Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b90efa5b 3// Copyright (C) 2009-2015 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
fa89cc82
HS
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
fa89cc82
HS
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
4a657b0d
DK
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
ebabffbd 2282 Arm_address view_address,
364c7fa5
ILT
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
4a657b0d
DK
2285
2286 // Scan the relocs during a relocatable link.
2287 void
ad0f2072 2288 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2289 Layout* layout,
6fa2a40b 2290 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
7404fe1b 2301 // Emit relocations for a section.
4a657b0d 2302 void
7404fe1b
AM
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
62fe925a
RM
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
7404fe1b
AM
2310 unsigned char* view,
2311 Arm_address view_address,
2312 section_size_type view_size,
2313 unsigned char* reloc_view,
2314 section_size_type reloc_view_size);
4a657b0d 2315
5c388529
DK
2316 // Perform target-specific processing in a relocatable link. This is
2317 // only used if we use the relocation strategy RELOC_SPECIAL.
2318 void
2319 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2320 unsigned int sh_type,
2321 const unsigned char* preloc_in,
2322 size_t relnum,
2323 Output_section* output_section,
62fe925a
RM
2324 typename elfcpp::Elf_types<32>::Elf_Off
2325 offset_in_output_section,
5c388529
DK
2326 unsigned char* view,
2327 typename elfcpp::Elf_types<32>::Elf_Addr
2328 view_address,
2329 section_size_type view_size,
2330 unsigned char* preloc_out);
2e702c99 2331
4a657b0d
DK
2332 // Return whether SYM is defined by the ABI.
2333 bool
2c54b4f4 2334 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2335 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2336
c8761b9a
DK
2337 // Return whether there is a GOT section.
2338 bool
2339 has_got_section() const
2340 { return this->got_ != NULL; }
2341
94cdfcff
DK
2342 // Return the size of the GOT section.
2343 section_size_type
0e70b911 2344 got_size() const
94cdfcff
DK
2345 {
2346 gold_assert(this->got_ != NULL);
2347 return this->got_->data_size();
2348 }
2349
0e70b911
CC
2350 // Return the number of entries in the GOT.
2351 unsigned int
2352 got_entry_count() const
2353 {
2354 if (!this->has_got_section())
2355 return 0;
2356 return this->got_size() / 4;
2357 }
2358
2359 // Return the number of entries in the PLT.
2360 unsigned int
2361 plt_entry_count() const;
2362
2363 // Return the offset of the first non-reserved PLT entry.
2364 unsigned int
2365 first_plt_entry_offset() const;
2366
2367 // Return the size of each PLT entry.
2368 unsigned int
2369 plt_entry_size() const;
2370
fa89cc82
HS
2371 // Get the section to use for IRELATIVE relocations, create it if necessary.
2372 Reloc_section*
2373 rel_irelative_section(Layout*);
2374
4a657b0d 2375 // Map platform-specific reloc types
a6d1ef57 2376 static unsigned int
ca09d69a 2377 get_real_reloc_type(unsigned int r_type);
4a657b0d 2378
55da9579
DK
2379 //
2380 // Methods to support stub-generations.
2381 //
2e702c99 2382
55da9579
DK
2383 // Return the stub factory
2384 const Stub_factory&
2385 stub_factory() const
2386 { return this->stub_factory_; }
2387
2388 // Make a new Arm_input_section object.
2389 Arm_input_section<big_endian>*
2390 new_arm_input_section(Relobj*, unsigned int);
2391
2392 // Find the Arm_input_section object corresponding to the SHNDX-th input
2393 // section of RELOBJ.
2394 Arm_input_section<big_endian>*
2ea97941 2395 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2396
2397 // Make a new Stub_table
2398 Stub_table<big_endian>*
2399 new_stub_table(Arm_input_section<big_endian>*);
2400
eb44217c
DK
2401 // Scan a section for stub generation.
2402 void
2403 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2404 const unsigned char*, size_t, Output_section*,
2405 bool, const unsigned char*, Arm_address,
2406 section_size_type);
2407
2e702c99 2408 // Relocate a stub.
43d12afe 2409 void
2fb7225c 2410 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2411 Output_section*, unsigned char*, Arm_address,
2412 section_size_type);
2e702c99 2413
b569affa 2414 // Get the default ARM target.
43d12afe 2415 static Target_arm<big_endian>*
b569affa
DK
2416 default_target()
2417 {
2418 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2419 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2420 return static_cast<Target_arm<big_endian>*>(
2421 parameters->sized_target<32, big_endian>());
b569affa
DK
2422 }
2423
20138696
DK
2424 // Whether NAME belongs to a mapping symbol.
2425 static bool
2426 is_mapping_symbol_name(const char* name)
2427 {
2428 return (name
2429 && name[0] == '$'
2430 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2431 && (name[2] == '\0' || name[2] == '.'));
2432 }
2433
a120bc7f
DK
2434 // Whether we work around the Cortex-A8 erratum.
2435 bool
2436 fix_cortex_a8() const
2437 { return this->fix_cortex_a8_; }
2438
85fdf906
AH
2439 // Whether we merge exidx entries in debuginfo.
2440 bool
2441 merge_exidx_entries() const
2442 { return parameters->options().merge_exidx_entries(); }
2443
a2162063
ILT
2444 // Whether we fix R_ARM_V4BX relocation.
2445 // 0 - do not fix
2446 // 1 - replace with MOV instruction (armv4 target)
2447 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2448 General_options::Fix_v4bx
a2162063 2449 fix_v4bx() const
9b2fd367 2450 { return parameters->options().fix_v4bx(); }
a2162063 2451
44272192
DK
2452 // Scan a span of THUMB code section for Cortex-A8 erratum.
2453 void
2454 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2455 section_size_type, section_size_type,
2456 const unsigned char*, Arm_address);
2457
41263c05
DK
2458 // Apply Cortex-A8 workaround to a branch.
2459 void
2460 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2461 unsigned char*, Arm_address);
2462
d5b40221 2463 protected:
2e702c99
RM
2464 // Make the PLT-generator object.
2465 Output_data_plt_arm<big_endian>*
fa89cc82
HS
2466 make_data_plt(Layout* layout,
2467 Arm_output_data_got<big_endian>* got,
2468 Output_data_space* got_plt,
2469 Output_data_space* got_irelative)
2470 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2e702c99 2471
eb44217c
DK
2472 // Make an ELF object.
2473 Object*
2474 do_make_elf_object(const std::string&, Input_file*, off_t,
2475 const elfcpp::Ehdr<32, big_endian>& ehdr);
2476
2477 Object*
2478 do_make_elf_object(const std::string&, Input_file*, off_t,
2479 const elfcpp::Ehdr<32, !big_endian>&)
2480 { gold_unreachable(); }
2481
2482 Object*
2483 do_make_elf_object(const std::string&, Input_file*, off_t,
2484 const elfcpp::Ehdr<64, false>&)
2485 { gold_unreachable(); }
2486
2487 Object*
2488 do_make_elf_object(const std::string&, Input_file*, off_t,
2489 const elfcpp::Ehdr<64, true>&)
2490 { gold_unreachable(); }
2491
2492 // Make an output section.
2493 Output_section*
2494 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2495 elfcpp::Elf_Xword flags)
2496 { return new Arm_output_section<big_endian>(name, type, flags); }
2497
d5b40221 2498 void
3bfcb652 2499 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2500
eb44217c
DK
2501 // We only need to generate stubs, and hence perform relaxation if we are
2502 // not doing relocatable linking.
2503 bool
2504 do_may_relax() const
2505 { return !parameters->options().relocatable(); }
2506
2507 bool
f625ae50 2508 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2509
a0351a69
DK
2510 // Determine whether an object attribute tag takes an integer, a
2511 // string or both.
2512 int
2513 do_attribute_arg_type(int tag) const;
2514
2515 // Reorder tags during output.
2516 int
2517 do_attributes_order(int num) const;
2518
0d31c79d
DK
2519 // This is called when the target is selected as the default.
2520 void
2521 do_select_as_default_target()
2522 {
2523 // No locking is required since there should only be one default target.
2524 // We cannot have both the big-endian and little-endian ARM targets
2525 // as the default.
2526 gold_assert(arm_reloc_property_table == NULL);
2527 arm_reloc_property_table = new Arm_reloc_property_table();
2528 }
2529
b3ce541e
ILT
2530 // Virtual function which is set to return true by a target if
2531 // it can use relocation types to determine if a function's
2532 // pointer is taken.
2533 virtual bool
2534 do_can_check_for_function_pointers() const
2535 { return true; }
2536
2537 // Whether a section called SECTION_NAME may have function pointers to
2538 // sections not eligible for safe ICF folding.
2539 virtual bool
2540 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2541 {
2542 return (!is_prefix_of(".ARM.exidx", section_name)
2543 && !is_prefix_of(".ARM.extab", section_name)
2544 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2545 }
2e702c99 2546
647f1574
DK
2547 virtual void
2548 do_define_standard_symbols(Symbol_table*, Layout*);
2549
2e702c99 2550 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
2551 do_make_data_plt(Layout* layout,
2552 Arm_output_data_got<big_endian>* got,
2553 Output_data_space* got_plt,
2554 Output_data_space* got_irelative)
2e702c99 2555 {
fa89cc82
HS
2556 gold_assert(got_plt != NULL && got_irelative != NULL);
2557 return new Output_data_plt_arm_standard<big_endian>(
2558 layout, got, got_plt, got_irelative);
2e702c99
RM
2559 }
2560
4a657b0d
DK
2561 private:
2562 // The class which scans relocations.
2563 class Scan
2564 {
2565 public:
2566 Scan()
bec53400 2567 : issued_non_pic_error_(false)
4a657b0d
DK
2568 { }
2569
95a2c8d6
RS
2570 static inline int
2571 get_reference_flags(unsigned int r_type);
2572
4a657b0d 2573 inline void
ad0f2072 2574 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2575 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2576 unsigned int data_shndx,
2577 Output_section* output_section,
2578 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2579 const elfcpp::Sym<32, big_endian>& lsym,
2580 bool is_discarded);
4a657b0d
DK
2581
2582 inline void
ad0f2072 2583 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2584 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2585 unsigned int data_shndx,
2586 Output_section* output_section,
2587 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2588 Symbol* gsym);
2589
21bb3914
ST
2590 inline bool
2591 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2592 Sized_relobj_file<32, big_endian>* ,
2593 unsigned int ,
2594 Output_section* ,
2595 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2596 unsigned int ,
2e702c99 2597 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2598
2599 inline bool
2600 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2601 Sized_relobj_file<32, big_endian>* ,
2602 unsigned int ,
2603 Output_section* ,
2604 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2605 unsigned int , Symbol*);
21bb3914 2606
4a657b0d
DK
2607 private:
2608 static void
6fa2a40b 2609 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2610 unsigned int r_type);
2611
2612 static void
6fa2a40b 2613 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2614 unsigned int r_type, Symbol*);
bec53400
DK
2615
2616 void
2617 check_non_pic(Relobj*, unsigned int r_type);
2618
2619 // Almost identical to Symbol::needs_plt_entry except that it also
2620 // handles STT_ARM_TFUNC.
2621 static bool
2622 symbol_needs_plt_entry(const Symbol* sym)
2623 {
2624 // An undefined symbol from an executable does not need a PLT entry.
2625 if (sym->is_undefined() && !parameters->options().shared())
2626 return false;
2627
fa89cc82
HS
2628 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2629 return true;
2630
bec53400
DK
2631 return (!parameters->doing_static_link()
2632 && (sym->type() == elfcpp::STT_FUNC
2633 || sym->type() == elfcpp::STT_ARM_TFUNC)
2634 && (sym->is_from_dynobj()
2635 || sym->is_undefined()
2636 || sym->is_preemptible()));
2637 }
2638
8a75a161
DK
2639 inline bool
2640 possible_function_pointer_reloc(unsigned int r_type);
2641
fa89cc82
HS
2642 // Whether a plt entry is needed for ifunc.
2643 bool
2644 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2645 unsigned int r_type);
2646
bec53400
DK
2647 // Whether we have issued an error about a non-PIC compilation.
2648 bool issued_non_pic_error_;
4a657b0d
DK
2649 };
2650
2651 // The class which implements relocation.
2652 class Relocate
2653 {
2654 public:
2655 Relocate()
2656 { }
2657
2658 ~Relocate()
2659 { }
2660
bec53400
DK
2661 // Return whether the static relocation needs to be applied.
2662 inline bool
2663 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2664 unsigned int r_type,
bec53400
DK
2665 bool is_32bit,
2666 Output_section* output_section);
2667
4a657b0d
DK
2668 // Do a relocation. Return false if the caller should not issue
2669 // any warnings about this relocation.
2670 inline bool
91a65d2f
AM
2671 relocate(const Relocate_info<32, big_endian>*, unsigned int,
2672 Target_arm*, Output_section*, size_t, const unsigned char*,
2673 const Sized_symbol<32>*, const Symbol_value<32>*,
2674 unsigned char*, Arm_address, section_size_type);
c121c671
DK
2675
2676 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2677 // reloc. This means the relocation type accesses a symbol not via
2678 // GOT or PLT.
c121c671 2679 static inline bool
ca09d69a 2680 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2681 {
2682 switch (r_type)
2683 {
f4e5969c
DK
2684 // These relocation types reference GOT or PLT entries explicitly.
2685 case elfcpp::R_ARM_GOT_BREL:
2686 case elfcpp::R_ARM_GOT_ABS:
2687 case elfcpp::R_ARM_GOT_PREL:
2688 case elfcpp::R_ARM_GOT_BREL12:
2689 case elfcpp::R_ARM_PLT32_ABS:
2690 case elfcpp::R_ARM_TLS_GD32:
2691 case elfcpp::R_ARM_TLS_LDM32:
2692 case elfcpp::R_ARM_TLS_IE32:
2693 case elfcpp::R_ARM_TLS_IE12GP:
2694
2695 // These relocate types may use PLT entries.
c121c671 2696 case elfcpp::R_ARM_CALL:
f4e5969c 2697 case elfcpp::R_ARM_THM_CALL:
c121c671 2698 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2699 case elfcpp::R_ARM_THM_JUMP24:
2700 case elfcpp::R_ARM_THM_JUMP19:
2701 case elfcpp::R_ARM_PLT32:
2702 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2703 case elfcpp::R_ARM_PREL31:
2704 case elfcpp::R_ARM_SBREL31:
c121c671 2705 return false;
f4e5969c
DK
2706
2707 default:
2708 return true;
c121c671
DK
2709 }
2710 }
f96accdf
DK
2711
2712 private:
2713 // Do a TLS relocation.
2714 inline typename Arm_relocate_functions<big_endian>::Status
2715 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2716 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2717 const Sized_symbol<32>*, const Symbol_value<32>*,
2718 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2719 section_size_type);
2720
4a657b0d
DK
2721 };
2722
2723 // A class which returns the size required for a relocation type,
2724 // used while scanning relocs during a relocatable link.
2725 class Relocatable_size_for_reloc
2726 {
2727 public:
2728 unsigned int
2729 get_size_for_reloc(unsigned int, Relobj*);
2730 };
2731
f96accdf
DK
2732 // Adjust TLS relocation type based on the options and whether this
2733 // is a local symbol.
2734 static tls::Tls_optimization
2735 optimize_tls_reloc(bool is_final, int r_type);
2736
94cdfcff 2737 // Get the GOT section, creating it if necessary.
4a54abbb 2738 Arm_output_data_got<big_endian>*
94cdfcff
DK
2739 got_section(Symbol_table*, Layout*);
2740
2741 // Get the GOT PLT section.
2742 Output_data_space*
2743 got_plt_section() const
2744 {
2745 gold_assert(this->got_plt_ != NULL);
2746 return this->got_plt_;
2747 }
2748
fa89cc82
HS
2749 // Create the PLT section.
2750 void
2751 make_plt_section(Symbol_table* symtab, Layout* layout);
2752
94cdfcff
DK
2753 // Create a PLT entry for a global symbol.
2754 void
2755 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2756
fa89cc82
HS
2757 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2758 void
2759 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2760 Sized_relobj_file<32, big_endian>* relobj,
2761 unsigned int local_sym_index);
2762
f96accdf
DK
2763 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2764 void
2765 define_tls_base_symbol(Symbol_table*, Layout*);
2766
2767 // Create a GOT entry for the TLS module index.
2768 unsigned int
2769 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2770 Sized_relobj_file<32, big_endian>* object);
f96accdf 2771
94cdfcff
DK
2772 // Get the PLT section.
2773 const Output_data_plt_arm<big_endian>*
2774 plt_section() const
2775 {
2776 gold_assert(this->plt_ != NULL);
2777 return this->plt_;
2778 }
2779
2780 // Get the dynamic reloc section, creating it if necessary.
2781 Reloc_section*
2782 rel_dyn_section(Layout*);
2783
f96accdf
DK
2784 // Get the section to use for TLS_DESC relocations.
2785 Reloc_section*
2786 rel_tls_desc_section(Layout*) const;
2787
94cdfcff
DK
2788 // Return true if the symbol may need a COPY relocation.
2789 // References from an executable object to non-function symbols
2790 // defined in a dynamic object may need a COPY relocation.
2791 bool
2792 may_need_copy_reloc(Symbol* gsym)
2793 {
966d4097
DK
2794 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2795 && gsym->may_need_copy_reloc());
94cdfcff
DK
2796 }
2797
2798 // Add a potential copy relocation.
2799 void
2800 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2801 Sized_relobj_file<32, big_endian>* object,
2ea97941 2802 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2803 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2804 {
859d7987 2805 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
94cdfcff
DK
2806 this->copy_relocs_.copy_reloc(symtab, layout,
2807 symtab->get_sized_symbol<32>(sym),
859d7987
CC
2808 object, shndx, output_section,
2809 r_type, reloc.get_r_offset(), 0,
94cdfcff
DK
2810 this->rel_dyn_section(layout));
2811 }
2812
d5b40221
DK
2813 // Whether two EABI versions are compatible.
2814 static bool
2815 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2816
2817 // Merge processor-specific flags from input object and those in the ELF
2818 // header of the output.
2819 void
2820 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2821
a0351a69
DK
2822 // Get the secondary compatible architecture.
2823 static int
2824 get_secondary_compatible_arch(const Attributes_section_data*);
2825
2826 // Set the secondary compatible architecture.
2827 static void
2828 set_secondary_compatible_arch(Attributes_section_data*, int);
2829
2830 static int
2831 tag_cpu_arch_combine(const char*, int, int*, int, int);
2832
2833 // Helper to print AEABI enum tag value.
2834 static std::string
2835 aeabi_enum_name(unsigned int);
2836
2837 // Return string value for TAG_CPU_name.
2838 static std::string
2839 tag_cpu_name_value(unsigned int);
2840
679af368
ILT
2841 // Query attributes object to see if integer divide instructions may be
2842 // present in an object.
2843 static bool
2844 attributes_accept_div(int arch, int profile,
2845 const Object_attribute* div_attr);
2846
2847 // Query attributes object to see if integer divide instructions are
2848 // forbidden to be in the object. This is not the inverse of
2849 // attributes_accept_div.
2850 static bool
2851 attributes_forbid_div(const Object_attribute* div_attr);
2852
a0351a69
DK
2853 // Merge object attributes from input object and those in the output.
2854 void
2855 merge_object_attributes(const char*, const Attributes_section_data*);
2856
2857 // Helper to get an AEABI object attribute
2858 Object_attribute*
2859 get_aeabi_object_attribute(int tag) const
2860 {
2861 Attributes_section_data* pasd = this->attributes_section_data_;
2862 gold_assert(pasd != NULL);
2863 Object_attribute* attr =
2864 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2865 gold_assert(attr != NULL);
2866 return attr;
2867 }
2868
eb44217c
DK
2869 //
2870 // Methods to support stub-generations.
2871 //
d5b40221 2872
eb44217c
DK
2873 // Group input sections for stub generation.
2874 void
f625ae50 2875 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2876
eb44217c
DK
2877 // Scan a relocation for stub generation.
2878 void
2879 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2880 const Sized_symbol<32>*, unsigned int,
2881 const Symbol_value<32>*,
2882 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2883
eb44217c
DK
2884 // Scan a relocation section for stub.
2885 template<int sh_type>
2886 void
2887 scan_reloc_section_for_stubs(
2888 const Relocate_info<32, big_endian>* relinfo,
2889 const unsigned char* prelocs,
2890 size_t reloc_count,
2891 Output_section* output_section,
2892 bool needs_special_offset_handling,
2893 const unsigned char* view,
2894 elfcpp::Elf_types<32>::Elf_Addr view_address,
2895 section_size_type);
d5b40221 2896
2b328d4e
DK
2897 // Fix .ARM.exidx section coverage.
2898 void
131687b4 2899 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2900 Arm_output_section<big_endian>*, Symbol_table*,
2901 const Task*);
2b328d4e
DK
2902
2903 // Functors for STL set.
2904 struct output_section_address_less_than
2905 {
2906 bool
2907 operator()(const Output_section* s1, const Output_section* s2) const
2908 { return s1->address() < s2->address(); }
2909 };
2910
4a657b0d
DK
2911 // Information about this specific target which we pass to the
2912 // general Target structure.
2913 static const Target::Target_info arm_info;
94cdfcff
DK
2914
2915 // The types of GOT entries needed for this platform.
0e70b911
CC
2916 // These values are exposed to the ABI in an incremental link.
2917 // Do not renumber existing values without changing the version
2918 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2919 enum Got_type
2920 {
f96accdf
DK
2921 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2922 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2923 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2924 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2925 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2926 };
2927
55da9579
DK
2928 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2929
2930 // Map input section to Arm_input_section.
5ac169d4 2931 typedef Unordered_map<Section_id,
55da9579 2932 Arm_input_section<big_endian>*,
5ac169d4 2933 Section_id_hash>
55da9579 2934 Arm_input_section_map;
2e702c99 2935
a120bc7f
DK
2936 // Map output addresses to relocs for Cortex-A8 erratum.
2937 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2938 Cortex_a8_relocs_info;
2939
94cdfcff 2940 // The GOT section.
4a54abbb 2941 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2942 // The PLT section.
2943 Output_data_plt_arm<big_endian>* plt_;
2944 // The GOT PLT section.
2945 Output_data_space* got_plt_;
fa89cc82
HS
2946 // The GOT section for IRELATIVE relocations.
2947 Output_data_space* got_irelative_;
94cdfcff
DK
2948 // The dynamic reloc section.
2949 Reloc_section* rel_dyn_;
fa89cc82
HS
2950 // The section to use for IRELATIVE relocs.
2951 Reloc_section* rel_irelative_;
94cdfcff
DK
2952 // Relocs saved to avoid a COPY reloc.
2953 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
2954 // Offset of the GOT entry for the TLS module index.
2955 unsigned int got_mod_index_offset_;
2956 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2957 bool tls_base_symbol_defined_;
55da9579
DK
2958 // Vector of Stub_tables created.
2959 Stub_table_list stub_tables_;
2960 // Stub factory.
2961 const Stub_factory &stub_factory_;
b569affa
DK
2962 // Whether we force PIC branch veneers.
2963 bool should_force_pic_veneer_;
eb44217c
DK
2964 // Map for locating Arm_input_sections.
2965 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2966 // Attributes section data in output.
2967 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2968 // Whether we want to fix code for Cortex-A8 erratum.
2969 bool fix_cortex_a8_;
2970 // Map addresses to relocs for Cortex-A8 erratum.
2971 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2972};
2973
2974template<bool big_endian>
2975const Target::Target_info Target_arm<big_endian>::arm_info =
2976{
2977 32, // size
2978 big_endian, // is_big_endian
2979 elfcpp::EM_ARM, // machine_code
2980 false, // has_make_symbol
2981 false, // has_resolve
2982 false, // has_code_fill
2983 true, // is_default_stack_executable
b3ce541e 2984 false, // can_icf_inline_merge_sections
4a657b0d
DK
2985 '\0', // wrap_char
2986 "/usr/lib/libc.so.1", // dynamic_linker
2987 0x8000, // default_text_segment_address
2988 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2989 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2990 false, // isolate_execinstr
2991 0, // rosegment_gap
8a5e3e08
ILT
2992 elfcpp::SHN_UNDEF, // small_common_shndx
2993 elfcpp::SHN_UNDEF, // large_common_shndx
2994 0, // small_common_section_flags
05a352e6
DK
2995 0, // large_common_section_flags
2996 ".ARM.attributes", // attributes_section
a67858e0 2997 "aeabi", // attributes_vendor
8d9743bd
MK
2998 "_start", // entry_symbol_name
2999 32, // hash_entry_size
4a657b0d
DK
3000};
3001
c121c671
DK
3002// Arm relocate functions class
3003//
3004
3005template<bool big_endian>
3006class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3007{
3008 public:
3009 typedef enum
3010 {
3011 STATUS_OKAY, // No error during relocation.
9b547ce6 3012 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
3013 STATUS_BAD_RELOC // Relocation cannot be applied.
3014 } Status;
3015
3016 private:
3017 typedef Relocate_functions<32, big_endian> Base;
3018 typedef Arm_relocate_functions<big_endian> This;
3019
fd3c5f0b
ILT
3020 // Encoding of imm16 argument for movt and movw ARM instructions
3021 // from ARM ARM:
2e702c99 3022 //
fd3c5f0b
ILT
3023 // imm16 := imm4 | imm12
3024 //
2e702c99 3025 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3026 // +-------+---------------+-------+-------+-----------------------+
3027 // | | |imm4 | |imm12 |
3028 // +-------+---------------+-------+-------+-----------------------+
3029
3030 // Extract the relocation addend from VAL based on the ARM
3031 // instruction encoding described above.
3032 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3033 extract_arm_movw_movt_addend(
3034 typename elfcpp::Swap<32, big_endian>::Valtype val)
3035 {
3036 // According to the Elf ABI for ARM Architecture the immediate
3037 // field is sign-extended to form the addend.
bef2b434 3038 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
3039 }
3040
3041 // Insert X into VAL based on the ARM instruction encoding described
3042 // above.
3043 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3044 insert_val_arm_movw_movt(
3045 typename elfcpp::Swap<32, big_endian>::Valtype val,
3046 typename elfcpp::Swap<32, big_endian>::Valtype x)
3047 {
3048 val &= 0xfff0f000;
3049 val |= x & 0x0fff;
3050 val |= (x & 0xf000) << 4;
3051 return val;
3052 }
3053
3054 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3055 // from ARM ARM:
2e702c99 3056 //
fd3c5f0b
ILT
3057 // imm16 := imm4 | i | imm3 | imm8
3058 //
2e702c99 3059 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3060 // +---------+-+-----------+-------++-+-----+-------+---------------+
3061 // | |i| |imm4 || |imm3 | |imm8 |
3062 // +---------+-+-----------+-------++-+-----+-------+---------------+
3063
3064 // Extract the relocation addend from VAL based on the Thumb2
3065 // instruction encoding described above.
3066 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3067 extract_thumb_movw_movt_addend(
3068 typename elfcpp::Swap<32, big_endian>::Valtype val)
3069 {
3070 // According to the Elf ABI for ARM Architecture the immediate
3071 // field is sign-extended to form the addend.
bef2b434
ILT
3072 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3073 | ((val >> 15) & 0x0800)
3074 | ((val >> 4) & 0x0700)
3075 | (val & 0x00ff));
fd3c5f0b
ILT
3076 }
3077
3078 // Insert X into VAL based on the Thumb2 instruction encoding
3079 // described above.
3080 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3081 insert_val_thumb_movw_movt(
3082 typename elfcpp::Swap<32, big_endian>::Valtype val,
3083 typename elfcpp::Swap<32, big_endian>::Valtype x)
3084 {
3085 val &= 0xfbf08f00;
3086 val |= (x & 0xf000) << 4;
3087 val |= (x & 0x0800) << 15;
3088 val |= (x & 0x0700) << 4;
3089 val |= (x & 0x00ff);
3090 return val;
3091 }
3092
b10d2873
ILT
3093 // Calculate the smallest constant Kn for the specified residual.
3094 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3095 static uint32_t
3096 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3097 {
3098 int32_t msb;
3099
3100 if (residual == 0)
3101 return 0;
3102 // Determine the most significant bit in the residual and
3103 // align the resulting value to a 2-bit boundary.
3104 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3105 ;
3106 // The desired shift is now (msb - 6), or zero, whichever
3107 // is the greater.
3108 return (((msb - 6) < 0) ? 0 : (msb - 6));
3109 }
3110
3111 // Calculate the final residual for the specified group index.
3112 // If the passed group index is less than zero, the method will return
3113 // the value of the specified residual without any change.
3114 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3115 static typename elfcpp::Swap<32, big_endian>::Valtype
3116 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3117 const int group)
3118 {
3119 for (int n = 0; n <= group; n++)
3120 {
3121 // Calculate which part of the value to mask.
3122 uint32_t shift = calc_grp_kn(residual);
3123 // Calculate the residual for the next time around.
3124 residual &= ~(residual & (0xff << shift));
3125 }
3126
3127 return residual;
3128 }
3129
3130 // Calculate the value of Gn for the specified group index.
3131 // We return it in the form of an encoded constant-and-rotation.
3132 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3133 static typename elfcpp::Swap<32, big_endian>::Valtype
3134 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3135 const int group)
3136 {
3137 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3138 uint32_t shift = 0;
3139
3140 for (int n = 0; n <= group; n++)
3141 {
3142 // Calculate which part of the value to mask.
3143 shift = calc_grp_kn(residual);
3144 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3145 gn = residual & (0xff << shift);
3146 // Calculate the residual for the next time around.
3147 residual &= ~gn;
3148 }
3149 // Return Gn in the form of an encoded constant-and-rotation.
3150 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3151 }
3152
1521477a 3153 public:
d204b6e9
DK
3154 // Handle ARM long branches.
3155 static typename This::Status
3156 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3157 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3158 const Arm_relobj<big_endian>*, unsigned int,
3159 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3160
51938283
DK
3161 // Handle THUMB long branches.
3162 static typename This::Status
3163 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3164 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3165 const Arm_relobj<big_endian>*, unsigned int,
3166 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3167
5e445df6 3168
089d69dc
DK
3169 // Return the branch offset of a 32-bit THUMB branch.
3170 static inline int32_t
3171 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3172 {
3173 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3174 // involving the J1 and J2 bits.
3175 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3176 uint32_t upper = upper_insn & 0x3ffU;
3177 uint32_t lower = lower_insn & 0x7ffU;
3178 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3179 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3180 uint32_t i1 = j1 ^ s ? 0 : 1;
3181 uint32_t i2 = j2 ^ s ? 0 : 1;
3182
bef2b434
ILT
3183 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3184 | (upper << 12) | (lower << 1));
089d69dc
DK
3185 }
3186
3187 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3188 // UPPER_INSN is the original upper instruction of the branch. Caller is
3189 // responsible for overflow checking and BLX offset adjustment.
3190 static inline uint16_t
3191 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3192 {
3193 uint32_t s = offset < 0 ? 1 : 0;
3194 uint32_t bits = static_cast<uint32_t>(offset);
3195 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3196 }
3197
3198 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3199 // LOWER_INSN is the original lower instruction of the branch. Caller is
3200 // responsible for overflow checking and BLX offset adjustment.
3201 static inline uint16_t
3202 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3203 {
3204 uint32_t s = offset < 0 ? 1 : 0;
3205 uint32_t bits = static_cast<uint32_t>(offset);
3206 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3207 | ((((bits >> 23) & 1) ^ !s) << 13)
3208 | ((((bits >> 22) & 1) ^ !s) << 11)
3209 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3210 }
3211
3212 // Return the branch offset of a 32-bit THUMB conditional branch.
3213 static inline int32_t
3214 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3215 {
3216 uint32_t s = (upper_insn & 0x0400U) >> 10;
3217 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3218 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3219 uint32_t lower = (lower_insn & 0x07ffU);
3220 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3221
bef2b434 3222 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3223 }
3224
3225 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3226 // instruction. UPPER_INSN is the original upper instruction of the branch.
3227 // Caller is responsible for overflow checking.
3228 static inline uint16_t
3229 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3230 {
3231 uint32_t s = offset < 0 ? 1 : 0;
3232 uint32_t bits = static_cast<uint32_t>(offset);
3233 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3234 }
3235
3236 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3237 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3238 // The caller is responsible for overflow checking.
089d69dc
DK
3239 static inline uint16_t
3240 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3241 {
3242 uint32_t bits = static_cast<uint32_t>(offset);
3243 uint32_t j2 = (bits & 0x00080000U) >> 19;
3244 uint32_t j1 = (bits & 0x00040000U) >> 18;
3245 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3246
3247 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3248 }
3249
5e445df6
ILT
3250 // R_ARM_ABS8: S + A
3251 static inline typename This::Status
ca09d69a 3252 abs8(unsigned char* view,
6fa2a40b 3253 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3254 const Symbol_value<32>* psymval)
5e445df6
ILT
3255 {
3256 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3257 Valtype* wv = reinterpret_cast<Valtype*>(view);
3258 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3259 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3260 Arm_address x = psymval->value(object, addend);
bef2b434 3261 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3262 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3263
3264 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3265 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3266 ? This::STATUS_OVERFLOW
3267 : This::STATUS_OKAY);
3268 }
3269
be8fcb75
ILT
3270 // R_ARM_THM_ABS5: S + A
3271 static inline typename This::Status
ca09d69a 3272 thm_abs5(unsigned char* view,
6fa2a40b 3273 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3274 const Symbol_value<32>* psymval)
3275 {
3276 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3277 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3278 Valtype* wv = reinterpret_cast<Valtype*>(view);
3279 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3280 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3281 Reltype x = psymval->value(object, addend);
bef2b434 3282 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3283 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3284 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3285 ? This::STATUS_OVERFLOW
3286 : This::STATUS_OKAY);
3287 }
3288
3289 // R_ARM_ABS12: S + A
3290 static inline typename This::Status
ca09d69a 3291 abs12(unsigned char* view,
6fa2a40b 3292 const Sized_relobj_file<32, big_endian>* object,
51938283 3293 const Symbol_value<32>* psymval)
be8fcb75
ILT
3294 {
3295 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3296 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3297 Valtype* wv = reinterpret_cast<Valtype*>(view);
3298 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3299 Reltype addend = val & 0x0fffU;
2daedcd6 3300 Reltype x = psymval->value(object, addend);
bef2b434 3301 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3302 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3303 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3304 ? This::STATUS_OVERFLOW
3305 : This::STATUS_OKAY);
3306 }
3307
3308 // R_ARM_ABS16: S + A
3309 static inline typename This::Status
ca09d69a 3310 abs16(unsigned char* view,
6fa2a40b 3311 const Sized_relobj_file<32, big_endian>* object,
51938283 3312 const Symbol_value<32>* psymval)
be8fcb75 3313 {
f6cccc2c 3314 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3315 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3316 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3317 Arm_address x = psymval->value(object, addend);
bef2b434 3318 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3319 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3320
3321 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3322 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3323 ? This::STATUS_OVERFLOW
3324 : This::STATUS_OKAY);
3325 }
3326
c121c671
DK
3327 // R_ARM_ABS32: (S + A) | T
3328 static inline typename This::Status
ca09d69a 3329 abs32(unsigned char* view,
6fa2a40b 3330 const Sized_relobj_file<32, big_endian>* object,
c121c671 3331 const Symbol_value<32>* psymval,
2daedcd6 3332 Arm_address thumb_bit)
c121c671 3333 {
f6cccc2c
DK
3334 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3335 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3336 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3337 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3338 return This::STATUS_OKAY;
3339 }
3340
3341 // R_ARM_REL32: (S + A) | T - P
3342 static inline typename This::Status
ca09d69a 3343 rel32(unsigned char* view,
6fa2a40b 3344 const Sized_relobj_file<32, big_endian>* object,
c121c671 3345 const Symbol_value<32>* psymval,
ebabffbd 3346 Arm_address address,
2daedcd6 3347 Arm_address thumb_bit)
c121c671 3348 {
f6cccc2c
DK
3349 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3350 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3351 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3352 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3353 return This::STATUS_OKAY;
3354 }
3355
089d69dc
DK
3356 // R_ARM_THM_JUMP24: (S + A) | T - P
3357 static typename This::Status
ca09d69a 3358 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3359 const Symbol_value<32>* psymval, Arm_address address,
3360 Arm_address thumb_bit);
3361
800d0f56
ILT
3362 // R_ARM_THM_JUMP6: S + A – P
3363 static inline typename This::Status
ca09d69a 3364 thm_jump6(unsigned char* view,
6fa2a40b 3365 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3366 const Symbol_value<32>* psymval,
3367 Arm_address address)
3368 {
3369 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3370 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3371 Valtype* wv = reinterpret_cast<Valtype*>(view);
3372 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3373 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3374 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3375 Reltype x = (psymval->value(object, addend) - address);
3376 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3377 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3378 // CZB does only forward jumps.
3379 return ((x > 0x007e)
3380 ? This::STATUS_OVERFLOW
3381 : This::STATUS_OKAY);
3382 }
3383
3384 // R_ARM_THM_JUMP8: S + A – P
3385 static inline typename This::Status
ca09d69a 3386 thm_jump8(unsigned char* view,
6fa2a40b 3387 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3388 const Symbol_value<32>* psymval,
3389 Arm_address address)
3390 {
3391 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3392 Valtype* wv = reinterpret_cast<Valtype*>(view);
3393 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3394 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3395 int32_t x = (psymval->value(object, addend) - address);
3396 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3397 | ((x & 0x01fe) >> 1)));
57eb9b50 3398 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3399 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3400 ? This::STATUS_OVERFLOW
3401 : This::STATUS_OKAY);
3402 }
3403
3404 // R_ARM_THM_JUMP11: S + A – P
3405 static inline typename This::Status
ca09d69a 3406 thm_jump11(unsigned char* view,
6fa2a40b 3407 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3408 const Symbol_value<32>* psymval,
3409 Arm_address address)
3410 {
3411 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3412 Valtype* wv = reinterpret_cast<Valtype*>(view);
3413 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3414 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3415 int32_t x = (psymval->value(object, addend) - address);
3416 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3417 | ((x & 0x0ffe) >> 1)));
57eb9b50 3418 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3419 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3420 ? This::STATUS_OVERFLOW
3421 : This::STATUS_OKAY);
3422 }
3423
c121c671
DK
3424 // R_ARM_BASE_PREL: B(S) + A - P
3425 static inline typename This::Status
3426 base_prel(unsigned char* view,
ebabffbd
DK
3427 Arm_address origin,
3428 Arm_address address)
c121c671
DK
3429 {
3430 Base::rel32(view, origin - address);
3431 return STATUS_OKAY;
3432 }
3433
be8fcb75
ILT
3434 // R_ARM_BASE_ABS: B(S) + A
3435 static inline typename This::Status
3436 base_abs(unsigned char* view,
f4e5969c 3437 Arm_address origin)
be8fcb75
ILT
3438 {
3439 Base::rel32(view, origin);
3440 return STATUS_OKAY;
3441 }
3442
c121c671
DK
3443 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3444 static inline typename This::Status
3445 got_brel(unsigned char* view,
3446 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3447 {
3448 Base::rel32(view, got_offset);
3449 return This::STATUS_OKAY;
3450 }
3451
f4e5969c 3452 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3453 static inline typename This::Status
ca09d69a 3454 got_prel(unsigned char* view,
f4e5969c 3455 Arm_address got_entry,
ebabffbd 3456 Arm_address address)
7f5309a5 3457 {
f4e5969c 3458 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3459 return This::STATUS_OKAY;
3460 }
3461
c121c671
DK
3462 // R_ARM_PREL: (S + A) | T - P
3463 static inline typename This::Status
ca09d69a 3464 prel31(unsigned char* view,
6fa2a40b 3465 const Sized_relobj_file<32, big_endian>* object,
c121c671 3466 const Symbol_value<32>* psymval,
ebabffbd 3467 Arm_address address,
2daedcd6 3468 Arm_address thumb_bit)
c121c671 3469 {
f6cccc2c
DK
3470 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3471 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3472 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3473 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3474 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3475 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3476 return (Bits<31>::has_overflow32(x)
3477 ? This::STATUS_OVERFLOW
3478 : This::STATUS_OKAY);
c121c671 3479 }
fd3c5f0b 3480
5c57f1be 3481 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3482 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3483 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3484 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3485 static inline typename This::Status
5c57f1be 3486 movw(unsigned char* view,
6fa2a40b 3487 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3488 const Symbol_value<32>* psymval,
3489 Arm_address relative_address_base,
3490 Arm_address thumb_bit,
3491 bool check_overflow)
02961d7e
ILT
3492 {
3493 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3494 Valtype* wv = reinterpret_cast<Valtype*>(view);
3495 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3496 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3497 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3498 - relative_address_base);
02961d7e
ILT
3499 val = This::insert_val_arm_movw_movt(val, x);
3500 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3501 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3502 ? This::STATUS_OVERFLOW
3503 : This::STATUS_OKAY);
02961d7e
ILT
3504 }
3505
5c57f1be 3506 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3507 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3508 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3509 static inline typename This::Status
5c57f1be 3510 movt(unsigned char* view,
6fa2a40b 3511 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3512 const Symbol_value<32>* psymval,
3513 Arm_address relative_address_base)
c2a122b6
ILT
3514 {
3515 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3516 Valtype* wv = reinterpret_cast<Valtype*>(view);
3517 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3518 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3519 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3520 val = This::insert_val_arm_movw_movt(val, x);
3521 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3522 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3523 return This::STATUS_OKAY;
3524 }
3525
5c57f1be 3526 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3527 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3528 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3529 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3530 static inline typename This::Status
ca09d69a 3531 thm_movw(unsigned char* view,
6fa2a40b 3532 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3533 const Symbol_value<32>* psymval,
3534 Arm_address relative_address_base,
3535 Arm_address thumb_bit,
3536 bool check_overflow)
02961d7e
ILT
3537 {
3538 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3539 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3540 Valtype* wv = reinterpret_cast<Valtype*>(view);
3541 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3542 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3543 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3544 Reltype x =
3545 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3546 val = This::insert_val_thumb_movw_movt(val, x);
3547 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3548 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3549 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3550 ? This::STATUS_OVERFLOW
5c57f1be 3551 : This::STATUS_OKAY);
02961d7e
ILT
3552 }
3553
5c57f1be 3554 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3555 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3556 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3557 static inline typename This::Status
5c57f1be 3558 thm_movt(unsigned char* view,
6fa2a40b 3559 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3560 const Symbol_value<32>* psymval,
3561 Arm_address relative_address_base)
c2a122b6
ILT
3562 {
3563 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3564 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3565 Valtype* wv = reinterpret_cast<Valtype*>(view);
3566 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3567 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3568 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3569 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3570 val = This::insert_val_thumb_movw_movt(val, x);
3571 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3572 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3573 return This::STATUS_OKAY;
3574 }
a2162063 3575
11b861d5
DK
3576 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3577 static inline typename This::Status
3578 thm_alu11(unsigned char* view,
6fa2a40b 3579 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3580 const Symbol_value<32>* psymval,
3581 Arm_address address,
3582 Arm_address thumb_bit)
3583 {
3584 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3585 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3586 Valtype* wv = reinterpret_cast<Valtype*>(view);
3587 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3588 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3589
3590 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3591 // -----------------------------------------------------------------------
3592 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3593 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3594 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3595 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3596 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3597 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3598
3599 // Determine a sign for the addend.
