1141
1142 // Initialize.
1143 void
1144 init();
1145
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1155
1156 // Set the stub_table.
1157 void
2ea97941
ILT
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
10ad9fe5 1160
07f508a2
DK
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
6625d24e
DK
1167 // Return the original size of the section.
1168 uint32_t
1169 original_size() const
1170 { return this->original_size_; }
1171
10ad9fe5
DK
1172 protected:
1173 // Write data to output file.
1174 void
1175 do_write(Output_file*);
1176
1177 // Return required alignment of this.
1178 uint64_t
1179 do_addralign() const
1180 {
1181 if (this->is_stub_table_owner())
1182 return std::max(this->stub_table_->addralign(),
6625d24e 1183 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1184 else
1185 return this->original_addralign_;
1186 }
1187
1188 // Finalize data size.
1189 void
1190 set_final_data_size();
1191
1192 // Reset address and file offset.
1193 void
1194 do_reset_address_and_file_offset();
1195
1196 // Output offset.
1197 bool
2ea97941
ILT
1198 do_output_offset(const Relobj* object, unsigned int shndx,
1199 section_offset_type offset,
10ad9fe5
DK
1200 section_offset_type* poutput) const
1201 {
1202 if ((object == this->relobj())
2ea97941
ILT
1203 && (shndx == this->shndx())
1204 && (offset >= 0)
0439c796
DK
1205 && (offset <=
1206 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1207 {
2ea97941 1208 *poutput = offset;
10ad9fe5
DK
1209 return true;
1210 }
1211 else
1212 return false;
1213 }
1214
1215 private:
1216 // Copying is not allowed.
1217 Arm_input_section(const Arm_input_section&);
1218 Arm_input_section& operator=(const Arm_input_section&);
1219
1220 // Address alignment of the original input section.
6625d24e 1221 uint32_t original_addralign_;
10ad9fe5 1222 // Section size of the original input section.
6625d24e 1223 uint32_t original_size_;
10ad9fe5
DK
1224 // Stub table.
1225 Stub_table<big_endian>* stub_table_;
1226};
1227
80d0d023
DK
1228// Arm_exidx_fixup class. This is used to define a number of methods
1229// and keep states for fixing up EXIDX coverage.
1230
1231class Arm_exidx_fixup
1232{
1233 public:
85fdf906
AH
1234 Arm_exidx_fixup(Output_section* exidx_output_section,
1235 bool merge_exidx_entries = true)
80d0d023
DK
1236 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1237 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1238 section_offset_map_(NULL), first_output_text_section_(NULL),
1239 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1240 { }
1241
1242 ~Arm_exidx_fixup()
1243 { delete this->section_offset_map_; }
1244
1245 // Process an EXIDX section for entry merging. Return number of bytes to
1246 // be deleted in output. If parts of the input EXIDX section are merged
1247 // a heap allocated Arm_exidx_section_offset_map is store in the located
1248 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1249 // releasing it.
1250 template<bool big_endian>
1251 uint32_t
1252 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1253 Arm_exidx_section_offset_map** psection_offset_map);
1254
1255 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1256 // input section, if there is not one already.
1257 void
1258 add_exidx_cantunwind_as_needed();
1259
546c7457
DK
1260 // Return the output section for the text section which is linked to the
1261 // first exidx input in output.
1262 Output_section*
1263 first_output_text_section() const
1264 { return this->first_output_text_section_; }
1265
80d0d023
DK
1266 private:
1267 // Copying is not allowed.
1268 Arm_exidx_fixup(const Arm_exidx_fixup&);
1269 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1270
1271 // Type of EXIDX unwind entry.
1272 enum Unwind_type
1273 {
1274 // No type.
1275 UT_NONE,
1276 // EXIDX_CANTUNWIND.
1277 UT_EXIDX_CANTUNWIND,
1278 // Inlined entry.
1279 UT_INLINED_ENTRY,
1280 // Normal entry.
1281 UT_NORMAL_ENTRY,
1282 };
1283
1284 // Process an EXIDX entry. We only care about the second word of the
1285 // entry. Return true if the entry can be deleted.
1286 bool
1287 process_exidx_entry(uint32_t second_word);
1288
1289 // Update the current section offset map during EXIDX section fix-up.
1290 // If there is no map, create one. INPUT_OFFSET is the offset of a
1291 // reference point, DELETED_BYTES is the number of deleted by in the
1292 // section so far. If DELETE_ENTRY is true, the reference point and
1293 // all offsets after the previous reference point are discarded.
1294 void
1295 update_offset_map(section_offset_type input_offset,
1296 section_size_type deleted_bytes, bool delete_entry);
1297
1298 // EXIDX output section.
1299 Output_section* exidx_output_section_;
1300 // Unwind type of the last EXIDX entry processed.
1301 Unwind_type last_unwind_type_;
1302 // Last seen inlined EXIDX entry.
1303 uint32_t last_inlined_entry_;
1304 // Last processed EXIDX input section.
2b328d4e 1305 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1306 // Section offset map created in process_exidx_section.
1307 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1308 // Output section for the text section which is linked to the first exidx
1309 // input in output.
1310 Output_section* first_output_text_section_;
85fdf906
AH
1311
1312 bool merge_exidx_entries_;
80d0d023
DK
1313};
1314
07f508a2
DK
1315// Arm output section class. This is defined mainly to add a number of
1316// stub generation methods.
1317
1318template<bool big_endian>
1319class Arm_output_section : public Output_section
1320{
1321 public:
2b328d4e
DK
1322 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1323
2ea97941
ILT
1324 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1325 elfcpp::Elf_Xword flags)
1326 : Output_section(name, type, flags)
07f508a2
DK
1327 { }
1328
1329 ~Arm_output_section()
1330 { }
1331
1332 // Group input sections for stub generation.
1333 void
1334 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1335
1336 // Downcast a base pointer to an Arm_output_section pointer. This is
1337 // not type-safe but we only use Arm_output_section not the base class.
1338 static Arm_output_section<big_endian>*
1339 as_arm_output_section(Output_section* os)
1340 { return static_cast<Arm_output_section<big_endian>*>(os); }
1341
2b328d4e
DK
1342 // Append all input text sections in this into LIST.
1343 void
1344 append_text_sections_to_list(Text_section_list* list);
1345
1346 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1347 // is a list of text input sections sorted in ascending order of their
1348 // output addresses.
1349 void
4a54abbb
DK
1350 fix_exidx_coverage(Layout* layout,
1351 const Text_section_list& sorted_text_section,
85fdf906
AH
1352 Symbol_table* symtab,
1353 bool merge_exidx_entries);
2b328d4e 1354
07f508a2
DK
1355 private:
1356 // For convenience.
1357 typedef Output_section::Input_section Input_section;
1358 typedef Output_section::Input_section_list Input_section_list;
1359
1360 // Create a stub group.
1361 void create_stub_group(Input_section_list::const_iterator,
1362 Input_section_list::const_iterator,
1363 Input_section_list::const_iterator,
1364 Target_arm<big_endian>*,
1365 std::vector<Output_relaxed_input_section*>*);
1366};
1367
993d07c1
DK
1368// Arm_exidx_input_section class. This represents an EXIDX input section.
1369
1370class Arm_exidx_input_section
1371{
1372 public:
1373 static const section_offset_type invalid_offset =
1374 static_cast<section_offset_type>(-1);
1375
1376 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1377 unsigned int link, uint32_t size, uint32_t addralign)
1378 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1379 addralign_(addralign)
1380 { }
1381
1382 ~Arm_exidx_input_section()
1383 { }
1384
1385 // Accessors: This is a read-only class.
1386
1387 // Return the object containing this EXIDX input section.
1388 Relobj*
1389 relobj() const
1390 { return this->relobj_; }
1391
1392 // Return the section index of this EXIDX input section.
1393 unsigned int
1394 shndx() const
1395 { return this->shndx_; }
1396
1397 // Return the section index of linked text section in the same object.
1398 unsigned int
1399 link() const
1400 { return this->link_; }
1401
1402 // Return size of the EXIDX input section.
1403 uint32_t
1404 size() const
1405 { return this->size_; }
1406
1407 // Reutnr address alignment of EXIDX input section.
1408 uint32_t
1409 addralign() const
1410 { return this->addralign_; }
1411
1412 private:
1413 // Object containing this.
1414 Relobj* relobj_;
1415 // Section index of this.
1416 unsigned int shndx_;
1417 // text section linked to this in the same object.
1418 unsigned int link_;
1419 // Size of this. For ARM 32-bit is sufficient.
1420 uint32_t size_;
1421 // Address alignment of this. For ARM 32-bit is sufficient.
1422 uint32_t addralign_;
1423};
1424
8ffa3667
DK
1425// Arm_relobj class.
1426
1427template<bool big_endian>
1428class Arm_relobj : public Sized_relobj<32, big_endian>
1429{
1430 public:
1431 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1432
2ea97941 1433 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1434 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941 1435 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1436 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1437 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1438 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1439 output_local_symbol_count_needs_update_(false),
1440 merge_flags_and_attributes_(true)
8ffa3667
DK
1441 { }
1442
1443 ~Arm_relobj()
a0351a69 1444 { delete this->attributes_section_data_; }
8ffa3667
DK
1445
1446 // Return the stub table of the SHNDX-th section if there is one.
1447 Stub_table<big_endian>*
2ea97941 1448 stub_table(unsigned int shndx) const
8ffa3667 1449 {
2ea97941
ILT
1450 gold_assert(shndx < this->stub_tables_.size());
1451 return this->stub_tables_[shndx];
8ffa3667
DK
1452 }
1453
1454 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1455 void
2ea97941 1456 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1457 {
2ea97941
ILT
1458 gold_assert(shndx < this->stub_tables_.size());
1459 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1460 }
1461
1462 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1463 // index. This is only valid after do_count_local_symbol is called.
1464 bool
1465 local_symbol_is_thumb_function(unsigned int r_sym) const
1466 {
1467 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1468 return this->local_symbol_is_thumb_function_[r_sym];
1469 }
1470
1471 // Scan all relocation sections for stub generation.
1472 void
1473 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1474 const Layout*);
1475
1476 // Convert regular input section with index SHNDX to a relaxed section.
1477 void
2ea97941 1478 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1479 {
1480 // The stubs have relocations and we need to process them after writing
1481 // out the stubs. So relocation now must follow section write.
2b328d4e 1482 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1483 this->set_relocs_must_follow_section_writes();
1484 }
1485
1486 // Downcast a base pointer to an Arm_relobj pointer. This is
1487 // not type-safe but we only use Arm_relobj not the base class.
1488 static Arm_relobj<big_endian>*
2ea97941
ILT
1489 as_arm_relobj(Relobj* relobj)
1490 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1491
d5b40221
DK
1492 // Processor-specific flags in ELF file header. This is valid only after
1493 // reading symbols.
1494 elfcpp::Elf_Word
1495 processor_specific_flags() const
1496 { return this->processor_specific_flags_; }
1497
a0351a69
DK
1498 // Attribute section data This is the contents of the .ARM.attribute section
1499 // if there is one.
1500 const Attributes_section_data*
1501 attributes_section_data() const
1502 { return this->attributes_section_data_; }
1503
20138696
DK
1504 // Mapping symbol location.
1505 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1506
1507 // Functor for STL container.
1508 struct Mapping_symbol_position_less
1509 {
1510 bool
1511 operator()(const Mapping_symbol_position& p1,
1512 const Mapping_symbol_position& p2) const
1513 {
1514 return (p1.first < p2.first
1515 || (p1.first == p2.first && p1.second < p2.second));
1516 }
1517 };
1518
1519 // We only care about the first character of a mapping symbol, so
1520 // we only store that instead of the whole symbol name.
1521 typedef std::map<Mapping_symbol_position, char,
1522 Mapping_symbol_position_less> Mapping_symbols_info;
1523
2fb7225c
DK
1524 // Whether a section contains any Cortex-A8 workaround.
1525 bool
1526 section_has_cortex_a8_workaround(unsigned int shndx) const
1527 {
1528 return (this->section_has_cortex_a8_workaround_ != NULL
1529 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1530 }
1531
1532 // Mark a section that has Cortex-A8 workaround.
1533 void
1534 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1535 {
1536 if (this->section_has_cortex_a8_workaround_ == NULL)
1537 this->section_has_cortex_a8_workaround_ =
1538 new std::vector<bool>(this->shnum(), false);
1539 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1540 }
1541
993d07c1
DK
1542 // Return the EXIDX section of an text section with index SHNDX or NULL
1543 // if the text section has no associated EXIDX section.
1544 const Arm_exidx_input_section*
1545 exidx_input_section_by_link(unsigned int shndx) const
1546 {
1547 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1548 return ((p != this->exidx_section_map_.end()
1549 && p->second->link() == shndx)
1550 ? p->second
1551 : NULL);
1552 }
1553
1554 // Return the EXIDX section with index SHNDX or NULL if there is none.
1555 const Arm_exidx_input_section*
1556 exidx_input_section_by_shndx(unsigned shndx) const
1557 {
1558 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1559 return ((p != this->exidx_section_map_.end()
1560 && p->second->shndx() == shndx)
1561 ? p->second
1562 : NULL);
1563 }
1564
e7eca48c
DK
1565 // Whether output local symbol count needs updating.
1566 bool
1567 output_local_symbol_count_needs_update() const
1568 { return this->output_local_symbol_count_needs_update_; }
1569
1570 // Set output_local_symbol_count_needs_update flag to be true.
1571 void
1572 set_output_local_symbol_count_needs_update()
1573 { this->output_local_symbol_count_needs_update_ = true; }
1574
1575 // Update output local symbol count at the end of relaxation.
1576 void
1577 update_output_local_symbol_count();
1578
7296d933
DK
1579 // Whether we want to merge processor-specific flags and attributes.
1580 bool
1581 merge_flags_and_attributes() const
1582 { return this->merge_flags_and_attributes_; }
1583
8ffa3667
DK
1584 protected:
1585 // Post constructor setup.
1586 void
1587 do_setup()
1588 {
1589 // Call parent's setup method.
1590 Sized_relobj<32, big_endian>::do_setup();
1591
1592 // Initialize look-up tables.
1593 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1594 this->stub_tables_.swap(empty_stub_table_list);
1595 }
1596
1597 // Count the local symbols.
1598 void
1599 do_count_local_symbols(Stringpool_template<char>*,
1600 Stringpool_template<char>*);
1601
1602 void
43d12afe 1603 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
8ffa3667
DK
1604 const unsigned char* pshdrs,
1605 typename Sized_relobj<32, big_endian>::Views* pivews);
1606
d5b40221
DK
1607 // Read the symbol information.
1608 void
1609 do_read_symbols(Read_symbols_data* sd);
1610
99e5bff2
DK
1611 // Process relocs for garbage collection.
1612 void
1613 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1614
8ffa3667 1615 private:
44272192
DK
1616
1617 // Whether a section needs to be scanned for relocation stubs.
1618 bool
1619 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1620 const Relobj::Output_sections&,
2b328d4e 1621 const Symbol_table *, const unsigned char*);
44272192 1622
cf846138
DK
1623 // Whether a section is a scannable text section.
1624 bool
1625 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1626 const Output_section*, const Symbol_table *);
1627
44272192
DK
1628 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1629 bool
1630 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1631 unsigned int, Output_section*,
1632 const Symbol_table *);
1633
1634 // Scan a section for the Cortex-A8 erratum.
1635 void
1636 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1637 unsigned int, Output_section*,
1638 Target_arm<big_endian>*);
1639
c8761b9a
DK
1640 // Find the linked text section of an EXIDX section by looking at the
1641 // first reloction of the EXIDX section. PSHDR points to the section
1642 // headers of a relocation section and PSYMS points to the local symbols.
1643 // PSHNDX points to a location storing the text section index if found.
1644 // Return whether we can find the linked section.
1645 bool
1646 find_linked_text_section(const unsigned char* pshdr,
1647 const unsigned char* psyms, unsigned int* pshndx);
1648
1649 //
993d07c1 1650 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1651 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1652 // index of the linked text section.
993d07c1
DK
1653 void
1654 make_exidx_input_section(unsigned int shndx,
c8761b9a
DK
1655 const elfcpp::Shdr<32, big_endian>& shdr,
1656 unsigned int text_shndx);
993d07c1 1657
cb1be87e
DK
1658 // Return the output address of either a plain input section or a
1659 // relaxed input section. SHNDX is the section index.
1660 Arm_address
1661 simple_input_section_output_address(unsigned int, Output_section*);
1662
8ffa3667 1663 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1664 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1665 Exidx_section_map;
1666
1667 // List of stub tables.
8ffa3667
DK
1668 Stub_table_list stub_tables_;
1669 // Bit vector to tell if a local symbol is a thumb function or not.
1670 // This is only valid after do_count_local_symbol is called.
1671 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1672 // processor-specific flags in ELF file header.
1673 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1674 // Object attributes if there is an .ARM.attributes section or NULL.
1675 Attributes_section_data* attributes_section_data_;
20138696
DK
1676 // Mapping symbols information.
1677 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1678 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1679 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1680 // Map a text section to its associated .ARM.exidx section, if there is one.
1681 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1682 // Whether output local symbol count needs updating.
1683 bool output_local_symbol_count_needs_update_;
7296d933
DK
1684 // Whether we merge processor flags and attributes of this object to
1685 // output.
1686 bool merge_flags_and_attributes_;
d5b40221
DK
1687};
1688
1689// Arm_dynobj class.
1690
1691template<bool big_endian>
1692class Arm_dynobj : public Sized_dynobj<32, big_endian>
1693{
1694 public:
2ea97941 1695 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1696 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1697 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1698 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1699 { }
1700
1701 ~Arm_dynobj()
a0351a69 1702 { delete this->attributes_section_data_; }
d5b40221
DK
1703
1704 // Downcast a base pointer to an Arm_relobj pointer. This is
1705 // not type-safe but we only use Arm_relobj not the base class.
1706 static Arm_dynobj<big_endian>*
1707 as_arm_dynobj(Dynobj* dynobj)
1708 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1709
1710 // Processor-specific flags in ELF file header. This is valid only after
1711 // reading symbols.
1712 elfcpp::Elf_Word
1713 processor_specific_flags() const
1714 { return this->processor_specific_flags_; }
1715
a0351a69
DK
1716 // Attributes section data.
1717 const Attributes_section_data*
1718 attributes_section_data() const
1719 { return this->attributes_section_data_; }
1720
d5b40221
DK
1721 protected:
1722 // Read the symbol information.
1723 void
1724 do_read_symbols(Read_symbols_data* sd);
1725
1726 private:
1727 // processor-specific flags in ELF file header.
1728 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1729 // Object attributes if there is an .ARM.attributes section or NULL.
1730 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1731};
1732
e9bbb538
DK
1733// Functor to read reloc addends during stub generation.
1734
1735template<int sh_type, bool big_endian>
1736struct Stub_addend_reader
1737{
1738 // Return the addend for a relocation of a particular type. Depending
1739 // on whether this is a REL or RELA relocation, read the addend from a
1740 // view or from a Reloc object.
1741 elfcpp::Elf_types<32>::Elf_Swxword
1742 operator()(
1743 unsigned int /* r_type */,
1744 const unsigned char* /* view */,
1745 const typename Reloc_types<sh_type,
ebd95253 1746 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1747};
1748
1749// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1750
1751template<bool big_endian>
1752struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1753{
1754 elfcpp::Elf_types<32>::Elf_Swxword
1755 operator()(
1756 unsigned int,
1757 const unsigned char*,
1758 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1759};
1760
1761// Specialized Stub_addend_reader for RELA type relocation sections.
1762// We currently do not handle RELA type relocation sections but it is trivial
1763// to implement the addend reader. This is provided for completeness and to
1764// make it easier to add support for RELA relocation sections in the future.
1765
1766template<bool big_endian>
1767struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1768{
1769 elfcpp::Elf_types<32>::Elf_Swxword
1770 operator()(
1771 unsigned int,
1772 const unsigned char*,
1773 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1774 big_endian>::Reloc& reloc) const
1775 { return reloc.get_r_addend(); }
e9bbb538
DK
1776};
1777
a120bc7f
DK
1778// Cortex_a8_reloc class. We keep record of relocation that may need
1779// the Cortex-A8 erratum workaround.
1780
1781class Cortex_a8_reloc
1782{
1783 public:
1784 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1785 Arm_address destination)
1786 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1787 { }
1788
1789 ~Cortex_a8_reloc()
1790 { }
1791
1792 // Accessors: This is a read-only class.
1793
1794 // Return the relocation stub associated with this relocation if there is
1795 // one.
1796 const Reloc_stub*
1797 reloc_stub() const
1798 { return this->reloc_stub_; }
1799
1800 // Return the relocation type.
1801 unsigned int
1802 r_type() const
1803 { return this->r_type_; }
1804
1805 // Return the destination address of the relocation. LSB stores the THUMB
1806 // bit.
1807 Arm_address
1808 destination() const
1809 { return this->destination_; }
1810
1811 private:
1812 // Associated relocation stub if there is one, or NULL.
1813 const Reloc_stub* reloc_stub_;
1814 // Relocation type.
1815 unsigned int r_type_;
1816 // Destination address of this relocation. LSB is used to distinguish
1817 // ARM/THUMB mode.
1818 Arm_address destination_;
1819};
1820
4a54abbb
DK
1821// Arm_output_data_got class. We derive this from Output_data_got to add
1822// extra methods to handle TLS relocations in a static link.
1823
1824template<bool big_endian>
1825class Arm_output_data_got : public Output_data_got<32, big_endian>
1826{
1827 public:
1828 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1829 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1830 { }
1831
1832 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1833 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1834 // applied in a static link.
1835 void
1836 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1837 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1838
1839 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1840 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1841 // relocation that needs to be applied in a static link.
1842 void
1843 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1844 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1845 {
1846 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1847 index));
1848 }
1849
1850 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1851 // The first one is initialized to be 1, which is the module index for
1852 // the main executable and the second one 0. A reloc of the type
1853 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1854 // be applied by gold. GSYM is a global symbol.
1855 void
1856 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1857
1858 // Same as the above but for a local symbol in OBJECT with INDEX.
1859 void
1860 add_tls_gd32_with_static_reloc(unsigned int got_type,
1861 Sized_relobj<32, big_endian>* object,
1862 unsigned int index);
1863
1864 protected:
1865 // Write out the GOT table.
1866 void
1867 do_write(Output_file*);
1868
1869 private:
1870 // This class represent dynamic relocations that need to be applied by
1871 // gold because we are using TLS relocations in a static link.
1872 class Static_reloc
1873 {
1874 public:
1875 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1876 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1877 { this->u_.global.symbol = gsym; }
1878
1879 Static_reloc(unsigned int got_offset, unsigned int r_type,
1880 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1881 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1882 {
1883 this->u_.local.relobj = relobj;
1884 this->u_.local.index = index;
1885 }
1886
1887 // Return the GOT offset.
1888 unsigned int
1889 got_offset() const
1890 { return this->got_offset_; }
1891
1892 // Relocation type.
1893 unsigned int
1894 r_type() const
1895 { return this->r_type_; }
1896
1897 // Whether the symbol is global or not.
1898 bool
1899 symbol_is_global() const
1900 { return this->symbol_is_global_; }
1901
1902 // For a relocation against a global symbol, the global symbol.
1903 Symbol*
1904 symbol() const
1905 {
1906 gold_assert(this->symbol_is_global_);
1907 return this->u_.global.symbol;
1908 }
1909
1910 // For a relocation against a local symbol, the defining object.
1911 Sized_relobj<32, big_endian>*
1912 relobj() const
1913 {
1914 gold_assert(!this->symbol_is_global_);
1915 return this->u_.local.relobj;
1916 }
1917
1918 // For a relocation against a local symbol, the local symbol index.
1919 unsigned int
1920 index() const
1921 {
1922 gold_assert(!this->symbol_is_global_);
1923 return this->u_.local.index;
1924 }
1925
1926 private:
1927 // GOT offset of the entry to which this relocation is applied.
1928 unsigned int got_offset_;
1929 // Type of relocation.
1930 unsigned int r_type_;
1931 // Whether this relocation is against a global symbol.
1932 bool symbol_is_global_;
1933 // A global or local symbol.
1934 union
1935 {
1936 struct
1937 {
1938 // For a global symbol, the symbol itself.
1939 Symbol* symbol;
1940 } global;
1941 struct
1942 {
1943 // For a local symbol, the object defining object.
1944 Sized_relobj<32, big_endian>* relobj;
1945 // For a local symbol, the symbol index.
1946 unsigned int index;
1947 } local;
1948 } u_;
1949 };
1950
1951 // Symbol table of the output object.
1952 Symbol_table* symbol_table_;
1953 // Layout of the output object.
1954 Layout* layout_;
1955 // Static relocs to be applied to the GOT.
1956 std::vector<Static_reloc> static_relocs_;
1957};
1958
5c388529
DK
1959// The ARM target has many relocation types with odd-sizes or incontigious
1960// bits. The default handling of relocatable relocation cannot process these
1961// relocations. So we have to extend the default code.
1962
1963template<bool big_endian, int sh_type, typename Classify_reloc>
1964class Arm_scan_relocatable_relocs :
1965 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
1966{
1967 public:
1968 // Return the strategy to use for a local symbol which is a section
1969 // symbol, given the relocation type.
1970 inline Relocatable_relocs::Reloc_strategy
1971 local_section_strategy(unsigned int r_type, Relobj*)
1972 {
1973 if (sh_type == elfcpp::SHT_RELA)
1974 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
1975 else
1976 {
1977 if (r_type == elfcpp::R_ARM_TARGET1
1978 || r_type == elfcpp::R_ARM_TARGET2)
1979 {
1980 const Target_arm<big_endian>* arm_target =
1981 Target_arm<big_endian>::default_target();
1982 r_type = arm_target->get_real_reloc_type(r_type);
1983 }
1984
1985 switch(r_type)
1986 {
1987 // Relocations that write nothing. These exclude R_ARM_TARGET1
1988 // and R_ARM_TARGET2.
1989 case elfcpp::R_ARM_NONE:
1990 case elfcpp::R_ARM_V4BX:
1991 case elfcpp::R_ARM_TLS_GOTDESC:
1992 case elfcpp::R_ARM_TLS_CALL:
1993 case elfcpp::R_ARM_TLS_DESCSEQ:
1994 case elfcpp::R_ARM_THM_TLS_CALL:
1995 case elfcpp::R_ARM_GOTRELAX:
1996 case elfcpp::R_ARM_GNU_VTENTRY:
1997 case elfcpp::R_ARM_GNU_VTINHERIT:
1998 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
1999 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2000 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2001 // These should have been converted to something else above.
2002 case elfcpp::R_ARM_TARGET1:
2003 case elfcpp::R_ARM_TARGET2:
2004 gold_unreachable();
2005 // Relocations that write full 32 bits.
2006 case elfcpp::R_ARM_ABS32:
2007 case elfcpp::R_ARM_REL32:
2008 case elfcpp::R_ARM_SBREL32:
2009 case elfcpp::R_ARM_GOTOFF32:
2010 case elfcpp::R_ARM_BASE_PREL:
2011 case elfcpp::R_ARM_GOT_BREL:
2012 case elfcpp::R_ARM_BASE_ABS:
2013 case elfcpp::R_ARM_ABS32_NOI:
2014 case elfcpp::R_ARM_REL32_NOI:
2015 case elfcpp::R_ARM_PLT32_ABS:
2016 case elfcpp::R_ARM_GOT_ABS:
2017 case elfcpp::R_ARM_GOT_PREL:
2018 case elfcpp::R_ARM_TLS_GD32:
2019 case elfcpp::R_ARM_TLS_LDM32:
2020 case elfcpp::R_ARM_TLS_LDO32:
2021 case elfcpp::R_ARM_TLS_IE32:
2022 case elfcpp::R_ARM_TLS_LE32:
2023 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2024 default:
2025 // For all other static relocations, return RELOC_SPECIAL.
2026 return Relocatable_relocs::RELOC_SPECIAL;
2027 }
2028 }
2029 }
2030};
2031
c121c671
DK
2032// Utilities for manipulating integers of up to 32-bits
2033
2034namespace utils
2035{
2036 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2037 // an int32_t. NO_BITS must be between 1 to 32.
2038 template<int no_bits>
2039 static inline int32_t
2040 sign_extend(uint32_t bits)
2041 {
96d49306 2042 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2043 if (no_bits == 32)
2044 return static_cast<int32_t>(bits);
2045 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2046 bits &= mask;
2047 uint32_t top_bit = 1U << (no_bits - 1);
2048 int32_t as_signed = static_cast<int32_t>(bits);
2049 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2050 }
2051
2052 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2053 template<int no_bits>
2054 static inline bool
2055 has_overflow(uint32_t bits)
2056 {
96d49306 2057 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2058 if (no_bits == 32)
2059 return false;
2060 int32_t max = (1 << (no_bits - 1)) - 1;
2061 int32_t min = -(1 << (no_bits - 1));
2062 int32_t as_signed = static_cast<int32_t>(bits);
2063 return as_signed > max || as_signed < min;
2064 }
2065
5e445df6
ILT
2066 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2067 // fits in the given number of bits as either a signed or unsigned value.
2068 // For example, has_signed_unsigned_overflow<8> would check
2069 // -128 <= bits <= 255
2070 template<int no_bits>
2071 static inline bool
2072 has_signed_unsigned_overflow(uint32_t bits)
2073 {
2074 gold_assert(no_bits >= 2 && no_bits <= 32);
2075 if (no_bits == 32)
2076 return false;
2077 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2078 int32_t min = -(1 << (no_bits - 1));
2079 int32_t as_signed = static_cast<int32_t>(bits);
2080 return as_signed > max || as_signed < min;
2081 }
2082
c121c671
DK
2083 // Select bits from A and B using bits in MASK. For each n in [0..31],
2084 // the n-th bit in the result is chosen from the n-th bits of A and B.
2085 // A zero selects A and a one selects B.
2086 static inline uint32_t
2087 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2088 { return (a & ~mask) | (b & mask); }
2089};
2090
4a657b0d
DK
2091template<bool big_endian>
2092class Target_arm : public Sized_target<32, big_endian>
2093{
2094 public:
2095 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2096 Reloc_section;
2097
2daedcd6
DK
2098 // When were are relocating a stub, we pass this as the relocation number.
2099 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2100
a6d1ef57
DK
2101 Target_arm()
2102 : Sized_target<32, big_endian>(&arm_info),
2103 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2104 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2105 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2106 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2107 may_use_blx_(false), should_force_pic_veneer_(false),
2108 arm_input_section_map_(), attributes_section_data_(NULL),
2109 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2110 { }
4a657b0d 2111
8a75a161
DK
2112 // Virtual function which is set to return true by a target if
2113 // it can use relocation types to determine if a function's
2114 // pointer is taken.
2115 virtual bool
2116 can_check_for_function_pointers() const
2117 { return true; }
2118
2119 // Whether a section called SECTION_NAME may have function pointers to
2120 // sections not eligible for safe ICF folding.
2121 virtual bool
2122 section_may_have_icf_unsafe_pointers(const char* section_name) const
2123 {
2124 return (!is_prefix_of(".ARM.exidx", section_name)
2125 && !is_prefix_of(".ARM.extab", section_name)
2126 && Target::section_may_have_icf_unsafe_pointers(section_name));
2127 }
2128
b569affa
DK
2129 // Whether we can use BLX.
2130 bool
2131 may_use_blx() const
2132 { return this->may_use_blx_; }
2133
2134 // Set use-BLX flag.
2135 void
2136 set_may_use_blx(bool value)
2137 { this->may_use_blx_ = value; }
2138
2139 // Whether we force PCI branch veneers.
2140 bool
2141 should_force_pic_veneer() const
2142 { return this->should_force_pic_veneer_; }
2143
2144 // Set PIC veneer flag.
2145 void
2146 set_should_force_pic_veneer(bool value)
2147 { this->should_force_pic_veneer_ = value; }
2148
2149 // Whether we use THUMB-2 instructions.
2150 bool
2151 using_thumb2() const
2152 {
a0351a69
DK
2153 Object_attribute* attr =
2154 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2155 int arch = attr->int_value();
2156 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2157 }
2158
2159 // Whether we use THUMB/THUMB-2 instructions only.
2160 bool
2161 using_thumb_only() const
2162 {
a0351a69
DK
2163 Object_attribute* attr =
2164 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2165
2166 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2167 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2168 return true;
a0351a69
DK
2169 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2170 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2171 return false;
2172 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2173 return attr->int_value() == 'M';
b569affa
DK
2174 }
2175
d204b6e9
DK
2176 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2177 bool
2178 may_use_arm_nop() const
2179 {
a0351a69
DK
2180 Object_attribute* attr =
2181 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2182 int arch = attr->int_value();
2183 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2184 || arch == elfcpp::TAG_CPU_ARCH_V6K
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2187 }
2188
51938283
DK
2189 // Whether we have THUMB-2 NOP.W instruction.
2190 bool
2191 may_use_thumb2_nop() const
2192 {
a0351a69
DK
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2197 || arch == elfcpp::TAG_CPU_ARCH_V7
2198 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
2199 }
2200
4a657b0d
DK
2201 // Process the relocations to determine unreferenced sections for
2202 // garbage collection.
2203 void
ad0f2072 2204 gc_process_relocs(Symbol_table* symtab,
4a657b0d
DK
2205 Layout* layout,
2206 Sized_relobj<32, big_endian>* object,
2207 unsigned int data_shndx,
2208 unsigned int sh_type,
2209 const unsigned char* prelocs,
2210 size_t reloc_count,
2211 Output_section* output_section,
2212 bool needs_special_offset_handling,
2213 size_t local_symbol_count,
2214 const unsigned char* plocal_symbols);
2215
2216 // Scan the relocations to look for symbol adjustments.
2217 void
ad0f2072 2218 scan_relocs(Symbol_table* symtab,
4a657b0d
DK
2219 Layout* layout,
2220 Sized_relobj<32, big_endian>* object,
2221 unsigned int data_shndx,
2222 unsigned int sh_type,
2223 const unsigned char* prelocs,
2224 size_t reloc_count,
2225 Output_section* output_section,
2226 bool needs_special_offset_handling,
2227 size_t local_symbol_count,
2228 const unsigned char* plocal_symbols);
2229
2230 // Finalize the sections.
2231 void
f59f41f3 2232 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2233
94cdfcff 2234 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2235 // treatment.
2236 uint64_t
2237 do_dynsym_value(const Symbol*) const;
2238
2239 // Relocate a section.
2240 void
2241 relocate_section(const Relocate_info<32, big_endian>*,
2242 unsigned int sh_type,
2243 const unsigned char* prelocs,
2244 size_t reloc_count,
2245 Output_section* output_section,
2246 bool needs_special_offset_handling,
2247 unsigned char* view,
ebabffbd 2248 Arm_address view_address,
364c7fa5
ILT
2249 section_size_type view_size,
2250 const Reloc_symbol_changes*);
4a657b0d
DK
2251
2252 // Scan the relocs during a relocatable link.
2253 void
ad0f2072 2254 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d
DK
2255 Layout* layout,
2256 Sized_relobj<32, big_endian>* object,
2257 unsigned int data_shndx,
2258 unsigned int sh_type,
2259 const unsigned char* prelocs,
2260 size_t reloc_count,
2261 Output_section* output_section,
2262 bool needs_special_offset_handling,
2263 size_t local_symbol_count,
2264 const unsigned char* plocal_symbols,
2265 Relocatable_relocs*);
2266
2267 // Relocate a section during a relocatable link.
2268 void
2269 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2270 unsigned int sh_type,
2271 const unsigned char* prelocs,
2272 size_t reloc_count,
2273 Output_section* output_section,
2274 off_t offset_in_output_section,
2275 const Relocatable_relocs*,
2276 unsigned char* view,
ebabffbd 2277 Arm_address view_address,
4a657b0d
DK
2278 section_size_type view_size,
2279 unsigned char* reloc_view,
2280 section_size_type reloc_view_size);
2281
5c388529
DK
2282 // Perform target-specific processing in a relocatable link. This is
2283 // only used if we use the relocation strategy RELOC_SPECIAL.
2284 void
2285 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2286 unsigned int sh_type,
2287 const unsigned char* preloc_in,
2288 size_t relnum,
2289 Output_section* output_section,
2290 off_t offset_in_output_section,
2291 unsigned char* view,
2292 typename elfcpp::Elf_types<32>::Elf_Addr
2293 view_address,
2294 section_size_type view_size,
2295 unsigned char* preloc_out);
2296
4a657b0d
DK
2297 // Return whether SYM is defined by the ABI.
2298 bool
2299 do_is_defined_by_abi(Symbol* sym) const
2300 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2301
c8761b9a
DK
2302 // Return whether there is a GOT section.
2303 bool
2304 has_got_section() const
2305 { return this->got_ != NULL; }
2306
94cdfcff
DK
2307 // Return the size of the GOT section.
2308 section_size_type
2309 got_size()
2310 {
2311 gold_assert(this->got_ != NULL);
2312 return this->got_->data_size();
2313 }
2314
4a657b0d 2315 // Map platform-specific reloc types
a6d1ef57
DK
2316 static unsigned int
2317 get_real_reloc_type (unsigned int r_type);
4a657b0d 2318
55da9579
DK
2319 //
2320 // Methods to support stub-generations.
2321 //
2322
2323 // Return the stub factory
2324 const Stub_factory&
2325 stub_factory() const
2326 { return this->stub_factory_; }
2327
2328 // Make a new Arm_input_section object.
2329 Arm_input_section<big_endian>*
2330 new_arm_input_section(Relobj*, unsigned int);
2331
2332 // Find the Arm_input_section object corresponding to the SHNDX-th input
2333 // section of RELOBJ.
2334 Arm_input_section<big_endian>*
2ea97941 2335 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2336
2337 // Make a new Stub_table
2338 Stub_table<big_endian>*
2339 new_stub_table(Arm_input_section<big_endian>*);
2340
eb44217c
DK
2341 // Scan a section for stub generation.
2342 void
2343 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2344 const unsigned char*, size_t, Output_section*,
2345 bool, const unsigned char*, Arm_address,
2346 section_size_type);
2347
43d12afe
DK
2348 // Relocate a stub.
2349 void
2fb7225c 2350 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2351 Output_section*, unsigned char*, Arm_address,
2352 section_size_type);
2353
b569affa 2354 // Get the default ARM target.
43d12afe 2355 static Target_arm<big_endian>*
b569affa
DK
2356 default_target()
2357 {
2358 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2359 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2360 return static_cast<Target_arm<big_endian>*>(
2361 parameters->sized_target<32, big_endian>());
b569affa
DK
2362 }
2363
20138696
DK
2364 // Whether NAME belongs to a mapping symbol.
2365 static bool
2366 is_mapping_symbol_name(const char* name)
2367 {
2368 return (name
2369 && name[0] == '$'
2370 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2371 && (name[2] == '\0' || name[2] == '.'));
2372 }
2373
a120bc7f
DK
2374 // Whether we work around the Cortex-A8 erratum.
2375 bool
2376 fix_cortex_a8() const
2377 { return this->fix_cortex_a8_; }
2378
85fdf906
AH
2379 // Whether we merge exidx entries in debuginfo.
2380 bool
2381 merge_exidx_entries() const
2382 { return parameters->options().merge_exidx_entries(); }
2383
a2162063
ILT
2384 // Whether we fix R_ARM_V4BX relocation.
2385 // 0 - do not fix
2386 // 1 - replace with MOV instruction (armv4 target)
2387 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2388 General_options::Fix_v4bx
a2162063 2389 fix_v4bx() const
9b2fd367 2390 { return parameters->options().fix_v4bx(); }
a2162063 2391
44272192
DK
2392 // Scan a span of THUMB code section for Cortex-A8 erratum.
2393 void
2394 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2395 section_size_type, section_size_type,
2396 const unsigned char*, Arm_address);
2397
41263c05
DK
2398 // Apply Cortex-A8 workaround to a branch.
2399 void
2400 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2401 unsigned char*, Arm_address);
2402
d5b40221 2403 protected:
eb44217c
DK
2404 // Make an ELF object.
2405 Object*
2406 do_make_elf_object(const std::string&, Input_file*, off_t,
2407 const elfcpp::Ehdr<32, big_endian>& ehdr);
2408
2409 Object*
2410 do_make_elf_object(const std::string&, Input_file*, off_t,
2411 const elfcpp::Ehdr<32, !big_endian>&)
2412 { gold_unreachable(); }
2413
2414 Object*
2415 do_make_elf_object(const std::string&, Input_file*, off_t,
2416 const elfcpp::Ehdr<64, false>&)
2417 { gold_unreachable(); }
2418
2419 Object*
2420 do_make_elf_object(const std::string&, Input_file*, off_t,
2421 const elfcpp::Ehdr<64, true>&)
2422 { gold_unreachable(); }
2423
2424 // Make an output section.
2425 Output_section*
2426 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2427 elfcpp::Elf_Xword flags)
2428 { return new Arm_output_section<big_endian>(name, type, flags); }
2429
d5b40221
DK
2430 void
2431 do_adjust_elf_header(unsigned char* view, int len) const;
2432
eb44217c
DK
2433 // We only need to generate stubs, and hence perform relaxation if we are
2434 // not doing relocatable linking.
2435 bool
2436 do_may_relax() const
2437 { return !parameters->options().relocatable(); }
2438
2439 bool
2440 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2441
a0351a69
DK
2442 // Determine whether an object attribute tag takes an integer, a
2443 // string or both.
2444 int
2445 do_attribute_arg_type(int tag) const;
2446
2447 // Reorder tags during output.
