PR binutils/10924
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
3// Copyright 2009 Free Software Foundation, Inc.
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
4a657b0d
DK
33
34#include "elfcpp.h"
35#include "parameters.h"
36#include "reloc.h"
37#include "arm.h"
38#include "object.h"
39#include "symtab.h"
40#include "layout.h"
41#include "output.h"
42#include "copy-relocs.h"
43#include "target.h"
44#include "target-reloc.h"
45#include "target-select.h"
46#include "tls.h"
47#include "defstd.h"
f345227a 48#include "gc.h"
a0351a69 49#include "attributes.h"
4a657b0d
DK
50
51namespace
52{
53
54using namespace gold;
55
94cdfcff
DK
56template<bool big_endian>
57class Output_data_plt_arm;
58
56ee5e00
DK
59template<bool big_endian>
60class Stub_table;
61
62template<bool big_endian>
63class Arm_input_section;
64
07f508a2
DK
65template<bool big_endian>
66class Arm_output_section;
67
68template<bool big_endian>
69class Arm_relobj;
70
b569affa
DK
71template<bool big_endian>
72class Target_arm;
73
74// For convenience.
75typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
76
77// Maximum branch offsets for ARM, THUMB and THUMB2.
78const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
79const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
80const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
81const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
82const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
83const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
84
4a657b0d
DK
85// The arm target class.
86//
87// This is a very simple port of gold for ARM-EABI. It is intended for
88// supporting Android only for the time being. Only these relocation types
89// are supported.
90//
91// R_ARM_NONE
92// R_ARM_ABS32
be8fcb75
ILT
93// R_ARM_ABS32_NOI
94// R_ARM_ABS16
95// R_ARM_ABS12
96// R_ARM_ABS8
97// R_ARM_THM_ABS5
98// R_ARM_BASE_ABS
4a657b0d
DK
99// R_ARM_REL32
100// R_ARM_THM_CALL
101// R_ARM_COPY
102// R_ARM_GLOB_DAT
103// R_ARM_BASE_PREL
104// R_ARM_JUMP_SLOT
105// R_ARM_RELATIVE
106// R_ARM_GOTOFF32
107// R_ARM_GOT_BREL
7f5309a5 108// R_ARM_GOT_PREL
4a657b0d
DK
109// R_ARM_PLT32
110// R_ARM_CALL
111// R_ARM_JUMP24
112// R_ARM_TARGET1
113// R_ARM_PREL31
7f5309a5 114// R_ARM_ABS8
fd3c5f0b
ILT
115// R_ARM_MOVW_ABS_NC
116// R_ARM_MOVT_ABS
117// R_ARM_THM_MOVW_ABS_NC
c2a122b6
ILT
118// R_ARM_THM_MOVT_ABS
119// R_ARM_MOVW_PREL_NC
120// R_ARM_MOVT_PREL
121// R_ARM_THM_MOVW_PREL_NC
122// R_ARM_THM_MOVT_PREL
4a657b0d 123//
4a657b0d 124// TODOs:
4a657b0d 125// - Support more relocation types as needed.
94cdfcff
DK
126// - Make PLTs more flexible for different architecture features like
127// Thumb-2 and BE8.
11af873f 128// There are probably a lot more.
4a657b0d 129
b569affa
DK
130// Instruction template class. This class is similar to the insn_sequence
131// struct in bfd/elf32-arm.c.
132
133class Insn_template
134{
135 public:
136 // Types of instruction templates.
137 enum Type
138 {
139 THUMB16_TYPE = 1,
140 THUMB32_TYPE,
141 ARM_TYPE,
142 DATA_TYPE
143 };
144
145 // Factory methods to create instrunction templates in different formats.
146
147 static const Insn_template
148 thumb16_insn(uint32_t data)
149 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
150
151 // A bit of a hack. A Thumb conditional branch, in which the proper
152 // condition is inserted when we build the stub.
153 static const Insn_template
154 thumb16_bcond_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 1); }
156
157 static const Insn_template
158 thumb32_insn(uint32_t data)
159 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 static const Insn_template
162 thumb32_b_insn(uint32_t data, int reloc_addend)
163 {
164 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
165 reloc_addend);
166 }
167
168 static const Insn_template
169 arm_insn(uint32_t data)
170 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
171
172 static const Insn_template
173 arm_rel_insn(unsigned data, int reloc_addend)
174 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
175
176 static const Insn_template
177 data_word(unsigned data, unsigned int r_type, int reloc_addend)
178 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
179
180 // Accessors. This class is used for read-only objects so no modifiers
181 // are provided.
182
183 uint32_t
184 data() const
185 { return this->data_; }
186
187 // Return the instruction sequence type of this.
188 Type
189 type() const
190 { return this->type_; }
191
192 // Return the ARM relocation type of this.
193 unsigned int
194 r_type() const
195 { return this->r_type_; }
196
197 int32_t
198 reloc_addend() const
199 { return this->reloc_addend_; }
200
201 // Return size of instrunction template in bytes.
202 size_t
203 size() const;
204
205 // Return byte-alignment of instrunction template.
206 unsigned
207 alignment() const;
208
209 private:
210 // We make the constructor private to ensure that only the factory
211 // methods are used.
212 inline
91d6fa6a
NC
213 Insn_template(unsigned adata, Type atype, unsigned int rtype, int relocaddend)
214 : data_(adata), type_(atype), r_type_(rtype), reloc_addend_(relocaddend)
b569affa
DK
215 { }
216
217 // Instruction specific data. This is used to store information like
218 // some of the instruction bits.
219 uint32_t data_;
220 // Instruction template type.
221 Type type_;
222 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
223 unsigned int r_type_;
224 // Relocation addend.
225 int32_t reloc_addend_;
226};
227
228// Macro for generating code to stub types. One entry per long/short
229// branch stub
230
231#define DEF_STUBS \
232 DEF_STUB(long_branch_any_any) \
233 DEF_STUB(long_branch_v4t_arm_thumb) \
234 DEF_STUB(long_branch_thumb_only) \
235 DEF_STUB(long_branch_v4t_thumb_thumb) \
236 DEF_STUB(long_branch_v4t_thumb_arm) \
237 DEF_STUB(short_branch_v4t_thumb_arm) \
238 DEF_STUB(long_branch_any_arm_pic) \
239 DEF_STUB(long_branch_any_thumb_pic) \
240 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
241 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
242 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
243 DEF_STUB(long_branch_thumb_only_pic) \
244 DEF_STUB(a8_veneer_b_cond) \
245 DEF_STUB(a8_veneer_b) \
246 DEF_STUB(a8_veneer_bl) \
247 DEF_STUB(a8_veneer_blx)
248
249// Stub types.
250
251#define DEF_STUB(x) arm_stub_##x,
252typedef enum
253 {
254 arm_stub_none,
255 DEF_STUBS
256
257 // First reloc stub type.
258 arm_stub_reloc_first = arm_stub_long_branch_any_any,
259 // Last reloc stub type.
260 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
261
262 // First Cortex-A8 stub type.
263 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
264 // Last Cortex-A8 stub type.
265 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
266
267 // Last stub type.
268 arm_stub_type_last = arm_stub_a8_veneer_blx
269 } Stub_type;
270#undef DEF_STUB
271
272// Stub template class. Templates are meant to be read-only objects.
273// A stub template for a stub type contains all read-only attributes
274// common to all stubs of the same type.
275
276class Stub_template
277{
278 public:
279 Stub_template(Stub_type, const Insn_template*, size_t);
280
281 ~Stub_template()
282 { }
283
284 // Return stub type.
285 Stub_type
286 type() const
287 { return this->type_; }
288
289 // Return an array of instruction templates.
290 const Insn_template*
291 insns() const
292 { return this->insns_; }
293
294 // Return size of template in number of instructions.
295 size_t
296 insn_count() const
297 { return this->insn_count_; }
298
299 // Return size of template in bytes.
300 size_t
301 size() const
302 { return this->size_; }
303
304 // Return alignment of the stub template.
305 unsigned
306 alignment() const
307 { return this->alignment_; }
308
309 // Return whether entry point is in thumb mode.
310 bool
311 entry_in_thumb_mode() const
312 { return this->entry_in_thumb_mode_; }
313
314 // Return number of relocations in this template.
315 size_t
316 reloc_count() const
317 { return this->relocs_.size(); }
318
319 // Return index of the I-th instruction with relocation.
320 size_t
321 reloc_insn_index(size_t i) const
322 {
323 gold_assert(i < this->relocs_.size());
324 return this->relocs_[i].first;
325 }
326
327 // Return the offset of the I-th instruction with relocation from the
328 // beginning of the stub.
329 section_size_type
330 reloc_offset(size_t i) const
331 {
332 gold_assert(i < this->relocs_.size());
333 return this->relocs_[i].second;
334 }
335
336 private:
337 // This contains information about an instruction template with a relocation
338 // and its offset from start of stub.
339 typedef std::pair<size_t, section_size_type> Reloc;
340
341 // A Stub_template may not be copied. We want to share templates as much
342 // as possible.
343 Stub_template(const Stub_template&);
344 Stub_template& operator=(const Stub_template&);
345
346 // Stub type.
347 Stub_type type_;
348 // Points to an array of Insn_templates.
349 const Insn_template* insns_;
350 // Number of Insn_templates in insns_[].
351 size_t insn_count_;
352 // Size of templated instructions in bytes.
353 size_t size_;
354 // Alignment of templated instructions.
355 unsigned alignment_;
356 // Flag to indicate if entry is in thumb mode.
357 bool entry_in_thumb_mode_;
358 // A table of reloc instruction indices and offsets. We can find these by
359 // looking at the instruction templates but we pre-compute and then stash
360 // them here for speed.
361 std::vector<Reloc> relocs_;
362};
363
364//
365// A class for code stubs. This is a base class for different type of
366// stubs used in the ARM target.
367//
368
369class Stub
370{
371 private:
372 static const section_offset_type invalid_offset =
373 static_cast<section_offset_type>(-1);
374
375 public:
91d6fa6a
NC
376 Stub(const Stub_template* stubtemplate)
377 : stub_template_(stubtemplate), offset_(invalid_offset)
b569affa
DK
378 { }
379
380 virtual
381 ~Stub()
382 { }
383
384 // Return the stub template.
385 const Stub_template*
386 stub_template() const
387 { return this->stub_template_; }
388
389 // Return offset of code stub from beginning of its containing stub table.
390 section_offset_type
391 offset() const
392 {
393 gold_assert(this->offset_ != invalid_offset);
394 return this->offset_;
395 }
396
397 // Set offset of code stub from beginning of its containing stub table.
398 void
91d6fa6a
NC
399 set_offset(section_offset_type off)
400 { this->offset_ = off; }
b569affa
DK
401
402 // Return the relocation target address of the i-th relocation in the
403 // stub. This must be defined in a child class.
404 Arm_address
405 reloc_target(size_t i)
406 { return this->do_reloc_target(i); }
407
408 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
409 void
410 write(unsigned char* view, section_size_type view_size, bool big_endian)
411 { this->do_write(view, view_size, big_endian); }
412
413 protected:
414 // This must be defined in the child class.
415 virtual Arm_address
416 do_reloc_target(size_t) = 0;
417
418 // This must be defined in the child class.
419 virtual void
420 do_write(unsigned char*, section_size_type, bool) = 0;
421
422 private:
423 // Its template.
424 const Stub_template* stub_template_;
425 // Offset within the section of containing this stub.
426 section_offset_type offset_;
427};
428
429// Reloc stub class. These are stubs we use to fix up relocation because
430// of limited branch ranges.
431
432class Reloc_stub : public Stub
433{
434 public:
435 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
436 // We assume we never jump to this address.
437 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
438
439 // Return destination address.
440 Arm_address
441 destination_address() const
442 {
443 gold_assert(this->destination_address_ != this->invalid_address);
444 return this->destination_address_;
445 }
446
447 // Set destination address.
448 void
449 set_destination_address(Arm_address address)
450 {
451 gold_assert(address != this->invalid_address);
452 this->destination_address_ = address;
453 }
454
455 // Reset destination address.
456 void
457 reset_destination_address()
458 { this->destination_address_ = this->invalid_address; }
459
460 // Determine stub type for a branch of a relocation of R_TYPE going
461 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
462 // the branch target is a thumb instruction. TARGET is used for look
463 // up ARM-specific linker settings.
464 static Stub_type
465 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
466 Arm_address branch_target, bool target_is_thumb);
467
468 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
469 // and an addend. Since we treat global and local symbol differently, we
470 // use a Symbol object for a global symbol and a object-index pair for
471 // a local symbol.
472 class Key
473 {
474 public:
475 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
476 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
477 // and R_SYM must not be invalid_index.
91d6fa6a
NC
478 Key(Stub_type stubtype, const Symbol* sym, const Relobj* rel_obj,
479 unsigned int rsym, int32_t addend)
480 : stub_type_(stubtype), addend_(addend)
b569affa 481 {
91d6fa6a 482 if (sym != NULL)
b569affa
DK
483 {
484 this->r_sym_ = Reloc_stub::invalid_index;
91d6fa6a 485 this->u_.symbol = sym;
b569affa
DK
486 }
487 else
488 {
91d6fa6a
NC
489 gold_assert(rel_obj != NULL && rsym != invalid_index);
490 this->r_sym_ = rsym;
491 this->u_.relobj = rel_obj;
b569affa
DK
492 }
493 }
494
495 ~Key()
496 { }
497
498 // Accessors: Keys are meant to be read-only object so no modifiers are
499 // provided.
500
501 // Return stub type.
502 Stub_type
503 stub_type() const
504 { return this->stub_type_; }
505
506 // Return the local symbol index or invalid_index.
507 unsigned int
508 r_sym() const
509 { return this->r_sym_; }
510
511 // Return the symbol if there is one.
512 const Symbol*
513 symbol() const
514 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
515
516 // Return the relobj if there is one.
517 const Relobj*
518 relobj() const
519 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
520
521 // Whether this equals to another key k.
522 bool
523 eq(const Key& k) const
524 {
525 return ((this->stub_type_ == k.stub_type_)
526 && (this->r_sym_ == k.r_sym_)
527 && ((this->r_sym_ != Reloc_stub::invalid_index)
528 ? (this->u_.relobj == k.u_.relobj)
529 : (this->u_.symbol == k.u_.symbol))
530 && (this->addend_ == k.addend_));
531 }
532
533 // Return a hash value.
534 size_t
535 hash_value() const
536 {
537 return (this->stub_type_
538 ^ this->r_sym_
539 ^ gold::string_hash<char>(
540 (this->r_sym_ != Reloc_stub::invalid_index)
541 ? this->u_.relobj->name().c_str()
542 : this->u_.symbol->name())
543 ^ this->addend_);
544 }
545
546 // Functors for STL associative containers.
547 struct hash
548 {
549 size_t
550 operator()(const Key& k) const
551 { return k.hash_value(); }
552 };
553
554 struct equal_to
555 {
556 bool
557 operator()(const Key& k1, const Key& k2) const
558 { return k1.eq(k2); }
559 };
560
561 // Name of key. This is mainly for debugging.
562 std::string
563 name() const;
564
565 private:
566 // Stub type.
567 Stub_type stub_type_;
568 // If this is a local symbol, this is the index in the defining object.
569 // Otherwise, it is invalid_index for a global symbol.
570 unsigned int r_sym_;
571 // If r_sym_ is invalid index. This points to a global symbol.
572 // Otherwise, this points a relobj. We used the unsized and target
eb44217c 573 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
b569affa
DK
574 // Arm_relobj. This is done to avoid making the stub class a template
575 // as most of the stub machinery is endianity-neutral. However, it
576 // may require a bit of casting done by users of this class.
577 union
578 {
579 const Symbol* symbol;
580 const Relobj* relobj;
581 } u_;
582 // Addend associated with a reloc.
583 int32_t addend_;
584 };
585
586 protected:
587 // Reloc_stubs are created via a stub factory. So these are protected.
91d6fa6a
NC
588 Reloc_stub(const Stub_template* stubtemplate)
589 : Stub(stubtemplate), destination_address_(invalid_address)
b569affa
DK
590 { }
591
592 ~Reloc_stub()
593 { }
594
595 friend class Stub_factory;
596
597 private:
598 // Return the relocation target address of the i-th relocation in the
599 // stub.
600 Arm_address
601 do_reloc_target(size_t i)
602 {
603 // All reloc stub have only one relocation.
604 gold_assert(i == 0);
605 return this->destination_address_;
606 }
607
608 // A template to implement do_write below.
609 template<bool big_endian>
610 void inline
611 do_fixed_endian_write(unsigned char*, section_size_type);
612
613 // Write a stub.
614 void
615 do_write(unsigned char* view, section_size_type view_size, bool big_endian);
616
617 // Address of destination.
618 Arm_address destination_address_;
619};
620
621// Stub factory class.
622
623class Stub_factory
624{
625 public:
626 // Return the unique instance of this class.
627 static const Stub_factory&
628 get_instance()
629 {
630 static Stub_factory singleton;
631 return singleton;
632 }
633
634 // Make a relocation stub.
635 Reloc_stub*
636 make_reloc_stub(Stub_type stub_type) const
637 {
638 gold_assert(stub_type >= arm_stub_reloc_first
639 && stub_type <= arm_stub_reloc_last);
640 return new Reloc_stub(this->stub_templates_[stub_type]);
641 }
642
643 private:
644 // Constructor and destructor are protected since we only return a single
645 // instance created in Stub_factory::get_instance().
646
647 Stub_factory();
648
649 // A Stub_factory may not be copied since it is a singleton.
650 Stub_factory(const Stub_factory&);
651 Stub_factory& operator=(Stub_factory&);
652
653 // Stub templates. These are initialized in the constructor.
654 const Stub_template* stub_templates_[arm_stub_type_last+1];
655};
656
56ee5e00
DK
657// A class to hold stubs for the ARM target.
658
659template<bool big_endian>
660class Stub_table : public Output_data
661{
662 public:
91d6fa6a
NC
663 Stub_table(Arm_input_section<big_endian>* own)
664 : Output_data(), addralign_(1), owner_(own), has_been_changed_(false),
56ee5e00
DK
665 reloc_stubs_()
666 { }
667
668 ~Stub_table()
669 { }
670
671 // Owner of this stub table.
672 Arm_input_section<big_endian>*
673 owner() const
674 { return this->owner_; }
675
676 // Whether this stub table is empty.
677 bool
678 empty() const
679 { return this->reloc_stubs_.empty(); }
680
681 // Whether this has been changed.
682 bool
683 has_been_changed() const
684 { return this->has_been_changed_; }
685
686 // Set the has-been-changed flag.
687 void
688 set_has_been_changed(bool value)
689 { this->has_been_changed_ = value; }
690
691 // Return the current data size.
692 off_t
693 current_data_size() const
694 { return this->current_data_size_for_child(); }
695
696 // Add a STUB with using KEY. Caller is reponsible for avoid adding
697 // if already a STUB with the same key has been added.
698 void
699 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key);
700
701 // Look up a relocation stub using KEY. Return NULL if there is none.
702 Reloc_stub*
703 find_reloc_stub(const Reloc_stub::Key& key) const
704 {
705 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
706 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
707 }
708
709 // Relocate stubs in this stub table.
710 void
711 relocate_stubs(const Relocate_info<32, big_endian>*,
712 Target_arm<big_endian>*, Output_section*,
713 unsigned char*, Arm_address, section_size_type);
714
715 protected:
716 // Write out section contents.
717 void
718 do_write(Output_file*);
719
720 // Return the required alignment.
721 uint64_t
722 do_addralign() const
723 { return this->addralign_; }
724
725 // Finalize data size.
726 void
727 set_final_data_size()
728 { this->set_data_size(this->current_data_size_for_child()); }
729
730 // Reset address and file offset.
731 void
732 do_reset_address_and_file_offset();
733
734 private:
735 // Unordered map of stubs.
736 typedef
737 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
738 Reloc_stub::Key::equal_to>
739 Reloc_stub_map;
740
741 // Address alignment
742 uint64_t addralign_;
743 // Owner of this stub table.
744 Arm_input_section<big_endian>* owner_;
745 // This is set to true during relaxiong if the size of the stub table
746 // has been changed.
747 bool has_been_changed_;
748 // The relocation stubs.
749 Reloc_stub_map reloc_stubs_;
750};
751
10ad9fe5
DK
752// A class to wrap an ordinary input section containing executable code.
753
754template<bool big_endian>
755class Arm_input_section : public Output_relaxed_input_section
756{
757 public:
91d6fa6a
NC
758 Arm_input_section(Relobj* rel_obj, unsigned int sec_shndx)
759 : Output_relaxed_input_section(rel_obj, sec_shndx, 1),
10ad9fe5
DK
760 original_addralign_(1), original_size_(0), stub_table_(NULL)
761 { }
762
763 ~Arm_input_section()
764 { }
765
766 // Initialize.
