* blockframe.c (find_pc_partial_function_gnu_ifunc): Change type of
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
bef2b434 3// Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
9b547ce6 119// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
ca09d69a 129Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
9b547ce6
RW
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 604 // Arm_relobj, in order to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
9b547ce6
RW
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
56ee5e00 900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
2fb7225c
DK
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
aa98ff75
DK
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
af2cdeae 1072 private:
7296d933 1073 // Implement do_write for a given endianness.
af2cdeae
DK
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082};
1083
1084// During EXIDX coverage fix-up, we compact an EXIDX section. The
1085// Offset map is used to map input section offset within the EXIDX section
1086// to the output offset from the start of this EXIDX section.
1087
1088typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091// Arm_exidx_merged_section class. This represents an EXIDX input section
1092// with some of its entries merged.
1093
1094class Arm_exidx_merged_section : public Output_relaxed_input_section
1095{
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
f625ae50
DK
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
af2cdeae
DK
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
f625ae50
DK
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
af2cdeae
DK
1139};
1140
10ad9fe5
DK
1141// A class to wrap an ordinary input section containing executable code.
1142
1143template<bool big_endian>
1144class Arm_input_section : public Output_relaxed_input_section
1145{
1146 public:
2ea97941
ILT
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
10ad9fe5
DK
1151 { }
1152
1153 ~Arm_input_section()
f625ae50 1154 { delete[] this->original_contents_; }
10ad9fe5
DK
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
2ea97941
ILT
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
10ad9fe5 1174
07f508a2
DK
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
6625d24e
DK
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
10ad9fe5
DK
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
6625d24e 1197 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
2ea97941
ILT
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
10ad9fe5
DK
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
2ea97941
ILT
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
0439c796
DK
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1221 {
2ea97941 1222 *poutput = offset;
10ad9fe5
DK
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
6625d24e 1235 uint32_t original_addralign_;
10ad9fe5 1236 // Section size of the original input section.
6625d24e 1237 uint32_t original_size_;
10ad9fe5
DK
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
10ad9fe5
DK
1244};
1245
80d0d023
DK
1246// Arm_exidx_fixup class. This is used to define a number of methods
1247// and keep states for fixing up EXIDX coverage.
1248
1249class Arm_exidx_fixup
1250{
1251 public:
85fdf906
AH
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
80d0d023
DK
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
f625ae50
DK
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1268 // responsible for releasing it.
80d0d023
DK
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
80d0d023
DK
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
546c7457
DK
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
80d0d023
DK
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
2b328d4e 1326 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
85fdf906
AH
1332
1333 bool merge_exidx_entries_;
80d0d023
DK
1334};
1335
07f508a2
DK
1336// Arm output section class. This is defined mainly to add a number of
1337// stub generation methods.
1338
1339template<bool big_endian>
1340class Arm_output_section : public Output_section
1341{
1342 public:
2b328d4e
DK
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
c87e4302 1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
c87e4302
DK
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
131687b4
DK
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
07f508a2
DK
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
f625ae50 1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
2b328d4e
DK
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
4a54abbb
DK
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
85fdf906 1380 Symbol_table* symtab,
f625ae50
DK
1381 bool merge_exidx_entries,
1382 const Task* task);
2b328d4e 1383
131687b4
DK
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
07f508a2
DK
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
f625ae50
DK
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
07f508a2
DK
1400};
1401
993d07c1
DK
1402// Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404class Arm_exidx_input_section
1405{
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
993d07c1 1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
f625ae50 1442 // Return address alignment of EXIDX input section.
993d07c1
DK
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
f625ae50
DK
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
131687b4
DK
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
993d07c1
DK
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
f625ae50
DK
1473 // Size of associated text section.
1474 uint32_t text_size_;
131687b4
DK
1475 // Whether this has any errors.
1476 bool has_errors_;
993d07c1
DK
1477};
1478
8ffa3667
DK
1479// Arm_relobj class.
1480
1481template<bool big_endian>
6fa2a40b 1482class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1483{
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
2ea97941 1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1490 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1491 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
8ffa3667
DK
1495 { }
1496
1497 ~Arm_relobj()
a0351a69 1498 { delete this->attributes_section_data_; }
8ffa3667
DK
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
2ea97941 1502 stub_table(unsigned int shndx) const
8ffa3667 1503 {
2ea97941
ILT
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
8ffa3667
DK
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
2ea97941 1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1511 {
2ea97941
ILT
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
2ea97941 1532 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
2b328d4e 1536 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
2ea97941
ILT
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1545
d5b40221
DK
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
a0351a69
DK
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
20138696
DK
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
2fb7225c
DK
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
993d07c1
DK
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
e7eca48c
DK
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
7296d933
DK
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
131687b4
DK
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
8ffa3667
DK
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
6fa2a40b 1660 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
6fa2a40b
CC
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1677
d5b40221
DK
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
99e5bff2
DK
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
8ffa3667 1686 private:
44272192
DK
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
ca09d69a 1692 const Symbol_table*, const unsigned char*);
44272192 1693
cf846138
DK
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1697 const Output_section*, const Symbol_table*);
cf846138 1698
44272192
DK
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
ca09d69a 1703 const Symbol_table*);
44272192
DK
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
c8761b9a 1711 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1712 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
993d07c1 1721 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
993d07c1
DK
1724 void
1725 make_exidx_input_section(unsigned int shndx,
c8761b9a 1726 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1729
cb1be87e
DK
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
8ffa3667 1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
8ffa3667
DK
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
20138696
DK
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
7296d933
DK
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
d5b40221
DK
1759};
1760
1761// Arm_dynobj class.
1762
1763template<bool big_endian>
1764class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765{
1766 public:
2ea97941 1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1771 { }
1772
1773 ~Arm_dynobj()
a0351a69 1774 { delete this->attributes_section_data_; }
d5b40221
DK
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
a0351a69
DK
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
d5b40221
DK
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1803};
1804
e9bbb538
DK
1805// Functor to read reloc addends during stub generation.
1806
1807template<int sh_type, bool big_endian>
1808struct Stub_addend_reader
1809{
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
ebd95253 1818 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1819};
1820
1821// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823template<bool big_endian>
1824struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825{
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831};
1832
1833// Specialized Stub_addend_reader for RELA type relocation sections.
1834// We currently do not handle RELA type relocation sections but it is trivial
1835// to implement the addend reader. This is provided for completeness and to
1836// make it easier to add support for RELA relocation sections in the future.
1837
1838template<bool big_endian>
1839struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840{
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
e9bbb538
DK
1848};
1849
a120bc7f
DK
1850// Cortex_a8_reloc class. We keep record of relocation that may need
1851// the Cortex-A8 erratum workaround.
1852
1853class Cortex_a8_reloc
1854{
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891};
1892
4a54abbb
DK
1893// Arm_output_data_got class. We derive this from Output_data_got to add
1894// extra methods to handle TLS relocations in a static link.
1895
1896template<bool big_endian>
1897class Arm_output_data_got : public Output_data_got<32, big_endian>
1898{
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
4a54abbb
DK
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1934 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
6fa2a40b 1984 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
6fa2a40b 2017 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030};
2031
9b547ce6 2032// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2033// bits. The default handling of relocatable relocation cannot process these
2034// relocations. So we have to extend the default code.
2035
2036template<bool big_endian, int sh_type, typename Classify_reloc>
2037class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039{
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2c339f71
DK
2078 // Relocations that write full 32 bits and
2079 // have alignment of 1.
5c388529
DK
2080 case elfcpp::R_ARM_ABS32:
2081 case elfcpp::R_ARM_REL32:
2082 case elfcpp::R_ARM_SBREL32:
2083 case elfcpp::R_ARM_GOTOFF32:
2084 case elfcpp::R_ARM_BASE_PREL:
2085 case elfcpp::R_ARM_GOT_BREL:
2086 case elfcpp::R_ARM_BASE_ABS:
2087 case elfcpp::R_ARM_ABS32_NOI:
2088 case elfcpp::R_ARM_REL32_NOI:
2089 case elfcpp::R_ARM_PLT32_ABS:
2090 case elfcpp::R_ARM_GOT_ABS:
2091 case elfcpp::R_ARM_GOT_PREL:
2092 case elfcpp::R_ARM_TLS_GD32:
2093 case elfcpp::R_ARM_TLS_LDM32:
2094 case elfcpp::R_ARM_TLS_LDO32:
2095 case elfcpp::R_ARM_TLS_IE32:
2096 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2097 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2098 default:
2099 // For all other static relocations, return RELOC_SPECIAL.
2100 return Relocatable_relocs::RELOC_SPECIAL;
2101 }
2102 }
2103 }
2104};
2105
4a657b0d
DK
2106template<bool big_endian>
2107class Target_arm : public Sized_target<32, big_endian>
2108{
2109 public:
2110 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2111 Reloc_section;
2112
2daedcd6
DK
2113 // When were are relocating a stub, we pass this as the relocation number.
2114 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2115
a6d1ef57
DK
2116 Target_arm()
2117 : Sized_target<32, big_endian>(&arm_info),
2118 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2119 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2120 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2122 should_force_pic_veneer_(false),
f96accdf
DK
2123 arm_input_section_map_(), attributes_section_data_(NULL),
2124 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2125 { }
4a657b0d 2126
b569affa
DK
2127 // Whether we force PCI branch veneers.
2128 bool
2129 should_force_pic_veneer() const
2130 { return this->should_force_pic_veneer_; }
2131
2132 // Set PIC veneer flag.
2133 void
2134 set_should_force_pic_veneer(bool value)
2135 { this->should_force_pic_veneer_ = value; }
2136
2137 // Whether we use THUMB-2 instructions.
2138 bool
2139 using_thumb2() const
2140 {
a0351a69
DK
2141 Object_attribute* attr =
2142 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2143 int arch = attr->int_value();
2144 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2145 }
2146
2147 // Whether we use THUMB/THUMB-2 instructions only.
2148 bool
2149 using_thumb_only() const
2150 {
a0351a69
DK
2151 Object_attribute* attr =
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2153
2154 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2156 return true;
a0351a69
DK
2157 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2159 return false;
2160 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2161 return attr->int_value() == 'M';
b569affa
DK
2162 }
2163
d204b6e9
DK
2164 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2165 bool
2166 may_use_arm_nop() const
2167 {
a0351a69
DK
2168 Object_attribute* attr =
2169 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2170 int arch = attr->int_value();
2171 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2172 || arch == elfcpp::TAG_CPU_ARCH_V6K
2173 || arch == elfcpp::TAG_CPU_ARCH_V7
2174 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2175 }
2176
51938283
DK
2177 // Whether we have THUMB-2 NOP.W instruction.
2178 bool
2179 may_use_thumb2_nop() const
2180 {
a0351a69
DK
2181 Object_attribute* attr =
2182 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2183 int arch = attr->int_value();
2184 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2187 }
cd6eab1c
ILT
2188
2189 // Whether we have v4T interworking instructions available.
2190 bool
2191 may_use_v4t_interworking() const
2192 {
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2197 && arch != elfcpp::TAG_CPU_ARCH_V4);
2198 }
2199
2200 // Whether we have v5T interworking instructions available.
2201 bool
2202 may_use_v5t_interworking() const
2203 {
2204 Object_attribute* attr =
2205 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2206 int arch = attr->int_value();
a8e2273b
ILT
2207 if (parameters->options().fix_arm1176())
2208 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2209 || arch == elfcpp::TAG_CPU_ARCH_V7
2210 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2211 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2212 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2213 else
2214 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2215 && arch != elfcpp::TAG_CPU_ARCH_V4
2216 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2217 }
51938283 2218
4a657b0d
DK
2219 // Process the relocations to determine unreferenced sections for
2220 // garbage collection.
2221 void
ad0f2072 2222 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2223 Layout* layout,
6fa2a40b 2224 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2225 unsigned int data_shndx,
2226 unsigned int sh_type,
2227 const unsigned char* prelocs,
2228 size_t reloc_count,
2229 Output_section* output_section,
2230 bool needs_special_offset_handling,
2231 size_t local_symbol_count,
2232 const unsigned char* plocal_symbols);
2233
2234 // Scan the relocations to look for symbol adjustments.
2235 void
ad0f2072 2236 scan_relocs(Symbol_table* symtab,
4a657b0d 2237 Layout* layout,
6fa2a40b 2238 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2239 unsigned int data_shndx,
2240 unsigned int sh_type,
2241 const unsigned char* prelocs,
2242 size_t reloc_count,
2243 Output_section* output_section,
2244 bool needs_special_offset_handling,
2245 size_t local_symbol_count,
2246 const unsigned char* plocal_symbols);
2247
2248 // Finalize the sections.
2249 void
f59f41f3 2250 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2251
94cdfcff 2252 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2253 // treatment.
2254 uint64_t
2255 do_dynsym_value(const Symbol*) const;
2256
2257 // Relocate a section.
2258 void
2259 relocate_section(const Relocate_info<32, big_endian>*,
2260 unsigned int sh_type,
2261 const unsigned char* prelocs,
2262 size_t reloc_count,
2263 Output_section* output_section,
2264 bool needs_special_offset_handling,
2265 unsigned char* view,
ebabffbd 2266 Arm_address view_address,
364c7fa5
ILT
2267 section_size_type view_size,
2268 const Reloc_symbol_changes*);
4a657b0d
DK
2269
2270 // Scan the relocs during a relocatable link.
2271 void
ad0f2072 2272 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2273 Layout* layout,
6fa2a40b 2274 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2275 unsigned int data_shndx,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 size_t local_symbol_count,
2282 const unsigned char* plocal_symbols,
2283 Relocatable_relocs*);
2284
2285 // Relocate a section during a relocatable link.
2286 void
2287 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2288 unsigned int sh_type,
2289 const unsigned char* prelocs,
2290 size_t reloc_count,
2291 Output_section* output_section,
2292 off_t offset_in_output_section,
2293 const Relocatable_relocs*,
2294 unsigned char* view,
ebabffbd 2295 Arm_address view_address,
4a657b0d
DK
2296 section_size_type view_size,
2297 unsigned char* reloc_view,
2298 section_size_type reloc_view_size);
2299
5c388529
DK
2300 // Perform target-specific processing in a relocatable link. This is
2301 // only used if we use the relocation strategy RELOC_SPECIAL.
2302 void
2303 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2304 unsigned int sh_type,
2305 const unsigned char* preloc_in,
2306 size_t relnum,
2307 Output_section* output_section,
2308 off_t offset_in_output_section,
2309 unsigned char* view,
2310 typename elfcpp::Elf_types<32>::Elf_Addr
2311 view_address,
2312 section_size_type view_size,
2313 unsigned char* preloc_out);
2314
4a657b0d
DK
2315 // Return whether SYM is defined by the ABI.
2316 bool
2317 do_is_defined_by_abi(Symbol* sym) const
2318 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2319
c8761b9a
DK
2320 // Return whether there is a GOT section.
2321 bool
2322 has_got_section() const
2323 { return this->got_ != NULL; }
2324
94cdfcff
DK
2325 // Return the size of the GOT section.
2326 section_size_type
0e70b911 2327 got_size() const
94cdfcff
DK
2328 {
2329 gold_assert(this->got_ != NULL);
2330 return this->got_->data_size();
2331 }
2332
0e70b911
CC
2333 // Return the number of entries in the GOT.
2334 unsigned int
2335 got_entry_count() const
2336 {
2337 if (!this->has_got_section())
2338 return 0;
2339 return this->got_size() / 4;
2340 }
2341
2342 // Return the number of entries in the PLT.
2343 unsigned int
2344 plt_entry_count() const;
2345
2346 // Return the offset of the first non-reserved PLT entry.
2347 unsigned int
2348 first_plt_entry_offset() const;
2349
2350 // Return the size of each PLT entry.
2351 unsigned int
2352 plt_entry_size() const;
2353
4a657b0d 2354 // Map platform-specific reloc types
a6d1ef57 2355 static unsigned int
ca09d69a 2356 get_real_reloc_type(unsigned int r_type);
4a657b0d 2357
55da9579
DK
2358 //
2359 // Methods to support stub-generations.
2360 //
2361
2362 // Return the stub factory
2363 const Stub_factory&
2364 stub_factory() const
2365 { return this->stub_factory_; }
2366
2367 // Make a new Arm_input_section object.
2368 Arm_input_section<big_endian>*
2369 new_arm_input_section(Relobj*, unsigned int);
2370
2371 // Find the Arm_input_section object corresponding to the SHNDX-th input
2372 // section of RELOBJ.
2373 Arm_input_section<big_endian>*
2ea97941 2374 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2375
2376 // Make a new Stub_table
2377 Stub_table<big_endian>*
2378 new_stub_table(Arm_input_section<big_endian>*);
2379
eb44217c
DK
2380 // Scan a section for stub generation.
2381 void
2382 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2383 const unsigned char*, size_t, Output_section*,
2384 bool, const unsigned char*, Arm_address,
2385 section_size_type);
2386
43d12afe
DK
2387 // Relocate a stub.
2388 void
2fb7225c 2389 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2390 Output_section*, unsigned char*, Arm_address,
2391 section_size_type);
2392
b569affa 2393 // Get the default ARM target.
43d12afe 2394 static Target_arm<big_endian>*
b569affa
DK
2395 default_target()
2396 {
2397 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2398 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2399 return static_cast<Target_arm<big_endian>*>(
2400 parameters->sized_target<32, big_endian>());
b569affa
DK
2401 }
2402
20138696
DK
2403 // Whether NAME belongs to a mapping symbol.
2404 static bool
2405 is_mapping_symbol_name(const char* name)
2406 {
2407 return (name
2408 && name[0] == '$'
2409 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2410 && (name[2] == '\0' || name[2] == '.'));
2411 }
2412
a120bc7f
DK
2413 // Whether we work around the Cortex-A8 erratum.
2414 bool
2415 fix_cortex_a8() const
2416 { return this->fix_cortex_a8_; }
2417
85fdf906
AH
2418 // Whether we merge exidx entries in debuginfo.
2419 bool
2420 merge_exidx_entries() const
2421 { return parameters->options().merge_exidx_entries(); }
2422
a2162063
ILT
2423 // Whether we fix R_ARM_V4BX relocation.
2424 // 0 - do not fix
2425 // 1 - replace with MOV instruction (armv4 target)
2426 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2427 General_options::Fix_v4bx
a2162063 2428 fix_v4bx() const
9b2fd367 2429 { return parameters->options().fix_v4bx(); }
a2162063 2430
44272192
DK
2431 // Scan a span of THUMB code section for Cortex-A8 erratum.
2432 void
2433 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2434 section_size_type, section_size_type,
2435 const unsigned char*, Arm_address);
2436
41263c05
DK
2437 // Apply Cortex-A8 workaround to a branch.
2438 void
2439 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2440 unsigned char*, Arm_address);
2441
d5b40221 2442 protected:
eb44217c
DK
2443 // Make an ELF object.
2444 Object*
2445 do_make_elf_object(const std::string&, Input_file*, off_t,
2446 const elfcpp::Ehdr<32, big_endian>& ehdr);
2447
2448 Object*
2449 do_make_elf_object(const std::string&, Input_file*, off_t,
2450 const elfcpp::Ehdr<32, !big_endian>&)
2451 { gold_unreachable(); }
2452
2453 Object*
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<64, false>&)
2456 { gold_unreachable(); }
2457
2458 Object*
2459 do_make_elf_object(const std::string&, Input_file*, off_t,
2460 const elfcpp::Ehdr<64, true>&)
2461 { gold_unreachable(); }
2462
2463 // Make an output section.
2464 Output_section*
2465 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2466 elfcpp::Elf_Xword flags)
2467 { return new Arm_output_section<big_endian>(name, type, flags); }
2468
d5b40221
DK
2469 void
2470 do_adjust_elf_header(unsigned char* view, int len) const;
2471
eb44217c
DK
2472 // We only need to generate stubs, and hence perform relaxation if we are
2473 // not doing relocatable linking.
2474 bool
2475 do_may_relax() const
2476 { return !parameters->options().relocatable(); }
2477
2478 bool
f625ae50 2479 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2480
a0351a69
DK
2481 // Determine whether an object attribute tag takes an integer, a
2482 // string or both.
2483 int
2484 do_attribute_arg_type(int tag) const;
2485
2486 // Reorder tags during output.
2487 int
2488 do_attributes_order(int num) const;
2489
0d31c79d
DK
2490 // This is called when the target is selected as the default.
2491 void
2492 do_select_as_default_target()
2493 {
2494 // No locking is required since there should only be one default target.
2495 // We cannot have both the big-endian and little-endian ARM targets
2496 // as the default.
2497 gold_assert(arm_reloc_property_table == NULL);
2498 arm_reloc_property_table = new Arm_reloc_property_table();
2499 }
2500
b3ce541e
ILT
2501 // Virtual function which is set to return true by a target if
2502 // it can use relocation types to determine if a function's
2503 // pointer is taken.
2504 virtual bool
2505 do_can_check_for_function_pointers() const
2506 { return true; }
2507
2508 // Whether a section called SECTION_NAME may have function pointers to
2509 // sections not eligible for safe ICF folding.
2510 virtual bool
2511 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2512 {
2513 return (!is_prefix_of(".ARM.exidx", section_name)
2514 && !is_prefix_of(".ARM.extab", section_name)
2515 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2516 }
2517
4a657b0d
DK
2518 private:
2519 // The class which scans relocations.
2520 class Scan
2521 {
2522 public:
2523 Scan()
bec53400 2524 : issued_non_pic_error_(false)
4a657b0d
DK
2525 { }
2526
95a2c8d6
RS
2527 static inline int
2528 get_reference_flags(unsigned int r_type);
2529
4a657b0d 2530 inline void
ad0f2072 2531 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2532 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2533 unsigned int data_shndx,
2534 Output_section* output_section,
2535 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2536 const elfcpp::Sym<32, big_endian>& lsym);
2537
2538 inline void
ad0f2072 2539 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2540 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2541 unsigned int data_shndx,
2542 Output_section* output_section,
2543 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2544 Symbol* gsym);
2545
21bb3914
ST
2546 inline bool
2547 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2548 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2549 unsigned int ,
2550 Output_section* ,
2551 const elfcpp::Rel<32, big_endian>& ,
2552 unsigned int ,
8a75a161 2553 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2554
2555 inline bool
2556 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2557 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2558 unsigned int ,
2559 Output_section* ,
2560 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2561 unsigned int , Symbol*);
21bb3914 2562
4a657b0d
DK
2563 private:
2564 static void
6fa2a40b 2565 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2566 unsigned int r_type);
2567
2568 static void
6fa2a40b 2569 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2570 unsigned int r_type, Symbol*);
bec53400
DK
2571
2572 void
2573 check_non_pic(Relobj*, unsigned int r_type);
2574
2575 // Almost identical to Symbol::needs_plt_entry except that it also
2576 // handles STT_ARM_TFUNC.
2577 static bool
2578 symbol_needs_plt_entry(const Symbol* sym)
2579 {
2580 // An undefined symbol from an executable does not need a PLT entry.
2581 if (sym->is_undefined() && !parameters->options().shared())
2582 return false;
2583
2584 return (!parameters->doing_static_link()
2585 && (sym->type() == elfcpp::STT_FUNC
2586 || sym->type() == elfcpp::STT_ARM_TFUNC)
2587 && (sym->is_from_dynobj()
2588 || sym->is_undefined()
2589 || sym->is_preemptible()));
2590 }
2591
8a75a161
DK
2592 inline bool
2593 possible_function_pointer_reloc(unsigned int r_type);
2594
bec53400
DK
2595 // Whether we have issued an error about a non-PIC compilation.
2596 bool issued_non_pic_error_;
4a657b0d
DK
2597 };
2598
2599 // The class which implements relocation.
2600 class Relocate
2601 {
2602 public:
2603 Relocate()
2604 { }
2605
2606 ~Relocate()
2607 { }
2608
bec53400
DK
2609 // Return whether the static relocation needs to be applied.
2610 inline bool
2611 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2612 unsigned int r_type,
bec53400
DK
2613 bool is_32bit,
2614 Output_section* output_section);
2615
4a657b0d
DK
2616 // Do a relocation. Return false if the caller should not issue
2617 // any warnings about this relocation.
2618 inline bool
2619 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2620 Output_section*, size_t relnum,
2621 const elfcpp::Rel<32, big_endian>&,
2622 unsigned int r_type, const Sized_symbol<32>*,
2623 const Symbol_value<32>*,
ebabffbd 2624 unsigned char*, Arm_address,
4a657b0d 2625 section_size_type);
c121c671
DK
2626
2627 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2628 // reloc. This means the relocation type accesses a symbol not via
2629 // GOT or PLT.
c121c671 2630 static inline bool
ca09d69a 2631 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2632 {
2633 switch (r_type)
2634 {
f4e5969c
DK
2635 // These relocation types reference GOT or PLT entries explicitly.
2636 case elfcpp::R_ARM_GOT_BREL:
2637 case elfcpp::R_ARM_GOT_ABS:
2638 case elfcpp::R_ARM_GOT_PREL:
2639 case elfcpp::R_ARM_GOT_BREL12:
2640 case elfcpp::R_ARM_PLT32_ABS:
2641 case elfcpp::R_ARM_TLS_GD32:
2642 case elfcpp::R_ARM_TLS_LDM32:
2643 case elfcpp::R_ARM_TLS_IE32:
2644 case elfcpp::R_ARM_TLS_IE12GP:
2645
2646 // These relocate types may use PLT entries.
c121c671 2647 case elfcpp::R_ARM_CALL:
f4e5969c 2648 case elfcpp::R_ARM_THM_CALL:
c121c671 2649 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2650 case elfcpp::R_ARM_THM_JUMP24:
2651 case elfcpp::R_ARM_THM_JUMP19:
2652 case elfcpp::R_ARM_PLT32:
2653 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2654 case elfcpp::R_ARM_PREL31:
2655 case elfcpp::R_ARM_SBREL31:
c121c671 2656 return false;
f4e5969c
DK
2657
2658 default:
2659 return true;
c121c671
DK
2660 }
2661 }
f96accdf
DK
2662
2663 private:
2664 // Do a TLS relocation.
2665 inline typename Arm_relocate_functions<big_endian>::Status
2666 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2667 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2668 const Sized_symbol<32>*, const Symbol_value<32>*,
2669 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2670 section_size_type);
2671
4a657b0d
DK
2672 };
2673
2674 // A class which returns the size required for a relocation type,
2675 // used while scanning relocs during a relocatable link.
2676 class Relocatable_size_for_reloc
2677 {
2678 public:
2679 unsigned int
2680 get_size_for_reloc(unsigned int, Relobj*);
2681 };
2682
f96accdf
DK
2683 // Adjust TLS relocation type based on the options and whether this
2684 // is a local symbol.
2685 static tls::Tls_optimization
2686 optimize_tls_reloc(bool is_final, int r_type);
2687
94cdfcff 2688 // Get the GOT section, creating it if necessary.
4a54abbb 2689 Arm_output_data_got<big_endian>*
94cdfcff
DK
2690 got_section(Symbol_table*, Layout*);
2691
2692 // Get the GOT PLT section.
2693 Output_data_space*
2694 got_plt_section() const
2695 {
2696 gold_assert(this->got_plt_ != NULL);
2697 return this->got_plt_;
2698 }
2699
2700 // Create a PLT entry for a global symbol.
2701 void
2702 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2703
f96accdf
DK
2704 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2705 void
2706 define_tls_base_symbol(Symbol_table*, Layout*);
2707
2708 // Create a GOT entry for the TLS module index.
2709 unsigned int
2710 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2711 Sized_relobj_file<32, big_endian>* object);
f96accdf 2712
94cdfcff
DK
2713 // Get the PLT section.
2714 const Output_data_plt_arm<big_endian>*
2715 plt_section() const
2716 {
2717 gold_assert(this->plt_ != NULL);
2718 return this->plt_;
2719 }
2720
2721 // Get the dynamic reloc section, creating it if necessary.
2722 Reloc_section*
2723 rel_dyn_section(Layout*);
2724
f96accdf
DK
2725 // Get the section to use for TLS_DESC relocations.
2726 Reloc_section*
2727 rel_tls_desc_section(Layout*) const;
2728
94cdfcff
DK
2729 // Return true if the symbol may need a COPY relocation.
2730 // References from an executable object to non-function symbols
2731 // defined in a dynamic object may need a COPY relocation.
2732 bool
2733 may_need_copy_reloc(Symbol* gsym)
2734 {
966d4097
DK
2735 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2736 && gsym->may_need_copy_reloc());
94cdfcff
DK
2737 }
2738
2739 // Add a potential copy relocation.
2740 void
2741 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2742 Sized_relobj_file<32, big_endian>* object,
2ea97941 2743 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2744 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2745 {
2746 this->copy_relocs_.copy_reloc(symtab, layout,
2747 symtab->get_sized_symbol<32>(sym),
2ea97941 2748 object, shndx, output_section, reloc,
94cdfcff
DK
2749 this->rel_dyn_section(layout));
2750 }
2751
d5b40221
DK
2752 // Whether two EABI versions are compatible.
2753 static bool
2754 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2755
2756 // Merge processor-specific flags from input object and those in the ELF
2757 // header of the output.
2758 void
2759 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2760
a0351a69
DK
2761 // Get the secondary compatible architecture.
2762 static int
2763 get_secondary_compatible_arch(const Attributes_section_data*);
2764
2765 // Set the secondary compatible architecture.
2766 static void
2767 set_secondary_compatible_arch(Attributes_section_data*, int);
2768
2769 static int
2770 tag_cpu_arch_combine(const char*, int, int*, int, int);
2771
2772 // Helper to print AEABI enum tag value.
2773 static std::string
2774 aeabi_enum_name(unsigned int);
2775
2776 // Return string value for TAG_CPU_name.
2777 static std::string
2778 tag_cpu_name_value(unsigned int);
2779
2780 // Merge object attributes from input object and those in the output.
2781 void
2782 merge_object_attributes(const char*, const Attributes_section_data*);
2783
2784 // Helper to get an AEABI object attribute
2785 Object_attribute*
2786 get_aeabi_object_attribute(int tag) const
2787 {
2788 Attributes_section_data* pasd = this->attributes_section_data_;
2789 gold_assert(pasd != NULL);
2790 Object_attribute* attr =
2791 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2792 gold_assert(attr != NULL);
2793 return attr;
2794 }
2795
eb44217c
DK
2796 //
2797 // Methods to support stub-generations.
2798 //
d5b40221 2799
eb44217c
DK
2800 // Group input sections for stub generation.
2801 void
f625ae50 2802 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2803
eb44217c
DK
2804 // Scan a relocation for stub generation.
2805 void
2806 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2807 const Sized_symbol<32>*, unsigned int,
2808 const Symbol_value<32>*,
2809 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2810
eb44217c
DK
2811 // Scan a relocation section for stub.
2812 template<int sh_type>
2813 void
2814 scan_reloc_section_for_stubs(
2815 const Relocate_info<32, big_endian>* relinfo,
2816 const unsigned char* prelocs,
2817 size_t reloc_count,
2818 Output_section* output_section,
2819 bool needs_special_offset_handling,
2820 const unsigned char* view,
2821 elfcpp::Elf_types<32>::Elf_Addr view_address,
2822 section_size_type);
d5b40221 2823
2b328d4e
DK
2824 // Fix .ARM.exidx section coverage.
2825 void
131687b4 2826 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2827 Arm_output_section<big_endian>*, Symbol_table*,
2828 const Task*);
2b328d4e
DK
2829
2830 // Functors for STL set.
2831 struct output_section_address_less_than
2832 {
2833 bool
2834 operator()(const Output_section* s1, const Output_section* s2) const
2835 { return s1->address() < s2->address(); }
2836 };
2837
4a657b0d
DK
2838 // Information about this specific target which we pass to the
2839 // general Target structure.
2840 static const Target::Target_info arm_info;
94cdfcff
DK
2841
2842 // The types of GOT entries needed for this platform.
0e70b911
CC
2843 // These values are exposed to the ABI in an incremental link.
2844 // Do not renumber existing values without changing the version
2845 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2846 enum Got_type
2847 {
f96accdf
DK
2848 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2849 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2850 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2851 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2852 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2853 };
2854
55da9579
DK
2855 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2856
2857 // Map input section to Arm_input_section.
5ac169d4 2858 typedef Unordered_map<Section_id,
55da9579 2859 Arm_input_section<big_endian>*,
5ac169d4 2860 Section_id_hash>
55da9579
DK
2861 Arm_input_section_map;
2862
a120bc7f
DK
2863 // Map output addresses to relocs for Cortex-A8 erratum.
2864 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2865 Cortex_a8_relocs_info;
2866
94cdfcff 2867 // The GOT section.
4a54abbb 2868 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2869 // The PLT section.
2870 Output_data_plt_arm<big_endian>* plt_;
2871 // The GOT PLT section.
2872 Output_data_space* got_plt_;
2873 // The dynamic reloc section.
2874 Reloc_section* rel_dyn_;
2875 // Relocs saved to avoid a COPY reloc.
2876 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2877 // Space for variables copied with a COPY reloc.
2878 Output_data_space* dynbss_;
f96accdf
DK
2879 // Offset of the GOT entry for the TLS module index.
2880 unsigned int got_mod_index_offset_;
2881 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2882 bool tls_base_symbol_defined_;
55da9579
DK
2883 // Vector of Stub_tables created.
2884 Stub_table_list stub_tables_;
2885 // Stub factory.
2886 const Stub_factory &stub_factory_;
b569affa
DK
2887 // Whether we force PIC branch veneers.
2888 bool should_force_pic_veneer_;
eb44217c
DK
2889 // Map for locating Arm_input_sections.
2890 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2891 // Attributes section data in output.
2892 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2893 // Whether we want to fix code for Cortex-A8 erratum.
2894 bool fix_cortex_a8_;
2895 // Map addresses to relocs for Cortex-A8 erratum.
2896 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2897};
2898
2899template<bool big_endian>
2900const Target::Target_info Target_arm<big_endian>::arm_info =
2901{
2902 32, // size
2903 big_endian, // is_big_endian
2904 elfcpp::EM_ARM, // machine_code
2905 false, // has_make_symbol
2906 false, // has_resolve
2907 false, // has_code_fill
2908 true, // is_default_stack_executable
b3ce541e 2909 false, // can_icf_inline_merge_sections
4a657b0d
DK
2910 '\0', // wrap_char
2911 "/usr/lib/libc.so.1", // dynamic_linker
2912 0x8000, // default_text_segment_address
2913 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2914 0x1000, // common_pagesize (overridable by -z common-page-size)
2915 elfcpp::SHN_UNDEF, // small_common_shndx
2916 elfcpp::SHN_UNDEF, // large_common_shndx
2917 0, // small_common_section_flags
05a352e6
DK
2918 0, // large_common_section_flags
2919 ".ARM.attributes", // attributes_section
2920 "aeabi" // attributes_vendor
4a657b0d
DK
2921};
2922
c121c671
DK
2923// Arm relocate functions class
2924//
2925
2926template<bool big_endian>
2927class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2928{
2929 public:
2930 typedef enum
2931 {
2932 STATUS_OKAY, // No error during relocation.
9b547ce6 2933 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2934 STATUS_BAD_RELOC // Relocation cannot be applied.
2935 } Status;
2936
2937 private:
2938 typedef Relocate_functions<32, big_endian> Base;
2939 typedef Arm_relocate_functions<big_endian> This;
2940
fd3c5f0b
ILT
2941 // Encoding of imm16 argument for movt and movw ARM instructions
2942 // from ARM ARM:
2943 //
2944 // imm16 := imm4 | imm12
2945 //
2946 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2947 // +-------+---------------+-------+-------+-----------------------+
2948 // | | |imm4 | |imm12 |
2949 // +-------+---------------+-------+-------+-----------------------+
2950
2951 // Extract the relocation addend from VAL based on the ARM
2952 // instruction encoding described above.
2953 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2954 extract_arm_movw_movt_addend(
2955 typename elfcpp::Swap<32, big_endian>::Valtype val)
2956 {
2957 // According to the Elf ABI for ARM Architecture the immediate
2958 // field is sign-extended to form the addend.
bef2b434 2959 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
2960 }
2961
2962 // Insert X into VAL based on the ARM instruction encoding described
2963 // above.
2964 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2965 insert_val_arm_movw_movt(
2966 typename elfcpp::Swap<32, big_endian>::Valtype val,
2967 typename elfcpp::Swap<32, big_endian>::Valtype x)
2968 {
2969 val &= 0xfff0f000;
2970 val |= x & 0x0fff;
2971 val |= (x & 0xf000) << 4;
2972 return val;
2973 }
2974
2975 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2976 // from ARM ARM:
2977 //
2978 // imm16 := imm4 | i | imm3 | imm8
2979 //
2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2981 // +---------+-+-----------+-------++-+-----+-------+---------------+
2982 // | |i| |imm4 || |imm3 | |imm8 |
2983 // +---------+-+-----------+-------++-+-----+-------+---------------+
2984
2985 // Extract the relocation addend from VAL based on the Thumb2
2986 // instruction encoding described above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 extract_thumb_movw_movt_addend(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val)
2990 {
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
bef2b434
ILT
2993 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
2994 | ((val >> 15) & 0x0800)
2995 | ((val >> 4) & 0x0700)
2996 | (val & 0x00ff));
fd3c5f0b
ILT
2997 }
2998
2999 // Insert X into VAL based on the Thumb2 instruction encoding
3000 // described above.
3001 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3002 insert_val_thumb_movw_movt(
3003 typename elfcpp::Swap<32, big_endian>::Valtype val,
3004 typename elfcpp::Swap<32, big_endian>::Valtype x)
3005 {
3006 val &= 0xfbf08f00;
3007 val |= (x & 0xf000) << 4;
3008 val |= (x & 0x0800) << 15;
3009 val |= (x & 0x0700) << 4;
3010 val |= (x & 0x00ff);
3011 return val;
3012 }
3013
b10d2873
ILT
3014 // Calculate the smallest constant Kn for the specified residual.
3015 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3016 static uint32_t
3017 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3018 {
3019 int32_t msb;
3020
3021 if (residual == 0)
3022 return 0;
3023 // Determine the most significant bit in the residual and
3024 // align the resulting value to a 2-bit boundary.
3025 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3026 ;
3027 // The desired shift is now (msb - 6), or zero, whichever
3028 // is the greater.
3029 return (((msb - 6) < 0) ? 0 : (msb - 6));
3030 }
3031
3032 // Calculate the final residual for the specified group index.
3033 // If the passed group index is less than zero, the method will return
3034 // the value of the specified residual without any change.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static typename elfcpp::Swap<32, big_endian>::Valtype
3037 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3038 const int group)
3039 {
3040 for (int n = 0; n <= group; n++)
3041 {
3042 // Calculate which part of the value to mask.
3043 uint32_t shift = calc_grp_kn(residual);
3044 // Calculate the residual for the next time around.
3045 residual &= ~(residual & (0xff << shift));
3046 }
3047
3048 return residual;
3049 }
3050
3051 // Calculate the value of Gn for the specified group index.
3052 // We return it in the form of an encoded constant-and-rotation.
3053 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3054 static typename elfcpp::Swap<32, big_endian>::Valtype
3055 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3056 const int group)
3057 {
3058 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3059 uint32_t shift = 0;
3060
3061 for (int n = 0; n <= group; n++)
3062 {
3063 // Calculate which part of the value to mask.
3064 shift = calc_grp_kn(residual);
3065 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3066 gn = residual & (0xff << shift);
3067 // Calculate the residual for the next time around.
3068 residual &= ~gn;
3069 }
3070 // Return Gn in the form of an encoded constant-and-rotation.
3071 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3072 }
3073
1521477a 3074 public:
d204b6e9
DK
3075 // Handle ARM long branches.
3076 static typename This::Status
3077 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3078 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3079 const Arm_relobj<big_endian>*, unsigned int,
3080 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3081
51938283
DK
3082 // Handle THUMB long branches.
3083 static typename This::Status
3084 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3085 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3086 const Arm_relobj<big_endian>*, unsigned int,
3087 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3088
5e445df6 3089
089d69dc
DK
3090 // Return the branch offset of a 32-bit THUMB branch.
3091 static inline int32_t
3092 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3093 {
3094 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3095 // involving the J1 and J2 bits.
