gold/
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
679af368 3// Copyright 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
a6d1ef57 2122 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
2e702c99 2123 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
2261 // Relocate a section.
2262 void
2263 relocate_section(const Relocate_info<32, big_endian>*,
2264 unsigned int sh_type,
2265 const unsigned char* prelocs,
2266 size_t reloc_count,
2267 Output_section* output_section,
2268 bool needs_special_offset_handling,
2269 unsigned char* view,
ebabffbd 2270 Arm_address view_address,
364c7fa5
ILT
2271 section_size_type view_size,
2272 const Reloc_symbol_changes*);
4a657b0d
DK
2273
2274 // Scan the relocs during a relocatable link.
2275 void
ad0f2072 2276 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2277 Layout* layout,
6fa2a40b 2278 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2279 unsigned int data_shndx,
2280 unsigned int sh_type,
2281 const unsigned char* prelocs,
2282 size_t reloc_count,
2283 Output_section* output_section,
2284 bool needs_special_offset_handling,
2285 size_t local_symbol_count,
2286 const unsigned char* plocal_symbols,
2287 Relocatable_relocs*);
2288
7404fe1b 2289 // Emit relocations for a section.
4a657b0d 2290 void
7404fe1b
AM
2291 relocate_relocs(const Relocate_info<32, big_endian>*,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
62fe925a
RM
2296 typename elfcpp::Elf_types<32>::Elf_Off
2297 offset_in_output_section,
7404fe1b
AM
2298 const Relocatable_relocs*,
2299 unsigned char* view,
2300 Arm_address view_address,
2301 section_size_type view_size,
2302 unsigned char* reloc_view,
2303 section_size_type reloc_view_size);
4a657b0d 2304
5c388529
DK
2305 // Perform target-specific processing in a relocatable link. This is
2306 // only used if we use the relocation strategy RELOC_SPECIAL.
2307 void
2308 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2309 unsigned int sh_type,
2310 const unsigned char* preloc_in,
2311 size_t relnum,
2312 Output_section* output_section,
62fe925a
RM
2313 typename elfcpp::Elf_types<32>::Elf_Off
2314 offset_in_output_section,
5c388529
DK
2315 unsigned char* view,
2316 typename elfcpp::Elf_types<32>::Elf_Addr
2317 view_address,
2318 section_size_type view_size,
2319 unsigned char* preloc_out);
2e702c99 2320
4a657b0d
DK
2321 // Return whether SYM is defined by the ABI.
2322 bool
2c54b4f4 2323 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2324 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2325
c8761b9a
DK
2326 // Return whether there is a GOT section.
2327 bool
2328 has_got_section() const
2329 { return this->got_ != NULL; }
2330
94cdfcff
DK
2331 // Return the size of the GOT section.
2332 section_size_type
0e70b911 2333 got_size() const
94cdfcff
DK
2334 {
2335 gold_assert(this->got_ != NULL);
2336 return this->got_->data_size();
2337 }
2338
0e70b911
CC
2339 // Return the number of entries in the GOT.
2340 unsigned int
2341 got_entry_count() const
2342 {
2343 if (!this->has_got_section())
2344 return 0;
2345 return this->got_size() / 4;
2346 }
2347
2348 // Return the number of entries in the PLT.
2349 unsigned int
2350 plt_entry_count() const;
2351
2352 // Return the offset of the first non-reserved PLT entry.
2353 unsigned int
2354 first_plt_entry_offset() const;
2355
2356 // Return the size of each PLT entry.
2357 unsigned int
2358 plt_entry_size() const;
2359
4a657b0d 2360 // Map platform-specific reloc types
a6d1ef57 2361 static unsigned int
ca09d69a 2362 get_real_reloc_type(unsigned int r_type);
4a657b0d 2363
55da9579
DK
2364 //
2365 // Methods to support stub-generations.
2366 //
2e702c99 2367
55da9579
DK
2368 // Return the stub factory
2369 const Stub_factory&
2370 stub_factory() const
2371 { return this->stub_factory_; }
2372
2373 // Make a new Arm_input_section object.
2374 Arm_input_section<big_endian>*
2375 new_arm_input_section(Relobj*, unsigned int);
2376
2377 // Find the Arm_input_section object corresponding to the SHNDX-th input
2378 // section of RELOBJ.
2379 Arm_input_section<big_endian>*
2ea97941 2380 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2381
2382 // Make a new Stub_table
2383 Stub_table<big_endian>*
2384 new_stub_table(Arm_input_section<big_endian>*);
2385
eb44217c
DK
2386 // Scan a section for stub generation.
2387 void
2388 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2389 const unsigned char*, size_t, Output_section*,
2390 bool, const unsigned char*, Arm_address,
2391 section_size_type);
2392
2e702c99 2393 // Relocate a stub.
43d12afe 2394 void
2fb7225c 2395 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2396 Output_section*, unsigned char*, Arm_address,
2397 section_size_type);
2e702c99 2398
b569affa 2399 // Get the default ARM target.
43d12afe 2400 static Target_arm<big_endian>*
b569affa
DK
2401 default_target()
2402 {
2403 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2404 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2405 return static_cast<Target_arm<big_endian>*>(
2406 parameters->sized_target<32, big_endian>());
b569affa
DK
2407 }
2408
20138696
DK
2409 // Whether NAME belongs to a mapping symbol.
2410 static bool
2411 is_mapping_symbol_name(const char* name)
2412 {
2413 return (name
2414 && name[0] == '$'
2415 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2416 && (name[2] == '\0' || name[2] == '.'));
2417 }
2418
a120bc7f
DK
2419 // Whether we work around the Cortex-A8 erratum.
2420 bool
2421 fix_cortex_a8() const
2422 { return this->fix_cortex_a8_; }
2423
85fdf906
AH
2424 // Whether we merge exidx entries in debuginfo.
2425 bool
2426 merge_exidx_entries() const
2427 { return parameters->options().merge_exidx_entries(); }
2428
a2162063
ILT
2429 // Whether we fix R_ARM_V4BX relocation.
2430 // 0 - do not fix
2431 // 1 - replace with MOV instruction (armv4 target)
2432 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2433 General_options::Fix_v4bx
a2162063 2434 fix_v4bx() const
9b2fd367 2435 { return parameters->options().fix_v4bx(); }
a2162063 2436
44272192
DK
2437 // Scan a span of THUMB code section for Cortex-A8 erratum.
2438 void
2439 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2440 section_size_type, section_size_type,
2441 const unsigned char*, Arm_address);
2442
41263c05
DK
2443 // Apply Cortex-A8 workaround to a branch.
2444 void
2445 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2446 unsigned char*, Arm_address);
2447
d5b40221 2448 protected:
2e702c99
RM
2449 // Make the PLT-generator object.
2450 Output_data_plt_arm<big_endian>*
2451 make_data_plt(Layout* layout, Output_data_space* got_plt)
2452 { return this->do_make_data_plt(layout, got_plt); }
2453
eb44217c
DK
2454 // Make an ELF object.
2455 Object*
2456 do_make_elf_object(const std::string&, Input_file*, off_t,
2457 const elfcpp::Ehdr<32, big_endian>& ehdr);
2458
2459 Object*
2460 do_make_elf_object(const std::string&, Input_file*, off_t,
2461 const elfcpp::Ehdr<32, !big_endian>&)
2462 { gold_unreachable(); }
2463
2464 Object*
2465 do_make_elf_object(const std::string&, Input_file*, off_t,
2466 const elfcpp::Ehdr<64, false>&)
2467 { gold_unreachable(); }
2468
2469 Object*
2470 do_make_elf_object(const std::string&, Input_file*, off_t,
2471 const elfcpp::Ehdr<64, true>&)
2472 { gold_unreachable(); }
2473
2474 // Make an output section.
2475 Output_section*
2476 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2477 elfcpp::Elf_Xword flags)
2478 { return new Arm_output_section<big_endian>(name, type, flags); }
2479
d5b40221 2480 void
3bfcb652 2481 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2482
eb44217c
DK
2483 // We only need to generate stubs, and hence perform relaxation if we are
2484 // not doing relocatable linking.
2485 bool
2486 do_may_relax() const
2487 { return !parameters->options().relocatable(); }
2488
2489 bool
f625ae50 2490 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2491
a0351a69
DK
2492 // Determine whether an object attribute tag takes an integer, a
2493 // string or both.
2494 int
2495 do_attribute_arg_type(int tag) const;
2496
2497 // Reorder tags during output.
2498 int
2499 do_attributes_order(int num) const;
2500
0d31c79d
DK
2501 // This is called when the target is selected as the default.
2502 void
2503 do_select_as_default_target()
2504 {
2505 // No locking is required since there should only be one default target.
2506 // We cannot have both the big-endian and little-endian ARM targets
2507 // as the default.
2508 gold_assert(arm_reloc_property_table == NULL);
2509 arm_reloc_property_table = new Arm_reloc_property_table();
2510 }
2511
b3ce541e
ILT
2512 // Virtual function which is set to return true by a target if
2513 // it can use relocation types to determine if a function's
2514 // pointer is taken.
2515 virtual bool
2516 do_can_check_for_function_pointers() const
2517 { return true; }
2518
2519 // Whether a section called SECTION_NAME may have function pointers to
2520 // sections not eligible for safe ICF folding.
2521 virtual bool
2522 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2523 {
2524 return (!is_prefix_of(".ARM.exidx", section_name)
2525 && !is_prefix_of(".ARM.extab", section_name)
2526 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2527 }
2e702c99 2528
647f1574
DK
2529 virtual void
2530 do_define_standard_symbols(Symbol_table*, Layout*);
2531
2e702c99
RM
2532 virtual Output_data_plt_arm<big_endian>*
2533 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
2534 {
2535 return new Output_data_plt_arm_standard<big_endian>(layout, got_plt);
2536 }
2537
4a657b0d
DK
2538 private:
2539 // The class which scans relocations.
2540 class Scan
2541 {
2542 public:
2543 Scan()
bec53400 2544 : issued_non_pic_error_(false)
4a657b0d
DK
2545 { }
2546
95a2c8d6
RS
2547 static inline int
2548 get_reference_flags(unsigned int r_type);
2549
4a657b0d 2550 inline void
ad0f2072 2551 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2552 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2553 unsigned int data_shndx,
2554 Output_section* output_section,
2555 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2556 const elfcpp::Sym<32, big_endian>& lsym,
2557 bool is_discarded);
4a657b0d
DK
2558
2559 inline void
ad0f2072 2560 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2561 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2562 unsigned int data_shndx,
2563 Output_section* output_section,
2564 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2565 Symbol* gsym);
2566
21bb3914
ST
2567 inline bool
2568 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2569 Sized_relobj_file<32, big_endian>* ,
2570 unsigned int ,
2571 Output_section* ,
2572 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2573 unsigned int ,
2e702c99 2574 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2575
2576 inline bool
2577 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2578 Sized_relobj_file<32, big_endian>* ,
2579 unsigned int ,
2580 Output_section* ,
2581 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2582 unsigned int , Symbol*);
21bb3914 2583
4a657b0d
DK
2584 private:
2585 static void
6fa2a40b 2586 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2587 unsigned int r_type);
2588
2589 static void
6fa2a40b 2590 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2591 unsigned int r_type, Symbol*);
bec53400
DK
2592
2593 void
2594 check_non_pic(Relobj*, unsigned int r_type);
2595
2596 // Almost identical to Symbol::needs_plt_entry except that it also
2597 // handles STT_ARM_TFUNC.
2598 static bool
2599 symbol_needs_plt_entry(const Symbol* sym)
2600 {
2601 // An undefined symbol from an executable does not need a PLT entry.
2602 if (sym->is_undefined() && !parameters->options().shared())
2603 return false;
2604
2605 return (!parameters->doing_static_link()
2606 && (sym->type() == elfcpp::STT_FUNC
2607 || sym->type() == elfcpp::STT_ARM_TFUNC)
2608 && (sym->is_from_dynobj()
2609 || sym->is_undefined()
2610 || sym->is_preemptible()));
2611 }
2612
8a75a161
DK
2613 inline bool
2614 possible_function_pointer_reloc(unsigned int r_type);
2615
bec53400
DK
2616 // Whether we have issued an error about a non-PIC compilation.
2617 bool issued_non_pic_error_;
4a657b0d
DK
2618 };
2619
2620 // The class which implements relocation.
2621 class Relocate
2622 {
2623 public:
2624 Relocate()
2625 { }
2626
2627 ~Relocate()
2628 { }
2629
bec53400
DK
2630 // Return whether the static relocation needs to be applied.
2631 inline bool
2632 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2633 unsigned int r_type,
bec53400
DK
2634 bool is_32bit,
2635 Output_section* output_section);
2636
4a657b0d
DK
2637 // Do a relocation. Return false if the caller should not issue
2638 // any warnings about this relocation.
2639 inline bool
2640 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2641 Output_section*, size_t relnum,
2642 const elfcpp::Rel<32, big_endian>&,
2643 unsigned int r_type, const Sized_symbol<32>*,
2644 const Symbol_value<32>*,
ebabffbd 2645 unsigned char*, Arm_address,
4a657b0d 2646 section_size_type);
c121c671
DK
2647
2648 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2649 // reloc. This means the relocation type accesses a symbol not via
2650 // GOT or PLT.
c121c671 2651 static inline bool
ca09d69a 2652 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2653 {
2654 switch (r_type)
2655 {
f4e5969c
DK
2656 // These relocation types reference GOT or PLT entries explicitly.
2657 case elfcpp::R_ARM_GOT_BREL:
2658 case elfcpp::R_ARM_GOT_ABS:
2659 case elfcpp::R_ARM_GOT_PREL:
2660 case elfcpp::R_ARM_GOT_BREL12:
2661 case elfcpp::R_ARM_PLT32_ABS:
2662 case elfcpp::R_ARM_TLS_GD32:
2663 case elfcpp::R_ARM_TLS_LDM32:
2664 case elfcpp::R_ARM_TLS_IE32:
2665 case elfcpp::R_ARM_TLS_IE12GP:
2666
2667 // These relocate types may use PLT entries.
c121c671 2668 case elfcpp::R_ARM_CALL:
f4e5969c 2669 case elfcpp::R_ARM_THM_CALL:
c121c671 2670 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2671 case elfcpp::R_ARM_THM_JUMP24:
2672 case elfcpp::R_ARM_THM_JUMP19:
2673 case elfcpp::R_ARM_PLT32:
2674 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2675 case elfcpp::R_ARM_PREL31:
2676 case elfcpp::R_ARM_SBREL31:
c121c671 2677 return false;
f4e5969c
DK
2678
2679 default:
2680 return true;
c121c671
DK
2681 }
2682 }
f96accdf
DK
2683
2684 private:
2685 // Do a TLS relocation.
2686 inline typename Arm_relocate_functions<big_endian>::Status
2687 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2688 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2689 const Sized_symbol<32>*, const Symbol_value<32>*,
2690 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2691 section_size_type);
2692
4a657b0d
DK
2693 };
2694
2695 // A class which returns the size required for a relocation type,
2696 // used while scanning relocs during a relocatable link.
2697 class Relocatable_size_for_reloc
2698 {
2699 public:
2700 unsigned int
2701 get_size_for_reloc(unsigned int, Relobj*);
2702 };
2703
f96accdf
DK
2704 // Adjust TLS relocation type based on the options and whether this
2705 // is a local symbol.
2706 static tls::Tls_optimization
2707 optimize_tls_reloc(bool is_final, int r_type);
2708
94cdfcff 2709 // Get the GOT section, creating it if necessary.
4a54abbb 2710 Arm_output_data_got<big_endian>*
94cdfcff
DK
2711 got_section(Symbol_table*, Layout*);
2712
2713 // Get the GOT PLT section.
2714 Output_data_space*
2715 got_plt_section() const
2716 {
2717 gold_assert(this->got_plt_ != NULL);
2718 return this->got_plt_;
2719 }
2720
2721 // Create a PLT entry for a global symbol.
2722 void
2723 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2724
f96accdf
DK
2725 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2726 void
2727 define_tls_base_symbol(Symbol_table*, Layout*);
2728
2729 // Create a GOT entry for the TLS module index.
2730 unsigned int
2731 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2732 Sized_relobj_file<32, big_endian>* object);
f96accdf 2733
94cdfcff
DK
2734 // Get the PLT section.
2735 const Output_data_plt_arm<big_endian>*
2736 plt_section() const
2737 {
2738 gold_assert(this->plt_ != NULL);
2739 return this->plt_;
2740 }
2741
2742 // Get the dynamic reloc section, creating it if necessary.
2743 Reloc_section*
2744 rel_dyn_section(Layout*);
2745
f96accdf
DK
2746 // Get the section to use for TLS_DESC relocations.
2747 Reloc_section*
2748 rel_tls_desc_section(Layout*) const;
2749
94cdfcff
DK
2750 // Return true if the symbol may need a COPY relocation.
2751 // References from an executable object to non-function symbols
2752 // defined in a dynamic object may need a COPY relocation.
2753 bool
2754 may_need_copy_reloc(Symbol* gsym)
2755 {
966d4097
DK
2756 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2757 && gsym->may_need_copy_reloc());
94cdfcff
DK
2758 }
2759
2760 // Add a potential copy relocation.
2761 void
2762 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2763 Sized_relobj_file<32, big_endian>* object,
2ea97941 2764 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2765 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2766 {
2767 this->copy_relocs_.copy_reloc(symtab, layout,
2768 symtab->get_sized_symbol<32>(sym),
2ea97941 2769 object, shndx, output_section, reloc,
94cdfcff
DK
2770 this->rel_dyn_section(layout));
2771 }
2772
d5b40221
DK
2773 // Whether two EABI versions are compatible.
2774 static bool
2775 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2776
2777 // Merge processor-specific flags from input object and those in the ELF
2778 // header of the output.
2779 void
2780 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2781
a0351a69
DK
2782 // Get the secondary compatible architecture.
2783 static int
2784 get_secondary_compatible_arch(const Attributes_section_data*);
2785
2786 // Set the secondary compatible architecture.
2787 static void
2788 set_secondary_compatible_arch(Attributes_section_data*, int);
2789
2790 static int
2791 tag_cpu_arch_combine(const char*, int, int*, int, int);
2792
2793 // Helper to print AEABI enum tag value.
2794 static std::string
2795 aeabi_enum_name(unsigned int);
2796
2797 // Return string value for TAG_CPU_name.
2798 static std::string
2799 tag_cpu_name_value(unsigned int);
2800
679af368
ILT
2801 // Query attributes object to see if integer divide instructions may be
2802 // present in an object.
2803 static bool
2804 attributes_accept_div(int arch, int profile,
2805 const Object_attribute* div_attr);
2806
2807 // Query attributes object to see if integer divide instructions are
2808 // forbidden to be in the object. This is not the inverse of
2809 // attributes_accept_div.
2810 static bool
2811 attributes_forbid_div(const Object_attribute* div_attr);
2812
a0351a69
DK
2813 // Merge object attributes from input object and those in the output.
2814 void
2815 merge_object_attributes(const char*, const Attributes_section_data*);
2816
2817 // Helper to get an AEABI object attribute
2818 Object_attribute*
2819 get_aeabi_object_attribute(int tag) const
2820 {
2821 Attributes_section_data* pasd = this->attributes_section_data_;
2822 gold_assert(pasd != NULL);
2823 Object_attribute* attr =
2824 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2825 gold_assert(attr != NULL);
2826 return attr;
2827 }
2828
eb44217c
DK
2829 //
2830 // Methods to support stub-generations.
2831 //
d5b40221 2832
eb44217c
DK
2833 // Group input sections for stub generation.
2834 void
f625ae50 2835 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2836
eb44217c
DK
2837 // Scan a relocation for stub generation.
2838 void
2839 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2840 const Sized_symbol<32>*, unsigned int,
2841 const Symbol_value<32>*,
2842 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2843
eb44217c
DK
2844 // Scan a relocation section for stub.
2845 template<int sh_type>
2846 void
2847 scan_reloc_section_for_stubs(
2848 const Relocate_info<32, big_endian>* relinfo,
2849 const unsigned char* prelocs,
2850 size_t reloc_count,
2851 Output_section* output_section,
2852 bool needs_special_offset_handling,
2853 const unsigned char* view,
2854 elfcpp::Elf_types<32>::Elf_Addr view_address,
2855 section_size_type);
d5b40221 2856
2b328d4e
DK
2857 // Fix .ARM.exidx section coverage.
2858 void
131687b4 2859 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2860 Arm_output_section<big_endian>*, Symbol_table*,
2861 const Task*);
2b328d4e
DK
2862
2863 // Functors for STL set.
2864 struct output_section_address_less_than
2865 {
2866 bool
2867 operator()(const Output_section* s1, const Output_section* s2) const
2868 { return s1->address() < s2->address(); }
2869 };
2870
4a657b0d
DK
2871 // Information about this specific target which we pass to the
2872 // general Target structure.
2873 static const Target::Target_info arm_info;
94cdfcff
DK
2874
2875 // The types of GOT entries needed for this platform.
0e70b911
CC
2876 // These values are exposed to the ABI in an incremental link.
2877 // Do not renumber existing values without changing the version
2878 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2879 enum Got_type
2880 {
f96accdf
DK
2881 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2882 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2883 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2884 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2885 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2886 };
2887
55da9579
DK
2888 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2889
2890 // Map input section to Arm_input_section.
5ac169d4 2891 typedef Unordered_map<Section_id,
55da9579 2892 Arm_input_section<big_endian>*,
5ac169d4 2893 Section_id_hash>
55da9579 2894 Arm_input_section_map;
2e702c99 2895
a120bc7f
DK
2896 // Map output addresses to relocs for Cortex-A8 erratum.
2897 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2898 Cortex_a8_relocs_info;
2899
94cdfcff 2900 // The GOT section.
4a54abbb 2901 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2902 // The PLT section.
2903 Output_data_plt_arm<big_endian>* plt_;
2904 // The GOT PLT section.
2905 Output_data_space* got_plt_;
2906 // The dynamic reloc section.
2907 Reloc_section* rel_dyn_;
2908 // Relocs saved to avoid a COPY reloc.
2909 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2910 // Space for variables copied with a COPY reloc.
2911 Output_data_space* dynbss_;
f96accdf
DK
2912 // Offset of the GOT entry for the TLS module index.
2913 unsigned int got_mod_index_offset_;
2914 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2915 bool tls_base_symbol_defined_;
55da9579
DK
2916 // Vector of Stub_tables created.
2917 Stub_table_list stub_tables_;
2918 // Stub factory.
2919 const Stub_factory &stub_factory_;
b569affa
DK
2920 // Whether we force PIC branch veneers.
2921 bool should_force_pic_veneer_;
eb44217c
DK
2922 // Map for locating Arm_input_sections.
2923 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2924 // Attributes section data in output.
2925 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2926 // Whether we want to fix code for Cortex-A8 erratum.
2927 bool fix_cortex_a8_;
2928 // Map addresses to relocs for Cortex-A8 erratum.
2929 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2930};
2931
2932template<bool big_endian>
2933const Target::Target_info Target_arm<big_endian>::arm_info =
2934{
2935 32, // size
2936 big_endian, // is_big_endian
2937 elfcpp::EM_ARM, // machine_code
2938 false, // has_make_symbol
2939 false, // has_resolve
2940 false, // has_code_fill
2941 true, // is_default_stack_executable
b3ce541e 2942 false, // can_icf_inline_merge_sections
4a657b0d
DK
2943 '\0', // wrap_char
2944 "/usr/lib/libc.so.1", // dynamic_linker
2945 0x8000, // default_text_segment_address
2946 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2947 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2948 false, // isolate_execinstr
2949 0, // rosegment_gap
8a5e3e08
ILT
2950 elfcpp::SHN_UNDEF, // small_common_shndx
2951 elfcpp::SHN_UNDEF, // large_common_shndx
2952 0, // small_common_section_flags
05a352e6
DK
2953 0, // large_common_section_flags
2954 ".ARM.attributes", // attributes_section
a67858e0
CC
2955 "aeabi", // attributes_vendor
2956 "_start" // entry_symbol_name
4a657b0d
DK
2957};
2958
c121c671
DK
2959// Arm relocate functions class
2960//
2961
2962template<bool big_endian>
2963class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2964{
2965 public:
2966 typedef enum
2967 {
2968 STATUS_OKAY, // No error during relocation.
9b547ce6 2969 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2970 STATUS_BAD_RELOC // Relocation cannot be applied.
2971 } Status;
2972
2973 private:
2974 typedef Relocate_functions<32, big_endian> Base;
2975 typedef Arm_relocate_functions<big_endian> This;
2976
fd3c5f0b
ILT
2977 // Encoding of imm16 argument for movt and movw ARM instructions
2978 // from ARM ARM:
2e702c99 2979 //
fd3c5f0b
ILT
2980 // imm16 := imm4 | imm12
2981 //
2e702c99 2982 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
2983 // +-------+---------------+-------+-------+-----------------------+
2984 // | | |imm4 | |imm12 |
2985 // +-------+---------------+-------+-------+-----------------------+
2986
2987 // Extract the relocation addend from VAL based on the ARM
2988 // instruction encoding described above.
2989 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2990 extract_arm_movw_movt_addend(
2991 typename elfcpp::Swap<32, big_endian>::Valtype val)
2992 {
2993 // According to the Elf ABI for ARM Architecture the immediate
2994 // field is sign-extended to form the addend.
bef2b434 2995 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
2996 }
2997
2998 // Insert X into VAL based on the ARM instruction encoding described
2999 // above.
3000 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3001 insert_val_arm_movw_movt(
3002 typename elfcpp::Swap<32, big_endian>::Valtype val,
3003 typename elfcpp::Swap<32, big_endian>::Valtype x)
3004 {
3005 val &= 0xfff0f000;
3006 val |= x & 0x0fff;
3007 val |= (x & 0xf000) << 4;
3008 return val;
3009 }
3010
3011 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3012 // from ARM ARM:
2e702c99 3013 //
fd3c5f0b
ILT
3014 // imm16 := imm4 | i | imm3 | imm8
3015 //
2e702c99 3016 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3017 // +---------+-+-----------+-------++-+-----+-------+---------------+
3018 // | |i| |imm4 || |imm3 | |imm8 |
3019 // +---------+-+-----------+-------++-+-----+-------+---------------+
3020
3021 // Extract the relocation addend from VAL based on the Thumb2
3022 // instruction encoding described above.
3023 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3024 extract_thumb_movw_movt_addend(
3025 typename elfcpp::Swap<32, big_endian>::Valtype val)
3026 {
3027 // According to the Elf ABI for ARM Architecture the immediate
3028 // field is sign-extended to form the addend.
bef2b434
ILT
3029 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3030 | ((val >> 15) & 0x0800)
3031 | ((val >> 4) & 0x0700)
3032 | (val & 0x00ff));
fd3c5f0b
ILT
3033 }
3034
3035 // Insert X into VAL based on the Thumb2 instruction encoding
3036 // described above.
3037 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3038 insert_val_thumb_movw_movt(
3039 typename elfcpp::Swap<32, big_endian>::Valtype val,
3040 typename elfcpp::Swap<32, big_endian>::Valtype x)
3041 {
3042 val &= 0xfbf08f00;
3043 val |= (x & 0xf000) << 4;
3044 val |= (x & 0x0800) << 15;
3045 val |= (x & 0x0700) << 4;
3046 val |= (x & 0x00ff);
3047 return val;
3048 }
3049
b10d2873
ILT
3050 // Calculate the smallest constant Kn for the specified residual.
3051 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3052 static uint32_t
3053 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3054 {
3055 int32_t msb;
3056
3057 if (residual == 0)
3058 return 0;
3059 // Determine the most significant bit in the residual and
3060 // align the resulting value to a 2-bit boundary.
3061 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3062 ;
3063 // The desired shift is now (msb - 6), or zero, whichever
3064 // is the greater.
3065 return (((msb - 6) < 0) ? 0 : (msb - 6));
3066 }
3067
3068 // Calculate the final residual for the specified group index.
3069 // If the passed group index is less than zero, the method will return
3070 // the value of the specified residual without any change.
3071 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3072 static typename elfcpp::Swap<32, big_endian>::Valtype
3073 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3074 const int group)
3075 {
3076 for (int n = 0; n <= group; n++)
3077 {
3078 // Calculate which part of the value to mask.
3079 uint32_t shift = calc_grp_kn(residual);
3080 // Calculate the residual for the next time around.
3081 residual &= ~(residual & (0xff << shift));
3082 }
3083
3084 return residual;
3085 }
3086
3087 // Calculate the value of Gn for the specified group index.
3088 // We return it in the form of an encoded constant-and-rotation.
3089 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3090 static typename elfcpp::Swap<32, big_endian>::Valtype
3091 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3092 const int group)
3093 {
3094 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3095 uint32_t shift = 0;
3096
3097 for (int n = 0; n <= group; n++)
3098 {
3099 // Calculate which part of the value to mask.
3100 shift = calc_grp_kn(residual);
3101 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3102 gn = residual & (0xff << shift);
3103 // Calculate the residual for the next time around.
3104 residual &= ~gn;
3105 }
3106 // Return Gn in the form of an encoded constant-and-rotation.
3107 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3108 }
3109
1521477a 3110 public:
d204b6e9
DK
3111 // Handle ARM long branches.
3112 static typename This::Status
3113 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3114 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3115 const Arm_relobj<big_endian>*, unsigned int,
3116 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3117
51938283
DK
3118 // Handle THUMB long branches.
3119 static typename This::Status
3120 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3121 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3122 const Arm_relobj<big_endian>*, unsigned int,
3123 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3124
5e445df6 3125
089d69dc
DK
3126 // Return the branch offset of a 32-bit THUMB branch.
3127 static inline int32_t
3128 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3129 {
3130 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3131 // involving the J1 and J2 bits.
3132 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3133 uint32_t upper = upper_insn & 0x3ffU;
3134 uint32_t lower = lower_insn & 0x7ffU;
3135 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3136 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3137 uint32_t i1 = j1 ^ s ? 0 : 1;
3138 uint32_t i2 = j2 ^ s ? 0 : 1;
3139
bef2b434
ILT
3140 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3141 | (upper << 12) | (lower << 1));
089d69dc
DK
3142 }
3143
3144 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3145 // UPPER_INSN is the original upper instruction of the branch. Caller is
3146 // responsible for overflow checking and BLX offset adjustment.
3147 static inline uint16_t
3148 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3149 {
3150 uint32_t s = offset < 0 ? 1 : 0;
3151 uint32_t bits = static_cast<uint32_t>(offset);
3152 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3153 }
3154
3155 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3156 // LOWER_INSN is the original lower instruction of the branch. Caller is
3157 // responsible for overflow checking and BLX offset adjustment.
3158 static inline uint16_t
3159 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3160 {
3161 uint32_t s = offset < 0 ? 1 : 0;
3162 uint32_t bits = static_cast<uint32_t>(offset);
3163 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3164 | ((((bits >> 23) & 1) ^ !s) << 13)
3165 | ((((bits >> 22) & 1) ^ !s) << 11)
3166 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3167 }
3168
3169 // Return the branch offset of a 32-bit THUMB conditional branch.
3170 static inline int32_t
3171 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3172 {
3173 uint32_t s = (upper_insn & 0x0400U) >> 10;
3174 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3175 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3176 uint32_t lower = (lower_insn & 0x07ffU);
3177 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3178
bef2b434 3179 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3180 }
3181
3182 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3183 // instruction. UPPER_INSN is the original upper instruction of the branch.
3184 // Caller is responsible for overflow checking.
3185 static inline uint16_t
3186 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3187 {
3188 uint32_t s = offset < 0 ? 1 : 0;
3189 uint32_t bits = static_cast<uint32_t>(offset);
3190 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3191 }
3192
3193 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3194 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3195 // The caller is responsible for overflow checking.
089d69dc
DK
3196 static inline uint16_t
3197 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3198 {
3199 uint32_t bits = static_cast<uint32_t>(offset);
3200 uint32_t j2 = (bits & 0x00080000U) >> 19;
3201 uint32_t j1 = (bits & 0x00040000U) >> 18;
3202 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3203
3204 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3205 }
3206
5e445df6
ILT
3207 // R_ARM_ABS8: S + A
3208 static inline typename This::Status
ca09d69a 3209 abs8(unsigned char* view,
6fa2a40b 3210 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3211 const Symbol_value<32>* psymval)
5e445df6
ILT
3212 {
3213 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3214 Valtype* wv = reinterpret_cast<Valtype*>(view);
3215 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3216 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3217 Arm_address x = psymval->value(object, addend);
bef2b434 3218 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3219 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3220
3221 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3222 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3223 ? This::STATUS_OVERFLOW
3224 : This::STATUS_OKAY);
3225 }
3226
be8fcb75
ILT
3227 // R_ARM_THM_ABS5: S + A
3228 static inline typename This::Status
ca09d69a 3229 thm_abs5(unsigned char* view,
6fa2a40b 3230 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3231 const Symbol_value<32>* psymval)
3232 {
3233 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3234 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3235 Valtype* wv = reinterpret_cast<Valtype*>(view);
3236 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3237 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3238 Reltype x = psymval->value(object, addend);
bef2b434 3239 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3240 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3241 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3242 ? This::STATUS_OVERFLOW
3243 : This::STATUS_OKAY);
3244 }
3245
3246 // R_ARM_ABS12: S + A
3247 static inline typename This::Status
ca09d69a 3248 abs12(unsigned char* view,
6fa2a40b 3249 const Sized_relobj_file<32, big_endian>* object,
51938283 3250 const Symbol_value<32>* psymval)
be8fcb75
ILT
3251 {
3252 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3253 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3254 Valtype* wv = reinterpret_cast<Valtype*>(view);
3255 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3256 Reltype addend = val & 0x0fffU;
2daedcd6 3257 Reltype x = psymval->value(object, addend);
bef2b434 3258 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3259 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3260 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3261 ? This::STATUS_OVERFLOW
3262 : This::STATUS_OKAY);
3263 }
3264
3265 // R_ARM_ABS16: S + A
3266 static inline typename This::Status
ca09d69a 3267 abs16(unsigned char* view,
6fa2a40b 3268 const Sized_relobj_file<32, big_endian>* object,
51938283 3269 const Symbol_value<32>* psymval)
be8fcb75 3270 {
f6cccc2c 3271 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3272 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3273 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3274 Arm_address x = psymval->value(object, addend);
bef2b434 3275 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3276 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3277
3278 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3279 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3280 ? This::STATUS_OVERFLOW
3281 : This::STATUS_OKAY);
3282 }
3283
c121c671
DK
3284 // R_ARM_ABS32: (S + A) | T
3285 static inline typename This::Status
ca09d69a 3286 abs32(unsigned char* view,
6fa2a40b 3287 const Sized_relobj_file<32, big_endian>* object,
c121c671 3288 const Symbol_value<32>* psymval,
2daedcd6 3289 Arm_address thumb_bit)
c121c671 3290 {
f6cccc2c
DK
3291 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3292 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3293 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3294 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3295 return This::STATUS_OKAY;
3296 }
3297
3298 // R_ARM_REL32: (S + A) | T - P
3299 static inline typename This::Status
ca09d69a 3300 rel32(unsigned char* view,
6fa2a40b 3301 const Sized_relobj_file<32, big_endian>* object,
c121c671 3302 const Symbol_value<32>* psymval,
ebabffbd 3303 Arm_address address,
2daedcd6 3304 Arm_address thumb_bit)
c121c671 3305 {
f6cccc2c
DK
3306 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3307 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3308 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3309 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3310 return This::STATUS_OKAY;
3311 }
3312
089d69dc
DK
3313 // R_ARM_THM_JUMP24: (S + A) | T - P
3314 static typename This::Status
ca09d69a 3315 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3316 const Symbol_value<32>* psymval, Arm_address address,
3317 Arm_address thumb_bit);
3318
800d0f56
ILT
3319 // R_ARM_THM_JUMP6: S + A – P
3320 static inline typename This::Status
ca09d69a 3321 thm_jump6(unsigned char* view,
6fa2a40b 3322 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3323 const Symbol_value<32>* psymval,
3324 Arm_address address)
3325 {
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3327 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3328 Valtype* wv = reinterpret_cast<Valtype*>(view);
3329 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3330 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3331 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3332 Reltype x = (psymval->value(object, addend) - address);
3333 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3334 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3335 // CZB does only forward jumps.
3336 return ((x > 0x007e)
3337 ? This::STATUS_OVERFLOW
3338 : This::STATUS_OKAY);
3339 }
3340
3341 // R_ARM_THM_JUMP8: S + A – P
3342 static inline typename This::Status
ca09d69a 3343 thm_jump8(unsigned char* view,
6fa2a40b 3344 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3345 const Symbol_value<32>* psymval,
3346 Arm_address address)
3347 {
3348 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3349 Valtype* wv = reinterpret_cast<Valtype*>(view);
3350 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3351 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3352 int32_t x = (psymval->value(object, addend) - address);
3353 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3354 | ((x & 0x01fe) >> 1)));
57eb9b50 3355 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3356 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3357 ? This::STATUS_OVERFLOW
3358 : This::STATUS_OKAY);
3359 }
3360
3361 // R_ARM_THM_JUMP11: S + A – P
3362 static inline typename This::Status
ca09d69a 3363 thm_jump11(unsigned char* view,
6fa2a40b 3364 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3365 const Symbol_value<32>* psymval,
3366 Arm_address address)
3367 {
3368 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3369 Valtype* wv = reinterpret_cast<Valtype*>(view);
3370 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3371 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3372 int32_t x = (psymval->value(object, addend) - address);
3373 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3374 | ((x & 0x0ffe) >> 1)));
57eb9b50 3375 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3376 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3377 ? This::STATUS_OVERFLOW
3378 : This::STATUS_OKAY);
3379 }
3380
c121c671
DK
3381 // R_ARM_BASE_PREL: B(S) + A - P
3382 static inline typename This::Status
3383 base_prel(unsigned char* view,
ebabffbd
DK
3384 Arm_address origin,
3385 Arm_address address)
c121c671
DK
3386 {
3387 Base::rel32(view, origin - address);
3388 return STATUS_OKAY;
3389 }
3390
be8fcb75
ILT
3391 // R_ARM_BASE_ABS: B(S) + A
3392 static inline typename This::Status
3393 base_abs(unsigned char* view,
f4e5969c 3394 Arm_address origin)
be8fcb75
ILT
3395 {
3396 Base::rel32(view, origin);
3397 return STATUS_OKAY;
3398 }
3399
c121c671
DK
3400 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3401 static inline typename This::Status
3402 got_brel(unsigned char* view,
3403 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3404 {
3405 Base::rel32(view, got_offset);
3406 return This::STATUS_OKAY;
3407 }
3408
f4e5969c 3409 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3410 static inline typename This::Status
ca09d69a 3411 got_prel(unsigned char* view,
f4e5969c 3412 Arm_address got_entry,
ebabffbd 3413 Arm_address address)
7f5309a5 3414 {
f4e5969c 3415 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3416 return This::STATUS_OKAY;
3417 }
3418
c121c671
DK
3419 // R_ARM_PREL: (S + A) | T - P
3420 static inline typename This::Status
ca09d69a 3421 prel31(unsigned char* view,
6fa2a40b 3422 const Sized_relobj_file<32, big_endian>* object,
c121c671 3423 const Symbol_value<32>* psymval,
ebabffbd 3424 Arm_address address,
2daedcd6 3425 Arm_address thumb_bit)
c121c671 3426 {
f6cccc2c
DK
3427 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3428 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3429 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3430 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3431 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3432 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3433 return (Bits<31>::has_overflow32(x)
3434 ? This::STATUS_OVERFLOW
3435 : This::STATUS_OKAY);
c121c671 3436 }
fd3c5f0b 3437
5c57f1be 3438 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3439 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3440 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3441 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3442 static inline typename This::Status
5c57f1be 3443 movw(unsigned char* view,
6fa2a40b 3444 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3445 const Symbol_value<32>* psymval,
3446 Arm_address relative_address_base,
3447 Arm_address thumb_bit,
3448 bool check_overflow)
02961d7e
ILT
3449 {
3450 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3451 Valtype* wv = reinterpret_cast<Valtype*>(view);
3452 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3453 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3454 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3455 - relative_address_base);
02961d7e
ILT
3456 val = This::insert_val_arm_movw_movt(val, x);
3457 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3458 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3459 ? This::STATUS_OVERFLOW
3460 : This::STATUS_OKAY);
02961d7e
ILT
3461 }
3462
5c57f1be 3463 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3464 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3465 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3466 static inline typename This::Status
5c57f1be 3467 movt(unsigned char* view,
6fa2a40b 3468 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3469 const Symbol_value<32>* psymval,
3470 Arm_address relative_address_base)
c2a122b6
ILT
3471 {
3472 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3473 Valtype* wv = reinterpret_cast<Valtype*>(view);
3474 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3475 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3476 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3477 val = This::insert_val_arm_movw_movt(val, x);
3478 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3479 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3480 return This::STATUS_OKAY;
3481 }
3482
5c57f1be 3483 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3484 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3485 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3486 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3487 static inline typename This::Status
ca09d69a 3488 thm_movw(unsigned char* view,
6fa2a40b 3489 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3490 const Symbol_value<32>* psymval,
3491 Arm_address relative_address_base,
3492 Arm_address thumb_bit,
3493 bool check_overflow)
02961d7e
ILT
3494 {
3495 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3496 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3497 Valtype* wv = reinterpret_cast<Valtype*>(view);
3498 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3499 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3500 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3501 Reltype x =
3502 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3503 val = This::insert_val_thumb_movw_movt(val, x);
3504 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3505 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3506 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3507 ? This::STATUS_OVERFLOW
5c57f1be 3508 : This::STATUS_OKAY);
02961d7e
ILT
3509 }
3510
5c57f1be 3511 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3512 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3513 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3514 static inline typename This::Status
5c57f1be 3515 thm_movt(unsigned char* view,
6fa2a40b 3516 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3517 const Symbol_value<32>* psymval,
3518 Arm_address relative_address_base)
c2a122b6
ILT
3519 {
3520 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3521 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3522 Valtype* wv = reinterpret_cast<Valtype*>(view);
3523 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3524 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3525 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3526 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3527 val = This::insert_val_thumb_movw_movt(val, x);
3528 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3529 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3530 return This::STATUS_OKAY;
3531 }
a2162063 3532
11b861d5
DK
3533 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3534 static inline typename This::Status
3535 thm_alu11(unsigned char* view,
6fa2a40b 3536 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3537 const Symbol_value<32>* psymval,
3538 Arm_address address,
3539 Arm_address thumb_bit)
3540 {
3541 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3542 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3543 Valtype* wv = reinterpret_cast<Valtype*>(view);
3544 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3545 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3546
3547 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3548 // -----------------------------------------------------------------------
3549 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3550 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3551 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3552 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3553 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3554 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3555
3556 // Determine a sign for the addend.