3600 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3601 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3602 // Thumb2 addend encoding:
3603 // imm12 := i | imm3 | imm8
3604 int32_t addend = (insn & 0xff)
3605 | ((insn & 0x00007000) >> 4)
3606 | ((insn & 0x04000000) >> 15);
3607 // Apply a sign to the added.
3608 addend *= sign;
3609
3610 int32_t x = (psymval->value(object, addend) | thumb_bit)
3611 - (address & 0xfffffffc);
3612 Reltype val = abs(x);
3613 // Mask out the value and a distinct part of the ADD/SUB opcode
3614 // (bits 7:5 of opword).
3615 insn = (insn & 0xfb0f8f00)
3616 | (val & 0xff)
3617 | ((val & 0x700) << 4)
3618 | ((val & 0x800) << 15);
3619 // Set the opcode according to whether the value to go in the
3620 // place is negative.
3621 if (x < 0)
3622 insn |= 0x00a00000;
3623
3624 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3625 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3626 return ((val > 0xfff) ?
2e702c99 3627 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3628 }
3629
3630 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3631 static inline typename This::Status
3632 thm_pc8(unsigned char* view,
6fa2a40b 3633 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3634 const Symbol_value<32>* psymval,
3635 Arm_address address)
3636 {
3637 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3638 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3639 Valtype* wv = reinterpret_cast<Valtype*>(view);
3640 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3641 Reltype addend = ((insn & 0x00ff) << 2);
3642 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3643 Reltype val = abs(x);
3644 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3645
3646 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3647 return ((val > 0x03fc)
3648 ? This::STATUS_OVERFLOW
3649 : This::STATUS_OKAY);
3650 }
3651
3652 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3653 static inline typename This::Status
3654 thm_pc12(unsigned char* view,
6fa2a40b 3655 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3656 const Symbol_value<32>* psymval,
3657 Arm_address address)
3658 {
3659 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3660 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3661 Valtype* wv = reinterpret_cast<Valtype*>(view);
3662 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3663 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3664 // Determine a sign for the addend (positive if the U bit is 1).
3665 const int sign = (insn & 0x00800000) ? 1 : -1;
3666 int32_t addend = (insn & 0xfff);
3667 // Apply a sign to the added.
3668 addend *= sign;
3669
3670 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3671 Reltype val = abs(x);
3672 // Mask out and apply the value and the U bit.
3673 insn = (insn & 0xff7ff000) | (val & 0xfff);
3674 // Set the U bit according to whether the value to go in the
3675 // place is positive.
3676 if (x >= 0)
3677 insn |= 0x00800000;
3678
3679 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3680 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3681 return ((val > 0xfff) ?
2e702c99 3682 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3683 }
3684
a2162063
ILT
3685 // R_ARM_V4BX
3686 static inline typename This::Status
3687 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3688 unsigned char* view,
a2162063
ILT
3689 const Arm_relobj<big_endian>* object,
3690 const Arm_address address,
3691 const bool is_interworking)
3692 {
3693
3694 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3695 Valtype* wv = reinterpret_cast<Valtype*>(view);
3696 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3697
3698 // Ensure that we have a BX instruction.
3699 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3700 const uint32_t reg = (val & 0xf);
3701 if (is_interworking && reg != 0xf)
3702 {
3703 Stub_table<big_endian>* stub_table =
3704 object->stub_table(relinfo->data_shndx);
3705 gold_assert(stub_table != NULL);
3706
3707 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3708 gold_assert(stub != NULL);
3709
3710 int32_t veneer_address =
3711 stub_table->address() + stub->offset() - 8 - address;
3712 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3713 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3714 // Replace with a branch to veneer (B <addr>)
3715 val = (val & 0xf0000000) | 0x0a000000
3716 | ((veneer_address >> 2) & 0x00ffffff);
3717 }
3718 else
3719 {
3720 // Preserve Rm (lowest four bits) and the condition code
3721 // (highest four bits). Other bits encode MOV PC,Rm.
3722 val = (val & 0xf000000f) | 0x01a0f000;
3723 }
3724 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3725 return This::STATUS_OKAY;
3726 }
b10d2873
ILT
3727
3728 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3729 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3730 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3733 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3734 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3735 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3738 static inline typename This::Status
3739 arm_grp_alu(unsigned char* view,
6fa2a40b 3740 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3741 const Symbol_value<32>* psymval,
3742 const int group,
3743 Arm_address address,
3744 Arm_address thumb_bit,
3745 bool check_overflow)
3746 {
5c57f1be 3747 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3748 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3749 Valtype* wv = reinterpret_cast<Valtype*>(view);
3750 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3751
3752 // ALU group relocations are allowed only for the ADD/SUB instructions.
3753 // (0x00800000 - ADD, 0x00400000 - SUB)
3754 const Valtype opcode = insn & 0x01e00000;
3755 if (opcode != 0x00800000 && opcode != 0x00400000)
3756 return This::STATUS_BAD_RELOC;
3757
3758 // Determine a sign for the addend.
3759 const int sign = (opcode == 0x00800000) ? 1 : -1;
3760 // shifter = rotate_imm * 2
3761 const uint32_t shifter = (insn & 0xf00) >> 7;
3762 // Initial addend value.
3763 int32_t addend = insn & 0xff;
3764 // Rotate addend right by shifter.
3765 addend = (addend >> shifter) | (addend << (32 - shifter));
3766 // Apply a sign to the added.
3767 addend *= sign;
3768
3769 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3770 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3771 // Check for overflow if required
3772 if (check_overflow
3773 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3774 return This::STATUS_OVERFLOW;
3775
3776 // Mask out the value and the ADD/SUB part of the opcode; take care
3777 // not to destroy the S bit.
3778 insn &= 0xff1ff000;
3779 // Set the opcode according to whether the value to go in the
3780 // place is negative.
3781 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3782 // Encode the offset (encoded Gn).
3783 insn |= gn;
3784
3785 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3786 return This::STATUS_OKAY;
3787 }
3788
3789 // R_ARM_LDR_PC_G0: S + A - P
3790 // R_ARM_LDR_PC_G1: S + A - P
3791 // R_ARM_LDR_PC_G2: S + A - P
3792 // R_ARM_LDR_SB_G0: S + A - B(S)
3793 // R_ARM_LDR_SB_G1: S + A - B(S)
3794 // R_ARM_LDR_SB_G2: S + A - B(S)
3795 static inline typename This::Status
3796 arm_grp_ldr(unsigned char* view,
6fa2a40b 3797 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3798 const Symbol_value<32>* psymval,
3799 const int group,
3800 Arm_address address)
3801 {
5c57f1be 3802 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3803 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3804 Valtype* wv = reinterpret_cast<Valtype*>(view);
3805 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3806
3807 const int sign = (insn & 0x00800000) ? 1 : -1;
3808 int32_t addend = (insn & 0xfff) * sign;
3809 int32_t x = (psymval->value(object, addend) - address);
3810 // Calculate the relevant G(n-1) value to obtain this stage residual.
3811 Valtype residual =
3812 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3813 if (residual >= 0x1000)
3814 return This::STATUS_OVERFLOW;
3815
3816 // Mask out the value and U bit.
3817 insn &= 0xff7ff000;
3818 // Set the U bit for non-negative values.
3819 if (x >= 0)
3820 insn |= 0x00800000;
3821 insn |= residual;
3822
3823 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3824 return This::STATUS_OKAY;
3825 }
3826
3827 // R_ARM_LDRS_PC_G0: S + A - P
3828 // R_ARM_LDRS_PC_G1: S + A - P
3829 // R_ARM_LDRS_PC_G2: S + A - P
3830 // R_ARM_LDRS_SB_G0: S + A - B(S)
3831 // R_ARM_LDRS_SB_G1: S + A - B(S)
3832 // R_ARM_LDRS_SB_G2: S + A - B(S)
3833 static inline typename This::Status
3834 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3835 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3836 const Symbol_value<32>* psymval,
3837 const int group,
3838 Arm_address address)
3839 {
5c57f1be 3840 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3841 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3842 Valtype* wv = reinterpret_cast<Valtype*>(view);
3843 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3844
3845 const int sign = (insn & 0x00800000) ? 1 : -1;
3846 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3847 int32_t x = (psymval->value(object, addend) - address);
3848 // Calculate the relevant G(n-1) value to obtain this stage residual.
3849 Valtype residual =
3850 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3851 if (residual >= 0x100)
3852 return This::STATUS_OVERFLOW;
3853
3854 // Mask out the value and U bit.
3855 insn &= 0xff7ff0f0;
3856 // Set the U bit for non-negative values.
3857 if (x >= 0)
3858 insn |= 0x00800000;
3859 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3860
3861 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3862 return This::STATUS_OKAY;
3863 }
3864
3865 // R_ARM_LDC_PC_G0: S + A - P
3866 // R_ARM_LDC_PC_G1: S + A - P
3867 // R_ARM_LDC_PC_G2: S + A - P
3868 // R_ARM_LDC_SB_G0: S + A - B(S)
3869 // R_ARM_LDC_SB_G1: S + A - B(S)
3870 // R_ARM_LDC_SB_G2: S + A - B(S)
3871 static inline typename This::Status
3872 arm_grp_ldc(unsigned char* view,
6fa2a40b 3873 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3874 const Symbol_value<32>* psymval,
3875 const int group,
3876 Arm_address address)
3877 {
5c57f1be 3878 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3879 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3880 Valtype* wv = reinterpret_cast<Valtype*>(view);
3881 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3882
3883 const int sign = (insn & 0x00800000) ? 1 : -1;
3884 int32_t addend = ((insn & 0xff) << 2) * sign;
3885 int32_t x = (psymval->value(object, addend) - address);
3886 // Calculate the relevant G(n-1) value to obtain this stage residual.
3887 Valtype residual =
3888 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3889 if ((residual & 0x3) != 0 || residual >= 0x400)
3890 return This::STATUS_OVERFLOW;
3891
3892 // Mask out the value and U bit.
3893 insn &= 0xff7fff00;
3894 // Set the U bit for non-negative values.
3895 if (x >= 0)
3896 insn |= 0x00800000;
3897 insn |= (residual >> 2);
3898
3899 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3900 return This::STATUS_OKAY;
3901 }
c121c671
DK
3902};
3903
d204b6e9
DK
3904// Relocate ARM long branches. This handles relocation types
3905// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3906// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3907// undefined and we do not use PLT in this relocation. In such a case,
3908// the branch is converted into an NOP.
3909
3910template<bool big_endian>
3911typename Arm_relocate_functions<big_endian>::Status
3912Arm_relocate_functions<big_endian>::arm_branch_common(
3913 unsigned int r_type,
3914 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3915 unsigned char* view,
d204b6e9
DK
3916 const Sized_symbol<32>* gsym,
3917 const Arm_relobj<big_endian>* object,
3918 unsigned int r_sym,
3919 const Symbol_value<32>* psymval,
3920 Arm_address address,
3921 Arm_address thumb_bit,
3922 bool is_weakly_undefined_without_plt)
3923{
3924 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3925 Valtype* wv = reinterpret_cast<Valtype*>(view);
3926 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3927
d204b6e9 3928 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3929 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3930 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3931 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3932 && ((val & 0x0f000000UL) == 0x0b000000UL);
3933 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3934 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3935
3936 // Check that the instruction is valid.
3937 if (r_type == elfcpp::R_ARM_CALL)
3938 {
3939 if (!insn_is_uncond_bl && !insn_is_blx)
3940 return This::STATUS_BAD_RELOC;
3941 }
3942 else if (r_type == elfcpp::R_ARM_JUMP24)
3943 {
3944 if (!insn_is_b && !insn_is_cond_bl)
3945 return This::STATUS_BAD_RELOC;
3946 }
3947 else if (r_type == elfcpp::R_ARM_PLT32)
3948 {
3949 if (!insn_is_any_branch)
3950 return This::STATUS_BAD_RELOC;
3951 }
3952 else if (r_type == elfcpp::R_ARM_XPC25)
3953 {
3954 // FIXME: AAELF document IH0044C does not say much about it other
3955 // than it being obsolete.
3956 if (!insn_is_any_branch)
3957 return This::STATUS_BAD_RELOC;
3958 }
3959 else
3960 gold_unreachable();
3961
3962 // A branch to an undefined weak symbol is turned into a jump to
3963 // the next instruction unless a PLT entry will be created.
3964 // Do the same for local undefined symbols.
3965 // The jump to the next instruction is optimized as a NOP depending
3966 // on the architecture.
3967 const Target_arm<big_endian>* arm_target =
3968 Target_arm<big_endian>::default_target();
3969 if (is_weakly_undefined_without_plt)
3970 {
5c388529 3971 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3972 Valtype cond = val & 0xf0000000U;
3973 if (arm_target->may_use_arm_nop())
3974 val = cond | 0x0320f000;
3975 else
3976 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3977 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3978 return This::STATUS_OKAY;
3979 }
2e702c99 3980
bef2b434 3981 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3982 Valtype branch_target = psymval->value(object, addend);
3983 int32_t branch_offset = branch_target - address;
3984
3985 // We need a stub if the branch offset is too large or if we need
3986 // to switch mode.
cd6eab1c 3987 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3988 Reloc_stub* stub = NULL;
5c388529
DK
3989
3990 if (!parameters->options().relocatable()
bef2b434 3991 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3992 || ((thumb_bit != 0)
3993 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3994 {
2a2b6d42
DK
3995 Valtype unadjusted_branch_target = psymval->value(object, 0);
3996
d204b6e9 3997 Stub_type stub_type =
2a2b6d42
DK
3998 Reloc_stub::stub_type_for_reloc(r_type, address,
3999 unadjusted_branch_target,
d204b6e9
DK
4000 (thumb_bit != 0));
4001 if (stub_type != arm_stub_none)
4002 {
2ea97941 4003 Stub_table<big_endian>* stub_table =
d204b6e9 4004 object->stub_table(relinfo->data_shndx);
2ea97941 4005 gold_assert(stub_table != NULL);
d204b6e9
DK
4006
4007 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4008 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
4009 gold_assert(stub != NULL);
4010 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4011 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 4012 branch_offset = branch_target - address;
bef2b434 4013 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
4014 }
4015 }
4016
4017 // At this point, if we still need to switch mode, the instruction
4018 // must either be a BLX or a BL that can be converted to a BLX.
4019 if (thumb_bit != 0)
4020 {
4021 // Turn BL to BLX.
4022 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4023 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4024 }
4025
bef2b434 4026 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 4027 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
4028 return (Bits<26>::has_overflow32(branch_offset)
4029 ? This::STATUS_OVERFLOW
4030 : This::STATUS_OKAY);
d204b6e9
DK
4031}
4032
51938283
DK
4033// Relocate THUMB long branches. This handles relocation types
4034// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4035// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4036// undefined and we do not use PLT in this relocation. In such a case,
4037// the branch is converted into an NOP.
4038
4039template<bool big_endian>
4040typename Arm_relocate_functions<big_endian>::Status
4041Arm_relocate_functions<big_endian>::thumb_branch_common(
4042 unsigned int r_type,
4043 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4044 unsigned char* view,
51938283
DK
4045 const Sized_symbol<32>* gsym,
4046 const Arm_relobj<big_endian>* object,
4047 unsigned int r_sym,
4048 const Symbol_value<32>* psymval,
4049 Arm_address address,
4050 Arm_address thumb_bit,
4051 bool is_weakly_undefined_without_plt)
4052{
4053 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4054 Valtype* wv = reinterpret_cast<Valtype*>(view);
4055 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4056 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4057
4058 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4059 // into account.
4060 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4061 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4062
51938283
DK
4063 // Check that the instruction is valid.
4064 if (r_type == elfcpp::R_ARM_THM_CALL)
4065 {
4066 if (!is_bl_insn && !is_blx_insn)
4067 return This::STATUS_BAD_RELOC;
4068 }
4069 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4070 {
4071 // This cannot be a BLX.
4072 if (!is_bl_insn)
4073 return This::STATUS_BAD_RELOC;
4074 }
4075 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4076 {
4077 // Check for Thumb to Thumb call.
4078 if (!is_blx_insn)
4079 return This::STATUS_BAD_RELOC;
4080 if (thumb_bit != 0)
4081 {
4082 gold_warning(_("%s: Thumb BLX instruction targets "
4083 "thumb function '%s'."),
4084 object->name().c_str(),
2e702c99 4085 (gsym ? gsym->name() : "(local)"));
51938283
DK
4086 // Convert BLX to BL.
4087 lower_insn |= 0x1000U;
4088 }
4089 }
4090 else
4091 gold_unreachable();
4092
4093 // A branch to an undefined weak symbol is turned into a jump to
4094 // the next instruction unless a PLT entry will be created.
4095 // The jump to the next instruction is optimized as a NOP.W for
4096 // Thumb-2 enabled architectures.
4097 const Target_arm<big_endian>* arm_target =
4098 Target_arm<big_endian>::default_target();
4099 if (is_weakly_undefined_without_plt)
4100 {
5c388529 4101 gold_assert(!parameters->options().relocatable());
51938283
DK
4102 if (arm_target->may_use_thumb2_nop())
4103 {
4104 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4105 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4106 }
4107 else
4108 {
4109 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4110 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4111 }
4112 return This::STATUS_OKAY;
4113 }
2e702c99 4114
089d69dc 4115 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4116 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4117
4118 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4119 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4120 if (thumb_bit == 0 && may_use_blx)
bef2b434 4121 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4122
51938283
DK
4123 int32_t branch_offset = branch_target - address;
4124
4125 // We need a stub if the branch offset is too large or if we need
4126 // to switch mode.
51938283 4127 bool thumb2 = arm_target->using_thumb2();
5c388529 4128 if (!parameters->options().relocatable()
bef2b434
ILT
4129 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4130 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4131 || ((thumb_bit == 0)
4132 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4133 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4134 {
2a2b6d42
DK
4135 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4136
51938283 4137 Stub_type stub_type =
2a2b6d42
DK
4138 Reloc_stub::stub_type_for_reloc(r_type, address,
4139 unadjusted_branch_target,
51938283 4140 (thumb_bit != 0));
2a2b6d42 4141
51938283
DK
4142 if (stub_type != arm_stub_none)
4143 {
2ea97941 4144 Stub_table<big_endian>* stub_table =
51938283 4145 object->stub_table(relinfo->data_shndx);
2ea97941 4146 gold_assert(stub_table != NULL);
51938283
DK
4147
4148 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4149 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4150 gold_assert(stub != NULL);
4151 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4152 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4153 if (thumb_bit == 0 && may_use_blx)
bef2b434 4154 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4155 branch_offset = branch_target - address;
4156 }
4157 }
4158
4159 // At this point, if we still need to switch mode, the instruction
4160 // must either be a BLX or a BL that can be converted to a BLX.
4161 if (thumb_bit == 0)
4162 {
4163 gold_assert(may_use_blx
4164 && (r_type == elfcpp::R_ARM_THM_CALL
4165 || r_type == elfcpp::R_ARM_THM_XPC22));
4166 // Make sure this is a BLX.
4167 lower_insn &= ~0x1000U;
4168 }
4169 else
4170 {
4171 // Make sure this is a BL.
4172 lower_insn |= 0x1000U;
4173 }
4174
a2c7281b
DK
4175 // For a BLX instruction, make sure that the relocation is rounded up
4176 // to a word boundary. This follows the semantics of the instruction
4177 // which specifies that bit 1 of the target address will come from bit
4178 // 1 of the base address.
51938283 4179 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4180 gold_assert((branch_offset & 3) == 0);
51938283
DK
4181
4182 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4183 // We use the Thumb-2 encoding, which is safe even if dealing with
4184 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4185 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4186 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4187
4188 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4189 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4190
bef2b434 4191 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4192
51938283 4193 return ((thumb2
bef2b434
ILT
4194 ? Bits<25>::has_overflow32(branch_offset)
4195 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4196 ? This::STATUS_OVERFLOW
4197 : This::STATUS_OKAY);
4198}
4199
4200// Relocate THUMB-2 long conditional branches.
4201// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4202// undefined and we do not use PLT in this relocation. In such a case,
4203// the branch is converted into an NOP.
4204
4205template<bool big_endian>
4206typename Arm_relocate_functions<big_endian>::Status
4207Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4208 unsigned char* view,
089d69dc
DK
4209 const Arm_relobj<big_endian>* object,
4210 const Symbol_value<32>* psymval,
4211 Arm_address address,
4212 Arm_address thumb_bit)
4213{
4214 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4215 Valtype* wv = reinterpret_cast<Valtype*>(view);
4216 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4217 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4218 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4219
4220 Arm_address branch_target = psymval->value(object, addend);
4221 int32_t branch_offset = branch_target - address;
4222
4223 // ??? Should handle interworking? GCC might someday try to
4224 // use this for tail calls.
4225 // FIXME: We do support thumb entry to PLT yet.
4226 if (thumb_bit == 0)
4227 {
4228 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4229 return This::STATUS_BAD_RELOC;
4230 }
4231
4232 // Put RELOCATION back into the insn.
4233 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4234 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4235
4236 // Put the relocated value back in the object file:
4237 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4238 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4239
bef2b434 4240 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4241 ? This::STATUS_OVERFLOW
4242 : This::STATUS_OKAY);
4243}
4244
94cdfcff
DK
4245// Get the GOT section, creating it if necessary.
4246
4247template<bool big_endian>
4a54abbb 4248Arm_output_data_got<big_endian>*
94cdfcff
DK
4249Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4250{
4251 if (this->got_ == NULL)
4252 {
4253 gold_assert(symtab != NULL && layout != NULL);
4254
7b8957f8
DK
4255 // When using -z now, we can treat .got as a relro section.
4256 // Without -z now, it is modified after program startup by lazy
4257 // PLT relocations.
4258 bool is_got_relro = parameters->options().now();
4259 Output_section_order got_order = (is_got_relro
4260 ? ORDER_RELRO_LAST
4261 : ORDER_DATA);
4262
4263 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4264 // .got.plt sections in output. The output .got section contains both
4265 // PLT and non-PLT GOT entries.
4a54abbb 4266 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4267
82742395 4268 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4269 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4270 this->got_, got_order, is_got_relro);
22f0da72 4271
94cdfcff
DK
4272 // The old GNU linker creates a .got.plt section. We just
4273 // create another set of data in the .got section. Note that we
4274 // always create a PLT if we create a GOT, although the PLT
4275 // might be empty.
4276 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4277 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4278 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4279 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4280
4281 // The first three entries are reserved.
4282 this->got_plt_->set_current_data_size(3 * 4);
4283
4284 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4285 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4286 Symbol_table::PREDEFINED,
94cdfcff
DK
4287 this->got_plt_,
4288 0, 0, elfcpp::STT_OBJECT,
4289 elfcpp::STB_LOCAL,
4290 elfcpp::STV_HIDDEN, 0,
4291 false, false);
fa89cc82
HS
4292
4293 // If there are any IRELATIVE relocations, they get GOT entries
4294 // in .got.plt after the jump slot entries.
4295 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4296 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4297 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4298 this->got_irelative_,
4299 got_order, is_got_relro);
4300
94cdfcff
DK
4301 }
4302 return this->got_;
4303}
4304
4305// Get the dynamic reloc section, creating it if necessary.
4306
4307template<bool big_endian>
4308typename Target_arm<big_endian>::Reloc_section*
4309Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4310{
4311 if (this->rel_dyn_ == NULL)
4312 {
4313 gold_assert(layout != NULL);
fa89cc82
HS
4314 // Create both relocation sections in the same place, so as to ensure
4315 // their relative order in the output section.
94cdfcff 4316 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
fa89cc82 4317 this->rel_irelative_ = new Reloc_section(false);
94cdfcff 4318 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4319 elfcpp::SHF_ALLOC, this->rel_dyn_,
4320 ORDER_DYNAMIC_RELOCS, false);
fa89cc82
HS
4321 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4322 elfcpp::SHF_ALLOC, this->rel_irelative_,
4323 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4324 }
4325 return this->rel_dyn_;
4326}
4327
fa89cc82
HS
4328
4329// Get the section to use for IRELATIVE relocs, creating it if necessary. These
4330// go in .rela.dyn, but only after all other dynamic relocations. They need to
4331// follow the other dynamic relocations so that they can refer to global
4332// variables initialized by those relocs.
4333
4334template<bool big_endian>
4335typename Target_arm<big_endian>::Reloc_section*
4336Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4337{
4338 if (this->rel_irelative_ == NULL)
4339 {
4340 // Delegate the creation to rel_dyn_section so as to ensure their order in
4341 // the output section.
4342 this->rel_dyn_section(layout);
4343 gold_assert(this->rel_irelative_ != NULL
4344 && (this->rel_dyn_->output_section()
4345 == this->rel_irelative_->output_section()));
4346 }
4347 return this->rel_irelative_;
4348}
4349
4350
b569affa
DK
4351// Insn_template methods.
4352
4353// Return byte size of an instruction template.
4354
4355size_t
4356Insn_template::size() const
4357{
4358 switch (this->type())
4359 {
4360 case THUMB16_TYPE:
2fb7225c 4361 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4362 return 2;
4363 case ARM_TYPE:
4364 case THUMB32_TYPE:
4365 case DATA_TYPE:
4366 return 4;
4367 default:
4368 gold_unreachable();
4369 }
4370}
4371
4372// Return alignment of an instruction template.
4373
4374unsigned
4375Insn_template::alignment() const
4376{
4377 switch (this->type())
4378 {
4379 case THUMB16_TYPE:
2fb7225c 4380 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4381 case THUMB32_TYPE:
4382 return 2;
4383 case ARM_TYPE:
4384 case DATA_TYPE:
4385 return 4;
4386 default:
4387 gold_unreachable();
4388 }
4389}
4390
4391// Stub_template methods.
4392
4393Stub_template::Stub_template(
2ea97941
ILT
4394 Stub_type type, const Insn_template* insns,
4395 size_t insn_count)
4396 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4397 entry_in_thumb_mode_(false), relocs_()
4398{
2ea97941 4399 off_t offset = 0;
b569affa
DK
4400
4401 // Compute byte size and alignment of stub template.
2ea97941 4402 for (size_t i = 0; i < insn_count; i++)
b569affa 4403 {
2ea97941
ILT
4404 unsigned insn_alignment = insns[i].alignment();
4405 size_t insn_size = insns[i].size();
4406 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4407 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4408 switch (insns[i].type())
b569affa
DK
4409 {
4410 case Insn_template::THUMB16_TYPE:
089d69dc 4411 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4412 if (i == 0)
4413 this->entry_in_thumb_mode_ = true;
4414 break;
4415
4416 case Insn_template::THUMB32_TYPE:
2e702c99 4417 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4418 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4419 if (i == 0)
4420 this->entry_in_thumb_mode_ = true;
2e702c99 4421 break;
b569affa
DK
4422
4423 case Insn_template::ARM_TYPE:
4424 // Handle cases where the target is encoded within the
4425 // instruction.
2ea97941
ILT
4426 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4427 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4428 break;
4429
4430 case Insn_template::DATA_TYPE:
4431 // Entry point cannot be data.
4432 gold_assert(i != 0);
2ea97941 4433 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4434 break;
4435
4436 default:
4437 gold_unreachable();
4438 }
2e702c99 4439 offset += insn_size;
b569affa 4440 }
2ea97941 4441 this->size_ = offset;
b569affa
DK
4442}
4443
bb0d3eb0
DK
4444// Stub methods.
4445
7296d933 4446// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4447
4448template<bool big_endian>
4449void inline
4450Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4451{
4452 const Stub_template* stub_template = this->stub_template();
4453 const Insn_template* insns = stub_template->insns();
4454
4455 // FIXME: We do not handle BE8 encoding yet.
4456 unsigned char* pov = view;
4457 for (size_t i = 0; i < stub_template->insn_count(); i++)
4458 {
4459 switch (insns[i].type())
4460 {
4461 case Insn_template::THUMB16_TYPE:
4462 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4463 break;
4464 case Insn_template::THUMB16_SPECIAL_TYPE:
4465 elfcpp::Swap<16, big_endian>::writeval(
4466 pov,
4467 this->thumb16_special(i));
4468 break;
4469 case Insn_template::THUMB32_TYPE:
4470 {
4471 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4472 uint32_t lo = insns[i].data() & 0xffff;
4473 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4474 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4475 }
2e702c99 4476 break;
bb0d3eb0
DK
4477 case Insn_template::ARM_TYPE:
4478 case Insn_template::DATA_TYPE:
4479 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4480 break;
4481 default:
4482 gold_unreachable();
4483 }
4484 pov += insns[i].size();
4485 }
4486 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4487}
bb0d3eb0 4488
b569affa
DK
4489// Reloc_stub::Key methods.
4490
4491// Dump a Key as a string for debugging.
4492
4493std::string
4494Reloc_stub::Key::name() const
4495{
4496 if (this->r_sym_ == invalid_index)
4497 {
4498 // Global symbol key name
4499 // <stub-type>:<symbol name>:<addend>.
4500 const std::string sym_name = this->u_.symbol->name();
4501 // We need to print two hex number and two colons. So just add 100 bytes
4502 // to the symbol name size.
4503 size_t len = sym_name.size() + 100;
4504 char* buffer = new char[len];
4505 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4506 sym_name.c_str(), this->addend_);
4507 gold_assert(c > 0 && c < static_cast<int>(len));
4508 delete[] buffer;
4509 return std::string(buffer);
4510 }
4511 else
4512 {
4513 // local symbol key name
4514 // <stub-type>:<object>:<r_sym>:<addend>.
4515 const size_t len = 200;
4516 char buffer[len];
4517 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4518 this->u_.relobj, this->r_sym_, this->addend_);
4519 gold_assert(c > 0 && c < static_cast<int>(len));
4520 return std::string(buffer);
4521 }
4522}
4523
4524// Reloc_stub methods.
4525
4526// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4527// LOCATION to DESTINATION.
4528// This code is based on the arm_type_of_stub function in
9b547ce6 4529// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4530// class simple.
4531
4532Stub_type
4533Reloc_stub::stub_type_for_reloc(
4534 unsigned int r_type,
4535 Arm_address location,
4536 Arm_address destination,
4537 bool target_is_thumb)
4538{
4539 Stub_type stub_type = arm_stub_none;
4540
4541 // This is a bit ugly but we want to avoid using a templated class for
4542 // big and little endianities.
4543 bool may_use_blx;
cdb06167 4544 bool should_force_pic_veneer = parameters->options().pic_veneer();
b569affa
DK
4545 bool thumb2;
4546 bool thumb_only;
4547 if (parameters->target().is_big_endian())
4548 {
43d12afe 4549 const Target_arm<true>* big_endian_target =
b569affa 4550 Target_arm<true>::default_target();
cd6eab1c 4551 may_use_blx = big_endian_target->may_use_v5t_interworking();
cdb06167 4552 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
43d12afe
DK
4553 thumb2 = big_endian_target->using_thumb2();
4554 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4555 }
4556 else
4557 {
43d12afe 4558 const Target_arm<false>* little_endian_target =
b569affa 4559 Target_arm<false>::default_target();
cd6eab1c 4560 may_use_blx = little_endian_target->may_use_v5t_interworking();
cdb06167
HS
4561 should_force_pic_veneer |=
4562 little_endian_target->should_force_pic_veneer();
43d12afe
DK
4563 thumb2 = little_endian_target->using_thumb2();
4564 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4565 }
4566
a2c7281b 4567 int64_t branch_offset;
90cff06f
DK
4568 bool output_is_position_independent =
4569 parameters->options().output_is_position_independent();
b569affa
DK
4570 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4571 {
a2c7281b
DK
4572 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4573 // base address (instruction address + 4).
4574 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4575 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4576 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4577
b569affa
DK
4578 // Handle cases where:
4579 // - this call goes too far (different Thumb/Thumb2 max
4580 // distance)
4581 // - it's a Thumb->Arm call and blx is not available, or it's a
4582 // Thumb->Arm branch (not bl). A stub is needed in this case.
4583 if ((!thumb2
4584 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4585 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4586 || (thumb2
4587 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4588 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4589 || ((!target_is_thumb)
4590 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4591 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4592 {
4593 if (target_is_thumb)
4594 {
4595 // Thumb to thumb.
4596 if (!thumb_only)
4597 {
90cff06f 4598 stub_type = (output_is_position_independent
51938283 4599 || should_force_pic_veneer)
b569affa
DK
4600 // PIC stubs.
4601 ? ((may_use_blx
4602 && (r_type == elfcpp::R_ARM_THM_CALL))
4603 // V5T and above. Stub starts with ARM code, so
4604 // we must be able to switch mode before
4605 // reaching it, which is only possible for 'bl'
4606 // (ie R_ARM_THM_CALL relocation).
4607 ? arm_stub_long_branch_any_thumb_pic
4608 // On V4T, use Thumb code only.
4609 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4610
4611 // non-PIC stubs.
4612 : ((may_use_blx
4613 && (r_type == elfcpp::R_ARM_THM_CALL))
4614 ? arm_stub_long_branch_any_any // V5T and above.
4615 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4616 }
4617 else
4618 {
90cff06f 4619 stub_type = (output_is_position_independent
51938283 4620 || should_force_pic_veneer)
b569affa
DK
4621 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4622 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4623 }
4624 }
4625 else
4626 {
4627 // Thumb to arm.
2e702c99 4628
b569affa
DK
4629 // FIXME: We should check that the input section is from an
4630 // object that has interwork enabled.
4631
90cff06f 4632 stub_type = (output_is_position_independent
b569affa
DK
4633 || should_force_pic_veneer)
4634 // PIC stubs.
4635 ? ((may_use_blx
4636 && (r_type == elfcpp::R_ARM_THM_CALL))
4637 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4638 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4639
4640 // non-PIC stubs.
4641 : ((may_use_blx
4642 && (r_type == elfcpp::R_ARM_THM_CALL))
4643 ? arm_stub_long_branch_any_any // V5T and above.
4644 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4645
4646 // Handle v4t short branches.
4647 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4648 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4649 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4650 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4651 }
4652 }
4653 }
4654 else if (r_type == elfcpp::R_ARM_CALL
4655 || r_type == elfcpp::R_ARM_JUMP24
4656 || r_type == elfcpp::R_ARM_PLT32)
4657 {
a2c7281b 4658 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4659 if (target_is_thumb)
4660 {
4661 // Arm to thumb.
4662
4663 // FIXME: We should check that the input section is from an
4664 // object that has interwork enabled.
4665
4666 // We have an extra 2-bytes reach because of
4667 // the mode change (bit 24 (H) of BLX encoding).
4668 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4669 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4670 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4671 || (r_type == elfcpp::R_ARM_JUMP24)
4672 || (r_type == elfcpp::R_ARM_PLT32))
4673 {
90cff06f 4674 stub_type = (output_is_position_independent
b569affa
DK
4675 || should_force_pic_veneer)
4676 // PIC stubs.
4677 ? (may_use_blx
4678 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4679 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4680
4681 // non-PIC stubs.
4682 : (may_use_blx
4683 ? arm_stub_long_branch_any_any // V5T and above.
4684 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4685 }
4686 }
4687 else
4688 {
4689 // Arm to arm.
4690 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4691 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4692 {
90cff06f 4693 stub_type = (output_is_position_independent
b569affa
DK
4694 || should_force_pic_veneer)
4695 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4696 : arm_stub_long_branch_any_any; /// non-PIC.
4697 }
4698 }
4699 }
4700
4701 return stub_type;
4702}
4703
bb0d3eb0 4704// Cortex_a8_stub methods.
b569affa 4705
bb0d3eb0
DK
4706// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4707// I is the position of the instruction template in the stub template.
b569affa 4708
bb0d3eb0
DK
4709uint16_t
4710Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4711{
bb0d3eb0
DK
4712 // The only use of this is to copy condition code from a conditional
4713 // branch being worked around to the corresponding conditional branch in
4714 // to the stub.
4715 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4716 && i == 0);
4717 uint16_t data = this->stub_template()->insns()[i].data();
4718 gold_assert((data & 0xff00U) == 0xd000U);
4719 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4720 return data;
b569affa
DK
4721}
4722
4723// Stub_factory methods.
4724
4725Stub_factory::Stub_factory()
4726{
4727 // The instruction template sequences are declared as static
4728 // objects and initialized first time the constructor runs.
2e702c99 4729
b569affa
DK
4730 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4731 // to reach the stub if necessary.
4732 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4733 {
4734 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4735 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4736 // dcd R_ARM_ABS32(X)
b569affa 4737 };
2e702c99 4738
b569affa
DK
4739 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4740 // available.
4741 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4742 {
4743 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4744 Insn_template::arm_insn(0xe12fff1c), // bx ip
4745 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4746 // dcd R_ARM_ABS32(X)
b569affa 4747 };
2e702c99 4748
b569affa
DK
4749 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4750 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4751 {
4752 Insn_template::thumb16_insn(0xb401), // push {r0}
4753 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4754 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4755 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4756 Insn_template::thumb16_insn(0x4760), // bx ip
4757 Insn_template::thumb16_insn(0xbf00), // nop
4758 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4759 // dcd R_ARM_ABS32(X)
b569affa 4760 };
2e702c99 4761
b569affa
DK
4762 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4763 // allowed.
4764 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4765 {
4766 Insn_template::thumb16_insn(0x4778), // bx pc
4767 Insn_template::thumb16_insn(0x46c0), // nop
4768 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4769 Insn_template::arm_insn(0xe12fff1c), // bx ip
4770 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4771 // dcd R_ARM_ABS32(X)
b569affa 4772 };
2e702c99 4773
b569affa
DK
4774 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4775 // available.
4776 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4777 {
4778 Insn_template::thumb16_insn(0x4778), // bx pc
4779 Insn_template::thumb16_insn(0x46c0), // nop
4780 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4781 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4782 // dcd R_ARM_ABS32(X)
b569affa 4783 };
2e702c99 4784
b569affa
DK
4785 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4786 // one, when the destination is close enough.
4787 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4788 {
4789 Insn_template::thumb16_insn(0x4778), // bx pc
4790 Insn_template::thumb16_insn(0x46c0), // nop
4791 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4792 };
2e702c99 4793
b569affa
DK
4794 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4795 // blx to reach the stub if necessary.
4796 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4797 {
4798 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4799 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4800 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4801 // dcd R_ARM_REL32(X-4)
b569affa 4802 };
2e702c99 4803
b569affa
DK
4804 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4805 // blx to reach the stub if necessary. We can not add into pc;
4806 // it is not guaranteed to mode switch (different in ARMv6 and
4807 // ARMv7).
4808 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4809 {
4810 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4811 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4812 Insn_template::arm_insn(0xe12fff1c), // bx ip
4813 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4814 // dcd R_ARM_REL32(X)
b569affa 4815 };
2e702c99 4816
b569affa
DK
4817 // V4T ARM -> ARM long branch stub, PIC.
4818 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4819 {
4820 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4821 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4822 Insn_template::arm_insn(0xe12fff1c), // bx ip
4823 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4824 // dcd R_ARM_REL32(X)
b569affa 4825 };
2e702c99 4826
b569affa
DK
4827 // V4T Thumb -> ARM long branch stub, PIC.
4828 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4829 {
4830 Insn_template::thumb16_insn(0x4778), // bx pc
4831 Insn_template::thumb16_insn(0x46c0), // nop
4832 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4833 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4834 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4835 // dcd R_ARM_REL32(X)
b569affa 4836 };
2e702c99 4837
b569affa
DK
4838 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4839 // architectures.
4840 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4841 {
4842 Insn_template::thumb16_insn(0xb401), // push {r0}
4843 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4844 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4845 Insn_template::thumb16_insn(0x4484), // add ip, r0
4846 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4847 Insn_template::thumb16_insn(0x4760), // bx ip
4848 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4849 // dcd R_ARM_REL32(X)
b569affa 4850 };
2e702c99 4851
b569affa
DK
4852 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4853 // allowed.
4854 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4855 {
4856 Insn_template::thumb16_insn(0x4778), // bx pc
4857 Insn_template::thumb16_insn(0x46c0), // nop
4858 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4859 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4860 Insn_template::arm_insn(0xe12fff1c), // bx ip
4861 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4862 // dcd R_ARM_REL32(X)
b569affa 4863 };
2e702c99 4864
b569affa 4865 // Cortex-A8 erratum-workaround stubs.
2e702c99 4866
b569affa
DK
4867 // Stub used for conditional branches (which may be beyond +/-1MB away,
4868 // so we can't use a conditional branch to reach this stub).
2e702c99 4869
b569affa
DK
4870 // original code:
4871 //
4872 // b<cond> X
4873 // after:
4874 //
4875 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4876 {
4877 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4878 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4879 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4880 // b.w X
b569affa 4881 };
2e702c99 4882
b569affa 4883 // Stub used for b.w and bl.w instructions.
2e702c99 4884
b569affa
DK
4885 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4886 {
4887 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4888 };
2e702c99 4889
b569affa
DK
4890 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4891 {
4892 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4893 };
2e702c99 4894
b569affa
DK
4895 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4896 // instruction (which switches to ARM mode) to point to this stub. Jump to
4897 // the real destination using an ARM-mode branch.
bb0d3eb0 4898 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4899 {
4900 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4901 };
4902
a2162063
ILT
4903 // Stub used to provide an interworking for R_ARM_V4BX relocation
4904 // (bx r[n] instruction).
4905 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4906 {
4907 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4908 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4909 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4910 };
4911
b569affa
DK
4912 // Fill in the stub template look-up table. Stub templates are constructed
4913 // per instance of Stub_factory for fast look-up without locking
4914 // in a thread-enabled environment.
4915
4916 this->stub_templates_[arm_stub_none] =
4917 new Stub_template(arm_stub_none, NULL, 0);
4918
4919#define DEF_STUB(x) \
4920 do \
4921 { \
4922 size_t array_size \
4923 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4924 Stub_type type = arm_stub_##x; \
4925 this->stub_templates_[type] = \
4926 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4927 } \
4928 while (0);
4929
4930 DEF_STUBS
4931#undef DEF_STUB
4932}
4933
56ee5e00
DK
4934// Stub_table methods.
4935
9b547ce6 4936// Remove all Cortex-A8 stub.
56ee5e00
DK
4937
4938template<bool big_endian>
4939void
2fb7225c
DK
4940Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4941{
4942 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4943 p != this->cortex_a8_stubs_.end();
4944 ++p)
4945 delete p->second;
4946 this->cortex_a8_stubs_.clear();
4947}
4948
4949// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4950
4951template<bool big_endian>
4952void
4953Stub_table<big_endian>::relocate_stub(
4954 Stub* stub,
4955 const Relocate_info<32, big_endian>* relinfo,
4956 Target_arm<big_endian>* arm_target,
4957 Output_section* output_section,
4958 unsigned char* view,
4959 Arm_address address,
4960 section_size_type view_size)
56ee5e00 4961{
2ea97941 4962 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4963 if (stub_template->reloc_count() != 0)
4964 {
4965 // Adjust view to cover the stub only.