3096 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3097 uint32_t upper = upper_insn & 0x3ffU;
3098 uint32_t lower = lower_insn & 0x7ffU;
3099 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3100 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3101 uint32_t i1 = j1 ^ s ? 0 : 1;
3102 uint32_t i2 = j2 ^ s ? 0 : 1;
3103
bef2b434
ILT
3104 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3105 | (upper << 12) | (lower << 1));
089d69dc
DK
3106 }
3107
3108 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3109 // UPPER_INSN is the original upper instruction of the branch. Caller is
3110 // responsible for overflow checking and BLX offset adjustment.
3111 static inline uint16_t
3112 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3113 {
3114 uint32_t s = offset < 0 ? 1 : 0;
3115 uint32_t bits = static_cast<uint32_t>(offset);
3116 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3117 }
3118
3119 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3120 // LOWER_INSN is the original lower instruction of the branch. Caller is
3121 // responsible for overflow checking and BLX offset adjustment.
3122 static inline uint16_t
3123 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3124 {
3125 uint32_t s = offset < 0 ? 1 : 0;
3126 uint32_t bits = static_cast<uint32_t>(offset);
3127 return ((lower_insn & ~0x2fffU)
3128 | ((((bits >> 23) & 1) ^ !s) << 13)
3129 | ((((bits >> 22) & 1) ^ !s) << 11)
3130 | ((bits >> 1) & 0x7ffU));
3131 }
3132
3133 // Return the branch offset of a 32-bit THUMB conditional branch.
3134 static inline int32_t
3135 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3136 {
3137 uint32_t s = (upper_insn & 0x0400U) >> 10;
3138 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3139 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3140 uint32_t lower = (lower_insn & 0x07ffU);
3141 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3142
bef2b434 3143 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3144 }
3145
3146 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3147 // instruction. UPPER_INSN is the original upper instruction of the branch.
3148 // Caller is responsible for overflow checking.
3149 static inline uint16_t
3150 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3151 {
3152 uint32_t s = offset < 0 ? 1 : 0;
3153 uint32_t bits = static_cast<uint32_t>(offset);
3154 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3155 }
3156
3157 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3158 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3159 // The caller is responsible for overflow checking.
089d69dc
DK
3160 static inline uint16_t
3161 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3162 {
3163 uint32_t bits = static_cast<uint32_t>(offset);
3164 uint32_t j2 = (bits & 0x00080000U) >> 19;
3165 uint32_t j1 = (bits & 0x00040000U) >> 18;
3166 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3167
3168 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3169 }
3170
5e445df6
ILT
3171 // R_ARM_ABS8: S + A
3172 static inline typename This::Status
ca09d69a 3173 abs8(unsigned char* view,
6fa2a40b 3174 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3175 const Symbol_value<32>* psymval)
5e445df6
ILT
3176 {
3177 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3178 Valtype* wv = reinterpret_cast<Valtype*>(view);
3179 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3180 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3181 Arm_address x = psymval->value(object, addend);
bef2b434 3182 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3183 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3184
3185 // R_ARM_ABS8 permits signed or unsigned results.
3186 int signed_x = static_cast<int32_t>(x);
3187 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3188 ? This::STATUS_OVERFLOW
3189 : This::STATUS_OKAY);
3190 }
3191
be8fcb75
ILT
3192 // R_ARM_THM_ABS5: S + A
3193 static inline typename This::Status
ca09d69a 3194 thm_abs5(unsigned char* view,
6fa2a40b 3195 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3196 const Symbol_value<32>* psymval)
3197 {
3198 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3199 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3200 Valtype* wv = reinterpret_cast<Valtype*>(view);
3201 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3202 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3203 Reltype x = psymval->value(object, addend);
bef2b434 3204 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3205 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3206
3207 // R_ARM_ABS16 permits signed or unsigned results.
3208 int signed_x = static_cast<int32_t>(x);
3209 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3210 ? This::STATUS_OVERFLOW
3211 : This::STATUS_OKAY);
3212 }
3213
3214 // R_ARM_ABS12: S + A
3215 static inline typename This::Status
ca09d69a 3216 abs12(unsigned char* view,
6fa2a40b 3217 const Sized_relobj_file<32, big_endian>* object,
51938283 3218 const Symbol_value<32>* psymval)
be8fcb75
ILT
3219 {
3220 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3221 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3222 Valtype* wv = reinterpret_cast<Valtype*>(view);
3223 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3224 Reltype addend = val & 0x0fffU;
2daedcd6 3225 Reltype x = psymval->value(object, addend);
bef2b434 3226 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3227 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3228 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3229 ? This::STATUS_OVERFLOW
3230 : This::STATUS_OKAY);
3231 }
3232
3233 // R_ARM_ABS16: S + A
3234 static inline typename This::Status
ca09d69a 3235 abs16(unsigned char* view,
6fa2a40b 3236 const Sized_relobj_file<32, big_endian>* object,
51938283 3237 const Symbol_value<32>* psymval)
be8fcb75 3238 {
f6cccc2c 3239 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
be8fcb75 3240 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
f6cccc2c 3241 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3242 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3243 Arm_address x = psymval->value(object, addend);
bef2b434 3244 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3245 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3246
3247 // R_ARM_ABS16 permits signed or unsigned results.
3248 int signed_x = static_cast<int32_t>(x);
3249 return ((signed_x < -32768 || signed_x > 65536)
be8fcb75
ILT
3250 ? This::STATUS_OVERFLOW
3251 : This::STATUS_OKAY);
3252 }
3253
c121c671
DK
3254 // R_ARM_ABS32: (S + A) | T
3255 static inline typename This::Status
ca09d69a 3256 abs32(unsigned char* view,
6fa2a40b 3257 const Sized_relobj_file<32, big_endian>* object,
c121c671 3258 const Symbol_value<32>* psymval,
2daedcd6 3259 Arm_address thumb_bit)
c121c671 3260 {
f6cccc2c
DK
3261 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3262 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3263 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3264 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3265 return This::STATUS_OKAY;
3266 }
3267
3268 // R_ARM_REL32: (S + A) | T - P
3269 static inline typename This::Status
ca09d69a 3270 rel32(unsigned char* view,
6fa2a40b 3271 const Sized_relobj_file<32, big_endian>* object,
c121c671 3272 const Symbol_value<32>* psymval,
ebabffbd 3273 Arm_address address,
2daedcd6 3274 Arm_address thumb_bit)
c121c671 3275 {
f6cccc2c
DK
3276 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3277 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3278 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3279 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3280 return This::STATUS_OKAY;
3281 }
3282
089d69dc
DK
3283 // R_ARM_THM_JUMP24: (S + A) | T - P
3284 static typename This::Status
ca09d69a 3285 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3286 const Symbol_value<32>* psymval, Arm_address address,
3287 Arm_address thumb_bit);
3288
800d0f56
ILT
3289 // R_ARM_THM_JUMP6: S + A – P
3290 static inline typename This::Status
ca09d69a 3291 thm_jump6(unsigned char* view,
6fa2a40b 3292 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3293 const Symbol_value<32>* psymval,
3294 Arm_address address)
3295 {
3296 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3297 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3298 Valtype* wv = reinterpret_cast<Valtype*>(view);
3299 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3300 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3301 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3302 Reltype x = (psymval->value(object, addend) - address);
3303 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3304 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3305 // CZB does only forward jumps.
3306 return ((x > 0x007e)
3307 ? This::STATUS_OVERFLOW
3308 : This::STATUS_OKAY);
3309 }
3310
3311 // R_ARM_THM_JUMP8: S + A – P
3312 static inline typename This::Status
ca09d69a 3313 thm_jump8(unsigned char* view,
6fa2a40b 3314 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3315 const Symbol_value<32>* psymval,
3316 Arm_address address)
3317 {
3318 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3319 Valtype* wv = reinterpret_cast<Valtype*>(view);
3320 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3321 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3322 int32_t x = (psymval->value(object, addend) - address);
3323 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3324 | ((x & 0x01fe) >> 1)));
3325 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3326 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3327 ? This::STATUS_OVERFLOW
3328 : This::STATUS_OKAY);
3329 }
3330
3331 // R_ARM_THM_JUMP11: S + A – P
3332 static inline typename This::Status
ca09d69a 3333 thm_jump11(unsigned char* view,
6fa2a40b 3334 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3335 const Symbol_value<32>* psymval,
3336 Arm_address address)
3337 {
3338 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3339 Valtype* wv = reinterpret_cast<Valtype*>(view);
3340 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3341 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3342 int32_t x = (psymval->value(object, addend) - address);
3343 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3344 | ((x & 0x0ffe) >> 1)));
3345 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3346 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3347 ? This::STATUS_OVERFLOW
3348 : This::STATUS_OKAY);
3349 }
3350
c121c671
DK
3351 // R_ARM_BASE_PREL: B(S) + A - P
3352 static inline typename This::Status
3353 base_prel(unsigned char* view,
ebabffbd
DK
3354 Arm_address origin,
3355 Arm_address address)
c121c671
DK
3356 {
3357 Base::rel32(view, origin - address);
3358 return STATUS_OKAY;
3359 }
3360
be8fcb75
ILT
3361 // R_ARM_BASE_ABS: B(S) + A
3362 static inline typename This::Status
3363 base_abs(unsigned char* view,
f4e5969c 3364 Arm_address origin)
be8fcb75
ILT
3365 {
3366 Base::rel32(view, origin);
3367 return STATUS_OKAY;
3368 }
3369
c121c671
DK
3370 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3371 static inline typename This::Status
3372 got_brel(unsigned char* view,
3373 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3374 {
3375 Base::rel32(view, got_offset);
3376 return This::STATUS_OKAY;
3377 }
3378
f4e5969c 3379 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3380 static inline typename This::Status
ca09d69a 3381 got_prel(unsigned char* view,
f4e5969c 3382 Arm_address got_entry,
ebabffbd 3383 Arm_address address)
7f5309a5 3384 {
f4e5969c 3385 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3386 return This::STATUS_OKAY;
3387 }
3388
c121c671
DK
3389 // R_ARM_PREL: (S + A) | T - P
3390 static inline typename This::Status
ca09d69a 3391 prel31(unsigned char* view,
6fa2a40b 3392 const Sized_relobj_file<32, big_endian>* object,
c121c671 3393 const Symbol_value<32>* psymval,
ebabffbd 3394 Arm_address address,
2daedcd6 3395 Arm_address thumb_bit)
c121c671 3396 {
f6cccc2c
DK
3397 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3398 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3399 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3400 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3401 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3402 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3403 return (Bits<31>::has_overflow32(x)
3404 ? This::STATUS_OVERFLOW
3405 : This::STATUS_OKAY);
c121c671 3406 }
fd3c5f0b 3407
5c57f1be 3408 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3409 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3410 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3411 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3412 static inline typename This::Status
5c57f1be 3413 movw(unsigned char* view,
6fa2a40b 3414 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3415 const Symbol_value<32>* psymval,
3416 Arm_address relative_address_base,
3417 Arm_address thumb_bit,
3418 bool check_overflow)
02961d7e
ILT
3419 {
3420 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3421 Valtype* wv = reinterpret_cast<Valtype*>(view);
3422 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3423 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3424 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3425 - relative_address_base);
02961d7e
ILT
3426 val = This::insert_val_arm_movw_movt(val, x);
3427 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3428 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3429 ? This::STATUS_OVERFLOW
3430 : This::STATUS_OKAY);
02961d7e
ILT
3431 }
3432
5c57f1be 3433 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3434 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3435 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3436 static inline typename This::Status
5c57f1be 3437 movt(unsigned char* view,
6fa2a40b 3438 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3439 const Symbol_value<32>* psymval,
3440 Arm_address relative_address_base)
c2a122b6
ILT
3441 {
3442 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3443 Valtype* wv = reinterpret_cast<Valtype*>(view);
3444 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3445 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3446 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3447 val = This::insert_val_arm_movw_movt(val, x);
3448 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3449 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3450 return This::STATUS_OKAY;
3451 }
3452
5c57f1be 3453 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3454 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3455 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3456 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3457 static inline typename This::Status
ca09d69a 3458 thm_movw(unsigned char* view,
6fa2a40b 3459 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3460 const Symbol_value<32>* psymval,
3461 Arm_address relative_address_base,
3462 Arm_address thumb_bit,
3463 bool check_overflow)
02961d7e
ILT
3464 {
3465 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3466 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3467 Valtype* wv = reinterpret_cast<Valtype*>(view);
3468 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3469 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3470 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3471 Reltype x =
3472 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3473 val = This::insert_val_thumb_movw_movt(val, x);
3474 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3475 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3476 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3477 ? This::STATUS_OVERFLOW
3478 : This::STATUS_OKAY);
02961d7e
ILT
3479 }
3480
5c57f1be 3481 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3482 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3483 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3484 static inline typename This::Status
5c57f1be 3485 thm_movt(unsigned char* view,
6fa2a40b 3486 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3487 const Symbol_value<32>* psymval,
3488 Arm_address relative_address_base)
c2a122b6
ILT
3489 {
3490 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3491 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3492 Valtype* wv = reinterpret_cast<Valtype*>(view);
3493 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3494 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3495 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3496 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3497 val = This::insert_val_thumb_movw_movt(val, x);
3498 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3499 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3500 return This::STATUS_OKAY;
3501 }
a2162063 3502
11b861d5
DK
3503 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3504 static inline typename This::Status
3505 thm_alu11(unsigned char* view,
6fa2a40b 3506 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3507 const Symbol_value<32>* psymval,
3508 Arm_address address,
3509 Arm_address thumb_bit)
3510 {
3511 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3512 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3513 Valtype* wv = reinterpret_cast<Valtype*>(view);
3514 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3515 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3516
3517 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3518 // -----------------------------------------------------------------------
3519 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3520 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3521 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3522 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3523 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3524 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3525
3526 // Determine a sign for the addend.
3527 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3528 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3529 // Thumb2 addend encoding:
3530 // imm12 := i | imm3 | imm8
3531 int32_t addend = (insn & 0xff)
3532 | ((insn & 0x00007000) >> 4)
3533 | ((insn & 0x04000000) >> 15);
3534 // Apply a sign to the added.
3535 addend *= sign;
3536
3537 int32_t x = (psymval->value(object, addend) | thumb_bit)
3538 - (address & 0xfffffffc);
3539 Reltype val = abs(x);
3540 // Mask out the value and a distinct part of the ADD/SUB opcode
3541 // (bits 7:5 of opword).
3542 insn = (insn & 0xfb0f8f00)
3543 | (val & 0xff)
3544 | ((val & 0x700) << 4)
3545 | ((val & 0x800) << 15);
3546 // Set the opcode according to whether the value to go in the
3547 // place is negative.
3548 if (x < 0)
3549 insn |= 0x00a00000;
3550
3551 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3552 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3553 return ((val > 0xfff) ?
3554 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3555 }
3556
3557 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3558 static inline typename This::Status
3559 thm_pc8(unsigned char* view,
6fa2a40b 3560 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3561 const Symbol_value<32>* psymval,
3562 Arm_address address)
3563 {
3564 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3565 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3566 Valtype* wv = reinterpret_cast<Valtype*>(view);
3567 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3568 Reltype addend = ((insn & 0x00ff) << 2);
3569 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3570 Reltype val = abs(x);
3571 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3572
3573 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3574 return ((val > 0x03fc)
3575 ? This::STATUS_OVERFLOW
3576 : This::STATUS_OKAY);
3577 }
3578
3579 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3580 static inline typename This::Status
3581 thm_pc12(unsigned char* view,
6fa2a40b 3582 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3583 const Symbol_value<32>* psymval,
3584 Arm_address address)
3585 {
3586 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3587 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3588 Valtype* wv = reinterpret_cast<Valtype*>(view);
3589 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3590 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3591 // Determine a sign for the addend (positive if the U bit is 1).
3592 const int sign = (insn & 0x00800000) ? 1 : -1;
3593 int32_t addend = (insn & 0xfff);
3594 // Apply a sign to the added.
3595 addend *= sign;
3596
3597 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3598 Reltype val = abs(x);
3599 // Mask out and apply the value and the U bit.
3600 insn = (insn & 0xff7ff000) | (val & 0xfff);
3601 // Set the U bit according to whether the value to go in the
3602 // place is positive.
3603 if (x >= 0)
3604 insn |= 0x00800000;
3605
3606 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3607 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3608 return ((val > 0xfff) ?
3609 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3610 }
3611
a2162063
ILT
3612 // R_ARM_V4BX
3613 static inline typename This::Status
3614 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3615 unsigned char* view,
a2162063
ILT
3616 const Arm_relobj<big_endian>* object,
3617 const Arm_address address,
3618 const bool is_interworking)
3619 {
3620
3621 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3622 Valtype* wv = reinterpret_cast<Valtype*>(view);
3623 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3624
3625 // Ensure that we have a BX instruction.
3626 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3627 const uint32_t reg = (val & 0xf);
3628 if (is_interworking && reg != 0xf)
3629 {
3630 Stub_table<big_endian>* stub_table =
3631 object->stub_table(relinfo->data_shndx);
3632 gold_assert(stub_table != NULL);
3633
3634 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3635 gold_assert(stub != NULL);
3636
3637 int32_t veneer_address =
3638 stub_table->address() + stub->offset() - 8 - address;
3639 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3640 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3641 // Replace with a branch to veneer (B <addr>)
3642 val = (val & 0xf0000000) | 0x0a000000
3643 | ((veneer_address >> 2) & 0x00ffffff);
3644 }
3645 else
3646 {
3647 // Preserve Rm (lowest four bits) and the condition code
3648 // (highest four bits). Other bits encode MOV PC,Rm.
3649 val = (val & 0xf000000f) | 0x01a0f000;
3650 }
3651 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3652 return This::STATUS_OKAY;
3653 }
b10d2873
ILT
3654
3655 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3656 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3657 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3658 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3659 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3660 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3661 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3662 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3663 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3664 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3665 static inline typename This::Status
3666 arm_grp_alu(unsigned char* view,
6fa2a40b 3667 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3668 const Symbol_value<32>* psymval,
3669 const int group,
3670 Arm_address address,
3671 Arm_address thumb_bit,
3672 bool check_overflow)
3673 {
5c57f1be 3674 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3675 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3676 Valtype* wv = reinterpret_cast<Valtype*>(view);
3677 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3678
3679 // ALU group relocations are allowed only for the ADD/SUB instructions.
3680 // (0x00800000 - ADD, 0x00400000 - SUB)
3681 const Valtype opcode = insn & 0x01e00000;
3682 if (opcode != 0x00800000 && opcode != 0x00400000)
3683 return This::STATUS_BAD_RELOC;
3684
3685 // Determine a sign for the addend.
3686 const int sign = (opcode == 0x00800000) ? 1 : -1;
3687 // shifter = rotate_imm * 2
3688 const uint32_t shifter = (insn & 0xf00) >> 7;
3689 // Initial addend value.
3690 int32_t addend = insn & 0xff;
3691 // Rotate addend right by shifter.
3692 addend = (addend >> shifter) | (addend << (32 - shifter));
3693 // Apply a sign to the added.
3694 addend *= sign;
3695
3696 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3697 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3698 // Check for overflow if required
3699 if (check_overflow
3700 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3701 return This::STATUS_OVERFLOW;
3702
3703 // Mask out the value and the ADD/SUB part of the opcode; take care
3704 // not to destroy the S bit.
3705 insn &= 0xff1ff000;
3706 // Set the opcode according to whether the value to go in the
3707 // place is negative.
3708 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3709 // Encode the offset (encoded Gn).
3710 insn |= gn;
3711
3712 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3713 return This::STATUS_OKAY;
3714 }
3715
3716 // R_ARM_LDR_PC_G0: S + A - P
3717 // R_ARM_LDR_PC_G1: S + A - P
3718 // R_ARM_LDR_PC_G2: S + A - P
3719 // R_ARM_LDR_SB_G0: S + A - B(S)
3720 // R_ARM_LDR_SB_G1: S + A - B(S)
3721 // R_ARM_LDR_SB_G2: S + A - B(S)
3722 static inline typename This::Status
3723 arm_grp_ldr(unsigned char* view,
6fa2a40b 3724 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3725 const Symbol_value<32>* psymval,
3726 const int group,
3727 Arm_address address)
3728 {
5c57f1be 3729 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3730 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3731 Valtype* wv = reinterpret_cast<Valtype*>(view);
3732 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3733
3734 const int sign = (insn & 0x00800000) ? 1 : -1;
3735 int32_t addend = (insn & 0xfff) * sign;
3736 int32_t x = (psymval->value(object, addend) - address);
3737 // Calculate the relevant G(n-1) value to obtain this stage residual.
3738 Valtype residual =
3739 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3740 if (residual >= 0x1000)
3741 return This::STATUS_OVERFLOW;
3742
3743 // Mask out the value and U bit.
3744 insn &= 0xff7ff000;
3745 // Set the U bit for non-negative values.
3746 if (x >= 0)
3747 insn |= 0x00800000;
3748 insn |= residual;
3749
3750 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3751 return This::STATUS_OKAY;
3752 }
3753
3754 // R_ARM_LDRS_PC_G0: S + A - P
3755 // R_ARM_LDRS_PC_G1: S + A - P
3756 // R_ARM_LDRS_PC_G2: S + A - P
3757 // R_ARM_LDRS_SB_G0: S + A - B(S)
3758 // R_ARM_LDRS_SB_G1: S + A - B(S)
3759 // R_ARM_LDRS_SB_G2: S + A - B(S)
3760 static inline typename This::Status
3761 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3762 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3763 const Symbol_value<32>* psymval,
3764 const int group,
3765 Arm_address address)
3766 {
5c57f1be 3767 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3768 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3769 Valtype* wv = reinterpret_cast<Valtype*>(view);
3770 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3771
3772 const int sign = (insn & 0x00800000) ? 1 : -1;
3773 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3774 int32_t x = (psymval->value(object, addend) - address);
3775 // Calculate the relevant G(n-1) value to obtain this stage residual.
3776 Valtype residual =
3777 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3778 if (residual >= 0x100)
3779 return This::STATUS_OVERFLOW;
3780
3781 // Mask out the value and U bit.
3782 insn &= 0xff7ff0f0;
3783 // Set the U bit for non-negative values.
3784 if (x >= 0)
3785 insn |= 0x00800000;
3786 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3787
3788 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3789 return This::STATUS_OKAY;
3790 }
3791
3792 // R_ARM_LDC_PC_G0: S + A - P
3793 // R_ARM_LDC_PC_G1: S + A - P
3794 // R_ARM_LDC_PC_G2: S + A - P
3795 // R_ARM_LDC_SB_G0: S + A - B(S)
3796 // R_ARM_LDC_SB_G1: S + A - B(S)
3797 // R_ARM_LDC_SB_G2: S + A - B(S)
3798 static inline typename This::Status
3799 arm_grp_ldc(unsigned char* view,
6fa2a40b 3800 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3801 const Symbol_value<32>* psymval,
3802 const int group,
3803 Arm_address address)
3804 {
5c57f1be 3805 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3806 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3807 Valtype* wv = reinterpret_cast<Valtype*>(view);
3808 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3809
3810 const int sign = (insn & 0x00800000) ? 1 : -1;
3811 int32_t addend = ((insn & 0xff) << 2) * sign;
3812 int32_t x = (psymval->value(object, addend) - address);
3813 // Calculate the relevant G(n-1) value to obtain this stage residual.
3814 Valtype residual =
3815 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3816 if ((residual & 0x3) != 0 || residual >= 0x400)
3817 return This::STATUS_OVERFLOW;
3818
3819 // Mask out the value and U bit.
3820 insn &= 0xff7fff00;
3821 // Set the U bit for non-negative values.
3822 if (x >= 0)
3823 insn |= 0x00800000;
3824 insn |= (residual >> 2);
3825
3826 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3827 return This::STATUS_OKAY;
3828 }
c121c671
DK
3829};
3830
d204b6e9
DK
3831// Relocate ARM long branches. This handles relocation types
3832// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3833// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3834// undefined and we do not use PLT in this relocation. In such a case,
3835// the branch is converted into an NOP.
3836
3837template<bool big_endian>
3838typename Arm_relocate_functions<big_endian>::Status
3839Arm_relocate_functions<big_endian>::arm_branch_common(
3840 unsigned int r_type,
3841 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3842 unsigned char* view,
d204b6e9
DK
3843 const Sized_symbol<32>* gsym,
3844 const Arm_relobj<big_endian>* object,
3845 unsigned int r_sym,
3846 const Symbol_value<32>* psymval,
3847 Arm_address address,
3848 Arm_address thumb_bit,
3849 bool is_weakly_undefined_without_plt)
3850{
3851 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3852 Valtype* wv = reinterpret_cast<Valtype*>(view);
3853 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3854
3855 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3856 && ((val & 0x0f000000UL) == 0x0a000000UL);
3857 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3858 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3859 && ((val & 0x0f000000UL) == 0x0b000000UL);
3860 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3861 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3862
3863 // Check that the instruction is valid.
3864 if (r_type == elfcpp::R_ARM_CALL)
3865 {
3866 if (!insn_is_uncond_bl && !insn_is_blx)
3867 return This::STATUS_BAD_RELOC;
3868 }
3869 else if (r_type == elfcpp::R_ARM_JUMP24)
3870 {
3871 if (!insn_is_b && !insn_is_cond_bl)
3872 return This::STATUS_BAD_RELOC;
3873 }
3874 else if (r_type == elfcpp::R_ARM_PLT32)
3875 {
3876 if (!insn_is_any_branch)
3877 return This::STATUS_BAD_RELOC;
3878 }
3879 else if (r_type == elfcpp::R_ARM_XPC25)
3880 {
3881 // FIXME: AAELF document IH0044C does not say much about it other
3882 // than it being obsolete.
3883 if (!insn_is_any_branch)
3884 return This::STATUS_BAD_RELOC;
3885 }
3886 else
3887 gold_unreachable();
3888
3889 // A branch to an undefined weak symbol is turned into a jump to
3890 // the next instruction unless a PLT entry will be created.
3891 // Do the same for local undefined symbols.
3892 // The jump to the next instruction is optimized as a NOP depending
3893 // on the architecture.
3894 const Target_arm<big_endian>* arm_target =
3895 Target_arm<big_endian>::default_target();
3896 if (is_weakly_undefined_without_plt)
3897 {
5c388529 3898 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3899 Valtype cond = val & 0xf0000000U;
3900 if (arm_target->may_use_arm_nop())
3901 val = cond | 0x0320f000;
3902 else
3903 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3904 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3905 return This::STATUS_OKAY;
3906 }
3907
bef2b434 3908 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3909 Valtype branch_target = psymval->value(object, addend);
3910 int32_t branch_offset = branch_target - address;
3911
3912 // We need a stub if the branch offset is too large or if we need
3913 // to switch mode.
cd6eab1c 3914 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3915 Reloc_stub* stub = NULL;
5c388529
DK
3916
3917 if (!parameters->options().relocatable()
bef2b434 3918 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3919 || ((thumb_bit != 0)
3920 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3921 {
2a2b6d42
DK
3922 Valtype unadjusted_branch_target = psymval->value(object, 0);
3923
d204b6e9 3924 Stub_type stub_type =
2a2b6d42
DK
3925 Reloc_stub::stub_type_for_reloc(r_type, address,
3926 unadjusted_branch_target,
d204b6e9
DK
3927 (thumb_bit != 0));
3928 if (stub_type != arm_stub_none)
3929 {
2ea97941 3930 Stub_table<big_endian>* stub_table =
d204b6e9 3931 object->stub_table(relinfo->data_shndx);
2ea97941 3932 gold_assert(stub_table != NULL);
d204b6e9
DK
3933
3934 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3935 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3936 gold_assert(stub != NULL);
3937 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3938 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3939 branch_offset = branch_target - address;
bef2b434 3940 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
3941 }
3942 }
3943
3944 // At this point, if we still need to switch mode, the instruction
3945 // must either be a BLX or a BL that can be converted to a BLX.
3946 if (thumb_bit != 0)
3947 {
3948 // Turn BL to BLX.
3949 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3950 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3951 }
3952
bef2b434 3953 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 3954 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
3955 return (Bits<26>::has_overflow32(branch_offset)
3956 ? This::STATUS_OVERFLOW
3957 : This::STATUS_OKAY);
d204b6e9
DK
3958}
3959
51938283
DK
3960// Relocate THUMB long branches. This handles relocation types
3961// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3962// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3963// undefined and we do not use PLT in this relocation. In such a case,
3964// the branch is converted into an NOP.
3965
3966template<bool big_endian>
3967typename Arm_relocate_functions<big_endian>::Status
3968Arm_relocate_functions<big_endian>::thumb_branch_common(
3969 unsigned int r_type,
3970 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3971 unsigned char* view,
51938283
DK
3972 const Sized_symbol<32>* gsym,
3973 const Arm_relobj<big_endian>* object,
3974 unsigned int r_sym,
3975 const Symbol_value<32>* psymval,
3976 Arm_address address,
3977 Arm_address thumb_bit,
3978 bool is_weakly_undefined_without_plt)
3979{
3980 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3981 Valtype* wv = reinterpret_cast<Valtype*>(view);
3982 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3983 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3984
3985 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3986 // into account.
3987 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3988 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3989
3990 // Check that the instruction is valid.
3991 if (r_type == elfcpp::R_ARM_THM_CALL)
3992 {
3993 if (!is_bl_insn && !is_blx_insn)
3994 return This::STATUS_BAD_RELOC;
3995 }
3996 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3997 {
3998 // This cannot be a BLX.
3999 if (!is_bl_insn)
4000 return This::STATUS_BAD_RELOC;
4001 }
4002 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4003 {
4004 // Check for Thumb to Thumb call.
4005 if (!is_blx_insn)
4006 return This::STATUS_BAD_RELOC;
4007 if (thumb_bit != 0)
4008 {
4009 gold_warning(_("%s: Thumb BLX instruction targets "
4010 "thumb function '%s'."),
4011 object->name().c_str(),
4012 (gsym ? gsym->name() : "(local)"));
4013 // Convert BLX to BL.
4014 lower_insn |= 0x1000U;
4015 }
4016 }
4017 else
4018 gold_unreachable();
4019
4020 // A branch to an undefined weak symbol is turned into a jump to
4021 // the next instruction unless a PLT entry will be created.
4022 // The jump to the next instruction is optimized as a NOP.W for
4023 // Thumb-2 enabled architectures.
4024 const Target_arm<big_endian>* arm_target =
4025 Target_arm<big_endian>::default_target();
4026 if (is_weakly_undefined_without_plt)
4027 {
5c388529 4028 gold_assert(!parameters->options().relocatable());
51938283
DK
4029 if (arm_target->may_use_thumb2_nop())
4030 {
4031 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4032 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4033 }
4034 else
4035 {
4036 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4037 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4038 }
4039 return This::STATUS_OKAY;
4040 }
4041
089d69dc 4042 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4043 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4044
4045 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4046 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4047 if (thumb_bit == 0 && may_use_blx)
bef2b434 4048 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4049
51938283
DK
4050 int32_t branch_offset = branch_target - address;
4051
4052 // We need a stub if the branch offset is too large or if we need
4053 // to switch mode.
51938283 4054 bool thumb2 = arm_target->using_thumb2();
5c388529 4055 if (!parameters->options().relocatable()
bef2b434
ILT
4056 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4057 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4058 || ((thumb_bit == 0)
4059 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4060 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4061 {
2a2b6d42
DK
4062 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4063
51938283 4064 Stub_type stub_type =
2a2b6d42
DK
4065 Reloc_stub::stub_type_for_reloc(r_type, address,
4066 unadjusted_branch_target,
51938283 4067 (thumb_bit != 0));
2a2b6d42 4068
51938283
DK
4069 if (stub_type != arm_stub_none)
4070 {
2ea97941 4071 Stub_table<big_endian>* stub_table =
51938283 4072 object->stub_table(relinfo->data_shndx);
2ea97941 4073 gold_assert(stub_table != NULL);
51938283
DK
4074
4075 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4076 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4077 gold_assert(stub != NULL);
4078 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4079 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b 4080 if (thumb_bit == 0 && may_use_blx)
bef2b434 4081 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4082 branch_offset = branch_target - address;
4083 }
4084 }
4085
4086 // At this point, if we still need to switch mode, the instruction
4087 // must either be a BLX or a BL that can be converted to a BLX.
4088 if (thumb_bit == 0)
4089 {
4090 gold_assert(may_use_blx
4091 && (r_type == elfcpp::R_ARM_THM_CALL
4092 || r_type == elfcpp::R_ARM_THM_XPC22));
4093 // Make sure this is a BLX.
4094 lower_insn &= ~0x1000U;
4095 }
4096 else
4097 {
4098 // Make sure this is a BL.
4099 lower_insn |= 0x1000U;
4100 }
4101
a2c7281b
DK
4102 // For a BLX instruction, make sure that the relocation is rounded up
4103 // to a word boundary. This follows the semantics of the instruction
4104 // which specifies that bit 1 of the target address will come from bit
4105 // 1 of the base address.
51938283 4106 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4107 gold_assert((branch_offset & 3) == 0);
51938283
DK
4108
4109 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4110 // We use the Thumb-2 encoding, which is safe even if dealing with
4111 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4112 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4113 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4114
4115 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4116 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4117
bef2b434 4118 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4119
51938283 4120 return ((thumb2
bef2b434
ILT
4121 ? Bits<25>::has_overflow32(branch_offset)
4122 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4123 ? This::STATUS_OVERFLOW
4124 : This::STATUS_OKAY);
4125}
4126
4127// Relocate THUMB-2 long conditional branches.
4128// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4129// undefined and we do not use PLT in this relocation. In such a case,
4130// the branch is converted into an NOP.
4131
4132template<bool big_endian>
4133typename Arm_relocate_functions<big_endian>::Status
4134Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4135 unsigned char* view,
089d69dc
DK
4136 const Arm_relobj<big_endian>* object,
4137 const Symbol_value<32>* psymval,
4138 Arm_address address,
4139 Arm_address thumb_bit)
4140{
4141 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4142 Valtype* wv = reinterpret_cast<Valtype*>(view);
4143 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4144 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4145 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4146
4147 Arm_address branch_target = psymval->value(object, addend);
4148 int32_t branch_offset = branch_target - address;
4149
4150 // ??? Should handle interworking? GCC might someday try to
4151 // use this for tail calls.
4152 // FIXME: We do support thumb entry to PLT yet.
4153 if (thumb_bit == 0)
4154 {
4155 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4156 return This::STATUS_BAD_RELOC;
4157 }
4158
4159 // Put RELOCATION back into the insn.
4160 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4161 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4162
4163 // Put the relocated value back in the object file:
4164 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4165 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4166
bef2b434 4167 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4168 ? This::STATUS_OVERFLOW
4169 : This::STATUS_OKAY);
4170}
4171
94cdfcff
DK
4172// Get the GOT section, creating it if necessary.
4173
4174template<bool big_endian>
4a54abbb 4175Arm_output_data_got<big_endian>*
94cdfcff
DK
4176Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4177{
4178 if (this->got_ == NULL)
4179 {
4180 gold_assert(symtab != NULL && layout != NULL);
4181
4a54abbb 4182 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4183
82742395 4184 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04
DK
4185 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4186 this->got_, ORDER_DATA, false);
22f0da72 4187
94cdfcff
DK
4188 // The old GNU linker creates a .got.plt section. We just
4189 // create another set of data in the .got section. Note that we
4190 // always create a PLT if we create a GOT, although the PLT
4191 // might be empty.
4192 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4193 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4194 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
22f0da72 4195 this->got_plt_, ORDER_DATA, false);
94cdfcff
DK
4196
4197 // The first three entries are reserved.
4198 this->got_plt_->set_current_data_size(3 * 4);
4199
4200 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4201 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4202 Symbol_table::PREDEFINED,
94cdfcff
DK
4203 this->got_plt_,
4204 0, 0, elfcpp::STT_OBJECT,
4205 elfcpp::STB_LOCAL,
4206 elfcpp::STV_HIDDEN, 0,
4207 false, false);
4208 }
4209 return this->got_;
4210}
4211
4212// Get the dynamic reloc section, creating it if necessary.
4213
4214template<bool big_endian>
4215typename Target_arm<big_endian>::Reloc_section*
4216Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4217{
4218 if (this->rel_dyn_ == NULL)
4219 {
4220 gold_assert(layout != NULL);
4221 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4222 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4223 elfcpp::SHF_ALLOC, this->rel_dyn_,
4224 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4225 }
4226 return this->rel_dyn_;
4227}
4228
b569affa
DK
4229// Insn_template methods.
4230
4231// Return byte size of an instruction template.
4232
4233size_t
4234Insn_template::size() const
4235{
4236 switch (this->type())
4237 {
4238 case THUMB16_TYPE:
2fb7225c 4239 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4240 return 2;
4241 case ARM_TYPE:
4242 case THUMB32_TYPE:
4243 case DATA_TYPE:
4244 return 4;
4245 default:
4246 gold_unreachable();
4247 }
4248}
4249
4250// Return alignment of an instruction template.
4251
4252unsigned
4253Insn_template::alignment() const
4254{
4255 switch (this->type())
4256 {
4257 case THUMB16_TYPE:
2fb7225c 4258 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4259 case THUMB32_TYPE:
4260 return 2;
4261 case ARM_TYPE:
4262 case DATA_TYPE:
4263 return 4;
4264 default:
4265 gold_unreachable();
4266 }
4267}
4268
4269// Stub_template methods.
4270
4271Stub_template::Stub_template(
2ea97941
ILT
4272 Stub_type type, const Insn_template* insns,
4273 size_t insn_count)
4274 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4275 entry_in_thumb_mode_(false), relocs_()
4276{
2ea97941 4277 off_t offset = 0;
b569affa
DK
4278
4279 // Compute byte size and alignment of stub template.
2ea97941 4280 for (size_t i = 0; i < insn_count; i++)
b569affa 4281 {
2ea97941
ILT
4282 unsigned insn_alignment = insns[i].alignment();
4283 size_t insn_size = insns[i].size();
4284 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4285 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4286 switch (insns[i].type())
b569affa
DK
4287 {
4288 case Insn_template::THUMB16_TYPE:
089d69dc 4289 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4290 if (i == 0)
4291 this->entry_in_thumb_mode_ = true;
4292 break;
4293
4294 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4295 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4296 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4297 if (i == 0)
4298 this->entry_in_thumb_mode_ = true;
4299 break;
4300
4301 case Insn_template::ARM_TYPE:
4302 // Handle cases where the target is encoded within the
4303 // instruction.
2ea97941
ILT
4304 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4305 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4306 break;
4307
4308 case Insn_template::DATA_TYPE:
4309 // Entry point cannot be data.
4310 gold_assert(i != 0);
2ea97941 4311 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4312 break;
4313
4314 default:
4315 gold_unreachable();
4316 }
2ea97941 4317 offset += insn_size;
b569affa 4318 }
2ea97941 4319 this->size_ = offset;
b569affa
DK
4320}
4321
bb0d3eb0
DK
4322// Stub methods.
4323
7296d933 4324// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4325
4326template<bool big_endian>
4327void inline
4328Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4329{
4330 const Stub_template* stub_template = this->stub_template();
4331 const Insn_template* insns = stub_template->insns();
4332
4333 // FIXME: We do not handle BE8 encoding yet.
4334 unsigned char* pov = view;
4335 for (size_t i = 0; i < stub_template->insn_count(); i++)
4336 {
4337 switch (insns[i].type())
4338 {
4339 case Insn_template::THUMB16_TYPE:
4340 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4341 break;
4342 case Insn_template::THUMB16_SPECIAL_TYPE:
4343 elfcpp::Swap<16, big_endian>::writeval(
4344 pov,
4345 this->thumb16_special(i));
4346 break;
4347 case Insn_template::THUMB32_TYPE:
4348 {
4349 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4350 uint32_t lo = insns[i].data() & 0xffff;
4351 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4352 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4353 }
4354 break;
4355 case Insn_template::ARM_TYPE:
4356 case Insn_template::DATA_TYPE:
4357 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4358 break;
4359 default:
4360 gold_unreachable();
4361 }
4362 pov += insns[i].size();
4363 }
4364 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4365}
4366
b569affa
DK
4367// Reloc_stub::Key methods.
4368
4369// Dump a Key as a string for debugging.
4370
4371std::string
4372Reloc_stub::Key::name() const
4373{
4374 if (this->r_sym_ == invalid_index)
4375 {
4376 // Global symbol key name
4377 // <stub-type>:<symbol name>:<addend>.