3557 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3558 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3559 // Thumb2 addend encoding:
3560 // imm12 := i | imm3 | imm8
3561 int32_t addend = (insn & 0xff)
3562 | ((insn & 0x00007000) >> 4)
3563 | ((insn & 0x04000000) >> 15);
3564 // Apply a sign to the added.
3565 addend *= sign;
3566
3567 int32_t x = (psymval->value(object, addend) | thumb_bit)
3568 - (address & 0xfffffffc);
3569 Reltype val = abs(x);
3570 // Mask out the value and a distinct part of the ADD/SUB opcode
3571 // (bits 7:5 of opword).
3572 insn = (insn & 0xfb0f8f00)
3573 | (val & 0xff)
3574 | ((val & 0x700) << 4)
3575 | ((val & 0x800) << 15);
3576 // Set the opcode according to whether the value to go in the
3577 // place is negative.
3578 if (x < 0)
3579 insn |= 0x00a00000;
3580
3581 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3582 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3583 return ((val > 0xfff) ?
2e702c99 3584 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3585 }
3586
3587 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3588 static inline typename This::Status
3589 thm_pc8(unsigned char* view,
6fa2a40b 3590 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3591 const Symbol_value<32>* psymval,
3592 Arm_address address)
3593 {
3594 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3595 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3596 Valtype* wv = reinterpret_cast<Valtype*>(view);
3597 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3598 Reltype addend = ((insn & 0x00ff) << 2);
3599 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3600 Reltype val = abs(x);
3601 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3602
3603 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3604 return ((val > 0x03fc)
3605 ? This::STATUS_OVERFLOW
3606 : This::STATUS_OKAY);
3607 }
3608
3609 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3610 static inline typename This::Status
3611 thm_pc12(unsigned char* view,
6fa2a40b 3612 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3613 const Symbol_value<32>* psymval,
3614 Arm_address address)
3615 {
3616 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3617 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3618 Valtype* wv = reinterpret_cast<Valtype*>(view);
3619 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3620 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3621 // Determine a sign for the addend (positive if the U bit is 1).
3622 const int sign = (insn & 0x00800000) ? 1 : -1;
3623 int32_t addend = (insn & 0xfff);
3624 // Apply a sign to the added.
3625 addend *= sign;
3626
3627 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3628 Reltype val = abs(x);
3629 // Mask out and apply the value and the U bit.
3630 insn = (insn & 0xff7ff000) | (val & 0xfff);
3631 // Set the U bit according to whether the value to go in the
3632 // place is positive.
3633 if (x >= 0)
3634 insn |= 0x00800000;
3635
3636 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3637 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3638 return ((val > 0xfff) ?
2e702c99 3639 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3640 }
3641
a2162063
ILT
3642 // R_ARM_V4BX
3643 static inline typename This::Status
3644 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3645 unsigned char* view,
a2162063
ILT
3646 const Arm_relobj<big_endian>* object,
3647 const Arm_address address,
3648 const bool is_interworking)
3649 {
3650
3651 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3652 Valtype* wv = reinterpret_cast<Valtype*>(view);
3653 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3654
3655 // Ensure that we have a BX instruction.
3656 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3657 const uint32_t reg = (val & 0xf);
3658 if (is_interworking && reg != 0xf)
3659 {
3660 Stub_table<big_endian>* stub_table =
3661 object->stub_table(relinfo->data_shndx);
3662 gold_assert(stub_table != NULL);
3663
3664 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3665 gold_assert(stub != NULL);
3666
3667 int32_t veneer_address =
3668 stub_table->address() + stub->offset() - 8 - address;
3669 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3670 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3671 // Replace with a branch to veneer (B <addr>)
3672 val = (val & 0xf0000000) | 0x0a000000
3673 | ((veneer_address >> 2) & 0x00ffffff);
3674 }
3675 else
3676 {
3677 // Preserve Rm (lowest four bits) and the condition code
3678 // (highest four bits). Other bits encode MOV PC,Rm.
3679 val = (val & 0xf000000f) | 0x01a0f000;
3680 }
3681 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3682 return This::STATUS_OKAY;
3683 }
b10d2873
ILT
3684
3685 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3686 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3687 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3688 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3689 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3690 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3691 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3692 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3693 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3694 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3695 static inline typename This::Status
3696 arm_grp_alu(unsigned char* view,
6fa2a40b 3697 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3698 const Symbol_value<32>* psymval,
3699 const int group,
3700 Arm_address address,
3701 Arm_address thumb_bit,
3702 bool check_overflow)
3703 {
5c57f1be 3704 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3705 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3706 Valtype* wv = reinterpret_cast<Valtype*>(view);
3707 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3708
3709 // ALU group relocations are allowed only for the ADD/SUB instructions.
3710 // (0x00800000 - ADD, 0x00400000 - SUB)
3711 const Valtype opcode = insn & 0x01e00000;
3712 if (opcode != 0x00800000 && opcode != 0x00400000)
3713 return This::STATUS_BAD_RELOC;
3714
3715 // Determine a sign for the addend.
3716 const int sign = (opcode == 0x00800000) ? 1 : -1;
3717 // shifter = rotate_imm * 2
3718 const uint32_t shifter = (insn & 0xf00) >> 7;
3719 // Initial addend value.
3720 int32_t addend = insn & 0xff;
3721 // Rotate addend right by shifter.
3722 addend = (addend >> shifter) | (addend << (32 - shifter));
3723 // Apply a sign to the added.
3724 addend *= sign;
3725
3726 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3727 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3728 // Check for overflow if required
3729 if (check_overflow
3730 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3731 return This::STATUS_OVERFLOW;
3732
3733 // Mask out the value and the ADD/SUB part of the opcode; take care
3734 // not to destroy the S bit.
3735 insn &= 0xff1ff000;
3736 // Set the opcode according to whether the value to go in the
3737 // place is negative.
3738 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3739 // Encode the offset (encoded Gn).
3740 insn |= gn;
3741
3742 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3743 return This::STATUS_OKAY;
3744 }
3745
3746 // R_ARM_LDR_PC_G0: S + A - P
3747 // R_ARM_LDR_PC_G1: S + A - P
3748 // R_ARM_LDR_PC_G2: S + A - P
3749 // R_ARM_LDR_SB_G0: S + A - B(S)
3750 // R_ARM_LDR_SB_G1: S + A - B(S)
3751 // R_ARM_LDR_SB_G2: S + A - B(S)
3752 static inline typename This::Status
3753 arm_grp_ldr(unsigned char* view,
6fa2a40b 3754 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3755 const Symbol_value<32>* psymval,
3756 const int group,
3757 Arm_address address)
3758 {
5c57f1be 3759 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3760 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3761 Valtype* wv = reinterpret_cast<Valtype*>(view);
3762 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3763
3764 const int sign = (insn & 0x00800000) ? 1 : -1;
3765 int32_t addend = (insn & 0xfff) * sign;
3766 int32_t x = (psymval->value(object, addend) - address);
3767 // Calculate the relevant G(n-1) value to obtain this stage residual.
3768 Valtype residual =
3769 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3770 if (residual >= 0x1000)
3771 return This::STATUS_OVERFLOW;
3772
3773 // Mask out the value and U bit.
3774 insn &= 0xff7ff000;
3775 // Set the U bit for non-negative values.
3776 if (x >= 0)
3777 insn |= 0x00800000;
3778 insn |= residual;
3779
3780 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3781 return This::STATUS_OKAY;
3782 }
3783
3784 // R_ARM_LDRS_PC_G0: S + A - P
3785 // R_ARM_LDRS_PC_G1: S + A - P
3786 // R_ARM_LDRS_PC_G2: S + A - P
3787 // R_ARM_LDRS_SB_G0: S + A - B(S)
3788 // R_ARM_LDRS_SB_G1: S + A - B(S)
3789 // R_ARM_LDRS_SB_G2: S + A - B(S)
3790 static inline typename This::Status
3791 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3792 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3793 const Symbol_value<32>* psymval,
3794 const int group,
3795 Arm_address address)
3796 {
5c57f1be 3797 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3798 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3799 Valtype* wv = reinterpret_cast<Valtype*>(view);
3800 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3801
3802 const int sign = (insn & 0x00800000) ? 1 : -1;
3803 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3804 int32_t x = (psymval->value(object, addend) - address);
3805 // Calculate the relevant G(n-1) value to obtain this stage residual.
3806 Valtype residual =
3807 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3808 if (residual >= 0x100)
3809 return This::STATUS_OVERFLOW;
3810
3811 // Mask out the value and U bit.
3812 insn &= 0xff7ff0f0;
3813 // Set the U bit for non-negative values.
3814 if (x >= 0)
3815 insn |= 0x00800000;
3816 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3817
3818 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3819 return This::STATUS_OKAY;
3820 }
3821
3822 // R_ARM_LDC_PC_G0: S + A - P
3823 // R_ARM_LDC_PC_G1: S + A - P
3824 // R_ARM_LDC_PC_G2: S + A - P
3825 // R_ARM_LDC_SB_G0: S + A - B(S)
3826 // R_ARM_LDC_SB_G1: S + A - B(S)
3827 // R_ARM_LDC_SB_G2: S + A - B(S)
3828 static inline typename This::Status
3829 arm_grp_ldc(unsigned char* view,
6fa2a40b 3830 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3831 const Symbol_value<32>* psymval,
3832 const int group,
3833 Arm_address address)
3834 {
5c57f1be 3835 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3836 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3837 Valtype* wv = reinterpret_cast<Valtype*>(view);
3838 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3839
3840 const int sign = (insn & 0x00800000) ? 1 : -1;
3841 int32_t addend = ((insn & 0xff) << 2) * sign;
3842 int32_t x = (psymval->value(object, addend) - address);
3843 // Calculate the relevant G(n-1) value to obtain this stage residual.
3844 Valtype residual =
3845 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3846 if ((residual & 0x3) != 0 || residual >= 0x400)
3847 return This::STATUS_OVERFLOW;
3848
3849 // Mask out the value and U bit.
3850 insn &= 0xff7fff00;
3851 // Set the U bit for non-negative values.
3852 if (x >= 0)
3853 insn |= 0x00800000;
3854 insn |= (residual >> 2);
3855
3856 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3857 return This::STATUS_OKAY;
3858 }
c121c671
DK
3859};
3860
d204b6e9
DK
3861// Relocate ARM long branches. This handles relocation types
3862// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3863// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3864// undefined and we do not use PLT in this relocation. In such a case,
3865// the branch is converted into an NOP.
3866
3867template<bool big_endian>
3868typename Arm_relocate_functions<big_endian>::Status
3869Arm_relocate_functions<big_endian>::arm_branch_common(
3870 unsigned int r_type,
3871 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3872 unsigned char* view,
d204b6e9
DK
3873 const Sized_symbol<32>* gsym,
3874 const Arm_relobj<big_endian>* object,
3875 unsigned int r_sym,
3876 const Symbol_value<32>* psymval,
3877 Arm_address address,
3878 Arm_address thumb_bit,
3879 bool is_weakly_undefined_without_plt)
3880{
3881 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3882 Valtype* wv = reinterpret_cast<Valtype*>(view);
3883 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3884
d204b6e9 3885 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3886 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3887 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3888 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3889 && ((val & 0x0f000000UL) == 0x0b000000UL);
3890 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3891 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3892
3893 // Check that the instruction is valid.
3894 if (r_type == elfcpp::R_ARM_CALL)
3895 {
3896 if (!insn_is_uncond_bl && !insn_is_blx)
3897 return This::STATUS_BAD_RELOC;
3898 }
3899 else if (r_type == elfcpp::R_ARM_JUMP24)
3900 {
3901 if (!insn_is_b && !insn_is_cond_bl)
3902 return This::STATUS_BAD_RELOC;
3903 }
3904 else if (r_type == elfcpp::R_ARM_PLT32)
3905 {
3906 if (!insn_is_any_branch)
3907 return This::STATUS_BAD_RELOC;
3908 }
3909 else if (r_type == elfcpp::R_ARM_XPC25)
3910 {
3911 // FIXME: AAELF document IH0044C does not say much about it other
3912 // than it being obsolete.
3913 if (!insn_is_any_branch)
3914 return This::STATUS_BAD_RELOC;
3915 }
3916 else
3917 gold_unreachable();
3918
3919 // A branch to an undefined weak symbol is turned into a jump to
3920 // the next instruction unless a PLT entry will be created.
3921 // Do the same for local undefined symbols.
3922 // The jump to the next instruction is optimized as a NOP depending
3923 // on the architecture.
3924 const Target_arm<big_endian>* arm_target =
3925 Target_arm<big_endian>::default_target();
3926 if (is_weakly_undefined_without_plt)
3927 {
5c388529 3928 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3929 Valtype cond = val & 0xf0000000U;
3930 if (arm_target->may_use_arm_nop())
3931 val = cond | 0x0320f000;
3932 else
3933 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3934 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3935 return This::STATUS_OKAY;
3936 }
2e702c99 3937
bef2b434 3938 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3939 Valtype branch_target = psymval->value(object, addend);
3940 int32_t branch_offset = branch_target - address;
3941
3942 // We need a stub if the branch offset is too large or if we need
3943 // to switch mode.
cd6eab1c 3944 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3945 Reloc_stub* stub = NULL;
5c388529
DK
3946
3947 if (!parameters->options().relocatable()
bef2b434 3948 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3949 || ((thumb_bit != 0)
3950 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3951 {
2a2b6d42
DK
3952 Valtype unadjusted_branch_target = psymval->value(object, 0);
3953
d204b6e9 3954 Stub_type stub_type =
2a2b6d42
DK
3955 Reloc_stub::stub_type_for_reloc(r_type, address,
3956 unadjusted_branch_target,
d204b6e9
DK
3957 (thumb_bit != 0));
3958 if (stub_type != arm_stub_none)
3959 {
2ea97941 3960 Stub_table<big_endian>* stub_table =
d204b6e9 3961 object->stub_table(relinfo->data_shndx);
2ea97941 3962 gold_assert(stub_table != NULL);
d204b6e9
DK
3963
3964 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3965 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3966 gold_assert(stub != NULL);
3967 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3968 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3969 branch_offset = branch_target - address;
bef2b434 3970 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
3971 }
3972 }
3973
3974 // At this point, if we still need to switch mode, the instruction
3975 // must either be a BLX or a BL that can be converted to a BLX.
3976 if (thumb_bit != 0)
3977 {
3978 // Turn BL to BLX.
3979 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3980 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3981 }
3982
bef2b434 3983 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 3984 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
3985 return (Bits<26>::has_overflow32(branch_offset)
3986 ? This::STATUS_OVERFLOW
3987 : This::STATUS_OKAY);
d204b6e9
DK
3988}
3989
51938283
DK
3990// Relocate THUMB long branches. This handles relocation types
3991// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3992// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3993// undefined and we do not use PLT in this relocation. In such a case,
3994// the branch is converted into an NOP.
3995
3996template<bool big_endian>
3997typename Arm_relocate_functions<big_endian>::Status
3998Arm_relocate_functions<big_endian>::thumb_branch_common(
3999 unsigned int r_type,
4000 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4001 unsigned char* view,
51938283
DK
4002 const Sized_symbol<32>* gsym,
4003 const Arm_relobj<big_endian>* object,
4004 unsigned int r_sym,
4005 const Symbol_value<32>* psymval,
4006 Arm_address address,
4007 Arm_address thumb_bit,
4008 bool is_weakly_undefined_without_plt)
4009{
4010 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4011 Valtype* wv = reinterpret_cast<Valtype*>(view);
4012 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4013 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4014
4015 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4016 // into account.
4017 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4018 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4019
51938283
DK
4020 // Check that the instruction is valid.
4021 if (r_type == elfcpp::R_ARM_THM_CALL)
4022 {
4023 if (!is_bl_insn && !is_blx_insn)
4024 return This::STATUS_BAD_RELOC;
4025 }
4026 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4027 {
4028 // This cannot be a BLX.
4029 if (!is_bl_insn)
4030 return This::STATUS_BAD_RELOC;
4031 }
4032 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4033 {
4034 // Check for Thumb to Thumb call.
4035 if (!is_blx_insn)
4036 return This::STATUS_BAD_RELOC;
4037 if (thumb_bit != 0)
4038 {
4039 gold_warning(_("%s: Thumb BLX instruction targets "
4040 "thumb function '%s'."),
4041 object->name().c_str(),
2e702c99 4042 (gsym ? gsym->name() : "(local)"));
51938283
DK
4043 // Convert BLX to BL.
4044 lower_insn |= 0x1000U;
4045 }
4046 }
4047 else
4048 gold_unreachable();
4049
4050 // A branch to an undefined weak symbol is turned into a jump to
4051 // the next instruction unless a PLT entry will be created.
4052 // The jump to the next instruction is optimized as a NOP.W for
4053 // Thumb-2 enabled architectures.
4054 const Target_arm<big_endian>* arm_target =
4055 Target_arm<big_endian>::default_target();
4056 if (is_weakly_undefined_without_plt)
4057 {
5c388529 4058 gold_assert(!parameters->options().relocatable());
51938283
DK
4059 if (arm_target->may_use_thumb2_nop())
4060 {
4061 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4062 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4063 }
4064 else
4065 {
4066 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4067 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4068 }
4069 return This::STATUS_OKAY;
4070 }
2e702c99 4071
089d69dc 4072 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4073 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4074
4075 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4076 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4077 if (thumb_bit == 0 && may_use_blx)
bef2b434 4078 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4079
51938283
DK
4080 int32_t branch_offset = branch_target - address;
4081
4082 // We need a stub if the branch offset is too large or if we need
4083 // to switch mode.
51938283 4084 bool thumb2 = arm_target->using_thumb2();
5c388529 4085 if (!parameters->options().relocatable()
bef2b434
ILT
4086 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4087 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4088 || ((thumb_bit == 0)
4089 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4090 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4091 {
2a2b6d42
DK
4092 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4093
51938283 4094 Stub_type stub_type =
2a2b6d42
DK
4095 Reloc_stub::stub_type_for_reloc(r_type, address,
4096 unadjusted_branch_target,
51938283 4097 (thumb_bit != 0));
2a2b6d42 4098
51938283
DK
4099 if (stub_type != arm_stub_none)
4100 {
2ea97941 4101 Stub_table<big_endian>* stub_table =
51938283 4102 object->stub_table(relinfo->data_shndx);
2ea97941 4103 gold_assert(stub_table != NULL);
51938283
DK
4104
4105 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4106 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4107 gold_assert(stub != NULL);
4108 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4109 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4110 if (thumb_bit == 0 && may_use_blx)
bef2b434 4111 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4112 branch_offset = branch_target - address;
4113 }
4114 }
4115
4116 // At this point, if we still need to switch mode, the instruction
4117 // must either be a BLX or a BL that can be converted to a BLX.
4118 if (thumb_bit == 0)
4119 {
4120 gold_assert(may_use_blx
4121 && (r_type == elfcpp::R_ARM_THM_CALL
4122 || r_type == elfcpp::R_ARM_THM_XPC22));
4123 // Make sure this is a BLX.
4124 lower_insn &= ~0x1000U;
4125 }
4126 else
4127 {
4128 // Make sure this is a BL.
4129 lower_insn |= 0x1000U;
4130 }
4131
a2c7281b
DK
4132 // For a BLX instruction, make sure that the relocation is rounded up
4133 // to a word boundary. This follows the semantics of the instruction
4134 // which specifies that bit 1 of the target address will come from bit
4135 // 1 of the base address.
51938283 4136 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4137 gold_assert((branch_offset & 3) == 0);
51938283
DK
4138
4139 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4140 // We use the Thumb-2 encoding, which is safe even if dealing with
4141 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4142 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4143 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4144
4145 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4146 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4147
bef2b434 4148 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4149
51938283 4150 return ((thumb2
bef2b434
ILT
4151 ? Bits<25>::has_overflow32(branch_offset)
4152 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4153 ? This::STATUS_OVERFLOW
4154 : This::STATUS_OKAY);
4155}
4156
4157// Relocate THUMB-2 long conditional branches.
4158// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4159// undefined and we do not use PLT in this relocation. In such a case,
4160// the branch is converted into an NOP.
4161
4162template<bool big_endian>
4163typename Arm_relocate_functions<big_endian>::Status
4164Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4165 unsigned char* view,
089d69dc
DK
4166 const Arm_relobj<big_endian>* object,
4167 const Symbol_value<32>* psymval,
4168 Arm_address address,
4169 Arm_address thumb_bit)
4170{
4171 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4172 Valtype* wv = reinterpret_cast<Valtype*>(view);
4173 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4174 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4175 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4176
4177 Arm_address branch_target = psymval->value(object, addend);
4178 int32_t branch_offset = branch_target - address;
4179
4180 // ??? Should handle interworking? GCC might someday try to
4181 // use this for tail calls.
4182 // FIXME: We do support thumb entry to PLT yet.
4183 if (thumb_bit == 0)
4184 {
4185 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4186 return This::STATUS_BAD_RELOC;
4187 }
4188
4189 // Put RELOCATION back into the insn.
4190 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4191 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4192
4193 // Put the relocated value back in the object file:
4194 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4195 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4196
bef2b434 4197 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4198 ? This::STATUS_OVERFLOW
4199 : This::STATUS_OKAY);
4200}
4201
94cdfcff
DK
4202// Get the GOT section, creating it if necessary.
4203
4204template<bool big_endian>
4a54abbb 4205Arm_output_data_got<big_endian>*
94cdfcff
DK
4206Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4207{
4208 if (this->got_ == NULL)
4209 {
4210 gold_assert(symtab != NULL && layout != NULL);
4211
7b8957f8
DK
4212 // When using -z now, we can treat .got as a relro section.
4213 // Without -z now, it is modified after program startup by lazy
4214 // PLT relocations.
4215 bool is_got_relro = parameters->options().now();
4216 Output_section_order got_order = (is_got_relro
4217 ? ORDER_RELRO_LAST
4218 : ORDER_DATA);
4219
4220 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4221 // .got.plt sections in output. The output .got section contains both
4222 // PLT and non-PLT GOT entries.
4a54abbb 4223 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4224
82742395 4225 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4226 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4227 this->got_, got_order, is_got_relro);
22f0da72 4228
94cdfcff
DK
4229 // The old GNU linker creates a .got.plt section. We just
4230 // create another set of data in the .got section. Note that we
4231 // always create a PLT if we create a GOT, although the PLT
4232 // might be empty.
4233 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4234 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4235 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4236 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4237
4238 // The first three entries are reserved.
4239 this->got_plt_->set_current_data_size(3 * 4);
4240
4241 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4242 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4243 Symbol_table::PREDEFINED,
94cdfcff
DK
4244 this->got_plt_,
4245 0, 0, elfcpp::STT_OBJECT,
4246 elfcpp::STB_LOCAL,
4247 elfcpp::STV_HIDDEN, 0,
4248 false, false);
4249 }
4250 return this->got_;
4251}
4252
4253// Get the dynamic reloc section, creating it if necessary.
4254
4255template<bool big_endian>
4256typename Target_arm<big_endian>::Reloc_section*
4257Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4258{
4259 if (this->rel_dyn_ == NULL)
4260 {
4261 gold_assert(layout != NULL);
4262 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4263 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4264 elfcpp::SHF_ALLOC, this->rel_dyn_,
4265 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4266 }
4267 return this->rel_dyn_;
4268}
4269
b569affa
DK
4270// Insn_template methods.
4271
4272// Return byte size of an instruction template.
4273
4274size_t
4275Insn_template::size() const
4276{
4277 switch (this->type())
4278 {
4279 case THUMB16_TYPE:
2fb7225c 4280 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4281 return 2;
4282 case ARM_TYPE:
4283 case THUMB32_TYPE:
4284 case DATA_TYPE:
4285 return 4;
4286 default:
4287 gold_unreachable();
4288 }
4289}
4290
4291// Return alignment of an instruction template.
4292
4293unsigned
4294Insn_template::alignment() const
4295{
4296 switch (this->type())
4297 {
4298 case THUMB16_TYPE:
2fb7225c 4299 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4300 case THUMB32_TYPE:
4301 return 2;
4302 case ARM_TYPE:
4303 case DATA_TYPE:
4304 return 4;
4305 default:
4306 gold_unreachable();
4307 }
4308}
4309
4310// Stub_template methods.
4311
4312Stub_template::Stub_template(
2ea97941
ILT
4313 Stub_type type, const Insn_template* insns,
4314 size_t insn_count)
4315 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4316 entry_in_thumb_mode_(false), relocs_()
4317{
2ea97941 4318 off_t offset = 0;
b569affa
DK
4319
4320 // Compute byte size and alignment of stub template.
2ea97941 4321 for (size_t i = 0; i < insn_count; i++)
b569affa 4322 {
2ea97941
ILT
4323 unsigned insn_alignment = insns[i].alignment();
4324 size_t insn_size = insns[i].size();
4325 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4326 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4327 switch (insns[i].type())
b569affa
DK
4328 {
4329 case Insn_template::THUMB16_TYPE:
089d69dc 4330 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4331 if (i == 0)
4332 this->entry_in_thumb_mode_ = true;
4333 break;
4334
4335 case Insn_template::THUMB32_TYPE:
2e702c99 4336 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4337 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4338 if (i == 0)
4339 this->entry_in_thumb_mode_ = true;
2e702c99 4340 break;
b569affa
DK
4341
4342 case Insn_template::ARM_TYPE:
4343 // Handle cases where the target is encoded within the
4344 // instruction.
2ea97941
ILT
4345 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4346 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4347 break;
4348
4349 case Insn_template::DATA_TYPE:
4350 // Entry point cannot be data.
4351 gold_assert(i != 0);
2ea97941 4352 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4353 break;
4354
4355 default:
4356 gold_unreachable();
4357 }
2e702c99 4358 offset += insn_size;
b569affa 4359 }
2ea97941 4360 this->size_ = offset;
b569affa
DK
4361}
4362
bb0d3eb0
DK
4363// Stub methods.
4364
7296d933 4365// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4366
4367template<bool big_endian>
4368void inline
4369Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4370{
4371 const Stub_template* stub_template = this->stub_template();
4372 const Insn_template* insns = stub_template->insns();
4373
4374 // FIXME: We do not handle BE8 encoding yet.
4375 unsigned char* pov = view;
4376 for (size_t i = 0; i < stub_template->insn_count(); i++)
4377 {
4378 switch (insns[i].type())
4379 {
4380 case Insn_template::THUMB16_TYPE:
4381 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4382 break;
4383 case Insn_template::THUMB16_SPECIAL_TYPE:
4384 elfcpp::Swap<16, big_endian>::writeval(
4385 pov,
4386 this->thumb16_special(i));
4387 break;
4388 case Insn_template::THUMB32_TYPE:
4389 {
4390 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4391 uint32_t lo = insns[i].data() & 0xffff;
4392 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4393 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4394 }
2e702c99 4395 break;
bb0d3eb0
DK
4396 case Insn_template::ARM_TYPE:
4397 case Insn_template::DATA_TYPE:
4398 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4399 break;
4400 default:
4401 gold_unreachable();
4402 }
4403 pov += insns[i].size();
4404 }
4405 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4406}
bb0d3eb0 4407
b569affa
DK
4408// Reloc_stub::Key methods.
4409
4410// Dump a Key as a string for debugging.
4411
4412std::string
4413Reloc_stub::Key::name() const
4414{
4415 if (this->r_sym_ == invalid_index)
4416 {
4417 // Global symbol key name
4418 // <stub-type>:<symbol name>:<addend>.
4419 const std::string sym_name = this->u_.symbol->name();
4420 // We need to print two hex number and two colons. So just add 100 bytes
4421 // to the symbol name size.
4422 size_t len = sym_name.size() + 100;
4423 char* buffer = new char[len];
4424 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4425 sym_name.c_str(), this->addend_);
4426 gold_assert(c > 0 && c < static_cast<int>(len));
4427 delete[] buffer;
4428 return std::string(buffer);
4429 }
4430 else
4431 {
4432 // local symbol key name
4433 // <stub-type>:<object>:<r_sym>:<addend>.
4434 const size_t len = 200;
4435 char buffer[len];
4436 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4437 this->u_.relobj, this->r_sym_, this->addend_);
4438 gold_assert(c > 0 && c < static_cast<int>(len));
4439 return std::string(buffer);
4440 }
4441}
4442
4443// Reloc_stub methods.
4444
4445// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4446// LOCATION to DESTINATION.
4447// This code is based on the arm_type_of_stub function in
9b547ce6 4448// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4449// class simple.
4450
4451Stub_type
4452Reloc_stub::stub_type_for_reloc(
4453 unsigned int r_type,
4454 Arm_address location,
4455 Arm_address destination,
4456 bool target_is_thumb)
4457{
4458 Stub_type stub_type = arm_stub_none;
4459
4460 // This is a bit ugly but we want to avoid using a templated class for
4461 // big and little endianities.
4462 bool may_use_blx;
4463 bool should_force_pic_veneer;
4464 bool thumb2;
4465 bool thumb_only;
4466 if (parameters->target().is_big_endian())
4467 {
43d12afe 4468 const Target_arm<true>* big_endian_target =
b569affa 4469 Target_arm<true>::default_target();
cd6eab1c 4470 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4471 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4472 thumb2 = big_endian_target->using_thumb2();
4473 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4474 }
4475 else
4476 {
43d12afe 4477 const Target_arm<false>* little_endian_target =
b569affa 4478 Target_arm<false>::default_target();
cd6eab1c 4479 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4480 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4481 thumb2 = little_endian_target->using_thumb2();
4482 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4483 }
4484
a2c7281b 4485 int64_t branch_offset;
90cff06f
DK
4486 bool output_is_position_independent =
4487 parameters->options().output_is_position_independent();
b569affa
DK
4488 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4489 {
a2c7281b
DK
4490 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4491 // base address (instruction address + 4).
4492 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4493 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4494 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4495
b569affa
DK
4496 // Handle cases where:
4497 // - this call goes too far (different Thumb/Thumb2 max
4498 // distance)
4499 // - it's a Thumb->Arm call and blx is not available, or it's a
4500 // Thumb->Arm branch (not bl). A stub is needed in this case.
4501 if ((!thumb2
4502 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4503 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4504 || (thumb2
4505 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4506 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4507 || ((!target_is_thumb)
4508 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4509 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4510 {
4511 if (target_is_thumb)
4512 {
4513 // Thumb to thumb.
4514 if (!thumb_only)
4515 {
90cff06f 4516 stub_type = (output_is_position_independent
51938283 4517 || should_force_pic_veneer)
b569affa
DK
4518 // PIC stubs.
4519 ? ((may_use_blx
4520 && (r_type == elfcpp::R_ARM_THM_CALL))
4521 // V5T and above. Stub starts with ARM code, so
4522 // we must be able to switch mode before
4523 // reaching it, which is only possible for 'bl'
4524 // (ie R_ARM_THM_CALL relocation).
4525 ? arm_stub_long_branch_any_thumb_pic
4526 // On V4T, use Thumb code only.
4527 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4528
4529 // non-PIC stubs.
4530 : ((may_use_blx
4531 && (r_type == elfcpp::R_ARM_THM_CALL))
4532 ? arm_stub_long_branch_any_any // V5T and above.
4533 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4534 }
4535 else
4536 {
90cff06f 4537 stub_type = (output_is_position_independent
51938283 4538 || should_force_pic_veneer)
b569affa
DK
4539 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4540 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4541 }
4542 }
4543 else
4544 {
4545 // Thumb to arm.
2e702c99 4546
b569affa
DK
4547 // FIXME: We should check that the input section is from an
4548 // object that has interwork enabled.
4549
90cff06f 4550 stub_type = (output_is_position_independent
b569affa
DK
4551 || should_force_pic_veneer)
4552 // PIC stubs.
4553 ? ((may_use_blx
4554 && (r_type == elfcpp::R_ARM_THM_CALL))
4555 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4556 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4557
4558 // non-PIC stubs.
4559 : ((may_use_blx
4560 && (r_type == elfcpp::R_ARM_THM_CALL))
4561 ? arm_stub_long_branch_any_any // V5T and above.
4562 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4563
4564 // Handle v4t short branches.
4565 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4566 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4567 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4568 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4569 }
4570 }
4571 }
4572 else if (r_type == elfcpp::R_ARM_CALL
4573 || r_type == elfcpp::R_ARM_JUMP24
4574 || r_type == elfcpp::R_ARM_PLT32)
4575 {
a2c7281b 4576 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4577 if (target_is_thumb)
4578 {
4579 // Arm to thumb.
4580
4581 // FIXME: We should check that the input section is from an
4582 // object that has interwork enabled.
4583
4584 // We have an extra 2-bytes reach because of
4585 // the mode change (bit 24 (H) of BLX encoding).
4586 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4587 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4588 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4589 || (r_type == elfcpp::R_ARM_JUMP24)
4590 || (r_type == elfcpp::R_ARM_PLT32))
4591 {
90cff06f 4592 stub_type = (output_is_position_independent
b569affa
DK
4593 || should_force_pic_veneer)
4594 // PIC stubs.
4595 ? (may_use_blx
4596 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4597 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4598
4599 // non-PIC stubs.
4600 : (may_use_blx
4601 ? arm_stub_long_branch_any_any // V5T and above.
4602 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4603 }
4604 }
4605 else
4606 {
4607 // Arm to arm.
4608 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4609 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4610 {
90cff06f 4611 stub_type = (output_is_position_independent
b569affa
DK
4612 || should_force_pic_veneer)
4613 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4614 : arm_stub_long_branch_any_any; /// non-PIC.
4615 }
4616 }
4617 }
4618
4619 return stub_type;
4620}
4621
bb0d3eb0 4622// Cortex_a8_stub methods.
b569affa 4623
bb0d3eb0
DK
4624// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4625// I is the position of the instruction template in the stub template.
b569affa 4626
bb0d3eb0
DK
4627uint16_t
4628Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4629{
bb0d3eb0
DK
4630 // The only use of this is to copy condition code from a conditional
4631 // branch being worked around to the corresponding conditional branch in
4632 // to the stub.
4633 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4634 && i == 0);
4635 uint16_t data = this->stub_template()->insns()[i].data();
4636 gold_assert((data & 0xff00U) == 0xd000U);
4637 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4638 return data;
b569affa
DK
4639}
4640
4641// Stub_factory methods.
4642
4643Stub_factory::Stub_factory()
4644{
4645 // The instruction template sequences are declared as static
4646 // objects and initialized first time the constructor runs.
2e702c99 4647
b569affa
DK
4648 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4649 // to reach the stub if necessary.
4650 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4651 {
4652 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4653 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4654 // dcd R_ARM_ABS32(X)
b569affa 4655 };
2e702c99 4656
b569affa
DK
4657 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4658 // available.
4659 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4660 {
4661 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4662 Insn_template::arm_insn(0xe12fff1c), // bx ip
4663 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4664 // dcd R_ARM_ABS32(X)
b569affa 4665 };
2e702c99 4666
b569affa
DK
4667 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4668 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4669 {
4670 Insn_template::thumb16_insn(0xb401), // push {r0}
4671 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4672 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4673 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4674 Insn_template::thumb16_insn(0x4760), // bx ip
4675 Insn_template::thumb16_insn(0xbf00), // nop
4676 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4677 // dcd R_ARM_ABS32(X)
b569affa 4678 };
2e702c99 4679
b569affa
DK
4680 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4681 // allowed.
4682 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4683 {
4684 Insn_template::thumb16_insn(0x4778), // bx pc
4685 Insn_template::thumb16_insn(0x46c0), // nop
4686 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4687 Insn_template::arm_insn(0xe12fff1c), // bx ip
4688 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4689 // dcd R_ARM_ABS32(X)
b569affa 4690 };
2e702c99 4691
b569affa
DK
4692 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4693 // available.
4694 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4695 {
4696 Insn_template::thumb16_insn(0x4778), // bx pc
4697 Insn_template::thumb16_insn(0x46c0), // nop
4698 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4699 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4700 // dcd R_ARM_ABS32(X)
b569affa 4701 };
2e702c99 4702
b569affa
DK
4703 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4704 // one, when the destination is close enough.
4705 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4706 {
4707 Insn_template::thumb16_insn(0x4778), // bx pc
4708 Insn_template::thumb16_insn(0x46c0), // nop
4709 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4710 };
2e702c99 4711
b569affa
DK
4712 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4713 // blx to reach the stub if necessary.
4714 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4715 {
4716 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4717 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4718 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4719 // dcd R_ARM_REL32(X-4)
b569affa 4720 };
2e702c99 4721
b569affa
DK
4722 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4723 // blx to reach the stub if necessary. We can not add into pc;
4724 // it is not guaranteed to mode switch (different in ARMv6 and
4725 // ARMv7).
4726 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4727 {
4728 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4729 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4730 Insn_template::arm_insn(0xe12fff1c), // bx ip
4731 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4732 // dcd R_ARM_REL32(X)
b569affa 4733 };
2e702c99 4734
b569affa
DK
4735 // V4T ARM -> ARM long branch stub, PIC.
4736 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4737 {
4738 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4739 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4740 Insn_template::arm_insn(0xe12fff1c), // bx ip
4741 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4742 // dcd R_ARM_REL32(X)
b569affa 4743 };
2e702c99 4744
b569affa
DK
4745 // V4T Thumb -> ARM long branch stub, PIC.
4746 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4747 {
4748 Insn_template::thumb16_insn(0x4778), // bx pc
4749 Insn_template::thumb16_insn(0x46c0), // nop
4750 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4751 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4752 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4753 // dcd R_ARM_REL32(X)
b569affa 4754 };
2e702c99 4755
b569affa
DK
4756 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4757 // architectures.
4758 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4759 {
4760 Insn_template::thumb16_insn(0xb401), // push {r0}
4761 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4762 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4763 Insn_template::thumb16_insn(0x4484), // add ip, r0
4764 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4765 Insn_template::thumb16_insn(0x4760), // bx ip
4766 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4767 // dcd R_ARM_REL32(X)
b569affa 4768 };
2e702c99 4769
b569affa
DK
4770 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4771 // allowed.
4772 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4773 {
4774 Insn_template::thumb16_insn(0x4778), // bx pc
4775 Insn_template::thumb16_insn(0x46c0), // nop
4776 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4777 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4778 Insn_template::arm_insn(0xe12fff1c), // bx ip
4779 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4780 // dcd R_ARM_REL32(X)
b569affa 4781 };
2e702c99 4782
b569affa 4783 // Cortex-A8 erratum-workaround stubs.
2e702c99 4784
b569affa
DK
4785 // Stub used for conditional branches (which may be beyond +/-1MB away,
4786 // so we can't use a conditional branch to reach this stub).