767 void
768 init();
769
770 // Whether this is a stub table owner.
771 bool
772 is_stub_table_owner() const
773 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
774
775 // Return the stub table.
776 Stub_table<big_endian>*
777 stub_table() const
778 { return this->stub_table_; }
779
780 // Set the stub_table.
781 void
91d6fa6a
NC
782 set_stub_table(Stub_table<big_endian>* stubtable)
783 { this->stub_table_ = stubtable; }
10ad9fe5 784
07f508a2
DK
785 // Downcast a base pointer to an Arm_input_section pointer. This is
786 // not type-safe but we only use Arm_input_section not the base class.
787 static Arm_input_section<big_endian>*
788 as_arm_input_section(Output_relaxed_input_section* poris)
789 { return static_cast<Arm_input_section<big_endian>*>(poris); }
790
10ad9fe5
DK
791 protected:
792 // Write data to output file.
793 void
794 do_write(Output_file*);
795
796 // Return required alignment of this.
797 uint64_t
798 do_addralign() const
799 {
800 if (this->is_stub_table_owner())
801 return std::max(this->stub_table_->addralign(),
802 this->original_addralign_);
803 else
804 return this->original_addralign_;
805 }
806
807 // Finalize data size.
808 void
809 set_final_data_size();
810
811 // Reset address and file offset.
812 void
813 do_reset_address_and_file_offset();
814
815 // Output offset.
816 bool
91d6fa6a
NC
817 do_output_offset(const Relobj* object, unsigned int sec_shndx,
818 section_offset_type off,
10ad9fe5
DK
819 section_offset_type* poutput) const
820 {
821 if ((object == this->relobj())
91d6fa6a
NC
822 && (sec_shndx == this->shndx())
823 && (off >= 0)
824 && (convert_types<uint64_t, section_offset_type>(off)
10ad9fe5
DK
825 <= this->original_size_))
826 {
91d6fa6a 827 *poutput = off;
10ad9fe5
DK
828 return true;
829 }
830 else
831 return false;
832 }
833
834 private:
835 // Copying is not allowed.
836 Arm_input_section(const Arm_input_section&);
837 Arm_input_section& operator=(const Arm_input_section&);
838
839 // Address alignment of the original input section.
840 uint64_t original_addralign_;
841 // Section size of the original input section.
842 uint64_t original_size_;
843 // Stub table.
844 Stub_table<big_endian>* stub_table_;
845};
846
07f508a2
DK
847// Arm output section class. This is defined mainly to add a number of
848// stub generation methods.
849
850template<bool big_endian>
851class Arm_output_section : public Output_section
852{
853 public:
91d6fa6a
NC
854 Arm_output_section(const char* aname, elfcpp::Elf_Word atype,
855 elfcpp::Elf_Xword xflags)
856 : Output_section(aname, atype, xflags)
07f508a2
DK
857 { }
858
859 ~Arm_output_section()
860 { }
861
862 // Group input sections for stub generation.
863 void
864 group_sections(section_size_type, bool, Target_arm<big_endian>*);
865
866 // Downcast a base pointer to an Arm_output_section pointer. This is
867 // not type-safe but we only use Arm_output_section not the base class.
868 static Arm_output_section<big_endian>*
869 as_arm_output_section(Output_section* os)
870 { return static_cast<Arm_output_section<big_endian>*>(os); }
871
872 private:
873 // For convenience.
874 typedef Output_section::Input_section Input_section;
875 typedef Output_section::Input_section_list Input_section_list;
876
877 // Create a stub group.
878 void create_stub_group(Input_section_list::const_iterator,
879 Input_section_list::const_iterator,
880 Input_section_list::const_iterator,
881 Target_arm<big_endian>*,
882 std::vector<Output_relaxed_input_section*>*);
883};
884
8ffa3667
DK
885// Arm_relobj class.
886
887template<bool big_endian>
888class Arm_relobj : public Sized_relobj<32, big_endian>
889{
890 public:
891 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
892
91d6fa6a 893 Arm_relobj(const std::string& aname, Input_file* inputfile, off_t off,
8ffa3667 894 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
91d6fa6a 895 : Sized_relobj<32, big_endian>(aname, inputfile, off, ehdr),
a0351a69
DK
896 stub_tables_(), local_symbol_is_thumb_function_(),
897 attributes_section_data_(NULL)
8ffa3667
DK
898 { }
899
900 ~Arm_relobj()
a0351a69 901 { delete this->attributes_section_data_; }
8ffa3667
DK
902
903 // Return the stub table of the SHNDX-th section if there is one.
904 Stub_table<big_endian>*
91d6fa6a 905 stub_table(unsigned int sec_shndx) const
8ffa3667 906 {
91d6fa6a
NC
907 gold_assert(sec_shndx < this->stub_tables_.size());
908 return this->stub_tables_[sec_shndx];
8ffa3667
DK
909 }
910
911 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
912 void
91d6fa6a 913 set_stub_table(unsigned int sec_shndx, Stub_table<big_endian>* stubtable)
8ffa3667 914 {
91d6fa6a
NC
915 gold_assert(sec_shndx < this->stub_tables_.size());
916 this->stub_tables_[sec_shndx] = stubtable;
8ffa3667
DK
917 }
918
919 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
920 // index. This is only valid after do_count_local_symbol is called.
921 bool
922 local_symbol_is_thumb_function(unsigned int r_sym) const
923 {
924 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
925 return this->local_symbol_is_thumb_function_[r_sym];
926 }
927
928 // Scan all relocation sections for stub generation.
929 void
930 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
931 const Layout*);
932
933 // Convert regular input section with index SHNDX to a relaxed section.
934 void
91d6fa6a 935 convert_input_section_to_relaxed_section(unsigned sec_shndx)
8ffa3667
DK
936 {
937 // The stubs have relocations and we need to process them after writing
938 // out the stubs. So relocation now must follow section write.
91d6fa6a 939 this->invalidate_section_offset(sec_shndx);
8ffa3667
DK
940 this->set_relocs_must_follow_section_writes();
941 }
942
943 // Downcast a base pointer to an Arm_relobj pointer. This is
944 // not type-safe but we only use Arm_relobj not the base class.
945 static Arm_relobj<big_endian>*
91d6fa6a
NC
946 as_arm_relobj(Relobj* rel_obj)
947 { return static_cast<Arm_relobj<big_endian>*>(rel_obj); }
8ffa3667 948
d5b40221
DK
949 // Processor-specific flags in ELF file header. This is valid only after
950 // reading symbols.
951 elfcpp::Elf_Word
952 processor_specific_flags() const
953 { return this->processor_specific_flags_; }
954
a0351a69
DK
955 // Attribute section data This is the contents of the .ARM.attribute section
956 // if there is one.
957 const Attributes_section_data*
958 attributes_section_data() const
959 { return this->attributes_section_data_; }
960
8ffa3667
DK
961 protected:
962 // Post constructor setup.
963 void
964 do_setup()
965 {
966 // Call parent's setup method.
967 Sized_relobj<32, big_endian>::do_setup();
968
969 // Initialize look-up tables.
970 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
971 this->stub_tables_.swap(empty_stub_table_list);
972 }
973
974 // Count the local symbols.
975 void
976 do_count_local_symbols(Stringpool_template<char>*,
977 Stringpool_template<char>*);
978
979 void
43d12afe 980 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
8ffa3667
DK
981 const unsigned char* pshdrs,
982 typename Sized_relobj<32, big_endian>::Views* pivews);
983
d5b40221
DK
984 // Read the symbol information.
985 void
986 do_read_symbols(Read_symbols_data* sd);
987
8ffa3667
DK
988 private:
989 // List of stub tables.
990 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
991 Stub_table_list stub_tables_;
992 // Bit vector to tell if a local symbol is a thumb function or not.
993 // This is only valid after do_count_local_symbol is called.
994 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
995 // processor-specific flags in ELF file header.
996 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
997 // Object attributes if there is an .ARM.attributes section or NULL.
998 Attributes_section_data* attributes_section_data_;
d5b40221
DK
999};
1000
1001// Arm_dynobj class.
1002
1003template<bool big_endian>
1004class Arm_dynobj : public Sized_dynobj<32, big_endian>
1005{
1006 public:
91d6fa6a 1007 Arm_dynobj(const std::string& aname, Input_file* inputfile, off_t off,
d5b40221 1008 const elfcpp::Ehdr<32, big_endian>& ehdr)
91d6fa6a
NC
1009 : Sized_dynobj<32, big_endian>(aname, inputfile, off, ehdr),
1010 processor_specific_flags_(0)
d5b40221
DK
1011 { }
1012
1013 ~Arm_dynobj()
a0351a69 1014 { delete this->attributes_section_data_; }
d5b40221
DK
1015
1016 // Downcast a base pointer to an Arm_relobj pointer. This is
1017 // not type-safe but we only use Arm_relobj not the base class.
1018 static Arm_dynobj<big_endian>*
1019 as_arm_dynobj(Dynobj* dynobj)
1020 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1021
1022 // Processor-specific flags in ELF file header. This is valid only after
1023 // reading symbols.
1024 elfcpp::Elf_Word
1025 processor_specific_flags() const
1026 { return this->processor_specific_flags_; }
1027
a0351a69
DK
1028 // Attributes section data.
1029 const Attributes_section_data*
1030 attributes_section_data() const
1031 { return this->attributes_section_data_; }
1032
d5b40221
DK
1033 protected:
1034 // Read the symbol information.
1035 void
1036 do_read_symbols(Read_symbols_data* sd);
1037
1038 private:
1039 // processor-specific flags in ELF file header.
1040 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1041 // Object attributes if there is an .ARM.attributes section or NULL.
1042 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1043};
1044
e9bbb538
DK
1045// Functor to read reloc addends during stub generation.
1046
1047template<int sh_type, bool big_endian>
1048struct Stub_addend_reader
1049{
1050 // Return the addend for a relocation of a particular type. Depending
1051 // on whether this is a REL or RELA relocation, read the addend from a
1052 // view or from a Reloc object.
1053 elfcpp::Elf_types<32>::Elf_Swxword
1054 operator()(
1055 unsigned int /* r_type */,
1056 const unsigned char* /* view */,
1057 const typename Reloc_types<sh_type,
ebd95253 1058 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1059};
1060
1061// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1062
1063template<bool big_endian>
1064struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1065{
1066 elfcpp::Elf_types<32>::Elf_Swxword
1067 operator()(
1068 unsigned int,
1069 const unsigned char*,
1070 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1071};
1072
1073// Specialized Stub_addend_reader for RELA type relocation sections.
1074// We currently do not handle RELA type relocation sections but it is trivial
1075// to implement the addend reader. This is provided for completeness and to
1076// make it easier to add support for RELA relocation sections in the future.
1077
1078template<bool big_endian>
1079struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1080{
1081 elfcpp::Elf_types<32>::Elf_Swxword
1082 operator()(
1083 unsigned int,
1084 const unsigned char*,
1085 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1086 big_endian>::Reloc& reloc) const
1087 { return reloc.get_r_addend(); }
e9bbb538
DK
1088};
1089
c121c671
DK
1090// Utilities for manipulating integers of up to 32-bits
1091
1092namespace utils
1093{
1094 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1095 // an int32_t. NO_BITS must be between 1 to 32.
1096 template<int no_bits>
1097 static inline int32_t
1098 sign_extend(uint32_t bits)
1099 {
96d49306 1100 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1101 if (no_bits == 32)
1102 return static_cast<int32_t>(bits);
1103 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1104 bits &= mask;
1105 uint32_t top_bit = 1U << (no_bits - 1);
1106 int32_t as_signed = static_cast<int32_t>(bits);
1107 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1108 }
1109
1110 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1111 template<int no_bits>
1112 static inline bool
1113 has_overflow(uint32_t bits)
1114 {
96d49306 1115 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1116 if (no_bits == 32)
1117 return false;
1118 int32_t max = (1 << (no_bits - 1)) - 1;
1119 int32_t min = -(1 << (no_bits - 1));
1120 int32_t as_signed = static_cast<int32_t>(bits);
1121 return as_signed > max || as_signed < min;
1122 }
1123
5e445df6
ILT
1124 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1125 // fits in the given number of bits as either a signed or unsigned value.
1126 // For example, has_signed_unsigned_overflow<8> would check
1127 // -128 <= bits <= 255
1128 template<int no_bits>
1129 static inline bool
1130 has_signed_unsigned_overflow(uint32_t bits)
1131 {
1132 gold_assert(no_bits >= 2 && no_bits <= 32);
1133 if (no_bits == 32)
1134 return false;
1135 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1136 int32_t min = -(1 << (no_bits - 1));
1137 int32_t as_signed = static_cast<int32_t>(bits);
1138 return as_signed > max || as_signed < min;
1139 }
1140
c121c671
DK
1141 // Select bits from A and B using bits in MASK. For each n in [0..31],
1142 // the n-th bit in the result is chosen from the n-th bits of A and B.
1143 // A zero selects A and a one selects B.
1144 static inline uint32_t
1145 bit_select(uint32_t a, uint32_t b, uint32_t mask)
1146 { return (a & ~mask) | (b & mask); }
1147};
1148
4a657b0d
DK
1149template<bool big_endian>
1150class Target_arm : public Sized_target<32, big_endian>
1151{
1152 public:
1153 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
1154 Reloc_section;
1155
2daedcd6
DK
1156 // When were are relocating a stub, we pass this as the relocation number.
1157 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
1158
a6d1ef57
DK
1159 Target_arm()
1160 : Sized_target<32, big_endian>(&arm_info),
1161 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
1162 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), stub_tables_(),
a0351a69
DK
1163 stub_factory_(Stub_factory::get_instance()), may_use_blx_(false),
1164 should_force_pic_veneer_(false), arm_input_section_map_(),
1165 attributes_section_data_(NULL)
a6d1ef57 1166 { }
4a657b0d 1167
b569affa
DK
1168 // Whether we can use BLX.
1169 bool
1170 may_use_blx() const
1171 { return this->may_use_blx_; }
1172
1173 // Set use-BLX flag.
1174 void
1175 set_may_use_blx(bool value)
1176 { this->may_use_blx_ = value; }
1177
1178 // Whether we force PCI branch veneers.
1179 bool
1180 should_force_pic_veneer() const
1181 { return this->should_force_pic_veneer_; }
1182
1183 // Set PIC veneer flag.
1184 void
1185 set_should_force_pic_veneer(bool value)
1186 { this->should_force_pic_veneer_ = value; }
1187
1188 // Whether we use THUMB-2 instructions.
1189 bool
1190 using_thumb2() const
1191 {
a0351a69
DK
1192 Object_attribute* attr =
1193 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1194 int arch = attr->int_value();
1195 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
1196 }
1197
1198 // Whether we use THUMB/THUMB-2 instructions only.
1199 bool
1200 using_thumb_only() const
1201 {
a0351a69
DK
1202 Object_attribute* attr =
1203 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1204 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
1205 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
1206 return false;
1207 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
1208 return attr->int_value() == 'M';
b569affa
DK
1209 }
1210
d204b6e9
DK
1211 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
1212 bool
1213 may_use_arm_nop() const
1214 {
a0351a69
DK
1215 Object_attribute* attr =
1216 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1217 int arch = attr->int_value();
1218 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
1219 || arch == elfcpp::TAG_CPU_ARCH_V6K
1220 || arch == elfcpp::TAG_CPU_ARCH_V7
1221 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
1222 }
1223
51938283
DK
1224 // Whether we have THUMB-2 NOP.W instruction.
1225 bool
1226 may_use_thumb2_nop() const
1227 {
a0351a69
DK
1228 Object_attribute* attr =
1229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1230 int arch = attr->int_value();
1231 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
1232 || arch == elfcpp::TAG_CPU_ARCH_V7
1233 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
1234 }
1235
4a657b0d
DK
1236 // Process the relocations to determine unreferenced sections for
1237 // garbage collection.
1238 void
ad0f2072 1239 gc_process_relocs(Symbol_table* symtab,
4a657b0d
DK
1240 Layout* layout,
1241 Sized_relobj<32, big_endian>* object,
1242 unsigned int data_shndx,
1243 unsigned int sh_type,
1244 const unsigned char* prelocs,
1245 size_t reloc_count,
1246 Output_section* output_section,
1247 bool needs_special_offset_handling,
1248 size_t local_symbol_count,
1249 const unsigned char* plocal_symbols);
1250
1251 // Scan the relocations to look for symbol adjustments.
1252 void
ad0f2072 1253 scan_relocs(Symbol_table* symtab,
4a657b0d
DK
1254 Layout* layout,
1255 Sized_relobj<32, big_endian>* object,
1256 unsigned int data_shndx,
1257 unsigned int sh_type,
1258 const unsigned char* prelocs,
1259 size_t reloc_count,
1260 Output_section* output_section,
1261 bool needs_special_offset_handling,
1262 size_t local_symbol_count,
1263 const unsigned char* plocal_symbols);
1264
1265 // Finalize the sections.
1266 void
f59f41f3 1267 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 1268
94cdfcff 1269 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
1270 // treatment.
1271 uint64_t
1272 do_dynsym_value(const Symbol*) const;
1273
1274 // Relocate a section.
1275 void
1276 relocate_section(const Relocate_info<32, big_endian>*,
1277 unsigned int sh_type,
1278 const unsigned char* prelocs,
1279 size_t reloc_count,
1280 Output_section* output_section,
1281 bool needs_special_offset_handling,
1282 unsigned char* view,
ebabffbd 1283 Arm_address view_address,
364c7fa5
ILT
1284 section_size_type view_size,
1285 const Reloc_symbol_changes*);
4a657b0d
DK
1286
1287 // Scan the relocs during a relocatable link.
1288 void
ad0f2072 1289 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d
DK
1290 Layout* layout,
1291 Sized_relobj<32, big_endian>* object,
1292 unsigned int data_shndx,
1293 unsigned int sh_type,
1294 const unsigned char* prelocs,
1295 size_t reloc_count,
1296 Output_section* output_section,
1297 bool needs_special_offset_handling,
1298 size_t local_symbol_count,
1299 const unsigned char* plocal_symbols,
1300 Relocatable_relocs*);
1301
1302 // Relocate a section during a relocatable link.
1303 void
1304 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
1305 unsigned int sh_type,
1306 const unsigned char* prelocs,
1307 size_t reloc_count,
1308 Output_section* output_section,
1309 off_t offset_in_output_section,
1310 const Relocatable_relocs*,
1311 unsigned char* view,
ebabffbd 1312 Arm_address view_address,
4a657b0d
DK
1313 section_size_type view_size,
1314 unsigned char* reloc_view,
1315 section_size_type reloc_view_size);
1316
1317 // Return whether SYM is defined by the ABI.
1318 bool
1319 do_is_defined_by_abi(Symbol* sym) const
1320 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
1321
94cdfcff
DK
1322 // Return the size of the GOT section.
1323 section_size_type
1324 got_size()
1325 {
1326 gold_assert(this->got_ != NULL);
1327 return this->got_->data_size();
1328 }
1329
4a657b0d 1330 // Map platform-specific reloc types
a6d1ef57
DK
1331 static unsigned int
1332 get_real_reloc_type (unsigned int r_type);
4a657b0d 1333
55da9579
DK
1334 //
1335 // Methods to support stub-generations.
1336 //
1337
1338 // Return the stub factory
1339 const Stub_factory&
1340 stub_factory() const
1341 { return this->stub_factory_; }
1342
1343 // Make a new Arm_input_section object.
1344 Arm_input_section<big_endian>*
1345 new_arm_input_section(Relobj*, unsigned int);
1346
1347 // Find the Arm_input_section object corresponding to the SHNDX-th input
1348 // section of RELOBJ.
1349 Arm_input_section<big_endian>*
91d6fa6a 1350 find_arm_input_section(Relobj* rel_obj, unsigned int sec_shndx) const;
55da9579
DK
1351
1352 // Make a new Stub_table
1353 Stub_table<big_endian>*
1354 new_stub_table(Arm_input_section<big_endian>*);
1355
eb44217c
DK
1356 // Scan a section for stub generation.
1357 void
1358 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
1359 const unsigned char*, size_t, Output_section*,
1360 bool, const unsigned char*, Arm_address,
1361 section_size_type);
1362
43d12afe
DK
1363 // Relocate a stub.
1364 void
1365 relocate_stub(Reloc_stub*, const Relocate_info<32, big_endian>*,
1366 Output_section*, unsigned char*, Arm_address,
1367 section_size_type);
1368
b569affa 1369 // Get the default ARM target.