4378 const std::string sym_name = this->u_.symbol->name();
4379 // We need to print two hex number and two colons. So just add 100 bytes
4380 // to the symbol name size.
4381 size_t len = sym_name.size() + 100;
4382 char* buffer = new char[len];
4383 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4384 sym_name.c_str(), this->addend_);
4385 gold_assert(c > 0 && c < static_cast<int>(len));
4386 delete[] buffer;
4387 return std::string(buffer);
4388 }
4389 else
4390 {
4391 // local symbol key name
4392 // <stub-type>:<object>:<r_sym>:<addend>.
4393 const size_t len = 200;
4394 char buffer[len];
4395 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4396 this->u_.relobj, this->r_sym_, this->addend_);
4397 gold_assert(c > 0 && c < static_cast<int>(len));
4398 return std::string(buffer);
4399 }
4400}
4401
4402// Reloc_stub methods.
4403
4404// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4405// LOCATION to DESTINATION.
4406// This code is based on the arm_type_of_stub function in
9b547ce6 4407// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4408// class simple.
4409
4410Stub_type
4411Reloc_stub::stub_type_for_reloc(
4412 unsigned int r_type,
4413 Arm_address location,
4414 Arm_address destination,
4415 bool target_is_thumb)
4416{
4417 Stub_type stub_type = arm_stub_none;
4418
4419 // This is a bit ugly but we want to avoid using a templated class for
4420 // big and little endianities.
4421 bool may_use_blx;
4422 bool should_force_pic_veneer;
4423 bool thumb2;
4424 bool thumb_only;
4425 if (parameters->target().is_big_endian())
4426 {
43d12afe 4427 const Target_arm<true>* big_endian_target =
b569affa 4428 Target_arm<true>::default_target();
cd6eab1c 4429 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4430 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4431 thumb2 = big_endian_target->using_thumb2();
4432 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4433 }
4434 else
4435 {
43d12afe 4436 const Target_arm<false>* little_endian_target =
b569affa 4437 Target_arm<false>::default_target();
cd6eab1c 4438 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4439 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4440 thumb2 = little_endian_target->using_thumb2();
4441 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4442 }
4443
a2c7281b 4444 int64_t branch_offset;
b569affa
DK
4445 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4446 {
a2c7281b
DK
4447 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4448 // base address (instruction address + 4).
4449 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4450 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b
DK
4451 branch_offset = static_cast<int64_t>(destination) - location;
4452
b569affa
DK
4453 // Handle cases where:
4454 // - this call goes too far (different Thumb/Thumb2 max
4455 // distance)
4456 // - it's a Thumb->Arm call and blx is not available, or it's a
4457 // Thumb->Arm branch (not bl). A stub is needed in this case.
4458 if ((!thumb2
4459 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4460 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4461 || (thumb2
4462 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4463 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4464 || ((!target_is_thumb)
4465 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4466 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4467 {
4468 if (target_is_thumb)
4469 {
4470 // Thumb to thumb.
4471 if (!thumb_only)
4472 {
51938283
DK
4473 stub_type = (parameters->options().shared()
4474 || should_force_pic_veneer)
b569affa
DK
4475 // PIC stubs.
4476 ? ((may_use_blx
4477 && (r_type == elfcpp::R_ARM_THM_CALL))
4478 // V5T and above. Stub starts with ARM code, so
4479 // we must be able to switch mode before
4480 // reaching it, which is only possible for 'bl'
4481 // (ie R_ARM_THM_CALL relocation).
4482 ? arm_stub_long_branch_any_thumb_pic
4483 // On V4T, use Thumb code only.
4484 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4485
4486 // non-PIC stubs.
4487 : ((may_use_blx
4488 && (r_type == elfcpp::R_ARM_THM_CALL))
4489 ? arm_stub_long_branch_any_any // V5T and above.
4490 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4491 }
4492 else
4493 {
51938283
DK
4494 stub_type = (parameters->options().shared()
4495 || should_force_pic_veneer)
b569affa
DK
4496 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4497 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4498 }
4499 }
4500 else
4501 {
4502 // Thumb to arm.
4503
4504 // FIXME: We should check that the input section is from an
4505 // object that has interwork enabled.
4506
4507 stub_type = (parameters->options().shared()
4508 || should_force_pic_veneer)
4509 // PIC stubs.
4510 ? ((may_use_blx
4511 && (r_type == elfcpp::R_ARM_THM_CALL))
4512 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4513 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4514
4515 // non-PIC stubs.
4516 : ((may_use_blx
4517 && (r_type == elfcpp::R_ARM_THM_CALL))
4518 ? arm_stub_long_branch_any_any // V5T and above.
4519 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4520
4521 // Handle v4t short branches.
4522 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4523 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4524 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4525 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4526 }
4527 }
4528 }
4529 else if (r_type == elfcpp::R_ARM_CALL
4530 || r_type == elfcpp::R_ARM_JUMP24
4531 || r_type == elfcpp::R_ARM_PLT32)
4532 {
a2c7281b 4533 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4534 if (target_is_thumb)
4535 {
4536 // Arm to thumb.
4537
4538 // FIXME: We should check that the input section is from an
4539 // object that has interwork enabled.
4540
4541 // We have an extra 2-bytes reach because of
4542 // the mode change (bit 24 (H) of BLX encoding).
4543 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4544 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4545 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4546 || (r_type == elfcpp::R_ARM_JUMP24)
4547 || (r_type == elfcpp::R_ARM_PLT32))
4548 {
4549 stub_type = (parameters->options().shared()
4550 || should_force_pic_veneer)
4551 // PIC stubs.
4552 ? (may_use_blx
4553 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4554 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4555
4556 // non-PIC stubs.
4557 : (may_use_blx
4558 ? arm_stub_long_branch_any_any // V5T and above.
4559 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4560 }
4561 }
4562 else
4563 {
4564 // Arm to arm.
4565 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4566 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4567 {
4568 stub_type = (parameters->options().shared()
4569 || should_force_pic_veneer)
4570 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4571 : arm_stub_long_branch_any_any; /// non-PIC.
4572 }
4573 }
4574 }
4575
4576 return stub_type;
4577}
4578
bb0d3eb0 4579// Cortex_a8_stub methods.
b569affa 4580
bb0d3eb0
DK
4581// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4582// I is the position of the instruction template in the stub template.
b569affa 4583
bb0d3eb0
DK
4584uint16_t
4585Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4586{
bb0d3eb0
DK
4587 // The only use of this is to copy condition code from a conditional
4588 // branch being worked around to the corresponding conditional branch in
4589 // to the stub.
4590 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4591 && i == 0);
4592 uint16_t data = this->stub_template()->insns()[i].data();
4593 gold_assert((data & 0xff00U) == 0xd000U);
4594 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4595 return data;
b569affa
DK
4596}
4597
4598// Stub_factory methods.
4599
4600Stub_factory::Stub_factory()
4601{
4602 // The instruction template sequences are declared as static
4603 // objects and initialized first time the constructor runs.
4604
4605 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4606 // to reach the stub if necessary.
4607 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4608 {
4609 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4610 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4611 // dcd R_ARM_ABS32(X)
4612 };
4613
4614 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4615 // available.
4616 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4617 {
4618 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4619 Insn_template::arm_insn(0xe12fff1c), // bx ip
4620 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4621 // dcd R_ARM_ABS32(X)
4622 };
4623
4624 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4625 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4626 {
4627 Insn_template::thumb16_insn(0xb401), // push {r0}
4628 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4629 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4630 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4631 Insn_template::thumb16_insn(0x4760), // bx ip
4632 Insn_template::thumb16_insn(0xbf00), // nop
4633 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4634 // dcd R_ARM_ABS32(X)
4635 };
4636
4637 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4638 // allowed.
4639 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4640 {
4641 Insn_template::thumb16_insn(0x4778), // bx pc
4642 Insn_template::thumb16_insn(0x46c0), // nop
4643 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4644 Insn_template::arm_insn(0xe12fff1c), // bx ip
4645 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4646 // dcd R_ARM_ABS32(X)
4647 };
4648
4649 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4650 // available.
4651 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4652 {
4653 Insn_template::thumb16_insn(0x4778), // bx pc
4654 Insn_template::thumb16_insn(0x46c0), // nop
4655 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4656 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4657 // dcd R_ARM_ABS32(X)
4658 };
4659
4660 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4661 // one, when the destination is close enough.
4662 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4663 {
4664 Insn_template::thumb16_insn(0x4778), // bx pc
4665 Insn_template::thumb16_insn(0x46c0), // nop
4666 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4667 };
4668
4669 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4670 // blx to reach the stub if necessary.
4671 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4672 {
4673 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4674 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4675 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4676 // dcd R_ARM_REL32(X-4)
4677 };
4678
4679 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4680 // blx to reach the stub if necessary. We can not add into pc;
4681 // it is not guaranteed to mode switch (different in ARMv6 and
4682 // ARMv7).
4683 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4684 {
4685 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4686 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4687 Insn_template::arm_insn(0xe12fff1c), // bx ip
4688 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4689 // dcd R_ARM_REL32(X)
4690 };
4691
4692 // V4T ARM -> ARM long branch stub, PIC.
4693 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4694 {
4695 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4696 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4697 Insn_template::arm_insn(0xe12fff1c), // bx ip
4698 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4699 // dcd R_ARM_REL32(X)
4700 };
4701
4702 // V4T Thumb -> ARM long branch stub, PIC.
4703 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4704 {
4705 Insn_template::thumb16_insn(0x4778), // bx pc
4706 Insn_template::thumb16_insn(0x46c0), // nop
4707 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4708 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4709 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4710 // dcd R_ARM_REL32(X)
4711 };
4712
4713 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4714 // architectures.
4715 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4716 {
4717 Insn_template::thumb16_insn(0xb401), // push {r0}
4718 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4719 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4720 Insn_template::thumb16_insn(0x4484), // add ip, r0
4721 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4722 Insn_template::thumb16_insn(0x4760), // bx ip
4723 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4724 // dcd R_ARM_REL32(X)
4725 };
4726
4727 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4728 // allowed.
4729 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4730 {
4731 Insn_template::thumb16_insn(0x4778), // bx pc
4732 Insn_template::thumb16_insn(0x46c0), // nop
4733 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4734 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4735 Insn_template::arm_insn(0xe12fff1c), // bx ip
4736 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4737 // dcd R_ARM_REL32(X)
4738 };
4739
4740 // Cortex-A8 erratum-workaround stubs.
4741
4742 // Stub used for conditional branches (which may be beyond +/-1MB away,
4743 // so we can't use a conditional branch to reach this stub).
4744
4745 // original code:
4746 //
4747 // b<cond> X
4748 // after:
4749 //
4750 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4751 {
4752 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4753 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4754 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4755 // b.w X
4756 };
4757
4758 // Stub used for b.w and bl.w instructions.
4759
4760 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4761 {
4762 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4763 };
4764
4765 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4766 {
4767 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4768 };
4769
4770 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4771 // instruction (which switches to ARM mode) to point to this stub. Jump to
4772 // the real destination using an ARM-mode branch.
bb0d3eb0 4773 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4774 {
4775 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4776 };
4777
a2162063
ILT
4778 // Stub used to provide an interworking for R_ARM_V4BX relocation
4779 // (bx r[n] instruction).
4780 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4781 {
4782 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4783 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4784 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4785 };
4786
b569affa
DK
4787 // Fill in the stub template look-up table. Stub templates are constructed
4788 // per instance of Stub_factory for fast look-up without locking
4789 // in a thread-enabled environment.
4790
4791 this->stub_templates_[arm_stub_none] =
4792 new Stub_template(arm_stub_none, NULL, 0);
4793
4794#define DEF_STUB(x) \
4795 do \
4796 { \
4797 size_t array_size \
4798 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4799 Stub_type type = arm_stub_##x; \
4800 this->stub_templates_[type] = \
4801 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4802 } \
4803 while (0);
4804
4805 DEF_STUBS
4806#undef DEF_STUB
4807}
4808
56ee5e00
DK
4809// Stub_table methods.
4810
9b547ce6 4811// Remove all Cortex-A8 stub.
56ee5e00
DK
4812
4813template<bool big_endian>
4814void
2fb7225c
DK
4815Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4816{
4817 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4818 p != this->cortex_a8_stubs_.end();
4819 ++p)
4820 delete p->second;
4821 this->cortex_a8_stubs_.clear();
4822}
4823
4824// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4825
4826template<bool big_endian>
4827void
4828Stub_table<big_endian>::relocate_stub(
4829 Stub* stub,
4830 const Relocate_info<32, big_endian>* relinfo,
4831 Target_arm<big_endian>* arm_target,
4832 Output_section* output_section,
4833 unsigned char* view,
4834 Arm_address address,
4835 section_size_type view_size)
56ee5e00 4836{
2ea97941 4837 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4838 if (stub_template->reloc_count() != 0)
4839 {
4840 // Adjust view to cover the stub only.
4841 section_size_type offset = stub->offset();
4842 section_size_type stub_size = stub_template->size();
4843 gold_assert(offset + stub_size <= view_size);
4844
4845 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4846 address + offset, stub_size);
4847 }
56ee5e00
DK
4848}
4849
2fb7225c
DK
4850// Relocate all stubs in this stub table.
4851
56ee5e00
DK
4852template<bool big_endian>
4853void
4854Stub_table<big_endian>::relocate_stubs(
4855 const Relocate_info<32, big_endian>* relinfo,
4856 Target_arm<big_endian>* arm_target,
2ea97941 4857 Output_section* output_section,
56ee5e00 4858 unsigned char* view,
2ea97941 4859 Arm_address address,
56ee5e00
DK
4860 section_size_type view_size)
4861{
4862 // If we are passed a view bigger than the stub table's. we need to
4863 // adjust the view.
2ea97941 4864 gold_assert(address == this->address()
56ee5e00
DK
4865 && (view_size
4866 == static_cast<section_size_type>(this->data_size())));
4867
2fb7225c
DK
4868 // Relocate all relocation stubs.
4869 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4870 p != this->reloc_stubs_.end();
4871 ++p)
4872 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4873 address, view_size);
4874
4875 // Relocate all Cortex-A8 stubs.
4876 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4877 p != this->cortex_a8_stubs_.end();
4878 ++p)
4879 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4880 address, view_size);
a2162063
ILT
4881
4882 // Relocate all ARM V4BX stubs.
4883 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4884 p != this->arm_v4bx_stubs_.end();
4885 ++p)
4886 {
4887 if (*p != NULL)
4888 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4889 address, view_size);
4890 }
2fb7225c
DK
4891}
4892
4893// Write out the stubs to file.
4894
4895template<bool big_endian>
4896void
4897Stub_table<big_endian>::do_write(Output_file* of)
4898{
4899 off_t offset = this->offset();
4900 const section_size_type oview_size =
4901 convert_to_section_size_type(this->data_size());
4902 unsigned char* const oview = of->get_output_view(offset, oview_size);
4903
4904 // Write relocation stubs.
56ee5e00
DK
4905 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4906 p != this->reloc_stubs_.end();
4907 ++p)
4908 {
4909 Reloc_stub* stub = p->second;
2fb7225c
DK
4910 Arm_address address = this->address() + stub->offset();
4911 gold_assert(address
4912 == align_address(address,
4913 stub->stub_template()->alignment()));
4914 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4915 big_endian);
56ee5e00 4916 }
2fb7225c
DK
4917
4918 // Write Cortex-A8 stubs.
4919 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4920 p != this->cortex_a8_stubs_.end();
4921 ++p)
4922 {
4923 Cortex_a8_stub* stub = p->second;
4924 Arm_address address = this->address() + stub->offset();
4925 gold_assert(address
4926 == align_address(address,
4927 stub->stub_template()->alignment()));
4928 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4929 big_endian);
4930 }
4931
a2162063
ILT
4932 // Write ARM V4BX relocation stubs.
4933 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4934 p != this->arm_v4bx_stubs_.end();
4935 ++p)
4936 {
4937 if (*p == NULL)
4938 continue;
4939
4940 Arm_address address = this->address() + (*p)->offset();
4941 gold_assert(address
4942 == align_address(address,
4943 (*p)->stub_template()->alignment()));
4944 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4945 big_endian);
4946 }
4947
2fb7225c 4948 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4949}
4950
2fb7225c
DK
4951// Update the data size and address alignment of the stub table at the end
4952// of a relaxation pass. Return true if either the data size or the
4953// alignment changed in this relaxation pass.
4954
4955template<bool big_endian>
4956bool
4957Stub_table<big_endian>::update_data_size_and_addralign()
4958{
2fb7225c 4959 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4960 off_t size = this->reloc_stubs_size_;
4961 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4962
4963 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4964 p != this->cortex_a8_stubs_.end();
4965 ++p)
4966 {
4967 const Stub_template* stub_template = p->second->stub_template();
4968 addralign = std::max(addralign, stub_template->alignment());
4969 size = (align_address(size, stub_template->alignment())
4970 + stub_template->size());
4971 }
4972
a2162063
ILT
4973 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4974 p != this->arm_v4bx_stubs_.end();
4975 ++p)
4976 {
4977 if (*p == NULL)
4978 continue;
4979
4980 const Stub_template* stub_template = (*p)->stub_template();
4981 addralign = std::max(addralign, stub_template->alignment());
4982 size = (align_address(size, stub_template->alignment())
4983 + stub_template->size());
4984 }
4985
2fb7225c
DK
4986 // Check if either data size or alignment changed in this pass.
4987 // Update prev_data_size_ and prev_addralign_. These will be used
4988 // as the current data size and address alignment for the next pass.
4989 bool changed = size != this->prev_data_size_;
4990 this->prev_data_size_ = size;
4991
4992 if (addralign != this->prev_addralign_)
4993 changed = true;
4994 this->prev_addralign_ = addralign;
4995
4996 return changed;
4997}
4998
4999// Finalize the stubs. This sets the offsets of the stubs within the stub
5000// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5001
5002template<bool big_endian>
5003void
2fb7225c 5004Stub_table<big_endian>::finalize_stubs()
56ee5e00 5005{
d099120c 5006 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5007 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5008 p != this->cortex_a8_stubs_.end();
5009 ++p)
5010 {
5011 Cortex_a8_stub* stub = p->second;
5012 const Stub_template* stub_template = stub->stub_template();
5013 uint64_t stub_addralign = stub_template->alignment();
5014 off = align_address(off, stub_addralign);
5015 stub->set_offset(off);
5016 off += stub_template->size();
5017
5018 // Mark input section so that we can determine later if a code section
5019 // needs the Cortex-A8 workaround quickly.
5020 Arm_relobj<big_endian>* arm_relobj =
5021 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5022 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5023 }
5024
a2162063
ILT
5025 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5026 p != this->arm_v4bx_stubs_.end();
5027 ++p)
5028 {
5029 if (*p == NULL)
5030 continue;
5031
5032 const Stub_template* stub_template = (*p)->stub_template();
5033 uint64_t stub_addralign = stub_template->alignment();
5034 off = align_address(off, stub_addralign);
5035 (*p)->set_offset(off);
5036 off += stub_template->size();
5037 }
5038
2fb7225c 5039 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5040}
5041
2fb7225c
DK
5042// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5043// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5044// of the address range seen by the linker.
56ee5e00
DK
5045
5046template<bool big_endian>
5047void
2fb7225c
DK
5048Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5049 Target_arm<big_endian>* arm_target,
5050 unsigned char* view,
5051 Arm_address view_address,
5052 section_size_type view_size)
56ee5e00 5053{
2fb7225c
DK
5054 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5055 for (Cortex_a8_stub_list::const_iterator p =
5056 this->cortex_a8_stubs_.lower_bound(view_address);
5057 ((p != this->cortex_a8_stubs_.end())
5058 && (p->first < (view_address + view_size)));
5059 ++p)
56ee5e00 5060 {
2fb7225c
DK
5061 // We do not store the THUMB bit in the LSB of either the branch address
5062 // or the stub offset. There is no need to strip the LSB.
5063 Arm_address branch_address = p->first;
5064 const Cortex_a8_stub* stub = p->second;
5065 Arm_address stub_address = this->address() + stub->offset();
5066
5067 // Offset of the branch instruction relative to this view.
5068 section_size_type offset =
5069 convert_to_section_size_type(branch_address - view_address);
5070 gold_assert((offset + 4) <= view_size);
5071
5072 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5073 view + offset, branch_address);
5074 }
56ee5e00
DK
5075}
5076
10ad9fe5
DK
5077// Arm_input_section methods.
5078
5079// Initialize an Arm_input_section.
5080
5081template<bool big_endian>
5082void
5083Arm_input_section<big_endian>::init()
5084{
2ea97941
ILT
5085 Relobj* relobj = this->relobj();
5086 unsigned int shndx = this->shndx();
10ad9fe5 5087
f625ae50
DK
5088 // We have to cache original size, alignment and contents to avoid locking
5089 // the original file.
6625d24e
DK
5090 this->original_addralign_ =
5091 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5092
5093 // This is not efficient but we expect only a small number of relaxed
5094 // input sections for stubs.
5095 section_size_type section_size;
5096 const unsigned char* section_contents =
5097 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5098 this->original_size_ =
5099 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5100
f625ae50
DK
5101 gold_assert(this->original_contents_ == NULL);
5102 this->original_contents_ = new unsigned char[section_size];
5103 memcpy(this->original_contents_, section_contents, section_size);
5104
10ad9fe5
DK
5105 // We want to make this look like the original input section after
5106 // output sections are finalized.
2ea97941
ILT
5107 Output_section* os = relobj->output_section(shndx);
5108 off_t offset = relobj->output_section_offset(shndx);
5109 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5110 this->set_address(os->address() + offset);
5111 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5112
5113 this->set_current_data_size(this->original_size_);
5114 this->finalize_data_size();
5115}
5116
5117template<bool big_endian>
5118void
5119Arm_input_section<big_endian>::do_write(Output_file* of)
5120{
5121 // We have to write out the original section content.
f625ae50
DK
5122 gold_assert(this->original_contents_ != NULL);
5123 of->write(this->offset(), this->original_contents_,
5124 this->original_size_);
10ad9fe5
DK
5125
5126 // If this owns a stub table and it is not empty, write it.
5127 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5128 this->stub_table_->write(of);
5129}
5130
5131// Finalize data size.
5132
5133template<bool big_endian>
5134void
5135Arm_input_section<big_endian>::set_final_data_size()
5136{
153e7da4
DK
5137 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5138
10ad9fe5
DK
5139 if (this->is_stub_table_owner())
5140 {
6625d24e 5141 this->stub_table_->finalize_data_size();
153e7da4 5142 off = align_address(off, this->stub_table_->addralign());
153e7da4 5143 off += this->stub_table_->data_size();
10ad9fe5 5144 }
153e7da4 5145 this->set_data_size(off);
10ad9fe5
DK
5146}
5147
5148// Reset address and file offset.
5149
5150template<bool big_endian>
5151void
5152Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5153{
5154 // Size of the original input section contents.
5155 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5156
5157 // If this is a stub table owner, account for the stub table size.
5158 if (this->is_stub_table_owner())
5159 {
2ea97941 5160 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5161
5162 // Reset the stub table's address and file offset. The
5163 // current data size for child will be updated after that.
5164 stub_table_->reset_address_and_file_offset();
5165 off = align_address(off, stub_table_->addralign());
2ea97941 5166 off += stub_table->current_data_size();
10ad9fe5
DK
5167 }
5168
5169 this->set_current_data_size(off);
5170}
5171
af2cdeae
DK
5172// Arm_exidx_cantunwind methods.
5173
7296d933 5174// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5175
5176template<bool big_endian>
5177void
5178Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5179{
5180 off_t offset = this->offset();
5181 const section_size_type oview_size = 8;
5182 unsigned char* const oview = of->get_output_view(offset, oview_size);
5183
f6cccc2c 5184 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
af2cdeae
DK
5185
5186 Output_section* os = this->relobj_->output_section(this->shndx_);
5187 gold_assert(os != NULL);
5188
5189 Arm_relobj<big_endian>* arm_relobj =
5190 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5191 Arm_address output_offset =
5192 arm_relobj->get_output_section_offset(this->shndx_);
5193 Arm_address section_start;
f625ae50
DK
5194 section_size_type section_size;
5195
5196 // Find out the end of the text section referred by this.
7296d933 5197 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5198 {
5199 section_start = os->address() + output_offset;
5200 const Arm_exidx_input_section* exidx_input_section =
5201 arm_relobj->exidx_input_section_by_link(this->shndx_);
5202 gold_assert(exidx_input_section != NULL);
5203 section_size =
5204 convert_to_section_size_type(exidx_input_section->text_size());
5205 }
af2cdeae
DK
5206 else
5207 {
5208 // Currently this only happens for a relaxed section.
5209 const Output_relaxed_input_section* poris =
5210 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5211 gold_assert(poris != NULL);
5212 section_start = poris->address();
f625ae50 5213 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5214 }
5215
5216 // We always append this to the end of an EXIDX section.
f625ae50 5217 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5218
5219 // Write out the entry. The first word either points to the beginning
5220 // or after the end of a text section. The second word is the special
5221 // EXIDX_CANTUNWIND value.
e7eca48c 5222 uint32_t prel31_offset = output_address - this->address();
bef2b434 5223 if (Bits<31>::has_overflow32(offset))
e7eca48c 5224 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5225 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5226 prel31_offset & 0x7fffffffU);
5227 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5228 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5229
5230 of->write_output_view(this->offset(), oview_size, oview);
5231}
5232
5233// Arm_exidx_merged_section methods.
5234
5235// Constructor for Arm_exidx_merged_section.
5236// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5237// SECTION_OFFSET_MAP points to a section offset map describing how
5238// parts of the input section are mapped to output. DELETED_BYTES is
5239// the number of bytes deleted from the EXIDX input section.
5240
5241Arm_exidx_merged_section::Arm_exidx_merged_section(
5242 const Arm_exidx_input_section& exidx_input_section,
5243 const Arm_exidx_section_offset_map& section_offset_map,
5244 uint32_t deleted_bytes)
5245 : Output_relaxed_input_section(exidx_input_section.relobj(),
5246 exidx_input_section.shndx(),
5247 exidx_input_section.addralign()),
5248 exidx_input_section_(exidx_input_section),
5249 section_offset_map_(section_offset_map)
5250{
f625ae50
DK
5251 // If we retain or discard the whole EXIDX input section, we would
5252 // not be here.
5253 gold_assert(deleted_bytes != 0
5254 && deleted_bytes != this->exidx_input_section_.size());
5255
af2cdeae 5256 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5257 uint32_t size = exidx_input_section.size() - deleted_bytes;
5258 this->set_data_size(size);
af2cdeae 5259 this->fix_data_size();
f625ae50
DK
5260
5261 // Allocate buffer for section contents and build contents.
5262 this->section_contents_ = new unsigned char[size];
5263}
5264
5265// Build the contents of a merged EXIDX output section.
5266
5267void
5268Arm_exidx_merged_section::build_contents(
5269 const unsigned char* original_contents,
5270 section_size_type original_size)
5271{
5272 // Go over spans of input offsets and write only those that are not
5273 // discarded.
5274 section_offset_type in_start = 0;
5275 section_offset_type out_start = 0;
5276 section_offset_type in_max =
5277 convert_types<section_offset_type>(original_size);
5278 section_offset_type out_max =
5279 convert_types<section_offset_type>(this->data_size());
5280 for (Arm_exidx_section_offset_map::const_iterator p =
5281 this->section_offset_map_.begin();
5282 p != this->section_offset_map_.end();
5283 ++p)
5284 {
5285 section_offset_type in_end = p->first;
5286 gold_assert(in_end >= in_start);
5287 section_offset_type out_end = p->second;
5288 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5289 if (out_end != -1)
5290 {
5291 size_t out_chunk_size =
5292 convert_types<size_t>(out_end - out_start + 1);
5293
5294 gold_assert(out_chunk_size == in_chunk_size
5295 && in_end < in_max && out_end < out_max);
5296
5297 memcpy(this->section_contents_ + out_start,
5298 original_contents + in_start,
5299 out_chunk_size);
5300 out_start += out_chunk_size;
5301 }
5302 in_start += in_chunk_size;
5303 }
af2cdeae
DK
5304}
5305
5306// Given an input OBJECT, an input section index SHNDX within that
5307// object, and an OFFSET relative to the start of that input
5308// section, return whether or not the corresponding offset within
5309// the output section is known. If this function returns true, it
5310// sets *POUTPUT to the output offset. The value -1 indicates that
5311// this input offset is being discarded.
5312
5313bool
5314Arm_exidx_merged_section::do_output_offset(
5315 const Relobj* relobj,
5316 unsigned int shndx,
5317 section_offset_type offset,
5318 section_offset_type* poutput) const
5319{
5320 // We only handle offsets for the original EXIDX input section.
5321 if (relobj != this->exidx_input_section_.relobj()
5322 || shndx != this->exidx_input_section_.shndx())
5323 return false;
5324
c7f3c371
DK
5325 section_offset_type section_size =
5326 convert_types<section_offset_type>(this->exidx_input_section_.size());
5327 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5328 // Input offset is out of valid range.
5329 *poutput = -1;
5330 else
5331 {
5332 // We need to look up the section offset map to determine the output
5333 // offset. Find the reference point in map that is first offset
5334 // bigger than or equal to this offset.
5335 Arm_exidx_section_offset_map::const_iterator p =
5336 this->section_offset_map_.lower_bound(offset);
5337
5338 // The section offset maps are build such that this should not happen if
5339 // input offset is in the valid range.
5340 gold_assert(p != this->section_offset_map_.end());
5341
5342 // We need to check if this is dropped.
5343 section_offset_type ref = p->first;
5344 section_offset_type mapped_ref = p->second;
5345
5346 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5347 // Offset is present in output.
5348 *poutput = mapped_ref + (offset - ref);
5349 else
5350 // Offset is discarded owing to EXIDX entry merging.
5351 *poutput = -1;
5352 }
5353
5354 return true;
5355}
5356
5357// Write this to output file OF.
5358
5359void
5360Arm_exidx_merged_section::do_write(Output_file* of)
5361{
af2cdeae
DK
5362 off_t offset = this->offset();
5363 const section_size_type oview_size = this->data_size();
5364 unsigned char* const oview = of->get_output_view(offset, oview_size);
5365
5366 Output_section* os = this->relobj()->output_section(this->shndx());
5367 gold_assert(os != NULL);
5368
f625ae50 5369 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5370 of->write_output_view(this->offset(), oview_size, oview);
5371}
5372
80d0d023
DK
5373// Arm_exidx_fixup methods.
5374
5375// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5376// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5377// points to the end of the last seen EXIDX section.
5378
5379void
5380Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5381{
5382 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5383 && this->last_input_section_ != NULL)
5384 {
5385 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5386 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5387 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5388 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5389 this->exidx_output_section_->add_output_section_data(cantunwind);
5390 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5391 }
5392}
5393
5394// Process an EXIDX section entry in input. Return whether this entry
5395// can be deleted in the output. SECOND_WORD in the second word of the
5396// EXIDX entry.
5397
5398bool
5399Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5400{
5401 bool delete_entry;
5402 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5403 {
5404 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5405 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5406 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5407 }
5408 else if ((second_word & 0x80000000) != 0)
5409 {
5410 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5411 delete_entry = (merge_exidx_entries_
5412 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5413 && this->last_inlined_entry_ == second_word);
5414 this->last_unwind_type_ = UT_INLINED_ENTRY;
5415 this->last_inlined_entry_ = second_word;
5416 }
5417 else
5418 {
5419 // Normal table entry. In theory we could merge these too,
5420 // but duplicate entries are likely to be much less common.
5421 delete_entry = false;
5422 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5423 }
5424 return delete_entry;
5425}
5426
5427// Update the current section offset map during EXIDX section fix-up.
5428// If there is no map, create one. INPUT_OFFSET is the offset of a
5429// reference point, DELETED_BYTES is the number of deleted by in the
5430// section so far. If DELETE_ENTRY is true, the reference point and
5431// all offsets after the previous reference point are discarded.
5432
5433void
5434Arm_exidx_fixup::update_offset_map(
5435 section_offset_type input_offset,
5436 section_size_type deleted_bytes,
5437 bool delete_entry)
5438{
5439 if (this->section_offset_map_ == NULL)
5440 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5441 section_offset_type output_offset;
5442 if (delete_entry)
5443 output_offset = Arm_exidx_input_section::invalid_offset;
5444 else
5445 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5446 (*this->section_offset_map_)[input_offset] = output_offset;
5447}
5448
5449// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5450// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5451// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5452// If some entries are merged, also store a pointer to a newly created
5453// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5454// owns the map and is responsible for releasing it after use.
80d0d023
DK
5455
5456template<bool big_endian>
5457uint32_t
5458Arm_exidx_fixup::process_exidx_section(
5459 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5460 const unsigned char* section_contents,
5461 section_size_type section_size,
80d0d023
DK
5462 Arm_exidx_section_offset_map** psection_offset_map)
5463{
5464 Relobj* relobj = exidx_input_section->relobj();
5465 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5466
5467 if ((section_size % 8) != 0)
5468 {
5469 // Something is wrong with this section. Better not touch it.
5470 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5471 relobj->name().c_str(), shndx);
5472 this->last_input_section_ = exidx_input_section;
5473 this->last_unwind_type_ = UT_NONE;
5474 return 0;
5475 }
5476
5477 uint32_t deleted_bytes = 0;
5478 bool prev_delete_entry = false;
5479 gold_assert(this->section_offset_map_ == NULL);
5480
5481 for (section_size_type i = 0; i < section_size; i += 8)
5482 {
5483 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5484 const Valtype* wv =
5485 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5486 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5487
5488 bool delete_entry = this->process_exidx_entry(second_word);
5489
5490 // Entry deletion causes changes in output offsets. We use a std::map
5491 // to record these. And entry (x, y) means input offset x
5492 // is mapped to output offset y. If y is invalid_offset, then x is
5493 // dropped in the output. Because of the way std::map::lower_bound
5494 // works, we record the last offset in a region w.r.t to keeping or
5495 // dropping. If there is no entry (x0, y0) for an input offset x0,
5496 // the output offset y0 of it is determined by the output offset y1 of
5497 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5498 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5499 // y0 is also -1.
5500 if (delete_entry != prev_delete_entry && i != 0)
5501 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5502
5503 // Update total deleted bytes for this entry.
5504 if (delete_entry)
5505 deleted_bytes += 8;
5506
5507 prev_delete_entry = delete_entry;
5508 }
5509
5510 // If section offset map is not NULL, make an entry for the end of
5511 // section.
5512 if (this->section_offset_map_ != NULL)
5513 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5514
5515 *psection_offset_map = this->section_offset_map_;
5516 this->section_offset_map_ = NULL;
5517 this->last_input_section_ = exidx_input_section;
5518
546c7457
DK
5519 // Set the first output text section so that we can link the EXIDX output
5520 // section to it. Ignore any EXIDX input section that is completely merged.
5521 if (this->first_output_text_section_ == NULL
5522 && deleted_bytes != section_size)
5523 {
5524 unsigned int link = exidx_input_section->link();
5525 Output_section* os = relobj->output_section(link);
5526 gold_assert(os != NULL);
5527 this->first_output_text_section_ = os;
5528 }
5529
80d0d023
DK
5530 return deleted_bytes;
5531}
5532
07f508a2
DK
5533// Arm_output_section methods.
5534
5535// Create a stub group for input sections from BEGIN to END. OWNER
5536// points to the input section to be the owner a new stub table.
5537
5538template<bool big_endian>
5539void
5540Arm_output_section<big_endian>::create_stub_group(
5541 Input_section_list::const_iterator begin,
5542 Input_section_list::const_iterator end,
5543 Input_section_list::const_iterator owner,
5544 Target_arm<big_endian>* target,
f625ae50
DK
5545 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5546 const Task* task)
07f508a2 5547{
2b328d4e
DK
5548 // We use a different kind of relaxed section in an EXIDX section.
5549 // The static casting from Output_relaxed_input_section to
5550 // Arm_input_section is invalid in an EXIDX section. We are okay
5551 // because we should not be calling this for an EXIDX section.
5552 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5553
07f508a2
DK
5554 // Currently we convert ordinary input sections into relaxed sections only
5555 // at this point but we may want to support creating relaxed input section
5556 // very early. So we check here to see if owner is already a relaxed
5557 // section.
5558
5559 Arm_input_section<big_endian>* arm_input_section;
5560 if (owner->is_relaxed_input_section())
5561 {
5562 arm_input_section =
5563 Arm_input_section<big_endian>::as_arm_input_section(
5564 owner->relaxed_input_section());
5565 }
5566 else
5567 {
5568 gold_assert(owner->is_input_section());
f625ae50
DK
5569 // Create a new relaxed input section. We need to lock the original
5570 // file.
5571 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5572 arm_input_section =
5573 target->new_arm_input_section(owner->relobj(), owner->shndx());
5574 new_relaxed_sections->push_back(arm_input_section);
5575 }
5576
5577 // Create a stub table.
2ea97941 5578 Stub_table<big_endian>* stub_table =
07f508a2
DK
5579 target->new_stub_table(arm_input_section);
5580
2ea97941 5581 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5582
5583 Input_section_list::const_iterator p = begin;
5584 Input_section_list::const_iterator prev_p;
5585
5586 // Look for input sections or relaxed input sections in [begin ... end].
5587 do
5588 {
5589 if (p->is_input_section() || p->is_relaxed_input_section())
5590 {
5591 // The stub table information for input sections live
5592 // in their objects.
5593 Arm_relobj<big_endian>* arm_relobj =
5594 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5595 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5596 }
5597 prev_p = p++;
5598 }
5599 while (prev_p != end);
5600}
5601
5602// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5603// of stub groups. We grow a stub group by adding input section until the
5604// size is just below GROUP_SIZE. The last input section will be converted
5605// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5606// input section after the stub table, effectively double the group size.
5607//
5608// This is similar to the group_sections() function in elf32-arm.c but is
5609// implemented differently.
5610
5611template<bool big_endian>
5612void
5613Arm_output_section<big_endian>::group_sections(
5614 section_size_type group_size,
5615 bool stubs_always_after_branch,
f625ae50
DK
5616 Target_arm<big_endian>* target,
5617 const Task* task)
07f508a2
DK
5618{
5619 // We only care about sections containing code.
5620 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5621 return;
5622
5623 // States for grouping.
5624 typedef enum
5625 {
5626 // No group is being built.
5627 NO_GROUP,
5628 // A group is being built but the stub table is not found yet.
5629 // We keep group a stub group until the size is just under GROUP_SIZE.
5630 // The last input section in the group will be used as the stub table.
5631 FINDING_STUB_SECTION,
5632 // A group is being built and we have already found a stub table.
5633 // We enter this state to grow a stub group by adding input section
5634 // after the stub table. This effectively doubles the group size.
5635 HAS_STUB_SECTION
5636 } State;
5637
5638 // Any newly created relaxed sections are stored here.
5639 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5640
5641 State state = NO_GROUP;
5642 section_size_type off = 0;
5643 section_size_type group_begin_offset = 0;
5644 section_size_type group_end_offset = 0;
5645 section_size_type stub_table_end_offset = 0;
5646 Input_section_list::const_iterator group_begin =
5647 this->input_sections().end();
2ea97941 5648 Input_section_list::const_iterator stub_table =
07f508a2
DK
5649 this->input_sections().end();
5650 Input_section_list::const_iterator group_end = this->input_sections().end();
5651 for (Input_section_list::const_iterator p = this->input_sections().begin();
5652 p != this->input_sections().end();
5653 ++p)
5654 {
5655 section_size_type section_begin_offset =
5656 align_address(off, p->addralign());
5657 section_size_type section_end_offset =
5658 section_begin_offset + p->data_size();
5659
9b547ce6 5660 // Check to see if we should group the previously seen sections.
e9bbb538 5661 switch (state)
07f508a2
DK
5662 {
5663 case NO_GROUP:
5664 break;
5665
5666 case FINDING_STUB_SECTION:
5667 // Adding this section makes the group larger than GROUP_SIZE.