2e702c99 4787
b569affa
DK
4788 // original code:
4789 //
4790 // b<cond> X
4791 // after:
4792 //
4793 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4794 {
4795 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4796 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4797 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4798 // b.w X
b569affa 4799 };
2e702c99 4800
b569affa 4801 // Stub used for b.w and bl.w instructions.
2e702c99 4802
b569affa
DK
4803 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4804 {
4805 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4806 };
2e702c99 4807
b569affa
DK
4808 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4809 {
4810 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4811 };
2e702c99 4812
b569affa
DK
4813 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4814 // instruction (which switches to ARM mode) to point to this stub. Jump to
4815 // the real destination using an ARM-mode branch.
bb0d3eb0 4816 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4817 {
4818 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4819 };
4820
a2162063
ILT
4821 // Stub used to provide an interworking for R_ARM_V4BX relocation
4822 // (bx r[n] instruction).
4823 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4824 {
4825 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4826 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4827 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4828 };
4829
b569affa
DK
4830 // Fill in the stub template look-up table. Stub templates are constructed
4831 // per instance of Stub_factory for fast look-up without locking
4832 // in a thread-enabled environment.
4833
4834 this->stub_templates_[arm_stub_none] =
4835 new Stub_template(arm_stub_none, NULL, 0);
4836
4837#define DEF_STUB(x) \
4838 do \
4839 { \
4840 size_t array_size \
4841 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4842 Stub_type type = arm_stub_##x; \
4843 this->stub_templates_[type] = \
4844 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4845 } \
4846 while (0);
4847
4848 DEF_STUBS
4849#undef DEF_STUB
4850}
4851
56ee5e00
DK
4852// Stub_table methods.
4853
9b547ce6 4854// Remove all Cortex-A8 stub.
56ee5e00
DK
4855
4856template<bool big_endian>
4857void
2fb7225c
DK
4858Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4859{
4860 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4861 p != this->cortex_a8_stubs_.end();
4862 ++p)
4863 delete p->second;
4864 this->cortex_a8_stubs_.clear();
4865}
4866
4867// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4868
4869template<bool big_endian>
4870void
4871Stub_table<big_endian>::relocate_stub(
4872 Stub* stub,
4873 const Relocate_info<32, big_endian>* relinfo,
4874 Target_arm<big_endian>* arm_target,
4875 Output_section* output_section,
4876 unsigned char* view,
4877 Arm_address address,
4878 section_size_type view_size)
56ee5e00 4879{
2ea97941 4880 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4881 if (stub_template->reloc_count() != 0)
4882 {
4883 // Adjust view to cover the stub only.
4884 section_size_type offset = stub->offset();
4885 section_size_type stub_size = stub_template->size();
4886 gold_assert(offset + stub_size <= view_size);
4887
4888 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4889 address + offset, stub_size);
4890 }
56ee5e00
DK
4891}
4892
2fb7225c
DK
4893// Relocate all stubs in this stub table.
4894
56ee5e00
DK
4895template<bool big_endian>
4896void
4897Stub_table<big_endian>::relocate_stubs(
4898 const Relocate_info<32, big_endian>* relinfo,
4899 Target_arm<big_endian>* arm_target,
2ea97941 4900 Output_section* output_section,
56ee5e00 4901 unsigned char* view,
2ea97941 4902 Arm_address address,
56ee5e00
DK
4903 section_size_type view_size)
4904{
4905 // If we are passed a view bigger than the stub table's. we need to
4906 // adjust the view.
2ea97941 4907 gold_assert(address == this->address()
56ee5e00
DK
4908 && (view_size
4909 == static_cast<section_size_type>(this->data_size())));
4910
2fb7225c
DK
4911 // Relocate all relocation stubs.
4912 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4913 p != this->reloc_stubs_.end();
4914 ++p)
4915 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4916 address, view_size);
4917
4918 // Relocate all Cortex-A8 stubs.
4919 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4920 p != this->cortex_a8_stubs_.end();
4921 ++p)
4922 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4923 address, view_size);
a2162063
ILT
4924
4925 // Relocate all ARM V4BX stubs.
4926 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4927 p != this->arm_v4bx_stubs_.end();
4928 ++p)
4929 {
4930 if (*p != NULL)
4931 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4932 address, view_size);
4933 }
2fb7225c
DK
4934}
4935
4936// Write out the stubs to file.
4937
4938template<bool big_endian>
4939void
4940Stub_table<big_endian>::do_write(Output_file* of)
4941{
4942 off_t offset = this->offset();
4943 const section_size_type oview_size =
4944 convert_to_section_size_type(this->data_size());
4945 unsigned char* const oview = of->get_output_view(offset, oview_size);
4946
4947 // Write relocation stubs.
56ee5e00
DK
4948 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4949 p != this->reloc_stubs_.end();
4950 ++p)
4951 {
4952 Reloc_stub* stub = p->second;
2fb7225c
DK
4953 Arm_address address = this->address() + stub->offset();
4954 gold_assert(address
4955 == align_address(address,
4956 stub->stub_template()->alignment()));
4957 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4958 big_endian);
56ee5e00 4959 }
2fb7225c
DK
4960
4961 // Write Cortex-A8 stubs.
4962 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4963 p != this->cortex_a8_stubs_.end();
4964 ++p)
4965 {
4966 Cortex_a8_stub* stub = p->second;
4967 Arm_address address = this->address() + stub->offset();
4968 gold_assert(address
4969 == align_address(address,
4970 stub->stub_template()->alignment()));
4971 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4972 big_endian);
4973 }
4974
a2162063
ILT
4975 // Write ARM V4BX relocation stubs.
4976 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4977 p != this->arm_v4bx_stubs_.end();
4978 ++p)
4979 {
4980 if (*p == NULL)
4981 continue;
4982
4983 Arm_address address = this->address() + (*p)->offset();
4984 gold_assert(address
4985 == align_address(address,
4986 (*p)->stub_template()->alignment()));
4987 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4988 big_endian);
4989 }
4990
2fb7225c 4991 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4992}
4993
2fb7225c
DK
4994// Update the data size and address alignment of the stub table at the end
4995// of a relaxation pass. Return true if either the data size or the
4996// alignment changed in this relaxation pass.
4997
4998template<bool big_endian>
4999bool
5000Stub_table<big_endian>::update_data_size_and_addralign()
5001{
2fb7225c 5002 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5003 off_t size = this->reloc_stubs_size_;
5004 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5005
5006 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5007 p != this->cortex_a8_stubs_.end();
5008 ++p)
5009 {
5010 const Stub_template* stub_template = p->second->stub_template();
5011 addralign = std::max(addralign, stub_template->alignment());
5012 size = (align_address(size, stub_template->alignment())
5013 + stub_template->size());
5014 }
5015
a2162063
ILT
5016 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5017 p != this->arm_v4bx_stubs_.end();
5018 ++p)
5019 {
5020 if (*p == NULL)
5021 continue;
5022
5023 const Stub_template* stub_template = (*p)->stub_template();
5024 addralign = std::max(addralign, stub_template->alignment());
5025 size = (align_address(size, stub_template->alignment())
5026 + stub_template->size());
5027 }
5028
2fb7225c
DK
5029 // Check if either data size or alignment changed in this pass.
5030 // Update prev_data_size_ and prev_addralign_. These will be used
5031 // as the current data size and address alignment for the next pass.
5032 bool changed = size != this->prev_data_size_;
2e702c99 5033 this->prev_data_size_ = size;
2fb7225c
DK
5034
5035 if (addralign != this->prev_addralign_)
5036 changed = true;
5037 this->prev_addralign_ = addralign;
5038
5039 return changed;
5040}
5041
5042// Finalize the stubs. This sets the offsets of the stubs within the stub
5043// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5044
5045template<bool big_endian>
5046void
2fb7225c 5047Stub_table<big_endian>::finalize_stubs()
56ee5e00 5048{
d099120c 5049 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5050 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5051 p != this->cortex_a8_stubs_.end();
5052 ++p)
5053 {
5054 Cortex_a8_stub* stub = p->second;
5055 const Stub_template* stub_template = stub->stub_template();
5056 uint64_t stub_addralign = stub_template->alignment();
5057 off = align_address(off, stub_addralign);
5058 stub->set_offset(off);
5059 off += stub_template->size();
5060
5061 // Mark input section so that we can determine later if a code section
5062 // needs the Cortex-A8 workaround quickly.
5063 Arm_relobj<big_endian>* arm_relobj =
5064 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5065 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5066 }
5067
a2162063
ILT
5068 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5069 p != this->arm_v4bx_stubs_.end();
5070 ++p)
5071 {
5072 if (*p == NULL)
5073 continue;
5074
5075 const Stub_template* stub_template = (*p)->stub_template();
5076 uint64_t stub_addralign = stub_template->alignment();
5077 off = align_address(off, stub_addralign);
5078 (*p)->set_offset(off);
5079 off += stub_template->size();
5080 }
5081
2fb7225c 5082 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5083}
5084
2fb7225c
DK
5085// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5086// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5087// of the address range seen by the linker.
56ee5e00
DK
5088
5089template<bool big_endian>
5090void
2fb7225c
DK
5091Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5092 Target_arm<big_endian>* arm_target,
5093 unsigned char* view,
5094 Arm_address view_address,
5095 section_size_type view_size)
56ee5e00 5096{
2fb7225c
DK
5097 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5098 for (Cortex_a8_stub_list::const_iterator p =
5099 this->cortex_a8_stubs_.lower_bound(view_address);
5100 ((p != this->cortex_a8_stubs_.end())
5101 && (p->first < (view_address + view_size)));
5102 ++p)
56ee5e00 5103 {
2fb7225c
DK
5104 // We do not store the THUMB bit in the LSB of either the branch address
5105 // or the stub offset. There is no need to strip the LSB.
5106 Arm_address branch_address = p->first;
5107 const Cortex_a8_stub* stub = p->second;
5108 Arm_address stub_address = this->address() + stub->offset();
5109
5110 // Offset of the branch instruction relative to this view.
5111 section_size_type offset =
5112 convert_to_section_size_type(branch_address - view_address);
5113 gold_assert((offset + 4) <= view_size);
5114
5115 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5116 view + offset, branch_address);
5117 }
56ee5e00
DK
5118}
5119
10ad9fe5
DK
5120// Arm_input_section methods.
5121
5122// Initialize an Arm_input_section.
5123
5124template<bool big_endian>
5125void
5126Arm_input_section<big_endian>::init()
5127{
2ea97941
ILT
5128 Relobj* relobj = this->relobj();
5129 unsigned int shndx = this->shndx();
10ad9fe5 5130
f625ae50
DK
5131 // We have to cache original size, alignment and contents to avoid locking
5132 // the original file.
6625d24e
DK
5133 this->original_addralign_ =
5134 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5135
5136 // This is not efficient but we expect only a small number of relaxed
5137 // input sections for stubs.
5138 section_size_type section_size;
5139 const unsigned char* section_contents =
5140 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5141 this->original_size_ =
5142 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5143
f625ae50
DK
5144 gold_assert(this->original_contents_ == NULL);
5145 this->original_contents_ = new unsigned char[section_size];
5146 memcpy(this->original_contents_, section_contents, section_size);
5147
10ad9fe5
DK
5148 // We want to make this look like the original input section after
5149 // output sections are finalized.
2ea97941
ILT
5150 Output_section* os = relobj->output_section(shndx);
5151 off_t offset = relobj->output_section_offset(shndx);
5152 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5153 this->set_address(os->address() + offset);
5154 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5155
5156 this->set_current_data_size(this->original_size_);
5157 this->finalize_data_size();
5158}
5159
5160template<bool big_endian>
5161void
5162Arm_input_section<big_endian>::do_write(Output_file* of)
5163{
5164 // We have to write out the original section content.
f625ae50
DK
5165 gold_assert(this->original_contents_ != NULL);
5166 of->write(this->offset(), this->original_contents_,
2e702c99 5167 this->original_size_);
10ad9fe5
DK
5168
5169 // If this owns a stub table and it is not empty, write it.
5170 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5171 this->stub_table_->write(of);
5172}
5173
5174// Finalize data size.
5175
5176template<bool big_endian>
5177void
5178Arm_input_section<big_endian>::set_final_data_size()
5179{
153e7da4
DK
5180 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5181
10ad9fe5
DK
5182 if (this->is_stub_table_owner())
5183 {
6625d24e 5184 this->stub_table_->finalize_data_size();
153e7da4 5185 off = align_address(off, this->stub_table_->addralign());
153e7da4 5186 off += this->stub_table_->data_size();
10ad9fe5 5187 }
153e7da4 5188 this->set_data_size(off);
10ad9fe5
DK
5189}
5190
5191// Reset address and file offset.
5192
5193template<bool big_endian>
5194void
5195Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5196{
5197 // Size of the original input section contents.
5198 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5199
5200 // If this is a stub table owner, account for the stub table size.
5201 if (this->is_stub_table_owner())
5202 {
2ea97941 5203 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5204
5205 // Reset the stub table's address and file offset. The
5206 // current data size for child will be updated after that.
5207 stub_table_->reset_address_and_file_offset();
5208 off = align_address(off, stub_table_->addralign());
2ea97941 5209 off += stub_table->current_data_size();
10ad9fe5
DK
5210 }
5211
5212 this->set_current_data_size(off);
5213}
5214
af2cdeae
DK
5215// Arm_exidx_cantunwind methods.
5216
7296d933 5217// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5218
5219template<bool big_endian>
5220void
5221Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5222{
5223 off_t offset = this->offset();
5224 const section_size_type oview_size = 8;
5225 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5226
af2cdeae
DK
5227 Output_section* os = this->relobj_->output_section(this->shndx_);
5228 gold_assert(os != NULL);
5229
5230 Arm_relobj<big_endian>* arm_relobj =
5231 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5232 Arm_address output_offset =
5233 arm_relobj->get_output_section_offset(this->shndx_);
5234 Arm_address section_start;
f625ae50
DK
5235 section_size_type section_size;
5236
5237 // Find out the end of the text section referred by this.
7296d933 5238 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5239 {
5240 section_start = os->address() + output_offset;
5241 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5242 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5243 gold_assert(exidx_input_section != NULL);
5244 section_size =
5245 convert_to_section_size_type(exidx_input_section->text_size());
5246 }
af2cdeae
DK
5247 else
5248 {
5249 // Currently this only happens for a relaxed section.
5250 const Output_relaxed_input_section* poris =
5251 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5252 gold_assert(poris != NULL);
5253 section_start = poris->address();
f625ae50 5254 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5255 }
5256
5257 // We always append this to the end of an EXIDX section.
f625ae50 5258 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5259
5260 // Write out the entry. The first word either points to the beginning
5261 // or after the end of a text section. The second word is the special
5262 // EXIDX_CANTUNWIND value.
e7eca48c 5263 uint32_t prel31_offset = output_address - this->address();
bef2b434 5264 if (Bits<31>::has_overflow32(offset))
e7eca48c 5265 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5266 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5267 prel31_offset & 0x7fffffffU);
5268 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5269 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5270
5271 of->write_output_view(this->offset(), oview_size, oview);
5272}
5273
5274// Arm_exidx_merged_section methods.
5275
5276// Constructor for Arm_exidx_merged_section.
5277// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5278// SECTION_OFFSET_MAP points to a section offset map describing how
5279// parts of the input section are mapped to output. DELETED_BYTES is
5280// the number of bytes deleted from the EXIDX input section.
5281
5282Arm_exidx_merged_section::Arm_exidx_merged_section(
5283 const Arm_exidx_input_section& exidx_input_section,
5284 const Arm_exidx_section_offset_map& section_offset_map,
5285 uint32_t deleted_bytes)
5286 : Output_relaxed_input_section(exidx_input_section.relobj(),
5287 exidx_input_section.shndx(),
5288 exidx_input_section.addralign()),
5289 exidx_input_section_(exidx_input_section),
5290 section_offset_map_(section_offset_map)
5291{
f625ae50
DK
5292 // If we retain or discard the whole EXIDX input section, we would
5293 // not be here.
5294 gold_assert(deleted_bytes != 0
5295 && deleted_bytes != this->exidx_input_section_.size());
5296
af2cdeae 5297 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5298 uint32_t size = exidx_input_section.size() - deleted_bytes;
5299 this->set_data_size(size);
af2cdeae 5300 this->fix_data_size();
f625ae50
DK
5301
5302 // Allocate buffer for section contents and build contents.
5303 this->section_contents_ = new unsigned char[size];
5304}
5305
5306// Build the contents of a merged EXIDX output section.
5307
5308void
5309Arm_exidx_merged_section::build_contents(
5310 const unsigned char* original_contents,
5311 section_size_type original_size)
5312{
5313 // Go over spans of input offsets and write only those that are not
5314 // discarded.
5315 section_offset_type in_start = 0;
5316 section_offset_type out_start = 0;
5317 section_offset_type in_max =
5318 convert_types<section_offset_type>(original_size);
5319 section_offset_type out_max =
5320 convert_types<section_offset_type>(this->data_size());
5321 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5322 this->section_offset_map_.begin();
f625ae50
DK
5323 p != this->section_offset_map_.end();
5324 ++p)
5325 {
5326 section_offset_type in_end = p->first;
5327 gold_assert(in_end >= in_start);
5328 section_offset_type out_end = p->second;
5329 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5330 if (out_end != -1)
5331 {
5332 size_t out_chunk_size =
5333 convert_types<size_t>(out_end - out_start + 1);
5334
5335 gold_assert(out_chunk_size == in_chunk_size
5336 && in_end < in_max && out_end < out_max);
5337
5338 memcpy(this->section_contents_ + out_start,
5339 original_contents + in_start,
5340 out_chunk_size);
5341 out_start += out_chunk_size;
5342 }
5343 in_start += in_chunk_size;
5344 }
af2cdeae
DK
5345}
5346
5347// Given an input OBJECT, an input section index SHNDX within that
5348// object, and an OFFSET relative to the start of that input
5349// section, return whether or not the corresponding offset within
5350// the output section is known. If this function returns true, it
5351// sets *POUTPUT to the output offset. The value -1 indicates that
5352// this input offset is being discarded.
5353
5354bool
5355Arm_exidx_merged_section::do_output_offset(
5356 const Relobj* relobj,
5357 unsigned int shndx,
5358 section_offset_type offset,
5359 section_offset_type* poutput) const
5360{
5361 // We only handle offsets for the original EXIDX input section.
5362 if (relobj != this->exidx_input_section_.relobj()
5363 || shndx != this->exidx_input_section_.shndx())
5364 return false;
5365
c7f3c371
DK
5366 section_offset_type section_size =
5367 convert_types<section_offset_type>(this->exidx_input_section_.size());
5368 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5369 // Input offset is out of valid range.
5370 *poutput = -1;
5371 else
5372 {
5373 // We need to look up the section offset map to determine the output
5374 // offset. Find the reference point in map that is first offset
5375 // bigger than or equal to this offset.
5376 Arm_exidx_section_offset_map::const_iterator p =
5377 this->section_offset_map_.lower_bound(offset);
5378
5379 // The section offset maps are build such that this should not happen if
5380 // input offset is in the valid range.
5381 gold_assert(p != this->section_offset_map_.end());
5382
5383 // We need to check if this is dropped.
5384 section_offset_type ref = p->first;
5385 section_offset_type mapped_ref = p->second;
5386
5387 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5388 // Offset is present in output.
5389 *poutput = mapped_ref + (offset - ref);
5390 else
5391 // Offset is discarded owing to EXIDX entry merging.
5392 *poutput = -1;
5393 }
2e702c99 5394
af2cdeae
DK
5395 return true;
5396}
5397
5398// Write this to output file OF.
5399
5400void
5401Arm_exidx_merged_section::do_write(Output_file* of)
5402{
af2cdeae
DK
5403 off_t offset = this->offset();
5404 const section_size_type oview_size = this->data_size();
5405 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5406
af2cdeae
DK
5407 Output_section* os = this->relobj()->output_section(this->shndx());
5408 gold_assert(os != NULL);
5409
f625ae50 5410 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5411 of->write_output_view(this->offset(), oview_size, oview);
5412}
5413
80d0d023
DK
5414// Arm_exidx_fixup methods.
5415
5416// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5417// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5418// points to the end of the last seen EXIDX section.
5419
5420void
5421Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5422{
5423 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5424 && this->last_input_section_ != NULL)
5425 {
5426 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5427 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5428 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5429 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5430 this->exidx_output_section_->add_output_section_data(cantunwind);
5431 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5432 }
5433}
5434
5435// Process an EXIDX section entry in input. Return whether this entry
5436// can be deleted in the output. SECOND_WORD in the second word of the
5437// EXIDX entry.
5438
5439bool
5440Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5441{
5442 bool delete_entry;
5443 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5444 {
5445 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5446 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5447 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5448 }
5449 else if ((second_word & 0x80000000) != 0)
5450 {
5451 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5452 delete_entry = (merge_exidx_entries_
5453 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5454 && this->last_inlined_entry_ == second_word);
5455 this->last_unwind_type_ = UT_INLINED_ENTRY;
5456 this->last_inlined_entry_ = second_word;
5457 }
5458 else
5459 {
5460 // Normal table entry. In theory we could merge these too,
5461 // but duplicate entries are likely to be much less common.
5462 delete_entry = false;
5463 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5464 }
5465 return delete_entry;
5466}
5467
5468// Update the current section offset map during EXIDX section fix-up.
5469// If there is no map, create one. INPUT_OFFSET is the offset of a
5470// reference point, DELETED_BYTES is the number of deleted by in the
5471// section so far. If DELETE_ENTRY is true, the reference point and
5472// all offsets after the previous reference point are discarded.
5473
5474void
5475Arm_exidx_fixup::update_offset_map(
5476 section_offset_type input_offset,
5477 section_size_type deleted_bytes,
5478 bool delete_entry)
5479{
5480 if (this->section_offset_map_ == NULL)
5481 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5482 section_offset_type output_offset;
5483 if (delete_entry)
5484 output_offset = Arm_exidx_input_section::invalid_offset;
5485 else
5486 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5487 (*this->section_offset_map_)[input_offset] = output_offset;
5488}
5489
5490// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5491// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5492// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5493// If some entries are merged, also store a pointer to a newly created
5494// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5495// owns the map and is responsible for releasing it after use.
80d0d023
DK
5496
5497template<bool big_endian>
5498uint32_t
5499Arm_exidx_fixup::process_exidx_section(
5500 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5501 const unsigned char* section_contents,
5502 section_size_type section_size,
80d0d023
DK
5503 Arm_exidx_section_offset_map** psection_offset_map)
5504{
5505 Relobj* relobj = exidx_input_section->relobj();
5506 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5507
5508 if ((section_size % 8) != 0)
5509 {
5510 // Something is wrong with this section. Better not touch it.
5511 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5512 relobj->name().c_str(), shndx);
5513 this->last_input_section_ = exidx_input_section;
5514 this->last_unwind_type_ = UT_NONE;
5515 return 0;
5516 }
2e702c99 5517
80d0d023
DK
5518 uint32_t deleted_bytes = 0;
5519 bool prev_delete_entry = false;
5520 gold_assert(this->section_offset_map_ == NULL);
5521
5522 for (section_size_type i = 0; i < section_size; i += 8)
5523 {
5524 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5525 const Valtype* wv =
5526 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5527 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5528
5529 bool delete_entry = this->process_exidx_entry(second_word);
5530
5531 // Entry deletion causes changes in output offsets. We use a std::map
5532 // to record these. And entry (x, y) means input offset x
5533 // is mapped to output offset y. If y is invalid_offset, then x is
5534 // dropped in the output. Because of the way std::map::lower_bound
5535 // works, we record the last offset in a region w.r.t to keeping or
5536 // dropping. If there is no entry (x0, y0) for an input offset x0,
5537 // the output offset y0 of it is determined by the output offset y1 of
5538 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5539 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5540 // y0 is also -1.
5541 if (delete_entry != prev_delete_entry && i != 0)
5542 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5543
5544 // Update total deleted bytes for this entry.
5545 if (delete_entry)
5546 deleted_bytes += 8;
5547
5548 prev_delete_entry = delete_entry;
5549 }
2e702c99 5550
80d0d023
DK
5551 // If section offset map is not NULL, make an entry for the end of
5552 // section.
5553 if (this->section_offset_map_ != NULL)
5554 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5555
5556 *psection_offset_map = this->section_offset_map_;
5557 this->section_offset_map_ = NULL;
5558 this->last_input_section_ = exidx_input_section;
2e702c99 5559
546c7457
DK
5560 // Set the first output text section so that we can link the EXIDX output
5561 // section to it. Ignore any EXIDX input section that is completely merged.
5562 if (this->first_output_text_section_ == NULL
5563 && deleted_bytes != section_size)
5564 {
5565 unsigned int link = exidx_input_section->link();
5566 Output_section* os = relobj->output_section(link);
5567 gold_assert(os != NULL);
5568 this->first_output_text_section_ = os;
5569 }
5570
80d0d023
DK
5571 return deleted_bytes;
5572}
5573
07f508a2
DK
5574// Arm_output_section methods.
5575
5576// Create a stub group for input sections from BEGIN to END. OWNER
5577// points to the input section to be the owner a new stub table.
5578
5579template<bool big_endian>
5580void
5581Arm_output_section<big_endian>::create_stub_group(
5582 Input_section_list::const_iterator begin,
5583 Input_section_list::const_iterator end,
5584 Input_section_list::const_iterator owner,
5585 Target_arm<big_endian>* target,
f625ae50
DK
5586 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5587 const Task* task)
07f508a2 5588{
2b328d4e
DK
5589 // We use a different kind of relaxed section in an EXIDX section.
5590 // The static casting from Output_relaxed_input_section to
5591 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5592 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5593 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5594
07f508a2
DK
5595 // Currently we convert ordinary input sections into relaxed sections only
5596 // at this point but we may want to support creating relaxed input section
5597 // very early. So we check here to see if owner is already a relaxed
5598 // section.
2e702c99 5599
07f508a2
DK
5600 Arm_input_section<big_endian>* arm_input_section;
5601 if (owner->is_relaxed_input_section())
5602 {
5603 arm_input_section =
5604 Arm_input_section<big_endian>::as_arm_input_section(
5605 owner->relaxed_input_section());
5606 }
5607 else
5608 {
5609 gold_assert(owner->is_input_section());
f625ae50
DK
5610 // Create a new relaxed input section. We need to lock the original
5611 // file.
5612 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5613 arm_input_section =
5614 target->new_arm_input_section(owner->relobj(), owner->shndx());
5615 new_relaxed_sections->push_back(arm_input_section);
5616 }
5617
5618 // Create a stub table.
2ea97941 5619 Stub_table<big_endian>* stub_table =
07f508a2
DK
5620 target->new_stub_table(arm_input_section);
5621
2ea97941 5622 arm_input_section->set_stub_table(stub_table);
2e702c99 5623
07f508a2
DK
5624 Input_section_list::const_iterator p = begin;
5625 Input_section_list::const_iterator prev_p;
5626
5627 // Look for input sections or relaxed input sections in [begin ... end].
5628 do
5629 {
5630 if (p->is_input_section() || p->is_relaxed_input_section())
5631 {
5632 // The stub table information for input sections live
5633 // in their objects.
5634 Arm_relobj<big_endian>* arm_relobj =
5635 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5636 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5637 }
5638 prev_p = p++;
5639 }
5640 while (prev_p != end);
5641}
5642
5643// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5644// of stub groups. We grow a stub group by adding input section until the
5645// size is just below GROUP_SIZE. The last input section will be converted
5646// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5647// input section after the stub table, effectively double the group size.
2e702c99 5648//
07f508a2
DK
5649// This is similar to the group_sections() function in elf32-arm.c but is
5650// implemented differently.
5651
5652template<bool big_endian>
5653void
5654Arm_output_section<big_endian>::group_sections(
5655 section_size_type group_size,
5656 bool stubs_always_after_branch,
f625ae50
DK
5657 Target_arm<big_endian>* target,
5658 const Task* task)
07f508a2 5659{
07f508a2
DK
5660 // States for grouping.
5661 typedef enum
5662 {
5663 // No group is being built.
5664 NO_GROUP,
5665 // A group is being built but the stub table is not found yet.
5666 // We keep group a stub group until the size is just under GROUP_SIZE.
5667 // The last input section in the group will be used as the stub table.
5668 FINDING_STUB_SECTION,
5669 // A group is being built and we have already found a stub table.
5670 // We enter this state to grow a stub group by adding input section
5671 // after the stub table. This effectively doubles the group size.
5672 HAS_STUB_SECTION
5673 } State;
5674
5675 // Any newly created relaxed sections are stored here.
5676 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5677
5678 State state = NO_GROUP;
5679 section_size_type off = 0;
5680 section_size_type group_begin_offset = 0;
5681 section_size_type group_end_offset = 0;
5682 section_size_type stub_table_end_offset = 0;
5683 Input_section_list::const_iterator group_begin =
5684 this->input_sections().end();
2ea97941 5685 Input_section_list::const_iterator stub_table =
07f508a2
DK
5686 this->input_sections().end();
5687 Input_section_list::const_iterator group_end = this->input_sections().end();
5688 for (Input_section_list::const_iterator p = this->input_sections().begin();
5689 p != this->input_sections().end();
5690 ++p)
5691 {
5692 section_size_type section_begin_offset =
5693 align_address(off, p->addralign());
5694 section_size_type section_end_offset =
2e702c99
RM
5695 section_begin_offset + p->data_size();
5696
9b547ce6 5697 // Check to see if we should group the previously seen sections.
e9bbb538 5698 switch (state)
07f508a2
DK
5699 {
5700 case NO_GROUP:
5701 break;
5702
5703 case FINDING_STUB_SECTION:
5704 // Adding this section makes the group larger than GROUP_SIZE.
5705 if (section_end_offset - group_begin_offset >= group_size)
5706 {
5707 if (stubs_always_after_branch)
2e702c99 5708 {
07f508a2
DK
5709 gold_assert(group_end != this->input_sections().end());
5710 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5711 target, &new_relaxed_sections,
5712 task);
07f508a2
DK
5713 state = NO_GROUP;
5714 }
5715 else
5716 {
5717 // But wait, there's more! Input sections up to
5718 // stub_group_size bytes after the stub table can be
5719 // handled by it too.
5720 state = HAS_STUB_SECTION;
2ea97941 5721 stub_table = group_end;
07f508a2
DK
5722 stub_table_end_offset = group_end_offset;
5723 }
5724 }
5725 break;
5726
5727 case HAS_STUB_SECTION:
5728 // Adding this section makes the post stub-section group larger
5729 // than GROUP_SIZE.
5730 if (section_end_offset - stub_table_end_offset >= group_size)
5731 {
5732 gold_assert(group_end != this->input_sections().end());
2ea97941 5733 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5734 target, &new_relaxed_sections, task);
07f508a2
DK
5735 state = NO_GROUP;
5736 }
5737 break;
5738
5739 default:
5740 gold_unreachable();
2e702c99 5741 }
07f508a2
DK
5742
5743 // If we see an input section and currently there is no group, start
f625ae50
DK
5744 // a new one. Skip any empty sections. We look at the data size
5745 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5746 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5747 && (p->data_size() != 0))
07f508a2
DK
5748 {
5749 if (state == NO_GROUP)
5750 {
5751 state = FINDING_STUB_SECTION;
5752 group_begin = p;
5753 group_begin_offset = section_begin_offset;
5754 }
5755
5756 // Keep track of the last input section seen.
5757 group_end = p;
5758 group_end_offset = section_end_offset;
5759 }
5760
5761 off = section_end_offset;
5762 }
5763
5764 // Create a stub group for any ungrouped sections.
5765 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5766 {
5767 gold_assert(group_end != this->input_sections().end());
5768 this->create_stub_group(group_begin, group_end,
5769 (state == FINDING_STUB_SECTION
5770 ? group_end
2ea97941 5771 : stub_table),
f625ae50 5772 target, &new_relaxed_sections, task);
07f508a2
DK
5773 }
5774
5775 // Convert input section into relaxed input section in a batch.
5776 if (!new_relaxed_sections.empty())
5777 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5778
5779 // Update the section offsets
5780 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5781 {
5782 Arm_relobj<big_endian>* arm_relobj =
5783 Arm_relobj<big_endian>::as_arm_relobj(
5784 new_relaxed_sections[i]->relobj());
2ea97941 5785 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5786 // Tell Arm_relobj that this input section is converted.
2ea97941 5787 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5788 }
5789}
5790
2b328d4e
DK
5791// Append non empty text sections in this to LIST in ascending
5792// order of their position in this.
5793
5794template<bool big_endian>
5795void
5796Arm_output_section<big_endian>::append_text_sections_to_list(
5797 Text_section_list* list)
5798{
2b328d4e
DK
5799 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5800
5801 for (Input_section_list::const_iterator p = this->input_sections().begin();
5802 p != this->input_sections().end();
5803 ++p)
5804 {
5805 // We only care about plain or relaxed input sections. We also
5806 // ignore any merged sections.
a60af0db 5807 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5808 list->push_back(Text_section_list::value_type(p->relobj(),
5809 p->shndx()));
5810 }
5811}
5812
5813template<bool big_endian>
5814void
5815Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5816 Layout* layout,
2b328d4e 5817 const Text_section_list& sorted_text_sections,
85fdf906 5818 Symbol_table* symtab,
f625ae50
DK
5819 bool merge_exidx_entries,
5820 const Task* task)
2b328d4e
DK
5821{
5822 // We should only do this for the EXIDX output section.
5823 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5824
5825 // We don't want the relaxation loop to undo these changes, so we discard
5826 // the current saved states and take another one after the fix-up.
5827 this->discard_states();
5828
5829 // Remove all input sections.
5830 uint64_t address = this->address();
6625d24e
DK
5831 typedef std::list<Output_section::Input_section> Input_section_list;
5832 Input_section_list input_sections;
2b328d4e
DK
5833 this->reset_address_and_file_offset();
5834 this->get_input_sections(address, std::string(""), &input_sections);
5835
5836 if (!this->input_sections().empty())
5837 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5838
2b328d4e
DK
5839 // Go through all the known input sections and record them.
5840 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5841 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5842 Section_id_hash> Text_to_exidx_map;
5843 Text_to_exidx_map text_to_exidx_map;
5844 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5845 p != input_sections.end();
5846 ++p)
5847 {
5848 // This should never happen. At this point, we should only see
5849 // plain EXIDX input sections.
5850 gold_assert(!p->is_relaxed_input_section());
6625d24e 5851 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5852 }
5853
85fdf906 5854 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5855
5856 // Go over the sorted text sections.
6625d24e 5857 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5858 Section_id_set processed_input_sections;
5859 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5860 p != sorted_text_sections.end();
5861 ++p)
5862 {
5863 Relobj* relobj = p->first;
5864 unsigned int shndx = p->second;
5865
5866 Arm_relobj<big_endian>* arm_relobj =
5867 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5868 const Arm_exidx_input_section* exidx_input_section =
5869 arm_relobj->exidx_input_section_by_link(shndx);
5870
131687b4
DK
5871 // If this text section has no EXIDX section or if the EXIDX section
5872 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5873 // of the last seen EXIDX section.
5874 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5875 {
5876 exidx_fixup.add_exidx_cantunwind_as_needed();
5877 continue;
5878 }
5879
5880 Relobj* exidx_relobj = exidx_input_section->relobj();
5881 unsigned int exidx_shndx = exidx_input_section->shndx();
5882 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5883 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5884 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5885 {
5886 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5887 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5888 // issue a warning instead. We assume the user knows what he
5889 // or she is doing. Otherwise, this is an error.
5890 if (layout->script_options()->saw_sections_clause())
5891 gold_warning(_("unwinding may not work because EXIDX input section"
5892 " %u of %s is not in EXIDX output section"),
5893 exidx_shndx, exidx_relobj->name().c_str());
5894 else
5895 gold_error(_("unwinding may not work because EXIDX input section"
5896 " %u of %s is not in EXIDX output section"),
5897 exidx_shndx, exidx_relobj->name().c_str());
5898
2b328d4e
DK
5899 exidx_fixup.add_exidx_cantunwind_as_needed();
5900 continue;
5901 }
5902
f625ae50
DK
5903 // We need to access the contents of the EXIDX section, lock the
5904 // object here.
5905 Task_lock_obj<Object> tl(task, exidx_relobj);
5906 section_size_type exidx_size;
5907 const unsigned char* exidx_contents =
2e702c99 5908 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5909
2b328d4e
DK
5910 // Fix up coverage and append input section to output data list.
5911 Arm_exidx_section_offset_map* section_offset_map = NULL;
5912 uint32_t deleted_bytes =
2e702c99 5913 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5914 exidx_contents,
5915 exidx_size,
2b328d4e
DK
5916 &section_offset_map);
5917
5918 if (deleted_bytes == exidx_input_section->size())
5919 {
5920 // The whole EXIDX section got merged. Remove it from output.
5921 gold_assert(section_offset_map == NULL);
5922 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5923
5924 // All local symbols defined in this input section will be dropped.
5925 // We need to adjust output local symbol count.
5926 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5927 }
5928 else if (deleted_bytes > 0)
5929 {
5930 // Some entries are merged. We need to convert this EXIDX input
5931 // section into a relaxed section.
5932 gold_assert(section_offset_map != NULL);
f625ae50 5933
2b328d4e
DK
5934 Arm_exidx_merged_section* merged_section =
5935 new Arm_exidx_merged_section(*exidx_input_section,
5936 *section_offset_map, deleted_bytes);
f625ae50
DK
5937 merged_section->build_contents(exidx_contents, exidx_size);
5938
d06fb4d1
DK
5939 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5940 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5941 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5942
5943 // All local symbols defined in discarded portions of this input
5944 // section will be dropped. We need to adjust output local symbol
5945 // count.
5946 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5947 }
5948 else
5949 {
5950 // Just add back the EXIDX input section.
5951 gold_assert(section_offset_map == NULL);
6625d24e
DK
5952 const Output_section::Input_section* pis = iter->second;
5953 gold_assert(pis->is_input_section());
5954 this->add_script_input_section(*pis);
2b328d4e
DK
5955 }
5956
2e702c99 5957 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
5958 }
5959
5960 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5961 exidx_fixup.add_exidx_cantunwind_as_needed();
5962
5963 // Remove any known EXIDX input sections that are not processed.
6625d24e 5964 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5965 p != input_sections.end();
5966 ++p)
5967 {
5968 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5969 == processed_input_sections.end())
5970 {
131687b4
DK
5971 // We discard a known EXIDX section because its linked
5972 // text section has been folded by ICF. We also discard an
5973 // EXIDX section with error, the output does not matter in this
5974 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5975 Arm_relobj<big_endian>* arm_relobj =
5976 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5977 const Arm_exidx_input_section* exidx_input_section =
5978 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5979 gold_assert(exidx_input_section != NULL);
131687b4
DK
5980 if (!exidx_input_section->has_errors())
5981 {
5982 unsigned int text_shndx = exidx_input_section->link();
5983 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5984 }
2b328d4e 5985
04ceb17c
DK
5986 // Remove this from link. We also need to recount the
5987 // local symbols.
2b328d4e 5988 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5989 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5990 }
5991 }
2e702c99 5992
546c7457
DK
5993 // Link exidx output section to the first seen output section and
5994 // set correct entry size.
5995 this->set_link_section(exidx_fixup.first_output_text_section());
5996 this->set_entsize(8);
5997
2b328d4e
DK
5998 // Make changes permanent.
5999 this->save_states();
6000 this->set_section_offsets_need_adjustment();
6001}
6002
131687b4
DK
6003// Link EXIDX output sections to text output sections.
6004
6005template<bool big_endian>
6006void
6007Arm_output_section<big_endian>::set_exidx_section_link()
6008{
6009 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6010 if (!this->input_sections().empty())
6011 {
6012 Input_section_list::const_iterator p = this->input_sections().begin();
6013 Arm_relobj<big_endian>* arm_relobj =
6014 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6015 unsigned exidx_shndx = p->shndx();
6016 const Arm_exidx_input_section* exidx_input_section =
6017 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6018 gold_assert(exidx_input_section != NULL);
6019 unsigned int text_shndx = exidx_input_section->link();
6020 Output_section* os = arm_relobj->output_section(text_shndx);
6021 this->set_link_section(os);
6022 }
6023}
6024
8ffa3667
DK
6025// Arm_relobj methods.
6026
cf846138
DK
6027// Determine if an input section is scannable for stub processing. SHDR is
6028// the header of the section and SHNDX is the section index. OS is the output
6029// section for the input section and SYMTAB is the global symbol table used to
6030// look up ICF information.
6031
6032template<bool big_endian>
6033bool
6034Arm_relobj<big_endian>::section_is_scannable(
6035 const elfcpp::Shdr<32, big_endian>& shdr,
6036 unsigned int shndx,
6037 const Output_section* os,
ca09d69a 6038 const Symbol_table* symtab)
cf846138
DK
6039{
6040 // Skip any empty sections, unallocated sections or sections whose
6041 // type are not SHT_PROGBITS.