43d12afe 1370 static Target_arm<big_endian>*
b569affa
DK
1371 default_target()
1372 {
1373 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
1374 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
1375 return static_cast<Target_arm<big_endian>*>(
1376 parameters->sized_target<32, big_endian>());
b569affa
DK
1377 }
1378
55da9579
DK
1379 // Whether relocation type uses LSB to distinguish THUMB addresses.
1380 static bool
1381 reloc_uses_thumb_bit(unsigned int r_type);
1382
d5b40221 1383 protected:
eb44217c
DK
1384 // Make an ELF object.
1385 Object*
1386 do_make_elf_object(const std::string&, Input_file*, off_t,
1387 const elfcpp::Ehdr<32, big_endian>& ehdr);
1388
1389 Object*
1390 do_make_elf_object(const std::string&, Input_file*, off_t,
1391 const elfcpp::Ehdr<32, !big_endian>&)
1392 { gold_unreachable(); }
1393
1394 Object*
1395 do_make_elf_object(const std::string&, Input_file*, off_t,
1396 const elfcpp::Ehdr<64, false>&)
1397 { gold_unreachable(); }
1398
1399 Object*
1400 do_make_elf_object(const std::string&, Input_file*, off_t,
1401 const elfcpp::Ehdr<64, true>&)
1402 { gold_unreachable(); }
1403
1404 // Make an output section.
1405 Output_section*
1406 do_make_output_section(const char* name, elfcpp::Elf_Word type,
1407 elfcpp::Elf_Xword flags)
1408 { return new Arm_output_section<big_endian>(name, type, flags); }
1409
d5b40221
DK
1410 void
1411 do_adjust_elf_header(unsigned char* view, int len) const;
1412
eb44217c
DK
1413 // We only need to generate stubs, and hence perform relaxation if we are
1414 // not doing relocatable linking.
1415 bool
1416 do_may_relax() const
1417 { return !parameters->options().relocatable(); }
1418
1419 bool
1420 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
1421
a0351a69
DK
1422 // Determine whether an object attribute tag takes an integer, a
1423 // string or both.
1424 int
1425 do_attribute_arg_type(int tag) const;
1426
1427 // Reorder tags during output.
1428 int
1429 do_attributes_order(int num) const;
1430
4a657b0d
DK
1431 private:
1432 // The class which scans relocations.
1433 class Scan
1434 {
1435 public:
1436 Scan()
bec53400 1437 : issued_non_pic_error_(false)
4a657b0d
DK
1438 { }
1439
1440 inline void
ad0f2072 1441 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
1442 Sized_relobj<32, big_endian>* object,
1443 unsigned int data_shndx,
1444 Output_section* output_section,
1445 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
1446 const elfcpp::Sym<32, big_endian>& lsym);
1447
1448 inline void
ad0f2072 1449 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
1450 Sized_relobj<32, big_endian>* object,
1451 unsigned int data_shndx,
1452 Output_section* output_section,
1453 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
1454 Symbol* gsym);
1455
1456 private:
1457 static void
1458 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
1459 unsigned int r_type);
1460
1461 static void
1462 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
1463 unsigned int r_type, Symbol*);
bec53400
DK
1464
1465 void
1466 check_non_pic(Relobj*, unsigned int r_type);
1467
1468 // Almost identical to Symbol::needs_plt_entry except that it also
1469 // handles STT_ARM_TFUNC.
1470 static bool
1471 symbol_needs_plt_entry(const Symbol* sym)
1472 {
1473 // An undefined symbol from an executable does not need a PLT entry.
1474 if (sym->is_undefined() && !parameters->options().shared())
1475 return false;
1476
1477 return (!parameters->doing_static_link()
1478 && (sym->type() == elfcpp::STT_FUNC
1479 || sym->type() == elfcpp::STT_ARM_TFUNC)
1480 && (sym->is_from_dynobj()
1481 || sym->is_undefined()
1482 || sym->is_preemptible()));
1483 }
1484
1485 // Whether we have issued an error about a non-PIC compilation.
1486 bool issued_non_pic_error_;
4a657b0d
DK
1487 };
1488
1489 // The class which implements relocation.
1490 class Relocate
1491 {
1492 public:
1493 Relocate()
1494 { }
1495
1496 ~Relocate()
1497 { }
1498
bec53400
DK
1499 // Return whether the static relocation needs to be applied.
1500 inline bool
1501 should_apply_static_reloc(const Sized_symbol<32>* gsym,
1502 int ref_flags,
1503 bool is_32bit,
1504 Output_section* output_section);
1505
4a657b0d
DK
1506 // Do a relocation. Return false if the caller should not issue
1507 // any warnings about this relocation.
1508 inline bool
1509 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
1510 Output_section*, size_t relnum,
1511 const elfcpp::Rel<32, big_endian>&,
1512 unsigned int r_type, const Sized_symbol<32>*,
1513 const Symbol_value<32>*,
ebabffbd 1514 unsigned char*, Arm_address,
4a657b0d 1515 section_size_type);
c121c671
DK
1516
1517 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
1518 // reloc. This means the relocation type accesses a symbol not via
1519 // GOT or PLT.
c121c671
DK
1520 static inline bool
1521 reloc_is_non_pic (unsigned int r_type)
1522 {
1523 switch (r_type)
1524 {
f4e5969c
DK
1525 // These relocation types reference GOT or PLT entries explicitly.
1526 case elfcpp::R_ARM_GOT_BREL:
1527 case elfcpp::R_ARM_GOT_ABS:
1528 case elfcpp::R_ARM_GOT_PREL:
1529 case elfcpp::R_ARM_GOT_BREL12:
1530 case elfcpp::R_ARM_PLT32_ABS:
1531 case elfcpp::R_ARM_TLS_GD32:
1532 case elfcpp::R_ARM_TLS_LDM32:
1533 case elfcpp::R_ARM_TLS_IE32:
1534 case elfcpp::R_ARM_TLS_IE12GP:
1535
1536 // These relocate types may use PLT entries.
c121c671 1537 case elfcpp::R_ARM_CALL:
f4e5969c 1538 case elfcpp::R_ARM_THM_CALL:
c121c671 1539 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
1540 case elfcpp::R_ARM_THM_JUMP24:
1541 case elfcpp::R_ARM_THM_JUMP19:
1542 case elfcpp::R_ARM_PLT32:
1543 case elfcpp::R_ARM_THM_XPC22:
c121c671 1544 return false;
f4e5969c
DK
1545
1546 default:
1547 return true;
c121c671
DK
1548 }
1549 }
4a657b0d
DK
1550 };
1551
1552 // A class which returns the size required for a relocation type,
1553 // used while scanning relocs during a relocatable link.
1554 class Relocatable_size_for_reloc
1555 {
1556 public:
1557 unsigned int
1558 get_size_for_reloc(unsigned int, Relobj*);
1559 };
1560
94cdfcff
DK
1561 // Get the GOT section, creating it if necessary.
1562 Output_data_got<32, big_endian>*
1563 got_section(Symbol_table*, Layout*);
1564
1565 // Get the GOT PLT section.
1566 Output_data_space*
1567 got_plt_section() const
1568 {
1569 gold_assert(this->got_plt_ != NULL);
1570 return this->got_plt_;
1571 }
1572
1573 // Create a PLT entry for a global symbol.
1574 void
1575 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1576
1577 // Get the PLT section.
1578 const Output_data_plt_arm<big_endian>*
1579 plt_section() const
1580 {
1581 gold_assert(this->plt_ != NULL);
1582 return this->plt_;
1583 }
1584
1585 // Get the dynamic reloc section, creating it if necessary.
1586 Reloc_section*
1587 rel_dyn_section(Layout*);
1588
1589 // Return true if the symbol may need a COPY relocation.
1590 // References from an executable object to non-function symbols
1591 // defined in a dynamic object may need a COPY relocation.
1592 bool
1593 may_need_copy_reloc(Symbol* gsym)
1594 {
966d4097
DK
1595 return (gsym->type() != elfcpp::STT_ARM_TFUNC
1596 && gsym->may_need_copy_reloc());
94cdfcff
DK
1597 }
1598
1599 // Add a potential copy relocation.
1600 void
1601 copy_reloc(Symbol_table* symtab, Layout* layout,
1602 Sized_relobj<32, big_endian>* object,
91d6fa6a 1603 unsigned int sec_shndx, Output_section* output_section,
94cdfcff
DK
1604 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
1605 {
1606 this->copy_relocs_.copy_reloc(symtab, layout,
1607 symtab->get_sized_symbol<32>(sym),
91d6fa6a 1608 object, sec_shndx, output_section, reloc,
94cdfcff
DK
1609 this->rel_dyn_section(layout));
1610 }
1611
d5b40221
DK
1612 // Whether two EABI versions are compatible.
1613 static bool
1614 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
1615
1616 // Merge processor-specific flags from input object and those in the ELF
1617 // header of the output.
1618 void
1619 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
1620
a0351a69
DK
1621 // Get the secondary compatible architecture.
1622 static int
1623 get_secondary_compatible_arch(const Attributes_section_data*);
1624
1625 // Set the secondary compatible architecture.
1626 static void
1627 set_secondary_compatible_arch(Attributes_section_data*, int);
1628
1629 static int
1630 tag_cpu_arch_combine(const char*, int, int*, int, int);
1631
1632 // Helper to print AEABI enum tag value.
1633 static std::string
1634 aeabi_enum_name(unsigned int);
1635
1636 // Return string value for TAG_CPU_name.
1637 static std::string
1638 tag_cpu_name_value(unsigned int);
1639
1640 // Merge object attributes from input object and those in the output.
1641 void
1642 merge_object_attributes(const char*, const Attributes_section_data*);
1643
1644 // Helper to get an AEABI object attribute
1645 Object_attribute*
1646 get_aeabi_object_attribute(int tag) const
1647 {
1648 Attributes_section_data* pasd = this->attributes_section_data_;
1649 gold_assert(pasd != NULL);
1650 Object_attribute* attr =
1651 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
1652 gold_assert(attr != NULL);
1653 return attr;
1654 }
1655
eb44217c
DK
1656 //
1657 // Methods to support stub-generations.
1658 //
d5b40221 1659
eb44217c
DK
1660 // Group input sections for stub generation.
1661 void
1662 group_sections(Layout*, section_size_type, bool);
d5b40221 1663
eb44217c
DK
1664 // Scan a relocation for stub generation.
1665 void
1666 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
1667 const Sized_symbol<32>*, unsigned int,
1668 const Symbol_value<32>*,
1669 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 1670
eb44217c
DK
1671 // Scan a relocation section for stub.
1672 template<int sh_type>
1673 void
1674 scan_reloc_section_for_stubs(
1675 const Relocate_info<32, big_endian>* relinfo,
1676 const unsigned char* prelocs,
1677 size_t reloc_count,
1678 Output_section* output_section,
1679 bool needs_special_offset_handling,
1680 const unsigned char* view,
1681 elfcpp::Elf_types<32>::Elf_Addr view_address,
1682 section_size_type);
d5b40221 1683
4a657b0d
DK
1684 // Information about this specific target which we pass to the
1685 // general Target structure.
1686 static const Target::Target_info arm_info;
94cdfcff
DK
1687
1688 // The types of GOT entries needed for this platform.
1689 enum Got_type
1690 {
1691 GOT_TYPE_STANDARD = 0 // GOT entry for a regular symbol
1692 };
1693
55da9579
DK
1694 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
1695
1696 // Map input section to Arm_input_section.
1697 typedef Unordered_map<Input_section_specifier,
1698 Arm_input_section<big_endian>*,
1699 Input_section_specifier::hash,
1700 Input_section_specifier::equal_to>
1701 Arm_input_section_map;
1702
94cdfcff
DK
1703 // The GOT section.
1704 Output_data_got<32, big_endian>* got_;
1705 // The PLT section.
1706 Output_data_plt_arm<big_endian>* plt_;
1707 // The GOT PLT section.
1708 Output_data_space* got_plt_;
1709 // The dynamic reloc section.
1710 Reloc_section* rel_dyn_;
1711 // Relocs saved to avoid a COPY reloc.
1712 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
1713 // Space for variables copied with a COPY reloc.
1714 Output_data_space* dynbss_;
55da9579
DK
1715 // Vector of Stub_tables created.
1716 Stub_table_list stub_tables_;
1717 // Stub factory.
1718 const Stub_factory &stub_factory_;
b569affa
DK
1719 // Whether we can use BLX.
1720 bool may_use_blx_;
1721 // Whether we force PIC branch veneers.
1722 bool should_force_pic_veneer_;
eb44217c
DK
1723 // Map for locating Arm_input_sections.
1724 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
1725 // Attributes section data in output.
1726 Attributes_section_data* attributes_section_data_;
4a657b0d
DK
1727};
1728
1729template<bool big_endian>
1730const Target::Target_info Target_arm<big_endian>::arm_info =
1731{
1732 32, // size
1733 big_endian, // is_big_endian
1734 elfcpp::EM_ARM, // machine_code
1735 false, // has_make_symbol
1736 false, // has_resolve
1737 false, // has_code_fill
1738 true, // is_default_stack_executable
1739 '\0', // wrap_char
1740 "/usr/lib/libc.so.1", // dynamic_linker
1741 0x8000, // default_text_segment_address
1742 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
1743 0x1000, // common_pagesize (overridable by -z common-page-size)
1744 elfcpp::SHN_UNDEF, // small_common_shndx
1745 elfcpp::SHN_UNDEF, // large_common_shndx
1746 0, // small_common_section_flags
05a352e6
DK
1747 0, // large_common_section_flags
1748 ".ARM.attributes", // attributes_section
1749 "aeabi" // attributes_vendor
4a657b0d
DK
1750};
1751
c121c671
DK
1752// Arm relocate functions class
1753//
1754
1755template<bool big_endian>
1756class Arm_relocate_functions : public Relocate_functions<32, big_endian>
1757{
1758 public:
1759 typedef enum
1760 {
1761 STATUS_OKAY, // No error during relocation.
1762 STATUS_OVERFLOW, // Relocation oveflow.
1763 STATUS_BAD_RELOC // Relocation cannot be applied.
1764 } Status;
1765
1766 private:
1767 typedef Relocate_functions<32, big_endian> Base;
1768 typedef Arm_relocate_functions<big_endian> This;
1769
fd3c5f0b
ILT
1770 // Encoding of imm16 argument for movt and movw ARM instructions
1771 // from ARM ARM:
1772 //
1773 // imm16 := imm4 | imm12
1774 //
1775 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
1776 // +-------+---------------+-------+-------+-----------------------+
1777 // | | |imm4 | |imm12 |
1778 // +-------+---------------+-------+-------+-----------------------+
1779
1780 // Extract the relocation addend from VAL based on the ARM
1781 // instruction encoding described above.
1782 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1783 extract_arm_movw_movt_addend(
1784 typename elfcpp::Swap<32, big_endian>::Valtype val)
1785 {
1786 // According to the Elf ABI for ARM Architecture the immediate
1787 // field is sign-extended to form the addend.
1788 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
1789 }
1790
1791 // Insert X into VAL based on the ARM instruction encoding described
1792 // above.
1793 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1794 insert_val_arm_movw_movt(
1795 typename elfcpp::Swap<32, big_endian>::Valtype val,
1796 typename elfcpp::Swap<32, big_endian>::Valtype x)
1797 {
1798 val &= 0xfff0f000;
1799 val |= x & 0x0fff;
1800 val |= (x & 0xf000) << 4;
1801 return val;
1802 }
1803
1804 // Encoding of imm16 argument for movt and movw Thumb2 instructions
1805 // from ARM ARM:
1806 //
1807 // imm16 := imm4 | i | imm3 | imm8
1808 //
1809 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
1810 // +---------+-+-----------+-------++-+-----+-------+---------------+
1811 // | |i| |imm4 || |imm3 | |imm8 |
1812 // +---------+-+-----------+-------++-+-----+-------+---------------+
1813
1814 // Extract the relocation addend from VAL based on the Thumb2
1815 // instruction encoding described above.
1816 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1817 extract_thumb_movw_movt_addend(
1818 typename elfcpp::Swap<32, big_endian>::Valtype val)
1819 {
1820 // According to the Elf ABI for ARM Architecture the immediate
1821 // field is sign-extended to form the addend.
1822 return utils::sign_extend<16>(((val >> 4) & 0xf000)
1823 | ((val >> 15) & 0x0800)
1824 | ((val >> 4) & 0x0700)
1825 | (val & 0x00ff));
1826 }
1827
1828 // Insert X into VAL based on the Thumb2 instruction encoding
1829 // described above.
1830 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1831 insert_val_thumb_movw_movt(
1832 typename elfcpp::Swap<32, big_endian>::Valtype val,
1833 typename elfcpp::Swap<32, big_endian>::Valtype x)
1834 {
1835 val &= 0xfbf08f00;
1836 val |= (x & 0xf000) << 4;
1837 val |= (x & 0x0800) << 15;
1838 val |= (x & 0x0700) << 4;
1839 val |= (x & 0x00ff);
1840 return val;
1841 }
1842
d204b6e9
DK
1843 // Handle ARM long branches.
1844 static typename This::Status
1845 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
1846 unsigned char *, const Sized_symbol<32>*,
1847 const Arm_relobj<big_endian>*, unsigned int,
1848 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 1849
51938283
DK
1850 // Handle THUMB long branches.