4966 section_size_type offset = stub->offset();
4967 section_size_type stub_size = stub_template->size();
4968 gold_assert(offset + stub_size <= view_size);
4969
4970 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4971 address + offset, stub_size);
4972 }
56ee5e00
DK
4973}
4974
2fb7225c
DK
4975// Relocate all stubs in this stub table.
4976
56ee5e00
DK
4977template<bool big_endian>
4978void
4979Stub_table<big_endian>::relocate_stubs(
4980 const Relocate_info<32, big_endian>* relinfo,
4981 Target_arm<big_endian>* arm_target,
2ea97941 4982 Output_section* output_section,
56ee5e00 4983 unsigned char* view,
2ea97941 4984 Arm_address address,
56ee5e00
DK
4985 section_size_type view_size)
4986{
4987 // If we are passed a view bigger than the stub table's. we need to
4988 // adjust the view.
2ea97941 4989 gold_assert(address == this->address()
56ee5e00
DK
4990 && (view_size
4991 == static_cast<section_size_type>(this->data_size())));
4992
2fb7225c
DK
4993 // Relocate all relocation stubs.
4994 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4995 p != this->reloc_stubs_.end();
4996 ++p)
4997 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4998 address, view_size);
4999
5000 // Relocate all Cortex-A8 stubs.
5001 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5002 p != this->cortex_a8_stubs_.end();
5003 ++p)
5004 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5005 address, view_size);
a2162063
ILT
5006
5007 // Relocate all ARM V4BX stubs.
5008 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5009 p != this->arm_v4bx_stubs_.end();
5010 ++p)
5011 {
5012 if (*p != NULL)
5013 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5014 address, view_size);
5015 }
2fb7225c
DK
5016}
5017
5018// Write out the stubs to file.
5019
5020template<bool big_endian>
5021void
5022Stub_table<big_endian>::do_write(Output_file* of)
5023{
5024 off_t offset = this->offset();
5025 const section_size_type oview_size =
5026 convert_to_section_size_type(this->data_size());
5027 unsigned char* const oview = of->get_output_view(offset, oview_size);
5028
5029 // Write relocation stubs.
56ee5e00
DK
5030 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5031 p != this->reloc_stubs_.end();
5032 ++p)
5033 {
5034 Reloc_stub* stub = p->second;
2fb7225c
DK
5035 Arm_address address = this->address() + stub->offset();
5036 gold_assert(address
5037 == align_address(address,
5038 stub->stub_template()->alignment()));
5039 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5040 big_endian);
56ee5e00 5041 }
2fb7225c
DK
5042
5043 // Write Cortex-A8 stubs.
5044 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5045 p != this->cortex_a8_stubs_.end();
5046 ++p)
5047 {
5048 Cortex_a8_stub* stub = p->second;
5049 Arm_address address = this->address() + stub->offset();
5050 gold_assert(address
5051 == align_address(address,
5052 stub->stub_template()->alignment()));
5053 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5054 big_endian);
5055 }
5056
a2162063
ILT
5057 // Write ARM V4BX relocation stubs.
5058 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5059 p != this->arm_v4bx_stubs_.end();
5060 ++p)
5061 {
5062 if (*p == NULL)
5063 continue;
5064
5065 Arm_address address = this->address() + (*p)->offset();
5066 gold_assert(address
5067 == align_address(address,
5068 (*p)->stub_template()->alignment()));
5069 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5070 big_endian);
5071 }
5072
2fb7225c 5073 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5074}
5075
2fb7225c
DK
5076// Update the data size and address alignment of the stub table at the end
5077// of a relaxation pass. Return true if either the data size or the
5078// alignment changed in this relaxation pass.
5079
5080template<bool big_endian>
5081bool
5082Stub_table<big_endian>::update_data_size_and_addralign()
5083{
2fb7225c 5084 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5085 off_t size = this->reloc_stubs_size_;
5086 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5087
5088 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5089 p != this->cortex_a8_stubs_.end();
5090 ++p)
5091 {
5092 const Stub_template* stub_template = p->second->stub_template();
5093 addralign = std::max(addralign, stub_template->alignment());
5094 size = (align_address(size, stub_template->alignment())
5095 + stub_template->size());
5096 }
5097
a2162063
ILT
5098 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5099 p != this->arm_v4bx_stubs_.end();
5100 ++p)
5101 {
5102 if (*p == NULL)
5103 continue;
5104
5105 const Stub_template* stub_template = (*p)->stub_template();
5106 addralign = std::max(addralign, stub_template->alignment());
5107 size = (align_address(size, stub_template->alignment())
5108 + stub_template->size());
5109 }
5110
2fb7225c
DK
5111 // Check if either data size or alignment changed in this pass.
5112 // Update prev_data_size_ and prev_addralign_. These will be used
5113 // as the current data size and address alignment for the next pass.
5114 bool changed = size != this->prev_data_size_;
2e702c99 5115 this->prev_data_size_ = size;
2fb7225c
DK
5116
5117 if (addralign != this->prev_addralign_)
5118 changed = true;
5119 this->prev_addralign_ = addralign;
5120
5121 return changed;
5122}
5123
5124// Finalize the stubs. This sets the offsets of the stubs within the stub
5125// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5126
5127template<bool big_endian>
5128void
2fb7225c 5129Stub_table<big_endian>::finalize_stubs()
56ee5e00 5130{
d099120c 5131 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5132 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5133 p != this->cortex_a8_stubs_.end();
5134 ++p)
5135 {
5136 Cortex_a8_stub* stub = p->second;
5137 const Stub_template* stub_template = stub->stub_template();
5138 uint64_t stub_addralign = stub_template->alignment();
5139 off = align_address(off, stub_addralign);
5140 stub->set_offset(off);
5141 off += stub_template->size();
5142
5143 // Mark input section so that we can determine later if a code section
5144 // needs the Cortex-A8 workaround quickly.
5145 Arm_relobj<big_endian>* arm_relobj =
5146 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5147 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5148 }
5149
a2162063
ILT
5150 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5151 p != this->arm_v4bx_stubs_.end();
5152 ++p)
5153 {
5154 if (*p == NULL)
5155 continue;
5156
5157 const Stub_template* stub_template = (*p)->stub_template();
5158 uint64_t stub_addralign = stub_template->alignment();
5159 off = align_address(off, stub_addralign);
5160 (*p)->set_offset(off);
5161 off += stub_template->size();
5162 }
5163
2fb7225c 5164 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5165}
5166
2fb7225c
DK
5167// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5168// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5169// of the address range seen by the linker.
56ee5e00
DK
5170
5171template<bool big_endian>
5172void
2fb7225c
DK
5173Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5174 Target_arm<big_endian>* arm_target,
5175 unsigned char* view,
5176 Arm_address view_address,
5177 section_size_type view_size)
56ee5e00 5178{
2fb7225c
DK
5179 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5180 for (Cortex_a8_stub_list::const_iterator p =
5181 this->cortex_a8_stubs_.lower_bound(view_address);
5182 ((p != this->cortex_a8_stubs_.end())
5183 && (p->first < (view_address + view_size)));
5184 ++p)
56ee5e00 5185 {
2fb7225c
DK
5186 // We do not store the THUMB bit in the LSB of either the branch address
5187 // or the stub offset. There is no need to strip the LSB.
5188 Arm_address branch_address = p->first;
5189 const Cortex_a8_stub* stub = p->second;
5190 Arm_address stub_address = this->address() + stub->offset();
5191
5192 // Offset of the branch instruction relative to this view.
5193 section_size_type offset =
5194 convert_to_section_size_type(branch_address - view_address);
5195 gold_assert((offset + 4) <= view_size);
5196
5197 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5198 view + offset, branch_address);
5199 }
56ee5e00
DK
5200}
5201
10ad9fe5
DK
5202// Arm_input_section methods.
5203
5204// Initialize an Arm_input_section.
5205
5206template<bool big_endian>
5207void
5208Arm_input_section<big_endian>::init()
5209{
2ea97941
ILT
5210 Relobj* relobj = this->relobj();
5211 unsigned int shndx = this->shndx();
10ad9fe5 5212
f625ae50
DK
5213 // We have to cache original size, alignment and contents to avoid locking
5214 // the original file.
6625d24e
DK
5215 this->original_addralign_ =
5216 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5217
5218 // This is not efficient but we expect only a small number of relaxed
5219 // input sections for stubs.
5220 section_size_type section_size;
5221 const unsigned char* section_contents =
5222 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5223 this->original_size_ =
5224 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5225
f625ae50
DK
5226 gold_assert(this->original_contents_ == NULL);
5227 this->original_contents_ = new unsigned char[section_size];
5228 memcpy(this->original_contents_, section_contents, section_size);
5229
10ad9fe5
DK
5230 // We want to make this look like the original input section after
5231 // output sections are finalized.
2ea97941
ILT
5232 Output_section* os = relobj->output_section(shndx);
5233 off_t offset = relobj->output_section_offset(shndx);
5234 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5235 this->set_address(os->address() + offset);
5236 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5237
5238 this->set_current_data_size(this->original_size_);
5239 this->finalize_data_size();
5240}
5241
5242template<bool big_endian>
5243void
5244Arm_input_section<big_endian>::do_write(Output_file* of)
5245{
5246 // We have to write out the original section content.
f625ae50
DK
5247 gold_assert(this->original_contents_ != NULL);
5248 of->write(this->offset(), this->original_contents_,
2e702c99 5249 this->original_size_);
10ad9fe5
DK
5250
5251 // If this owns a stub table and it is not empty, write it.
5252 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5253 this->stub_table_->write(of);
5254}
5255
5256// Finalize data size.
5257
5258template<bool big_endian>
5259void
5260Arm_input_section<big_endian>::set_final_data_size()
5261{
153e7da4
DK
5262 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5263
10ad9fe5
DK
5264 if (this->is_stub_table_owner())
5265 {
6625d24e 5266 this->stub_table_->finalize_data_size();
153e7da4 5267 off = align_address(off, this->stub_table_->addralign());
153e7da4 5268 off += this->stub_table_->data_size();
10ad9fe5 5269 }
153e7da4 5270 this->set_data_size(off);
10ad9fe5
DK
5271}
5272
5273// Reset address and file offset.
5274
5275template<bool big_endian>
5276void
5277Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5278{
5279 // Size of the original input section contents.
5280 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5281
5282 // If this is a stub table owner, account for the stub table size.
5283 if (this->is_stub_table_owner())
5284 {
2ea97941 5285 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5286
5287 // Reset the stub table's address and file offset. The
5288 // current data size for child will be updated after that.
5289 stub_table_->reset_address_and_file_offset();
5290 off = align_address(off, stub_table_->addralign());
2ea97941 5291 off += stub_table->current_data_size();
10ad9fe5
DK
5292 }
5293
5294 this->set_current_data_size(off);
5295}
5296
af2cdeae
DK
5297// Arm_exidx_cantunwind methods.
5298
7296d933 5299// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5300
5301template<bool big_endian>
5302void
5303Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5304{
5305 off_t offset = this->offset();
5306 const section_size_type oview_size = 8;
5307 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5308
af2cdeae
DK
5309 Output_section* os = this->relobj_->output_section(this->shndx_);
5310 gold_assert(os != NULL);
5311
5312 Arm_relobj<big_endian>* arm_relobj =
5313 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5314 Arm_address output_offset =
5315 arm_relobj->get_output_section_offset(this->shndx_);
5316 Arm_address section_start;
f625ae50
DK
5317 section_size_type section_size;
5318
5319 // Find out the end of the text section referred by this.
7296d933 5320 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5321 {
5322 section_start = os->address() + output_offset;
5323 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5324 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5325 gold_assert(exidx_input_section != NULL);
5326 section_size =
5327 convert_to_section_size_type(exidx_input_section->text_size());
5328 }
af2cdeae
DK
5329 else
5330 {
5331 // Currently this only happens for a relaxed section.
5332 const Output_relaxed_input_section* poris =
5333 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5334 gold_assert(poris != NULL);
5335 section_start = poris->address();
f625ae50 5336 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5337 }
5338
5339 // We always append this to the end of an EXIDX section.
f625ae50 5340 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5341
5342 // Write out the entry. The first word either points to the beginning
5343 // or after the end of a text section. The second word is the special
5344 // EXIDX_CANTUNWIND value.
e7eca48c 5345 uint32_t prel31_offset = output_address - this->address();
bef2b434 5346 if (Bits<31>::has_overflow32(offset))
e7eca48c 5347 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5348 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5349 prel31_offset & 0x7fffffffU);
5350 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5351 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5352
5353 of->write_output_view(this->offset(), oview_size, oview);
5354}
5355
5356// Arm_exidx_merged_section methods.
5357
5358// Constructor for Arm_exidx_merged_section.
5359// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5360// SECTION_OFFSET_MAP points to a section offset map describing how
5361// parts of the input section are mapped to output. DELETED_BYTES is
5362// the number of bytes deleted from the EXIDX input section.
5363
5364Arm_exidx_merged_section::Arm_exidx_merged_section(
5365 const Arm_exidx_input_section& exidx_input_section,
5366 const Arm_exidx_section_offset_map& section_offset_map,
5367 uint32_t deleted_bytes)
5368 : Output_relaxed_input_section(exidx_input_section.relobj(),
5369 exidx_input_section.shndx(),
5370 exidx_input_section.addralign()),
5371 exidx_input_section_(exidx_input_section),
5372 section_offset_map_(section_offset_map)
5373{
f625ae50
DK
5374 // If we retain or discard the whole EXIDX input section, we would
5375 // not be here.
5376 gold_assert(deleted_bytes != 0
5377 && deleted_bytes != this->exidx_input_section_.size());
5378
af2cdeae 5379 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5380 uint32_t size = exidx_input_section.size() - deleted_bytes;
5381 this->set_data_size(size);
af2cdeae 5382 this->fix_data_size();
f625ae50
DK
5383
5384 // Allocate buffer for section contents and build contents.
5385 this->section_contents_ = new unsigned char[size];
5386}
5387
5388// Build the contents of a merged EXIDX output section.
5389
5390void
5391Arm_exidx_merged_section::build_contents(
5392 const unsigned char* original_contents,
5393 section_size_type original_size)
5394{
5395 // Go over spans of input offsets and write only those that are not
5396 // discarded.
5397 section_offset_type in_start = 0;
5398 section_offset_type out_start = 0;
5399 section_offset_type in_max =
5400 convert_types<section_offset_type>(original_size);
5401 section_offset_type out_max =
5402 convert_types<section_offset_type>(this->data_size());
5403 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5404 this->section_offset_map_.begin();
f625ae50
DK
5405 p != this->section_offset_map_.end();
5406 ++p)
5407 {
5408 section_offset_type in_end = p->first;
5409 gold_assert(in_end >= in_start);
5410 section_offset_type out_end = p->second;
5411 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5412 if (out_end != -1)
5413 {
5414 size_t out_chunk_size =
5415 convert_types<size_t>(out_end - out_start + 1);
5416
5417 gold_assert(out_chunk_size == in_chunk_size
5418 && in_end < in_max && out_end < out_max);
5419
5420 memcpy(this->section_contents_ + out_start,
5421 original_contents + in_start,
5422 out_chunk_size);
5423 out_start += out_chunk_size;
5424 }
5425 in_start += in_chunk_size;
5426 }
af2cdeae
DK
5427}
5428
5429// Given an input OBJECT, an input section index SHNDX within that
5430// object, and an OFFSET relative to the start of that input
5431// section, return whether or not the corresponding offset within
5432// the output section is known. If this function returns true, it
5433// sets *POUTPUT to the output offset. The value -1 indicates that
5434// this input offset is being discarded.
5435
5436bool
5437Arm_exidx_merged_section::do_output_offset(
5438 const Relobj* relobj,
5439 unsigned int shndx,
5440 section_offset_type offset,
5441 section_offset_type* poutput) const
5442{
5443 // We only handle offsets for the original EXIDX input section.
5444 if (relobj != this->exidx_input_section_.relobj()
5445 || shndx != this->exidx_input_section_.shndx())
5446 return false;
5447
c7f3c371
DK
5448 section_offset_type section_size =
5449 convert_types<section_offset_type>(this->exidx_input_section_.size());
5450 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5451 // Input offset is out of valid range.
5452 *poutput = -1;
5453 else
5454 {
5455 // We need to look up the section offset map to determine the output
5456 // offset. Find the reference point in map that is first offset
5457 // bigger than or equal to this offset.
5458 Arm_exidx_section_offset_map::const_iterator p =
5459 this->section_offset_map_.lower_bound(offset);
5460
5461 // The section offset maps are build such that this should not happen if
5462 // input offset is in the valid range.
5463 gold_assert(p != this->section_offset_map_.end());
5464
5465 // We need to check if this is dropped.
5466 section_offset_type ref = p->first;
5467 section_offset_type mapped_ref = p->second;
5468
5469 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5470 // Offset is present in output.
5471 *poutput = mapped_ref + (offset - ref);
5472 else
5473 // Offset is discarded owing to EXIDX entry merging.
5474 *poutput = -1;
5475 }
2e702c99 5476
af2cdeae
DK
5477 return true;
5478}
5479
5480// Write this to output file OF.
5481
5482void
5483Arm_exidx_merged_section::do_write(Output_file* of)
5484{
af2cdeae
DK
5485 off_t offset = this->offset();
5486 const section_size_type oview_size = this->data_size();
5487 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5488
af2cdeae
DK
5489 Output_section* os = this->relobj()->output_section(this->shndx());
5490 gold_assert(os != NULL);
5491
f625ae50 5492 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5493 of->write_output_view(this->offset(), oview_size, oview);
5494}
5495
80d0d023
DK
5496// Arm_exidx_fixup methods.
5497
5498// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5499// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5500// points to the end of the last seen EXIDX section.
5501
5502void
5503Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5504{
5505 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5506 && this->last_input_section_ != NULL)
5507 {
5508 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5509 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5510 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5511 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5512 this->exidx_output_section_->add_output_section_data(cantunwind);
5513 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5514 }
5515}
5516
5517// Process an EXIDX section entry in input. Return whether this entry
5518// can be deleted in the output. SECOND_WORD in the second word of the
5519// EXIDX entry.
5520
5521bool
5522Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5523{
5524 bool delete_entry;
5525 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5526 {
5527 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5528 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5529 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5530 }
5531 else if ((second_word & 0x80000000) != 0)
5532 {
5533 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5534 delete_entry = (merge_exidx_entries_
5535 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5536 && this->last_inlined_entry_ == second_word);
5537 this->last_unwind_type_ = UT_INLINED_ENTRY;
5538 this->last_inlined_entry_ = second_word;
5539 }
5540 else
5541 {
5542 // Normal table entry. In theory we could merge these too,
5543 // but duplicate entries are likely to be much less common.
5544 delete_entry = false;
5545 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5546 }
5547 return delete_entry;
5548}
5549
5550// Update the current section offset map during EXIDX section fix-up.
5551// If there is no map, create one. INPUT_OFFSET is the offset of a
5552// reference point, DELETED_BYTES is the number of deleted by in the
5553// section so far. If DELETE_ENTRY is true, the reference point and
5554// all offsets after the previous reference point are discarded.
5555
5556void
5557Arm_exidx_fixup::update_offset_map(
5558 section_offset_type input_offset,
5559 section_size_type deleted_bytes,
5560 bool delete_entry)
5561{
5562 if (this->section_offset_map_ == NULL)
5563 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5564 section_offset_type output_offset;
5565 if (delete_entry)
5566 output_offset = Arm_exidx_input_section::invalid_offset;
5567 else
5568 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5569 (*this->section_offset_map_)[input_offset] = output_offset;
5570}
5571
5572// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5573// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5574// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5575// If some entries are merged, also store a pointer to a newly created
5576// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5577// owns the map and is responsible for releasing it after use.
80d0d023
DK
5578
5579template<bool big_endian>
5580uint32_t
5581Arm_exidx_fixup::process_exidx_section(
5582 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5583 const unsigned char* section_contents,
5584 section_size_type section_size,
80d0d023
DK
5585 Arm_exidx_section_offset_map** psection_offset_map)
5586{
5587 Relobj* relobj = exidx_input_section->relobj();
5588 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5589
5590 if ((section_size % 8) != 0)
5591 {
5592 // Something is wrong with this section. Better not touch it.
5593 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5594 relobj->name().c_str(), shndx);
5595 this->last_input_section_ = exidx_input_section;
5596 this->last_unwind_type_ = UT_NONE;
5597 return 0;
5598 }
2e702c99 5599
80d0d023
DK
5600 uint32_t deleted_bytes = 0;
5601 bool prev_delete_entry = false;
5602 gold_assert(this->section_offset_map_ == NULL);
5603
5604 for (section_size_type i = 0; i < section_size; i += 8)
5605 {
5606 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5607 const Valtype* wv =
5608 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5609 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5610
5611 bool delete_entry = this->process_exidx_entry(second_word);
5612
5613 // Entry deletion causes changes in output offsets. We use a std::map
5614 // to record these. And entry (x, y) means input offset x
5615 // is mapped to output offset y. If y is invalid_offset, then x is
5616 // dropped in the output. Because of the way std::map::lower_bound
5617 // works, we record the last offset in a region w.r.t to keeping or
5618 // dropping. If there is no entry (x0, y0) for an input offset x0,
5619 // the output offset y0 of it is determined by the output offset y1 of
5620 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5621 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5622 // y0 is also -1.
5623 if (delete_entry != prev_delete_entry && i != 0)
5624 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5625
5626 // Update total deleted bytes for this entry.
5627 if (delete_entry)
5628 deleted_bytes += 8;
5629
5630 prev_delete_entry = delete_entry;
5631 }
2e702c99 5632
80d0d023
DK
5633 // If section offset map is not NULL, make an entry for the end of
5634 // section.
5635 if (this->section_offset_map_ != NULL)
5636 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5637
5638 *psection_offset_map = this->section_offset_map_;
5639 this->section_offset_map_ = NULL;
5640 this->last_input_section_ = exidx_input_section;
2e702c99 5641
546c7457
DK
5642 // Set the first output text section so that we can link the EXIDX output
5643 // section to it. Ignore any EXIDX input section that is completely merged.
5644 if (this->first_output_text_section_ == NULL
5645 && deleted_bytes != section_size)
5646 {
5647 unsigned int link = exidx_input_section->link();
5648 Output_section* os = relobj->output_section(link);
5649 gold_assert(os != NULL);
5650 this->first_output_text_section_ = os;
5651 }
5652
80d0d023
DK
5653 return deleted_bytes;
5654}
5655
07f508a2
DK
5656// Arm_output_section methods.
5657
5658// Create a stub group for input sections from BEGIN to END. OWNER
5659// points to the input section to be the owner a new stub table.
5660
5661template<bool big_endian>
5662void
5663Arm_output_section<big_endian>::create_stub_group(
5664 Input_section_list::const_iterator begin,
5665 Input_section_list::const_iterator end,
5666 Input_section_list::const_iterator owner,
5667 Target_arm<big_endian>* target,
f625ae50
DK
5668 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5669 const Task* task)
07f508a2 5670{
2b328d4e
DK
5671 // We use a different kind of relaxed section in an EXIDX section.
5672 // The static casting from Output_relaxed_input_section to
5673 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5674 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5675 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5676
07f508a2
DK
5677 // Currently we convert ordinary input sections into relaxed sections only
5678 // at this point but we may want to support creating relaxed input section
5679 // very early. So we check here to see if owner is already a relaxed
5680 // section.
2e702c99 5681
07f508a2
DK
5682 Arm_input_section<big_endian>* arm_input_section;
5683 if (owner->is_relaxed_input_section())
5684 {
5685 arm_input_section =
5686 Arm_input_section<big_endian>::as_arm_input_section(
5687 owner->relaxed_input_section());
5688 }
5689 else
5690 {
5691 gold_assert(owner->is_input_section());
f625ae50
DK
5692 // Create a new relaxed input section. We need to lock the original
5693 // file.
5694 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5695 arm_input_section =
5696 target->new_arm_input_section(owner->relobj(), owner->shndx());
5697 new_relaxed_sections->push_back(arm_input_section);
5698 }
5699
5700 // Create a stub table.
2ea97941 5701 Stub_table<big_endian>* stub_table =
07f508a2
DK
5702 target->new_stub_table(arm_input_section);
5703
2ea97941 5704 arm_input_section->set_stub_table(stub_table);
2e702c99 5705
07f508a2
DK
5706 Input_section_list::const_iterator p = begin;
5707 Input_section_list::const_iterator prev_p;
5708
5709 // Look for input sections or relaxed input sections in [begin ... end].
5710 do
5711 {
5712 if (p->is_input_section() || p->is_relaxed_input_section())
5713 {
5714 // The stub table information for input sections live
5715 // in their objects.
5716 Arm_relobj<big_endian>* arm_relobj =
5717 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5718 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5719 }
5720 prev_p = p++;
5721 }
5722 while (prev_p != end);
5723}
5724
5725// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5726// of stub groups. We grow a stub group by adding input section until the
5727// size is just below GROUP_SIZE. The last input section will be converted
5728// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5729// input section after the stub table, effectively double the group size.
2e702c99 5730//
07f508a2
DK
5731// This is similar to the group_sections() function in elf32-arm.c but is
5732// implemented differently.
5733
5734template<bool big_endian>
5735void
5736Arm_output_section<big_endian>::group_sections(
5737 section_size_type group_size,
5738 bool stubs_always_after_branch,
f625ae50
DK
5739 Target_arm<big_endian>* target,
5740 const Task* task)
07f508a2 5741{
07f508a2
DK
5742 // States for grouping.
5743 typedef enum
5744 {
5745 // No group is being built.
5746 NO_GROUP,
5747 // A group is being built but the stub table is not found yet.
5748 // We keep group a stub group until the size is just under GROUP_SIZE.
5749 // The last input section in the group will be used as the stub table.
5750 FINDING_STUB_SECTION,
5751 // A group is being built and we have already found a stub table.
5752 // We enter this state to grow a stub group by adding input section
5753 // after the stub table. This effectively doubles the group size.
5754 HAS_STUB_SECTION
5755 } State;
5756
5757 // Any newly created relaxed sections are stored here.
5758 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5759
5760 State state = NO_GROUP;
5761 section_size_type off = 0;
5762 section_size_type group_begin_offset = 0;
5763 section_size_type group_end_offset = 0;
5764 section_size_type stub_table_end_offset = 0;
5765 Input_section_list::const_iterator group_begin =
5766 this->input_sections().end();
2ea97941 5767 Input_section_list::const_iterator stub_table =
07f508a2
DK
5768 this->input_sections().end();
5769 Input_section_list::const_iterator group_end = this->input_sections().end();
5770 for (Input_section_list::const_iterator p = this->input_sections().begin();
5771 p != this->input_sections().end();
5772 ++p)
5773 {
5774 section_size_type section_begin_offset =
5775 align_address(off, p->addralign());
5776 section_size_type section_end_offset =
2e702c99
RM
5777 section_begin_offset + p->data_size();
5778
9b547ce6 5779 // Check to see if we should group the previously seen sections.
e9bbb538 5780 switch (state)
07f508a2
DK
5781 {
5782 case NO_GROUP:
5783 break;
5784
5785 case FINDING_STUB_SECTION:
5786 // Adding this section makes the group larger than GROUP_SIZE.
5787 if (section_end_offset - group_begin_offset >= group_size)
5788 {
5789 if (stubs_always_after_branch)
2e702c99 5790 {
07f508a2
DK
5791 gold_assert(group_end != this->input_sections().end());
5792 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5793 target, &new_relaxed_sections,
5794 task);
07f508a2
DK
5795 state = NO_GROUP;
5796 }
5797 else
5798 {
5799 // But wait, there's more! Input sections up to
5800 // stub_group_size bytes after the stub table can be
5801 // handled by it too.
5802 state = HAS_STUB_SECTION;
2ea97941 5803 stub_table = group_end;
07f508a2
DK
5804 stub_table_end_offset = group_end_offset;
5805 }
5806 }
5807 break;
5808
5809 case HAS_STUB_SECTION:
5810 // Adding this section makes the post stub-section group larger
5811 // than GROUP_SIZE.
5812 if (section_end_offset - stub_table_end_offset >= group_size)
5813 {
5814 gold_assert(group_end != this->input_sections().end());
2ea97941 5815 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5816 target, &new_relaxed_sections, task);
07f508a2
DK
5817 state = NO_GROUP;
5818 }
5819 break;
5820
5821 default:
5822 gold_unreachable();
2e702c99 5823 }
07f508a2
DK
5824
5825 // If we see an input section and currently there is no group, start
f625ae50
DK
5826 // a new one. Skip any empty sections. We look at the data size
5827 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5828 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5829 && (p->data_size() != 0))
07f508a2
DK
5830 {
5831 if (state == NO_GROUP)
5832 {
5833 state = FINDING_STUB_SECTION;
5834 group_begin = p;
5835 group_begin_offset = section_begin_offset;
5836 }
5837
5838 // Keep track of the last input section seen.
5839 group_end = p;
5840 group_end_offset = section_end_offset;
5841 }
5842
5843 off = section_end_offset;
5844 }
5845
5846 // Create a stub group for any ungrouped sections.
5847 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5848 {
5849 gold_assert(group_end != this->input_sections().end());
5850 this->create_stub_group(group_begin, group_end,
5851 (state == FINDING_STUB_SECTION
5852 ? group_end
2ea97941 5853 : stub_table),
f625ae50 5854 target, &new_relaxed_sections, task);
07f508a2
DK
5855 }
5856
5857 // Convert input section into relaxed input section in a batch.
5858 if (!new_relaxed_sections.empty())
5859 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5860
5861 // Update the section offsets
5862 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5863 {
5864 Arm_relobj<big_endian>* arm_relobj =
5865 Arm_relobj<big_endian>::as_arm_relobj(
5866 new_relaxed_sections[i]->relobj());
2ea97941 5867 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5868 // Tell Arm_relobj that this input section is converted.
2ea97941 5869 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5870 }
5871}
5872
2b328d4e
DK
5873// Append non empty text sections in this to LIST in ascending
5874// order of their position in this.
5875
5876template<bool big_endian>
5877void
5878Arm_output_section<big_endian>::append_text_sections_to_list(
5879 Text_section_list* list)
5880{
2b328d4e
DK
5881 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5882
5883 for (Input_section_list::const_iterator p = this->input_sections().begin();
5884 p != this->input_sections().end();
5885 ++p)
5886 {
5887 // We only care about plain or relaxed input sections. We also
5888 // ignore any merged sections.
a60af0db 5889 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5890 list->push_back(Text_section_list::value_type(p->relobj(),
5891 p->shndx()));
5892 }
5893}
5894
5895template<bool big_endian>
5896void
5897Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5898 Layout* layout,
2b328d4e 5899 const Text_section_list& sorted_text_sections,
85fdf906 5900 Symbol_table* symtab,
f625ae50
DK
5901 bool merge_exidx_entries,
5902 const Task* task)
2b328d4e
DK
5903{
5904 // We should only do this for the EXIDX output section.
5905 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5906
5907 // We don't want the relaxation loop to undo these changes, so we discard
5908 // the current saved states and take another one after the fix-up.
5909 this->discard_states();
5910
5911 // Remove all input sections.
5912 uint64_t address = this->address();
6625d24e
DK
5913 typedef std::list<Output_section::Input_section> Input_section_list;
5914 Input_section_list input_sections;
2b328d4e
DK
5915 this->reset_address_and_file_offset();
5916 this->get_input_sections(address, std::string(""), &input_sections);
5917
5918 if (!this->input_sections().empty())
5919 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5920
2b328d4e
DK
5921 // Go through all the known input sections and record them.
5922 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5923 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5924 Section_id_hash> Text_to_exidx_map;
5925 Text_to_exidx_map text_to_exidx_map;
5926 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5927 p != input_sections.end();
5928 ++p)
5929 {
5930 // This should never happen. At this point, we should only see
5931 // plain EXIDX input sections.
5932 gold_assert(!p->is_relaxed_input_section());
6625d24e 5933 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5934 }
5935
85fdf906 5936 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5937
5938 // Go over the sorted text sections.
6625d24e 5939 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5940 Section_id_set processed_input_sections;
5941 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5942 p != sorted_text_sections.end();
5943 ++p)
5944 {
5945 Relobj* relobj = p->first;
5946 unsigned int shndx = p->second;
5947
5948 Arm_relobj<big_endian>* arm_relobj =
5949 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5950 const Arm_exidx_input_section* exidx_input_section =
5951 arm_relobj->exidx_input_section_by_link(shndx);
5952
131687b4
DK
5953 // If this text section has no EXIDX section or if the EXIDX section
5954 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5955 // of the last seen EXIDX section.
5956 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5957 {
5958 exidx_fixup.add_exidx_cantunwind_as_needed();
5959 continue;
5960 }
5961
5962 Relobj* exidx_relobj = exidx_input_section->relobj();
5963 unsigned int exidx_shndx = exidx_input_section->shndx();
5964 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5965 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5966 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5967 {
5968 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5969 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5970 // issue a warning instead. We assume the user knows what he
5971 // or she is doing. Otherwise, this is an error.
5972 if (layout->script_options()->saw_sections_clause())
5973 gold_warning(_("unwinding may not work because EXIDX input section"
5974 " %u of %s is not in EXIDX output section"),
5975 exidx_shndx, exidx_relobj->name().c_str());
5976 else
5977 gold_error(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5980
2b328d4e
DK
5981 exidx_fixup.add_exidx_cantunwind_as_needed();
5982 continue;
5983 }
5984
f625ae50
DK
5985 // We need to access the contents of the EXIDX section, lock the
5986 // object here.
5987 Task_lock_obj<Object> tl(task, exidx_relobj);
5988 section_size_type exidx_size;
5989 const unsigned char* exidx_contents =
2e702c99 5990 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5991
2b328d4e
DK
5992 // Fix up coverage and append input section to output data list.
5993 Arm_exidx_section_offset_map* section_offset_map = NULL;
5994 uint32_t deleted_bytes =
2e702c99 5995 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5996 exidx_contents,
5997 exidx_size,
2b328d4e
DK
5998 &section_offset_map);
5999
6000 if (deleted_bytes == exidx_input_section->size())
6001 {
6002 // The whole EXIDX section got merged. Remove it from output.
6003 gold_assert(section_offset_map == NULL);
6004 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
6005
6006 // All local symbols defined in this input section will be dropped.
6007 // We need to adjust output local symbol count.
6008 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6009 }
6010 else if (deleted_bytes > 0)
6011 {
6012 // Some entries are merged. We need to convert this EXIDX input
6013 // section into a relaxed section.
6014 gold_assert(section_offset_map != NULL);
f625ae50 6015
2b328d4e
DK
6016 Arm_exidx_merged_section* merged_section =
6017 new Arm_exidx_merged_section(*exidx_input_section,
6018 *section_offset_map, deleted_bytes);
f625ae50
DK
6019 merged_section->build_contents(exidx_contents, exidx_size);
6020
d06fb4d1
DK
6021 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6022 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 6023 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
6024
6025 // All local symbols defined in discarded portions of this input
6026 // section will be dropped. We need to adjust output local symbol
6027 // count.
6028 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6029 }
6030 else
6031 {
6032 // Just add back the EXIDX input section.
6033 gold_assert(section_offset_map == NULL);
6625d24e
DK
6034 const Output_section::Input_section* pis = iter->second;
6035 gold_assert(pis->is_input_section());
6036 this->add_script_input_section(*pis);
2b328d4e
DK
6037 }
6038
2e702c99 6039 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
6040 }
6041
6042 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6043 exidx_fixup.add_exidx_cantunwind_as_needed();
6044
6045 // Remove any known EXIDX input sections that are not processed.
6625d24e 6046 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
6047 p != input_sections.end();
6048 ++p)
6049 {
6050 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6051 == processed_input_sections.end())
6052 {
131687b4
DK
6053 // We discard a known EXIDX section because its linked
6054 // text section has been folded by ICF. We also discard an
6055 // EXIDX section with error, the output does not matter in this
6056 // case. We do this to avoid triggering asserts.
2b328d4e
DK
6057 Arm_relobj<big_endian>* arm_relobj =
6058 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6059 const Arm_exidx_input_section* exidx_input_section =
6060 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6061 gold_assert(exidx_input_section != NULL);
131687b4
DK
6062 if (!exidx_input_section->has_errors())
6063 {
6064 unsigned int text_shndx = exidx_input_section->link();
6065 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6066 }
2b328d4e 6067
04ceb17c
DK
6068 // Remove this from link. We also need to recount the
6069 // local symbols.
2b328d4e 6070 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6071 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6072 }
6073 }
2e702c99 6074
546c7457
DK
6075 // Link exidx output section to the first seen output section and
6076 // set correct entry size.
6077 this->set_link_section(exidx_fixup.first_output_text_section());
6078 this->set_entsize(8);
6079
2b328d4e
DK
6080 // Make changes permanent.
6081 this->save_states();
6082 this->set_section_offsets_need_adjustment();
6083}
6084
131687b4
DK
6085// Link EXIDX output sections to text output sections.
6086
6087template<bool big_endian>
6088void
6089Arm_output_section<big_endian>::set_exidx_section_link()
6090{
6091 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6092 if (!this->input_sections().empty())
6093 {
6094 Input_section_list::const_iterator p = this->input_sections().begin();
6095 Arm_relobj<big_endian>* arm_relobj =
6096 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6097 unsigned exidx_shndx = p->shndx();
6098 const Arm_exidx_input_section* exidx_input_section =
6099 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6100 gold_assert(exidx_input_section != NULL);
6101 unsigned int text_shndx = exidx_input_section->link();
6102 Output_section* os = arm_relobj->output_section(text_shndx);
6103 this->set_link_section(os);
6104 }
6105}
6106
8ffa3667
DK
6107// Arm_relobj methods.
6108
cf846138
DK
6109// Determine if an input section is scannable for stub processing. SHDR is
6110// the header of the section and SHNDX is the section index. OS is the output
6111// section for the input section and SYMTAB is the global symbol table used to
6112// look up ICF information.
6113
6114template<bool big_endian>
6115bool
6116Arm_relobj<big_endian>::section_is_scannable(
6117 const elfcpp::Shdr<32, big_endian>& shdr,
6118 unsigned int shndx,
6119 const Output_section* os,
ca09d69a 6120 const Symbol_table* symtab)
cf846138
DK
6121{
6122 // Skip any empty sections, unallocated sections or sections whose
6123 // type are not SHT_PROGBITS.
6124 if (shdr.get_sh_size() == 0
6125 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6126 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6127 return false;
6128
6129 // Skip any discarded or ICF'ed sections.
6130 if (os == NULL || symtab->is_section_folded(this, shndx))
6131 return false;
6132
6133 // If this requires special offset handling, check to see if it is
6134 // a relaxed section. If this is not, then it is a merged section that
6135 // we cannot handle.
6136 if (this->is_output_section_offset_invalid(shndx))
6137 {
6138 const Output_relaxed_input_section* poris =
6139 os->find_relaxed_input_section(this, shndx);
6140 if (poris == NULL)
6141 return false;
6142 }
6143
6144 return true;
6145}
6146
44272192
DK
6147// Determine if we want to scan the SHNDX-th section for relocation stubs.
6148// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6149
6150template<bool big_endian>
6151bool
6152Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6153 const elfcpp::Shdr<32, big_endian>& shdr,
6154 const Relobj::Output_sections& out_sections,
ca09d69a 6155 const Symbol_table* symtab,
2b328d4e 6156 const unsigned char* pshdrs)
44272192
DK
6157{
6158 unsigned int sh_type = shdr.get_sh_type();
6159 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6160 return false;
6161
6162 // Ignore empty section.
6163 off_t sh_size = shdr.get_sh_size();
6164 if (sh_size == 0)
6165 return false;
6166
44272192
DK
6167 // Ignore reloc section with unexpected symbol table. The
6168 // error will be reported in the final link.
6169 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6170 return false;
6171
b521dfe4
DK
6172 unsigned int reloc_size;
6173 if (sh_type == elfcpp::SHT_REL)
6174 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6175 else
6176 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6177
6178 // Ignore reloc section with unexpected entsize or uneven size.
6179 // The error will be reported in the final link.
6180 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6181 return false;
6182
cf846138
DK
6183 // Ignore reloc section with bad info. This error will be
6184 // reported in the final link.
6185 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6186 if (index >= this->shnum())
6187 return false;
6188
6189 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6190 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6191 return this->section_is_scannable(text_shdr, index,
6192 out_sections[index], symtab);
44272192
DK
6193}
6194
cb1be87e
DK
6195// Return the output address of either a plain input section or a relaxed
6196// input section. SHNDX is the section index. We define and use this
6197// instead of calling Output_section::output_address because that is slow
6198// for large output.
6199
6200template<bool big_endian>
6201Arm_address
6202Arm_relobj<big_endian>::simple_input_section_output_address(
6203 unsigned int shndx,
6204 Output_section* os)
6205{
6206 if (this->is_output_section_offset_invalid(shndx))
6207 {
6208 const Output_relaxed_input_section* poris =
6209 os->find_relaxed_input_section(this, shndx);
6210 // We do not handle merged sections here.
6211 gold_assert(poris != NULL);
6212 return poris->address();
6213 }
6214 else
6215 return os->address() + this->get_output_section_offset(shndx);
6216}
6217
44272192
DK
6218// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6219// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6220
6221template<bool big_endian>
6222bool
6223Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6224 const elfcpp::Shdr<32, big_endian>& shdr,
6225 unsigned int shndx,
6226 Output_section* os,
6227 const Symbol_table* symtab)
6228{
cf846138 6229 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6230 return false;
6231
44272192
DK
6232 // If the section does not cross any 4K-boundaries, it does not need to
6233 // be scanned.
cb1be87e 6234 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6235 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6236 return false;
6237
6238 return true;
6239}
6240
6241// Scan a section for Cortex-A8 workaround.
6242
6243template<bool big_endian>
6244void
6245Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6246 const elfcpp::Shdr<32, big_endian>& shdr,
6247 unsigned int shndx,
6248 Output_section* os,
6249 Target_arm<big_endian>* arm_target)
6250{
c8761b9a
DK
6251 // Look for the first mapping symbol in this section. It should be
6252 // at (shndx, 0).
6253 Mapping_symbol_position section_start(shndx, 0);
6254 typename Mapping_symbols_info::const_iterator p =
6255 this->mapping_symbols_info_.lower_bound(section_start);
6256
6257 // There are no mapping symbols for this section. Treat it as a data-only
61163dfa 6258 // section.
c8761b9a 6259 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
61163dfa 6260 return;
c8761b9a 6261
cb1be87e
DK
6262 Arm_address output_address =
6263 this->simple_input_section_output_address(shndx, os);
44272192
DK
6264
6265 // Get the section contents.
6266 section_size_type input_view_size = 0;
6267 const unsigned char* input_view =
6268 this->section_contents(shndx, &input_view_size, false);
6269
6270 // We need to go through the mapping symbols to determine what to
6271 // scan. There are two reasons. First, we should look at THUMB code and
6272 // THUMB code only. Second, we only want to look at the 4K-page boundary
6273 // to speed up the scanning.