6042 if (shdr.get_sh_size() == 0
6043 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6044 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6045 return false;
6046
6047 // Skip any discarded or ICF'ed sections.
6048 if (os == NULL || symtab->is_section_folded(this, shndx))
6049 return false;
6050
6051 // If this requires special offset handling, check to see if it is
6052 // a relaxed section. If this is not, then it is a merged section that
6053 // we cannot handle.
6054 if (this->is_output_section_offset_invalid(shndx))
6055 {
6056 const Output_relaxed_input_section* poris =
6057 os->find_relaxed_input_section(this, shndx);
6058 if (poris == NULL)
6059 return false;
6060 }
6061
6062 return true;
6063}
6064
44272192
DK
6065// Determine if we want to scan the SHNDX-th section for relocation stubs.
6066// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6067
6068template<bool big_endian>
6069bool
6070Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6071 const elfcpp::Shdr<32, big_endian>& shdr,
6072 const Relobj::Output_sections& out_sections,
ca09d69a 6073 const Symbol_table* symtab,
2b328d4e 6074 const unsigned char* pshdrs)
44272192
DK
6075{
6076 unsigned int sh_type = shdr.get_sh_type();
6077 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6078 return false;
6079
6080 // Ignore empty section.
6081 off_t sh_size = shdr.get_sh_size();
6082 if (sh_size == 0)
6083 return false;
6084
44272192
DK
6085 // Ignore reloc section with unexpected symbol table. The
6086 // error will be reported in the final link.
6087 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6088 return false;
6089
b521dfe4
DK
6090 unsigned int reloc_size;
6091 if (sh_type == elfcpp::SHT_REL)
6092 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6093 else
6094 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6095
6096 // Ignore reloc section with unexpected entsize or uneven size.
6097 // The error will be reported in the final link.
6098 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6099 return false;
6100
cf846138
DK
6101 // Ignore reloc section with bad info. This error will be
6102 // reported in the final link.
6103 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6104 if (index >= this->shnum())
6105 return false;
6106
6107 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6108 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6109 return this->section_is_scannable(text_shdr, index,
6110 out_sections[index], symtab);
44272192
DK
6111}
6112
cb1be87e
DK
6113// Return the output address of either a plain input section or a relaxed
6114// input section. SHNDX is the section index. We define and use this
6115// instead of calling Output_section::output_address because that is slow
6116// for large output.
6117
6118template<bool big_endian>
6119Arm_address
6120Arm_relobj<big_endian>::simple_input_section_output_address(
6121 unsigned int shndx,
6122 Output_section* os)
6123{
6124 if (this->is_output_section_offset_invalid(shndx))
6125 {
6126 const Output_relaxed_input_section* poris =
6127 os->find_relaxed_input_section(this, shndx);
6128 // We do not handle merged sections here.
6129 gold_assert(poris != NULL);
6130 return poris->address();
6131 }
6132 else
6133 return os->address() + this->get_output_section_offset(shndx);
6134}
6135
44272192
DK
6136// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6137// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6138
6139template<bool big_endian>
6140bool
6141Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6142 const elfcpp::Shdr<32, big_endian>& shdr,
6143 unsigned int shndx,
6144 Output_section* os,
6145 const Symbol_table* symtab)
6146{
cf846138 6147 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6148 return false;
6149
44272192
DK
6150 // If the section does not cross any 4K-boundaries, it does not need to
6151 // be scanned.
cb1be87e 6152 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6153 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6154 return false;
6155
6156 return true;
6157}
6158
6159// Scan a section for Cortex-A8 workaround.
6160
6161template<bool big_endian>
6162void
6163Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6164 const elfcpp::Shdr<32, big_endian>& shdr,
6165 unsigned int shndx,
6166 Output_section* os,
6167 Target_arm<big_endian>* arm_target)
6168{
c8761b9a
DK
6169 // Look for the first mapping symbol in this section. It should be
6170 // at (shndx, 0).
6171 Mapping_symbol_position section_start(shndx, 0);
6172 typename Mapping_symbols_info::const_iterator p =
6173 this->mapping_symbols_info_.lower_bound(section_start);
6174
6175 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6176 // section. Issue a warning if section is marked as containing
6177 // instructions.
c8761b9a 6178 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6179 {
6180 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6181 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6182 "erratum because it has no mapping symbols."),
6183 shndx, this->name().c_str());
6184 return;
6185 }
c8761b9a 6186
cb1be87e
DK
6187 Arm_address output_address =
6188 this->simple_input_section_output_address(shndx, os);
44272192
DK
6189
6190 // Get the section contents.
6191 section_size_type input_view_size = 0;
6192 const unsigned char* input_view =
6193 this->section_contents(shndx, &input_view_size, false);
6194
6195 // We need to go through the mapping symbols to determine what to
6196 // scan. There are two reasons. First, we should look at THUMB code and
6197 // THUMB code only. Second, we only want to look at the 4K-page boundary
6198 // to speed up the scanning.
2e702c99 6199
44272192
DK
6200 while (p != this->mapping_symbols_info_.end()
6201 && p->first.first == shndx)
6202 {
6203 typename Mapping_symbols_info::const_iterator next =
6204 this->mapping_symbols_info_.upper_bound(p->first);
6205
6206 // Only scan part of a section with THUMB code.
6207 if (p->second == 't')
6208 {
6209 // Determine the end of this range.
6210 section_size_type span_start =
6211 convert_to_section_size_type(p->first.second);
6212 section_size_type span_end;
6213 if (next != this->mapping_symbols_info_.end()
6214 && next->first.first == shndx)
6215 span_end = convert_to_section_size_type(next->first.second);
6216 else
6217 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6218
44272192
DK
6219 if (((span_start + output_address) & ~0xfffUL)
6220 != ((span_end + output_address - 1) & ~0xfffUL))
6221 {
6222 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6223 span_start, span_end,
6224 input_view,
6225 output_address);
6226 }
6227 }
6228
2e702c99 6229 p = next;
44272192
DK
6230 }
6231}
6232
8ffa3667
DK
6233// Scan relocations for stub generation.
6234
6235template<bool big_endian>
6236void
6237Arm_relobj<big_endian>::scan_sections_for_stubs(
6238 Target_arm<big_endian>* arm_target,
6239 const Symbol_table* symtab,
2ea97941 6240 const Layout* layout)
8ffa3667 6241{
2ea97941
ILT
6242 unsigned int shnum = this->shnum();
6243 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6244
6245 // Read the section headers.
6246 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6247 shnum * shdr_size,
8ffa3667
DK
6248 true, true);
6249
6250 // To speed up processing, we set up hash tables for fast lookup of
6251 // input offsets to output addresses.
6252 this->initialize_input_to_output_maps();
6253
6254 const Relobj::Output_sections& out_sections(this->output_sections());
6255
6256 Relocate_info<32, big_endian> relinfo;
8ffa3667 6257 relinfo.symtab = symtab;
2ea97941 6258 relinfo.layout = layout;
8ffa3667
DK
6259 relinfo.object = this;
6260
44272192 6261 // Do relocation stubs scanning.
2ea97941
ILT
6262 const unsigned char* p = pshdrs + shdr_size;
6263 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6264 {
44272192 6265 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6266 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6267 pshdrs))
8ffa3667 6268 {
44272192
DK
6269 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6270 Arm_address output_offset = this->get_output_section_offset(index);
6271 Arm_address output_address;
7296d933 6272 if (output_offset != invalid_address)
44272192
DK
6273 output_address = out_sections[index]->address() + output_offset;
6274 else
6275 {
6276 // Currently this only happens for a relaxed section.
6277 const Output_relaxed_input_section* poris =
6278 out_sections[index]->find_relaxed_input_section(this, index);
6279 gold_assert(poris != NULL);
6280 output_address = poris->address();
6281 }
8ffa3667 6282
44272192
DK
6283 // Get the relocations.
6284 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6285 shdr.get_sh_size(),
6286 true, false);
6287
6288 // Get the section contents. This does work for the case in which
6289 // we modify the contents of an input section. We need to pass the
6290 // output view under such circumstances.
6291 section_size_type input_view_size = 0;
6292 const unsigned char* input_view =
6293 this->section_contents(index, &input_view_size, false);
6294
6295 relinfo.reloc_shndx = i;
6296 relinfo.data_shndx = index;
6297 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6298 unsigned int reloc_size;
6299 if (sh_type == elfcpp::SHT_REL)
6300 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6301 else
6302 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6303
6304 Output_section* os = out_sections[index];
6305 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6306 shdr.get_sh_size() / reloc_size,
6307 os,
6308 output_offset == invalid_address,
6309 input_view, output_address,
6310 input_view_size);
8ffa3667 6311 }
44272192 6312 }
8ffa3667 6313
44272192
DK
6314 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6315 // after its relocation section, if there is one, is processed for
6316 // relocation stubs. Merging this loop with the one above would have been
6317 // complicated since we would have had to make sure that relocation stub
6318 // scanning is done first.
6319 if (arm_target->fix_cortex_a8())
6320 {
6321 const unsigned char* p = pshdrs + shdr_size;
6322 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6323 {
44272192
DK
6324 const elfcpp::Shdr<32, big_endian> shdr(p);
6325 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6326 out_sections[i],
6327 symtab))
6328 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6329 arm_target);
8ffa3667 6330 }
8ffa3667
DK
6331 }
6332
6333 // After we've done the relocations, we release the hash tables,
6334 // since we no longer need them.
6335 this->free_input_to_output_maps();
6336}
6337
6338// Count the local symbols. The ARM backend needs to know if a symbol
6339// is a THUMB function or not. For global symbols, it is easy because
6340// the Symbol object keeps the ELF symbol type. For local symbol it is
6341// harder because we cannot access this information. So we override the
6342// do_count_local_symbol in parent and scan local symbols to mark
6343// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6344// slow down other ports by calling a per symbol target hook inside
2e702c99 6345// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6346
6347template<bool big_endian>
6348void
6349Arm_relobj<big_endian>::do_count_local_symbols(
6350 Stringpool_template<char>* pool,
6351 Stringpool_template<char>* dynpool)
6352{
6353 // We need to fix-up the values of any local symbols whose type are
6354 // STT_ARM_TFUNC.
2e702c99 6355
8ffa3667 6356 // Ask parent to count the local symbols.
6fa2a40b 6357 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6358 const unsigned int loccount = this->local_symbol_count();
6359 if (loccount == 0)
6360 return;
6361
9b547ce6 6362 // Initialize the thumb function bit-vector.
8ffa3667
DK
6363 std::vector<bool> empty_vector(loccount, false);
6364 this->local_symbol_is_thumb_function_.swap(empty_vector);
6365
6366 // Read the symbol table section header.
2ea97941 6367 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6368 elfcpp::Shdr<32, big_endian>
2ea97941 6369 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6370 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6371
6372 // Read the local symbols.
2ea97941 6373 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6374 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6375 off_t locsize = loccount * sym_size;
8ffa3667
DK
6376 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6377 locsize, true, true);
6378
20138696
DK
6379 // For mapping symbol processing, we need to read the symbol names.
6380 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6381 if (strtab_shndx >= this->shnum())
6382 {
6383 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6384 return;
6385 }
6386
6387 elfcpp::Shdr<32, big_endian>
6388 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6389 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6390 {
6391 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6392 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6393 return;
6394 }
6395 const char* pnames =
6396 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6397 strtabshdr.get_sh_size(),
6398 false, false));
6399
8ffa3667
DK
6400 // Loop over the local symbols and mark any local symbols pointing
6401 // to THUMB functions.
6402
6403 // Skip the first dummy symbol.
2ea97941 6404 psyms += sym_size;
6fa2a40b 6405 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6406 this->local_values();
2ea97941 6407 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6408 {
6409 elfcpp::Sym<32, big_endian> sym(psyms);
6410 elfcpp::STT st_type = sym.get_st_type();
6411 Symbol_value<32>& lv((*plocal_values)[i]);
6412 Arm_address input_value = lv.input_value();
6413
20138696
DK
6414 // Check to see if this is a mapping symbol.
6415 const char* sym_name = pnames + sym.get_st_name();
6416 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6417 {
24af6f92
DK
6418 bool is_ordinary;
6419 unsigned int input_shndx =
6420 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6421 gold_assert(is_ordinary);
20138696
DK
6422
6423 // Strip of LSB in case this is a THUMB symbol.
6424 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6425 this->mapping_symbols_info_[msp] = sym_name[1];
6426 }
6427
8ffa3667
DK
6428 if (st_type == elfcpp::STT_ARM_TFUNC
6429 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6430 {
6431 // This is a THUMB function. Mark this and canonicalize the
6432 // symbol value by setting LSB.
6433 this->local_symbol_is_thumb_function_[i] = true;
6434 if ((input_value & 1) == 0)
6435 lv.set_input_value(input_value | 1);
6436 }
6437 }
6438}
6439
6440// Relocate sections.
6441template<bool big_endian>
6442void
6443Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6444 const Symbol_table* symtab,
2ea97941 6445 const Layout* layout,
8ffa3667 6446 const unsigned char* pshdrs,
aa98ff75 6447 Output_file* of,
6fa2a40b 6448 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6449{
6450 // Call parent to relocate sections.
6fa2a40b 6451 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6452 pshdrs, of, pviews);
8ffa3667
DK
6453
6454 // We do not generate stubs if doing a relocatable link.
6455 if (parameters->options().relocatable())
6456 return;
6457
6458 // Relocate stub tables.
2ea97941 6459 unsigned int shnum = this->shnum();
8ffa3667
DK
6460
6461 Target_arm<big_endian>* arm_target =
6462 Target_arm<big_endian>::default_target();
6463
6464 Relocate_info<32, big_endian> relinfo;
8ffa3667 6465 relinfo.symtab = symtab;
2ea97941 6466 relinfo.layout = layout;
8ffa3667
DK
6467 relinfo.object = this;
6468
2ea97941 6469 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6470 {
6471 Arm_input_section<big_endian>* arm_input_section =
6472 arm_target->find_arm_input_section(this, i);
6473
41263c05
DK
6474 if (arm_input_section != NULL
6475 && arm_input_section->is_stub_table_owner()
6476 && !arm_input_section->stub_table()->empty())
6477 {
6478 // We cannot discard a section if it owns a stub table.
6479 Output_section* os = this->output_section(i);
6480 gold_assert(os != NULL);
6481
6482 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6483 relinfo.reloc_shdr = NULL;
6484 relinfo.data_shndx = i;
6485 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6486
6487 gold_assert((*pviews)[i].view != NULL);
6488
6489 // We are passed the output section view. Adjust it to cover the
6490 // stub table only.
6491 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6492 gold_assert((stub_table->address() >= (*pviews)[i].address)
6493 && ((stub_table->address() + stub_table->data_size())
6494 <= (*pviews)[i].address + (*pviews)[i].view_size));
6495
6496 off_t offset = stub_table->address() - (*pviews)[i].address;
6497 unsigned char* view = (*pviews)[i].view + offset;
6498 Arm_address address = stub_table->address();
6499 section_size_type view_size = stub_table->data_size();
2e702c99 6500
41263c05
DK
6501 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6502 view_size);
6503 }
6504
6505 // Apply Cortex A8 workaround if applicable.
6506 if (this->section_has_cortex_a8_workaround(i))
6507 {
6508 unsigned char* view = (*pviews)[i].view;
6509 Arm_address view_address = (*pviews)[i].address;
6510 section_size_type view_size = (*pviews)[i].view_size;
6511 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6512
6513 // Adjust view to cover section.
6514 Output_section* os = this->output_section(i);
6515 gold_assert(os != NULL);
cb1be87e
DK
6516 Arm_address section_address =
6517 this->simple_input_section_output_address(i, os);
41263c05
DK
6518 uint64_t section_size = this->section_size(i);
6519
6520 gold_assert(section_address >= view_address
6521 && ((section_address + section_size)
6522 <= (view_address + view_size)));
6523
6524 unsigned char* section_view = view + (section_address - view_address);
6525
6526 // Apply the Cortex-A8 workaround to the output address range
6527 // corresponding to this input section.
6528 stub_table->apply_cortex_a8_workaround_to_address_range(
6529 arm_target,
6530 section_view,
6531 section_address,
6532 section_size);
6533 }
8ffa3667
DK
6534 }
6535}
6536
9b547ce6 6537// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6538// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6539// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6540// its section header. However, some tools are broken and the link is not
6541// always set. LD just drops such an EXIDX section silently, causing the
6542// associated code not unwindabled. Here we try a little bit harder to
6543// discover the linked code section.
6544//
6545// PSHDR points to the section header of a relocation section of an EXIDX
6546// section. If we can find a linked text section, return true and
6547// store the text section index in the location PSHNDX. Otherwise
6548// return false.
a0351a69
DK
6549
6550template<bool big_endian>
c8761b9a
DK
6551bool
6552Arm_relobj<big_endian>::find_linked_text_section(
6553 const unsigned char* pshdr,
6554 const unsigned char* psyms,
6555 unsigned int* pshndx)
a0351a69 6556{
c8761b9a 6557 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6558
c8761b9a
DK
6559 // If there is no relocation, we cannot find the linked text section.
6560 size_t reloc_size;
6561 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6562 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6563 else
6564 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6565 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6566
c8761b9a
DK
6567 // Get the relocations.
6568 const unsigned char* prelocs =
2e702c99 6569 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6570
c8761b9a
DK
6571 // Find the REL31 relocation for the first word of the first EXIDX entry.
6572 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6573 {
c8761b9a
DK
6574 Arm_address r_offset;
6575 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6576 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6577 {
6578 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6579 r_info = reloc.get_r_info();
6580 r_offset = reloc.get_r_offset();
6581 }
6582 else
6583 {
6584 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6585 r_info = reloc.get_r_info();
6586 r_offset = reloc.get_r_offset();
6587 }
6588
6589 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6590 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6591 continue;
6592
6593 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6594 if (r_sym == 0
6595 || r_sym >= this->local_symbol_count()
6596 || r_offset != 0)
6597 continue;
6598
6599 // This is the relocation for the first word of the first EXIDX entry.
6600 // We expect to see a local section symbol.
6601 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6602 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6603 if (sym.get_st_type() == elfcpp::STT_SECTION)
6604 {
24af6f92
DK
6605 bool is_ordinary;
6606 *pshndx =
6607 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6608 gold_assert(is_ordinary);
c8761b9a
DK
6609 return true;
6610 }
6611 else
6612 return false;
993d07c1 6613 }
c8761b9a
DK
6614
6615 return false;
6616}
6617
6618// Make an EXIDX input section object for an EXIDX section whose index is
6619// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6620// is the section index of the linked text section.
6621
6622template<bool big_endian>
6623void
6624Arm_relobj<big_endian>::make_exidx_input_section(
6625 unsigned int shndx,
6626 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6627 unsigned int text_shndx,
6628 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6629{
993d07c1
DK
6630 // Create an Arm_exidx_input_section object for this EXIDX section.
6631 Arm_exidx_input_section* exidx_input_section =
6632 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6633 shdr.get_sh_addralign(),
6634 text_shdr.get_sh_size());
993d07c1 6635
993d07c1
DK
6636 gold_assert(this->exidx_section_map_[shndx] == NULL);
6637 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6638
6639 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6640 {
6641 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6642 this->section_name(shndx).c_str(), shndx, text_shndx,
6643 this->name().c_str());
6644 exidx_input_section->set_has_errors();
2e702c99 6645 }
131687b4
DK
6646 else if (this->exidx_section_map_[text_shndx] != NULL)
6647 {
6648 unsigned other_exidx_shndx =
6649 this->exidx_section_map_[text_shndx]->shndx();
6650 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6651 "%s(%u) in %s"),
6652 this->section_name(shndx).c_str(), shndx,
6653 this->section_name(other_exidx_shndx).c_str(),
6654 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6655 text_shndx, this->name().c_str());
6656 exidx_input_section->set_has_errors();
6657 }
6658 else
6659 this->exidx_section_map_[text_shndx] = exidx_input_section;
6660
6661 // Check section flags of text section.
6662 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6663 {
6664 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6665 " in %s"),
6666 this->section_name(shndx).c_str(), shndx,
6667 this->section_name(text_shndx).c_str(), text_shndx,
6668 this->name().c_str());
6669 exidx_input_section->set_has_errors();
6670 }
6671 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6672 // I would like to make this an error but currently ld just ignores
131687b4
DK
6673 // this.
6674 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6675 "%s(%u) in %s"),
6676 this->section_name(shndx).c_str(), shndx,
6677 this->section_name(text_shndx).c_str(), text_shndx,
6678 this->name().c_str());
a0351a69
DK
6679}
6680
d5b40221
DK
6681// Read the symbol information.
6682
6683template<bool big_endian>
6684void
6685Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6686{
6687 // Call parent class to read symbol information.
6fa2a40b 6688 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6689
7296d933
DK
6690 // If this input file is a binary file, it has no processor
6691 // specific flags and attributes section.
6692 Input_file::Format format = this->input_file()->format();
6693 if (format != Input_file::FORMAT_ELF)
6694 {
6695 gold_assert(format == Input_file::FORMAT_BINARY);
6696 this->merge_flags_and_attributes_ = false;
6697 return;
6698 }
6699
d5b40221
DK
6700 // Read processor-specific flags in ELF file header.
6701 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6702 elfcpp::Elf_sizes<32>::ehdr_size,
6703 true, false);
6704 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6705 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6706
6707 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6708 // sections.
c8761b9a 6709 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6710 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6711 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6712 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6713 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6714 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6715 {
6716 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6717
6718 // Sometimes an object has no contents except the section name string
6719 // table and an empty symbol table with the undefined symbol. We
6720 // don't want to merge processor-specific flags from such an object.
6721 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6722 {
6723 // Symbol table is not empty.
6724 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6725 elfcpp::Elf_sizes<32>::sym_size;
6726 if (shdr.get_sh_size() > sym_size)
6727 must_merge_flags_and_attributes = true;
6728 }
6729 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6730 // If this is neither an empty symbol table nor a string table,
6731 // be conservative.
6732 must_merge_flags_and_attributes = true;
6733
993d07c1
DK
6734 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6735 {
2e702c99 6736 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6737 section_offset_type section_offset = shdr.get_sh_offset();
6738 section_size_type section_size =
6739 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6740 const unsigned char* view =
6741 this->get_view(section_offset, section_size, true, false);
993d07c1 6742 this->attributes_section_data_ =
f625ae50 6743 new Attributes_section_data(view, section_size);
993d07c1
DK
6744 }
6745 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6746 {
6747 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6748 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6749 deferred_exidx_sections.push_back(i);
6750 else
131687b4
DK
6751 {
6752 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6753 + text_shndx * shdr_size);
6754 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6755 }
c9484ea5
DK
6756 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6757 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6758 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6759 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6760 }
6761 }
6762
7296d933
DK
6763 // This is rare.
6764 if (!must_merge_flags_and_attributes)
6765 {
131687b4 6766 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6767 this->merge_flags_and_attributes_ = false;
6768 return;
6769 }
6770
2e702c99 6771 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6772 // We look at the first relocation to figure out the linked sections.
6773 if (!deferred_exidx_sections.empty())
6774 {
6775 // We need to go over the section headers again to find the mapping
6776 // from sections being relocated to their relocation sections. This is
6777 // a bit inefficient as we could do that in the loop above. However,
6778 // we do not expect any deferred EXIDX sections normally. So we do not
6779 // want to slow down the most common path.
6780 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6781 Reloc_map reloc_map;
6782 ps = pshdrs + shdr_size;
6783 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6784 {
6785 elfcpp::Shdr<32, big_endian> shdr(ps);
6786 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6787 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6788 {
6789 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6790 if (info_shndx >= this->shnum())
6791 gold_error(_("relocation section %u has invalid info %u"),
6792 i, info_shndx);
6793 Reloc_map::value_type value(info_shndx, i);
6794 std::pair<Reloc_map::iterator, bool> result =
6795 reloc_map.insert(value);
6796 if (!result.second)
6797 gold_error(_("section %u has multiple relocation sections "
6798 "%u and %u"),
6799 info_shndx, i, reloc_map[info_shndx]);
6800 }
6801 }
6802
6803 // Read the symbol table section header.
6804 const unsigned int symtab_shndx = this->symtab_shndx();
6805 elfcpp::Shdr<32, big_endian>
6806 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6807 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6808
6809 // Read the local symbols.
6810 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6811 const unsigned int loccount = this->local_symbol_count();
6812 gold_assert(loccount == symtabshdr.get_sh_info());
6813 off_t locsize = loccount * sym_size;
6814 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6815 locsize, true, true);
6816
2e702c99 6817 // Process the deferred EXIDX sections.
f625ae50 6818 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6819 {
6820 unsigned int shndx = deferred_exidx_sections[i];
6821 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6822 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6823 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6824 if (it != reloc_map.end())
6825 find_linked_text_section(pshdrs + it->second * shdr_size,
6826 psyms, &text_shndx);
6827 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6828 + text_shndx * shdr_size);
6829 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6830 }
993d07c1 6831 }
d5b40221
DK
6832}
6833
99e5bff2 6834// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6835// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6836// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6837// references, the .ARM.exidx sections and any .ARM.extab sections they use
6838// will be garbage-collected incorrectly. Hence we override the same function
6839// in the base class to handle these implicit references.
6840
6841template<bool big_endian>
6842void
6843Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6844 Layout* layout,
6845 Read_relocs_data* rd)
6846{
6847 // First, call base class method to process relocations in this object.
6fa2a40b 6848 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6849
4a54abbb
DK
6850 // If --gc-sections is not specified, there is nothing more to do.
6851 // This happens when --icf is used but --gc-sections is not.
6852 if (!parameters->options().gc_sections())
6853 return;
2e702c99 6854
99e5bff2
DK
6855 unsigned int shnum = this->shnum();
6856 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6857 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6858 shnum * shdr_size,
6859 true, true);
6860
6861 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6862 // to these from the linked text sections.
6863 const unsigned char* ps = pshdrs + shdr_size;
6864 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6865 {
6866 elfcpp::Shdr<32, big_endian> shdr(ps);
6867 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6868 {
6869 // Found an .ARM.exidx section, add it to the set of reachable
6870 // sections from its linked text section.
6871 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6872 symtab->gc()->add_reference(this, text_shndx, this, i);
6873 }
6874 }
6875}
6876
e7eca48c
DK
6877// Update output local symbol count. Owing to EXIDX entry merging, some local
6878// symbols will be removed in output. Adjust output local symbol count
6879// accordingly. We can only changed the static output local symbol count. It
6880// is too late to change the dynamic symbols.
6881
6882template<bool big_endian>
6883void
6884Arm_relobj<big_endian>::update_output_local_symbol_count()
6885{
6886 // Caller should check that this needs updating. We want caller checking
6887 // because output_local_symbol_count_needs_update() is most likely inlined.
6888 gold_assert(this->output_local_symbol_count_needs_update_);
6889
6890 gold_assert(this->symtab_shndx() != -1U);
6891 if (this->symtab_shndx() == 0)
6892 {
6893 // This object has no symbols. Weird but legal.
6894 return;
6895 }
6896
6897 // Read the symbol table section header.
6898 const unsigned int symtab_shndx = this->symtab_shndx();
6899 elfcpp::Shdr<32, big_endian>
6900 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6901 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6902
6903 // Read the local symbols.
6904 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6905 const unsigned int loccount = this->local_symbol_count();
6906 gold_assert(loccount == symtabshdr.get_sh_info());
6907 off_t locsize = loccount * sym_size;
6908 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6909 locsize, true, true);
6910
6911 // Loop over the local symbols.
6912
6fa2a40b 6913 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6914 Output_sections;
6915 const Output_sections& out_sections(this->output_sections());
6916 unsigned int shnum = this->shnum();
6917 unsigned int count = 0;
6918 // Skip the first, dummy, symbol.
6919 psyms += sym_size;
6920 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6921 {
6922 elfcpp::Sym<32, big_endian> sym(psyms);
6923
6924 Symbol_value<32>& lv((*this->local_values())[i]);
6925
6926 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6927 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6928 continue;
6929
6930 bool is_ordinary;
6931 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6932 &is_ordinary);
6933
6934 if (shndx < shnum)
6935 {
6936 Output_section* os = out_sections[shndx];
6937
6938 // This local symbol no longer has an output section. Discard it.
6939 if (os == NULL)
6940 {
6941 lv.set_no_output_symtab_entry();
6942 continue;
6943 }
6944
6945 // Currently we only discard parts of EXIDX input sections.
6946 // We explicitly check for a merged EXIDX input section to avoid
6947 // calling Output_section_data::output_offset unless necessary.
6948 if ((this->get_output_section_offset(shndx) == invalid_address)
6949 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6950 {
6951 section_offset_type output_offset =
6952 os->output_offset(this, shndx, lv.input_value());
6953 if (output_offset == -1)
6954 {
6955 // This symbol is defined in a part of an EXIDX input section
6956 // that is discarded due to entry merging.
6957 lv.set_no_output_symtab_entry();
6958 continue;
2e702c99 6959 }
e7eca48c
DK
6960 }
6961 }
6962
6963 ++count;
6964 }
6965
6966 this->set_output_local_symbol_count(count);
6967 this->output_local_symbol_count_needs_update_ = false;
6968}
6969
d5b40221
DK
6970// Arm_dynobj methods.
6971
6972// Read the symbol information.
6973
6974template<bool big_endian>
6975void
6976Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6977{
6978 // Call parent class to read symbol information.
6979 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6980
6981 // Read processor-specific flags in ELF file header.
6982 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6983 elfcpp::Elf_sizes<32>::ehdr_size,
6984 true, false);
6985 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6986 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6987
6988 // Read the attributes section if there is one.
6989 // We read from the end because gas seems to put it near the end of
6990 // the section headers.
6991 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6992 const unsigned char* ps =
993d07c1
DK
6993 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6994 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6995 {
6996 elfcpp::Shdr<32, big_endian> shdr(ps);
6997 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6998 {
6999 section_offset_type section_offset = shdr.get_sh_offset();
7000 section_size_type section_size =
7001 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7002 const unsigned char* view =
7003 this->get_view(section_offset, section_size, true, false);
993d07c1 7004 this->attributes_section_data_ =
f625ae50 7005 new Attributes_section_data(view, section_size);
993d07c1
DK
7006 break;
7007 }
7008 }
d5b40221
DK
7009}
7010
e9bbb538
DK
7011// Stub_addend_reader methods.
7012
7013// Read the addend of a REL relocation of type R_TYPE at VIEW.
7014
7015template<bool big_endian>
7016elfcpp::Elf_types<32>::Elf_Swxword
7017Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7018 unsigned int r_type,
7019 const unsigned char* view,
7020 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7021{
2c54b4f4 7022 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7023
e9bbb538
DK
7024 switch (r_type)
7025 {
7026 case elfcpp::R_ARM_CALL:
7027 case elfcpp::R_ARM_JUMP24:
7028 case elfcpp::R_ARM_PLT32:
7029 {
7030 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7031 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7032 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7033 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7034 }
7035
7036 case elfcpp::R_ARM_THM_CALL:
7037 case elfcpp::R_ARM_THM_JUMP24:
7038 case elfcpp::R_ARM_THM_XPC22:
7039 {
e9bbb538
DK
7040 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7041 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7042 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7043 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7044 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7045 }
7046
7047 case elfcpp::R_ARM_THM_JUMP19:
7048 {
7049 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7050 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7051 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7052 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7053 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7054 }
7055
7056 default:
7057 gold_unreachable();
7058 }
7059}
7060
4a54abbb
DK
7061// Arm_output_data_got methods.
7062
7063// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7064// The first one is initialized to be 1, which is the module index for
7065// the main executable and the second one 0. A reloc of the type
7066// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7067// be applied by gold. GSYM is a global symbol.
7068//
7069template<bool big_endian>
7070void
7071Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7072 unsigned int got_type,
7073 Symbol* gsym)
7074{
7075 if (gsym->has_got_offset(got_type))
7076 return;
7077
7078 // We are doing a static link. Just mark it as belong to module 1,
7079 // the executable.
7080 unsigned int got_offset = this->add_constant(1);
2e702c99 7081 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7082 got_offset = this->add_constant(0);
7083 this->static_relocs_.push_back(Static_reloc(got_offset,
7084 elfcpp::R_ARM_TLS_DTPOFF32,
7085 gsym));
7086}
7087
7088// Same as the above but for a local symbol.
7089
7090template<bool big_endian>
7091void
7092Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7093 unsigned int got_type,
6fa2a40b 7094 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7095 unsigned int index)
7096{
7097 if (object->local_has_got_offset(index, got_type))
7098 return;
7099
7100 // We are doing a static link. Just mark it as belong to module 1,
7101 // the executable.
7102 unsigned int got_offset = this->add_constant(1);
7103 object->set_local_got_offset(index, got_type, got_offset);
7104 got_offset = this->add_constant(0);
2e702c99
RM
7105 this->static_relocs_.push_back(Static_reloc(got_offset,
7106 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7107 object, index));
7108}
7109
7110template<bool big_endian>
7111void
7112Arm_output_data_got<big_endian>::do_write(Output_file* of)
7113{
7114 // Call parent to write out GOT.
7115 Output_data_got<32, big_endian>::do_write(of);
7116
7117 // We are done if there is no fix up.
7118 if (this->static_relocs_.empty())
7119 return;
7120
7121 gold_assert(parameters->doing_static_link());
7122
7123 const off_t offset = this->offset();
7124 const section_size_type oview_size =
7125 convert_to_section_size_type(this->data_size());
7126 unsigned char* const oview = of->get_output_view(offset, oview_size);
7127
7128 Output_segment* tls_segment = this->layout_->tls_segment();
7129 gold_assert(tls_segment != NULL);
2e702c99 7130
4a54abbb
DK
7131 // The thread pointer $tp points to the TCB, which is followed by the
7132 // TLS. So we need to adjust $tp relative addressing by this amount.
7133 Arm_address aligned_tcb_size =
7134 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7135
7136 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7137 {
7138 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7139
4a54abbb
DK
7140 Arm_address value;
7141 if (!reloc.symbol_is_global())
7142 {
6fa2a40b 7143 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7144 const Symbol_value<32>* psymval =
7145 reloc.relobj()->local_symbol(reloc.index());
7146
7147 // We are doing static linking. Issue an error and skip this
7148 // relocation if the symbol is undefined or in a discarded_section.
7149 bool is_ordinary;
7150 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7151 if ((shndx == elfcpp::SHN_UNDEF)
7152 || (is_ordinary
7153 && shndx != elfcpp::SHN_UNDEF
7154 && !object->is_section_included(shndx)
7155 && !this->symbol_table_->is_section_folded(object, shndx)))
7156 {
7157 gold_error(_("undefined or discarded local symbol %u from "
7158 " object %s in GOT"),
7159 reloc.index(), reloc.relobj()->name().c_str());
7160 continue;
7161 }
2e702c99 7162
4a54abbb
DK
7163 value = psymval->value(object, 0);
7164 }
7165 else
7166 {
7167 const Symbol* gsym = reloc.symbol();
7168 gold_assert(gsym != NULL);
7169 if (gsym->is_forwarder())
7170 gsym = this->symbol_table_->resolve_forwards(gsym);
7171
7172 // We are doing static linking. Issue an error and skip this
7173 // relocation if the symbol is undefined or in a discarded_section
7174 // unless it is a weakly_undefined symbol.
7175 if ((gsym->is_defined_in_discarded_section()
7176 || gsym->is_undefined())
7177 && !gsym->is_weak_undefined())
7178 {
7179 gold_error(_("undefined or discarded symbol %s in GOT"),
7180 gsym->name());
7181 continue;
7182 }
7183
7184 if (!gsym->is_weak_undefined())
7185 {
7186 const Sized_symbol<32>* sym =
7187 static_cast<const Sized_symbol<32>*>(gsym);
7188 value = sym->value();
7189 }
7190 else
7191 value = 0;
7192 }
7193
7194 unsigned got_offset = reloc.got_offset();
7195 gold_assert(got_offset < oview_size);
7196
7197 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7198 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7199 Valtype x;
7200 switch (reloc.r_type())
7201 {
7202 case elfcpp::R_ARM_TLS_DTPOFF32:
7203 x = value;
7204 break;
7205 case elfcpp::R_ARM_TLS_TPOFF32:
7206 x = value + aligned_tcb_size;
7207 break;
7208 default:
7209 gold_unreachable();
7210 }
7211 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7212 }
7213
7214 of->write_output_view(offset, oview_size, oview);
7215}
7216
94cdfcff 7217// A class to handle the PLT data.
2e702c99
RM
7218// This is an abstract base class that handles most of the linker details
7219// but does not know the actual contents of PLT entries. The derived
7220// classes below fill in those details.
94cdfcff
DK
7221
7222template<bool big_endian>
7223class Output_data_plt_arm : public Output_section_data
7224{
7225 public:
7226 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7227 Reloc_section;
7228
2e702c99 7229 Output_data_plt_arm(Layout*, uint64_t addralign, Output_data_space*);
94cdfcff
DK
7230
7231 // Add an entry to the PLT.
7232 void
7233 add_entry(Symbol* gsym);
7234
7235 // Return the .rel.plt section data.
7236 const Reloc_section*
7237 rel_plt() const
7238 { return this->rel_; }
7239
0e70b911
CC
7240 // Return the number of PLT entries.
7241 unsigned int
7242 entry_count() const
7243 { return this->count_; }
7244
7245 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7246 unsigned int
7247 first_plt_entry_offset() const
7248 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7249
7250 // Return the size of a PLT entry.
2e702c99
RM
7251 unsigned int
7252 get_plt_entry_size() const
7253 { return this->do_get_plt_entry_size(); }
0e70b911 7254
94cdfcff 7255 protected:
2e702c99
RM
7256 // Fill in the first PLT entry.
7257 void
7258 fill_first_plt_entry(unsigned char* pov,
7259 Arm_address got_address,
7260 Arm_address plt_address)
7261 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7262
7263 void
7264 fill_plt_entry(unsigned char* pov,
7265 Arm_address got_address,
7266 Arm_address plt_address,
7267 unsigned int got_offset,
7268 unsigned int plt_offset)
7269 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7270
7271 virtual unsigned int
7272 do_first_plt_entry_offset() const = 0;
7273
7274 virtual unsigned int
7275 do_get_plt_entry_size() const = 0;
7276
7277 virtual void
7278 do_fill_first_plt_entry(unsigned char* pov,
7279 Arm_address got_address,
7280 Arm_address plt_address) = 0;
7281
7282 virtual void
7283 do_fill_plt_entry(unsigned char* pov,
7284 Arm_address got_address,
7285 Arm_address plt_address,
7286 unsigned int got_offset,
7287 unsigned int plt_offset) = 0;
7288
94cdfcff
DK
7289 void
7290 do_adjust_output_section(Output_section* os);
7291
7292 // Write to a map file.
7293 void
7294 do_print_to_mapfile(Mapfile* mapfile) const
7295 { mapfile->print_output_data(this, _("** PLT")); }
7296
7297 private:
94cdfcff
DK
7298 // Set the final size.
7299 void
7300 set_final_data_size()
7301 {
2e702c99
RM
7302 this->set_data_size(this->first_plt_entry_offset()
7303 + this->count_ * this->get_plt_entry_size());
94cdfcff
DK
7304 }
7305
7306 // Write out the PLT data.
7307 void
7308 do_write(Output_file*);
7309
7310 // The reloc section.
7311 Reloc_section* rel_;
7312 // The .got.plt section.
7313 Output_data_space* got_plt_;
7314 // The number of PLT entries.
7315 unsigned int count_;
7316};
7317
7318// Create the PLT section. The ordinary .got section is an argument,
7319// since we need to refer to the start. We also create our own .got
7320// section just for PLT entries.
7321
7322template<bool big_endian>
2ea97941 7323Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
2e702c99 7324 uint64_t addralign,
94cdfcff 7325 Output_data_space* got_plt)
2e702c99 7326 : Output_section_data(addralign), got_plt_(got_plt), count_(0)
94cdfcff
DK
7327{
7328 this->rel_ = new Reloc_section(false);
2ea97941 7329 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7330 elfcpp::SHF_ALLOC, this->rel_,
7331 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7332}
7333
7334template<bool big_endian>
7335void
7336Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7337{
7338 os->set_entsize(0);
7339}
7340
7341// Add an entry to the PLT.
7342
7343template<bool big_endian>
7344void
7345Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7346{
7347 gold_assert(!gsym->has_plt_offset());
7348
7349 // Note that when setting the PLT offset we skip the initial
7350 // reserved PLT entry.