1851 static typename This::Status
1852 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
1853 unsigned char *, const Sized_symbol<32>*,
1854 const Arm_relobj<big_endian>*, unsigned int,
1855 const Symbol_value<32>*, Arm_address, Arm_address, bool);
1856
c121c671 1857 public:
5e445df6
ILT
1858
1859 // R_ARM_ABS8: S + A
1860 static inline typename This::Status
1861 abs8(unsigned char *view,
1862 const Sized_relobj<32, big_endian>* object,
be8fcb75 1863 const Symbol_value<32>* psymval)
5e445df6
ILT
1864 {
1865 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
1866 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1867 Valtype* wv = reinterpret_cast<Valtype*>(view);
1868 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
1869 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 1870 Reltype x = psymval->value(object, addend);
5e445df6
ILT
1871 val = utils::bit_select(val, x, 0xffU);
1872 elfcpp::Swap<8, big_endian>::writeval(wv, val);
1873 return (utils::has_signed_unsigned_overflow<8>(x)
1874 ? This::STATUS_OVERFLOW
1875 : This::STATUS_OKAY);
1876 }
1877
be8fcb75
ILT
1878 // R_ARM_THM_ABS5: S + A
1879 static inline typename This::Status
1880 thm_abs5(unsigned char *view,
1881 const Sized_relobj<32, big_endian>* object,
1882 const Symbol_value<32>* psymval)
1883 {
1884 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
1885 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1886 Valtype* wv = reinterpret_cast<Valtype*>(view);
1887 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
1888 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 1889 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1890 val = utils::bit_select(val, x << 6, 0x7e0U);
1891 elfcpp::Swap<16, big_endian>::writeval(wv, val);
1892 return (utils::has_overflow<5>(x)
1893 ? This::STATUS_OVERFLOW
1894 : This::STATUS_OKAY);
1895 }
1896
1897 // R_ARM_ABS12: S + A
1898 static inline typename This::Status
1899 abs12(unsigned char *view,
51938283
DK
1900 const Sized_relobj<32, big_endian>* object,
1901 const Symbol_value<32>* psymval)
be8fcb75
ILT
1902 {
1903 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1904 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1905 Valtype* wv = reinterpret_cast<Valtype*>(view);
1906 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1907 Reltype addend = val & 0x0fffU;
2daedcd6 1908 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1909 val = utils::bit_select(val, x, 0x0fffU);
1910 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1911 return (utils::has_overflow<12>(x)
1912 ? This::STATUS_OVERFLOW
1913 : This::STATUS_OKAY);
1914 }
1915
1916 // R_ARM_ABS16: S + A
1917 static inline typename This::Status
1918 abs16(unsigned char *view,
51938283
DK
1919 const Sized_relobj<32, big_endian>* object,
1920 const Symbol_value<32>* psymval)
be8fcb75
ILT
1921 {
1922 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
1923 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1924 Valtype* wv = reinterpret_cast<Valtype*>(view);
1925 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
1926 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 1927 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1928 val = utils::bit_select(val, x, 0xffffU);
1929 elfcpp::Swap<16, big_endian>::writeval(wv, val);
1930 return (utils::has_signed_unsigned_overflow<16>(x)
1931 ? This::STATUS_OVERFLOW
1932 : This::STATUS_OKAY);
1933 }
1934
c121c671
DK
1935 // R_ARM_ABS32: (S + A) | T
1936 static inline typename This::Status
1937 abs32(unsigned char *view,
1938 const Sized_relobj<32, big_endian>* object,
1939 const Symbol_value<32>* psymval,
2daedcd6 1940 Arm_address thumb_bit)
c121c671
DK
1941 {
1942 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1943 Valtype* wv = reinterpret_cast<Valtype*>(view);
1944 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 1945 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
1946 elfcpp::Swap<32, big_endian>::writeval(wv, x);
1947 return This::STATUS_OKAY;
1948 }
1949
1950 // R_ARM_REL32: (S + A) | T - P
1951 static inline typename This::Status
1952 rel32(unsigned char *view,
1953 const Sized_relobj<32, big_endian>* object,
1954 const Symbol_value<32>* psymval,
ebabffbd 1955 Arm_address address,
2daedcd6 1956 Arm_address thumb_bit)
c121c671
DK
1957 {
1958 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1959 Valtype* wv = reinterpret_cast<Valtype*>(view);
1960 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 1961 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
1962 elfcpp::Swap<32, big_endian>::writeval(wv, x);
1963 return This::STATUS_OKAY;
1964 }
1965
1966 // R_ARM_THM_CALL: (S + A) | T - P
1967 static inline typename This::Status
51938283
DK
1968 thm_call(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1969 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1970 unsigned int r_sym, const Symbol_value<32>* psymval,
1971 Arm_address address, Arm_address thumb_bit,
1972 bool is_weakly_undefined_without_plt)
c121c671 1973 {
51938283
DK
1974 return thumb_branch_common(elfcpp::R_ARM_THM_CALL, relinfo, view, gsym,
1975 object, r_sym, psymval, address, thumb_bit,
1976 is_weakly_undefined_without_plt);
1977 }
c121c671 1978
51938283
DK
1979 // R_ARM_THM_JUMP24: (S + A) | T - P
1980 static inline typename This::Status
1981 thm_jump24(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1982 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1983 unsigned int r_sym, const Symbol_value<32>* psymval,
1984 Arm_address address, Arm_address thumb_bit,
1985 bool is_weakly_undefined_without_plt)
1986 {
1987 return thumb_branch_common(elfcpp::R_ARM_THM_JUMP24, relinfo, view, gsym,
1988 object, r_sym, psymval, address, thumb_bit,
1989 is_weakly_undefined_without_plt);
1990 }
1991
1992 // R_ARM_THM_XPC22: (S + A) | T - P
1993 static inline typename This::Status
1994 thm_xpc22(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1995 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1996 unsigned int r_sym, const Symbol_value<32>* psymval,
1997 Arm_address address, Arm_address thumb_bit,
1998 bool is_weakly_undefined_without_plt)
1999 {
2000 return thumb_branch_common(elfcpp::R_ARM_THM_XPC22, relinfo, view, gsym,
2001 object, r_sym, psymval, address, thumb_bit,
2002 is_weakly_undefined_without_plt);
c121c671
DK
2003 }
2004
2005 // R_ARM_BASE_PREL: B(S) + A - P
2006 static inline typename This::Status
2007 base_prel(unsigned char* view,
ebabffbd
DK
2008 Arm_address origin,
2009 Arm_address address)
c121c671
DK
2010 {
2011 Base::rel32(view, origin - address);
2012 return STATUS_OKAY;
2013 }
2014
be8fcb75
ILT
2015 // R_ARM_BASE_ABS: B(S) + A
2016 static inline typename This::Status
2017 base_abs(unsigned char* view,
f4e5969c 2018 Arm_address origin)
be8fcb75
ILT
2019 {
2020 Base::rel32(view, origin);
2021 return STATUS_OKAY;
2022 }
2023
c121c671
DK
2024 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
2025 static inline typename This::Status
2026 got_brel(unsigned char* view,
2027 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
2028 {
2029 Base::rel32(view, got_offset);
2030 return This::STATUS_OKAY;
2031 }
2032
f4e5969c 2033 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 2034 static inline typename This::Status
f4e5969c
DK
2035 got_prel(unsigned char *view,
2036 Arm_address got_entry,
ebabffbd 2037 Arm_address address)
7f5309a5 2038 {
f4e5969c 2039 Base::rel32(view, got_entry - address);
7f5309a5
ILT
2040 return This::STATUS_OKAY;
2041 }
2042
c121c671
DK
2043 // R_ARM_PLT32: (S + A) | T - P
2044 static inline typename This::Status
d204b6e9
DK
2045 plt32(const Relocate_info<32, big_endian>* relinfo,
2046 unsigned char *view,
2047 const Sized_symbol<32>* gsym,
2048 const Arm_relobj<big_endian>* object,
2049 unsigned int r_sym,
c121c671 2050 const Symbol_value<32>* psymval,
ebabffbd 2051 Arm_address address,
d204b6e9
DK
2052 Arm_address thumb_bit,
2053 bool is_weakly_undefined_without_plt)
2054 {
2055 return arm_branch_common(elfcpp::R_ARM_PLT32, relinfo, view, gsym,
2056 object, r_sym, psymval, address, thumb_bit,
2057 is_weakly_undefined_without_plt);
2058 }
2059
2060 // R_ARM_XPC25: (S + A) | T - P
2061 static inline typename This::Status
2062 xpc25(const Relocate_info<32, big_endian>* relinfo,
2063 unsigned char *view,
2064 const Sized_symbol<32>* gsym,
2065 const Arm_relobj<big_endian>* object,
2066 unsigned int r_sym,
2067 const Symbol_value<32>* psymval,
2068 Arm_address address,
2069 Arm_address thumb_bit,
2070 bool is_weakly_undefined_without_plt)
c121c671 2071 {
d204b6e9
DK
2072 return arm_branch_common(elfcpp::R_ARM_XPC25, relinfo, view, gsym,
2073 object, r_sym, psymval, address, thumb_bit,
2074 is_weakly_undefined_without_plt);
c121c671
DK
2075 }
2076
2077 // R_ARM_CALL: (S + A) | T - P
2078 static inline typename This::Status
d204b6e9
DK
2079 call(const Relocate_info<32, big_endian>* relinfo,
2080 unsigned char *view,
2081 const Sized_symbol<32>* gsym,
2082 const Arm_relobj<big_endian>* object,
2083 unsigned int r_sym,
c121c671 2084 const Symbol_value<32>* psymval,
ebabffbd 2085 Arm_address address,
d204b6e9
DK
2086 Arm_address thumb_bit,
2087 bool is_weakly_undefined_without_plt)
c121c671 2088 {
d204b6e9
DK
2089 return arm_branch_common(elfcpp::R_ARM_CALL, relinfo, view, gsym,
2090 object, r_sym, psymval, address, thumb_bit,
2091 is_weakly_undefined_without_plt);
c121c671
DK
2092 }
2093
2094 // R_ARM_JUMP24: (S + A) | T - P
2095 static inline typename This::Status
d204b6e9
DK
2096 jump24(const Relocate_info<32, big_endian>* relinfo,
2097 unsigned char *view,
2098 const Sized_symbol<32>* gsym,
2099 const Arm_relobj<big_endian>* object,
2100 unsigned int r_sym,
c121c671 2101 const Symbol_value<32>* psymval,
ebabffbd 2102 Arm_address address,
d204b6e9
DK
2103 Arm_address thumb_bit,
2104 bool is_weakly_undefined_without_plt)
c121c671 2105 {
d204b6e9
DK
2106 return arm_branch_common(elfcpp::R_ARM_JUMP24, relinfo, view, gsym,
2107 object, r_sym, psymval, address, thumb_bit,
2108 is_weakly_undefined_without_plt);
c121c671
DK
2109 }
2110
2111 // R_ARM_PREL: (S + A) | T - P
2112 static inline typename This::Status
2113 prel31(unsigned char *view,
2114 const Sized_relobj<32, big_endian>* object,
2115 const Symbol_value<32>* psymval,
ebabffbd 2116 Arm_address address,
2daedcd6 2117 Arm_address thumb_bit)
c121c671
DK
2118 {
2119 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2120 Valtype* wv = reinterpret_cast<Valtype*>(view);
2121 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2122 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 2123 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
2124 val = utils::bit_select(val, x, 0x7fffffffU);
2125 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2126 return (utils::has_overflow<31>(x) ?
2127 This::STATUS_OVERFLOW : This::STATUS_OKAY);
2128 }
fd3c5f0b
ILT
2129
2130 // R_ARM_MOVW_ABS_NC: (S + A) | T
2131 static inline typename This::Status
2132 movw_abs_nc(unsigned char *view,
2133 const Sized_relobj<32, big_endian>* object,
2134 const Symbol_value<32>* psymval,
2daedcd6 2135 Arm_address thumb_bit)
fd3c5f0b
ILT
2136 {
2137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2138 Valtype* wv = reinterpret_cast<Valtype*>(view);
2139 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2140 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2141 Valtype x = psymval->value(object, addend) | thumb_bit;
fd3c5f0b
ILT
2142 val = This::insert_val_arm_movw_movt(val, x);
2143 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2144 return This::STATUS_OKAY;
2145 }
2146
2147 // R_ARM_MOVT_ABS: S + A
2148 static inline typename This::Status
2149 movt_abs(unsigned char *view,
2150 const Sized_relobj<32, big_endian>* object,
2151 const Symbol_value<32>* psymval)
2152 {
2153 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2154 Valtype* wv = reinterpret_cast<Valtype*>(view);
2155 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2156 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2157 Valtype x = psymval->value(object, addend) >> 16;
fd3c5f0b
ILT
2158 val = This::insert_val_arm_movw_movt(val, x);
2159 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2160 return This::STATUS_OKAY;
2161 }
2162
2163 // R_ARM_THM_MOVW_ABS_NC: S + A | T
2164 static inline typename This::Status
2165 thm_movw_abs_nc(unsigned char *view,
2166 const Sized_relobj<32, big_endian>* object,
2167 const Symbol_value<32>* psymval,
2daedcd6 2168 Arm_address thumb_bit)
fd3c5f0b
ILT
2169 {
2170 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2171 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2172 Valtype* wv = reinterpret_cast<Valtype*>(view);
2173 Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2174 | elfcpp::Swap<16, big_endian>::readval(wv + 1));
2175 Reltype addend = extract_thumb_movw_movt_addend(val);
2daedcd6 2176 Reltype x = psymval->value(object, addend) | thumb_bit;
fd3c5f0b
ILT
2177 val = This::insert_val_thumb_movw_movt(val, x);
2178 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2179 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2180 return This::STATUS_OKAY;
2181 }
2182
2183 // R_ARM_THM_MOVT_ABS: S + A
2184 static inline typename This::Status
2185 thm_movt_abs(unsigned char *view,
2186 const Sized_relobj<32, big_endian>* object,
2187 const Symbol_value<32>* psymval)
2188 {
2189 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2190 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2191 Valtype* wv = reinterpret_cast<Valtype*>(view);
2192 Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2193 | elfcpp::Swap<16, big_endian>::readval(wv + 1));
2194 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2195 Reltype x = psymval->value(object, addend) >> 16;
fd3c5f0b
ILT
2196 val = This::insert_val_thumb_movw_movt(val, x);
2197 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2198 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2199 return This::STATUS_OKAY;
2200 }
2201
c2a122b6
ILT
2202 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
2203 static inline typename This::Status
2204 movw_prel_nc(unsigned char *view,
2205 const Sized_relobj<32, big_endian>* object,
2206 const Symbol_value<32>* psymval,
ebabffbd 2207 Arm_address address,
2daedcd6 2208 Arm_address thumb_bit)
c2a122b6
ILT
2209 {
2210 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2211 Valtype* wv = reinterpret_cast<Valtype*>(view);
2212 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2213 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2214 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c2a122b6
ILT
2215 val = This::insert_val_arm_movw_movt(val, x);
2216 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2217 return This::STATUS_OKAY;
2218 }
2219
2220 // R_ARM_MOVT_PREL: S + A - P
2221 static inline typename This::Status
2222 movt_prel(unsigned char *view,
2223 const Sized_relobj<32, big_endian>* object,
2224 const Symbol_value<32>* psymval,
ebabffbd 2225 Arm_address address)
c2a122b6
ILT
2226 {
2227 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2228 Valtype* wv = reinterpret_cast<Valtype*>(view);
2229 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2230 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2231 Valtype x = (psymval->value(object, addend) - address) >> 16;
c2a122b6
ILT
2232 val = This::insert_val_arm_movw_movt(val, x);
2233 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2234 return This::STATUS_OKAY;
2235 }
2236
2237 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
2238 static inline typename This::Status
2239 thm_movw_prel_nc(unsigned char *view,
2240 const Sized_relobj<32, big_endian>* object,
2241 const Symbol_value<32>* psymval,
ebabffbd 2242 Arm_address address,
2daedcd6 2243 Arm_address thumb_bit)
c2a122b6
ILT
2244 {
2245 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2246 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2247 Valtype* wv = reinterpret_cast<Valtype*>(view);
2248 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2249 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
2250 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2251 Reltype x = (psymval->value(object, addend) | thumb_bit) - address;
c2a122b6
ILT
2252 val = This::insert_val_thumb_movw_movt(val, x);
2253 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2254 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2255 return This::STATUS_OKAY;
2256 }
2257
2258 // R_ARM_THM_MOVT_PREL: S + A - P
2259 static inline typename This::Status
2260 thm_movt_prel(unsigned char *view,
2261 const Sized_relobj<32, big_endian>* object,
2262 const Symbol_value<32>* psymval,
ebabffbd 2263 Arm_address address)
c2a122b6
ILT
2264 {
2265 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2266 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2267 Valtype* wv = reinterpret_cast<Valtype*>(view);
2268 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2269 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
2270 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2271 Reltype x = (psymval->value(object, addend) - address) >> 16;
c2a122b6
ILT
2272 val = This::insert_val_thumb_movw_movt(val, x);
2273 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2274 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2275 return This::STATUS_OKAY;
2276 }
c121c671
DK
2277};
2278
d204b6e9
DK
2279// Relocate ARM long branches. This handles relocation types
2280// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
2281// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
2282// undefined and we do not use PLT in this relocation. In such a case,
2283// the branch is converted into an NOP.
2284
2285template<bool big_endian>
2286typename Arm_relocate_functions<big_endian>::Status
2287Arm_relocate_functions<big_endian>::arm_branch_common(
2288 unsigned int r_type,
2289 const Relocate_info<32, big_endian>* relinfo,
2290 unsigned char *view,
2291 const Sized_symbol<32>* gsym,
2292 const Arm_relobj<big_endian>* object,
2293 unsigned int r_sym,
2294 const Symbol_value<32>* psymval,
2295 Arm_address address,
2296 Arm_address thumb_bit,
2297 bool is_weakly_undefined_without_plt)
2298{
2299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2300 Valtype* wv = reinterpret_cast<Valtype*>(view);
2301 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2302
2303 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2304 && ((val & 0x0f000000UL) == 0x0a000000UL);
2305 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
2306 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
2307 && ((val & 0x0f000000UL) == 0x0b000000UL);
2308 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
2309 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
2310
2311 // Check that the instruction is valid.
2312 if (r_type == elfcpp::R_ARM_CALL)
2313 {
2314 if (!insn_is_uncond_bl && !insn_is_blx)
2315 return This::STATUS_BAD_RELOC;
2316 }
2317 else if (r_type == elfcpp::R_ARM_JUMP24)
2318 {
2319 if (!insn_is_b && !insn_is_cond_bl)
2320 return This::STATUS_BAD_RELOC;
2321 }
2322 else if (r_type == elfcpp::R_ARM_PLT32)
2323 {
2324 if (!insn_is_any_branch)
2325 return This::STATUS_BAD_RELOC;
2326 }
2327 else if (r_type == elfcpp::R_ARM_XPC25)
2328 {
2329 // FIXME: AAELF document IH0044C does not say much about it other
2330 // than it being obsolete.
2331 if (!insn_is_any_branch)
2332 return This::STATUS_BAD_RELOC;
2333 }
2334 else
2335 gold_unreachable();
2336
2337 // A branch to an undefined weak symbol is turned into a jump to
2338 // the next instruction unless a PLT entry will be created.
2339 // Do the same for local undefined symbols.
2340 // The jump to the next instruction is optimized as a NOP depending
2341 // on the architecture.
2342 const Target_arm<big_endian>* arm_target =
2343 Target_arm<big_endian>::default_target();
2344 if (is_weakly_undefined_without_plt)
2345 {
2346 Valtype cond = val & 0xf0000000U;
2347 if (arm_target->may_use_arm_nop())
2348 val = cond | 0x0320f000;
2349 else
2350 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
2351 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2352 return This::STATUS_OKAY;
2353 }
2354
2355 Valtype addend = utils::sign_extend<26>(val << 2);
2356 Valtype branch_target = psymval->value(object, addend);
2357 int32_t branch_offset = branch_target - address;
2358
2359 // We need a stub if the branch offset is too large or if we need
2360 // to switch mode.
2361 bool may_use_blx = arm_target->may_use_blx();
2362 Reloc_stub* stub = NULL;
2363 if ((branch_offset > ARM_MAX_FWD_BRANCH_OFFSET)
2364 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2365 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
2366 {
2367 Stub_type stub_type =
2368 Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
2369 (thumb_bit != 0));
2370 if (stub_type != arm_stub_none)
2371 {
91d6fa6a 2372 Stub_table<big_endian>* stubtable =
d204b6e9 2373 object->stub_table(relinfo->data_shndx);
91d6fa6a 2374 gold_assert(stubtable != NULL);
d204b6e9
DK
2375
2376 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
91d6fa6a 2377 stub = stubtable->find_reloc_stub(stub_key);
d204b6e9
DK
2378 gold_assert(stub != NULL);
2379 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
91d6fa6a 2380 branch_target = stubtable->address() + stub->offset() + addend;
d204b6e9
DK
2381 branch_offset = branch_target - address;
2382 gold_assert((branch_offset <= ARM_MAX_FWD_BRANCH_OFFSET)
2383 && (branch_offset >= ARM_MAX_BWD_BRANCH_OFFSET));
2384 }
2385 }
2386
2387 // At this point, if we still need to switch mode, the instruction
2388 // must either be a BLX or a BL that can be converted to a BLX.
2389 if (thumb_bit != 0)
2390 {
2391 // Turn BL to BLX.
2392 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
2393 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
2394 }
2395
2396 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
2397 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2398 return (utils::has_overflow<26>(branch_offset)
2399 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
2400}
2401
51938283
DK
2402// Relocate THUMB long branches. This handles relocation types
2403// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
2404// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
2405// undefined and we do not use PLT in this relocation. In such a case,
2406// the branch is converted into an NOP.
2407
2408template<bool big_endian>
2409typename Arm_relocate_functions<big_endian>::Status
2410Arm_relocate_functions<big_endian>::thumb_branch_common(
2411 unsigned int r_type,
2412 const Relocate_info<32, big_endian>* relinfo,
2413 unsigned char *view,
2414 const Sized_symbol<32>* gsym,
2415 const Arm_relobj<big_endian>* object,
2416 unsigned int r_sym,
2417 const Symbol_value<32>* psymval,
2418 Arm_address address,
2419 Arm_address thumb_bit,
2420 bool is_weakly_undefined_without_plt)
2421{
2422 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2423 Valtype* wv = reinterpret_cast<Valtype*>(view);
2424 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
2425 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
2426
2427 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
2428 // into account.
2429 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
2430 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2431
2432 // Check that the instruction is valid.
2433 if (r_type == elfcpp::R_ARM_THM_CALL)
2434 {
2435 if (!is_bl_insn && !is_blx_insn)
2436 return This::STATUS_BAD_RELOC;
2437 }
2438 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
2439 {
2440 // This cannot be a BLX.
2441 if (!is_bl_insn)
2442 return This::STATUS_BAD_RELOC;
2443 }
2444 else if (r_type == elfcpp::R_ARM_THM_XPC22)
2445 {
2446 // Check for Thumb to Thumb call.
2447 if (!is_blx_insn)
2448 return This::STATUS_BAD_RELOC;
2449 if (thumb_bit != 0)
2450 {
2451 gold_warning(_("%s: Thumb BLX instruction targets "
2452 "thumb function '%s'."),
2453 object->name().c_str(),
2454 (gsym ? gsym->name() : "(local)"));
2455 // Convert BLX to BL.
2456 lower_insn |= 0x1000U;
2457 }
2458 }
2459 else
2460 gold_unreachable();
2461
2462 // A branch to an undefined weak symbol is turned into a jump to
2463 // the next instruction unless a PLT entry will be created.
2464 // The jump to the next instruction is optimized as a NOP.W for
2465 // Thumb-2 enabled architectures.