5668 if (section_end_offset - group_begin_offset >= group_size)
5669 {
5670 if (stubs_always_after_branch)
5671 {
5672 gold_assert(group_end != this->input_sections().end());
5673 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5674 target, &new_relaxed_sections,
5675 task);
07f508a2
DK
5676 state = NO_GROUP;
5677 }
5678 else
5679 {
5680 // But wait, there's more! Input sections up to
5681 // stub_group_size bytes after the stub table can be
5682 // handled by it too.
5683 state = HAS_STUB_SECTION;
2ea97941 5684 stub_table = group_end;
07f508a2
DK
5685 stub_table_end_offset = group_end_offset;
5686 }
5687 }
5688 break;
5689
5690 case HAS_STUB_SECTION:
5691 // Adding this section makes the post stub-section group larger
5692 // than GROUP_SIZE.
5693 if (section_end_offset - stub_table_end_offset >= group_size)
5694 {
5695 gold_assert(group_end != this->input_sections().end());
2ea97941 5696 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5697 target, &new_relaxed_sections, task);
07f508a2
DK
5698 state = NO_GROUP;
5699 }
5700 break;
5701
5702 default:
5703 gold_unreachable();
5704 }
5705
5706 // If we see an input section and currently there is no group, start
f625ae50
DK
5707 // a new one. Skip any empty sections. We look at the data size
5708 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5709 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5710 && (p->data_size() != 0))
07f508a2
DK
5711 {
5712 if (state == NO_GROUP)
5713 {
5714 state = FINDING_STUB_SECTION;
5715 group_begin = p;
5716 group_begin_offset = section_begin_offset;
5717 }
5718
5719 // Keep track of the last input section seen.
5720 group_end = p;
5721 group_end_offset = section_end_offset;
5722 }
5723
5724 off = section_end_offset;
5725 }
5726
5727 // Create a stub group for any ungrouped sections.
5728 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5729 {
5730 gold_assert(group_end != this->input_sections().end());
5731 this->create_stub_group(group_begin, group_end,
5732 (state == FINDING_STUB_SECTION
5733 ? group_end
2ea97941 5734 : stub_table),
f625ae50 5735 target, &new_relaxed_sections, task);
07f508a2
DK
5736 }
5737
5738 // Convert input section into relaxed input section in a batch.
5739 if (!new_relaxed_sections.empty())
5740 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5741
5742 // Update the section offsets
5743 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5744 {
5745 Arm_relobj<big_endian>* arm_relobj =
5746 Arm_relobj<big_endian>::as_arm_relobj(
5747 new_relaxed_sections[i]->relobj());
2ea97941 5748 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5749 // Tell Arm_relobj that this input section is converted.
2ea97941 5750 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5751 }
5752}
5753
2b328d4e
DK
5754// Append non empty text sections in this to LIST in ascending
5755// order of their position in this.
5756
5757template<bool big_endian>
5758void
5759Arm_output_section<big_endian>::append_text_sections_to_list(
5760 Text_section_list* list)
5761{
2b328d4e
DK
5762 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5763
5764 for (Input_section_list::const_iterator p = this->input_sections().begin();
5765 p != this->input_sections().end();
5766 ++p)
5767 {
5768 // We only care about plain or relaxed input sections. We also
5769 // ignore any merged sections.
a60af0db 5770 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5771 list->push_back(Text_section_list::value_type(p->relobj(),
5772 p->shndx()));
5773 }
5774}
5775
5776template<bool big_endian>
5777void
5778Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5779 Layout* layout,
2b328d4e 5780 const Text_section_list& sorted_text_sections,
85fdf906 5781 Symbol_table* symtab,
f625ae50
DK
5782 bool merge_exidx_entries,
5783 const Task* task)
2b328d4e
DK
5784{
5785 // We should only do this for the EXIDX output section.
5786 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5787
5788 // We don't want the relaxation loop to undo these changes, so we discard
5789 // the current saved states and take another one after the fix-up.
5790 this->discard_states();
5791
5792 // Remove all input sections.
5793 uint64_t address = this->address();
6625d24e
DK
5794 typedef std::list<Output_section::Input_section> Input_section_list;
5795 Input_section_list input_sections;
2b328d4e
DK
5796 this->reset_address_and_file_offset();
5797 this->get_input_sections(address, std::string(""), &input_sections);
5798
5799 if (!this->input_sections().empty())
5800 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5801
5802 // Go through all the known input sections and record them.
5803 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5804 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5805 Section_id_hash> Text_to_exidx_map;
5806 Text_to_exidx_map text_to_exidx_map;
5807 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5808 p != input_sections.end();
5809 ++p)
5810 {
5811 // This should never happen. At this point, we should only see
5812 // plain EXIDX input sections.
5813 gold_assert(!p->is_relaxed_input_section());
6625d24e 5814 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5815 }
5816
85fdf906 5817 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5818
5819 // Go over the sorted text sections.
6625d24e 5820 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5821 Section_id_set processed_input_sections;
5822 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5823 p != sorted_text_sections.end();
5824 ++p)
5825 {
5826 Relobj* relobj = p->first;
5827 unsigned int shndx = p->second;
5828
5829 Arm_relobj<big_endian>* arm_relobj =
5830 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5831 const Arm_exidx_input_section* exidx_input_section =
5832 arm_relobj->exidx_input_section_by_link(shndx);
5833
131687b4
DK
5834 // If this text section has no EXIDX section or if the EXIDX section
5835 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5836 // of the last seen EXIDX section.
5837 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5838 {
5839 exidx_fixup.add_exidx_cantunwind_as_needed();
5840 continue;
5841 }
5842
5843 Relobj* exidx_relobj = exidx_input_section->relobj();
5844 unsigned int exidx_shndx = exidx_input_section->shndx();
5845 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5846 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5847 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5848 {
5849 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5850 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5851 // issue a warning instead. We assume the user knows what he
5852 // or she is doing. Otherwise, this is an error.
5853 if (layout->script_options()->saw_sections_clause())
5854 gold_warning(_("unwinding may not work because EXIDX input section"
5855 " %u of %s is not in EXIDX output section"),
5856 exidx_shndx, exidx_relobj->name().c_str());
5857 else
5858 gold_error(_("unwinding may not work because EXIDX input section"
5859 " %u of %s is not in EXIDX output section"),
5860 exidx_shndx, exidx_relobj->name().c_str());
5861
2b328d4e
DK
5862 exidx_fixup.add_exidx_cantunwind_as_needed();
5863 continue;
5864 }
5865
f625ae50
DK
5866 // We need to access the contents of the EXIDX section, lock the
5867 // object here.
5868 Task_lock_obj<Object> tl(task, exidx_relobj);
5869 section_size_type exidx_size;
5870 const unsigned char* exidx_contents =
5871 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5872
2b328d4e
DK
5873 // Fix up coverage and append input section to output data list.
5874 Arm_exidx_section_offset_map* section_offset_map = NULL;
5875 uint32_t deleted_bytes =
5876 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5877 exidx_contents,
5878 exidx_size,
2b328d4e
DK
5879 &section_offset_map);
5880
5881 if (deleted_bytes == exidx_input_section->size())
5882 {
5883 // The whole EXIDX section got merged. Remove it from output.
5884 gold_assert(section_offset_map == NULL);
5885 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5886
5887 // All local symbols defined in this input section will be dropped.
5888 // We need to adjust output local symbol count.
5889 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5890 }
5891 else if (deleted_bytes > 0)
5892 {
5893 // Some entries are merged. We need to convert this EXIDX input
5894 // section into a relaxed section.
5895 gold_assert(section_offset_map != NULL);
f625ae50 5896
2b328d4e
DK
5897 Arm_exidx_merged_section* merged_section =
5898 new Arm_exidx_merged_section(*exidx_input_section,
5899 *section_offset_map, deleted_bytes);
f625ae50
DK
5900 merged_section->build_contents(exidx_contents, exidx_size);
5901
d06fb4d1
DK
5902 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5903 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5904 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5905
5906 // All local symbols defined in discarded portions of this input
5907 // section will be dropped. We need to adjust output local symbol
5908 // count.
5909 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5910 }
5911 else
5912 {
5913 // Just add back the EXIDX input section.
5914 gold_assert(section_offset_map == NULL);
6625d24e
DK
5915 const Output_section::Input_section* pis = iter->second;
5916 gold_assert(pis->is_input_section());
5917 this->add_script_input_section(*pis);
2b328d4e
DK
5918 }
5919
5920 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5921 }
5922
5923 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5924 exidx_fixup.add_exidx_cantunwind_as_needed();
5925
5926 // Remove any known EXIDX input sections that are not processed.
6625d24e 5927 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5928 p != input_sections.end();
5929 ++p)
5930 {
5931 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5932 == processed_input_sections.end())
5933 {
131687b4
DK
5934 // We discard a known EXIDX section because its linked
5935 // text section has been folded by ICF. We also discard an
5936 // EXIDX section with error, the output does not matter in this
5937 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5938 Arm_relobj<big_endian>* arm_relobj =
5939 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5940 const Arm_exidx_input_section* exidx_input_section =
5941 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5942 gold_assert(exidx_input_section != NULL);
131687b4
DK
5943 if (!exidx_input_section->has_errors())
5944 {
5945 unsigned int text_shndx = exidx_input_section->link();
5946 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5947 }
2b328d4e 5948
04ceb17c
DK
5949 // Remove this from link. We also need to recount the
5950 // local symbols.
2b328d4e 5951 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5952 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5953 }
5954 }
5955
546c7457
DK
5956 // Link exidx output section to the first seen output section and
5957 // set correct entry size.
5958 this->set_link_section(exidx_fixup.first_output_text_section());
5959 this->set_entsize(8);
5960
2b328d4e
DK
5961 // Make changes permanent.
5962 this->save_states();
5963 this->set_section_offsets_need_adjustment();
5964}
5965
131687b4
DK
5966// Link EXIDX output sections to text output sections.
5967
5968template<bool big_endian>
5969void
5970Arm_output_section<big_endian>::set_exidx_section_link()
5971{
5972 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5973 if (!this->input_sections().empty())
5974 {
5975 Input_section_list::const_iterator p = this->input_sections().begin();
5976 Arm_relobj<big_endian>* arm_relobj =
5977 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5978 unsigned exidx_shndx = p->shndx();
5979 const Arm_exidx_input_section* exidx_input_section =
5980 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5981 gold_assert(exidx_input_section != NULL);
5982 unsigned int text_shndx = exidx_input_section->link();
5983 Output_section* os = arm_relobj->output_section(text_shndx);
5984 this->set_link_section(os);
5985 }
5986}
5987
8ffa3667
DK
5988// Arm_relobj methods.
5989
cf846138
DK
5990// Determine if an input section is scannable for stub processing. SHDR is
5991// the header of the section and SHNDX is the section index. OS is the output
5992// section for the input section and SYMTAB is the global symbol table used to
5993// look up ICF information.
5994
5995template<bool big_endian>
5996bool
5997Arm_relobj<big_endian>::section_is_scannable(
5998 const elfcpp::Shdr<32, big_endian>& shdr,
5999 unsigned int shndx,
6000 const Output_section* os,
ca09d69a 6001 const Symbol_table* symtab)
cf846138
DK
6002{
6003 // Skip any empty sections, unallocated sections or sections whose
6004 // type are not SHT_PROGBITS.
6005 if (shdr.get_sh_size() == 0
6006 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6007 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6008 return false;
6009
6010 // Skip any discarded or ICF'ed sections.
6011 if (os == NULL || symtab->is_section_folded(this, shndx))
6012 return false;
6013
6014 // If this requires special offset handling, check to see if it is
6015 // a relaxed section. If this is not, then it is a merged section that
6016 // we cannot handle.
6017 if (this->is_output_section_offset_invalid(shndx))
6018 {
6019 const Output_relaxed_input_section* poris =
6020 os->find_relaxed_input_section(this, shndx);
6021 if (poris == NULL)
6022 return false;
6023 }
6024
6025 return true;
6026}
6027
44272192
DK
6028// Determine if we want to scan the SHNDX-th section for relocation stubs.
6029// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6030
6031template<bool big_endian>
6032bool
6033Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6034 const elfcpp::Shdr<32, big_endian>& shdr,
6035 const Relobj::Output_sections& out_sections,
ca09d69a 6036 const Symbol_table* symtab,
2b328d4e 6037 const unsigned char* pshdrs)
44272192
DK
6038{
6039 unsigned int sh_type = shdr.get_sh_type();
6040 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6041 return false;
6042
6043 // Ignore empty section.
6044 off_t sh_size = shdr.get_sh_size();
6045 if (sh_size == 0)
6046 return false;
6047
44272192
DK
6048 // Ignore reloc section with unexpected symbol table. The
6049 // error will be reported in the final link.
6050 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6051 return false;
6052
b521dfe4
DK
6053 unsigned int reloc_size;
6054 if (sh_type == elfcpp::SHT_REL)
6055 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6056 else
6057 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6058
6059 // Ignore reloc section with unexpected entsize or uneven size.
6060 // The error will be reported in the final link.
6061 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6062 return false;
6063
cf846138
DK
6064 // Ignore reloc section with bad info. This error will be
6065 // reported in the final link.
6066 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6067 if (index >= this->shnum())
6068 return false;
6069
6070 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6071 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6072 return this->section_is_scannable(text_shdr, index,
6073 out_sections[index], symtab);
44272192
DK
6074}
6075
cb1be87e
DK
6076// Return the output address of either a plain input section or a relaxed
6077// input section. SHNDX is the section index. We define and use this
6078// instead of calling Output_section::output_address because that is slow
6079// for large output.
6080
6081template<bool big_endian>
6082Arm_address
6083Arm_relobj<big_endian>::simple_input_section_output_address(
6084 unsigned int shndx,
6085 Output_section* os)
6086{
6087 if (this->is_output_section_offset_invalid(shndx))
6088 {
6089 const Output_relaxed_input_section* poris =
6090 os->find_relaxed_input_section(this, shndx);
6091 // We do not handle merged sections here.
6092 gold_assert(poris != NULL);
6093 return poris->address();
6094 }
6095 else
6096 return os->address() + this->get_output_section_offset(shndx);
6097}
6098
44272192
DK
6099// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6100// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6101
6102template<bool big_endian>
6103bool
6104Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6105 const elfcpp::Shdr<32, big_endian>& shdr,
6106 unsigned int shndx,
6107 Output_section* os,
6108 const Symbol_table* symtab)
6109{
cf846138 6110 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6111 return false;
6112
44272192
DK
6113 // If the section does not cross any 4K-boundaries, it does not need to
6114 // be scanned.
cb1be87e 6115 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6116 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6117 return false;
6118
6119 return true;
6120}
6121
6122// Scan a section for Cortex-A8 workaround.
6123
6124template<bool big_endian>
6125void
6126Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6127 const elfcpp::Shdr<32, big_endian>& shdr,
6128 unsigned int shndx,
6129 Output_section* os,
6130 Target_arm<big_endian>* arm_target)
6131{
c8761b9a
DK
6132 // Look for the first mapping symbol in this section. It should be
6133 // at (shndx, 0).
6134 Mapping_symbol_position section_start(shndx, 0);
6135 typename Mapping_symbols_info::const_iterator p =
6136 this->mapping_symbols_info_.lower_bound(section_start);
6137
6138 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6139 // section. Issue a warning if section is marked as containing
6140 // instructions.
c8761b9a 6141 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6142 {
6143 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6144 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6145 "erratum because it has no mapping symbols."),
6146 shndx, this->name().c_str());
6147 return;
6148 }
c8761b9a 6149
cb1be87e
DK
6150 Arm_address output_address =
6151 this->simple_input_section_output_address(shndx, os);
44272192
DK
6152
6153 // Get the section contents.
6154 section_size_type input_view_size = 0;
6155 const unsigned char* input_view =
6156 this->section_contents(shndx, &input_view_size, false);
6157
6158 // We need to go through the mapping symbols to determine what to
6159 // scan. There are two reasons. First, we should look at THUMB code and
6160 // THUMB code only. Second, we only want to look at the 4K-page boundary
6161 // to speed up the scanning.
6162
44272192
DK
6163 while (p != this->mapping_symbols_info_.end()
6164 && p->first.first == shndx)
6165 {
6166 typename Mapping_symbols_info::const_iterator next =
6167 this->mapping_symbols_info_.upper_bound(p->first);
6168
6169 // Only scan part of a section with THUMB code.
6170 if (p->second == 't')
6171 {
6172 // Determine the end of this range.
6173 section_size_type span_start =
6174 convert_to_section_size_type(p->first.second);
6175 section_size_type span_end;
6176 if (next != this->mapping_symbols_info_.end()
6177 && next->first.first == shndx)
6178 span_end = convert_to_section_size_type(next->first.second);
6179 else
6180 span_end = convert_to_section_size_type(shdr.get_sh_size());
6181
6182 if (((span_start + output_address) & ~0xfffUL)
6183 != ((span_end + output_address - 1) & ~0xfffUL))
6184 {
6185 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6186 span_start, span_end,
6187 input_view,
6188 output_address);
6189 }
6190 }
6191
6192 p = next;
6193 }
6194}
6195
8ffa3667
DK
6196// Scan relocations for stub generation.
6197
6198template<bool big_endian>
6199void
6200Arm_relobj<big_endian>::scan_sections_for_stubs(
6201 Target_arm<big_endian>* arm_target,
6202 const Symbol_table* symtab,
2ea97941 6203 const Layout* layout)
8ffa3667 6204{
2ea97941
ILT
6205 unsigned int shnum = this->shnum();
6206 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6207
6208 // Read the section headers.
6209 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6210 shnum * shdr_size,
8ffa3667
DK
6211 true, true);
6212
6213 // To speed up processing, we set up hash tables for fast lookup of
6214 // input offsets to output addresses.
6215 this->initialize_input_to_output_maps();
6216
6217 const Relobj::Output_sections& out_sections(this->output_sections());
6218
6219 Relocate_info<32, big_endian> relinfo;
8ffa3667 6220 relinfo.symtab = symtab;
2ea97941 6221 relinfo.layout = layout;
8ffa3667
DK
6222 relinfo.object = this;
6223
44272192 6224 // Do relocation stubs scanning.
2ea97941
ILT
6225 const unsigned char* p = pshdrs + shdr_size;
6226 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6227 {
44272192 6228 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6229 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6230 pshdrs))
8ffa3667 6231 {
44272192
DK
6232 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6233 Arm_address output_offset = this->get_output_section_offset(index);
6234 Arm_address output_address;
7296d933 6235 if (output_offset != invalid_address)
44272192
DK
6236 output_address = out_sections[index]->address() + output_offset;
6237 else
6238 {
6239 // Currently this only happens for a relaxed section.
6240 const Output_relaxed_input_section* poris =
6241 out_sections[index]->find_relaxed_input_section(this, index);
6242 gold_assert(poris != NULL);
6243 output_address = poris->address();
6244 }
8ffa3667 6245
44272192
DK
6246 // Get the relocations.
6247 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6248 shdr.get_sh_size(),
6249 true, false);
6250
6251 // Get the section contents. This does work for the case in which
6252 // we modify the contents of an input section. We need to pass the
6253 // output view under such circumstances.
6254 section_size_type input_view_size = 0;
6255 const unsigned char* input_view =
6256 this->section_contents(index, &input_view_size, false);
6257
6258 relinfo.reloc_shndx = i;
6259 relinfo.data_shndx = index;
6260 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6261 unsigned int reloc_size;
6262 if (sh_type == elfcpp::SHT_REL)
6263 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6264 else
6265 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6266
6267 Output_section* os = out_sections[index];
6268 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6269 shdr.get_sh_size() / reloc_size,
6270 os,
6271 output_offset == invalid_address,
6272 input_view, output_address,
6273 input_view_size);
8ffa3667 6274 }
44272192 6275 }
8ffa3667 6276
44272192
DK
6277 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6278 // after its relocation section, if there is one, is processed for
6279 // relocation stubs. Merging this loop with the one above would have been
6280 // complicated since we would have had to make sure that relocation stub
6281 // scanning is done first.
6282 if (arm_target->fix_cortex_a8())
6283 {
6284 const unsigned char* p = pshdrs + shdr_size;
6285 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6286 {
44272192
DK
6287 const elfcpp::Shdr<32, big_endian> shdr(p);
6288 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6289 out_sections[i],
6290 symtab))
6291 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6292 arm_target);
8ffa3667 6293 }
8ffa3667
DK
6294 }
6295
6296 // After we've done the relocations, we release the hash tables,
6297 // since we no longer need them.
6298 this->free_input_to_output_maps();
6299}
6300
6301// Count the local symbols. The ARM backend needs to know if a symbol
6302// is a THUMB function or not. For global symbols, it is easy because
6303// the Symbol object keeps the ELF symbol type. For local symbol it is
6304// harder because we cannot access this information. So we override the
6305// do_count_local_symbol in parent and scan local symbols to mark
6306// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6307// slow down other ports by calling a per symbol target hook inside
6fa2a40b 6308// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6309
6310template<bool big_endian>
6311void
6312Arm_relobj<big_endian>::do_count_local_symbols(
6313 Stringpool_template<char>* pool,
6314 Stringpool_template<char>* dynpool)
6315{
6316 // We need to fix-up the values of any local symbols whose type are
6317 // STT_ARM_TFUNC.
6318
6319 // Ask parent to count the local symbols.
6fa2a40b 6320 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6321 const unsigned int loccount = this->local_symbol_count();
6322 if (loccount == 0)
6323 return;
6324
9b547ce6 6325 // Initialize the thumb function bit-vector.
8ffa3667
DK
6326 std::vector<bool> empty_vector(loccount, false);
6327 this->local_symbol_is_thumb_function_.swap(empty_vector);
6328
6329 // Read the symbol table section header.
2ea97941 6330 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6331 elfcpp::Shdr<32, big_endian>
2ea97941 6332 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6333 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6334
6335 // Read the local symbols.
2ea97941 6336 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6337 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6338 off_t locsize = loccount * sym_size;
8ffa3667
DK
6339 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6340 locsize, true, true);
6341
20138696
DK
6342 // For mapping symbol processing, we need to read the symbol names.
6343 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6344 if (strtab_shndx >= this->shnum())
6345 {
6346 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6347 return;
6348 }
6349
6350 elfcpp::Shdr<32, big_endian>
6351 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6352 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6353 {
6354 this->error(_("symbol table name section has wrong type: %u"),
6355 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6356 return;
6357 }
6358 const char* pnames =
6359 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6360 strtabshdr.get_sh_size(),
6361 false, false));
6362
8ffa3667
DK
6363 // Loop over the local symbols and mark any local symbols pointing
6364 // to THUMB functions.
6365
6366 // Skip the first dummy symbol.
2ea97941 6367 psyms += sym_size;
6fa2a40b 6368 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6369 this->local_values();
2ea97941 6370 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6371 {
6372 elfcpp::Sym<32, big_endian> sym(psyms);
6373 elfcpp::STT st_type = sym.get_st_type();
6374 Symbol_value<32>& lv((*plocal_values)[i]);
6375 Arm_address input_value = lv.input_value();
6376
20138696
DK
6377 // Check to see if this is a mapping symbol.
6378 const char* sym_name = pnames + sym.get_st_name();
6379 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6380 {
24af6f92
DK
6381 bool is_ordinary;
6382 unsigned int input_shndx =
6383 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6384 gold_assert(is_ordinary);
20138696
DK
6385
6386 // Strip of LSB in case this is a THUMB symbol.
6387 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6388 this->mapping_symbols_info_[msp] = sym_name[1];
6389 }
6390
8ffa3667
DK
6391 if (st_type == elfcpp::STT_ARM_TFUNC
6392 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6393 {
6394 // This is a THUMB function. Mark this and canonicalize the
6395 // symbol value by setting LSB.
6396 this->local_symbol_is_thumb_function_[i] = true;
6397 if ((input_value & 1) == 0)
6398 lv.set_input_value(input_value | 1);
6399 }
6400 }
6401}
6402
6403// Relocate sections.
6404template<bool big_endian>
6405void
6406Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6407 const Symbol_table* symtab,
2ea97941 6408 const Layout* layout,
8ffa3667 6409 const unsigned char* pshdrs,
aa98ff75 6410 Output_file* of,
6fa2a40b 6411 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6412{
6413 // Call parent to relocate sections.
6fa2a40b
CC
6414 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6415 pshdrs, of, pviews);
8ffa3667
DK
6416
6417 // We do not generate stubs if doing a relocatable link.
6418 if (parameters->options().relocatable())
6419 return;
6420
6421 // Relocate stub tables.
2ea97941 6422 unsigned int shnum = this->shnum();
8ffa3667
DK
6423
6424 Target_arm<big_endian>* arm_target =
6425 Target_arm<big_endian>::default_target();
6426
6427 Relocate_info<32, big_endian> relinfo;
8ffa3667 6428 relinfo.symtab = symtab;
2ea97941 6429 relinfo.layout = layout;
8ffa3667
DK
6430 relinfo.object = this;
6431
2ea97941 6432 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6433 {
6434 Arm_input_section<big_endian>* arm_input_section =
6435 arm_target->find_arm_input_section(this, i);
6436
41263c05
DK
6437 if (arm_input_section != NULL
6438 && arm_input_section->is_stub_table_owner()
6439 && !arm_input_section->stub_table()->empty())
6440 {
6441 // We cannot discard a section if it owns a stub table.
6442 Output_section* os = this->output_section(i);
6443 gold_assert(os != NULL);
6444
6445 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6446 relinfo.reloc_shdr = NULL;
6447 relinfo.data_shndx = i;
6448 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6449
6450 gold_assert((*pviews)[i].view != NULL);
6451
6452 // We are passed the output section view. Adjust it to cover the
6453 // stub table only.
6454 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6455 gold_assert((stub_table->address() >= (*pviews)[i].address)
6456 && ((stub_table->address() + stub_table->data_size())
6457 <= (*pviews)[i].address + (*pviews)[i].view_size));
6458
6459 off_t offset = stub_table->address() - (*pviews)[i].address;
6460 unsigned char* view = (*pviews)[i].view + offset;
6461 Arm_address address = stub_table->address();
6462 section_size_type view_size = stub_table->data_size();
8ffa3667 6463
41263c05
DK
6464 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6465 view_size);
6466 }
6467
6468 // Apply Cortex A8 workaround if applicable.
6469 if (this->section_has_cortex_a8_workaround(i))
6470 {
6471 unsigned char* view = (*pviews)[i].view;
6472 Arm_address view_address = (*pviews)[i].address;
6473 section_size_type view_size = (*pviews)[i].view_size;
6474 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6475
6476 // Adjust view to cover section.
6477 Output_section* os = this->output_section(i);
6478 gold_assert(os != NULL);
cb1be87e
DK
6479 Arm_address section_address =
6480 this->simple_input_section_output_address(i, os);
41263c05
DK
6481 uint64_t section_size = this->section_size(i);
6482
6483 gold_assert(section_address >= view_address
6484 && ((section_address + section_size)
6485 <= (view_address + view_size)));
6486
6487 unsigned char* section_view = view + (section_address - view_address);
6488
6489 // Apply the Cortex-A8 workaround to the output address range
6490 // corresponding to this input section.
6491 stub_table->apply_cortex_a8_workaround_to_address_range(
6492 arm_target,
6493 section_view,
6494 section_address,
6495 section_size);
6496 }
8ffa3667
DK
6497 }
6498}
6499
9b547ce6 6500// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6501// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6502// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6503// its section header. However, some tools are broken and the link is not
6504// always set. LD just drops such an EXIDX section silently, causing the
6505// associated code not unwindabled. Here we try a little bit harder to
6506// discover the linked code section.
6507//
6508// PSHDR points to the section header of a relocation section of an EXIDX
6509// section. If we can find a linked text section, return true and
6510// store the text section index in the location PSHNDX. Otherwise
6511// return false.
a0351a69
DK
6512
6513template<bool big_endian>
c8761b9a
DK
6514bool
6515Arm_relobj<big_endian>::find_linked_text_section(
6516 const unsigned char* pshdr,
6517 const unsigned char* psyms,
6518 unsigned int* pshndx)
a0351a69 6519{
c8761b9a
DK
6520 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6521
6522 // If there is no relocation, we cannot find the linked text section.
6523 size_t reloc_size;
6524 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6525 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6526 else
6527 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6528 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6529
6530 // Get the relocations.
6531 const unsigned char* prelocs =
6532 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6533
c8761b9a
DK
6534 // Find the REL31 relocation for the first word of the first EXIDX entry.
6535 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6536 {
c8761b9a
DK
6537 Arm_address r_offset;
6538 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6539 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6540 {
6541 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6542 r_info = reloc.get_r_info();
6543 r_offset = reloc.get_r_offset();
6544 }
6545 else
6546 {
6547 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6548 r_info = reloc.get_r_info();
6549 r_offset = reloc.get_r_offset();
6550 }
6551
6552 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6553 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6554 continue;
6555
6556 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6557 if (r_sym == 0
6558 || r_sym >= this->local_symbol_count()
6559 || r_offset != 0)
6560 continue;
6561
6562 // This is the relocation for the first word of the first EXIDX entry.
6563 // We expect to see a local section symbol.
6564 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6565 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6566 if (sym.get_st_type() == elfcpp::STT_SECTION)
6567 {
24af6f92
DK
6568 bool is_ordinary;
6569 *pshndx =
6570 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6571 gold_assert(is_ordinary);
c8761b9a
DK
6572 return true;
6573 }
6574 else
6575 return false;
993d07c1 6576 }
c8761b9a
DK
6577
6578 return false;
6579}
6580
6581// Make an EXIDX input section object for an EXIDX section whose index is
6582// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6583// is the section index of the linked text section.
6584
6585template<bool big_endian>
6586void
6587Arm_relobj<big_endian>::make_exidx_input_section(
6588 unsigned int shndx,
6589 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6590 unsigned int text_shndx,
6591 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6592{
993d07c1
DK
6593 // Create an Arm_exidx_input_section object for this EXIDX section.
6594 Arm_exidx_input_section* exidx_input_section =
6595 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6596 shdr.get_sh_addralign(),
6597 text_shdr.get_sh_size());
993d07c1 6598
993d07c1
DK
6599 gold_assert(this->exidx_section_map_[shndx] == NULL);
6600 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6601
6602 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6603 {
6604 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6605 this->section_name(shndx).c_str(), shndx, text_shndx,
6606 this->name().c_str());
6607 exidx_input_section->set_has_errors();
6608 }
6609 else if (this->exidx_section_map_[text_shndx] != NULL)
6610 {
6611 unsigned other_exidx_shndx =
6612 this->exidx_section_map_[text_shndx]->shndx();
6613 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6614 "%s(%u) in %s"),
6615 this->section_name(shndx).c_str(), shndx,
6616 this->section_name(other_exidx_shndx).c_str(),
6617 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6618 text_shndx, this->name().c_str());
6619 exidx_input_section->set_has_errors();
6620 }
6621 else
6622 this->exidx_section_map_[text_shndx] = exidx_input_section;
6623
6624 // Check section flags of text section.
6625 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6626 {
6627 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6628 " in %s"),
6629 this->section_name(shndx).c_str(), shndx,
6630 this->section_name(text_shndx).c_str(), text_shndx,
6631 this->name().c_str());
6632 exidx_input_section->set_has_errors();
6633 }
6634 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6635 // I would like to make this an error but currently ld just ignores
131687b4
DK
6636 // this.
6637 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6638 "%s(%u) in %s"),
6639 this->section_name(shndx).c_str(), shndx,
6640 this->section_name(text_shndx).c_str(), text_shndx,
6641 this->name().c_str());
a0351a69
DK
6642}
6643
d5b40221
DK
6644// Read the symbol information.
6645
6646template<bool big_endian>
6647void
6648Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6649{
6650 // Call parent class to read symbol information.
6fa2a40b 6651 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6652
7296d933
DK
6653 // If this input file is a binary file, it has no processor
6654 // specific flags and attributes section.
6655 Input_file::Format format = this->input_file()->format();
6656 if (format != Input_file::FORMAT_ELF)
6657 {
6658 gold_assert(format == Input_file::FORMAT_BINARY);
6659 this->merge_flags_and_attributes_ = false;
6660 return;
6661 }
6662
d5b40221
DK
6663 // Read processor-specific flags in ELF file header.
6664 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6665 elfcpp::Elf_sizes<32>::ehdr_size,
6666 true, false);
6667 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6668 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6669
6670 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6671 // sections.
c8761b9a 6672 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6673 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6674 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6675 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6676 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6677 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6678 {
6679 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6680
6681 // Sometimes an object has no contents except the section name string
6682 // table and an empty symbol table with the undefined symbol. We
6683 // don't want to merge processor-specific flags from such an object.
6684 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6685 {
6686 // Symbol table is not empty.
6687 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6688 elfcpp::Elf_sizes<32>::sym_size;
6689 if (shdr.get_sh_size() > sym_size)
6690 must_merge_flags_and_attributes = true;
6691 }
6692 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6693 // If this is neither an empty symbol table nor a string table,
6694 // be conservative.
6695 must_merge_flags_and_attributes = true;
6696
993d07c1
DK
6697 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6698 {
6699 gold_assert(this->attributes_section_data_ == NULL);
6700 section_offset_type section_offset = shdr.get_sh_offset();
6701 section_size_type section_size =
6702 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6703 const unsigned char* view =
6704 this->get_view(section_offset, section_size, true, false);
993d07c1 6705 this->attributes_section_data_ =
f625ae50 6706 new Attributes_section_data(view, section_size);
993d07c1
DK
6707 }
6708 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6709 {
6710 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6711 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6712 deferred_exidx_sections.push_back(i);
6713 else
131687b4
DK
6714 {
6715 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6716 + text_shndx * shdr_size);
6717 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6718 }
c9484ea5
DK
6719 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6720 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6721 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6722 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6723 }
6724 }
6725
7296d933
DK
6726 // This is rare.
6727 if (!must_merge_flags_and_attributes)
6728 {
131687b4 6729 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6730 this->merge_flags_and_attributes_ = false;
6731 return;
6732 }
6733
c8761b9a
DK
6734 // Some tools are broken and they do not set the link of EXIDX sections.
6735 // We look at the first relocation to figure out the linked sections.
6736 if (!deferred_exidx_sections.empty())
6737 {
6738 // We need to go over the section headers again to find the mapping
6739 // from sections being relocated to their relocation sections. This is
6740 // a bit inefficient as we could do that in the loop above. However,
6741 // we do not expect any deferred EXIDX sections normally. So we do not
6742 // want to slow down the most common path.
6743 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6744 Reloc_map reloc_map;
6745 ps = pshdrs + shdr_size;
6746 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6747 {
6748 elfcpp::Shdr<32, big_endian> shdr(ps);
6749 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6750 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6751 {
6752 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6753 if (info_shndx >= this->shnum())
6754 gold_error(_("relocation section %u has invalid info %u"),
6755 i, info_shndx);
6756 Reloc_map::value_type value(info_shndx, i);
6757 std::pair<Reloc_map::iterator, bool> result =
6758 reloc_map.insert(value);
6759 if (!result.second)
6760 gold_error(_("section %u has multiple relocation sections "
6761 "%u and %u"),
6762 info_shndx, i, reloc_map[info_shndx]);
6763 }
6764 }
6765
6766 // Read the symbol table section header.
6767 const unsigned int symtab_shndx = this->symtab_shndx();
6768 elfcpp::Shdr<32, big_endian>
6769 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6770 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6771
6772 // Read the local symbols.
6773 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6774 const unsigned int loccount = this->local_symbol_count();
6775 gold_assert(loccount == symtabshdr.get_sh_info());
6776 off_t locsize = loccount * sym_size;
6777 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6778 locsize, true, true);
6779
6780 // Process the deferred EXIDX sections.
f625ae50 6781 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6782 {
6783 unsigned int shndx = deferred_exidx_sections[i];
6784 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6785 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6786 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6787 if (it != reloc_map.end())
6788 find_linked_text_section(pshdrs + it->second * shdr_size,
6789 psyms, &text_shndx);
6790 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6791 + text_shndx * shdr_size);
6792 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6793 }
993d07c1 6794 }
d5b40221
DK
6795}
6796
99e5bff2
DK
6797// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6798// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6799// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6800// references, the .ARM.exidx sections and any .ARM.extab sections they use
6801// will be garbage-collected incorrectly. Hence we override the same function
6802// in the base class to handle these implicit references.
6803
6804template<bool big_endian>
6805void
6806Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6807 Layout* layout,
6808 Read_relocs_data* rd)
6809{
6810 // First, call base class method to process relocations in this object.
6fa2a40b 6811 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6812
4a54abbb
DK
6813 // If --gc-sections is not specified, there is nothing more to do.
6814 // This happens when --icf is used but --gc-sections is not.
6815 if (!parameters->options().gc_sections())
6816 return;
6817
99e5bff2
DK
6818 unsigned int shnum = this->shnum();
6819 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6820 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6821 shnum * shdr_size,
6822 true, true);
6823
6824 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6825 // to these from the linked text sections.
6826 const unsigned char* ps = pshdrs + shdr_size;
6827 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6828 {
6829 elfcpp::Shdr<32, big_endian> shdr(ps);
6830 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6831 {
6832 // Found an .ARM.exidx section, add it to the set of reachable
6833 // sections from its linked text section.
6834 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6835 symtab->gc()->add_reference(this, text_shndx, this, i);
6836 }
6837 }
6838}
6839
e7eca48c
DK
6840// Update output local symbol count. Owing to EXIDX entry merging, some local
6841// symbols will be removed in output. Adjust output local symbol count
6842// accordingly. We can only changed the static output local symbol count. It
6843// is too late to change the dynamic symbols.
6844
6845template<bool big_endian>
6846void
6847Arm_relobj<big_endian>::update_output_local_symbol_count()
6848{
6849 // Caller should check that this needs updating. We want caller checking
6850 // because output_local_symbol_count_needs_update() is most likely inlined.
6851 gold_assert(this->output_local_symbol_count_needs_update_);
6852
6853 gold_assert(this->symtab_shndx() != -1U);
6854 if (this->symtab_shndx() == 0)
6855 {
6856 // This object has no symbols. Weird but legal.
6857 return;
6858 }
6859
6860 // Read the symbol table section header.
6861 const unsigned int symtab_shndx = this->symtab_shndx();
6862 elfcpp::Shdr<32, big_endian>
6863 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6864 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6865
6866 // Read the local symbols.
6867 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6868 const unsigned int loccount = this->local_symbol_count();
6869 gold_assert(loccount == symtabshdr.get_sh_info());
6870 off_t locsize = loccount * sym_size;
6871 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6872 locsize, true, true);
6873
6874 // Loop over the local symbols.
6875
6fa2a40b 6876 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6877 Output_sections;
6878 const Output_sections& out_sections(this->output_sections());
6879 unsigned int shnum = this->shnum();
6880 unsigned int count = 0;
6881 // Skip the first, dummy, symbol.
6882 psyms += sym_size;
6883 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6884 {
6885 elfcpp::Sym<32, big_endian> sym(psyms);
6886
6887 Symbol_value<32>& lv((*this->local_values())[i]);
6888
6889 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6890 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6891 continue;
6892
6893 bool is_ordinary;
6894 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6895 &is_ordinary);
6896
6897 if (shndx < shnum)
6898 {
6899 Output_section* os = out_sections[shndx];
6900
6901 // This local symbol no longer has an output section. Discard it.
6902 if (os == NULL)
6903 {
6904 lv.set_no_output_symtab_entry();
6905 continue;
6906 }
6907
6908 // Currently we only discard parts of EXIDX input sections.
6909 // We explicitly check for a merged EXIDX input section to avoid
6910 // calling Output_section_data::output_offset unless necessary.
6911 if ((this->get_output_section_offset(shndx) == invalid_address)
6912 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6913 {
6914 section_offset_type output_offset =
6915 os->output_offset(this, shndx, lv.input_value());
6916 if (output_offset == -1)
6917 {
6918 // This symbol is defined in a part of an EXIDX input section
6919 // that is discarded due to entry merging.
6920 lv.set_no_output_symtab_entry();
6921 continue;
6922 }
6923 }
6924 }
6925
6926 ++count;
6927 }
6928
6929 this->set_output_local_symbol_count(count);
6930 this->output_local_symbol_count_needs_update_ = false;
6931}
6932
d5b40221
DK
6933// Arm_dynobj methods.
6934
6935// Read the symbol information.
6936
6937template<bool big_endian>
6938void
6939Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6940{
6941 // Call parent class to read symbol information.
6942 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6943
6944 // Read processor-specific flags in ELF file header.