2e702c99
RM
7351 gsym->set_plt_offset((this->count_) * this->get_plt_entry_size()
7352 + this->first_plt_entry_offset());
94cdfcff
DK
7353
7354 ++this->count_;
7355
7356 section_offset_type got_offset = this->got_plt_->current_data_size();
7357
7358 // Every PLT entry needs a GOT entry which points back to the PLT
7359 // entry (this will be changed by the dynamic linker, normally
7360 // lazily when the function is called).
7361 this->got_plt_->set_current_data_size(got_offset + 4);
7362
7363 // Every PLT entry needs a reloc.
7364 gsym->set_needs_dynsym_entry();
7365 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7366 got_offset);
7367
7368 // Note that we don't need to save the symbol. The contents of the
7369 // PLT are independent of which symbols are used. The symbols only
7370 // appear in the relocations.
7371}
7372
2e702c99
RM
7373template<bool big_endian>
7374class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7375{
7376 public:
7377 Output_data_plt_arm_standard(Layout* layout, Output_data_space* got_plt)
7378 : Output_data_plt_arm<big_endian>(layout, 4, got_plt)
7379 { }
7380
7381 protected:
7382 // Return the offset of the first non-reserved PLT entry.
7383 virtual unsigned int
7384 do_first_plt_entry_offset() const
7385 { return sizeof(first_plt_entry); }
7386
7387 // Return the size of a PLT entry.
7388 virtual unsigned int
7389 do_get_plt_entry_size() const
7390 { return sizeof(plt_entry); }
7391
7392 virtual void
7393 do_fill_first_plt_entry(unsigned char* pov,
7394 Arm_address got_address,
7395 Arm_address plt_address);
7396
7397 virtual void
7398 do_fill_plt_entry(unsigned char* pov,
7399 Arm_address got_address,
7400 Arm_address plt_address,
7401 unsigned int got_offset,
7402 unsigned int plt_offset);
7403
7404 private:
7405 // Template for the first PLT entry.
7406 static const uint32_t first_plt_entry[5];
7407
7408 // Template for subsequent PLT entries.
7409 static const uint32_t plt_entry[3];
7410};
7411
94cdfcff
DK
7412// ARM PLTs.
7413// FIXME: This is not very flexible. Right now this has only been tested
7414// on armv5te. If we are to support additional architecture features like
7415// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7416
7417// The first entry in the PLT.
7418template<bool big_endian>
2e702c99 7419const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7420{
7421 0xe52de004, // str lr, [sp, #-4]!
7422 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7423 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7424 0xe5bef008, // ldr pc, [lr, #8]!
7425 0x00000000, // &GOT[0] - .
7426};
7427
2e702c99
RM
7428template<bool big_endian>
7429void
7430Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7431 unsigned char* pov,
7432 Arm_address got_address,
7433 Arm_address plt_address)
7434{
7435 // Write first PLT entry. All but the last word are constants.
7436 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7437 / sizeof(plt_entry[0]));
7438 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7439 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7440 // Last word in first PLT entry is &GOT[0] - .
7441 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7442 got_address - (plt_address + 16));
7443}
7444
94cdfcff
DK
7445// Subsequent entries in the PLT.
7446
7447template<bool big_endian>
2e702c99 7448const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7449{
7450 0xe28fc600, // add ip, pc, #0xNN00000
7451 0xe28cca00, // add ip, ip, #0xNN000
7452 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7453};
7454
2e702c99
RM
7455template<bool big_endian>
7456void
7457Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7458 unsigned char* pov,
7459 Arm_address got_address,
7460 Arm_address plt_address,
7461 unsigned int got_offset,
7462 unsigned int plt_offset)
7463{
7464 int32_t offset = ((got_address + got_offset)
7465 - (plt_address + plt_offset + 8));
7466
7467 gold_assert(offset >= 0 && offset < 0x0fffffff);
7468 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7469 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7470 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7471 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7472 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7473 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7474}
7475
94cdfcff
DK
7476// Write out the PLT. This uses the hand-coded instructions above,
7477// and adjusts them as needed. This is all specified by the arm ELF
7478// Processor Supplement.
7479
7480template<bool big_endian>
7481void
7482Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7483{
2ea97941 7484 const off_t offset = this->offset();
94cdfcff
DK
7485 const section_size_type oview_size =
7486 convert_to_section_size_type(this->data_size());
2ea97941 7487 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7488
7489 const off_t got_file_offset = this->got_plt_->offset();
7490 const section_size_type got_size =
7491 convert_to_section_size_type(this->got_plt_->data_size());
7492 unsigned char* const got_view = of->get_output_view(got_file_offset,
7493 got_size);
7494 unsigned char* pov = oview;
7495
ebabffbd
DK
7496 Arm_address plt_address = this->address();
7497 Arm_address got_address = this->got_plt_->address();
94cdfcff 7498
2e702c99
RM
7499 // Write first PLT entry.
7500 this->fill_first_plt_entry(pov, got_address, plt_address);
7501 pov += this->first_plt_entry_offset();
94cdfcff
DK
7502
7503 unsigned char* got_pov = got_view;
7504
7505 memset(got_pov, 0, 12);
7506 got_pov += 12;
7507
2e702c99 7508 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff
DK
7509 unsigned int got_offset = 12;
7510 const unsigned int count = this->count_;
7511 for (unsigned int i = 0;
7512 i < count;
7513 ++i,
2e702c99 7514 pov += this->get_plt_entry_size(),
94cdfcff 7515 got_pov += 4,
2e702c99 7516 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7517 got_offset += 4)
7518 {
7519 // Set and adjust the PLT entry itself.
2e702c99
RM
7520 this->fill_plt_entry(pov, got_address, plt_address,
7521 got_offset, plt_offset);
94cdfcff
DK
7522
7523 // Set the entry in the GOT.
7524 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7525 }
7526
7527 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7528 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7529
2ea97941 7530 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7531 of->write_output_view(got_file_offset, got_size, got_view);
7532}
7533
7534// Create a PLT entry for a global symbol.
7535
7536template<bool big_endian>
7537void
2ea97941 7538Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7539 Symbol* gsym)
7540{
7541 if (gsym->has_plt_offset())
7542 return;
7543
7544 if (this->plt_ == NULL)
7545 {
7546 // Create the GOT sections first.
2ea97941 7547 this->got_section(symtab, layout);
94cdfcff 7548
2e702c99
RM
7549 this->plt_ = this->make_data_plt(layout, this->got_plt_);
7550
2ea97941
ILT
7551 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7552 (elfcpp::SHF_ALLOC
7553 | elfcpp::SHF_EXECINSTR),
22f0da72 7554 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7555 }
7556 this->plt_->add_entry(gsym);
7557}
7558
0e70b911
CC
7559// Return the number of entries in the PLT.
7560
7561template<bool big_endian>
7562unsigned int
7563Target_arm<big_endian>::plt_entry_count() const
7564{
7565 if (this->plt_ == NULL)
7566 return 0;
7567 return this->plt_->entry_count();
7568}
7569
7570// Return the offset of the first non-reserved PLT entry.
7571
7572template<bool big_endian>
7573unsigned int
7574Target_arm<big_endian>::first_plt_entry_offset() const
7575{
2e702c99 7576 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7577}
7578
7579// Return the size of each PLT entry.
7580
7581template<bool big_endian>
7582unsigned int
7583Target_arm<big_endian>::plt_entry_size() const
7584{
2e702c99 7585 return this->plt_->get_plt_entry_size();
0e70b911
CC
7586}
7587
f96accdf
DK
7588// Get the section to use for TLS_DESC relocations.
7589
7590template<bool big_endian>
7591typename Target_arm<big_endian>::Reloc_section*
7592Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7593{
7594 return this->plt_section()->rel_tls_desc(layout);
7595}
7596
7597// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7598
7599template<bool big_endian>
7600void
7601Target_arm<big_endian>::define_tls_base_symbol(
7602 Symbol_table* symtab,
7603 Layout* layout)
7604{
7605 if (this->tls_base_symbol_defined_)
7606 return;
7607
7608 Output_segment* tls_segment = layout->tls_segment();
7609 if (tls_segment != NULL)
7610 {
7611 bool is_exec = parameters->options().output_is_executable();
7612 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7613 Symbol_table::PREDEFINED,
7614 tls_segment, 0, 0,
7615 elfcpp::STT_TLS,
7616 elfcpp::STB_LOCAL,
7617 elfcpp::STV_HIDDEN, 0,
7618 (is_exec
7619 ? Symbol::SEGMENT_END
7620 : Symbol::SEGMENT_START),
7621 true);
7622 }
7623 this->tls_base_symbol_defined_ = true;
7624}
7625
7626// Create a GOT entry for the TLS module index.
7627
7628template<bool big_endian>
7629unsigned int
7630Target_arm<big_endian>::got_mod_index_entry(
7631 Symbol_table* symtab,
7632 Layout* layout,
6fa2a40b 7633 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7634{
7635 if (this->got_mod_index_offset_ == -1U)
7636 {
7637 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7638 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7639 unsigned int got_offset;
7640 if (!parameters->doing_static_link())
7641 {
7642 got_offset = got->add_constant(0);
7643 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7644 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7645 got_offset);
7646 }
7647 else
7648 {
7649 // We are doing a static link. Just mark it as belong to module 1,
7650 // the executable.
7651 got_offset = got->add_constant(1);
7652 }
7653
f96accdf
DK
7654 got->add_constant(0);
7655 this->got_mod_index_offset_ = got_offset;
7656 }
7657 return this->got_mod_index_offset_;
7658}
7659
7660// Optimize the TLS relocation type based on what we know about the
7661// symbol. IS_FINAL is true if the final address of this symbol is
7662// known at link time.
7663
7664template<bool big_endian>
7665tls::Tls_optimization
7666Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7667{
7668 // FIXME: Currently we do not do any TLS optimization.
7669 return tls::TLSOPT_NONE;
7670}
7671
95a2c8d6
RS
7672// Get the Reference_flags for a particular relocation.
7673
7674template<bool big_endian>
7675int
7676Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7677{
7678 switch (r_type)
7679 {
7680 case elfcpp::R_ARM_NONE:
7681 case elfcpp::R_ARM_V4BX:
7682 case elfcpp::R_ARM_GNU_VTENTRY:
7683 case elfcpp::R_ARM_GNU_VTINHERIT:
7684 // No symbol reference.
7685 return 0;
7686
7687 case elfcpp::R_ARM_ABS32:
7688 case elfcpp::R_ARM_ABS16:
7689 case elfcpp::R_ARM_ABS12:
7690 case elfcpp::R_ARM_THM_ABS5:
7691 case elfcpp::R_ARM_ABS8:
7692 case elfcpp::R_ARM_BASE_ABS:
7693 case elfcpp::R_ARM_MOVW_ABS_NC:
7694 case elfcpp::R_ARM_MOVT_ABS:
7695 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7696 case elfcpp::R_ARM_THM_MOVT_ABS:
7697 case elfcpp::R_ARM_ABS32_NOI:
7698 return Symbol::ABSOLUTE_REF;
7699
7700 case elfcpp::R_ARM_REL32:
7701 case elfcpp::R_ARM_LDR_PC_G0:
7702 case elfcpp::R_ARM_SBREL32:
7703 case elfcpp::R_ARM_THM_PC8:
7704 case elfcpp::R_ARM_BASE_PREL:
7705 case elfcpp::R_ARM_MOVW_PREL_NC:
7706 case elfcpp::R_ARM_MOVT_PREL:
7707 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7708 case elfcpp::R_ARM_THM_MOVT_PREL:
7709 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7710 case elfcpp::R_ARM_THM_PC12:
7711 case elfcpp::R_ARM_REL32_NOI:
7712 case elfcpp::R_ARM_ALU_PC_G0_NC:
7713 case elfcpp::R_ARM_ALU_PC_G0:
7714 case elfcpp::R_ARM_ALU_PC_G1_NC:
7715 case elfcpp::R_ARM_ALU_PC_G1:
7716 case elfcpp::R_ARM_ALU_PC_G2:
7717 case elfcpp::R_ARM_LDR_PC_G1:
7718 case elfcpp::R_ARM_LDR_PC_G2:
7719 case elfcpp::R_ARM_LDRS_PC_G0:
7720 case elfcpp::R_ARM_LDRS_PC_G1:
7721 case elfcpp::R_ARM_LDRS_PC_G2:
7722 case elfcpp::R_ARM_LDC_PC_G0:
7723 case elfcpp::R_ARM_LDC_PC_G1:
7724 case elfcpp::R_ARM_LDC_PC_G2:
7725 case elfcpp::R_ARM_ALU_SB_G0_NC:
7726 case elfcpp::R_ARM_ALU_SB_G0:
7727 case elfcpp::R_ARM_ALU_SB_G1_NC:
7728 case elfcpp::R_ARM_ALU_SB_G1:
7729 case elfcpp::R_ARM_ALU_SB_G2:
7730 case elfcpp::R_ARM_LDR_SB_G0:
7731 case elfcpp::R_ARM_LDR_SB_G1:
7732 case elfcpp::R_ARM_LDR_SB_G2:
7733 case elfcpp::R_ARM_LDRS_SB_G0:
7734 case elfcpp::R_ARM_LDRS_SB_G1:
7735 case elfcpp::R_ARM_LDRS_SB_G2:
7736 case elfcpp::R_ARM_LDC_SB_G0:
7737 case elfcpp::R_ARM_LDC_SB_G1:
7738 case elfcpp::R_ARM_LDC_SB_G2:
7739 case elfcpp::R_ARM_MOVW_BREL_NC:
7740 case elfcpp::R_ARM_MOVT_BREL:
7741 case elfcpp::R_ARM_MOVW_BREL:
7742 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7743 case elfcpp::R_ARM_THM_MOVT_BREL:
7744 case elfcpp::R_ARM_THM_MOVW_BREL:
7745 case elfcpp::R_ARM_GOTOFF32:
7746 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7747 case elfcpp::R_ARM_SBREL31:
7748 return Symbol::RELATIVE_REF;
7749
7750 case elfcpp::R_ARM_PLT32:
7751 case elfcpp::R_ARM_CALL:
7752 case elfcpp::R_ARM_JUMP24:
7753 case elfcpp::R_ARM_THM_CALL:
7754 case elfcpp::R_ARM_THM_JUMP24:
7755 case elfcpp::R_ARM_THM_JUMP19:
7756 case elfcpp::R_ARM_THM_JUMP6:
7757 case elfcpp::R_ARM_THM_JUMP11:
7758 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7759 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7760 // in unwind tables. It may point to functions via PLTs.
7761 // So we treat it like call/jump relocations above.
7762 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7763 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7764
7765 case elfcpp::R_ARM_GOT_BREL:
7766 case elfcpp::R_ARM_GOT_ABS:
7767 case elfcpp::R_ARM_GOT_PREL:
7768 // Absolute in GOT.
7769 return Symbol::ABSOLUTE_REF;
7770
7771 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7772 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7773 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7774 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7775 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7776 return Symbol::TLS_REF;
7777
7778 case elfcpp::R_ARM_TARGET1:
7779 case elfcpp::R_ARM_TARGET2:
7780 case elfcpp::R_ARM_COPY:
7781 case elfcpp::R_ARM_GLOB_DAT:
7782 case elfcpp::R_ARM_JUMP_SLOT:
7783 case elfcpp::R_ARM_RELATIVE:
7784 case elfcpp::R_ARM_PC24:
7785 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7786 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7787 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7788 default:
7789 // Not expected. We will give an error later.
7790 return 0;
7791 }
7792}
7793
4a657b0d
DK
7794// Report an unsupported relocation against a local symbol.
7795
7796template<bool big_endian>
7797void
7798Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7799 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7800 unsigned int r_type)
7801{
7802 gold_error(_("%s: unsupported reloc %u against local symbol"),
7803 object->name().c_str(), r_type);
7804}
7805
bec53400
DK
7806// We are about to emit a dynamic relocation of type R_TYPE. If the
7807// dynamic linker does not support it, issue an error. The GNU linker
7808// only issues a non-PIC error for an allocated read-only section.
7809// Here we know the section is allocated, but we don't know that it is
7810// read-only. But we check for all the relocation types which the
7811// glibc dynamic linker supports, so it seems appropriate to issue an
7812// error even if the section is not read-only.
7813
7814template<bool big_endian>
7815void
7816Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7817 unsigned int r_type)
7818{
7819 switch (r_type)
7820 {
7821 // These are the relocation types supported by glibc for ARM.
7822 case elfcpp::R_ARM_RELATIVE:
7823 case elfcpp::R_ARM_COPY:
7824 case elfcpp::R_ARM_GLOB_DAT:
7825 case elfcpp::R_ARM_JUMP_SLOT:
7826 case elfcpp::R_ARM_ABS32:
be8fcb75 7827 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7828 case elfcpp::R_ARM_PC24:
7829 // FIXME: The following 3 types are not supported by Android's dynamic
7830 // linker.
7831 case elfcpp::R_ARM_TLS_DTPMOD32:
7832 case elfcpp::R_ARM_TLS_DTPOFF32:
7833 case elfcpp::R_ARM_TLS_TPOFF32:
7834 return;
7835
7836 default:
c8761b9a
DK
7837 {
7838 // This prevents us from issuing more than one error per reloc
7839 // section. But we can still wind up issuing more than one
7840 // error per object file.
7841 if (this->issued_non_pic_error_)
7842 return;
7843 const Arm_reloc_property* reloc_property =
7844 arm_reloc_property_table->get_reloc_property(r_type);
7845 gold_assert(reloc_property != NULL);
7846 object->error(_("requires unsupported dynamic reloc %s; "
7847 "recompile with -fPIC"),
7848 reloc_property->name().c_str());
7849 this->issued_non_pic_error_ = true;
bec53400 7850 return;
c8761b9a 7851 }
bec53400
DK
7852
7853 case elfcpp::R_ARM_NONE:
7854 gold_unreachable();
7855 }
7856}
7857
4a657b0d 7858// Scan a relocation for a local symbol.
bec53400
DK
7859// FIXME: This only handles a subset of relocation types used by Android
7860// on ARM v5te devices.
4a657b0d
DK
7861
7862template<bool big_endian>
7863inline void
ad0f2072 7864Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7865 Layout* layout,
bec53400 7866 Target_arm* target,
6fa2a40b 7867 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7868 unsigned int data_shndx,
7869 Output_section* output_section,
7870 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7871 unsigned int r_type,
bfdfa4cd
AM
7872 const elfcpp::Sym<32, big_endian>& lsym,
7873 bool is_discarded)
4a657b0d 7874{
bfdfa4cd
AM
7875 if (is_discarded)
7876 return;
7877
a6d1ef57 7878 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7879 switch (r_type)
7880 {
7881 case elfcpp::R_ARM_NONE:
e4782e83
DK
7882 case elfcpp::R_ARM_V4BX:
7883 case elfcpp::R_ARM_GNU_VTENTRY:
7884 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7885 break;
7886
bec53400 7887 case elfcpp::R_ARM_ABS32:
be8fcb75 7888 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7889 // If building a shared library (or a position-independent
7890 // executable), we need to create a dynamic relocation for
7891 // this location. The relocation applied at link time will
7892 // apply the link-time value, so we flag the location with
7893 // an R_ARM_RELATIVE relocation so the dynamic loader can
7894 // relocate it easily.
7895 if (parameters->options().output_is_position_independent())
7896 {
2ea97941 7897 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 7898 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
7899 // If we are to add more other reloc types than R_ARM_ABS32,
7900 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
7901 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7902 output_section, data_shndx,
7903 reloc.get_r_offset());
7904 }
7905 break;
7906
e4782e83
DK
7907 case elfcpp::R_ARM_ABS16:
7908 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7909 case elfcpp::R_ARM_THM_ABS5:
7910 case elfcpp::R_ARM_ABS8:
be8fcb75 7911 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7912 case elfcpp::R_ARM_MOVW_ABS_NC:
7913 case elfcpp::R_ARM_MOVT_ABS:
7914 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7915 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7916 // If building a shared library (or a position-independent
7917 // executable), we need to create a dynamic relocation for
7918 // this location. Because the addend needs to remain in the
7919 // data section, we need to be careful not to apply this
7920 // relocation statically.
7921 if (parameters->options().output_is_position_independent())
2e702c99 7922 {
e4782e83 7923 check_non_pic(object, r_type);
2e702c99 7924 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 7925 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 7926 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
7927 rel_dyn->add_local(object, r_sym, r_type, output_section,
7928 data_shndx, reloc.get_r_offset());
2e702c99
RM
7929 else
7930 {
7931 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
7932 unsigned int shndx = lsym.get_st_shndx();
7933 bool is_ordinary;
7934 shndx = object->adjust_sym_shndx(r_sym, shndx,
7935 &is_ordinary);
7936 if (!is_ordinary)
7937 object->error(_("section symbol %u has bad shndx %u"),
7938 r_sym, shndx);
7939 else
7940 rel_dyn->add_local_section(object, shndx,
7941 r_type, output_section,
7942 data_shndx, reloc.get_r_offset());
2e702c99
RM
7943 }
7944 }
e4782e83
DK
7945 break;
7946
e4782e83
DK
7947 case elfcpp::R_ARM_REL32:
7948 case elfcpp::R_ARM_LDR_PC_G0:
7949 case elfcpp::R_ARM_SBREL32:
7950 case elfcpp::R_ARM_THM_CALL:
7951 case elfcpp::R_ARM_THM_PC8:
7952 case elfcpp::R_ARM_BASE_PREL:
7953 case elfcpp::R_ARM_PLT32:
7954 case elfcpp::R_ARM_CALL:
7955 case elfcpp::R_ARM_JUMP24:
7956 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7957 case elfcpp::R_ARM_SBREL31:
7958 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7959 case elfcpp::R_ARM_MOVW_PREL_NC:
7960 case elfcpp::R_ARM_MOVT_PREL:
7961 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7962 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7963 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7964 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7965 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7966 case elfcpp::R_ARM_THM_PC12:
7967 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7968 case elfcpp::R_ARM_ALU_PC_G0_NC:
7969 case elfcpp::R_ARM_ALU_PC_G0:
7970 case elfcpp::R_ARM_ALU_PC_G1_NC:
7971 case elfcpp::R_ARM_ALU_PC_G1:
7972 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7973 case elfcpp::R_ARM_LDR_PC_G1:
7974 case elfcpp::R_ARM_LDR_PC_G2:
7975 case elfcpp::R_ARM_LDRS_PC_G0:
7976 case elfcpp::R_ARM_LDRS_PC_G1:
7977 case elfcpp::R_ARM_LDRS_PC_G2:
7978 case elfcpp::R_ARM_LDC_PC_G0:
7979 case elfcpp::R_ARM_LDC_PC_G1:
7980 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7981 case elfcpp::R_ARM_ALU_SB_G0_NC:
7982 case elfcpp::R_ARM_ALU_SB_G0:
7983 case elfcpp::R_ARM_ALU_SB_G1_NC:
7984 case elfcpp::R_ARM_ALU_SB_G1:
7985 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7986 case elfcpp::R_ARM_LDR_SB_G0:
7987 case elfcpp::R_ARM_LDR_SB_G1:
7988 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7989 case elfcpp::R_ARM_LDRS_SB_G0:
7990 case elfcpp::R_ARM_LDRS_SB_G1:
7991 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7992 case elfcpp::R_ARM_LDC_SB_G0:
7993 case elfcpp::R_ARM_LDC_SB_G1:
7994 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7995 case elfcpp::R_ARM_MOVW_BREL_NC:
7996 case elfcpp::R_ARM_MOVT_BREL:
7997 case elfcpp::R_ARM_MOVW_BREL:
7998 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7999 case elfcpp::R_ARM_THM_MOVT_BREL:
8000 case elfcpp::R_ARM_THM_MOVW_BREL:
8001 case elfcpp::R_ARM_THM_JUMP11:
8002 case elfcpp::R_ARM_THM_JUMP8:
8003 // We don't need to do anything for a relative addressing relocation
8004 // against a local symbol if it does not reference the GOT.
bec53400
DK
8005 break;
8006
8007 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8008 case elfcpp::R_ARM_GOTOFF12:
bec53400 8009 // We need a GOT section:
2ea97941 8010 target->got_section(symtab, layout);
bec53400
DK
8011 break;
8012
bec53400 8013 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8014 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8015 {
8016 // The symbol requires a GOT entry.
4a54abbb 8017 Arm_output_data_got<big_endian>* got =
2ea97941 8018 target->got_section(symtab, layout);
bec53400
DK
8019 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8020 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8021 {
8022 // If we are generating a shared object, we need to add a
8023 // dynamic RELATIVE relocation for this symbol's GOT entry.
8024 if (parameters->options().output_is_position_independent())
8025 {
2ea97941
ILT
8026 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8027 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8028 rel_dyn->add_local_relative(
2ea97941
ILT
8029 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8030 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8031 }
8032 }
8033 }
8034 break;
8035
8036 case elfcpp::R_ARM_TARGET1:
e4782e83 8037 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8038 // This should have been mapped to another type already.
8039 // Fall through.
8040 case elfcpp::R_ARM_COPY:
8041 case elfcpp::R_ARM_GLOB_DAT:
8042 case elfcpp::R_ARM_JUMP_SLOT:
8043 case elfcpp::R_ARM_RELATIVE:
8044 // These are relocations which should only be seen by the
8045 // dynamic linker, and should never be seen here.
8046 gold_error(_("%s: unexpected reloc %u in object file"),
8047 object->name().c_str(), r_type);
8048 break;
8049
f96accdf
DK
8050
8051 // These are initial TLS relocs, which are expected when
8052 // linking.
8053 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8054 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8055 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8056 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8057 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8058 {
8059 bool output_is_shared = parameters->options().shared();
8060 const tls::Tls_optimization optimized_type
2e702c99 8061 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8062 r_type);
8063 switch (r_type)
8064 {
8065 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8066 if (optimized_type == tls::TLSOPT_NONE)
8067 {
2e702c99
RM
8068 // Create a pair of GOT entries for the module index and
8069 // dtv-relative offset.
8070 Arm_output_data_got<big_endian>* got
8071 = target->got_section(symtab, layout);
8072 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8073 unsigned int shndx = lsym.get_st_shndx();
8074 bool is_ordinary;
8075 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8076 if (!is_ordinary)
4a54abbb
DK
8077 {
8078 object->error(_("local symbol %u has bad shndx %u"),
8079 r_sym, shndx);
8080 break;
8081 }
8082
8083 if (!parameters->doing_static_link())
f96accdf
DK
8084 got->add_local_pair_with_rel(object, r_sym, shndx,
8085 GOT_TYPE_TLS_PAIR,
8086 target->rel_dyn_section(layout),
bd73a62d 8087 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8088 else
8089 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8090 object, r_sym);
f96accdf
DK
8091 }
8092 else
8093 // FIXME: TLS optimization not supported yet.
8094 gold_unreachable();
8095 break;
8096
8097 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8098 if (optimized_type == tls::TLSOPT_NONE)
8099 {
2e702c99
RM
8100 // Create a GOT entry for the module index.
8101 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8102 }
8103 else
8104 // FIXME: TLS optimization not supported yet.
8105 gold_unreachable();
8106 break;
8107
8108 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8109 break;
8110
8111 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8112 layout->set_has_static_tls();
8113 if (optimized_type == tls::TLSOPT_NONE)
8114 {
4a54abbb
DK
8115 // Create a GOT entry for the tp-relative offset.
8116 Arm_output_data_got<big_endian>* got
8117 = target->got_section(symtab, layout);
8118 unsigned int r_sym =
8119 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8120 if (!parameters->doing_static_link())
8121 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8122 target->rel_dyn_section(layout),
8123 elfcpp::R_ARM_TLS_TPOFF32);
8124 else if (!object->local_has_got_offset(r_sym,
8125 GOT_TYPE_TLS_OFFSET))
8126 {
8127 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8128 unsigned int got_offset =
8129 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8130 got->add_static_reloc(got_offset,
8131 elfcpp::R_ARM_TLS_TPOFF32, object,
8132 r_sym);
8133 }
f96accdf
DK
8134 }
8135 else
8136 // FIXME: TLS optimization not supported yet.
8137 gold_unreachable();
8138 break;
8139
8140 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8141 layout->set_has_static_tls();
8142 if (output_is_shared)
8143 {
2e702c99
RM
8144 // We need to create a dynamic relocation.
8145 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8146 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8147 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8148 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8149 output_section, data_shndx,
8150 reloc.get_r_offset());
8151 }
8152 break;
8153
8154 default:
8155 gold_unreachable();
8156 }
8157 }
8158 break;
8159
3cef7179
ILT
8160 case elfcpp::R_ARM_PC24:
8161 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8162 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8163 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8164 default:
8165 unsupported_reloc_local(object, r_type);
8166 break;
8167 }
8168}
8169
8170// Report an unsupported relocation against a global symbol.
8171
8172template<bool big_endian>
8173void
8174Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8175 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8176 unsigned int r_type,
8177 Symbol* gsym)
8178{
8179 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8180 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8181}
8182
8a75a161
DK
8183template<bool big_endian>
8184inline bool
8185Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8186 unsigned int r_type)
8187{
8188 switch (r_type)
8189 {
8190 case elfcpp::R_ARM_PC24:
8191 case elfcpp::R_ARM_THM_CALL:
8192 case elfcpp::R_ARM_PLT32:
8193 case elfcpp::R_ARM_CALL:
8194 case elfcpp::R_ARM_JUMP24:
8195 case elfcpp::R_ARM_THM_JUMP24:
8196 case elfcpp::R_ARM_SBREL31:
8197 case elfcpp::R_ARM_PREL31:
8198 case elfcpp::R_ARM_THM_JUMP19:
8199 case elfcpp::R_ARM_THM_JUMP6:
8200 case elfcpp::R_ARM_THM_JUMP11:
8201 case elfcpp::R_ARM_THM_JUMP8:
8202 // All the relocations above are branches except SBREL31 and PREL31.
8203 return false;
8204
8205 default:
8206 // Be conservative and assume this is a function pointer.
8207 return true;
8208 }
8209}
8210
8211template<bool big_endian>
8212inline bool
8213Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8214 Symbol_table*,
8215 Layout*,
8216 Target_arm<big_endian>* target,
6fa2a40b 8217 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8218 unsigned int,
8219 Output_section*,
8220 const elfcpp::Rel<32, big_endian>&,
8221 unsigned int r_type,
8222 const elfcpp::Sym<32, big_endian>&)
8223{
8224 r_type = target->get_real_reloc_type(r_type);
8225 return possible_function_pointer_reloc(r_type);
8226}
8227
8228template<bool big_endian>
8229inline bool
8230Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8231 Symbol_table*,
8232 Layout*,
8233 Target_arm<big_endian>* target,
6fa2a40b 8234 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8235 unsigned int,
8236 Output_section*,
8237 const elfcpp::Rel<32, big_endian>&,
8238 unsigned int r_type,
8239 Symbol* gsym)
8240{
8241 // GOT is not a function.
8242 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8243 return false;
8244
8245 r_type = target->get_real_reloc_type(r_type);
8246 return possible_function_pointer_reloc(r_type);
8247}
8248
4a657b0d
DK
8249// Scan a relocation for a global symbol.
8250
8251template<bool big_endian>
8252inline void
ad0f2072 8253Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8254 Layout* layout,
bec53400 8255 Target_arm* target,
6fa2a40b 8256 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8257 unsigned int data_shndx,
8258 Output_section* output_section,
8259 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8260 unsigned int r_type,
8261 Symbol* gsym)
8262{
c8761b9a
DK
8263 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8264 // section. We check here to avoid creating a dynamic reloc against
8265 // _GLOBAL_OFFSET_TABLE_.
8266 if (!target->has_got_section()
8267 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8268 target->got_section(symtab, layout);
8269
a6d1ef57 8270 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8271 switch (r_type)
8272 {
8273 case elfcpp::R_ARM_NONE:
e4782e83
DK
8274 case elfcpp::R_ARM_V4BX:
8275 case elfcpp::R_ARM_GNU_VTENTRY:
8276 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8277 break;
8278
bec53400 8279 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8280 case elfcpp::R_ARM_ABS16:
8281 case elfcpp::R_ARM_ABS12:
8282 case elfcpp::R_ARM_THM_ABS5:
8283 case elfcpp::R_ARM_ABS8:
8284 case elfcpp::R_ARM_BASE_ABS:
8285 case elfcpp::R_ARM_MOVW_ABS_NC:
8286 case elfcpp::R_ARM_MOVT_ABS:
8287 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8288 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8289 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8290 // Absolute addressing relocations.
bec53400 8291 {
2e702c99
RM
8292 // Make a PLT entry if necessary.
8293 if (this->symbol_needs_plt_entry(gsym))
8294 {
8295 target->make_plt_entry(symtab, layout, gsym);
8296 // Since this is not a PC-relative relocation, we may be
8297 // taking the address of a function. In that case we need to
8298 // set the entry in the dynamic symbol table to the address of
8299 // the PLT entry.
8300 if (gsym->is_from_dynobj() && !parameters->options().shared())
8301 gsym->set_needs_dynsym_value();
8302 }
8303 // Make a dynamic relocation if necessary.
8304 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8305 {
8306 if (gsym->may_need_copy_reloc())
8307 {
8308 target->copy_reloc(symtab, layout, object,
8309 data_shndx, output_section, gsym, reloc);
8310 }
8311 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8312 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8313 && gsym->can_use_relative_reloc(false))
8314 {
8315 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8316 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8317 output_section, object,
8318 data_shndx, reloc.get_r_offset());
8319 }
8320 else
8321 {
e4782e83 8322 check_non_pic(object, r_type);
2e702c99
RM
8323 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8324 rel_dyn->add_global(gsym, r_type, output_section, object,
8325 data_shndx, reloc.get_r_offset());
8326 }
8327 }
bec53400
DK
8328 }
8329 break;
8330
e4782e83
DK
8331 case elfcpp::R_ARM_GOTOFF32:
8332 case elfcpp::R_ARM_GOTOFF12:
8333 // We need a GOT section.
8334 target->got_section(symtab, layout);
8335 break;
2e702c99 8336
e4782e83
DK
8337 case elfcpp::R_ARM_REL32:
8338 case elfcpp::R_ARM_LDR_PC_G0:
8339 case elfcpp::R_ARM_SBREL32:
8340 case elfcpp::R_ARM_THM_PC8:
8341 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8342 case elfcpp::R_ARM_MOVW_PREL_NC:
8343 case elfcpp::R_ARM_MOVT_PREL:
8344 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8345 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8346 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8347 case elfcpp::R_ARM_THM_PC12:
8348 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8349 case elfcpp::R_ARM_ALU_PC_G0_NC:
8350 case elfcpp::R_ARM_ALU_PC_G0:
8351 case elfcpp::R_ARM_ALU_PC_G1_NC:
8352 case elfcpp::R_ARM_ALU_PC_G1:
8353 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8354 case elfcpp::R_ARM_LDR_PC_G1:
8355 case elfcpp::R_ARM_LDR_PC_G2:
8356 case elfcpp::R_ARM_LDRS_PC_G0:
8357 case elfcpp::R_ARM_LDRS_PC_G1:
8358 case elfcpp::R_ARM_LDRS_PC_G2:
8359 case elfcpp::R_ARM_LDC_PC_G0:
8360 case elfcpp::R_ARM_LDC_PC_G1:
8361 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8362 case elfcpp::R_ARM_ALU_SB_G0_NC:
8363 case elfcpp::R_ARM_ALU_SB_G0:
8364 case elfcpp::R_ARM_ALU_SB_G1_NC:
8365 case elfcpp::R_ARM_ALU_SB_G1:
8366 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8367 case elfcpp::R_ARM_LDR_SB_G0:
8368 case elfcpp::R_ARM_LDR_SB_G1:
8369 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8370 case elfcpp::R_ARM_LDRS_SB_G0:
8371 case elfcpp::R_ARM_LDRS_SB_G1:
8372 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8373 case elfcpp::R_ARM_LDC_SB_G0:
8374 case elfcpp::R_ARM_LDC_SB_G1:
8375 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8376 case elfcpp::R_ARM_MOVW_BREL_NC:
8377 case elfcpp::R_ARM_MOVT_BREL:
8378 case elfcpp::R_ARM_MOVW_BREL:
8379 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8380 case elfcpp::R_ARM_THM_MOVT_BREL:
8381 case elfcpp::R_ARM_THM_MOVW_BREL:
8382 // Relative addressing relocations.
bec53400
DK
8383 {
8384 // Make a dynamic relocation if necessary.
95a2c8d6 8385 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8386 {
8387 if (target->may_need_copy_reloc(gsym))
8388 {
2ea97941 8389 target->copy_reloc(symtab, layout, object,
bec53400
DK
8390 data_shndx, output_section, gsym, reloc);
8391 }
8392 else
8393 {
8394 check_non_pic(object, r_type);
2ea97941 8395 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8396 rel_dyn->add_global(gsym, r_type, output_section, object,
8397 data_shndx, reloc.get_r_offset());
8398 }
8399 }
8400 }
8401 break;
8402
f4e5969c 8403 case elfcpp::R_ARM_THM_CALL:
bec53400 8404 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8405 case elfcpp::R_ARM_CALL:
8406 case elfcpp::R_ARM_JUMP24:
8407 case elfcpp::R_ARM_THM_JUMP24:
8408 case elfcpp::R_ARM_SBREL31:
c9a2c125 8409 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8410 case elfcpp::R_ARM_THM_JUMP19:
8411 case elfcpp::R_ARM_THM_JUMP6:
8412 case elfcpp::R_ARM_THM_JUMP11:
8413 case elfcpp::R_ARM_THM_JUMP8:
8414 // All the relocation above are branches except for the PREL31 ones.
8415 // A PREL31 relocation can point to a personality function in a shared
8416 // library. In that case we want to use a PLT because we want to
9b547ce6 8417 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8418 // do not support dynamic PREL31 relocations. An REL31 relocation may
8419 // point to a function whose unwinding behaviour is being described but
8420 // we will not mistakenly generate a PLT for that because we should use
8421 // a local section symbol.
8422
bec53400
DK
8423 // If the symbol is fully resolved, this is just a relative
8424 // local reloc. Otherwise we need a PLT entry.
8425 if (gsym->final_value_is_known())
8426 break;
8427 // If building a shared library, we can also skip the PLT entry
8428 // if the symbol is defined in the output file and is protected
8429 // or hidden.
8430 if (gsym->is_defined()
8431 && !gsym->is_from_dynobj()
8432 && !gsym->is_preemptible())
8433 break;
2ea97941 8434 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8435 break;
8436
bec53400 8437 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8438 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8439 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8440 {
8441 // The symbol requires a GOT entry.
4a54abbb 8442 Arm_output_data_got<big_endian>* got =
2ea97941 8443 target->got_section(symtab, layout);
bec53400
DK
8444 if (gsym->final_value_is_known())
8445 got->add_global(gsym, GOT_TYPE_STANDARD);
8446 else
8447 {
8448 // If this symbol is not fully resolved, we need to add a
8449 // GOT entry with a dynamic relocation.
2ea97941 8450 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8451 if (gsym->is_from_dynobj()
8452 || gsym->is_undefined()
fa40b62a
DK
8453 || gsym->is_preemptible()
8454 || (gsym->visibility() == elfcpp::STV_PROTECTED
8455 && parameters->options().shared()))
bec53400
DK
8456 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8457 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8458 else
8459 {
8460 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8461 rel_dyn->add_global_relative(
8462 gsym, elfcpp::R_ARM_RELATIVE, got,
8463 gsym->got_offset(GOT_TYPE_STANDARD));
8464 }
8465 }
8466 }
8467 break;
8468
8469 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8470 case elfcpp::R_ARM_TARGET2:
8471 // These should have been mapped to other types already.
bec53400
DK
8472 // Fall through.
8473 case elfcpp::R_ARM_COPY:
8474 case elfcpp::R_ARM_GLOB_DAT:
8475 case elfcpp::R_ARM_JUMP_SLOT:
8476 case elfcpp::R_ARM_RELATIVE:
8477 // These are relocations which should only be seen by the
8478 // dynamic linker, and should never be seen here.
8479 gold_error(_("%s: unexpected reloc %u in object file"),
8480 object->name().c_str(), r_type);
8481 break;
8482
f96accdf
DK
8483 // These are initial tls relocs, which are expected when
8484 // linking.
8485 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8486 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8487 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8488 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8489 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8490 {
8491 const bool is_final = gsym->final_value_is_known();
8492 const tls::Tls_optimization optimized_type
2e702c99 8493 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8494 switch (r_type)
8495 {
8496 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8497 if (optimized_type == tls::TLSOPT_NONE)
8498 {
2e702c99
RM
8499 // Create a pair of GOT entries for the module index and
8500 // dtv-relative offset.
8501 Arm_output_data_got<big_endian>* got
8502 = target->got_section(symtab, layout);
4a54abbb
DK
8503 if (!parameters->doing_static_link())
8504 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8505 target->rel_dyn_section(layout),
8506 elfcpp::R_ARM_TLS_DTPMOD32,
8507 elfcpp::R_ARM_TLS_DTPOFF32);
8508 else
8509 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8510 }
8511 else
8512 // FIXME: TLS optimization not supported yet.