2448 int
2449 do_attributes_order(int num) const;
2450
0d31c79d
DK
2451 // This is called when the target is selected as the default.
2452 void
2453 do_select_as_default_target()
2454 {
2455 // No locking is required since there should only be one default target.
2456 // We cannot have both the big-endian and little-endian ARM targets
2457 // as the default.
2458 gold_assert(arm_reloc_property_table == NULL);
2459 arm_reloc_property_table = new Arm_reloc_property_table();
2460 }
2461
4a657b0d
DK
2462 private:
2463 // The class which scans relocations.
2464 class Scan
2465 {
2466 public:
2467 Scan()
bec53400 2468 : issued_non_pic_error_(false)
4a657b0d
DK
2469 { }
2470
2471 inline void
ad0f2072 2472 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2473 Sized_relobj<32, big_endian>* object,
2474 unsigned int data_shndx,
2475 Output_section* output_section,
2476 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2477 const elfcpp::Sym<32, big_endian>& lsym);
2478
2479 inline void
ad0f2072 2480 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2481 Sized_relobj<32, big_endian>* object,
2482 unsigned int data_shndx,
2483 Output_section* output_section,
2484 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2485 Symbol* gsym);
2486
21bb3914
ST
2487 inline bool
2488 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2489 Sized_relobj<32, big_endian>* ,
2490 unsigned int ,
2491 Output_section* ,
2492 const elfcpp::Rel<32, big_endian>& ,
2493 unsigned int ,
8a75a161 2494 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2495
2496 inline bool
2497 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2498 Sized_relobj<32, big_endian>* ,
2499 unsigned int ,
2500 Output_section* ,
2501 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2502 unsigned int , Symbol*);
21bb3914 2503
4a657b0d
DK
2504 private:
2505 static void
2506 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2507 unsigned int r_type);
2508
2509 static void
2510 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2511 unsigned int r_type, Symbol*);
bec53400
DK
2512
2513 void
2514 check_non_pic(Relobj*, unsigned int r_type);
2515
2516 // Almost identical to Symbol::needs_plt_entry except that it also
2517 // handles STT_ARM_TFUNC.
2518 static bool
2519 symbol_needs_plt_entry(const Symbol* sym)
2520 {
2521 // An undefined symbol from an executable does not need a PLT entry.
2522 if (sym->is_undefined() && !parameters->options().shared())
2523 return false;
2524
2525 return (!parameters->doing_static_link()
2526 && (sym->type() == elfcpp::STT_FUNC
2527 || sym->type() == elfcpp::STT_ARM_TFUNC)
2528 && (sym->is_from_dynobj()
2529 || sym->is_undefined()
2530 || sym->is_preemptible()));
2531 }
2532
8a75a161
DK
2533 inline bool
2534 possible_function_pointer_reloc(unsigned int r_type);
2535
bec53400
DK
2536 // Whether we have issued an error about a non-PIC compilation.
2537 bool issued_non_pic_error_;
4a657b0d
DK
2538 };
2539
2540 // The class which implements relocation.
2541 class Relocate
2542 {
2543 public:
2544 Relocate()
2545 { }
2546
2547 ~Relocate()
2548 { }
2549
bec53400
DK
2550 // Return whether the static relocation needs to be applied.
2551 inline bool
2552 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2553 int ref_flags,
2554 bool is_32bit,
2555 Output_section* output_section);
2556
4a657b0d
DK
2557 // Do a relocation. Return false if the caller should not issue
2558 // any warnings about this relocation.
2559 inline bool
2560 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2561 Output_section*, size_t relnum,
2562 const elfcpp::Rel<32, big_endian>&,
2563 unsigned int r_type, const Sized_symbol<32>*,
2564 const Symbol_value<32>*,
ebabffbd 2565 unsigned char*, Arm_address,
4a657b0d 2566 section_size_type);
c121c671
DK
2567
2568 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2569 // reloc. This means the relocation type accesses a symbol not via
2570 // GOT or PLT.
c121c671
DK
2571 static inline bool
2572 reloc_is_non_pic (unsigned int r_type)
2573 {
2574 switch (r_type)
2575 {
f4e5969c
DK
2576 // These relocation types reference GOT or PLT entries explicitly.
2577 case elfcpp::R_ARM_GOT_BREL:
2578 case elfcpp::R_ARM_GOT_ABS:
2579 case elfcpp::R_ARM_GOT_PREL:
2580 case elfcpp::R_ARM_GOT_BREL12:
2581 case elfcpp::R_ARM_PLT32_ABS:
2582 case elfcpp::R_ARM_TLS_GD32:
2583 case elfcpp::R_ARM_TLS_LDM32:
2584 case elfcpp::R_ARM_TLS_IE32:
2585 case elfcpp::R_ARM_TLS_IE12GP:
2586
2587 // These relocate types may use PLT entries.
c121c671 2588 case elfcpp::R_ARM_CALL:
f4e5969c 2589 case elfcpp::R_ARM_THM_CALL:
c121c671 2590 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2591 case elfcpp::R_ARM_THM_JUMP24:
2592 case elfcpp::R_ARM_THM_JUMP19:
2593 case elfcpp::R_ARM_PLT32:
2594 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2595 case elfcpp::R_ARM_PREL31:
2596 case elfcpp::R_ARM_SBREL31:
c121c671 2597 return false;
f4e5969c
DK
2598
2599 default:
2600 return true;
c121c671
DK
2601 }
2602 }
f96accdf
DK
2603
2604 private:
2605 // Do a TLS relocation.
2606 inline typename Arm_relocate_functions<big_endian>::Status
2607 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2608 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2609 const Sized_symbol<32>*, const Symbol_value<32>*,
2610 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2611 section_size_type);
2612
4a657b0d
DK
2613 };
2614
2615 // A class which returns the size required for a relocation type,
2616 // used while scanning relocs during a relocatable link.
2617 class Relocatable_size_for_reloc
2618 {
2619 public:
2620 unsigned int
2621 get_size_for_reloc(unsigned int, Relobj*);
2622 };
2623
f96accdf
DK
2624 // Adjust TLS relocation type based on the options and whether this
2625 // is a local symbol.
2626 static tls::Tls_optimization
2627 optimize_tls_reloc(bool is_final, int r_type);
2628
94cdfcff 2629 // Get the GOT section, creating it if necessary.
4a54abbb 2630 Arm_output_data_got<big_endian>*
94cdfcff
DK
2631 got_section(Symbol_table*, Layout*);
2632
2633 // Get the GOT PLT section.
2634 Output_data_space*
2635 got_plt_section() const
2636 {
2637 gold_assert(this->got_plt_ != NULL);
2638 return this->got_plt_;
2639 }
2640
2641 // Create a PLT entry for a global symbol.
2642 void
2643 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2644
f96accdf
DK
2645 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2646 void
2647 define_tls_base_symbol(Symbol_table*, Layout*);
2648
2649 // Create a GOT entry for the TLS module index.
2650 unsigned int
2651 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2652 Sized_relobj<32, big_endian>* object);
2653
94cdfcff
DK
2654 // Get the PLT section.
2655 const Output_data_plt_arm<big_endian>*
2656 plt_section() const
2657 {
2658 gold_assert(this->plt_ != NULL);
2659 return this->plt_;
2660 }
2661
2662 // Get the dynamic reloc section, creating it if necessary.
2663 Reloc_section*
2664 rel_dyn_section(Layout*);
2665
f96accdf
DK
2666 // Get the section to use for TLS_DESC relocations.
2667 Reloc_section*
2668 rel_tls_desc_section(Layout*) const;
2669
94cdfcff
DK
2670 // Return true if the symbol may need a COPY relocation.
2671 // References from an executable object to non-function symbols
2672 // defined in a dynamic object may need a COPY relocation.
2673 bool
2674 may_need_copy_reloc(Symbol* gsym)
2675 {
966d4097
DK
2676 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2677 && gsym->may_need_copy_reloc());
94cdfcff
DK
2678 }
2679
2680 // Add a potential copy relocation.
2681 void
2682 copy_reloc(Symbol_table* symtab, Layout* layout,
2683 Sized_relobj<32, big_endian>* object,
2ea97941 2684 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2685 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2686 {
2687 this->copy_relocs_.copy_reloc(symtab, layout,
2688 symtab->get_sized_symbol<32>(sym),
2ea97941 2689 object, shndx, output_section, reloc,
94cdfcff
DK
2690 this->rel_dyn_section(layout));
2691 }
2692
d5b40221
DK
2693 // Whether two EABI versions are compatible.
2694 static bool
2695 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2696
2697 // Merge processor-specific flags from input object and those in the ELF
2698 // header of the output.
2699 void
2700 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2701
a0351a69
DK
2702 // Get the secondary compatible architecture.
2703 static int
2704 get_secondary_compatible_arch(const Attributes_section_data*);
2705
2706 // Set the secondary compatible architecture.
2707 static void
2708 set_secondary_compatible_arch(Attributes_section_data*, int);
2709
2710 static int
2711 tag_cpu_arch_combine(const char*, int, int*, int, int);
2712
2713 // Helper to print AEABI enum tag value.
2714 static std::string
2715 aeabi_enum_name(unsigned int);
2716
2717 // Return string value for TAG_CPU_name.
2718 static std::string
2719 tag_cpu_name_value(unsigned int);
2720
2721 // Merge object attributes from input object and those in the output.
2722 void
2723 merge_object_attributes(const char*, const Attributes_section_data*);
2724
2725 // Helper to get an AEABI object attribute
2726 Object_attribute*
2727 get_aeabi_object_attribute(int tag) const
2728 {
2729 Attributes_section_data* pasd = this->attributes_section_data_;
2730 gold_assert(pasd != NULL);
2731 Object_attribute* attr =
2732 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2733 gold_assert(attr != NULL);
2734 return attr;
2735 }
2736
eb44217c
DK
2737 //
2738 // Methods to support stub-generations.
2739 //
d5b40221 2740
eb44217c
DK
2741 // Group input sections for stub generation.
2742 void
2743 group_sections(Layout*, section_size_type, bool);
d5b40221 2744
eb44217c
DK
2745 // Scan a relocation for stub generation.
2746 void
2747 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2748 const Sized_symbol<32>*, unsigned int,
2749 const Symbol_value<32>*,
2750 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2751
eb44217c
DK
2752 // Scan a relocation section for stub.
2753 template<int sh_type>
2754 void
2755 scan_reloc_section_for_stubs(
2756 const Relocate_info<32, big_endian>* relinfo,
2757 const unsigned char* prelocs,
2758 size_t reloc_count,
2759 Output_section* output_section,
2760 bool needs_special_offset_handling,
2761 const unsigned char* view,
2762 elfcpp::Elf_types<32>::Elf_Addr view_address,
2763 section_size_type);
d5b40221 2764
2b328d4e
DK
2765 // Fix .ARM.exidx section coverage.
2766 void
2767 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2768
2769 // Functors for STL set.
2770 struct output_section_address_less_than
2771 {
2772 bool
2773 operator()(const Output_section* s1, const Output_section* s2) const
2774 { return s1->address() < s2->address(); }
2775 };
2776
4a657b0d
DK
2777 // Information about this specific target which we pass to the
2778 // general Target structure.
2779 static const Target::Target_info arm_info;
94cdfcff
DK
2780
2781 // The types of GOT entries needed for this platform.
2782 enum Got_type
2783 {
f96accdf
DK
2784 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2785 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2786 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2787 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2788 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2789 };
2790
55da9579
DK
2791 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2792
2793 // Map input section to Arm_input_section.
5ac169d4 2794 typedef Unordered_map<Section_id,
55da9579 2795 Arm_input_section<big_endian>*,
5ac169d4 2796 Section_id_hash>
55da9579
DK
2797 Arm_input_section_map;
2798
a120bc7f
DK
2799 // Map output addresses to relocs for Cortex-A8 erratum.
2800 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2801 Cortex_a8_relocs_info;
2802
94cdfcff 2803 // The GOT section.
4a54abbb 2804 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2805 // The PLT section.
2806 Output_data_plt_arm<big_endian>* plt_;
2807 // The GOT PLT section.
2808 Output_data_space* got_plt_;
2809 // The dynamic reloc section.
2810 Reloc_section* rel_dyn_;
2811 // Relocs saved to avoid a COPY reloc.
2812 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2813 // Space for variables copied with a COPY reloc.
2814 Output_data_space* dynbss_;
f96accdf
DK
2815 // Offset of the GOT entry for the TLS module index.
2816 unsigned int got_mod_index_offset_;
2817 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2818 bool tls_base_symbol_defined_;
55da9579
DK
2819 // Vector of Stub_tables created.
2820 Stub_table_list stub_tables_;
2821 // Stub factory.
2822 const Stub_factory &stub_factory_;
b569affa
DK
2823 // Whether we can use BLX.
2824 bool may_use_blx_;
2825 // Whether we force PIC branch veneers.
2826 bool should_force_pic_veneer_;
eb44217c
DK
2827 // Map for locating Arm_input_sections.
2828 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2829 // Attributes section data in output.
2830 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2831 // Whether we want to fix code for Cortex-A8 erratum.
2832 bool fix_cortex_a8_;
2833 // Map addresses to relocs for Cortex-A8 erratum.
2834 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2835};
2836
2837template<bool big_endian>
2838const Target::Target_info Target_arm<big_endian>::arm_info =
2839{
2840 32, // size
2841 big_endian, // is_big_endian
2842 elfcpp::EM_ARM, // machine_code
2843 false, // has_make_symbol
2844 false, // has_resolve
2845 false, // has_code_fill
2846 true, // is_default_stack_executable
2847 '\0', // wrap_char
2848 "/usr/lib/libc.so.1", // dynamic_linker
2849 0x8000, // default_text_segment_address
2850 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2851 0x1000, // common_pagesize (overridable by -z common-page-size)
2852 elfcpp::SHN_UNDEF, // small_common_shndx
2853 elfcpp::SHN_UNDEF, // large_common_shndx
2854 0, // small_common_section_flags
05a352e6
DK
2855 0, // large_common_section_flags
2856 ".ARM.attributes", // attributes_section
2857 "aeabi" // attributes_vendor
4a657b0d
DK
2858};
2859
c121c671
DK
2860// Arm relocate functions class
2861//
2862
2863template<bool big_endian>
2864class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2865{
2866 public:
2867 typedef enum
2868 {
2869 STATUS_OKAY, // No error during relocation.
2870 STATUS_OVERFLOW, // Relocation oveflow.
2871 STATUS_BAD_RELOC // Relocation cannot be applied.
2872 } Status;
2873
2874 private:
2875 typedef Relocate_functions<32, big_endian> Base;
2876 typedef Arm_relocate_functions<big_endian> This;
2877
fd3c5f0b
ILT
2878 // Encoding of imm16 argument for movt and movw ARM instructions
2879 // from ARM ARM:
2880 //
2881 // imm16 := imm4 | imm12
2882 //
2883 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2884 // +-------+---------------+-------+-------+-----------------------+
2885 // | | |imm4 | |imm12 |
2886 // +-------+---------------+-------+-------+-----------------------+
2887
2888 // Extract the relocation addend from VAL based on the ARM
2889 // instruction encoding described above.
2890 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2891 extract_arm_movw_movt_addend(
2892 typename elfcpp::Swap<32, big_endian>::Valtype val)
2893 {
2894 // According to the Elf ABI for ARM Architecture the immediate
2895 // field is sign-extended to form the addend.
2896 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2897 }
2898
2899 // Insert X into VAL based on the ARM instruction encoding described
2900 // above.
2901 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2902 insert_val_arm_movw_movt(
2903 typename elfcpp::Swap<32, big_endian>::Valtype val,
2904 typename elfcpp::Swap<32, big_endian>::Valtype x)
2905 {
2906 val &= 0xfff0f000;
2907 val |= x & 0x0fff;
2908 val |= (x & 0xf000) << 4;
2909 return val;
2910 }
2911
2912 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2913 // from ARM ARM:
2914 //
2915 // imm16 := imm4 | i | imm3 | imm8
2916 //
2917 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2918 // +---------+-+-----------+-------++-+-----+-------+---------------+
2919 // | |i| |imm4 || |imm3 | |imm8 |
2920 // +---------+-+-----------+-------++-+-----+-------+---------------+
2921
2922 // Extract the relocation addend from VAL based on the Thumb2
2923 // instruction encoding described above.
2924 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2925 extract_thumb_movw_movt_addend(
2926 typename elfcpp::Swap<32, big_endian>::Valtype val)
2927 {
2928 // According to the Elf ABI for ARM Architecture the immediate
2929 // field is sign-extended to form the addend.
2930 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2931 | ((val >> 15) & 0x0800)
2932 | ((val >> 4) & 0x0700)
2933 | (val & 0x00ff));
2934 }
2935
2936 // Insert X into VAL based on the Thumb2 instruction encoding
2937 // described above.
2938 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2939 insert_val_thumb_movw_movt(
2940 typename elfcpp::Swap<32, big_endian>::Valtype val,
2941 typename elfcpp::Swap<32, big_endian>::Valtype x)
2942 {
2943 val &= 0xfbf08f00;
2944 val |= (x & 0xf000) << 4;
2945 val |= (x & 0x0800) << 15;
2946 val |= (x & 0x0700) << 4;
2947 val |= (x & 0x00ff);
2948 return val;
2949 }
2950
b10d2873
ILT
2951 // Calculate the smallest constant Kn for the specified residual.
2952 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2953 static uint32_t
2954 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2955 {
2956 int32_t msb;
2957
2958 if (residual == 0)
2959 return 0;
2960 // Determine the most significant bit in the residual and
2961 // align the resulting value to a 2-bit boundary.
2962 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2963 ;
2964 // The desired shift is now (msb - 6), or zero, whichever
2965 // is the greater.
2966 return (((msb - 6) < 0) ? 0 : (msb - 6));
2967 }
2968
2969 // Calculate the final residual for the specified group index.
2970 // If the passed group index is less than zero, the method will return
2971 // the value of the specified residual without any change.
2972 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2973 static typename elfcpp::Swap<32, big_endian>::Valtype
2974 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2975 const int group)
2976 {
2977 for (int n = 0; n <= group; n++)
2978 {
2979 // Calculate which part of the value to mask.
2980 uint32_t shift = calc_grp_kn(residual);
2981 // Calculate the residual for the next time around.
2982 residual &= ~(residual & (0xff << shift));
2983 }
2984
2985 return residual;
2986 }
2987
2988 // Calculate the value of Gn for the specified group index.
2989 // We return it in the form of an encoded constant-and-rotation.
2990 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2991 static typename elfcpp::Swap<32, big_endian>::Valtype
2992 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2993 const int group)
2994 {
2995 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2996 uint32_t shift = 0;
2997
2998 for (int n = 0; n <= group; n++)
2999 {
3000 // Calculate which part of the value to mask.
3001 shift = calc_grp_kn(residual);
3002 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3003 gn = residual & (0xff << shift);
3004 // Calculate the residual for the next time around.
3005 residual &= ~gn;
3006 }
3007 // Return Gn in the form of an encoded constant-and-rotation.
3008 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3009 }
3010
1521477a 3011 public:
d204b6e9
DK
3012 // Handle ARM long branches.
3013 static typename This::Status
3014 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3015 unsigned char *, const Sized_symbol<32>*,
3016 const Arm_relobj<big_endian>*, unsigned int,
3017 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3018
51938283
DK
3019 // Handle THUMB long branches.
3020 static typename This::Status
3021 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
3022 unsigned char *, const Sized_symbol<32>*,
3023 const Arm_relobj<big_endian>*, unsigned int,
3024 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3025
5e445df6 3026
089d69dc
DK
3027 // Return the branch offset of a 32-bit THUMB branch.
3028 static inline int32_t
3029 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3030 {
3031 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3032 // involving the J1 and J2 bits.
3033 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3034 uint32_t upper = upper_insn & 0x3ffU;
3035 uint32_t lower = lower_insn & 0x7ffU;
3036 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3037 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3038 uint32_t i1 = j1 ^ s ? 0 : 1;
3039 uint32_t i2 = j2 ^ s ? 0 : 1;
3040
3041 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3042 | (upper << 12) | (lower << 1));
3043 }
3044
3045 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3046 // UPPER_INSN is the original upper instruction of the branch. Caller is
3047 // responsible for overflow checking and BLX offset adjustment.
3048 static inline uint16_t
3049 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3050 {
3051 uint32_t s = offset < 0 ? 1 : 0;
3052 uint32_t bits = static_cast<uint32_t>(offset);
3053 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3054 }
3055
3056 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3057 // LOWER_INSN is the original lower instruction of the branch. Caller is
3058 // responsible for overflow checking and BLX offset adjustment.
3059 static inline uint16_t
3060 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3061 {
3062 uint32_t s = offset < 0 ? 1 : 0;
3063 uint32_t bits = static_cast<uint32_t>(offset);
3064 return ((lower_insn & ~0x2fffU)
3065 | ((((bits >> 23) & 1) ^ !s) << 13)
3066 | ((((bits >> 22) & 1) ^ !s) << 11)
3067 | ((bits >> 1) & 0x7ffU));
3068 }
3069
3070 // Return the branch offset of a 32-bit THUMB conditional branch.
3071 static inline int32_t
3072 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3073 {
3074 uint32_t s = (upper_insn & 0x0400U) >> 10;
3075 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3076 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3077 uint32_t lower = (lower_insn & 0x07ffU);
3078 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3079
3080 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3081 }
3082
3083 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3084 // instruction. UPPER_INSN is the original upper instruction of the branch.
3085 // Caller is responsible for overflow checking.
3086 static inline uint16_t
3087 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3088 {
3089 uint32_t s = offset < 0 ? 1 : 0;
3090 uint32_t bits = static_cast<uint32_t>(offset);
3091 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3092 }
3093
3094 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3095 // instruction. LOWER_INSN is the original lower instruction of the branch.
3096 // Caller is reponsible for overflow checking.
3097 static inline uint16_t
3098 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3099 {
3100 uint32_t bits = static_cast<uint32_t>(offset);
3101 uint32_t j2 = (bits & 0x00080000U) >> 19;
3102 uint32_t j1 = (bits & 0x00040000U) >> 18;
3103 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3104
3105 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3106 }
3107
5e445df6
ILT
3108 // R_ARM_ABS8: S + A
3109 static inline typename This::Status
3110 abs8(unsigned char *view,
3111 const Sized_relobj<32, big_endian>* object,
be8fcb75 3112 const Symbol_value<32>* psymval)
5e445df6
ILT
3113 {
3114 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
3115 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3116 Valtype* wv = reinterpret_cast<Valtype*>(view);
3117 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
3118 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 3119 Reltype x = psymval->value(object, addend);
5e445df6
ILT
3120 val = utils::bit_select(val, x, 0xffU);
3121 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3122
3123 // R_ARM_ABS8 permits signed or unsigned results.
3124 int signed_x = static_cast<int32_t>(x);
3125 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3126 ? This::STATUS_OVERFLOW
3127 : This::STATUS_OKAY);
3128 }
3129
be8fcb75
ILT
3130 // R_ARM_THM_ABS5: S + A
3131 static inline typename This::Status
3132 thm_abs5(unsigned char *view,
3133 const Sized_relobj<32, big_endian>* object,
3134 const Symbol_value<32>* psymval)
3135 {
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3138 Valtype* wv = reinterpret_cast<Valtype*>(view);
3139 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3140 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3141 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3142 val = utils::bit_select(val, x << 6, 0x7e0U);
3143 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3144
3145 // R_ARM_ABS16 permits signed or unsigned results.
3146 int signed_x = static_cast<int32_t>(x);
3147 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3148 ? This::STATUS_OVERFLOW
3149 : This::STATUS_OKAY);
3150 }
3151
3152 // R_ARM_ABS12: S + A
3153 static inline typename This::Status
3154 abs12(unsigned char *view,
51938283
DK
3155 const Sized_relobj<32, big_endian>* object,
3156 const Symbol_value<32>* psymval)
be8fcb75
ILT
3157 {
3158 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3159 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3160 Valtype* wv = reinterpret_cast<Valtype*>(view);
3161 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3162 Reltype addend = val & 0x0fffU;
2daedcd6 3163 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3164 val = utils::bit_select(val, x, 0x0fffU);
3165 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3166 return (utils::has_overflow<12>(x)
3167 ? This::STATUS_OVERFLOW
3168 : This::STATUS_OKAY);
3169 }
3170
3171 // R_ARM_ABS16: S + A
3172 static inline typename This::Status
3173 abs16(unsigned char *view,
51938283
DK
3174 const Sized_relobj<32, big_endian>* object,
3175 const Symbol_value<32>* psymval)
be8fcb75
ILT
3176 {
3177 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3178 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3179 Valtype* wv = reinterpret_cast<Valtype*>(view);
3180 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3181 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 3182 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3183 val = utils::bit_select(val, x, 0xffffU);
3184 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3185 return (utils::has_signed_unsigned_overflow<16>(x)
3186 ? This::STATUS_OVERFLOW
3187 : This::STATUS_OKAY);
3188 }
3189
c121c671
DK
3190 // R_ARM_ABS32: (S + A) | T
3191 static inline typename This::Status
3192 abs32(unsigned char *view,
3193 const Sized_relobj<32, big_endian>* object,
3194 const Symbol_value<32>* psymval,
2daedcd6 3195 Arm_address thumb_bit)
c121c671
DK
3196 {
3197 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3198 Valtype* wv = reinterpret_cast<Valtype*>(view);
3199 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3200 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
3201 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3202 return This::STATUS_OKAY;
3203 }
3204
3205 // R_ARM_REL32: (S + A) | T - P
3206 static inline typename This::Status
3207 rel32(unsigned char *view,
3208 const Sized_relobj<32, big_endian>* object,
3209 const Symbol_value<32>* psymval,
ebabffbd 3210 Arm_address address,
2daedcd6 3211 Arm_address thumb_bit)
c121c671
DK
3212 {
3213 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3214 Valtype* wv = reinterpret_cast<Valtype*>(view);
3215 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3217 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3218 return This::STATUS_OKAY;
3219 }
3220
089d69dc
DK
3221 // R_ARM_THM_JUMP24: (S + A) | T - P
3222 static typename This::Status
3223 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3224 const Symbol_value<32>* psymval, Arm_address address,
3225 Arm_address thumb_bit);
3226
800d0f56
ILT
3227 // R_ARM_THM_JUMP6: S + A – P
3228 static inline typename This::Status
3229 thm_jump6(unsigned char *view,
3230 const Sized_relobj<32, big_endian>* object,
3231 const Symbol_value<32>* psymval,
3232 Arm_address address)
3233 {
3234 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3235 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3238 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3239 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3240 Reltype x = (psymval->value(object, addend) - address);
3241 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3242 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3243 // CZB does only forward jumps.
3244 return ((x > 0x007e)
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3247 }
3248
3249 // R_ARM_THM_JUMP8: S + A – P
3250 static inline typename This::Status
3251 thm_jump8(unsigned char *view,
3252 const Sized_relobj<32, big_endian>* object,
3253 const Symbol_value<32>* psymval,
3254 Arm_address address)
3255 {
3256 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3257 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3260 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3261 Reltype x = (psymval->value(object, addend) - address);
3262 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3263 return (utils::has_overflow<8>(x)
3264 ? This::STATUS_OVERFLOW
3265 : This::STATUS_OKAY);
3266 }
3267
3268 // R_ARM_THM_JUMP11: S + A – P
3269 static inline typename This::Status
3270 thm_jump11(unsigned char *view,
3271 const Sized_relobj<32, big_endian>* object,
3272 const Symbol_value<32>* psymval,
3273 Arm_address address)
3274 {
3275 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3277 Valtype* wv = reinterpret_cast<Valtype*>(view);
3278 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3279 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3280 Reltype x = (psymval->value(object, addend) - address);
3281 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3282 return (utils::has_overflow<11>(x)
3283 ? This::STATUS_OVERFLOW
3284 : This::STATUS_OKAY);
3285 }
3286
c121c671
DK
3287 // R_ARM_BASE_PREL: B(S) + A - P
3288 static inline typename This::Status
3289 base_prel(unsigned char* view,
ebabffbd
DK
3290 Arm_address origin,
3291 Arm_address address)
c121c671
DK
3292 {
3293 Base::rel32(view, origin - address);
3294 return STATUS_OKAY;
3295 }
3296
be8fcb75
ILT
3297 // R_ARM_BASE_ABS: B(S) + A
3298 static inline typename This::Status
3299 base_abs(unsigned char* view,
f4e5969c 3300 Arm_address origin)
be8fcb75
ILT
3301 {
3302 Base::rel32(view, origin);
3303 return STATUS_OKAY;
3304 }
3305
c121c671
DK
3306 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3307 static inline typename This::Status
3308 got_brel(unsigned char* view,
3309 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3310 {
3311 Base::rel32(view, got_offset);
3312 return This::STATUS_OKAY;
3313 }
3314
f4e5969c 3315 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3316 static inline typename This::Status
f4e5969c
DK
3317 got_prel(unsigned char *view,
3318 Arm_address got_entry,
ebabffbd 3319 Arm_address address)
7f5309a5 3320 {
f4e5969c 3321 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3322 return This::STATUS_OKAY;
3323 }
3324
c121c671
DK
3325 // R_ARM_PREL: (S + A) | T - P
3326 static inline typename This::Status
3327 prel31(unsigned char *view,
3328 const Sized_relobj<32, big_endian>* object,
3329 const Symbol_value<32>* psymval,
ebabffbd 3330 Arm_address address,
2daedcd6 3331 Arm_address thumb_bit)
c121c671
DK
3332 {
3333 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3336 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 3337 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3338 val = utils::bit_select(val, x, 0x7fffffffU);
3339 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3340 return (utils::has_overflow<31>(x) ?
3341 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3342 }
fd3c5f0b 3343
5c57f1be 3344 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3345 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3346 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3347 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3348 static inline typename This::Status
5c57f1be
DK
3349 movw(unsigned char* view,
3350 const Sized_relobj<32, big_endian>* object,
3351 const Symbol_value<32>* psymval,
3352 Arm_address relative_address_base,
3353 Arm_address thumb_bit,
3354 bool check_overflow)
02961d7e
ILT
3355 {
3356 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3357 Valtype* wv = reinterpret_cast<Valtype*>(view);
3358 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3359 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3360 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3361 - relative_address_base);
02961d7e
ILT
3362 val = This::insert_val_arm_movw_movt(val, x);
3363 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be
DK
3364 return ((check_overflow && utils::has_overflow<16>(x))
3365 ? This::STATUS_OVERFLOW
3366 : This::STATUS_OKAY);
02961d7e
ILT
3367 }
3368
5c57f1be 3369 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3370 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3371 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3372 static inline typename This::Status
5c57f1be
DK
3373 movt(unsigned char* view,
3374 const Sized_relobj<32, big_endian>* object,
3375 const Symbol_value<32>* psymval,
3376 Arm_address relative_address_base)
c2a122b6
ILT
3377 {
3378 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3379 Valtype* wv = reinterpret_cast<Valtype*>(view);
3380 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3381 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3382 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3383 val = This::insert_val_arm_movw_movt(val, x);
3384 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3385 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3386 return This::STATUS_OKAY;
3387 }
3388
5c57f1be 3389 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3390 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3391 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3392 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3393 static inline typename This::Status
5c57f1be
DK
3394 thm_movw(unsigned char *view,
3395 const Sized_relobj<32, big_endian>* object,
3396 const Symbol_value<32>* psymval,
3397 Arm_address relative_address_base,
3398 Arm_address thumb_bit,
3399 bool check_overflow)
02961d7e
ILT
3400 {
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3407 Reltype x =
3408 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3409 val = This::insert_val_thumb_movw_movt(val, x);
3410 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3411 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
5c57f1be
DK
3412 return ((check_overflow && utils::has_overflow<16>(x))
3413 ? This::STATUS_OVERFLOW
3414 : This::STATUS_OKAY);
02961d7e
ILT
3415 }
3416
5c57f1be 3417 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3418 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3419 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3420 static inline typename This::Status
5c57f1be
DK
3421 thm_movt(unsigned char* view,
3422 const Sized_relobj<32, big_endian>* object,
3423 const Symbol_value<32>* psymval,
3424 Arm_address relative_address_base)
c2a122b6
ILT
3425 {
3426 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3427 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3428 Valtype* wv = reinterpret_cast<Valtype*>(view);
3429 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3430 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3431 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3432 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3433 val = This::insert_val_thumb_movw_movt(val, x);
3434 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3435 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3436 return This::STATUS_OKAY;
3437 }
a2162063 3438
11b861d5
DK
3439 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3440 static inline typename This::Status
3441 thm_alu11(unsigned char* view,
3442 const Sized_relobj<32, big_endian>* object,
3443 const Symbol_value<32>* psymval,
3444 Arm_address address,
3445 Arm_address thumb_bit)
3446 {
3447 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3448 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3449 Valtype* wv = reinterpret_cast<Valtype*>(view);
3450 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3451 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3452
3453 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3454 // -----------------------------------------------------------------------
3455 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3456 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3457 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3458 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3459 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3460 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3461
3462 // Determine a sign for the addend.
3463 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3464 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3465 // Thumb2 addend encoding:
3466 // imm12 := i | imm3 | imm8
3467 int32_t addend = (insn & 0xff)
3468 | ((insn & 0x00007000) >> 4)
3469 | ((insn & 0x04000000) >> 15);
3470 // Apply a sign to the added.
3471 addend *= sign;
3472
3473 int32_t x = (psymval->value(object, addend) | thumb_bit)
3474 - (address & 0xfffffffc);
3475 Reltype val = abs(x);
3476 // Mask out the value and a distinct part of the ADD/SUB opcode
3477 // (bits 7:5 of opword).
3478 insn = (insn & 0xfb0f8f00)
3479 | (val & 0xff)
3480 | ((val & 0x700) << 4)
3481 | ((val & 0x800) << 15);
3482 // Set the opcode according to whether the value to go in the
3483 // place is negative.
3484 if (x < 0)
3485 insn |= 0x00a00000;
3486
3487 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3488 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3489 return ((val > 0xfff) ?
3490 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3491 }
3492
3493 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3494 static inline typename This::Status
3495 thm_pc8(unsigned char* view,
3496 const Sized_relobj<32, big_endian>* object,
3497 const Symbol_value<32>* psymval,
3498 Arm_address address)
3499 {
3500 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3501 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3502 Valtype* wv = reinterpret_cast<Valtype*>(view);
3503 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3504 Reltype addend = ((insn & 0x00ff) << 2);
3505 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3506 Reltype val = abs(x);
3507 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3508
3509 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3510 return ((val > 0x03fc)
3511 ? This::STATUS_OVERFLOW
3512 : This::STATUS_OKAY);
3513 }
3514
3515 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3516 static inline typename This::Status
3517 thm_pc12(unsigned char* view,
3518 const Sized_relobj<32, big_endian>* object,
3519 const Symbol_value<32>* psymval,
3520 Arm_address address)
3521 {
3522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524 Valtype* wv = reinterpret_cast<Valtype*>(view);
3525 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527 // Determine a sign for the addend (positive if the U bit is 1).
3528 const int sign = (insn & 0x00800000) ? 1 : -1;
3529 int32_t addend = (insn & 0xfff);
3530 // Apply a sign to the added.
3531 addend *= sign;
3532
3533 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3534 Reltype val = abs(x);
3535 // Mask out and apply the value and the U bit.
3536 insn = (insn & 0xff7ff000) | (val & 0xfff);
3537 // Set the U bit according to whether the value to go in the
3538 // place is positive.
3539 if (x >= 0)
3540 insn |= 0x00800000;
3541
3542 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3543 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3544 return ((val > 0xfff) ?
3545 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3546 }
3547
a2162063
ILT
3548 // R_ARM_V4BX
3549 static inline typename This::Status
3550 v4bx(const Relocate_info<32, big_endian>* relinfo,
3551 unsigned char *view,
3552 const Arm_relobj<big_endian>* object,
3553 const Arm_address address,
3554 const bool is_interworking)
3555 {
3556
3557 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3558 Valtype* wv = reinterpret_cast<Valtype*>(view);
3559 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3560
3561 // Ensure that we have a BX instruction.
3562 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3563 const uint32_t reg = (val & 0xf);
3564 if (is_interworking && reg != 0xf)
3565 {
3566 Stub_table<big_endian>* stub_table =
3567 object->stub_table(relinfo->data_shndx);
3568 gold_assert(stub_table != NULL);
3569
3570 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3571 gold_assert(stub != NULL);
3572
3573 int32_t veneer_address =
3574 stub_table->address() + stub->offset() - 8 - address;
3575 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3576 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3577 // Replace with a branch to veneer (B <addr>)
3578 val = (val & 0xf0000000) | 0x0a000000
3579 | ((veneer_address >> 2) & 0x00ffffff);
3580 }
3581 else
3582 {
3583 // Preserve Rm (lowest four bits) and the condition code
3584 // (highest four bits). Other bits encode MOV PC,Rm.
3585 val = (val & 0xf000000f) | 0x01a0f000;
3586 }
3587 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3588 return This::STATUS_OKAY;
3589 }
b10d2873
ILT
3590
3591 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3592 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3593 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3594 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3595 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3596 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3597 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3598 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3599 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3600 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3601 static inline typename This::Status
3602 arm_grp_alu(unsigned char* view,
3603 const Sized_relobj<32, big_endian>* object,
3604 const Symbol_value<32>* psymval,
3605 const int group,
3606 Arm_address address,
3607 Arm_address thumb_bit,
3608 bool check_overflow)
3609 {
5c57f1be 3610 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3611 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3612 Valtype* wv = reinterpret_cast<Valtype*>(view);
3613 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3614
3615 // ALU group relocations are allowed only for the ADD/SUB instructions.
3616 // (0x00800000 - ADD, 0x00400000 - SUB)
3617 const Valtype opcode = insn & 0x01e00000;
3618 if (opcode != 0x00800000 && opcode != 0x00400000)
3619 return This::STATUS_BAD_RELOC;
3620
3621 // Determine a sign for the addend.
3622 const int sign = (opcode == 0x00800000) ? 1 : -1;
3623 // shifter = rotate_imm * 2
3624 const uint32_t shifter = (insn & 0xf00) >> 7;
3625 // Initial addend value.
3626 int32_t addend = insn & 0xff;
3627 // Rotate addend right by shifter.
3628 addend = (addend >> shifter) | (addend << (32 - shifter));
3629 // Apply a sign to the added.
3630 addend *= sign;
3631
3632 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3633 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3634 // Check for overflow if required
3635 if (check_overflow
3636 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3637 return This::STATUS_OVERFLOW;
3638
3639 // Mask out the value and the ADD/SUB part of the opcode; take care
3640 // not to destroy the S bit.
3641 insn &= 0xff1ff000;
3642 // Set the opcode according to whether the value to go in the
3643 // place is negative.
3644 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3645 // Encode the offset (encoded Gn).
3646 insn |= gn;
3647
3648 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3649 return This::STATUS_OKAY;
3650 }
3651
3652 // R_ARM_LDR_PC_G0: S + A - P
3653 // R_ARM_LDR_PC_G1: S + A - P
3654 // R_ARM_LDR_PC_G2: S + A - P
3655 // R_ARM_LDR_SB_G0: S + A - B(S)
3656 // R_ARM_LDR_SB_G1: S + A - B(S)
3657 // R_ARM_LDR_SB_G2: S + A - B(S)
3658 static inline typename This::Status
3659 arm_grp_ldr(unsigned char* view,
3660 const Sized_relobj<32, big_endian>* object,
3661 const Symbol_value<32>* psymval,
3662 const int group,
3663 Arm_address address)
3664 {
5c57f1be 3665 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3669
3670 const int sign = (insn & 0x00800000) ? 1 : -1;
3671 int32_t addend = (insn & 0xfff) * sign;
3672 int32_t x = (psymval->value(object, addend) - address);
3673 // Calculate the relevant G(n-1) value to obtain this stage residual.
3674 Valtype residual =
3675 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3676 if (residual >= 0x1000)
3677 return This::STATUS_OVERFLOW;
3678
3679 // Mask out the value and U bit.
3680 insn &= 0xff7ff000;
3681 // Set the U bit for non-negative values.
3682 if (x >= 0)
3683 insn |= 0x00800000;
3684 insn |= residual;
3685
3686 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3687 return This::STATUS_OKAY;
3688 }
3689
3690 // R_ARM_LDRS_PC_G0: S + A - P
3691 // R_ARM_LDRS_PC_G1: S + A - P
3692 // R_ARM_LDRS_PC_G2: S + A - P
3693 // R_ARM_LDRS_SB_G0: S + A - B(S)
3694 // R_ARM_LDRS_SB_G1: S + A - B(S)
3695 // R_ARM_LDRS_SB_G2: S + A - B(S)
3696 static inline typename This::Status
3697 arm_grp_ldrs(unsigned char* view,
3698 const Sized_relobj<32, big_endian>* object,
3699 const Symbol_value<32>* psymval,
3700 const int group,
3701 Arm_address address)
3702 {
5c57f1be 3703 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3704 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3705 Valtype* wv = reinterpret_cast<Valtype*>(view);
3706 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3707
3708 const int sign = (insn & 0x00800000) ? 1 : -1;
3709 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3710 int32_t x = (psymval->value(object, addend) - address);
3711 // Calculate the relevant G(n-1) value to obtain this stage residual.
3712 Valtype residual =
3713 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3714 if (residual >= 0x100)
3715 return This::STATUS_OVERFLOW;
3716
3717 // Mask out the value and U bit.
3718 insn &= 0xff7ff0f0;
3719 // Set the U bit for non-negative values.