2e702c99 6274
44272192
DK
6275 while (p != this->mapping_symbols_info_.end()
6276 && p->first.first == shndx)
6277 {
6278 typename Mapping_symbols_info::const_iterator next =
6279 this->mapping_symbols_info_.upper_bound(p->first);
6280
6281 // Only scan part of a section with THUMB code.
6282 if (p->second == 't')
6283 {
6284 // Determine the end of this range.
6285 section_size_type span_start =
6286 convert_to_section_size_type(p->first.second);
6287 section_size_type span_end;
6288 if (next != this->mapping_symbols_info_.end()
6289 && next->first.first == shndx)
6290 span_end = convert_to_section_size_type(next->first.second);
6291 else
6292 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6293
44272192
DK
6294 if (((span_start + output_address) & ~0xfffUL)
6295 != ((span_end + output_address - 1) & ~0xfffUL))
6296 {
6297 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6298 span_start, span_end,
6299 input_view,
6300 output_address);
6301 }
6302 }
6303
2e702c99 6304 p = next;
44272192
DK
6305 }
6306}
6307
8ffa3667
DK
6308// Scan relocations for stub generation.
6309
6310template<bool big_endian>
6311void
6312Arm_relobj<big_endian>::scan_sections_for_stubs(
6313 Target_arm<big_endian>* arm_target,
6314 const Symbol_table* symtab,
2ea97941 6315 const Layout* layout)
8ffa3667 6316{
2ea97941
ILT
6317 unsigned int shnum = this->shnum();
6318 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6319
6320 // Read the section headers.
6321 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6322 shnum * shdr_size,
8ffa3667
DK
6323 true, true);
6324
6325 // To speed up processing, we set up hash tables for fast lookup of
6326 // input offsets to output addresses.
6327 this->initialize_input_to_output_maps();
6328
6329 const Relobj::Output_sections& out_sections(this->output_sections());
6330
6331 Relocate_info<32, big_endian> relinfo;
8ffa3667 6332 relinfo.symtab = symtab;
2ea97941 6333 relinfo.layout = layout;
8ffa3667
DK
6334 relinfo.object = this;
6335
44272192 6336 // Do relocation stubs scanning.
2ea97941
ILT
6337 const unsigned char* p = pshdrs + shdr_size;
6338 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6339 {
44272192 6340 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6341 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6342 pshdrs))
8ffa3667 6343 {
44272192
DK
6344 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6345 Arm_address output_offset = this->get_output_section_offset(index);
6346 Arm_address output_address;
7296d933 6347 if (output_offset != invalid_address)
44272192
DK
6348 output_address = out_sections[index]->address() + output_offset;
6349 else
6350 {
6351 // Currently this only happens for a relaxed section.
6352 const Output_relaxed_input_section* poris =
6353 out_sections[index]->find_relaxed_input_section(this, index);
6354 gold_assert(poris != NULL);
6355 output_address = poris->address();
6356 }
8ffa3667 6357
44272192
DK
6358 // Get the relocations.
6359 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6360 shdr.get_sh_size(),
6361 true, false);
6362
6363 // Get the section contents. This does work for the case in which
6364 // we modify the contents of an input section. We need to pass the
6365 // output view under such circumstances.
6366 section_size_type input_view_size = 0;
6367 const unsigned char* input_view =
6368 this->section_contents(index, &input_view_size, false);
6369
6370 relinfo.reloc_shndx = i;
6371 relinfo.data_shndx = index;
6372 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6373 unsigned int reloc_size;
6374 if (sh_type == elfcpp::SHT_REL)
6375 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6376 else
6377 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6378
6379 Output_section* os = out_sections[index];
6380 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6381 shdr.get_sh_size() / reloc_size,
6382 os,
6383 output_offset == invalid_address,
6384 input_view, output_address,
6385 input_view_size);
8ffa3667 6386 }
44272192 6387 }
8ffa3667 6388
44272192
DK
6389 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6390 // after its relocation section, if there is one, is processed for
6391 // relocation stubs. Merging this loop with the one above would have been
6392 // complicated since we would have had to make sure that relocation stub
6393 // scanning is done first.
6394 if (arm_target->fix_cortex_a8())
6395 {
6396 const unsigned char* p = pshdrs + shdr_size;
6397 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6398 {
44272192
DK
6399 const elfcpp::Shdr<32, big_endian> shdr(p);
6400 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6401 out_sections[i],
6402 symtab))
6403 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6404 arm_target);
8ffa3667 6405 }
8ffa3667
DK
6406 }
6407
6408 // After we've done the relocations, we release the hash tables,
6409 // since we no longer need them.
6410 this->free_input_to_output_maps();
6411}
6412
6413// Count the local symbols. The ARM backend needs to know if a symbol
6414// is a THUMB function or not. For global symbols, it is easy because
6415// the Symbol object keeps the ELF symbol type. For local symbol it is
6416// harder because we cannot access this information. So we override the
6417// do_count_local_symbol in parent and scan local symbols to mark
6418// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6419// slow down other ports by calling a per symbol target hook inside
2e702c99 6420// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6421
6422template<bool big_endian>
6423void
6424Arm_relobj<big_endian>::do_count_local_symbols(
6425 Stringpool_template<char>* pool,
6426 Stringpool_template<char>* dynpool)
6427{
6428 // We need to fix-up the values of any local symbols whose type are
6429 // STT_ARM_TFUNC.
2e702c99 6430
8ffa3667 6431 // Ask parent to count the local symbols.
6fa2a40b 6432 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6433 const unsigned int loccount = this->local_symbol_count();
6434 if (loccount == 0)
6435 return;
6436
9b547ce6 6437 // Initialize the thumb function bit-vector.
8ffa3667
DK
6438 std::vector<bool> empty_vector(loccount, false);
6439 this->local_symbol_is_thumb_function_.swap(empty_vector);
6440
6441 // Read the symbol table section header.
2ea97941 6442 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6443 elfcpp::Shdr<32, big_endian>
2ea97941 6444 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6445 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6446
6447 // Read the local symbols.
2ea97941 6448 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6449 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6450 off_t locsize = loccount * sym_size;
8ffa3667
DK
6451 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6452 locsize, true, true);
6453
20138696
DK
6454 // For mapping symbol processing, we need to read the symbol names.
6455 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6456 if (strtab_shndx >= this->shnum())
6457 {
6458 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6459 return;
6460 }
6461
6462 elfcpp::Shdr<32, big_endian>
6463 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6464 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6465 {
6466 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6467 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6468 return;
6469 }
6470 const char* pnames =
6471 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6472 strtabshdr.get_sh_size(),
6473 false, false));
6474
8ffa3667
DK
6475 // Loop over the local symbols and mark any local symbols pointing
6476 // to THUMB functions.
6477
6478 // Skip the first dummy symbol.
2ea97941 6479 psyms += sym_size;
6fa2a40b 6480 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6481 this->local_values();
2ea97941 6482 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6483 {
6484 elfcpp::Sym<32, big_endian> sym(psyms);
6485 elfcpp::STT st_type = sym.get_st_type();
6486 Symbol_value<32>& lv((*plocal_values)[i]);
6487 Arm_address input_value = lv.input_value();
6488
20138696
DK
6489 // Check to see if this is a mapping symbol.
6490 const char* sym_name = pnames + sym.get_st_name();
6491 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6492 {
24af6f92
DK
6493 bool is_ordinary;
6494 unsigned int input_shndx =
6495 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6496 gold_assert(is_ordinary);
20138696
DK
6497
6498 // Strip of LSB in case this is a THUMB symbol.
6499 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6500 this->mapping_symbols_info_[msp] = sym_name[1];
6501 }
6502
8ffa3667
DK
6503 if (st_type == elfcpp::STT_ARM_TFUNC
6504 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6505 {
6506 // This is a THUMB function. Mark this and canonicalize the
6507 // symbol value by setting LSB.
6508 this->local_symbol_is_thumb_function_[i] = true;
6509 if ((input_value & 1) == 0)
6510 lv.set_input_value(input_value | 1);
6511 }
6512 }
6513}
6514
6515// Relocate sections.
6516template<bool big_endian>
6517void
6518Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6519 const Symbol_table* symtab,
2ea97941 6520 const Layout* layout,
8ffa3667 6521 const unsigned char* pshdrs,
aa98ff75 6522 Output_file* of,
6fa2a40b 6523 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6524{
6525 // Call parent to relocate sections.
6fa2a40b 6526 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6527 pshdrs, of, pviews);
8ffa3667
DK
6528
6529 // We do not generate stubs if doing a relocatable link.
6530 if (parameters->options().relocatable())
6531 return;
6532
6533 // Relocate stub tables.
2ea97941 6534 unsigned int shnum = this->shnum();
8ffa3667
DK
6535
6536 Target_arm<big_endian>* arm_target =
6537 Target_arm<big_endian>::default_target();
6538
6539 Relocate_info<32, big_endian> relinfo;
8ffa3667 6540 relinfo.symtab = symtab;
2ea97941 6541 relinfo.layout = layout;
8ffa3667
DK
6542 relinfo.object = this;
6543
2ea97941 6544 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6545 {
6546 Arm_input_section<big_endian>* arm_input_section =
6547 arm_target->find_arm_input_section(this, i);
6548
41263c05
DK
6549 if (arm_input_section != NULL
6550 && arm_input_section->is_stub_table_owner()
6551 && !arm_input_section->stub_table()->empty())
6552 {
6553 // We cannot discard a section if it owns a stub table.
6554 Output_section* os = this->output_section(i);
6555 gold_assert(os != NULL);
6556
6557 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6558 relinfo.reloc_shdr = NULL;
6559 relinfo.data_shndx = i;
6560 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6561
6562 gold_assert((*pviews)[i].view != NULL);
6563
6564 // We are passed the output section view. Adjust it to cover the
6565 // stub table only.
6566 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6567 gold_assert((stub_table->address() >= (*pviews)[i].address)
6568 && ((stub_table->address() + stub_table->data_size())
6569 <= (*pviews)[i].address + (*pviews)[i].view_size));
6570
6571 off_t offset = stub_table->address() - (*pviews)[i].address;
6572 unsigned char* view = (*pviews)[i].view + offset;
6573 Arm_address address = stub_table->address();
6574 section_size_type view_size = stub_table->data_size();
2e702c99 6575
41263c05
DK
6576 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6577 view_size);
6578 }
6579
6580 // Apply Cortex A8 workaround if applicable.
6581 if (this->section_has_cortex_a8_workaround(i))
6582 {
6583 unsigned char* view = (*pviews)[i].view;
6584 Arm_address view_address = (*pviews)[i].address;
6585 section_size_type view_size = (*pviews)[i].view_size;
6586 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6587
6588 // Adjust view to cover section.
6589 Output_section* os = this->output_section(i);
6590 gold_assert(os != NULL);
cb1be87e
DK
6591 Arm_address section_address =
6592 this->simple_input_section_output_address(i, os);
41263c05
DK
6593 uint64_t section_size = this->section_size(i);
6594
6595 gold_assert(section_address >= view_address
6596 && ((section_address + section_size)
6597 <= (view_address + view_size)));
6598
6599 unsigned char* section_view = view + (section_address - view_address);
6600
6601 // Apply the Cortex-A8 workaround to the output address range
6602 // corresponding to this input section.
6603 stub_table->apply_cortex_a8_workaround_to_address_range(
6604 arm_target,
6605 section_view,
6606 section_address,
6607 section_size);
6608 }
8ffa3667
DK
6609 }
6610}
6611
9b547ce6 6612// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6613// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6614// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6615// its section header. However, some tools are broken and the link is not
6616// always set. LD just drops such an EXIDX section silently, causing the
6617// associated code not unwindabled. Here we try a little bit harder to
6618// discover the linked code section.
6619//
6620// PSHDR points to the section header of a relocation section of an EXIDX
6621// section. If we can find a linked text section, return true and
6622// store the text section index in the location PSHNDX. Otherwise
6623// return false.
a0351a69
DK
6624
6625template<bool big_endian>
c8761b9a
DK
6626bool
6627Arm_relobj<big_endian>::find_linked_text_section(
6628 const unsigned char* pshdr,
6629 const unsigned char* psyms,
6630 unsigned int* pshndx)
a0351a69 6631{
c8761b9a 6632 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6633
c8761b9a
DK
6634 // If there is no relocation, we cannot find the linked text section.
6635 size_t reloc_size;
6636 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6637 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6638 else
6639 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6640 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6641
c8761b9a
DK
6642 // Get the relocations.
6643 const unsigned char* prelocs =
2e702c99 6644 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6645
c8761b9a
DK
6646 // Find the REL31 relocation for the first word of the first EXIDX entry.
6647 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6648 {
c8761b9a
DK
6649 Arm_address r_offset;
6650 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6651 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6652 {
6653 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6654 r_info = reloc.get_r_info();
6655 r_offset = reloc.get_r_offset();
6656 }
6657 else
6658 {
6659 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6660 r_info = reloc.get_r_info();
6661 r_offset = reloc.get_r_offset();
6662 }
6663
6664 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6665 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6666 continue;
6667
6668 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6669 if (r_sym == 0
6670 || r_sym >= this->local_symbol_count()
6671 || r_offset != 0)
6672 continue;
6673
6674 // This is the relocation for the first word of the first EXIDX entry.
6675 // We expect to see a local section symbol.
6676 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6677 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6678 if (sym.get_st_type() == elfcpp::STT_SECTION)
6679 {
24af6f92
DK
6680 bool is_ordinary;
6681 *pshndx =
6682 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6683 gold_assert(is_ordinary);
c8761b9a
DK
6684 return true;
6685 }
6686 else
6687 return false;
993d07c1 6688 }
c8761b9a
DK
6689
6690 return false;
6691}
6692
6693// Make an EXIDX input section object for an EXIDX section whose index is
6694// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6695// is the section index of the linked text section.
6696
6697template<bool big_endian>
6698void
6699Arm_relobj<big_endian>::make_exidx_input_section(
6700 unsigned int shndx,
6701 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6702 unsigned int text_shndx,
6703 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6704{
993d07c1
DK
6705 // Create an Arm_exidx_input_section object for this EXIDX section.
6706 Arm_exidx_input_section* exidx_input_section =
6707 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6708 shdr.get_sh_addralign(),
6709 text_shdr.get_sh_size());
993d07c1 6710
993d07c1
DK
6711 gold_assert(this->exidx_section_map_[shndx] == NULL);
6712 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6713
6714 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6715 {
6716 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6717 this->section_name(shndx).c_str(), shndx, text_shndx,
6718 this->name().c_str());
6719 exidx_input_section->set_has_errors();
2e702c99 6720 }
131687b4
DK
6721 else if (this->exidx_section_map_[text_shndx] != NULL)
6722 {
6723 unsigned other_exidx_shndx =
6724 this->exidx_section_map_[text_shndx]->shndx();
6725 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6726 "%s(%u) in %s"),
6727 this->section_name(shndx).c_str(), shndx,
6728 this->section_name(other_exidx_shndx).c_str(),
6729 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6730 text_shndx, this->name().c_str());
6731 exidx_input_section->set_has_errors();
6732 }
6733 else
6734 this->exidx_section_map_[text_shndx] = exidx_input_section;
6735
6736 // Check section flags of text section.
6737 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6738 {
6739 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6740 " in %s"),
6741 this->section_name(shndx).c_str(), shndx,
6742 this->section_name(text_shndx).c_str(), text_shndx,
6743 this->name().c_str());
6744 exidx_input_section->set_has_errors();
6745 }
6746 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6747 // I would like to make this an error but currently ld just ignores
131687b4
DK
6748 // this.
6749 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6750 "%s(%u) in %s"),
6751 this->section_name(shndx).c_str(), shndx,
6752 this->section_name(text_shndx).c_str(), text_shndx,
6753 this->name().c_str());
a0351a69
DK
6754}
6755
d5b40221
DK
6756// Read the symbol information.
6757
6758template<bool big_endian>
6759void
6760Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6761{
6762 // Call parent class to read symbol information.
f35c4853 6763 this->base_read_symbols(sd);
d5b40221 6764
7296d933
DK
6765 // If this input file is a binary file, it has no processor
6766 // specific flags and attributes section.
6767 Input_file::Format format = this->input_file()->format();
6768 if (format != Input_file::FORMAT_ELF)
6769 {
6770 gold_assert(format == Input_file::FORMAT_BINARY);
6771 this->merge_flags_and_attributes_ = false;
6772 return;
6773 }
6774
d5b40221
DK
6775 // Read processor-specific flags in ELF file header.
6776 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6777 elfcpp::Elf_sizes<32>::ehdr_size,
6778 true, false);
6779 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6780 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6781
6782 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6783 // sections.
c8761b9a 6784 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6785 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6786 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6787 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6788 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6789 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6790 {
6791 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6792
6793 // Sometimes an object has no contents except the section name string
6794 // table and an empty symbol table with the undefined symbol. We
6795 // don't want to merge processor-specific flags from such an object.
6796 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6797 {
6798 // Symbol table is not empty.
6799 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6800 elfcpp::Elf_sizes<32>::sym_size;
6801 if (shdr.get_sh_size() > sym_size)
6802 must_merge_flags_and_attributes = true;
6803 }
6804 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6805 // If this is neither an empty symbol table nor a string table,
6806 // be conservative.
6807 must_merge_flags_and_attributes = true;
6808
993d07c1
DK
6809 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6810 {
2e702c99 6811 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6812 section_offset_type section_offset = shdr.get_sh_offset();
6813 section_size_type section_size =
6814 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6815 const unsigned char* view =
6816 this->get_view(section_offset, section_size, true, false);
993d07c1 6817 this->attributes_section_data_ =
f625ae50 6818 new Attributes_section_data(view, section_size);
993d07c1
DK
6819 }
6820 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6821 {
6822 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6823 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6824 deferred_exidx_sections.push_back(i);
6825 else
131687b4
DK
6826 {
6827 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6828 + text_shndx * shdr_size);
6829 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6830 }
c9484ea5
DK
6831 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6832 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6833 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6834 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6835 }
6836 }
6837
7296d933
DK
6838 // This is rare.
6839 if (!must_merge_flags_and_attributes)
6840 {
131687b4 6841 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6842 this->merge_flags_and_attributes_ = false;
6843 return;
6844 }
6845
2e702c99 6846 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6847 // We look at the first relocation to figure out the linked sections.
6848 if (!deferred_exidx_sections.empty())
6849 {
6850 // We need to go over the section headers again to find the mapping
6851 // from sections being relocated to their relocation sections. This is
6852 // a bit inefficient as we could do that in the loop above. However,
6853 // we do not expect any deferred EXIDX sections normally. So we do not
6854 // want to slow down the most common path.
6855 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6856 Reloc_map reloc_map;
6857 ps = pshdrs + shdr_size;
6858 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6859 {
6860 elfcpp::Shdr<32, big_endian> shdr(ps);
6861 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6862 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6863 {
6864 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6865 if (info_shndx >= this->shnum())
6866 gold_error(_("relocation section %u has invalid info %u"),
6867 i, info_shndx);
6868 Reloc_map::value_type value(info_shndx, i);
6869 std::pair<Reloc_map::iterator, bool> result =
6870 reloc_map.insert(value);
6871 if (!result.second)
6872 gold_error(_("section %u has multiple relocation sections "
6873 "%u and %u"),
6874 info_shndx, i, reloc_map[info_shndx]);
6875 }
6876 }
6877
6878 // Read the symbol table section header.
6879 const unsigned int symtab_shndx = this->symtab_shndx();
6880 elfcpp::Shdr<32, big_endian>
6881 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6882 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6883
6884 // Read the local symbols.
6885 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6886 const unsigned int loccount = this->local_symbol_count();
6887 gold_assert(loccount == symtabshdr.get_sh_info());
6888 off_t locsize = loccount * sym_size;
6889 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6890 locsize, true, true);
6891
2e702c99 6892 // Process the deferred EXIDX sections.
f625ae50 6893 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6894 {
6895 unsigned int shndx = deferred_exidx_sections[i];
6896 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6897 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6898 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6899 if (it != reloc_map.end())
6900 find_linked_text_section(pshdrs + it->second * shdr_size,
6901 psyms, &text_shndx);
6902 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6903 + text_shndx * shdr_size);
6904 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6905 }
993d07c1 6906 }
d5b40221
DK
6907}
6908
99e5bff2 6909// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6910// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6911// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6912// references, the .ARM.exidx sections and any .ARM.extab sections they use
6913// will be garbage-collected incorrectly. Hence we override the same function
6914// in the base class to handle these implicit references.
6915
6916template<bool big_endian>
6917void
6918Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6919 Layout* layout,
6920 Read_relocs_data* rd)
6921{
6922 // First, call base class method to process relocations in this object.
6fa2a40b 6923 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6924
4a54abbb
DK
6925 // If --gc-sections is not specified, there is nothing more to do.
6926 // This happens when --icf is used but --gc-sections is not.
6927 if (!parameters->options().gc_sections())
6928 return;
2e702c99 6929
99e5bff2
DK
6930 unsigned int shnum = this->shnum();
6931 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6932 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6933 shnum * shdr_size,
6934 true, true);
6935
6936 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6937 // to these from the linked text sections.
6938 const unsigned char* ps = pshdrs + shdr_size;
6939 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6940 {
6941 elfcpp::Shdr<32, big_endian> shdr(ps);
6942 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6943 {
6944 // Found an .ARM.exidx section, add it to the set of reachable
6945 // sections from its linked text section.
6946 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6947 symtab->gc()->add_reference(this, text_shndx, this, i);
6948 }
6949 }
6950}
6951
e7eca48c
DK
6952// Update output local symbol count. Owing to EXIDX entry merging, some local
6953// symbols will be removed in output. Adjust output local symbol count
6954// accordingly. We can only changed the static output local symbol count. It
6955// is too late to change the dynamic symbols.
6956
6957template<bool big_endian>
6958void
6959Arm_relobj<big_endian>::update_output_local_symbol_count()
6960{
6961 // Caller should check that this needs updating. We want caller checking
6962 // because output_local_symbol_count_needs_update() is most likely inlined.
6963 gold_assert(this->output_local_symbol_count_needs_update_);
6964
6965 gold_assert(this->symtab_shndx() != -1U);
6966 if (this->symtab_shndx() == 0)
6967 {
6968 // This object has no symbols. Weird but legal.
6969 return;
6970 }
6971
6972 // Read the symbol table section header.
6973 const unsigned int symtab_shndx = this->symtab_shndx();
6974 elfcpp::Shdr<32, big_endian>
6975 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6976 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6977
6978 // Read the local symbols.
6979 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6980 const unsigned int loccount = this->local_symbol_count();
6981 gold_assert(loccount == symtabshdr.get_sh_info());
6982 off_t locsize = loccount * sym_size;
6983 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6984 locsize, true, true);
6985
6986 // Loop over the local symbols.
6987
6fa2a40b 6988 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6989 Output_sections;
6990 const Output_sections& out_sections(this->output_sections());
6991 unsigned int shnum = this->shnum();
6992 unsigned int count = 0;
6993 // Skip the first, dummy, symbol.
6994 psyms += sym_size;
6995 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6996 {
6997 elfcpp::Sym<32, big_endian> sym(psyms);
6998
6999 Symbol_value<32>& lv((*this->local_values())[i]);
7000
7001 // This local symbol was already discarded by do_count_local_symbols.
9177756d 7002 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
7003 continue;
7004
7005 bool is_ordinary;
7006 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7007 &is_ordinary);
7008
7009 if (shndx < shnum)
7010 {
7011 Output_section* os = out_sections[shndx];
7012
7013 // This local symbol no longer has an output section. Discard it.
7014 if (os == NULL)
7015 {
7016 lv.set_no_output_symtab_entry();
7017 continue;
7018 }
7019
7020 // Currently we only discard parts of EXIDX input sections.
7021 // We explicitly check for a merged EXIDX input section to avoid
7022 // calling Output_section_data::output_offset unless necessary.
7023 if ((this->get_output_section_offset(shndx) == invalid_address)
7024 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7025 {
7026 section_offset_type output_offset =
7027 os->output_offset(this, shndx, lv.input_value());
7028 if (output_offset == -1)
7029 {
7030 // This symbol is defined in a part of an EXIDX input section
7031 // that is discarded due to entry merging.
7032 lv.set_no_output_symtab_entry();
7033 continue;
2e702c99 7034 }
e7eca48c
DK
7035 }
7036 }
7037
7038 ++count;
7039 }
7040
7041 this->set_output_local_symbol_count(count);
7042 this->output_local_symbol_count_needs_update_ = false;
7043}
7044
d5b40221
DK
7045// Arm_dynobj methods.
7046
7047// Read the symbol information.
7048
7049template<bool big_endian>
7050void
7051Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7052{
7053 // Call parent class to read symbol information.
f35c4853 7054 this->base_read_symbols(sd);
d5b40221
DK
7055
7056 // Read processor-specific flags in ELF file header.
7057 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7058 elfcpp::Elf_sizes<32>::ehdr_size,
7059 true, false);
7060 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7061 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7062
7063 // Read the attributes section if there is one.
7064 // We read from the end because gas seems to put it near the end of
7065 // the section headers.
7066 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7067 const unsigned char* ps =
993d07c1
DK
7068 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7069 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7070 {
7071 elfcpp::Shdr<32, big_endian> shdr(ps);
7072 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7073 {
7074 section_offset_type section_offset = shdr.get_sh_offset();
7075 section_size_type section_size =
7076 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7077 const unsigned char* view =
7078 this->get_view(section_offset, section_size, true, false);
993d07c1 7079 this->attributes_section_data_ =
f625ae50 7080 new Attributes_section_data(view, section_size);
993d07c1
DK
7081 break;
7082 }
7083 }
d5b40221
DK
7084}
7085
e9bbb538
DK
7086// Stub_addend_reader methods.
7087
7088// Read the addend of a REL relocation of type R_TYPE at VIEW.
7089
7090template<bool big_endian>
7091elfcpp::Elf_types<32>::Elf_Swxword
7092Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7093 unsigned int r_type,
7094 const unsigned char* view,
7095 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7096{
2c54b4f4 7097 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7098
e9bbb538
DK
7099 switch (r_type)
7100 {
7101 case elfcpp::R_ARM_CALL:
7102 case elfcpp::R_ARM_JUMP24:
7103 case elfcpp::R_ARM_PLT32:
7104 {
7105 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7106 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7107 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7108 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7109 }
7110
7111 case elfcpp::R_ARM_THM_CALL:
7112 case elfcpp::R_ARM_THM_JUMP24:
7113 case elfcpp::R_ARM_THM_XPC22:
7114 {
e9bbb538
DK
7115 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7116 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7117 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7118 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7119 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7120 }
7121
7122 case elfcpp::R_ARM_THM_JUMP19:
7123 {
7124 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7125 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7126 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7127 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7128 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7129 }
7130
7131 default:
7132 gold_unreachable();
7133 }
7134}
7135
4a54abbb
DK
7136// Arm_output_data_got methods.
7137
7138// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7139// The first one is initialized to be 1, which is the module index for
7140// the main executable and the second one 0. A reloc of the type
7141// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7142// be applied by gold. GSYM is a global symbol.
7143//
7144template<bool big_endian>
7145void
7146Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7147 unsigned int got_type,
7148 Symbol* gsym)
7149{
7150 if (gsym->has_got_offset(got_type))
7151 return;
7152
7153 // We are doing a static link. Just mark it as belong to module 1,
7154 // the executable.
7155 unsigned int got_offset = this->add_constant(1);
2e702c99 7156 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7157 got_offset = this->add_constant(0);
7158 this->static_relocs_.push_back(Static_reloc(got_offset,
7159 elfcpp::R_ARM_TLS_DTPOFF32,
7160 gsym));
7161}
7162
7163// Same as the above but for a local symbol.
7164
7165template<bool big_endian>
7166void
7167Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7168 unsigned int got_type,
6fa2a40b 7169 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7170 unsigned int index)
7171{
7172 if (object->local_has_got_offset(index, got_type))
7173 return;
7174
7175 // We are doing a static link. Just mark it as belong to module 1,
7176 // the executable.
7177 unsigned int got_offset = this->add_constant(1);
7178 object->set_local_got_offset(index, got_type, got_offset);
7179 got_offset = this->add_constant(0);
2e702c99
RM
7180 this->static_relocs_.push_back(Static_reloc(got_offset,
7181 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7182 object, index));
7183}
7184
7185template<bool big_endian>
7186void
7187Arm_output_data_got<big_endian>::do_write(Output_file* of)
7188{
7189 // Call parent to write out GOT.
7190 Output_data_got<32, big_endian>::do_write(of);
7191
7192 // We are done if there is no fix up.
7193 if (this->static_relocs_.empty())
7194 return;
7195
7196 gold_assert(parameters->doing_static_link());
7197
7198 const off_t offset = this->offset();
7199 const section_size_type oview_size =
7200 convert_to_section_size_type(this->data_size());
7201 unsigned char* const oview = of->get_output_view(offset, oview_size);
7202
7203 Output_segment* tls_segment = this->layout_->tls_segment();
7204 gold_assert(tls_segment != NULL);
2e702c99 7205
4a54abbb
DK
7206 // The thread pointer $tp points to the TCB, which is followed by the
7207 // TLS. So we need to adjust $tp relative addressing by this amount.
7208 Arm_address aligned_tcb_size =
7209 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7210
7211 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7212 {
7213 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7214
4a54abbb
DK
7215 Arm_address value;
7216 if (!reloc.symbol_is_global())
7217 {
6fa2a40b 7218 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7219 const Symbol_value<32>* psymval =
7220 reloc.relobj()->local_symbol(reloc.index());
7221
7222 // We are doing static linking. Issue an error and skip this
7223 // relocation if the symbol is undefined or in a discarded_section.
7224 bool is_ordinary;
7225 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7226 if ((shndx == elfcpp::SHN_UNDEF)
7227 || (is_ordinary
7228 && shndx != elfcpp::SHN_UNDEF
7229 && !object->is_section_included(shndx)
7230 && !this->symbol_table_->is_section_folded(object, shndx)))
7231 {
7232 gold_error(_("undefined or discarded local symbol %u from "
7233 " object %s in GOT"),
7234 reloc.index(), reloc.relobj()->name().c_str());
7235 continue;
7236 }
2e702c99 7237
4a54abbb
DK
7238 value = psymval->value(object, 0);
7239 }
7240 else
7241 {
7242 const Symbol* gsym = reloc.symbol();
7243 gold_assert(gsym != NULL);
7244 if (gsym->is_forwarder())
7245 gsym = this->symbol_table_->resolve_forwards(gsym);
7246
7247 // We are doing static linking. Issue an error and skip this
7248 // relocation if the symbol is undefined or in a discarded_section
7249 // unless it is a weakly_undefined symbol.
7250 if ((gsym->is_defined_in_discarded_section()
7251 || gsym->is_undefined())
7252 && !gsym->is_weak_undefined())
7253 {
7254 gold_error(_("undefined or discarded symbol %s in GOT"),
7255 gsym->name());
7256 continue;
7257 }
7258
7259 if (!gsym->is_weak_undefined())
7260 {
7261 const Sized_symbol<32>* sym =
7262 static_cast<const Sized_symbol<32>*>(gsym);
7263 value = sym->value();
7264 }
7265 else
7266 value = 0;
7267 }
7268
7269 unsigned got_offset = reloc.got_offset();
7270 gold_assert(got_offset < oview_size);
7271
7272 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7273 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7274 Valtype x;
7275 switch (reloc.r_type())
7276 {
7277 case elfcpp::R_ARM_TLS_DTPOFF32:
7278 x = value;
7279 break;
7280 case elfcpp::R_ARM_TLS_TPOFF32:
7281 x = value + aligned_tcb_size;
7282 break;
7283 default:
7284 gold_unreachable();
7285 }
7286 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7287 }
7288
7289 of->write_output_view(offset, oview_size, oview);
7290}
7291
94cdfcff 7292// A class to handle the PLT data.
2e702c99
RM
7293// This is an abstract base class that handles most of the linker details
7294// but does not know the actual contents of PLT entries. The derived
7295// classes below fill in those details.
94cdfcff
DK
7296
7297template<bool big_endian>
7298class Output_data_plt_arm : public Output_section_data
7299{
7300 public:
fa89cc82
HS
7301 // Unlike aarch64, which records symbol value in "addend" field of relocations
7302 // and could be done at the same time an IRelative reloc is created for the
7303 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7304 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7305 // to keep necessary symbol information for later use in do_write. We usually
7306 // have only a very limited number of ifuncs, so the extra data required here
7307 // is also limited.
7308
7309 struct IRelative_data
7310 {
7311 IRelative_data(Sized_symbol<32>* sized_symbol)
7312 : symbol_is_global_(true)
7313 {
7314 u_.global = sized_symbol;
7315 }
7316
7317 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7318 unsigned int index)
7319 : symbol_is_global_(false)
7320 {
7321 u_.local.relobj = relobj;
7322 u_.local.index = index;
7323 }
7324
7325 union
7326 {
7327 Sized_symbol<32>* global;
7328
7329 struct
7330 {
7331 Sized_relobj_file<32, big_endian>* relobj;
7332 unsigned int index;
7333 } local;
7334 } u_;
7335
7336 bool symbol_is_global_;
7337 };
7338
94cdfcff
DK
7339 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7340 Reloc_section;
7341
fa89cc82
HS
7342 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7343 Arm_output_data_got<big_endian>* got,
7344 Output_data_space* got_plt,
7345 Output_data_space* got_irelative);
94cdfcff
DK
7346
7347 // Add an entry to the PLT.
7348 void
fa89cc82
HS
7349 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7350
7351 // Add the relocation for a plt entry.
7352 void
7353 add_relocation(Symbol_table* symtab, Layout* layout,
7354 Symbol* gsym, unsigned int got_offset);
7355
7356 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7357 unsigned int
7358 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7359 Sized_relobj_file<32, big_endian>* relobj,
7360 unsigned int local_sym_index);
94cdfcff
DK
7361
7362 // Return the .rel.plt section data.
7363 const Reloc_section*
7364 rel_plt() const
7365 { return this->rel_; }
7366
fa89cc82
HS
7367 // Return the PLT relocation container for IRELATIVE.
7368 Reloc_section*
7369 rel_irelative(Symbol_table*, Layout*);
7370
0e70b911
CC
7371 // Return the number of PLT entries.
7372 unsigned int
7373 entry_count() const
fa89cc82 7374 { return this->count_ + this->irelative_count_; }
0e70b911
CC
7375
7376 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7377 unsigned int
7378 first_plt_entry_offset() const
7379 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7380
7381 // Return the size of a PLT entry.
2e702c99
RM
7382 unsigned int
7383 get_plt_entry_size() const
7384 { return this->do_get_plt_entry_size(); }
0e70b911 7385
fa89cc82
HS
7386 // Return the PLT address for globals.
7387 uint32_t
7388 address_for_global(const Symbol*) const;
7389
7390 // Return the PLT address for locals.
7391 uint32_t
7392 address_for_local(const Relobj*, unsigned int symndx) const;
7393
94cdfcff 7394 protected:
2e702c99
RM
7395 // Fill in the first PLT entry.
7396 void
7397 fill_first_plt_entry(unsigned char* pov,
7398 Arm_address got_address,
7399 Arm_address plt_address)
7400 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7401
7402 void
7403 fill_plt_entry(unsigned char* pov,
7404 Arm_address got_address,
7405 Arm_address plt_address,
7406 unsigned int got_offset,
7407 unsigned int plt_offset)
7408 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7409
7410 virtual unsigned int
7411 do_first_plt_entry_offset() const = 0;
7412
7413 virtual unsigned int
7414 do_get_plt_entry_size() const = 0;
7415
7416 virtual void
7417 do_fill_first_plt_entry(unsigned char* pov,
7418 Arm_address got_address,
7419 Arm_address plt_address) = 0;
7420
7421 virtual void
7422 do_fill_plt_entry(unsigned char* pov,
7423 Arm_address got_address,
7424 Arm_address plt_address,
7425 unsigned int got_offset,
7426 unsigned int plt_offset) = 0;
7427
94cdfcff
DK
7428 void
7429 do_adjust_output_section(Output_section* os);
7430
7431 // Write to a map file.
7432 void
7433 do_print_to_mapfile(Mapfile* mapfile) const
7434 { mapfile->print_output_data(this, _("** PLT")); }
7435
7436 private:
94cdfcff
DK
7437 // Set the final size.
7438 void
7439 set_final_data_size()
7440 {
2e702c99 7441 this->set_data_size(this->first_plt_entry_offset()
fa89cc82
HS
7442 + ((this->count_ + this->irelative_count_)
7443 * this->get_plt_entry_size()));
94cdfcff
DK
7444 }
7445
7446 // Write out the PLT data.
7447 void
7448 do_write(Output_file*);
7449
fa89cc82
HS
7450 // Record irelative symbol data.
7451 void insert_irelative_data(const IRelative_data& idata)
7452 { irelative_data_vec_.push_back(idata); }
7453
94cdfcff
DK
7454 // The reloc section.
7455 Reloc_section* rel_;
fa89cc82
HS
7456 // The IRELATIVE relocs, if necessary. These must follow the
7457 // regular PLT relocations.
7458 Reloc_section* irelative_rel_;
7459 // The .got section.
7460 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
7461 // The .got.plt section.
7462 Output_data_space* got_plt_;
fa89cc82
HS
7463 // The part of the .got.plt section used for IRELATIVE relocs.
7464 Output_data_space* got_irelative_;
94cdfcff
DK
7465 // The number of PLT entries.
7466 unsigned int count_;
fa89cc82
HS
7467 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7468 // follow the regular PLT entries.
7469 unsigned int irelative_count_;
7470 // Vector for irelative data.
7471 typedef std::vector<IRelative_data> IRelative_data_vec;
7472 IRelative_data_vec irelative_data_vec_;
94cdfcff
DK
7473};
7474
7475// Create the PLT section. The ordinary .got section is an argument,
7476// since we need to refer to the start. We also create our own .got
7477// section just for PLT entries.
7478
7479template<bool big_endian>
fa89cc82
HS
7480Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7481 Layout* layout, uint64_t addralign,
7482 Arm_output_data_got<big_endian>* got,
7483 Output_data_space* got_plt,
7484 Output_data_space* got_irelative)
7485 : Output_section_data(addralign), irelative_rel_(NULL),
7486 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7487 count_(0), irelative_count_(0)
94cdfcff
DK
7488{
7489 this->rel_ = new Reloc_section(false);
2ea97941 7490 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7491 elfcpp::SHF_ALLOC, this->rel_,
7492 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7493}
7494
7495template<bool big_endian>
7496void
7497Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7498{
7499 os->set_entsize(0);
7500}
7501
7502// Add an entry to the PLT.
7503
7504template<bool big_endian>
7505void
fa89cc82
HS
7506Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7507 Layout* layout,
7508 Symbol* gsym)
94cdfcff
DK
7509{
7510 gold_assert(!gsym->has_plt_offset());
7511
fa89cc82
HS
7512 unsigned int* entry_count;
7513 Output_section_data_build* got;
7514
7515 // We have 2 different types of plt entry here, normal and ifunc.
7516
7517 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7518 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7519
7520 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7521 // second 12, third 24 ... etc.
7522
7523 // IFunc plt entries *always* come after *normal* plt entries.
7524
7525 // Notice, when computing the plt address of a certain symbol, "plt_address +
7526 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7527 // target->plt_address_for_local() instead.
7528
7529 int begin_offset = 0;
7530 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7531 && gsym->can_use_relative_reloc(false))
7532 {
7533 entry_count = &this->irelative_count_;
7534 got = this->got_irelative_;
7535 // For irelative plt entries, offset is relative to the end of normal plt
7536 // entries, so it starts from 0.
7537 begin_offset = 0;
7538 // Record symbol information.
7539 this->insert_irelative_data(
7540 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7541 }
7542 else
7543 {
7544 entry_count = &this->count_;
7545 got = this->got_plt_;
7546 // Note that for normal plt entries, when setting the PLT offset we skip
7547 // the initial reserved PLT entry.
7548 begin_offset = this->first_plt_entry_offset();
7549 }
7550
7551 gsym->set_plt_offset(begin_offset
7552 + (*entry_count) * this->get_plt_entry_size());
94cdfcff 7553
fa89cc82 7554 ++(*entry_count);
94cdfcff 7555
fa89cc82 7556 section_offset_type got_offset = got->current_data_size();
94cdfcff
DK
7557
7558 // Every PLT entry needs a GOT entry which points back to the PLT
7559 // entry (this will be changed by the dynamic linker, normally
7560 // lazily when the function is called).
fa89cc82 7561 got->set_current_data_size(got_offset + 4);
94cdfcff
DK
7562
7563 // Every PLT entry needs a reloc.
fa89cc82 7564 this->add_relocation(symtab, layout, gsym, got_offset);
94cdfcff
DK
7565
7566 // Note that we don't need to save the symbol. The contents of the
7567 // PLT are independent of which symbols are used. The symbols only
7568 // appear in the relocations.
7569}
7570
fa89cc82
HS
7571// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7572// the PLT offset.
7573
7574template<bool big_endian>
7575unsigned int
7576Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7577 Symbol_table* symtab,
7578 Layout* layout,
7579 Sized_relobj_file<32, big_endian>* relobj,
7580 unsigned int local_sym_index)
7581{
7582 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7583
7584 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7585 // no longer correct. Use target->plt_address_for_local() instead.
7586 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7587 ++this->irelative_count_;
7588
7589 section_offset_type got_offset = this->got_irelative_->current_data_size();
7590
7591 // Every PLT entry needs a GOT entry which points back to the PLT
7592 // entry.
7593 this->got_irelative_->set_current_data_size(got_offset + 4);
7594
7595
7596 // Every PLT entry needs a reloc.
7597 Reloc_section* rel = this->rel_irelative(symtab, layout);
7598 rel->add_symbolless_local_addend(relobj, local_sym_index,
7599 elfcpp::R_ARM_IRELATIVE,
7600 this->got_irelative_, got_offset);
7601 return plt_offset;
7602}
7603
7604
7605// Add the relocation for a PLT entry.
7606
7607template<bool big_endian>
7608void
7609Output_data_plt_arm<big_endian>::add_relocation(
7610 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7611{
7612 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7613 && gsym->can_use_relative_reloc(false))
7614 {
7615 Reloc_section* rel = this->rel_irelative(symtab, layout);
7616 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7617 this->got_irelative_, got_offset);
7618 }
7619 else
7620 {
7621 gsym->set_needs_dynsym_entry();
7622 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7623 got_offset);
7624 }
7625}
7626
7627
7628// Create the irelative relocation data.
7629
7630template<bool big_endian>
7631typename Output_data_plt_arm<big_endian>::Reloc_section*
7632Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7633 Layout* layout)
7634{
7635 if (this->irelative_rel_ == NULL)
7636 {
7637 // Since irelative relocations goes into 'rel.dyn', we delegate the
7638 // creation of irelative_rel_ to where rel_dyn section gets created.
7639 Target_arm<big_endian>* arm_target =
7640 Target_arm<big_endian>::default_target();
7641 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7642
7643 // Make sure we have a place for the TLSDESC relocations, in
7644 // case we see any later on.