8513 gold_unreachable();
8514 break;
8515
8516 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8517 if (optimized_type == tls::TLSOPT_NONE)
8518 {
2e702c99
RM
8519 // Create a GOT entry for the module index.
8520 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8521 }
8522 else
8523 // FIXME: TLS optimization not supported yet.
8524 gold_unreachable();
8525 break;
8526
8527 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8528 break;
8529
8530 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8531 layout->set_has_static_tls();
8532 if (optimized_type == tls::TLSOPT_NONE)
8533 {
4a54abbb
DK
8534 // Create a GOT entry for the tp-relative offset.
8535 Arm_output_data_got<big_endian>* got
8536 = target->got_section(symtab, layout);
8537 if (!parameters->doing_static_link())
8538 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8539 target->rel_dyn_section(layout),
8540 elfcpp::R_ARM_TLS_TPOFF32);
8541 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8542 {
8543 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8544 unsigned int got_offset =
8545 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8546 got->add_static_reloc(got_offset,
8547 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8548 }
f96accdf
DK
8549 }
8550 else
8551 // FIXME: TLS optimization not supported yet.
8552 gold_unreachable();
8553 break;
8554
8555 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8556 layout->set_has_static_tls();
8557 if (parameters->options().shared())
8558 {
2e702c99
RM
8559 // We need to create a dynamic relocation.
8560 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8561 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 8562 output_section, object,
2e702c99 8563 data_shndx, reloc.get_r_offset());
f96accdf
DK
8564 }
8565 break;
8566
8567 default:
8568 gold_unreachable();
8569 }
8570 }
8571 break;
8572
3cef7179
ILT
8573 case elfcpp::R_ARM_PC24:
8574 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8575 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8576 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8577 default:
8578 unsupported_reloc_global(object, r_type, gsym);
8579 break;
8580 }
8581}
8582
8583// Process relocations for gc.
8584
8585template<bool big_endian>
8586void
6fa2a40b
CC
8587Target_arm<big_endian>::gc_process_relocs(
8588 Symbol_table* symtab,
8589 Layout* layout,
8590 Sized_relobj_file<32, big_endian>* object,
8591 unsigned int data_shndx,
8592 unsigned int,
8593 const unsigned char* prelocs,
8594 size_t reloc_count,
8595 Output_section* output_section,
8596 bool needs_special_offset_handling,
8597 size_t local_symbol_count,
8598 const unsigned char* plocal_symbols)
4a657b0d
DK
8599{
8600 typedef Target_arm<big_endian> Arm;
2ea97941 8601 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8602
41cbeecc 8603 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8604 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8605 symtab,
2ea97941 8606 layout,
4a657b0d
DK
8607 this,
8608 object,
8609 data_shndx,
8610 prelocs,
8611 reloc_count,
8612 output_section,
8613 needs_special_offset_handling,
8614 local_symbol_count,
8615 plocal_symbols);
8616}
8617
8618// Scan relocations for a section.
8619
8620template<bool big_endian>
8621void
ad0f2072 8622Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8623 Layout* layout,
6fa2a40b 8624 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8625 unsigned int data_shndx,
8626 unsigned int sh_type,
8627 const unsigned char* prelocs,
8628 size_t reloc_count,
8629 Output_section* output_section,
8630 bool needs_special_offset_handling,
8631 size_t local_symbol_count,
8632 const unsigned char* plocal_symbols)
8633{
2ea97941 8634 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8635 if (sh_type == elfcpp::SHT_RELA)
8636 {
8637 gold_error(_("%s: unsupported RELA reloc section"),
8638 object->name().c_str());
8639 return;
8640 }
8641
2ea97941 8642 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8643 symtab,
2ea97941 8644 layout,
4a657b0d
DK
8645 this,
8646 object,
8647 data_shndx,
8648 prelocs,
8649 reloc_count,
8650 output_section,
8651 needs_special_offset_handling,
8652 local_symbol_count,
8653 plocal_symbols);
8654}
8655
8656// Finalize the sections.
8657
8658template<bool big_endian>
8659void
d5b40221 8660Target_arm<big_endian>::do_finalize_sections(
2ea97941 8661 Layout* layout,
f59f41f3 8662 const Input_objects* input_objects,
647f1574 8663 Symbol_table*)
4a657b0d 8664{
3e235302 8665 bool merged_any_attributes = false;
d5b40221
DK
8666 // Merge processor-specific flags.
8667 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8668 p != input_objects->relobj_end();
8669 ++p)
8670 {
8671 Arm_relobj<big_endian>* arm_relobj =
8672 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8673 if (arm_relobj->merge_flags_and_attributes())
8674 {
8675 this->merge_processor_specific_flags(
8676 arm_relobj->name(),
8677 arm_relobj->processor_specific_flags());
8678 this->merge_object_attributes(arm_relobj->name().c_str(),
8679 arm_relobj->attributes_section_data());
3e235302 8680 merged_any_attributes = true;
7296d933 8681 }
2e702c99 8682 }
d5b40221
DK
8683
8684 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8685 p != input_objects->dynobj_end();
8686 ++p)
8687 {
8688 Arm_dynobj<big_endian>* arm_dynobj =
8689 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8690 this->merge_processor_specific_flags(
8691 arm_dynobj->name(),
8692 arm_dynobj->processor_specific_flags());
a0351a69
DK
8693 this->merge_object_attributes(arm_dynobj->name().c_str(),
8694 arm_dynobj->attributes_section_data());
3e235302 8695 merged_any_attributes = true;
d5b40221
DK
8696 }
8697
da59ad79
DK
8698 // Create an empty uninitialized attribute section if we still don't have it
8699 // at this moment. This happens if there is no attributes sections in all
8700 // inputs.
8701 if (this->attributes_section_data_ == NULL)
8702 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8703
41263c05 8704 const Object_attribute* cpu_arch_attr =
a0351a69 8705 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8706 // Check if we need to use Cortex-A8 workaround.
8707 if (parameters->options().user_set_fix_cortex_a8())
8708 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8709 else
8710 {
8711 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8712 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 8713 // profile.
41263c05
DK
8714 const Object_attribute* cpu_arch_profile_attr =
8715 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8716 this->fix_cortex_a8_ =
8717 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
8718 && (cpu_arch_profile_attr->int_value() == 'A'
8719 || cpu_arch_profile_attr->int_value() == 0));
41263c05 8720 }
2e702c99 8721
a2162063
ILT
8722 // Check if we can use V4BX interworking.
8723 // The V4BX interworking stub contains BX instruction,
8724 // which is not specified for some profiles.
9b2fd367 8725 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8726 && !this->may_use_v4t_interworking())
a2162063 8727 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 8728 "the target profile does not support BX instruction"));
a2162063 8729
94cdfcff 8730 // Fill in some more dynamic tags.
ea715a34
ILT
8731 const Reloc_section* rel_plt = (this->plt_ == NULL
8732 ? NULL
8733 : this->plt_->rel_plt());
8734 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8735 this->rel_dyn_, true, false);
94cdfcff
DK
8736
8737 // Emit any relocs we saved in an attempt to avoid generating COPY
8738 // relocs.
8739 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8740 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8741
f59f41f3 8742 // Handle the .ARM.exidx section.
2ea97941 8743 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8744
731ca54a
RÁE
8745 if (!parameters->options().relocatable())
8746 {
8747 if (exidx_section != NULL
2e702c99
RM
8748 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8749 {
8750 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8751 // the .ARM.exidx section.
8752 if (!layout->script_options()->saw_phdrs_clause())
8753 {
8754 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8755 0)
8756 == NULL);
8757 Output_segment* exidx_segment =
8758 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8759 exidx_segment->add_output_section_to_nonload(exidx_section,
8760 elfcpp::PF_R);
8761 }
8762 }
11af873f 8763 }
a0351a69 8764
3e235302
DK
8765 // Create an .ARM.attributes section if we have merged any attributes
8766 // from inputs.
8767 if (merged_any_attributes)
7296d933
DK
8768 {
8769 Output_attributes_section_data* attributes_section =
8770 new Output_attributes_section_data(*this->attributes_section_data_);
8771 layout->add_output_section_data(".ARM.attributes",
8772 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8773 attributes_section, ORDER_INVALID,
7296d933
DK
8774 false);
8775 }
131687b4
DK
8776
8777 // Fix up links in section EXIDX headers.
8778 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8779 p != layout->section_list().end();
8780 ++p)
8781 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8782 {
8783 Arm_output_section<big_endian>* os =
8784 Arm_output_section<big_endian>::as_arm_output_section(*p);
8785 os->set_exidx_section_link();
8786 }
4a657b0d
DK
8787}
8788
bec53400
DK
8789// Return whether a direct absolute static relocation needs to be applied.
8790// In cases where Scan::local() or Scan::global() has created
8791// a dynamic relocation other than R_ARM_RELATIVE, the addend
8792// of the relocation is carried in the data, and we must not
8793// apply the static relocation.
8794
8795template<bool big_endian>
8796inline bool
8797Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8798 const Sized_symbol<32>* gsym,
95a2c8d6 8799 unsigned int r_type,
bec53400
DK
8800 bool is_32bit,
8801 Output_section* output_section)
8802{
8803 // If the output section is not allocated, then we didn't call
8804 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8805 // the reloc here.
8806 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8807 return true;
8808
95a2c8d6
RS
8809 int ref_flags = Scan::get_reference_flags(r_type);
8810
bec53400
DK
8811 // For local symbols, we will have created a non-RELATIVE dynamic
8812 // relocation only if (a) the output is position independent,
8813 // (b) the relocation is absolute (not pc- or segment-relative), and
8814 // (c) the relocation is not 32 bits wide.
8815 if (gsym == NULL)
8816 return !(parameters->options().output_is_position_independent()
8817 && (ref_flags & Symbol::ABSOLUTE_REF)
8818 && !is_32bit);
8819
8820 // For global symbols, we use the same helper routines used in the
8821 // scan pass. If we did not create a dynamic relocation, or if we
8822 // created a RELATIVE dynamic relocation, we should apply the static
8823 // relocation.
8824 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8825 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8826 && gsym->can_use_relative_reloc(ref_flags
8827 & Symbol::FUNCTION_CALL);
8828 return !has_dyn || is_rel;
8829}
8830
4a657b0d
DK
8831// Perform a relocation.
8832
8833template<bool big_endian>
8834inline bool
8835Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8836 const Relocate_info<32, big_endian>* relinfo,
8837 Target_arm* target,
ca09d69a 8838 Output_section* output_section,
c121c671
DK
8839 size_t relnum,
8840 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8841 unsigned int r_type,
c121c671
DK
8842 const Sized_symbol<32>* gsym,
8843 const Symbol_value<32>* psymval,
8844 unsigned char* view,
ebabffbd 8845 Arm_address address,
f96accdf 8846 section_size_type view_size)
4a657b0d 8847{
0e804863
ILT
8848 if (view == NULL)
8849 return true;
8850
c121c671
DK
8851 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8852
a6d1ef57 8853 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8854 const Arm_reloc_property* reloc_property =
8855 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8856 if (reloc_property == NULL)
8857 {
8858 std::string reloc_name =
8859 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8860 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8861 _("cannot relocate %s in object file"),
8862 reloc_name.c_str());
8863 return true;
8864 }
c121c671 8865
2daedcd6
DK
8866 const Arm_relobj<big_endian>* object =
8867 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8868
2daedcd6
DK
8869 // If the final branch target of a relocation is THUMB instruction, this
8870 // is 1. Otherwise it is 0.
8871 Arm_address thumb_bit = 0;
c121c671 8872 Symbol_value<32> symval;
d204b6e9 8873 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8874 bool have_got_offset = false;
8875 unsigned int got_offset = 0;
8876
8877 // If the relocation uses the GOT entry of a symbol instead of the symbol
8878 // itself, we don't care about whether the symbol is defined or what kind
8879 // of symbol it is.
8880 if (reloc_property->uses_got_entry())
8881 {
8882 // Get the GOT offset.
8883 // The GOT pointer points to the end of the GOT section.
8884 // We need to subtract the size of the GOT section to get
8885 // the actual offset to use in the relocation.
8886 // TODO: We should move GOT offset computing code in TLS relocations
8887 // to here.
8888 switch (r_type)
8889 {
8890 case elfcpp::R_ARM_GOT_BREL:
8891 case elfcpp::R_ARM_GOT_PREL:
8892 if (gsym != NULL)
8893 {
8894 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8895 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8896 - target->got_size());
8897 }
8898 else
8899 {
8900 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8901 gold_assert(object->local_has_got_offset(r_sym,
8902 GOT_TYPE_STANDARD));
8903 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8904 - target->got_size());
8905 }
8906 have_got_offset = true;
8907 break;
8908
8909 default:
8910 break;
8911 }
8912 }
8913 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8914 {
2daedcd6
DK
8915 if (gsym != NULL)
8916 {
8917 // This is a global symbol. Determine if we use PLT and if the
8918 // final target is THUMB.
95a2c8d6 8919 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8920 {
8921 // This uses a PLT, change the symbol value.
8922 symval.set_output_value(target->plt_section()->address()
8923 + gsym->plt_offset());
8924 psymval = &symval;
8925 }
d204b6e9
DK
8926 else if (gsym->is_weak_undefined())
8927 {
8928 // This is a weakly undefined symbol and we do not use PLT
8929 // for this relocation. A branch targeting this symbol will
8930 // be converted into an NOP.
8931 is_weakly_undefined_without_plt = true;
8932 }
b2286c10
DK
8933 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8934 {
8935 // This relocation uses the symbol value but the symbol is
8936 // undefined. Exit early and have the caller reporting an
8937 // error.
8938 return true;
8939 }
2daedcd6
DK
8940 else
8941 {
8942 // Set thumb bit if symbol:
8943 // -Has type STT_ARM_TFUNC or
8944 // -Has type STT_FUNC, is defined and with LSB in value set.
8945 thumb_bit =
8946 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8947 || (gsym->type() == elfcpp::STT_FUNC
8948 && !gsym->is_undefined()
8949 && ((psymval->value(object, 0) & 1) != 0)))
8950 ? 1
8951 : 0);
8952 }
8953 }
8954 else
8955 {
2e702c99
RM
8956 // This is a local symbol. Determine if the final target is THUMB.
8957 // We saved this information when all the local symbols were read.
2daedcd6
DK
8958 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8959 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8960 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8961 }
8962 }
8963 else
8964 {
8965 // This is a fake relocation synthesized for a stub. It does not have
8966 // a real symbol. We just look at the LSB of the symbol value to
8967 // determine if the target is THUMB or not.
8968 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8969 }
8970
2daedcd6
DK
8971 // Strip LSB if this points to a THUMB target.
8972 if (thumb_bit != 0
2e702c99 8973 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8974 && ((psymval->value(object, 0) & 1) != 0))
8975 {
8976 Arm_address stripped_value =
8977 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8978 symval.set_output_value(stripped_value);
8979 psymval = &symval;
2e702c99 8980 }
2daedcd6 8981
d204b6e9
DK
8982 // To look up relocation stubs, we need to pass the symbol table index of
8983 // a local symbol.
8984 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8985
b10d2873
ILT
8986 // Get the addressing origin of the output segment defining the
8987 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8988 Arm_address sym_origin = 0;
5c57f1be 8989 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8990 {
8991 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8992 // R_ARM_BASE_ABS with the NULL symbol will give the
8993 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8994 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8995 sym_origin = target->got_plt_section()->address();
8996 else if (gsym == NULL)
8997 sym_origin = 0;
8998 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8999 sym_origin = gsym->output_segment()->vaddr();
9000 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9001 sym_origin = gsym->output_data()->address();
9002
9003 // TODO: Assumes the segment base to be zero for the global symbols
9004 // till the proper support for the segment-base-relative addressing
9005 // will be implemented. This is consistent with GNU ld.
9006 }
9007
5c57f1be
DK
9008 // For relative addressing relocation, find out the relative address base.
9009 Arm_address relative_address_base = 0;
9010 switch(reloc_property->relative_address_base())
9011 {
9012 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9013 // Relocations with relative address bases RAB_TLS and RAB_tp are
9014 // handled by relocate_tls. So we do not need to do anything here.
9015 case Arm_reloc_property::RAB_TLS:
9016 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9017 break;
9018 case Arm_reloc_property::RAB_B_S:
9019 relative_address_base = sym_origin;
9020 break;
9021 case Arm_reloc_property::RAB_GOT_ORG:
9022 relative_address_base = target->got_plt_section()->address();
9023 break;
9024 case Arm_reloc_property::RAB_P:
9025 relative_address_base = address;
9026 break;
9027 case Arm_reloc_property::RAB_Pa:
9028 relative_address_base = address & 0xfffffffcU;
9029 break;
9030 default:
2e702c99 9031 gold_unreachable();
5c57f1be 9032 }
2e702c99 9033
c121c671
DK
9034 typename Arm_relocate_functions::Status reloc_status =
9035 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9036 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9037 switch (r_type)
9038 {
9039 case elfcpp::R_ARM_NONE:
9040 break;
9041
5e445df6 9042 case elfcpp::R_ARM_ABS8:
95a2c8d6 9043 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9044 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9045 break;
9046
9047 case elfcpp::R_ARM_ABS12:
95a2c8d6 9048 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9049 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9050 break;
9051
9052 case elfcpp::R_ARM_ABS16:
95a2c8d6 9053 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9054 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9055 break;
9056
c121c671 9057 case elfcpp::R_ARM_ABS32:
95a2c8d6 9058 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9059 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9060 thumb_bit);
c121c671
DK
9061 break;
9062
be8fcb75 9063 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9064 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9065 // No thumb bit for this relocation: (S + A)
9066 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9067 0);
be8fcb75
ILT
9068 break;
9069
fd3c5f0b 9070 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9071 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9072 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9073 0, thumb_bit,
9074 check_overflow);
fd3c5f0b
ILT
9075 break;
9076
9077 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9078 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9079 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9080 break;
9081
9082 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9083 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9084 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9085 0, thumb_bit, false);
fd3c5f0b
ILT
9086 break;
9087
9088 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9089 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9090 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9091 psymval, 0);
fd3c5f0b
ILT
9092 break;
9093
c2a122b6 9094 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9095 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9096 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9097 reloc_status =
9098 Arm_relocate_functions::movw(view, object, psymval,
9099 relative_address_base, thumb_bit,
9100 check_overflow);
c2a122b6
ILT
9101 break;
9102
9103 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9104 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9105 reloc_status =
9106 Arm_relocate_functions::movt(view, object, psymval,
9107 relative_address_base);
c2a122b6
ILT
9108 break;
9109
9110 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9111 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9112 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9113 reloc_status =
9114 Arm_relocate_functions::thm_movw(view, object, psymval,
9115 relative_address_base,
9116 thumb_bit, check_overflow);
c2a122b6
ILT
9117 break;
9118
9119 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9120 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9121 reloc_status =
9122 Arm_relocate_functions::thm_movt(view, object, psymval,
9123 relative_address_base);
02961d7e 9124 break;
2e702c99 9125
c121c671
DK
9126 case elfcpp::R_ARM_REL32:
9127 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9128 address, thumb_bit);
c121c671
DK
9129 break;
9130
be8fcb75 9131 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9132 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9133 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9134 break;
9135
1521477a 9136 // Thumb long branches.
c121c671 9137 case elfcpp::R_ARM_THM_CALL:
51938283 9138 case elfcpp::R_ARM_THM_XPC22:
1521477a 9139 case elfcpp::R_ARM_THM_JUMP24:
51938283 9140 reloc_status =
1521477a
DK
9141 Arm_relocate_functions::thumb_branch_common(
9142 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9143 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9144 break;
9145
c121c671
DK
9146 case elfcpp::R_ARM_GOTOFF32:
9147 {
ebabffbd 9148 Arm_address got_origin;
c121c671
DK
9149 got_origin = target->got_plt_section()->address();
9150 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9151 got_origin, thumb_bit);
c121c671
DK
9152 }
9153 break;
9154
9155 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9156 gold_assert(gsym != NULL);
9157 reloc_status =
9158 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9159 break;
9160
be8fcb75 9161 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9162 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9163 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9164 break;
9165
c121c671
DK
9166 case elfcpp::R_ARM_GOT_BREL:
9167 gold_assert(have_got_offset);
9168 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9169 break;
9170
7f5309a5
ILT
9171 case elfcpp::R_ARM_GOT_PREL:
9172 gold_assert(have_got_offset);
9173 // Get the address origin for GOT PLT, which is allocated right
9174 // after the GOT section, to calculate an absolute address of
9175 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9176 Arm_address got_origin;
7f5309a5
ILT
9177 got_origin = target->got_plt_section()->address();
9178 reloc_status = Arm_relocate_functions::got_prel(view,
9179 got_origin + got_offset,
9180 address);
9181 break;
9182
c121c671 9183 case elfcpp::R_ARM_PLT32:
1521477a
DK
9184 case elfcpp::R_ARM_CALL:
9185 case elfcpp::R_ARM_JUMP24:
9186 case elfcpp::R_ARM_XPC25:
c121c671
DK
9187 gold_assert(gsym == NULL
9188 || gsym->has_plt_offset()
9189 || gsym->final_value_is_known()
9190 || (gsym->is_defined()
9191 && !gsym->is_from_dynobj()
9192 && !gsym->is_preemptible()));
d204b6e9 9193 reloc_status =
2e702c99 9194 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9195 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9196 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9197 break;
9198
41263c05
DK
9199 case elfcpp::R_ARM_THM_JUMP19:
9200 reloc_status =
9201 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9202 thumb_bit);
9203 break;
9204
800d0f56
ILT
9205 case elfcpp::R_ARM_THM_JUMP6:
9206 reloc_status =
9207 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9208 break;
9209
9210 case elfcpp::R_ARM_THM_JUMP8:
9211 reloc_status =
9212 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9213 break;
9214
9215 case elfcpp::R_ARM_THM_JUMP11:
9216 reloc_status =
9217 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9218 break;
9219
c121c671
DK
9220 case elfcpp::R_ARM_PREL31:
9221 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9222 address, thumb_bit);
c121c671
DK
9223 break;
9224
a2162063 9225 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9226 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9227 {
9228 const bool is_v4bx_interworking =
9229 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9230 reloc_status =
9231 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9232 is_v4bx_interworking);
9233 }
a2162063
ILT
9234 break;
9235
11b861d5
DK
9236 case elfcpp::R_ARM_THM_PC8:
9237 reloc_status =
9238 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9239 break;
9240
9241 case elfcpp::R_ARM_THM_PC12:
9242 reloc_status =
9243 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9244 break;
9245
9246 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9247 reloc_status =
9248 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9249 thumb_bit);
9250 break;
9251
b10d2873 9252 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9253 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9254 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9255 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9256 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9257 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9258 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9259 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9260 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9261 case elfcpp::R_ARM_ALU_SB_G2:
9262 reloc_status =
5c57f1be
DK
9263 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9264 reloc_property->group_index(),
9265 relative_address_base,
9266 thumb_bit, check_overflow);
b10d2873
ILT
9267 break;
9268
9269 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9270 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9271 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9272 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9273 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9274 case elfcpp::R_ARM_LDR_SB_G2:
9275 reloc_status =
5c57f1be
DK
9276 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9277 reloc_property->group_index(),
9278 relative_address_base);
b10d2873
ILT
9279 break;
9280
9281 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9282 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9283 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9284 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9285 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9286 case elfcpp::R_ARM_LDRS_SB_G2:
9287 reloc_status =
5c57f1be
DK
9288 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9289 reloc_property->group_index(),
9290 relative_address_base);
b10d2873
ILT
9291 break;
9292
9293 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9294 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9295 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9296 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9297 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9298 case elfcpp::R_ARM_LDC_SB_G2:
9299 reloc_status =
5c57f1be
DK
9300 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9301 reloc_property->group_index(),
9302 relative_address_base);
c121c671
DK
9303 break;
9304
f96accdf
DK
9305 // These are initial tls relocs, which are expected when
9306 // linking.
9307 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9308 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9309 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9310 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9311 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9312 reloc_status =
9313 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9314 view, address, view_size);
9315 break;
9316
3cef7179
ILT
9317 // The known and unknown unsupported and/or deprecated relocations.
9318 case elfcpp::R_ARM_PC24:
9319 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9320 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9321 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9322 default:
3cef7179
ILT
9323 // Just silently leave the method. We should get an appropriate error
9324 // message in the scan methods.
9325 break;
c121c671
DK
9326 }
9327
9328 // Report any errors.
9329 switch (reloc_status)
9330 {
9331 case Arm_relocate_functions::STATUS_OKAY:
9332 break;
9333 case Arm_relocate_functions::STATUS_OVERFLOW:
9334 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9335 _("relocation overflow in %s"),
9336 reloc_property->name().c_str());
c121c671
DK
9337 break;
9338 case Arm_relocate_functions::STATUS_BAD_RELOC:
9339 gold_error_at_location(
9340 relinfo,
9341 relnum,
9342 rel.get_r_offset(),
a2c7281b
DK
9343 _("unexpected opcode while processing relocation %s"),
9344 reloc_property->name().c_str());
c121c671 9345 break;
4a657b0d
DK
9346 default:
9347 gold_unreachable();
9348 }
9349
9350 return true;
9351}
9352
f96accdf
DK
9353// Perform a TLS relocation.
9354
9355template<bool big_endian>
9356inline typename Arm_relocate_functions<big_endian>::Status
9357Target_arm<big_endian>::Relocate::relocate_tls(
9358 const Relocate_info<32, big_endian>* relinfo,
9359 Target_arm<big_endian>* target,
9360 size_t relnum,
9361 const elfcpp::Rel<32, big_endian>& rel,
9362 unsigned int r_type,
9363 const Sized_symbol<32>* gsym,
9364 const Symbol_value<32>* psymval,
9365 unsigned char* view,
4a54abbb 9366 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9367 section_size_type /*view_size*/ )
9368{
9369 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9370 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9371 Output_segment* tls_segment = relinfo->layout->tls_segment();
9372
6fa2a40b 9373 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9374
9375 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9376
9377 const bool is_final = (gsym == NULL
9378 ? !parameters->options().shared()
9379 : gsym->final_value_is_known());
9380 const tls::Tls_optimization optimized_type
9381 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9382 switch (r_type)
9383 {
9384 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9385 {
9386 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9387 unsigned int got_offset;
9388 if (gsym != NULL)
9389 {
9390 gold_assert(gsym->has_got_offset(got_type));
9391 got_offset = gsym->got_offset(got_type) - target->got_size();
9392 }
9393 else
9394 {
9395 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9396 gold_assert(object->local_has_got_offset(r_sym, got_type));
9397 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9398 - target->got_size());
2e702c99
RM
9399 }
9400 if (optimized_type == tls::TLSOPT_NONE)
9401 {
4a54abbb
DK
9402 Arm_address got_entry =
9403 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9404
9405 // Relocate the field with the PC relative offset of the pair of
9406 // GOT entries.
29ab395d 9407 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9408 return ArmRelocFuncs::STATUS_OKAY;
9409 }
9410 }
f96accdf
DK
9411 break;
9412
9413 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9414 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9415 {
9416 // Relocate the field with the offset of the GOT entry for
9417 // the module index.
9418 unsigned int got_offset;
9419 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9420 - target->got_size());
4a54abbb
DK
9421 Arm_address got_entry =
9422 target->got_plt_section()->address() + got_offset;
9423
2e702c99
RM
9424 // Relocate the field with the PC relative offset of the pair of
9425 // GOT entries.
9426 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9427 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9428 }
f96accdf
DK
9429 break;
9430
9431 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9432 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9433 return ArmRelocFuncs::STATUS_OKAY;
9434
9435 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9436 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9437 {
9438 // Relocate the field with the offset of the GOT entry for
9439 // the tp-relative offset of the symbol.
f96accdf 9440 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9441 unsigned int got_offset;
9442 if (gsym != NULL)
9443 {
9444 gold_assert(gsym->has_got_offset(got_type));
9445 got_offset = gsym->got_offset(got_type);
9446 }
9447 else
9448 {
9449 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9450 gold_assert(object->local_has_got_offset(r_sym, got_type));
9451 got_offset = object->local_got_offset(r_sym, got_type);
9452 }
9453
9454 // All GOT offsets are relative to the end of the GOT.
9455 got_offset -= target->got_size();
4a54abbb
DK
9456
9457 Arm_address got_entry =
9458 target->got_plt_section()->address() + got_offset;
9459
2e702c99 9460 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9461 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9462 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9463 }
f96accdf
DK
9464 break;
9465
9466 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9467 // If we're creating a shared library, a dynamic relocation will
9468 // have been created for this location, so do not apply it now.
9469 if (!parameters->options().shared())
2e702c99
RM
9470 {
9471 gold_assert(tls_segment != NULL);
4a54abbb
DK
9472
9473 // $tp points to the TCB, which is followed by the TLS, so we
9474 // need to add TCB size to the offset.
9475 Arm_address aligned_tcb_size =
9476 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9477 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9478
2e702c99 9479 }
f96accdf 9480 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9481
f96accdf
DK
9482 default:
9483 gold_unreachable();
9484 }
9485
9486 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9487 _("unsupported reloc %u"),
9488 r_type);
9489 return ArmRelocFuncs::STATUS_BAD_RELOC;
9490}
9491
4a657b0d
DK
9492// Relocate section data.
9493
9494template<bool big_endian>
9495void
9496Target_arm<big_endian>::relocate_section(
9497 const Relocate_info<32, big_endian>* relinfo,
9498 unsigned int sh_type,
9499 const unsigned char* prelocs,
9500 size_t reloc_count,
9501 Output_section* output_section,
9502 bool needs_special_offset_handling,
9503 unsigned char* view,
ebabffbd 9504 Arm_address address,
364c7fa5
ILT
9505 section_size_type view_size,
9506 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9507{
9508 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9509 gold_assert(sh_type == elfcpp::SHT_REL);
9510
218c5831
DK
9511 // See if we are relocating a relaxed input section. If so, the view
9512 // covers the whole output section and we need to adjust accordingly.
9513 if (needs_special_offset_handling)
43d12afe 9514 {
218c5831
DK
9515 const Output_relaxed_input_section* poris =
9516 output_section->find_relaxed_input_section(relinfo->object,
9517 relinfo->data_shndx);
9518 if (poris != NULL)
9519 {
9520 Arm_address section_address = poris->address();
9521 section_size_type section_size = poris->data_size();
9522
9523 gold_assert((section_address >= address)
9524 && ((section_address + section_size)
9525 <= (address + view_size)));
9526
9527 off_t offset = section_address - address;
9528 view += offset;
9529 address += offset;
9530 view_size = section_size;
9531 }
43d12afe
DK
9532 }
9533
4a657b0d 9534 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 9535 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
9536 relinfo,
9537 this,
9538 prelocs,
9539 reloc_count,
9540 output_section,
9541 needs_special_offset_handling,
9542 view,
9543 address,
364c7fa5
ILT
9544 view_size,
9545 reloc_symbol_changes);
4a657b0d
DK
9546}
9547
9548// Return the size of a relocation while scanning during a relocatable
9549// link.
9550
9551template<bool big_endian>
9552unsigned int
9553Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9554 unsigned int r_type,
9555 Relobj* object)
9556{
a6d1ef57 9557 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9558 const Arm_reloc_property* arp =
9559 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9560 if (arp != NULL)
9561 return arp->size();
9562 else
4a657b0d 9563 {
5c57f1be
DK
9564 std::string reloc_name =
9565 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9566 gold_error(_("%s: unexpected %s in object file"),
9567 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9568 return 0;
9569 }
9570}
9571
9572// Scan the relocs during a relocatable link.
9573
9574template<bool big_endian>
9575void
9576Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9577 Symbol_table* symtab,
2ea97941 9578 Layout* layout,
6fa2a40b 9579 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9580 unsigned int data_shndx,
9581 unsigned int sh_type,
9582 const unsigned char* prelocs,
9583 size_t reloc_count,
9584 Output_section* output_section,
9585 bool needs_special_offset_handling,
9586 size_t local_symbol_count,
9587 const unsigned char* plocal_symbols,
9588 Relocatable_relocs* rr)
9589{
9590 gold_assert(sh_type == elfcpp::SHT_REL);
9591
5c388529 9592 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9593 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9594
9595 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9596 Scan_relocatable_relocs>(
4a657b0d 9597 symtab,
2ea97941 9598 layout,
4a657b0d
DK
9599 object,
9600 data_shndx,
9601 prelocs,
9602 reloc_count,
9603 output_section,
9604 needs_special_offset_handling,
9605 local_symbol_count,
9606 plocal_symbols,
9607 rr);
9608}
9609
7404fe1b 9610// Emit relocations for a section.
4a657b0d
DK
9611
9612template<bool big_endian>
9613void
7404fe1b 9614Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
9615 const Relocate_info<32, big_endian>* relinfo,
9616 unsigned int sh_type,
9617 const unsigned char* prelocs,
9618 size_t reloc_count,
9619 Output_section* output_section,
62fe925a 9620 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
9621 const Relocatable_relocs* rr,
9622 unsigned char* view,
ebabffbd 9623 Arm_address view_address,
4a657b0d
DK
9624 section_size_type view_size,
9625 unsigned char* reloc_view,
9626 section_size_type reloc_view_size)
9627{
9628 gold_assert(sh_type == elfcpp::SHT_REL);
9629
7404fe1b 9630 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
9631 relinfo,
9632 prelocs,
9633 reloc_count,
9634 output_section,
9635 offset_in_output_section,
9636 rr,
9637 view,
9638 view_address,
9639 view_size,
9640 reloc_view,
9641 reloc_view_size);
9642}
9643
5c388529
DK
9644// Perform target-specific processing in a relocatable link. This is
9645// only used if we use the relocation strategy RELOC_SPECIAL.
9646
9647template<bool big_endian>
9648void
9649Target_arm<big_endian>::relocate_special_relocatable(
9650 const Relocate_info<32, big_endian>* relinfo,
9651 unsigned int sh_type,
9652 const unsigned char* preloc_in,
9653 size_t relnum,
9654 Output_section* output_section,
62fe925a 9655 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
9656 unsigned char* view,
9657 elfcpp::Elf_types<32>::Elf_Addr view_address,
9658 section_size_type,
9659 unsigned char* preloc_out)
9660{
9661 // We can only handle REL type relocation sections.
9662 gold_assert(sh_type == elfcpp::SHT_REL);
9663
9664 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9665 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9666 Reltype_write;
9667 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9668
9669 const Arm_relobj<big_endian>* object =
9670 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9671 const unsigned int local_count = object->local_symbol_count();
9672
9673 Reltype reloc(preloc_in);
9674 Reltype_write reloc_write(preloc_out);
9675
9676 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9677 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9678 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9679
9680 const Arm_reloc_property* arp =
9681 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9682 gold_assert(arp != NULL);
9683
9684 // Get the new symbol index.
9685 // We only use RELOC_SPECIAL strategy in local relocations.
9686 gold_assert(r_sym < local_count);
9687
9688 // We are adjusting a section symbol. We need to find
9689 // the symbol table index of the section symbol for
9690 // the output section corresponding to input section
9691 // in which this symbol is defined.
9692 bool is_ordinary;
9693 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9694 gold_assert(is_ordinary);
9695 Output_section* os = object->output_section(shndx);
9696 gold_assert(os != NULL);
9697 gold_assert(os->needs_symtab_index());
9698 unsigned int new_symndx = os->symtab_index();
9699
9700 // Get the new offset--the location in the output section where
9701 // this relocation should be applied.
9702
9703 Arm_address offset = reloc.get_r_offset();
9704 Arm_address new_offset;
9705 if (offset_in_output_section != invalid_address)
9706 new_offset = offset + offset_in_output_section;
9707 else
9708 {
9709 section_offset_type sot_offset =
2e702c99 9710 convert_types<section_offset_type, Arm_address>(offset);
5c388529 9711 section_offset_type new_sot_offset =
2e702c99
RM
9712 output_section->output_offset(object, relinfo->data_shndx,
9713 sot_offset);
5c388529
DK
9714 gold_assert(new_sot_offset != -1);
9715 new_offset = new_sot_offset;
9716 }
9717
9718 // In an object file, r_offset is an offset within the section.
9719 // In an executable or dynamic object, generated by
9720 // --emit-relocs, r_offset is an absolute address.
9721 if (!parameters->options().relocatable())
9722 {
9723 new_offset += view_address;
9724 if (offset_in_output_section != invalid_address)
2e702c99 9725 new_offset -= offset_in_output_section;
5c388529
DK
9726 }
9727
9728 reloc_write.put_r_offset(new_offset);
9729 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9730
9731 // Handle the reloc addend.
9732 // The relocation uses a section symbol in the input file.
9733 // We are adjusting it to use a section symbol in the output
9734 // file. The input section symbol refers to some address in
9735 // the input section. We need the relocation in the output
9736 // file to refer to that same address. This adjustment to
9737 // the addend is the same calculation we use for a simple
9738 // absolute relocation for the input section symbol.
9739
9740 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9741
9742 // Handle THUMB bit.
9743 Symbol_value<32> symval;
9744 Arm_address thumb_bit =
9745 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9746 if (thumb_bit != 0
2e702c99 9747 && arp->uses_thumb_bit()
5c388529
DK
9748 && ((psymval->value(object, 0) & 1) != 0))
9749 {
9750 Arm_address stripped_value =
9751 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9752 symval.set_output_value(stripped_value);
9753 psymval = &symval;
2e702c99 9754 }
5c388529
DK
9755
9756 unsigned char* paddend = view + offset;
9757 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9758 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9759 switch (r_type)
9760 {
9761 case elfcpp::R_ARM_ABS8:
9762 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9763 psymval);
9764 break;
9765
9766 case elfcpp::R_ARM_ABS12:
9767 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9768 psymval);
9769 break;
9770
9771 case elfcpp::R_ARM_ABS16:
9772 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9773 psymval);
9774 break;
9775
9776 case elfcpp::R_ARM_THM_ABS5:
9777 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9778 object,
9779 psymval);
9780 break;
9781
9782 case elfcpp::R_ARM_MOVW_ABS_NC:
9783 case elfcpp::R_ARM_MOVW_PREL_NC:
9784 case elfcpp::R_ARM_MOVW_BREL_NC:
9785 case elfcpp::R_ARM_MOVW_BREL:
9786 reloc_status = Arm_relocate_functions<big_endian>::movw(
9787 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9788 break;
9789
9790 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9791 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9792 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9793 case elfcpp::R_ARM_THM_MOVW_BREL:
9794 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9795 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9796 break;
9797
9798 case elfcpp::R_ARM_THM_CALL:
9799 case elfcpp::R_ARM_THM_XPC22:
9800 case elfcpp::R_ARM_THM_JUMP24:
9801 reloc_status =
9802 Arm_relocate_functions<big_endian>::thumb_branch_common(
9803 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9804 false);
9805 break;
9806
9807 case elfcpp::R_ARM_PLT32:
9808 case elfcpp::R_ARM_CALL:
9809 case elfcpp::R_ARM_JUMP24:
9810 case elfcpp::R_ARM_XPC25:
9811 reloc_status =
2e702c99 9812 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
9813 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9814 false);
9815 break;
9816
9817 case elfcpp::R_ARM_THM_JUMP19:
9818 reloc_status =
9819 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9820 psymval, 0, thumb_bit);
9821 break;
9822
9823 case elfcpp::R_ARM_THM_JUMP6:
9824 reloc_status =
9825 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9826 0);
9827 break;
9828
9829 case elfcpp::R_ARM_THM_JUMP8:
9830 reloc_status =
9831 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9832 0);
9833 break;
9834
9835 case elfcpp::R_ARM_THM_JUMP11:
9836 reloc_status =
9837 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9838 0);
9839 break;
9840
9841 case elfcpp::R_ARM_PREL31:
9842 reloc_status =
9843 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9844 thumb_bit);
9845 break;
9846
9847 case elfcpp::R_ARM_THM_PC8:
9848 reloc_status =
9849 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9850 0);
9851 break;
9852
9853 case elfcpp::R_ARM_THM_PC12:
9854 reloc_status =
9855 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9856 0);
9857 break;
9858
9859 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9860 reloc_status =
9861 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9862 0, thumb_bit);
9863 break;
9864
9865 // These relocation truncate relocation results so we cannot handle them
9866 // in a relocatable link.