3720 if (x >= 0)
3721 insn |= 0x00800000;
3722 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3723
3724 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3725 return This::STATUS_OKAY;
3726 }
3727
3728 // R_ARM_LDC_PC_G0: S + A - P
3729 // R_ARM_LDC_PC_G1: S + A - P
3730 // R_ARM_LDC_PC_G2: S + A - P
3731 // R_ARM_LDC_SB_G0: S + A - B(S)
3732 // R_ARM_LDC_SB_G1: S + A - B(S)
3733 // R_ARM_LDC_SB_G2: S + A - B(S)
3734 static inline typename This::Status
3735 arm_grp_ldc(unsigned char* view,
3736 const Sized_relobj<32, big_endian>* object,
3737 const Symbol_value<32>* psymval,
3738 const int group,
3739 Arm_address address)
3740 {
5c57f1be 3741 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3742 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3743 Valtype* wv = reinterpret_cast<Valtype*>(view);
3744 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3745
3746 const int sign = (insn & 0x00800000) ? 1 : -1;
3747 int32_t addend = ((insn & 0xff) << 2) * sign;
3748 int32_t x = (psymval->value(object, addend) - address);
3749 // Calculate the relevant G(n-1) value to obtain this stage residual.
3750 Valtype residual =
3751 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3752 if ((residual & 0x3) != 0 || residual >= 0x400)
3753 return This::STATUS_OVERFLOW;
3754
3755 // Mask out the value and U bit.
3756 insn &= 0xff7fff00;
3757 // Set the U bit for non-negative values.
3758 if (x >= 0)
3759 insn |= 0x00800000;
3760 insn |= (residual >> 2);
3761
3762 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3763 return This::STATUS_OKAY;
3764 }
c121c671
DK
3765};
3766
d204b6e9
DK
3767// Relocate ARM long branches. This handles relocation types
3768// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3769// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3770// undefined and we do not use PLT in this relocation. In such a case,
3771// the branch is converted into an NOP.
3772
3773template<bool big_endian>
3774typename Arm_relocate_functions<big_endian>::Status
3775Arm_relocate_functions<big_endian>::arm_branch_common(
3776 unsigned int r_type,
3777 const Relocate_info<32, big_endian>* relinfo,
3778 unsigned char *view,
3779 const Sized_symbol<32>* gsym,
3780 const Arm_relobj<big_endian>* object,
3781 unsigned int r_sym,
3782 const Symbol_value<32>* psymval,
3783 Arm_address address,
3784 Arm_address thumb_bit,
3785 bool is_weakly_undefined_without_plt)
3786{
3787 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3788 Valtype* wv = reinterpret_cast<Valtype*>(view);
3789 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3790
3791 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3792 && ((val & 0x0f000000UL) == 0x0a000000UL);
3793 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3794 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3795 && ((val & 0x0f000000UL) == 0x0b000000UL);
3796 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3797 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3798
3799 // Check that the instruction is valid.
3800 if (r_type == elfcpp::R_ARM_CALL)
3801 {
3802 if (!insn_is_uncond_bl && !insn_is_blx)
3803 return This::STATUS_BAD_RELOC;
3804 }
3805 else if (r_type == elfcpp::R_ARM_JUMP24)
3806 {
3807 if (!insn_is_b && !insn_is_cond_bl)
3808 return This::STATUS_BAD_RELOC;
3809 }
3810 else if (r_type == elfcpp::R_ARM_PLT32)
3811 {
3812 if (!insn_is_any_branch)
3813 return This::STATUS_BAD_RELOC;
3814 }
3815 else if (r_type == elfcpp::R_ARM_XPC25)
3816 {
3817 // FIXME: AAELF document IH0044C does not say much about it other
3818 // than it being obsolete.
3819 if (!insn_is_any_branch)
3820 return This::STATUS_BAD_RELOC;
3821 }
3822 else
3823 gold_unreachable();
3824
3825 // A branch to an undefined weak symbol is turned into a jump to
3826 // the next instruction unless a PLT entry will be created.
3827 // Do the same for local undefined symbols.
3828 // The jump to the next instruction is optimized as a NOP depending
3829 // on the architecture.
3830 const Target_arm<big_endian>* arm_target =
3831 Target_arm<big_endian>::default_target();
3832 if (is_weakly_undefined_without_plt)
3833 {
5c388529 3834 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3835 Valtype cond = val & 0xf0000000U;
3836 if (arm_target->may_use_arm_nop())
3837 val = cond | 0x0320f000;
3838 else
3839 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3840 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3841 return This::STATUS_OKAY;
3842 }
3843
3844 Valtype addend = utils::sign_extend<26>(val << 2);
3845 Valtype branch_target = psymval->value(object, addend);
3846 int32_t branch_offset = branch_target - address;
3847
3848 // We need a stub if the branch offset is too large or if we need
3849 // to switch mode.
3850 bool may_use_blx = arm_target->may_use_blx();
3851 Reloc_stub* stub = NULL;
5c388529
DK
3852
3853 if (!parameters->options().relocatable()
3854 && (utils::has_overflow<26>(branch_offset)
3855 || ((thumb_bit != 0)
3856 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3857 {
2a2b6d42
DK
3858 Valtype unadjusted_branch_target = psymval->value(object, 0);
3859
d204b6e9 3860 Stub_type stub_type =
2a2b6d42
DK
3861 Reloc_stub::stub_type_for_reloc(r_type, address,
3862 unadjusted_branch_target,
d204b6e9
DK
3863 (thumb_bit != 0));
3864 if (stub_type != arm_stub_none)
3865 {
2ea97941 3866 Stub_table<big_endian>* stub_table =
d204b6e9 3867 object->stub_table(relinfo->data_shndx);
2ea97941 3868 gold_assert(stub_table != NULL);
d204b6e9
DK
3869
3870 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3871 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3872 gold_assert(stub != NULL);
3873 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3874 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3875 branch_offset = branch_target - address;
2a2b6d42 3876 gold_assert(!utils::has_overflow<26>(branch_offset));
d204b6e9
DK
3877 }
3878 }
3879
3880 // At this point, if we still need to switch mode, the instruction
3881 // must either be a BLX or a BL that can be converted to a BLX.
3882 if (thumb_bit != 0)
3883 {
3884 // Turn BL to BLX.
3885 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3886 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3887 }
3888
3889 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3890 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3891 return (utils::has_overflow<26>(branch_offset)
3892 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3893}
3894
51938283
DK
3895// Relocate THUMB long branches. This handles relocation types
3896// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3897// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3898// undefined and we do not use PLT in this relocation. In such a case,
3899// the branch is converted into an NOP.
3900
3901template<bool big_endian>
3902typename Arm_relocate_functions<big_endian>::Status
3903Arm_relocate_functions<big_endian>::thumb_branch_common(
3904 unsigned int r_type,
3905 const Relocate_info<32, big_endian>* relinfo,
3906 unsigned char *view,
3907 const Sized_symbol<32>* gsym,
3908 const Arm_relobj<big_endian>* object,
3909 unsigned int r_sym,
3910 const Symbol_value<32>* psymval,
3911 Arm_address address,
3912 Arm_address thumb_bit,
3913 bool is_weakly_undefined_without_plt)
3914{
3915 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3916 Valtype* wv = reinterpret_cast<Valtype*>(view);
3917 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3918 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3919
3920 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3921 // into account.
3922 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3923 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3924
3925 // Check that the instruction is valid.
3926 if (r_type == elfcpp::R_ARM_THM_CALL)
3927 {
3928 if (!is_bl_insn && !is_blx_insn)
3929 return This::STATUS_BAD_RELOC;
3930 }
3931 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3932 {
3933 // This cannot be a BLX.
3934 if (!is_bl_insn)
3935 return This::STATUS_BAD_RELOC;
3936 }
3937 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3938 {
3939 // Check for Thumb to Thumb call.
3940 if (!is_blx_insn)
3941 return This::STATUS_BAD_RELOC;
3942 if (thumb_bit != 0)
3943 {
3944 gold_warning(_("%s: Thumb BLX instruction targets "
3945 "thumb function '%s'."),
3946 object->name().c_str(),
3947 (gsym ? gsym->name() : "(local)"));
3948 // Convert BLX to BL.
3949 lower_insn |= 0x1000U;
3950 }
3951 }
3952 else
3953 gold_unreachable();
3954
3955 // A branch to an undefined weak symbol is turned into a jump to
3956 // the next instruction unless a PLT entry will be created.
3957 // The jump to the next instruction is optimized as a NOP.W for
3958 // Thumb-2 enabled architectures.
3959 const Target_arm<big_endian>* arm_target =
3960 Target_arm<big_endian>::default_target();
3961 if (is_weakly_undefined_without_plt)
3962 {
5c388529 3963 gold_assert(!parameters->options().relocatable());
51938283
DK
3964 if (arm_target->may_use_thumb2_nop())
3965 {
3966 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3967 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3968 }
3969 else
3970 {
3971 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3972 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3973 }
3974 return This::STATUS_OKAY;
3975 }
3976
089d69dc 3977 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 3978 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
3979
3980 // For BLX, bit 1 of target address comes from bit 1 of base address.
3981 bool may_use_blx = arm_target->may_use_blx();
3982 if (thumb_bit == 0 && may_use_blx)
3983 branch_target = utils::bit_select(branch_target, address, 0x2);
3984
51938283
DK
3985 int32_t branch_offset = branch_target - address;
3986
3987 // We need a stub if the branch offset is too large or if we need
3988 // to switch mode.
51938283 3989 bool thumb2 = arm_target->using_thumb2();
5c388529
DK
3990 if (!parameters->options().relocatable()
3991 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
3992 || (thumb2 && utils::has_overflow<25>(branch_offset))
3993 || ((thumb_bit == 0)
3994 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3995 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 3996 {
2a2b6d42
DK
3997 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3998
51938283 3999 Stub_type stub_type =
2a2b6d42
DK
4000 Reloc_stub::stub_type_for_reloc(r_type, address,
4001 unadjusted_branch_target,
51938283 4002 (thumb_bit != 0));
2a2b6d42 4003
51938283
DK
4004 if (stub_type != arm_stub_none)
4005 {
2ea97941 4006 Stub_table<big_endian>* stub_table =
51938283 4007 object->stub_table(relinfo->data_shndx);
2ea97941 4008 gold_assert(stub_table != NULL);
51938283
DK
4009
4010 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4011 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4012 gold_assert(stub != NULL);
4013 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4014 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b
DK
4015 if (thumb_bit == 0 && may_use_blx)
4016 branch_target = utils::bit_select(branch_target, address, 0x2);
51938283
DK
4017 branch_offset = branch_target - address;
4018 }
4019 }
4020
4021 // At this point, if we still need to switch mode, the instruction
4022 // must either be a BLX or a BL that can be converted to a BLX.
4023 if (thumb_bit == 0)
4024 {
4025 gold_assert(may_use_blx
4026 && (r_type == elfcpp::R_ARM_THM_CALL
4027 || r_type == elfcpp::R_ARM_THM_XPC22));
4028 // Make sure this is a BLX.
4029 lower_insn &= ~0x1000U;
4030 }
4031 else
4032 {
4033 // Make sure this is a BL.
4034 lower_insn |= 0x1000U;
4035 }
4036
a2c7281b
DK
4037 // For a BLX instruction, make sure that the relocation is rounded up
4038 // to a word boundary. This follows the semantics of the instruction
4039 // which specifies that bit 1 of the target address will come from bit
4040 // 1 of the base address.
51938283 4041 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4042 gold_assert((branch_offset & 3) == 0);
51938283
DK
4043
4044 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4045 // We use the Thumb-2 encoding, which is safe even if dealing with
4046 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4047 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4048 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4049
4050 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4051 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4052
a2c7281b
DK
4053 gold_assert(!utils::has_overflow<25>(branch_offset));
4054
51938283 4055 return ((thumb2
089d69dc
DK
4056 ? utils::has_overflow<25>(branch_offset)
4057 : utils::has_overflow<23>(branch_offset))
4058 ? This::STATUS_OVERFLOW
4059 : This::STATUS_OKAY);
4060}
4061
4062// Relocate THUMB-2 long conditional branches.
4063// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4064// undefined and we do not use PLT in this relocation. In such a case,
4065// the branch is converted into an NOP.
4066
4067template<bool big_endian>
4068typename Arm_relocate_functions<big_endian>::Status
4069Arm_relocate_functions<big_endian>::thm_jump19(
4070 unsigned char *view,
4071 const Arm_relobj<big_endian>* object,
4072 const Symbol_value<32>* psymval,
4073 Arm_address address,
4074 Arm_address thumb_bit)
4075{
4076 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4077 Valtype* wv = reinterpret_cast<Valtype*>(view);
4078 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4079 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4080 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4081
4082 Arm_address branch_target = psymval->value(object, addend);
4083 int32_t branch_offset = branch_target - address;
4084
4085 // ??? Should handle interworking? GCC might someday try to
4086 // use this for tail calls.
4087 // FIXME: We do support thumb entry to PLT yet.
4088 if (thumb_bit == 0)
4089 {
4090 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4091 return This::STATUS_BAD_RELOC;
4092 }
4093
4094 // Put RELOCATION back into the insn.
4095 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4096 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4097
4098 // Put the relocated value back in the object file:
4099 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4100 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4101
4102 return (utils::has_overflow<21>(branch_offset)
51938283
DK
4103 ? This::STATUS_OVERFLOW
4104 : This::STATUS_OKAY);
4105}
4106
94cdfcff
DK
4107// Get the GOT section, creating it if necessary.
4108
4109template<bool big_endian>
4a54abbb 4110Arm_output_data_got<big_endian>*
94cdfcff
DK
4111Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4112{
4113 if (this->got_ == NULL)
4114 {
4115 gold_assert(symtab != NULL && layout != NULL);
4116
4a54abbb 4117 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff
DK
4118
4119 Output_section* os;
4120 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4121 (elfcpp::SHF_ALLOC
4122 | elfcpp::SHF_WRITE),
67ec7d0b
DK
4123 this->got_, false, false, false,
4124 true);
94cdfcff
DK
4125 // The old GNU linker creates a .got.plt section. We just
4126 // create another set of data in the .got section. Note that we
4127 // always create a PLT if we create a GOT, although the PLT
4128 // might be empty.
4129 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4130 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4131 (elfcpp::SHF_ALLOC
4132 | elfcpp::SHF_WRITE),
1a2dff53 4133 this->got_plt_, false, false,
67ec7d0b 4134 false, false);
94cdfcff
DK
4135
4136 // The first three entries are reserved.
4137 this->got_plt_->set_current_data_size(3 * 4);
4138
4139 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4140 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4141 Symbol_table::PREDEFINED,
94cdfcff
DK
4142 this->got_plt_,
4143 0, 0, elfcpp::STT_OBJECT,
4144 elfcpp::STB_LOCAL,
4145 elfcpp::STV_HIDDEN, 0,
4146 false, false);
4147 }
4148 return this->got_;
4149}
4150
4151// Get the dynamic reloc section, creating it if necessary.
4152
4153template<bool big_endian>
4154typename Target_arm<big_endian>::Reloc_section*
4155Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4156{
4157 if (this->rel_dyn_ == NULL)
4158 {
4159 gold_assert(layout != NULL);
4160 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4161 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1a2dff53
ILT
4162 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4163 false, false, false);
94cdfcff
DK
4164 }
4165 return this->rel_dyn_;
4166}
4167
b569affa
DK
4168// Insn_template methods.
4169
4170// Return byte size of an instruction template.
4171
4172size_t
4173Insn_template::size() const
4174{
4175 switch (this->type())
4176 {
4177 case THUMB16_TYPE:
2fb7225c 4178 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4179 return 2;
4180 case ARM_TYPE:
4181 case THUMB32_TYPE:
4182 case DATA_TYPE:
4183 return 4;
4184 default:
4185 gold_unreachable();
4186 }
4187}
4188
4189// Return alignment of an instruction template.
4190
4191unsigned
4192Insn_template::alignment() const
4193{
4194 switch (this->type())
4195 {
4196 case THUMB16_TYPE:
2fb7225c 4197 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4198 case THUMB32_TYPE:
4199 return 2;
4200 case ARM_TYPE:
4201 case DATA_TYPE:
4202 return 4;
4203 default:
4204 gold_unreachable();
4205 }
4206}
4207
4208// Stub_template methods.
4209
4210Stub_template::Stub_template(
2ea97941
ILT
4211 Stub_type type, const Insn_template* insns,
4212 size_t insn_count)
4213 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4214 entry_in_thumb_mode_(false), relocs_()
4215{
2ea97941 4216 off_t offset = 0;
b569affa
DK
4217
4218 // Compute byte size and alignment of stub template.
2ea97941 4219 for (size_t i = 0; i < insn_count; i++)
b569affa 4220 {
2ea97941
ILT
4221 unsigned insn_alignment = insns[i].alignment();
4222 size_t insn_size = insns[i].size();
4223 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4224 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4225 switch (insns[i].type())
b569affa
DK
4226 {
4227 case Insn_template::THUMB16_TYPE:
089d69dc 4228 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4229 if (i == 0)
4230 this->entry_in_thumb_mode_ = true;
4231 break;
4232
4233 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4234 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4235 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4236 if (i == 0)
4237 this->entry_in_thumb_mode_ = true;
4238 break;
4239
4240 case Insn_template::ARM_TYPE:
4241 // Handle cases where the target is encoded within the
4242 // instruction.
2ea97941
ILT
4243 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4244 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4245 break;
4246
4247 case Insn_template::DATA_TYPE:
4248 // Entry point cannot be data.
4249 gold_assert(i != 0);
2ea97941 4250 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4251 break;
4252
4253 default:
4254 gold_unreachable();
4255 }
2ea97941 4256 offset += insn_size;
b569affa 4257 }
2ea97941 4258 this->size_ = offset;
b569affa
DK
4259}
4260
bb0d3eb0
DK
4261// Stub methods.
4262
7296d933 4263// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4264
4265template<bool big_endian>
4266void inline
4267Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4268{
4269 const Stub_template* stub_template = this->stub_template();
4270 const Insn_template* insns = stub_template->insns();
4271
4272 // FIXME: We do not handle BE8 encoding yet.
4273 unsigned char* pov = view;
4274 for (size_t i = 0; i < stub_template->insn_count(); i++)
4275 {
4276 switch (insns[i].type())
4277 {
4278 case Insn_template::THUMB16_TYPE:
4279 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4280 break;
4281 case Insn_template::THUMB16_SPECIAL_TYPE:
4282 elfcpp::Swap<16, big_endian>::writeval(
4283 pov,
4284 this->thumb16_special(i));
4285 break;
4286 case Insn_template::THUMB32_TYPE:
4287 {
4288 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4289 uint32_t lo = insns[i].data() & 0xffff;
4290 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4291 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4292 }
4293 break;
4294 case Insn_template::ARM_TYPE:
4295 case Insn_template::DATA_TYPE:
4296 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4297 break;
4298 default:
4299 gold_unreachable();
4300 }
4301 pov += insns[i].size();
4302 }
4303 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4304}
4305
b569affa
DK
4306// Reloc_stub::Key methods.
4307
4308// Dump a Key as a string for debugging.
4309
4310std::string
4311Reloc_stub::Key::name() const
4312{
4313 if (this->r_sym_ == invalid_index)
4314 {
4315 // Global symbol key name
4316 // <stub-type>:<symbol name>:<addend>.
4317 const std::string sym_name = this->u_.symbol->name();
4318 // We need to print two hex number and two colons. So just add 100 bytes
4319 // to the symbol name size.
4320 size_t len = sym_name.size() + 100;
4321 char* buffer = new char[len];
4322 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4323 sym_name.c_str(), this->addend_);
4324 gold_assert(c > 0 && c < static_cast<int>(len));
4325 delete[] buffer;
4326 return std::string(buffer);
4327 }
4328 else
4329 {
4330 // local symbol key name
4331 // <stub-type>:<object>:<r_sym>:<addend>.
4332 const size_t len = 200;
4333 char buffer[len];
4334 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4335 this->u_.relobj, this->r_sym_, this->addend_);
4336 gold_assert(c > 0 && c < static_cast<int>(len));
4337 return std::string(buffer);
4338 }
4339}
4340
4341// Reloc_stub methods.
4342
4343// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4344// LOCATION to DESTINATION.
4345// This code is based on the arm_type_of_stub function in
4346// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4347// class simple.
4348
4349Stub_type
4350Reloc_stub::stub_type_for_reloc(
4351 unsigned int r_type,
4352 Arm_address location,
4353 Arm_address destination,
4354 bool target_is_thumb)
4355{
4356 Stub_type stub_type = arm_stub_none;
4357
4358 // This is a bit ugly but we want to avoid using a templated class for
4359 // big and little endianities.
4360 bool may_use_blx;
4361 bool should_force_pic_veneer;
4362 bool thumb2;
4363 bool thumb_only;
4364 if (parameters->target().is_big_endian())
4365 {
43d12afe 4366 const Target_arm<true>* big_endian_target =
b569affa 4367 Target_arm<true>::default_target();
43d12afe
DK
4368 may_use_blx = big_endian_target->may_use_blx();
4369 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4370 thumb2 = big_endian_target->using_thumb2();
4371 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4372 }
4373 else
4374 {
43d12afe 4375 const Target_arm<false>* little_endian_target =
b569affa 4376 Target_arm<false>::default_target();
43d12afe
DK
4377 may_use_blx = little_endian_target->may_use_blx();
4378 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4379 thumb2 = little_endian_target->using_thumb2();
4380 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4381 }
4382
a2c7281b 4383 int64_t branch_offset;
b569affa
DK
4384 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4385 {
a2c7281b
DK
4386 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4387 // base address (instruction address + 4).
4388 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4389 destination = utils::bit_select(destination, location, 0x2);
4390 branch_offset = static_cast<int64_t>(destination) - location;
4391
b569affa
DK
4392 // Handle cases where:
4393 // - this call goes too far (different Thumb/Thumb2 max
4394 // distance)
4395 // - it's a Thumb->Arm call and blx is not available, or it's a
4396 // Thumb->Arm branch (not bl). A stub is needed in this case.
4397 if ((!thumb2
4398 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4399 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4400 || (thumb2
4401 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4402 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4403 || ((!target_is_thumb)
4404 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4405 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4406 {
4407 if (target_is_thumb)
4408 {
4409 // Thumb to thumb.
4410 if (!thumb_only)
4411 {
51938283
DK
4412 stub_type = (parameters->options().shared()
4413 || should_force_pic_veneer)
b569affa
DK
4414 // PIC stubs.
4415 ? ((may_use_blx
4416 && (r_type == elfcpp::R_ARM_THM_CALL))
4417 // V5T and above. Stub starts with ARM code, so
4418 // we must be able to switch mode before
4419 // reaching it, which is only possible for 'bl'
4420 // (ie R_ARM_THM_CALL relocation).
4421 ? arm_stub_long_branch_any_thumb_pic
4422 // On V4T, use Thumb code only.
4423 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4424
4425 // non-PIC stubs.
4426 : ((may_use_blx
4427 && (r_type == elfcpp::R_ARM_THM_CALL))
4428 ? arm_stub_long_branch_any_any // V5T and above.
4429 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4430 }
4431 else
4432 {
51938283
DK
4433 stub_type = (parameters->options().shared()
4434 || should_force_pic_veneer)
b569affa
DK
4435 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4436 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4437 }
4438 }
4439 else
4440 {
4441 // Thumb to arm.
4442
4443 // FIXME: We should check that the input section is from an
4444 // object that has interwork enabled.
4445
4446 stub_type = (parameters->options().shared()
4447 || should_force_pic_veneer)
4448 // PIC stubs.
4449 ? ((may_use_blx
4450 && (r_type == elfcpp::R_ARM_THM_CALL))
4451 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4452 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4453
4454 // non-PIC stubs.
4455 : ((may_use_blx
4456 && (r_type == elfcpp::R_ARM_THM_CALL))
4457 ? arm_stub_long_branch_any_any // V5T and above.
4458 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4459
4460 // Handle v4t short branches.
4461 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4462 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4463 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4464 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4465 }
4466 }
4467 }
4468 else if (r_type == elfcpp::R_ARM_CALL
4469 || r_type == elfcpp::R_ARM_JUMP24
4470 || r_type == elfcpp::R_ARM_PLT32)
4471 {
a2c7281b 4472 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4473 if (target_is_thumb)
4474 {
4475 // Arm to thumb.
4476
4477 // FIXME: We should check that the input section is from an
4478 // object that has interwork enabled.
4479
4480 // We have an extra 2-bytes reach because of
4481 // the mode change (bit 24 (H) of BLX encoding).
4482 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4483 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4484 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4485 || (r_type == elfcpp::R_ARM_JUMP24)
4486 || (r_type == elfcpp::R_ARM_PLT32))
4487 {
4488 stub_type = (parameters->options().shared()
4489 || should_force_pic_veneer)
4490 // PIC stubs.
4491 ? (may_use_blx
4492 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4493 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4494
4495 // non-PIC stubs.
4496 : (may_use_blx
4497 ? arm_stub_long_branch_any_any // V5T and above.
4498 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4499 }
4500 }
4501 else
4502 {
4503 // Arm to arm.
4504 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4505 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4506 {
4507 stub_type = (parameters->options().shared()
4508 || should_force_pic_veneer)
4509 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4510 : arm_stub_long_branch_any_any; /// non-PIC.
4511 }
4512 }
4513 }
4514
4515 return stub_type;
4516}
4517
bb0d3eb0 4518// Cortex_a8_stub methods.
b569affa 4519
bb0d3eb0
DK
4520// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4521// I is the position of the instruction template in the stub template.
b569affa 4522
bb0d3eb0
DK
4523uint16_t
4524Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4525{
bb0d3eb0
DK
4526 // The only use of this is to copy condition code from a conditional
4527 // branch being worked around to the corresponding conditional branch in
4528 // to the stub.
4529 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4530 && i == 0);
4531 uint16_t data = this->stub_template()->insns()[i].data();
4532 gold_assert((data & 0xff00U) == 0xd000U);
4533 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4534 return data;
b569affa
DK
4535}
4536
4537// Stub_factory methods.
4538
4539Stub_factory::Stub_factory()
4540{
4541 // The instruction template sequences are declared as static
4542 // objects and initialized first time the constructor runs.
4543
4544 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4545 // to reach the stub if necessary.
4546 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4547 {
4548 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4549 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4550 // dcd R_ARM_ABS32(X)
4551 };
4552
4553 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4554 // available.
4555 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4556 {
4557 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4558 Insn_template::arm_insn(0xe12fff1c), // bx ip
4559 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4560 // dcd R_ARM_ABS32(X)
4561 };
4562
4563 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4564 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4565 {
4566 Insn_template::thumb16_insn(0xb401), // push {r0}
4567 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4568 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4569 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4570 Insn_template::thumb16_insn(0x4760), // bx ip
4571 Insn_template::thumb16_insn(0xbf00), // nop
4572 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4573 // dcd R_ARM_ABS32(X)
4574 };
4575
4576 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4577 // allowed.
4578 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4579 {
4580 Insn_template::thumb16_insn(0x4778), // bx pc
4581 Insn_template::thumb16_insn(0x46c0), // nop
4582 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4583 Insn_template::arm_insn(0xe12fff1c), // bx ip
4584 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4585 // dcd R_ARM_ABS32(X)
4586 };
4587
4588 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4589 // available.
4590 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4591 {
4592 Insn_template::thumb16_insn(0x4778), // bx pc
4593 Insn_template::thumb16_insn(0x46c0), // nop
4594 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4595 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4596 // dcd R_ARM_ABS32(X)
4597 };
4598
4599 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4600 // one, when the destination is close enough.
4601 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4602 {
4603 Insn_template::thumb16_insn(0x4778), // bx pc
4604 Insn_template::thumb16_insn(0x46c0), // nop
4605 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4606 };
4607
4608 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4609 // blx to reach the stub if necessary.
4610 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4611 {
4612 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4613 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4614 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4615 // dcd R_ARM_REL32(X-4)
4616 };
4617
4618 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4619 // blx to reach the stub if necessary. We can not add into pc;
4620 // it is not guaranteed to mode switch (different in ARMv6 and
4621 // ARMv7).
4622 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4623 {
4624 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4625 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4626 Insn_template::arm_insn(0xe12fff1c), // bx ip
4627 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4628 // dcd R_ARM_REL32(X)
4629 };
4630
4631 // V4T ARM -> ARM long branch stub, PIC.
4632 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4633 {
4634 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4635 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4636 Insn_template::arm_insn(0xe12fff1c), // bx ip
4637 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4638 // dcd R_ARM_REL32(X)
4639 };
4640
4641 // V4T Thumb -> ARM long branch stub, PIC.
4642 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4643 {
4644 Insn_template::thumb16_insn(0x4778), // bx pc
4645 Insn_template::thumb16_insn(0x46c0), // nop
4646 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4647 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4648 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4649 // dcd R_ARM_REL32(X)
4650 };
4651
4652 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4653 // architectures.
4654 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4655 {
4656 Insn_template::thumb16_insn(0xb401), // push {r0}
4657 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4658 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4659 Insn_template::thumb16_insn(0x4484), // add ip, r0
4660 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4661 Insn_template::thumb16_insn(0x4760), // bx ip
4662 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4663 // dcd R_ARM_REL32(X)
4664 };
4665
4666 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4667 // allowed.
4668 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4669 {
4670 Insn_template::thumb16_insn(0x4778), // bx pc
4671 Insn_template::thumb16_insn(0x46c0), // nop
4672 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4673 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4674 Insn_template::arm_insn(0xe12fff1c), // bx ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4676 // dcd R_ARM_REL32(X)
4677 };
4678
4679 // Cortex-A8 erratum-workaround stubs.
4680
4681 // Stub used for conditional branches (which may be beyond +/-1MB away,
4682 // so we can't use a conditional branch to reach this stub).
4683
4684 // original code:
4685 //
4686 // b<cond> X
4687 // after:
4688 //
4689 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4690 {
4691 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4692 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4693 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4694 // b.w X
4695 };
4696
4697 // Stub used for b.w and bl.w instructions.
4698
4699 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4700 {
4701 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4702 };
4703
4704 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4705 {
4706 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4707 };
4708
4709 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4710 // instruction (which switches to ARM mode) to point to this stub. Jump to
4711 // the real destination using an ARM-mode branch.
bb0d3eb0 4712 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4713 {
4714 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4715 };
4716
a2162063
ILT
4717 // Stub used to provide an interworking for R_ARM_V4BX relocation
4718 // (bx r[n] instruction).
4719 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4720 {
4721 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4722 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4723 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4724 };
4725
b569affa
DK
4726 // Fill in the stub template look-up table. Stub templates are constructed
4727 // per instance of Stub_factory for fast look-up without locking
4728 // in a thread-enabled environment.
4729
4730 this->stub_templates_[arm_stub_none] =
4731 new Stub_template(arm_stub_none, NULL, 0);
4732
4733#define DEF_STUB(x) \
4734 do \
4735 { \
4736 size_t array_size \
4737 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4738 Stub_type type = arm_stub_##x; \
4739 this->stub_templates_[type] = \
4740 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4741 } \
4742 while (0);
4743
4744 DEF_STUBS
4745#undef DEF_STUB
4746}
4747
56ee5e00
DK
4748// Stub_table methods.
4749
2fb7225c 4750// Removel all Cortex-A8 stub.
56ee5e00
DK
4751
4752template<bool big_endian>
4753void
2fb7225c
DK
4754Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4755{
4756 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4757 p != this->cortex_a8_stubs_.end();
4758 ++p)
4759 delete p->second;
4760 this->cortex_a8_stubs_.clear();
4761}
4762
4763// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4764
4765template<bool big_endian>
4766void
4767Stub_table<big_endian>::relocate_stub(
4768 Stub* stub,
4769 const Relocate_info<32, big_endian>* relinfo,
4770 Target_arm<big_endian>* arm_target,
4771 Output_section* output_section,
4772 unsigned char* view,
4773 Arm_address address,
4774 section_size_type view_size)
56ee5e00 4775{
2ea97941 4776 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4777 if (stub_template->reloc_count() != 0)
4778 {
4779 // Adjust view to cover the stub only.
4780 section_size_type offset = stub->offset();
4781 section_size_type stub_size = stub_template->size();
4782 gold_assert(offset + stub_size <= view_size);
4783
4784 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4785 address + offset, stub_size);
4786 }
56ee5e00
DK
4787}
4788
2fb7225c
DK
4789// Relocate all stubs in this stub table.
4790
56ee5e00
DK
4791template<bool big_endian>
4792void
4793Stub_table<big_endian>::relocate_stubs(
4794 const Relocate_info<32, big_endian>* relinfo,
4795 Target_arm<big_endian>* arm_target,
2ea97941 4796 Output_section* output_section,
56ee5e00 4797 unsigned char* view,
2ea97941 4798 Arm_address address,
56ee5e00
DK
4799 section_size_type view_size)
4800{
4801 // If we are passed a view bigger than the stub table's. we need to
4802 // adjust the view.
2ea97941 4803 gold_assert(address == this->address()
56ee5e00
DK
4804 && (view_size
4805 == static_cast<section_size_type>(this->data_size())));
4806
2fb7225c
DK
4807 // Relocate all relocation stubs.
4808 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4809 p != this->reloc_stubs_.end();
4810 ++p)
4811 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4812 address, view_size);
4813
4814 // Relocate all Cortex-A8 stubs.
4815 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4816 p != this->cortex_a8_stubs_.end();
4817 ++p)
4818 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4819 address, view_size);
a2162063
ILT
4820
4821 // Relocate all ARM V4BX stubs.
4822 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4823 p != this->arm_v4bx_stubs_.end();
4824 ++p)
4825 {
4826 if (*p != NULL)
4827 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4828 address, view_size);
4829 }
2fb7225c
DK
4830}
4831
4832// Write out the stubs to file.
4833
4834template<bool big_endian>
4835void
4836Stub_table<big_endian>::do_write(Output_file* of)
4837{
4838 off_t offset = this->offset();
4839 const section_size_type oview_size =
4840 convert_to_section_size_type(this->data_size());
4841 unsigned char* const oview = of->get_output_view(offset, oview_size);
4842
4843 // Write relocation stubs.
56ee5e00
DK
4844 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4845 p != this->reloc_stubs_.end();
4846 ++p)
4847 {
4848 Reloc_stub* stub = p->second;
2fb7225c
DK
4849 Arm_address address = this->address() + stub->offset();
4850 gold_assert(address
4851 == align_address(address,
4852 stub->stub_template()->alignment()));
4853 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4854 big_endian);
56ee5e00 4855 }
2fb7225c
DK
4856
4857 // Write Cortex-A8 stubs.
4858 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4859 p != this->cortex_a8_stubs_.end();
4860 ++p)
4861 {
4862 Cortex_a8_stub* stub = p->second;
4863 Arm_address address = this->address() + stub->offset();
4864 gold_assert(address
4865 == align_address(address,
4866 stub->stub_template()->alignment()));
4867 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4868 big_endian);
4869 }
4870
a2162063
ILT
4871 // Write ARM V4BX relocation stubs.
4872 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4873 p != this->arm_v4bx_stubs_.end();
4874 ++p)
4875 {
4876 if (*p == NULL)
4877 continue;
4878
4879 Arm_address address = this->address() + (*p)->offset();
4880 gold_assert(address
4881 == align_address(address,
4882 (*p)->stub_template()->alignment()));
4883 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4884 big_endian);
4885 }
4886
2fb7225c 4887 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4888}
4889
2fb7225c
DK
4890// Update the data size and address alignment of the stub table at the end
4891// of a relaxation pass. Return true if either the data size or the
4892// alignment changed in this relaxation pass.
4893
4894template<bool big_endian>
4895bool
4896Stub_table<big_endian>::update_data_size_and_addralign()
4897{
2fb7225c 4898 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4899 off_t size = this->reloc_stubs_size_;
4900 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4901
4902 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4903 p != this->cortex_a8_stubs_.end();
4904 ++p)
4905 {
4906 const Stub_template* stub_template = p->second->stub_template();
4907 addralign = std::max(addralign, stub_template->alignment());
4908 size = (align_address(size, stub_template->alignment())
4909 + stub_template->size());
4910 }
4911
a2162063
ILT
4912 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4913 p != this->arm_v4bx_stubs_.end();
4914 ++p)
4915 {
4916 if (*p == NULL)
4917 continue;
4918
4919 const Stub_template* stub_template = (*p)->stub_template();
4920 addralign = std::max(addralign, stub_template->alignment());
4921 size = (align_address(size, stub_template->alignment())
4922 + stub_template->size());
4923 }
4924
2fb7225c
DK
4925 // Check if either data size or alignment changed in this pass.
4926 // Update prev_data_size_ and prev_addralign_. These will be used
4927 // as the current data size and address alignment for the next pass.
4928 bool changed = size != this->prev_data_size_;
4929 this->prev_data_size_ = size;
4930
4931 if (addralign != this->prev_addralign_)
4932 changed = true;
4933 this->prev_addralign_ = addralign;
4934
4935 return changed;
4936}
4937
4938// Finalize the stubs. This sets the offsets of the stubs within the stub
4939// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
4940
4941template<bool big_endian>
4942void
2fb7225c 4943Stub_table<big_endian>::finalize_stubs()
56ee5e00 4944{
d099120c 4945 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
4946 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4948 ++p)
4949 {
4950 Cortex_a8_stub* stub = p->second;
4951 const Stub_template* stub_template = stub->stub_template();
4952 uint64_t stub_addralign = stub_template->alignment();
4953 off = align_address(off, stub_addralign);
4954 stub->set_offset(off);
4955 off += stub_template->size();
4956
4957 // Mark input section so that we can determine later if a code section
4958 // needs the Cortex-A8 workaround quickly.
4959 Arm_relobj<big_endian>* arm_relobj =
4960 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4961 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4962 }
4963
a2162063
ILT
4964 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4965 p != this->arm_v4bx_stubs_.end();
4966 ++p)
4967 {
4968 if (*p == NULL)
4969 continue;
4970
4971 const Stub_template* stub_template = (*p)->stub_template();
4972 uint64_t stub_addralign = stub_template->alignment();
4973 off = align_address(off, stub_addralign);
4974 (*p)->set_offset(off);
4975 off += stub_template->size();
4976 }
4977
2fb7225c 4978 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
4979}
4980
2fb7225c
DK
4981// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4982// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4983// of the address range seen by the linker.
56ee5e00
DK
4984
4985template<bool big_endian>
4986void
2fb7225c
DK
4987Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4988 Target_arm<big_endian>* arm_target,
4989 unsigned char* view,
4990 Arm_address view_address,
4991 section_size_type view_size)
56ee5e00 4992{
2fb7225c
DK
4993 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4994 for (Cortex_a8_stub_list::const_iterator p =
4995 this->cortex_a8_stubs_.lower_bound(view_address);
4996 ((p != this->cortex_a8_stubs_.end())
4997 && (p->first < (view_address + view_size)));
4998 ++p)
56ee5e00 4999 {
2fb7225c
DK
5000 // We do not store the THUMB bit in the LSB of either the branch address
5001 // or the stub offset. There is no need to strip the LSB.
5002 Arm_address branch_address = p->first;
5003 const Cortex_a8_stub* stub = p->second;
5004 Arm_address stub_address = this->address() + stub->offset();
5005
5006 // Offset of the branch instruction relative to this view.
5007 section_size_type offset =
5008 convert_to_section_size_type(branch_address - view_address);
5009 gold_assert((offset + 4) <= view_size);
5010
5011 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5012 view + offset, branch_address);
5013 }
56ee5e00
DK
5014}
5015
10ad9fe5
DK
5016// Arm_input_section methods.
5017
5018// Initialize an Arm_input_section.
5019
5020template<bool big_endian>
5021void
5022Arm_input_section<big_endian>::init()
5023{
2ea97941
ILT
5024 Relobj* relobj = this->relobj();
5025 unsigned int shndx = this->shndx();
10ad9fe5
DK
5026
5027 // Cache these to speed up size and alignment queries. It is too slow
5028 // to call section_addraglin and section_size every time.
6625d24e
DK
5029 this->original_addralign_ =
5030 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
5031 this->original_size_ =
5032 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5
DK
5033
5034 // We want to make this look like the original input section after
5035 // output sections are finalized.
2ea97941
ILT
5036 Output_section* os = relobj->output_section(shndx);
5037 off_t offset = relobj->output_section_offset(shndx);
5038 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5039 this->set_address(os->address() + offset);
5040 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5041
5042 this->set_current_data_size(this->original_size_);
5043 this->finalize_data_size();
5044}
5045
5046template<bool big_endian>
5047void
5048Arm_input_section<big_endian>::do_write(Output_file* of)
5049{
5050 // We have to write out the original section content.
5051 section_size_type section_size;
5052 const unsigned char* section_contents =
5053 this->relobj()->section_contents(this->shndx(), &section_size, false);
5054 of->write(this->offset(), section_contents, section_size);
5055
5056 // If this owns a stub table and it is not empty, write it.
5057 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5058 this->stub_table_->write(of);
5059}
5060
5061// Finalize data size.
5062
5063template<bool big_endian>
5064void
5065Arm_input_section<big_endian>::set_final_data_size()
5066{
153e7da4
DK
5067 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5068
10ad9fe5
DK
5069 if (this->is_stub_table_owner())
5070 {
6625d24e 5071 this->stub_table_->finalize_data_size();
153e7da4 5072 off = align_address(off, this->stub_table_->addralign());
153e7da4 5073 off += this->stub_table_->data_size();
10ad9fe5 5074 }
153e7da4 5075 this->set_data_size(off);
10ad9fe5
DK
5076}
5077
5078// Reset address and file offset.