6945 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6946 elfcpp::Elf_sizes<32>::ehdr_size,
6947 true, false);
6948 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6949 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6950
6951 // Read the attributes section if there is one.
6952 // We read from the end because gas seems to put it near the end of
6953 // the section headers.
6954 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6955 const unsigned char* ps =
993d07c1
DK
6956 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6957 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6958 {
6959 elfcpp::Shdr<32, big_endian> shdr(ps);
6960 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6961 {
6962 section_offset_type section_offset = shdr.get_sh_offset();
6963 section_size_type section_size =
6964 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6965 const unsigned char* view =
6966 this->get_view(section_offset, section_size, true, false);
993d07c1 6967 this->attributes_section_data_ =
f625ae50 6968 new Attributes_section_data(view, section_size);
993d07c1
DK
6969 break;
6970 }
6971 }
d5b40221
DK
6972}
6973
e9bbb538
DK
6974// Stub_addend_reader methods.
6975
6976// Read the addend of a REL relocation of type R_TYPE at VIEW.
6977
6978template<bool big_endian>
6979elfcpp::Elf_types<32>::Elf_Swxword
6980Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6981 unsigned int r_type,
6982 const unsigned char* view,
6983 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6984{
089d69dc
DK
6985 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6986
e9bbb538
DK
6987 switch (r_type)
6988 {
6989 case elfcpp::R_ARM_CALL:
6990 case elfcpp::R_ARM_JUMP24:
6991 case elfcpp::R_ARM_PLT32:
6992 {
6993 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6994 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6995 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 6996 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
6997 }
6998
6999 case elfcpp::R_ARM_THM_CALL:
7000 case elfcpp::R_ARM_THM_JUMP24:
7001 case elfcpp::R_ARM_THM_XPC22:
7002 {
e9bbb538
DK
7003 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7004 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7005 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7006 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7007 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7008 }
7009
7010 case elfcpp::R_ARM_THM_JUMP19:
7011 {
7012 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7013 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7014 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7015 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7016 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7017 }
7018
7019 default:
7020 gold_unreachable();
7021 }
7022}
7023
4a54abbb
DK
7024// Arm_output_data_got methods.
7025
7026// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7027// The first one is initialized to be 1, which is the module index for
7028// the main executable and the second one 0. A reloc of the type
7029// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7030// be applied by gold. GSYM is a global symbol.
7031//
7032template<bool big_endian>
7033void
7034Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7035 unsigned int got_type,
7036 Symbol* gsym)
7037{
7038 if (gsym->has_got_offset(got_type))
7039 return;
7040
7041 // We are doing a static link. Just mark it as belong to module 1,
7042 // the executable.
7043 unsigned int got_offset = this->add_constant(1);
7044 gsym->set_got_offset(got_type, got_offset);
7045 got_offset = this->add_constant(0);
7046 this->static_relocs_.push_back(Static_reloc(got_offset,
7047 elfcpp::R_ARM_TLS_DTPOFF32,
7048 gsym));
7049}
7050
7051// Same as the above but for a local symbol.
7052
7053template<bool big_endian>
7054void
7055Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7056 unsigned int got_type,
6fa2a40b 7057 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7058 unsigned int index)
7059{
7060 if (object->local_has_got_offset(index, got_type))
7061 return;
7062
7063 // We are doing a static link. Just mark it as belong to module 1,
7064 // the executable.
7065 unsigned int got_offset = this->add_constant(1);
7066 object->set_local_got_offset(index, got_type, got_offset);
7067 got_offset = this->add_constant(0);
7068 this->static_relocs_.push_back(Static_reloc(got_offset,
7069 elfcpp::R_ARM_TLS_DTPOFF32,
7070 object, index));
7071}
7072
7073template<bool big_endian>
7074void
7075Arm_output_data_got<big_endian>::do_write(Output_file* of)
7076{
7077 // Call parent to write out GOT.
7078 Output_data_got<32, big_endian>::do_write(of);
7079
7080 // We are done if there is no fix up.
7081 if (this->static_relocs_.empty())
7082 return;
7083
7084 gold_assert(parameters->doing_static_link());
7085
7086 const off_t offset = this->offset();
7087 const section_size_type oview_size =
7088 convert_to_section_size_type(this->data_size());
7089 unsigned char* const oview = of->get_output_view(offset, oview_size);
7090
7091 Output_segment* tls_segment = this->layout_->tls_segment();
7092 gold_assert(tls_segment != NULL);
7093
7094 // The thread pointer $tp points to the TCB, which is followed by the
7095 // TLS. So we need to adjust $tp relative addressing by this amount.
7096 Arm_address aligned_tcb_size =
7097 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7098
7099 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7100 {
7101 Static_reloc& reloc(this->static_relocs_[i]);
7102
7103 Arm_address value;
7104 if (!reloc.symbol_is_global())
7105 {
6fa2a40b 7106 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7107 const Symbol_value<32>* psymval =
7108 reloc.relobj()->local_symbol(reloc.index());
7109
7110 // We are doing static linking. Issue an error and skip this
7111 // relocation if the symbol is undefined or in a discarded_section.
7112 bool is_ordinary;
7113 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7114 if ((shndx == elfcpp::SHN_UNDEF)
7115 || (is_ordinary
7116 && shndx != elfcpp::SHN_UNDEF
7117 && !object->is_section_included(shndx)
7118 && !this->symbol_table_->is_section_folded(object, shndx)))
7119 {
7120 gold_error(_("undefined or discarded local symbol %u from "
7121 " object %s in GOT"),
7122 reloc.index(), reloc.relobj()->name().c_str());
7123 continue;
7124 }
7125
7126 value = psymval->value(object, 0);
7127 }
7128 else
7129 {
7130 const Symbol* gsym = reloc.symbol();
7131 gold_assert(gsym != NULL);
7132 if (gsym->is_forwarder())
7133 gsym = this->symbol_table_->resolve_forwards(gsym);
7134
7135 // We are doing static linking. Issue an error and skip this
7136 // relocation if the symbol is undefined or in a discarded_section
7137 // unless it is a weakly_undefined symbol.
7138 if ((gsym->is_defined_in_discarded_section()
7139 || gsym->is_undefined())
7140 && !gsym->is_weak_undefined())
7141 {
7142 gold_error(_("undefined or discarded symbol %s in GOT"),
7143 gsym->name());
7144 continue;
7145 }
7146
7147 if (!gsym->is_weak_undefined())
7148 {
7149 const Sized_symbol<32>* sym =
7150 static_cast<const Sized_symbol<32>*>(gsym);
7151 value = sym->value();
7152 }
7153 else
7154 value = 0;
7155 }
7156
7157 unsigned got_offset = reloc.got_offset();
7158 gold_assert(got_offset < oview_size);
7159
7160 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7161 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7162 Valtype x;
7163 switch (reloc.r_type())
7164 {
7165 case elfcpp::R_ARM_TLS_DTPOFF32:
7166 x = value;
7167 break;
7168 case elfcpp::R_ARM_TLS_TPOFF32:
7169 x = value + aligned_tcb_size;
7170 break;
7171 default:
7172 gold_unreachable();
7173 }
7174 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7175 }
7176
7177 of->write_output_view(offset, oview_size, oview);
7178}
7179
94cdfcff
DK
7180// A class to handle the PLT data.
7181
7182template<bool big_endian>
7183class Output_data_plt_arm : public Output_section_data
7184{
7185 public:
7186 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7187 Reloc_section;
7188
7189 Output_data_plt_arm(Layout*, Output_data_space*);
7190
7191 // Add an entry to the PLT.
7192 void
7193 add_entry(Symbol* gsym);
7194
7195 // Return the .rel.plt section data.
7196 const Reloc_section*
7197 rel_plt() const
7198 { return this->rel_; }
7199
0e70b911
CC
7200 // Return the number of PLT entries.
7201 unsigned int
7202 entry_count() const
7203 { return this->count_; }
7204
7205 // Return the offset of the first non-reserved PLT entry.
7206 static unsigned int
7207 first_plt_entry_offset()
7208 { return sizeof(first_plt_entry); }
7209
7210 // Return the size of a PLT entry.
7211 static unsigned int
7212 get_plt_entry_size()
7213 { return sizeof(plt_entry); }
7214
94cdfcff
DK
7215 protected:
7216 void
7217 do_adjust_output_section(Output_section* os);
7218
7219 // Write to a map file.
7220 void
7221 do_print_to_mapfile(Mapfile* mapfile) const
7222 { mapfile->print_output_data(this, _("** PLT")); }
7223
7224 private:
7225 // Template for the first PLT entry.
7226 static const uint32_t first_plt_entry[5];
7227
7228 // Template for subsequent PLT entries.
7229 static const uint32_t plt_entry[3];
7230
7231 // Set the final size.
7232 void
7233 set_final_data_size()
7234 {
7235 this->set_data_size(sizeof(first_plt_entry)
7236 + this->count_ * sizeof(plt_entry));
7237 }
7238
7239 // Write out the PLT data.
7240 void
7241 do_write(Output_file*);
7242
7243 // The reloc section.
7244 Reloc_section* rel_;
7245 // The .got.plt section.
7246 Output_data_space* got_plt_;
7247 // The number of PLT entries.
7248 unsigned int count_;
7249};
7250
7251// Create the PLT section. The ordinary .got section is an argument,
7252// since we need to refer to the start. We also create our own .got
7253// section just for PLT entries.
7254
7255template<bool big_endian>
2ea97941 7256Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
7257 Output_data_space* got_plt)
7258 : Output_section_data(4), got_plt_(got_plt), count_(0)
7259{
7260 this->rel_ = new Reloc_section(false);
2ea97941 7261 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7262 elfcpp::SHF_ALLOC, this->rel_,
7263 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7264}
7265
7266template<bool big_endian>
7267void
7268Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7269{
7270 os->set_entsize(0);
7271}
7272
7273// Add an entry to the PLT.
7274
7275template<bool big_endian>
7276void
7277Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7278{
7279 gold_assert(!gsym->has_plt_offset());
7280
7281 // Note that when setting the PLT offset we skip the initial
7282 // reserved PLT entry.
7283 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7284 + sizeof(first_plt_entry));
7285
7286 ++this->count_;
7287
7288 section_offset_type got_offset = this->got_plt_->current_data_size();
7289
7290 // Every PLT entry needs a GOT entry which points back to the PLT
7291 // entry (this will be changed by the dynamic linker, normally
7292 // lazily when the function is called).
7293 this->got_plt_->set_current_data_size(got_offset + 4);
7294
7295 // Every PLT entry needs a reloc.
7296 gsym->set_needs_dynsym_entry();
7297 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7298 got_offset);
7299
7300 // Note that we don't need to save the symbol. The contents of the
7301 // PLT are independent of which symbols are used. The symbols only
7302 // appear in the relocations.
7303}
7304
7305// ARM PLTs.
7306// FIXME: This is not very flexible. Right now this has only been tested
7307// on armv5te. If we are to support additional architecture features like
7308// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7309
7310// The first entry in the PLT.
7311template<bool big_endian>
7312const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7313{
7314 0xe52de004, // str lr, [sp, #-4]!
7315 0xe59fe004, // ldr lr, [pc, #4]
7316 0xe08fe00e, // add lr, pc, lr
7317 0xe5bef008, // ldr pc, [lr, #8]!
7318 0x00000000, // &GOT[0] - .
7319};
7320
7321// Subsequent entries in the PLT.
7322
7323template<bool big_endian>
7324const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7325{
7326 0xe28fc600, // add ip, pc, #0xNN00000
7327 0xe28cca00, // add ip, ip, #0xNN000
7328 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7329};
7330
7331// Write out the PLT. This uses the hand-coded instructions above,
7332// and adjusts them as needed. This is all specified by the arm ELF
7333// Processor Supplement.
7334
7335template<bool big_endian>
7336void
7337Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7338{
2ea97941 7339 const off_t offset = this->offset();
94cdfcff
DK
7340 const section_size_type oview_size =
7341 convert_to_section_size_type(this->data_size());
2ea97941 7342 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7343
7344 const off_t got_file_offset = this->got_plt_->offset();
7345 const section_size_type got_size =
7346 convert_to_section_size_type(this->got_plt_->data_size());
7347 unsigned char* const got_view = of->get_output_view(got_file_offset,
7348 got_size);
7349 unsigned char* pov = oview;
7350
ebabffbd
DK
7351 Arm_address plt_address = this->address();
7352 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7353
7354 // Write first PLT entry. All but the last word are constants.
7355 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7356 / sizeof(plt_entry[0]));
7357 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7358 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7359 // Last word in first PLT entry is &GOT[0] - .
7360 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7361 got_address - (plt_address + 16));
7362 pov += sizeof(first_plt_entry);
7363
7364 unsigned char* got_pov = got_view;
7365
7366 memset(got_pov, 0, 12);
7367 got_pov += 12;
7368
7369 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7370 unsigned int plt_offset = sizeof(first_plt_entry);
7371 unsigned int plt_rel_offset = 0;
7372 unsigned int got_offset = 12;
7373 const unsigned int count = this->count_;
7374 for (unsigned int i = 0;
7375 i < count;
7376 ++i,
7377 pov += sizeof(plt_entry),
7378 got_pov += 4,
7379 plt_offset += sizeof(plt_entry),
7380 plt_rel_offset += rel_size,
7381 got_offset += 4)
7382 {
7383 // Set and adjust the PLT entry itself.
2ea97941
ILT
7384 int32_t offset = ((got_address + got_offset)
7385 - (plt_address + plt_offset + 8));
94cdfcff 7386
2ea97941
ILT
7387 gold_assert(offset >= 0 && offset < 0x0fffffff);
7388 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7389 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7390 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7391 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7392 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7393 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7394
7395 // Set the entry in the GOT.
7396 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7397 }
7398
7399 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7400 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7401
2ea97941 7402 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7403 of->write_output_view(got_file_offset, got_size, got_view);
7404}
7405
7406// Create a PLT entry for a global symbol.
7407
7408template<bool big_endian>
7409void
2ea97941 7410Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7411 Symbol* gsym)
7412{
7413 if (gsym->has_plt_offset())
7414 return;
7415
7416 if (this->plt_ == NULL)
7417 {
7418 // Create the GOT sections first.
2ea97941 7419 this->got_section(symtab, layout);
94cdfcff 7420
2ea97941
ILT
7421 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7422 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7423 (elfcpp::SHF_ALLOC
7424 | elfcpp::SHF_EXECINSTR),
22f0da72 7425 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7426 }
7427 this->plt_->add_entry(gsym);
7428}
7429
0e70b911
CC
7430// Return the number of entries in the PLT.
7431
7432template<bool big_endian>
7433unsigned int
7434Target_arm<big_endian>::plt_entry_count() const
7435{
7436 if (this->plt_ == NULL)
7437 return 0;
7438 return this->plt_->entry_count();
7439}
7440
7441// Return the offset of the first non-reserved PLT entry.
7442
7443template<bool big_endian>
7444unsigned int
7445Target_arm<big_endian>::first_plt_entry_offset() const
7446{
7447 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7448}
7449
7450// Return the size of each PLT entry.
7451
7452template<bool big_endian>
7453unsigned int
7454Target_arm<big_endian>::plt_entry_size() const
7455{
7456 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7457}
7458
f96accdf
DK
7459// Get the section to use for TLS_DESC relocations.
7460
7461template<bool big_endian>
7462typename Target_arm<big_endian>::Reloc_section*
7463Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7464{
7465 return this->plt_section()->rel_tls_desc(layout);
7466}
7467
7468// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7469
7470template<bool big_endian>
7471void
7472Target_arm<big_endian>::define_tls_base_symbol(
7473 Symbol_table* symtab,
7474 Layout* layout)
7475{
7476 if (this->tls_base_symbol_defined_)
7477 return;
7478
7479 Output_segment* tls_segment = layout->tls_segment();
7480 if (tls_segment != NULL)
7481 {
7482 bool is_exec = parameters->options().output_is_executable();
7483 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7484 Symbol_table::PREDEFINED,
7485 tls_segment, 0, 0,
7486 elfcpp::STT_TLS,
7487 elfcpp::STB_LOCAL,
7488 elfcpp::STV_HIDDEN, 0,
7489 (is_exec
7490 ? Symbol::SEGMENT_END
7491 : Symbol::SEGMENT_START),
7492 true);
7493 }
7494 this->tls_base_symbol_defined_ = true;
7495}
7496
7497// Create a GOT entry for the TLS module index.
7498
7499template<bool big_endian>
7500unsigned int
7501Target_arm<big_endian>::got_mod_index_entry(
7502 Symbol_table* symtab,
7503 Layout* layout,
6fa2a40b 7504 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7505{
7506 if (this->got_mod_index_offset_ == -1U)
7507 {
7508 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7509 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7510 unsigned int got_offset;
7511 if (!parameters->doing_static_link())
7512 {
7513 got_offset = got->add_constant(0);
7514 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7515 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7516 got_offset);
7517 }
7518 else
7519 {
7520 // We are doing a static link. Just mark it as belong to module 1,
7521 // the executable.
7522 got_offset = got->add_constant(1);
7523 }
7524
f96accdf
DK
7525 got->add_constant(0);
7526 this->got_mod_index_offset_ = got_offset;
7527 }
7528 return this->got_mod_index_offset_;
7529}
7530
7531// Optimize the TLS relocation type based on what we know about the
7532// symbol. IS_FINAL is true if the final address of this symbol is
7533// known at link time.
7534
7535template<bool big_endian>
7536tls::Tls_optimization
7537Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7538{
7539 // FIXME: Currently we do not do any TLS optimization.
7540 return tls::TLSOPT_NONE;
7541}
7542
95a2c8d6
RS
7543// Get the Reference_flags for a particular relocation.
7544
7545template<bool big_endian>
7546int
7547Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7548{
7549 switch (r_type)
7550 {
7551 case elfcpp::R_ARM_NONE:
7552 case elfcpp::R_ARM_V4BX:
7553 case elfcpp::R_ARM_GNU_VTENTRY:
7554 case elfcpp::R_ARM_GNU_VTINHERIT:
7555 // No symbol reference.
7556 return 0;
7557
7558 case elfcpp::R_ARM_ABS32:
7559 case elfcpp::R_ARM_ABS16:
7560 case elfcpp::R_ARM_ABS12:
7561 case elfcpp::R_ARM_THM_ABS5:
7562 case elfcpp::R_ARM_ABS8:
7563 case elfcpp::R_ARM_BASE_ABS:
7564 case elfcpp::R_ARM_MOVW_ABS_NC:
7565 case elfcpp::R_ARM_MOVT_ABS:
7566 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7567 case elfcpp::R_ARM_THM_MOVT_ABS:
7568 case elfcpp::R_ARM_ABS32_NOI:
7569 return Symbol::ABSOLUTE_REF;
7570
7571 case elfcpp::R_ARM_REL32:
7572 case elfcpp::R_ARM_LDR_PC_G0:
7573 case elfcpp::R_ARM_SBREL32:
7574 case elfcpp::R_ARM_THM_PC8:
7575 case elfcpp::R_ARM_BASE_PREL:
7576 case elfcpp::R_ARM_MOVW_PREL_NC:
7577 case elfcpp::R_ARM_MOVT_PREL:
7578 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7579 case elfcpp::R_ARM_THM_MOVT_PREL:
7580 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7581 case elfcpp::R_ARM_THM_PC12:
7582 case elfcpp::R_ARM_REL32_NOI:
7583 case elfcpp::R_ARM_ALU_PC_G0_NC:
7584 case elfcpp::R_ARM_ALU_PC_G0:
7585 case elfcpp::R_ARM_ALU_PC_G1_NC:
7586 case elfcpp::R_ARM_ALU_PC_G1:
7587 case elfcpp::R_ARM_ALU_PC_G2:
7588 case elfcpp::R_ARM_LDR_PC_G1:
7589 case elfcpp::R_ARM_LDR_PC_G2:
7590 case elfcpp::R_ARM_LDRS_PC_G0:
7591 case elfcpp::R_ARM_LDRS_PC_G1:
7592 case elfcpp::R_ARM_LDRS_PC_G2:
7593 case elfcpp::R_ARM_LDC_PC_G0:
7594 case elfcpp::R_ARM_LDC_PC_G1:
7595 case elfcpp::R_ARM_LDC_PC_G2:
7596 case elfcpp::R_ARM_ALU_SB_G0_NC:
7597 case elfcpp::R_ARM_ALU_SB_G0:
7598 case elfcpp::R_ARM_ALU_SB_G1_NC:
7599 case elfcpp::R_ARM_ALU_SB_G1:
7600 case elfcpp::R_ARM_ALU_SB_G2:
7601 case elfcpp::R_ARM_LDR_SB_G0:
7602 case elfcpp::R_ARM_LDR_SB_G1:
7603 case elfcpp::R_ARM_LDR_SB_G2:
7604 case elfcpp::R_ARM_LDRS_SB_G0:
7605 case elfcpp::R_ARM_LDRS_SB_G1:
7606 case elfcpp::R_ARM_LDRS_SB_G2:
7607 case elfcpp::R_ARM_LDC_SB_G0:
7608 case elfcpp::R_ARM_LDC_SB_G1:
7609 case elfcpp::R_ARM_LDC_SB_G2:
7610 case elfcpp::R_ARM_MOVW_BREL_NC:
7611 case elfcpp::R_ARM_MOVT_BREL:
7612 case elfcpp::R_ARM_MOVW_BREL:
7613 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7614 case elfcpp::R_ARM_THM_MOVT_BREL:
7615 case elfcpp::R_ARM_THM_MOVW_BREL:
7616 case elfcpp::R_ARM_GOTOFF32:
7617 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7618 case elfcpp::R_ARM_SBREL31:
7619 return Symbol::RELATIVE_REF;
7620
7621 case elfcpp::R_ARM_PLT32:
7622 case elfcpp::R_ARM_CALL:
7623 case elfcpp::R_ARM_JUMP24:
7624 case elfcpp::R_ARM_THM_CALL:
7625 case elfcpp::R_ARM_THM_JUMP24:
7626 case elfcpp::R_ARM_THM_JUMP19:
7627 case elfcpp::R_ARM_THM_JUMP6:
7628 case elfcpp::R_ARM_THM_JUMP11:
7629 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7630 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7631 // in unwind tables. It may point to functions via PLTs.
7632 // So we treat it like call/jump relocations above.
7633 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7634 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7635
7636 case elfcpp::R_ARM_GOT_BREL:
7637 case elfcpp::R_ARM_GOT_ABS:
7638 case elfcpp::R_ARM_GOT_PREL:
7639 // Absolute in GOT.
7640 return Symbol::ABSOLUTE_REF;
7641
7642 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7643 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7644 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7645 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7646 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7647 return Symbol::TLS_REF;
7648
7649 case elfcpp::R_ARM_TARGET1:
7650 case elfcpp::R_ARM_TARGET2:
7651 case elfcpp::R_ARM_COPY:
7652 case elfcpp::R_ARM_GLOB_DAT:
7653 case elfcpp::R_ARM_JUMP_SLOT:
7654 case elfcpp::R_ARM_RELATIVE:
7655 case elfcpp::R_ARM_PC24:
7656 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7657 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7658 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7659 default:
7660 // Not expected. We will give an error later.
7661 return 0;
7662 }
7663}
7664
4a657b0d
DK
7665// Report an unsupported relocation against a local symbol.
7666
7667template<bool big_endian>
7668void
7669Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7670 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7671 unsigned int r_type)
7672{
7673 gold_error(_("%s: unsupported reloc %u against local symbol"),
7674 object->name().c_str(), r_type);
7675}
7676
bec53400
DK
7677// We are about to emit a dynamic relocation of type R_TYPE. If the
7678// dynamic linker does not support it, issue an error. The GNU linker
7679// only issues a non-PIC error for an allocated read-only section.
7680// Here we know the section is allocated, but we don't know that it is
7681// read-only. But we check for all the relocation types which the
7682// glibc dynamic linker supports, so it seems appropriate to issue an
7683// error even if the section is not read-only.
7684
7685template<bool big_endian>
7686void
7687Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7688 unsigned int r_type)
7689{
7690 switch (r_type)
7691 {
7692 // These are the relocation types supported by glibc for ARM.
7693 case elfcpp::R_ARM_RELATIVE:
7694 case elfcpp::R_ARM_COPY:
7695 case elfcpp::R_ARM_GLOB_DAT:
7696 case elfcpp::R_ARM_JUMP_SLOT:
7697 case elfcpp::R_ARM_ABS32:
be8fcb75 7698 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7699 case elfcpp::R_ARM_PC24:
7700 // FIXME: The following 3 types are not supported by Android's dynamic
7701 // linker.
7702 case elfcpp::R_ARM_TLS_DTPMOD32:
7703 case elfcpp::R_ARM_TLS_DTPOFF32:
7704 case elfcpp::R_ARM_TLS_TPOFF32:
7705 return;
7706
7707 default:
c8761b9a
DK
7708 {
7709 // This prevents us from issuing more than one error per reloc
7710 // section. But we can still wind up issuing more than one
7711 // error per object file.
7712 if (this->issued_non_pic_error_)
7713 return;
7714 const Arm_reloc_property* reloc_property =
7715 arm_reloc_property_table->get_reloc_property(r_type);
7716 gold_assert(reloc_property != NULL);
7717 object->error(_("requires unsupported dynamic reloc %s; "
7718 "recompile with -fPIC"),
7719 reloc_property->name().c_str());
7720 this->issued_non_pic_error_ = true;
bec53400 7721 return;
c8761b9a 7722 }
bec53400
DK
7723
7724 case elfcpp::R_ARM_NONE:
7725 gold_unreachable();
7726 }
7727}
7728
4a657b0d 7729// Scan a relocation for a local symbol.
bec53400
DK
7730// FIXME: This only handles a subset of relocation types used by Android
7731// on ARM v5te devices.
4a657b0d
DK
7732
7733template<bool big_endian>
7734inline void
ad0f2072 7735Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7736 Layout* layout,
bec53400 7737 Target_arm* target,
6fa2a40b 7738 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7739 unsigned int data_shndx,
7740 Output_section* output_section,
7741 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7742 unsigned int r_type,
e4782e83 7743 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7744{
a6d1ef57 7745 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7746 switch (r_type)
7747 {
7748 case elfcpp::R_ARM_NONE:
e4782e83
DK
7749 case elfcpp::R_ARM_V4BX:
7750 case elfcpp::R_ARM_GNU_VTENTRY:
7751 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7752 break;
7753
bec53400 7754 case elfcpp::R_ARM_ABS32:
be8fcb75 7755 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7756 // If building a shared library (or a position-independent
7757 // executable), we need to create a dynamic relocation for
7758 // this location. The relocation applied at link time will
7759 // apply the link-time value, so we flag the location with
7760 // an R_ARM_RELATIVE relocation so the dynamic loader can
7761 // relocate it easily.
7762 if (parameters->options().output_is_position_independent())
7763 {
2ea97941 7764 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7765 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7766 // If we are to add more other reloc types than R_ARM_ABS32,
7767 // we need to add check_non_pic(object, r_type) here.
7768 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7769 output_section, data_shndx,
7770 reloc.get_r_offset());
7771 }
7772 break;
7773
e4782e83
DK
7774 case elfcpp::R_ARM_ABS16:
7775 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7776 case elfcpp::R_ARM_THM_ABS5:
7777 case elfcpp::R_ARM_ABS8:
be8fcb75 7778 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7779 case elfcpp::R_ARM_MOVW_ABS_NC:
7780 case elfcpp::R_ARM_MOVT_ABS:
7781 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7782 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7783 // If building a shared library (or a position-independent
7784 // executable), we need to create a dynamic relocation for
7785 // this location. Because the addend needs to remain in the
7786 // data section, we need to be careful not to apply this
7787 // relocation statically.
7788 if (parameters->options().output_is_position_independent())
7789 {
7790 check_non_pic(object, r_type);
7791 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7792 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7793 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7794 rel_dyn->add_local(object, r_sym, r_type, output_section,
7795 data_shndx, reloc.get_r_offset());
7796 else
7797 {
7798 gold_assert(lsym.get_st_value() == 0);
7799 unsigned int shndx = lsym.get_st_shndx();
7800 bool is_ordinary;
7801 shndx = object->adjust_sym_shndx(r_sym, shndx,
7802 &is_ordinary);
7803 if (!is_ordinary)
7804 object->error(_("section symbol %u has bad shndx %u"),
7805 r_sym, shndx);
7806 else
7807 rel_dyn->add_local_section(object, shndx,
7808 r_type, output_section,
7809 data_shndx, reloc.get_r_offset());
7810 }
7811 }
7812 break;
7813
e4782e83
DK
7814 case elfcpp::R_ARM_REL32:
7815 case elfcpp::R_ARM_LDR_PC_G0:
7816 case elfcpp::R_ARM_SBREL32:
7817 case elfcpp::R_ARM_THM_CALL:
7818 case elfcpp::R_ARM_THM_PC8:
7819 case elfcpp::R_ARM_BASE_PREL:
7820 case elfcpp::R_ARM_PLT32:
7821 case elfcpp::R_ARM_CALL:
7822 case elfcpp::R_ARM_JUMP24:
7823 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7824 case elfcpp::R_ARM_SBREL31:
7825 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7826 case elfcpp::R_ARM_MOVW_PREL_NC:
7827 case elfcpp::R_ARM_MOVT_PREL:
7828 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7829 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7830 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7831 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7832 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7833 case elfcpp::R_ARM_THM_PC12:
7834 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7835 case elfcpp::R_ARM_ALU_PC_G0_NC:
7836 case elfcpp::R_ARM_ALU_PC_G0:
7837 case elfcpp::R_ARM_ALU_PC_G1_NC:
7838 case elfcpp::R_ARM_ALU_PC_G1:
7839 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7840 case elfcpp::R_ARM_LDR_PC_G1:
7841 case elfcpp::R_ARM_LDR_PC_G2:
7842 case elfcpp::R_ARM_LDRS_PC_G0:
7843 case elfcpp::R_ARM_LDRS_PC_G1:
7844 case elfcpp::R_ARM_LDRS_PC_G2:
7845 case elfcpp::R_ARM_LDC_PC_G0:
7846 case elfcpp::R_ARM_LDC_PC_G1:
7847 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7848 case elfcpp::R_ARM_ALU_SB_G0_NC:
7849 case elfcpp::R_ARM_ALU_SB_G0:
7850 case elfcpp::R_ARM_ALU_SB_G1_NC:
7851 case elfcpp::R_ARM_ALU_SB_G1:
7852 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7853 case elfcpp::R_ARM_LDR_SB_G0:
7854 case elfcpp::R_ARM_LDR_SB_G1:
7855 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7856 case elfcpp::R_ARM_LDRS_SB_G0:
7857 case elfcpp::R_ARM_LDRS_SB_G1:
7858 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7859 case elfcpp::R_ARM_LDC_SB_G0:
7860 case elfcpp::R_ARM_LDC_SB_G1:
7861 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7862 case elfcpp::R_ARM_MOVW_BREL_NC:
7863 case elfcpp::R_ARM_MOVT_BREL:
7864 case elfcpp::R_ARM_MOVW_BREL:
7865 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7866 case elfcpp::R_ARM_THM_MOVT_BREL:
7867 case elfcpp::R_ARM_THM_MOVW_BREL:
7868 case elfcpp::R_ARM_THM_JUMP11:
7869 case elfcpp::R_ARM_THM_JUMP8:
7870 // We don't need to do anything for a relative addressing relocation
7871 // against a local symbol if it does not reference the GOT.
bec53400
DK
7872 break;
7873
7874 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7875 case elfcpp::R_ARM_GOTOFF12:
bec53400 7876 // We need a GOT section:
2ea97941 7877 target->got_section(symtab, layout);
bec53400
DK
7878 break;
7879
bec53400 7880 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7881 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7882 {
7883 // The symbol requires a GOT entry.
4a54abbb 7884 Arm_output_data_got<big_endian>* got =
2ea97941 7885 target->got_section(symtab, layout);
bec53400
DK
7886 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7887 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7888 {
7889 // If we are generating a shared object, we need to add a
7890 // dynamic RELATIVE relocation for this symbol's GOT entry.
7891 if (parameters->options().output_is_position_independent())
7892 {
2ea97941
ILT
7893 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7894 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7895 rel_dyn->add_local_relative(
2ea97941
ILT
7896 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7897 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7898 }
7899 }
7900 }
7901 break;
7902
7903 case elfcpp::R_ARM_TARGET1:
e4782e83 7904 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7905 // This should have been mapped to another type already.
7906 // Fall through.
7907 case elfcpp::R_ARM_COPY:
7908 case elfcpp::R_ARM_GLOB_DAT:
7909 case elfcpp::R_ARM_JUMP_SLOT:
7910 case elfcpp::R_ARM_RELATIVE:
7911 // These are relocations which should only be seen by the
7912 // dynamic linker, and should never be seen here.
7913 gold_error(_("%s: unexpected reloc %u in object file"),
7914 object->name().c_str(), r_type);
7915 break;
7916
f96accdf
DK
7917
7918 // These are initial TLS relocs, which are expected when
7919 // linking.
7920 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7921 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7922 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7923 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7924 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7925 {
7926 bool output_is_shared = parameters->options().shared();
7927 const tls::Tls_optimization optimized_type
7928 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7929 r_type);
7930 switch (r_type)
7931 {
7932 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7933 if (optimized_type == tls::TLSOPT_NONE)
7934 {
7935 // Create a pair of GOT entries for the module index and
7936 // dtv-relative offset.
4a54abbb 7937 Arm_output_data_got<big_endian>* got
f96accdf
DK
7938 = target->got_section(symtab, layout);
7939 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7940 unsigned int shndx = lsym.get_st_shndx();
7941 bool is_ordinary;
7942 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7943 if (!is_ordinary)
4a54abbb
DK
7944 {
7945 object->error(_("local symbol %u has bad shndx %u"),
7946 r_sym, shndx);
7947 break;
7948 }
7949
7950 if (!parameters->doing_static_link())
f96accdf
DK
7951 got->add_local_pair_with_rel(object, r_sym, shndx,
7952 GOT_TYPE_TLS_PAIR,
7953 target->rel_dyn_section(layout),
7954 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7955 else
7956 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7957 object, r_sym);
f96accdf
DK
7958 }
7959 else
7960 // FIXME: TLS optimization not supported yet.
7961 gold_unreachable();
7962 break;
7963
7964 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7965 if (optimized_type == tls::TLSOPT_NONE)
7966 {
7967 // Create a GOT entry for the module index.
7968 target->got_mod_index_entry(symtab, layout, object);
7969 }
7970 else
7971 // FIXME: TLS optimization not supported yet.
7972 gold_unreachable();
7973 break;
7974
7975 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7976 break;
7977
7978 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7979 layout->set_has_static_tls();
7980 if (optimized_type == tls::TLSOPT_NONE)
7981 {
4a54abbb
DK
7982 // Create a GOT entry for the tp-relative offset.
7983 Arm_output_data_got<big_endian>* got
7984 = target->got_section(symtab, layout);
7985 unsigned int r_sym =
7986 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7987 if (!parameters->doing_static_link())
7988 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7989 target->rel_dyn_section(layout),
7990 elfcpp::R_ARM_TLS_TPOFF32);
7991 else if (!object->local_has_got_offset(r_sym,
7992 GOT_TYPE_TLS_OFFSET))
7993 {
7994 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7995 unsigned int got_offset =
7996 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7997 got->add_static_reloc(got_offset,
7998 elfcpp::R_ARM_TLS_TPOFF32, object,
7999 r_sym);
8000 }
f96accdf
DK
8001 }
8002 else
8003 // FIXME: TLS optimization not supported yet.
8004 gold_unreachable();
8005 break;
8006
8007 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8008 layout->set_has_static_tls();
8009 if (output_is_shared)
8010 {
8011 // We need to create a dynamic relocation.
8012 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8013 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8014 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8015 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8016 output_section, data_shndx,
8017 reloc.get_r_offset());
8018 }
8019 break;
8020
8021 default:
8022 gold_unreachable();
8023 }
8024 }
8025 break;
8026
3cef7179
ILT
8027 case elfcpp::R_ARM_PC24:
8028 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8029 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8030 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8031 default:
8032 unsupported_reloc_local(object, r_type);
8033 break;
8034 }
8035}
8036
8037// Report an unsupported relocation against a global symbol.
8038
8039template<bool big_endian>
8040void
8041Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8042 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8043 unsigned int r_type,
8044 Symbol* gsym)
8045{
8046 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8047 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8048}
8049
8a75a161
DK
8050template<bool big_endian>
8051inline bool
8052Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8053 unsigned int r_type)
8054{
8055 switch (r_type)
8056 {
8057 case elfcpp::R_ARM_PC24:
8058 case elfcpp::R_ARM_THM_CALL:
8059 case elfcpp::R_ARM_PLT32:
8060 case elfcpp::R_ARM_CALL:
8061 case elfcpp::R_ARM_JUMP24:
8062 case elfcpp::R_ARM_THM_JUMP24:
8063 case elfcpp::R_ARM_SBREL31:
8064 case elfcpp::R_ARM_PREL31:
8065 case elfcpp::R_ARM_THM_JUMP19:
8066 case elfcpp::R_ARM_THM_JUMP6:
8067 case elfcpp::R_ARM_THM_JUMP11:
8068 case elfcpp::R_ARM_THM_JUMP8:
8069 // All the relocations above are branches except SBREL31 and PREL31.
8070 return false;
8071
8072 default:
8073 // Be conservative and assume this is a function pointer.
8074 return true;
8075 }
8076}
8077
8078template<bool big_endian>
8079inline bool
8080Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8081 Symbol_table*,
8082 Layout*,
8083 Target_arm<big_endian>* target,
6fa2a40b 8084 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8085 unsigned int,
8086 Output_section*,
8087 const elfcpp::Rel<32, big_endian>&,
8088 unsigned int r_type,
8089 const elfcpp::Sym<32, big_endian>&)
8090{
8091 r_type = target->get_real_reloc_type(r_type);
8092 return possible_function_pointer_reloc(r_type);
8093}
8094
8095template<bool big_endian>
8096inline bool
8097Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8098 Symbol_table*,
8099 Layout*,
8100 Target_arm<big_endian>* target,
6fa2a40b 8101 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8102 unsigned int,
8103 Output_section*,
8104 const elfcpp::Rel<32, big_endian>&,
8105 unsigned int r_type,
8106 Symbol* gsym)
8107{
8108 // GOT is not a function.
8109 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8110 return false;
8111
8112 r_type = target->get_real_reloc_type(r_type);
8113 return possible_function_pointer_reloc(r_type);
8114}
8115
4a657b0d
DK
8116// Scan a relocation for a global symbol.
8117
8118template<bool big_endian>
8119inline void
ad0f2072 8120Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8121 Layout* layout,
bec53400 8122 Target_arm* target,
6fa2a40b 8123 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8124 unsigned int data_shndx,
8125 Output_section* output_section,
8126 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8127 unsigned int r_type,
8128 Symbol* gsym)
8129{
c8761b9a
DK
8130 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8131 // section. We check here to avoid creating a dynamic reloc against
8132 // _GLOBAL_OFFSET_TABLE_.
8133 if (!target->has_got_section()
8134 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8135 target->got_section(symtab, layout);
8136
a6d1ef57 8137 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8138 switch (r_type)
8139 {
8140 case elfcpp::R_ARM_NONE:
e4782e83
DK
8141 case elfcpp::R_ARM_V4BX:
8142 case elfcpp::R_ARM_GNU_VTENTRY:
8143 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8144 break;
8145
bec53400 8146 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8147 case elfcpp::R_ARM_ABS16:
8148 case elfcpp::R_ARM_ABS12:
8149 case elfcpp::R_ARM_THM_ABS5:
8150 case elfcpp::R_ARM_ABS8:
8151 case elfcpp::R_ARM_BASE_ABS:
8152 case elfcpp::R_ARM_MOVW_ABS_NC:
8153 case elfcpp::R_ARM_MOVT_ABS:
8154 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8155 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8156 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8157 // Absolute addressing relocations.
bec53400 8158 {
e4782e83
DK
8159 // Make a PLT entry if necessary.
8160 if (this->symbol_needs_plt_entry(gsym))
8161 {
8162 target->make_plt_entry(symtab, layout, gsym);
8163 // Since this is not a PC-relative relocation, we may be
8164 // taking the address of a function. In that case we need to
8165 // set the entry in the dynamic symbol table to the address of
8166 // the PLT entry.