2466 const Target_arm<big_endian>* arm_target =
2467 Target_arm<big_endian>::default_target();
2468 if (is_weakly_undefined_without_plt)
2469 {
2470 if (arm_target->may_use_thumb2_nop())
2471 {
2472 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
2473 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
2474 }
2475 else
2476 {
2477 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
2478 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
2479 }
2480 return This::STATUS_OKAY;
2481 }
2482
2483 // Fetch the addend. We use the Thumb-2 encoding (backwards compatible
2484 // with Thumb-1) involving the J1 and J2 bits.
2485 uint32_t s = (upper_insn & (1 << 10)) >> 10;
2486 uint32_t upper = upper_insn & 0x3ff;
2487 uint32_t lower = lower_insn & 0x7ff;
2488 uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
2489 uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
2490 uint32_t i1 = j1 ^ s ? 0 : 1;
2491 uint32_t i2 = j2 ^ s ? 0 : 1;
2492
2493 int32_t addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
2494 // Sign extend.
2495 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
2496
2497 Arm_address branch_target = psymval->value(object, addend);
2498 int32_t branch_offset = branch_target - address;
2499
2500 // We need a stub if the branch offset is too large or if we need
2501 // to switch mode.
2502 bool may_use_blx = arm_target->may_use_blx();
2503 bool thumb2 = arm_target->using_thumb2();
2504 if ((!thumb2
2505 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2506 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2507 || (thumb2
2508 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2509 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2510 || ((thumb_bit == 0)
2511 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
2512 || r_type == elfcpp::R_ARM_THM_JUMP24)))
2513 {
2514 Stub_type stub_type =
2515 Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
2516 (thumb_bit != 0));
2517 if (stub_type != arm_stub_none)
2518 {
91d6fa6a 2519 Stub_table<big_endian>* stubtable =
51938283 2520 object->stub_table(relinfo->data_shndx);
91d6fa6a 2521 gold_assert(stubtable != NULL);
51938283
DK
2522
2523 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
91d6fa6a 2524 Reloc_stub* stub = stubtable->find_reloc_stub(stub_key);
51938283
DK
2525 gold_assert(stub != NULL);
2526 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
91d6fa6a 2527 branch_target = stubtable->address() + stub->offset() + addend;
51938283
DK
2528 branch_offset = branch_target - address;
2529 }
2530 }
2531
2532 // At this point, if we still need to switch mode, the instruction
2533 // must either be a BLX or a BL that can be converted to a BLX.
2534 if (thumb_bit == 0)
2535 {
2536 gold_assert(may_use_blx
2537 && (r_type == elfcpp::R_ARM_THM_CALL
2538 || r_type == elfcpp::R_ARM_THM_XPC22));
2539 // Make sure this is a BLX.
2540 lower_insn &= ~0x1000U;
2541 }
2542 else
2543 {
2544 // Make sure this is a BL.
2545 lower_insn |= 0x1000U;
2546 }
2547
2548 uint32_t reloc_sign = (branch_offset < 0) ? 1 : 0;
2549 uint32_t relocation = static_cast<uint32_t>(branch_offset);
2550
2551 if ((lower_insn & 0x5000U) == 0x4000U)
2552 // For a BLX instruction, make sure that the relocation is rounded up
2553 // to a word boundary. This follows the semantics of the instruction
2554 // which specifies that bit 1 of the target address will come from bit
2555 // 1 of the base address.
2556 relocation = (relocation + 2U) & ~3U;
2557
2558 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
2559 // We use the Thumb-2 encoding, which is safe even if dealing with
2560 // a Thumb-1 instruction by virtue of our overflow check above. */
2561 upper_insn = (upper_insn & ~0x7ffU)
2562 | ((relocation >> 12) & 0x3ffU)
2563 | (reloc_sign << 10);
2564 lower_insn = (lower_insn & ~0x2fffU)
2565 | (((!((relocation >> 23) & 1U)) ^ reloc_sign) << 13)
2566 | (((!((relocation >> 22) & 1U)) ^ reloc_sign) << 11)
2567 | ((relocation >> 1) & 0x7ffU);
2568
2569 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
2570 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
2571
2572 return ((thumb2
2573 ? utils::has_overflow<25>(relocation)
2574 : utils::has_overflow<23>(relocation))
2575 ? This::STATUS_OVERFLOW
2576 : This::STATUS_OKAY);
2577}
2578
94cdfcff
DK
2579// Get the GOT section, creating it if necessary.
2580
2581template<bool big_endian>
2582Output_data_got<32, big_endian>*
2583Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
2584{
2585 if (this->got_ == NULL)
2586 {
2587 gold_assert(symtab != NULL && layout != NULL);
2588
2589 this->got_ = new Output_data_got<32, big_endian>();
2590
2591 Output_section* os;
2592 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2593 (elfcpp::SHF_ALLOC
2594 | elfcpp::SHF_WRITE),
f5c870d2 2595 this->got_, false);
94cdfcff
DK
2596 os->set_is_relro();
2597
2598 // The old GNU linker creates a .got.plt section. We just
2599 // create another set of data in the .got section. Note that we
2600 // always create a PLT if we create a GOT, although the PLT
2601 // might be empty.
2602 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
2603 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2604 (elfcpp::SHF_ALLOC
2605 | elfcpp::SHF_WRITE),
f5c870d2 2606 this->got_plt_, false);
94cdfcff
DK
2607 os->set_is_relro();
2608
2609 // The first three entries are reserved.
2610 this->got_plt_->set_current_data_size(3 * 4);
2611
2612 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2613 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2614 this->got_plt_,
2615 0, 0, elfcpp::STT_OBJECT,
2616 elfcpp::STB_LOCAL,
2617 elfcpp::STV_HIDDEN, 0,
2618 false, false);
2619 }
2620 return this->got_;
2621}
2622
2623// Get the dynamic reloc section, creating it if necessary.
2624
2625template<bool big_endian>
2626typename Target_arm<big_endian>::Reloc_section*
2627Target_arm<big_endian>::rel_dyn_section(Layout* layout)
2628{
2629 if (this->rel_dyn_ == NULL)
2630 {
2631 gold_assert(layout != NULL);
2632 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
2633 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
f5c870d2 2634 elfcpp::SHF_ALLOC, this->rel_dyn_, true);
94cdfcff
DK
2635 }
2636 return this->rel_dyn_;
2637}
2638
b569affa
DK
2639// Insn_template methods.
2640
2641// Return byte size of an instruction template.
2642
2643size_t
2644Insn_template::size() const
2645{
2646 switch (this->type())
2647 {
2648 case THUMB16_TYPE:
2649 return 2;
2650 case ARM_TYPE:
2651 case THUMB32_TYPE:
2652 case DATA_TYPE:
2653 return 4;
2654 default:
2655 gold_unreachable();
2656 }
2657}
2658
2659// Return alignment of an instruction template.
2660
2661unsigned
2662Insn_template::alignment() const
2663{
2664 switch (this->type())
2665 {
2666 case THUMB16_TYPE:
2667 case THUMB32_TYPE:
2668 return 2;
2669 case ARM_TYPE:
2670 case DATA_TYPE:
2671 return 4;
2672 default:
2673 gold_unreachable();
2674 }
2675}
2676
2677// Stub_template methods.
2678
2679Stub_template::Stub_template(
91d6fa6a
NC
2680 Stub_type atype, const Insn_template* iinsns,
2681 size_t insncount)
2682 : type_(atype), insns_(iinsns), insn_count_(insncount), alignment_(1),
b569affa
DK
2683 entry_in_thumb_mode_(false), relocs_()
2684{
91d6fa6a 2685 off_t off = 0;
b569affa
DK
2686
2687 // Compute byte size and alignment of stub template.
91d6fa6a 2688 for (size_t i = 0; i < insncount; i++)
b569affa 2689 {
91d6fa6a
NC
2690 unsigned insn_alignment = iinsns[i].alignment();
2691 size_t insn_size = iinsns[i].size();
2692 gold_assert((off & (insn_alignment - 1)) == 0);
b569affa 2693 this->alignment_ = std::max(this->alignment_, insn_alignment);
91d6fa6a 2694 switch (iinsns[i].type())
b569affa
DK
2695 {
2696 case Insn_template::THUMB16_TYPE:
2697 if (i == 0)
2698 this->entry_in_thumb_mode_ = true;
2699 break;
2700
2701 case Insn_template::THUMB32_TYPE:
91d6fa6a
NC
2702 if (iinsns[i].r_type() != elfcpp::R_ARM_NONE)
2703 this->relocs_.push_back(Reloc(i, off));
b569affa
DK
2704 if (i == 0)
2705 this->entry_in_thumb_mode_ = true;
2706 break;
2707
2708 case Insn_template::ARM_TYPE:
2709 // Handle cases where the target is encoded within the
2710 // instruction.
91d6fa6a
NC
2711 if (iinsns[i].r_type() == elfcpp::R_ARM_JUMP24)
2712 this->relocs_.push_back(Reloc(i, off));
b569affa
DK
2713 break;
2714
2715 case Insn_template::DATA_TYPE:
2716 // Entry point cannot be data.
2717 gold_assert(i != 0);
91d6fa6a 2718 this->relocs_.push_back(Reloc(i, off));
b569affa
DK
2719 break;
2720
2721 default:
2722 gold_unreachable();
2723 }
91d6fa6a 2724 off += insn_size;
b569affa 2725 }
91d6fa6a 2726 this->size_ = off;
b569affa
DK
2727}
2728
2729// Reloc_stub::Key methods.
2730
2731// Dump a Key as a string for debugging.
2732
2733std::string
2734Reloc_stub::Key::name() const
2735{
2736 if (this->r_sym_ == invalid_index)
2737 {
2738 // Global symbol key name
2739 // <stub-type>:<symbol name>:<addend>.
2740 const std::string sym_name = this->u_.symbol->name();
2741 // We need to print two hex number and two colons. So just add 100 bytes
2742 // to the symbol name size.
2743 size_t len = sym_name.size() + 100;
2744 char* buffer = new char[len];
2745 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
2746 sym_name.c_str(), this->addend_);
2747 gold_assert(c > 0 && c < static_cast<int>(len));
2748 delete[] buffer;
2749 return std::string(buffer);
2750 }
2751 else
2752 {
2753 // local symbol key name
2754 // <stub-type>:<object>:<r_sym>:<addend>.
2755 const size_t len = 200;
2756 char buffer[len];
2757 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
2758 this->u_.relobj, this->r_sym_, this->addend_);
2759 gold_assert(c > 0 && c < static_cast<int>(len));
2760 return std::string(buffer);
2761 }
2762}
2763
2764// Reloc_stub methods.
2765
2766// Determine the type of stub needed, if any, for a relocation of R_TYPE at
2767// LOCATION to DESTINATION.
2768// This code is based on the arm_type_of_stub function in
2769// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
2770// class simple.
2771
2772Stub_type
2773Reloc_stub::stub_type_for_reloc(
2774 unsigned int r_type,
2775 Arm_address location,
2776 Arm_address destination,
2777 bool target_is_thumb)
2778{
2779 Stub_type stub_type = arm_stub_none;
2780
2781 // This is a bit ugly but we want to avoid using a templated class for
2782 // big and little endianities.
2783 bool may_use_blx;
2784 bool should_force_pic_veneer;
2785 bool thumb2;
2786 bool thumb_only;
2787 if (parameters->target().is_big_endian())
2788 {
43d12afe 2789 const Target_arm<true>* big_endian_target =
b569affa 2790 Target_arm<true>::default_target();
43d12afe
DK
2791 may_use_blx = big_endian_target->may_use_blx();
2792 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
2793 thumb2 = big_endian_target->using_thumb2();
2794 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
2795 }
2796 else
2797 {
43d12afe 2798 const Target_arm<false>* little_endian_target =
b569affa 2799 Target_arm<false>::default_target();
43d12afe
DK
2800 may_use_blx = little_endian_target->may_use_blx();
2801 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
2802 thumb2 = little_endian_target->using_thumb2();
2803 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
2804 }
2805
2806 int64_t branch_offset = (int64_t)destination - location;
2807
2808 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
2809 {
2810 // Handle cases where:
2811 // - this call goes too far (different Thumb/Thumb2 max
2812 // distance)
2813 // - it's a Thumb->Arm call and blx is not available, or it's a
2814 // Thumb->Arm branch (not bl). A stub is needed in this case.
2815 if ((!thumb2
2816 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2817 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2818 || (thumb2
2819 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2820 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2821 || ((!target_is_thumb)
2822 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
2823 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
2824 {
2825 if (target_is_thumb)
2826 {
2827 // Thumb to thumb.
2828 if (!thumb_only)
2829 {
51938283
DK
2830 stub_type = (parameters->options().shared()
2831 || should_force_pic_veneer)
b569affa
DK
2832 // PIC stubs.
2833 ? ((may_use_blx
2834 && (r_type == elfcpp::R_ARM_THM_CALL))
2835 // V5T and above. Stub starts with ARM code, so
2836 // we must be able to switch mode before
2837 // reaching it, which is only possible for 'bl'
2838 // (ie R_ARM_THM_CALL relocation).
2839 ? arm_stub_long_branch_any_thumb_pic
2840 // On V4T, use Thumb code only.
2841 : arm_stub_long_branch_v4t_thumb_thumb_pic)
2842
2843 // non-PIC stubs.
2844 : ((may_use_blx
2845 && (r_type == elfcpp::R_ARM_THM_CALL))
2846 ? arm_stub_long_branch_any_any // V5T and above.
2847 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
2848 }
2849 else
2850 {
51938283
DK
2851 stub_type = (parameters->options().shared()
2852 || should_force_pic_veneer)
b569affa
DK
2853 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
2854 : arm_stub_long_branch_thumb_only; // non-PIC stub.
2855 }
2856 }
2857 else
2858 {
2859 // Thumb to arm.
2860
2861 // FIXME: We should check that the input section is from an
2862 // object that has interwork enabled.
2863
2864 stub_type = (parameters->options().shared()
2865 || should_force_pic_veneer)
2866 // PIC stubs.
2867 ? ((may_use_blx
2868 && (r_type == elfcpp::R_ARM_THM_CALL))
2869 ? arm_stub_long_branch_any_arm_pic // V5T and above.
2870 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
2871
2872 // non-PIC stubs.
2873 : ((may_use_blx
2874 && (r_type == elfcpp::R_ARM_THM_CALL))
2875 ? arm_stub_long_branch_any_any // V5T and above.
2876 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
2877
2878 // Handle v4t short branches.
2879 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2880 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2881 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2882 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2883 }
2884 }
2885 }
2886 else if (r_type == elfcpp::R_ARM_CALL
2887 || r_type == elfcpp::R_ARM_JUMP24
2888 || r_type == elfcpp::R_ARM_PLT32)
2889 {
2890 if (target_is_thumb)
2891 {
2892 // Arm to thumb.
2893
2894 // FIXME: We should check that the input section is from an
2895 // object that has interwork enabled.
2896
2897 // We have an extra 2-bytes reach because of
2898 // the mode change (bit 24 (H) of BLX encoding).
2899 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2900 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2901 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
2902 || (r_type == elfcpp::R_ARM_JUMP24)
2903 || (r_type == elfcpp::R_ARM_PLT32))
2904 {
2905 stub_type = (parameters->options().shared()
2906 || should_force_pic_veneer)
2907 // PIC stubs.
2908 ? (may_use_blx
2909 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
2910 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
2911
2912 // non-PIC stubs.
2913 : (may_use_blx
2914 ? arm_stub_long_branch_any_any // V5T and above.
2915 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
2916 }
2917 }
2918 else
2919 {
2920 // Arm to arm.
2921 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2922 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2923 {
2924 stub_type = (parameters->options().shared()
2925 || should_force_pic_veneer)
2926 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
2927 : arm_stub_long_branch_any_any; /// non-PIC.
2928 }
2929 }
2930 }
2931
2932 return stub_type;
2933}
2934
2935// Template to implement do_write for a specific target endianity.
2936
2937template<bool big_endian>
2938void inline
2939Reloc_stub::do_fixed_endian_write(unsigned char* view,
2940 section_size_type view_size)
2941{
91d6fa6a
NC
2942 const Stub_template* stubtemplate = this->stub_template();
2943 const Insn_template* insns = stubtemplate->insns();
b569affa
DK
2944
2945 // FIXME: We do not handle BE8 encoding yet.
2946 unsigned char* pov = view;
91d6fa6a 2947 for (size_t i = 0; i < stubtemplate->insn_count(); i++)
b569affa
DK
2948 {
2949 switch (insns[i].type())
2950 {
2951 case Insn_template::THUMB16_TYPE:
2952 // Non-zero reloc addends are only used in Cortex-A8 stubs.
2953 gold_assert(insns[i].reloc_addend() == 0);
2954 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
2955 break;
2956 case Insn_template::THUMB32_TYPE:
2957 {
2958 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
2959 uint32_t lo = insns[i].data() & 0xffff;
2960 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
2961 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
2962 }
2963 break;
2964 case Insn_template::ARM_TYPE:
2965 case Insn_template::DATA_TYPE:
2966 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
2967 break;
2968 default:
2969 gold_unreachable();
2970 }
2971 pov += insns[i].size();
2972 }
2973 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2974}
2975
2976// Write a reloc stub to VIEW with endianity specified by BIG_ENDIAN.
2977
2978void
2979Reloc_stub::do_write(unsigned char* view, section_size_type view_size,
2980 bool big_endian)
2981{
2982 if (big_endian)
2983 this->do_fixed_endian_write<true>(view, view_size);
2984 else
2985 this->do_fixed_endian_write<false>(view, view_size);
2986}
2987
2988// Stub_factory methods.
2989
2990Stub_factory::Stub_factory()
2991{
2992 // The instruction template sequences are declared as static
2993 // objects and initialized first time the constructor runs.
2994
2995 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2996 // to reach the stub if necessary.
2997 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
2998 {
2999 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
3000 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3001 // dcd R_ARM_ABS32(X)
3002 };
3003
3004 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
3005 // available.
3006 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
3007 {
3008 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3009 Insn_template::arm_insn(0xe12fff1c), // bx ip
3010 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3011 // dcd R_ARM_ABS32(X)
3012 };
3013
3014 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
3015 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
3016 {
3017 Insn_template::thumb16_insn(0xb401), // push {r0}
3018 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
3019 Insn_template::thumb16_insn(0x4684), // mov ip, r0
3020 Insn_template::thumb16_insn(0xbc01), // pop {r0}
3021 Insn_template::thumb16_insn(0x4760), // bx ip
3022 Insn_template::thumb16_insn(0xbf00), // nop
3023 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3024 // dcd R_ARM_ABS32(X)
3025 };
3026
3027 // V4T Thumb -> Thumb long branch stub. Using the stack is not
3028 // allowed.
3029 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
3030 {
3031 Insn_template::thumb16_insn(0x4778), // bx pc
3032 Insn_template::thumb16_insn(0x46c0), // nop
3033 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3034 Insn_template::arm_insn(0xe12fff1c), // bx ip
3035 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3036 // dcd R_ARM_ABS32(X)
3037 };
3038
3039 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
3040 // available.
3041 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
3042 {
3043 Insn_template::thumb16_insn(0x4778), // bx pc
3044 Insn_template::thumb16_insn(0x46c0), // nop
3045 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
3046 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3047 // dcd R_ARM_ABS32(X)
3048 };
3049
3050 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
3051 // one, when the destination is close enough.
3052 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
3053 {
3054 Insn_template::thumb16_insn(0x4778), // bx pc
3055 Insn_template::thumb16_insn(0x46c0), // nop
3056 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
3057 };
3058
3059 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
3060 // blx to reach the stub if necessary.
3061 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
3062 {
3063 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
3064 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
3065 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
3066 // dcd R_ARM_REL32(X-4)
3067 };
3068
3069 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
3070 // blx to reach the stub if necessary. We can not add into pc;
3071 // it is not guaranteed to mode switch (different in ARMv6 and
3072 // ARMv7).
3073 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
3074 {
3075 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
3076 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3077 Insn_template::arm_insn(0xe12fff1c), // bx ip
3078 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3079 // dcd R_ARM_REL32(X)
3080 };
3081
3082 // V4T ARM -> ARM long branch stub, PIC.
3083 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
3084 {
3085 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
3086 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3087 Insn_template::arm_insn(0xe12fff1c), // bx ip
3088 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3089 // dcd R_ARM_REL32(X)
3090 };
3091
3092 // V4T Thumb -> ARM long branch stub, PIC.
3093 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
3094 {
3095 Insn_template::thumb16_insn(0x4778), // bx pc
3096 Insn_template::thumb16_insn(0x46c0), // nop
3097 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3098 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
3099 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
3100 // dcd R_ARM_REL32(X)
3101 };
3102
3103 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
3104 // architectures.