5079
5080template<bool big_endian>
5081void
5082Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5083{
5084 // Size of the original input section contents.
5085 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5086
5087 // If this is a stub table owner, account for the stub table size.
5088 if (this->is_stub_table_owner())
5089 {
2ea97941 5090 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5091
5092 // Reset the stub table's address and file offset. The
5093 // current data size for child will be updated after that.
5094 stub_table_->reset_address_and_file_offset();
5095 off = align_address(off, stub_table_->addralign());
2ea97941 5096 off += stub_table->current_data_size();
10ad9fe5
DK
5097 }
5098
5099 this->set_current_data_size(off);
5100}
5101
af2cdeae
DK
5102// Arm_exidx_cantunwind methods.
5103
7296d933 5104// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5105
5106template<bool big_endian>
5107void
5108Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5109{
5110 off_t offset = this->offset();
5111 const section_size_type oview_size = 8;
5112 unsigned char* const oview = of->get_output_view(offset, oview_size);
5113
5114 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5115 Valtype* wv = reinterpret_cast<Valtype*>(oview);
5116
5117 Output_section* os = this->relobj_->output_section(this->shndx_);
5118 gold_assert(os != NULL);
5119
5120 Arm_relobj<big_endian>* arm_relobj =
5121 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5122 Arm_address output_offset =
5123 arm_relobj->get_output_section_offset(this->shndx_);
5124 Arm_address section_start;
7296d933 5125 if (output_offset != Arm_relobj<big_endian>::invalid_address)
af2cdeae
DK
5126 section_start = os->address() + output_offset;
5127 else
5128 {
5129 // Currently this only happens for a relaxed section.
5130 const Output_relaxed_input_section* poris =
5131 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5132 gold_assert(poris != NULL);
5133 section_start = poris->address();
5134 }
5135
5136 // We always append this to the end of an EXIDX section.
5137 Arm_address output_address =
5138 section_start + this->relobj_->section_size(this->shndx_);
5139
5140 // Write out the entry. The first word either points to the beginning
5141 // or after the end of a text section. The second word is the special
5142 // EXIDX_CANTUNWIND value.
e7eca48c
DK
5143 uint32_t prel31_offset = output_address - this->address();
5144 if (utils::has_overflow<31>(offset))
5145 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5146 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
af2cdeae
DK
5147 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5148
5149 of->write_output_view(this->offset(), oview_size, oview);
5150}
5151
5152// Arm_exidx_merged_section methods.
5153
5154// Constructor for Arm_exidx_merged_section.
5155// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5156// SECTION_OFFSET_MAP points to a section offset map describing how
5157// parts of the input section are mapped to output. DELETED_BYTES is
5158// the number of bytes deleted from the EXIDX input section.
5159
5160Arm_exidx_merged_section::Arm_exidx_merged_section(
5161 const Arm_exidx_input_section& exidx_input_section,
5162 const Arm_exidx_section_offset_map& section_offset_map,
5163 uint32_t deleted_bytes)
5164 : Output_relaxed_input_section(exidx_input_section.relobj(),
5165 exidx_input_section.shndx(),
5166 exidx_input_section.addralign()),
5167 exidx_input_section_(exidx_input_section),
5168 section_offset_map_(section_offset_map)
5169{
5170 // Fix size here so that we do not need to implement set_final_data_size.
5171 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5172 this->fix_data_size();
5173}
5174
5175// Given an input OBJECT, an input section index SHNDX within that
5176// object, and an OFFSET relative to the start of that input
5177// section, return whether or not the corresponding offset within
5178// the output section is known. If this function returns true, it
5179// sets *POUTPUT to the output offset. The value -1 indicates that
5180// this input offset is being discarded.
5181
5182bool
5183Arm_exidx_merged_section::do_output_offset(
5184 const Relobj* relobj,
5185 unsigned int shndx,
5186 section_offset_type offset,
5187 section_offset_type* poutput) const
5188{
5189 // We only handle offsets for the original EXIDX input section.
5190 if (relobj != this->exidx_input_section_.relobj()
5191 || shndx != this->exidx_input_section_.shndx())
5192 return false;
5193
c7f3c371
DK
5194 section_offset_type section_size =
5195 convert_types<section_offset_type>(this->exidx_input_section_.size());
5196 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5197 // Input offset is out of valid range.
5198 *poutput = -1;
5199 else
5200 {
5201 // We need to look up the section offset map to determine the output
5202 // offset. Find the reference point in map that is first offset
5203 // bigger than or equal to this offset.
5204 Arm_exidx_section_offset_map::const_iterator p =
5205 this->section_offset_map_.lower_bound(offset);
5206
5207 // The section offset maps are build such that this should not happen if
5208 // input offset is in the valid range.
5209 gold_assert(p != this->section_offset_map_.end());
5210
5211 // We need to check if this is dropped.
5212 section_offset_type ref = p->first;
5213 section_offset_type mapped_ref = p->second;
5214
5215 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5216 // Offset is present in output.
5217 *poutput = mapped_ref + (offset - ref);
5218 else
5219 // Offset is discarded owing to EXIDX entry merging.
5220 *poutput = -1;
5221 }
5222
5223 return true;
5224}
5225
5226// Write this to output file OF.
5227
5228void
5229Arm_exidx_merged_section::do_write(Output_file* of)
5230{
5231 // If we retain or discard the whole EXIDX input section, we would
5232 // not be here.
5233 gold_assert(this->data_size() != this->exidx_input_section_.size()
5234 && this->data_size() != 0);
5235
5236 off_t offset = this->offset();
5237 const section_size_type oview_size = this->data_size();
5238 unsigned char* const oview = of->get_output_view(offset, oview_size);
5239
5240 Output_section* os = this->relobj()->output_section(this->shndx());
5241 gold_assert(os != NULL);
5242
5243 // Get contents of EXIDX input section.
5244 section_size_type section_size;
5245 const unsigned char* section_contents =
5246 this->relobj()->section_contents(this->shndx(), &section_size, false);
5247 gold_assert(section_size == this->exidx_input_section_.size());
5248
5249 // Go over spans of input offsets and write only those that are not
5250 // discarded.
5251 section_offset_type in_start = 0;
5252 section_offset_type out_start = 0;
5253 for(Arm_exidx_section_offset_map::const_iterator p =
5254 this->section_offset_map_.begin();
5255 p != this->section_offset_map_.end();
5256 ++p)
5257 {
5258 section_offset_type in_end = p->first;
5259 gold_assert(in_end >= in_start);
5260 section_offset_type out_end = p->second;
5261 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5262 if (out_end != -1)
5263 {
5264 size_t out_chunk_size =
5265 convert_types<size_t>(out_end - out_start + 1);
5266 gold_assert(out_chunk_size == in_chunk_size);
5267 memcpy(oview + out_start, section_contents + in_start,
5268 out_chunk_size);
5269 out_start += out_chunk_size;
5270 }
5271 in_start += in_chunk_size;
5272 }
5273
5274 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5275 of->write_output_view(this->offset(), oview_size, oview);
5276}
5277
80d0d023
DK
5278// Arm_exidx_fixup methods.
5279
5280// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5281// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5282// points to the end of the last seen EXIDX section.
5283
5284void
5285Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5286{
5287 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5288 && this->last_input_section_ != NULL)
5289 {
5290 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5291 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5292 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5293 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5294 this->exidx_output_section_->add_output_section_data(cantunwind);
5295 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5296 }
5297}
5298
5299// Process an EXIDX section entry in input. Return whether this entry
5300// can be deleted in the output. SECOND_WORD in the second word of the
5301// EXIDX entry.
5302
5303bool
5304Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5305{
5306 bool delete_entry;
5307 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5308 {
5309 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5310 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5311 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5312 }
5313 else if ((second_word & 0x80000000) != 0)
5314 {
5315 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5316 delete_entry = (merge_exidx_entries_
5317 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5318 && this->last_inlined_entry_ == second_word);
5319 this->last_unwind_type_ = UT_INLINED_ENTRY;
5320 this->last_inlined_entry_ = second_word;
5321 }
5322 else
5323 {
5324 // Normal table entry. In theory we could merge these too,
5325 // but duplicate entries are likely to be much less common.
5326 delete_entry = false;
5327 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5328 }
5329 return delete_entry;
5330}
5331
5332// Update the current section offset map during EXIDX section fix-up.
5333// If there is no map, create one. INPUT_OFFSET is the offset of a
5334// reference point, DELETED_BYTES is the number of deleted by in the
5335// section so far. If DELETE_ENTRY is true, the reference point and
5336// all offsets after the previous reference point are discarded.
5337
5338void
5339Arm_exidx_fixup::update_offset_map(
5340 section_offset_type input_offset,
5341 section_size_type deleted_bytes,
5342 bool delete_entry)
5343{
5344 if (this->section_offset_map_ == NULL)
5345 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5346 section_offset_type output_offset;
5347 if (delete_entry)
5348 output_offset = Arm_exidx_input_section::invalid_offset;
5349 else
5350 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5351 (*this->section_offset_map_)[input_offset] = output_offset;
5352}
5353
5354// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5355// bytes deleted. If some entries are merged, also store a pointer to a newly
5356// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5357// caller owns the map and is responsible for releasing it after use.
5358
5359template<bool big_endian>
5360uint32_t
5361Arm_exidx_fixup::process_exidx_section(
5362 const Arm_exidx_input_section* exidx_input_section,
5363 Arm_exidx_section_offset_map** psection_offset_map)
5364{
5365 Relobj* relobj = exidx_input_section->relobj();
5366 unsigned shndx = exidx_input_section->shndx();
5367 section_size_type section_size;
5368 const unsigned char* section_contents =
5369 relobj->section_contents(shndx, &section_size, false);
5370
5371 if ((section_size % 8) != 0)
5372 {
5373 // Something is wrong with this section. Better not touch it.
5374 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5375 relobj->name().c_str(), shndx);
5376 this->last_input_section_ = exidx_input_section;
5377 this->last_unwind_type_ = UT_NONE;
5378 return 0;
5379 }
5380
5381 uint32_t deleted_bytes = 0;
5382 bool prev_delete_entry = false;
5383 gold_assert(this->section_offset_map_ == NULL);
5384
5385 for (section_size_type i = 0; i < section_size; i += 8)
5386 {
5387 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5388 const Valtype* wv =
5389 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5390 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5391
5392 bool delete_entry = this->process_exidx_entry(second_word);
5393
5394 // Entry deletion causes changes in output offsets. We use a std::map
5395 // to record these. And entry (x, y) means input offset x
5396 // is mapped to output offset y. If y is invalid_offset, then x is
5397 // dropped in the output. Because of the way std::map::lower_bound
5398 // works, we record the last offset in a region w.r.t to keeping or
5399 // dropping. If there is no entry (x0, y0) for an input offset x0,
5400 // the output offset y0 of it is determined by the output offset y1 of
5401 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5402 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5403 // y0 is also -1.
5404 if (delete_entry != prev_delete_entry && i != 0)
5405 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5406
5407 // Update total deleted bytes for this entry.
5408 if (delete_entry)
5409 deleted_bytes += 8;
5410
5411 prev_delete_entry = delete_entry;
5412 }
5413
5414 // If section offset map is not NULL, make an entry for the end of
5415 // section.
5416 if (this->section_offset_map_ != NULL)
5417 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5418
5419 *psection_offset_map = this->section_offset_map_;
5420 this->section_offset_map_ = NULL;
5421 this->last_input_section_ = exidx_input_section;
5422
546c7457
DK
5423 // Set the first output text section so that we can link the EXIDX output
5424 // section to it. Ignore any EXIDX input section that is completely merged.
5425 if (this->first_output_text_section_ == NULL
5426 && deleted_bytes != section_size)
5427 {
5428 unsigned int link = exidx_input_section->link();
5429 Output_section* os = relobj->output_section(link);
5430 gold_assert(os != NULL);
5431 this->first_output_text_section_ = os;
5432 }
5433
80d0d023
DK
5434 return deleted_bytes;
5435}
5436
07f508a2
DK
5437// Arm_output_section methods.
5438
5439// Create a stub group for input sections from BEGIN to END. OWNER
5440// points to the input section to be the owner a new stub table.
5441
5442template<bool big_endian>
5443void
5444Arm_output_section<big_endian>::create_stub_group(
5445 Input_section_list::const_iterator begin,
5446 Input_section_list::const_iterator end,
5447 Input_section_list::const_iterator owner,
5448 Target_arm<big_endian>* target,
5449 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5450{
2b328d4e
DK
5451 // We use a different kind of relaxed section in an EXIDX section.
5452 // The static casting from Output_relaxed_input_section to
5453 // Arm_input_section is invalid in an EXIDX section. We are okay
5454 // because we should not be calling this for an EXIDX section.
5455 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5456
07f508a2
DK
5457 // Currently we convert ordinary input sections into relaxed sections only
5458 // at this point but we may want to support creating relaxed input section
5459 // very early. So we check here to see if owner is already a relaxed
5460 // section.
5461
5462 Arm_input_section<big_endian>* arm_input_section;
5463 if (owner->is_relaxed_input_section())
5464 {
5465 arm_input_section =
5466 Arm_input_section<big_endian>::as_arm_input_section(
5467 owner->relaxed_input_section());
5468 }
5469 else
5470 {
5471 gold_assert(owner->is_input_section());
5472 // Create a new relaxed input section.
5473 arm_input_section =
5474 target->new_arm_input_section(owner->relobj(), owner->shndx());
5475 new_relaxed_sections->push_back(arm_input_section);
5476 }
5477
5478 // Create a stub table.
2ea97941 5479 Stub_table<big_endian>* stub_table =
07f508a2
DK
5480 target->new_stub_table(arm_input_section);
5481
2ea97941 5482 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5483
5484 Input_section_list::const_iterator p = begin;
5485 Input_section_list::const_iterator prev_p;
5486
5487 // Look for input sections or relaxed input sections in [begin ... end].
5488 do
5489 {
5490 if (p->is_input_section() || p->is_relaxed_input_section())
5491 {
5492 // The stub table information for input sections live
5493 // in their objects.
5494 Arm_relobj<big_endian>* arm_relobj =
5495 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5496 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5497 }
5498 prev_p = p++;
5499 }
5500 while (prev_p != end);
5501}
5502
5503// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5504// of stub groups. We grow a stub group by adding input section until the
5505// size is just below GROUP_SIZE. The last input section will be converted
5506// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5507// input section after the stub table, effectively double the group size.
5508//
5509// This is similar to the group_sections() function in elf32-arm.c but is
5510// implemented differently.
5511
5512template<bool big_endian>
5513void
5514Arm_output_section<big_endian>::group_sections(
5515 section_size_type group_size,
5516 bool stubs_always_after_branch,
5517 Target_arm<big_endian>* target)
5518{
5519 // We only care about sections containing code.
5520 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5521 return;
5522
5523 // States for grouping.
5524 typedef enum
5525 {
5526 // No group is being built.
5527 NO_GROUP,
5528 // A group is being built but the stub table is not found yet.
5529 // We keep group a stub group until the size is just under GROUP_SIZE.
5530 // The last input section in the group will be used as the stub table.
5531 FINDING_STUB_SECTION,
5532 // A group is being built and we have already found a stub table.
5533 // We enter this state to grow a stub group by adding input section
5534 // after the stub table. This effectively doubles the group size.
5535 HAS_STUB_SECTION
5536 } State;
5537
5538 // Any newly created relaxed sections are stored here.
5539 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5540
5541 State state = NO_GROUP;
5542 section_size_type off = 0;
5543 section_size_type group_begin_offset = 0;
5544 section_size_type group_end_offset = 0;
5545 section_size_type stub_table_end_offset = 0;
5546 Input_section_list::const_iterator group_begin =
5547 this->input_sections().end();
2ea97941 5548 Input_section_list::const_iterator stub_table =
07f508a2
DK
5549 this->input_sections().end();
5550 Input_section_list::const_iterator group_end = this->input_sections().end();
5551 for (Input_section_list::const_iterator p = this->input_sections().begin();
5552 p != this->input_sections().end();
5553 ++p)
5554 {
5555 section_size_type section_begin_offset =
5556 align_address(off, p->addralign());
5557 section_size_type section_end_offset =
5558 section_begin_offset + p->data_size();
5559
5560 // Check to see if we should group the previously seens sections.
e9bbb538 5561 switch (state)
07f508a2
DK
5562 {
5563 case NO_GROUP:
5564 break;
5565
5566 case FINDING_STUB_SECTION:
5567 // Adding this section makes the group larger than GROUP_SIZE.
5568 if (section_end_offset - group_begin_offset >= group_size)
5569 {
5570 if (stubs_always_after_branch)
5571 {
5572 gold_assert(group_end != this->input_sections().end());
5573 this->create_stub_group(group_begin, group_end, group_end,
5574 target, &new_relaxed_sections);
5575 state = NO_GROUP;
5576 }
5577 else
5578 {
5579 // But wait, there's more! Input sections up to
5580 // stub_group_size bytes after the stub table can be
5581 // handled by it too.
5582 state = HAS_STUB_SECTION;
2ea97941 5583 stub_table = group_end;
07f508a2
DK
5584 stub_table_end_offset = group_end_offset;
5585 }
5586 }
5587 break;
5588
5589 case HAS_STUB_SECTION:
5590 // Adding this section makes the post stub-section group larger
5591 // than GROUP_SIZE.
5592 if (section_end_offset - stub_table_end_offset >= group_size)
5593 {
5594 gold_assert(group_end != this->input_sections().end());
2ea97941 5595 this->create_stub_group(group_begin, group_end, stub_table,
07f508a2
DK
5596 target, &new_relaxed_sections);
5597 state = NO_GROUP;
5598 }
5599 break;
5600
5601 default:
5602 gold_unreachable();
5603 }
5604
5605 // If we see an input section and currently there is no group, start
5606 // a new one. Skip any empty sections.
5607 if ((p->is_input_section() || p->is_relaxed_input_section())
5608 && (p->relobj()->section_size(p->shndx()) != 0))
5609 {
5610 if (state == NO_GROUP)
5611 {
5612 state = FINDING_STUB_SECTION;
5613 group_begin = p;
5614 group_begin_offset = section_begin_offset;
5615 }
5616
5617 // Keep track of the last input section seen.
5618 group_end = p;
5619 group_end_offset = section_end_offset;
5620 }
5621
5622 off = section_end_offset;
5623 }
5624
5625 // Create a stub group for any ungrouped sections.
5626 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5627 {
5628 gold_assert(group_end != this->input_sections().end());
5629 this->create_stub_group(group_begin, group_end,
5630 (state == FINDING_STUB_SECTION
5631 ? group_end
2ea97941 5632 : stub_table),
07f508a2
DK
5633 target, &new_relaxed_sections);
5634 }
5635
5636 // Convert input section into relaxed input section in a batch.
5637 if (!new_relaxed_sections.empty())
5638 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5639
5640 // Update the section offsets
5641 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5642 {
5643 Arm_relobj<big_endian>* arm_relobj =
5644 Arm_relobj<big_endian>::as_arm_relobj(
5645 new_relaxed_sections[i]->relobj());
2ea97941 5646 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5647 // Tell Arm_relobj that this input section is converted.
2ea97941 5648 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5649 }
5650}
5651
2b328d4e
DK
5652// Append non empty text sections in this to LIST in ascending
5653// order of their position in this.
5654
5655template<bool big_endian>
5656void
5657Arm_output_section<big_endian>::append_text_sections_to_list(
5658 Text_section_list* list)
5659{
5660 // We only care about text sections.
5661 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5662 return;
5663
5664 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5665
5666 for (Input_section_list::const_iterator p = this->input_sections().begin();
5667 p != this->input_sections().end();
5668 ++p)
5669 {
5670 // We only care about plain or relaxed input sections. We also
5671 // ignore any merged sections.
5672 if ((p->is_input_section() || p->is_relaxed_input_section())
5673 && p->data_size() != 0)
5674 list->push_back(Text_section_list::value_type(p->relobj(),
5675 p->shndx()));
5676 }
5677}
5678
5679template<bool big_endian>
5680void
5681Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5682 Layout* layout,
2b328d4e 5683 const Text_section_list& sorted_text_sections,
85fdf906
AH
5684 Symbol_table* symtab,
5685 bool merge_exidx_entries)
2b328d4e
DK
5686{
5687 // We should only do this for the EXIDX output section.
5688 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5689
5690 // We don't want the relaxation loop to undo these changes, so we discard
5691 // the current saved states and take another one after the fix-up.
5692 this->discard_states();
5693
5694 // Remove all input sections.
5695 uint64_t address = this->address();
6625d24e
DK
5696 typedef std::list<Output_section::Input_section> Input_section_list;
5697 Input_section_list input_sections;
2b328d4e
DK
5698 this->reset_address_and_file_offset();
5699 this->get_input_sections(address, std::string(""), &input_sections);
5700
5701 if (!this->input_sections().empty())
5702 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5703
5704 // Go through all the known input sections and record them.
5705 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5706 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5707 Section_id_hash> Text_to_exidx_map;
5708 Text_to_exidx_map text_to_exidx_map;
5709 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5710 p != input_sections.end();
5711 ++p)
5712 {
5713 // This should never happen. At this point, we should only see
5714 // plain EXIDX input sections.
5715 gold_assert(!p->is_relaxed_input_section());
6625d24e 5716 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5717 }
5718
85fdf906 5719 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5720
5721 // Go over the sorted text sections.
6625d24e 5722 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5723 Section_id_set processed_input_sections;
5724 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5725 p != sorted_text_sections.end();
5726 ++p)
5727 {
5728 Relobj* relobj = p->first;
5729 unsigned int shndx = p->second;
5730
5731 Arm_relobj<big_endian>* arm_relobj =
5732 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5733 const Arm_exidx_input_section* exidx_input_section =
5734 arm_relobj->exidx_input_section_by_link(shndx);
5735
5736 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5737 // entry pointing to the end of the last seen EXIDX section.
5738 if (exidx_input_section == NULL)
5739 {
5740 exidx_fixup.add_exidx_cantunwind_as_needed();
5741 continue;
5742 }
5743
5744 Relobj* exidx_relobj = exidx_input_section->relobj();
5745 unsigned int exidx_shndx = exidx_input_section->shndx();
5746 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5747 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5748 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5749 {
5750 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5751 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5752 // issue a warning instead. We assume the user knows what he
5753 // or she is doing. Otherwise, this is an error.
5754 if (layout->script_options()->saw_sections_clause())
5755 gold_warning(_("unwinding may not work because EXIDX input section"
5756 " %u of %s is not in EXIDX output section"),
5757 exidx_shndx, exidx_relobj->name().c_str());
5758 else
5759 gold_error(_("unwinding may not work because EXIDX input section"
5760 " %u of %s is not in EXIDX output section"),
5761 exidx_shndx, exidx_relobj->name().c_str());
5762
2b328d4e
DK
5763 exidx_fixup.add_exidx_cantunwind_as_needed();
5764 continue;
5765 }
5766
5767 // Fix up coverage and append input section to output data list.
5768 Arm_exidx_section_offset_map* section_offset_map = NULL;
5769 uint32_t deleted_bytes =
5770 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5771 &section_offset_map);
5772
5773 if (deleted_bytes == exidx_input_section->size())
5774 {
5775 // The whole EXIDX section got merged. Remove it from output.
5776 gold_assert(section_offset_map == NULL);
5777 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5778
5779 // All local symbols defined in this input section will be dropped.
5780 // We need to adjust output local symbol count.
5781 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5782 }
5783 else if (deleted_bytes > 0)
5784 {
5785 // Some entries are merged. We need to convert this EXIDX input
5786 // section into a relaxed section.
5787 gold_assert(section_offset_map != NULL);
5788 Arm_exidx_merged_section* merged_section =
5789 new Arm_exidx_merged_section(*exidx_input_section,
5790 *section_offset_map, deleted_bytes);
5791 this->add_relaxed_input_section(merged_section);
5792 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5793
5794 // All local symbols defined in discarded portions of this input
5795 // section will be dropped. We need to adjust output local symbol
5796 // count.
5797 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5798 }
5799 else
5800 {
5801 // Just add back the EXIDX input section.
5802 gold_assert(section_offset_map == NULL);
6625d24e
DK
5803 const Output_section::Input_section* pis = iter->second;
5804 gold_assert(pis->is_input_section());
5805 this->add_script_input_section(*pis);
2b328d4e
DK
5806 }
5807
5808 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5809 }
5810
5811 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5812 exidx_fixup.add_exidx_cantunwind_as_needed();
5813
5814 // Remove any known EXIDX input sections that are not processed.
6625d24e 5815 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5816 p != input_sections.end();
5817 ++p)
5818 {
5819 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5820 == processed_input_sections.end())
5821 {
5822 // We only discard a known EXIDX section because its linked
5823 // text section has been folded by ICF.
5824 Arm_relobj<big_endian>* arm_relobj =
5825 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5826 const Arm_exidx_input_section* exidx_input_section =
5827 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5828 gold_assert(exidx_input_section != NULL);
5829 unsigned int text_shndx = exidx_input_section->link();
5830 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5831
04ceb17c
DK
5832 // Remove this from link. We also need to recount the
5833 // local symbols.
2b328d4e 5834 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5835 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5836 }
5837 }
5838
546c7457
DK
5839 // Link exidx output section to the first seen output section and
5840 // set correct entry size.
5841 this->set_link_section(exidx_fixup.first_output_text_section());
5842 this->set_entsize(8);
5843
2b328d4e
DK
5844 // Make changes permanent.
5845 this->save_states();
5846 this->set_section_offsets_need_adjustment();
5847}
5848
8ffa3667
DK
5849// Arm_relobj methods.
5850
cf846138
DK
5851// Determine if an input section is scannable for stub processing. SHDR is
5852// the header of the section and SHNDX is the section index. OS is the output
5853// section for the input section and SYMTAB is the global symbol table used to
5854// look up ICF information.
5855
5856template<bool big_endian>
5857bool
5858Arm_relobj<big_endian>::section_is_scannable(
5859 const elfcpp::Shdr<32, big_endian>& shdr,
5860 unsigned int shndx,
5861 const Output_section* os,
5862 const Symbol_table *symtab)
5863{
5864 // Skip any empty sections, unallocated sections or sections whose
5865 // type are not SHT_PROGBITS.
5866 if (shdr.get_sh_size() == 0
5867 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5868 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5869 return false;
5870
5871 // Skip any discarded or ICF'ed sections.
5872 if (os == NULL || symtab->is_section_folded(this, shndx))
5873 return false;
5874
5875 // If this requires special offset handling, check to see if it is
5876 // a relaxed section. If this is not, then it is a merged section that
5877 // we cannot handle.
5878 if (this->is_output_section_offset_invalid(shndx))
5879 {
5880 const Output_relaxed_input_section* poris =
5881 os->find_relaxed_input_section(this, shndx);
5882 if (poris == NULL)
5883 return false;
5884 }
5885
5886 return true;
5887}
5888
44272192
DK
5889// Determine if we want to scan the SHNDX-th section for relocation stubs.
5890// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5891
5892template<bool big_endian>
5893bool
5894Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5895 const elfcpp::Shdr<32, big_endian>& shdr,
5896 const Relobj::Output_sections& out_sections,
2b328d4e
DK
5897 const Symbol_table *symtab,
5898 const unsigned char* pshdrs)
44272192
DK
5899{
5900 unsigned int sh_type = shdr.get_sh_type();
5901 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5902 return false;
5903
5904 // Ignore empty section.
5905 off_t sh_size = shdr.get_sh_size();
5906 if (sh_size == 0)
5907 return false;
5908
44272192
DK
5909 // Ignore reloc section with unexpected symbol table. The
5910 // error will be reported in the final link.
5911 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5912 return false;
5913
b521dfe4
DK
5914 unsigned int reloc_size;
5915 if (sh_type == elfcpp::SHT_REL)
5916 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5917 else
5918 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
5919
5920 // Ignore reloc section with unexpected entsize or uneven size.
5921 // The error will be reported in the final link.
5922 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5923 return false;
5924
cf846138
DK
5925 // Ignore reloc section with bad info. This error will be
5926 // reported in the final link.
5927 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5928 if (index >= this->shnum())
5929 return false;
5930
5931 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5932 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5933 return this->section_is_scannable(text_shdr, index,
5934 out_sections[index], symtab);
44272192
DK
5935}
5936
cb1be87e
DK
5937// Return the output address of either a plain input section or a relaxed
5938// input section. SHNDX is the section index. We define and use this
5939// instead of calling Output_section::output_address because that is slow
5940// for large output.
5941
5942template<bool big_endian>
5943Arm_address
5944Arm_relobj<big_endian>::simple_input_section_output_address(
5945 unsigned int shndx,
5946 Output_section* os)
5947{
5948 if (this->is_output_section_offset_invalid(shndx))
5949 {
5950 const Output_relaxed_input_section* poris =
5951 os->find_relaxed_input_section(this, shndx);
5952 // We do not handle merged sections here.
5953 gold_assert(poris != NULL);
5954 return poris->address();
5955 }
5956 else
5957 return os->address() + this->get_output_section_offset(shndx);
5958}
5959
44272192
DK
5960// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5961// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5962
5963template<bool big_endian>
5964bool
5965Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5966 const elfcpp::Shdr<32, big_endian>& shdr,
5967 unsigned int shndx,
5968 Output_section* os,
5969 const Symbol_table* symtab)
5970{
cf846138 5971 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
5972 return false;
5973
44272192
DK
5974 // If the section does not cross any 4K-boundaries, it does not need to
5975 // be scanned.
cb1be87e 5976 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
5977 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5978 return false;
5979
5980 return true;
5981}
5982
5983// Scan a section for Cortex-A8 workaround.
5984
5985template<bool big_endian>
5986void
5987Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5988 const elfcpp::Shdr<32, big_endian>& shdr,
5989 unsigned int shndx,
5990 Output_section* os,
5991 Target_arm<big_endian>* arm_target)
5992{
c8761b9a
DK
5993 // Look for the first mapping symbol in this section. It should be
5994 // at (shndx, 0).
5995 Mapping_symbol_position section_start(shndx, 0);
5996 typename Mapping_symbols_info::const_iterator p =
5997 this->mapping_symbols_info_.lower_bound(section_start);
5998
5999 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6000 // section. Issue a warning if section is marked as containing
6001 // instructions.
c8761b9a 6002 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6003 {
6004 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6005 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6006 "erratum because it has no mapping symbols."),
6007 shndx, this->name().c_str());
6008 return;
6009 }
c8761b9a 6010
cb1be87e
DK
6011 Arm_address output_address =
6012 this->simple_input_section_output_address(shndx, os);
44272192
DK
6013
6014 // Get the section contents.
6015 section_size_type input_view_size = 0;
6016 const unsigned char* input_view =
6017 this->section_contents(shndx, &input_view_size, false);
6018
6019 // We need to go through the mapping symbols to determine what to
6020 // scan. There are two reasons. First, we should look at THUMB code and
6021 // THUMB code only. Second, we only want to look at the 4K-page boundary
6022 // to speed up the scanning.
6023
44272192
DK
6024 while (p != this->mapping_symbols_info_.end()
6025 && p->first.first == shndx)
6026 {
6027 typename Mapping_symbols_info::const_iterator next =
6028 this->mapping_symbols_info_.upper_bound(p->first);
6029
6030 // Only scan part of a section with THUMB code.
6031 if (p->second == 't')
6032 {
6033 // Determine the end of this range.
6034 section_size_type span_start =
6035 convert_to_section_size_type(p->first.second);
6036 section_size_type span_end;
6037 if (next != this->mapping_symbols_info_.end()
6038 && next->first.first == shndx)
6039 span_end = convert_to_section_size_type(next->first.second);
6040 else
6041 span_end = convert_to_section_size_type(shdr.get_sh_size());
6042
6043 if (((span_start + output_address) & ~0xfffUL)
6044 != ((span_end + output_address - 1) & ~0xfffUL))
6045 {
6046 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6047 span_start, span_end,
6048 input_view,
6049 output_address);
6050 }
6051 }
6052
6053 p = next;
6054 }
6055}
6056
8ffa3667
DK
6057// Scan relocations for stub generation.
6058
6059template<bool big_endian>
6060void
6061Arm_relobj<big_endian>::scan_sections_for_stubs(
6062 Target_arm<big_endian>* arm_target,
6063 const Symbol_table* symtab,
2ea97941 6064 const Layout* layout)
8ffa3667 6065{
2ea97941
ILT
6066 unsigned int shnum = this->shnum();
6067 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6068
6069 // Read the section headers.
6070 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6071 shnum * shdr_size,
8ffa3667
DK
6072 true, true);
6073
6074 // To speed up processing, we set up hash tables for fast lookup of
6075 // input offsets to output addresses.
6076 this->initialize_input_to_output_maps();
6077
6078 const Relobj::Output_sections& out_sections(this->output_sections());
6079
6080 Relocate_info<32, big_endian> relinfo;
8ffa3667 6081 relinfo.symtab = symtab;
2ea97941 6082 relinfo.layout = layout;
8ffa3667
DK
6083 relinfo.object = this;
6084
44272192 6085 // Do relocation stubs scanning.
2ea97941
ILT
6086 const unsigned char* p = pshdrs + shdr_size;
6087 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6088 {
44272192 6089 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6090 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6091 pshdrs))
8ffa3667 6092 {
44272192
DK
6093 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6094 Arm_address output_offset = this->get_output_section_offset(index);
6095 Arm_address output_address;
7296d933 6096 if (output_offset != invalid_address)
44272192
DK
6097 output_address = out_sections[index]->address() + output_offset;
6098 else
6099 {
6100 // Currently this only happens for a relaxed section.
6101 const Output_relaxed_input_section* poris =
6102 out_sections[index]->find_relaxed_input_section(this, index);
6103 gold_assert(poris != NULL);
6104 output_address = poris->address();
6105 }
8ffa3667 6106
44272192
DK
6107 // Get the relocations.
6108 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6109 shdr.get_sh_size(),
6110 true, false);
6111
6112 // Get the section contents. This does work for the case in which
6113 // we modify the contents of an input section. We need to pass the
6114 // output view under such circumstances.
6115 section_size_type input_view_size = 0;
6116 const unsigned char* input_view =
6117 this->section_contents(index, &input_view_size, false);
6118
6119 relinfo.reloc_shndx = i;
6120 relinfo.data_shndx = index;
6121 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6122 unsigned int reloc_size;
6123 if (sh_type == elfcpp::SHT_REL)
6124 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6125 else
6126 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6127
6128 Output_section* os = out_sections[index];
6129 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6130 shdr.get_sh_size() / reloc_size,
6131 os,
6132 output_offset == invalid_address,
6133 input_view, output_address,
6134 input_view_size);
8ffa3667 6135 }
44272192 6136 }
8ffa3667 6137
44272192
DK
6138 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6139 // after its relocation section, if there is one, is processed for
6140 // relocation stubs. Merging this loop with the one above would have been
6141 // complicated since we would have had to make sure that relocation stub
6142 // scanning is done first.
6143 if (arm_target->fix_cortex_a8())
6144 {
6145 const unsigned char* p = pshdrs + shdr_size;
6146 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6147 {
44272192
DK
6148 const elfcpp::Shdr<32, big_endian> shdr(p);
6149 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6150 out_sections[i],
6151 symtab))
6152 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6153 arm_target);
8ffa3667 6154 }
8ffa3667
DK
6155 }
6156
6157 // After we've done the relocations, we release the hash tables,
6158 // since we no longer need them.
6159 this->free_input_to_output_maps();
6160}
6161
6162// Count the local symbols. The ARM backend needs to know if a symbol
6163// is a THUMB function or not. For global symbols, it is easy because
6164// the Symbol object keeps the ELF symbol type. For local symbol it is
6165// harder because we cannot access this information. So we override the
6166// do_count_local_symbol in parent and scan local symbols to mark
6167// THUMB functions. This is not the most efficient way but I do not want to
6168// slow down other ports by calling a per symbol targer hook inside
6169// Sized_relobj<size, big_endian>::do_count_local_symbols.
6170
6171template<bool big_endian>
6172void
6173Arm_relobj<big_endian>::do_count_local_symbols(
6174 Stringpool_template<char>* pool,
6175 Stringpool_template<char>* dynpool)
6176{
6177 // We need to fix-up the values of any local symbols whose type are
6178 // STT_ARM_TFUNC.
6179
6180 // Ask parent to count the local symbols.
6181 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6182 const unsigned int loccount = this->local_symbol_count();
6183 if (loccount == 0)
6184 return;
6185
6186 // Intialize the thumb function bit-vector.
6187 std::vector<bool> empty_vector(loccount, false);
6188 this->local_symbol_is_thumb_function_.swap(empty_vector);
6189
6190 // Read the symbol table section header.
2ea97941 6191 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6192 elfcpp::Shdr<32, big_endian>
2ea97941 6193 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6194 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6195
6196 // Read the local symbols.
2ea97941 6197 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6198 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6199 off_t locsize = loccount * sym_size;
8ffa3667
DK
6200 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6201 locsize, true, true);
6202
20138696
DK
6203 // For mapping symbol processing, we need to read the symbol names.
6204 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6205 if (strtab_shndx >= this->shnum())
6206 {
6207 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6208 return;
6209 }
6210
6211 elfcpp::Shdr<32, big_endian>
6212 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6213 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6214 {
6215 this->error(_("symbol table name section has wrong type: %u"),
6216 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6217 return;
6218 }
6219 const char* pnames =
6220 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6221 strtabshdr.get_sh_size(),
6222 false, false));
6223
8ffa3667
DK
6224 // Loop over the local symbols and mark any local symbols pointing
6225 // to THUMB functions.
6226
6227 // Skip the first dummy symbol.
2ea97941 6228 psyms += sym_size;
8ffa3667
DK
6229 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6230 this->local_values();
2ea97941 6231 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6232 {
6233 elfcpp::Sym<32, big_endian> sym(psyms);
6234 elfcpp::STT st_type = sym.get_st_type();
6235 Symbol_value<32>& lv((*plocal_values)[i]);
6236 Arm_address input_value = lv.input_value();
6237
20138696
DK
6238 // Check to see if this is a mapping symbol.
6239 const char* sym_name = pnames + sym.get_st_name();
6240 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6241 {
24af6f92
DK
6242 bool is_ordinary;
6243 unsigned int input_shndx =
6244 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6245 gold_assert(is_ordinary);
20138696
DK
6246
6247 // Strip of LSB in case this is a THUMB symbol.
6248 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6249 this->mapping_symbols_info_[msp] = sym_name[1];
6250 }
6251
8ffa3667
DK
6252 if (st_type == elfcpp::STT_ARM_TFUNC
6253 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6254 {
6255 // This is a THUMB function. Mark this and canonicalize the
6256 // symbol value by setting LSB.
6257 this->local_symbol_is_thumb_function_[i] = true;
6258 if ((input_value & 1) == 0)
6259 lv.set_input_value(input_value | 1);
6260 }
6261 }
6262}
6263
6264// Relocate sections.
6265template<bool big_endian>
6266void
6267Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6268 const Symbol_table* symtab,
2ea97941 6269 const Layout* layout,
8ffa3667
DK
6270 const unsigned char* pshdrs,
6271 typename Sized_relobj<32, big_endian>::Views* pviews)
6272{
6273 // Call parent to relocate sections.
2ea97941 6274 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
43d12afe 6275 pviews);
8ffa3667
DK
6276
6277 // We do not generate stubs if doing a relocatable link.
6278 if (parameters->options().relocatable())
6279 return;
6280
6281 // Relocate stub tables.
2ea97941 6282 unsigned int shnum = this->shnum();
8ffa3667
DK
6283
6284 Target_arm<big_endian>* arm_target =
6285 Target_arm<big_endian>::default_target();
6286
6287 Relocate_info<32, big_endian> relinfo;
8ffa3667 6288 relinfo.symtab = symtab;
2ea97941 6289 relinfo.layout = layout;
8ffa3667
DK
6290 relinfo.object = this;
6291
2ea97941 6292 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6293 {
6294 Arm_input_section<big_endian>* arm_input_section =
6295 arm_target->find_arm_input_section(this, i);
6296
41263c05
DK
6297 if (arm_input_section != NULL
6298 && arm_input_section->is_stub_table_owner()
6299 && !arm_input_section->stub_table()->empty())
6300 {
6301 // We cannot discard a section if it owns a stub table.
6302 Output_section* os = this->output_section(i);
6303 gold_assert(os != NULL);
6304
6305 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6306 relinfo.reloc_shdr = NULL;
6307 relinfo.data_shndx = i;
6308 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6309
6310 gold_assert((*pviews)[i].view != NULL);
6311
6312 // We are passed the output section view. Adjust it to cover the
6313 // stub table only.
6314 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6315 gold_assert((stub_table->address() >= (*pviews)[i].address)
6316 && ((stub_table->address() + stub_table->data_size())
6317 <= (*pviews)[i].address + (*pviews)[i].view_size));
6318
6319 off_t offset = stub_table->address() - (*pviews)[i].address;
6320 unsigned char* view = (*pviews)[i].view + offset;
6321 Arm_address address = stub_table->address();
6322 section_size_type view_size = stub_table->data_size();
8ffa3667 6323
41263c05
DK
6324 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6325 view_size);
6326 }
6327
6328 // Apply Cortex A8 workaround if applicable.
6329 if (this->section_has_cortex_a8_workaround(i))
6330 {
6331 unsigned char* view = (*pviews)[i].view;
6332 Arm_address view_address = (*pviews)[i].address;
6333 section_size_type view_size = (*pviews)[i].view_size;
6334 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6335
6336 // Adjust view to cover section.