7645 // this->rel_tlsdesc(layout);
7646 if (parameters->doing_static_link())
7647 {
7648 // A statically linked executable will only have a .rel.plt section to
7649 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7650 // will use these symbols to locate the IRELATIVE relocs at program
7651 // startup time.
7652 symtab->define_in_output_data("__rel_iplt_start", NULL,
7653 Symbol_table::PREDEFINED,
7654 this->irelative_rel_, 0, 0,
7655 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7656 elfcpp::STV_HIDDEN, 0, false, true);
7657 symtab->define_in_output_data("__rel_iplt_end", NULL,
7658 Symbol_table::PREDEFINED,
7659 this->irelative_rel_, 0, 0,
7660 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7661 elfcpp::STV_HIDDEN, 0, true, true);
7662 }
7663 }
7664 return this->irelative_rel_;
7665}
7666
7667
7668// Return the PLT address for a global symbol.
7669
7670template<bool big_endian>
7671uint32_t
7672Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7673{
7674 uint64_t begin_offset = 0;
7675 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7676 && gsym->can_use_relative_reloc(false))
7677 {
7678 begin_offset = (this->first_plt_entry_offset() +
7679 this->count_ * this->get_plt_entry_size());
7680 }
7681 return this->address() + begin_offset + gsym->plt_offset();
7682}
7683
7684
7685// Return the PLT address for a local symbol. These are always
7686// IRELATIVE relocs.
7687
7688template<bool big_endian>
7689uint32_t
7690Output_data_plt_arm<big_endian>::address_for_local(
7691 const Relobj* object,
7692 unsigned int r_sym) const
7693{
7694 return (this->address()
7695 + this->first_plt_entry_offset()
7696 + this->count_ * this->get_plt_entry_size()
7697 + object->local_plt_offset(r_sym));
7698}
7699
7700
2e702c99
RM
7701template<bool big_endian>
7702class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7703{
7704 public:
fa89cc82
HS
7705 Output_data_plt_arm_standard(Layout* layout,
7706 Arm_output_data_got<big_endian>* got,
7707 Output_data_space* got_plt,
7708 Output_data_space* got_irelative)
7709 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
2e702c99
RM
7710 { }
7711
7712 protected:
7713 // Return the offset of the first non-reserved PLT entry.
7714 virtual unsigned int
7715 do_first_plt_entry_offset() const
7716 { return sizeof(first_plt_entry); }
7717
7718 // Return the size of a PLT entry.
7719 virtual unsigned int
7720 do_get_plt_entry_size() const
7721 { return sizeof(plt_entry); }
7722
7723 virtual void
7724 do_fill_first_plt_entry(unsigned char* pov,
7725 Arm_address got_address,
7726 Arm_address plt_address);
7727
7728 virtual void
7729 do_fill_plt_entry(unsigned char* pov,
7730 Arm_address got_address,
7731 Arm_address plt_address,
7732 unsigned int got_offset,
7733 unsigned int plt_offset);
7734
7735 private:
7736 // Template for the first PLT entry.
7737 static const uint32_t first_plt_entry[5];
7738
7739 // Template for subsequent PLT entries.
7740 static const uint32_t plt_entry[3];
7741};
7742
94cdfcff
DK
7743// ARM PLTs.
7744// FIXME: This is not very flexible. Right now this has only been tested
7745// on armv5te. If we are to support additional architecture features like
7746// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7747
7748// The first entry in the PLT.
7749template<bool big_endian>
2e702c99 7750const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7751{
7752 0xe52de004, // str lr, [sp, #-4]!
7753 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7754 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7755 0xe5bef008, // ldr pc, [lr, #8]!
7756 0x00000000, // &GOT[0] - .
7757};
7758
2e702c99
RM
7759template<bool big_endian>
7760void
7761Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7762 unsigned char* pov,
7763 Arm_address got_address,
7764 Arm_address plt_address)
7765{
7766 // Write first PLT entry. All but the last word are constants.
7767 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7768 / sizeof(plt_entry[0]));
7769 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7770 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7771 // Last word in first PLT entry is &GOT[0] - .
7772 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7773 got_address - (plt_address + 16));
7774}
7775
94cdfcff
DK
7776// Subsequent entries in the PLT.
7777
7778template<bool big_endian>
2e702c99 7779const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7780{
7781 0xe28fc600, // add ip, pc, #0xNN00000
7782 0xe28cca00, // add ip, ip, #0xNN000
7783 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7784};
7785
2e702c99
RM
7786template<bool big_endian>
7787void
7788Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7789 unsigned char* pov,
7790 Arm_address got_address,
7791 Arm_address plt_address,
7792 unsigned int got_offset,
7793 unsigned int plt_offset)
7794{
7795 int32_t offset = ((got_address + got_offset)
7796 - (plt_address + plt_offset + 8));
7797
7798 gold_assert(offset >= 0 && offset < 0x0fffffff);
7799 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7800 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7801 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7802 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7803 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7804 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7805}
7806
94cdfcff
DK
7807// Write out the PLT. This uses the hand-coded instructions above,
7808// and adjusts them as needed. This is all specified by the arm ELF
7809// Processor Supplement.
7810
7811template<bool big_endian>
7812void
7813Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7814{
2ea97941 7815 const off_t offset = this->offset();
94cdfcff
DK
7816 const section_size_type oview_size =
7817 convert_to_section_size_type(this->data_size());
2ea97941 7818 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7819
7820 const off_t got_file_offset = this->got_plt_->offset();
fa89cc82
HS
7821 gold_assert(got_file_offset + this->got_plt_->data_size()
7822 == this->got_irelative_->offset());
94cdfcff 7823 const section_size_type got_size =
fa89cc82
HS
7824 convert_to_section_size_type(this->got_plt_->data_size()
7825 + this->got_irelative_->data_size());
94cdfcff
DK
7826 unsigned char* const got_view = of->get_output_view(got_file_offset,
7827 got_size);
7828 unsigned char* pov = oview;
7829
ebabffbd
DK
7830 Arm_address plt_address = this->address();
7831 Arm_address got_address = this->got_plt_->address();
94cdfcff 7832
2e702c99
RM
7833 // Write first PLT entry.
7834 this->fill_first_plt_entry(pov, got_address, plt_address);
7835 pov += this->first_plt_entry_offset();
94cdfcff
DK
7836
7837 unsigned char* got_pov = got_view;
7838
7839 memset(got_pov, 0, 12);
7840 got_pov += 12;
7841
2e702c99 7842 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff 7843 unsigned int got_offset = 12;
fa89cc82
HS
7844 const unsigned int count = this->count_ + this->irelative_count_;
7845 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
94cdfcff
DK
7846 for (unsigned int i = 0;
7847 i < count;
7848 ++i,
2e702c99 7849 pov += this->get_plt_entry_size(),
94cdfcff 7850 got_pov += 4,
2e702c99 7851 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7852 got_offset += 4)
7853 {
7854 // Set and adjust the PLT entry itself.
2e702c99
RM
7855 this->fill_plt_entry(pov, got_address, plt_address,
7856 got_offset, plt_offset);
94cdfcff 7857
fa89cc82
HS
7858 Arm_address value;
7859 if (i < this->count_)
7860 {
7861 // For non-irelative got entries, the value is the beginning of plt.
7862 value = plt_address;
7863 }
7864 else
7865 {
7866 // For irelative got entries, the value is the (global/local) symbol
7867 // address.
7868 const IRelative_data& idata =
7869 this->irelative_data_vec_[i - this->count_];
7870 if (idata.symbol_is_global_)
7871 {
7872 // Set the entry in the GOT for irelative symbols. The content is
7873 // the address of the ifunc, not the address of plt start.
7874 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7875 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7876 value = sized_symbol->value();
7877 }
7878 else
7879 {
7880 value = idata.u_.local.relobj->local_symbol_value(
7881 idata.u_.local.index, 0);
7882 }
7883 }
7884 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
94cdfcff
DK
7885 }
7886
7887 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7888 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7889
2ea97941 7890 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7891 of->write_output_view(got_file_offset, got_size, got_view);
7892}
7893
fa89cc82 7894
94cdfcff
DK
7895// Create a PLT entry for a global symbol.
7896
7897template<bool big_endian>
7898void
2ea97941 7899Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7900 Symbol* gsym)
7901{
7902 if (gsym->has_plt_offset())
7903 return;
7904
fa89cc82
HS
7905 if (this->plt_ == NULL)
7906 this->make_plt_section(symtab, layout);
7907
7908 this->plt_->add_entry(symtab, layout, gsym);
7909}
7910
7911
7912// Create the PLT section.
7913template<bool big_endian>
7914void
7915Target_arm<big_endian>::make_plt_section(
7916 Symbol_table* symtab, Layout* layout)
7917{
94cdfcff
DK
7918 if (this->plt_ == NULL)
7919 {
fa89cc82 7920 // Create the GOT section first.
2ea97941 7921 this->got_section(symtab, layout);
94cdfcff 7922
fa89cc82
HS
7923 // GOT for irelatives is create along with got.plt.
7924 gold_assert(this->got_ != NULL
7925 && this->got_plt_ != NULL
7926 && this->got_irelative_ != NULL);
7927 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7928 this->got_irelative_);
2e702c99 7929
2ea97941
ILT
7930 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7931 (elfcpp::SHF_ALLOC
7932 | elfcpp::SHF_EXECINSTR),
22f0da72 7933 this->plt_, ORDER_PLT, false);
07f107f3
WN
7934 symtab->define_in_output_data("$a", NULL,
7935 Symbol_table::PREDEFINED,
7936 this->plt_,
7937 0, 0, elfcpp::STT_NOTYPE,
7938 elfcpp::STB_LOCAL,
7939 elfcpp::STV_DEFAULT, 0,
7940 false, false);
94cdfcff 7941 }
94cdfcff
DK
7942}
7943
fa89cc82
HS
7944
7945// Make a PLT entry for a local STT_GNU_IFUNC symbol.
7946
7947template<bool big_endian>
7948void
7949Target_arm<big_endian>::make_local_ifunc_plt_entry(
7950 Symbol_table* symtab, Layout* layout,
7951 Sized_relobj_file<32, big_endian>* relobj,
7952 unsigned int local_sym_index)
7953{
7954 if (relobj->local_has_plt_offset(local_sym_index))
7955 return;
7956 if (this->plt_ == NULL)
7957 this->make_plt_section(symtab, layout);
7958 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7959 relobj,
7960 local_sym_index);
7961 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7962}
7963
7964
0e70b911
CC
7965// Return the number of entries in the PLT.
7966
7967template<bool big_endian>
7968unsigned int
7969Target_arm<big_endian>::plt_entry_count() const
7970{
7971 if (this->plt_ == NULL)
7972 return 0;
7973 return this->plt_->entry_count();
7974}
7975
7976// Return the offset of the first non-reserved PLT entry.
7977
7978template<bool big_endian>
7979unsigned int
7980Target_arm<big_endian>::first_plt_entry_offset() const
7981{
2e702c99 7982 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7983}
7984
7985// Return the size of each PLT entry.
7986
7987template<bool big_endian>
7988unsigned int
7989Target_arm<big_endian>::plt_entry_size() const
7990{
2e702c99 7991 return this->plt_->get_plt_entry_size();
0e70b911
CC
7992}
7993
f96accdf
DK
7994// Get the section to use for TLS_DESC relocations.
7995
7996template<bool big_endian>
7997typename Target_arm<big_endian>::Reloc_section*
7998Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7999{
8000 return this->plt_section()->rel_tls_desc(layout);
8001}
8002
8003// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8004
8005template<bool big_endian>
8006void
8007Target_arm<big_endian>::define_tls_base_symbol(
8008 Symbol_table* symtab,
8009 Layout* layout)
8010{
8011 if (this->tls_base_symbol_defined_)
8012 return;
8013
8014 Output_segment* tls_segment = layout->tls_segment();
8015 if (tls_segment != NULL)
8016 {
8017 bool is_exec = parameters->options().output_is_executable();
8018 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8019 Symbol_table::PREDEFINED,
8020 tls_segment, 0, 0,
8021 elfcpp::STT_TLS,
8022 elfcpp::STB_LOCAL,
8023 elfcpp::STV_HIDDEN, 0,
8024 (is_exec
8025 ? Symbol::SEGMENT_END
8026 : Symbol::SEGMENT_START),
8027 true);
8028 }
8029 this->tls_base_symbol_defined_ = true;
8030}
8031
8032// Create a GOT entry for the TLS module index.
8033
8034template<bool big_endian>
8035unsigned int
8036Target_arm<big_endian>::got_mod_index_entry(
8037 Symbol_table* symtab,
8038 Layout* layout,
6fa2a40b 8039 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
8040{
8041 if (this->got_mod_index_offset_ == -1U)
8042 {
8043 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
8044 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8045 unsigned int got_offset;
8046 if (!parameters->doing_static_link())
8047 {
8048 got_offset = got->add_constant(0);
8049 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8050 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8051 got_offset);
8052 }
8053 else
8054 {
8055 // We are doing a static link. Just mark it as belong to module 1,
8056 // the executable.
8057 got_offset = got->add_constant(1);
8058 }
8059
f96accdf
DK
8060 got->add_constant(0);
8061 this->got_mod_index_offset_ = got_offset;
8062 }
8063 return this->got_mod_index_offset_;
8064}
8065
8066// Optimize the TLS relocation type based on what we know about the
8067// symbol. IS_FINAL is true if the final address of this symbol is
8068// known at link time.
8069
8070template<bool big_endian>
8071tls::Tls_optimization
8072Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8073{
8074 // FIXME: Currently we do not do any TLS optimization.
8075 return tls::TLSOPT_NONE;
8076}
8077
95a2c8d6
RS
8078// Get the Reference_flags for a particular relocation.
8079
8080template<bool big_endian>
8081int
8082Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8083{
8084 switch (r_type)
8085 {
8086 case elfcpp::R_ARM_NONE:
8087 case elfcpp::R_ARM_V4BX:
8088 case elfcpp::R_ARM_GNU_VTENTRY:
8089 case elfcpp::R_ARM_GNU_VTINHERIT:
8090 // No symbol reference.
8091 return 0;
8092
8093 case elfcpp::R_ARM_ABS32:
8094 case elfcpp::R_ARM_ABS16:
8095 case elfcpp::R_ARM_ABS12:
8096 case elfcpp::R_ARM_THM_ABS5:
8097 case elfcpp::R_ARM_ABS8:
8098 case elfcpp::R_ARM_BASE_ABS:
8099 case elfcpp::R_ARM_MOVW_ABS_NC:
8100 case elfcpp::R_ARM_MOVT_ABS:
8101 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8102 case elfcpp::R_ARM_THM_MOVT_ABS:
8103 case elfcpp::R_ARM_ABS32_NOI:
8104 return Symbol::ABSOLUTE_REF;
8105
8106 case elfcpp::R_ARM_REL32:
8107 case elfcpp::R_ARM_LDR_PC_G0:
8108 case elfcpp::R_ARM_SBREL32:
8109 case elfcpp::R_ARM_THM_PC8:
8110 case elfcpp::R_ARM_BASE_PREL:
8111 case elfcpp::R_ARM_MOVW_PREL_NC:
8112 case elfcpp::R_ARM_MOVT_PREL:
8113 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8114 case elfcpp::R_ARM_THM_MOVT_PREL:
8115 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8116 case elfcpp::R_ARM_THM_PC12:
8117 case elfcpp::R_ARM_REL32_NOI:
8118 case elfcpp::R_ARM_ALU_PC_G0_NC:
8119 case elfcpp::R_ARM_ALU_PC_G0:
8120 case elfcpp::R_ARM_ALU_PC_G1_NC:
8121 case elfcpp::R_ARM_ALU_PC_G1:
8122 case elfcpp::R_ARM_ALU_PC_G2:
8123 case elfcpp::R_ARM_LDR_PC_G1:
8124 case elfcpp::R_ARM_LDR_PC_G2:
8125 case elfcpp::R_ARM_LDRS_PC_G0:
8126 case elfcpp::R_ARM_LDRS_PC_G1:
8127 case elfcpp::R_ARM_LDRS_PC_G2:
8128 case elfcpp::R_ARM_LDC_PC_G0:
8129 case elfcpp::R_ARM_LDC_PC_G1:
8130 case elfcpp::R_ARM_LDC_PC_G2:
8131 case elfcpp::R_ARM_ALU_SB_G0_NC:
8132 case elfcpp::R_ARM_ALU_SB_G0:
8133 case elfcpp::R_ARM_ALU_SB_G1_NC:
8134 case elfcpp::R_ARM_ALU_SB_G1:
8135 case elfcpp::R_ARM_ALU_SB_G2:
8136 case elfcpp::R_ARM_LDR_SB_G0:
8137 case elfcpp::R_ARM_LDR_SB_G1:
8138 case elfcpp::R_ARM_LDR_SB_G2:
8139 case elfcpp::R_ARM_LDRS_SB_G0:
8140 case elfcpp::R_ARM_LDRS_SB_G1:
8141 case elfcpp::R_ARM_LDRS_SB_G2:
8142 case elfcpp::R_ARM_LDC_SB_G0:
8143 case elfcpp::R_ARM_LDC_SB_G1:
8144 case elfcpp::R_ARM_LDC_SB_G2:
8145 case elfcpp::R_ARM_MOVW_BREL_NC:
8146 case elfcpp::R_ARM_MOVT_BREL:
8147 case elfcpp::R_ARM_MOVW_BREL:
8148 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8149 case elfcpp::R_ARM_THM_MOVT_BREL:
8150 case elfcpp::R_ARM_THM_MOVW_BREL:
8151 case elfcpp::R_ARM_GOTOFF32:
8152 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
8153 case elfcpp::R_ARM_SBREL31:
8154 return Symbol::RELATIVE_REF;
8155
8156 case elfcpp::R_ARM_PLT32:
8157 case elfcpp::R_ARM_CALL:
8158 case elfcpp::R_ARM_JUMP24:
8159 case elfcpp::R_ARM_THM_CALL:
8160 case elfcpp::R_ARM_THM_JUMP24:
8161 case elfcpp::R_ARM_THM_JUMP19:
8162 case elfcpp::R_ARM_THM_JUMP6:
8163 case elfcpp::R_ARM_THM_JUMP11:
8164 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
8165 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8166 // in unwind tables. It may point to functions via PLTs.
8167 // So we treat it like call/jump relocations above.
8168 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
8169 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8170
8171 case elfcpp::R_ARM_GOT_BREL:
8172 case elfcpp::R_ARM_GOT_ABS:
8173 case elfcpp::R_ARM_GOT_PREL:
8174 // Absolute in GOT.
8175 return Symbol::ABSOLUTE_REF;
8176
8177 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8178 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8179 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8180 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8181 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8182 return Symbol::TLS_REF;
8183
8184 case elfcpp::R_ARM_TARGET1:
8185 case elfcpp::R_ARM_TARGET2:
8186 case elfcpp::R_ARM_COPY:
8187 case elfcpp::R_ARM_GLOB_DAT:
8188 case elfcpp::R_ARM_JUMP_SLOT:
8189 case elfcpp::R_ARM_RELATIVE:
8190 case elfcpp::R_ARM_PC24:
8191 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8192 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8193 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8194 default:
8195 // Not expected. We will give an error later.
8196 return 0;
8197 }
8198}
8199
4a657b0d
DK
8200// Report an unsupported relocation against a local symbol.
8201
8202template<bool big_endian>
8203void
8204Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 8205 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8206 unsigned int r_type)
8207{
8208 gold_error(_("%s: unsupported reloc %u against local symbol"),
8209 object->name().c_str(), r_type);
8210}
8211
bec53400
DK
8212// We are about to emit a dynamic relocation of type R_TYPE. If the
8213// dynamic linker does not support it, issue an error. The GNU linker
8214// only issues a non-PIC error for an allocated read-only section.
8215// Here we know the section is allocated, but we don't know that it is
8216// read-only. But we check for all the relocation types which the
8217// glibc dynamic linker supports, so it seems appropriate to issue an
8218// error even if the section is not read-only.
8219
8220template<bool big_endian>
8221void
8222Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8223 unsigned int r_type)
8224{
8225 switch (r_type)
8226 {
8227 // These are the relocation types supported by glibc for ARM.
8228 case elfcpp::R_ARM_RELATIVE:
8229 case elfcpp::R_ARM_COPY:
8230 case elfcpp::R_ARM_GLOB_DAT:
8231 case elfcpp::R_ARM_JUMP_SLOT:
8232 case elfcpp::R_ARM_ABS32:
be8fcb75 8233 case elfcpp::R_ARM_ABS32_NOI:
fa89cc82 8234 case elfcpp::R_ARM_IRELATIVE:
bec53400
DK
8235 case elfcpp::R_ARM_PC24:
8236 // FIXME: The following 3 types are not supported by Android's dynamic
8237 // linker.
8238 case elfcpp::R_ARM_TLS_DTPMOD32:
8239 case elfcpp::R_ARM_TLS_DTPOFF32:
8240 case elfcpp::R_ARM_TLS_TPOFF32:
8241 return;
8242
8243 default:
c8761b9a
DK
8244 {
8245 // This prevents us from issuing more than one error per reloc
8246 // section. But we can still wind up issuing more than one
8247 // error per object file.
8248 if (this->issued_non_pic_error_)
8249 return;
8250 const Arm_reloc_property* reloc_property =
8251 arm_reloc_property_table->get_reloc_property(r_type);
8252 gold_assert(reloc_property != NULL);
8253 object->error(_("requires unsupported dynamic reloc %s; "
8254 "recompile with -fPIC"),
8255 reloc_property->name().c_str());
8256 this->issued_non_pic_error_ = true;
bec53400 8257 return;
c8761b9a 8258 }
bec53400
DK
8259
8260 case elfcpp::R_ARM_NONE:
8261 gold_unreachable();
8262 }
8263}
8264
fa89cc82
HS
8265
8266// Return whether we need to make a PLT entry for a relocation of the
8267// given type against a STT_GNU_IFUNC symbol.
8268
8269template<bool big_endian>
8270bool
8271Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8272 Sized_relobj_file<32, big_endian>* object,
8273 unsigned int r_type)
8274{
8275 int flags = Scan::get_reference_flags(r_type);
8276 if (flags & Symbol::TLS_REF)
8277 {
8278 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8279 object->name().c_str(), r_type);
8280 return false;
8281 }
8282 return flags != 0;
8283}
8284
8285
4a657b0d 8286// Scan a relocation for a local symbol.
bec53400
DK
8287// FIXME: This only handles a subset of relocation types used by Android
8288// on ARM v5te devices.
4a657b0d
DK
8289
8290template<bool big_endian>
8291inline void
ad0f2072 8292Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 8293 Layout* layout,
bec53400 8294 Target_arm* target,
6fa2a40b 8295 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8296 unsigned int data_shndx,
8297 Output_section* output_section,
8298 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 8299 unsigned int r_type,
bfdfa4cd
AM
8300 const elfcpp::Sym<32, big_endian>& lsym,
8301 bool is_discarded)
4a657b0d 8302{
bfdfa4cd
AM
8303 if (is_discarded)
8304 return;
8305
a6d1ef57 8306 r_type = get_real_reloc_type(r_type);
fa89cc82
HS
8307
8308 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8309 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8310 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8311 {
8312 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8313 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8314 }
8315
4a657b0d
DK
8316 switch (r_type)
8317 {
8318 case elfcpp::R_ARM_NONE:
e4782e83
DK
8319 case elfcpp::R_ARM_V4BX:
8320 case elfcpp::R_ARM_GNU_VTENTRY:
8321 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8322 break;
8323
bec53400 8324 case elfcpp::R_ARM_ABS32:
be8fcb75 8325 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
8326 // If building a shared library (or a position-independent
8327 // executable), we need to create a dynamic relocation for
8328 // this location. The relocation applied at link time will
8329 // apply the link-time value, so we flag the location with
8330 // an R_ARM_RELATIVE relocation so the dynamic loader can
8331 // relocate it easily.
8332 if (parameters->options().output_is_position_independent())
8333 {
2ea97941 8334 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 8335 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
8336 // If we are to add more other reloc types than R_ARM_ABS32,
8337 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
8338 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8339 output_section, data_shndx,
fa89cc82 8340 reloc.get_r_offset(), is_ifunc);
bec53400
DK
8341 }
8342 break;
8343
e4782e83
DK
8344 case elfcpp::R_ARM_ABS16:
8345 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
8346 case elfcpp::R_ARM_THM_ABS5:
8347 case elfcpp::R_ARM_ABS8:
be8fcb75 8348 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
8349 case elfcpp::R_ARM_MOVW_ABS_NC:
8350 case elfcpp::R_ARM_MOVT_ABS:
8351 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8352 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
8353 // If building a shared library (or a position-independent
8354 // executable), we need to create a dynamic relocation for
8355 // this location. Because the addend needs to remain in the
8356 // data section, we need to be careful not to apply this
8357 // relocation statically.
8358 if (parameters->options().output_is_position_independent())
2e702c99 8359 {
e4782e83 8360 check_non_pic(object, r_type);
2e702c99 8361 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 8362 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 8363 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
8364 rel_dyn->add_local(object, r_sym, r_type, output_section,
8365 data_shndx, reloc.get_r_offset());
2e702c99
RM
8366 else
8367 {
8368 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
8369 unsigned int shndx = lsym.get_st_shndx();
8370 bool is_ordinary;
8371 shndx = object->adjust_sym_shndx(r_sym, shndx,
8372 &is_ordinary);
8373 if (!is_ordinary)
8374 object->error(_("section symbol %u has bad shndx %u"),
8375 r_sym, shndx);
8376 else
8377 rel_dyn->add_local_section(object, shndx,
8378 r_type, output_section,
8379 data_shndx, reloc.get_r_offset());
2e702c99
RM
8380 }
8381 }
e4782e83
DK
8382 break;
8383
e4782e83
DK
8384 case elfcpp::R_ARM_REL32:
8385 case elfcpp::R_ARM_LDR_PC_G0:
8386 case elfcpp::R_ARM_SBREL32:
8387 case elfcpp::R_ARM_THM_CALL:
8388 case elfcpp::R_ARM_THM_PC8:
8389 case elfcpp::R_ARM_BASE_PREL:
8390 case elfcpp::R_ARM_PLT32:
8391 case elfcpp::R_ARM_CALL:
8392 case elfcpp::R_ARM_JUMP24:
8393 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
8394 case elfcpp::R_ARM_SBREL31:
8395 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
8396 case elfcpp::R_ARM_MOVW_PREL_NC:
8397 case elfcpp::R_ARM_MOVT_PREL:
8398 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8399 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 8400 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 8401 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 8402 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8403 case elfcpp::R_ARM_THM_PC12:
8404 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8405 case elfcpp::R_ARM_ALU_PC_G0_NC:
8406 case elfcpp::R_ARM_ALU_PC_G0:
8407 case elfcpp::R_ARM_ALU_PC_G1_NC:
8408 case elfcpp::R_ARM_ALU_PC_G1:
8409 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8410 case elfcpp::R_ARM_LDR_PC_G1:
8411 case elfcpp::R_ARM_LDR_PC_G2:
8412 case elfcpp::R_ARM_LDRS_PC_G0:
8413 case elfcpp::R_ARM_LDRS_PC_G1:
8414 case elfcpp::R_ARM_LDRS_PC_G2:
8415 case elfcpp::R_ARM_LDC_PC_G0:
8416 case elfcpp::R_ARM_LDC_PC_G1:
8417 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8418 case elfcpp::R_ARM_ALU_SB_G0_NC:
8419 case elfcpp::R_ARM_ALU_SB_G0:
8420 case elfcpp::R_ARM_ALU_SB_G1_NC:
8421 case elfcpp::R_ARM_ALU_SB_G1:
8422 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8423 case elfcpp::R_ARM_LDR_SB_G0:
8424 case elfcpp::R_ARM_LDR_SB_G1:
8425 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8426 case elfcpp::R_ARM_LDRS_SB_G0:
8427 case elfcpp::R_ARM_LDRS_SB_G1:
8428 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8429 case elfcpp::R_ARM_LDC_SB_G0:
8430 case elfcpp::R_ARM_LDC_SB_G1:
8431 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8432 case elfcpp::R_ARM_MOVW_BREL_NC:
8433 case elfcpp::R_ARM_MOVT_BREL:
8434 case elfcpp::R_ARM_MOVW_BREL:
8435 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8436 case elfcpp::R_ARM_THM_MOVT_BREL:
8437 case elfcpp::R_ARM_THM_MOVW_BREL:
8438 case elfcpp::R_ARM_THM_JUMP11:
8439 case elfcpp::R_ARM_THM_JUMP8:
8440 // We don't need to do anything for a relative addressing relocation
8441 // against a local symbol if it does not reference the GOT.
bec53400
DK
8442 break;
8443
8444 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8445 case elfcpp::R_ARM_GOTOFF12:
bec53400 8446 // We need a GOT section:
2ea97941 8447 target->got_section(symtab, layout);
bec53400
DK
8448 break;
8449
bec53400 8450 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8451 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8452 {
8453 // The symbol requires a GOT entry.
4a54abbb 8454 Arm_output_data_got<big_endian>* got =
2ea97941 8455 target->got_section(symtab, layout);
bec53400
DK
8456 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8457 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8458 {
8459 // If we are generating a shared object, we need to add a
8460 // dynamic RELATIVE relocation for this symbol's GOT entry.
8461 if (parameters->options().output_is_position_independent())
8462 {
2ea97941
ILT
8463 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8464 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8465 rel_dyn->add_local_relative(
2ea97941
ILT
8466 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8467 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8468 }
8469 }
8470 }
8471 break;
8472
8473 case elfcpp::R_ARM_TARGET1:
e4782e83 8474 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8475 // This should have been mapped to another type already.
8476 // Fall through.
8477 case elfcpp::R_ARM_COPY:
8478 case elfcpp::R_ARM_GLOB_DAT:
8479 case elfcpp::R_ARM_JUMP_SLOT:
8480 case elfcpp::R_ARM_RELATIVE:
8481 // These are relocations which should only be seen by the
8482 // dynamic linker, and should never be seen here.
8483 gold_error(_("%s: unexpected reloc %u in object file"),
8484 object->name().c_str(), r_type);
8485 break;
8486
f96accdf
DK
8487
8488 // These are initial TLS relocs, which are expected when
8489 // linking.
8490 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8491 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8492 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8493 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8494 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8495 {
8496 bool output_is_shared = parameters->options().shared();
8497 const tls::Tls_optimization optimized_type
2e702c99 8498 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8499 r_type);
8500 switch (r_type)
8501 {
8502 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8503 if (optimized_type == tls::TLSOPT_NONE)
8504 {
2e702c99
RM
8505 // Create a pair of GOT entries for the module index and
8506 // dtv-relative offset.
8507 Arm_output_data_got<big_endian>* got
8508 = target->got_section(symtab, layout);
8509 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8510 unsigned int shndx = lsym.get_st_shndx();
8511 bool is_ordinary;
8512 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8513 if (!is_ordinary)
4a54abbb
DK
8514 {
8515 object->error(_("local symbol %u has bad shndx %u"),
8516 r_sym, shndx);
8517 break;
8518 }
8519
8520 if (!parameters->doing_static_link())
f96accdf
DK
8521 got->add_local_pair_with_rel(object, r_sym, shndx,
8522 GOT_TYPE_TLS_PAIR,
8523 target->rel_dyn_section(layout),
bd73a62d 8524 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8525 else
8526 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8527 object, r_sym);
f96accdf
DK
8528 }
8529 else
8530 // FIXME: TLS optimization not supported yet.
8531 gold_unreachable();
8532 break;
8533
8534 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8535 if (optimized_type == tls::TLSOPT_NONE)
8536 {
2e702c99
RM
8537 // Create a GOT entry for the module index.
8538 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8539 }
8540 else
8541 // FIXME: TLS optimization not supported yet.
8542 gold_unreachable();
8543 break;
8544
8545 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8546 break;
8547
8548 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8549 layout->set_has_static_tls();
8550 if (optimized_type == tls::TLSOPT_NONE)
8551 {
4a54abbb
DK
8552 // Create a GOT entry for the tp-relative offset.
8553 Arm_output_data_got<big_endian>* got
8554 = target->got_section(symtab, layout);
8555 unsigned int r_sym =
8556 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8557 if (!parameters->doing_static_link())
8558 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8559 target->rel_dyn_section(layout),
8560 elfcpp::R_ARM_TLS_TPOFF32);
8561 else if (!object->local_has_got_offset(r_sym,
8562 GOT_TYPE_TLS_OFFSET))
8563 {
8564 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8565 unsigned int got_offset =
8566 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8567 got->add_static_reloc(got_offset,
8568 elfcpp::R_ARM_TLS_TPOFF32, object,
8569 r_sym);
8570 }
f96accdf
DK
8571 }
8572 else
8573 // FIXME: TLS optimization not supported yet.
8574 gold_unreachable();
8575 break;
8576
8577 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8578 layout->set_has_static_tls();
8579 if (output_is_shared)
8580 {
2e702c99
RM
8581 // We need to create a dynamic relocation.
8582 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8583 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8584 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8585 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8586 output_section, data_shndx,
8587 reloc.get_r_offset());
8588 }
8589 break;
8590
8591 default:
8592 gold_unreachable();
8593 }
8594 }
8595 break;
8596
3cef7179
ILT
8597 case elfcpp::R_ARM_PC24:
8598 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8599 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8600 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8601 default:
8602 unsupported_reloc_local(object, r_type);
8603 break;
8604 }
8605}
8606
8607// Report an unsupported relocation against a global symbol.
8608
8609template<bool big_endian>
8610void
8611Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8612 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8613 unsigned int r_type,
8614 Symbol* gsym)
8615{
8616 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8617 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8618}
8619
8a75a161
DK
8620template<bool big_endian>
8621inline bool
8622Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8623 unsigned int r_type)
8624{
8625 switch (r_type)
8626 {
8627 case elfcpp::R_ARM_PC24:
8628 case elfcpp::R_ARM_THM_CALL:
8629 case elfcpp::R_ARM_PLT32:
8630 case elfcpp::R_ARM_CALL:
8631 case elfcpp::R_ARM_JUMP24:
8632 case elfcpp::R_ARM_THM_JUMP24:
8633 case elfcpp::R_ARM_SBREL31:
8634 case elfcpp::R_ARM_PREL31:
8635 case elfcpp::R_ARM_THM_JUMP19:
8636 case elfcpp::R_ARM_THM_JUMP6:
8637 case elfcpp::R_ARM_THM_JUMP11:
8638 case elfcpp::R_ARM_THM_JUMP8:
8639 // All the relocations above are branches except SBREL31 and PREL31.
8640 return false;
8641
8642 default:
8643 // Be conservative and assume this is a function pointer.
8644 return true;
8645 }
8646}
8647
8648template<bool big_endian>
8649inline bool
8650Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8651 Symbol_table*,
8652 Layout*,
8653 Target_arm<big_endian>* target,
6fa2a40b 8654 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8655 unsigned int,
8656 Output_section*,
8657 const elfcpp::Rel<32, big_endian>&,
8658 unsigned int r_type,
8659 const elfcpp::Sym<32, big_endian>&)
8660{
8661 r_type = target->get_real_reloc_type(r_type);
8662 return possible_function_pointer_reloc(r_type);
8663}
8664
8665template<bool big_endian>
8666inline bool
8667Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8668 Symbol_table*,
8669 Layout*,
8670 Target_arm<big_endian>* target,
6fa2a40b 8671 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8672 unsigned int,
8673 Output_section*,
8674 const elfcpp::Rel<32, big_endian>&,
8675 unsigned int r_type,
8676 Symbol* gsym)
8677{
8678 // GOT is not a function.
8679 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8680 return false;
8681
8682 r_type = target->get_real_reloc_type(r_type);
8683 return possible_function_pointer_reloc(r_type);
8684}
8685
4a657b0d
DK
8686// Scan a relocation for a global symbol.
8687
8688template<bool big_endian>
8689inline void
ad0f2072 8690Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8691 Layout* layout,
bec53400 8692 Target_arm* target,
6fa2a40b 8693 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8694 unsigned int data_shndx,
8695 Output_section* output_section,
8696 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8697 unsigned int r_type,
8698 Symbol* gsym)
8699{
c8761b9a
DK
8700 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8701 // section. We check here to avoid creating a dynamic reloc against
8702 // _GLOBAL_OFFSET_TABLE_.
8703 if (!target->has_got_section()
8704 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8705 target->got_section(symtab, layout);
8706
fa89cc82
HS
8707 // A STT_GNU_IFUNC symbol may require a PLT entry.
8708 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8709 && this->reloc_needs_plt_for_ifunc(object, r_type))
8710 target->make_plt_entry(symtab, layout, gsym);
8711
a6d1ef57 8712 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8713 switch (r_type)
8714 {
8715 case elfcpp::R_ARM_NONE:
e4782e83
DK
8716 case elfcpp::R_ARM_V4BX:
8717 case elfcpp::R_ARM_GNU_VTENTRY:
8718 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8719 break;
8720
bec53400 8721 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8722 case elfcpp::R_ARM_ABS16:
8723 case elfcpp::R_ARM_ABS12:
8724 case elfcpp::R_ARM_THM_ABS5:
8725 case elfcpp::R_ARM_ABS8:
8726 case elfcpp::R_ARM_BASE_ABS:
8727 case elfcpp::R_ARM_MOVW_ABS_NC:
8728 case elfcpp::R_ARM_MOVT_ABS:
8729 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8730 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8731 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8732 // Absolute addressing relocations.
bec53400 8733 {
2e702c99
RM
8734 // Make a PLT entry if necessary.
8735 if (this->symbol_needs_plt_entry(gsym))
8736 {
8737 target->make_plt_entry(symtab, layout, gsym);
8738 // Since this is not a PC-relative relocation, we may be
8739 // taking the address of a function. In that case we need to
8740 // set the entry in the dynamic symbol table to the address of
8741 // the PLT entry.
8742 if (gsym->is_from_dynobj() && !parameters->options().shared())
8743 gsym->set_needs_dynsym_value();
8744 }
8745 // Make a dynamic relocation if necessary.
8746 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8747 {
a82bef93
ST
8748 if (!parameters->options().output_is_position_independent()
8749 && gsym->may_need_copy_reloc())
2e702c99
RM
8750 {
8751 target->copy_reloc(symtab, layout, object,
8752 data_shndx, output_section, gsym, reloc);
8753 }
fa89cc82
HS
8754 else if ((r_type == elfcpp::R_ARM_ABS32
8755 || r_type == elfcpp::R_ARM_ABS32_NOI)
8756 && gsym->type() == elfcpp::STT_GNU_IFUNC
8757 && gsym->can_use_relative_reloc(false)
8758 && !gsym->is_from_dynobj()
8759 && !gsym->is_undefined()
8760 && !gsym->is_preemptible())
8761 {
8762 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8763 // symbol. This makes a function address in a PIE executable
8764 // match the address in a shared library that it links against.
8765 Reloc_section* rel_irelative =
8766 target->rel_irelative_section(layout);
8767 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8768 rel_irelative->add_symbolless_global_addend(
8769 gsym, r_type, output_section, object,
8770 data_shndx, reloc.get_r_offset());
8771 }
2e702c99 8772 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8773 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8774 && gsym->can_use_relative_reloc(false))
8775 {
8776 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8777 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8778 output_section, object,
8779 data_shndx, reloc.get_r_offset());
8780 }
8781 else
8782 {
e4782e83 8783 check_non_pic(object, r_type);
2e702c99
RM
8784 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8785 rel_dyn->add_global(gsym, r_type, output_section, object,
8786 data_shndx, reloc.get_r_offset());
8787 }
8788 }
bec53400
DK
8789 }
8790 break;
8791
e4782e83
DK
8792 case elfcpp::R_ARM_GOTOFF32:
8793 case elfcpp::R_ARM_GOTOFF12:
8794 // We need a GOT section.
8795 target->got_section(symtab, layout);
8796 break;
2e702c99 8797
e4782e83
DK
8798 case elfcpp::R_ARM_REL32:
8799 case elfcpp::R_ARM_LDR_PC_G0:
8800 case elfcpp::R_ARM_SBREL32:
8801 case elfcpp::R_ARM_THM_PC8:
8802 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8803 case elfcpp::R_ARM_MOVW_PREL_NC:
8804 case elfcpp::R_ARM_MOVT_PREL:
8805 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8806 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8807 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8808 case elfcpp::R_ARM_THM_PC12:
8809 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8810 case elfcpp::R_ARM_ALU_PC_G0_NC:
8811 case elfcpp::R_ARM_ALU_PC_G0:
8812 case elfcpp::R_ARM_ALU_PC_G1_NC:
8813 case elfcpp::R_ARM_ALU_PC_G1:
8814 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8815 case elfcpp::R_ARM_LDR_PC_G1:
8816 case elfcpp::R_ARM_LDR_PC_G2:
8817 case elfcpp::R_ARM_LDRS_PC_G0:
8818 case elfcpp::R_ARM_LDRS_PC_G1:
8819 case elfcpp::R_ARM_LDRS_PC_G2:
8820 case elfcpp::R_ARM_LDC_PC_G0:
8821 case elfcpp::R_ARM_LDC_PC_G1:
8822 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8823 case elfcpp::R_ARM_ALU_SB_G0_NC:
8824 case elfcpp::R_ARM_ALU_SB_G0:
8825 case elfcpp::R_ARM_ALU_SB_G1_NC:
8826 case elfcpp::R_ARM_ALU_SB_G1:
8827 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8828 case elfcpp::R_ARM_LDR_SB_G0:
8829 case elfcpp::R_ARM_LDR_SB_G1:
8830 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8831 case elfcpp::R_ARM_LDRS_SB_G0:
8832 case elfcpp::R_ARM_LDRS_SB_G1:
8833 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8834 case elfcpp::R_ARM_LDC_SB_G0:
8835 case elfcpp::R_ARM_LDC_SB_G1:
8836 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8837 case elfcpp::R_ARM_MOVW_BREL_NC:
8838 case elfcpp::R_ARM_MOVT_BREL:
8839 case elfcpp::R_ARM_MOVW_BREL:
8840 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8841 case elfcpp::R_ARM_THM_MOVT_BREL:
8842 case elfcpp::R_ARM_THM_MOVW_BREL:
8843 // Relative addressing relocations.
bec53400
DK
8844 {
8845 // Make a dynamic relocation if necessary.
95a2c8d6 8846 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400 8847 {
a82bef93
ST
8848 if (parameters->options().output_is_executable()
8849 && target->may_need_copy_reloc(gsym))
bec53400 8850 {
2ea97941 8851 target->copy_reloc(symtab, layout, object,
bec53400
DK
8852 data_shndx, output_section, gsym, reloc);
8853 }
8854 else
8855 {
8856 check_non_pic(object, r_type);
2ea97941 8857 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8858 rel_dyn->add_global(gsym, r_type, output_section, object,
8859 data_shndx, reloc.get_r_offset());
8860 }
8861 }
8862 }
8863 break;
8864
f4e5969c 8865 case elfcpp::R_ARM_THM_CALL:
bec53400 8866 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8867 case elfcpp::R_ARM_CALL:
8868 case elfcpp::R_ARM_JUMP24:
8869 case elfcpp::R_ARM_THM_JUMP24:
8870 case elfcpp::R_ARM_SBREL31:
c9a2c125 8871 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8872 case elfcpp::R_ARM_THM_JUMP19:
8873 case elfcpp::R_ARM_THM_JUMP6:
8874 case elfcpp::R_ARM_THM_JUMP11:
8875 case elfcpp::R_ARM_THM_JUMP8:
8876 // All the relocation above are branches except for the PREL31 ones.