3105 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
3106 {
3107 Insn_template::thumb16_insn(0xb401), // push {r0}
3108 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
3109 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
3110 Insn_template::thumb16_insn(0x4484), // add ip, r0
3111 Insn_template::thumb16_insn(0xbc01), // pop {r0}
3112 Insn_template::thumb16_insn(0x4760), // bx ip
3113 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
3114 // dcd R_ARM_REL32(X)
3115 };
3116
3117 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
3118 // allowed.
3119 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
3120 {
3121 Insn_template::thumb16_insn(0x4778), // bx pc
3122 Insn_template::thumb16_insn(0x46c0), // nop
3123 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
3124 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3125 Insn_template::arm_insn(0xe12fff1c), // bx ip
3126 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3127 // dcd R_ARM_REL32(X)
3128 };
3129
3130 // Cortex-A8 erratum-workaround stubs.
3131
3132 // Stub used for conditional branches (which may be beyond +/-1MB away,
3133 // so we can't use a conditional branch to reach this stub).
3134
3135 // original code:
3136 //
3137 // b<cond> X
3138 // after:
3139 //
3140 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
3141 {
3142 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
3143 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
3144 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
3145 // b.w X
3146 };
3147
3148 // Stub used for b.w and bl.w instructions.
3149
3150 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
3151 {
3152 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
3153 };
3154
3155 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
3156 {
3157 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
3158 };
3159
3160 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
3161 // instruction (which switches to ARM mode) to point to this stub. Jump to
3162 // the real destination using an ARM-mode branch.
3163 const Insn_template elf32_arm_stub_a8_veneer_blx[] =
3164 {
3165 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
3166 };
3167
3168 // Fill in the stub template look-up table. Stub templates are constructed
3169 // per instance of Stub_factory for fast look-up without locking
3170 // in a thread-enabled environment.
3171
3172 this->stub_templates_[arm_stub_none] =
3173 new Stub_template(arm_stub_none, NULL, 0);
3174
3175#define DEF_STUB(x) \
3176 do \
3177 { \
3178 size_t array_size \
3179 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
3180 Stub_type type = arm_stub_##x; \
3181 this->stub_templates_[type] = \
3182 new Stub_template(type, elf32_arm_stub_##x, array_size); \
3183 } \
3184 while (0);
3185
3186 DEF_STUBS
3187#undef DEF_STUB
3188}
3189
56ee5e00
DK
3190// Stub_table methods.
3191
3192// Add a STUB with using KEY. Caller is reponsible for avoid adding
3193// if already a STUB with the same key has been added.
3194
3195template<bool big_endian>
3196void
3197Stub_table<big_endian>::add_reloc_stub(
3198 Reloc_stub* stub,
3199 const Reloc_stub::Key& key)
3200{
91d6fa6a
NC
3201 const Stub_template* stubtemplate = stub->stub_template();
3202 gold_assert(stubtemplate->type() == key.stub_type());
56ee5e00 3203 this->reloc_stubs_[key] = stub;
91d6fa6a
NC
3204 if (this->addralign_ < stubtemplate->alignment())
3205 this->addralign_ = stubtemplate->alignment();
56ee5e00
DK
3206 this->has_been_changed_ = true;
3207}
3208
3209template<bool big_endian>
3210void
3211Stub_table<big_endian>::relocate_stubs(
3212 const Relocate_info<32, big_endian>* relinfo,
3213 Target_arm<big_endian>* arm_target,
91d6fa6a 3214 Output_section* out_section,
56ee5e00 3215 unsigned char* view,
91d6fa6a 3216 Arm_address addr,
56ee5e00
DK
3217 section_size_type view_size)
3218{
3219 // If we are passed a view bigger than the stub table's. we need to
3220 // adjust the view.
91d6fa6a 3221 gold_assert(addr == this->address()
56ee5e00
DK
3222 && (view_size
3223 == static_cast<section_size_type>(this->data_size())));
3224
3225 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3226 p != this->reloc_stubs_.end();
3227 ++p)
3228 {
3229 Reloc_stub* stub = p->second;
91d6fa6a
NC
3230 const Stub_template* stubtemplate = stub->stub_template();
3231 if (stubtemplate->reloc_count() != 0)
56ee5e00
DK
3232 {
3233 // Adjust view to cover the stub only.
91d6fa6a
NC
3234 section_size_type off = stub->offset();
3235 section_size_type stub_size = stubtemplate->size();
3236 gold_assert(off + stub_size <= view_size);
56ee5e00 3237
91d6fa6a
NC
3238 arm_target->relocate_stub(stub, relinfo, out_section,
3239 view + off, addr + off,
56ee5e00
DK
3240 stub_size);
3241 }
3242 }
3243}
3244
3245// Reset address and file offset.
3246
3247template<bool big_endian>
3248void
3249Stub_table<big_endian>::do_reset_address_and_file_offset()
3250{
3251 off_t off = 0;
3252 uint64_t max_addralign = 1;
3253 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3254 p != this->reloc_stubs_.end();
3255 ++p)
3256 {
3257 Reloc_stub* stub = p->second;
91d6fa6a
NC
3258 const Stub_template* stubtemplate = stub->stub_template();
3259 uint64_t stub_addralign = stubtemplate->alignment();
56ee5e00
DK
3260 max_addralign = std::max(max_addralign, stub_addralign);
3261 off = align_address(off, stub_addralign);
3262 stub->set_offset(off);
3263 stub->reset_destination_address();
91d6fa6a 3264 off += stubtemplate->size();
56ee5e00
DK
3265 }
3266
3267 this->addralign_ = max_addralign;
3268 this->set_current_data_size_for_child(off);
3269}
3270
3271// Write out the stubs to file.
3272
3273template<bool big_endian>
3274void
3275Stub_table<big_endian>::do_write(Output_file* of)
3276{
91d6fa6a 3277 off_t off = this->offset();
56ee5e00
DK
3278 const section_size_type oview_size =
3279 convert_to_section_size_type(this->data_size());
91d6fa6a 3280 unsigned char* const oview = of->get_output_view(off, oview_size);
56ee5e00
DK
3281
3282 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3283 p != this->reloc_stubs_.end();
3284 ++p)
3285 {
3286 Reloc_stub* stub = p->second;
91d6fa6a
NC
3287 Arm_address addr = this->address() + stub->offset();
3288 gold_assert(addr
3289 == align_address(addr,
56ee5e00
DK
3290 stub->stub_template()->alignment()));
3291 stub->write(oview + stub->offset(), stub->stub_template()->size(),
3292 big_endian);
3293 }
3294 of->write_output_view(this->offset(), oview_size, oview);
3295}
3296
10ad9fe5
DK
3297// Arm_input_section methods.
3298
3299// Initialize an Arm_input_section.
3300
3301template<bool big_endian>
3302void
3303Arm_input_section<big_endian>::init()
3304{
91d6fa6a
NC
3305 Relobj* rel_obj = this->relobj();
3306 unsigned int sec_shndx = this->shndx();
10ad9fe5
DK
3307
3308 // Cache these to speed up size and alignment queries. It is too slow
3309 // to call section_addraglin and section_size every time.
91d6fa6a
NC
3310 this->original_addralign_ = rel_obj->section_addralign(sec_shndx);
3311 this->original_size_ = rel_obj->section_size(sec_shndx);
10ad9fe5
DK
3312
3313 // We want to make this look like the original input section after
3314 // output sections are finalized.
91d6fa6a
NC
3315 Output_section* os = rel_obj->output_section(sec_shndx);
3316 off_t off = rel_obj->output_section_offset(sec_shndx);
3317 gold_assert(os != NULL && !rel_obj->is_output_section_offset_invalid(sec_shndx));
3318 this->set_address(os->address() + off);
3319 this->set_file_offset(os->offset() + off);
10ad9fe5
DK
3320
3321 this->set_current_data_size(this->original_size_);
3322 this->finalize_data_size();
3323}
3324
3325template<bool big_endian>
3326void
3327Arm_input_section<big_endian>::do_write(Output_file* of)
3328{
3329 // We have to write out the original section content.
3330 section_size_type section_size;
3331 const unsigned char* section_contents =
3332 this->relobj()->section_contents(this->shndx(), &section_size, false);
3333 of->write(this->offset(), section_contents, section_size);
3334
3335 // If this owns a stub table and it is not empty, write it.
3336 if (this->is_stub_table_owner() && !this->stub_table_->empty())
3337 this->stub_table_->write(of);
3338}
3339
3340// Finalize data size.
3341
3342template<bool big_endian>
3343void
3344Arm_input_section<big_endian>::set_final_data_size()
3345{
3346 // If this owns a stub table, finalize its data size as well.
3347 if (this->is_stub_table_owner())
3348 {
91d6fa6a 3349 uint64_t addr = this->address();
10ad9fe5
DK
3350
3351 // The stub table comes after the original section contents.
91d6fa6a
NC
3352 addr += this->original_size_;
3353 addr = align_address(addr, this->stub_table_->addralign());
3354 off_t off = this->offset() + (addr - this->address());
3355 this->stub_table_->set_address_and_file_offset(addr, off);
3356 addr += this->stub_table_->data_size();
3357 gold_assert(addr == this->address() + this->current_data_size());
10ad9fe5
DK
3358 }
3359
3360 this->set_data_size(this->current_data_size());
3361}
3362
3363// Reset address and file offset.
3364
3365template<bool big_endian>
3366void
3367Arm_input_section<big_endian>::do_reset_address_and_file_offset()
3368{
3369 // Size of the original input section contents.
3370 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
3371
3372 // If this is a stub table owner, account for the stub table size.
3373 if (this->is_stub_table_owner())
3374 {
91d6fa6a 3375 Stub_table<big_endian>* stubtable = this->stub_table_;
10ad9fe5
DK
3376
3377 // Reset the stub table's address and file offset. The
3378 // current data size for child will be updated after that.
3379 stub_table_->reset_address_and_file_offset();
3380 off = align_address(off, stub_table_->addralign());
91d6fa6a 3381 off += stubtable->current_data_size();
10ad9fe5
DK
3382 }
3383
3384 this->set_current_data_size(off);
3385}
3386
07f508a2
DK
3387// Arm_output_section methods.
3388
3389// Create a stub group for input sections from BEGIN to END. OWNER
3390// points to the input section to be the owner a new stub table.
3391
3392template<bool big_endian>
3393void
3394Arm_output_section<big_endian>::create_stub_group(
3395 Input_section_list::const_iterator begin,
3396 Input_section_list::const_iterator end,
3397 Input_section_list::const_iterator owner,
3398 Target_arm<big_endian>* target,
3399 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
3400{
3401 // Currently we convert ordinary input sections into relaxed sections only
3402 // at this point but we may want to support creating relaxed input section
3403 // very early. So we check here to see if owner is already a relaxed
3404 // section.
3405
3406 Arm_input_section<big_endian>* arm_input_section;
3407 if (owner->is_relaxed_input_section())
3408 {
3409 arm_input_section =
3410 Arm_input_section<big_endian>::as_arm_input_section(
3411 owner->relaxed_input_section());
3412 }
3413 else
3414 {
3415 gold_assert(owner->is_input_section());
3416 // Create a new relaxed input section.
3417 arm_input_section =
3418 target->new_arm_input_section(owner->relobj(), owner->shndx());
3419 new_relaxed_sections->push_back(arm_input_section);
3420 }
3421
3422 // Create a stub table.
91d6fa6a 3423 Stub_table<big_endian>* stubtable =
07f508a2
DK
3424 target->new_stub_table(arm_input_section);
3425
91d6fa6a 3426 arm_input_section->set_stub_table(stubtable);
07f508a2
DK
3427
3428 Input_section_list::const_iterator p = begin;
3429 Input_section_list::const_iterator prev_p;
3430
3431 // Look for input sections or relaxed input sections in [begin ... end].
3432 do
3433 {
3434 if (p->is_input_section() || p->is_relaxed_input_section())
3435 {
3436 // The stub table information for input sections live
3437 // in their objects.
3438 Arm_relobj<big_endian>* arm_relobj =
3439 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
91d6fa6a 3440 arm_relobj->set_stub_table(p->shndx(), stubtable);
07f508a2
DK
3441 }
3442 prev_p = p++;
3443 }
3444 while (prev_p != end);
3445}
3446
3447// Group input sections for stub generation. GROUP_SIZE is roughly the limit
3448// of stub groups. We grow a stub group by adding input section until the
3449// size is just below GROUP_SIZE. The last input section will be converted
3450// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
3451// input section after the stub table, effectively double the group size.
3452//
3453// This is similar to the group_sections() function in elf32-arm.c but is
3454// implemented differently.
3455
3456template<bool big_endian>
3457void
3458Arm_output_section<big_endian>::group_sections(
3459 section_size_type group_size,
3460 bool stubs_always_after_branch,
3461 Target_arm<big_endian>* target)
3462{
3463 // We only care about sections containing code.
3464 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
3465 return;
3466
3467 // States for grouping.
3468 typedef enum
3469 {
3470 // No group is being built.
3471 NO_GROUP,
3472 // A group is being built but the stub table is not found yet.
3473 // We keep group a stub group until the size is just under GROUP_SIZE.
3474 // The last input section in the group will be used as the stub table.
3475 FINDING_STUB_SECTION,
3476 // A group is being built and we have already found a stub table.
3477 // We enter this state to grow a stub group by adding input section
3478 // after the stub table. This effectively doubles the group size.
3479 HAS_STUB_SECTION
3480 } State;
3481
3482 // Any newly created relaxed sections are stored here.
3483 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
3484
3485 State state = NO_GROUP;
3486 section_size_type off = 0;
3487 section_size_type group_begin_offset = 0;
3488 section_size_type group_end_offset = 0;
3489 section_size_type stub_table_end_offset = 0;
3490 Input_section_list::const_iterator group_begin =
3491 this->input_sections().end();
91d6fa6a 3492 Input_section_list::const_iterator stubtable =
07f508a2
DK
3493 this->input_sections().end();
3494 Input_section_list::const_iterator group_end = this->input_sections().end();
3495 for (Input_section_list::const_iterator p = this->input_sections().begin();
3496 p != this->input_sections().end();
3497 ++p)
3498 {
3499 section_size_type section_begin_offset =
3500 align_address(off, p->addralign());
3501 section_size_type section_end_offset =
3502 section_begin_offset + p->data_size();
3503
3504 // Check to see if we should group the previously seens sections.
e9bbb538 3505 switch (state)
07f508a2
DK
3506 {
3507 case NO_GROUP:
3508 break;
3509
3510 case FINDING_STUB_SECTION:
3511 // Adding this section makes the group larger than GROUP_SIZE.
3512 if (section_end_offset - group_begin_offset >= group_size)
3513 {
3514 if (stubs_always_after_branch)
3515 {
3516 gold_assert(group_end != this->input_sections().end());
3517 this->create_stub_group(group_begin, group_end, group_end,
3518 target, &new_relaxed_sections);
3519 state = NO_GROUP;
3520 }
3521 else
3522 {
3523 // But wait, there's more! Input sections up to
3524 // stub_group_size bytes after the stub table can be
3525 // handled by it too.
3526 state = HAS_STUB_SECTION;
91d6fa6a 3527 stubtable = group_end;
07f508a2
DK
3528 stub_table_end_offset = group_end_offset;
3529 }
3530 }
3531 break;
3532
3533 case HAS_STUB_SECTION:
3534 // Adding this section makes the post stub-section group larger
3535 // than GROUP_SIZE.
3536 if (section_end_offset - stub_table_end_offset >= group_size)
3537 {
3538 gold_assert(group_end != this->input_sections().end());
91d6fa6a 3539 this->create_stub_group(group_begin, group_end, stubtable,
07f508a2
DK
3540 target, &new_relaxed_sections);
3541 state = NO_GROUP;
3542 }
3543 break;
3544
3545 default:
3546 gold_unreachable();
3547 }
3548
3549 // If we see an input section and currently there is no group, start
3550 // a new one. Skip any empty sections.
3551 if ((p->is_input_section() || p->is_relaxed_input_section())
3552 && (p->relobj()->section_size(p->shndx()) != 0))
3553 {
3554 if (state == NO_GROUP)
3555 {
3556 state = FINDING_STUB_SECTION;
3557 group_begin = p;
3558 group_begin_offset = section_begin_offset;
3559 }
3560
3561 // Keep track of the last input section seen.
3562 group_end = p;
3563 group_end_offset = section_end_offset;
3564 }
3565
3566 off = section_end_offset;
3567 }
3568
3569 // Create a stub group for any ungrouped sections.
3570 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
3571 {
3572 gold_assert(group_end != this->input_sections().end());
3573 this->create_stub_group(group_begin, group_end,
3574 (state == FINDING_STUB_SECTION
3575 ? group_end
91d6fa6a 3576 : stubtable),
07f508a2
DK
3577 target, &new_relaxed_sections);
3578 }
3579
3580 // Convert input section into relaxed input section in a batch.
3581 if (!new_relaxed_sections.empty())
3582 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
3583
3584 // Update the section offsets
3585 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
3586 {
3587 Arm_relobj<big_endian>* arm_relobj =
3588 Arm_relobj<big_endian>::as_arm_relobj(
3589 new_relaxed_sections[i]->relobj());
91d6fa6a 3590 unsigned int sec_shndx = new_relaxed_sections[i]->shndx();
07f508a2 3591 // Tell Arm_relobj that this input section is converted.
91d6fa6a 3592 arm_relobj->convert_input_section_to_relaxed_section(sec_shndx);
07f508a2
DK
3593 }
3594}
3595
8ffa3667
DK
3596// Arm_relobj methods.
3597
3598// Scan relocations for stub generation.
3599
3600template<bool big_endian>
3601void
3602Arm_relobj<big_endian>::scan_sections_for_stubs(
3603 Target_arm<big_endian>* arm_target,
3604 const Symbol_table* symtab,
91d6fa6a 3605 const Layout* alayout)
8ffa3667 3606{
91d6fa6a
NC
3607 unsigned int sec_shnum = this->shnum();
3608 const unsigned int shdrsize = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
3609
3610 // Read the section headers.
3611 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
91d6fa6a 3612 sec_shnum * shdrsize,
8ffa3667
DK
3613 true, true);
3614
3615 // To speed up processing, we set up hash tables for fast lookup of
3616 // input offsets to output addresses.
3617 this->initialize_input_to_output_maps();
3618
3619 const Relobj::Output_sections& out_sections(this->output_sections());
3620
3621 Relocate_info<32, big_endian> relinfo;
8ffa3667 3622 relinfo.symtab = symtab;
91d6fa6a 3623 relinfo.layout = alayout;
8ffa3667
DK
3624 relinfo.object = this;
3625
91d6fa6a
NC
3626 const unsigned char* p = pshdrs + shdrsize;
3627 for (unsigned int i = 1; i < sec_shnum; ++i, p += shdrsize)
8ffa3667
DK
3628 {
3629 typename elfcpp::Shdr<32, big_endian> shdr(p);
3630
3631 unsigned int sh_type = shdr.get_sh_type();
3632 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
3633 continue;
3634
3635 off_t sh_size = shdr.get_sh_size();
3636 if (sh_size == 0)
3637 continue;
3638
3639 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
3640 if (index >= this->shnum())
3641 {
3642 // Ignore reloc section with bad info. This error will be
3643 // reported in the final link.
3644 continue;
3645 }
3646
3647 Output_section* os = out_sections[index];
3648 if (os == NULL)
3649 {
3650 // This relocation section is against a section which we
3651 // discarded.
3652 continue;
3653 }
3654 Arm_address output_offset = this->get_output_section_offset(index);
3655
3656 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
3657 {
3658 // Ignore reloc section with unexpected symbol table. The
3659 // error will be reported in the final link.
3660 continue;
3661 }
3662
3663 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
3664 sh_size, true, false);
3665
3666 unsigned int reloc_size;
3667 if (sh_type == elfcpp::SHT_REL)
3668 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
3669 else
3670 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
3671
3672 if (reloc_size != shdr.get_sh_entsize())
3673 {
3674 // Ignore reloc section with unexpected entsize. The error
3675 // will be reported in the final link.
3676 continue;
3677 }
3678
3679 size_t reloc_count = sh_size / reloc_size;
3680 if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
3681 {
3682 // Ignore reloc section with uneven size. The error will be
3683 // reported in the final link.
3684 continue;
3685 }
3686
3687 gold_assert(output_offset != invalid_address
3688 || this->relocs_must_follow_section_writes());
3689
3690 // Get the section contents. This does work for the case in which
3691 // we modify the contents of an input section. We need to pass the
3692 // output view under such circumstances.