6337 Output_section* os = this->output_section(i);
6338 gold_assert(os != NULL);
cb1be87e
DK
6339 Arm_address section_address =
6340 this->simple_input_section_output_address(i, os);
41263c05
DK
6341 uint64_t section_size = this->section_size(i);
6342
6343 gold_assert(section_address >= view_address
6344 && ((section_address + section_size)
6345 <= (view_address + view_size)));
6346
6347 unsigned char* section_view = view + (section_address - view_address);
6348
6349 // Apply the Cortex-A8 workaround to the output address range
6350 // corresponding to this input section.
6351 stub_table->apply_cortex_a8_workaround_to_address_range(
6352 arm_target,
6353 section_view,
6354 section_address,
6355 section_size);
6356 }
8ffa3667
DK
6357 }
6358}
6359
c8761b9a
DK
6360// Find the linked text section of an EXIDX section by looking the the first
6361// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6362// must be linked to to its associated code section via the sh_link field of
6363// its section header. However, some tools are broken and the link is not
6364// always set. LD just drops such an EXIDX section silently, causing the
6365// associated code not unwindabled. Here we try a little bit harder to
6366// discover the linked code section.
6367//
6368// PSHDR points to the section header of a relocation section of an EXIDX
6369// section. If we can find a linked text section, return true and
6370// store the text section index in the location PSHNDX. Otherwise
6371// return false.
a0351a69
DK
6372
6373template<bool big_endian>
c8761b9a
DK
6374bool
6375Arm_relobj<big_endian>::find_linked_text_section(
6376 const unsigned char* pshdr,
6377 const unsigned char* psyms,
6378 unsigned int* pshndx)
a0351a69 6379{
c8761b9a
DK
6380 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6381
6382 // If there is no relocation, we cannot find the linked text section.
6383 size_t reloc_size;
6384 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6385 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6386 else
6387 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6388 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6389
6390 // Get the relocations.
6391 const unsigned char* prelocs =
6392 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6393
c8761b9a
DK
6394 // Find the REL31 relocation for the first word of the first EXIDX entry.
6395 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6396 {
c8761b9a
DK
6397 Arm_address r_offset;
6398 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6399 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6400 {
6401 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6402 r_info = reloc.get_r_info();
6403 r_offset = reloc.get_r_offset();
6404 }
6405 else
6406 {
6407 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6408 r_info = reloc.get_r_info();
6409 r_offset = reloc.get_r_offset();
6410 }
6411
6412 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6413 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6414 continue;
6415
6416 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6417 if (r_sym == 0
6418 || r_sym >= this->local_symbol_count()
6419 || r_offset != 0)
6420 continue;
6421
6422 // This is the relocation for the first word of the first EXIDX entry.
6423 // We expect to see a local section symbol.
6424 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6425 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6426 if (sym.get_st_type() == elfcpp::STT_SECTION)
6427 {
24af6f92
DK
6428 bool is_ordinary;
6429 *pshndx =
6430 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6431 gold_assert(is_ordinary);
c8761b9a
DK
6432 return true;
6433 }
6434 else
6435 return false;
993d07c1 6436 }
c8761b9a
DK
6437
6438 return false;
6439}
6440
6441// Make an EXIDX input section object for an EXIDX section whose index is
6442// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6443// is the section index of the linked text section.
6444
6445template<bool big_endian>
6446void
6447Arm_relobj<big_endian>::make_exidx_input_section(
6448 unsigned int shndx,
6449 const elfcpp::Shdr<32, big_endian>& shdr,
6450 unsigned int text_shndx)
6451{
993d07c1
DK
6452 // Issue an error and ignore this EXIDX section if it points to a text
6453 // section already has an EXIDX section.
6454 if (this->exidx_section_map_[text_shndx] != NULL)
6455 {
6456 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6457 "in %s"),
6458 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6459 text_shndx, this->name().c_str());
6460 return;
a0351a69 6461 }
993d07c1
DK
6462
6463 // Create an Arm_exidx_input_section object for this EXIDX section.
6464 Arm_exidx_input_section* exidx_input_section =
6465 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6466 shdr.get_sh_addralign());
6467 this->exidx_section_map_[text_shndx] = exidx_input_section;
6468
6469 // Also map the EXIDX section index to this.
6470 gold_assert(this->exidx_section_map_[shndx] == NULL);
6471 this->exidx_section_map_[shndx] = exidx_input_section;
a0351a69
DK
6472}
6473
d5b40221
DK
6474// Read the symbol information.
6475
6476template<bool big_endian>
6477void
6478Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6479{
6480 // Call parent class to read symbol information.
6481 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6482
7296d933
DK
6483 // If this input file is a binary file, it has no processor
6484 // specific flags and attributes section.
6485 Input_file::Format format = this->input_file()->format();
6486 if (format != Input_file::FORMAT_ELF)
6487 {
6488 gold_assert(format == Input_file::FORMAT_BINARY);
6489 this->merge_flags_and_attributes_ = false;
6490 return;
6491 }
6492
d5b40221
DK
6493 // Read processor-specific flags in ELF file header.
6494 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6495 elfcpp::Elf_sizes<32>::ehdr_size,
6496 true, false);
6497 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6498 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6499
6500 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6501 // sections.
c8761b9a 6502 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6503 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a
DK
6504 const unsigned char* pshdrs = sd->section_headers->data();
6505 const unsigned char *ps = pshdrs + shdr_size;
7296d933 6506 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6507 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6508 {
6509 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6510
6511 // Sometimes an object has no contents except the section name string
6512 // table and an empty symbol table with the undefined symbol. We
6513 // don't want to merge processor-specific flags from such an object.
6514 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6515 {
6516 // Symbol table is not empty.
6517 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6518 elfcpp::Elf_sizes<32>::sym_size;
6519 if (shdr.get_sh_size() > sym_size)
6520 must_merge_flags_and_attributes = true;
6521 }
6522 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6523 // If this is neither an empty symbol table nor a string table,
6524 // be conservative.
6525 must_merge_flags_and_attributes = true;
6526
993d07c1
DK
6527 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6528 {
6529 gold_assert(this->attributes_section_data_ == NULL);
6530 section_offset_type section_offset = shdr.get_sh_offset();
6531 section_size_type section_size =
6532 convert_to_section_size_type(shdr.get_sh_size());
6533 File_view* view = this->get_lasting_view(section_offset,
6534 section_size, true, false);
6535 this->attributes_section_data_ =
6536 new Attributes_section_data(view->data(), section_size);
6537 }
6538 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6539 {
6540 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6541 if (text_shndx >= this->shnum())
6542 gold_error(_("EXIDX section %u linked to invalid section %u"),
6543 i, text_shndx);
6544 else if (text_shndx == elfcpp::SHN_UNDEF)
6545 deferred_exidx_sections.push_back(i);
6546 else
6547 this->make_exidx_input_section(i, shdr, text_shndx);
6548 }
6549 }
6550
7296d933
DK
6551 // This is rare.
6552 if (!must_merge_flags_and_attributes)
6553 {
6554 this->merge_flags_and_attributes_ = false;
6555 return;
6556 }
6557
c8761b9a
DK
6558 // Some tools are broken and they do not set the link of EXIDX sections.
6559 // We look at the first relocation to figure out the linked sections.
6560 if (!deferred_exidx_sections.empty())
6561 {
6562 // We need to go over the section headers again to find the mapping
6563 // from sections being relocated to their relocation sections. This is
6564 // a bit inefficient as we could do that in the loop above. However,
6565 // we do not expect any deferred EXIDX sections normally. So we do not
6566 // want to slow down the most common path.
6567 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6568 Reloc_map reloc_map;
6569 ps = pshdrs + shdr_size;
6570 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6571 {
6572 elfcpp::Shdr<32, big_endian> shdr(ps);
6573 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6574 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6575 {
6576 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6577 if (info_shndx >= this->shnum())
6578 gold_error(_("relocation section %u has invalid info %u"),
6579 i, info_shndx);
6580 Reloc_map::value_type value(info_shndx, i);
6581 std::pair<Reloc_map::iterator, bool> result =
6582 reloc_map.insert(value);
6583 if (!result.second)
6584 gold_error(_("section %u has multiple relocation sections "
6585 "%u and %u"),
6586 info_shndx, i, reloc_map[info_shndx]);
6587 }
6588 }
6589
6590 // Read the symbol table section header.
6591 const unsigned int symtab_shndx = this->symtab_shndx();
6592 elfcpp::Shdr<32, big_endian>
6593 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6594 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6595
6596 // Read the local symbols.
6597 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6598 const unsigned int loccount = this->local_symbol_count();
6599 gold_assert(loccount == symtabshdr.get_sh_info());
6600 off_t locsize = loccount * sym_size;
6601 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6602 locsize, true, true);
6603
6604 // Process the deferred EXIDX sections.
6605 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6606 {
6607 unsigned int shndx = deferred_exidx_sections[i];
6608 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6609 unsigned int text_shndx;
6610 Reloc_map::const_iterator it = reloc_map.find(shndx);
6611 if (it != reloc_map.end()
6612 && find_linked_text_section(pshdrs + it->second * shdr_size,
6613 psyms, &text_shndx))
6614 this->make_exidx_input_section(shndx, shdr, text_shndx);
6615 else
6616 gold_error(_("EXIDX section %u has no linked text section."),
6617 shndx);
6618 }
993d07c1 6619 }
d5b40221
DK
6620}
6621
99e5bff2
DK
6622// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6623// sections for unwinding. These sections are referenced implicitly by
6624// text sections linked in the section headers. If we ignore these implict
6625// references, the .ARM.exidx sections and any .ARM.extab sections they use
6626// will be garbage-collected incorrectly. Hence we override the same function
6627// in the base class to handle these implicit references.
6628
6629template<bool big_endian>
6630void
6631Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6632 Layout* layout,
6633 Read_relocs_data* rd)
6634{
6635 // First, call base class method to process relocations in this object.
6636 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6637
4a54abbb
DK
6638 // If --gc-sections is not specified, there is nothing more to do.
6639 // This happens when --icf is used but --gc-sections is not.
6640 if (!parameters->options().gc_sections())
6641 return;
6642
99e5bff2
DK
6643 unsigned int shnum = this->shnum();
6644 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6645 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6646 shnum * shdr_size,
6647 true, true);
6648
6649 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6650 // to these from the linked text sections.
6651 const unsigned char* ps = pshdrs + shdr_size;
6652 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6653 {
6654 elfcpp::Shdr<32, big_endian> shdr(ps);
6655 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6656 {
6657 // Found an .ARM.exidx section, add it to the set of reachable
6658 // sections from its linked text section.
6659 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6660 symtab->gc()->add_reference(this, text_shndx, this, i);
6661 }
6662 }
6663}
6664
e7eca48c
DK
6665// Update output local symbol count. Owing to EXIDX entry merging, some local
6666// symbols will be removed in output. Adjust output local symbol count
6667// accordingly. We can only changed the static output local symbol count. It
6668// is too late to change the dynamic symbols.
6669
6670template<bool big_endian>
6671void
6672Arm_relobj<big_endian>::update_output_local_symbol_count()
6673{
6674 // Caller should check that this needs updating. We want caller checking
6675 // because output_local_symbol_count_needs_update() is most likely inlined.
6676 gold_assert(this->output_local_symbol_count_needs_update_);
6677
6678 gold_assert(this->symtab_shndx() != -1U);
6679 if (this->symtab_shndx() == 0)
6680 {
6681 // This object has no symbols. Weird but legal.
6682 return;
6683 }
6684
6685 // Read the symbol table section header.
6686 const unsigned int symtab_shndx = this->symtab_shndx();
6687 elfcpp::Shdr<32, big_endian>
6688 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6689 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6690
6691 // Read the local symbols.
6692 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6693 const unsigned int loccount = this->local_symbol_count();
6694 gold_assert(loccount == symtabshdr.get_sh_info());
6695 off_t locsize = loccount * sym_size;
6696 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6697 locsize, true, true);
6698
6699 // Loop over the local symbols.
6700
6701 typedef typename Sized_relobj<32, big_endian>::Output_sections
6702 Output_sections;
6703 const Output_sections& out_sections(this->output_sections());
6704 unsigned int shnum = this->shnum();
6705 unsigned int count = 0;
6706 // Skip the first, dummy, symbol.
6707 psyms += sym_size;
6708 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6709 {
6710 elfcpp::Sym<32, big_endian> sym(psyms);
6711
6712 Symbol_value<32>& lv((*this->local_values())[i]);
6713
6714 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6715 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6716 continue;
6717
6718 bool is_ordinary;
6719 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6720 &is_ordinary);
6721
6722 if (shndx < shnum)
6723 {
6724 Output_section* os = out_sections[shndx];
6725
6726 // This local symbol no longer has an output section. Discard it.
6727 if (os == NULL)
6728 {
6729 lv.set_no_output_symtab_entry();
6730 continue;
6731 }
6732
6733 // Currently we only discard parts of EXIDX input sections.
6734 // We explicitly check for a merged EXIDX input section to avoid
6735 // calling Output_section_data::output_offset unless necessary.
6736 if ((this->get_output_section_offset(shndx) == invalid_address)
6737 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6738 {
6739 section_offset_type output_offset =
6740 os->output_offset(this, shndx, lv.input_value());
6741 if (output_offset == -1)
6742 {
6743 // This symbol is defined in a part of an EXIDX input section
6744 // that is discarded due to entry merging.
6745 lv.set_no_output_symtab_entry();
6746 continue;
6747 }
6748 }
6749 }
6750
6751 ++count;
6752 }
6753
6754 this->set_output_local_symbol_count(count);
6755 this->output_local_symbol_count_needs_update_ = false;
6756}
6757
d5b40221
DK
6758// Arm_dynobj methods.
6759
6760// Read the symbol information.
6761
6762template<bool big_endian>
6763void
6764Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6765{
6766 // Call parent class to read symbol information.
6767 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6768
6769 // Read processor-specific flags in ELF file header.
6770 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6771 elfcpp::Elf_sizes<32>::ehdr_size,
6772 true, false);
6773 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6774 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6775
6776 // Read the attributes section if there is one.
6777 // We read from the end because gas seems to put it near the end of
6778 // the section headers.
6779 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6780 const unsigned char *ps =
6781 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6782 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6783 {
6784 elfcpp::Shdr<32, big_endian> shdr(ps);
6785 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6786 {
6787 section_offset_type section_offset = shdr.get_sh_offset();
6788 section_size_type section_size =
6789 convert_to_section_size_type(shdr.get_sh_size());
6790 File_view* view = this->get_lasting_view(section_offset,
6791 section_size, true, false);
6792 this->attributes_section_data_ =
6793 new Attributes_section_data(view->data(), section_size);
6794 break;
6795 }
6796 }
d5b40221
DK
6797}
6798
e9bbb538
DK
6799// Stub_addend_reader methods.
6800
6801// Read the addend of a REL relocation of type R_TYPE at VIEW.
6802
6803template<bool big_endian>
6804elfcpp::Elf_types<32>::Elf_Swxword
6805Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6806 unsigned int r_type,
6807 const unsigned char* view,
6808 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6809{
089d69dc
DK
6810 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6811
e9bbb538
DK
6812 switch (r_type)
6813 {
6814 case elfcpp::R_ARM_CALL:
6815 case elfcpp::R_ARM_JUMP24:
6816 case elfcpp::R_ARM_PLT32:
6817 {
6818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6819 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6820 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6821 return utils::sign_extend<26>(val << 2);
6822 }
6823
6824 case elfcpp::R_ARM_THM_CALL:
6825 case elfcpp::R_ARM_THM_JUMP24:
6826 case elfcpp::R_ARM_THM_XPC22:
6827 {
e9bbb538
DK
6828 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6829 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6830 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6831 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6832 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6833 }
6834
6835 case elfcpp::R_ARM_THM_JUMP19:
6836 {
6837 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6838 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6839 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6840 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6841 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6842 }
6843
6844 default:
6845 gold_unreachable();
6846 }
6847}
6848
4a54abbb
DK
6849// Arm_output_data_got methods.
6850
6851// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6852// The first one is initialized to be 1, which is the module index for
6853// the main executable and the second one 0. A reloc of the type
6854// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6855// be applied by gold. GSYM is a global symbol.
6856//
6857template<bool big_endian>
6858void
6859Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6860 unsigned int got_type,
6861 Symbol* gsym)
6862{
6863 if (gsym->has_got_offset(got_type))
6864 return;
6865
6866 // We are doing a static link. Just mark it as belong to module 1,
6867 // the executable.
6868 unsigned int got_offset = this->add_constant(1);
6869 gsym->set_got_offset(got_type, got_offset);
6870 got_offset = this->add_constant(0);
6871 this->static_relocs_.push_back(Static_reloc(got_offset,
6872 elfcpp::R_ARM_TLS_DTPOFF32,
6873 gsym));
6874}
6875
6876// Same as the above but for a local symbol.
6877
6878template<bool big_endian>
6879void
6880Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6881 unsigned int got_type,
6882 Sized_relobj<32, big_endian>* object,
6883 unsigned int index)
6884{
6885 if (object->local_has_got_offset(index, got_type))
6886 return;
6887
6888 // We are doing a static link. Just mark it as belong to module 1,
6889 // the executable.
6890 unsigned int got_offset = this->add_constant(1);
6891 object->set_local_got_offset(index, got_type, got_offset);
6892 got_offset = this->add_constant(0);
6893 this->static_relocs_.push_back(Static_reloc(got_offset,
6894 elfcpp::R_ARM_TLS_DTPOFF32,
6895 object, index));
6896}
6897
6898template<bool big_endian>
6899void
6900Arm_output_data_got<big_endian>::do_write(Output_file* of)
6901{
6902 // Call parent to write out GOT.
6903 Output_data_got<32, big_endian>::do_write(of);
6904
6905 // We are done if there is no fix up.
6906 if (this->static_relocs_.empty())
6907 return;
6908
6909 gold_assert(parameters->doing_static_link());
6910
6911 const off_t offset = this->offset();
6912 const section_size_type oview_size =
6913 convert_to_section_size_type(this->data_size());
6914 unsigned char* const oview = of->get_output_view(offset, oview_size);
6915
6916 Output_segment* tls_segment = this->layout_->tls_segment();
6917 gold_assert(tls_segment != NULL);
6918
6919 // The thread pointer $tp points to the TCB, which is followed by the
6920 // TLS. So we need to adjust $tp relative addressing by this amount.
6921 Arm_address aligned_tcb_size =
6922 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6923
6924 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6925 {
6926 Static_reloc& reloc(this->static_relocs_[i]);
6927
6928 Arm_address value;
6929 if (!reloc.symbol_is_global())
6930 {
6931 Sized_relobj<32, big_endian>* object = reloc.relobj();
6932 const Symbol_value<32>* psymval =
6933 reloc.relobj()->local_symbol(reloc.index());
6934
6935 // We are doing static linking. Issue an error and skip this
6936 // relocation if the symbol is undefined or in a discarded_section.
6937 bool is_ordinary;
6938 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6939 if ((shndx == elfcpp::SHN_UNDEF)
6940 || (is_ordinary
6941 && shndx != elfcpp::SHN_UNDEF
6942 && !object->is_section_included(shndx)
6943 && !this->symbol_table_->is_section_folded(object, shndx)))
6944 {
6945 gold_error(_("undefined or discarded local symbol %u from "
6946 " object %s in GOT"),
6947 reloc.index(), reloc.relobj()->name().c_str());
6948 continue;
6949 }
6950
6951 value = psymval->value(object, 0);
6952 }
6953 else
6954 {
6955 const Symbol* gsym = reloc.symbol();
6956 gold_assert(gsym != NULL);
6957 if (gsym->is_forwarder())
6958 gsym = this->symbol_table_->resolve_forwards(gsym);
6959
6960 // We are doing static linking. Issue an error and skip this
6961 // relocation if the symbol is undefined or in a discarded_section
6962 // unless it is a weakly_undefined symbol.
6963 if ((gsym->is_defined_in_discarded_section()
6964 || gsym->is_undefined())
6965 && !gsym->is_weak_undefined())
6966 {
6967 gold_error(_("undefined or discarded symbol %s in GOT"),
6968 gsym->name());
6969 continue;
6970 }
6971
6972 if (!gsym->is_weak_undefined())
6973 {
6974 const Sized_symbol<32>* sym =
6975 static_cast<const Sized_symbol<32>*>(gsym);
6976 value = sym->value();
6977 }
6978 else
6979 value = 0;
6980 }
6981
6982 unsigned got_offset = reloc.got_offset();
6983 gold_assert(got_offset < oview_size);
6984
6985 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6986 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6987 Valtype x;
6988 switch (reloc.r_type())
6989 {
6990 case elfcpp::R_ARM_TLS_DTPOFF32:
6991 x = value;
6992 break;
6993 case elfcpp::R_ARM_TLS_TPOFF32:
6994 x = value + aligned_tcb_size;
6995 break;
6996 default:
6997 gold_unreachable();
6998 }
6999 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7000 }
7001
7002 of->write_output_view(offset, oview_size, oview);
7003}
7004
94cdfcff
DK
7005// A class to handle the PLT data.
7006
7007template<bool big_endian>
7008class Output_data_plt_arm : public Output_section_data
7009{
7010 public:
7011 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7012 Reloc_section;
7013
7014 Output_data_plt_arm(Layout*, Output_data_space*);
7015
7016 // Add an entry to the PLT.
7017 void
7018 add_entry(Symbol* gsym);
7019
7020 // Return the .rel.plt section data.
7021 const Reloc_section*
7022 rel_plt() const
7023 { return this->rel_; }
7024
7025 protected:
7026 void
7027 do_adjust_output_section(Output_section* os);
7028
7029 // Write to a map file.
7030 void
7031 do_print_to_mapfile(Mapfile* mapfile) const
7032 { mapfile->print_output_data(this, _("** PLT")); }
7033
7034 private:
7035 // Template for the first PLT entry.
7036 static const uint32_t first_plt_entry[5];
7037
7038 // Template for subsequent PLT entries.
7039 static const uint32_t plt_entry[3];
7040
7041 // Set the final size.
7042 void
7043 set_final_data_size()
7044 {
7045 this->set_data_size(sizeof(first_plt_entry)
7046 + this->count_ * sizeof(plt_entry));
7047 }
7048
7049 // Write out the PLT data.
7050 void
7051 do_write(Output_file*);
7052
7053 // The reloc section.
7054 Reloc_section* rel_;
7055 // The .got.plt section.
7056 Output_data_space* got_plt_;
7057 // The number of PLT entries.
7058 unsigned int count_;
7059};
7060
7061// Create the PLT section. The ordinary .got section is an argument,
7062// since we need to refer to the start. We also create our own .got
7063// section just for PLT entries.
7064
7065template<bool big_endian>
2ea97941 7066Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
7067 Output_data_space* got_plt)
7068 : Output_section_data(4), got_plt_(got_plt), count_(0)
7069{
7070 this->rel_ = new Reloc_section(false);
2ea97941 7071 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1a2dff53
ILT
7072 elfcpp::SHF_ALLOC, this->rel_, true, false,
7073 false, false);
94cdfcff
DK
7074}
7075
7076template<bool big_endian>
7077void
7078Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7079{
7080 os->set_entsize(0);
7081}
7082
7083// Add an entry to the PLT.
7084
7085template<bool big_endian>
7086void
7087Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7088{
7089 gold_assert(!gsym->has_plt_offset());
7090
7091 // Note that when setting the PLT offset we skip the initial
7092 // reserved PLT entry.
7093 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7094 + sizeof(first_plt_entry));
7095
7096 ++this->count_;
7097
7098 section_offset_type got_offset = this->got_plt_->current_data_size();
7099
7100 // Every PLT entry needs a GOT entry which points back to the PLT
7101 // entry (this will be changed by the dynamic linker, normally
7102 // lazily when the function is called).
7103 this->got_plt_->set_current_data_size(got_offset + 4);
7104
7105 // Every PLT entry needs a reloc.
7106 gsym->set_needs_dynsym_entry();
7107 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7108 got_offset);
7109
7110 // Note that we don't need to save the symbol. The contents of the
7111 // PLT are independent of which symbols are used. The symbols only
7112 // appear in the relocations.
7113}
7114
7115// ARM PLTs.
7116// FIXME: This is not very flexible. Right now this has only been tested
7117// on armv5te. If we are to support additional architecture features like
7118// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7119
7120// The first entry in the PLT.
7121template<bool big_endian>
7122const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7123{
7124 0xe52de004, // str lr, [sp, #-4]!
7125 0xe59fe004, // ldr lr, [pc, #4]
7126 0xe08fe00e, // add lr, pc, lr
7127 0xe5bef008, // ldr pc, [lr, #8]!
7128 0x00000000, // &GOT[0] - .
7129};
7130
7131// Subsequent entries in the PLT.
7132
7133template<bool big_endian>
7134const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7135{
7136 0xe28fc600, // add ip, pc, #0xNN00000
7137 0xe28cca00, // add ip, ip, #0xNN000
7138 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7139};
7140
7141// Write out the PLT. This uses the hand-coded instructions above,
7142// and adjusts them as needed. This is all specified by the arm ELF
7143// Processor Supplement.
7144
7145template<bool big_endian>
7146void
7147Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7148{
2ea97941 7149 const off_t offset = this->offset();
94cdfcff
DK
7150 const section_size_type oview_size =
7151 convert_to_section_size_type(this->data_size());
2ea97941 7152 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7153
7154 const off_t got_file_offset = this->got_plt_->offset();
7155 const section_size_type got_size =
7156 convert_to_section_size_type(this->got_plt_->data_size());
7157 unsigned char* const got_view = of->get_output_view(got_file_offset,
7158 got_size);
7159 unsigned char* pov = oview;
7160
ebabffbd
DK
7161 Arm_address plt_address = this->address();
7162 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7163
7164 // Write first PLT entry. All but the last word are constants.
7165 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7166 / sizeof(plt_entry[0]));
7167 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7168 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7169 // Last word in first PLT entry is &GOT[0] - .
7170 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7171 got_address - (plt_address + 16));
7172 pov += sizeof(first_plt_entry);
7173
7174 unsigned char* got_pov = got_view;
7175
7176 memset(got_pov, 0, 12);
7177 got_pov += 12;
7178
7179 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7180 unsigned int plt_offset = sizeof(first_plt_entry);
7181 unsigned int plt_rel_offset = 0;
7182 unsigned int got_offset = 12;
7183 const unsigned int count = this->count_;
7184 for (unsigned int i = 0;
7185 i < count;
7186 ++i,
7187 pov += sizeof(plt_entry),
7188 got_pov += 4,
7189 plt_offset += sizeof(plt_entry),
7190 plt_rel_offset += rel_size,
7191 got_offset += 4)
7192 {
7193 // Set and adjust the PLT entry itself.
2ea97941
ILT
7194 int32_t offset = ((got_address + got_offset)
7195 - (plt_address + plt_offset + 8));
94cdfcff 7196
2ea97941
ILT
7197 gold_assert(offset >= 0 && offset < 0x0fffffff);
7198 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7199 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7200 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7201 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7202 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7203 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7204
7205 // Set the entry in the GOT.
7206 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7207 }
7208
7209 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7210 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7211
2ea97941 7212 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7213 of->write_output_view(got_file_offset, got_size, got_view);
7214}
7215
7216// Create a PLT entry for a global symbol.
7217
7218template<bool big_endian>
7219void
2ea97941 7220Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7221 Symbol* gsym)
7222{
7223 if (gsym->has_plt_offset())
7224 return;
7225
7226 if (this->plt_ == NULL)
7227 {
7228 // Create the GOT sections first.
2ea97941 7229 this->got_section(symtab, layout);
94cdfcff 7230
2ea97941
ILT
7231 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7232 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7233 (elfcpp::SHF_ALLOC
7234 | elfcpp::SHF_EXECINSTR),
1a2dff53 7235 this->plt_, false, false, false, false);
94cdfcff
DK
7236 }
7237 this->plt_->add_entry(gsym);
7238}
7239
f96accdf
DK
7240// Get the section to use for TLS_DESC relocations.
7241
7242template<bool big_endian>
7243typename Target_arm<big_endian>::Reloc_section*
7244Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7245{
7246 return this->plt_section()->rel_tls_desc(layout);
7247}
7248
7249// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7250
7251template<bool big_endian>
7252void
7253Target_arm<big_endian>::define_tls_base_symbol(
7254 Symbol_table* symtab,
7255 Layout* layout)
7256{
7257 if (this->tls_base_symbol_defined_)
7258 return;
7259
7260 Output_segment* tls_segment = layout->tls_segment();
7261 if (tls_segment != NULL)
7262 {
7263 bool is_exec = parameters->options().output_is_executable();
7264 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7265 Symbol_table::PREDEFINED,
7266 tls_segment, 0, 0,
7267 elfcpp::STT_TLS,
7268 elfcpp::STB_LOCAL,
7269 elfcpp::STV_HIDDEN, 0,
7270 (is_exec
7271 ? Symbol::SEGMENT_END
7272 : Symbol::SEGMENT_START),
7273 true);
7274 }
7275 this->tls_base_symbol_defined_ = true;
7276}
7277
7278// Create a GOT entry for the TLS module index.
7279
7280template<bool big_endian>
7281unsigned int
7282Target_arm<big_endian>::got_mod_index_entry(
7283 Symbol_table* symtab,
7284 Layout* layout,
7285 Sized_relobj<32, big_endian>* object)
7286{
7287 if (this->got_mod_index_offset_ == -1U)
7288 {
7289 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7290 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7291 unsigned int got_offset;
7292 if (!parameters->doing_static_link())
7293 {
7294 got_offset = got->add_constant(0);
7295 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7296 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7297 got_offset);
7298 }
7299 else
7300 {
7301 // We are doing a static link. Just mark it as belong to module 1,
7302 // the executable.
7303 got_offset = got->add_constant(1);
7304 }
7305
f96accdf
DK
7306 got->add_constant(0);
7307 this->got_mod_index_offset_ = got_offset;
7308 }
7309 return this->got_mod_index_offset_;
7310}
7311
7312// Optimize the TLS relocation type based on what we know about the
7313// symbol. IS_FINAL is true if the final address of this symbol is
7314// known at link time.
7315
7316template<bool big_endian>
7317tls::Tls_optimization
7318Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7319{
7320 // FIXME: Currently we do not do any TLS optimization.
7321 return tls::TLSOPT_NONE;
7322}
7323
4a657b0d
DK
7324// Report an unsupported relocation against a local symbol.
7325
7326template<bool big_endian>
7327void
7328Target_arm<big_endian>::Scan::unsupported_reloc_local(
7329 Sized_relobj<32, big_endian>* object,
7330 unsigned int r_type)
7331{
7332 gold_error(_("%s: unsupported reloc %u against local symbol"),
7333 object->name().c_str(), r_type);
7334}
7335
bec53400
DK
7336// We are about to emit a dynamic relocation of type R_TYPE. If the
7337// dynamic linker does not support it, issue an error. The GNU linker
7338// only issues a non-PIC error for an allocated read-only section.
7339// Here we know the section is allocated, but we don't know that it is
7340// read-only. But we check for all the relocation types which the
7341// glibc dynamic linker supports, so it seems appropriate to issue an
7342// error even if the section is not read-only.
7343
7344template<bool big_endian>
7345void
7346Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7347 unsigned int r_type)
7348{
7349 switch (r_type)
7350 {
7351 // These are the relocation types supported by glibc for ARM.
7352 case elfcpp::R_ARM_RELATIVE:
7353 case elfcpp::R_ARM_COPY:
7354 case elfcpp::R_ARM_GLOB_DAT:
7355 case elfcpp::R_ARM_JUMP_SLOT:
7356 case elfcpp::R_ARM_ABS32:
be8fcb75 7357 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7358 case elfcpp::R_ARM_PC24:
7359 // FIXME: The following 3 types are not supported by Android's dynamic
7360 // linker.
7361 case elfcpp::R_ARM_TLS_DTPMOD32:
7362 case elfcpp::R_ARM_TLS_DTPOFF32:
7363 case elfcpp::R_ARM_TLS_TPOFF32:
7364 return;
7365
7366 default:
c8761b9a
DK
7367 {
7368 // This prevents us from issuing more than one error per reloc
7369 // section. But we can still wind up issuing more than one
7370 // error per object file.
7371 if (this->issued_non_pic_error_)
7372 return;
7373 const Arm_reloc_property* reloc_property =
7374 arm_reloc_property_table->get_reloc_property(r_type);
7375 gold_assert(reloc_property != NULL);
7376 object->error(_("requires unsupported dynamic reloc %s; "
7377 "recompile with -fPIC"),
7378 reloc_property->name().c_str());
7379 this->issued_non_pic_error_ = true;
bec53400 7380 return;
c8761b9a 7381 }
bec53400
DK
7382
7383 case elfcpp::R_ARM_NONE:
7384 gold_unreachable();
7385 }
7386}
7387
4a657b0d 7388// Scan a relocation for a local symbol.
bec53400
DK
7389// FIXME: This only handles a subset of relocation types used by Android
7390// on ARM v5te devices.
4a657b0d
DK
7391
7392template<bool big_endian>
7393inline void
ad0f2072 7394Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7395 Layout* layout,
bec53400 7396 Target_arm* target,
4a657b0d 7397 Sized_relobj<32, big_endian>* object,
bec53400
DK
7398 unsigned int data_shndx,
7399 Output_section* output_section,
7400 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7401 unsigned int r_type,
e4782e83 7402 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7403{
a6d1ef57 7404 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7405 switch (r_type)
7406 {
7407 case elfcpp::R_ARM_NONE:
e4782e83
DK
7408 case elfcpp::R_ARM_V4BX:
7409 case elfcpp::R_ARM_GNU_VTENTRY:
7410 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7411 break;
7412
bec53400 7413 case elfcpp::R_ARM_ABS32:
be8fcb75 7414 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7415 // If building a shared library (or a position-independent
7416 // executable), we need to create a dynamic relocation for
7417 // this location. The relocation applied at link time will
7418 // apply the link-time value, so we flag the location with
7419 // an R_ARM_RELATIVE relocation so the dynamic loader can
7420 // relocate it easily.
7421 if (parameters->options().output_is_position_independent())
7422 {
2ea97941 7423 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7424 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7425 // If we are to add more other reloc types than R_ARM_ABS32,
7426 // we need to add check_non_pic(object, r_type) here.
7427 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7428 output_section, data_shndx,
7429 reloc.get_r_offset());
7430 }
7431 break;
7432
e4782e83
DK
7433 case elfcpp::R_ARM_ABS16:
7434 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7435 case elfcpp::R_ARM_THM_ABS5:
7436 case elfcpp::R_ARM_ABS8:
be8fcb75 7437 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7438 case elfcpp::R_ARM_MOVW_ABS_NC:
7439 case elfcpp::R_ARM_MOVT_ABS:
7440 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7441 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7442 // If building a shared library (or a position-independent
7443 // executable), we need to create a dynamic relocation for
7444 // this location. Because the addend needs to remain in the
7445 // data section, we need to be careful not to apply this
7446 // relocation statically.
7447 if (parameters->options().output_is_position_independent())
7448 {
7449 check_non_pic(object, r_type);
7450 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7451 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7452 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7453 rel_dyn->add_local(object, r_sym, r_type, output_section,
7454 data_shndx, reloc.get_r_offset());
7455 else
7456 {
7457 gold_assert(lsym.get_st_value() == 0);
7458 unsigned int shndx = lsym.get_st_shndx();
7459 bool is_ordinary;
7460 shndx = object->adjust_sym_shndx(r_sym, shndx,
7461 &is_ordinary);
7462 if (!is_ordinary)
7463 object->error(_("section symbol %u has bad shndx %u"),
7464 r_sym, shndx);
7465 else
7466 rel_dyn->add_local_section(object, shndx,
7467 r_type, output_section,
7468 data_shndx, reloc.get_r_offset());
7469 }
7470 }
7471 break;
7472
7473 case elfcpp::R_ARM_PC24:
7474 case elfcpp::R_ARM_REL32:
7475 case elfcpp::R_ARM_LDR_PC_G0:
7476 case elfcpp::R_ARM_SBREL32:
7477 case elfcpp::R_ARM_THM_CALL:
7478 case elfcpp::R_ARM_THM_PC8:
7479 case elfcpp::R_ARM_BASE_PREL:
7480 case elfcpp::R_ARM_PLT32:
7481 case elfcpp::R_ARM_CALL:
7482 case elfcpp::R_ARM_JUMP24:
7483 case elfcpp::R_ARM_THM_JUMP24:
7484 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7485 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7486 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7487 case elfcpp::R_ARM_SBREL31:
7488 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7489 case elfcpp::R_ARM_MOVW_PREL_NC:
7490 case elfcpp::R_ARM_MOVT_PREL:
7491 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7492 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7493 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7494 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7495 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7496 case elfcpp::R_ARM_THM_PC12:
7497 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7498 case elfcpp::R_ARM_ALU_PC_G0_NC:
7499 case elfcpp::R_ARM_ALU_PC_G0:
7500 case elfcpp::R_ARM_ALU_PC_G1_NC:
7501 case elfcpp::R_ARM_ALU_PC_G1:
7502 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7503 case elfcpp::R_ARM_LDR_PC_G1:
7504 case elfcpp::R_ARM_LDR_PC_G2:
7505 case elfcpp::R_ARM_LDRS_PC_G0:
7506 case elfcpp::R_ARM_LDRS_PC_G1:
7507 case elfcpp::R_ARM_LDRS_PC_G2:
7508 case elfcpp::R_ARM_LDC_PC_G0:
7509 case elfcpp::R_ARM_LDC_PC_G1:
7510 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7511 case elfcpp::R_ARM_ALU_SB_G0_NC:
7512 case elfcpp::R_ARM_ALU_SB_G0:
7513 case elfcpp::R_ARM_ALU_SB_G1_NC:
7514 case elfcpp::R_ARM_ALU_SB_G1:
7515 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7516 case elfcpp::R_ARM_LDR_SB_G0:
7517 case elfcpp::R_ARM_LDR_SB_G1:
7518 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7519 case elfcpp::R_ARM_LDRS_SB_G0:
7520 case elfcpp::R_ARM_LDRS_SB_G1:
7521 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7522 case elfcpp::R_ARM_LDC_SB_G0:
7523 case elfcpp::R_ARM_LDC_SB_G1:
7524 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7525 case elfcpp::R_ARM_MOVW_BREL_NC:
7526 case elfcpp::R_ARM_MOVT_BREL:
7527 case elfcpp::R_ARM_MOVW_BREL:
7528 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7529 case elfcpp::R_ARM_THM_MOVT_BREL:
7530 case elfcpp::R_ARM_THM_MOVW_BREL:
7531 case elfcpp::R_ARM_THM_JUMP11:
7532 case elfcpp::R_ARM_THM_JUMP8:
7533 // We don't need to do anything for a relative addressing relocation
7534 // against a local symbol if it does not reference the GOT.
bec53400
DK
7535 break;
7536
7537 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7538 case elfcpp::R_ARM_GOTOFF12:
bec53400 7539 // We need a GOT section:
2ea97941 7540 target->got_section(symtab, layout);
bec53400
DK
7541 break;
7542
bec53400 7543 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7544 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7545 {
7546 // The symbol requires a GOT entry.
4a54abbb 7547 Arm_output_data_got<big_endian>* got =
2ea97941 7548 target->got_section(symtab, layout);
bec53400
DK
7549 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7550 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7551 {
7552 // If we are generating a shared object, we need to add a
7553 // dynamic RELATIVE relocation for this symbol's GOT entry.
7554 if (parameters->options().output_is_position_independent())
7555 {
2ea97941
ILT
7556 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7557 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7558 rel_dyn->add_local_relative(
2ea97941
ILT
7559 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7560 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7561 }
7562 }
7563 }
7564 break;
7565
7566 case elfcpp::R_ARM_TARGET1:
e4782e83 7567 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7568 // This should have been mapped to another type already.
7569 // Fall through.
7570 case elfcpp::R_ARM_COPY:
7571 case elfcpp::R_ARM_GLOB_DAT:
7572 case elfcpp::R_ARM_JUMP_SLOT:
7573 case elfcpp::R_ARM_RELATIVE:
7574 // These are relocations which should only be seen by the
7575 // dynamic linker, and should never be seen here.
7576 gold_error(_("%s: unexpected reloc %u in object file"),
7577 object->name().c_str(), r_type);
7578 break;
7579
f96accdf
DK
7580
7581 // These are initial TLS relocs, which are expected when
7582 // linking.
7583 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7584 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7585 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7586 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7587 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7588 {
7589 bool output_is_shared = parameters->options().shared();
7590 const tls::Tls_optimization optimized_type
7591 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7592 r_type);
7593 switch (r_type)
7594 {
7595 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7596 if (optimized_type == tls::TLSOPT_NONE)
7597 {
7598 // Create a pair of GOT entries for the module index and
7599 // dtv-relative offset.
4a54abbb 7600 Arm_output_data_got<big_endian>* got
f96accdf
DK
7601 = target->got_section(symtab, layout);
7602 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7603 unsigned int shndx = lsym.get_st_shndx();
7604 bool is_ordinary;
7605 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7606 if (!is_ordinary)
4a54abbb
DK
7607 {
7608 object->error(_("local symbol %u has bad shndx %u"),
7609 r_sym, shndx);
7610 break;
7611 }
7612
7613 if (!parameters->doing_static_link())
f96accdf
DK
7614 got->add_local_pair_with_rel(object, r_sym, shndx,
7615 GOT_TYPE_TLS_PAIR,
7616 target->rel_dyn_section(layout),
7617 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7618 else
7619 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7620 object, r_sym);
f96accdf
DK
7621 }
7622 else
7623 // FIXME: TLS optimization not supported yet.