8877 // A PREL31 relocation can point to a personality function in a shared
8878 // library. In that case we want to use a PLT because we want to
9b547ce6 8879 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8880 // do not support dynamic PREL31 relocations. An REL31 relocation may
8881 // point to a function whose unwinding behaviour is being described but
8882 // we will not mistakenly generate a PLT for that because we should use
8883 // a local section symbol.
8884
bec53400
DK
8885 // If the symbol is fully resolved, this is just a relative
8886 // local reloc. Otherwise we need a PLT entry.
8887 if (gsym->final_value_is_known())
8888 break;
8889 // If building a shared library, we can also skip the PLT entry
8890 // if the symbol is defined in the output file and is protected
8891 // or hidden.
8892 if (gsym->is_defined()
8893 && !gsym->is_from_dynobj()
8894 && !gsym->is_preemptible())
8895 break;
2ea97941 8896 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8897 break;
8898
bec53400 8899 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8900 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8901 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8902 {
8903 // The symbol requires a GOT entry.
4a54abbb 8904 Arm_output_data_got<big_endian>* got =
2ea97941 8905 target->got_section(symtab, layout);
bec53400 8906 if (gsym->final_value_is_known())
fa89cc82
HS
8907 {
8908 // For a STT_GNU_IFUNC symbol we want the PLT address.
8909 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8910 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8911 else
8912 got->add_global(gsym, GOT_TYPE_STANDARD);
8913 }
bec53400
DK
8914 else
8915 {
8916 // If this symbol is not fully resolved, we need to add a
8917 // GOT entry with a dynamic relocation.
2ea97941 8918 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8919 if (gsym->is_from_dynobj()
8920 || gsym->is_undefined()
fa40b62a
DK
8921 || gsym->is_preemptible()
8922 || (gsym->visibility() == elfcpp::STV_PROTECTED
fa89cc82
HS
8923 && parameters->options().shared())
8924 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8925 && parameters->options().output_is_position_independent()))
bec53400
DK
8926 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8927 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8928 else
8929 {
fa89cc82
HS
8930 // For a STT_GNU_IFUNC symbol we want to write the PLT
8931 // offset into the GOT, so that function pointer
8932 // comparisons work correctly.
8933 bool is_new;
8934 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8935 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8936 else
8937 {
8938 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8939 // Tell the dynamic linker to use the PLT address
8940 // when resolving relocations.
8941 if (gsym->is_from_dynobj()
8942 && !parameters->options().shared())
8943 gsym->set_needs_dynsym_value();
8944 }
8945 if (is_new)
bec53400
DK
8946 rel_dyn->add_global_relative(
8947 gsym, elfcpp::R_ARM_RELATIVE, got,
8948 gsym->got_offset(GOT_TYPE_STANDARD));
8949 }
8950 }
8951 }
8952 break;
8953
8954 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8955 case elfcpp::R_ARM_TARGET2:
8956 // These should have been mapped to other types already.
bec53400
DK
8957 // Fall through.
8958 case elfcpp::R_ARM_COPY:
8959 case elfcpp::R_ARM_GLOB_DAT:
8960 case elfcpp::R_ARM_JUMP_SLOT:
8961 case elfcpp::R_ARM_RELATIVE:
8962 // These are relocations which should only be seen by the
8963 // dynamic linker, and should never be seen here.
8964 gold_error(_("%s: unexpected reloc %u in object file"),
8965 object->name().c_str(), r_type);
8966 break;
8967
f96accdf
DK
8968 // These are initial tls relocs, which are expected when
8969 // linking.
8970 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8971 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8972 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8973 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8974 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8975 {
8976 const bool is_final = gsym->final_value_is_known();
8977 const tls::Tls_optimization optimized_type
2e702c99 8978 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8979 switch (r_type)
8980 {
8981 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8982 if (optimized_type == tls::TLSOPT_NONE)
8983 {
2e702c99
RM
8984 // Create a pair of GOT entries for the module index and
8985 // dtv-relative offset.
8986 Arm_output_data_got<big_endian>* got
8987 = target->got_section(symtab, layout);
4a54abbb
DK
8988 if (!parameters->doing_static_link())
8989 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8990 target->rel_dyn_section(layout),
8991 elfcpp::R_ARM_TLS_DTPMOD32,
8992 elfcpp::R_ARM_TLS_DTPOFF32);
8993 else
8994 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8995 }
8996 else
8997 // FIXME: TLS optimization not supported yet.
8998 gold_unreachable();
8999 break;
9000
9001 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9002 if (optimized_type == tls::TLSOPT_NONE)
9003 {
2e702c99
RM
9004 // Create a GOT entry for the module index.
9005 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
9006 }
9007 else
9008 // FIXME: TLS optimization not supported yet.
9009 gold_unreachable();
9010 break;
9011
9012 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9013 break;
9014
9015 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9016 layout->set_has_static_tls();
9017 if (optimized_type == tls::TLSOPT_NONE)
9018 {
4a54abbb
DK
9019 // Create a GOT entry for the tp-relative offset.
9020 Arm_output_data_got<big_endian>* got
9021 = target->got_section(symtab, layout);
9022 if (!parameters->doing_static_link())
9023 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9024 target->rel_dyn_section(layout),
9025 elfcpp::R_ARM_TLS_TPOFF32);
9026 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9027 {
9028 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9029 unsigned int got_offset =
9030 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9031 got->add_static_reloc(got_offset,
9032 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9033 }
f96accdf
DK
9034 }
9035 else
9036 // FIXME: TLS optimization not supported yet.
9037 gold_unreachable();
9038 break;
9039
9040 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9041 layout->set_has_static_tls();
9042 if (parameters->options().shared())
9043 {
2e702c99
RM
9044 // We need to create a dynamic relocation.
9045 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9046 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 9047 output_section, object,
2e702c99 9048 data_shndx, reloc.get_r_offset());
f96accdf
DK
9049 }
9050 break;
9051
9052 default:
9053 gold_unreachable();
9054 }
9055 }
9056 break;
9057
3cef7179
ILT
9058 case elfcpp::R_ARM_PC24:
9059 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9060 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9061 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
9062 default:
9063 unsupported_reloc_global(object, r_type, gsym);
9064 break;
9065 }
9066}
9067
9068// Process relocations for gc.
9069
9070template<bool big_endian>
9071void
6fa2a40b
CC
9072Target_arm<big_endian>::gc_process_relocs(
9073 Symbol_table* symtab,
9074 Layout* layout,
9075 Sized_relobj_file<32, big_endian>* object,
9076 unsigned int data_shndx,
9077 unsigned int,
9078 const unsigned char* prelocs,
9079 size_t reloc_count,
9080 Output_section* output_section,
9081 bool needs_special_offset_handling,
9082 size_t local_symbol_count,
9083 const unsigned char* plocal_symbols)
4a657b0d
DK
9084{
9085 typedef Target_arm<big_endian> Arm;
2ea97941 9086 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 9087
41cbeecc 9088 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 9089 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 9090 symtab,
2ea97941 9091 layout,
4a657b0d
DK
9092 this,
9093 object,
9094 data_shndx,
9095 prelocs,
9096 reloc_count,
9097 output_section,
9098 needs_special_offset_handling,
9099 local_symbol_count,
9100 plocal_symbols);
9101}
9102
9103// Scan relocations for a section.
9104
9105template<bool big_endian>
9106void
ad0f2072 9107Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 9108 Layout* layout,
6fa2a40b 9109 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9110 unsigned int data_shndx,
9111 unsigned int sh_type,
9112 const unsigned char* prelocs,
9113 size_t reloc_count,
9114 Output_section* output_section,
9115 bool needs_special_offset_handling,
9116 size_t local_symbol_count,
9117 const unsigned char* plocal_symbols)
9118{
2ea97941 9119 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
9120 if (sh_type == elfcpp::SHT_RELA)
9121 {
9122 gold_error(_("%s: unsupported RELA reloc section"),
9123 object->name().c_str());
9124 return;
9125 }
9126
2ea97941 9127 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 9128 symtab,
2ea97941 9129 layout,
4a657b0d
DK
9130 this,
9131 object,
9132 data_shndx,
9133 prelocs,
9134 reloc_count,
9135 output_section,
9136 needs_special_offset_handling,
9137 local_symbol_count,
9138 plocal_symbols);
9139}
9140
9141// Finalize the sections.
9142
9143template<bool big_endian>
9144void
d5b40221 9145Target_arm<big_endian>::do_finalize_sections(
2ea97941 9146 Layout* layout,
f59f41f3 9147 const Input_objects* input_objects,
647f1574 9148 Symbol_table*)
4a657b0d 9149{
3e235302 9150 bool merged_any_attributes = false;
d5b40221
DK
9151 // Merge processor-specific flags.
9152 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9153 p != input_objects->relobj_end();
9154 ++p)
9155 {
9156 Arm_relobj<big_endian>* arm_relobj =
9157 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
9158 if (arm_relobj->merge_flags_and_attributes())
9159 {
9160 this->merge_processor_specific_flags(
9161 arm_relobj->name(),
9162 arm_relobj->processor_specific_flags());
9163 this->merge_object_attributes(arm_relobj->name().c_str(),
9164 arm_relobj->attributes_section_data());
3e235302 9165 merged_any_attributes = true;
7296d933 9166 }
2e702c99 9167 }
d5b40221
DK
9168
9169 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9170 p != input_objects->dynobj_end();
9171 ++p)
9172 {
9173 Arm_dynobj<big_endian>* arm_dynobj =
9174 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9175 this->merge_processor_specific_flags(
9176 arm_dynobj->name(),
9177 arm_dynobj->processor_specific_flags());
a0351a69
DK
9178 this->merge_object_attributes(arm_dynobj->name().c_str(),
9179 arm_dynobj->attributes_section_data());
3e235302 9180 merged_any_attributes = true;
d5b40221
DK
9181 }
9182
da59ad79
DK
9183 // Create an empty uninitialized attribute section if we still don't have it
9184 // at this moment. This happens if there is no attributes sections in all
9185 // inputs.
9186 if (this->attributes_section_data_ == NULL)
9187 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9188
41263c05 9189 const Object_attribute* cpu_arch_attr =
a0351a69 9190 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
9191 // Check if we need to use Cortex-A8 workaround.
9192 if (parameters->options().user_set_fix_cortex_a8())
9193 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9194 else
9195 {
9196 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9197 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 9198 // profile.
41263c05
DK
9199 const Object_attribute* cpu_arch_profile_attr =
9200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9201 this->fix_cortex_a8_ =
9202 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
9203 && (cpu_arch_profile_attr->int_value() == 'A'
9204 || cpu_arch_profile_attr->int_value() == 0));
41263c05 9205 }
2e702c99 9206
a2162063
ILT
9207 // Check if we can use V4BX interworking.
9208 // The V4BX interworking stub contains BX instruction,
9209 // which is not specified for some profiles.
9b2fd367 9210 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 9211 && !this->may_use_v4t_interworking())
a2162063 9212 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 9213 "the target profile does not support BX instruction"));
a2162063 9214
94cdfcff 9215 // Fill in some more dynamic tags.
ea715a34
ILT
9216 const Reloc_section* rel_plt = (this->plt_ == NULL
9217 ? NULL
9218 : this->plt_->rel_plt());
9219 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 9220 this->rel_dyn_, true, false);
94cdfcff
DK
9221
9222 // Emit any relocs we saved in an attempt to avoid generating COPY
9223 // relocs.
9224 if (this->copy_relocs_.any_saved_relocs())
2ea97941 9225 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 9226
f59f41f3 9227 // Handle the .ARM.exidx section.
2ea97941 9228 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 9229
731ca54a
RÁE
9230 if (!parameters->options().relocatable())
9231 {
9232 if (exidx_section != NULL
2e702c99
RM
9233 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9234 {
9235 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9236 // the .ARM.exidx section.
9237 if (!layout->script_options()->saw_phdrs_clause())
9238 {
9239 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9240 0)
9241 == NULL);
9242 Output_segment* exidx_segment =
9243 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9244 exidx_segment->add_output_section_to_nonload(exidx_section,
9245 elfcpp::PF_R);
9246 }
9247 }
11af873f 9248 }
a0351a69 9249
3e235302
DK
9250 // Create an .ARM.attributes section if we have merged any attributes
9251 // from inputs.
9252 if (merged_any_attributes)
7296d933
DK
9253 {
9254 Output_attributes_section_data* attributes_section =
9255 new Output_attributes_section_data(*this->attributes_section_data_);
9256 layout->add_output_section_data(".ARM.attributes",
9257 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 9258 attributes_section, ORDER_INVALID,
7296d933
DK
9259 false);
9260 }
131687b4
DK
9261
9262 // Fix up links in section EXIDX headers.
9263 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9264 p != layout->section_list().end();
9265 ++p)
9266 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9267 {
9268 Arm_output_section<big_endian>* os =
9269 Arm_output_section<big_endian>::as_arm_output_section(*p);
9270 os->set_exidx_section_link();
9271 }
4a657b0d
DK
9272}
9273
bec53400
DK
9274// Return whether a direct absolute static relocation needs to be applied.
9275// In cases where Scan::local() or Scan::global() has created
9276// a dynamic relocation other than R_ARM_RELATIVE, the addend
9277// of the relocation is carried in the data, and we must not
9278// apply the static relocation.
9279
9280template<bool big_endian>
9281inline bool
9282Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9283 const Sized_symbol<32>* gsym,
95a2c8d6 9284 unsigned int r_type,
bec53400
DK
9285 bool is_32bit,
9286 Output_section* output_section)
9287{
9288 // If the output section is not allocated, then we didn't call
9289 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9290 // the reloc here.
9291 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9292 return true;
9293
95a2c8d6
RS
9294 int ref_flags = Scan::get_reference_flags(r_type);
9295
bec53400
DK
9296 // For local symbols, we will have created a non-RELATIVE dynamic
9297 // relocation only if (a) the output is position independent,
9298 // (b) the relocation is absolute (not pc- or segment-relative), and
9299 // (c) the relocation is not 32 bits wide.
9300 if (gsym == NULL)
9301 return !(parameters->options().output_is_position_independent()
9302 && (ref_flags & Symbol::ABSOLUTE_REF)
9303 && !is_32bit);
9304
9305 // For global symbols, we use the same helper routines used in the
9306 // scan pass. If we did not create a dynamic relocation, or if we
9307 // created a RELATIVE dynamic relocation, we should apply the static
9308 // relocation.
9309 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9310 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9311 && gsym->can_use_relative_reloc(ref_flags
9312 & Symbol::FUNCTION_CALL);
9313 return !has_dyn || is_rel;
9314}
9315
4a657b0d
DK
9316// Perform a relocation.
9317
9318template<bool big_endian>
9319inline bool
9320Target_arm<big_endian>::Relocate::relocate(
c121c671 9321 const Relocate_info<32, big_endian>* relinfo,
91a65d2f 9322 unsigned int,
c121c671 9323 Target_arm* target,
ca09d69a 9324 Output_section* output_section,
c121c671 9325 size_t relnum,
91a65d2f 9326 const unsigned char* preloc,
c121c671
DK
9327 const Sized_symbol<32>* gsym,
9328 const Symbol_value<32>* psymval,
9329 unsigned char* view,
ebabffbd 9330 Arm_address address,
f96accdf 9331 section_size_type view_size)
4a657b0d 9332{
0e804863
ILT
9333 if (view == NULL)
9334 return true;
9335
c121c671
DK
9336 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9337
91a65d2f
AM
9338 const elfcpp::Rel<32, big_endian> rel(preloc);
9339 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
a6d1ef57 9340 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9341 const Arm_reloc_property* reloc_property =
9342 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9343 if (reloc_property == NULL)
9344 {
9345 std::string reloc_name =
9346 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9347 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9348 _("cannot relocate %s in object file"),
9349 reloc_name.c_str());
9350 return true;
9351 }
c121c671 9352
2daedcd6
DK
9353 const Arm_relobj<big_endian>* object =
9354 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 9355
2daedcd6
DK
9356 // If the final branch target of a relocation is THUMB instruction, this
9357 // is 1. Otherwise it is 0.
9358 Arm_address thumb_bit = 0;
c121c671 9359 Symbol_value<32> symval;
d204b6e9 9360 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
9361 bool have_got_offset = false;
9362 unsigned int got_offset = 0;
9363
9364 // If the relocation uses the GOT entry of a symbol instead of the symbol
9365 // itself, we don't care about whether the symbol is defined or what kind
9366 // of symbol it is.
9367 if (reloc_property->uses_got_entry())
9368 {
9369 // Get the GOT offset.
9370 // The GOT pointer points to the end of the GOT section.
9371 // We need to subtract the size of the GOT section to get
9372 // the actual offset to use in the relocation.
9373 // TODO: We should move GOT offset computing code in TLS relocations
9374 // to here.
9375 switch (r_type)
9376 {
9377 case elfcpp::R_ARM_GOT_BREL:
9378 case elfcpp::R_ARM_GOT_PREL:
9379 if (gsym != NULL)
9380 {
9381 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9382 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9383 - target->got_size());
9384 }
9385 else
9386 {
9387 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9388 gold_assert(object->local_has_got_offset(r_sym,
9389 GOT_TYPE_STANDARD));
9390 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9391 - target->got_size());
9392 }
9393 have_got_offset = true;
9394 break;
9395
9396 default:
9397 break;
9398 }
9399 }
9400 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 9401 {
2daedcd6
DK
9402 if (gsym != NULL)
9403 {
9404 // This is a global symbol. Determine if we use PLT and if the
9405 // final target is THUMB.
95a2c8d6 9406 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
9407 {
9408 // This uses a PLT, change the symbol value.
fa89cc82 9409 symval.set_output_value(target->plt_address_for_global(gsym));
2daedcd6
DK
9410 psymval = &symval;
9411 }
d204b6e9
DK
9412 else if (gsym->is_weak_undefined())
9413 {
9414 // This is a weakly undefined symbol and we do not use PLT
9415 // for this relocation. A branch targeting this symbol will
9416 // be converted into an NOP.
9417 is_weakly_undefined_without_plt = true;
9418 }
b2286c10
DK
9419 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9420 {
9421 // This relocation uses the symbol value but the symbol is
9422 // undefined. Exit early and have the caller reporting an
9423 // error.
9424 return true;
9425 }
2daedcd6
DK
9426 else
9427 {
9428 // Set thumb bit if symbol:
9429 // -Has type STT_ARM_TFUNC or
9430 // -Has type STT_FUNC, is defined and with LSB in value set.
9431 thumb_bit =
9432 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9433 || (gsym->type() == elfcpp::STT_FUNC
9434 && !gsym->is_undefined()
9435 && ((psymval->value(object, 0) & 1) != 0)))
9436 ? 1
9437 : 0);
9438 }
9439 }
9440 else
9441 {
2e702c99
RM
9442 // This is a local symbol. Determine if the final target is THUMB.
9443 // We saved this information when all the local symbols were read.
2daedcd6
DK
9444 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9445 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9446 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
fa89cc82
HS
9447
9448 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9449 {
9450 symval.set_output_value(
9451 target->plt_address_for_local(object, r_sym));
9452 psymval = &symval;
9453 }
2daedcd6
DK
9454 }
9455 }
9456 else
9457 {
9458 // This is a fake relocation synthesized for a stub. It does not have
9459 // a real symbol. We just look at the LSB of the symbol value to
9460 // determine if the target is THUMB or not.
9461 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
9462 }
9463
2daedcd6
DK
9464 // Strip LSB if this points to a THUMB target.
9465 if (thumb_bit != 0
2e702c99 9466 && reloc_property->uses_thumb_bit()
2daedcd6
DK
9467 && ((psymval->value(object, 0) & 1) != 0))
9468 {
9469 Arm_address stripped_value =
9470 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9471 symval.set_output_value(stripped_value);
9472 psymval = &symval;
2e702c99 9473 }
2daedcd6 9474
d204b6e9
DK
9475 // To look up relocation stubs, we need to pass the symbol table index of
9476 // a local symbol.
9477 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9478
b10d2873
ILT
9479 // Get the addressing origin of the output segment defining the
9480 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9481 Arm_address sym_origin = 0;
5c57f1be 9482 if (reloc_property->uses_symbol_base())
b10d2873
ILT
9483 {
9484 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9485 // R_ARM_BASE_ABS with the NULL symbol will give the
9486 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9487 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9488 sym_origin = target->got_plt_section()->address();
9489 else if (gsym == NULL)
9490 sym_origin = 0;
9491 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9492 sym_origin = gsym->output_segment()->vaddr();
9493 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9494 sym_origin = gsym->output_data()->address();
9495
9496 // TODO: Assumes the segment base to be zero for the global symbols
9497 // till the proper support for the segment-base-relative addressing
9498 // will be implemented. This is consistent with GNU ld.
9499 }
9500
5c57f1be
DK
9501 // For relative addressing relocation, find out the relative address base.
9502 Arm_address relative_address_base = 0;
9503 switch(reloc_property->relative_address_base())
9504 {
9505 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9506 // Relocations with relative address bases RAB_TLS and RAB_tp are
9507 // handled by relocate_tls. So we do not need to do anything here.
9508 case Arm_reloc_property::RAB_TLS:
9509 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9510 break;
9511 case Arm_reloc_property::RAB_B_S:
9512 relative_address_base = sym_origin;
9513 break;
9514 case Arm_reloc_property::RAB_GOT_ORG:
9515 relative_address_base = target->got_plt_section()->address();
9516 break;
9517 case Arm_reloc_property::RAB_P:
9518 relative_address_base = address;
9519 break;
9520 case Arm_reloc_property::RAB_Pa:
9521 relative_address_base = address & 0xfffffffcU;
9522 break;
9523 default:
2e702c99 9524 gold_unreachable();
5c57f1be 9525 }
2e702c99 9526
c121c671
DK
9527 typename Arm_relocate_functions::Status reloc_status =
9528 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9529 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9530 switch (r_type)
9531 {
9532 case elfcpp::R_ARM_NONE:
9533 break;
9534
5e445df6 9535 case elfcpp::R_ARM_ABS8:
95a2c8d6 9536 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9537 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9538 break;
9539
9540 case elfcpp::R_ARM_ABS12:
95a2c8d6 9541 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9542 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9543 break;
9544
9545 case elfcpp::R_ARM_ABS16:
95a2c8d6 9546 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9547 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9548 break;
9549
c121c671 9550 case elfcpp::R_ARM_ABS32:
95a2c8d6 9551 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9552 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9553 thumb_bit);
c121c671
DK
9554 break;
9555
be8fcb75 9556 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9557 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9558 // No thumb bit for this relocation: (S + A)
9559 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9560 0);
be8fcb75
ILT
9561 break;
9562
fd3c5f0b 9563 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9564 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9565 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9566 0, thumb_bit,
9567 check_overflow);
fd3c5f0b
ILT
9568 break;
9569
9570 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9571 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9572 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9573 break;
9574
9575 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9576 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9577 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9578 0, thumb_bit, false);
fd3c5f0b
ILT
9579 break;
9580
9581 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9582 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9583 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9584 psymval, 0);
fd3c5f0b
ILT
9585 break;
9586
c2a122b6 9587 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9588 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9589 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9590 reloc_status =
9591 Arm_relocate_functions::movw(view, object, psymval,
9592 relative_address_base, thumb_bit,
9593 check_overflow);
c2a122b6
ILT
9594 break;
9595
9596 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9597 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9598 reloc_status =
9599 Arm_relocate_functions::movt(view, object, psymval,
9600 relative_address_base);
c2a122b6
ILT
9601 break;
9602
9603 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9604 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9605 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9606 reloc_status =
9607 Arm_relocate_functions::thm_movw(view, object, psymval,
9608 relative_address_base,
9609 thumb_bit, check_overflow);
c2a122b6
ILT
9610 break;
9611
9612 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9613 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9614 reloc_status =
9615 Arm_relocate_functions::thm_movt(view, object, psymval,
9616 relative_address_base);
02961d7e 9617 break;
2e702c99 9618
c121c671
DK
9619 case elfcpp::R_ARM_REL32:
9620 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9621 address, thumb_bit);
c121c671
DK
9622 break;
9623
be8fcb75 9624 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9625 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9626 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9627 break;
9628
1521477a 9629 // Thumb long branches.
c121c671 9630 case elfcpp::R_ARM_THM_CALL:
51938283 9631 case elfcpp::R_ARM_THM_XPC22:
1521477a 9632 case elfcpp::R_ARM_THM_JUMP24:
51938283 9633 reloc_status =
1521477a
DK
9634 Arm_relocate_functions::thumb_branch_common(
9635 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9636 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9637 break;
9638
c121c671
DK
9639 case elfcpp::R_ARM_GOTOFF32:
9640 {
ebabffbd 9641 Arm_address got_origin;
c121c671
DK
9642 got_origin = target->got_plt_section()->address();
9643 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9644 got_origin, thumb_bit);
c121c671
DK
9645 }
9646 break;
9647
9648 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9649 gold_assert(gsym != NULL);
9650 reloc_status =
9651 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9652 break;
9653
be8fcb75 9654 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9655 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9656 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9657 break;
9658
c121c671
DK
9659 case elfcpp::R_ARM_GOT_BREL:
9660 gold_assert(have_got_offset);
9661 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9662 break;
9663
7f5309a5
ILT
9664 case elfcpp::R_ARM_GOT_PREL:
9665 gold_assert(have_got_offset);
9666 // Get the address origin for GOT PLT, which is allocated right
9667 // after the GOT section, to calculate an absolute address of
9668 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9669 Arm_address got_origin;
7f5309a5
ILT
9670 got_origin = target->got_plt_section()->address();
9671 reloc_status = Arm_relocate_functions::got_prel(view,
9672 got_origin + got_offset,
9673 address);
9674 break;
9675
c121c671 9676 case elfcpp::R_ARM_PLT32:
1521477a
DK
9677 case elfcpp::R_ARM_CALL:
9678 case elfcpp::R_ARM_JUMP24:
9679 case elfcpp::R_ARM_XPC25:
c121c671
DK
9680 gold_assert(gsym == NULL
9681 || gsym->has_plt_offset()
9682 || gsym->final_value_is_known()
9683 || (gsym->is_defined()
9684 && !gsym->is_from_dynobj()
9685 && !gsym->is_preemptible()));
d204b6e9 9686 reloc_status =
2e702c99 9687 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9688 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9689 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9690 break;
9691
41263c05
DK
9692 case elfcpp::R_ARM_THM_JUMP19:
9693 reloc_status =
9694 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9695 thumb_bit);
9696 break;
9697
800d0f56
ILT
9698 case elfcpp::R_ARM_THM_JUMP6:
9699 reloc_status =
9700 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9701 break;
9702
9703 case elfcpp::R_ARM_THM_JUMP8:
9704 reloc_status =
9705 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9706 break;
9707
9708 case elfcpp::R_ARM_THM_JUMP11:
9709 reloc_status =
9710 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9711 break;
9712
c121c671
DK
9713 case elfcpp::R_ARM_PREL31:
9714 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9715 address, thumb_bit);
c121c671
DK
9716 break;
9717
a2162063 9718 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9719 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9720 {
9721 const bool is_v4bx_interworking =
9722 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9723 reloc_status =
9724 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9725 is_v4bx_interworking);
9726 }
a2162063
ILT
9727 break;
9728
11b861d5
DK
9729 case elfcpp::R_ARM_THM_PC8:
9730 reloc_status =
9731 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9732 break;
9733
9734 case elfcpp::R_ARM_THM_PC12:
9735 reloc_status =
9736 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9737 break;
9738
9739 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9740 reloc_status =
9741 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9742 thumb_bit);
9743 break;
9744
b10d2873 9745 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9746 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9747 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9748 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9749 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9750 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9751 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9752 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9753 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9754 case elfcpp::R_ARM_ALU_SB_G2:
9755 reloc_status =
5c57f1be
DK
9756 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9757 reloc_property->group_index(),
9758 relative_address_base,
9759 thumb_bit, check_overflow);
b10d2873
ILT
9760 break;
9761
9762 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9763 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9764 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9765 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9766 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9767 case elfcpp::R_ARM_LDR_SB_G2:
9768 reloc_status =
5c57f1be
DK
9769 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9770 reloc_property->group_index(),
9771 relative_address_base);
b10d2873
ILT
9772 break;
9773
9774 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9775 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9776 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9777 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9778 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9779 case elfcpp::R_ARM_LDRS_SB_G2:
9780 reloc_status =
5c57f1be
DK
9781 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9782 reloc_property->group_index(),
9783 relative_address_base);
b10d2873
ILT
9784 break;
9785
9786 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9787 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9788 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9789 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9790 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9791 case elfcpp::R_ARM_LDC_SB_G2:
9792 reloc_status =
5c57f1be
DK
9793 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9794 reloc_property->group_index(),
9795 relative_address_base);
c121c671
DK
9796 break;
9797
f96accdf
DK
9798 // These are initial tls relocs, which are expected when
9799 // linking.
9800 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9801 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9802 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9803 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9804 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9805 reloc_status =
9806 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9807 view, address, view_size);
9808 break;
9809
3cef7179
ILT
9810 // The known and unknown unsupported and/or deprecated relocations.
9811 case elfcpp::R_ARM_PC24:
9812 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9813 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9814 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9815 default:
3cef7179
ILT
9816 // Just silently leave the method. We should get an appropriate error
9817 // message in the scan methods.
9818 break;
c121c671
DK
9819 }
9820
9821 // Report any errors.
9822 switch (reloc_status)
9823 {
9824 case Arm_relocate_functions::STATUS_OKAY:
9825 break;
9826 case Arm_relocate_functions::STATUS_OVERFLOW:
9827 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9828 _("relocation overflow in %s"),
9829 reloc_property->name().c_str());
c121c671
DK
9830 break;
9831 case Arm_relocate_functions::STATUS_BAD_RELOC:
9832 gold_error_at_location(
9833 relinfo,
9834 relnum,
9835 rel.get_r_offset(),
a2c7281b
DK
9836 _("unexpected opcode while processing relocation %s"),
9837 reloc_property->name().c_str());
c121c671 9838 break;
4a657b0d
DK
9839 default:
9840 gold_unreachable();
9841 }
9842
9843 return true;
9844}
9845
f96accdf
DK
9846// Perform a TLS relocation.
9847
9848template<bool big_endian>
9849inline typename Arm_relocate_functions<big_endian>::Status
9850Target_arm<big_endian>::Relocate::relocate_tls(
9851 const Relocate_info<32, big_endian>* relinfo,
9852 Target_arm<big_endian>* target,
9853 size_t relnum,
9854 const elfcpp::Rel<32, big_endian>& rel,
9855 unsigned int r_type,
9856 const Sized_symbol<32>* gsym,
9857 const Symbol_value<32>* psymval,
9858 unsigned char* view,
4a54abbb 9859 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9860 section_size_type /*view_size*/ )
9861{
9862 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9863 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9864 Output_segment* tls_segment = relinfo->layout->tls_segment();
9865
6fa2a40b 9866 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9867
9868 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9869
9870 const bool is_final = (gsym == NULL
9871 ? !parameters->options().shared()
9872 : gsym->final_value_is_known());
9873 const tls::Tls_optimization optimized_type
9874 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9875 switch (r_type)
9876 {
9877 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9878 {
9879 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9880 unsigned int got_offset;
9881 if (gsym != NULL)
9882 {
9883 gold_assert(gsym->has_got_offset(got_type));
9884 got_offset = gsym->got_offset(got_type) - target->got_size();
9885 }
9886 else
9887 {
9888 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9889 gold_assert(object->local_has_got_offset(r_sym, got_type));
9890 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9891 - target->got_size());
2e702c99
RM
9892 }
9893 if (optimized_type == tls::TLSOPT_NONE)
9894 {
4a54abbb
DK
9895 Arm_address got_entry =
9896 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9897
9898 // Relocate the field with the PC relative offset of the pair of
9899 // GOT entries.
29ab395d 9900 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9901 return ArmRelocFuncs::STATUS_OKAY;
9902 }
9903 }
f96accdf
DK
9904 break;
9905
9906 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9907 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9908 {
9909 // Relocate the field with the offset of the GOT entry for
9910 // the module index.
9911 unsigned int got_offset;
9912 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9913 - target->got_size());
4a54abbb
DK
9914 Arm_address got_entry =
9915 target->got_plt_section()->address() + got_offset;
9916
2e702c99
RM
9917 // Relocate the field with the PC relative offset of the pair of
9918 // GOT entries.
9919 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9920 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9921 }
f96accdf
DK
9922 break;
9923
9924 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9925 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9926 return ArmRelocFuncs::STATUS_OKAY;
9927
9928 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9929 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9930 {
9931 // Relocate the field with the offset of the GOT entry for
9932 // the tp-relative offset of the symbol.
f96accdf 9933 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9934 unsigned int got_offset;
9935 if (gsym != NULL)
9936 {
9937 gold_assert(gsym->has_got_offset(got_type));
9938 got_offset = gsym->got_offset(got_type);
9939 }
9940 else
9941 {
9942 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9943 gold_assert(object->local_has_got_offset(r_sym, got_type));
9944 got_offset = object->local_got_offset(r_sym, got_type);
9945 }
9946
9947 // All GOT offsets are relative to the end of the GOT.
9948 got_offset -= target->got_size();
4a54abbb
DK
9949
9950 Arm_address got_entry =
9951 target->got_plt_section()->address() + got_offset;
9952
2e702c99 9953 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9954 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9955 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9956 }
f96accdf
DK
9957 break;
9958
9959 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9960 // If we're creating a shared library, a dynamic relocation will
9961 // have been created for this location, so do not apply it now.
9962 if (!parameters->options().shared())
2e702c99
RM
9963 {
9964 gold_assert(tls_segment != NULL);
4a54abbb
DK
9965
9966 // $tp points to the TCB, which is followed by the TLS, so we
9967 // need to add TCB size to the offset.
9968 Arm_address aligned_tcb_size =
9969 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9970 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9971
2e702c99 9972 }
f96accdf 9973 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9974
f96accdf
DK
9975 default:
9976 gold_unreachable();
9977 }
9978
9979 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9980 _("unsupported reloc %u"),
9981 r_type);
9982 return ArmRelocFuncs::STATUS_BAD_RELOC;
9983}
9984
4a657b0d
DK
9985// Relocate section data.
9986
9987template<bool big_endian>
9988void
9989Target_arm<big_endian>::relocate_section(
9990 const Relocate_info<32, big_endian>* relinfo,
9991 unsigned int sh_type,
9992 const unsigned char* prelocs,
9993 size_t reloc_count,
9994 Output_section* output_section,
9995 bool needs_special_offset_handling,
9996 unsigned char* view,
ebabffbd 9997 Arm_address address,
364c7fa5
ILT
9998 section_size_type view_size,
9999 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
10000{
10001 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10002 gold_assert(sh_type == elfcpp::SHT_REL);
10003
218c5831
DK
10004 // See if we are relocating a relaxed input section. If so, the view
10005 // covers the whole output section and we need to adjust accordingly.
10006 if (needs_special_offset_handling)
43d12afe 10007 {
218c5831
DK
10008 const Output_relaxed_input_section* poris =
10009 output_section->find_relaxed_input_section(relinfo->object,
10010 relinfo->data_shndx);
10011 if (poris != NULL)
10012 {
10013 Arm_address section_address = poris->address();
10014 section_size_type section_size = poris->data_size();
10015
10016 gold_assert((section_address >= address)
10017 && ((section_address + section_size)
10018 <= (address + view_size)));
10019
10020 off_t offset = section_address - address;
10021 view += offset;
10022 address += offset;
10023 view_size = section_size;
10024 }
43d12afe
DK
10025 }
10026
4a657b0d 10027 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 10028 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
10029 relinfo,
10030 this,
10031 prelocs,
10032 reloc_count,
10033 output_section,
10034 needs_special_offset_handling,
10035 view,
10036 address,
364c7fa5
ILT
10037 view_size,
10038 reloc_symbol_changes);
4a657b0d
DK
10039}
10040
10041// Return the size of a relocation while scanning during a relocatable
10042// link.
10043
10044template<bool big_endian>
10045unsigned int
10046Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10047 unsigned int r_type,
10048 Relobj* object)
10049{
a6d1ef57 10050 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
10051 const Arm_reloc_property* arp =
10052 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10053 if (arp != NULL)
10054 return arp->size();
10055 else
4a657b0d 10056 {
5c57f1be
DK
10057 std::string reloc_name =
10058 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10059 gold_error(_("%s: unexpected %s in object file"),
10060 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
10061 return 0;
10062 }
10063}
10064
10065// Scan the relocs during a relocatable link.
10066
10067template<bool big_endian>
10068void
10069Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 10070 Symbol_table* symtab,
2ea97941 10071 Layout* layout,
6fa2a40b 10072 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
10073 unsigned int data_shndx,
10074 unsigned int sh_type,
10075 const unsigned char* prelocs,
10076 size_t reloc_count,
10077 Output_section* output_section,
10078 bool needs_special_offset_handling,
10079 size_t local_symbol_count,
10080 const unsigned char* plocal_symbols,
10081 Relocatable_relocs* rr)
10082{
10083 gold_assert(sh_type == elfcpp::SHT_REL);
10084
5c388529 10085 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
10086 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10087
10088 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10089 Scan_relocatable_relocs>(
4a657b0d 10090 symtab,
2ea97941 10091 layout,
4a657b0d
DK
10092 object,
10093 data_shndx,
10094 prelocs,
10095 reloc_count,
10096 output_section,
10097 needs_special_offset_handling,
10098 local_symbol_count,
10099 plocal_symbols,
10100 rr);
10101}
10102
7404fe1b 10103// Emit relocations for a section.
4a657b0d
DK
10104
10105template<bool big_endian>
10106void
7404fe1b 10107Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
10108 const Relocate_info<32, big_endian>* relinfo,
10109 unsigned int sh_type,
10110 const unsigned char* prelocs,
10111 size_t reloc_count,
10112 Output_section* output_section,
62fe925a 10113 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d 10114 unsigned char* view,
ebabffbd 10115 Arm_address view_address,
4a657b0d
DK
10116 section_size_type view_size,
10117 unsigned char* reloc_view,
10118 section_size_type reloc_view_size)
10119{
10120 gold_assert(sh_type == elfcpp::SHT_REL);
10121
7404fe1b 10122 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
10123 relinfo,
10124 prelocs,
10125 reloc_count,
10126 output_section,
10127 offset_in_output_section,
4a657b0d
DK
10128 view,
10129 view_address,
10130 view_size,
10131 reloc_view,
10132 reloc_view_size);
10133}
10134
5c388529
DK
10135// Perform target-specific processing in a relocatable link. This is
10136// only used if we use the relocation strategy RELOC_SPECIAL.
10137
10138template<bool big_endian>
10139void
10140Target_arm<big_endian>::relocate_special_relocatable(
10141 const Relocate_info<32, big_endian>* relinfo,
10142 unsigned int sh_type,
10143 const unsigned char* preloc_in,
10144 size_t relnum,
10145 Output_section* output_section,
62fe925a 10146 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
10147 unsigned char* view,
10148 elfcpp::Elf_types<32>::Elf_Addr view_address,
10149 section_size_type,
10150 unsigned char* preloc_out)
10151{
10152 // We can only handle REL type relocation sections.
10153 gold_assert(sh_type == elfcpp::SHT_REL);
10154
10155 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10156 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10157 Reltype_write;
10158 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10159
10160 const Arm_relobj<big_endian>* object =
10161 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10162 const unsigned int local_count = object->local_symbol_count();
10163
10164 Reltype reloc(preloc_in);
10165 Reltype_write reloc_write(preloc_out);
10166
10167 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10168 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10169 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10170
10171 const Arm_reloc_property* arp =
10172 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10173 gold_assert(arp != NULL);
10174
10175 // Get the new symbol index.
10176 // We only use RELOC_SPECIAL strategy in local relocations.
10177 gold_assert(r_sym < local_count);
10178
10179 // We are adjusting a section symbol. We need to find
10180 // the symbol table index of the section symbol for
10181 // the output section corresponding to input section
10182 // in which this symbol is defined.
10183 bool is_ordinary;
10184 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10185 gold_assert(is_ordinary);
10186 Output_section* os = object->output_section(shndx);
10187 gold_assert(os != NULL);
10188 gold_assert(os->needs_symtab_index());
10189 unsigned int new_symndx = os->symtab_index();
10190
10191 // Get the new offset--the location in the output section where
10192 // this relocation should be applied.
10193
10194 Arm_address offset = reloc.get_r_offset();
10195 Arm_address new_offset;
10196 if (offset_in_output_section != invalid_address)
10197 new_offset = offset + offset_in_output_section;
10198 else
10199 {
10200 section_offset_type sot_offset =
2e702c99 10201 convert_types<section_offset_type, Arm_address>(offset);
5c388529 10202 section_offset_type new_sot_offset =
2e702c99
RM
10203 output_section->output_offset(object, relinfo->data_shndx,
10204 sot_offset);
5c388529
DK
10205 gold_assert(new_sot_offset != -1);
10206 new_offset = new_sot_offset;
10207 }
10208
10209 // In an object file, r_offset is an offset within the section.
10210 // In an executable or dynamic object, generated by
10211 // --emit-relocs, r_offset is an absolute address.
10212 if (!parameters->options().relocatable())
10213 {
10214 new_offset += view_address;
10215 if (offset_in_output_section != invalid_address)
2e702c99 10216 new_offset -= offset_in_output_section;
5c388529
DK
10217 }
10218
10219 reloc_write.put_r_offset(new_offset);
10220 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10221
10222 // Handle the reloc addend.
10223 // The relocation uses a section symbol in the input file.
10224 // We are adjusting it to use a section symbol in the output
10225 // file. The input section symbol refers to some address in
10226 // the input section. We need the relocation in the output
10227 // file to refer to that same address. This adjustment to
10228 // the addend is the same calculation we use for a simple
10229 // absolute relocation for the input section symbol.
10230
10231 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10232
10233 // Handle THUMB bit.