8167 if (gsym->is_from_dynobj() && !parameters->options().shared())
8168 gsym->set_needs_dynsym_value();
8169 }
8170 // Make a dynamic relocation if necessary.
95a2c8d6 8171 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
e4782e83
DK
8172 {
8173 if (gsym->may_need_copy_reloc())
8174 {
8175 target->copy_reloc(symtab, layout, object,
8176 data_shndx, output_section, gsym, reloc);
8177 }
8178 else if ((r_type == elfcpp::R_ARM_ABS32
8179 || r_type == elfcpp::R_ARM_ABS32_NOI)
8180 && gsym->can_use_relative_reloc(false))
8181 {
8182 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8183 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8184 output_section, object,
8185 data_shndx, reloc.get_r_offset());
8186 }
8187 else
8188 {
8189 check_non_pic(object, r_type);
8190 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8191 rel_dyn->add_global(gsym, r_type, output_section, object,
8192 data_shndx, reloc.get_r_offset());
8193 }
8194 }
bec53400
DK
8195 }
8196 break;
8197
e4782e83
DK
8198 case elfcpp::R_ARM_GOTOFF32:
8199 case elfcpp::R_ARM_GOTOFF12:
8200 // We need a GOT section.
8201 target->got_section(symtab, layout);
8202 break;
8203
8204 case elfcpp::R_ARM_REL32:
8205 case elfcpp::R_ARM_LDR_PC_G0:
8206 case elfcpp::R_ARM_SBREL32:
8207 case elfcpp::R_ARM_THM_PC8:
8208 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8209 case elfcpp::R_ARM_MOVW_PREL_NC:
8210 case elfcpp::R_ARM_MOVT_PREL:
8211 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8212 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8213 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8214 case elfcpp::R_ARM_THM_PC12:
8215 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8216 case elfcpp::R_ARM_ALU_PC_G0_NC:
8217 case elfcpp::R_ARM_ALU_PC_G0:
8218 case elfcpp::R_ARM_ALU_PC_G1_NC:
8219 case elfcpp::R_ARM_ALU_PC_G1:
8220 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8221 case elfcpp::R_ARM_LDR_PC_G1:
8222 case elfcpp::R_ARM_LDR_PC_G2:
8223 case elfcpp::R_ARM_LDRS_PC_G0:
8224 case elfcpp::R_ARM_LDRS_PC_G1:
8225 case elfcpp::R_ARM_LDRS_PC_G2:
8226 case elfcpp::R_ARM_LDC_PC_G0:
8227 case elfcpp::R_ARM_LDC_PC_G1:
8228 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8229 case elfcpp::R_ARM_ALU_SB_G0_NC:
8230 case elfcpp::R_ARM_ALU_SB_G0:
8231 case elfcpp::R_ARM_ALU_SB_G1_NC:
8232 case elfcpp::R_ARM_ALU_SB_G1:
8233 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8234 case elfcpp::R_ARM_LDR_SB_G0:
8235 case elfcpp::R_ARM_LDR_SB_G1:
8236 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8237 case elfcpp::R_ARM_LDRS_SB_G0:
8238 case elfcpp::R_ARM_LDRS_SB_G1:
8239 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8240 case elfcpp::R_ARM_LDC_SB_G0:
8241 case elfcpp::R_ARM_LDC_SB_G1:
8242 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8243 case elfcpp::R_ARM_MOVW_BREL_NC:
8244 case elfcpp::R_ARM_MOVT_BREL:
8245 case elfcpp::R_ARM_MOVW_BREL:
8246 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8247 case elfcpp::R_ARM_THM_MOVT_BREL:
8248 case elfcpp::R_ARM_THM_MOVW_BREL:
8249 // Relative addressing relocations.
bec53400
DK
8250 {
8251 // Make a dynamic relocation if necessary.
95a2c8d6 8252 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8253 {
8254 if (target->may_need_copy_reloc(gsym))
8255 {
2ea97941 8256 target->copy_reloc(symtab, layout, object,
bec53400
DK
8257 data_shndx, output_section, gsym, reloc);
8258 }
8259 else
8260 {
8261 check_non_pic(object, r_type);
2ea97941 8262 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8263 rel_dyn->add_global(gsym, r_type, output_section, object,
8264 data_shndx, reloc.get_r_offset());
8265 }
8266 }
8267 }
8268 break;
8269
f4e5969c 8270 case elfcpp::R_ARM_THM_CALL:
bec53400 8271 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8272 case elfcpp::R_ARM_CALL:
8273 case elfcpp::R_ARM_JUMP24:
8274 case elfcpp::R_ARM_THM_JUMP24:
8275 case elfcpp::R_ARM_SBREL31:
c9a2c125 8276 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8277 case elfcpp::R_ARM_THM_JUMP19:
8278 case elfcpp::R_ARM_THM_JUMP6:
8279 case elfcpp::R_ARM_THM_JUMP11:
8280 case elfcpp::R_ARM_THM_JUMP8:
8281 // All the relocation above are branches except for the PREL31 ones.
8282 // A PREL31 relocation can point to a personality function in a shared
8283 // library. In that case we want to use a PLT because we want to
9b547ce6 8284 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8285 // do not support dynamic PREL31 relocations. An REL31 relocation may
8286 // point to a function whose unwinding behaviour is being described but
8287 // we will not mistakenly generate a PLT for that because we should use
8288 // a local section symbol.
8289
bec53400
DK
8290 // If the symbol is fully resolved, this is just a relative
8291 // local reloc. Otherwise we need a PLT entry.
8292 if (gsym->final_value_is_known())
8293 break;
8294 // If building a shared library, we can also skip the PLT entry
8295 // if the symbol is defined in the output file and is protected
8296 // or hidden.
8297 if (gsym->is_defined()
8298 && !gsym->is_from_dynobj()
8299 && !gsym->is_preemptible())
8300 break;
2ea97941 8301 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8302 break;
8303
bec53400 8304 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8305 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8306 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8307 {
8308 // The symbol requires a GOT entry.
4a54abbb 8309 Arm_output_data_got<big_endian>* got =
2ea97941 8310 target->got_section(symtab, layout);
bec53400
DK
8311 if (gsym->final_value_is_known())
8312 got->add_global(gsym, GOT_TYPE_STANDARD);
8313 else
8314 {
8315 // If this symbol is not fully resolved, we need to add a
8316 // GOT entry with a dynamic relocation.
2ea97941 8317 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8318 if (gsym->is_from_dynobj()
8319 || gsym->is_undefined()
8320 || gsym->is_preemptible())
8321 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8322 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8323 else
8324 {
8325 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8326 rel_dyn->add_global_relative(
8327 gsym, elfcpp::R_ARM_RELATIVE, got,
8328 gsym->got_offset(GOT_TYPE_STANDARD));
8329 }
8330 }
8331 }
8332 break;
8333
8334 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8335 case elfcpp::R_ARM_TARGET2:
8336 // These should have been mapped to other types already.
bec53400
DK
8337 // Fall through.
8338 case elfcpp::R_ARM_COPY:
8339 case elfcpp::R_ARM_GLOB_DAT:
8340 case elfcpp::R_ARM_JUMP_SLOT:
8341 case elfcpp::R_ARM_RELATIVE:
8342 // These are relocations which should only be seen by the
8343 // dynamic linker, and should never be seen here.
8344 gold_error(_("%s: unexpected reloc %u in object file"),
8345 object->name().c_str(), r_type);
8346 break;
8347
f96accdf
DK
8348 // These are initial tls relocs, which are expected when
8349 // linking.
8350 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8351 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8352 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8353 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8354 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8355 {
8356 const bool is_final = gsym->final_value_is_known();
8357 const tls::Tls_optimization optimized_type
8358 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8359 switch (r_type)
8360 {
8361 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8362 if (optimized_type == tls::TLSOPT_NONE)
8363 {
8364 // Create a pair of GOT entries for the module index and
8365 // dtv-relative offset.
4a54abbb 8366 Arm_output_data_got<big_endian>* got
f96accdf 8367 = target->got_section(symtab, layout);
4a54abbb
DK
8368 if (!parameters->doing_static_link())
8369 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8370 target->rel_dyn_section(layout),
8371 elfcpp::R_ARM_TLS_DTPMOD32,
8372 elfcpp::R_ARM_TLS_DTPOFF32);
8373 else
8374 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8375 }
8376 else
8377 // FIXME: TLS optimization not supported yet.
8378 gold_unreachable();
8379 break;
8380
8381 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8382 if (optimized_type == tls::TLSOPT_NONE)
8383 {
8384 // Create a GOT entry for the module index.
8385 target->got_mod_index_entry(symtab, layout, object);
8386 }
8387 else
8388 // FIXME: TLS optimization not supported yet.
8389 gold_unreachable();
8390 break;
8391
8392 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8393 break;
8394
8395 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8396 layout->set_has_static_tls();
8397 if (optimized_type == tls::TLSOPT_NONE)
8398 {
4a54abbb
DK
8399 // Create a GOT entry for the tp-relative offset.
8400 Arm_output_data_got<big_endian>* got
8401 = target->got_section(symtab, layout);
8402 if (!parameters->doing_static_link())
8403 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8404 target->rel_dyn_section(layout),
8405 elfcpp::R_ARM_TLS_TPOFF32);
8406 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8407 {
8408 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8409 unsigned int got_offset =
8410 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8411 got->add_static_reloc(got_offset,
8412 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8413 }
f96accdf
DK
8414 }
8415 else
8416 // FIXME: TLS optimization not supported yet.
8417 gold_unreachable();
8418 break;
8419
8420 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8421 layout->set_has_static_tls();
8422 if (parameters->options().shared())
8423 {
8424 // We need to create a dynamic relocation.
8425 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8426 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8427 output_section, object,
8428 data_shndx, reloc.get_r_offset());
8429 }
8430 break;
8431
8432 default:
8433 gold_unreachable();
8434 }
8435 }
8436 break;
8437
3cef7179
ILT
8438 case elfcpp::R_ARM_PC24:
8439 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8440 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8441 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8442 default:
8443 unsupported_reloc_global(object, r_type, gsym);
8444 break;
8445 }
8446}
8447
8448// Process relocations for gc.
8449
8450template<bool big_endian>
8451void
6fa2a40b
CC
8452Target_arm<big_endian>::gc_process_relocs(
8453 Symbol_table* symtab,
8454 Layout* layout,
8455 Sized_relobj_file<32, big_endian>* object,
8456 unsigned int data_shndx,
8457 unsigned int,
8458 const unsigned char* prelocs,
8459 size_t reloc_count,
8460 Output_section* output_section,
8461 bool needs_special_offset_handling,
8462 size_t local_symbol_count,
8463 const unsigned char* plocal_symbols)
4a657b0d
DK
8464{
8465 typedef Target_arm<big_endian> Arm;
2ea97941 8466 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8467
41cbeecc 8468 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8469 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8470 symtab,
2ea97941 8471 layout,
4a657b0d
DK
8472 this,
8473 object,
8474 data_shndx,
8475 prelocs,
8476 reloc_count,
8477 output_section,
8478 needs_special_offset_handling,
8479 local_symbol_count,
8480 plocal_symbols);
8481}
8482
8483// Scan relocations for a section.
8484
8485template<bool big_endian>
8486void
ad0f2072 8487Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8488 Layout* layout,
6fa2a40b 8489 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8490 unsigned int data_shndx,
8491 unsigned int sh_type,
8492 const unsigned char* prelocs,
8493 size_t reloc_count,
8494 Output_section* output_section,
8495 bool needs_special_offset_handling,
8496 size_t local_symbol_count,
8497 const unsigned char* plocal_symbols)
8498{
2ea97941 8499 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8500 if (sh_type == elfcpp::SHT_RELA)
8501 {
8502 gold_error(_("%s: unsupported RELA reloc section"),
8503 object->name().c_str());
8504 return;
8505 }
8506
2ea97941 8507 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8508 symtab,
2ea97941 8509 layout,
4a657b0d
DK
8510 this,
8511 object,
8512 data_shndx,
8513 prelocs,
8514 reloc_count,
8515 output_section,
8516 needs_special_offset_handling,
8517 local_symbol_count,
8518 plocal_symbols);
8519}
8520
8521// Finalize the sections.
8522
8523template<bool big_endian>
8524void
d5b40221 8525Target_arm<big_endian>::do_finalize_sections(
2ea97941 8526 Layout* layout,
f59f41f3
DK
8527 const Input_objects* input_objects,
8528 Symbol_table* symtab)
4a657b0d 8529{
3e235302 8530 bool merged_any_attributes = false;
d5b40221
DK
8531 // Merge processor-specific flags.
8532 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8533 p != input_objects->relobj_end();
8534 ++p)
8535 {
8536 Arm_relobj<big_endian>* arm_relobj =
8537 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8538 if (arm_relobj->merge_flags_and_attributes())
8539 {
8540 this->merge_processor_specific_flags(
8541 arm_relobj->name(),
8542 arm_relobj->processor_specific_flags());
8543 this->merge_object_attributes(arm_relobj->name().c_str(),
8544 arm_relobj->attributes_section_data());
3e235302 8545 merged_any_attributes = true;
7296d933 8546 }
d5b40221
DK
8547 }
8548
8549 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8550 p != input_objects->dynobj_end();
8551 ++p)
8552 {
8553 Arm_dynobj<big_endian>* arm_dynobj =
8554 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8555 this->merge_processor_specific_flags(
8556 arm_dynobj->name(),
8557 arm_dynobj->processor_specific_flags());
a0351a69
DK
8558 this->merge_object_attributes(arm_dynobj->name().c_str(),
8559 arm_dynobj->attributes_section_data());
3e235302 8560 merged_any_attributes = true;
d5b40221
DK
8561 }
8562
da59ad79
DK
8563 // Create an empty uninitialized attribute section if we still don't have it
8564 // at this moment. This happens if there is no attributes sections in all
8565 // inputs.
8566 if (this->attributes_section_data_ == NULL)
8567 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8568
41263c05 8569 const Object_attribute* cpu_arch_attr =
a0351a69 8570 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8571 // Check if we need to use Cortex-A8 workaround.
8572 if (parameters->options().user_set_fix_cortex_a8())
8573 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8574 else
8575 {
8576 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8577 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8578 // profile.
8579 const Object_attribute* cpu_arch_profile_attr =
8580 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8581 this->fix_cortex_a8_ =
8582 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8583 && (cpu_arch_profile_attr->int_value() == 'A'
8584 || cpu_arch_profile_attr->int_value() == 0));
8585 }
8586
a2162063
ILT
8587 // Check if we can use V4BX interworking.
8588 // The V4BX interworking stub contains BX instruction,
8589 // which is not specified for some profiles.
9b2fd367 8590 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8591 && !this->may_use_v4t_interworking())
a2162063
ILT
8592 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8593 "the target profile does not support BX instruction"));
8594
94cdfcff 8595 // Fill in some more dynamic tags.
ea715a34
ILT
8596 const Reloc_section* rel_plt = (this->plt_ == NULL
8597 ? NULL
8598 : this->plt_->rel_plt());
8599 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8600 this->rel_dyn_, true, false);
94cdfcff
DK
8601
8602 // Emit any relocs we saved in an attempt to avoid generating COPY
8603 // relocs.
8604 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8605 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8606
f59f41f3 8607 // Handle the .ARM.exidx section.
2ea97941 8608 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8609
731ca54a
RÁE
8610 if (!parameters->options().relocatable())
8611 {
8612 if (exidx_section != NULL
8613 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8614 {
9b547ce6 8615 // Create __exidx_start and __exidx_end symbols.
731ca54a
RÁE
8616 symtab->define_in_output_data("__exidx_start", NULL,
8617 Symbol_table::PREDEFINED,
8618 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8619 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8620 0, false, true);
8621 symtab->define_in_output_data("__exidx_end", NULL,
8622 Symbol_table::PREDEFINED,
8623 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8624 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8625 0, true, true);
8626
8627 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8628 // the .ARM.exidx section.
8629 if (!layout->script_options()->saw_phdrs_clause())
8630 {
8631 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8632 0)
8633 == NULL);
8634 Output_segment* exidx_segment =
8635 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8636 exidx_segment->add_output_section_to_nonload(exidx_section,
8637 elfcpp::PF_R);
8638 }
8639 }
8640 else
8641 {
8642 symtab->define_as_constant("__exidx_start", NULL,
8643 Symbol_table::PREDEFINED,
8644 0, 0, elfcpp::STT_OBJECT,
8645 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8646 true, false);
8647 symtab->define_as_constant("__exidx_end", NULL,
8648 Symbol_table::PREDEFINED,
8649 0, 0, elfcpp::STT_OBJECT,
8650 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8651 true, false);
8652 }
11af873f 8653 }
a0351a69 8654
3e235302
DK
8655 // Create an .ARM.attributes section if we have merged any attributes
8656 // from inputs.
8657 if (merged_any_attributes)
7296d933
DK
8658 {
8659 Output_attributes_section_data* attributes_section =
8660 new Output_attributes_section_data(*this->attributes_section_data_);
8661 layout->add_output_section_data(".ARM.attributes",
8662 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8663 attributes_section, ORDER_INVALID,
7296d933
DK
8664 false);
8665 }
131687b4
DK
8666
8667 // Fix up links in section EXIDX headers.
8668 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8669 p != layout->section_list().end();
8670 ++p)
8671 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8672 {
8673 Arm_output_section<big_endian>* os =
8674 Arm_output_section<big_endian>::as_arm_output_section(*p);
8675 os->set_exidx_section_link();
8676 }
4a657b0d
DK
8677}
8678
bec53400
DK
8679// Return whether a direct absolute static relocation needs to be applied.
8680// In cases where Scan::local() or Scan::global() has created
8681// a dynamic relocation other than R_ARM_RELATIVE, the addend
8682// of the relocation is carried in the data, and we must not
8683// apply the static relocation.
8684
8685template<bool big_endian>
8686inline bool
8687Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8688 const Sized_symbol<32>* gsym,
95a2c8d6 8689 unsigned int r_type,
bec53400
DK
8690 bool is_32bit,
8691 Output_section* output_section)
8692{
8693 // If the output section is not allocated, then we didn't call
8694 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8695 // the reloc here.
8696 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8697 return true;
8698
95a2c8d6
RS
8699 int ref_flags = Scan::get_reference_flags(r_type);
8700
bec53400
DK
8701 // For local symbols, we will have created a non-RELATIVE dynamic
8702 // relocation only if (a) the output is position independent,
8703 // (b) the relocation is absolute (not pc- or segment-relative), and
8704 // (c) the relocation is not 32 bits wide.
8705 if (gsym == NULL)
8706 return !(parameters->options().output_is_position_independent()
8707 && (ref_flags & Symbol::ABSOLUTE_REF)
8708 && !is_32bit);
8709
8710 // For global symbols, we use the same helper routines used in the
8711 // scan pass. If we did not create a dynamic relocation, or if we
8712 // created a RELATIVE dynamic relocation, we should apply the static
8713 // relocation.
8714 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8715 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8716 && gsym->can_use_relative_reloc(ref_flags
8717 & Symbol::FUNCTION_CALL);
8718 return !has_dyn || is_rel;
8719}
8720
4a657b0d
DK
8721// Perform a relocation.
8722
8723template<bool big_endian>
8724inline bool
8725Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8726 const Relocate_info<32, big_endian>* relinfo,
8727 Target_arm* target,
ca09d69a 8728 Output_section* output_section,
c121c671
DK
8729 size_t relnum,
8730 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8731 unsigned int r_type,
c121c671
DK
8732 const Sized_symbol<32>* gsym,
8733 const Symbol_value<32>* psymval,
8734 unsigned char* view,
ebabffbd 8735 Arm_address address,
f96accdf 8736 section_size_type view_size)
4a657b0d 8737{
c121c671
DK
8738 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8739
a6d1ef57 8740 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8741 const Arm_reloc_property* reloc_property =
8742 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8743 if (reloc_property == NULL)
8744 {
8745 std::string reloc_name =
8746 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8747 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8748 _("cannot relocate %s in object file"),
8749 reloc_name.c_str());
8750 return true;
8751 }
c121c671 8752
2daedcd6
DK
8753 const Arm_relobj<big_endian>* object =
8754 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8755
2daedcd6
DK
8756 // If the final branch target of a relocation is THUMB instruction, this
8757 // is 1. Otherwise it is 0.
8758 Arm_address thumb_bit = 0;
c121c671 8759 Symbol_value<32> symval;
d204b6e9 8760 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8761 bool have_got_offset = false;
8762 unsigned int got_offset = 0;
8763
8764 // If the relocation uses the GOT entry of a symbol instead of the symbol
8765 // itself, we don't care about whether the symbol is defined or what kind
8766 // of symbol it is.
8767 if (reloc_property->uses_got_entry())
8768 {
8769 // Get the GOT offset.
8770 // The GOT pointer points to the end of the GOT section.
8771 // We need to subtract the size of the GOT section to get
8772 // the actual offset to use in the relocation.
8773 // TODO: We should move GOT offset computing code in TLS relocations
8774 // to here.
8775 switch (r_type)
8776 {
8777 case elfcpp::R_ARM_GOT_BREL:
8778 case elfcpp::R_ARM_GOT_PREL:
8779 if (gsym != NULL)
8780 {
8781 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8782 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8783 - target->got_size());
8784 }
8785 else
8786 {
8787 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8788 gold_assert(object->local_has_got_offset(r_sym,
8789 GOT_TYPE_STANDARD));
8790 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8791 - target->got_size());
8792 }
8793 have_got_offset = true;
8794 break;
8795
8796 default:
8797 break;
8798 }
8799 }
8800 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8801 {
2daedcd6
DK
8802 if (gsym != NULL)
8803 {
8804 // This is a global symbol. Determine if we use PLT and if the
8805 // final target is THUMB.
95a2c8d6 8806 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8807 {
8808 // This uses a PLT, change the symbol value.
8809 symval.set_output_value(target->plt_section()->address()
8810 + gsym->plt_offset());
8811 psymval = &symval;
8812 }
d204b6e9
DK
8813 else if (gsym->is_weak_undefined())
8814 {
8815 // This is a weakly undefined symbol and we do not use PLT
8816 // for this relocation. A branch targeting this symbol will
8817 // be converted into an NOP.
8818 is_weakly_undefined_without_plt = true;
8819 }
b2286c10
DK
8820 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8821 {
8822 // This relocation uses the symbol value but the symbol is
8823 // undefined. Exit early and have the caller reporting an
8824 // error.
8825 return true;
8826 }
2daedcd6
DK
8827 else
8828 {
8829 // Set thumb bit if symbol:
8830 // -Has type STT_ARM_TFUNC or
8831 // -Has type STT_FUNC, is defined and with LSB in value set.
8832 thumb_bit =
8833 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8834 || (gsym->type() == elfcpp::STT_FUNC
8835 && !gsym->is_undefined()
8836 && ((psymval->value(object, 0) & 1) != 0)))
8837 ? 1
8838 : 0);
8839 }
8840 }
8841 else
8842 {
8843 // This is a local symbol. Determine if the final target is THUMB.
8844 // We saved this information when all the local symbols were read.
8845 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8846 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8847 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8848 }
8849 }
8850 else
8851 {
8852 // This is a fake relocation synthesized for a stub. It does not have
8853 // a real symbol. We just look at the LSB of the symbol value to
8854 // determine if the target is THUMB or not.
8855 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8856 }
8857
2daedcd6
DK
8858 // Strip LSB if this points to a THUMB target.
8859 if (thumb_bit != 0
5c57f1be 8860 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8861 && ((psymval->value(object, 0) & 1) != 0))
8862 {
8863 Arm_address stripped_value =
8864 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8865 symval.set_output_value(stripped_value);
8866 psymval = &symval;
8867 }
8868
d204b6e9
DK
8869 // To look up relocation stubs, we need to pass the symbol table index of
8870 // a local symbol.
8871 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8872
b10d2873
ILT
8873 // Get the addressing origin of the output segment defining the
8874 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8875 Arm_address sym_origin = 0;
5c57f1be 8876 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8877 {
8878 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8879 // R_ARM_BASE_ABS with the NULL symbol will give the
8880 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8881 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8882 sym_origin = target->got_plt_section()->address();
8883 else if (gsym == NULL)
8884 sym_origin = 0;
8885 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8886 sym_origin = gsym->output_segment()->vaddr();
8887 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8888 sym_origin = gsym->output_data()->address();
8889
8890 // TODO: Assumes the segment base to be zero for the global symbols
8891 // till the proper support for the segment-base-relative addressing
8892 // will be implemented. This is consistent with GNU ld.
8893 }
8894
5c57f1be
DK
8895 // For relative addressing relocation, find out the relative address base.
8896 Arm_address relative_address_base = 0;
8897 switch(reloc_property->relative_address_base())
8898 {
8899 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8900 // Relocations with relative address bases RAB_TLS and RAB_tp are
8901 // handled by relocate_tls. So we do not need to do anything here.
8902 case Arm_reloc_property::RAB_TLS:
8903 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8904 break;
8905 case Arm_reloc_property::RAB_B_S:
8906 relative_address_base = sym_origin;
8907 break;
8908 case Arm_reloc_property::RAB_GOT_ORG:
8909 relative_address_base = target->got_plt_section()->address();
8910 break;
8911 case Arm_reloc_property::RAB_P:
8912 relative_address_base = address;
8913 break;
8914 case Arm_reloc_property::RAB_Pa:
8915 relative_address_base = address & 0xfffffffcU;
8916 break;
8917 default:
8918 gold_unreachable();
8919 }
8920
c121c671
DK
8921 typename Arm_relocate_functions::Status reloc_status =
8922 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8923 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8924 switch (r_type)
8925 {
8926 case elfcpp::R_ARM_NONE:
8927 break;
8928
5e445df6 8929 case elfcpp::R_ARM_ABS8:
95a2c8d6 8930 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8931 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8932 break;
8933
8934 case elfcpp::R_ARM_ABS12:
95a2c8d6 8935 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8936 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8937 break;
8938
8939 case elfcpp::R_ARM_ABS16:
95a2c8d6 8940 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 8941 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8942 break;
8943
c121c671 8944 case elfcpp::R_ARM_ABS32:
95a2c8d6 8945 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 8946 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8947 thumb_bit);
c121c671
DK
8948 break;
8949
be8fcb75 8950 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 8951 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
8952 // No thumb bit for this relocation: (S + A)
8953 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8954 0);
be8fcb75
ILT
8955 break;
8956
fd3c5f0b 8957 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 8958 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8959 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8960 0, thumb_bit,
8961 check_overflow);
fd3c5f0b
ILT
8962 break;
8963
8964 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 8965 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 8966 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
8967 break;
8968
8969 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 8970 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8971 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8972 0, thumb_bit, false);
fd3c5f0b
ILT
8973 break;
8974
8975 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 8976 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8977 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8978 psymval, 0);
fd3c5f0b
ILT
8979 break;
8980
c2a122b6 8981 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 8982 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 8983 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
8984 reloc_status =
8985 Arm_relocate_functions::movw(view, object, psymval,
8986 relative_address_base, thumb_bit,
8987 check_overflow);
c2a122b6
ILT
8988 break;
8989
8990 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 8991 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
8992 reloc_status =
8993 Arm_relocate_functions::movt(view, object, psymval,
8994 relative_address_base);
c2a122b6
ILT
8995 break;
8996
8997 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 8998 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 8999 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9000 reloc_status =
9001 Arm_relocate_functions::thm_movw(view, object, psymval,
9002 relative_address_base,
9003 thumb_bit, check_overflow);
c2a122b6
ILT
9004 break;
9005
9006 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9007 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9008 reloc_status =
9009 Arm_relocate_functions::thm_movt(view, object, psymval,
9010 relative_address_base);
02961d7e 9011 break;
5c57f1be 9012
c121c671
DK
9013 case elfcpp::R_ARM_REL32:
9014 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9015 address, thumb_bit);
c121c671
DK
9016 break;
9017
be8fcb75 9018 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9019 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9020 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9021 break;
9022
1521477a 9023 // Thumb long branches.
c121c671 9024 case elfcpp::R_ARM_THM_CALL:
51938283 9025 case elfcpp::R_ARM_THM_XPC22:
1521477a 9026 case elfcpp::R_ARM_THM_JUMP24:
51938283 9027 reloc_status =
1521477a
DK
9028 Arm_relocate_functions::thumb_branch_common(
9029 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9030 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9031 break;
9032
c121c671
DK
9033 case elfcpp::R_ARM_GOTOFF32:
9034 {
ebabffbd 9035 Arm_address got_origin;
c121c671
DK
9036 got_origin = target->got_plt_section()->address();
9037 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9038 got_origin, thumb_bit);
c121c671
DK
9039 }
9040 break;
9041
9042 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9043 gold_assert(gsym != NULL);
9044 reloc_status =
9045 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9046 break;
9047
be8fcb75 9048 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9049 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9050 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9051 break;
9052
c121c671
DK
9053 case elfcpp::R_ARM_GOT_BREL:
9054 gold_assert(have_got_offset);
9055 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9056 break;
9057
7f5309a5
ILT
9058 case elfcpp::R_ARM_GOT_PREL:
9059 gold_assert(have_got_offset);
9060 // Get the address origin for GOT PLT, which is allocated right
9061 // after the GOT section, to calculate an absolute address of
9062 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9063 Arm_address got_origin;
7f5309a5
ILT
9064 got_origin = target->got_plt_section()->address();
9065 reloc_status = Arm_relocate_functions::got_prel(view,
9066 got_origin + got_offset,
9067 address);
9068 break;
9069
c121c671 9070 case elfcpp::R_ARM_PLT32:
1521477a
DK
9071 case elfcpp::R_ARM_CALL:
9072 case elfcpp::R_ARM_JUMP24:
9073 case elfcpp::R_ARM_XPC25:
c121c671
DK
9074 gold_assert(gsym == NULL
9075 || gsym->has_plt_offset()
9076 || gsym->final_value_is_known()
9077 || (gsym->is_defined()
9078 && !gsym->is_from_dynobj()
9079 && !gsym->is_preemptible()));
d204b6e9 9080 reloc_status =
1521477a
DK
9081 Arm_relocate_functions::arm_branch_common(
9082 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9083 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9084 break;
9085
41263c05
DK
9086 case elfcpp::R_ARM_THM_JUMP19:
9087 reloc_status =
9088 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9089 thumb_bit);
9090 break;
9091
800d0f56
ILT
9092 case elfcpp::R_ARM_THM_JUMP6:
9093 reloc_status =
9094 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9095 break;
9096
9097 case elfcpp::R_ARM_THM_JUMP8:
9098 reloc_status =
9099 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9100 break;
9101
9102 case elfcpp::R_ARM_THM_JUMP11:
9103 reloc_status =
9104 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9105 break;
9106
c121c671
DK
9107 case elfcpp::R_ARM_PREL31:
9108 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9109 address, thumb_bit);
c121c671
DK
9110 break;
9111
a2162063 9112 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9113 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9114 {
9115 const bool is_v4bx_interworking =
9116 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9117 reloc_status =
9118 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9119 is_v4bx_interworking);
9120 }
a2162063
ILT
9121 break;
9122
11b861d5
DK
9123 case elfcpp::R_ARM_THM_PC8:
9124 reloc_status =
9125 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9126 break;
9127
9128 case elfcpp::R_ARM_THM_PC12:
9129 reloc_status =
9130 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9131 break;
9132
9133 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9134 reloc_status =
9135 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9136 thumb_bit);
9137 break;
9138
b10d2873 9139 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9140 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9141 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9142 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9143 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9144 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9145 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9146 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9147 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9148 case elfcpp::R_ARM_ALU_SB_G2:
9149 reloc_status =
5c57f1be
DK
9150 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9151 reloc_property->group_index(),
9152 relative_address_base,
9153 thumb_bit, check_overflow);
b10d2873
ILT
9154 break;
9155
9156 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9157 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9158 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9159 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9160 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9161 case elfcpp::R_ARM_LDR_SB_G2:
9162 reloc_status =
5c57f1be
DK
9163 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9164 reloc_property->group_index(),
9165 relative_address_base);
b10d2873
ILT
9166 break;
9167
9168 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9169 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9170 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9171 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9172 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9173 case elfcpp::R_ARM_LDRS_SB_G2:
9174 reloc_status =
5c57f1be
DK
9175 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9176 reloc_property->group_index(),
9177 relative_address_base);
b10d2873
ILT
9178 break;
9179
9180 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9181 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9182 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9183 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9184 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9185 case elfcpp::R_ARM_LDC_SB_G2:
9186 reloc_status =
5c57f1be
DK
9187 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9188 reloc_property->group_index(),
9189 relative_address_base);
c121c671
DK
9190 break;
9191
f96accdf
DK
9192 // These are initial tls relocs, which are expected when
9193 // linking.
9194 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9195 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9196 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9197 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9198 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9199 reloc_status =
9200 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9201 view, address, view_size);
9202 break;
9203
3cef7179
ILT
9204 // The known and unknown unsupported and/or deprecated relocations.
9205 case elfcpp::R_ARM_PC24:
9206 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9207 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9208 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9209 default:
3cef7179
ILT
9210 // Just silently leave the method. We should get an appropriate error
9211 // message in the scan methods.
9212 break;
c121c671
DK
9213 }
9214
9215 // Report any errors.
9216 switch (reloc_status)
9217 {
9218 case Arm_relocate_functions::STATUS_OKAY:
9219 break;
9220 case Arm_relocate_functions::STATUS_OVERFLOW:
9221 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9222 _("relocation overflow in %s"),
9223 reloc_property->name().c_str());
c121c671
DK
9224 break;
9225 case Arm_relocate_functions::STATUS_BAD_RELOC:
9226 gold_error_at_location(
9227 relinfo,
9228 relnum,
9229 rel.get_r_offset(),
a2c7281b
DK
9230 _("unexpected opcode while processing relocation %s"),
9231 reloc_property->name().c_str());
c121c671 9232 break;
4a657b0d
DK
9233 default:
9234 gold_unreachable();
9235 }
9236
9237 return true;
9238}
9239
f96accdf
DK
9240// Perform a TLS relocation.
9241
9242template<bool big_endian>
9243inline typename Arm_relocate_functions<big_endian>::Status
9244Target_arm<big_endian>::Relocate::relocate_tls(
9245 const Relocate_info<32, big_endian>* relinfo,
9246 Target_arm<big_endian>* target,
9247 size_t relnum,
9248 const elfcpp::Rel<32, big_endian>& rel,
9249 unsigned int r_type,
9250 const Sized_symbol<32>* gsym,
9251 const Symbol_value<32>* psymval,
9252 unsigned char* view,
4a54abbb 9253 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9254 section_size_type /*view_size*/ )
9255{
9256 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9257 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9258 Output_segment* tls_segment = relinfo->layout->tls_segment();
9259
6fa2a40b 9260 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9261
9262 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9263
9264 const bool is_final = (gsym == NULL
9265 ? !parameters->options().shared()
9266 : gsym->final_value_is_known());
9267 const tls::Tls_optimization optimized_type
9268 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9269 switch (r_type)
9270 {
9271 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9272 {
9273 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9274 unsigned int got_offset;
9275 if (gsym != NULL)
9276 {
9277 gold_assert(gsym->has_got_offset(got_type));
9278 got_offset = gsym->got_offset(got_type) - target->got_size();
9279 }
9280 else
9281 {
9282 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9283 gold_assert(object->local_has_got_offset(r_sym, got_type));
9284 got_offset = (object->local_got_offset(r_sym, got_type)
9285 - target->got_size());
9286 }
9287 if (optimized_type == tls::TLSOPT_NONE)
9288 {
4a54abbb
DK
9289 Arm_address got_entry =
9290 target->got_plt_section()->address() + got_offset;
9291
9292 // Relocate the field with the PC relative offset of the pair of
9293 // GOT entries.
29ab395d 9294 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9295 return ArmRelocFuncs::STATUS_OKAY;
9296 }
9297 }
9298 break;
9299
9300 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9301 if (optimized_type == tls::TLSOPT_NONE)
9302 {
9303 // Relocate the field with the offset of the GOT entry for
9304 // the module index.
9305 unsigned int got_offset;
9306 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9307 - target->got_size());
4a54abbb
DK
9308 Arm_address got_entry =
9309 target->got_plt_section()->address() + got_offset;
9310
9311 // Relocate the field with the PC relative offset of the pair of
9312 // GOT entries.
29ab395d 9313 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9314 return ArmRelocFuncs::STATUS_OKAY;
9315 }
9316 break;
9317
9318 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9319 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9320 return ArmRelocFuncs::STATUS_OKAY;
9321
9322 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9323 if (optimized_type == tls::TLSOPT_NONE)
9324 {
9325 // Relocate the field with the offset of the GOT entry for
9326 // the tp-relative offset of the symbol.
9327 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9328 unsigned int got_offset;
9329 if (gsym != NULL)
9330 {
9331 gold_assert(gsym->has_got_offset(got_type));
9332 got_offset = gsym->got_offset(got_type);
9333 }
9334 else
9335 {
9336 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9337 gold_assert(object->local_has_got_offset(r_sym, got_type));
9338 got_offset = object->local_got_offset(r_sym, got_type);
9339 }
4a54abbb 9340
f96accdf
DK
9341 // All GOT offsets are relative to the end of the GOT.
9342 got_offset -= target->got_size();
4a54abbb
DK
9343
9344 Arm_address got_entry =
9345 target->got_plt_section()->address() + got_offset;
9346
9347 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9348 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9349 return ArmRelocFuncs::STATUS_OKAY;
9350 }
9351 break;
9352
9353 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9354 // If we're creating a shared library, a dynamic relocation will
9355 // have been created for this location, so do not apply it now.
9356 if (!parameters->options().shared())
9357 {
9358 gold_assert(tls_segment != NULL);
4a54abbb
DK
9359
9360 // $tp points to the TCB, which is followed by the TLS, so we
9361 // need to add TCB size to the offset.
9362 Arm_address aligned_tcb_size =
9363 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
29ab395d 9364 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9365
f96accdf
DK
9366 }
9367 return ArmRelocFuncs::STATUS_OKAY;
9368
9369 default:
9370 gold_unreachable();
9371 }
9372
9373 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9374 _("unsupported reloc %u"),
9375 r_type);
9376 return ArmRelocFuncs::STATUS_BAD_RELOC;
9377}
9378
4a657b0d
DK
9379// Relocate section data.
9380
9381template<bool big_endian>
9382void
9383Target_arm<big_endian>::relocate_section(
9384 const Relocate_info<32, big_endian>* relinfo,
9385 unsigned int sh_type,
9386 const unsigned char* prelocs,
9387 size_t reloc_count,
9388 Output_section* output_section,
9389 bool needs_special_offset_handling,
9390 unsigned char* view,
ebabffbd 9391 Arm_address address,
364c7fa5
ILT
9392 section_size_type view_size,
9393 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9394{
9395 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9396 gold_assert(sh_type == elfcpp::SHT_REL);
9397
218c5831
DK
9398 // See if we are relocating a relaxed input section. If so, the view
9399 // covers the whole output section and we need to adjust accordingly.
9400 if (needs_special_offset_handling)
43d12afe 9401 {
218c5831
DK
9402 const Output_relaxed_input_section* poris =
9403 output_section->find_relaxed_input_section(relinfo->object,
9404 relinfo->data_shndx);
9405 if (poris != NULL)
9406 {
9407 Arm_address section_address = poris->address();
9408 section_size_type section_size = poris->data_size();
9409
9410 gold_assert((section_address >= address)
9411 && ((section_address + section_size)
9412 <= (address + view_size)));
9413
9414 off_t offset = section_address - address;
9415 view += offset;
9416 address += offset;
9417 view_size = section_size;
9418 }
43d12afe
DK
9419 }
9420
4a657b0d
DK
9421 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9422 Arm_relocate>(
9423 relinfo,
9424 this,
9425 prelocs,
9426 reloc_count,
9427 output_section,
9428 needs_special_offset_handling,
9429 view,
9430 address,
364c7fa5
ILT
9431 view_size,
9432 reloc_symbol_changes);
4a657b0d
DK
9433}
9434
9435// Return the size of a relocation while scanning during a relocatable
9436// link.