7624 gold_unreachable();
7625 break;
7626
7627 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7628 if (optimized_type == tls::TLSOPT_NONE)
7629 {
7630 // Create a GOT entry for the module index.
7631 target->got_mod_index_entry(symtab, layout, object);
7632 }
7633 else
7634 // FIXME: TLS optimization not supported yet.
7635 gold_unreachable();
7636 break;
7637
7638 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7639 break;
7640
7641 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7642 layout->set_has_static_tls();
7643 if (optimized_type == tls::TLSOPT_NONE)
7644 {
4a54abbb
DK
7645 // Create a GOT entry for the tp-relative offset.
7646 Arm_output_data_got<big_endian>* got
7647 = target->got_section(symtab, layout);
7648 unsigned int r_sym =
7649 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7650 if (!parameters->doing_static_link())
7651 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7652 target->rel_dyn_section(layout),
7653 elfcpp::R_ARM_TLS_TPOFF32);
7654 else if (!object->local_has_got_offset(r_sym,
7655 GOT_TYPE_TLS_OFFSET))
7656 {
7657 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7658 unsigned int got_offset =
7659 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7660 got->add_static_reloc(got_offset,
7661 elfcpp::R_ARM_TLS_TPOFF32, object,
7662 r_sym);
7663 }
f96accdf
DK
7664 }
7665 else
7666 // FIXME: TLS optimization not supported yet.
7667 gold_unreachable();
7668 break;
7669
7670 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7671 layout->set_has_static_tls();
7672 if (output_is_shared)
7673 {
7674 // We need to create a dynamic relocation.
7675 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7676 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7677 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7678 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7679 output_section, data_shndx,
7680 reloc.get_r_offset());
7681 }
7682 break;
7683
7684 default:
7685 gold_unreachable();
7686 }
7687 }
7688 break;
7689
4a657b0d
DK
7690 default:
7691 unsupported_reloc_local(object, r_type);
7692 break;
7693 }
7694}
7695
7696// Report an unsupported relocation against a global symbol.
7697
7698template<bool big_endian>
7699void
7700Target_arm<big_endian>::Scan::unsupported_reloc_global(
7701 Sized_relobj<32, big_endian>* object,
7702 unsigned int r_type,
7703 Symbol* gsym)
7704{
7705 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7706 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7707}
7708
8a75a161
DK
7709template<bool big_endian>
7710inline bool
7711Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
7712 unsigned int r_type)
7713{
7714 switch (r_type)
7715 {
7716 case elfcpp::R_ARM_PC24:
7717 case elfcpp::R_ARM_THM_CALL:
7718 case elfcpp::R_ARM_PLT32:
7719 case elfcpp::R_ARM_CALL:
7720 case elfcpp::R_ARM_JUMP24:
7721 case elfcpp::R_ARM_THM_JUMP24:
7722 case elfcpp::R_ARM_SBREL31:
7723 case elfcpp::R_ARM_PREL31:
7724 case elfcpp::R_ARM_THM_JUMP19:
7725 case elfcpp::R_ARM_THM_JUMP6:
7726 case elfcpp::R_ARM_THM_JUMP11:
7727 case elfcpp::R_ARM_THM_JUMP8:
7728 // All the relocations above are branches except SBREL31 and PREL31.
7729 return false;
7730
7731 default:
7732 // Be conservative and assume this is a function pointer.
7733 return true;
7734 }
7735}
7736
7737template<bool big_endian>
7738inline bool
7739Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
7740 Symbol_table*,
7741 Layout*,
7742 Target_arm<big_endian>* target,
7743 Sized_relobj<32, big_endian>*,
7744 unsigned int,
7745 Output_section*,
7746 const elfcpp::Rel<32, big_endian>&,
7747 unsigned int r_type,
7748 const elfcpp::Sym<32, big_endian>&)
7749{
7750 r_type = target->get_real_reloc_type(r_type);
7751 return possible_function_pointer_reloc(r_type);
7752}
7753
7754template<bool big_endian>
7755inline bool
7756Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
7757 Symbol_table*,
7758 Layout*,
7759 Target_arm<big_endian>* target,
7760 Sized_relobj<32, big_endian>*,
7761 unsigned int,
7762 Output_section*,
7763 const elfcpp::Rel<32, big_endian>&,
7764 unsigned int r_type,
7765 Symbol* gsym)
7766{
7767 // GOT is not a function.
7768 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7769 return false;
7770
7771 r_type = target->get_real_reloc_type(r_type);
7772 return possible_function_pointer_reloc(r_type);
7773}
7774
4a657b0d
DK
7775// Scan a relocation for a global symbol.
7776
7777template<bool big_endian>
7778inline void
ad0f2072 7779Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 7780 Layout* layout,
bec53400 7781 Target_arm* target,
4a657b0d 7782 Sized_relobj<32, big_endian>* object,
bec53400
DK
7783 unsigned int data_shndx,
7784 Output_section* output_section,
7785 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
7786 unsigned int r_type,
7787 Symbol* gsym)
7788{
c8761b9a
DK
7789 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7790 // section. We check here to avoid creating a dynamic reloc against
7791 // _GLOBAL_OFFSET_TABLE_.
7792 if (!target->has_got_section()
7793 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7794 target->got_section(symtab, layout);
7795
a6d1ef57 7796 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7797 switch (r_type)
7798 {
7799 case elfcpp::R_ARM_NONE:
e4782e83
DK
7800 case elfcpp::R_ARM_V4BX:
7801 case elfcpp::R_ARM_GNU_VTENTRY:
7802 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7803 break;
7804
bec53400 7805 case elfcpp::R_ARM_ABS32:
e4782e83
DK
7806 case elfcpp::R_ARM_ABS16:
7807 case elfcpp::R_ARM_ABS12:
7808 case elfcpp::R_ARM_THM_ABS5:
7809 case elfcpp::R_ARM_ABS8:
7810 case elfcpp::R_ARM_BASE_ABS:
7811 case elfcpp::R_ARM_MOVW_ABS_NC:
7812 case elfcpp::R_ARM_MOVT_ABS:
7813 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7814 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 7815 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 7816 // Absolute addressing relocations.
bec53400 7817 {
e4782e83
DK
7818 // Make a PLT entry if necessary.
7819 if (this->symbol_needs_plt_entry(gsym))
7820 {
7821 target->make_plt_entry(symtab, layout, gsym);
7822 // Since this is not a PC-relative relocation, we may be
7823 // taking the address of a function. In that case we need to
7824 // set the entry in the dynamic symbol table to the address of
7825 // the PLT entry.
7826 if (gsym->is_from_dynobj() && !parameters->options().shared())
7827 gsym->set_needs_dynsym_value();
7828 }
7829 // Make a dynamic relocation if necessary.
7830 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7831 {
7832 if (gsym->may_need_copy_reloc())
7833 {
7834 target->copy_reloc(symtab, layout, object,
7835 data_shndx, output_section, gsym, reloc);
7836 }
7837 else if ((r_type == elfcpp::R_ARM_ABS32
7838 || r_type == elfcpp::R_ARM_ABS32_NOI)
7839 && gsym->can_use_relative_reloc(false))
7840 {
7841 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7842 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7843 output_section, object,
7844 data_shndx, reloc.get_r_offset());
7845 }
7846 else
7847 {
7848 check_non_pic(object, r_type);
7849 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7850 rel_dyn->add_global(gsym, r_type, output_section, object,
7851 data_shndx, reloc.get_r_offset());
7852 }
7853 }
bec53400
DK
7854 }
7855 break;
7856
e4782e83
DK
7857 case elfcpp::R_ARM_GOTOFF32:
7858 case elfcpp::R_ARM_GOTOFF12:
7859 // We need a GOT section.
7860 target->got_section(symtab, layout);
7861 break;
7862
7863 case elfcpp::R_ARM_REL32:
7864 case elfcpp::R_ARM_LDR_PC_G0:
7865 case elfcpp::R_ARM_SBREL32:
7866 case elfcpp::R_ARM_THM_PC8:
7867 case elfcpp::R_ARM_BASE_PREL:
7868 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7869 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7870 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c2a122b6
ILT
7871 case elfcpp::R_ARM_MOVW_PREL_NC:
7872 case elfcpp::R_ARM_MOVT_PREL:
7873 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7874 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 7875 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7876 case elfcpp::R_ARM_THM_PC12:
7877 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7878 case elfcpp::R_ARM_ALU_PC_G0_NC:
7879 case elfcpp::R_ARM_ALU_PC_G0:
7880 case elfcpp::R_ARM_ALU_PC_G1_NC:
7881 case elfcpp::R_ARM_ALU_PC_G1:
7882 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7883 case elfcpp::R_ARM_LDR_PC_G1:
7884 case elfcpp::R_ARM_LDR_PC_G2:
7885 case elfcpp::R_ARM_LDRS_PC_G0:
7886 case elfcpp::R_ARM_LDRS_PC_G1:
7887 case elfcpp::R_ARM_LDRS_PC_G2:
7888 case elfcpp::R_ARM_LDC_PC_G0:
7889 case elfcpp::R_ARM_LDC_PC_G1:
7890 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7891 case elfcpp::R_ARM_ALU_SB_G0_NC:
7892 case elfcpp::R_ARM_ALU_SB_G0:
7893 case elfcpp::R_ARM_ALU_SB_G1_NC:
7894 case elfcpp::R_ARM_ALU_SB_G1:
7895 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7896 case elfcpp::R_ARM_LDR_SB_G0:
7897 case elfcpp::R_ARM_LDR_SB_G1:
7898 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7899 case elfcpp::R_ARM_LDRS_SB_G0:
7900 case elfcpp::R_ARM_LDRS_SB_G1:
7901 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7902 case elfcpp::R_ARM_LDC_SB_G0:
7903 case elfcpp::R_ARM_LDC_SB_G1:
7904 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7905 case elfcpp::R_ARM_MOVW_BREL_NC:
7906 case elfcpp::R_ARM_MOVT_BREL:
7907 case elfcpp::R_ARM_MOVW_BREL:
7908 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7909 case elfcpp::R_ARM_THM_MOVT_BREL:
7910 case elfcpp::R_ARM_THM_MOVW_BREL:
7911 // Relative addressing relocations.
bec53400
DK
7912 {
7913 // Make a dynamic relocation if necessary.
7914 int flags = Symbol::NON_PIC_REF;
7915 if (gsym->needs_dynamic_reloc(flags))
7916 {
7917 if (target->may_need_copy_reloc(gsym))
7918 {
2ea97941 7919 target->copy_reloc(symtab, layout, object,
bec53400
DK
7920 data_shndx, output_section, gsym, reloc);
7921 }
7922 else
7923 {
7924 check_non_pic(object, r_type);
2ea97941 7925 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7926 rel_dyn->add_global(gsym, r_type, output_section, object,
7927 data_shndx, reloc.get_r_offset());
7928 }
7929 }
7930 }
7931 break;
7932
e4782e83 7933 case elfcpp::R_ARM_PC24:
f4e5969c 7934 case elfcpp::R_ARM_THM_CALL:
bec53400 7935 case elfcpp::R_ARM_PLT32:
e4782e83
DK
7936 case elfcpp::R_ARM_CALL:
7937 case elfcpp::R_ARM_JUMP24:
7938 case elfcpp::R_ARM_THM_JUMP24:
7939 case elfcpp::R_ARM_SBREL31:
c9a2c125 7940 case elfcpp::R_ARM_PREL31:
e4782e83
DK
7941 case elfcpp::R_ARM_THM_JUMP19:
7942 case elfcpp::R_ARM_THM_JUMP6:
7943 case elfcpp::R_ARM_THM_JUMP11:
7944 case elfcpp::R_ARM_THM_JUMP8:
7945 // All the relocation above are branches except for the PREL31 ones.
7946 // A PREL31 relocation can point to a personality function in a shared
7947 // library. In that case we want to use a PLT because we want to
7948 // call the personality routine and the dyanmic linkers we care about
7949 // do not support dynamic PREL31 relocations. An REL31 relocation may
7950 // point to a function whose unwinding behaviour is being described but
7951 // we will not mistakenly generate a PLT for that because we should use
7952 // a local section symbol.
7953
bec53400
DK
7954 // If the symbol is fully resolved, this is just a relative
7955 // local reloc. Otherwise we need a PLT entry.
7956 if (gsym->final_value_is_known())
7957 break;
7958 // If building a shared library, we can also skip the PLT entry
7959 // if the symbol is defined in the output file and is protected
7960 // or hidden.
7961 if (gsym->is_defined()
7962 && !gsym->is_from_dynobj()
7963 && !gsym->is_preemptible())
7964 break;
2ea97941 7965 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
7966 break;
7967
bec53400 7968 case elfcpp::R_ARM_GOT_BREL:
e4782e83 7969 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 7970 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7971 {
7972 // The symbol requires a GOT entry.
4a54abbb 7973 Arm_output_data_got<big_endian>* got =
2ea97941 7974 target->got_section(symtab, layout);
bec53400
DK
7975 if (gsym->final_value_is_known())
7976 got->add_global(gsym, GOT_TYPE_STANDARD);
7977 else
7978 {
7979 // If this symbol is not fully resolved, we need to add a
7980 // GOT entry with a dynamic relocation.
2ea97941 7981 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7982 if (gsym->is_from_dynobj()
7983 || gsym->is_undefined()
7984 || gsym->is_preemptible())
7985 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7986 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7987 else
7988 {
7989 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7990 rel_dyn->add_global_relative(
7991 gsym, elfcpp::R_ARM_RELATIVE, got,
7992 gsym->got_offset(GOT_TYPE_STANDARD));
7993 }
7994 }
7995 }
7996 break;
7997
7998 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
7999 case elfcpp::R_ARM_TARGET2:
8000 // These should have been mapped to other types already.
bec53400
DK
8001 // Fall through.
8002 case elfcpp::R_ARM_COPY:
8003 case elfcpp::R_ARM_GLOB_DAT:
8004 case elfcpp::R_ARM_JUMP_SLOT:
8005 case elfcpp::R_ARM_RELATIVE:
8006 // These are relocations which should only be seen by the
8007 // dynamic linker, and should never be seen here.
8008 gold_error(_("%s: unexpected reloc %u in object file"),
8009 object->name().c_str(), r_type);
8010 break;
8011
f96accdf
DK
8012 // These are initial tls relocs, which are expected when
8013 // linking.
8014 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8015 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8016 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8018 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8019 {
8020 const bool is_final = gsym->final_value_is_known();
8021 const tls::Tls_optimization optimized_type
8022 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8023 switch (r_type)
8024 {
8025 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8026 if (optimized_type == tls::TLSOPT_NONE)
8027 {
8028 // Create a pair of GOT entries for the module index and
8029 // dtv-relative offset.
4a54abbb 8030 Arm_output_data_got<big_endian>* got
f96accdf 8031 = target->got_section(symtab, layout);
4a54abbb
DK
8032 if (!parameters->doing_static_link())
8033 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8034 target->rel_dyn_section(layout),
8035 elfcpp::R_ARM_TLS_DTPMOD32,
8036 elfcpp::R_ARM_TLS_DTPOFF32);
8037 else
8038 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8039 }
8040 else
8041 // FIXME: TLS optimization not supported yet.
8042 gold_unreachable();
8043 break;
8044
8045 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8046 if (optimized_type == tls::TLSOPT_NONE)
8047 {
8048 // Create a GOT entry for the module index.
8049 target->got_mod_index_entry(symtab, layout, object);
8050 }
8051 else
8052 // FIXME: TLS optimization not supported yet.
8053 gold_unreachable();
8054 break;
8055
8056 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8057 break;
8058
8059 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8060 layout->set_has_static_tls();
8061 if (optimized_type == tls::TLSOPT_NONE)
8062 {
4a54abbb
DK
8063 // Create a GOT entry for the tp-relative offset.
8064 Arm_output_data_got<big_endian>* got
8065 = target->got_section(symtab, layout);
8066 if (!parameters->doing_static_link())
8067 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8068 target->rel_dyn_section(layout),
8069 elfcpp::R_ARM_TLS_TPOFF32);
8070 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8071 {
8072 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8073 unsigned int got_offset =
8074 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8075 got->add_static_reloc(got_offset,
8076 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8077 }
f96accdf
DK
8078 }
8079 else
8080 // FIXME: TLS optimization not supported yet.
8081 gold_unreachable();
8082 break;
8083
8084 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8085 layout->set_has_static_tls();
8086 if (parameters->options().shared())
8087 {
8088 // We need to create a dynamic relocation.
8089 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8090 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8091 output_section, object,
8092 data_shndx, reloc.get_r_offset());
8093 }
8094 break;
8095
8096 default:
8097 gold_unreachable();
8098 }
8099 }
8100 break;
8101
4a657b0d
DK
8102 default:
8103 unsupported_reloc_global(object, r_type, gsym);
8104 break;
8105 }
8106}
8107
8108// Process relocations for gc.
8109
8110template<bool big_endian>
8111void
ad0f2072 8112Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
2ea97941 8113 Layout* layout,
4a657b0d
DK
8114 Sized_relobj<32, big_endian>* object,
8115 unsigned int data_shndx,
8116 unsigned int,
8117 const unsigned char* prelocs,
8118 size_t reloc_count,
8119 Output_section* output_section,
8120 bool needs_special_offset_handling,
8121 size_t local_symbol_count,
8122 const unsigned char* plocal_symbols)
8123{
8124 typedef Target_arm<big_endian> Arm;
2ea97941 8125 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8126
2ea97941 8127 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8128 symtab,
2ea97941 8129 layout,
4a657b0d
DK
8130 this,
8131 object,
8132 data_shndx,
8133 prelocs,
8134 reloc_count,
8135 output_section,
8136 needs_special_offset_handling,
8137 local_symbol_count,
8138 plocal_symbols);
8139}
8140
8141// Scan relocations for a section.
8142
8143template<bool big_endian>
8144void
ad0f2072 8145Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8146 Layout* layout,
4a657b0d
DK
8147 Sized_relobj<32, big_endian>* object,
8148 unsigned int data_shndx,
8149 unsigned int sh_type,
8150 const unsigned char* prelocs,
8151 size_t reloc_count,
8152 Output_section* output_section,
8153 bool needs_special_offset_handling,
8154 size_t local_symbol_count,
8155 const unsigned char* plocal_symbols)
8156{
2ea97941 8157 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8158 if (sh_type == elfcpp::SHT_RELA)
8159 {
8160 gold_error(_("%s: unsupported RELA reloc section"),
8161 object->name().c_str());
8162 return;
8163 }
8164
2ea97941 8165 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8166 symtab,
2ea97941 8167 layout,
4a657b0d
DK
8168 this,
8169 object,
8170 data_shndx,
8171 prelocs,
8172 reloc_count,
8173 output_section,
8174 needs_special_offset_handling,
8175 local_symbol_count,
8176 plocal_symbols);
8177}
8178
8179// Finalize the sections.
8180
8181template<bool big_endian>
8182void
d5b40221 8183Target_arm<big_endian>::do_finalize_sections(
2ea97941 8184 Layout* layout,
f59f41f3
DK
8185 const Input_objects* input_objects,
8186 Symbol_table* symtab)
4a657b0d 8187{
3e235302 8188 bool merged_any_attributes = false;
d5b40221
DK
8189 // Merge processor-specific flags.
8190 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8191 p != input_objects->relobj_end();
8192 ++p)
8193 {
8194 Arm_relobj<big_endian>* arm_relobj =
8195 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8196 if (arm_relobj->merge_flags_and_attributes())
8197 {
8198 this->merge_processor_specific_flags(
8199 arm_relobj->name(),
8200 arm_relobj->processor_specific_flags());
8201 this->merge_object_attributes(arm_relobj->name().c_str(),
8202 arm_relobj->attributes_section_data());
3e235302 8203 merged_any_attributes = true;
7296d933 8204 }
d5b40221
DK
8205 }
8206
8207 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8208 p != input_objects->dynobj_end();
8209 ++p)
8210 {
8211 Arm_dynobj<big_endian>* arm_dynobj =
8212 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8213 this->merge_processor_specific_flags(
8214 arm_dynobj->name(),
8215 arm_dynobj->processor_specific_flags());
a0351a69
DK
8216 this->merge_object_attributes(arm_dynobj->name().c_str(),
8217 arm_dynobj->attributes_section_data());
3e235302 8218 merged_any_attributes = true;
d5b40221
DK
8219 }
8220
da59ad79
DK
8221 // Create an empty uninitialized attribute section if we still don't have it
8222 // at this moment. This happens if there is no attributes sections in all
8223 // inputs.
8224 if (this->attributes_section_data_ == NULL)
8225 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8226
a0351a69 8227 // Check BLX use.
41263c05 8228 const Object_attribute* cpu_arch_attr =
a0351a69 8229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05 8230 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
a0351a69
DK
8231 this->set_may_use_blx(true);
8232
41263c05
DK
8233 // Check if we need to use Cortex-A8 workaround.
8234 if (parameters->options().user_set_fix_cortex_a8())
8235 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8236 else
8237 {
8238 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8239 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8240 // profile.
8241 const Object_attribute* cpu_arch_profile_attr =
8242 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8243 this->fix_cortex_a8_ =
8244 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8245 && (cpu_arch_profile_attr->int_value() == 'A'
8246 || cpu_arch_profile_attr->int_value() == 0));
8247 }
8248
a2162063
ILT
8249 // Check if we can use V4BX interworking.
8250 // The V4BX interworking stub contains BX instruction,
8251 // which is not specified for some profiles.
9b2fd367
DK
8252 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8253 && !this->may_use_blx())
a2162063
ILT
8254 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8255 "the target profile does not support BX instruction"));
8256
94cdfcff 8257 // Fill in some more dynamic tags.
ea715a34
ILT
8258 const Reloc_section* rel_plt = (this->plt_ == NULL
8259 ? NULL
8260 : this->plt_->rel_plt());
8261 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8262 this->rel_dyn_, true, false);
94cdfcff
DK
8263
8264 // Emit any relocs we saved in an attempt to avoid generating COPY
8265 // relocs.
8266 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8267 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8268
f59f41f3 8269 // Handle the .ARM.exidx section.
2ea97941 8270 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
f59f41f3
DK
8271 if (exidx_section != NULL
8272 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
11af873f
DK
8273 && !parameters->options().relocatable())
8274 {
f59f41f3 8275 // Create __exidx_start and __exdix_end symbols.
99fff23b
ILT
8276 symtab->define_in_output_data("__exidx_start", NULL,
8277 Symbol_table::PREDEFINED,
8278 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8279 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8280 false, true);
99fff23b
ILT
8281 symtab->define_in_output_data("__exidx_end", NULL,
8282 Symbol_table::PREDEFINED,
8283 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8284 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8285 true, true);
11af873f 8286
f59f41f3
DK
8287 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8288 // the .ARM.exidx section.
2ea97941 8289 if (!layout->script_options()->saw_phdrs_clause())
11af873f 8290 {
2ea97941 8291 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
11af873f
DK
8292 == NULL);
8293 Output_segment* exidx_segment =
2ea97941 8294 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
f5c870d2
ILT
8295 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8296 false);
11af873f
DK
8297 }
8298 }
a0351a69 8299
3e235302
DK
8300 // Create an .ARM.attributes section if we have merged any attributes
8301 // from inputs.
8302 if (merged_any_attributes)
7296d933
DK
8303 {
8304 Output_attributes_section_data* attributes_section =
8305 new Output_attributes_section_data(*this->attributes_section_data_);
8306 layout->add_output_section_data(".ARM.attributes",
8307 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8308 attributes_section, false, false, false,
8309 false);
8310 }
4a657b0d
DK
8311}
8312
bec53400
DK
8313// Return whether a direct absolute static relocation needs to be applied.
8314// In cases where Scan::local() or Scan::global() has created
8315// a dynamic relocation other than R_ARM_RELATIVE, the addend
8316// of the relocation is carried in the data, and we must not
8317// apply the static relocation.
8318
8319template<bool big_endian>
8320inline bool
8321Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8322 const Sized_symbol<32>* gsym,
8323 int ref_flags,
8324 bool is_32bit,
8325 Output_section* output_section)
8326{
8327 // If the output section is not allocated, then we didn't call
8328 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8329 // the reloc here.
8330 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8331 return true;
8332
8333 // For local symbols, we will have created a non-RELATIVE dynamic
8334 // relocation only if (a) the output is position independent,
8335 // (b) the relocation is absolute (not pc- or segment-relative), and
8336 // (c) the relocation is not 32 bits wide.
8337 if (gsym == NULL)
8338 return !(parameters->options().output_is_position_independent()
8339 && (ref_flags & Symbol::ABSOLUTE_REF)
8340 && !is_32bit);
8341
8342 // For global symbols, we use the same helper routines used in the
8343 // scan pass. If we did not create a dynamic relocation, or if we
8344 // created a RELATIVE dynamic relocation, we should apply the static
8345 // relocation.
8346 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8347 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8348 && gsym->can_use_relative_reloc(ref_flags
8349 & Symbol::FUNCTION_CALL);
8350 return !has_dyn || is_rel;
8351}
8352
4a657b0d
DK
8353// Perform a relocation.
8354
8355template<bool big_endian>
8356inline bool
8357Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8358 const Relocate_info<32, big_endian>* relinfo,
8359 Target_arm* target,
8360 Output_section *output_section,
8361 size_t relnum,
8362 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8363 unsigned int r_type,
c121c671
DK
8364 const Sized_symbol<32>* gsym,
8365 const Symbol_value<32>* psymval,
8366 unsigned char* view,
ebabffbd 8367 Arm_address address,
f96accdf 8368 section_size_type view_size)
4a657b0d 8369{
c121c671
DK
8370 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8371
a6d1ef57 8372 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8373 const Arm_reloc_property* reloc_property =
8374 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8375 if (reloc_property == NULL)
8376 {
8377 std::string reloc_name =
8378 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8379 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8380 _("cannot relocate %s in object file"),
8381 reloc_name.c_str());
8382 return true;
8383 }
c121c671 8384
2daedcd6
DK
8385 const Arm_relobj<big_endian>* object =
8386 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8387
2daedcd6
DK
8388 // If the final branch target of a relocation is THUMB instruction, this
8389 // is 1. Otherwise it is 0.
8390 Arm_address thumb_bit = 0;
c121c671 8391 Symbol_value<32> symval;
d204b6e9 8392 bool is_weakly_undefined_without_plt = false;
2daedcd6 8393 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8394 {
2daedcd6
DK
8395 if (gsym != NULL)
8396 {
8397 // This is a global symbol. Determine if we use PLT and if the
8398 // final target is THUMB.
8399 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8400 {
8401 // This uses a PLT, change the symbol value.
8402 symval.set_output_value(target->plt_section()->address()
8403 + gsym->plt_offset());
8404 psymval = &symval;
8405 }
d204b6e9
DK
8406 else if (gsym->is_weak_undefined())
8407 {
8408 // This is a weakly undefined symbol and we do not use PLT
8409 // for this relocation. A branch targeting this symbol will
8410 // be converted into an NOP.
8411 is_weakly_undefined_without_plt = true;
8412 }
b2286c10
DK
8413 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8414 {
8415 // This relocation uses the symbol value but the symbol is
8416 // undefined. Exit early and have the caller reporting an
8417 // error.
8418 return true;
8419 }
2daedcd6
DK
8420 else
8421 {
8422 // Set thumb bit if symbol:
8423 // -Has type STT_ARM_TFUNC or
8424 // -Has type STT_FUNC, is defined and with LSB in value set.
8425 thumb_bit =
8426 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8427 || (gsym->type() == elfcpp::STT_FUNC
8428 && !gsym->is_undefined()
8429 && ((psymval->value(object, 0) & 1) != 0)))
8430 ? 1
8431 : 0);
8432 }
8433 }
8434 else
8435 {
8436 // This is a local symbol. Determine if the final target is THUMB.
8437 // We saved this information when all the local symbols were read.
8438 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8439 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8440 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8441 }
8442 }
8443 else
8444 {
8445 // This is a fake relocation synthesized for a stub. It does not have
8446 // a real symbol. We just look at the LSB of the symbol value to
8447 // determine if the target is THUMB or not.
8448 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8449 }
8450
2daedcd6
DK
8451 // Strip LSB if this points to a THUMB target.
8452 if (thumb_bit != 0
5c57f1be 8453 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8454 && ((psymval->value(object, 0) & 1) != 0))
8455 {
8456 Arm_address stripped_value =
8457 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8458 symval.set_output_value(stripped_value);
8459 psymval = &symval;
8460 }
8461
c121c671
DK
8462 // Get the GOT offset if needed.
8463 // The GOT pointer points to the end of the GOT section.
8464 // We need to subtract the size of the GOT section to get
8465 // the actual offset to use in the relocation.
8466 bool have_got_offset = false;
8467 unsigned int got_offset = 0;
8468 switch (r_type)
8469 {
8470 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8471 case elfcpp::R_ARM_GOT_PREL:
c121c671
DK
8472 if (gsym != NULL)
8473 {
8474 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8475 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8476 - target->got_size());
8477 }
8478 else
8479 {
8480 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8481 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8482 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8483 - target->got_size());
8484 }
8485 have_got_offset = true;
8486 break;
8487
8488 default:
8489 break;
8490 }
8491
d204b6e9
DK
8492 // To look up relocation stubs, we need to pass the symbol table index of
8493 // a local symbol.
8494 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8495
b10d2873
ILT
8496 // Get the addressing origin of the output segment defining the
8497 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8498 Arm_address sym_origin = 0;
5c57f1be 8499 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8500 {
8501 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8502 // R_ARM_BASE_ABS with the NULL symbol will give the
8503 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8504 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8505 sym_origin = target->got_plt_section()->address();
8506 else if (gsym == NULL)
8507 sym_origin = 0;
8508 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8509 sym_origin = gsym->output_segment()->vaddr();
8510 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8511 sym_origin = gsym->output_data()->address();
8512
8513 // TODO: Assumes the segment base to be zero for the global symbols
8514 // till the proper support for the segment-base-relative addressing
8515 // will be implemented. This is consistent with GNU ld.
8516 }
8517
5c57f1be
DK
8518 // For relative addressing relocation, find out the relative address base.
8519 Arm_address relative_address_base = 0;
8520 switch(reloc_property->relative_address_base())
8521 {
8522 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8523 // Relocations with relative address bases RAB_TLS and RAB_tp are
8524 // handled by relocate_tls. So we do not need to do anything here.
8525 case Arm_reloc_property::RAB_TLS:
8526 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8527 break;
8528 case Arm_reloc_property::RAB_B_S:
8529 relative_address_base = sym_origin;
8530 break;
8531 case Arm_reloc_property::RAB_GOT_ORG:
8532 relative_address_base = target->got_plt_section()->address();
8533 break;
8534 case Arm_reloc_property::RAB_P:
8535 relative_address_base = address;
8536 break;
8537 case Arm_reloc_property::RAB_Pa:
8538 relative_address_base = address & 0xfffffffcU;
8539 break;
8540 default:
8541 gold_unreachable();
8542 }
8543
c121c671
DK
8544 typename Arm_relocate_functions::Status reloc_status =
8545 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8546 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8547 switch (r_type)
8548 {
8549 case elfcpp::R_ARM_NONE:
8550 break;
8551
5e445df6
ILT
8552 case elfcpp::R_ARM_ABS8:
8553 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8554 output_section))
be8fcb75
ILT
8555 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8556 break;
8557
8558 case elfcpp::R_ARM_ABS12:
8559 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8560 output_section))
8561 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8562 break;
8563
8564 case elfcpp::R_ARM_ABS16:
8565 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8566 output_section))
8567 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8568 break;
8569
c121c671
DK
8570 case elfcpp::R_ARM_ABS32:
8571 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8572 output_section))
8573 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8574 thumb_bit);
c121c671
DK
8575 break;
8576
be8fcb75
ILT
8577 case elfcpp::R_ARM_ABS32_NOI:
8578 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8579 output_section))
8580 // No thumb bit for this relocation: (S + A)
8581 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8582 0);
be8fcb75
ILT
8583 break;
8584
fd3c5f0b 8585 case elfcpp::R_ARM_MOVW_ABS_NC:
e4782e83 8586 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8587 output_section))
5c57f1be
DK
8588 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8589 0, thumb_bit,
8590 check_overflow);
fd3c5f0b
ILT
8591 break;
8592
8593 case elfcpp::R_ARM_MOVT_ABS:
e4782e83 8594 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8595 output_section))
5c57f1be 8596 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
8597 break;
8598
8599 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
e4782e83 8600 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8601 output_section))
5c57f1be
DK
8602 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8603 0, thumb_bit, false);
fd3c5f0b
ILT
8604 break;
8605
8606 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83 8607 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8608 output_section))
5c57f1be
DK
8609 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8610 psymval, 0);
fd3c5f0b
ILT
8611 break;
8612
c2a122b6 8613 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 8614 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 8615 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
8616 reloc_status =
8617 Arm_relocate_functions::movw(view, object, psymval,
8618 relative_address_base, thumb_bit,
8619 check_overflow);
c2a122b6
ILT
8620 break;
8621
8622 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 8623 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
8624 reloc_status =
8625 Arm_relocate_functions::movt(view, object, psymval,
8626 relative_address_base);
c2a122b6
ILT
8627 break;
8628
8629 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 8630 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 8631 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
8632 reloc_status =
8633 Arm_relocate_functions::thm_movw(view, object, psymval,
8634 relative_address_base,
8635 thumb_bit, check_overflow);
c2a122b6
ILT
8636 break;
8637
8638 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 8639 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
8640 reloc_status =
8641 Arm_relocate_functions::thm_movt(view, object, psymval,
8642 relative_address_base);
02961d7e 8643 break;
5c57f1be 8644
c121c671
DK
8645 case elfcpp::R_ARM_REL32:
8646 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8647 address, thumb_bit);
c121c671
DK
8648 break;
8649
be8fcb75
ILT
8650 case elfcpp::R_ARM_THM_ABS5:
8651 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8652 output_section))
8653 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8654 break;
8655
1521477a 8656 // Thumb long branches.
c121c671 8657 case elfcpp::R_ARM_THM_CALL:
51938283 8658 case elfcpp::R_ARM_THM_XPC22:
1521477a 8659 case elfcpp::R_ARM_THM_JUMP24:
51938283 8660 reloc_status =
1521477a
DK
8661 Arm_relocate_functions::thumb_branch_common(
8662 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8663 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8664 break;
8665
c121c671
DK
8666 case elfcpp::R_ARM_GOTOFF32:
8667 {
ebabffbd 8668 Arm_address got_origin;
c121c671
DK
8669 got_origin = target->got_plt_section()->address();
8670 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8671 got_origin, thumb_bit);
c121c671
DK
8672 }
8673 break;
8674
8675 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
8676 gold_assert(gsym != NULL);
8677 reloc_status =
8678 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
8679 break;
8680
be8fcb75
ILT
8681 case elfcpp::R_ARM_BASE_ABS:
8682 {
e4782e83 8683 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
be8fcb75
ILT
8684 output_section))
8685 break;
8686
b10d2873 8687 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
8688 }
8689 break;
8690
c121c671
DK
8691 case elfcpp::R_ARM_GOT_BREL:
8692 gold_assert(have_got_offset);
8693 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8694 break;
8695
7f5309a5
ILT
8696 case elfcpp::R_ARM_GOT_PREL:
8697 gold_assert(have_got_offset);
8698 // Get the address origin for GOT PLT, which is allocated right
8699 // after the GOT section, to calculate an absolute address of
8700 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 8701 Arm_address got_origin;
7f5309a5
ILT
8702 got_origin = target->got_plt_section()->address();
8703 reloc_status = Arm_relocate_functions::got_prel(view,
8704 got_origin + got_offset,
8705 address);
8706 break;
8707
c121c671 8708 case elfcpp::R_ARM_PLT32:
1521477a
DK
8709 case elfcpp::R_ARM_CALL:
8710 case elfcpp::R_ARM_JUMP24:
8711 case elfcpp::R_ARM_XPC25:
c121c671
DK
8712 gold_assert(gsym == NULL
8713 || gsym->has_plt_offset()
8714 || gsym->final_value_is_known()
8715 || (gsym->is_defined()
8716 && !gsym->is_from_dynobj()
8717 && !gsym->is_preemptible()));
d204b6e9 8718 reloc_status =
1521477a
DK
8719 Arm_relocate_functions::arm_branch_common(
8720 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8721 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8722 break;
8723
41263c05
DK
8724 case elfcpp::R_ARM_THM_JUMP19:
8725 reloc_status =
8726 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8727 thumb_bit);
8728 break;
8729
800d0f56
ILT
8730 case elfcpp::R_ARM_THM_JUMP6:
8731 reloc_status =
8732 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8733 break;
8734
8735 case elfcpp::R_ARM_THM_JUMP8:
8736 reloc_status =
8737 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8738 break;
8739
8740 case elfcpp::R_ARM_THM_JUMP11:
8741 reloc_status =
8742 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8743 break;
8744
c121c671
DK
8745 case elfcpp::R_ARM_PREL31:
8746 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 8747 address, thumb_bit);
c121c671
DK
8748 break;
8749
a2162063 8750 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
8751 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8752 {
8753 const bool is_v4bx_interworking =
8754 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8755 reloc_status =
8756 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8757 is_v4bx_interworking);
8758 }
a2162063
ILT
8759 break;
8760
11b861d5
DK
8761 case elfcpp::R_ARM_THM_PC8:
8762 reloc_status =
8763 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8764 break;
8765
8766 case elfcpp::R_ARM_THM_PC12:
8767 reloc_status =
8768 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8769 break;
8770
8771 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8772 reloc_status =
8773 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8774 thumb_bit);
8775 break;
8776
b10d2873 8777 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 8778 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 8779 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 8780 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 8781 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 8782 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 8783 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 8784 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 8785 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
8786 case elfcpp::R_ARM_ALU_SB_G2:
8787 reloc_status =
5c57f1be
DK
8788 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8789 reloc_property->group_index(),
8790 relative_address_base,
8791 thumb_bit, check_overflow);
b10d2873
ILT
8792 break;
8793
8794 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 8795 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 8796 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 8797 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 8798 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
8799 case elfcpp::R_ARM_LDR_SB_G2:
8800 reloc_status =
5c57f1be
DK
8801 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8802 reloc_property->group_index(),
8803 relative_address_base);
b10d2873
ILT
8804 break;
8805
8806 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 8807 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 8808 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 8809 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 8810 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
8811 case elfcpp::R_ARM_LDRS_SB_G2:
8812 reloc_status =
5c57f1be
DK
8813 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8814 reloc_property->group_index(),
8815 relative_address_base);
b10d2873
ILT
8816 break;
8817
8818 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 8819 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 8820 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 8821 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 8822 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
8823 case elfcpp::R_ARM_LDC_SB_G2:
8824 reloc_status =
5c57f1be
DK
8825 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8826 reloc_property->group_index(),
8827 relative_address_base);
c121c671
DK
8828 break;
8829
f96accdf
DK
8830 // These are initial tls relocs, which are expected when
8831 // linking.
8832 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8833 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8834 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8835 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8836 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8837 reloc_status =
8838 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8839 view, address, view_size);
8840 break;
8841
c121c671 8842 default:
5c57f1be 8843 gold_unreachable();
c121c671
DK
8844 }
8845
8846 // Report any errors.
8847 switch (reloc_status)
8848 {
8849 case Arm_relocate_functions::STATUS_OKAY:
8850 break;
8851 case Arm_relocate_functions::STATUS_OVERFLOW:
8852 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
8853 _("relocation overflow in %s"),
8854 reloc_property->name().c_str());
c121c671
DK
8855 break;
8856 case Arm_relocate_functions::STATUS_BAD_RELOC:
8857 gold_error_at_location(
8858 relinfo,
8859 relnum,
8860 rel.get_r_offset(),
a2c7281b
DK
8861 _("unexpected opcode while processing relocation %s"),
8862 reloc_property->name().c_str());
c121c671 8863 break;
4a657b0d
DK
8864 default:
8865 gold_unreachable();
8866 }
8867
8868 return true;
8869}
8870
f96accdf
DK
8871// Perform a TLS relocation.
8872
8873template<bool big_endian>
8874inline typename Arm_relocate_functions<big_endian>::Status
8875Target_arm<big_endian>::Relocate::relocate_tls(
8876 const Relocate_info<32, big_endian>* relinfo,
8877 Target_arm<big_endian>* target,
8878 size_t relnum,
8879 const elfcpp::Rel<32, big_endian>& rel,
8880 unsigned int r_type,
8881 const Sized_symbol<32>* gsym,
8882 const Symbol_value<32>* psymval,
8883 unsigned char* view,
4a54abbb 8884 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
8885 section_size_type /*view_size*/ )
8886{
8887 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 8888 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
8889 Output_segment* tls_segment = relinfo->layout->tls_segment();
8890
8891 const Sized_relobj<32, big_endian>* object = relinfo->object;
8892
8893 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8894
8895 const bool is_final = (gsym == NULL
8896 ? !parameters->options().shared()
8897 : gsym->final_value_is_known());
8898 const tls::Tls_optimization optimized_type
8899 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8900 switch (r_type)
8901 {
8902 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8903 {
8904 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8905 unsigned int got_offset;
8906 if (gsym != NULL)
8907 {
8908 gold_assert(gsym->has_got_offset(got_type));
8909 got_offset = gsym->got_offset(got_type) - target->got_size();
8910 }
8911 else
8912 {
8913 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8914 gold_assert(object->local_has_got_offset(r_sym, got_type));
8915 got_offset = (object->local_got_offset(r_sym, got_type)
8916 - target->got_size());
8917 }
8918 if (optimized_type == tls::TLSOPT_NONE)
8919 {
4a54abbb
DK
8920 Arm_address got_entry =
8921 target->got_plt_section()->address() + got_offset;
8922
8923 // Relocate the field with the PC relative offset of the pair of
8924 // GOT entries.