10234 Symbol_value<32> symval;
10235 Arm_address thumb_bit =
10236 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10237 if (thumb_bit != 0
2e702c99 10238 && arp->uses_thumb_bit()
5c388529
DK
10239 && ((psymval->value(object, 0) & 1) != 0))
10240 {
10241 Arm_address stripped_value =
10242 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10243 symval.set_output_value(stripped_value);
10244 psymval = &symval;
2e702c99 10245 }
5c388529
DK
10246
10247 unsigned char* paddend = view + offset;
10248 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10249 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10250 switch (r_type)
10251 {
10252 case elfcpp::R_ARM_ABS8:
10253 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10254 psymval);
10255 break;
10256
10257 case elfcpp::R_ARM_ABS12:
10258 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10259 psymval);
10260 break;
10261
10262 case elfcpp::R_ARM_ABS16:
10263 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10264 psymval);
10265 break;
10266
10267 case elfcpp::R_ARM_THM_ABS5:
10268 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10269 object,
10270 psymval);
10271 break;
10272
10273 case elfcpp::R_ARM_MOVW_ABS_NC:
10274 case elfcpp::R_ARM_MOVW_PREL_NC:
10275 case elfcpp::R_ARM_MOVW_BREL_NC:
10276 case elfcpp::R_ARM_MOVW_BREL:
10277 reloc_status = Arm_relocate_functions<big_endian>::movw(
10278 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10279 break;
10280
10281 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10282 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10283 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10284 case elfcpp::R_ARM_THM_MOVW_BREL:
10285 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10286 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10287 break;
10288
10289 case elfcpp::R_ARM_THM_CALL:
10290 case elfcpp::R_ARM_THM_XPC22:
10291 case elfcpp::R_ARM_THM_JUMP24:
10292 reloc_status =
10293 Arm_relocate_functions<big_endian>::thumb_branch_common(
10294 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10295 false);
10296 break;
10297
10298 case elfcpp::R_ARM_PLT32:
10299 case elfcpp::R_ARM_CALL:
10300 case elfcpp::R_ARM_JUMP24:
10301 case elfcpp::R_ARM_XPC25:
10302 reloc_status =
2e702c99 10303 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
10304 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10305 false);
10306 break;
10307
10308 case elfcpp::R_ARM_THM_JUMP19:
10309 reloc_status =
10310 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10311 psymval, 0, thumb_bit);
10312 break;
10313
10314 case elfcpp::R_ARM_THM_JUMP6:
10315 reloc_status =
10316 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10317 0);
10318 break;
10319
10320 case elfcpp::R_ARM_THM_JUMP8:
10321 reloc_status =
10322 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10323 0);
10324 break;
10325
10326 case elfcpp::R_ARM_THM_JUMP11:
10327 reloc_status =
10328 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10329 0);
10330 break;
10331
10332 case elfcpp::R_ARM_PREL31:
10333 reloc_status =
10334 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10335 thumb_bit);
10336 break;
10337
10338 case elfcpp::R_ARM_THM_PC8:
10339 reloc_status =
10340 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10341 0);
10342 break;
10343
10344 case elfcpp::R_ARM_THM_PC12:
10345 reloc_status =
10346 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10347 0);
10348 break;
10349
10350 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10351 reloc_status =
10352 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10353 0, thumb_bit);
10354 break;
10355
10356 // These relocation truncate relocation results so we cannot handle them
10357 // in a relocatable link.
10358 case elfcpp::R_ARM_MOVT_ABS:
10359 case elfcpp::R_ARM_THM_MOVT_ABS:
10360 case elfcpp::R_ARM_MOVT_PREL:
10361 case elfcpp::R_ARM_MOVT_BREL:
10362 case elfcpp::R_ARM_THM_MOVT_PREL:
10363 case elfcpp::R_ARM_THM_MOVT_BREL:
10364 case elfcpp::R_ARM_ALU_PC_G0_NC:
10365 case elfcpp::R_ARM_ALU_PC_G0:
10366 case elfcpp::R_ARM_ALU_PC_G1_NC:
10367 case elfcpp::R_ARM_ALU_PC_G1:
10368 case elfcpp::R_ARM_ALU_PC_G2:
10369 case elfcpp::R_ARM_ALU_SB_G0_NC:
10370 case elfcpp::R_ARM_ALU_SB_G0:
10371 case elfcpp::R_ARM_ALU_SB_G1_NC:
10372 case elfcpp::R_ARM_ALU_SB_G1:
10373 case elfcpp::R_ARM_ALU_SB_G2:
10374 case elfcpp::R_ARM_LDR_PC_G0:
10375 case elfcpp::R_ARM_LDR_PC_G1:
10376 case elfcpp::R_ARM_LDR_PC_G2:
10377 case elfcpp::R_ARM_LDR_SB_G0:
10378 case elfcpp::R_ARM_LDR_SB_G1:
10379 case elfcpp::R_ARM_LDR_SB_G2:
10380 case elfcpp::R_ARM_LDRS_PC_G0:
10381 case elfcpp::R_ARM_LDRS_PC_G1:
10382 case elfcpp::R_ARM_LDRS_PC_G2:
10383 case elfcpp::R_ARM_LDRS_SB_G0:
10384 case elfcpp::R_ARM_LDRS_SB_G1:
10385 case elfcpp::R_ARM_LDRS_SB_G2:
10386 case elfcpp::R_ARM_LDC_PC_G0:
10387 case elfcpp::R_ARM_LDC_PC_G1:
10388 case elfcpp::R_ARM_LDC_PC_G2:
10389 case elfcpp::R_ARM_LDC_SB_G0:
10390 case elfcpp::R_ARM_LDC_SB_G1:
10391 case elfcpp::R_ARM_LDC_SB_G2:
10392 gold_error(_("cannot handle %s in a relocatable link"),
10393 arp->name().c_str());
10394 break;
10395
10396 default:
10397 gold_unreachable();
10398 }
10399
10400 // Report any errors.
10401 switch (reloc_status)
10402 {
10403 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10404 break;
10405 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10406 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10407 _("relocation overflow in %s"),
10408 arp->name().c_str());
10409 break;
10410 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10411 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10412 _("unexpected opcode while processing relocation %s"),
10413 arp->name().c_str());
10414 break;
10415 default:
10416 gold_unreachable();
10417 }
10418}
10419
94cdfcff
DK
10420// Return the value to use for a dynamic symbol which requires special
10421// treatment. This is how we support equality comparisons of function
10422// pointers across shared library boundaries, as described in the
10423// processor specific ABI supplement.
10424
4a657b0d
DK
10425template<bool big_endian>
10426uint64_t
94cdfcff 10427Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 10428{
94cdfcff 10429 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
fa89cc82 10430 return this->plt_address_for_global(gsym);
4a657b0d
DK
10431}
10432
10433// Map platform-specific relocs to real relocs
10434//
10435template<bool big_endian>
10436unsigned int
ca09d69a 10437Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
10438{
10439 switch (r_type)
10440 {
10441 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
10442 // This is either R_ARM_ABS32 or R_ARM_REL32;
10443 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
10444
10445 case elfcpp::R_ARM_TARGET2:
9b547ce6 10446 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 10447 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
10448
10449 default:
10450 return r_type;
10451 }
10452}
10453
d5b40221
DK
10454// Whether if two EABI versions V1 and V2 are compatible.
10455
10456template<bool big_endian>
10457bool
10458Target_arm<big_endian>::are_eabi_versions_compatible(
10459 elfcpp::Elf_Word v1,
10460 elfcpp::Elf_Word v2)
10461{
10462 // v4 and v5 are the same spec before and after it was released,
10463 // so allow mixing them.
106e8a6c
DK
10464 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10465 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
10466 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10467 return true;
10468
10469 return v1 == v2;
10470}
10471
10472// Combine FLAGS from an input object called NAME and the processor-specific
10473// flags in the ELF header of the output. Much of this is adapted from the
10474// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10475// in bfd/elf32-arm.c.
10476
10477template<bool big_endian>
10478void
10479Target_arm<big_endian>::merge_processor_specific_flags(
10480 const std::string& name,
10481 elfcpp::Elf_Word flags)
10482{
10483 if (this->are_processor_specific_flags_set())
10484 {
10485 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10486
10487 // Nothing to merge if flags equal to those in output.
10488 if (flags == out_flags)
10489 return;
10490
10491 // Complain about various flag mismatches.
10492 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10493 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10494 if (!this->are_eabi_versions_compatible(version1, version2)
10495 && parameters->options().warn_mismatch())
d5b40221
DK
10496 gold_error(_("Source object %s has EABI version %d but output has "
10497 "EABI version %d."),
10498 name.c_str(),
10499 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10500 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10501 }
10502 else
10503 {
10504 // If the input is the default architecture and had the default
10505 // flags then do not bother setting the flags for the output
10506 // architecture, instead allow future merges to do this. If no
10507 // future merges ever set these flags then they will retain their
10508 // uninitialised values, which surprise surprise, correspond
10509 // to the default values.
10510 if (flags == 0)
10511 return;
10512
10513 // This is the first time, just copy the flags.
10514 // We only copy the EABI version for now.
10515 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10516 }
10517}
10518
10519// Adjust ELF file header.
10520template<bool big_endian>
10521void
10522Target_arm<big_endian>::do_adjust_elf_header(
10523 unsigned char* view,
3bfcb652 10524 int len)
d5b40221
DK
10525{
10526 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10527
10528 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10529 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10530 unsigned char e_ident[elfcpp::EI_NIDENT];
10531 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10532
3bfcb652 10533 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10534 == elfcpp::EF_ARM_EABI_UNKNOWN)
10535 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10536 else
10537 e_ident[elfcpp::EI_OSABI] = 0;
10538 e_ident[elfcpp::EI_ABIVERSION] = 0;
10539
10540 // FIXME: Do EF_ARM_BE8 adjustment.
10541
3bfcb652
NC
10542 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10543 // as appropriate.
10544 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10545 {
10546 elfcpp::Elf_Half type = ehdr.get_e_type();
10547 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10548 {
10549 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
f12d1e8a 10550 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
3bfcb652
NC
10551 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10552 else
10553 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10554 this->set_processor_specific_flags(flags);
10555 }
10556 }
d5b40221
DK
10557 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10558 oehdr.put_e_ident(e_ident);
2bca0377 10559 oehdr.put_e_flags(this->processor_specific_flags());
d5b40221
DK
10560}
10561
10562// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10563// We need to use a target-specific sub-class of
10564// Sized_relobj_file<32, big_endian> to store ARM specific information.
10565// Hence we need to have our own ELF object creation.
d5b40221
DK
10566
10567template<bool big_endian>
10568Object*
10569Target_arm<big_endian>::do_make_elf_object(
10570 const std::string& name,
10571 Input_file* input_file,
2ea97941 10572 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10573{
10574 int et = ehdr.get_e_type();
f4a8b6d7
DK
10575 // ET_EXEC files are valid input for --just-symbols/-R,
10576 // and we treat them as relocatable objects.
10577 if (et == elfcpp::ET_REL
10578 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10579 {
10580 Arm_relobj<big_endian>* obj =
2e702c99 10581 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10582 obj->setup();
10583 return obj;
10584 }
10585 else if (et == elfcpp::ET_DYN)
10586 {
10587 Sized_dynobj<32, big_endian>* obj =
2e702c99 10588 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10589 obj->setup();
10590 return obj;
10591 }
10592 else
10593 {
10594 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10595 name.c_str(), et);
d5b40221
DK
10596 return NULL;
10597 }
10598}
10599
a0351a69
DK
10600// Read the architecture from the Tag_also_compatible_with attribute, if any.
10601// Returns -1 if no architecture could be read.
10602// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10603
10604template<bool big_endian>
10605int
10606Target_arm<big_endian>::get_secondary_compatible_arch(
10607 const Attributes_section_data* pasd)
10608{
ca09d69a 10609 const Object_attribute* known_attributes =
a0351a69
DK
10610 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10611
10612 // Note: the tag and its argument below are uleb128 values, though
10613 // currently-defined values fit in one byte for each.
10614 const std::string& sv =
10615 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10616 if (sv.size() == 2
10617 && sv.data()[0] == elfcpp::Tag_CPU_arch
10618 && (sv.data()[1] & 128) != 128)
10619 return sv.data()[1];
10620
10621 // This tag is "safely ignorable", so don't complain if it looks funny.
10622 return -1;
10623}
10624
10625// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10626// The tag is removed if ARCH is -1.
10627// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10628
10629template<bool big_endian>
10630void
10631Target_arm<big_endian>::set_secondary_compatible_arch(
10632 Attributes_section_data* pasd,
10633 int arch)
10634{
ca09d69a 10635 Object_attribute* known_attributes =
a0351a69
DK
10636 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10637
10638 if (arch == -1)
10639 {
10640 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10641 return;
10642 }
10643
10644 // Note: the tag and its argument below are uleb128 values, though
10645 // currently-defined values fit in one byte for each.
10646 char sv[3];
10647 sv[0] = elfcpp::Tag_CPU_arch;
10648 gold_assert(arch != 0);
10649 sv[1] = arch;
10650 sv[2] = '\0';
10651
10652 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10653}
10654
10655// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10656// into account.
10657// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10658
10659template<bool big_endian>
10660int
10661Target_arm<big_endian>::tag_cpu_arch_combine(
10662 const char* name,
10663 int oldtag,
10664 int* secondary_compat_out,
10665 int newtag,
10666 int secondary_compat)
10667{
10668#define T(X) elfcpp::TAG_CPU_ARCH_##X
10669 static const int v6t2[] =
10670 {
10671 T(V6T2), // PRE_V4.
10672 T(V6T2), // V4.
10673 T(V6T2), // V4T.
10674 T(V6T2), // V5T.
10675 T(V6T2), // V5TE.
10676 T(V6T2), // V5TEJ.
10677 T(V6T2), // V6.
10678 T(V7), // V6KZ.
10679 T(V6T2) // V6T2.
10680 };
10681 static const int v6k[] =
10682 {
10683 T(V6K), // PRE_V4.
10684 T(V6K), // V4.
10685 T(V6K), // V4T.
10686 T(V6K), // V5T.
10687 T(V6K), // V5TE.
10688 T(V6K), // V5TEJ.
10689 T(V6K), // V6.
10690 T(V6KZ), // V6KZ.
10691 T(V7), // V6T2.
10692 T(V6K) // V6K.
10693 };
10694 static const int v7[] =
10695 {
10696 T(V7), // PRE_V4.
10697 T(V7), // V4.
10698 T(V7), // V4T.
10699 T(V7), // V5T.
10700 T(V7), // V5TE.
10701 T(V7), // V5TEJ.
10702 T(V7), // V6.
10703 T(V7), // V6KZ.
10704 T(V7), // V6T2.
10705 T(V7), // V6K.
10706 T(V7) // V7.
10707 };
10708 static const int v6_m[] =
10709 {
10710 -1, // PRE_V4.
10711 -1, // V4.
10712 T(V6K), // V4T.
10713 T(V6K), // V5T.
10714 T(V6K), // V5TE.
10715 T(V6K), // V5TEJ.
10716 T(V6K), // V6.
10717 T(V6KZ), // V6KZ.
10718 T(V7), // V6T2.
10719 T(V6K), // V6K.
10720 T(V7), // V7.
10721 T(V6_M) // V6_M.
10722 };
10723 static const int v6s_m[] =
10724 {
10725 -1, // PRE_V4.
10726 -1, // V4.
10727 T(V6K), // V4T.
10728 T(V6K), // V5T.
10729 T(V6K), // V5TE.
10730 T(V6K), // V5TEJ.
10731 T(V6K), // V6.
10732 T(V6KZ), // V6KZ.
10733 T(V7), // V6T2.
10734 T(V6K), // V6K.
10735 T(V7), // V7.
10736 T(V6S_M), // V6_M.
10737 T(V6S_M) // V6S_M.
10738 };
10739 static const int v7e_m[] =
10740 {
10741 -1, // PRE_V4.
10742 -1, // V4.
10743 T(V7E_M), // V4T.
10744 T(V7E_M), // V5T.
10745 T(V7E_M), // V5TE.
10746 T(V7E_M), // V5TEJ.
10747 T(V7E_M), // V6.
10748 T(V7E_M), // V6KZ.
10749 T(V7E_M), // V6T2.
10750 T(V7E_M), // V6K.
10751 T(V7E_M), // V7.
10752 T(V7E_M), // V6_M.
10753 T(V7E_M), // V6S_M.
10754 T(V7E_M) // V7E_M.
10755 };
24491327
HS
10756 static const int v8[] =
10757 {
10758 T(V8), // PRE_V4.
10759 T(V8), // V4.
10760 T(V8), // V4T.
10761 T(V8), // V5T.
10762 T(V8), // V5TE.
10763 T(V8), // V5TEJ.
10764 T(V8), // V6.
10765 T(V8), // V6KZ.
10766 T(V8), // V6T2.
10767 T(V8), // V6K.
10768 T(V8), // V7.
10769 T(V8), // V6_M.
10770 T(V8), // V6S_M.
10771 T(V8), // V7E_M.
10772 T(V8) // V8.
10773 };
a0351a69
DK
10774 static const int v4t_plus_v6_m[] =
10775 {
10776 -1, // PRE_V4.
10777 -1, // V4.
10778 T(V4T), // V4T.
10779 T(V5T), // V5T.
10780 T(V5TE), // V5TE.
10781 T(V5TEJ), // V5TEJ.
10782 T(V6), // V6.
10783 T(V6KZ), // V6KZ.
10784 T(V6T2), // V6T2.
10785 T(V6K), // V6K.
10786 T(V7), // V7.
10787 T(V6_M), // V6_M.
10788 T(V6S_M), // V6S_M.
10789 T(V7E_M), // V7E_M.
24491327 10790 T(V8), // V8.
a0351a69
DK
10791 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10792 };
ca09d69a 10793 static const int* comb[] =
a0351a69
DK
10794 {
10795 v6t2,
10796 v6k,
10797 v7,
10798 v6_m,
10799 v6s_m,
10800 v7e_m,
24491327 10801 v8,
a0351a69
DK
10802 // Pseudo-architecture.
10803 v4t_plus_v6_m
10804 };
10805
10806 // Check we've not got a higher architecture than we know about.
10807
f62a3ca7 10808 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10809 {
10810 gold_error(_("%s: unknown CPU architecture"), name);
10811 return -1;
10812 }
10813
10814 // Override old tag if we have a Tag_also_compatible_with on the output.
10815
10816 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10817 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10818 oldtag = T(V4T_PLUS_V6_M);
10819
10820 // And override the new tag if we have a Tag_also_compatible_with on the
10821 // input.
10822
10823 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10824 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10825 newtag = T(V4T_PLUS_V6_M);
10826
10827 // Architectures before V6KZ add features monotonically.
10828 int tagh = std::max(oldtag, newtag);
10829 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10830 return tagh;
10831
10832 int tagl = std::min(oldtag, newtag);
10833 int result = comb[tagh - T(V6T2)][tagl];
10834
10835 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10836 // as the canonical version.
10837 if (result == T(V4T_PLUS_V6_M))
10838 {
10839 result = T(V4T);
10840 *secondary_compat_out = T(V6_M);
10841 }
10842 else
10843 *secondary_compat_out = -1;
10844
10845 if (result == -1)
10846 {
10847 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10848 name, oldtag, newtag);
10849 return -1;
10850 }
10851
10852 return result;
10853#undef T
10854}
10855
10856// Helper to print AEABI enum tag value.
10857
10858template<bool big_endian>
10859std::string
10860Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10861{
ca09d69a 10862 static const char* aeabi_enum_names[] =
a0351a69
DK
10863 { "", "variable-size", "32-bit", "" };
10864 const size_t aeabi_enum_names_size =
10865 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10866
10867 if (value < aeabi_enum_names_size)
10868 return std::string(aeabi_enum_names[value]);
10869 else
10870 {
10871 char buffer[100];
10872 sprintf(buffer, "<unknown value %u>", value);
10873 return std::string(buffer);
10874 }
10875}
10876
10877// Return the string value to store in TAG_CPU_name.
10878
10879template<bool big_endian>
10880std::string
10881Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10882{
ca09d69a 10883 static const char* name_table[] = {
a0351a69
DK
10884 // These aren't real CPU names, but we can't guess
10885 // that from the architecture version alone.
10886 "Pre v4",
10887 "ARM v4",
10888 "ARM v4T",
10889 "ARM v5T",
10890 "ARM v5TE",
10891 "ARM v5TEJ",
10892 "ARM v6",
10893 "ARM v6KZ",
10894 "ARM v6T2",
10895 "ARM v6K",
10896 "ARM v7",
10897 "ARM v6-M",
10898 "ARM v6S-M",
24491327
HS
10899 "ARM v7E-M",
10900 "ARM v8"
a0351a69
DK
10901 };
10902 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10903
10904 if (value < name_table_size)
10905 return std::string(name_table[value]);
10906 else
10907 {
10908 char buffer[100];
10909 sprintf(buffer, "<unknown CPU value %u>", value);
10910 return std::string(buffer);
2e702c99 10911 }
a0351a69
DK
10912}
10913
679af368
ILT
10914// Query attributes object to see if integer divide instructions may be
10915// present in an object.
10916
10917template<bool big_endian>
10918bool
10919Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10920 const Object_attribute* div_attr)
10921{
10922 switch (div_attr->int_value())
10923 {
10924 case 0:
10925 // Integer divide allowed if instruction contained in
10926 // archetecture.
10927 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10928 return true;
10929 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10930 return true;
10931 else
10932 return false;
10933
10934 case 1:
10935 // Integer divide explicitly prohibited.
10936 return false;
10937
10938 default:
10939 // Unrecognised case - treat as allowing divide everywhere.
10940 case 2:
10941 // Integer divide allowed in ARM state.
10942 return true;
10943 }
10944}
10945
10946// Query attributes object to see if integer divide instructions are
10947// forbidden to be in the object. This is not the inverse of
10948// attributes_accept_div.
10949
10950template<bool big_endian>
10951bool
10952Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10953{
10954 return div_attr->int_value() == 1;
10955}
10956
a0351a69
DK
10957// Merge object attributes from input file called NAME with those of the
10958// output. The input object attributes are in the object pointed by PASD.
10959
10960template<bool big_endian>
10961void
10962Target_arm<big_endian>::merge_object_attributes(
10963 const char* name,
10964 const Attributes_section_data* pasd)
10965{
10966 // Return if there is no attributes section data.
10967 if (pasd == NULL)
10968 return;
10969
10970 // If output has no object attributes, just copy.
da59ad79 10971 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10972 if (this->attributes_section_data_ == NULL)
10973 {
10974 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10975 Object_attribute* out_attr =
10976 this->attributes_section_data_->known_attributes(vendor);
10977
10978 // We do not output objects with Tag_MPextension_use_legacy - we move
10979 // the attribute's value to Tag_MPextension_use. */
10980 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10981 {
10982 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10983 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10984 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10985 {
10986 gold_error(_("%s has both the current and legacy "
10987 "Tag_MPextension_use attributes"),
10988 name);
10989 }
10990
10991 out_attr[elfcpp::Tag_MPextension_use] =
10992 out_attr[elfcpp::Tag_MPextension_use_legacy];
10993 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10994 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10995 }
10996
a0351a69
DK
10997 return;
10998 }
10999
a0351a69
DK
11000 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11001 Object_attribute* out_attr =
11002 this->attributes_section_data_->known_attributes(vendor);
11003
11004 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11005 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11006 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11007 {
11008 // Ignore mismatches if the object doesn't use floating point. */
5c294fee 11009 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11010 == elfcpp::AEABI_FP_number_model_none
5c294fee 11011 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11012 != elfcpp::AEABI_FP_number_model_none
5c294fee 11013 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11014 == elfcpp::AEABI_VFP_args_compatible))
a0351a69
DK
11015 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11016 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5c294fee 11017 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11018 != elfcpp::AEABI_FP_number_model_none
5c294fee 11019 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11020 != elfcpp::AEABI_VFP_args_compatible
7296d933 11021 && parameters->options().warn_mismatch())
2e702c99 11022 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
11023 name);
11024 }
11025
11026 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11027 {
11028 // Merge this attribute with existing attributes.
11029 switch (i)
11030 {
11031 case elfcpp::Tag_CPU_raw_name:
11032 case elfcpp::Tag_CPU_name:
11033 // These are merged after Tag_CPU_arch.
11034 break;
11035
11036 case elfcpp::Tag_ABI_optimization_goals:
11037 case elfcpp::Tag_ABI_FP_optimization_goals:
11038 // Use the first value seen.
11039 break;
11040
11041 case elfcpp::Tag_CPU_arch:
11042 {
11043 unsigned int saved_out_attr = out_attr->int_value();
11044 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11045 int secondary_compat =
11046 this->get_secondary_compatible_arch(pasd);
11047 int secondary_compat_out =
11048 this->get_secondary_compatible_arch(
11049 this->attributes_section_data_);
11050 out_attr[i].set_int_value(
11051 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11052 &secondary_compat_out,
11053 in_attr[i].int_value(),
11054 secondary_compat));
11055 this->set_secondary_compatible_arch(this->attributes_section_data_,
11056 secondary_compat_out);
11057
11058 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11059 if (out_attr[i].int_value() == saved_out_attr)
11060 ; // Leave the names alone.
11061 else if (out_attr[i].int_value() == in_attr[i].int_value())
11062 {
11063 // The output architecture has been changed to match the
11064 // input architecture. Use the input names.
11065 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11066 in_attr[elfcpp::Tag_CPU_name].string_value());
11067 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11068 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11069 }
11070 else
11071 {
11072 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11073 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11074 }
11075
11076 // If we still don't have a value for Tag_CPU_name,
11077 // make one up now. Tag_CPU_raw_name remains blank.
11078 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11079 {
11080 const std::string cpu_name =
11081 this->tag_cpu_name_value(out_attr[i].int_value());
11082 // FIXME: If we see an unknown CPU, this will be set
11083 // to "<unknown CPU n>", where n is the attribute value.
11084 // This is different from BFD, which leaves the name alone.
11085 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11086 }
11087 }
11088 break;
11089
11090 case elfcpp::Tag_ARM_ISA_use:
11091 case elfcpp::Tag_THUMB_ISA_use:
11092 case elfcpp::Tag_WMMX_arch:
11093 case elfcpp::Tag_Advanced_SIMD_arch:
11094 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11095 case elfcpp::Tag_ABI_FP_rounding:
11096 case elfcpp::Tag_ABI_FP_exceptions:
11097 case elfcpp::Tag_ABI_FP_user_exceptions:
11098 case elfcpp::Tag_ABI_FP_number_model:
11099 case elfcpp::Tag_VFP_HP_extension:
11100 case elfcpp::Tag_CPU_unaligned_access:
11101 case elfcpp::Tag_T2EE_use:
11102 case elfcpp::Tag_Virtualization_use:
11103 case elfcpp::Tag_MPextension_use:
11104 // Use the largest value specified.
11105 if (in_attr[i].int_value() > out_attr[i].int_value())
11106 out_attr[i].set_int_value(in_attr[i].int_value());
11107 break;
11108
11109 case elfcpp::Tag_ABI_align8_preserved:
11110 case elfcpp::Tag_ABI_PCS_RO_data:
11111 // Use the smallest value specified.
11112 if (in_attr[i].int_value() < out_attr[i].int_value())
11113 out_attr[i].set_int_value(in_attr[i].int_value());
11114 break;
11115
11116 case elfcpp::Tag_ABI_align8_needed:
11117 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11118 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11119 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11120 == 0)))
11121 {
9b547ce6 11122 // This error message should be enabled once all non-conforming
a0351a69
DK
11123 // binaries in the toolchain have had the attributes set
11124 // properly.
11125 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11126 // name);
11127 }
11128 // Fall through.
11129 case elfcpp::Tag_ABI_FP_denormal:
11130 case elfcpp::Tag_ABI_PCS_GOT_use:
11131 {
11132 // These tags have 0 = don't care, 1 = strong requirement,
11133 // 2 = weak requirement.
11134 static const int order_021[3] = {0, 2, 1};
11135
11136 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11137 // value if greater than 2 (for future-proofing).
11138 if ((in_attr[i].int_value() > 2
11139 && in_attr[i].int_value() > out_attr[i].int_value())
11140 || (in_attr[i].int_value() <= 2
11141 && out_attr[i].int_value() <= 2
11142 && (order_021[in_attr[i].int_value()]
11143 > order_021[out_attr[i].int_value()])))
11144 out_attr[i].set_int_value(in_attr[i].int_value());
11145 }
11146 break;
11147
11148 case elfcpp::Tag_CPU_arch_profile:
11149 if (out_attr[i].int_value() != in_attr[i].int_value())
11150 {
11151 // 0 will merge with anything.
11152 // 'A' and 'S' merge to 'A'.
11153 // 'R' and 'S' merge to 'R'.
11154 // 'M' and 'A|R|S' is an error.
11155 if (out_attr[i].int_value() == 0
11156 || (out_attr[i].int_value() == 'S'
11157 && (in_attr[i].int_value() == 'A'
11158 || in_attr[i].int_value() == 'R')))
11159 out_attr[i].set_int_value(in_attr[i].int_value());
11160 else if (in_attr[i].int_value() == 0
11161 || (in_attr[i].int_value() == 'S'
11162 && (out_attr[i].int_value() == 'A'
11163 || out_attr[i].int_value() == 'R')))
11164 ; // Do nothing.
7296d933 11165 else if (parameters->options().warn_mismatch())
a0351a69
DK
11166 {
11167 gold_error
11168 (_("conflicting architecture profiles %c/%c"),
11169 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11170 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11171 }
11172 }
11173 break;
11174 case elfcpp::Tag_VFP_arch:
11175 {
11176 static const struct
11177 {
11178 int ver;
11179 int regs;
11180 } vfp_versions[7] =
11181 {
11182 {0, 0},
11183 {1, 16},
11184 {2, 16},
11185 {3, 32},
11186 {3, 16},
11187 {4, 32},
11188 {4, 16}
11189 };
11190
11191 // Values greater than 6 aren't defined, so just pick the
11192 // biggest.
11193 if (in_attr[i].int_value() > 6
11194 && in_attr[i].int_value() > out_attr[i].int_value())
11195 {
11196 *out_attr = *in_attr;
11197 break;
11198 }
11199 // The output uses the superset of input features
11200 // (ISA version) and registers.
11201 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11202 vfp_versions[out_attr[i].int_value()].ver);
11203 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11204 vfp_versions[out_attr[i].int_value()].regs);
11205 // This assumes all possible supersets are also a valid
11206 // options.
11207 int newval;
11208 for (newval = 6; newval > 0; newval--)
11209 {
11210 if (regs == vfp_versions[newval].regs
11211 && ver == vfp_versions[newval].ver)
11212 break;
11213 }
11214 out_attr[i].set_int_value(newval);
11215 }
11216 break;
11217 case elfcpp::Tag_PCS_config:
11218 if (out_attr[i].int_value() == 0)
11219 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
11220 else if (in_attr[i].int_value() != 0
11221 && out_attr[i].int_value() != 0
11222 && parameters->options().warn_mismatch())
a0351a69
DK
11223 {
11224 // It's sometimes ok to mix different configs, so this is only
11225 // a warning.
11226 gold_warning(_("%s: conflicting platform configuration"), name);
11227 }
11228 break;
11229 case elfcpp::Tag_ABI_PCS_R9_use:
11230 if (in_attr[i].int_value() != out_attr[i].int_value()
11231 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
11232 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11233 && parameters->options().warn_mismatch())
a0351a69
DK
11234 {
11235 gold_error(_("%s: conflicting use of R9"), name);
11236 }
11237 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11238 out_attr[i].set_int_value(in_attr[i].int_value());
11239 break;
11240 case elfcpp::Tag_ABI_PCS_RW_data:
11241 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11242 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11243 != elfcpp::AEABI_R9_SB)
11244 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
11245 != elfcpp::AEABI_R9_unused)
11246 && parameters->options().warn_mismatch())
a0351a69
DK
11247 {
11248 gold_error(_("%s: SB relative addressing conflicts with use "
11249 "of R9"),
7296d933 11250 name);
a0351a69
DK
11251 }
11252 // Use the smallest value specified.
11253 if (in_attr[i].int_value() < out_attr[i].int_value())
11254 out_attr[i].set_int_value(in_attr[i].int_value());
11255 break;
11256 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
11257 if (out_attr[i].int_value()
11258 && in_attr[i].int_value()
7296d933 11259 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11260 && parameters->options().warn_mismatch()
11261 && parameters->options().wchar_size_warning())
a0351a69
DK
11262 {
11263 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11264 "use %u-byte wchar_t; use of wchar_t values "
11265 "across objects may fail"),
11266 name, in_attr[i].int_value(),
11267 out_attr[i].int_value());
11268 }
11269 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11270 out_attr[i].set_int_value(in_attr[i].int_value());
11271 break;
11272 case elfcpp::Tag_ABI_enum_size:
11273 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11274 {
11275 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11276 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11277 {
11278 // The existing object is compatible with anything.
11279 // Use whatever requirements the new object has.
11280 out_attr[i].set_int_value(in_attr[i].int_value());
11281 }
a0351a69 11282 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 11283 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11284 && parameters->options().warn_mismatch()
11285 && parameters->options().enum_size_warning())
a0351a69
DK
11286 {
11287 unsigned int in_value = in_attr[i].int_value();
11288 unsigned int out_value = out_attr[i].int_value();
11289 gold_warning(_("%s uses %s enums yet the output is to use "
11290 "%s enums; use of enum values across objects "
11291 "may fail"),
11292 name,
11293 this->aeabi_enum_name(in_value).c_str(),
11294 this->aeabi_enum_name(out_value).c_str());
11295 }
11296 }
11297 break;
11298 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 11299 // Already done.
a0351a69
DK
11300 break;
11301 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
11302 if (in_attr[i].int_value() != out_attr[i].int_value()
11303 && parameters->options().warn_mismatch())
a0351a69
DK
11304 {
11305 gold_error(_("%s uses iWMMXt register arguments, output does "
11306 "not"),
11307 name);
11308 }
11309 break;
11310 case Object_attribute::Tag_compatibility:
11311 // Merged in target-independent code.
11312 break;
11313 case elfcpp::Tag_ABI_HardFP_use:
11314 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11315 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11316 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11317 out_attr[i].set_int_value(3);
11318 else if (in_attr[i].int_value() > out_attr[i].int_value())
11319 out_attr[i].set_int_value(in_attr[i].int_value());
11320 break;
11321 case elfcpp::Tag_ABI_FP_16bit_format:
11322 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11323 {
7296d933
DK
11324 if (in_attr[i].int_value() != out_attr[i].int_value()
11325 && parameters->options().warn_mismatch())
a0351a69
DK
11326 gold_error(_("fp16 format mismatch between %s and output"),
11327 name);
11328 }
11329 if (in_attr[i].int_value() != 0)
11330 out_attr[i].set_int_value(in_attr[i].int_value());
11331 break;
11332
da59ad79 11333 case elfcpp::Tag_DIV_use:
679af368
ILT
11334 {
11335 // A value of zero on input means that the divide
11336 // instruction may be used if available in the base
11337 // architecture as specified via Tag_CPU_arch and
11338 // Tag_CPU_arch_profile. A value of 1 means that the user
11339 // did not want divide instructions. A value of 2
11340 // explicitly means that divide instructions were allowed
11341 // in ARM and Thumb state.
11342 int arch = this->
11343 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11344 int_value();
11345 int profile = this->
11346 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11347 int_value();
11348 if (in_attr[i].int_value() == out_attr[i].int_value())
11349 {
11350 // Do nothing.
11351 }
11352 else if (attributes_forbid_div(&in_attr[i])
43819297 11353 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
11354 out_attr[i].set_int_value(1);
11355 else if (attributes_forbid_div(&out_attr[i])
11356 && attributes_accept_div(arch, profile, &in_attr[i]))
11357 out_attr[i].set_int_value(in_attr[i].int_value());
11358 else if (in_attr[i].int_value() == 2)
11359 out_attr[i].set_int_value(in_attr[i].int_value());
11360 }
da59ad79
DK
11361 break;
11362
11363 case elfcpp::Tag_MPextension_use_legacy:
11364 // We don't output objects with Tag_MPextension_use_legacy - we
11365 // move the value to Tag_MPextension_use.
11366 if (in_attr[i].int_value() != 0
11367 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11368 {
11369 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11370 != in_attr[i].int_value())
11371 {
11372 gold_error(_("%s has has both the current and legacy "
2e702c99 11373 "Tag_MPextension_use attributes"),
da59ad79
DK
11374 name);
11375 }
11376 }
11377
11378 if (in_attr[i].int_value()
11379 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11380 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11381
11382 break;
11383
a0351a69
DK
11384 case elfcpp::Tag_nodefaults:
11385 // This tag is set if it exists, but the value is unused (and is
11386 // typically zero). We don't actually need to do anything here -
11387 // the merge happens automatically when the type flags are merged
11388 // below.
11389 break;
11390 case elfcpp::Tag_also_compatible_with:
11391 // Already done in Tag_CPU_arch.
11392 break;
11393 case elfcpp::Tag_conformance:
11394 // Keep the attribute if it matches. Throw it away otherwise.
11395 // No attribute means no claim to conform.
11396 if (in_attr[i].string_value() != out_attr[i].string_value())
11397 out_attr[i].set_string_value("");
11398 break;
11399
11400 default:
11401 {
11402 const char* err_object = NULL;
11403
11404 // The "known_obj_attributes" table does contain some undefined
11405 // attributes. Ensure that there are unused.
11406 if (out_attr[i].int_value() != 0
11407 || out_attr[i].string_value() != "")
11408 err_object = "output";
11409 else if (in_attr[i].int_value() != 0
11410 || in_attr[i].string_value() != "")
11411 err_object = name;
11412
7296d933
DK
11413 if (err_object != NULL
11414 && parameters->options().warn_mismatch())
a0351a69
DK
11415 {
11416 // Attribute numbers >=64 (mod 128) can be safely ignored.
11417 if ((i & 127) < 64)
11418 gold_error(_("%s: unknown mandatory EABI object attribute "
11419 "%d"),
11420 err_object, i);
11421 else
11422 gold_warning(_("%s: unknown EABI object attribute %d"),
11423 err_object, i);
11424 }
11425
11426 // Only pass on attributes that match in both inputs.
11427 if (!in_attr[i].matches(out_attr[i]))
11428 {
11429 out_attr[i].set_int_value(0);
11430 out_attr[i].set_string_value("");
11431 }
11432 }
11433 }
11434
11435 // If out_attr was copied from in_attr then it won't have a type yet.
11436 if (in_attr[i].type() && !out_attr[i].type())
11437 out_attr[i].set_type(in_attr[i].type());
11438 }
11439
11440 // Merge Tag_compatibility attributes and any common GNU ones.
11441 this->attributes_section_data_->merge(name, pasd);
11442
11443 // Check for any attributes not known on ARM.
11444 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11445 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11446 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11447 Other_attributes* out_other_attributes =
11448 this->attributes_section_data_->other_attributes(vendor);
11449 Other_attributes::iterator out_iter = out_other_attributes->begin();
11450
11451 while (in_iter != in_other_attributes->end()
11452 || out_iter != out_other_attributes->end())
11453 {
11454 const char* err_object = NULL;
11455 int err_tag = 0;
11456
11457 // The tags for each list are in numerical order.
11458 // If the tags are equal, then merge.
11459 if (out_iter != out_other_attributes->end()
11460 && (in_iter == in_other_attributes->end()
11461 || in_iter->first > out_iter->first))
11462 {
11463 // This attribute only exists in output. We can't merge, and we
11464 // don't know what the tag means, so delete it.
11465 err_object = "output";
11466 err_tag = out_iter->first;
11467 int saved_tag = out_iter->first;
11468 delete out_iter->second;
2e702c99 11469 out_other_attributes->erase(out_iter);
a0351a69
DK
11470 out_iter = out_other_attributes->upper_bound(saved_tag);
11471 }
11472 else if (in_iter != in_other_attributes->end()
11473 && (out_iter != out_other_attributes->end()
11474 || in_iter->first < out_iter->first))
11475 {
11476 // This attribute only exists in input. We can't merge, and we
11477 // don't know what the tag means, so ignore it.
11478 err_object = name;
11479 err_tag = in_iter->first;
11480 ++in_iter;
11481 }
11482 else // The tags are equal.
11483 {
11484 // As present, all attributes in the list are unknown, and
11485 // therefore can't be merged meaningfully.
11486 err_object = "output";
11487 err_tag = out_iter->first;
11488
11489 // Only pass on attributes that match in both inputs.
11490 if (!in_iter->second->matches(*(out_iter->second)))
11491 {
11492 // No match. Delete the attribute.
11493 int saved_tag = out_iter->first;
11494 delete out_iter->second;
11495 out_other_attributes->erase(out_iter);
11496 out_iter = out_other_attributes->upper_bound(saved_tag);
11497 }
11498 else
11499 {
11500 // Matched. Keep the attribute and move to the next.
11501 ++out_iter;
11502 ++in_iter;
11503 }
11504 }
11505
7296d933 11506 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
11507 {
11508 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11509 if ((err_tag & 127) < 64)
11510 {
11511 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11512 err_object, err_tag);
11513 }
11514 else
11515 {
11516 gold_warning(_("%s: unknown EABI object attribute %d"),
11517 err_object, err_tag);
11518 }
11519 }
11520 }
11521}
11522
55da9579
DK
11523// Stub-generation methods for Target_arm.
11524
11525// Make a new Arm_input_section object.
11526
11527template<bool big_endian>
11528Arm_input_section<big_endian>*
11529Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11530 Relobj* relobj,
11531 unsigned int shndx)
55da9579 11532{
5ac169d4 11533 Section_id sid(relobj, shndx);
55da9579
DK
11534
11535 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11536 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11537 arm_input_section->init();
11538
11539 // Register new Arm_input_section in map for look-up.
11540 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11541 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11542
11543 // Make sure that it we have not created another Arm_input_section
11544 // for this input section already.
11545 gold_assert(ins.second);
11546
2e702c99 11547 return arm_input_section;
55da9579
DK
11548}
11549
11550// Find the Arm_input_section object corresponding to the SHNDX-th input
11551// section of RELOBJ.
11552
11553template<bool big_endian>
11554Arm_input_section<big_endian>*
11555Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11556 Relobj* relobj,
11557 unsigned int shndx) const
55da9579 11558{
5ac169d4 11559 Section_id sid(relobj, shndx);
55da9579 11560 typename Arm_input_section_map::const_iterator p =
5ac169d4 11561 this->arm_input_section_map_.find(sid);
55da9579
DK
11562 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11563}
11564
11565// Make a new stub table.
11566
11567template<bool big_endian>
11568Stub_table<big_endian>*
11569Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11570{
2ea97941 11571 Stub_table<big_endian>* stub_table =
55da9579 11572 new Stub_table<big_endian>(owner);
2ea97941 11573 this->stub_tables_.push_back(stub_table);
55da9579 11574
2ea97941
ILT
11575 stub_table->set_address(owner->address() + owner->data_size());
11576 stub_table->set_file_offset(owner->offset() + owner->data_size());
11577 stub_table->finalize_data_size();
55da9579 11578
2ea97941 11579 return stub_table;
55da9579
DK
11580}
11581
eb44217c
DK
11582// Scan a relocation for stub generation.
11583
11584template<bool big_endian>
11585void
11586Target_arm<big_endian>::scan_reloc_for_stub(
11587 const Relocate_info<32, big_endian>* relinfo,
11588 unsigned int r_type,
11589 const Sized_symbol<32>* gsym,
11590 unsigned int r_sym,
11591 const Symbol_value<32>* psymval,
11592 elfcpp::Elf_types<32>::Elf_Swxword addend,
11593 Arm_address address)
11594{
eb44217c
DK
11595 const Arm_relobj<big_endian>* arm_relobj =
11596 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11597
11598 bool target_is_thumb;
11599 Symbol_value<32> symval;
11600 if (gsym != NULL)
11601 {
11602 // This is a global symbol. Determine if we use PLT and if the
11603 // final target is THUMB.