9867 case elfcpp::R_ARM_MOVT_ABS:
9868 case elfcpp::R_ARM_THM_MOVT_ABS:
9869 case elfcpp::R_ARM_MOVT_PREL:
9870 case elfcpp::R_ARM_MOVT_BREL:
9871 case elfcpp::R_ARM_THM_MOVT_PREL:
9872 case elfcpp::R_ARM_THM_MOVT_BREL:
9873 case elfcpp::R_ARM_ALU_PC_G0_NC:
9874 case elfcpp::R_ARM_ALU_PC_G0:
9875 case elfcpp::R_ARM_ALU_PC_G1_NC:
9876 case elfcpp::R_ARM_ALU_PC_G1:
9877 case elfcpp::R_ARM_ALU_PC_G2:
9878 case elfcpp::R_ARM_ALU_SB_G0_NC:
9879 case elfcpp::R_ARM_ALU_SB_G0:
9880 case elfcpp::R_ARM_ALU_SB_G1_NC:
9881 case elfcpp::R_ARM_ALU_SB_G1:
9882 case elfcpp::R_ARM_ALU_SB_G2:
9883 case elfcpp::R_ARM_LDR_PC_G0:
9884 case elfcpp::R_ARM_LDR_PC_G1:
9885 case elfcpp::R_ARM_LDR_PC_G2:
9886 case elfcpp::R_ARM_LDR_SB_G0:
9887 case elfcpp::R_ARM_LDR_SB_G1:
9888 case elfcpp::R_ARM_LDR_SB_G2:
9889 case elfcpp::R_ARM_LDRS_PC_G0:
9890 case elfcpp::R_ARM_LDRS_PC_G1:
9891 case elfcpp::R_ARM_LDRS_PC_G2:
9892 case elfcpp::R_ARM_LDRS_SB_G0:
9893 case elfcpp::R_ARM_LDRS_SB_G1:
9894 case elfcpp::R_ARM_LDRS_SB_G2:
9895 case elfcpp::R_ARM_LDC_PC_G0:
9896 case elfcpp::R_ARM_LDC_PC_G1:
9897 case elfcpp::R_ARM_LDC_PC_G2:
9898 case elfcpp::R_ARM_LDC_SB_G0:
9899 case elfcpp::R_ARM_LDC_SB_G1:
9900 case elfcpp::R_ARM_LDC_SB_G2:
9901 gold_error(_("cannot handle %s in a relocatable link"),
9902 arp->name().c_str());
9903 break;
9904
9905 default:
9906 gold_unreachable();
9907 }
9908
9909 // Report any errors.
9910 switch (reloc_status)
9911 {
9912 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9913 break;
9914 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9915 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9916 _("relocation overflow in %s"),
9917 arp->name().c_str());
9918 break;
9919 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9920 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9921 _("unexpected opcode while processing relocation %s"),
9922 arp->name().c_str());
9923 break;
9924 default:
9925 gold_unreachable();
9926 }
9927}
9928
94cdfcff
DK
9929// Return the value to use for a dynamic symbol which requires special
9930// treatment. This is how we support equality comparisons of function
9931// pointers across shared library boundaries, as described in the
9932// processor specific ABI supplement.
9933
4a657b0d
DK
9934template<bool big_endian>
9935uint64_t
94cdfcff 9936Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9937{
94cdfcff
DK
9938 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9939 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9940}
9941
9942// Map platform-specific relocs to real relocs
9943//
9944template<bool big_endian>
9945unsigned int
ca09d69a 9946Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9947{
9948 switch (r_type)
9949 {
9950 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9951 // This is either R_ARM_ABS32 or R_ARM_REL32;
9952 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9953
9954 case elfcpp::R_ARM_TARGET2:
9b547ce6 9955 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9956 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9957
9958 default:
9959 return r_type;
9960 }
9961}
9962
d5b40221
DK
9963// Whether if two EABI versions V1 and V2 are compatible.
9964
9965template<bool big_endian>
9966bool
9967Target_arm<big_endian>::are_eabi_versions_compatible(
9968 elfcpp::Elf_Word v1,
9969 elfcpp::Elf_Word v2)
9970{
9971 // v4 and v5 are the same spec before and after it was released,
9972 // so allow mixing them.
106e8a6c
DK
9973 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9974 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9975 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9976 return true;
9977
9978 return v1 == v2;
9979}
9980
9981// Combine FLAGS from an input object called NAME and the processor-specific
9982// flags in the ELF header of the output. Much of this is adapted from the
9983// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9984// in bfd/elf32-arm.c.
9985
9986template<bool big_endian>
9987void
9988Target_arm<big_endian>::merge_processor_specific_flags(
9989 const std::string& name,
9990 elfcpp::Elf_Word flags)
9991{
9992 if (this->are_processor_specific_flags_set())
9993 {
9994 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9995
9996 // Nothing to merge if flags equal to those in output.
9997 if (flags == out_flags)
9998 return;
9999
10000 // Complain about various flag mismatches.
10001 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10002 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10003 if (!this->are_eabi_versions_compatible(version1, version2)
10004 && parameters->options().warn_mismatch())
d5b40221
DK
10005 gold_error(_("Source object %s has EABI version %d but output has "
10006 "EABI version %d."),
10007 name.c_str(),
10008 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10009 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10010 }
10011 else
10012 {
10013 // If the input is the default architecture and had the default
10014 // flags then do not bother setting the flags for the output
10015 // architecture, instead allow future merges to do this. If no
10016 // future merges ever set these flags then they will retain their
10017 // uninitialised values, which surprise surprise, correspond
10018 // to the default values.
10019 if (flags == 0)
10020 return;
10021
10022 // This is the first time, just copy the flags.
10023 // We only copy the EABI version for now.
10024 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10025 }
10026}
10027
10028// Adjust ELF file header.
10029template<bool big_endian>
10030void
10031Target_arm<big_endian>::do_adjust_elf_header(
10032 unsigned char* view,
3bfcb652 10033 int len)
d5b40221
DK
10034{
10035 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10036
10037 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10038 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10039 unsigned char e_ident[elfcpp::EI_NIDENT];
10040 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10041
3bfcb652 10042 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10043 == elfcpp::EF_ARM_EABI_UNKNOWN)
10044 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10045 else
10046 e_ident[elfcpp::EI_OSABI] = 0;
10047 e_ident[elfcpp::EI_ABIVERSION] = 0;
10048
10049 // FIXME: Do EF_ARM_BE8 adjustment.
10050
3bfcb652
NC
10051 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10052 // as appropriate.
10053 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10054 {
10055 elfcpp::Elf_Half type = ehdr.get_e_type();
10056 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10057 {
10058 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
10059 if (attr->int_value())
10060 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10061 else
10062 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10063 this->set_processor_specific_flags(flags);
10064 }
10065 }
d5b40221
DK
10066 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10067 oehdr.put_e_ident(e_ident);
10068}
10069
10070// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10071// We need to use a target-specific sub-class of
10072// Sized_relobj_file<32, big_endian> to store ARM specific information.
10073// Hence we need to have our own ELF object creation.
d5b40221
DK
10074
10075template<bool big_endian>
10076Object*
10077Target_arm<big_endian>::do_make_elf_object(
10078 const std::string& name,
10079 Input_file* input_file,
2ea97941 10080 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10081{
10082 int et = ehdr.get_e_type();
f4a8b6d7
DK
10083 // ET_EXEC files are valid input for --just-symbols/-R,
10084 // and we treat them as relocatable objects.
10085 if (et == elfcpp::ET_REL
10086 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10087 {
10088 Arm_relobj<big_endian>* obj =
2e702c99 10089 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10090 obj->setup();
10091 return obj;
10092 }
10093 else if (et == elfcpp::ET_DYN)
10094 {
10095 Sized_dynobj<32, big_endian>* obj =
2e702c99 10096 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10097 obj->setup();
10098 return obj;
10099 }
10100 else
10101 {
10102 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10103 name.c_str(), et);
d5b40221
DK
10104 return NULL;
10105 }
10106}
10107
a0351a69
DK
10108// Read the architecture from the Tag_also_compatible_with attribute, if any.
10109// Returns -1 if no architecture could be read.
10110// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10111
10112template<bool big_endian>
10113int
10114Target_arm<big_endian>::get_secondary_compatible_arch(
10115 const Attributes_section_data* pasd)
10116{
ca09d69a 10117 const Object_attribute* known_attributes =
a0351a69
DK
10118 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10119
10120 // Note: the tag and its argument below are uleb128 values, though
10121 // currently-defined values fit in one byte for each.
10122 const std::string& sv =
10123 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10124 if (sv.size() == 2
10125 && sv.data()[0] == elfcpp::Tag_CPU_arch
10126 && (sv.data()[1] & 128) != 128)
10127 return sv.data()[1];
10128
10129 // This tag is "safely ignorable", so don't complain if it looks funny.
10130 return -1;
10131}
10132
10133// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10134// The tag is removed if ARCH is -1.
10135// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10136
10137template<bool big_endian>
10138void
10139Target_arm<big_endian>::set_secondary_compatible_arch(
10140 Attributes_section_data* pasd,
10141 int arch)
10142{
ca09d69a 10143 Object_attribute* known_attributes =
a0351a69
DK
10144 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10145
10146 if (arch == -1)
10147 {
10148 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10149 return;
10150 }
10151
10152 // Note: the tag and its argument below are uleb128 values, though
10153 // currently-defined values fit in one byte for each.
10154 char sv[3];
10155 sv[0] = elfcpp::Tag_CPU_arch;
10156 gold_assert(arch != 0);
10157 sv[1] = arch;
10158 sv[2] = '\0';
10159
10160 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10161}
10162
10163// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10164// into account.
10165// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10166
10167template<bool big_endian>
10168int
10169Target_arm<big_endian>::tag_cpu_arch_combine(
10170 const char* name,
10171 int oldtag,
10172 int* secondary_compat_out,
10173 int newtag,
10174 int secondary_compat)
10175{
10176#define T(X) elfcpp::TAG_CPU_ARCH_##X
10177 static const int v6t2[] =
10178 {
10179 T(V6T2), // PRE_V4.
10180 T(V6T2), // V4.
10181 T(V6T2), // V4T.
10182 T(V6T2), // V5T.
10183 T(V6T2), // V5TE.
10184 T(V6T2), // V5TEJ.
10185 T(V6T2), // V6.
10186 T(V7), // V6KZ.
10187 T(V6T2) // V6T2.
10188 };
10189 static const int v6k[] =
10190 {
10191 T(V6K), // PRE_V4.
10192 T(V6K), // V4.
10193 T(V6K), // V4T.
10194 T(V6K), // V5T.
10195 T(V6K), // V5TE.
10196 T(V6K), // V5TEJ.
10197 T(V6K), // V6.
10198 T(V6KZ), // V6KZ.
10199 T(V7), // V6T2.
10200 T(V6K) // V6K.
10201 };
10202 static const int v7[] =
10203 {
10204 T(V7), // PRE_V4.
10205 T(V7), // V4.
10206 T(V7), // V4T.
10207 T(V7), // V5T.
10208 T(V7), // V5TE.
10209 T(V7), // V5TEJ.
10210 T(V7), // V6.
10211 T(V7), // V6KZ.
10212 T(V7), // V6T2.
10213 T(V7), // V6K.
10214 T(V7) // V7.
10215 };
10216 static const int v6_m[] =
10217 {
10218 -1, // PRE_V4.
10219 -1, // V4.
10220 T(V6K), // V4T.
10221 T(V6K), // V5T.
10222 T(V6K), // V5TE.
10223 T(V6K), // V5TEJ.
10224 T(V6K), // V6.
10225 T(V6KZ), // V6KZ.
10226 T(V7), // V6T2.
10227 T(V6K), // V6K.
10228 T(V7), // V7.
10229 T(V6_M) // V6_M.
10230 };
10231 static const int v6s_m[] =
10232 {
10233 -1, // PRE_V4.
10234 -1, // V4.
10235 T(V6K), // V4T.
10236 T(V6K), // V5T.
10237 T(V6K), // V5TE.
10238 T(V6K), // V5TEJ.
10239 T(V6K), // V6.
10240 T(V6KZ), // V6KZ.
10241 T(V7), // V6T2.
10242 T(V6K), // V6K.
10243 T(V7), // V7.
10244 T(V6S_M), // V6_M.
10245 T(V6S_M) // V6S_M.
10246 };
10247 static const int v7e_m[] =
10248 {
10249 -1, // PRE_V4.
10250 -1, // V4.
10251 T(V7E_M), // V4T.
10252 T(V7E_M), // V5T.
10253 T(V7E_M), // V5TE.
10254 T(V7E_M), // V5TEJ.
10255 T(V7E_M), // V6.
10256 T(V7E_M), // V6KZ.
10257 T(V7E_M), // V6T2.
10258 T(V7E_M), // V6K.
10259 T(V7E_M), // V7.
10260 T(V7E_M), // V6_M.
10261 T(V7E_M), // V6S_M.
10262 T(V7E_M) // V7E_M.
10263 };
10264 static const int v4t_plus_v6_m[] =
10265 {
10266 -1, // PRE_V4.
10267 -1, // V4.
10268 T(V4T), // V4T.
10269 T(V5T), // V5T.
10270 T(V5TE), // V5TE.
10271 T(V5TEJ), // V5TEJ.
10272 T(V6), // V6.
10273 T(V6KZ), // V6KZ.
10274 T(V6T2), // V6T2.
10275 T(V6K), // V6K.
10276 T(V7), // V7.
10277 T(V6_M), // V6_M.
10278 T(V6S_M), // V6S_M.
10279 T(V7E_M), // V7E_M.
10280 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10281 };
ca09d69a 10282 static const int* comb[] =
a0351a69
DK
10283 {
10284 v6t2,
10285 v6k,
10286 v7,
10287 v6_m,
10288 v6s_m,
10289 v7e_m,
10290 // Pseudo-architecture.
10291 v4t_plus_v6_m
10292 };
10293
10294 // Check we've not got a higher architecture than we know about.
10295
f62a3ca7 10296 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10297 {
10298 gold_error(_("%s: unknown CPU architecture"), name);
10299 return -1;
10300 }
10301
10302 // Override old tag if we have a Tag_also_compatible_with on the output.
10303
10304 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10305 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10306 oldtag = T(V4T_PLUS_V6_M);
10307
10308 // And override the new tag if we have a Tag_also_compatible_with on the
10309 // input.
10310
10311 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10312 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10313 newtag = T(V4T_PLUS_V6_M);
10314
10315 // Architectures before V6KZ add features monotonically.
10316 int tagh = std::max(oldtag, newtag);
10317 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10318 return tagh;
10319
10320 int tagl = std::min(oldtag, newtag);
10321 int result = comb[tagh - T(V6T2)][tagl];
10322
10323 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10324 // as the canonical version.
10325 if (result == T(V4T_PLUS_V6_M))
10326 {
10327 result = T(V4T);
10328 *secondary_compat_out = T(V6_M);
10329 }
10330 else
10331 *secondary_compat_out = -1;
10332
10333 if (result == -1)
10334 {
10335 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10336 name, oldtag, newtag);
10337 return -1;
10338 }
10339
10340 return result;
10341#undef T
10342}
10343
10344// Helper to print AEABI enum tag value.
10345
10346template<bool big_endian>
10347std::string
10348Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10349{
ca09d69a 10350 static const char* aeabi_enum_names[] =
a0351a69
DK
10351 { "", "variable-size", "32-bit", "" };
10352 const size_t aeabi_enum_names_size =
10353 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10354
10355 if (value < aeabi_enum_names_size)
10356 return std::string(aeabi_enum_names[value]);
10357 else
10358 {
10359 char buffer[100];
10360 sprintf(buffer, "<unknown value %u>", value);
10361 return std::string(buffer);
10362 }
10363}
10364
10365// Return the string value to store in TAG_CPU_name.
10366
10367template<bool big_endian>
10368std::string
10369Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10370{
ca09d69a 10371 static const char* name_table[] = {
a0351a69
DK
10372 // These aren't real CPU names, but we can't guess
10373 // that from the architecture version alone.
10374 "Pre v4",
10375 "ARM v4",
10376 "ARM v4T",
10377 "ARM v5T",
10378 "ARM v5TE",
10379 "ARM v5TEJ",
10380 "ARM v6",
10381 "ARM v6KZ",
10382 "ARM v6T2",
10383 "ARM v6K",
10384 "ARM v7",
10385 "ARM v6-M",
10386 "ARM v6S-M",
10387 "ARM v7E-M"
10388 };
10389 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10390
10391 if (value < name_table_size)
10392 return std::string(name_table[value]);
10393 else
10394 {
10395 char buffer[100];
10396 sprintf(buffer, "<unknown CPU value %u>", value);
10397 return std::string(buffer);
2e702c99 10398 }
a0351a69
DK
10399}
10400
679af368
ILT
10401// Query attributes object to see if integer divide instructions may be
10402// present in an object.
10403
10404template<bool big_endian>
10405bool
10406Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10407 const Object_attribute* div_attr)
10408{
10409 switch (div_attr->int_value())
10410 {
10411 case 0:
10412 // Integer divide allowed if instruction contained in
10413 // archetecture.
10414 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10415 return true;
10416 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10417 return true;
10418 else
10419 return false;
10420
10421 case 1:
10422 // Integer divide explicitly prohibited.
10423 return false;
10424
10425 default:
10426 // Unrecognised case - treat as allowing divide everywhere.
10427 case 2:
10428 // Integer divide allowed in ARM state.
10429 return true;
10430 }
10431}
10432
10433// Query attributes object to see if integer divide instructions are
10434// forbidden to be in the object. This is not the inverse of
10435// attributes_accept_div.
10436
10437template<bool big_endian>
10438bool
10439Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10440{
10441 return div_attr->int_value() == 1;
10442}
10443
a0351a69
DK
10444// Merge object attributes from input file called NAME with those of the
10445// output. The input object attributes are in the object pointed by PASD.
10446
10447template<bool big_endian>
10448void
10449Target_arm<big_endian>::merge_object_attributes(
10450 const char* name,
10451 const Attributes_section_data* pasd)
10452{
10453 // Return if there is no attributes section data.
10454 if (pasd == NULL)
10455 return;
10456
10457 // If output has no object attributes, just copy.
da59ad79 10458 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10459 if (this->attributes_section_data_ == NULL)
10460 {
10461 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10462 Object_attribute* out_attr =
10463 this->attributes_section_data_->known_attributes(vendor);
10464
10465 // We do not output objects with Tag_MPextension_use_legacy - we move
10466 // the attribute's value to Tag_MPextension_use. */
10467 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10468 {
10469 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10470 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10471 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10472 {
10473 gold_error(_("%s has both the current and legacy "
10474 "Tag_MPextension_use attributes"),
10475 name);
10476 }
10477
10478 out_attr[elfcpp::Tag_MPextension_use] =
10479 out_attr[elfcpp::Tag_MPextension_use_legacy];
10480 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10481 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10482 }
10483
a0351a69
DK
10484 return;
10485 }
10486
a0351a69
DK
10487 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10488 Object_attribute* out_attr =
10489 this->attributes_section_data_->known_attributes(vendor);
10490
10491 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10492 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10493 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10494 {
10495 // Ignore mismatches if the object doesn't use floating point. */
10496 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10497 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10498 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10499 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10500 && parameters->options().warn_mismatch())
2e702c99 10501 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
10502 name);
10503 }
10504
10505 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10506 {
10507 // Merge this attribute with existing attributes.
10508 switch (i)
10509 {
10510 case elfcpp::Tag_CPU_raw_name:
10511 case elfcpp::Tag_CPU_name:
10512 // These are merged after Tag_CPU_arch.
10513 break;
10514
10515 case elfcpp::Tag_ABI_optimization_goals:
10516 case elfcpp::Tag_ABI_FP_optimization_goals:
10517 // Use the first value seen.
10518 break;
10519
10520 case elfcpp::Tag_CPU_arch:
10521 {
10522 unsigned int saved_out_attr = out_attr->int_value();
10523 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10524 int secondary_compat =
10525 this->get_secondary_compatible_arch(pasd);
10526 int secondary_compat_out =
10527 this->get_secondary_compatible_arch(
10528 this->attributes_section_data_);
10529 out_attr[i].set_int_value(
10530 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10531 &secondary_compat_out,
10532 in_attr[i].int_value(),
10533 secondary_compat));
10534 this->set_secondary_compatible_arch(this->attributes_section_data_,
10535 secondary_compat_out);
10536
10537 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10538 if (out_attr[i].int_value() == saved_out_attr)
10539 ; // Leave the names alone.
10540 else if (out_attr[i].int_value() == in_attr[i].int_value())
10541 {
10542 // The output architecture has been changed to match the
10543 // input architecture. Use the input names.
10544 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10545 in_attr[elfcpp::Tag_CPU_name].string_value());
10546 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10547 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10548 }
10549 else
10550 {
10551 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10552 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10553 }
10554
10555 // If we still don't have a value for Tag_CPU_name,
10556 // make one up now. Tag_CPU_raw_name remains blank.
10557 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10558 {
10559 const std::string cpu_name =
10560 this->tag_cpu_name_value(out_attr[i].int_value());
10561 // FIXME: If we see an unknown CPU, this will be set
10562 // to "<unknown CPU n>", where n is the attribute value.
10563 // This is different from BFD, which leaves the name alone.
10564 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10565 }
10566 }
10567 break;
10568
10569 case elfcpp::Tag_ARM_ISA_use:
10570 case elfcpp::Tag_THUMB_ISA_use:
10571 case elfcpp::Tag_WMMX_arch:
10572 case elfcpp::Tag_Advanced_SIMD_arch:
10573 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10574 case elfcpp::Tag_ABI_FP_rounding:
10575 case elfcpp::Tag_ABI_FP_exceptions:
10576 case elfcpp::Tag_ABI_FP_user_exceptions:
10577 case elfcpp::Tag_ABI_FP_number_model:
10578 case elfcpp::Tag_VFP_HP_extension:
10579 case elfcpp::Tag_CPU_unaligned_access:
10580 case elfcpp::Tag_T2EE_use:
10581 case elfcpp::Tag_Virtualization_use:
10582 case elfcpp::Tag_MPextension_use:
10583 // Use the largest value specified.
10584 if (in_attr[i].int_value() > out_attr[i].int_value())
10585 out_attr[i].set_int_value(in_attr[i].int_value());
10586 break;
10587
10588 case elfcpp::Tag_ABI_align8_preserved:
10589 case elfcpp::Tag_ABI_PCS_RO_data:
10590 // Use the smallest value specified.
10591 if (in_attr[i].int_value() < out_attr[i].int_value())
10592 out_attr[i].set_int_value(in_attr[i].int_value());
10593 break;
10594
10595 case elfcpp::Tag_ABI_align8_needed:
10596 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10597 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10598 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10599 == 0)))
10600 {
9b547ce6 10601 // This error message should be enabled once all non-conforming
a0351a69
DK
10602 // binaries in the toolchain have had the attributes set
10603 // properly.
10604 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10605 // name);
10606 }
10607 // Fall through.
10608 case elfcpp::Tag_ABI_FP_denormal:
10609 case elfcpp::Tag_ABI_PCS_GOT_use:
10610 {
10611 // These tags have 0 = don't care, 1 = strong requirement,
10612 // 2 = weak requirement.
10613 static const int order_021[3] = {0, 2, 1};
10614
10615 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10616 // value if greater than 2 (for future-proofing).
10617 if ((in_attr[i].int_value() > 2
10618 && in_attr[i].int_value() > out_attr[i].int_value())
10619 || (in_attr[i].int_value() <= 2
10620 && out_attr[i].int_value() <= 2
10621 && (order_021[in_attr[i].int_value()]
10622 > order_021[out_attr[i].int_value()])))
10623 out_attr[i].set_int_value(in_attr[i].int_value());
10624 }
10625 break;
10626
10627 case elfcpp::Tag_CPU_arch_profile:
10628 if (out_attr[i].int_value() != in_attr[i].int_value())
10629 {
10630 // 0 will merge with anything.
10631 // 'A' and 'S' merge to 'A'.
10632 // 'R' and 'S' merge to 'R'.
10633 // 'M' and 'A|R|S' is an error.
10634 if (out_attr[i].int_value() == 0
10635 || (out_attr[i].int_value() == 'S'
10636 && (in_attr[i].int_value() == 'A'
10637 || in_attr[i].int_value() == 'R')))
10638 out_attr[i].set_int_value(in_attr[i].int_value());
10639 else if (in_attr[i].int_value() == 0
10640 || (in_attr[i].int_value() == 'S'
10641 && (out_attr[i].int_value() == 'A'
10642 || out_attr[i].int_value() == 'R')))
10643 ; // Do nothing.
7296d933 10644 else if (parameters->options().warn_mismatch())
a0351a69
DK
10645 {
10646 gold_error
10647 (_("conflicting architecture profiles %c/%c"),
10648 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10649 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10650 }
10651 }
10652 break;
10653 case elfcpp::Tag_VFP_arch:
10654 {
10655 static const struct
10656 {
10657 int ver;
10658 int regs;
10659 } vfp_versions[7] =
10660 {
10661 {0, 0},
10662 {1, 16},
10663 {2, 16},
10664 {3, 32},
10665 {3, 16},
10666 {4, 32},
10667 {4, 16}
10668 };
10669
10670 // Values greater than 6 aren't defined, so just pick the
10671 // biggest.
10672 if (in_attr[i].int_value() > 6
10673 && in_attr[i].int_value() > out_attr[i].int_value())
10674 {
10675 *out_attr = *in_attr;
10676 break;
10677 }
10678 // The output uses the superset of input features
10679 // (ISA version) and registers.
10680 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10681 vfp_versions[out_attr[i].int_value()].ver);
10682 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10683 vfp_versions[out_attr[i].int_value()].regs);
10684 // This assumes all possible supersets are also a valid
10685 // options.
10686 int newval;
10687 for (newval = 6; newval > 0; newval--)
10688 {
10689 if (regs == vfp_versions[newval].regs
10690 && ver == vfp_versions[newval].ver)
10691 break;
10692 }
10693 out_attr[i].set_int_value(newval);
10694 }
10695 break;
10696 case elfcpp::Tag_PCS_config:
10697 if (out_attr[i].int_value() == 0)
10698 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10699 else if (in_attr[i].int_value() != 0
10700 && out_attr[i].int_value() != 0
10701 && parameters->options().warn_mismatch())
a0351a69
DK
10702 {
10703 // It's sometimes ok to mix different configs, so this is only
10704 // a warning.
10705 gold_warning(_("%s: conflicting platform configuration"), name);
10706 }
10707 break;
10708 case elfcpp::Tag_ABI_PCS_R9_use:
10709 if (in_attr[i].int_value() != out_attr[i].int_value()
10710 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10711 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10712 && parameters->options().warn_mismatch())
a0351a69
DK
10713 {
10714 gold_error(_("%s: conflicting use of R9"), name);
10715 }
10716 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10717 out_attr[i].set_int_value(in_attr[i].int_value());
10718 break;
10719 case elfcpp::Tag_ABI_PCS_RW_data:
10720 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10721 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10722 != elfcpp::AEABI_R9_SB)
10723 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10724 != elfcpp::AEABI_R9_unused)
10725 && parameters->options().warn_mismatch())
a0351a69
DK
10726 {
10727 gold_error(_("%s: SB relative addressing conflicts with use "
10728 "of R9"),
7296d933 10729 name);
a0351a69
DK
10730 }
10731 // Use the smallest value specified.
10732 if (in_attr[i].int_value() < out_attr[i].int_value())
10733 out_attr[i].set_int_value(in_attr[i].int_value());
10734 break;
10735 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10736 if (out_attr[i].int_value()
10737 && in_attr[i].int_value()
7296d933 10738 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10739 && parameters->options().warn_mismatch()
10740 && parameters->options().wchar_size_warning())
a0351a69
DK
10741 {
10742 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10743 "use %u-byte wchar_t; use of wchar_t values "
10744 "across objects may fail"),
10745 name, in_attr[i].int_value(),
10746 out_attr[i].int_value());
10747 }
10748 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10749 out_attr[i].set_int_value(in_attr[i].int_value());
10750 break;
10751 case elfcpp::Tag_ABI_enum_size:
10752 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10753 {
10754 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10755 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10756 {
10757 // The existing object is compatible with anything.
10758 // Use whatever requirements the new object has.
10759 out_attr[i].set_int_value(in_attr[i].int_value());
10760 }
a0351a69 10761 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10762 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10763 && parameters->options().warn_mismatch()
10764 && parameters->options().enum_size_warning())
a0351a69
DK
10765 {
10766 unsigned int in_value = in_attr[i].int_value();
10767 unsigned int out_value = out_attr[i].int_value();
10768 gold_warning(_("%s uses %s enums yet the output is to use "
10769 "%s enums; use of enum values across objects "
10770 "may fail"),
10771 name,
10772 this->aeabi_enum_name(in_value).c_str(),
10773 this->aeabi_enum_name(out_value).c_str());
10774 }
10775 }
10776 break;
10777 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10778 // Already done.
a0351a69
DK
10779 break;
10780 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10781 if (in_attr[i].int_value() != out_attr[i].int_value()
10782 && parameters->options().warn_mismatch())
a0351a69
DK
10783 {
10784 gold_error(_("%s uses iWMMXt register arguments, output does "
10785 "not"),
10786 name);
10787 }
10788 break;
10789 case Object_attribute::Tag_compatibility:
10790 // Merged in target-independent code.
10791 break;
10792 case elfcpp::Tag_ABI_HardFP_use:
10793 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10794 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10795 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10796 out_attr[i].set_int_value(3);
10797 else if (in_attr[i].int_value() > out_attr[i].int_value())
10798 out_attr[i].set_int_value(in_attr[i].int_value());
10799 break;
10800 case elfcpp::Tag_ABI_FP_16bit_format:
10801 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10802 {
7296d933
DK
10803 if (in_attr[i].int_value() != out_attr[i].int_value()
10804 && parameters->options().warn_mismatch())
a0351a69
DK
10805 gold_error(_("fp16 format mismatch between %s and output"),
10806 name);
10807 }
10808 if (in_attr[i].int_value() != 0)
10809 out_attr[i].set_int_value(in_attr[i].int_value());
10810 break;
10811
da59ad79 10812 case elfcpp::Tag_DIV_use:
679af368
ILT
10813 {
10814 // A value of zero on input means that the divide
10815 // instruction may be used if available in the base
10816 // architecture as specified via Tag_CPU_arch and
10817 // Tag_CPU_arch_profile. A value of 1 means that the user
10818 // did not want divide instructions. A value of 2
10819 // explicitly means that divide instructions were allowed
10820 // in ARM and Thumb state.
10821 int arch = this->
10822 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
10823 int_value();
10824 int profile = this->
10825 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
10826 int_value();
10827 if (in_attr[i].int_value() == out_attr[i].int_value())
10828 {
10829 // Do nothing.
10830 }
10831 else if (attributes_forbid_div(&in_attr[i])
10832 && !attributes_accept_div(arch, profile, &out_attr[i]))
10833 out_attr[i].set_int_value(1);
10834 else if (attributes_forbid_div(&out_attr[i])
10835 && attributes_accept_div(arch, profile, &in_attr[i]))
10836 out_attr[i].set_int_value(in_attr[i].int_value());
10837 else if (in_attr[i].int_value() == 2)
10838 out_attr[i].set_int_value(in_attr[i].int_value());
10839 }
da59ad79
DK
10840 break;
10841
10842 case elfcpp::Tag_MPextension_use_legacy:
10843 // We don't output objects with Tag_MPextension_use_legacy - we
10844 // move the value to Tag_MPextension_use.
10845 if (in_attr[i].int_value() != 0
10846 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10847 {
10848 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10849 != in_attr[i].int_value())
10850 {
10851 gold_error(_("%s has has both the current and legacy "
2e702c99 10852 "Tag_MPextension_use attributes"),
da59ad79
DK
10853 name);
10854 }
10855 }
10856
10857 if (in_attr[i].int_value()
10858 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10859 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10860
10861 break;
10862
a0351a69
DK
10863 case elfcpp::Tag_nodefaults:
10864 // This tag is set if it exists, but the value is unused (and is
10865 // typically zero). We don't actually need to do anything here -
10866 // the merge happens automatically when the type flags are merged
10867 // below.
10868 break;
10869 case elfcpp::Tag_also_compatible_with:
10870 // Already done in Tag_CPU_arch.
10871 break;
10872 case elfcpp::Tag_conformance:
10873 // Keep the attribute if it matches. Throw it away otherwise.
10874 // No attribute means no claim to conform.
10875 if (in_attr[i].string_value() != out_attr[i].string_value())
10876 out_attr[i].set_string_value("");
10877 break;
10878
10879 default:
10880 {
10881 const char* err_object = NULL;
10882
10883 // The "known_obj_attributes" table does contain some undefined
10884 // attributes. Ensure that there are unused.
10885 if (out_attr[i].int_value() != 0
10886 || out_attr[i].string_value() != "")
10887 err_object = "output";
10888 else if (in_attr[i].int_value() != 0
10889 || in_attr[i].string_value() != "")
10890 err_object = name;
10891
7296d933
DK
10892 if (err_object != NULL
10893 && parameters->options().warn_mismatch())
a0351a69
DK
10894 {
10895 // Attribute numbers >=64 (mod 128) can be safely ignored.
10896 if ((i & 127) < 64)
10897 gold_error(_("%s: unknown mandatory EABI object attribute "
10898 "%d"),
10899 err_object, i);
10900 else
10901 gold_warning(_("%s: unknown EABI object attribute %d"),
10902 err_object, i);
10903 }
10904
10905 // Only pass on attributes that match in both inputs.
10906 if (!in_attr[i].matches(out_attr[i]))
10907 {
10908 out_attr[i].set_int_value(0);
10909 out_attr[i].set_string_value("");
10910 }
10911 }
10912 }
10913
10914 // If out_attr was copied from in_attr then it won't have a type yet.
10915 if (in_attr[i].type() && !out_attr[i].type())
10916 out_attr[i].set_type(in_attr[i].type());
10917 }
10918
10919 // Merge Tag_compatibility attributes and any common GNU ones.
10920 this->attributes_section_data_->merge(name, pasd);
10921
10922 // Check for any attributes not known on ARM.
10923 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10924 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10925 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10926 Other_attributes* out_other_attributes =
10927 this->attributes_section_data_->other_attributes(vendor);
10928 Other_attributes::iterator out_iter = out_other_attributes->begin();
10929
10930 while (in_iter != in_other_attributes->end()
10931 || out_iter != out_other_attributes->end())
10932 {
10933 const char* err_object = NULL;
10934 int err_tag = 0;
10935
10936 // The tags for each list are in numerical order.
10937 // If the tags are equal, then merge.
10938 if (out_iter != out_other_attributes->end()
10939 && (in_iter == in_other_attributes->end()
10940 || in_iter->first > out_iter->first))
10941 {
10942 // This attribute only exists in output. We can't merge, and we
10943 // don't know what the tag means, so delete it.
10944 err_object = "output";
10945 err_tag = out_iter->first;
10946 int saved_tag = out_iter->first;
10947 delete out_iter->second;
2e702c99 10948 out_other_attributes->erase(out_iter);
a0351a69
DK
10949 out_iter = out_other_attributes->upper_bound(saved_tag);
10950 }
10951 else if (in_iter != in_other_attributes->end()
10952 && (out_iter != out_other_attributes->end()
10953 || in_iter->first < out_iter->first))
10954 {
10955 // This attribute only exists in input. We can't merge, and we
10956 // don't know what the tag means, so ignore it.
10957 err_object = name;
10958 err_tag = in_iter->first;
10959 ++in_iter;
10960 }
10961 else // The tags are equal.
10962 {
10963 // As present, all attributes in the list are unknown, and
10964 // therefore can't be merged meaningfully.
10965 err_object = "output";
10966 err_tag = out_iter->first;
10967
10968 // Only pass on attributes that match in both inputs.
10969 if (!in_iter->second->matches(*(out_iter->second)))
10970 {
10971 // No match. Delete the attribute.
10972 int saved_tag = out_iter->first;
10973 delete out_iter->second;
10974 out_other_attributes->erase(out_iter);
10975 out_iter = out_other_attributes->upper_bound(saved_tag);
10976 }
10977 else
10978 {
10979 // Matched. Keep the attribute and move to the next.
10980 ++out_iter;
10981 ++in_iter;
10982 }
10983 }
10984
7296d933 10985 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10986 {
10987 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10988 if ((err_tag & 127) < 64)
10989 {
10990 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10991 err_object, err_tag);
10992 }
10993 else
10994 {
10995 gold_warning(_("%s: unknown EABI object attribute %d"),
10996 err_object, err_tag);
10997 }
10998 }
10999 }
11000}
11001
55da9579
DK
11002// Stub-generation methods for Target_arm.
11003
11004// Make a new Arm_input_section object.
11005
11006template<bool big_endian>
11007Arm_input_section<big_endian>*
11008Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11009 Relobj* relobj,
11010 unsigned int shndx)
55da9579 11011{
5ac169d4 11012 Section_id sid(relobj, shndx);
55da9579
DK
11013
11014 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11015 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11016 arm_input_section->init();
11017
11018 // Register new Arm_input_section in map for look-up.
11019 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11020 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11021
11022 // Make sure that it we have not created another Arm_input_section
11023 // for this input section already.
11024 gold_assert(ins.second);
11025
2e702c99 11026 return arm_input_section;
55da9579
DK
11027}
11028
11029// Find the Arm_input_section object corresponding to the SHNDX-th input
11030// section of RELOBJ.
11031
11032template<bool big_endian>
11033Arm_input_section<big_endian>*
11034Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11035 Relobj* relobj,
11036 unsigned int shndx) const
55da9579 11037{
5ac169d4 11038 Section_id sid(relobj, shndx);
55da9579 11039 typename Arm_input_section_map::const_iterator p =
5ac169d4 11040 this->arm_input_section_map_.find(sid);
55da9579
DK
11041 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11042}
11043
11044// Make a new stub table.
11045
11046template<bool big_endian>
11047Stub_table<big_endian>*
11048Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11049{
2ea97941 11050 Stub_table<big_endian>* stub_table =
55da9579 11051 new Stub_table<big_endian>(owner);
2ea97941 11052 this->stub_tables_.push_back(stub_table);
55da9579 11053
2ea97941
ILT
11054 stub_table->set_address(owner->address() + owner->data_size());
11055 stub_table->set_file_offset(owner->offset() + owner->data_size());
11056 stub_table->finalize_data_size();
55da9579 11057
2ea97941 11058 return stub_table;
55da9579
DK
11059}
11060
eb44217c
DK
11061// Scan a relocation for stub generation.
11062
11063template<bool big_endian>
11064void
11065Target_arm<big_endian>::scan_reloc_for_stub(
11066 const Relocate_info<32, big_endian>* relinfo,
11067 unsigned int r_type,
11068 const Sized_symbol<32>* gsym,
11069 unsigned int r_sym,
11070 const Symbol_value<32>* psymval,
11071 elfcpp::Elf_types<32>::Elf_Swxword addend,
11072 Arm_address address)
11073{
eb44217c
DK
11074 const Arm_relobj<big_endian>* arm_relobj =
11075 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11076
11077 bool target_is_thumb;
11078 Symbol_value<32> symval;
11079 if (gsym != NULL)
11080 {
11081 // This is a global symbol. Determine if we use PLT and if the
11082 // final target is THUMB.
95a2c8d6 11083 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11084 {
11085 // This uses a PLT, change the symbol value.
11086 symval.set_output_value(this->plt_section()->address()
11087 + gsym->plt_offset());
11088 psymval = &symval;
11089 target_is_thumb = false;
11090 }
11091 else if (gsym->is_undefined())
11092 // There is no need to generate a stub symbol is undefined.
11093 return;
11094 else
11095 {
11096 target_is_thumb =
11097 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11098 || (gsym->type() == elfcpp::STT_FUNC
11099 && !gsym->is_undefined()
11100 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11101 }
11102 }
11103 else
11104 {
11105 // This is a local symbol. Determine if the final target is THUMB.
11106 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11107 }
11108
11109 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11110 const Arm_reloc_property* reloc_property =
11111 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11112 gold_assert(reloc_property != NULL);
eb44217c 11113 if (target_is_thumb
5c57f1be 11114 && reloc_property->uses_thumb_bit()
eb44217c
DK
11115 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11116 {
11117 Arm_address stripped_value =
11118 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11119 symval.set_output_value(stripped_value);
11120 psymval = &symval;
2e702c99 11121 }
eb44217c
DK
11122
11123 // Get the symbol value.
11124 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11125
11126 // Owing to pipelining, the PC relative branches below actually skip
11127 // two instructions when the branch offset is 0.
11128 Arm_address destination;
11129 switch (r_type)
11130 {
11131 case elfcpp::R_ARM_CALL:
11132 case elfcpp::R_ARM_JUMP24:
11133 case elfcpp::R_ARM_PLT32:
11134 // ARM branches.
11135 destination = value + addend + 8;
11136 break;
11137 case elfcpp::R_ARM_THM_CALL:
11138 case elfcpp::R_ARM_THM_XPC22:
11139 case elfcpp::R_ARM_THM_JUMP24:
11140 case elfcpp::R_ARM_THM_JUMP19:
11141 // THUMB branches.