8925 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8926 return ArmRelocFuncs::STATUS_OKAY;
8927 }
8928 }
8929 break;
8930
8931 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8932 if (optimized_type == tls::TLSOPT_NONE)
8933 {
8934 // Relocate the field with the offset of the GOT entry for
8935 // the module index.
8936 unsigned int got_offset;
8937 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8938 - target->got_size());
4a54abbb
DK
8939 Arm_address got_entry =
8940 target->got_plt_section()->address() + got_offset;
8941
8942 // Relocate the field with the PC relative offset of the pair of
8943 // GOT entries.
8944 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8945 return ArmRelocFuncs::STATUS_OKAY;
8946 }
8947 break;
8948
8949 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
4a54abbb 8950 RelocFuncs::rel32(view, value);
f96accdf
DK
8951 return ArmRelocFuncs::STATUS_OKAY;
8952
8953 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8954 if (optimized_type == tls::TLSOPT_NONE)
8955 {
8956 // Relocate the field with the offset of the GOT entry for
8957 // the tp-relative offset of the symbol.
8958 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8959 unsigned int got_offset;
8960 if (gsym != NULL)
8961 {
8962 gold_assert(gsym->has_got_offset(got_type));
8963 got_offset = gsym->got_offset(got_type);
8964 }
8965 else
8966 {
8967 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8968 gold_assert(object->local_has_got_offset(r_sym, got_type));
8969 got_offset = object->local_got_offset(r_sym, got_type);
8970 }
4a54abbb 8971
f96accdf
DK
8972 // All GOT offsets are relative to the end of the GOT.
8973 got_offset -= target->got_size();
4a54abbb
DK
8974
8975 Arm_address got_entry =
8976 target->got_plt_section()->address() + got_offset;
8977
8978 // Relocate the field with the PC relative offset of the GOT entry.
8979 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8980 return ArmRelocFuncs::STATUS_OKAY;
8981 }
8982 break;
8983
8984 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8985 // If we're creating a shared library, a dynamic relocation will
8986 // have been created for this location, so do not apply it now.
8987 if (!parameters->options().shared())
8988 {
8989 gold_assert(tls_segment != NULL);
4a54abbb
DK
8990
8991 // $tp points to the TCB, which is followed by the TLS, so we
8992 // need to add TCB size to the offset.
8993 Arm_address aligned_tcb_size =
8994 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8995 RelocFuncs::rel32(view, value + aligned_tcb_size);
8996
f96accdf
DK
8997 }
8998 return ArmRelocFuncs::STATUS_OKAY;
8999
9000 default:
9001 gold_unreachable();
9002 }
9003
9004 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9005 _("unsupported reloc %u"),
9006 r_type);
9007 return ArmRelocFuncs::STATUS_BAD_RELOC;
9008}
9009
4a657b0d
DK
9010// Relocate section data.
9011
9012template<bool big_endian>
9013void
9014Target_arm<big_endian>::relocate_section(
9015 const Relocate_info<32, big_endian>* relinfo,
9016 unsigned int sh_type,
9017 const unsigned char* prelocs,
9018 size_t reloc_count,
9019 Output_section* output_section,
9020 bool needs_special_offset_handling,
9021 unsigned char* view,
ebabffbd 9022 Arm_address address,
364c7fa5
ILT
9023 section_size_type view_size,
9024 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9025{
9026 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9027 gold_assert(sh_type == elfcpp::SHT_REL);
9028
218c5831
DK
9029 // See if we are relocating a relaxed input section. If so, the view
9030 // covers the whole output section and we need to adjust accordingly.
9031 if (needs_special_offset_handling)
43d12afe 9032 {
218c5831
DK
9033 const Output_relaxed_input_section* poris =
9034 output_section->find_relaxed_input_section(relinfo->object,
9035 relinfo->data_shndx);
9036 if (poris != NULL)
9037 {
9038 Arm_address section_address = poris->address();
9039 section_size_type section_size = poris->data_size();
9040
9041 gold_assert((section_address >= address)
9042 && ((section_address + section_size)
9043 <= (address + view_size)));
9044
9045 off_t offset = section_address - address;
9046 view += offset;
9047 address += offset;
9048 view_size = section_size;
9049 }
43d12afe
DK
9050 }
9051
4a657b0d
DK
9052 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9053 Arm_relocate>(
9054 relinfo,
9055 this,
9056 prelocs,
9057 reloc_count,
9058 output_section,
9059 needs_special_offset_handling,
9060 view,
9061 address,
364c7fa5
ILT
9062 view_size,
9063 reloc_symbol_changes);
4a657b0d
DK
9064}
9065
9066// Return the size of a relocation while scanning during a relocatable
9067// link.
9068
9069template<bool big_endian>
9070unsigned int
9071Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9072 unsigned int r_type,
9073 Relobj* object)
9074{
a6d1ef57 9075 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9076 const Arm_reloc_property* arp =
9077 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9078 if (arp != NULL)
9079 return arp->size();
9080 else
4a657b0d 9081 {
5c57f1be
DK
9082 std::string reloc_name =
9083 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9084 gold_error(_("%s: unexpected %s in object file"),
9085 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9086 return 0;
9087 }
9088}
9089
9090// Scan the relocs during a relocatable link.
9091
9092template<bool big_endian>
9093void
9094Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9095 Symbol_table* symtab,
2ea97941 9096 Layout* layout,
4a657b0d
DK
9097 Sized_relobj<32, big_endian>* object,
9098 unsigned int data_shndx,
9099 unsigned int sh_type,
9100 const unsigned char* prelocs,
9101 size_t reloc_count,
9102 Output_section* output_section,
9103 bool needs_special_offset_handling,
9104 size_t local_symbol_count,
9105 const unsigned char* plocal_symbols,
9106 Relocatable_relocs* rr)
9107{
9108 gold_assert(sh_type == elfcpp::SHT_REL);
9109
5c388529 9110 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9111 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9112
9113 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9114 Scan_relocatable_relocs>(
4a657b0d 9115 symtab,
2ea97941 9116 layout,
4a657b0d
DK
9117 object,
9118 data_shndx,
9119 prelocs,
9120 reloc_count,
9121 output_section,
9122 needs_special_offset_handling,
9123 local_symbol_count,
9124 plocal_symbols,
9125 rr);
9126}
9127
9128// Relocate a section during a relocatable link.
9129
9130template<bool big_endian>
9131void
9132Target_arm<big_endian>::relocate_for_relocatable(
9133 const Relocate_info<32, big_endian>* relinfo,
9134 unsigned int sh_type,
9135 const unsigned char* prelocs,
9136 size_t reloc_count,
9137 Output_section* output_section,
9138 off_t offset_in_output_section,
9139 const Relocatable_relocs* rr,
9140 unsigned char* view,
ebabffbd 9141 Arm_address view_address,
4a657b0d
DK
9142 section_size_type view_size,
9143 unsigned char* reloc_view,
9144 section_size_type reloc_view_size)
9145{
9146 gold_assert(sh_type == elfcpp::SHT_REL);
9147
9148 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9149 relinfo,
9150 prelocs,
9151 reloc_count,
9152 output_section,
9153 offset_in_output_section,
9154 rr,
9155 view,
9156 view_address,
9157 view_size,
9158 reloc_view,
9159 reloc_view_size);
9160}
9161
5c388529
DK
9162// Perform target-specific processing in a relocatable link. This is
9163// only used if we use the relocation strategy RELOC_SPECIAL.
9164
9165template<bool big_endian>
9166void
9167Target_arm<big_endian>::relocate_special_relocatable(
9168 const Relocate_info<32, big_endian>* relinfo,
9169 unsigned int sh_type,
9170 const unsigned char* preloc_in,
9171 size_t relnum,
9172 Output_section* output_section,
9173 off_t offset_in_output_section,
9174 unsigned char* view,
9175 elfcpp::Elf_types<32>::Elf_Addr view_address,
9176 section_size_type,
9177 unsigned char* preloc_out)
9178{
9179 // We can only handle REL type relocation sections.
9180 gold_assert(sh_type == elfcpp::SHT_REL);
9181
9182 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9183 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9184 Reltype_write;
9185 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9186
9187 const Arm_relobj<big_endian>* object =
9188 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9189 const unsigned int local_count = object->local_symbol_count();
9190
9191 Reltype reloc(preloc_in);
9192 Reltype_write reloc_write(preloc_out);
9193
9194 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9195 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9196 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9197
9198 const Arm_reloc_property* arp =
9199 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9200 gold_assert(arp != NULL);
9201
9202 // Get the new symbol index.
9203 // We only use RELOC_SPECIAL strategy in local relocations.
9204 gold_assert(r_sym < local_count);
9205
9206 // We are adjusting a section symbol. We need to find
9207 // the symbol table index of the section symbol for
9208 // the output section corresponding to input section
9209 // in which this symbol is defined.
9210 bool is_ordinary;
9211 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9212 gold_assert(is_ordinary);
9213 Output_section* os = object->output_section(shndx);
9214 gold_assert(os != NULL);
9215 gold_assert(os->needs_symtab_index());
9216 unsigned int new_symndx = os->symtab_index();
9217
9218 // Get the new offset--the location in the output section where
9219 // this relocation should be applied.
9220
9221 Arm_address offset = reloc.get_r_offset();
9222 Arm_address new_offset;
9223 if (offset_in_output_section != invalid_address)
9224 new_offset = offset + offset_in_output_section;
9225 else
9226 {
9227 section_offset_type sot_offset =
9228 convert_types<section_offset_type, Arm_address>(offset);
9229 section_offset_type new_sot_offset =
9230 output_section->output_offset(object, relinfo->data_shndx,
9231 sot_offset);
9232 gold_assert(new_sot_offset != -1);
9233 new_offset = new_sot_offset;
9234 }
9235
9236 // In an object file, r_offset is an offset within the section.
9237 // In an executable or dynamic object, generated by
9238 // --emit-relocs, r_offset is an absolute address.
9239 if (!parameters->options().relocatable())
9240 {
9241 new_offset += view_address;
9242 if (offset_in_output_section != invalid_address)
9243 new_offset -= offset_in_output_section;
9244 }
9245
9246 reloc_write.put_r_offset(new_offset);
9247 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9248
9249 // Handle the reloc addend.
9250 // The relocation uses a section symbol in the input file.
9251 // We are adjusting it to use a section symbol in the output
9252 // file. The input section symbol refers to some address in
9253 // the input section. We need the relocation in the output
9254 // file to refer to that same address. This adjustment to
9255 // the addend is the same calculation we use for a simple
9256 // absolute relocation for the input section symbol.
9257
9258 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9259
9260 // Handle THUMB bit.
9261 Symbol_value<32> symval;
9262 Arm_address thumb_bit =
9263 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9264 if (thumb_bit != 0
9265 && arp->uses_thumb_bit()
9266 && ((psymval->value(object, 0) & 1) != 0))
9267 {
9268 Arm_address stripped_value =
9269 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9270 symval.set_output_value(stripped_value);
9271 psymval = &symval;
9272 }
9273
9274 unsigned char* paddend = view + offset;
9275 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9276 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9277 switch (r_type)
9278 {
9279 case elfcpp::R_ARM_ABS8:
9280 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9281 psymval);
9282 break;
9283
9284 case elfcpp::R_ARM_ABS12:
9285 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9286 psymval);
9287 break;
9288
9289 case elfcpp::R_ARM_ABS16:
9290 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9291 psymval);
9292 break;
9293
9294 case elfcpp::R_ARM_THM_ABS5:
9295 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9296 object,
9297 psymval);
9298 break;
9299
9300 case elfcpp::R_ARM_MOVW_ABS_NC:
9301 case elfcpp::R_ARM_MOVW_PREL_NC:
9302 case elfcpp::R_ARM_MOVW_BREL_NC:
9303 case elfcpp::R_ARM_MOVW_BREL:
9304 reloc_status = Arm_relocate_functions<big_endian>::movw(
9305 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9306 break;
9307
9308 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9309 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9310 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9311 case elfcpp::R_ARM_THM_MOVW_BREL:
9312 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9313 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9314 break;
9315
9316 case elfcpp::R_ARM_THM_CALL:
9317 case elfcpp::R_ARM_THM_XPC22:
9318 case elfcpp::R_ARM_THM_JUMP24:
9319 reloc_status =
9320 Arm_relocate_functions<big_endian>::thumb_branch_common(
9321 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9322 false);
9323 break;
9324
9325 case elfcpp::R_ARM_PLT32:
9326 case elfcpp::R_ARM_CALL:
9327 case elfcpp::R_ARM_JUMP24:
9328 case elfcpp::R_ARM_XPC25:
9329 reloc_status =
9330 Arm_relocate_functions<big_endian>::arm_branch_common(
9331 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9332 false);
9333 break;
9334
9335 case elfcpp::R_ARM_THM_JUMP19:
9336 reloc_status =
9337 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9338 psymval, 0, thumb_bit);
9339 break;
9340
9341 case elfcpp::R_ARM_THM_JUMP6:
9342 reloc_status =
9343 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9344 0);
9345 break;
9346
9347 case elfcpp::R_ARM_THM_JUMP8:
9348 reloc_status =
9349 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9350 0);
9351 break;
9352
9353 case elfcpp::R_ARM_THM_JUMP11:
9354 reloc_status =
9355 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9356 0);
9357 break;
9358
9359 case elfcpp::R_ARM_PREL31:
9360 reloc_status =
9361 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9362 thumb_bit);
9363 break;
9364
9365 case elfcpp::R_ARM_THM_PC8:
9366 reloc_status =
9367 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9368 0);
9369 break;
9370
9371 case elfcpp::R_ARM_THM_PC12:
9372 reloc_status =
9373 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9374 0);
9375 break;
9376
9377 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9378 reloc_status =
9379 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9380 0, thumb_bit);
9381 break;
9382
9383 // These relocation truncate relocation results so we cannot handle them
9384 // in a relocatable link.
9385 case elfcpp::R_ARM_MOVT_ABS:
9386 case elfcpp::R_ARM_THM_MOVT_ABS:
9387 case elfcpp::R_ARM_MOVT_PREL:
9388 case elfcpp::R_ARM_MOVT_BREL:
9389 case elfcpp::R_ARM_THM_MOVT_PREL:
9390 case elfcpp::R_ARM_THM_MOVT_BREL:
9391 case elfcpp::R_ARM_ALU_PC_G0_NC:
9392 case elfcpp::R_ARM_ALU_PC_G0:
9393 case elfcpp::R_ARM_ALU_PC_G1_NC:
9394 case elfcpp::R_ARM_ALU_PC_G1:
9395 case elfcpp::R_ARM_ALU_PC_G2:
9396 case elfcpp::R_ARM_ALU_SB_G0_NC:
9397 case elfcpp::R_ARM_ALU_SB_G0:
9398 case elfcpp::R_ARM_ALU_SB_G1_NC:
9399 case elfcpp::R_ARM_ALU_SB_G1:
9400 case elfcpp::R_ARM_ALU_SB_G2:
9401 case elfcpp::R_ARM_LDR_PC_G0:
9402 case elfcpp::R_ARM_LDR_PC_G1:
9403 case elfcpp::R_ARM_LDR_PC_G2:
9404 case elfcpp::R_ARM_LDR_SB_G0:
9405 case elfcpp::R_ARM_LDR_SB_G1:
9406 case elfcpp::R_ARM_LDR_SB_G2:
9407 case elfcpp::R_ARM_LDRS_PC_G0:
9408 case elfcpp::R_ARM_LDRS_PC_G1:
9409 case elfcpp::R_ARM_LDRS_PC_G2:
9410 case elfcpp::R_ARM_LDRS_SB_G0:
9411 case elfcpp::R_ARM_LDRS_SB_G1:
9412 case elfcpp::R_ARM_LDRS_SB_G2:
9413 case elfcpp::R_ARM_LDC_PC_G0:
9414 case elfcpp::R_ARM_LDC_PC_G1:
9415 case elfcpp::R_ARM_LDC_PC_G2:
9416 case elfcpp::R_ARM_LDC_SB_G0:
9417 case elfcpp::R_ARM_LDC_SB_G1:
9418 case elfcpp::R_ARM_LDC_SB_G2:
9419 gold_error(_("cannot handle %s in a relocatable link"),
9420 arp->name().c_str());
9421 break;
9422
9423 default:
9424 gold_unreachable();
9425 }
9426
9427 // Report any errors.
9428 switch (reloc_status)
9429 {
9430 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9431 break;
9432 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9433 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9434 _("relocation overflow in %s"),
9435 arp->name().c_str());
9436 break;
9437 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9438 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9439 _("unexpected opcode while processing relocation %s"),
9440 arp->name().c_str());
9441 break;
9442 default:
9443 gold_unreachable();
9444 }
9445}
9446
94cdfcff
DK
9447// Return the value to use for a dynamic symbol which requires special
9448// treatment. This is how we support equality comparisons of function
9449// pointers across shared library boundaries, as described in the
9450// processor specific ABI supplement.
9451
4a657b0d
DK
9452template<bool big_endian>
9453uint64_t
94cdfcff 9454Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9455{
94cdfcff
DK
9456 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9457 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9458}
9459
9460// Map platform-specific relocs to real relocs
9461//
9462template<bool big_endian>
9463unsigned int
a6d1ef57 9464Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
4a657b0d
DK
9465{
9466 switch (r_type)
9467 {
9468 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9469 // This is either R_ARM_ABS32 or R_ARM_REL32;
9470 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9471
9472 case elfcpp::R_ARM_TARGET2:
a6d1ef57
DK
9473 // This can be any reloc type but ususally is R_ARM_GOT_PREL
9474 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9475
9476 default:
9477 return r_type;
9478 }
9479}
9480
d5b40221
DK
9481// Whether if two EABI versions V1 and V2 are compatible.
9482
9483template<bool big_endian>
9484bool
9485Target_arm<big_endian>::are_eabi_versions_compatible(
9486 elfcpp::Elf_Word v1,
9487 elfcpp::Elf_Word v2)
9488{
9489 // v4 and v5 are the same spec before and after it was released,
9490 // so allow mixing them.
106e8a6c
DK
9491 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9492 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9493 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9494 return true;
9495
9496 return v1 == v2;
9497}
9498
9499// Combine FLAGS from an input object called NAME and the processor-specific
9500// flags in the ELF header of the output. Much of this is adapted from the
9501// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9502// in bfd/elf32-arm.c.
9503
9504template<bool big_endian>
9505void
9506Target_arm<big_endian>::merge_processor_specific_flags(
9507 const std::string& name,
9508 elfcpp::Elf_Word flags)
9509{
9510 if (this->are_processor_specific_flags_set())
9511 {
9512 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9513
9514 // Nothing to merge if flags equal to those in output.
9515 if (flags == out_flags)
9516 return;
9517
9518 // Complain about various flag mismatches.
9519 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9520 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9521 if (!this->are_eabi_versions_compatible(version1, version2)
9522 && parameters->options().warn_mismatch())
d5b40221
DK
9523 gold_error(_("Source object %s has EABI version %d but output has "
9524 "EABI version %d."),
9525 name.c_str(),
9526 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9527 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9528 }
9529 else
9530 {
9531 // If the input is the default architecture and had the default
9532 // flags then do not bother setting the flags for the output
9533 // architecture, instead allow future merges to do this. If no
9534 // future merges ever set these flags then they will retain their
9535 // uninitialised values, which surprise surprise, correspond
9536 // to the default values.
9537 if (flags == 0)
9538 return;
9539
9540 // This is the first time, just copy the flags.
9541 // We only copy the EABI version for now.
9542 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9543 }
9544}
9545
9546// Adjust ELF file header.
9547template<bool big_endian>
9548void
9549Target_arm<big_endian>::do_adjust_elf_header(
9550 unsigned char* view,
9551 int len) const
9552{
9553 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9554
9555 elfcpp::Ehdr<32, big_endian> ehdr(view);
9556 unsigned char e_ident[elfcpp::EI_NIDENT];
9557 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9558
9559 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9560 == elfcpp::EF_ARM_EABI_UNKNOWN)
9561 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9562 else
9563 e_ident[elfcpp::EI_OSABI] = 0;
9564 e_ident[elfcpp::EI_ABIVERSION] = 0;
9565
9566 // FIXME: Do EF_ARM_BE8 adjustment.
9567
9568 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9569 oehdr.put_e_ident(e_ident);
9570}
9571
9572// do_make_elf_object to override the same function in the base class.
9573// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9574// to store ARM specific information. Hence we need to have our own
9575// ELF object creation.
9576
9577template<bool big_endian>
9578Object*
9579Target_arm<big_endian>::do_make_elf_object(
9580 const std::string& name,
9581 Input_file* input_file,
2ea97941 9582 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9583{
9584 int et = ehdr.get_e_type();
9585 if (et == elfcpp::ET_REL)
9586 {
9587 Arm_relobj<big_endian>* obj =
2ea97941 9588 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9589 obj->setup();
9590 return obj;
9591 }
9592 else if (et == elfcpp::ET_DYN)
9593 {
9594 Sized_dynobj<32, big_endian>* obj =
2ea97941 9595 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9596 obj->setup();
9597 return obj;
9598 }
9599 else
9600 {
9601 gold_error(_("%s: unsupported ELF file type %d"),
9602 name.c_str(), et);
9603 return NULL;
9604 }
9605}
9606
a0351a69
DK
9607// Read the architecture from the Tag_also_compatible_with attribute, if any.
9608// Returns -1 if no architecture could be read.
9609// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9610
9611template<bool big_endian>
9612int
9613Target_arm<big_endian>::get_secondary_compatible_arch(
9614 const Attributes_section_data* pasd)
9615{
9616 const Object_attribute *known_attributes =
9617 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9618
9619 // Note: the tag and its argument below are uleb128 values, though
9620 // currently-defined values fit in one byte for each.
9621 const std::string& sv =
9622 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9623 if (sv.size() == 2
9624 && sv.data()[0] == elfcpp::Tag_CPU_arch
9625 && (sv.data()[1] & 128) != 128)
9626 return sv.data()[1];
9627
9628 // This tag is "safely ignorable", so don't complain if it looks funny.
9629 return -1;
9630}
9631
9632// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9633// The tag is removed if ARCH is -1.
9634// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9635
9636template<bool big_endian>
9637void
9638Target_arm<big_endian>::set_secondary_compatible_arch(
9639 Attributes_section_data* pasd,
9640 int arch)
9641{
9642 Object_attribute *known_attributes =
9643 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9644
9645 if (arch == -1)
9646 {
9647 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9648 return;
9649 }
9650
9651 // Note: the tag and its argument below are uleb128 values, though
9652 // currently-defined values fit in one byte for each.
9653 char sv[3];
9654 sv[0] = elfcpp::Tag_CPU_arch;
9655 gold_assert(arch != 0);
9656 sv[1] = arch;
9657 sv[2] = '\0';
9658
9659 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9660}
9661
9662// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9663// into account.
9664// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9665
9666template<bool big_endian>
9667int
9668Target_arm<big_endian>::tag_cpu_arch_combine(
9669 const char* name,
9670 int oldtag,
9671 int* secondary_compat_out,
9672 int newtag,
9673 int secondary_compat)
9674{
9675#define T(X) elfcpp::TAG_CPU_ARCH_##X
9676 static const int v6t2[] =
9677 {
9678 T(V6T2), // PRE_V4.
9679 T(V6T2), // V4.
9680 T(V6T2), // V4T.
9681 T(V6T2), // V5T.
9682 T(V6T2), // V5TE.
9683 T(V6T2), // V5TEJ.
9684 T(V6T2), // V6.
9685 T(V7), // V6KZ.
9686 T(V6T2) // V6T2.
9687 };
9688 static const int v6k[] =
9689 {
9690 T(V6K), // PRE_V4.
9691 T(V6K), // V4.
9692 T(V6K), // V4T.
9693 T(V6K), // V5T.
9694 T(V6K), // V5TE.
9695 T(V6K), // V5TEJ.
9696 T(V6K), // V6.
9697 T(V6KZ), // V6KZ.
9698 T(V7), // V6T2.
9699 T(V6K) // V6K.
9700 };
9701 static const int v7[] =
9702 {
9703 T(V7), // PRE_V4.
9704 T(V7), // V4.
9705 T(V7), // V4T.
9706 T(V7), // V5T.
9707 T(V7), // V5TE.
9708 T(V7), // V5TEJ.
9709 T(V7), // V6.
9710 T(V7), // V6KZ.
9711 T(V7), // V6T2.
9712 T(V7), // V6K.
9713 T(V7) // V7.
9714 };
9715 static const int v6_m[] =
9716 {
9717 -1, // PRE_V4.
9718 -1, // V4.
9719 T(V6K), // V4T.
9720 T(V6K), // V5T.
9721 T(V6K), // V5TE.
9722 T(V6K), // V5TEJ.
9723 T(V6K), // V6.
9724 T(V6KZ), // V6KZ.
9725 T(V7), // V6T2.
9726 T(V6K), // V6K.
9727 T(V7), // V7.
9728 T(V6_M) // V6_M.
9729 };
9730 static const int v6s_m[] =
9731 {
9732 -1, // PRE_V4.
9733 -1, // V4.
9734 T(V6K), // V4T.
9735 T(V6K), // V5T.
9736 T(V6K), // V5TE.
9737 T(V6K), // V5TEJ.
9738 T(V6K), // V6.
9739 T(V6KZ), // V6KZ.
9740 T(V7), // V6T2.
9741 T(V6K), // V6K.
9742 T(V7), // V7.
9743 T(V6S_M), // V6_M.
9744 T(V6S_M) // V6S_M.
9745 };
9746 static const int v7e_m[] =
9747 {
9748 -1, // PRE_V4.
9749 -1, // V4.
9750 T(V7E_M), // V4T.
9751 T(V7E_M), // V5T.
9752 T(V7E_M), // V5TE.
9753 T(V7E_M), // V5TEJ.
9754 T(V7E_M), // V6.
9755 T(V7E_M), // V6KZ.
9756 T(V7E_M), // V6T2.
9757 T(V7E_M), // V6K.
9758 T(V7E_M), // V7.
9759 T(V7E_M), // V6_M.
9760 T(V7E_M), // V6S_M.
9761 T(V7E_M) // V7E_M.
9762 };
9763 static const int v4t_plus_v6_m[] =
9764 {
9765 -1, // PRE_V4.
9766 -1, // V4.
9767 T(V4T), // V4T.
9768 T(V5T), // V5T.
9769 T(V5TE), // V5TE.
9770 T(V5TEJ), // V5TEJ.
9771 T(V6), // V6.
9772 T(V6KZ), // V6KZ.
9773 T(V6T2), // V6T2.
9774 T(V6K), // V6K.
9775 T(V7), // V7.
9776 T(V6_M), // V6_M.
9777 T(V6S_M), // V6S_M.
9778 T(V7E_M), // V7E_M.
9779 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9780 };
9781 static const int *comb[] =
9782 {
9783 v6t2,
9784 v6k,
9785 v7,
9786 v6_m,
9787 v6s_m,
9788 v7e_m,
9789 // Pseudo-architecture.
9790 v4t_plus_v6_m
9791 };
9792
9793 // Check we've not got a higher architecture than we know about.
9794
9795 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9796 {
9797 gold_error(_("%s: unknown CPU architecture"), name);
9798 return -1;
9799 }
9800
9801 // Override old tag if we have a Tag_also_compatible_with on the output.
9802
9803 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9804 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9805 oldtag = T(V4T_PLUS_V6_M);
9806
9807 // And override the new tag if we have a Tag_also_compatible_with on the
9808 // input.
9809
9810 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9811 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9812 newtag = T(V4T_PLUS_V6_M);
9813
9814 // Architectures before V6KZ add features monotonically.
9815 int tagh = std::max(oldtag, newtag);
9816 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9817 return tagh;
9818
9819 int tagl = std::min(oldtag, newtag);
9820 int result = comb[tagh - T(V6T2)][tagl];
9821
9822 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9823 // as the canonical version.
9824 if (result == T(V4T_PLUS_V6_M))
9825 {
9826 result = T(V4T);
9827 *secondary_compat_out = T(V6_M);
9828 }
9829 else
9830 *secondary_compat_out = -1;
9831
9832 if (result == -1)
9833 {
9834 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9835 name, oldtag, newtag);
9836 return -1;
9837 }
9838
9839 return result;
9840#undef T
9841}
9842
9843// Helper to print AEABI enum tag value.
9844
9845template<bool big_endian>
9846std::string
9847Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9848{
9849 static const char *aeabi_enum_names[] =
9850 { "", "variable-size", "32-bit", "" };
9851 const size_t aeabi_enum_names_size =
9852 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9853
9854 if (value < aeabi_enum_names_size)
9855 return std::string(aeabi_enum_names[value]);
9856 else
9857 {
9858 char buffer[100];
9859 sprintf(buffer, "<unknown value %u>", value);
9860 return std::string(buffer);
9861 }
9862}
9863
9864// Return the string value to store in TAG_CPU_name.
9865
9866template<bool big_endian>
9867std::string
9868Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9869{
9870 static const char *name_table[] = {
9871 // These aren't real CPU names, but we can't guess
9872 // that from the architecture version alone.
9873 "Pre v4",
9874 "ARM v4",
9875 "ARM v4T",
9876 "ARM v5T",
9877 "ARM v5TE",
9878 "ARM v5TEJ",
9879 "ARM v6",
9880 "ARM v6KZ",
9881 "ARM v6T2",
9882 "ARM v6K",
9883 "ARM v7",
9884 "ARM v6-M",
9885 "ARM v6S-M",
9886 "ARM v7E-M"
9887 };
9888 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9889
9890 if (value < name_table_size)
9891 return std::string(name_table[value]);
9892 else
9893 {
9894 char buffer[100];
9895 sprintf(buffer, "<unknown CPU value %u>", value);
9896 return std::string(buffer);
9897 }
9898}
9899
9900// Merge object attributes from input file called NAME with those of the
9901// output. The input object attributes are in the object pointed by PASD.
9902
9903template<bool big_endian>
9904void
9905Target_arm<big_endian>::merge_object_attributes(
9906 const char* name,
9907 const Attributes_section_data* pasd)
9908{
9909 // Return if there is no attributes section data.
9910 if (pasd == NULL)
9911 return;
9912
9913 // If output has no object attributes, just copy.
da59ad79 9914 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
9915 if (this->attributes_section_data_ == NULL)
9916 {
9917 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
9918 Object_attribute* out_attr =
9919 this->attributes_section_data_->known_attributes(vendor);
9920
9921 // We do not output objects with Tag_MPextension_use_legacy - we move
9922 // the attribute's value to Tag_MPextension_use. */
9923 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
9924 {
9925 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
9926 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
9927 != out_attr[elfcpp::Tag_MPextension_use].int_value())
9928 {
9929 gold_error(_("%s has both the current and legacy "
9930 "Tag_MPextension_use attributes"),
9931 name);
9932 }
9933
9934 out_attr[elfcpp::Tag_MPextension_use] =
9935 out_attr[elfcpp::Tag_MPextension_use_legacy];
9936 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
9937 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
9938 }
9939
a0351a69
DK
9940 return;
9941 }
9942
a0351a69
DK
9943 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9944 Object_attribute* out_attr =
9945 this->attributes_section_data_->known_attributes(vendor);
9946
9947 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9948 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9949 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9950 {
9951 // Ignore mismatches if the object doesn't use floating point. */
9952 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9953 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9954 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
9955 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9956 && parameters->options().warn_mismatch())
a0351a69
DK
9957 gold_error(_("%s uses VFP register arguments, output does not"),
9958 name);
9959 }
9960
9961 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9962 {
9963 // Merge this attribute with existing attributes.
9964 switch (i)
9965 {
9966 case elfcpp::Tag_CPU_raw_name:
9967 case elfcpp::Tag_CPU_name:
9968 // These are merged after Tag_CPU_arch.
9969 break;
9970
9971 case elfcpp::Tag_ABI_optimization_goals:
9972 case elfcpp::Tag_ABI_FP_optimization_goals:
9973 // Use the first value seen.
9974 break;
9975
9976 case elfcpp::Tag_CPU_arch:
9977 {
9978 unsigned int saved_out_attr = out_attr->int_value();
9979 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9980 int secondary_compat =
9981 this->get_secondary_compatible_arch(pasd);
9982 int secondary_compat_out =
9983 this->get_secondary_compatible_arch(
9984 this->attributes_section_data_);
9985 out_attr[i].set_int_value(
9986 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9987 &secondary_compat_out,
9988 in_attr[i].int_value(),
9989 secondary_compat));
9990 this->set_secondary_compatible_arch(this->attributes_section_data_,
9991 secondary_compat_out);
9992
9993 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9994 if (out_attr[i].int_value() == saved_out_attr)
9995 ; // Leave the names alone.
9996 else if (out_attr[i].int_value() == in_attr[i].int_value())
9997 {
9998 // The output architecture has been changed to match the
9999 // input architecture. Use the input names.
10000 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10001 in_attr[elfcpp::Tag_CPU_name].string_value());
10002 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10003 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10004 }
10005 else
10006 {
10007 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10008 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10009 }
10010
10011 // If we still don't have a value for Tag_CPU_name,
10012 // make one up now. Tag_CPU_raw_name remains blank.
10013 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10014 {
10015 const std::string cpu_name =
10016 this->tag_cpu_name_value(out_attr[i].int_value());
10017 // FIXME: If we see an unknown CPU, this will be set
10018 // to "<unknown CPU n>", where n is the attribute value.
10019 // This is different from BFD, which leaves the name alone.
10020 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10021 }
10022 }
10023 break;
10024
10025 case elfcpp::Tag_ARM_ISA_use:
10026 case elfcpp::Tag_THUMB_ISA_use:
10027 case elfcpp::Tag_WMMX_arch:
10028 case elfcpp::Tag_Advanced_SIMD_arch:
10029 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10030 case elfcpp::Tag_ABI_FP_rounding:
10031 case elfcpp::Tag_ABI_FP_exceptions:
10032 case elfcpp::Tag_ABI_FP_user_exceptions:
10033 case elfcpp::Tag_ABI_FP_number_model:
10034 case elfcpp::Tag_VFP_HP_extension:
10035 case elfcpp::Tag_CPU_unaligned_access:
10036 case elfcpp::Tag_T2EE_use:
10037 case elfcpp::Tag_Virtualization_use:
10038 case elfcpp::Tag_MPextension_use:
10039 // Use the largest value specified.
10040 if (in_attr[i].int_value() > out_attr[i].int_value())
10041 out_attr[i].set_int_value(in_attr[i].int_value());
10042 break;
10043
10044 case elfcpp::Tag_ABI_align8_preserved:
10045 case elfcpp::Tag_ABI_PCS_RO_data:
10046 // Use the smallest value specified.
10047 if (in_attr[i].int_value() < out_attr[i].int_value())
10048 out_attr[i].set_int_value(in_attr[i].int_value());
10049 break;
10050
10051 case elfcpp::Tag_ABI_align8_needed:
10052 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10053 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10054 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10055 == 0)))
10056 {
10057 // This error message should be enabled once all non-conformant
10058 // binaries in the toolchain have had the attributes set
10059 // properly.
10060 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10061 // name);
10062 }
10063 // Fall through.
10064 case elfcpp::Tag_ABI_FP_denormal:
10065 case elfcpp::Tag_ABI_PCS_GOT_use:
10066 {
10067 // These tags have 0 = don't care, 1 = strong requirement,
10068 // 2 = weak requirement.
10069 static const int order_021[3] = {0, 2, 1};
10070
10071 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10072 // value if greater than 2 (for future-proofing).
10073 if ((in_attr[i].int_value() > 2
10074 && in_attr[i].int_value() > out_attr[i].int_value())
10075 || (in_attr[i].int_value() <= 2
10076 && out_attr[i].int_value() <= 2
10077 && (order_021[in_attr[i].int_value()]
10078 > order_021[out_attr[i].int_value()])))
10079 out_attr[i].set_int_value(in_attr[i].int_value());
10080 }
10081 break;
10082
10083 case elfcpp::Tag_CPU_arch_profile:
10084 if (out_attr[i].int_value() != in_attr[i].int_value())
10085 {
10086 // 0 will merge with anything.
10087 // 'A' and 'S' merge to 'A'.
10088 // 'R' and 'S' merge to 'R'.
10089 // 'M' and 'A|R|S' is an error.
10090 if (out_attr[i].int_value() == 0
10091 || (out_attr[i].int_value() == 'S'
10092 && (in_attr[i].int_value() == 'A'
10093 || in_attr[i].int_value() == 'R')))
10094 out_attr[i].set_int_value(in_attr[i].int_value());
10095 else if (in_attr[i].int_value() == 0
10096 || (in_attr[i].int_value() == 'S'
10097 && (out_attr[i].int_value() == 'A'
10098 || out_attr[i].int_value() == 'R')))
10099 ; // Do nothing.
7296d933 10100 else if (parameters->options().warn_mismatch())
a0351a69
DK
10101 {
10102 gold_error
10103 (_("conflicting architecture profiles %c/%c"),
10104 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10105 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10106 }
10107 }
10108 break;
10109 case elfcpp::Tag_VFP_arch:
10110 {
10111 static const struct
10112 {
10113 int ver;
10114 int regs;
10115 } vfp_versions[7] =
10116 {
10117 {0, 0},
10118 {1, 16},
10119 {2, 16},
10120 {3, 32},
10121 {3, 16},
10122 {4, 32},
10123 {4, 16}
10124 };
10125
10126 // Values greater than 6 aren't defined, so just pick the
10127 // biggest.
10128 if (in_attr[i].int_value() > 6
10129 && in_attr[i].int_value() > out_attr[i].int_value())
10130 {
10131 *out_attr = *in_attr;
10132 break;
10133 }
10134 // The output uses the superset of input features
10135 // (ISA version) and registers.
10136 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10137 vfp_versions[out_attr[i].int_value()].ver);
10138 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10139 vfp_versions[out_attr[i].int_value()].regs);
10140 // This assumes all possible supersets are also a valid
10141 // options.
10142 int newval;
10143 for (newval = 6; newval > 0; newval--)
10144 {
10145 if (regs == vfp_versions[newval].regs
10146 && ver == vfp_versions[newval].ver)
10147 break;
10148 }
10149 out_attr[i].set_int_value(newval);
10150 }
10151 break;
10152 case elfcpp::Tag_PCS_config:
10153 if (out_attr[i].int_value() == 0)
10154 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10155 else if (in_attr[i].int_value() != 0
10156 && out_attr[i].int_value() != 0
10157 && parameters->options().warn_mismatch())
a0351a69
DK
10158 {
10159 // It's sometimes ok to mix different configs, so this is only
10160 // a warning.
10161 gold_warning(_("%s: conflicting platform configuration"), name);
10162 }
10163 break;
10164 case elfcpp::Tag_ABI_PCS_R9_use:
10165 if (in_attr[i].int_value() != out_attr[i].int_value()
10166 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10167 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10168 && parameters->options().warn_mismatch())
a0351a69
DK
10169 {
10170 gold_error(_("%s: conflicting use of R9"), name);
10171 }
10172 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10173 out_attr[i].set_int_value(in_attr[i].int_value());
10174 break;
10175 case elfcpp::Tag_ABI_PCS_RW_data:
10176 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10177 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10178 != elfcpp::AEABI_R9_SB)
10179 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10180 != elfcpp::AEABI_R9_unused)
10181 && parameters->options().warn_mismatch())
a0351a69
DK
10182 {
10183 gold_error(_("%s: SB relative addressing conflicts with use "
10184 "of R9"),
7296d933 10185 name);
a0351a69
DK
10186 }
10187 // Use the smallest value specified.
10188 if (in_attr[i].int_value() < out_attr[i].int_value())
10189 out_attr[i].set_int_value(in_attr[i].int_value());
10190 break;
10191 case elfcpp::Tag_ABI_PCS_wchar_t:
10192 // FIXME: Make it possible to turn off this warning.
10193 if (out_attr[i].int_value()
10194 && in_attr[i].int_value()
7296d933
DK
10195 && out_attr[i].int_value() != in_attr[i].int_value()
10196 && parameters->options().warn_mismatch())
a0351a69
DK
10197 {
10198 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10199 "use %u-byte wchar_t; use of wchar_t values "
10200 "across objects may fail"),
10201 name, in_attr[i].int_value(),
10202 out_attr[i].int_value());
10203 }
10204 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10205 out_attr[i].set_int_value(in_attr[i].int_value());
10206 break;
10207 case elfcpp::Tag_ABI_enum_size:
10208 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10209 {
10210 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10211 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10212 {
10213 // The existing object is compatible with anything.
10214 // Use whatever requirements the new object has.
10215 out_attr[i].set_int_value(in_attr[i].int_value());
10216 }
10217 // FIXME: Make it possible to turn off this warning.
10218 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933
DK
10219 && out_attr[i].int_value() != in_attr[i].int_value()
10220 && parameters->options().warn_mismatch())
a0351a69
DK
10221 {
10222 unsigned int in_value = in_attr[i].int_value();
10223 unsigned int out_value = out_attr[i].int_value();
10224 gold_warning(_("%s uses %s enums yet the output is to use "
10225 "%s enums; use of enum values across objects "
10226 "may fail"),
10227 name,
10228 this->aeabi_enum_name(in_value).c_str(),
10229 this->aeabi_enum_name(out_value).c_str());
10230 }
10231 }
10232 break;
10233 case elfcpp::Tag_ABI_VFP_args:
10234 // Aready done.