3693 section_size_type input_view_size = 0;
3694 const unsigned char* input_view =
3695 this->section_contents(index, &input_view_size, false);
3696
3697 relinfo.reloc_shndx = i;
3698 relinfo.data_shndx = index;
3699 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
3700 reloc_count, os,
3701 output_offset == invalid_address,
3702 input_view,
3703 os->address(),
3704 input_view_size);
3705 }
3706
3707 // After we've done the relocations, we release the hash tables,
3708 // since we no longer need them.
3709 this->free_input_to_output_maps();
3710}
3711
3712// Count the local symbols. The ARM backend needs to know if a symbol
3713// is a THUMB function or not. For global symbols, it is easy because
3714// the Symbol object keeps the ELF symbol type. For local symbol it is
3715// harder because we cannot access this information. So we override the
3716// do_count_local_symbol in parent and scan local symbols to mark
3717// THUMB functions. This is not the most efficient way but I do not want to
3718// slow down other ports by calling a per symbol targer hook inside
3719// Sized_relobj<size, big_endian>::do_count_local_symbols.
3720
3721template<bool big_endian>
3722void
3723Arm_relobj<big_endian>::do_count_local_symbols(
3724 Stringpool_template<char>* pool,
3725 Stringpool_template<char>* dynpool)
3726{
3727 // We need to fix-up the values of any local symbols whose type are
3728 // STT_ARM_TFUNC.
3729
3730 // Ask parent to count the local symbols.
3731 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
3732 const unsigned int loccount = this->local_symbol_count();
3733 if (loccount == 0)
3734 return;
3735
3736 // Intialize the thumb function bit-vector.
3737 std::vector<bool> empty_vector(loccount, false);
3738 this->local_symbol_is_thumb_function_.swap(empty_vector);
3739
3740 // Read the symbol table section header.
91d6fa6a 3741 const unsigned int sym_tab_shndx = this->symtab_shndx();
8ffa3667 3742 elfcpp::Shdr<32, big_endian>
91d6fa6a 3743 symtabshdr(this, this->elf_file()->section_header(sym_tab_shndx));
8ffa3667
DK
3744 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
3745
3746 // Read the local symbols.
91d6fa6a 3747 const int symsize =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 3748 gold_assert(loccount == symtabshdr.get_sh_info());
91d6fa6a 3749 off_t locsize = loccount * symsize;
8ffa3667
DK
3750 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
3751 locsize, true, true);
3752
3753 // Loop over the local symbols and mark any local symbols pointing
3754 // to THUMB functions.
3755
3756 // Skip the first dummy symbol.
91d6fa6a 3757 psyms += symsize;
8ffa3667
DK
3758 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
3759 this->local_values();
91d6fa6a 3760 for (unsigned int i = 1; i < loccount; ++i, psyms += symsize)
8ffa3667
DK
3761 {
3762 elfcpp::Sym<32, big_endian> sym(psyms);
3763 elfcpp::STT st_type = sym.get_st_type();
3764 Symbol_value<32>& lv((*plocal_values)[i]);
3765 Arm_address input_value = lv.input_value();
3766
3767 if (st_type == elfcpp::STT_ARM_TFUNC
3768 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
3769 {
3770 // This is a THUMB function. Mark this and canonicalize the
3771 // symbol value by setting LSB.
3772 this->local_symbol_is_thumb_function_[i] = true;
3773 if ((input_value & 1) == 0)
3774 lv.set_input_value(input_value | 1);
3775 }
3776 }
3777}
3778
3779// Relocate sections.
3780template<bool big_endian>
3781void
3782Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 3783 const Symbol_table* symtab,
91d6fa6a 3784 const Layout* alayout,
8ffa3667
DK
3785 const unsigned char* pshdrs,
3786 typename Sized_relobj<32, big_endian>::Views* pviews)
3787{
3788 // Call parent to relocate sections.
91d6fa6a 3789 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, alayout, pshdrs,
43d12afe 3790 pviews);
8ffa3667
DK
3791
3792 // We do not generate stubs if doing a relocatable link.
3793 if (parameters->options().relocatable())
3794 return;
3795
3796 // Relocate stub tables.
91d6fa6a 3797 unsigned int sec_shnum = this->shnum();
8ffa3667
DK
3798
3799 Target_arm<big_endian>* arm_target =
3800 Target_arm<big_endian>::default_target();
3801
3802 Relocate_info<32, big_endian> relinfo;
8ffa3667 3803 relinfo.symtab = symtab;
91d6fa6a 3804 relinfo.layout = alayout;
8ffa3667
DK
3805 relinfo.object = this;
3806
91d6fa6a 3807 for (unsigned int i = 1; i < sec_shnum; ++i)
8ffa3667
DK
3808 {
3809 Arm_input_section<big_endian>* arm_input_section =
3810 arm_target->find_arm_input_section(this, i);
3811
3812 if (arm_input_section == NULL
3813 || !arm_input_section->is_stub_table_owner()
3814 || arm_input_section->stub_table()->empty())
3815 continue;
3816
3817 // We cannot discard a section if it owns a stub table.
3818 Output_section* os = this->output_section(i);
3819 gold_assert(os != NULL);
3820
3821 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
3822 relinfo.reloc_shdr = NULL;
3823 relinfo.data_shndx = i;
3824 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
3825
3826 gold_assert((*pviews)[i].view != NULL);
3827
3828 // We are passed the output section view. Adjust it to cover the
3829 // stub table only.
91d6fa6a
NC
3830 Stub_table<big_endian>* stubtable = arm_input_section->stub_table();
3831 gold_assert((stubtable->address() >= (*pviews)[i].address)
3832 && ((stubtable->address() + stubtable->data_size())
8ffa3667
DK
3833 <= (*pviews)[i].address + (*pviews)[i].view_size));
3834
91d6fa6a
NC
3835 off_t off = stubtable->address() - (*pviews)[i].address;
3836 unsigned char* pview = (*pviews)[i].view + off;
3837 Arm_address address = stubtable->address();
3838 section_size_type view_size = stubtable->data_size();
8ffa3667 3839
91d6fa6a
NC
3840 stubtable->relocate_stubs(&relinfo, arm_target, os, pview, address,
3841 view_size);
8ffa3667
DK
3842 }
3843}
3844
a0351a69
DK
3845// Helper functions for both Arm_relobj and Arm_dynobj to read ARM
3846// ABI information.
3847
3848template<bool big_endian>
3849Attributes_section_data*
3850read_arm_attributes_section(
3851 Object* object,
3852 Read_symbols_data *sd)
3853{
3854 // Read the attributes section if there is one.
3855 // We read from the end because gas seems to put it near the end of
3856 // the section headers.
3857 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
3858 const unsigned char *ps =
3859 sd->section_headers->data() + shdr_size * (object->shnum() - 1);
3860 for (unsigned int i = object->shnum(); i > 0; --i, ps -= shdr_size)
3861 {
3862 elfcpp::Shdr<32, big_endian> shdr(ps);
3863 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
3864 {
3865 section_offset_type section_offset = shdr.get_sh_offset();
3866 section_size_type section_size =
3867 convert_to_section_size_type(shdr.get_sh_size());
3868 File_view* view = object->get_lasting_view(section_offset,
3869 section_size, true, false);
3870 return new Attributes_section_data(view->data(), section_size);
3871 }
3872 }
3873 return NULL;
3874}
3875
d5b40221
DK
3876// Read the symbol information.
3877
3878template<bool big_endian>
3879void
3880Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
3881{
3882 // Call parent class to read symbol information.
3883 Sized_relobj<32, big_endian>::do_read_symbols(sd);
3884
3885 // Read processor-specific flags in ELF file header.
3886 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
3887 elfcpp::Elf_sizes<32>::ehdr_size,
3888 true, false);
3889 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
3890 this->processor_specific_flags_ = ehdr.get_e_flags();
a0351a69
DK
3891 this->attributes_section_data_ =
3892 read_arm_attributes_section<big_endian>(this, sd);
d5b40221
DK
3893}
3894
3895// Arm_dynobj methods.
3896
3897// Read the symbol information.
3898
3899template<bool big_endian>
3900void
3901Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
3902{
3903 // Call parent class to read symbol information.
3904 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
3905
3906 // Read processor-specific flags in ELF file header.
3907 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
3908 elfcpp::Elf_sizes<32>::ehdr_size,
3909 true, false);
3910 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
3911 this->processor_specific_flags_ = ehdr.get_e_flags();
a0351a69
DK
3912 this->attributes_section_data_ =
3913 read_arm_attributes_section<big_endian>(this, sd);
d5b40221
DK
3914}
3915
e9bbb538
DK
3916// Stub_addend_reader methods.
3917
3918// Read the addend of a REL relocation of type R_TYPE at VIEW.
3919
3920template<bool big_endian>
3921elfcpp::Elf_types<32>::Elf_Swxword
3922Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
3923 unsigned int r_type,
3924 const unsigned char* view,
3925 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
3926{
3927 switch (r_type)
3928 {
3929 case elfcpp::R_ARM_CALL:
3930 case elfcpp::R_ARM_JUMP24:
3931 case elfcpp::R_ARM_PLT32:
3932 {
3933 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3934 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3935 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3936 return utils::sign_extend<26>(val << 2);
3937 }
3938
3939 case elfcpp::R_ARM_THM_CALL:
3940 case elfcpp::R_ARM_THM_JUMP24:
3941 case elfcpp::R_ARM_THM_XPC22:
3942 {
3943 // Fetch the addend. We use the Thumb-2 encoding (backwards
3944 // compatible with Thumb-1) involving the J1 and J2 bits.
3945 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3946 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3947 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3948 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3949
3950 uint32_t s = (upper_insn & (1 << 10)) >> 10;
3951 uint32_t upper = upper_insn & 0x3ff;
3952 uint32_t lower = lower_insn & 0x7ff;
3953 uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
3954 uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
3955 uint32_t i1 = j1 ^ s ? 0 : 1;
3956 uint32_t i2 = j2 ^ s ? 0 : 1;
3957
3958 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3959 | (upper << 12) | (lower << 1));
3960 }
3961
3962 case elfcpp::R_ARM_THM_JUMP19:
3963 {
3964 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3965 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3966 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3967 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3968
3969 // Reconstruct the top three bits and squish the two 11 bit pieces
3970 // together.
3971 uint32_t S = (upper_insn & 0x0400) >> 10;
3972 uint32_t J1 = (lower_insn & 0x2000) >> 13;
3973 uint32_t J2 = (lower_insn & 0x0800) >> 11;
3974 uint32_t upper =
3975 (S << 8) | (J2 << 7) | (J1 << 6) | (upper_insn & 0x003f);
3976 uint32_t lower = (lower_insn & 0x07ff);
3977 return utils::sign_extend<23>((upper << 12) | (lower << 1));
3978 }
3979
3980 default:
3981 gold_unreachable();
3982 }
3983}
3984
94cdfcff
DK
3985// A class to handle the PLT data.
3986
3987template<bool big_endian>
3988class Output_data_plt_arm : public Output_section_data
3989{
3990 public:
3991 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
3992 Reloc_section;
3993
3994 Output_data_plt_arm(Layout*, Output_data_space*);
3995
3996 // Add an entry to the PLT.
3997 void
3998 add_entry(Symbol* gsym);
3999
4000 // Return the .rel.plt section data.
4001 const Reloc_section*
4002 rel_plt() const
4003 { return this->rel_; }
4004
4005 protected:
4006 void
4007 do_adjust_output_section(Output_section* os);
4008
4009 // Write to a map file.
4010 void
4011 do_print_to_mapfile(Mapfile* mapfile) const
4012 { mapfile->print_output_data(this, _("** PLT")); }
4013
4014 private:
4015 // Template for the first PLT entry.
4016 static const uint32_t first_plt_entry[5];
4017
4018 // Template for subsequent PLT entries.
4019 static const uint32_t plt_entry[3];
4020
4021 // Set the final size.
4022 void
4023 set_final_data_size()
4024 {
4025 this->set_data_size(sizeof(first_plt_entry)
4026 + this->count_ * sizeof(plt_entry));
4027 }
4028
4029 // Write out the PLT data.
4030 void
4031 do_write(Output_file*);
4032
4033 // The reloc section.
4034 Reloc_section* rel_;
4035 // The .got.plt section.
4036 Output_data_space* got_plt_;
4037 // The number of PLT entries.
4038 unsigned int count_;
4039};
4040
4041// Create the PLT section. The ordinary .got section is an argument,
4042// since we need to refer to the start. We also create our own .got
4043// section just for PLT entries.
4044
4045template<bool big_endian>
91d6fa6a 4046Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* alayout,
94cdfcff
DK
4047 Output_data_space* got_plt)
4048 : Output_section_data(4), got_plt_(got_plt), count_(0)
4049{
4050 this->rel_ = new Reloc_section(false);
91d6fa6a
NC
4051 alayout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
4052 elfcpp::SHF_ALLOC, this->rel_, true);
94cdfcff
DK
4053}
4054
4055template<bool big_endian>
4056void
4057Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
4058{
4059 os->set_entsize(0);
4060}
4061
4062// Add an entry to the PLT.
4063
4064template<bool big_endian>
4065void
4066Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
4067{
4068 gold_assert(!gsym->has_plt_offset());
4069
4070 // Note that when setting the PLT offset we skip the initial
4071 // reserved PLT entry.
4072 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
4073 + sizeof(first_plt_entry));
4074
4075 ++this->count_;
4076
4077 section_offset_type got_offset = this->got_plt_->current_data_size();
4078
4079 // Every PLT entry needs a GOT entry which points back to the PLT
4080 // entry (this will be changed by the dynamic linker, normally
4081 // lazily when the function is called).
4082 this->got_plt_->set_current_data_size(got_offset + 4);
4083
4084 // Every PLT entry needs a reloc.
4085 gsym->set_needs_dynsym_entry();
4086 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
4087 got_offset);
4088
4089 // Note that we don't need to save the symbol. The contents of the
4090 // PLT are independent of which symbols are used. The symbols only
4091 // appear in the relocations.
4092}
4093
4094// ARM PLTs.
4095// FIXME: This is not very flexible. Right now this has only been tested
4096// on armv5te. If we are to support additional architecture features like
4097// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
4098
4099// The first entry in the PLT.
4100template<bool big_endian>
4101const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
4102{
4103 0xe52de004, // str lr, [sp, #-4]!
4104 0xe59fe004, // ldr lr, [pc, #4]
4105 0xe08fe00e, // add lr, pc, lr
4106 0xe5bef008, // ldr pc, [lr, #8]!
4107 0x00000000, // &GOT[0] - .
4108};
4109
4110// Subsequent entries in the PLT.
4111
4112template<bool big_endian>
4113const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
4114{
4115 0xe28fc600, // add ip, pc, #0xNN00000
4116 0xe28cca00, // add ip, ip, #0xNN000
4117 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
4118};
4119
4120// Write out the PLT. This uses the hand-coded instructions above,
4121// and adjusts them as needed. This is all specified by the arm ELF
4122// Processor Supplement.
4123
4124template<bool big_endian>
4125void
4126Output_data_plt_arm<big_endian>::do_write(Output_file* of)
4127{
91d6fa6a 4128 const off_t off = this->offset();
94cdfcff
DK
4129 const section_size_type oview_size =
4130 convert_to_section_size_type(this->data_size());
91d6fa6a 4131 unsigned char* const oview = of->get_output_view(off, oview_size);
94cdfcff
DK
4132
4133 const off_t got_file_offset = this->got_plt_->offset();
4134 const section_size_type got_size =
4135 convert_to_section_size_type(this->got_plt_->data_size());
4136 unsigned char* const got_view = of->get_output_view(got_file_offset,
4137 got_size);
4138 unsigned char* pov = oview;
4139
ebabffbd
DK
4140 Arm_address plt_address = this->address();
4141 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
4142
4143 // Write first PLT entry. All but the last word are constants.
4144 const size_t num_first_plt_words = (sizeof(first_plt_entry)
4145 / sizeof(plt_entry[0]));
4146 for (size_t i = 0; i < num_first_plt_words - 1; i++)
4147 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
4148 // Last word in first PLT entry is &GOT[0] - .
4149 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
4150 got_address - (plt_address + 16));
4151 pov += sizeof(first_plt_entry);
4152
4153 unsigned char* got_pov = got_view;
4154
4155 memset(got_pov, 0, 12);
4156 got_pov += 12;
4157
4158 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
4159 unsigned int plt_offset = sizeof(first_plt_entry);
4160 unsigned int plt_rel_offset = 0;
4161 unsigned int got_offset = 12;
4162 const unsigned int count = this->count_;
4163 for (unsigned int i = 0;
4164 i < count;
4165 ++i,
4166 pov += sizeof(plt_entry),
4167 got_pov += 4,
4168 plt_offset += sizeof(plt_entry),
4169 plt_rel_offset += rel_size,
4170 got_offset += 4)
4171 {
4172 // Set and adjust the PLT entry itself.
91d6fa6a
NC
4173 int32_t offst = ((got_address + got_offset)
4174 - (plt_address + plt_offset + 8));
94cdfcff 4175
91d6fa6a
NC
4176 gold_assert(offst >= 0 && offst < 0x0fffffff);
4177 uint32_t plt_insn0 = plt_entry[0] | ((offst >> 20) & 0xff);
94cdfcff 4178 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
91d6fa6a 4179 uint32_t plt_insn1 = plt_entry[1] | ((offst >> 12) & 0xff);
94cdfcff 4180 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
91d6fa6a 4181 uint32_t plt_insn2 = plt_entry[2] | (offst & 0xfff);
94cdfcff
DK
4182 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
4183
4184 // Set the entry in the GOT.
4185 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
4186 }
4187
4188 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4189 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4190
91d6fa6a 4191 of->write_output_view(off, oview_size, oview);
94cdfcff
DK
4192 of->write_output_view(got_file_offset, got_size, got_view);
4193}
4194
4195// Create a PLT entry for a global symbol.
4196
4197template<bool big_endian>
4198void
91d6fa6a 4199Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* alayout,
94cdfcff
DK
4200 Symbol* gsym)
4201{
4202 if (gsym->has_plt_offset())
4203 return;
4204
4205 if (this->plt_ == NULL)
4206 {
4207 // Create the GOT sections first.
91d6fa6a 4208 this->got_section(symtab, alayout);
94cdfcff 4209
91d6fa6a
NC
4210 this->plt_ = new Output_data_plt_arm<big_endian>(alayout, this->got_plt_);
4211 alayout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
4212 (elfcpp::SHF_ALLOC
4213 | elfcpp::SHF_EXECINSTR),
4214 this->plt_, false);
94cdfcff
DK
4215 }
4216 this->plt_->add_entry(gsym);
4217}
4218
4a657b0d
DK
4219// Report an unsupported relocation against a local symbol.
4220
4221template<bool big_endian>
4222void
4223Target_arm<big_endian>::Scan::unsupported_reloc_local(
4224 Sized_relobj<32, big_endian>* object,
4225 unsigned int r_type)
4226{
4227 gold_error(_("%s: unsupported reloc %u against local symbol"),
4228 object->name().c_str(), r_type);
4229}
4230
bec53400
DK
4231// We are about to emit a dynamic relocation of type R_TYPE. If the
4232// dynamic linker does not support it, issue an error. The GNU linker
4233// only issues a non-PIC error for an allocated read-only section.
4234// Here we know the section is allocated, but we don't know that it is
4235// read-only. But we check for all the relocation types which the
4236// glibc dynamic linker supports, so it seems appropriate to issue an
4237// error even if the section is not read-only.
4238
4239template<bool big_endian>
4240void
4241Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
4242 unsigned int r_type)
4243{
4244 switch (r_type)
4245 {
4246 // These are the relocation types supported by glibc for ARM.
4247 case elfcpp::R_ARM_RELATIVE:
4248 case elfcpp::R_ARM_COPY:
4249 case elfcpp::R_ARM_GLOB_DAT:
4250 case elfcpp::R_ARM_JUMP_SLOT:
4251 case elfcpp::R_ARM_ABS32:
be8fcb75 4252 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4253 case elfcpp::R_ARM_PC24:
4254 // FIXME: The following 3 types are not supported by Android's dynamic
4255 // linker.
4256 case elfcpp::R_ARM_TLS_DTPMOD32:
4257 case elfcpp::R_ARM_TLS_DTPOFF32:
4258 case elfcpp::R_ARM_TLS_TPOFF32:
4259 return;
4260
4261 default:
4262 // This prevents us from issuing more than one error per reloc
4263 // section. But we can still wind up issuing more than one
4264 // error per object file.
4265 if (this->issued_non_pic_error_)
4266 return;
4267 object->error(_("requires unsupported dynamic reloc; "
4268 "recompile with -fPIC"));
4269 this->issued_non_pic_error_ = true;
4270 return;
4271
4272 case elfcpp::R_ARM_NONE:
4273 gold_unreachable();
4274 }
4275}
4276
4a657b0d 4277// Scan a relocation for a local symbol.
bec53400
DK
4278// FIXME: This only handles a subset of relocation types used by Android
4279// on ARM v5te devices.