9437
9438template<bool big_endian>
9439unsigned int
9440Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9441 unsigned int r_type,
9442 Relobj* object)
9443{
a6d1ef57 9444 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9445 const Arm_reloc_property* arp =
9446 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9447 if (arp != NULL)
9448 return arp->size();
9449 else
4a657b0d 9450 {
5c57f1be
DK
9451 std::string reloc_name =
9452 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9453 gold_error(_("%s: unexpected %s in object file"),
9454 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9455 return 0;
9456 }
9457}
9458
9459// Scan the relocs during a relocatable link.
9460
9461template<bool big_endian>
9462void
9463Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9464 Symbol_table* symtab,
2ea97941 9465 Layout* layout,
6fa2a40b 9466 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9467 unsigned int data_shndx,
9468 unsigned int sh_type,
9469 const unsigned char* prelocs,
9470 size_t reloc_count,
9471 Output_section* output_section,
9472 bool needs_special_offset_handling,
9473 size_t local_symbol_count,
9474 const unsigned char* plocal_symbols,
9475 Relocatable_relocs* rr)
9476{
9477 gold_assert(sh_type == elfcpp::SHT_REL);
9478
5c388529 9479 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9480 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9481
9482 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9483 Scan_relocatable_relocs>(
4a657b0d 9484 symtab,
2ea97941 9485 layout,
4a657b0d
DK
9486 object,
9487 data_shndx,
9488 prelocs,
9489 reloc_count,
9490 output_section,
9491 needs_special_offset_handling,
9492 local_symbol_count,
9493 plocal_symbols,
9494 rr);
9495}
9496
9497// Relocate a section during a relocatable link.
9498
9499template<bool big_endian>
9500void
9501Target_arm<big_endian>::relocate_for_relocatable(
9502 const Relocate_info<32, big_endian>* relinfo,
9503 unsigned int sh_type,
9504 const unsigned char* prelocs,
9505 size_t reloc_count,
9506 Output_section* output_section,
9507 off_t offset_in_output_section,
9508 const Relocatable_relocs* rr,
9509 unsigned char* view,
ebabffbd 9510 Arm_address view_address,
4a657b0d
DK
9511 section_size_type view_size,
9512 unsigned char* reloc_view,
9513 section_size_type reloc_view_size)
9514{
9515 gold_assert(sh_type == elfcpp::SHT_REL);
9516
9517 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9518 relinfo,
9519 prelocs,
9520 reloc_count,
9521 output_section,
9522 offset_in_output_section,
9523 rr,
9524 view,
9525 view_address,
9526 view_size,
9527 reloc_view,
9528 reloc_view_size);
9529}
9530
5c388529
DK
9531// Perform target-specific processing in a relocatable link. This is
9532// only used if we use the relocation strategy RELOC_SPECIAL.
9533
9534template<bool big_endian>
9535void
9536Target_arm<big_endian>::relocate_special_relocatable(
9537 const Relocate_info<32, big_endian>* relinfo,
9538 unsigned int sh_type,
9539 const unsigned char* preloc_in,
9540 size_t relnum,
9541 Output_section* output_section,
9542 off_t offset_in_output_section,
9543 unsigned char* view,
9544 elfcpp::Elf_types<32>::Elf_Addr view_address,
9545 section_size_type,
9546 unsigned char* preloc_out)
9547{
9548 // We can only handle REL type relocation sections.
9549 gold_assert(sh_type == elfcpp::SHT_REL);
9550
9551 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9552 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9553 Reltype_write;
9554 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9555
9556 const Arm_relobj<big_endian>* object =
9557 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9558 const unsigned int local_count = object->local_symbol_count();
9559
9560 Reltype reloc(preloc_in);
9561 Reltype_write reloc_write(preloc_out);
9562
9563 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9564 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9565 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9566
9567 const Arm_reloc_property* arp =
9568 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9569 gold_assert(arp != NULL);
9570
9571 // Get the new symbol index.
9572 // We only use RELOC_SPECIAL strategy in local relocations.
9573 gold_assert(r_sym < local_count);
9574
9575 // We are adjusting a section symbol. We need to find
9576 // the symbol table index of the section symbol for
9577 // the output section corresponding to input section
9578 // in which this symbol is defined.
9579 bool is_ordinary;
9580 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9581 gold_assert(is_ordinary);
9582 Output_section* os = object->output_section(shndx);
9583 gold_assert(os != NULL);
9584 gold_assert(os->needs_symtab_index());
9585 unsigned int new_symndx = os->symtab_index();
9586
9587 // Get the new offset--the location in the output section where
9588 // this relocation should be applied.
9589
9590 Arm_address offset = reloc.get_r_offset();
9591 Arm_address new_offset;
9592 if (offset_in_output_section != invalid_address)
9593 new_offset = offset + offset_in_output_section;
9594 else
9595 {
9596 section_offset_type sot_offset =
9597 convert_types<section_offset_type, Arm_address>(offset);
9598 section_offset_type new_sot_offset =
9599 output_section->output_offset(object, relinfo->data_shndx,
9600 sot_offset);
9601 gold_assert(new_sot_offset != -1);
9602 new_offset = new_sot_offset;
9603 }
9604
9605 // In an object file, r_offset is an offset within the section.
9606 // In an executable or dynamic object, generated by
9607 // --emit-relocs, r_offset is an absolute address.
9608 if (!parameters->options().relocatable())
9609 {
9610 new_offset += view_address;
9611 if (offset_in_output_section != invalid_address)
9612 new_offset -= offset_in_output_section;
9613 }
9614
9615 reloc_write.put_r_offset(new_offset);
9616 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9617
9618 // Handle the reloc addend.
9619 // The relocation uses a section symbol in the input file.
9620 // We are adjusting it to use a section symbol in the output
9621 // file. The input section symbol refers to some address in
9622 // the input section. We need the relocation in the output
9623 // file to refer to that same address. This adjustment to
9624 // the addend is the same calculation we use for a simple
9625 // absolute relocation for the input section symbol.
9626
9627 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9628
9629 // Handle THUMB bit.
9630 Symbol_value<32> symval;
9631 Arm_address thumb_bit =
9632 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9633 if (thumb_bit != 0
9634 && arp->uses_thumb_bit()
9635 && ((psymval->value(object, 0) & 1) != 0))
9636 {
9637 Arm_address stripped_value =
9638 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9639 symval.set_output_value(stripped_value);
9640 psymval = &symval;
9641 }
9642
9643 unsigned char* paddend = view + offset;
9644 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9645 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9646 switch (r_type)
9647 {
9648 case elfcpp::R_ARM_ABS8:
9649 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9650 psymval);
9651 break;
9652
9653 case elfcpp::R_ARM_ABS12:
9654 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9655 psymval);
9656 break;
9657
9658 case elfcpp::R_ARM_ABS16:
9659 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9660 psymval);
9661 break;
9662
9663 case elfcpp::R_ARM_THM_ABS5:
9664 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9665 object,
9666 psymval);
9667 break;
9668
9669 case elfcpp::R_ARM_MOVW_ABS_NC:
9670 case elfcpp::R_ARM_MOVW_PREL_NC:
9671 case elfcpp::R_ARM_MOVW_BREL_NC:
9672 case elfcpp::R_ARM_MOVW_BREL:
9673 reloc_status = Arm_relocate_functions<big_endian>::movw(
9674 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9675 break;
9676
9677 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9678 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9679 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9680 case elfcpp::R_ARM_THM_MOVW_BREL:
9681 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9682 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9683 break;
9684
9685 case elfcpp::R_ARM_THM_CALL:
9686 case elfcpp::R_ARM_THM_XPC22:
9687 case elfcpp::R_ARM_THM_JUMP24:
9688 reloc_status =
9689 Arm_relocate_functions<big_endian>::thumb_branch_common(
9690 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9691 false);
9692 break;
9693
9694 case elfcpp::R_ARM_PLT32:
9695 case elfcpp::R_ARM_CALL:
9696 case elfcpp::R_ARM_JUMP24:
9697 case elfcpp::R_ARM_XPC25:
9698 reloc_status =
9699 Arm_relocate_functions<big_endian>::arm_branch_common(
9700 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9701 false);
9702 break;
9703
9704 case elfcpp::R_ARM_THM_JUMP19:
9705 reloc_status =
9706 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9707 psymval, 0, thumb_bit);
9708 break;
9709
9710 case elfcpp::R_ARM_THM_JUMP6:
9711 reloc_status =
9712 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9713 0);
9714 break;
9715
9716 case elfcpp::R_ARM_THM_JUMP8:
9717 reloc_status =
9718 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9719 0);
9720 break;
9721
9722 case elfcpp::R_ARM_THM_JUMP11:
9723 reloc_status =
9724 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9725 0);
9726 break;
9727
9728 case elfcpp::R_ARM_PREL31:
9729 reloc_status =
9730 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9731 thumb_bit);
9732 break;
9733
9734 case elfcpp::R_ARM_THM_PC8:
9735 reloc_status =
9736 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9737 0);
9738 break;
9739
9740 case elfcpp::R_ARM_THM_PC12:
9741 reloc_status =
9742 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9743 0);
9744 break;
9745
9746 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9747 reloc_status =
9748 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9749 0, thumb_bit);
9750 break;
9751
9752 // These relocation truncate relocation results so we cannot handle them
9753 // in a relocatable link.
9754 case elfcpp::R_ARM_MOVT_ABS:
9755 case elfcpp::R_ARM_THM_MOVT_ABS:
9756 case elfcpp::R_ARM_MOVT_PREL:
9757 case elfcpp::R_ARM_MOVT_BREL:
9758 case elfcpp::R_ARM_THM_MOVT_PREL:
9759 case elfcpp::R_ARM_THM_MOVT_BREL:
9760 case elfcpp::R_ARM_ALU_PC_G0_NC:
9761 case elfcpp::R_ARM_ALU_PC_G0:
9762 case elfcpp::R_ARM_ALU_PC_G1_NC:
9763 case elfcpp::R_ARM_ALU_PC_G1:
9764 case elfcpp::R_ARM_ALU_PC_G2:
9765 case elfcpp::R_ARM_ALU_SB_G0_NC:
9766 case elfcpp::R_ARM_ALU_SB_G0:
9767 case elfcpp::R_ARM_ALU_SB_G1_NC:
9768 case elfcpp::R_ARM_ALU_SB_G1:
9769 case elfcpp::R_ARM_ALU_SB_G2:
9770 case elfcpp::R_ARM_LDR_PC_G0:
9771 case elfcpp::R_ARM_LDR_PC_G1:
9772 case elfcpp::R_ARM_LDR_PC_G2:
9773 case elfcpp::R_ARM_LDR_SB_G0:
9774 case elfcpp::R_ARM_LDR_SB_G1:
9775 case elfcpp::R_ARM_LDR_SB_G2:
9776 case elfcpp::R_ARM_LDRS_PC_G0:
9777 case elfcpp::R_ARM_LDRS_PC_G1:
9778 case elfcpp::R_ARM_LDRS_PC_G2:
9779 case elfcpp::R_ARM_LDRS_SB_G0:
9780 case elfcpp::R_ARM_LDRS_SB_G1:
9781 case elfcpp::R_ARM_LDRS_SB_G2:
9782 case elfcpp::R_ARM_LDC_PC_G0:
9783 case elfcpp::R_ARM_LDC_PC_G1:
9784 case elfcpp::R_ARM_LDC_PC_G2:
9785 case elfcpp::R_ARM_LDC_SB_G0:
9786 case elfcpp::R_ARM_LDC_SB_G1:
9787 case elfcpp::R_ARM_LDC_SB_G2:
9788 gold_error(_("cannot handle %s in a relocatable link"),
9789 arp->name().c_str());
9790 break;
9791
9792 default:
9793 gold_unreachable();
9794 }
9795
9796 // Report any errors.
9797 switch (reloc_status)
9798 {
9799 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9800 break;
9801 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9802 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9803 _("relocation overflow in %s"),
9804 arp->name().c_str());
9805 break;
9806 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9807 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9808 _("unexpected opcode while processing relocation %s"),
9809 arp->name().c_str());
9810 break;
9811 default:
9812 gold_unreachable();
9813 }
9814}
9815
94cdfcff
DK
9816// Return the value to use for a dynamic symbol which requires special
9817// treatment. This is how we support equality comparisons of function
9818// pointers across shared library boundaries, as described in the
9819// processor specific ABI supplement.
9820
4a657b0d
DK
9821template<bool big_endian>
9822uint64_t
94cdfcff 9823Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9824{
94cdfcff
DK
9825 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9826 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9827}
9828
9829// Map platform-specific relocs to real relocs
9830//
9831template<bool big_endian>
9832unsigned int
ca09d69a 9833Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9834{
9835 switch (r_type)
9836 {
9837 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9838 // This is either R_ARM_ABS32 or R_ARM_REL32;
9839 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9840
9841 case elfcpp::R_ARM_TARGET2:
9b547ce6 9842 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9843 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9844
9845 default:
9846 return r_type;
9847 }
9848}
9849
d5b40221
DK
9850// Whether if two EABI versions V1 and V2 are compatible.
9851
9852template<bool big_endian>
9853bool
9854Target_arm<big_endian>::are_eabi_versions_compatible(
9855 elfcpp::Elf_Word v1,
9856 elfcpp::Elf_Word v2)
9857{
9858 // v4 and v5 are the same spec before and after it was released,
9859 // so allow mixing them.
106e8a6c
DK
9860 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9861 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9862 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9863 return true;
9864
9865 return v1 == v2;
9866}
9867
9868// Combine FLAGS from an input object called NAME and the processor-specific
9869// flags in the ELF header of the output. Much of this is adapted from the
9870// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9871// in bfd/elf32-arm.c.
9872
9873template<bool big_endian>
9874void
9875Target_arm<big_endian>::merge_processor_specific_flags(
9876 const std::string& name,
9877 elfcpp::Elf_Word flags)
9878{
9879 if (this->are_processor_specific_flags_set())
9880 {
9881 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9882
9883 // Nothing to merge if flags equal to those in output.
9884 if (flags == out_flags)
9885 return;
9886
9887 // Complain about various flag mismatches.
9888 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9889 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9890 if (!this->are_eabi_versions_compatible(version1, version2)
9891 && parameters->options().warn_mismatch())
d5b40221
DK
9892 gold_error(_("Source object %s has EABI version %d but output has "
9893 "EABI version %d."),
9894 name.c_str(),
9895 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9896 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9897 }
9898 else
9899 {
9900 // If the input is the default architecture and had the default
9901 // flags then do not bother setting the flags for the output
9902 // architecture, instead allow future merges to do this. If no
9903 // future merges ever set these flags then they will retain their
9904 // uninitialised values, which surprise surprise, correspond
9905 // to the default values.
9906 if (flags == 0)
9907 return;
9908
9909 // This is the first time, just copy the flags.
9910 // We only copy the EABI version for now.
9911 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9912 }
9913}
9914
9915// Adjust ELF file header.
9916template<bool big_endian>
9917void
9918Target_arm<big_endian>::do_adjust_elf_header(
9919 unsigned char* view,
9920 int len) const
9921{
9922 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9923
9924 elfcpp::Ehdr<32, big_endian> ehdr(view);
9925 unsigned char e_ident[elfcpp::EI_NIDENT];
9926 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9927
9928 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9929 == elfcpp::EF_ARM_EABI_UNKNOWN)
9930 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9931 else
9932 e_ident[elfcpp::EI_OSABI] = 0;
9933 e_ident[elfcpp::EI_ABIVERSION] = 0;
9934
9935 // FIXME: Do EF_ARM_BE8 adjustment.
9936
9937 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9938 oehdr.put_e_ident(e_ident);
9939}
9940
9941// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
9942// We need to use a target-specific sub-class of
9943// Sized_relobj_file<32, big_endian> to store ARM specific information.
9944// Hence we need to have our own ELF object creation.
d5b40221
DK
9945
9946template<bool big_endian>
9947Object*
9948Target_arm<big_endian>::do_make_elf_object(
9949 const std::string& name,
9950 Input_file* input_file,
2ea97941 9951 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9952{
9953 int et = ehdr.get_e_type();
f4a8b6d7
DK
9954 // ET_EXEC files are valid input for --just-symbols/-R,
9955 // and we treat them as relocatable objects.
9956 if (et == elfcpp::ET_REL
9957 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
9958 {
9959 Arm_relobj<big_endian>* obj =
2ea97941 9960 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9961 obj->setup();
9962 return obj;
9963 }
9964 else if (et == elfcpp::ET_DYN)
9965 {
9966 Sized_dynobj<32, big_endian>* obj =
2ea97941 9967 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9968 obj->setup();
9969 return obj;
9970 }
9971 else
9972 {
9973 gold_error(_("%s: unsupported ELF file type %d"),
9974 name.c_str(), et);
9975 return NULL;
9976 }
9977}
9978
a0351a69
DK
9979// Read the architecture from the Tag_also_compatible_with attribute, if any.
9980// Returns -1 if no architecture could be read.
9981// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9982
9983template<bool big_endian>
9984int
9985Target_arm<big_endian>::get_secondary_compatible_arch(
9986 const Attributes_section_data* pasd)
9987{
ca09d69a 9988 const Object_attribute* known_attributes =
a0351a69
DK
9989 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9990
9991 // Note: the tag and its argument below are uleb128 values, though
9992 // currently-defined values fit in one byte for each.
9993 const std::string& sv =
9994 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9995 if (sv.size() == 2
9996 && sv.data()[0] == elfcpp::Tag_CPU_arch
9997 && (sv.data()[1] & 128) != 128)
9998 return sv.data()[1];
9999
10000 // This tag is "safely ignorable", so don't complain if it looks funny.
10001 return -1;
10002}
10003
10004// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10005// The tag is removed if ARCH is -1.
10006// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10007
10008template<bool big_endian>
10009void
10010Target_arm<big_endian>::set_secondary_compatible_arch(
10011 Attributes_section_data* pasd,
10012 int arch)
10013{
ca09d69a 10014 Object_attribute* known_attributes =
a0351a69
DK
10015 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10016
10017 if (arch == -1)
10018 {
10019 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10020 return;
10021 }
10022
10023 // Note: the tag and its argument below are uleb128 values, though
10024 // currently-defined values fit in one byte for each.
10025 char sv[3];
10026 sv[0] = elfcpp::Tag_CPU_arch;
10027 gold_assert(arch != 0);
10028 sv[1] = arch;
10029 sv[2] = '\0';
10030
10031 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10032}
10033
10034// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10035// into account.
10036// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10037
10038template<bool big_endian>
10039int
10040Target_arm<big_endian>::tag_cpu_arch_combine(
10041 const char* name,
10042 int oldtag,
10043 int* secondary_compat_out,
10044 int newtag,
10045 int secondary_compat)
10046{
10047#define T(X) elfcpp::TAG_CPU_ARCH_##X
10048 static const int v6t2[] =
10049 {
10050 T(V6T2), // PRE_V4.
10051 T(V6T2), // V4.
10052 T(V6T2), // V4T.
10053 T(V6T2), // V5T.
10054 T(V6T2), // V5TE.
10055 T(V6T2), // V5TEJ.
10056 T(V6T2), // V6.
10057 T(V7), // V6KZ.
10058 T(V6T2) // V6T2.
10059 };
10060 static const int v6k[] =
10061 {
10062 T(V6K), // PRE_V4.
10063 T(V6K), // V4.
10064 T(V6K), // V4T.
10065 T(V6K), // V5T.
10066 T(V6K), // V5TE.
10067 T(V6K), // V5TEJ.
10068 T(V6K), // V6.
10069 T(V6KZ), // V6KZ.
10070 T(V7), // V6T2.
10071 T(V6K) // V6K.
10072 };
10073 static const int v7[] =
10074 {
10075 T(V7), // PRE_V4.
10076 T(V7), // V4.
10077 T(V7), // V4T.
10078 T(V7), // V5T.
10079 T(V7), // V5TE.
10080 T(V7), // V5TEJ.
10081 T(V7), // V6.
10082 T(V7), // V6KZ.
10083 T(V7), // V6T2.
10084 T(V7), // V6K.
10085 T(V7) // V7.
10086 };
10087 static const int v6_m[] =
10088 {
10089 -1, // PRE_V4.
10090 -1, // V4.
10091 T(V6K), // V4T.
10092 T(V6K), // V5T.
10093 T(V6K), // V5TE.
10094 T(V6K), // V5TEJ.
10095 T(V6K), // V6.
10096 T(V6KZ), // V6KZ.
10097 T(V7), // V6T2.
10098 T(V6K), // V6K.
10099 T(V7), // V7.
10100 T(V6_M) // V6_M.
10101 };
10102 static const int v6s_m[] =
10103 {
10104 -1, // PRE_V4.
10105 -1, // V4.
10106 T(V6K), // V4T.
10107 T(V6K), // V5T.
10108 T(V6K), // V5TE.
10109 T(V6K), // V5TEJ.
10110 T(V6K), // V6.
10111 T(V6KZ), // V6KZ.
10112 T(V7), // V6T2.
10113 T(V6K), // V6K.
10114 T(V7), // V7.
10115 T(V6S_M), // V6_M.
10116 T(V6S_M) // V6S_M.
10117 };
10118 static const int v7e_m[] =
10119 {
10120 -1, // PRE_V4.
10121 -1, // V4.
10122 T(V7E_M), // V4T.
10123 T(V7E_M), // V5T.
10124 T(V7E_M), // V5TE.
10125 T(V7E_M), // V5TEJ.
10126 T(V7E_M), // V6.
10127 T(V7E_M), // V6KZ.
10128 T(V7E_M), // V6T2.
10129 T(V7E_M), // V6K.
10130 T(V7E_M), // V7.
10131 T(V7E_M), // V6_M.
10132 T(V7E_M), // V6S_M.
10133 T(V7E_M) // V7E_M.
10134 };
10135 static const int v4t_plus_v6_m[] =
10136 {
10137 -1, // PRE_V4.
10138 -1, // V4.
10139 T(V4T), // V4T.
10140 T(V5T), // V5T.
10141 T(V5TE), // V5TE.
10142 T(V5TEJ), // V5TEJ.
10143 T(V6), // V6.
10144 T(V6KZ), // V6KZ.
10145 T(V6T2), // V6T2.
10146 T(V6K), // V6K.
10147 T(V7), // V7.
10148 T(V6_M), // V6_M.
10149 T(V6S_M), // V6S_M.
10150 T(V7E_M), // V7E_M.
10151 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10152 };
ca09d69a 10153 static const int* comb[] =
a0351a69
DK
10154 {
10155 v6t2,
10156 v6k,
10157 v7,
10158 v6_m,
10159 v6s_m,
10160 v7e_m,
10161 // Pseudo-architecture.
10162 v4t_plus_v6_m
10163 };
10164
10165 // Check we've not got a higher architecture than we know about.
10166
f62a3ca7 10167 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10168 {
10169 gold_error(_("%s: unknown CPU architecture"), name);
10170 return -1;
10171 }
10172
10173 // Override old tag if we have a Tag_also_compatible_with on the output.
10174
10175 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10176 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10177 oldtag = T(V4T_PLUS_V6_M);
10178
10179 // And override the new tag if we have a Tag_also_compatible_with on the
10180 // input.
10181
10182 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10183 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10184 newtag = T(V4T_PLUS_V6_M);
10185
10186 // Architectures before V6KZ add features monotonically.
10187 int tagh = std::max(oldtag, newtag);
10188 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10189 return tagh;
10190
10191 int tagl = std::min(oldtag, newtag);
10192 int result = comb[tagh - T(V6T2)][tagl];
10193
10194 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10195 // as the canonical version.
10196 if (result == T(V4T_PLUS_V6_M))
10197 {
10198 result = T(V4T);
10199 *secondary_compat_out = T(V6_M);
10200 }
10201 else
10202 *secondary_compat_out = -1;
10203
10204 if (result == -1)
10205 {
10206 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10207 name, oldtag, newtag);
10208 return -1;
10209 }
10210
10211 return result;
10212#undef T
10213}
10214
10215// Helper to print AEABI enum tag value.
10216
10217template<bool big_endian>
10218std::string
10219Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10220{
ca09d69a 10221 static const char* aeabi_enum_names[] =
a0351a69
DK
10222 { "", "variable-size", "32-bit", "" };
10223 const size_t aeabi_enum_names_size =
10224 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10225
10226 if (value < aeabi_enum_names_size)
10227 return std::string(aeabi_enum_names[value]);
10228 else
10229 {
10230 char buffer[100];
10231 sprintf(buffer, "<unknown value %u>", value);
10232 return std::string(buffer);
10233 }
10234}
10235
10236// Return the string value to store in TAG_CPU_name.
10237
10238template<bool big_endian>
10239std::string
10240Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10241{
ca09d69a 10242 static const char* name_table[] = {
a0351a69
DK
10243 // These aren't real CPU names, but we can't guess
10244 // that from the architecture version alone.
10245 "Pre v4",
10246 "ARM v4",
10247 "ARM v4T",
10248 "ARM v5T",
10249 "ARM v5TE",
10250 "ARM v5TEJ",
10251 "ARM v6",
10252 "ARM v6KZ",
10253 "ARM v6T2",
10254 "ARM v6K",
10255 "ARM v7",
10256 "ARM v6-M",
10257 "ARM v6S-M",
10258 "ARM v7E-M"
10259 };
10260 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10261
10262 if (value < name_table_size)
10263 return std::string(name_table[value]);
10264 else
10265 {
10266 char buffer[100];
10267 sprintf(buffer, "<unknown CPU value %u>", value);
10268 return std::string(buffer);
10269 }
10270}
10271
10272// Merge object attributes from input file called NAME with those of the
10273// output. The input object attributes are in the object pointed by PASD.
10274
10275template<bool big_endian>
10276void
10277Target_arm<big_endian>::merge_object_attributes(
10278 const char* name,
10279 const Attributes_section_data* pasd)
10280{
10281 // Return if there is no attributes section data.
10282 if (pasd == NULL)
10283 return;
10284
10285 // If output has no object attributes, just copy.
da59ad79 10286 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10287 if (this->attributes_section_data_ == NULL)
10288 {
10289 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10290 Object_attribute* out_attr =
10291 this->attributes_section_data_->known_attributes(vendor);
10292
10293 // We do not output objects with Tag_MPextension_use_legacy - we move
10294 // the attribute's value to Tag_MPextension_use. */
10295 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10296 {
10297 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10298 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10299 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10300 {
10301 gold_error(_("%s has both the current and legacy "
10302 "Tag_MPextension_use attributes"),
10303 name);
10304 }
10305
10306 out_attr[elfcpp::Tag_MPextension_use] =
10307 out_attr[elfcpp::Tag_MPextension_use_legacy];
10308 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10309 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10310 }
10311
a0351a69
DK
10312 return;
10313 }
10314
a0351a69
DK
10315 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10316 Object_attribute* out_attr =
10317 this->attributes_section_data_->known_attributes(vendor);
10318
10319 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10320 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10321 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10322 {
10323 // Ignore mismatches if the object doesn't use floating point. */
10324 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10325 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10326 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10327 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10328 && parameters->options().warn_mismatch())
a0351a69
DK
10329 gold_error(_("%s uses VFP register arguments, output does not"),
10330 name);
10331 }
10332
10333 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10334 {
10335 // Merge this attribute with existing attributes.
10336 switch (i)
10337 {
10338 case elfcpp::Tag_CPU_raw_name:
10339 case elfcpp::Tag_CPU_name:
10340 // These are merged after Tag_CPU_arch.
10341 break;
10342
10343 case elfcpp::Tag_ABI_optimization_goals:
10344 case elfcpp::Tag_ABI_FP_optimization_goals:
10345 // Use the first value seen.
10346 break;
10347
10348 case elfcpp::Tag_CPU_arch:
10349 {
10350 unsigned int saved_out_attr = out_attr->int_value();
10351 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10352 int secondary_compat =
10353 this->get_secondary_compatible_arch(pasd);
10354 int secondary_compat_out =
10355 this->get_secondary_compatible_arch(
10356 this->attributes_section_data_);
10357 out_attr[i].set_int_value(
10358 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10359 &secondary_compat_out,
10360 in_attr[i].int_value(),
10361 secondary_compat));
10362 this->set_secondary_compatible_arch(this->attributes_section_data_,
10363 secondary_compat_out);
10364
10365 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10366 if (out_attr[i].int_value() == saved_out_attr)
10367 ; // Leave the names alone.
10368 else if (out_attr[i].int_value() == in_attr[i].int_value())
10369 {
10370 // The output architecture has been changed to match the
10371 // input architecture. Use the input names.
10372 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10373 in_attr[elfcpp::Tag_CPU_name].string_value());
10374 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10375 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10376 }
10377 else
10378 {
10379 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10380 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10381 }
10382
10383 // If we still don't have a value for Tag_CPU_name,
10384 // make one up now. Tag_CPU_raw_name remains blank.
10385 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10386 {
10387 const std::string cpu_name =
10388 this->tag_cpu_name_value(out_attr[i].int_value());
10389 // FIXME: If we see an unknown CPU, this will be set
10390 // to "<unknown CPU n>", where n is the attribute value.
10391 // This is different from BFD, which leaves the name alone.
10392 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10393 }
10394 }
10395 break;
10396
10397 case elfcpp::Tag_ARM_ISA_use:
10398 case elfcpp::Tag_THUMB_ISA_use:
10399 case elfcpp::Tag_WMMX_arch:
10400 case elfcpp::Tag_Advanced_SIMD_arch:
10401 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10402 case elfcpp::Tag_ABI_FP_rounding:
10403 case elfcpp::Tag_ABI_FP_exceptions:
10404 case elfcpp::Tag_ABI_FP_user_exceptions:
10405 case elfcpp::Tag_ABI_FP_number_model:
10406 case elfcpp::Tag_VFP_HP_extension:
10407 case elfcpp::Tag_CPU_unaligned_access:
10408 case elfcpp::Tag_T2EE_use:
10409 case elfcpp::Tag_Virtualization_use:
10410 case elfcpp::Tag_MPextension_use:
10411 // Use the largest value specified.
10412 if (in_attr[i].int_value() > out_attr[i].int_value())
10413 out_attr[i].set_int_value(in_attr[i].int_value());
10414 break;
10415
10416 case elfcpp::Tag_ABI_align8_preserved:
10417 case elfcpp::Tag_ABI_PCS_RO_data:
10418 // Use the smallest value specified.
10419 if (in_attr[i].int_value() < out_attr[i].int_value())
10420 out_attr[i].set_int_value(in_attr[i].int_value());
10421 break;
10422
10423 case elfcpp::Tag_ABI_align8_needed:
10424 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10425 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10426 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10427 == 0)))
10428 {
9b547ce6 10429 // This error message should be enabled once all non-conforming
a0351a69
DK
10430 // binaries in the toolchain have had the attributes set
10431 // properly.
10432 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10433 // name);
10434 }
10435 // Fall through.
10436 case elfcpp::Tag_ABI_FP_denormal:
10437 case elfcpp::Tag_ABI_PCS_GOT_use:
10438 {
10439 // These tags have 0 = don't care, 1 = strong requirement,
10440 // 2 = weak requirement.
10441 static const int order_021[3] = {0, 2, 1};
10442
10443 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10444 // value if greater than 2 (for future-proofing).
10445 if ((in_attr[i].int_value() > 2
10446 && in_attr[i].int_value() > out_attr[i].int_value())
10447 || (in_attr[i].int_value() <= 2
10448 && out_attr[i].int_value() <= 2
10449 && (order_021[in_attr[i].int_value()]
10450 > order_021[out_attr[i].int_value()])))
10451 out_attr[i].set_int_value(in_attr[i].int_value());
10452 }
10453 break;
10454
10455 case elfcpp::Tag_CPU_arch_profile:
10456 if (out_attr[i].int_value() != in_attr[i].int_value())
10457 {
10458 // 0 will merge with anything.
10459 // 'A' and 'S' merge to 'A'.
10460 // 'R' and 'S' merge to 'R'.
10461 // 'M' and 'A|R|S' is an error.
10462 if (out_attr[i].int_value() == 0
10463 || (out_attr[i].int_value() == 'S'
10464 && (in_attr[i].int_value() == 'A'
10465 || in_attr[i].int_value() == 'R')))
10466 out_attr[i].set_int_value(in_attr[i].int_value());
10467 else if (in_attr[i].int_value() == 0
10468 || (in_attr[i].int_value() == 'S'
10469 && (out_attr[i].int_value() == 'A'
10470 || out_attr[i].int_value() == 'R')))
10471 ; // Do nothing.
7296d933 10472 else if (parameters->options().warn_mismatch())
a0351a69
DK
10473 {
10474 gold_error
10475 (_("conflicting architecture profiles %c/%c"),
10476 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10477 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10478 }
10479 }
10480 break;
10481 case elfcpp::Tag_VFP_arch:
10482 {
10483 static const struct
10484 {
10485 int ver;
10486 int regs;
10487 } vfp_versions[7] =
10488 {
10489 {0, 0},
10490 {1, 16},
10491 {2, 16},
10492 {3, 32},
10493 {3, 16},
10494 {4, 32},
10495 {4, 16}
10496 };
10497
10498 // Values greater than 6 aren't defined, so just pick the
10499 // biggest.
10500 if (in_attr[i].int_value() > 6
10501 && in_attr[i].int_value() > out_attr[i].int_value())
10502 {
10503 *out_attr = *in_attr;
10504 break;
10505 }
10506 // The output uses the superset of input features
10507 // (ISA version) and registers.
10508 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10509 vfp_versions[out_attr[i].int_value()].ver);
10510 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10511 vfp_versions[out_attr[i].int_value()].regs);
10512 // This assumes all possible supersets are also a valid
10513 // options.
10514 int newval;
10515 for (newval = 6; newval > 0; newval--)
10516 {
10517 if (regs == vfp_versions[newval].regs
10518 && ver == vfp_versions[newval].ver)
10519 break;
10520 }
10521 out_attr[i].set_int_value(newval);
10522 }
10523 break;
10524 case elfcpp::Tag_PCS_config:
10525 if (out_attr[i].int_value() == 0)
10526 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10527 else if (in_attr[i].int_value() != 0
10528 && out_attr[i].int_value() != 0
10529 && parameters->options().warn_mismatch())
a0351a69
DK
10530 {
10531 // It's sometimes ok to mix different configs, so this is only
10532 // a warning.
10533 gold_warning(_("%s: conflicting platform configuration"), name);
10534 }
10535 break;
10536 case elfcpp::Tag_ABI_PCS_R9_use:
10537 if (in_attr[i].int_value() != out_attr[i].int_value()
10538 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10539 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10540 && parameters->options().warn_mismatch())
a0351a69
DK
10541 {
10542 gold_error(_("%s: conflicting use of R9"), name);
10543 }
10544 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10545 out_attr[i].set_int_value(in_attr[i].int_value());
10546 break;
10547 case elfcpp::Tag_ABI_PCS_RW_data:
10548 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10549 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10550 != elfcpp::AEABI_R9_SB)
10551 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10552 != elfcpp::AEABI_R9_unused)
10553 && parameters->options().warn_mismatch())
a0351a69
DK
10554 {
10555 gold_error(_("%s: SB relative addressing conflicts with use "
10556 "of R9"),
7296d933 10557 name);
a0351a69
DK
10558 }
10559 // Use the smallest value specified.
10560 if (in_attr[i].int_value() < out_attr[i].int_value())
10561 out_attr[i].set_int_value(in_attr[i].int_value());
10562 break;
10563 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10564 if (out_attr[i].int_value()
10565 && in_attr[i].int_value()
7296d933 10566 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10567 && parameters->options().warn_mismatch()
10568 && parameters->options().wchar_size_warning())
a0351a69
DK
10569 {
10570 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10571 "use %u-byte wchar_t; use of wchar_t values "
10572 "across objects may fail"),
10573 name, in_attr[i].int_value(),
10574 out_attr[i].int_value());
10575 }
10576 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10577 out_attr[i].set_int_value(in_attr[i].int_value());
10578 break;
10579 case elfcpp::Tag_ABI_enum_size:
10580 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10581 {
10582 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10583 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10584 {
10585 // The existing object is compatible with anything.
10586 // Use whatever requirements the new object has.
10587 out_attr[i].set_int_value(in_attr[i].int_value());
10588 }
a0351a69 10589 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10590 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10591 && parameters->options().warn_mismatch()
10592 && parameters->options().enum_size_warning())
a0351a69
DK
10593 {
10594 unsigned int in_value = in_attr[i].int_value();
10595 unsigned int out_value = out_attr[i].int_value();
10596 gold_warning(_("%s uses %s enums yet the output is to use "
10597 "%s enums; use of enum values across objects "
10598 "may fail"),
10599 name,
10600 this->aeabi_enum_name(in_value).c_str(),
10601 this->aeabi_enum_name(out_value).c_str());
10602 }
10603 }
10604 break;
10605 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10606 // Already done.
a0351a69
DK
10607 break;
10608 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10609 if (in_attr[i].int_value() != out_attr[i].int_value()
10610 && parameters->options().warn_mismatch())
a0351a69
DK
10611 {
10612 gold_error(_("%s uses iWMMXt register arguments, output does "
10613 "not"),
10614 name);
10615 }
10616 break;
10617 case Object_attribute::Tag_compatibility:
10618 // Merged in target-independent code.
10619 break;
10620 case elfcpp::Tag_ABI_HardFP_use:
10621 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10622 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10623 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10624 out_attr[i].set_int_value(3);
10625 else if (in_attr[i].int_value() > out_attr[i].int_value())
10626 out_attr[i].set_int_value(in_attr[i].int_value());
10627 break;
10628 case elfcpp::Tag_ABI_FP_16bit_format:
10629 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10630 {
7296d933
DK
10631 if (in_attr[i].int_value() != out_attr[i].int_value()
10632 && parameters->options().warn_mismatch())
a0351a69
DK
10633 gold_error(_("fp16 format mismatch between %s and output"),
10634 name);
10635 }
10636 if (in_attr[i].int_value() != 0)
10637 out_attr[i].set_int_value(in_attr[i].int_value());
10638 break;
10639
da59ad79
DK
10640 case elfcpp::Tag_DIV_use:
10641 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10642 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10643 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10644 // CPU. We will merge as follows: If the input attribute's value
10645 // is one then the output attribute's value remains unchanged. If
10646 // the input attribute's value is zero or two then if the output
10647 // attribute's value is one the output value is set to the input
10648 // value, otherwise the output value must be the same as the
10649 // inputs. */
10650 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10651 {
10652 if (in_attr[i].int_value() != out_attr[i].int_value())
10653 {
10654 gold_error(_("DIV usage mismatch between %s and output"),
10655 name);
10656 }
10657 }
10658
10659 if (in_attr[i].int_value() != 1)
10660 out_attr[i].set_int_value(in_attr[i].int_value());
10661
10662 break;
10663
10664 case elfcpp::Tag_MPextension_use_legacy:
10665 // We don't output objects with Tag_MPextension_use_legacy - we
10666 // move the value to Tag_MPextension_use.
10667 if (in_attr[i].int_value() != 0
10668 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10669 {
10670 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10671 != in_attr[i].int_value())
10672 {
10673 gold_error(_("%s has has both the current and legacy "
10674 "Tag_MPextension_use attributes"),
10675 name);
10676 }
10677 }
10678
10679 if (in_attr[i].int_value()
10680 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10681 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10682
10683 break;
10684
a0351a69
DK
10685 case elfcpp::Tag_nodefaults:
10686 // This tag is set if it exists, but the value is unused (and is
10687 // typically zero). We don't actually need to do anything here -
10688 // the merge happens automatically when the type flags are merged
10689 // below.
10690 break;
10691 case elfcpp::Tag_also_compatible_with:
10692 // Already done in Tag_CPU_arch.
10693 break;
10694 case elfcpp::Tag_conformance:
10695 // Keep the attribute if it matches. Throw it away otherwise.
10696 // No attribute means no claim to conform.
10697 if (in_attr[i].string_value() != out_attr[i].string_value())
10698 out_attr[i].set_string_value("");
10699 break;
10700
10701 default:
10702 {
10703 const char* err_object = NULL;
10704
10705 // The "known_obj_attributes" table does contain some undefined
10706 // attributes. Ensure that there are unused.
10707 if (out_attr[i].int_value() != 0
10708 || out_attr[i].string_value() != "")
10709 err_object = "output";
10710 else if (in_attr[i].int_value() != 0
10711 || in_attr[i].string_value() != "")
10712 err_object = name;
10713
7296d933
DK
10714 if (err_object != NULL
10715 && parameters->options().warn_mismatch())
a0351a69
DK
10716 {
10717 // Attribute numbers >=64 (mod 128) can be safely ignored.