10235 break;
10236 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10237 if (in_attr[i].int_value() != out_attr[i].int_value()
10238 && parameters->options().warn_mismatch())
a0351a69
DK
10239 {
10240 gold_error(_("%s uses iWMMXt register arguments, output does "
10241 "not"),
10242 name);
10243 }
10244 break;
10245 case Object_attribute::Tag_compatibility:
10246 // Merged in target-independent code.
10247 break;
10248 case elfcpp::Tag_ABI_HardFP_use:
10249 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10250 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10251 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10252 out_attr[i].set_int_value(3);
10253 else if (in_attr[i].int_value() > out_attr[i].int_value())
10254 out_attr[i].set_int_value(in_attr[i].int_value());
10255 break;
10256 case elfcpp::Tag_ABI_FP_16bit_format:
10257 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10258 {
7296d933
DK
10259 if (in_attr[i].int_value() != out_attr[i].int_value()
10260 && parameters->options().warn_mismatch())
a0351a69
DK
10261 gold_error(_("fp16 format mismatch between %s and output"),
10262 name);
10263 }
10264 if (in_attr[i].int_value() != 0)
10265 out_attr[i].set_int_value(in_attr[i].int_value());
10266 break;
10267
da59ad79
DK
10268 case elfcpp::Tag_DIV_use:
10269 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10270 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10271 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10272 // CPU. We will merge as follows: If the input attribute's value
10273 // is one then the output attribute's value remains unchanged. If
10274 // the input attribute's value is zero or two then if the output
10275 // attribute's value is one the output value is set to the input
10276 // value, otherwise the output value must be the same as the
10277 // inputs. */
10278 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10279 {
10280 if (in_attr[i].int_value() != out_attr[i].int_value())
10281 {
10282 gold_error(_("DIV usage mismatch between %s and output"),
10283 name);
10284 }
10285 }
10286
10287 if (in_attr[i].int_value() != 1)
10288 out_attr[i].set_int_value(in_attr[i].int_value());
10289
10290 break;
10291
10292 case elfcpp::Tag_MPextension_use_legacy:
10293 // We don't output objects with Tag_MPextension_use_legacy - we
10294 // move the value to Tag_MPextension_use.
10295 if (in_attr[i].int_value() != 0
10296 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10297 {
10298 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10299 != in_attr[i].int_value())
10300 {
10301 gold_error(_("%s has has both the current and legacy "
10302 "Tag_MPextension_use attributes"),
10303 name);
10304 }
10305 }
10306
10307 if (in_attr[i].int_value()
10308 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10309 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10310
10311 break;
10312
a0351a69
DK
10313 case elfcpp::Tag_nodefaults:
10314 // This tag is set if it exists, but the value is unused (and is
10315 // typically zero). We don't actually need to do anything here -
10316 // the merge happens automatically when the type flags are merged
10317 // below.
10318 break;
10319 case elfcpp::Tag_also_compatible_with:
10320 // Already done in Tag_CPU_arch.
10321 break;
10322 case elfcpp::Tag_conformance:
10323 // Keep the attribute if it matches. Throw it away otherwise.
10324 // No attribute means no claim to conform.
10325 if (in_attr[i].string_value() != out_attr[i].string_value())
10326 out_attr[i].set_string_value("");
10327 break;
10328
10329 default:
10330 {
10331 const char* err_object = NULL;
10332
10333 // The "known_obj_attributes" table does contain some undefined
10334 // attributes. Ensure that there are unused.
10335 if (out_attr[i].int_value() != 0
10336 || out_attr[i].string_value() != "")
10337 err_object = "output";
10338 else if (in_attr[i].int_value() != 0
10339 || in_attr[i].string_value() != "")
10340 err_object = name;
10341
7296d933
DK
10342 if (err_object != NULL
10343 && parameters->options().warn_mismatch())
a0351a69
DK
10344 {
10345 // Attribute numbers >=64 (mod 128) can be safely ignored.
10346 if ((i & 127) < 64)
10347 gold_error(_("%s: unknown mandatory EABI object attribute "
10348 "%d"),
10349 err_object, i);
10350 else
10351 gold_warning(_("%s: unknown EABI object attribute %d"),
10352 err_object, i);
10353 }
10354
10355 // Only pass on attributes that match in both inputs.
10356 if (!in_attr[i].matches(out_attr[i]))
10357 {
10358 out_attr[i].set_int_value(0);
10359 out_attr[i].set_string_value("");
10360 }
10361 }
10362 }
10363
10364 // If out_attr was copied from in_attr then it won't have a type yet.
10365 if (in_attr[i].type() && !out_attr[i].type())
10366 out_attr[i].set_type(in_attr[i].type());
10367 }
10368
10369 // Merge Tag_compatibility attributes and any common GNU ones.
10370 this->attributes_section_data_->merge(name, pasd);
10371
10372 // Check for any attributes not known on ARM.
10373 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10374 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10375 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10376 Other_attributes* out_other_attributes =
10377 this->attributes_section_data_->other_attributes(vendor);
10378 Other_attributes::iterator out_iter = out_other_attributes->begin();
10379
10380 while (in_iter != in_other_attributes->end()
10381 || out_iter != out_other_attributes->end())
10382 {
10383 const char* err_object = NULL;
10384 int err_tag = 0;
10385
10386 // The tags for each list are in numerical order.
10387 // If the tags are equal, then merge.
10388 if (out_iter != out_other_attributes->end()
10389 && (in_iter == in_other_attributes->end()
10390 || in_iter->first > out_iter->first))
10391 {
10392 // This attribute only exists in output. We can't merge, and we
10393 // don't know what the tag means, so delete it.
10394 err_object = "output";
10395 err_tag = out_iter->first;
10396 int saved_tag = out_iter->first;
10397 delete out_iter->second;
10398 out_other_attributes->erase(out_iter);
10399 out_iter = out_other_attributes->upper_bound(saved_tag);
10400 }
10401 else if (in_iter != in_other_attributes->end()
10402 && (out_iter != out_other_attributes->end()
10403 || in_iter->first < out_iter->first))
10404 {
10405 // This attribute only exists in input. We can't merge, and we
10406 // don't know what the tag means, so ignore it.
10407 err_object = name;
10408 err_tag = in_iter->first;
10409 ++in_iter;
10410 }
10411 else // The tags are equal.
10412 {
10413 // As present, all attributes in the list are unknown, and
10414 // therefore can't be merged meaningfully.
10415 err_object = "output";
10416 err_tag = out_iter->first;
10417
10418 // Only pass on attributes that match in both inputs.
10419 if (!in_iter->second->matches(*(out_iter->second)))
10420 {
10421 // No match. Delete the attribute.
10422 int saved_tag = out_iter->first;
10423 delete out_iter->second;
10424 out_other_attributes->erase(out_iter);
10425 out_iter = out_other_attributes->upper_bound(saved_tag);
10426 }
10427 else
10428 {
10429 // Matched. Keep the attribute and move to the next.
10430 ++out_iter;
10431 ++in_iter;
10432 }
10433 }
10434
7296d933 10435 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10436 {
10437 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10438 if ((err_tag & 127) < 64)
10439 {
10440 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10441 err_object, err_tag);
10442 }
10443 else
10444 {
10445 gold_warning(_("%s: unknown EABI object attribute %d"),
10446 err_object, err_tag);
10447 }
10448 }
10449 }
10450}
10451
55da9579
DK
10452// Stub-generation methods for Target_arm.
10453
10454// Make a new Arm_input_section object.
10455
10456template<bool big_endian>
10457Arm_input_section<big_endian>*
10458Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
10459 Relobj* relobj,
10460 unsigned int shndx)
55da9579 10461{
5ac169d4 10462 Section_id sid(relobj, shndx);
55da9579
DK
10463
10464 Arm_input_section<big_endian>* arm_input_section =
2ea97941 10465 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
10466 arm_input_section->init();
10467
10468 // Register new Arm_input_section in map for look-up.
10469 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 10470 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
10471
10472 // Make sure that it we have not created another Arm_input_section
10473 // for this input section already.
10474 gold_assert(ins.second);
10475
10476 return arm_input_section;
10477}
10478
10479// Find the Arm_input_section object corresponding to the SHNDX-th input
10480// section of RELOBJ.
10481
10482template<bool big_endian>
10483Arm_input_section<big_endian>*
10484Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
10485 Relobj* relobj,
10486 unsigned int shndx) const
55da9579 10487{
5ac169d4 10488 Section_id sid(relobj, shndx);
55da9579 10489 typename Arm_input_section_map::const_iterator p =
5ac169d4 10490 this->arm_input_section_map_.find(sid);
55da9579
DK
10491 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10492}
10493
10494// Make a new stub table.
10495
10496template<bool big_endian>
10497Stub_table<big_endian>*
10498Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10499{
2ea97941 10500 Stub_table<big_endian>* stub_table =
55da9579 10501 new Stub_table<big_endian>(owner);
2ea97941 10502 this->stub_tables_.push_back(stub_table);
55da9579 10503
2ea97941
ILT
10504 stub_table->set_address(owner->address() + owner->data_size());
10505 stub_table->set_file_offset(owner->offset() + owner->data_size());
10506 stub_table->finalize_data_size();
55da9579 10507
2ea97941 10508 return stub_table;
55da9579
DK
10509}
10510
eb44217c
DK
10511// Scan a relocation for stub generation.
10512
10513template<bool big_endian>
10514void
10515Target_arm<big_endian>::scan_reloc_for_stub(
10516 const Relocate_info<32, big_endian>* relinfo,
10517 unsigned int r_type,
10518 const Sized_symbol<32>* gsym,
10519 unsigned int r_sym,
10520 const Symbol_value<32>* psymval,
10521 elfcpp::Elf_types<32>::Elf_Swxword addend,
10522 Arm_address address)
10523{
2ea97941 10524 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
10525
10526 const Arm_relobj<big_endian>* arm_relobj =
10527 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10528
10529 bool target_is_thumb;
10530 Symbol_value<32> symval;
10531 if (gsym != NULL)
10532 {
10533 // This is a global symbol. Determine if we use PLT and if the
10534 // final target is THUMB.
2ea97941 10535 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
eb44217c
DK
10536 {
10537 // This uses a PLT, change the symbol value.
10538 symval.set_output_value(this->plt_section()->address()
10539 + gsym->plt_offset());
10540 psymval = &symval;
10541 target_is_thumb = false;
10542 }
10543 else if (gsym->is_undefined())
10544 // There is no need to generate a stub symbol is undefined.
10545 return;
10546 else
10547 {
10548 target_is_thumb =
10549 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10550 || (gsym->type() == elfcpp::STT_FUNC
10551 && !gsym->is_undefined()
10552 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10553 }
10554 }
10555 else
10556 {
10557 // This is a local symbol. Determine if the final target is THUMB.
10558 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10559 }
10560
10561 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10562 const Arm_reloc_property* reloc_property =
10563 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10564 gold_assert(reloc_property != NULL);
eb44217c 10565 if (target_is_thumb
5c57f1be 10566 && reloc_property->uses_thumb_bit()
eb44217c
DK
10567 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10568 {
10569 Arm_address stripped_value =
10570 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10571 symval.set_output_value(stripped_value);
10572 psymval = &symval;
10573 }
10574
10575 // Get the symbol value.
10576 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10577
10578 // Owing to pipelining, the PC relative branches below actually skip
10579 // two instructions when the branch offset is 0.
10580 Arm_address destination;
10581 switch (r_type)
10582 {
10583 case elfcpp::R_ARM_CALL:
10584 case elfcpp::R_ARM_JUMP24:
10585 case elfcpp::R_ARM_PLT32:
10586 // ARM branches.
10587 destination = value + addend + 8;
10588 break;
10589 case elfcpp::R_ARM_THM_CALL:
10590 case elfcpp::R_ARM_THM_XPC22:
10591 case elfcpp::R_ARM_THM_JUMP24:
10592 case elfcpp::R_ARM_THM_JUMP19:
10593 // THUMB branches.
10594 destination = value + addend + 4;
10595 break;
10596 default:
10597 gold_unreachable();
10598 }
10599
a120bc7f 10600 Reloc_stub* stub = NULL;
eb44217c
DK
10601 Stub_type stub_type =
10602 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10603 target_is_thumb);
a120bc7f
DK
10604 if (stub_type != arm_stub_none)
10605 {
10606 // Try looking up an existing stub from a stub table.
10607 Stub_table<big_endian>* stub_table =
10608 arm_relobj->stub_table(relinfo->data_shndx);
10609 gold_assert(stub_table != NULL);
eb44217c 10610
a120bc7f
DK
10611 // Locate stub by destination.
10612 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 10613
a120bc7f
DK
10614 // Create a stub if there is not one already
10615 stub = stub_table->find_reloc_stub(stub_key);
10616 if (stub == NULL)
10617 {
10618 // create a new stub and add it to stub table.
10619 stub = this->stub_factory().make_reloc_stub(stub_type);
10620 stub_table->add_reloc_stub(stub, stub_key);
10621 }
10622
10623 // Record the destination address.
10624 stub->set_destination_address(destination
10625 | (target_is_thumb ? 1 : 0));
eb44217c
DK
10626 }
10627
a120bc7f
DK
10628 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10629 if (this->fix_cortex_a8_
10630 && (r_type == elfcpp::R_ARM_THM_JUMP24
10631 || r_type == elfcpp::R_ARM_THM_JUMP19
10632 || r_type == elfcpp::R_ARM_THM_CALL
10633 || r_type == elfcpp::R_ARM_THM_XPC22)
10634 && (address & 0xfffU) == 0xffeU)
10635 {
10636 // Found a candidate. Note we haven't checked the destination is
10637 // within 4K here: if we do so (and don't create a record) we can't
10638 // tell that a branch should have been relocated when scanning later.
10639 this->cortex_a8_relocs_info_[address] =
10640 new Cortex_a8_reloc(stub, r_type,
10641 destination | (target_is_thumb ? 1 : 0));
10642 }
eb44217c
DK
10643}
10644
10645// This function scans a relocation sections for stub generation.
10646// The template parameter Relocate must be a class type which provides
10647// a single function, relocate(), which implements the machine
10648// specific part of a relocation.
10649
10650// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10651// SHT_REL or SHT_RELA.
10652
10653// PRELOCS points to the relocation data. RELOC_COUNT is the number
10654// of relocs. OUTPUT_SECTION is the output section.
10655// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10656// mapped to output offsets.
10657
10658// VIEW is the section data, VIEW_ADDRESS is its memory address, and
10659// VIEW_SIZE is the size. These refer to the input section, unless
10660// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10661// the output section.
10662
10663template<bool big_endian>
10664template<int sh_type>
10665void inline
10666Target_arm<big_endian>::scan_reloc_section_for_stubs(
10667 const Relocate_info<32, big_endian>* relinfo,
10668 const unsigned char* prelocs,
10669 size_t reloc_count,
10670 Output_section* output_section,
10671 bool needs_special_offset_handling,
10672 const unsigned char* view,
10673 elfcpp::Elf_types<32>::Elf_Addr view_address,
10674 section_size_type)
10675{
10676 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10677 const int reloc_size =
10678 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10679
10680 Arm_relobj<big_endian>* arm_object =
10681 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10682 unsigned int local_count = arm_object->local_symbol_count();
10683
10684 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10685
10686 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10687 {
10688 Reltype reloc(prelocs);
10689
10690 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10691 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10692 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10693
10694 r_type = this->get_real_reloc_type(r_type);
10695
10696 // Only a few relocation types need stubs.
10697 if ((r_type != elfcpp::R_ARM_CALL)
10698 && (r_type != elfcpp::R_ARM_JUMP24)
10699 && (r_type != elfcpp::R_ARM_PLT32)
10700 && (r_type != elfcpp::R_ARM_THM_CALL)
10701 && (r_type != elfcpp::R_ARM_THM_XPC22)
10702 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
10703 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10704 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
10705 continue;
10706
2ea97941 10707 section_offset_type offset =
eb44217c
DK
10708 convert_to_section_size_type(reloc.get_r_offset());
10709
10710 if (needs_special_offset_handling)
10711 {
2ea97941
ILT
10712 offset = output_section->output_offset(relinfo->object,
10713 relinfo->data_shndx,
10714 offset);
10715 if (offset == -1)
eb44217c
DK
10716 continue;
10717 }
10718
2fd9ae7a 10719 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
10720 if (r_type == elfcpp::R_ARM_V4BX)
10721 {
2fd9ae7a
DK
10722 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10723 {
10724 // Get the BX instruction.
10725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10726 const Valtype* wv =
10727 reinterpret_cast<const Valtype*>(view + offset);
10728 elfcpp::Elf_types<32>::Elf_Swxword insn =
10729 elfcpp::Swap<32, big_endian>::readval(wv);
10730 const uint32_t reg = (insn & 0xf);
10731
10732 if (reg < 0xf)
10733 {
10734 // Try looking up an existing stub from a stub table.
10735 Stub_table<big_endian>* stub_table =
10736 arm_object->stub_table(relinfo->data_shndx);
10737 gold_assert(stub_table != NULL);
10738
10739 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10740 {
10741 // create a new stub and add it to stub table.
10742 Arm_v4bx_stub* stub =
10743 this->stub_factory().make_arm_v4bx_stub(reg);
10744 gold_assert(stub != NULL);
10745 stub_table->add_arm_v4bx_stub(stub);
10746 }
10747 }
10748 }
a2162063
ILT
10749 continue;
10750 }
10751
eb44217c
DK
10752 // Get the addend.
10753 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10754 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 10755 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
10756
10757 const Sized_symbol<32>* sym;
10758
10759 Symbol_value<32> symval;
10760 const Symbol_value<32> *psymval;
10761 if (r_sym < local_count)
10762 {
10763 sym = NULL;
10764 psymval = arm_object->local_symbol(r_sym);
10765
10766 // If the local symbol belongs to a section we are discarding,
10767 // and that section is a debug section, try to find the
10768 // corresponding kept section and map this symbol to its
10769 // counterpart in the kept section. The symbol must not
10770 // correspond to a section we are folding.
10771 bool is_ordinary;
2ea97941 10772 unsigned int shndx = psymval->input_shndx(&is_ordinary);
eb44217c 10773 if (is_ordinary
2ea97941
ILT
10774 && shndx != elfcpp::SHN_UNDEF
10775 && !arm_object->is_section_included(shndx)
10776 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
eb44217c
DK
10777 {
10778 if (comdat_behavior == CB_UNDETERMINED)
10779 {
10780 std::string name =
10781 arm_object->section_name(relinfo->data_shndx);
10782 comdat_behavior = get_comdat_behavior(name.c_str());
10783 }
10784 if (comdat_behavior == CB_PRETEND)
10785 {
10786 bool found;
10787 typename elfcpp::Elf_types<32>::Elf_Addr value =
2ea97941 10788 arm_object->map_to_kept_section(shndx, &found);
eb44217c
DK
10789 if (found)
10790 symval.set_output_value(value + psymval->input_value());
10791 else
10792 symval.set_output_value(0);
10793 }
10794 else
10795 {
10796 symval.set_output_value(0);
10797 }
10798 symval.set_no_output_symtab_entry();
10799 psymval = &symval;
10800 }
10801 }
10802 else
10803 {
10804 const Symbol* gsym = arm_object->global_symbol(r_sym);
10805 gold_assert(gsym != NULL);
10806 if (gsym->is_forwarder())
10807 gsym = relinfo->symtab->resolve_forwards(gsym);
10808
10809 sym = static_cast<const Sized_symbol<32>*>(gsym);
10810 if (sym->has_symtab_index())
10811 symval.set_output_symtab_index(sym->symtab_index());
10812 else
10813 symval.set_no_output_symtab_entry();
10814
10815 // We need to compute the would-be final value of this global
10816 // symbol.
10817 const Symbol_table* symtab = relinfo->symtab;
10818 const Sized_symbol<32>* sized_symbol =
10819 symtab->get_sized_symbol<32>(gsym);
10820 Symbol_table::Compute_final_value_status status;
10821 Arm_address value =
10822 symtab->compute_final_value<32>(sized_symbol, &status);
10823
10824 // Skip this if the symbol has not output section.
10825 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10826 continue;
10827
10828 symval.set_output_value(value);
10829 psymval = &symval;
10830 }
10831
10832 // If symbol is a section symbol, we don't know the actual type of
10833 // destination. Give up.
10834 if (psymval->is_section_symbol())
10835 continue;
10836
10837 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 10838 addend, view_address + offset);
eb44217c
DK
10839 }
10840}
10841
10842// Scan an input section for stub generation.
10843
10844template<bool big_endian>
10845void
10846Target_arm<big_endian>::scan_section_for_stubs(
10847 const Relocate_info<32, big_endian>* relinfo,
10848 unsigned int sh_type,
10849 const unsigned char* prelocs,
10850 size_t reloc_count,
10851 Output_section* output_section,
10852 bool needs_special_offset_handling,
10853 const unsigned char* view,
10854 Arm_address view_address,
10855 section_size_type view_size)
10856{
10857 if (sh_type == elfcpp::SHT_REL)
10858 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10859 relinfo,
10860 prelocs,
10861 reloc_count,
10862 output_section,
10863 needs_special_offset_handling,
10864 view,
10865 view_address,
10866 view_size);
10867 else if (sh_type == elfcpp::SHT_RELA)
10868 // We do not support RELA type relocations yet. This is provided for
10869 // completeness.
10870 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10871 relinfo,
10872 prelocs,
10873 reloc_count,
10874 output_section,
10875 needs_special_offset_handling,
10876 view,
10877 view_address,
10878 view_size);
10879 else
10880 gold_unreachable();
10881}
10882
10883// Group input sections for stub generation.
10884//
10885// We goup input sections in an output sections so that the total size,
10886// including any padding space due to alignment is smaller than GROUP_SIZE
10887// unless the only input section in group is bigger than GROUP_SIZE already.
10888// Then an ARM stub table is created to follow the last input section
10889// in group. For each group an ARM stub table is created an is placed
10890// after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10891// extend the group after the stub table.
10892
10893template<bool big_endian>
10894void
10895Target_arm<big_endian>::group_sections(
2ea97941 10896 Layout* layout,
eb44217c
DK
10897 section_size_type group_size,
10898 bool stubs_always_after_branch)
10899{
10900 // Group input sections and insert stub table
10901 Layout::Section_list section_list;
2ea97941 10902 layout->get_allocated_sections(&section_list);
eb44217c
DK
10903 for (Layout::Section_list::const_iterator p = section_list.begin();
10904 p != section_list.end();
10905 ++p)
10906 {
10907 Arm_output_section<big_endian>* output_section =
10908 Arm_output_section<big_endian>::as_arm_output_section(*p);
10909 output_section->group_sections(group_size, stubs_always_after_branch,
10910 this);
10911 }
10912}
10913
10914// Relaxation hook. This is where we do stub generation.
10915
10916template<bool big_endian>
10917bool
10918Target_arm<big_endian>::do_relax(
10919 int pass,
10920 const Input_objects* input_objects,
10921 Symbol_table* symtab,
2ea97941 10922 Layout* layout)
eb44217c
DK
10923{
10924 // No need to generate stubs if this is a relocatable link.
10925 gold_assert(!parameters->options().relocatable());
10926
10927 // If this is the first pass, we need to group input sections into
10928 // stub groups.
2b328d4e 10929 bool done_exidx_fixup = false;
6625d24e 10930 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
10931 if (pass == 1)
10932 {
10933 // Determine the stub group size. The group size is the absolute
10934 // value of the parameter --stub-group-size. If --stub-group-size
10935 // is passed a negative value, we restict stubs to be always after
10936 // the stubbed branches.
10937 int32_t stub_group_size_param =
10938 parameters->options().stub_group_size();
10939 bool stubs_always_after_branch = stub_group_size_param < 0;
10940 section_size_type stub_group_size = abs(stub_group_size_param);
10941
10942 if (stub_group_size == 1)
10943 {
10944 // Default value.
10945 // Thumb branch range is +-4MB has to be used as the default
10946 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
10947 // code, so the worst case has to be taken into account). If we are
10948 // fixing cortex-a8 errata, the branch range has to be even smaller,
10949 // since wide conditional branch has a range of +-1MB only.
eb44217c 10950 //
25bbe950 10951 // This value is 48K less than that, which allows for 4096
eb44217c
DK
10952 // 12-byte stubs. If we exceed that, then we will fail to link.
10953 // The user will have to relink with an explicit group size
10954 // option.
25bbe950
DK
10955 stub_group_size = 4145152;
10956 }
10957
10958 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10959 // page as the first half of a 32-bit branch straddling two 4K pages.
10960 // This is a crude way of enforcing that. In addition, long conditional
10961 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
10962 // erratum, limit the group size to (1M - 12k) to avoid unreachable
10963 // cortex-A8 stubs from long conditional branches.
10964 if (this->fix_cortex_a8_)
10965 {
10966 stubs_always_after_branch = true;
10967 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
10968 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
10969 }
10970
2ea97941 10971 group_sections(layout, stub_group_size, stubs_always_after_branch);
2b328d4e
DK
10972
10973 // Also fix .ARM.exidx section coverage.
10974 Output_section* os = layout->find_output_section(".ARM.exidx");
10975 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10976 {
10977 Arm_output_section<big_endian>* exidx_output_section =
10978 Arm_output_section<big_endian>::as_arm_output_section(os);
10979 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10980 done_exidx_fixup = true;
10981 }
eb44217c 10982 }
6625d24e
DK
10983 else
10984 {
10985 // If this is not the first pass, addresses and file offsets have
10986 // been reset at this point, set them here.
10987 for (Stub_table_iterator sp = this->stub_tables_.begin();
10988 sp != this->stub_tables_.end();
10989 ++sp)
10990 {
10991 Arm_input_section<big_endian>* owner = (*sp)->owner();
10992 off_t off = align_address(owner->original_size(),
10993 (*sp)->addralign());
10994 (*sp)->set_address_and_file_offset(owner->address() + off,
10995 owner->offset() + off);
10996 }
10997 }
eb44217c 10998
44272192
DK
10999 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11000 // beginning of each relaxation pass, just blow away all the stubs.
11001 // Alternatively, we could selectively remove only the stubs and reloc
11002 // information for code sections that have moved since the last pass.
11003 // That would require more book-keeping.
a120bc7f
DK
11004 if (this->fix_cortex_a8_)
11005 {
11006 // Clear all Cortex-A8 reloc information.
11007 for (typename Cortex_a8_relocs_info::const_iterator p =
11008 this->cortex_a8_relocs_info_.begin();
11009 p != this->cortex_a8_relocs_info_.end();
11010 ++p)
11011 delete p->second;
11012 this->cortex_a8_relocs_info_.clear();
44272192
DK
11013
11014 // Remove all Cortex-A8 stubs.
11015 for (Stub_table_iterator sp = this->stub_tables_.begin();
11016 sp != this->stub_tables_.end();
11017 ++sp)
11018 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
11019 }
11020
44272192 11021 // Scan relocs for relocation stubs
eb44217c
DK
11022 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11023 op != input_objects->relobj_end();
11024 ++op)
11025 {
11026 Arm_relobj<big_endian>* arm_relobj =
11027 Arm_relobj<big_endian>::as_arm_relobj(*op);
2ea97941 11028 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11029 }
11030
2fb7225c
DK
11031 // Check all stub tables to see if any of them have their data sizes
11032 // or addresses alignments changed. These are the only things that
11033 // matter.
eb44217c 11034 bool any_stub_table_changed = false;
8923b24c 11035 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11036 for (Stub_table_iterator sp = this->stub_tables_.begin();
11037 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11038 ++sp)
11039 {
2fb7225c 11040 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11041 {
11042 // Update data size of stub table owner.
11043 Arm_input_section<big_endian>* owner = (*sp)->owner();
11044 uint64_t address = owner->address();
11045 off_t offset = owner->offset();
11046 owner->reset_address_and_file_offset();
11047 owner->set_address_and_file_offset(address, offset);
11048
11049 sections_needing_adjustment.insert(owner->output_section());
11050 any_stub_table_changed = true;
11051 }
11052 }
11053
11054 // Output_section_data::output_section() returns a const pointer but we
11055 // need to update output sections, so we record all output sections needing
11056 // update above and scan the sections here to find out what sections need
11057 // to be updated.
11058 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
11059 p != layout->section_list().end();
11060 ++p)
11061 {
11062 if (sections_needing_adjustment.find(*p)
11063 != sections_needing_adjustment.end())
11064 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11065 }
11066
2b328d4e
DK
11067 // Stop relaxation if no EXIDX fix-up and no stub table change.
11068 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11069
2fb7225c 11070 // Finalize the stubs in the last relaxation pass.
2b328d4e 11071 if (!continue_relaxation)
e7eca48c
DK
11072 {
11073 for (Stub_table_iterator sp = this->stub_tables_.begin();
11074 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11075 ++sp)
11076 (*sp)->finalize_stubs();
11077
11078 // Update output local symbol counts of objects if necessary.
11079 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11080 op != input_objects->relobj_end();
11081 ++op)
11082 {
11083 Arm_relobj<big_endian>* arm_relobj =
11084 Arm_relobj<big_endian>::as_arm_relobj(*op);
11085
11086 // Update output local symbol counts. We need to discard local
11087 // symbols defined in parts of input sections that are discarded by
11088 // relaxation.
11089 if (arm_relobj->output_local_symbol_count_needs_update())
11090 arm_relobj->update_output_local_symbol_count();
11091 }
11092 }
2fb7225c 11093
2b328d4e 11094 return continue_relaxation;
eb44217c
DK
11095}
11096
43d12afe
DK
11097// Relocate a stub.
11098
11099template<bool big_endian>
11100void
11101Target_arm<big_endian>::relocate_stub(
2fb7225c 11102 Stub* stub,
43d12afe
DK
11103 const Relocate_info<32, big_endian>* relinfo,
11104 Output_section* output_section,
11105 unsigned char* view,
11106 Arm_address address,
11107 section_size_type view_size)
11108{
11109 Relocate relocate;
2ea97941
ILT
11110 const Stub_template* stub_template = stub->stub_template();
11111 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11112 {
2ea97941
ILT
11113 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11114 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11115
11116 unsigned int r_type = insn->r_type();
2ea97941 11117 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11118 section_size_type reloc_size = insn->size();
11119 gold_assert(reloc_offset + reloc_size <= view_size);
11120
11121 // This is the address of the stub destination.
41263c05 11122 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11123 Symbol_value<32> symval;
11124 symval.set_output_value(target);
11125
11126 // Synthesize a fake reloc just in case. We don't have a symbol so
11127 // we use 0.
11128 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11129 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11130 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11131 reloc_write.put_r_offset(reloc_offset);
11132 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11133 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11134
11135 relocate.relocate(relinfo, this, output_section,
11136 this->fake_relnum_for_stubs, rel, r_type,
11137 NULL, &symval, view + reloc_offset,
11138 address + reloc_offset, reloc_size);
11139 }
11140}
11141
a0351a69
DK
11142// Determine whether an object attribute tag takes an integer, a
11143// string or both.
11144
11145template<bool big_endian>
11146int
11147Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11148{
11149 if (tag == Object_attribute::Tag_compatibility)
11150 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11151 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11152 else if (tag == elfcpp::Tag_nodefaults)
11153 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11154 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11155 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11156 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11157 else if (tag < 32)
11158 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11159 else
11160 return ((tag & 1) != 0
11161 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11162 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11163}
11164
11165// Reorder attributes.
11166//
11167// The ABI defines that Tag_conformance should be emitted first, and that
11168// Tag_nodefaults should be second (if either is defined). This sets those
11169// two positions, and bumps up the position of all the remaining tags to
11170// compensate.
11171
11172template<bool big_endian>
11173int
11174Target_arm<big_endian>::do_attributes_order(int num) const
11175{
11176 // Reorder the known object attributes in output. We want to move
11177 // Tag_conformance to position 4 and Tag_conformance to position 5
11178 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
11179 if (num == 4)
11180 return elfcpp::Tag_conformance;
11181 if (num == 5)
11182 return elfcpp::Tag_nodefaults;
11183 if ((num - 2) < elfcpp::Tag_nodefaults)
11184 return num - 2;
11185 if ((num - 1) < elfcpp::Tag_conformance)
11186 return num - 1;
11187 return num;
11188}
4a657b0d 11189
44272192
DK
11190// Scan a span of THUMB code for Cortex-A8 erratum.
11191
11192template<bool big_endian>
11193void
11194Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11195 Arm_relobj<big_endian>* arm_relobj,
11196 unsigned int shndx,
11197 section_size_type span_start,
11198 section_size_type span_end,
11199 const unsigned char* view,
11200 Arm_address address)
11201{
11202 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11203 //
11204 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11205 // The branch target is in the same 4KB region as the
11206 // first half of the branch.
11207 // The instruction before the branch is a 32-bit
11208 // length non-branch instruction.
11209 section_size_type i = span_start;
11210 bool last_was_32bit = false;
11211 bool last_was_branch = false;
11212 while (i < span_end)
11213 {
11214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11215 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11216 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11217 bool is_blx = false, is_b = false;
11218 bool is_bl = false, is_bcc = false;
11219
11220 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11221 if (insn_32bit)
11222 {
11223 // Load the rest of the insn (in manual-friendly order).
11224 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11225
11226 // Encoding T4: B<c>.W.
11227 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11228 // Encoding T1: BL<c>.W.
11229 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11230 // Encoding T2: BLX<c>.W.
11231 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11232 // Encoding T3: B<c>.W (not permitted in IT block).
11233 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11234 && (insn & 0x07f00000U) != 0x03800000U);
11235 }
11236
11237 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11238
11239 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11240 // page boundary and it follows 32-bit non-branch instruction,
11241 // we need to work around.
11242 if (is_32bit_branch
11243 && ((address + i) & 0xfffU) == 0xffeU
11244 && last_was_32bit
11245 && !last_was_branch)
11246 {
11247 // Check to see if there is a relocation stub for this branch.
11248 bool force_target_arm = false;
11249 bool force_target_thumb = false;
11250 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11251 Cortex_a8_relocs_info::const_iterator p =
11252 this->cortex_a8_relocs_info_.find(address + i);
11253
11254 if (p != this->cortex_a8_relocs_info_.end())
11255 {
11256 cortex_a8_reloc = p->second;
11257 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11258
11259 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11260 && !target_is_thumb)
11261 force_target_arm = true;
11262 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11263 && target_is_thumb)
11264 force_target_thumb = true;
11265 }
11266
11267 off_t offset;
11268 Stub_type stub_type = arm_stub_none;
11269
11270 // Check if we have an offending branch instruction.
11271 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11272 uint16_t lower_insn = insn & 0xffffU;
11273 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11274
11275 if (cortex_a8_reloc != NULL
11276 && cortex_a8_reloc->reloc_stub() != NULL)
11277 // We've already made a stub for this instruction, e.g.
11278 // it's a long branch or a Thumb->ARM stub. Assume that
11279 // stub will suffice to work around the A8 erratum (see
11280 // setting of always_after_branch above).
11281 ;
11282 else if (is_bcc)
11283 {
11284 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11285 lower_insn);
11286 stub_type = arm_stub_a8_veneer_b_cond;
11287 }
11288 else if (is_b || is_bl || is_blx)
11289 {
11290 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11291 lower_insn);
11292 if (is_blx)
11293 offset &= ~3;
11294
11295 stub_type = (is_blx
11296 ? arm_stub_a8_veneer_blx
11297 : (is_bl
11298 ? arm_stub_a8_veneer_bl
11299 : arm_stub_a8_veneer_b));
11300 }
11301
11302 if (stub_type != arm_stub_none)
11303 {
11304 Arm_address pc_for_insn = address + i + 4;
11305
11306 // The original instruction is a BL, but the target is
11307 // an ARM instruction. If we were not making a stub,
11308 // the BL would have been converted to a BLX. Use the
11309 // BLX stub instead in that case.
11310 if (this->may_use_blx() && force_target_arm
11311 && stub_type == arm_stub_a8_veneer_bl)
11312 {
11313 stub_type = arm_stub_a8_veneer_blx;
11314 is_blx = true;
11315 is_bl = false;
11316 }
11317 // Conversely, if the original instruction was
11318 // BLX but the target is Thumb mode, use the BL stub.
11319 else if (force_target_thumb
11320 && stub_type == arm_stub_a8_veneer_blx)
11321 {
11322 stub_type = arm_stub_a8_veneer_bl;
11323 is_blx = false;
11324 is_bl = true;
11325 }
11326
11327 if (is_blx)
11328 pc_for_insn &= ~3;
11329
11330 // If we found a relocation, use the proper destination,
11331 // not the offset in the (unrelocated) instruction.
11332 // Note this is always done if we switched the stub type above.
11333 if (cortex_a8_reloc != NULL)
11334 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11335
11336 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11337
11338 // Add a new stub if destination address in in the same page.
11339 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11340 {
11341 Cortex_a8_stub* stub =
11342 this->stub_factory_.make_cortex_a8_stub(stub_type,
11343 arm_relobj, shndx,
11344 address + i,
11345 target, insn);
11346 Stub_table<big_endian>* stub_table =
11347 arm_relobj->stub_table(shndx);
11348 gold_assert(stub_table != NULL);
11349 stub_table->add_cortex_a8_stub(address + i, stub);
11350 }
11351 }
11352 }
11353
11354 i += insn_32bit ? 4 : 2;
11355 last_was_32bit = insn_32bit;
11356 last_was_branch = is_32bit_branch;
11357 }
11358}
11359
41263c05
DK
11360// Apply the Cortex-A8 workaround.
11361
11362template<bool big_endian>
11363void
11364Target_arm<big_endian>::apply_cortex_a8_workaround(
11365 const Cortex_a8_stub* stub,
11366 Arm_address stub_address,
11367 unsigned char* insn_view,
11368 Arm_address insn_address)
11369{
11370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11371 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11372 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11373 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11374 off_t branch_offset = stub_address - (insn_address + 4);
11375
11376 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11377 switch (stub->stub_template()->type())
11378 {
11379 case arm_stub_a8_veneer_b_cond:
0439c796
DK
11380 // For a conditional branch, we re-write it to be a uncondition
11381 // branch to the stub. We use the THUMB-2 encoding here.
11382 upper_insn = 0xf000U;
11383 lower_insn = 0xb800U;
11384 // Fall through
41263c05
DK
11385 case arm_stub_a8_veneer_b:
11386 case arm_stub_a8_veneer_bl:
11387 case arm_stub_a8_veneer_blx:
11388 if ((lower_insn & 0x5000U) == 0x4000U)
11389 // For a BLX instruction, make sure that the relocation is
11390 // rounded up to a word boundary. This follows the semantics of
11391 // the instruction which specifies that bit 1 of the target
11392 // address will come from bit 1 of the base address.
11393 branch_offset = (branch_offset + 2) & ~3;
11394
11395 // Put BRANCH_OFFSET back into the insn.
11396 gold_assert(!utils::has_overflow<25>(branch_offset));
11397 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11398 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11399 break;
11400
11401 default:
11402 gold_unreachable();
11403 }
11404
11405 // Put the relocated value back in the object file:
11406 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11407 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11408}
11409
4a657b0d
DK
11410template<bool big_endian>
11411class Target_selector_arm : public Target_selector
11412{
11413 public:
11414 Target_selector_arm()
11415 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
11416 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
11417 { }
11418
11419 Target*
11420 do_instantiate_target()
11421 { return new Target_arm<big_endian>(); }
11422};
11423
2b328d4e
DK
11424// Fix .ARM.exidx section coverage.
11425
11426template<bool big_endian>
11427void
11428Target_arm<big_endian>::fix_exidx_coverage(
11429 Layout* layout,
11430 Arm_output_section<big_endian>* exidx_section,
11431 Symbol_table* symtab)
11432{
11433 // We need to look at all the input sections in output in ascending
11434 // order of of output address. We do that by building a sorted list
11435 // of output sections by addresses. Then we looks at the output sections
11436 // in order. The input sections in an output section are already sorted
11437 // by addresses within the output section.
11438
11439 typedef std::set<Output_section*, output_section_address_less_than>
11440 Sorted_output_section_list;
11441 Sorted_output_section_list sorted_output_sections;
11442 Layout::Section_list section_list;
11443 layout->get_allocated_sections(&section_list);
11444 for (Layout::Section_list::const_iterator p = section_list.begin();
11445 p != section_list.end();
11446 ++p)
11447 {
11448 // We only care about output sections that contain executable code.
11449 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
11450 sorted_output_sections.insert(*p);
11451 }
11452
11453 // Go over the output sections in ascending order of output addresses.
11454 typedef typename Arm_output_section<big_endian>::Text_section_list
11455 Text_section_list;
11456 Text_section_list sorted_text_sections;
11457 for(typename Sorted_output_section_list::iterator p =
11458 sorted_output_sections.begin();
11459 p != sorted_output_sections.end();
11460 ++p)
11461 {
11462 Arm_output_section<big_endian>* arm_output_section =
11463 Arm_output_section<big_endian>::as_arm_output_section(*p);
11464 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11465 }
11466
85fdf906
AH
11467 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
11468 merge_exidx_entries());
2b328d4e
DK
11469}
11470
4a657b0d
DK
11471Target_selector_arm<false> target_selector_arm;
11472Target_selector_arm<true> target_selector_armbe;
11473
11474} // End anonymous namespace.
This page took 0.718386 seconds and 4 git commands to generate.