11142 destination = value + addend + 4;
11143 break;
11144 default:
11145 gold_unreachable();
11146 }
11147
a120bc7f 11148 Reloc_stub* stub = NULL;
eb44217c
DK
11149 Stub_type stub_type =
11150 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11151 target_is_thumb);
a120bc7f
DK
11152 if (stub_type != arm_stub_none)
11153 {
11154 // Try looking up an existing stub from a stub table.
2e702c99 11155 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11156 arm_relobj->stub_table(relinfo->data_shndx);
11157 gold_assert(stub_table != NULL);
2e702c99 11158
a120bc7f
DK
11159 // Locate stub by destination.
11160 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11161
a120bc7f
DK
11162 // Create a stub if there is not one already
11163 stub = stub_table->find_reloc_stub(stub_key);
11164 if (stub == NULL)
11165 {
11166 // create a new stub and add it to stub table.
11167 stub = this->stub_factory().make_reloc_stub(stub_type);
11168 stub_table->add_reloc_stub(stub, stub_key);
11169 }
11170
11171 // Record the destination address.
11172 stub->set_destination_address(destination
11173 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11174 }
11175
a120bc7f
DK
11176 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11177 if (this->fix_cortex_a8_
11178 && (r_type == elfcpp::R_ARM_THM_JUMP24
11179 || r_type == elfcpp::R_ARM_THM_JUMP19
11180 || r_type == elfcpp::R_ARM_THM_CALL
11181 || r_type == elfcpp::R_ARM_THM_XPC22)
11182 && (address & 0xfffU) == 0xffeU)
11183 {
11184 // Found a candidate. Note we haven't checked the destination is
11185 // within 4K here: if we do so (and don't create a record) we can't
11186 // tell that a branch should have been relocated when scanning later.
11187 this->cortex_a8_relocs_info_[address] =
11188 new Cortex_a8_reloc(stub, r_type,
11189 destination | (target_is_thumb ? 1 : 0));
11190 }
eb44217c
DK
11191}
11192
11193// This function scans a relocation sections for stub generation.
11194// The template parameter Relocate must be a class type which provides
11195// a single function, relocate(), which implements the machine
11196// specific part of a relocation.
11197
11198// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11199// SHT_REL or SHT_RELA.
11200
11201// PRELOCS points to the relocation data. RELOC_COUNT is the number
11202// of relocs. OUTPUT_SECTION is the output section.
11203// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11204// mapped to output offsets.
11205
11206// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11207// VIEW_SIZE is the size. These refer to the input section, unless
11208// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11209// the output section.
11210
11211template<bool big_endian>
11212template<int sh_type>
11213void inline
11214Target_arm<big_endian>::scan_reloc_section_for_stubs(
11215 const Relocate_info<32, big_endian>* relinfo,
11216 const unsigned char* prelocs,
11217 size_t reloc_count,
11218 Output_section* output_section,
11219 bool needs_special_offset_handling,
11220 const unsigned char* view,
11221 elfcpp::Elf_types<32>::Elf_Addr view_address,
11222 section_size_type)
11223{
11224 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11225 const int reloc_size =
11226 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11227
11228 Arm_relobj<big_endian>* arm_object =
11229 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11230 unsigned int local_count = arm_object->local_symbol_count();
11231
168a4726 11232 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11233 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11234
11235 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11236 {
11237 Reltype reloc(prelocs);
11238
11239 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11240 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11241 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11242
11243 r_type = this->get_real_reloc_type(r_type);
11244
11245 // Only a few relocation types need stubs.
11246 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11247 && (r_type != elfcpp::R_ARM_JUMP24)
11248 && (r_type != elfcpp::R_ARM_PLT32)
11249 && (r_type != elfcpp::R_ARM_THM_CALL)
11250 && (r_type != elfcpp::R_ARM_THM_XPC22)
11251 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11252 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11253 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11254 continue;
11255
2ea97941 11256 section_offset_type offset =
eb44217c
DK
11257 convert_to_section_size_type(reloc.get_r_offset());
11258
11259 if (needs_special_offset_handling)
11260 {
2ea97941
ILT
11261 offset = output_section->output_offset(relinfo->object,
11262 relinfo->data_shndx,
11263 offset);
11264 if (offset == -1)
eb44217c
DK
11265 continue;
11266 }
11267
2fd9ae7a 11268 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11269 if (r_type == elfcpp::R_ARM_V4BX)
11270 {
2fd9ae7a
DK
11271 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11272 {
11273 // Get the BX instruction.
11274 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11275 const Valtype* wv =
11276 reinterpret_cast<const Valtype*>(view + offset);
11277 elfcpp::Elf_types<32>::Elf_Swxword insn =
11278 elfcpp::Swap<32, big_endian>::readval(wv);
11279 const uint32_t reg = (insn & 0xf);
11280
11281 if (reg < 0xf)
11282 {
11283 // Try looking up an existing stub from a stub table.
11284 Stub_table<big_endian>* stub_table =
11285 arm_object->stub_table(relinfo->data_shndx);
11286 gold_assert(stub_table != NULL);
11287
11288 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11289 {
11290 // create a new stub and add it to stub table.
11291 Arm_v4bx_stub* stub =
2e702c99 11292 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11293 gold_assert(stub != NULL);
11294 stub_table->add_arm_v4bx_stub(stub);
11295 }
11296 }
11297 }
a2162063
ILT
11298 continue;
11299 }
11300
eb44217c
DK
11301 // Get the addend.
11302 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11303 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11304 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11305
11306 const Sized_symbol<32>* sym;
11307
11308 Symbol_value<32> symval;
11309 const Symbol_value<32> *psymval;
aa98ff75
DK
11310 bool is_defined_in_discarded_section;
11311 unsigned int shndx;
eb44217c
DK
11312 if (r_sym < local_count)
11313 {
11314 sym = NULL;
11315 psymval = arm_object->local_symbol(r_sym);
11316
2e702c99
RM
11317 // If the local symbol belongs to a section we are discarding,
11318 // and that section is a debug section, try to find the
11319 // corresponding kept section and map this symbol to its
11320 // counterpart in the kept section. The symbol must not
11321 // correspond to a section we are folding.
eb44217c 11322 bool is_ordinary;
aa98ff75
DK
11323 shndx = psymval->input_shndx(&is_ordinary);
11324 is_defined_in_discarded_section =
11325 (is_ordinary
11326 && shndx != elfcpp::SHN_UNDEF
11327 && !arm_object->is_section_included(shndx)
11328 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11329
11330 // We need to compute the would-be final value of this local
11331 // symbol.
11332 if (!is_defined_in_discarded_section)
eb44217c 11333 {
6fa2a40b 11334 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11335 typename ObjType::Compute_final_local_value_status status =
11336 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11337 relinfo->symtab);
aa98ff75
DK
11338 if (status == ObjType::CFLV_OK)
11339 {
11340 // Currently we cannot handle a branch to a target in
11341 // a merged section. If this is the case, issue an error
11342 // and also free the merge symbol value.
11343 if (!symval.has_output_value())
11344 {
11345 const std::string& section_name =
11346 arm_object->section_name(shndx);
11347 arm_object->error(_("cannot handle branch to local %u "
11348 "in a merged section %s"),
11349 r_sym, section_name.c_str());
11350 }
11351 psymval = &symval;
11352 }
eb44217c 11353 else
aa98ff75
DK
11354 {
11355 // We cannot determine the final value.
2e702c99 11356 continue;
aa98ff75 11357 }
eb44217c
DK
11358 }
11359 }
11360 else
11361 {
aa98ff75
DK
11362 const Symbol* gsym;
11363 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11364 gold_assert(gsym != NULL);
11365 if (gsym->is_forwarder())
11366 gsym = relinfo->symtab->resolve_forwards(gsym);
11367
11368 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11369 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11370 symval.set_output_symtab_index(sym->symtab_index());
11371 else
11372 symval.set_no_output_symtab_entry();
11373
11374 // We need to compute the would-be final value of this global
11375 // symbol.
11376 const Symbol_table* symtab = relinfo->symtab;
11377 const Sized_symbol<32>* sized_symbol =
11378 symtab->get_sized_symbol<32>(gsym);
11379 Symbol_table::Compute_final_value_status status;
11380 Arm_address value =
11381 symtab->compute_final_value<32>(sized_symbol, &status);
11382
11383 // Skip this if the symbol has not output section.
11384 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11385 continue;
eb44217c 11386 symval.set_output_value(value);
aa98ff75
DK
11387
11388 if (gsym->type() == elfcpp::STT_TLS)
11389 symval.set_is_tls_symbol();
11390 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11391 symval.set_is_ifunc_symbol();
eb44217c 11392 psymval = &symval;
aa98ff75
DK
11393
11394 is_defined_in_discarded_section =
11395 (gsym->is_defined_in_discarded_section()
11396 && gsym->is_undefined());
11397 shndx = 0;
11398 }
11399
11400 Symbol_value<32> symval2;
11401 if (is_defined_in_discarded_section)
11402 {
11403 if (comdat_behavior == CB_UNDETERMINED)
11404 {
11405 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11406 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11407 }
11408 if (comdat_behavior == CB_PRETEND)
11409 {
11410 // FIXME: This case does not work for global symbols.
11411 // We have no place to store the original section index.
11412 // Fortunately this does not matter for comdat sections,
11413 // only for sections explicitly discarded by a linker
11414 // script.
11415 bool found;
11416 typename elfcpp::Elf_types<32>::Elf_Addr value =
11417 arm_object->map_to_kept_section(shndx, &found);
11418 if (found)
11419 symval2.set_output_value(value + psymval->input_value());
11420 else
11421 symval2.set_output_value(0);
11422 }
11423 else
11424 {
11425 if (comdat_behavior == CB_WARNING)
11426 gold_warning_at_location(relinfo, i, offset,
11427 _("relocation refers to discarded "
11428 "section"));
11429 symval2.set_output_value(0);
11430 }
11431 symval2.set_no_output_symtab_entry();
11432 psymval = &symval2;
eb44217c
DK
11433 }
11434
11435 // If symbol is a section symbol, we don't know the actual type of
11436 // destination. Give up.
11437 if (psymval->is_section_symbol())
11438 continue;
11439
11440 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11441 addend, view_address + offset);
eb44217c
DK
11442 }
11443}
11444
11445// Scan an input section for stub generation.
11446
11447template<bool big_endian>
11448void
11449Target_arm<big_endian>::scan_section_for_stubs(
11450 const Relocate_info<32, big_endian>* relinfo,
11451 unsigned int sh_type,
11452 const unsigned char* prelocs,
11453 size_t reloc_count,
11454 Output_section* output_section,
11455 bool needs_special_offset_handling,
11456 const unsigned char* view,
11457 Arm_address view_address,
11458 section_size_type view_size)
11459{
11460 if (sh_type == elfcpp::SHT_REL)
11461 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11462 relinfo,
11463 prelocs,
11464 reloc_count,
11465 output_section,
11466 needs_special_offset_handling,
11467 view,
11468 view_address,
11469 view_size);
11470 else if (sh_type == elfcpp::SHT_RELA)
11471 // We do not support RELA type relocations yet. This is provided for
11472 // completeness.
11473 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11474 relinfo,
11475 prelocs,
11476 reloc_count,
11477 output_section,
11478 needs_special_offset_handling,
11479 view,
11480 view_address,
11481 view_size);
11482 else
11483 gold_unreachable();
11484}
11485
11486// Group input sections for stub generation.
11487//
9b547ce6 11488// We group input sections in an output section so that the total size,
eb44217c
DK
11489// including any padding space due to alignment is smaller than GROUP_SIZE
11490// unless the only input section in group is bigger than GROUP_SIZE already.
11491// Then an ARM stub table is created to follow the last input section
11492// in group. For each group an ARM stub table is created an is placed
9b547ce6 11493// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11494// extend the group after the stub table.
11495
11496template<bool big_endian>
11497void
11498Target_arm<big_endian>::group_sections(
2ea97941 11499 Layout* layout,
eb44217c 11500 section_size_type group_size,
f625ae50
DK
11501 bool stubs_always_after_branch,
11502 const Task* task)
eb44217c
DK
11503{
11504 // Group input sections and insert stub table
11505 Layout::Section_list section_list;
ec661b9d 11506 layout->get_executable_sections(&section_list);
eb44217c
DK
11507 for (Layout::Section_list::const_iterator p = section_list.begin();
11508 p != section_list.end();
11509 ++p)
11510 {
11511 Arm_output_section<big_endian>* output_section =
11512 Arm_output_section<big_endian>::as_arm_output_section(*p);
11513 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11514 this, task);
eb44217c
DK
11515 }
11516}
11517
11518// Relaxation hook. This is where we do stub generation.
11519
11520template<bool big_endian>
11521bool
11522Target_arm<big_endian>::do_relax(
11523 int pass,
11524 const Input_objects* input_objects,
11525 Symbol_table* symtab,
f625ae50
DK
11526 Layout* layout,
11527 const Task* task)
eb44217c
DK
11528{
11529 // No need to generate stubs if this is a relocatable link.
11530 gold_assert(!parameters->options().relocatable());
11531
11532 // If this is the first pass, we need to group input sections into
11533 // stub groups.
2b328d4e 11534 bool done_exidx_fixup = false;
6625d24e 11535 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11536 if (pass == 1)
11537 {
11538 // Determine the stub group size. The group size is the absolute
11539 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11540 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11541 // the stubbed branches.
11542 int32_t stub_group_size_param =
11543 parameters->options().stub_group_size();
11544 bool stubs_always_after_branch = stub_group_size_param < 0;
11545 section_size_type stub_group_size = abs(stub_group_size_param);
11546
11547 if (stub_group_size == 1)
11548 {
11549 // Default value.
11550 // Thumb branch range is +-4MB has to be used as the default
11551 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11552 // code, so the worst case has to be taken into account). If we are
11553 // fixing cortex-a8 errata, the branch range has to be even smaller,
11554 // since wide conditional branch has a range of +-1MB only.
eb44217c 11555 //
25bbe950 11556 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11557 // 12-byte stubs. If we exceed that, then we will fail to link.
11558 // The user will have to relink with an explicit group size
11559 // option.
25bbe950
DK
11560 stub_group_size = 4145152;
11561 }
11562
11563 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11564 // page as the first half of a 32-bit branch straddling two 4K pages.
11565 // This is a crude way of enforcing that. In addition, long conditional
11566 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11567 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11568 // cortex-A8 stubs from long conditional branches.
11569 if (this->fix_cortex_a8_)
11570 {
11571 stubs_always_after_branch = true;
11572 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11573 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11574 }
11575
f625ae50 11576 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 11577
2b328d4e 11578 // Also fix .ARM.exidx section coverage.
131687b4
DK
11579 Arm_output_section<big_endian>* exidx_output_section = NULL;
11580 for (Layout::Section_list::const_iterator p =
11581 layout->section_list().begin();
11582 p != layout->section_list().end();
11583 ++p)
11584 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11585 {
11586 if (exidx_output_section == NULL)
11587 exidx_output_section =
11588 Arm_output_section<big_endian>::as_arm_output_section(*p);
11589 else
11590 // We cannot handle this now.
11591 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11592 "non-relocatable link"),
11593 exidx_output_section->name(),
11594 (*p)->name());
11595 }
11596
11597 if (exidx_output_section != NULL)
2b328d4e 11598 {
131687b4 11599 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11600 symtab, task);
2b328d4e
DK
11601 done_exidx_fixup = true;
11602 }
eb44217c 11603 }
6625d24e
DK
11604 else
11605 {
11606 // If this is not the first pass, addresses and file offsets have
11607 // been reset at this point, set them here.
11608 for (Stub_table_iterator sp = this->stub_tables_.begin();
11609 sp != this->stub_tables_.end();
11610 ++sp)
11611 {
11612 Arm_input_section<big_endian>* owner = (*sp)->owner();
11613 off_t off = align_address(owner->original_size(),
11614 (*sp)->addralign());
11615 (*sp)->set_address_and_file_offset(owner->address() + off,
11616 owner->offset() + off);
11617 }
11618 }
eb44217c 11619
44272192
DK
11620 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11621 // beginning of each relaxation pass, just blow away all the stubs.
11622 // Alternatively, we could selectively remove only the stubs and reloc
11623 // information for code sections that have moved since the last pass.
11624 // That would require more book-keeping.
a120bc7f
DK
11625 if (this->fix_cortex_a8_)
11626 {
11627 // Clear all Cortex-A8 reloc information.
11628 for (typename Cortex_a8_relocs_info::const_iterator p =
11629 this->cortex_a8_relocs_info_.begin();
11630 p != this->cortex_a8_relocs_info_.end();
11631 ++p)
11632 delete p->second;
11633 this->cortex_a8_relocs_info_.clear();
44272192
DK
11634
11635 // Remove all Cortex-A8 stubs.
11636 for (Stub_table_iterator sp = this->stub_tables_.begin();
11637 sp != this->stub_tables_.end();
11638 ++sp)
11639 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 11640 }
2e702c99 11641
44272192 11642 // Scan relocs for relocation stubs
eb44217c
DK
11643 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11644 op != input_objects->relobj_end();
11645 ++op)
11646 {
11647 Arm_relobj<big_endian>* arm_relobj =
11648 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11649 // Lock the object so we can read from it. This is only called
11650 // single-threaded from Layout::finalize, so it is OK to lock.
11651 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11652 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11653 }
11654
2fb7225c
DK
11655 // Check all stub tables to see if any of them have their data sizes
11656 // or addresses alignments changed. These are the only things that
11657 // matter.
eb44217c 11658 bool any_stub_table_changed = false;
8923b24c 11659 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11660 for (Stub_table_iterator sp = this->stub_tables_.begin();
11661 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11662 ++sp)
11663 {
2fb7225c 11664 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11665 {
11666 // Update data size of stub table owner.
11667 Arm_input_section<big_endian>* owner = (*sp)->owner();
11668 uint64_t address = owner->address();
11669 off_t offset = owner->offset();
11670 owner->reset_address_and_file_offset();
11671 owner->set_address_and_file_offset(address, offset);
11672
11673 sections_needing_adjustment.insert(owner->output_section());
11674 any_stub_table_changed = true;
11675 }
11676 }
11677
11678 // Output_section_data::output_section() returns a const pointer but we
11679 // need to update output sections, so we record all output sections needing
11680 // update above and scan the sections here to find out what sections need
11681 // to be updated.
f625ae50 11682 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11683 p != layout->section_list().end();
11684 ++p)
11685 {
11686 if (sections_needing_adjustment.find(*p)
11687 != sections_needing_adjustment.end())
11688 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11689 }
11690
2b328d4e
DK
11691 // Stop relaxation if no EXIDX fix-up and no stub table change.
11692 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11693
2fb7225c 11694 // Finalize the stubs in the last relaxation pass.
2b328d4e 11695 if (!continue_relaxation)
e7eca48c
DK
11696 {
11697 for (Stub_table_iterator sp = this->stub_tables_.begin();
11698 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11699 ++sp)
11700 (*sp)->finalize_stubs();
11701
11702 // Update output local symbol counts of objects if necessary.
11703 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11704 op != input_objects->relobj_end();
11705 ++op)
11706 {
11707 Arm_relobj<big_endian>* arm_relobj =
11708 Arm_relobj<big_endian>::as_arm_relobj(*op);
11709
11710 // Update output local symbol counts. We need to discard local
11711 // symbols defined in parts of input sections that are discarded by
11712 // relaxation.
11713 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11714 {
11715 // We need to lock the object's file to update it.
11716 Task_lock_obj<Object> tl(task, arm_relobj);
11717 arm_relobj->update_output_local_symbol_count();
11718 }
e7eca48c
DK
11719 }
11720 }
2fb7225c 11721
2b328d4e 11722 return continue_relaxation;
eb44217c
DK
11723}
11724
43d12afe
DK
11725// Relocate a stub.
11726
11727template<bool big_endian>
11728void
11729Target_arm<big_endian>::relocate_stub(
2fb7225c 11730 Stub* stub,
43d12afe
DK
11731 const Relocate_info<32, big_endian>* relinfo,
11732 Output_section* output_section,
11733 unsigned char* view,
11734 Arm_address address,
11735 section_size_type view_size)
11736{
11737 Relocate relocate;
2ea97941
ILT
11738 const Stub_template* stub_template = stub->stub_template();
11739 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11740 {
2ea97941
ILT
11741 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11742 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11743
11744 unsigned int r_type = insn->r_type();
2ea97941 11745 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11746 section_size_type reloc_size = insn->size();
11747 gold_assert(reloc_offset + reloc_size <= view_size);
11748
11749 // This is the address of the stub destination.
41263c05 11750 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11751 Symbol_value<32> symval;
11752 symval.set_output_value(target);
11753
11754 // Synthesize a fake reloc just in case. We don't have a symbol so
11755 // we use 0.
11756 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11757 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11758 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11759 reloc_write.put_r_offset(reloc_offset);
11760 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11761 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11762
11763 relocate.relocate(relinfo, this, output_section,
11764 this->fake_relnum_for_stubs, rel, r_type,
11765 NULL, &symval, view + reloc_offset,
11766 address + reloc_offset, reloc_size);
11767 }
11768}
11769
a0351a69
DK
11770// Determine whether an object attribute tag takes an integer, a
11771// string or both.
11772
11773template<bool big_endian>
11774int
11775Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11776{
11777 if (tag == Object_attribute::Tag_compatibility)
11778 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11779 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11780 else if (tag == elfcpp::Tag_nodefaults)
11781 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11782 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11783 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11784 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11785 else if (tag < 32)
11786 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11787 else
11788 return ((tag & 1) != 0
11789 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11790 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11791}
11792
11793// Reorder attributes.
11794//
11795// The ABI defines that Tag_conformance should be emitted first, and that
11796// Tag_nodefaults should be second (if either is defined). This sets those
11797// two positions, and bumps up the position of all the remaining tags to
11798// compensate.
11799
11800template<bool big_endian>
11801int
11802Target_arm<big_endian>::do_attributes_order(int num) const
11803{
11804 // Reorder the known object attributes in output. We want to move
11805 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11806 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11807 if (num == 4)
11808 return elfcpp::Tag_conformance;
11809 if (num == 5)
11810 return elfcpp::Tag_nodefaults;
11811 if ((num - 2) < elfcpp::Tag_nodefaults)
11812 return num - 2;
11813 if ((num - 1) < elfcpp::Tag_conformance)
11814 return num - 1;
11815 return num;
11816}
4a657b0d 11817
44272192
DK
11818// Scan a span of THUMB code for Cortex-A8 erratum.
11819
11820template<bool big_endian>
11821void
11822Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11823 Arm_relobj<big_endian>* arm_relobj,
11824 unsigned int shndx,
11825 section_size_type span_start,
11826 section_size_type span_end,
11827 const unsigned char* view,
11828 Arm_address address)
11829{
11830 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11831 //
11832 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11833 // The branch target is in the same 4KB region as the
11834 // first half of the branch.
11835 // The instruction before the branch is a 32-bit
11836 // length non-branch instruction.
11837 section_size_type i = span_start;
11838 bool last_was_32bit = false;
11839 bool last_was_branch = false;
11840 while (i < span_end)
11841 {
11842 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11843 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11844 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11845 bool is_blx = false, is_b = false;
11846 bool is_bl = false, is_bcc = false;
11847
11848 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11849 if (insn_32bit)
11850 {
11851 // Load the rest of the insn (in manual-friendly order).
11852 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11853
11854 // Encoding T4: B<c>.W.
11855 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11856 // Encoding T1: BL<c>.W.
2e702c99
RM
11857 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11858 // Encoding T2: BLX<c>.W.
11859 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
11860 // Encoding T3: B<c>.W (not permitted in IT block).
11861 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11862 && (insn & 0x07f00000U) != 0x03800000U);
11863 }
11864
11865 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 11866
44272192
DK
11867 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11868 // page boundary and it follows 32-bit non-branch instruction,
11869 // we need to work around.
11870 if (is_32bit_branch
11871 && ((address + i) & 0xfffU) == 0xffeU
11872 && last_was_32bit
11873 && !last_was_branch)
11874 {
11875 // Check to see if there is a relocation stub for this branch.
11876 bool force_target_arm = false;
11877 bool force_target_thumb = false;
11878 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11879 Cortex_a8_relocs_info::const_iterator p =
11880 this->cortex_a8_relocs_info_.find(address + i);
11881
11882 if (p != this->cortex_a8_relocs_info_.end())
11883 {
11884 cortex_a8_reloc = p->second;
11885 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11886
11887 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11888 && !target_is_thumb)
11889 force_target_arm = true;
11890 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11891 && target_is_thumb)
11892 force_target_thumb = true;
11893 }
11894
11895 off_t offset;
11896 Stub_type stub_type = arm_stub_none;
11897
11898 // Check if we have an offending branch instruction.
11899 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11900 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 11901 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
11902
11903 if (cortex_a8_reloc != NULL
11904 && cortex_a8_reloc->reloc_stub() != NULL)
11905 // We've already made a stub for this instruction, e.g.
11906 // it's a long branch or a Thumb->ARM stub. Assume that
11907 // stub will suffice to work around the A8 erratum (see
11908 // setting of always_after_branch above).
11909 ;
11910 else if (is_bcc)
11911 {
11912 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11913 lower_insn);
11914 stub_type = arm_stub_a8_veneer_b_cond;
11915 }
11916 else if (is_b || is_bl || is_blx)
11917 {
11918 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11919 lower_insn);
11920 if (is_blx)
2e702c99 11921 offset &= ~3;
44272192
DK
11922
11923 stub_type = (is_blx
11924 ? arm_stub_a8_veneer_blx
11925 : (is_bl
11926 ? arm_stub_a8_veneer_bl
11927 : arm_stub_a8_veneer_b));
11928 }
11929
11930 if (stub_type != arm_stub_none)
11931 {
11932 Arm_address pc_for_insn = address + i + 4;
11933
11934 // The original instruction is a BL, but the target is
11935 // an ARM instruction. If we were not making a stub,
11936 // the BL would have been converted to a BLX. Use the
11937 // BLX stub instead in that case.
cd6eab1c 11938 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11939 && stub_type == arm_stub_a8_veneer_bl)
11940 {
11941 stub_type = arm_stub_a8_veneer_blx;
11942 is_blx = true;
11943 is_bl = false;
11944 }
11945 // Conversely, if the original instruction was
11946 // BLX but the target is Thumb mode, use the BL stub.
11947 else if (force_target_thumb
11948 && stub_type == arm_stub_a8_veneer_blx)
11949 {
11950 stub_type = arm_stub_a8_veneer_bl;
11951 is_blx = false;
11952 is_bl = true;
11953 }
11954
11955 if (is_blx)
11956 pc_for_insn &= ~3;
11957
2e702c99 11958 // If we found a relocation, use the proper destination,
44272192
DK
11959 // not the offset in the (unrelocated) instruction.
11960 // Note this is always done if we switched the stub type above.
2e702c99
RM
11961 if (cortex_a8_reloc != NULL)
11962 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 11963
2e702c99 11964 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
11965
11966 // Add a new stub if destination address in in the same page.
2e702c99
RM
11967 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11968 {
44272192
DK
11969 Cortex_a8_stub* stub =
11970 this->stub_factory_.make_cortex_a8_stub(stub_type,
11971 arm_relobj, shndx,
11972 address + i,
11973 target, insn);
11974 Stub_table<big_endian>* stub_table =
11975 arm_relobj->stub_table(shndx);
11976 gold_assert(stub_table != NULL);
11977 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
11978 }
11979 }
11980 }
44272192
DK
11981
11982 i += insn_32bit ? 4 : 2;
11983 last_was_32bit = insn_32bit;
11984 last_was_branch = is_32bit_branch;
11985 }
11986}
11987
41263c05
DK
11988// Apply the Cortex-A8 workaround.
11989
11990template<bool big_endian>
11991void
11992Target_arm<big_endian>::apply_cortex_a8_workaround(
11993 const Cortex_a8_stub* stub,
11994 Arm_address stub_address,
11995 unsigned char* insn_view,
11996 Arm_address insn_address)
11997{
11998 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11999 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12000 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12001 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12002 off_t branch_offset = stub_address - (insn_address + 4);
12003
2c54b4f4 12004 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12005 switch (stub->stub_template()->type())
12006 {
12007 case arm_stub_a8_veneer_b_cond:
9b547ce6 12008 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12009 // branch to the stub. We use the THUMB-2 encoding here.
12010 upper_insn = 0xf000U;
12011 lower_insn = 0xb800U;
12012 // Fall through
41263c05
DK
12013 case arm_stub_a8_veneer_b:
12014 case arm_stub_a8_veneer_bl:
12015 case arm_stub_a8_veneer_blx:
12016 if ((lower_insn & 0x5000U) == 0x4000U)
12017 // For a BLX instruction, make sure that the relocation is
12018 // rounded up to a word boundary. This follows the semantics of
12019 // the instruction which specifies that bit 1 of the target
12020 // address will come from bit 1 of the base address.
12021 branch_offset = (branch_offset + 2) & ~3;
12022
12023 // Put BRANCH_OFFSET back into the insn.
bef2b434 12024 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12025 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12026 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12027 break;
12028
12029 default:
12030 gold_unreachable();
12031 }
12032
12033 // Put the relocated value back in the object file:
12034 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12035 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12036}
12037
2e702c99
RM
12038// Target selector for ARM. Note this is never instantiated directly.
12039// It's only used in Target_selector_arm_nacl, below.
12040
4a657b0d
DK
12041template<bool big_endian>
12042class Target_selector_arm : public Target_selector
12043{
12044 public:
12045 Target_selector_arm()
12046 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12047 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12048 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12049 { }
12050
12051 Target*
12052 do_instantiate_target()
12053 { return new Target_arm<big_endian>(); }
12054};
12055
2b328d4e
DK
12056// Fix .ARM.exidx section coverage.
12057
12058template<bool big_endian>
12059void
12060Target_arm<big_endian>::fix_exidx_coverage(
12061 Layout* layout,
131687b4 12062 const Input_objects* input_objects,
2b328d4e 12063 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12064 Symbol_table* symtab,
12065 const Task* task)
2b328d4e
DK
12066{
12067 // We need to look at all the input sections in output in ascending
12068 // order of of output address. We do that by building a sorted list
12069 // of output sections by addresses. Then we looks at the output sections
12070 // in order. The input sections in an output section are already sorted
12071 // by addresses within the output section.
12072
12073 typedef std::set<Output_section*, output_section_address_less_than>
12074 Sorted_output_section_list;
12075 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12076
12077 // Find out all the output sections of input sections pointed by
12078 // EXIDX input sections.
12079 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12080 p != input_objects->relobj_end();
2b328d4e
DK
12081 ++p)
12082 {
131687b4
DK
12083 Arm_relobj<big_endian>* arm_relobj =
12084 Arm_relobj<big_endian>::as_arm_relobj(*p);
12085 std::vector<unsigned int> shndx_list;
12086 arm_relobj->get_exidx_shndx_list(&shndx_list);
12087 for (size_t i = 0; i < shndx_list.size(); ++i)
12088 {
12089 const Arm_exidx_input_section* exidx_input_section =
12090 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12091 gold_assert(exidx_input_section != NULL);
12092 if (!exidx_input_section->has_errors())
12093 {
12094 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12095 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12096 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12097 sorted_output_sections.insert(os);
12098 }
12099 }
2b328d4e
DK
12100 }
12101
12102 // Go over the output sections in ascending order of output addresses.
12103 typedef typename Arm_output_section<big_endian>::Text_section_list
12104 Text_section_list;
12105 Text_section_list sorted_text_sections;
f625ae50 12106 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12107 sorted_output_sections.begin();
12108 p != sorted_output_sections.end();
12109 ++p)
12110 {
12111 Arm_output_section<big_endian>* arm_output_section =
12112 Arm_output_section<big_endian>::as_arm_output_section(*p);
12113 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12114 }
2b328d4e 12115
85fdf906 12116 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12117 merge_exidx_entries(), task);
2b328d4e
DK
12118}
12119
647f1574
DK
12120template<bool big_endian>
12121void
12122Target_arm<big_endian>::do_define_standard_symbols(
12123 Symbol_table* symtab,
12124 Layout* layout)
12125{
12126 // Handle the .ARM.exidx section.
12127 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12128
12129 if (exidx_section != NULL)
12130 {
12131 // Create __exidx_start and __exidx_end symbols.
12132 symtab->define_in_output_data("__exidx_start",
12133 NULL, // version
12134 Symbol_table::PREDEFINED,
12135 exidx_section,
12136 0, // value
12137 0, // symsize
12138 elfcpp::STT_NOTYPE,
12139 elfcpp::STB_GLOBAL,
12140 elfcpp::STV_HIDDEN,
12141 0, // nonvis
12142 false, // offset_is_from_end
12143 true); // only_if_ref
12144
12145 symtab->define_in_output_data("__exidx_end",
12146 NULL, // version
12147 Symbol_table::PREDEFINED,
12148 exidx_section,
2e702c99 12149 0, // value
647f1574
DK
12150 0, // symsize
12151 elfcpp::STT_NOTYPE,
12152 elfcpp::STB_GLOBAL,
12153 elfcpp::STV_HIDDEN,
12154 0, // nonvis
12155 true, // offset_is_from_end
12156 true); // only_if_ref
12157 }
12158 else
12159 {
12160 // Define __exidx_start and __exidx_end even when .ARM.exidx
12161 // section is missing to match ld's behaviour.
12162 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12163 Symbol_table::PREDEFINED,
12164 0, 0, elfcpp::STT_OBJECT,
12165 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12166 true, false);
647f1574 12167 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12168 Symbol_table::PREDEFINED,
12169 0, 0, elfcpp::STT_OBJECT,
12170 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12171 true, false);
647f1574
DK
12172 }
12173}
12174
2e702c99
RM
12175// NaCl variant. It uses different PLT contents.
12176
12177template<bool big_endian>
12178class Output_data_plt_arm_nacl;
12179
12180template<bool big_endian>
12181class Target_arm_nacl : public Target_arm<big_endian>
12182{
12183 public:
12184 Target_arm_nacl()
12185 : Target_arm<big_endian>(&arm_nacl_info)
12186 { }
12187
12188 protected:
12189 virtual Output_data_plt_arm<big_endian>*
12190 do_make_data_plt(Layout* layout, Output_data_space* got_plt)
12191 { return new Output_data_plt_arm_nacl<big_endian>(layout, got_plt); }
12192
12193 private:
12194 static const Target::Target_info arm_nacl_info;
12195};
12196
12197template<bool big_endian>
12198const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12199{
12200 32, // size
12201 big_endian, // is_big_endian
12202 elfcpp::EM_ARM, // machine_code
12203 false, // has_make_symbol
12204 false, // has_resolve
12205 false, // has_code_fill
12206 true, // is_default_stack_executable
12207 false, // can_icf_inline_merge_sections
12208 '\0', // wrap_char
12209 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12210 0x20000, // default_text_segment_address
12211 0x10000, // abi_pagesize (overridable by -z max-page-size)
12212 0x10000, // common_pagesize (overridable by -z common-page-size)
12213 true, // isolate_execinstr
12214 0x10000000, // rosegment_gap
12215 elfcpp::SHN_UNDEF, // small_common_shndx
12216 elfcpp::SHN_UNDEF, // large_common_shndx
12217 0, // small_common_section_flags
12218 0, // large_common_section_flags
12219 ".ARM.attributes", // attributes_section
a67858e0
CC
12220 "aeabi", // attributes_vendor
12221 "_start" // entry_symbol_name
2e702c99
RM
12222};
12223
12224template<bool big_endian>
12225class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12226{
12227 public:
12228 Output_data_plt_arm_nacl(Layout* layout, Output_data_space* got_plt)
12229 : Output_data_plt_arm<big_endian>(layout, 16, got_plt)
12230 { }
12231
12232 protected:
12233 // Return the offset of the first non-reserved PLT entry.
12234 virtual unsigned int
12235 do_first_plt_entry_offset() const
12236 { return sizeof(first_plt_entry); }
12237
12238 // Return the size of a PLT entry.
12239 virtual unsigned int
12240 do_get_plt_entry_size() const
12241 { return sizeof(plt_entry); }
12242
12243 virtual void
12244 do_fill_first_plt_entry(unsigned char* pov,
12245 Arm_address got_address,
12246 Arm_address plt_address);
12247
12248 virtual void
12249 do_fill_plt_entry(unsigned char* pov,
12250 Arm_address got_address,
12251 Arm_address plt_address,
12252 unsigned int got_offset,
12253 unsigned int plt_offset);
12254
12255 private:
12256 inline uint32_t arm_movw_immediate(uint32_t value)
12257 {
12258 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12259 }
12260
12261 inline uint32_t arm_movt_immediate(uint32_t value)
12262 {
12263 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12264 }
12265
12266 // Template for the first PLT entry.
12267 static const uint32_t first_plt_entry[16];
12268
12269 // Template for subsequent PLT entries.
12270 static const uint32_t plt_entry[4];
12271};
12272
12273// The first entry in the PLT.
12274template<bool big_endian>
12275const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12276{
12277 // First bundle:
12278 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12279 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12280 0xe08cc00f, // add ip, ip, pc
12281 0xe52dc008, // str ip, [sp, #-8]!
12282 // Second bundle:
edccdf7c 12283 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12284 0xe59cc000, // ldr ip, [ip]
12285 0xe3ccc13f, // bic ip, ip, #0xc000000f
12286 0xe12fff1c, // bx ip
12287 // Third bundle:
12288 0xe320f000, // nop
12289 0xe320f000, // nop
12290 0xe320f000, // nop
12291 // .Lplt_tail:
12292 0xe50dc004, // str ip, [sp, #-4]
12293 // Fourth bundle:
edccdf7c 12294 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12295 0xe59cc000, // ldr ip, [ip]
12296 0xe3ccc13f, // bic ip, ip, #0xc000000f
12297 0xe12fff1c, // bx ip
12298};
12299
12300template<bool big_endian>
12301void
12302Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12303 unsigned char* pov,
12304 Arm_address got_address,
12305 Arm_address plt_address)
12306{
12307 // Write first PLT entry. All but first two words are constants.
12308 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12309 / sizeof(first_plt_entry[0]));
12310
12311 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12312
12313 elfcpp::Swap<32, big_endian>::writeval
12314 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12315 elfcpp::Swap<32, big_endian>::writeval
12316 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12317
12318 for (size_t i = 2; i < num_first_plt_words; ++i)
12319 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12320}
12321
12322// Subsequent entries in the PLT.
12323
12324template<bool big_endian>
12325const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12326{
12327 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12328 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12329 0xe08cc00f, // add ip, ip, pc
12330 0xea000000, // b .Lplt_tail
12331};
12332
12333template<bool big_endian>
12334void
12335Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12336 unsigned char* pov,
12337 Arm_address got_address,
12338 Arm_address plt_address,
12339 unsigned int got_offset,
12340 unsigned int plt_offset)
12341{
12342 // Calculate the displacement between the PLT slot and the
12343 // common tail that's part of the special initial PLT slot.
12344 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12345 - (plt_address + plt_offset
12346 + sizeof(plt_entry) + sizeof(uint32_t)));
12347 gold_assert((tail_displacement & 3) == 0);
12348 tail_displacement >>= 2;
12349
12350 gold_assert ((tail_displacement & 0xff000000) == 0
12351 || (-tail_displacement & 0xff000000) == 0);
12352
12353 // Calculate the displacement between the PLT slot and the entry
12354 // in the GOT. The offset accounts for the value produced by
12355 // adding to pc in the penultimate instruction of the PLT stub.
12356 const int32_t got_displacement = (got_address + got_offset
12357 - (plt_address + sizeof(plt_entry)));
12358
12359 elfcpp::Swap<32, big_endian>::writeval
12360 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12361 elfcpp::Swap<32, big_endian>::writeval
12362 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12363 elfcpp::Swap<32, big_endian>::writeval
12364 (pov + 8, plt_entry[2]);
12365 elfcpp::Swap<32, big_endian>::writeval
12366 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12367}
12368
12369// Target selectors.
12370
12371template<bool big_endian>
12372class Target_selector_arm_nacl
12373 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12374 Target_arm_nacl<big_endian> >
12375{
12376 public:
12377 Target_selector_arm_nacl()
12378 : Target_selector_nacl<Target_selector_arm<big_endian>,
12379 Target_arm_nacl<big_endian> >(
12380 "arm",
12381 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12382 big_endian ? "armelfb_nacl" : "armelf_nacl")
12383 { }
12384};
12385
12386Target_selector_arm_nacl<false> target_selector_arm;
12387Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12388
12389} // End anonymous namespace.
This page took 1.01169 seconds and 4 git commands to generate.