10718 if ((i & 127) < 64)
10719 gold_error(_("%s: unknown mandatory EABI object attribute "
10720 "%d"),
10721 err_object, i);
10722 else
10723 gold_warning(_("%s: unknown EABI object attribute %d"),
10724 err_object, i);
10725 }
10726
10727 // Only pass on attributes that match in both inputs.
10728 if (!in_attr[i].matches(out_attr[i]))
10729 {
10730 out_attr[i].set_int_value(0);
10731 out_attr[i].set_string_value("");
10732 }
10733 }
10734 }
10735
10736 // If out_attr was copied from in_attr then it won't have a type yet.
10737 if (in_attr[i].type() && !out_attr[i].type())
10738 out_attr[i].set_type(in_attr[i].type());
10739 }
10740
10741 // Merge Tag_compatibility attributes and any common GNU ones.
10742 this->attributes_section_data_->merge(name, pasd);
10743
10744 // Check for any attributes not known on ARM.
10745 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10746 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10747 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10748 Other_attributes* out_other_attributes =
10749 this->attributes_section_data_->other_attributes(vendor);
10750 Other_attributes::iterator out_iter = out_other_attributes->begin();
10751
10752 while (in_iter != in_other_attributes->end()
10753 || out_iter != out_other_attributes->end())
10754 {
10755 const char* err_object = NULL;
10756 int err_tag = 0;
10757
10758 // The tags for each list are in numerical order.
10759 // If the tags are equal, then merge.
10760 if (out_iter != out_other_attributes->end()
10761 && (in_iter == in_other_attributes->end()
10762 || in_iter->first > out_iter->first))
10763 {
10764 // This attribute only exists in output. We can't merge, and we
10765 // don't know what the tag means, so delete it.
10766 err_object = "output";
10767 err_tag = out_iter->first;
10768 int saved_tag = out_iter->first;
10769 delete out_iter->second;
10770 out_other_attributes->erase(out_iter);
10771 out_iter = out_other_attributes->upper_bound(saved_tag);
10772 }
10773 else if (in_iter != in_other_attributes->end()
10774 && (out_iter != out_other_attributes->end()
10775 || in_iter->first < out_iter->first))
10776 {
10777 // This attribute only exists in input. We can't merge, and we
10778 // don't know what the tag means, so ignore it.
10779 err_object = name;
10780 err_tag = in_iter->first;
10781 ++in_iter;
10782 }
10783 else // The tags are equal.
10784 {
10785 // As present, all attributes in the list are unknown, and
10786 // therefore can't be merged meaningfully.
10787 err_object = "output";
10788 err_tag = out_iter->first;
10789
10790 // Only pass on attributes that match in both inputs.
10791 if (!in_iter->second->matches(*(out_iter->second)))
10792 {
10793 // No match. Delete the attribute.
10794 int saved_tag = out_iter->first;
10795 delete out_iter->second;
10796 out_other_attributes->erase(out_iter);
10797 out_iter = out_other_attributes->upper_bound(saved_tag);
10798 }
10799 else
10800 {
10801 // Matched. Keep the attribute and move to the next.
10802 ++out_iter;
10803 ++in_iter;
10804 }
10805 }
10806
7296d933 10807 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10808 {
10809 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10810 if ((err_tag & 127) < 64)
10811 {
10812 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10813 err_object, err_tag);
10814 }
10815 else
10816 {
10817 gold_warning(_("%s: unknown EABI object attribute %d"),
10818 err_object, err_tag);
10819 }
10820 }
10821 }
10822}
10823
55da9579
DK
10824// Stub-generation methods for Target_arm.
10825
10826// Make a new Arm_input_section object.
10827
10828template<bool big_endian>
10829Arm_input_section<big_endian>*
10830Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
10831 Relobj* relobj,
10832 unsigned int shndx)
55da9579 10833{
5ac169d4 10834 Section_id sid(relobj, shndx);
55da9579
DK
10835
10836 Arm_input_section<big_endian>* arm_input_section =
2ea97941 10837 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
10838 arm_input_section->init();
10839
10840 // Register new Arm_input_section in map for look-up.
10841 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 10842 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
10843
10844 // Make sure that it we have not created another Arm_input_section
10845 // for this input section already.
10846 gold_assert(ins.second);
10847
10848 return arm_input_section;
10849}
10850
10851// Find the Arm_input_section object corresponding to the SHNDX-th input
10852// section of RELOBJ.
10853
10854template<bool big_endian>
10855Arm_input_section<big_endian>*
10856Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
10857 Relobj* relobj,
10858 unsigned int shndx) const
55da9579 10859{
5ac169d4 10860 Section_id sid(relobj, shndx);
55da9579 10861 typename Arm_input_section_map::const_iterator p =
5ac169d4 10862 this->arm_input_section_map_.find(sid);
55da9579
DK
10863 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10864}
10865
10866// Make a new stub table.
10867
10868template<bool big_endian>
10869Stub_table<big_endian>*
10870Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10871{
2ea97941 10872 Stub_table<big_endian>* stub_table =
55da9579 10873 new Stub_table<big_endian>(owner);
2ea97941 10874 this->stub_tables_.push_back(stub_table);
55da9579 10875
2ea97941
ILT
10876 stub_table->set_address(owner->address() + owner->data_size());
10877 stub_table->set_file_offset(owner->offset() + owner->data_size());
10878 stub_table->finalize_data_size();
55da9579 10879
2ea97941 10880 return stub_table;
55da9579
DK
10881}
10882
eb44217c
DK
10883// Scan a relocation for stub generation.
10884
10885template<bool big_endian>
10886void
10887Target_arm<big_endian>::scan_reloc_for_stub(
10888 const Relocate_info<32, big_endian>* relinfo,
10889 unsigned int r_type,
10890 const Sized_symbol<32>* gsym,
10891 unsigned int r_sym,
10892 const Symbol_value<32>* psymval,
10893 elfcpp::Elf_types<32>::Elf_Swxword addend,
10894 Arm_address address)
10895{
2ea97941 10896 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
10897
10898 const Arm_relobj<big_endian>* arm_relobj =
10899 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10900
10901 bool target_is_thumb;
10902 Symbol_value<32> symval;
10903 if (gsym != NULL)
10904 {
10905 // This is a global symbol. Determine if we use PLT and if the
10906 // final target is THUMB.
95a2c8d6 10907 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
10908 {
10909 // This uses a PLT, change the symbol value.
10910 symval.set_output_value(this->plt_section()->address()
10911 + gsym->plt_offset());
10912 psymval = &symval;
10913 target_is_thumb = false;
10914 }
10915 else if (gsym->is_undefined())
10916 // There is no need to generate a stub symbol is undefined.
10917 return;
10918 else
10919 {
10920 target_is_thumb =
10921 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10922 || (gsym->type() == elfcpp::STT_FUNC
10923 && !gsym->is_undefined()
10924 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10925 }
10926 }
10927 else
10928 {
10929 // This is a local symbol. Determine if the final target is THUMB.
10930 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10931 }
10932
10933 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10934 const Arm_reloc_property* reloc_property =
10935 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10936 gold_assert(reloc_property != NULL);
eb44217c 10937 if (target_is_thumb
5c57f1be 10938 && reloc_property->uses_thumb_bit()
eb44217c
DK
10939 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10940 {
10941 Arm_address stripped_value =
10942 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10943 symval.set_output_value(stripped_value);
10944 psymval = &symval;
10945 }
10946
10947 // Get the symbol value.
10948 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10949
10950 // Owing to pipelining, the PC relative branches below actually skip
10951 // two instructions when the branch offset is 0.
10952 Arm_address destination;
10953 switch (r_type)
10954 {
10955 case elfcpp::R_ARM_CALL:
10956 case elfcpp::R_ARM_JUMP24:
10957 case elfcpp::R_ARM_PLT32:
10958 // ARM branches.
10959 destination = value + addend + 8;
10960 break;
10961 case elfcpp::R_ARM_THM_CALL:
10962 case elfcpp::R_ARM_THM_XPC22:
10963 case elfcpp::R_ARM_THM_JUMP24:
10964 case elfcpp::R_ARM_THM_JUMP19:
10965 // THUMB branches.
10966 destination = value + addend + 4;
10967 break;
10968 default:
10969 gold_unreachable();
10970 }
10971
a120bc7f 10972 Reloc_stub* stub = NULL;
eb44217c
DK
10973 Stub_type stub_type =
10974 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10975 target_is_thumb);
a120bc7f
DK
10976 if (stub_type != arm_stub_none)
10977 {
10978 // Try looking up an existing stub from a stub table.
10979 Stub_table<big_endian>* stub_table =
10980 arm_relobj->stub_table(relinfo->data_shndx);
10981 gold_assert(stub_table != NULL);
eb44217c 10982
a120bc7f
DK
10983 // Locate stub by destination.
10984 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 10985
a120bc7f
DK
10986 // Create a stub if there is not one already
10987 stub = stub_table->find_reloc_stub(stub_key);
10988 if (stub == NULL)
10989 {
10990 // create a new stub and add it to stub table.
10991 stub = this->stub_factory().make_reloc_stub(stub_type);
10992 stub_table->add_reloc_stub(stub, stub_key);
10993 }
10994
10995 // Record the destination address.
10996 stub->set_destination_address(destination
10997 | (target_is_thumb ? 1 : 0));
eb44217c
DK
10998 }
10999
a120bc7f
DK
11000 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11001 if (this->fix_cortex_a8_
11002 && (r_type == elfcpp::R_ARM_THM_JUMP24
11003 || r_type == elfcpp::R_ARM_THM_JUMP19
11004 || r_type == elfcpp::R_ARM_THM_CALL
11005 || r_type == elfcpp::R_ARM_THM_XPC22)
11006 && (address & 0xfffU) == 0xffeU)
11007 {
11008 // Found a candidate. Note we haven't checked the destination is
11009 // within 4K here: if we do so (and don't create a record) we can't
11010 // tell that a branch should have been relocated when scanning later.
11011 this->cortex_a8_relocs_info_[address] =
11012 new Cortex_a8_reloc(stub, r_type,
11013 destination | (target_is_thumb ? 1 : 0));
11014 }
eb44217c
DK
11015}
11016
11017// This function scans a relocation sections for stub generation.
11018// The template parameter Relocate must be a class type which provides
11019// a single function, relocate(), which implements the machine
11020// specific part of a relocation.
11021
11022// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11023// SHT_REL or SHT_RELA.
11024
11025// PRELOCS points to the relocation data. RELOC_COUNT is the number
11026// of relocs. OUTPUT_SECTION is the output section.
11027// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11028// mapped to output offsets.
11029
11030// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11031// VIEW_SIZE is the size. These refer to the input section, unless
11032// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11033// the output section.
11034
11035template<bool big_endian>
11036template<int sh_type>
11037void inline
11038Target_arm<big_endian>::scan_reloc_section_for_stubs(
11039 const Relocate_info<32, big_endian>* relinfo,
11040 const unsigned char* prelocs,
11041 size_t reloc_count,
11042 Output_section* output_section,
11043 bool needs_special_offset_handling,
11044 const unsigned char* view,
11045 elfcpp::Elf_types<32>::Elf_Addr view_address,
11046 section_size_type)
11047{
11048 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11049 const int reloc_size =
11050 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11051
11052 Arm_relobj<big_endian>* arm_object =
11053 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11054 unsigned int local_count = arm_object->local_symbol_count();
11055
11056 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11057
11058 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11059 {
11060 Reltype reloc(prelocs);
11061
11062 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11063 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11064 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11065
11066 r_type = this->get_real_reloc_type(r_type);
11067
11068 // Only a few relocation types need stubs.
11069 if ((r_type != elfcpp::R_ARM_CALL)
11070 && (r_type != elfcpp::R_ARM_JUMP24)
11071 && (r_type != elfcpp::R_ARM_PLT32)
11072 && (r_type != elfcpp::R_ARM_THM_CALL)
11073 && (r_type != elfcpp::R_ARM_THM_XPC22)
11074 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
11075 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11076 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11077 continue;
11078
2ea97941 11079 section_offset_type offset =
eb44217c
DK
11080 convert_to_section_size_type(reloc.get_r_offset());
11081
11082 if (needs_special_offset_handling)
11083 {
2ea97941
ILT
11084 offset = output_section->output_offset(relinfo->object,
11085 relinfo->data_shndx,
11086 offset);
11087 if (offset == -1)
eb44217c
DK
11088 continue;
11089 }
11090
2fd9ae7a 11091 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11092 if (r_type == elfcpp::R_ARM_V4BX)
11093 {
2fd9ae7a
DK
11094 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11095 {
11096 // Get the BX instruction.
11097 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11098 const Valtype* wv =
11099 reinterpret_cast<const Valtype*>(view + offset);
11100 elfcpp::Elf_types<32>::Elf_Swxword insn =
11101 elfcpp::Swap<32, big_endian>::readval(wv);
11102 const uint32_t reg = (insn & 0xf);
11103
11104 if (reg < 0xf)
11105 {
11106 // Try looking up an existing stub from a stub table.
11107 Stub_table<big_endian>* stub_table =
11108 arm_object->stub_table(relinfo->data_shndx);
11109 gold_assert(stub_table != NULL);
11110
11111 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11112 {
11113 // create a new stub and add it to stub table.
11114 Arm_v4bx_stub* stub =
11115 this->stub_factory().make_arm_v4bx_stub(reg);
11116 gold_assert(stub != NULL);
11117 stub_table->add_arm_v4bx_stub(stub);
11118 }
11119 }
11120 }
a2162063
ILT
11121 continue;
11122 }
11123
eb44217c
DK
11124 // Get the addend.
11125 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11126 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11127 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11128
11129 const Sized_symbol<32>* sym;
11130
11131 Symbol_value<32> symval;
11132 const Symbol_value<32> *psymval;
aa98ff75
DK
11133 bool is_defined_in_discarded_section;
11134 unsigned int shndx;
eb44217c
DK
11135 if (r_sym < local_count)
11136 {
11137 sym = NULL;
11138 psymval = arm_object->local_symbol(r_sym);
11139
11140 // If the local symbol belongs to a section we are discarding,
11141 // and that section is a debug section, try to find the
11142 // corresponding kept section and map this symbol to its
11143 // counterpart in the kept section. The symbol must not
11144 // correspond to a section we are folding.
11145 bool is_ordinary;
aa98ff75
DK
11146 shndx = psymval->input_shndx(&is_ordinary);
11147 is_defined_in_discarded_section =
11148 (is_ordinary
11149 && shndx != elfcpp::SHN_UNDEF
11150 && !arm_object->is_section_included(shndx)
11151 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11152
11153 // We need to compute the would-be final value of this local
11154 // symbol.
11155 if (!is_defined_in_discarded_section)
eb44217c 11156 {
6fa2a40b 11157 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11158 typename ObjType::Compute_final_local_value_status status =
11159 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11160 relinfo->symtab);
11161 if (status == ObjType::CFLV_OK)
11162 {
11163 // Currently we cannot handle a branch to a target in
11164 // a merged section. If this is the case, issue an error
11165 // and also free the merge symbol value.
11166 if (!symval.has_output_value())
11167 {
11168 const std::string& section_name =
11169 arm_object->section_name(shndx);
11170 arm_object->error(_("cannot handle branch to local %u "
11171 "in a merged section %s"),
11172 r_sym, section_name.c_str());
11173 }
11174 psymval = &symval;
11175 }
eb44217c 11176 else
aa98ff75
DK
11177 {
11178 // We cannot determine the final value.
11179 continue;
11180 }
eb44217c
DK
11181 }
11182 }
11183 else
11184 {
aa98ff75
DK
11185 const Symbol* gsym;
11186 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11187 gold_assert(gsym != NULL);
11188 if (gsym->is_forwarder())
11189 gsym = relinfo->symtab->resolve_forwards(gsym);
11190
11191 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11192 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11193 symval.set_output_symtab_index(sym->symtab_index());
11194 else
11195 symval.set_no_output_symtab_entry();
11196
11197 // We need to compute the would-be final value of this global
11198 // symbol.
11199 const Symbol_table* symtab = relinfo->symtab;
11200 const Sized_symbol<32>* sized_symbol =
11201 symtab->get_sized_symbol<32>(gsym);
11202 Symbol_table::Compute_final_value_status status;
11203 Arm_address value =
11204 symtab->compute_final_value<32>(sized_symbol, &status);
11205
11206 // Skip this if the symbol has not output section.
11207 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11208 continue;
eb44217c 11209 symval.set_output_value(value);
aa98ff75
DK
11210
11211 if (gsym->type() == elfcpp::STT_TLS)
11212 symval.set_is_tls_symbol();
11213 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11214 symval.set_is_ifunc_symbol();
eb44217c 11215 psymval = &symval;
aa98ff75
DK
11216
11217 is_defined_in_discarded_section =
11218 (gsym->is_defined_in_discarded_section()
11219 && gsym->is_undefined());
11220 shndx = 0;
11221 }
11222
11223 Symbol_value<32> symval2;
11224 if (is_defined_in_discarded_section)
11225 {
11226 if (comdat_behavior == CB_UNDETERMINED)
11227 {
11228 std::string name = arm_object->section_name(relinfo->data_shndx);
11229 comdat_behavior = get_comdat_behavior(name.c_str());
11230 }
11231 if (comdat_behavior == CB_PRETEND)
11232 {
11233 // FIXME: This case does not work for global symbols.
11234 // We have no place to store the original section index.
11235 // Fortunately this does not matter for comdat sections,
11236 // only for sections explicitly discarded by a linker
11237 // script.
11238 bool found;
11239 typename elfcpp::Elf_types<32>::Elf_Addr value =
11240 arm_object->map_to_kept_section(shndx, &found);
11241 if (found)
11242 symval2.set_output_value(value + psymval->input_value());
11243 else
11244 symval2.set_output_value(0);
11245 }
11246 else
11247 {
11248 if (comdat_behavior == CB_WARNING)
11249 gold_warning_at_location(relinfo, i, offset,
11250 _("relocation refers to discarded "
11251 "section"));
11252 symval2.set_output_value(0);
11253 }
11254 symval2.set_no_output_symtab_entry();
11255 psymval = &symval2;
eb44217c
DK
11256 }
11257
11258 // If symbol is a section symbol, we don't know the actual type of
11259 // destination. Give up.
11260 if (psymval->is_section_symbol())
11261 continue;
11262
11263 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11264 addend, view_address + offset);
eb44217c
DK
11265 }
11266}
11267
11268// Scan an input section for stub generation.
11269
11270template<bool big_endian>
11271void
11272Target_arm<big_endian>::scan_section_for_stubs(
11273 const Relocate_info<32, big_endian>* relinfo,
11274 unsigned int sh_type,
11275 const unsigned char* prelocs,
11276 size_t reloc_count,
11277 Output_section* output_section,
11278 bool needs_special_offset_handling,
11279 const unsigned char* view,
11280 Arm_address view_address,
11281 section_size_type view_size)
11282{
11283 if (sh_type == elfcpp::SHT_REL)
11284 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11285 relinfo,
11286 prelocs,
11287 reloc_count,
11288 output_section,
11289 needs_special_offset_handling,
11290 view,
11291 view_address,
11292 view_size);
11293 else if (sh_type == elfcpp::SHT_RELA)
11294 // We do not support RELA type relocations yet. This is provided for
11295 // completeness.
11296 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11297 relinfo,
11298 prelocs,
11299 reloc_count,
11300 output_section,
11301 needs_special_offset_handling,
11302 view,
11303 view_address,
11304 view_size);
11305 else
11306 gold_unreachable();
11307}
11308
11309// Group input sections for stub generation.
11310//
9b547ce6 11311// We group input sections in an output section so that the total size,
eb44217c
DK
11312// including any padding space due to alignment is smaller than GROUP_SIZE
11313// unless the only input section in group is bigger than GROUP_SIZE already.
11314// Then an ARM stub table is created to follow the last input section
11315// in group. For each group an ARM stub table is created an is placed
9b547ce6 11316// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11317// extend the group after the stub table.
11318
11319template<bool big_endian>
11320void
11321Target_arm<big_endian>::group_sections(
2ea97941 11322 Layout* layout,
eb44217c 11323 section_size_type group_size,
f625ae50
DK
11324 bool stubs_always_after_branch,
11325 const Task* task)
eb44217c
DK
11326{
11327 // Group input sections and insert stub table
11328 Layout::Section_list section_list;
2ea97941 11329 layout->get_allocated_sections(&section_list);
eb44217c
DK
11330 for (Layout::Section_list::const_iterator p = section_list.begin();
11331 p != section_list.end();
11332 ++p)
11333 {
11334 Arm_output_section<big_endian>* output_section =
11335 Arm_output_section<big_endian>::as_arm_output_section(*p);
11336 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11337 this, task);
eb44217c
DK
11338 }
11339}
11340
11341// Relaxation hook. This is where we do stub generation.
11342
11343template<bool big_endian>
11344bool
11345Target_arm<big_endian>::do_relax(
11346 int pass,
11347 const Input_objects* input_objects,
11348 Symbol_table* symtab,
f625ae50
DK
11349 Layout* layout,
11350 const Task* task)
eb44217c
DK
11351{
11352 // No need to generate stubs if this is a relocatable link.
11353 gold_assert(!parameters->options().relocatable());
11354
11355 // If this is the first pass, we need to group input sections into
11356 // stub groups.
2b328d4e 11357 bool done_exidx_fixup = false;
6625d24e 11358 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11359 if (pass == 1)
11360 {
11361 // Determine the stub group size. The group size is the absolute
11362 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11363 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11364 // the stubbed branches.
11365 int32_t stub_group_size_param =
11366 parameters->options().stub_group_size();
11367 bool stubs_always_after_branch = stub_group_size_param < 0;
11368 section_size_type stub_group_size = abs(stub_group_size_param);
11369
11370 if (stub_group_size == 1)
11371 {
11372 // Default value.
11373 // Thumb branch range is +-4MB has to be used as the default
11374 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11375 // code, so the worst case has to be taken into account). If we are
11376 // fixing cortex-a8 errata, the branch range has to be even smaller,
11377 // since wide conditional branch has a range of +-1MB only.
eb44217c 11378 //
25bbe950 11379 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11380 // 12-byte stubs. If we exceed that, then we will fail to link.
11381 // The user will have to relink with an explicit group size
11382 // option.
25bbe950
DK
11383 stub_group_size = 4145152;
11384 }
11385
11386 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11387 // page as the first half of a 32-bit branch straddling two 4K pages.
11388 // This is a crude way of enforcing that. In addition, long conditional
11389 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11390 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11391 // cortex-A8 stubs from long conditional branches.
11392 if (this->fix_cortex_a8_)
11393 {
11394 stubs_always_after_branch = true;
11395 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11396 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11397 }
11398
f625ae50 11399 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2b328d4e
DK
11400
11401 // Also fix .ARM.exidx section coverage.
131687b4
DK
11402 Arm_output_section<big_endian>* exidx_output_section = NULL;
11403 for (Layout::Section_list::const_iterator p =
11404 layout->section_list().begin();
11405 p != layout->section_list().end();
11406 ++p)
11407 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11408 {
11409 if (exidx_output_section == NULL)
11410 exidx_output_section =
11411 Arm_output_section<big_endian>::as_arm_output_section(*p);
11412 else
11413 // We cannot handle this now.
11414 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11415 "non-relocatable link"),
11416 exidx_output_section->name(),
11417 (*p)->name());
11418 }
11419
11420 if (exidx_output_section != NULL)
2b328d4e 11421 {
131687b4 11422 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11423 symtab, task);
2b328d4e
DK
11424 done_exidx_fixup = true;
11425 }
eb44217c 11426 }
6625d24e
DK
11427 else
11428 {
11429 // If this is not the first pass, addresses and file offsets have
11430 // been reset at this point, set them here.
11431 for (Stub_table_iterator sp = this->stub_tables_.begin();
11432 sp != this->stub_tables_.end();
11433 ++sp)
11434 {
11435 Arm_input_section<big_endian>* owner = (*sp)->owner();
11436 off_t off = align_address(owner->original_size(),
11437 (*sp)->addralign());
11438 (*sp)->set_address_and_file_offset(owner->address() + off,
11439 owner->offset() + off);
11440 }
11441 }
eb44217c 11442
44272192
DK
11443 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11444 // beginning of each relaxation pass, just blow away all the stubs.
11445 // Alternatively, we could selectively remove only the stubs and reloc
11446 // information for code sections that have moved since the last pass.
11447 // That would require more book-keeping.
a120bc7f
DK
11448 if (this->fix_cortex_a8_)
11449 {
11450 // Clear all Cortex-A8 reloc information.
11451 for (typename Cortex_a8_relocs_info::const_iterator p =
11452 this->cortex_a8_relocs_info_.begin();
11453 p != this->cortex_a8_relocs_info_.end();
11454 ++p)
11455 delete p->second;
11456 this->cortex_a8_relocs_info_.clear();
44272192
DK
11457
11458 // Remove all Cortex-A8 stubs.
11459 for (Stub_table_iterator sp = this->stub_tables_.begin();
11460 sp != this->stub_tables_.end();
11461 ++sp)
11462 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
11463 }
11464
44272192 11465 // Scan relocs for relocation stubs
eb44217c
DK
11466 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11467 op != input_objects->relobj_end();
11468 ++op)
11469 {
11470 Arm_relobj<big_endian>* arm_relobj =
11471 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11472 // Lock the object so we can read from it. This is only called
11473 // single-threaded from Layout::finalize, so it is OK to lock.
11474 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11475 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11476 }
11477
2fb7225c
DK
11478 // Check all stub tables to see if any of them have their data sizes
11479 // or addresses alignments changed. These are the only things that
11480 // matter.
eb44217c 11481 bool any_stub_table_changed = false;
8923b24c 11482 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11483 for (Stub_table_iterator sp = this->stub_tables_.begin();
11484 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11485 ++sp)
11486 {
2fb7225c 11487 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11488 {
11489 // Update data size of stub table owner.
11490 Arm_input_section<big_endian>* owner = (*sp)->owner();
11491 uint64_t address = owner->address();
11492 off_t offset = owner->offset();
11493 owner->reset_address_and_file_offset();
11494 owner->set_address_and_file_offset(address, offset);
11495
11496 sections_needing_adjustment.insert(owner->output_section());
11497 any_stub_table_changed = true;
11498 }
11499 }
11500
11501 // Output_section_data::output_section() returns a const pointer but we
11502 // need to update output sections, so we record all output sections needing
11503 // update above and scan the sections here to find out what sections need
11504 // to be updated.
f625ae50 11505 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11506 p != layout->section_list().end();
11507 ++p)
11508 {
11509 if (sections_needing_adjustment.find(*p)
11510 != sections_needing_adjustment.end())
11511 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11512 }
11513
2b328d4e
DK
11514 // Stop relaxation if no EXIDX fix-up and no stub table change.
11515 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11516
2fb7225c 11517 // Finalize the stubs in the last relaxation pass.
2b328d4e 11518 if (!continue_relaxation)
e7eca48c
DK
11519 {
11520 for (Stub_table_iterator sp = this->stub_tables_.begin();
11521 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11522 ++sp)
11523 (*sp)->finalize_stubs();
11524
11525 // Update output local symbol counts of objects if necessary.
11526 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11527 op != input_objects->relobj_end();
11528 ++op)
11529 {
11530 Arm_relobj<big_endian>* arm_relobj =
11531 Arm_relobj<big_endian>::as_arm_relobj(*op);
11532
11533 // Update output local symbol counts. We need to discard local
11534 // symbols defined in parts of input sections that are discarded by
11535 // relaxation.
11536 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11537 {
11538 // We need to lock the object's file to update it.
11539 Task_lock_obj<Object> tl(task, arm_relobj);
11540 arm_relobj->update_output_local_symbol_count();
11541 }
e7eca48c
DK
11542 }
11543 }
2fb7225c 11544
2b328d4e 11545 return continue_relaxation;
eb44217c
DK
11546}
11547
43d12afe
DK
11548// Relocate a stub.
11549
11550template<bool big_endian>
11551void
11552Target_arm<big_endian>::relocate_stub(
2fb7225c 11553 Stub* stub,
43d12afe
DK
11554 const Relocate_info<32, big_endian>* relinfo,
11555 Output_section* output_section,
11556 unsigned char* view,
11557 Arm_address address,
11558 section_size_type view_size)
11559{
11560 Relocate relocate;
2ea97941
ILT
11561 const Stub_template* stub_template = stub->stub_template();
11562 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11563 {
2ea97941
ILT
11564 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11565 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11566
11567 unsigned int r_type = insn->r_type();
2ea97941 11568 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11569 section_size_type reloc_size = insn->size();
11570 gold_assert(reloc_offset + reloc_size <= view_size);
11571
11572 // This is the address of the stub destination.
41263c05 11573 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11574 Symbol_value<32> symval;
11575 symval.set_output_value(target);
11576
11577 // Synthesize a fake reloc just in case. We don't have a symbol so
11578 // we use 0.
11579 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11580 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11581 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11582 reloc_write.put_r_offset(reloc_offset);
11583 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11584 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11585
11586 relocate.relocate(relinfo, this, output_section,
11587 this->fake_relnum_for_stubs, rel, r_type,
11588 NULL, &symval, view + reloc_offset,
11589 address + reloc_offset, reloc_size);
11590 }
11591}
11592
a0351a69
DK
11593// Determine whether an object attribute tag takes an integer, a
11594// string or both.
11595
11596template<bool big_endian>
11597int
11598Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11599{
11600 if (tag == Object_attribute::Tag_compatibility)
11601 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11602 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11603 else if (tag == elfcpp::Tag_nodefaults)
11604 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11605 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11606 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11607 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11608 else if (tag < 32)
11609 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11610 else
11611 return ((tag & 1) != 0
11612 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11613 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11614}
11615
11616// Reorder attributes.
11617//
11618// The ABI defines that Tag_conformance should be emitted first, and that
11619// Tag_nodefaults should be second (if either is defined). This sets those
11620// two positions, and bumps up the position of all the remaining tags to
11621// compensate.
11622
11623template<bool big_endian>
11624int
11625Target_arm<big_endian>::do_attributes_order(int num) const
11626{
11627 // Reorder the known object attributes in output. We want to move
11628 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11629 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11630 if (num == 4)
11631 return elfcpp::Tag_conformance;
11632 if (num == 5)
11633 return elfcpp::Tag_nodefaults;
11634 if ((num - 2) < elfcpp::Tag_nodefaults)
11635 return num - 2;
11636 if ((num - 1) < elfcpp::Tag_conformance)
11637 return num - 1;
11638 return num;
11639}
4a657b0d 11640
44272192
DK
11641// Scan a span of THUMB code for Cortex-A8 erratum.
11642
11643template<bool big_endian>
11644void
11645Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11646 Arm_relobj<big_endian>* arm_relobj,
11647 unsigned int shndx,
11648 section_size_type span_start,
11649 section_size_type span_end,
11650 const unsigned char* view,
11651 Arm_address address)
11652{
11653 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11654 //
11655 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11656 // The branch target is in the same 4KB region as the
11657 // first half of the branch.
11658 // The instruction before the branch is a 32-bit
11659 // length non-branch instruction.
11660 section_size_type i = span_start;
11661 bool last_was_32bit = false;
11662 bool last_was_branch = false;
11663 while (i < span_end)
11664 {
11665 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11666 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11667 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11668 bool is_blx = false, is_b = false;
11669 bool is_bl = false, is_bcc = false;
11670
11671 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11672 if (insn_32bit)
11673 {
11674 // Load the rest of the insn (in manual-friendly order).
11675 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11676
11677 // Encoding T4: B<c>.W.
11678 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11679 // Encoding T1: BL<c>.W.
11680 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11681 // Encoding T2: BLX<c>.W.
11682 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11683 // Encoding T3: B<c>.W (not permitted in IT block).
11684 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11685 && (insn & 0x07f00000U) != 0x03800000U);
11686 }
11687
11688 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11689
11690 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11691 // page boundary and it follows 32-bit non-branch instruction,
11692 // we need to work around.
11693 if (is_32bit_branch
11694 && ((address + i) & 0xfffU) == 0xffeU
11695 && last_was_32bit
11696 && !last_was_branch)
11697 {
11698 // Check to see if there is a relocation stub for this branch.
11699 bool force_target_arm = false;
11700 bool force_target_thumb = false;
11701 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11702 Cortex_a8_relocs_info::const_iterator p =
11703 this->cortex_a8_relocs_info_.find(address + i);
11704
11705 if (p != this->cortex_a8_relocs_info_.end())
11706 {
11707 cortex_a8_reloc = p->second;
11708 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11709
11710 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11711 && !target_is_thumb)
11712 force_target_arm = true;
11713 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11714 && target_is_thumb)
11715 force_target_thumb = true;
11716 }
11717
11718 off_t offset;
11719 Stub_type stub_type = arm_stub_none;
11720
11721 // Check if we have an offending branch instruction.
11722 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11723 uint16_t lower_insn = insn & 0xffffU;
11724 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11725
11726 if (cortex_a8_reloc != NULL
11727 && cortex_a8_reloc->reloc_stub() != NULL)
11728 // We've already made a stub for this instruction, e.g.
11729 // it's a long branch or a Thumb->ARM stub. Assume that
11730 // stub will suffice to work around the A8 erratum (see
11731 // setting of always_after_branch above).
11732 ;
11733 else if (is_bcc)
11734 {
11735 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11736 lower_insn);
11737 stub_type = arm_stub_a8_veneer_b_cond;
11738 }
11739 else if (is_b || is_bl || is_blx)
11740 {
11741 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11742 lower_insn);
11743 if (is_blx)
11744 offset &= ~3;
11745
11746 stub_type = (is_blx
11747 ? arm_stub_a8_veneer_blx
11748 : (is_bl
11749 ? arm_stub_a8_veneer_bl
11750 : arm_stub_a8_veneer_b));
11751 }
11752
11753 if (stub_type != arm_stub_none)
11754 {
11755 Arm_address pc_for_insn = address + i + 4;
11756
11757 // The original instruction is a BL, but the target is
11758 // an ARM instruction. If we were not making a stub,
11759 // the BL would have been converted to a BLX. Use the
11760 // BLX stub instead in that case.
cd6eab1c 11761 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11762 && stub_type == arm_stub_a8_veneer_bl)
11763 {
11764 stub_type = arm_stub_a8_veneer_blx;
11765 is_blx = true;
11766 is_bl = false;
11767 }
11768 // Conversely, if the original instruction was
11769 // BLX but the target is Thumb mode, use the BL stub.
11770 else if (force_target_thumb
11771 && stub_type == arm_stub_a8_veneer_blx)
11772 {
11773 stub_type = arm_stub_a8_veneer_bl;
11774 is_blx = false;
11775 is_bl = true;
11776 }
11777
11778 if (is_blx)
11779 pc_for_insn &= ~3;
11780
11781 // If we found a relocation, use the proper destination,
11782 // not the offset in the (unrelocated) instruction.
11783 // Note this is always done if we switched the stub type above.
11784 if (cortex_a8_reloc != NULL)
11785 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11786
11787 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11788
11789 // Add a new stub if destination address in in the same page.
11790 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11791 {
11792 Cortex_a8_stub* stub =
11793 this->stub_factory_.make_cortex_a8_stub(stub_type,
11794 arm_relobj, shndx,
11795 address + i,
11796 target, insn);
11797 Stub_table<big_endian>* stub_table =
11798 arm_relobj->stub_table(shndx);
11799 gold_assert(stub_table != NULL);
11800 stub_table->add_cortex_a8_stub(address + i, stub);
11801 }
11802 }
11803 }
11804
11805 i += insn_32bit ? 4 : 2;
11806 last_was_32bit = insn_32bit;
11807 last_was_branch = is_32bit_branch;
11808 }
11809}
11810
41263c05
DK
11811// Apply the Cortex-A8 workaround.
11812
11813template<bool big_endian>
11814void
11815Target_arm<big_endian>::apply_cortex_a8_workaround(
11816 const Cortex_a8_stub* stub,
11817 Arm_address stub_address,
11818 unsigned char* insn_view,
11819 Arm_address insn_address)
11820{
11821 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11822 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11823 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11824 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11825 off_t branch_offset = stub_address - (insn_address + 4);
11826
11827 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11828 switch (stub->stub_template()->type())
11829 {
11830 case arm_stub_a8_veneer_b_cond:
9b547ce6 11831 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
11832 // branch to the stub. We use the THUMB-2 encoding here.
11833 upper_insn = 0xf000U;
11834 lower_insn = 0xb800U;
11835 // Fall through
41263c05
DK
11836 case arm_stub_a8_veneer_b:
11837 case arm_stub_a8_veneer_bl:
11838 case arm_stub_a8_veneer_blx:
11839 if ((lower_insn & 0x5000U) == 0x4000U)
11840 // For a BLX instruction, make sure that the relocation is
11841 // rounded up to a word boundary. This follows the semantics of
11842 // the instruction which specifies that bit 1 of the target
11843 // address will come from bit 1 of the base address.
11844 branch_offset = (branch_offset + 2) & ~3;
11845
11846 // Put BRANCH_OFFSET back into the insn.
bef2b434 11847 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
11848 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11849 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11850 break;
11851
11852 default:
11853 gold_unreachable();
11854 }
11855
11856 // Put the relocated value back in the object file:
11857 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11858 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11859}
11860
4a657b0d
DK
11861template<bool big_endian>
11862class Target_selector_arm : public Target_selector
11863{
11864 public:
11865 Target_selector_arm()
11866 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
11867 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11868 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
11869 { }
11870
11871 Target*
11872 do_instantiate_target()
11873 { return new Target_arm<big_endian>(); }
11874};
11875
2b328d4e
DK
11876// Fix .ARM.exidx section coverage.
11877
11878template<bool big_endian>
11879void
11880Target_arm<big_endian>::fix_exidx_coverage(
11881 Layout* layout,
131687b4 11882 const Input_objects* input_objects,
2b328d4e 11883 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
11884 Symbol_table* symtab,
11885 const Task* task)
2b328d4e
DK
11886{
11887 // We need to look at all the input sections in output in ascending
11888 // order of of output address. We do that by building a sorted list
11889 // of output sections by addresses. Then we looks at the output sections
11890 // in order. The input sections in an output section are already sorted
11891 // by addresses within the output section.
11892
11893 typedef std::set<Output_section*, output_section_address_less_than>
11894 Sorted_output_section_list;
11895 Sorted_output_section_list sorted_output_sections;
131687b4
DK
11896
11897 // Find out all the output sections of input sections pointed by
11898 // EXIDX input sections.
11899 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11900 p != input_objects->relobj_end();
2b328d4e
DK
11901 ++p)
11902 {
131687b4
DK
11903 Arm_relobj<big_endian>* arm_relobj =
11904 Arm_relobj<big_endian>::as_arm_relobj(*p);
11905 std::vector<unsigned int> shndx_list;
11906 arm_relobj->get_exidx_shndx_list(&shndx_list);
11907 for (size_t i = 0; i < shndx_list.size(); ++i)
11908 {
11909 const Arm_exidx_input_section* exidx_input_section =
11910 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11911 gold_assert(exidx_input_section != NULL);
11912 if (!exidx_input_section->has_errors())
11913 {
11914 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 11915 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
11916 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11917 sorted_output_sections.insert(os);
11918 }
11919 }
2b328d4e
DK
11920 }
11921
11922 // Go over the output sections in ascending order of output addresses.
11923 typedef typename Arm_output_section<big_endian>::Text_section_list
11924 Text_section_list;
11925 Text_section_list sorted_text_sections;
f625ae50 11926 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
11927 sorted_output_sections.begin();
11928 p != sorted_output_sections.end();
11929 ++p)
11930 {
11931 Arm_output_section<big_endian>* arm_output_section =
11932 Arm_output_section<big_endian>::as_arm_output_section(*p);
11933 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11934 }
11935
85fdf906 11936 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 11937 merge_exidx_entries(), task);
2b328d4e
DK
11938}
11939
4a657b0d
DK
11940Target_selector_arm<false> target_selector_arm;
11941Target_selector_arm<true> target_selector_armbe;
11942
11943} // End anonymous namespace.
This page took 0.758062 seconds and 4 git commands to generate.