95a2c8d6 11604 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11605 {
11606 // This uses a PLT, change the symbol value.
fa89cc82 11607 symval.set_output_value(this->plt_address_for_global(gsym));
eb44217c
DK
11608 psymval = &symval;
11609 target_is_thumb = false;
11610 }
11611 else if (gsym->is_undefined())
11612 // There is no need to generate a stub symbol is undefined.
11613 return;
11614 else
11615 {
11616 target_is_thumb =
11617 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11618 || (gsym->type() == elfcpp::STT_FUNC
11619 && !gsym->is_undefined()
11620 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11621 }
11622 }
11623 else
11624 {
11625 // This is a local symbol. Determine if the final target is THUMB.
11626 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11627 }
11628
11629 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11630 const Arm_reloc_property* reloc_property =
11631 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11632 gold_assert(reloc_property != NULL);
eb44217c 11633 if (target_is_thumb
5c57f1be 11634 && reloc_property->uses_thumb_bit()
eb44217c
DK
11635 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11636 {
11637 Arm_address stripped_value =
11638 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11639 symval.set_output_value(stripped_value);
11640 psymval = &symval;
2e702c99 11641 }
eb44217c
DK
11642
11643 // Get the symbol value.
11644 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11645
11646 // Owing to pipelining, the PC relative branches below actually skip
11647 // two instructions when the branch offset is 0.
11648 Arm_address destination;
11649 switch (r_type)
11650 {
11651 case elfcpp::R_ARM_CALL:
11652 case elfcpp::R_ARM_JUMP24:
11653 case elfcpp::R_ARM_PLT32:
11654 // ARM branches.
11655 destination = value + addend + 8;
11656 break;
11657 case elfcpp::R_ARM_THM_CALL:
11658 case elfcpp::R_ARM_THM_XPC22:
11659 case elfcpp::R_ARM_THM_JUMP24:
11660 case elfcpp::R_ARM_THM_JUMP19:
11661 // THUMB branches.
11662 destination = value + addend + 4;
11663 break;
11664 default:
11665 gold_unreachable();
11666 }
11667
a120bc7f 11668 Reloc_stub* stub = NULL;
eb44217c
DK
11669 Stub_type stub_type =
11670 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11671 target_is_thumb);
a120bc7f
DK
11672 if (stub_type != arm_stub_none)
11673 {
11674 // Try looking up an existing stub from a stub table.
2e702c99 11675 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11676 arm_relobj->stub_table(relinfo->data_shndx);
11677 gold_assert(stub_table != NULL);
2e702c99 11678
a120bc7f
DK
11679 // Locate stub by destination.
11680 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11681
a120bc7f
DK
11682 // Create a stub if there is not one already
11683 stub = stub_table->find_reloc_stub(stub_key);
11684 if (stub == NULL)
11685 {
11686 // create a new stub and add it to stub table.
11687 stub = this->stub_factory().make_reloc_stub(stub_type);
11688 stub_table->add_reloc_stub(stub, stub_key);
11689 }
11690
11691 // Record the destination address.
11692 stub->set_destination_address(destination
11693 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11694 }
11695
a120bc7f
DK
11696 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11697 if (this->fix_cortex_a8_
11698 && (r_type == elfcpp::R_ARM_THM_JUMP24
11699 || r_type == elfcpp::R_ARM_THM_JUMP19
11700 || r_type == elfcpp::R_ARM_THM_CALL
11701 || r_type == elfcpp::R_ARM_THM_XPC22)
11702 && (address & 0xfffU) == 0xffeU)
11703 {
11704 // Found a candidate. Note we haven't checked the destination is
11705 // within 4K here: if we do so (and don't create a record) we can't
11706 // tell that a branch should have been relocated when scanning later.
11707 this->cortex_a8_relocs_info_[address] =
11708 new Cortex_a8_reloc(stub, r_type,
11709 destination | (target_is_thumb ? 1 : 0));
11710 }
eb44217c
DK
11711}
11712
11713// This function scans a relocation sections for stub generation.
11714// The template parameter Relocate must be a class type which provides
11715// a single function, relocate(), which implements the machine
11716// specific part of a relocation.
11717
11718// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11719// SHT_REL or SHT_RELA.
11720
11721// PRELOCS points to the relocation data. RELOC_COUNT is the number
11722// of relocs. OUTPUT_SECTION is the output section.
11723// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11724// mapped to output offsets.
11725
11726// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11727// VIEW_SIZE is the size. These refer to the input section, unless
11728// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11729// the output section.
11730
11731template<bool big_endian>
11732template<int sh_type>
11733void inline
11734Target_arm<big_endian>::scan_reloc_section_for_stubs(
11735 const Relocate_info<32, big_endian>* relinfo,
11736 const unsigned char* prelocs,
11737 size_t reloc_count,
11738 Output_section* output_section,
11739 bool needs_special_offset_handling,
11740 const unsigned char* view,
11741 elfcpp::Elf_types<32>::Elf_Addr view_address,
11742 section_size_type)
11743{
11744 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11745 const int reloc_size =
11746 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11747
11748 Arm_relobj<big_endian>* arm_object =
11749 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11750 unsigned int local_count = arm_object->local_symbol_count();
11751
168a4726 11752 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11753 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11754
11755 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11756 {
11757 Reltype reloc(prelocs);
11758
11759 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11760 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11761 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11762
11763 r_type = this->get_real_reloc_type(r_type);
11764
11765 // Only a few relocation types need stubs.
11766 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11767 && (r_type != elfcpp::R_ARM_JUMP24)
11768 && (r_type != elfcpp::R_ARM_PLT32)
11769 && (r_type != elfcpp::R_ARM_THM_CALL)
11770 && (r_type != elfcpp::R_ARM_THM_XPC22)
11771 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11772 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11773 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11774 continue;
11775
2ea97941 11776 section_offset_type offset =
eb44217c
DK
11777 convert_to_section_size_type(reloc.get_r_offset());
11778
11779 if (needs_special_offset_handling)
11780 {
2ea97941
ILT
11781 offset = output_section->output_offset(relinfo->object,
11782 relinfo->data_shndx,
11783 offset);
11784 if (offset == -1)
eb44217c
DK
11785 continue;
11786 }
11787
2fd9ae7a 11788 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11789 if (r_type == elfcpp::R_ARM_V4BX)
11790 {
2fd9ae7a
DK
11791 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11792 {
11793 // Get the BX instruction.
11794 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11795 const Valtype* wv =
11796 reinterpret_cast<const Valtype*>(view + offset);
11797 elfcpp::Elf_types<32>::Elf_Swxword insn =
11798 elfcpp::Swap<32, big_endian>::readval(wv);
11799 const uint32_t reg = (insn & 0xf);
11800
11801 if (reg < 0xf)
11802 {
11803 // Try looking up an existing stub from a stub table.
11804 Stub_table<big_endian>* stub_table =
11805 arm_object->stub_table(relinfo->data_shndx);
11806 gold_assert(stub_table != NULL);
11807
11808 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11809 {
11810 // create a new stub and add it to stub table.
11811 Arm_v4bx_stub* stub =
2e702c99 11812 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11813 gold_assert(stub != NULL);
11814 stub_table->add_arm_v4bx_stub(stub);
11815 }
11816 }
11817 }
a2162063
ILT
11818 continue;
11819 }
11820
eb44217c
DK
11821 // Get the addend.
11822 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11823 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11824 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11825
11826 const Sized_symbol<32>* sym;
11827
11828 Symbol_value<32> symval;
11829 const Symbol_value<32> *psymval;
aa98ff75
DK
11830 bool is_defined_in_discarded_section;
11831 unsigned int shndx;
eb44217c
DK
11832 if (r_sym < local_count)
11833 {
11834 sym = NULL;
11835 psymval = arm_object->local_symbol(r_sym);
11836
2e702c99
RM
11837 // If the local symbol belongs to a section we are discarding,
11838 // and that section is a debug section, try to find the
11839 // corresponding kept section and map this symbol to its
11840 // counterpart in the kept section. The symbol must not
11841 // correspond to a section we are folding.
eb44217c 11842 bool is_ordinary;
aa98ff75
DK
11843 shndx = psymval->input_shndx(&is_ordinary);
11844 is_defined_in_discarded_section =
11845 (is_ordinary
11846 && shndx != elfcpp::SHN_UNDEF
11847 && !arm_object->is_section_included(shndx)
11848 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11849
11850 // We need to compute the would-be final value of this local
11851 // symbol.
11852 if (!is_defined_in_discarded_section)
eb44217c 11853 {
6fa2a40b 11854 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11855 typename ObjType::Compute_final_local_value_status status =
11856 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11857 relinfo->symtab);
aa98ff75
DK
11858 if (status == ObjType::CFLV_OK)
11859 {
11860 // Currently we cannot handle a branch to a target in
11861 // a merged section. If this is the case, issue an error
11862 // and also free the merge symbol value.
11863 if (!symval.has_output_value())
11864 {
11865 const std::string& section_name =
11866 arm_object->section_name(shndx);
11867 arm_object->error(_("cannot handle branch to local %u "
11868 "in a merged section %s"),
11869 r_sym, section_name.c_str());
11870 }
11871 psymval = &symval;
11872 }
eb44217c 11873 else
aa98ff75
DK
11874 {
11875 // We cannot determine the final value.
2e702c99 11876 continue;
aa98ff75 11877 }
eb44217c
DK
11878 }
11879 }
11880 else
11881 {
aa98ff75
DK
11882 const Symbol* gsym;
11883 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11884 gold_assert(gsym != NULL);
11885 if (gsym->is_forwarder())
11886 gsym = relinfo->symtab->resolve_forwards(gsym);
11887
11888 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11889 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11890 symval.set_output_symtab_index(sym->symtab_index());
11891 else
11892 symval.set_no_output_symtab_entry();
11893
11894 // We need to compute the would-be final value of this global
11895 // symbol.
11896 const Symbol_table* symtab = relinfo->symtab;
11897 const Sized_symbol<32>* sized_symbol =
11898 symtab->get_sized_symbol<32>(gsym);
11899 Symbol_table::Compute_final_value_status status;
11900 Arm_address value =
11901 symtab->compute_final_value<32>(sized_symbol, &status);
11902
11903 // Skip this if the symbol has not output section.
11904 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11905 continue;
eb44217c 11906 symval.set_output_value(value);
aa98ff75
DK
11907
11908 if (gsym->type() == elfcpp::STT_TLS)
11909 symval.set_is_tls_symbol();
11910 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11911 symval.set_is_ifunc_symbol();
eb44217c 11912 psymval = &symval;
aa98ff75
DK
11913
11914 is_defined_in_discarded_section =
11915 (gsym->is_defined_in_discarded_section()
11916 && gsym->is_undefined());
11917 shndx = 0;
11918 }
11919
11920 Symbol_value<32> symval2;
11921 if (is_defined_in_discarded_section)
11922 {
11923 if (comdat_behavior == CB_UNDETERMINED)
11924 {
11925 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11926 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11927 }
11928 if (comdat_behavior == CB_PRETEND)
11929 {
11930 // FIXME: This case does not work for global symbols.
11931 // We have no place to store the original section index.
11932 // Fortunately this does not matter for comdat sections,
11933 // only for sections explicitly discarded by a linker
11934 // script.
11935 bool found;
11936 typename elfcpp::Elf_types<32>::Elf_Addr value =
11937 arm_object->map_to_kept_section(shndx, &found);
11938 if (found)
11939 symval2.set_output_value(value + psymval->input_value());
11940 else
11941 symval2.set_output_value(0);
11942 }
11943 else
11944 {
11945 if (comdat_behavior == CB_WARNING)
11946 gold_warning_at_location(relinfo, i, offset,
11947 _("relocation refers to discarded "
11948 "section"));
11949 symval2.set_output_value(0);
11950 }
11951 symval2.set_no_output_symtab_entry();
11952 psymval = &symval2;
eb44217c
DK
11953 }
11954
11955 // If symbol is a section symbol, we don't know the actual type of
11956 // destination. Give up.
11957 if (psymval->is_section_symbol())
11958 continue;
11959
11960 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11961 addend, view_address + offset);
eb44217c
DK
11962 }
11963}
11964
11965// Scan an input section for stub generation.
11966
11967template<bool big_endian>
11968void
11969Target_arm<big_endian>::scan_section_for_stubs(
11970 const Relocate_info<32, big_endian>* relinfo,
11971 unsigned int sh_type,
11972 const unsigned char* prelocs,
11973 size_t reloc_count,
11974 Output_section* output_section,
11975 bool needs_special_offset_handling,
11976 const unsigned char* view,
11977 Arm_address view_address,
11978 section_size_type view_size)
11979{
11980 if (sh_type == elfcpp::SHT_REL)
11981 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11982 relinfo,
11983 prelocs,
11984 reloc_count,
11985 output_section,
11986 needs_special_offset_handling,
11987 view,
11988 view_address,
11989 view_size);
11990 else if (sh_type == elfcpp::SHT_RELA)
11991 // We do not support RELA type relocations yet. This is provided for
11992 // completeness.
11993 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11994 relinfo,
11995 prelocs,
11996 reloc_count,
11997 output_section,
11998 needs_special_offset_handling,
11999 view,
12000 view_address,
12001 view_size);
12002 else
12003 gold_unreachable();
12004}
12005
12006// Group input sections for stub generation.
12007//
9b547ce6 12008// We group input sections in an output section so that the total size,
eb44217c
DK
12009// including any padding space due to alignment is smaller than GROUP_SIZE
12010// unless the only input section in group is bigger than GROUP_SIZE already.
12011// Then an ARM stub table is created to follow the last input section
12012// in group. For each group an ARM stub table is created an is placed
9b547ce6 12013// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
12014// extend the group after the stub table.
12015
12016template<bool big_endian>
12017void
12018Target_arm<big_endian>::group_sections(
2ea97941 12019 Layout* layout,
eb44217c 12020 section_size_type group_size,
f625ae50
DK
12021 bool stubs_always_after_branch,
12022 const Task* task)
eb44217c
DK
12023{
12024 // Group input sections and insert stub table
12025 Layout::Section_list section_list;
ec661b9d 12026 layout->get_executable_sections(&section_list);
eb44217c
DK
12027 for (Layout::Section_list::const_iterator p = section_list.begin();
12028 p != section_list.end();
12029 ++p)
12030 {
12031 Arm_output_section<big_endian>* output_section =
12032 Arm_output_section<big_endian>::as_arm_output_section(*p);
12033 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 12034 this, task);
eb44217c
DK
12035 }
12036}
12037
12038// Relaxation hook. This is where we do stub generation.
12039
12040template<bool big_endian>
12041bool
12042Target_arm<big_endian>::do_relax(
12043 int pass,
12044 const Input_objects* input_objects,
12045 Symbol_table* symtab,
f625ae50
DK
12046 Layout* layout,
12047 const Task* task)
eb44217c
DK
12048{
12049 // No need to generate stubs if this is a relocatable link.
12050 gold_assert(!parameters->options().relocatable());
12051
12052 // If this is the first pass, we need to group input sections into
12053 // stub groups.
2b328d4e 12054 bool done_exidx_fixup = false;
6625d24e 12055 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
12056 if (pass == 1)
12057 {
12058 // Determine the stub group size. The group size is the absolute
12059 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 12060 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
12061 // the stubbed branches.
12062 int32_t stub_group_size_param =
12063 parameters->options().stub_group_size();
12064 bool stubs_always_after_branch = stub_group_size_param < 0;
12065 section_size_type stub_group_size = abs(stub_group_size_param);
12066
12067 if (stub_group_size == 1)
12068 {
12069 // Default value.
12070 // Thumb branch range is +-4MB has to be used as the default
12071 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
12072 // code, so the worst case has to be taken into account). If we are
12073 // fixing cortex-a8 errata, the branch range has to be even smaller,
12074 // since wide conditional branch has a range of +-1MB only.
eb44217c 12075 //
25bbe950 12076 // This value is 48K less than that, which allows for 4096
eb44217c
DK
12077 // 12-byte stubs. If we exceed that, then we will fail to link.
12078 // The user will have to relink with an explicit group size
12079 // option.
25bbe950
DK
12080 stub_group_size = 4145152;
12081 }
12082
12083 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12084 // page as the first half of a 32-bit branch straddling two 4K pages.
12085 // This is a crude way of enforcing that. In addition, long conditional
12086 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12087 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12088 // cortex-A8 stubs from long conditional branches.
12089 if (this->fix_cortex_a8_)
12090 {
12091 stubs_always_after_branch = true;
12092 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12093 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
12094 }
12095
f625ae50 12096 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 12097
2b328d4e 12098 // Also fix .ARM.exidx section coverage.
131687b4
DK
12099 Arm_output_section<big_endian>* exidx_output_section = NULL;
12100 for (Layout::Section_list::const_iterator p =
12101 layout->section_list().begin();
12102 p != layout->section_list().end();
12103 ++p)
12104 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12105 {
12106 if (exidx_output_section == NULL)
12107 exidx_output_section =
12108 Arm_output_section<big_endian>::as_arm_output_section(*p);
12109 else
12110 // We cannot handle this now.
12111 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12112 "non-relocatable link"),
12113 exidx_output_section->name(),
12114 (*p)->name());
12115 }
12116
12117 if (exidx_output_section != NULL)
2b328d4e 12118 {
131687b4 12119 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 12120 symtab, task);
2b328d4e
DK
12121 done_exidx_fixup = true;
12122 }
eb44217c 12123 }
6625d24e
DK
12124 else
12125 {
12126 // If this is not the first pass, addresses and file offsets have
12127 // been reset at this point, set them here.
12128 for (Stub_table_iterator sp = this->stub_tables_.begin();
12129 sp != this->stub_tables_.end();
12130 ++sp)
12131 {
12132 Arm_input_section<big_endian>* owner = (*sp)->owner();
12133 off_t off = align_address(owner->original_size(),
12134 (*sp)->addralign());
12135 (*sp)->set_address_and_file_offset(owner->address() + off,
12136 owner->offset() + off);
12137 }
12138 }
eb44217c 12139
44272192
DK
12140 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12141 // beginning of each relaxation pass, just blow away all the stubs.
12142 // Alternatively, we could selectively remove only the stubs and reloc
12143 // information for code sections that have moved since the last pass.
12144 // That would require more book-keeping.
a120bc7f
DK
12145 if (this->fix_cortex_a8_)
12146 {
12147 // Clear all Cortex-A8 reloc information.
12148 for (typename Cortex_a8_relocs_info::const_iterator p =
12149 this->cortex_a8_relocs_info_.begin();
12150 p != this->cortex_a8_relocs_info_.end();
12151 ++p)
12152 delete p->second;
12153 this->cortex_a8_relocs_info_.clear();
44272192
DK
12154
12155 // Remove all Cortex-A8 stubs.
12156 for (Stub_table_iterator sp = this->stub_tables_.begin();
12157 sp != this->stub_tables_.end();
12158 ++sp)
12159 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 12160 }
2e702c99 12161
44272192 12162 // Scan relocs for relocation stubs
eb44217c
DK
12163 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12164 op != input_objects->relobj_end();
12165 ++op)
12166 {
12167 Arm_relobj<big_endian>* arm_relobj =
12168 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
12169 // Lock the object so we can read from it. This is only called
12170 // single-threaded from Layout::finalize, so it is OK to lock.
12171 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 12172 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
12173 }
12174
2fb7225c
DK
12175 // Check all stub tables to see if any of them have their data sizes
12176 // or addresses alignments changed. These are the only things that
12177 // matter.
eb44217c 12178 bool any_stub_table_changed = false;
8923b24c 12179 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
12180 for (Stub_table_iterator sp = this->stub_tables_.begin();
12181 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12182 ++sp)
12183 {
2fb7225c 12184 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
12185 {
12186 // Update data size of stub table owner.
12187 Arm_input_section<big_endian>* owner = (*sp)->owner();
12188 uint64_t address = owner->address();
12189 off_t offset = owner->offset();
12190 owner->reset_address_and_file_offset();
12191 owner->set_address_and_file_offset(address, offset);
12192
12193 sections_needing_adjustment.insert(owner->output_section());
12194 any_stub_table_changed = true;
12195 }
12196 }
12197
12198 // Output_section_data::output_section() returns a const pointer but we
12199 // need to update output sections, so we record all output sections needing
12200 // update above and scan the sections here to find out what sections need
12201 // to be updated.
f625ae50 12202 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
12203 p != layout->section_list().end();
12204 ++p)
12205 {
12206 if (sections_needing_adjustment.find(*p)
12207 != sections_needing_adjustment.end())
12208 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
12209 }
12210
2b328d4e
DK
12211 // Stop relaxation if no EXIDX fix-up and no stub table change.
12212 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12213
2fb7225c 12214 // Finalize the stubs in the last relaxation pass.
2b328d4e 12215 if (!continue_relaxation)
e7eca48c
DK
12216 {
12217 for (Stub_table_iterator sp = this->stub_tables_.begin();
12218 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12219 ++sp)
12220 (*sp)->finalize_stubs();
12221
12222 // Update output local symbol counts of objects if necessary.
12223 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12224 op != input_objects->relobj_end();
12225 ++op)
12226 {
12227 Arm_relobj<big_endian>* arm_relobj =
12228 Arm_relobj<big_endian>::as_arm_relobj(*op);
12229
12230 // Update output local symbol counts. We need to discard local
12231 // symbols defined in parts of input sections that are discarded by
12232 // relaxation.
12233 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
12234 {
12235 // We need to lock the object's file to update it.
12236 Task_lock_obj<Object> tl(task, arm_relobj);
12237 arm_relobj->update_output_local_symbol_count();
12238 }
e7eca48c
DK
12239 }
12240 }
2fb7225c 12241
2b328d4e 12242 return continue_relaxation;
eb44217c
DK
12243}
12244
43d12afe
DK
12245// Relocate a stub.
12246
12247template<bool big_endian>
12248void
12249Target_arm<big_endian>::relocate_stub(
2fb7225c 12250 Stub* stub,
43d12afe
DK
12251 const Relocate_info<32, big_endian>* relinfo,
12252 Output_section* output_section,
12253 unsigned char* view,
12254 Arm_address address,
12255 section_size_type view_size)
12256{
12257 Relocate relocate;
2ea97941
ILT
12258 const Stub_template* stub_template = stub->stub_template();
12259 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 12260 {
2ea97941
ILT
12261 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12262 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
12263
12264 unsigned int r_type = insn->r_type();
2ea97941 12265 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
12266 section_size_type reloc_size = insn->size();
12267 gold_assert(reloc_offset + reloc_size <= view_size);
12268
12269 // This is the address of the stub destination.
41263c05 12270 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
12271 Symbol_value<32> symval;
12272 symval.set_output_value(target);
12273
12274 // Synthesize a fake reloc just in case. We don't have a symbol so
12275 // we use 0.
12276 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12277 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12278 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12279 reloc_write.put_r_offset(reloc_offset);
12280 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
43d12afe 12281
91a65d2f
AM
12282 relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
12283 this->fake_relnum_for_stubs, reloc_buffer,
43d12afe
DK
12284 NULL, &symval, view + reloc_offset,
12285 address + reloc_offset, reloc_size);
12286 }
12287}
12288
a0351a69
DK
12289// Determine whether an object attribute tag takes an integer, a
12290// string or both.
12291
12292template<bool big_endian>
12293int
12294Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12295{
12296 if (tag == Object_attribute::Tag_compatibility)
12297 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12298 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12299 else if (tag == elfcpp::Tag_nodefaults)
12300 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12301 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12302 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12303 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12304 else if (tag < 32)
12305 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12306 else
12307 return ((tag & 1) != 0
12308 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12309 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12310}
12311
12312// Reorder attributes.
12313//
12314// The ABI defines that Tag_conformance should be emitted first, and that
12315// Tag_nodefaults should be second (if either is defined). This sets those
12316// two positions, and bumps up the position of all the remaining tags to
12317// compensate.
12318
12319template<bool big_endian>
12320int
12321Target_arm<big_endian>::do_attributes_order(int num) const
12322{
12323 // Reorder the known object attributes in output. We want to move
12324 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 12325 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
12326 if (num == 4)
12327 return elfcpp::Tag_conformance;
12328 if (num == 5)
12329 return elfcpp::Tag_nodefaults;
12330 if ((num - 2) < elfcpp::Tag_nodefaults)
12331 return num - 2;
12332 if ((num - 1) < elfcpp::Tag_conformance)
12333 return num - 1;
12334 return num;
12335}
4a657b0d 12336
44272192
DK
12337// Scan a span of THUMB code for Cortex-A8 erratum.
12338
12339template<bool big_endian>
12340void
12341Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12342 Arm_relobj<big_endian>* arm_relobj,
12343 unsigned int shndx,
12344 section_size_type span_start,
12345 section_size_type span_end,
12346 const unsigned char* view,
12347 Arm_address address)
12348{
12349 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12350 //
12351 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12352 // The branch target is in the same 4KB region as the
12353 // first half of the branch.
12354 // The instruction before the branch is a 32-bit
12355 // length non-branch instruction.
12356 section_size_type i = span_start;
12357 bool last_was_32bit = false;
12358 bool last_was_branch = false;
12359 while (i < span_end)
12360 {
12361 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12362 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12363 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12364 bool is_blx = false, is_b = false;
12365 bool is_bl = false, is_bcc = false;
12366
12367 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12368 if (insn_32bit)
12369 {
12370 // Load the rest of the insn (in manual-friendly order).
12371 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12372
12373 // Encoding T4: B<c>.W.
12374 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12375 // Encoding T1: BL<c>.W.
2e702c99
RM
12376 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12377 // Encoding T2: BLX<c>.W.
12378 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
12379 // Encoding T3: B<c>.W (not permitted in IT block).
12380 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12381 && (insn & 0x07f00000U) != 0x03800000U);
12382 }
12383
12384 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 12385
44272192
DK
12386 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12387 // page boundary and it follows 32-bit non-branch instruction,
12388 // we need to work around.
12389 if (is_32bit_branch
12390 && ((address + i) & 0xfffU) == 0xffeU
12391 && last_was_32bit
12392 && !last_was_branch)
12393 {
12394 // Check to see if there is a relocation stub for this branch.
12395 bool force_target_arm = false;
12396 bool force_target_thumb = false;
12397 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12398 Cortex_a8_relocs_info::const_iterator p =
12399 this->cortex_a8_relocs_info_.find(address + i);
12400
12401 if (p != this->cortex_a8_relocs_info_.end())
12402 {
12403 cortex_a8_reloc = p->second;
12404 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12405
12406 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12407 && !target_is_thumb)
12408 force_target_arm = true;
12409 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12410 && target_is_thumb)
12411 force_target_thumb = true;
12412 }
12413
12414 off_t offset;
12415 Stub_type stub_type = arm_stub_none;
12416
12417 // Check if we have an offending branch instruction.
12418 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12419 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 12420 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
12421
12422 if (cortex_a8_reloc != NULL
12423 && cortex_a8_reloc->reloc_stub() != NULL)
12424 // We've already made a stub for this instruction, e.g.
12425 // it's a long branch or a Thumb->ARM stub. Assume that
12426 // stub will suffice to work around the A8 erratum (see
12427 // setting of always_after_branch above).
12428 ;
12429 else if (is_bcc)
12430 {
12431 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12432 lower_insn);
12433 stub_type = arm_stub_a8_veneer_b_cond;
12434 }
12435 else if (is_b || is_bl || is_blx)
12436 {
12437 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12438 lower_insn);
12439 if (is_blx)
2e702c99 12440 offset &= ~3;
44272192
DK
12441
12442 stub_type = (is_blx
12443 ? arm_stub_a8_veneer_blx
12444 : (is_bl
12445 ? arm_stub_a8_veneer_bl
12446 : arm_stub_a8_veneer_b));
12447 }
12448
12449 if (stub_type != arm_stub_none)
12450 {
12451 Arm_address pc_for_insn = address + i + 4;
12452
12453 // The original instruction is a BL, but the target is
12454 // an ARM instruction. If we were not making a stub,
12455 // the BL would have been converted to a BLX. Use the
12456 // BLX stub instead in that case.
cd6eab1c 12457 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
12458 && stub_type == arm_stub_a8_veneer_bl)
12459 {
12460 stub_type = arm_stub_a8_veneer_blx;
12461 is_blx = true;
12462 is_bl = false;
12463 }
12464 // Conversely, if the original instruction was
12465 // BLX but the target is Thumb mode, use the BL stub.
12466 else if (force_target_thumb
12467 && stub_type == arm_stub_a8_veneer_blx)
12468 {
12469 stub_type = arm_stub_a8_veneer_bl;
12470 is_blx = false;
12471 is_bl = true;
12472 }
12473
12474 if (is_blx)
12475 pc_for_insn &= ~3;
12476
2e702c99 12477 // If we found a relocation, use the proper destination,
44272192
DK
12478 // not the offset in the (unrelocated) instruction.
12479 // Note this is always done if we switched the stub type above.
2e702c99
RM
12480 if (cortex_a8_reloc != NULL)
12481 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 12482
2e702c99 12483 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
12484
12485 // Add a new stub if destination address in in the same page.
2e702c99
RM
12486 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12487 {
44272192
DK
12488 Cortex_a8_stub* stub =
12489 this->stub_factory_.make_cortex_a8_stub(stub_type,
12490 arm_relobj, shndx,
12491 address + i,
12492 target, insn);
12493 Stub_table<big_endian>* stub_table =
12494 arm_relobj->stub_table(shndx);
12495 gold_assert(stub_table != NULL);
12496 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
12497 }
12498 }
12499 }
44272192
DK
12500
12501 i += insn_32bit ? 4 : 2;
12502 last_was_32bit = insn_32bit;
12503 last_was_branch = is_32bit_branch;
12504 }
12505}
12506
41263c05
DK
12507// Apply the Cortex-A8 workaround.
12508
12509template<bool big_endian>
12510void
12511Target_arm<big_endian>::apply_cortex_a8_workaround(
12512 const Cortex_a8_stub* stub,
12513 Arm_address stub_address,
12514 unsigned char* insn_view,
12515 Arm_address insn_address)
12516{
12517 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12518 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12519 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12520 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12521 off_t branch_offset = stub_address - (insn_address + 4);
12522
2c54b4f4 12523 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12524 switch (stub->stub_template()->type())
12525 {
12526 case arm_stub_a8_veneer_b_cond:
9b547ce6 12527 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12528 // branch to the stub. We use the THUMB-2 encoding here.
12529 upper_insn = 0xf000U;
12530 lower_insn = 0xb800U;
12531 // Fall through
41263c05
DK
12532 case arm_stub_a8_veneer_b:
12533 case arm_stub_a8_veneer_bl:
12534 case arm_stub_a8_veneer_blx:
12535 if ((lower_insn & 0x5000U) == 0x4000U)
12536 // For a BLX instruction, make sure that the relocation is
12537 // rounded up to a word boundary. This follows the semantics of
12538 // the instruction which specifies that bit 1 of the target
12539 // address will come from bit 1 of the base address.
12540 branch_offset = (branch_offset + 2) & ~3;
12541
12542 // Put BRANCH_OFFSET back into the insn.
bef2b434 12543 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12544 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12545 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12546 break;
12547
12548 default:
12549 gold_unreachable();
12550 }
12551
12552 // Put the relocated value back in the object file:
12553 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12554 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12555}
12556
2e702c99
RM
12557// Target selector for ARM. Note this is never instantiated directly.
12558// It's only used in Target_selector_arm_nacl, below.
12559
4a657b0d
DK
12560template<bool big_endian>
12561class Target_selector_arm : public Target_selector
12562{
12563 public:
12564 Target_selector_arm()
12565 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12566 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12567 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12568 { }
12569
12570 Target*
12571 do_instantiate_target()
12572 { return new Target_arm<big_endian>(); }
12573};
12574
2b328d4e
DK
12575// Fix .ARM.exidx section coverage.
12576
12577template<bool big_endian>
12578void
12579Target_arm<big_endian>::fix_exidx_coverage(
12580 Layout* layout,
131687b4 12581 const Input_objects* input_objects,
2b328d4e 12582 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12583 Symbol_table* symtab,
12584 const Task* task)
2b328d4e
DK
12585{
12586 // We need to look at all the input sections in output in ascending
12587 // order of of output address. We do that by building a sorted list
12588 // of output sections by addresses. Then we looks at the output sections
12589 // in order. The input sections in an output section are already sorted
12590 // by addresses within the output section.
12591
12592 typedef std::set<Output_section*, output_section_address_less_than>
12593 Sorted_output_section_list;
12594 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12595
12596 // Find out all the output sections of input sections pointed by
12597 // EXIDX input sections.
12598 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12599 p != input_objects->relobj_end();
2b328d4e
DK
12600 ++p)
12601 {
131687b4
DK
12602 Arm_relobj<big_endian>* arm_relobj =
12603 Arm_relobj<big_endian>::as_arm_relobj(*p);
12604 std::vector<unsigned int> shndx_list;
12605 arm_relobj->get_exidx_shndx_list(&shndx_list);
12606 for (size_t i = 0; i < shndx_list.size(); ++i)
12607 {
12608 const Arm_exidx_input_section* exidx_input_section =
12609 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12610 gold_assert(exidx_input_section != NULL);
12611 if (!exidx_input_section->has_errors())
12612 {
12613 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12614 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12615 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12616 sorted_output_sections.insert(os);
12617 }
12618 }
2b328d4e
DK
12619 }
12620
12621 // Go over the output sections in ascending order of output addresses.
12622 typedef typename Arm_output_section<big_endian>::Text_section_list
12623 Text_section_list;
12624 Text_section_list sorted_text_sections;
f625ae50 12625 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12626 sorted_output_sections.begin();
12627 p != sorted_output_sections.end();
12628 ++p)
12629 {
12630 Arm_output_section<big_endian>* arm_output_section =
12631 Arm_output_section<big_endian>::as_arm_output_section(*p);
12632 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12633 }
2b328d4e 12634
85fdf906 12635 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12636 merge_exidx_entries(), task);
2b328d4e
DK
12637}
12638
647f1574
DK
12639template<bool big_endian>
12640void
12641Target_arm<big_endian>::do_define_standard_symbols(
12642 Symbol_table* symtab,
12643 Layout* layout)
12644{
12645 // Handle the .ARM.exidx section.
12646 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12647
12648 if (exidx_section != NULL)
12649 {
12650 // Create __exidx_start and __exidx_end symbols.
12651 symtab->define_in_output_data("__exidx_start",
12652 NULL, // version
12653 Symbol_table::PREDEFINED,
12654 exidx_section,
12655 0, // value
12656 0, // symsize
12657 elfcpp::STT_NOTYPE,
12658 elfcpp::STB_GLOBAL,
12659 elfcpp::STV_HIDDEN,
12660 0, // nonvis
12661 false, // offset_is_from_end
12662 true); // only_if_ref
12663
12664 symtab->define_in_output_data("__exidx_end",
12665 NULL, // version
12666 Symbol_table::PREDEFINED,
12667 exidx_section,
2e702c99 12668 0, // value
647f1574
DK
12669 0, // symsize
12670 elfcpp::STT_NOTYPE,
12671 elfcpp::STB_GLOBAL,
12672 elfcpp::STV_HIDDEN,
12673 0, // nonvis
12674 true, // offset_is_from_end
12675 true); // only_if_ref
12676 }
12677 else
12678 {
12679 // Define __exidx_start and __exidx_end even when .ARM.exidx
12680 // section is missing to match ld's behaviour.
12681 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12682 Symbol_table::PREDEFINED,
12683 0, 0, elfcpp::STT_OBJECT,
12684 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12685 true, false);
647f1574 12686 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12687 Symbol_table::PREDEFINED,
12688 0, 0, elfcpp::STT_OBJECT,
12689 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12690 true, false);
647f1574
DK
12691 }
12692}
12693
2e702c99
RM
12694// NaCl variant. It uses different PLT contents.
12695
12696template<bool big_endian>
12697class Output_data_plt_arm_nacl;
12698
12699template<bool big_endian>
12700class Target_arm_nacl : public Target_arm<big_endian>
12701{
12702 public:
12703 Target_arm_nacl()
12704 : Target_arm<big_endian>(&arm_nacl_info)
12705 { }
12706
12707 protected:
12708 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
12709 do_make_data_plt(
12710 Layout* layout,
12711 Arm_output_data_got<big_endian>* got,
12712 Output_data_space* got_plt,
12713 Output_data_space* got_irelative)
12714 { return new Output_data_plt_arm_nacl<big_endian>(
12715 layout, got, got_plt, got_irelative); }
2e702c99
RM
12716
12717 private:
12718 static const Target::Target_info arm_nacl_info;
12719};
12720
12721template<bool big_endian>
12722const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12723{
12724 32, // size
12725 big_endian, // is_big_endian
12726 elfcpp::EM_ARM, // machine_code
12727 false, // has_make_symbol
12728 false, // has_resolve
12729 false, // has_code_fill
12730 true, // is_default_stack_executable
12731 false, // can_icf_inline_merge_sections
12732 '\0', // wrap_char
12733 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12734 0x20000, // default_text_segment_address
12735 0x10000, // abi_pagesize (overridable by -z max-page-size)
12736 0x10000, // common_pagesize (overridable by -z common-page-size)
12737 true, // isolate_execinstr
12738 0x10000000, // rosegment_gap
12739 elfcpp::SHN_UNDEF, // small_common_shndx
12740 elfcpp::SHN_UNDEF, // large_common_shndx
12741 0, // small_common_section_flags
12742 0, // large_common_section_flags
12743 ".ARM.attributes", // attributes_section
a67858e0 12744 "aeabi", // attributes_vendor
8d9743bd
MK
12745 "_start", // entry_symbol_name
12746 32, // hash_entry_size
2e702c99
RM
12747};
12748
12749template<bool big_endian>
12750class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12751{
12752 public:
fa89cc82
HS
12753 Output_data_plt_arm_nacl(
12754 Layout* layout,
12755 Arm_output_data_got<big_endian>* got,
12756 Output_data_space* got_plt,
12757 Output_data_space* got_irelative)
12758 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
2e702c99
RM
12759 { }
12760
12761 protected:
12762 // Return the offset of the first non-reserved PLT entry.
12763 virtual unsigned int
12764 do_first_plt_entry_offset() const
12765 { return sizeof(first_plt_entry); }
12766
12767 // Return the size of a PLT entry.
12768 virtual unsigned int
12769 do_get_plt_entry_size() const
12770 { return sizeof(plt_entry); }
12771
12772 virtual void
12773 do_fill_first_plt_entry(unsigned char* pov,
12774 Arm_address got_address,
12775 Arm_address plt_address);
12776
12777 virtual void
12778 do_fill_plt_entry(unsigned char* pov,
12779 Arm_address got_address,
12780 Arm_address plt_address,
12781 unsigned int got_offset,
12782 unsigned int plt_offset);
12783
12784 private:
12785 inline uint32_t arm_movw_immediate(uint32_t value)
12786 {
12787 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12788 }
12789
12790 inline uint32_t arm_movt_immediate(uint32_t value)
12791 {
12792 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12793 }
12794
12795 // Template for the first PLT entry.
12796 static const uint32_t first_plt_entry[16];
12797
12798 // Template for subsequent PLT entries.
12799 static const uint32_t plt_entry[4];
12800};
12801
12802// The first entry in the PLT.
12803template<bool big_endian>
12804const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12805{
12806 // First bundle:
12807 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12808 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12809 0xe08cc00f, // add ip, ip, pc
12810 0xe52dc008, // str ip, [sp, #-8]!
12811 // Second bundle:
edccdf7c 12812 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12813 0xe59cc000, // ldr ip, [ip]
12814 0xe3ccc13f, // bic ip, ip, #0xc000000f
12815 0xe12fff1c, // bx ip
12816 // Third bundle:
12817 0xe320f000, // nop
12818 0xe320f000, // nop
12819 0xe320f000, // nop
12820 // .Lplt_tail:
12821 0xe50dc004, // str ip, [sp, #-4]
12822 // Fourth bundle:
edccdf7c 12823 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12824 0xe59cc000, // ldr ip, [ip]
12825 0xe3ccc13f, // bic ip, ip, #0xc000000f
12826 0xe12fff1c, // bx ip
12827};
12828
12829template<bool big_endian>
12830void
12831Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12832 unsigned char* pov,
12833 Arm_address got_address,
12834 Arm_address plt_address)
12835{
12836 // Write first PLT entry. All but first two words are constants.
12837 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12838 / sizeof(first_plt_entry[0]));
12839
12840 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12841
12842 elfcpp::Swap<32, big_endian>::writeval
12843 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12844 elfcpp::Swap<32, big_endian>::writeval
12845 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12846
12847 for (size_t i = 2; i < num_first_plt_words; ++i)
12848 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12849}
12850
12851// Subsequent entries in the PLT.
12852
12853template<bool big_endian>
12854const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12855{
12856 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12857 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12858 0xe08cc00f, // add ip, ip, pc
12859 0xea000000, // b .Lplt_tail
12860};
12861
12862template<bool big_endian>
12863void
12864Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12865 unsigned char* pov,
12866 Arm_address got_address,
12867 Arm_address plt_address,
12868 unsigned int got_offset,
12869 unsigned int plt_offset)
12870{
12871 // Calculate the displacement between the PLT slot and the
12872 // common tail that's part of the special initial PLT slot.
12873 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12874 - (plt_address + plt_offset
12875 + sizeof(plt_entry) + sizeof(uint32_t)));
12876 gold_assert((tail_displacement & 3) == 0);
12877 tail_displacement >>= 2;
12878
12879 gold_assert ((tail_displacement & 0xff000000) == 0
12880 || (-tail_displacement & 0xff000000) == 0);
12881
12882 // Calculate the displacement between the PLT slot and the entry
12883 // in the GOT. The offset accounts for the value produced by
12884 // adding to pc in the penultimate instruction of the PLT stub.
12885 const int32_t got_displacement = (got_address + got_offset
12886 - (plt_address + sizeof(plt_entry)));
12887
12888 elfcpp::Swap<32, big_endian>::writeval
12889 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12890 elfcpp::Swap<32, big_endian>::writeval
12891 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12892 elfcpp::Swap<32, big_endian>::writeval
12893 (pov + 8, plt_entry[2]);
12894 elfcpp::Swap<32, big_endian>::writeval
12895 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12896}
12897
12898// Target selectors.
12899
12900template<bool big_endian>
12901class Target_selector_arm_nacl
12902 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12903 Target_arm_nacl<big_endian> >
12904{
12905 public:
12906 Target_selector_arm_nacl()
12907 : Target_selector_nacl<Target_selector_arm<big_endian>,
12908 Target_arm_nacl<big_endian> >(
12909 "arm",
12910 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12911 big_endian ? "armelfb_nacl" : "armelf_nacl")
12912 { }
12913};
12914
12915Target_selector_arm_nacl<false> target_selector_arm;
12916Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12917
12918} // End anonymous namespace.
This page took 1.03154 seconds and 4 git commands to generate.