4a657b0d
DK
4280
4281template<bool big_endian>
4282inline void
ad0f2072 4283Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
91d6fa6a 4284 Layout* alayout,
bec53400 4285 Target_arm* target,
4a657b0d 4286 Sized_relobj<32, big_endian>* object,
bec53400
DK
4287 unsigned int data_shndx,
4288 Output_section* output_section,
4289 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
4290 unsigned int r_type,
4291 const elfcpp::Sym<32, big_endian>&)
4292{
a6d1ef57 4293 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
4294 switch (r_type)
4295 {
4296 case elfcpp::R_ARM_NONE:
4297 break;
4298
bec53400 4299 case elfcpp::R_ARM_ABS32:
be8fcb75 4300 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4301 // If building a shared library (or a position-independent
4302 // executable), we need to create a dynamic relocation for
4303 // this location. The relocation applied at link time will
4304 // apply the link-time value, so we flag the location with
4305 // an R_ARM_RELATIVE relocation so the dynamic loader can
4306 // relocate it easily.
4307 if (parameters->options().output_is_position_independent())
4308 {
91d6fa6a 4309 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
bec53400
DK
4310 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
4311 // If we are to add more other reloc types than R_ARM_ABS32,
4312 // we need to add check_non_pic(object, r_type) here.
4313 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
4314 output_section, data_shndx,
4315 reloc.get_r_offset());
4316 }
4317 break;
4318
4319 case elfcpp::R_ARM_REL32:
4320 case elfcpp::R_ARM_THM_CALL:
4321 case elfcpp::R_ARM_CALL:
4322 case elfcpp::R_ARM_PREL31:
4323 case elfcpp::R_ARM_JUMP24:
4324 case elfcpp::R_ARM_PLT32:
be8fcb75
ILT
4325 case elfcpp::R_ARM_THM_ABS5:
4326 case elfcpp::R_ARM_ABS8:
4327 case elfcpp::R_ARM_ABS12:
4328 case elfcpp::R_ARM_ABS16:
4329 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
4330 case elfcpp::R_ARM_MOVW_ABS_NC:
4331 case elfcpp::R_ARM_MOVT_ABS:
4332 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
4333 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
4334 case elfcpp::R_ARM_MOVW_PREL_NC:
4335 case elfcpp::R_ARM_MOVT_PREL:
4336 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
4337 case elfcpp::R_ARM_THM_MOVT_PREL:
bec53400
DK
4338 break;
4339
4340 case elfcpp::R_ARM_GOTOFF32:
4341 // We need a GOT section:
91d6fa6a 4342 target->got_section(symtab, alayout);
bec53400
DK
4343 break;
4344
4345 case elfcpp::R_ARM_BASE_PREL:
4346 // FIXME: What about this?
4347 break;
4348
4349 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4350 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
4351 {
4352 // The symbol requires a GOT entry.
4353 Output_data_got<32, big_endian>* got =
91d6fa6a 4354 target->got_section(symtab, alayout);
bec53400
DK
4355 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
4356 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
4357 {
4358 // If we are generating a shared object, we need to add a
4359 // dynamic RELATIVE relocation for this symbol's GOT entry.
4360 if (parameters->options().output_is_position_independent())
4361 {
91d6fa6a
NC
4362 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
4363 unsigned int rsym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 4364 rel_dyn->add_local_relative(
91d6fa6a
NC
4365 object, rsym, elfcpp::R_ARM_RELATIVE, got,
4366 object->local_got_offset(rsym, GOT_TYPE_STANDARD));
bec53400
DK
4367 }
4368 }
4369 }
4370 break;
4371
4372 case elfcpp::R_ARM_TARGET1:
4373 // This should have been mapped to another type already.
4374 // Fall through.
4375 case elfcpp::R_ARM_COPY:
4376 case elfcpp::R_ARM_GLOB_DAT:
4377 case elfcpp::R_ARM_JUMP_SLOT:
4378 case elfcpp::R_ARM_RELATIVE:
4379 // These are relocations which should only be seen by the
4380 // dynamic linker, and should never be seen here.
4381 gold_error(_("%s: unexpected reloc %u in object file"),
4382 object->name().c_str(), r_type);
4383 break;
4384
4a657b0d
DK
4385 default:
4386 unsupported_reloc_local(object, r_type);
4387 break;
4388 }
4389}
4390
4391// Report an unsupported relocation against a global symbol.
4392
4393template<bool big_endian>
4394void
4395Target_arm<big_endian>::Scan::unsupported_reloc_global(
4396 Sized_relobj<32, big_endian>* object,
4397 unsigned int r_type,
4398 Symbol* gsym)
4399{
4400 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4401 object->name().c_str(), r_type, gsym->demangled_name().c_str());
4402}
4403
4404// Scan a relocation for a global symbol.
bec53400
DK
4405// FIXME: This only handles a subset of relocation types used by Android
4406// on ARM v5te devices.
4a657b0d
DK
4407
4408template<bool big_endian>
4409inline void
ad0f2072 4410Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
91d6fa6a 4411 Layout* alayout,
bec53400 4412 Target_arm* target,
4a657b0d 4413 Sized_relobj<32, big_endian>* object,
bec53400
DK
4414 unsigned int data_shndx,
4415 Output_section* output_section,
4416 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
4417 unsigned int r_type,
4418 Symbol* gsym)
4419{
a6d1ef57 4420 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
4421 switch (r_type)
4422 {
4423 case elfcpp::R_ARM_NONE:
4424 break;
4425
bec53400 4426 case elfcpp::R_ARM_ABS32:
be8fcb75 4427 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4428 {
4429 // Make a dynamic relocation if necessary.
4430 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
4431 {
4432 if (target->may_need_copy_reloc(gsym))
4433 {
91d6fa6a 4434 target->copy_reloc(symtab, alayout, object,
bec53400
DK
4435 data_shndx, output_section, gsym, reloc);
4436 }
4437 else if (gsym->can_use_relative_reloc(false))
4438 {
4439 // If we are to add more other reloc types than R_ARM_ABS32,
4440 // we need to add check_non_pic(object, r_type) here.
91d6fa6a 4441 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
bec53400
DK
4442 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
4443 output_section, object,
4444 data_shndx, reloc.get_r_offset());
4445 }
4446 else
4447 {
4448 // If we are to add more other reloc types than R_ARM_ABS32,
4449 // we need to add check_non_pic(object, r_type) here.
91d6fa6a 4450 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
bec53400
DK
4451 rel_dyn->add_global(gsym, r_type, output_section, object,
4452 data_shndx, reloc.get_r_offset());
4453 }
4454 }
4455 }
4456 break;
4457
fd3c5f0b
ILT
4458 case elfcpp::R_ARM_MOVW_ABS_NC:
4459 case elfcpp::R_ARM_MOVT_ABS:
4460 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
4461 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
4462 case elfcpp::R_ARM_MOVW_PREL_NC:
4463 case elfcpp::R_ARM_MOVT_PREL:
4464 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
4465 case elfcpp::R_ARM_THM_MOVT_PREL:
fd3c5f0b
ILT
4466 break;
4467
be8fcb75
ILT
4468 case elfcpp::R_ARM_THM_ABS5:
4469 case elfcpp::R_ARM_ABS8:
4470 case elfcpp::R_ARM_ABS12:
4471 case elfcpp::R_ARM_ABS16:
4472 case elfcpp::R_ARM_BASE_ABS:
4473 {
4474 // No dynamic relocs of this kinds.
4475 // Report the error in case of PIC.
4476 int flags = Symbol::NON_PIC_REF;
4477 if (gsym->type() == elfcpp::STT_FUNC
4478 || gsym->type() == elfcpp::STT_ARM_TFUNC)
4479 flags |= Symbol::FUNCTION_CALL;
4480 if (gsym->needs_dynamic_reloc(flags))
4481 check_non_pic(object, r_type);
4482 }
4483 break;
4484
bec53400
DK
4485 case elfcpp::R_ARM_REL32:
4486 case elfcpp::R_ARM_PREL31:
4487 {
4488 // Make a dynamic relocation if necessary.
4489 int flags = Symbol::NON_PIC_REF;
4490 if (gsym->needs_dynamic_reloc(flags))
4491 {
4492 if (target->may_need_copy_reloc(gsym))
4493 {
91d6fa6a 4494 target->copy_reloc(symtab, alayout, object,
bec53400
DK
4495 data_shndx, output_section, gsym, reloc);
4496 }
4497 else
4498 {
4499 check_non_pic(object, r_type);
91d6fa6a 4500 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
bec53400
DK
4501 rel_dyn->add_global(gsym, r_type, output_section, object,
4502 data_shndx, reloc.get_r_offset());
4503 }
4504 }
4505 }
4506 break;
4507
4508 case elfcpp::R_ARM_JUMP24:
f4e5969c 4509 case elfcpp::R_ARM_THM_JUMP24:
bec53400 4510 case elfcpp::R_ARM_CALL:
f4e5969c
DK
4511 case elfcpp::R_ARM_THM_CALL:
4512
4513 if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
91d6fa6a 4514 target->make_plt_entry(symtab, alayout, gsym);
f4e5969c
DK
4515 else
4516 {
4517 // Check to see if this is a function that would need a PLT
4518 // but does not get one because the function symbol is untyped.
4519 // This happens in assembly code missing a proper .type directive.
4520 if ((!gsym->is_undefined() || parameters->options().shared())
4521 && !parameters->doing_static_link()
4522 && gsym->type() == elfcpp::STT_NOTYPE
4523 && (gsym->is_from_dynobj()
4524 || gsym->is_undefined()
4525 || gsym->is_preemptible()))
4526 gold_error(_("%s is not a function."),
4527 gsym->demangled_name().c_str());
4528 }
bec53400
DK
4529 break;
4530
4531 case elfcpp::R_ARM_PLT32:
4532 // If the symbol is fully resolved, this is just a relative
4533 // local reloc. Otherwise we need a PLT entry.
4534 if (gsym->final_value_is_known())
4535 break;
4536 // If building a shared library, we can also skip the PLT entry
4537 // if the symbol is defined in the output file and is protected
4538 // or hidden.
4539 if (gsym->is_defined()
4540 && !gsym->is_from_dynobj()
4541 && !gsym->is_preemptible())
4542 break;
91d6fa6a 4543 target->make_plt_entry(symtab, alayout, gsym);
bec53400
DK
4544 break;
4545
4546 case elfcpp::R_ARM_GOTOFF32:
4547 // We need a GOT section.
91d6fa6a 4548 target->got_section(symtab, alayout);
bec53400
DK
4549 break;
4550
4551 case elfcpp::R_ARM_BASE_PREL:
4552 // FIXME: What about this?
4553 break;
4554
4555 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4556 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
4557 {
4558 // The symbol requires a GOT entry.
4559 Output_data_got<32, big_endian>* got =
91d6fa6a 4560 target->got_section(symtab, alayout);
bec53400
DK
4561 if (gsym->final_value_is_known())
4562 got->add_global(gsym, GOT_TYPE_STANDARD);
4563 else
4564 {
4565 // If this symbol is not fully resolved, we need to add a
4566 // GOT entry with a dynamic relocation.
91d6fa6a 4567 Reloc_section* rel_dyn = target->rel_dyn_section(alayout);
bec53400
DK
4568 if (gsym->is_from_dynobj()
4569 || gsym->is_undefined()
4570 || gsym->is_preemptible())
4571 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
4572 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
4573 else
4574 {
4575 if (got->add_global(gsym, GOT_TYPE_STANDARD))
4576 rel_dyn->add_global_relative(
4577 gsym, elfcpp::R_ARM_RELATIVE, got,
4578 gsym->got_offset(GOT_TYPE_STANDARD));
4579 }
4580 }
4581 }
4582 break;
4583
4584 case elfcpp::R_ARM_TARGET1:
4585 // This should have been mapped to another type already.
4586 // Fall through.
4587 case elfcpp::R_ARM_COPY:
4588 case elfcpp::R_ARM_GLOB_DAT:
4589 case elfcpp::R_ARM_JUMP_SLOT:
4590 case elfcpp::R_ARM_RELATIVE:
4591 // These are relocations which should only be seen by the
4592 // dynamic linker, and should never be seen here.
4593 gold_error(_("%s: unexpected reloc %u in object file"),
4594 object->name().c_str(), r_type);
4595 break;
4596
4a657b0d
DK
4597 default:
4598 unsupported_reloc_global(object, r_type, gsym);
4599 break;
4600 }
4601}
4602
4603// Process relocations for gc.
4604
4605template<bool big_endian>
4606void
ad0f2072 4607Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
91d6fa6a 4608 Layout* alayout,
4a657b0d
DK
4609 Sized_relobj<32, big_endian>* object,
4610 unsigned int data_shndx,
4611 unsigned int,
4612 const unsigned char* prelocs,
4613 size_t reloc_count,
4614 Output_section* output_section,
4615 bool needs_special_offset_handling,
4616 size_t local_symbol_count,
4617 const unsigned char* plocal_symbols)
4618{
4619 typedef Target_arm<big_endian> Arm;
91d6fa6a 4620 typedef typename Target_arm<big_endian>::Scan scan;
4a657b0d 4621
91d6fa6a 4622 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, scan>(
4a657b0d 4623 symtab,
91d6fa6a 4624 alayout,
4a657b0d
DK
4625 this,
4626 object,
4627 data_shndx,
4628 prelocs,
4629 reloc_count,
4630 output_section,
4631 needs_special_offset_handling,
4632 local_symbol_count,
4633 plocal_symbols);
4634}
4635
4636// Scan relocations for a section.
4637
4638template<bool big_endian>
4639void
ad0f2072 4640Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
91d6fa6a 4641 Layout* alayout,
4a657b0d
DK
4642 Sized_relobj<32, big_endian>* object,
4643 unsigned int data_shndx,
4644 unsigned int sh_type,
4645 const unsigned char* prelocs,
4646 size_t reloc_count,
4647 Output_section* output_section,
4648 bool needs_special_offset_handling,
4649 size_t local_symbol_count,
4650 const unsigned char* plocal_symbols)
4651{
91d6fa6a 4652 typedef typename Target_arm<big_endian>::Scan scan;
4a657b0d
DK
4653 if (sh_type == elfcpp::SHT_RELA)
4654 {
4655 gold_error(_("%s: unsupported RELA reloc section"),
4656 object->name().c_str());
4657 return;
4658 }
4659
91d6fa6a 4660 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, scan>(
4a657b0d 4661 symtab,
91d6fa6a 4662 alayout,
4a657b0d
DK
4663 this,
4664 object,
4665 data_shndx,
4666 prelocs,
4667 reloc_count,
4668 output_section,
4669 needs_special_offset_handling,
4670 local_symbol_count,
4671 plocal_symbols);
4672}
4673
4674// Finalize the sections.
4675
4676template<bool big_endian>
4677void
d5b40221 4678Target_arm<big_endian>::do_finalize_sections(
91d6fa6a 4679 Layout* alayout,
f59f41f3
DK
4680 const Input_objects* input_objects,
4681 Symbol_table* symtab)
4a657b0d 4682{
d5b40221
DK
4683 // Merge processor-specific flags.
4684 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4685 p != input_objects->relobj_end();
4686 ++p)
4687 {
4688 Arm_relobj<big_endian>* arm_relobj =
4689 Arm_relobj<big_endian>::as_arm_relobj(*p);
4690 this->merge_processor_specific_flags(
4691 arm_relobj->name(),
4692 arm_relobj->processor_specific_flags());
a0351a69
DK
4693 this->merge_object_attributes(arm_relobj->name().c_str(),
4694 arm_relobj->attributes_section_data());
4695
d5b40221
DK
4696 }
4697
4698 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4699 p != input_objects->dynobj_end();
4700 ++p)
4701 {
4702 Arm_dynobj<big_endian>* arm_dynobj =
4703 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
4704 this->merge_processor_specific_flags(
4705 arm_dynobj->name(),
4706 arm_dynobj->processor_specific_flags());
a0351a69
DK
4707 this->merge_object_attributes(arm_dynobj->name().c_str(),
4708 arm_dynobj->attributes_section_data());
d5b40221
DK
4709 }
4710
a0351a69
DK
4711 // Check BLX use.
4712 Object_attribute* attr =
4713 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
4714 if (attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
4715 this->set_may_use_blx(true);
4716
94cdfcff 4717 // Fill in some more dynamic tags.
91d6fa6a 4718 Output_data_dynamic* const odyn = alayout->dynamic_data();
94cdfcff
DK
4719 if (odyn != NULL)
4720 {
22b127cc
ILT
4721 if (this->got_plt_ != NULL
4722 && this->got_plt_->output_section() != NULL)
94cdfcff
DK
4723 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
4724
22b127cc
ILT
4725 if (this->plt_ != NULL
4726 && this->plt_->output_section() != NULL)
94cdfcff
DK
4727 {
4728 const Output_data* od = this->plt_->rel_plt();
4729 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
4730 odyn->add_section_address(elfcpp::DT_JMPREL, od);
4731 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
4732 }
4733
22b127cc
ILT
4734 if (this->rel_dyn_ != NULL
4735 && this->rel_dyn_->output_section() != NULL)
94cdfcff
DK
4736 {
4737 const Output_data* od = this->rel_dyn_;
4738 odyn->add_section_address(elfcpp::DT_REL, od);
4739 odyn->add_section_size(elfcpp::DT_RELSZ, od);
4740 odyn->add_constant(elfcpp::DT_RELENT,
4741 elfcpp::Elf_sizes<32>::rel_size);
4742 }
4743
4744 if (!parameters->options().shared())
4745 {
4746 // The value of the DT_DEBUG tag is filled in by the dynamic
4747 // linker at run time, and used by the debugger.
4748 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4749 }
4750 }
4751
4752 // Emit any relocs we saved in an attempt to avoid generating COPY
4753 // relocs.
4754 if (this->copy_relocs_.any_saved_relocs())
91d6fa6a 4755 this->copy_relocs_.emit(this->rel_dyn_section(alayout));
11af873f 4756
f59f41f3 4757 // Handle the .ARM.exidx section.
91d6fa6a 4758 Output_section* exidx_section = alayout->find_output_section(".ARM.exidx");
f59f41f3
DK
4759 if (exidx_section != NULL
4760 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
11af873f
DK
4761 && !parameters->options().relocatable())
4762 {
f59f41f3
DK
4763 // Create __exidx_start and __exdix_end symbols.
4764 symtab->define_in_output_data("__exidx_start", NULL, exidx_section,
4765 0, 0, elfcpp::STT_OBJECT,
a0351a69 4766 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
f59f41f3
DK
4767 false, false);
4768 symtab->define_in_output_data("__exidx_end", NULL, exidx_section,
4769 0, 0, elfcpp::STT_OBJECT,
a0351a69 4770 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
f59f41f3 4771 true, false);
11af873f 4772
f59f41f3
DK
4773 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
4774 // the .ARM.exidx section.
91d6fa6a 4775 if (!alayout->script_options()->saw_phdrs_clause())
11af873f 4776 {
91d6fa6a 4777 gold_assert(alayout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
11af873f
DK
4778 == NULL);
4779 Output_segment* exidx_segment =
91d6fa6a 4780 alayout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
f5c870d2
ILT
4781 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
4782 false);
11af873f
DK
4783 }
4784 }
a0351a69
DK
4785
4786 // Create an .ARM.attributes section if there is not one already.
b0eec2cc 4787 Output_attributes_section_data* as =
a0351a69 4788 new Output_attributes_section_data(*this->attributes_section_data_);
b0eec2cc
DK
4789 alayout->add_output_section_data(".ARM.attributes",
4790 elfcpp::SHT_ARM_ATTRIBUTES, 0, as, false);
4a657b0d
DK
4791}
4792
bec53400
DK
4793// Return whether a direct absolute static relocation needs to be applied.
4794// In cases where Scan::local() or Scan::global() has created
4795// a dynamic relocation other than R_ARM_RELATIVE, the addend
4796// of the relocation is carried in the data, and we must not
4797// apply the static relocation.
4798
4799template<bool big_endian>
4800inline bool
4801Target_arm<big_endian>::Relocate::should_apply_static_reloc(
4802 const Sized_symbol<32>* gsym,
4803 int ref_flags,
4804 bool is_32bit,
4805 Output_section* output_section)
4806{
4807 // If the output section is not allocated, then we didn't call
4808 // scan_relocs, we didn't create a dynamic reloc, and we must apply
4809 // the reloc here.
4810 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
4811 return true;
4812
4813 // For local symbols, we will have created a non-RELATIVE dynamic
4814 // relocation only if (a) the output is position independent,
4815 // (b) the relocation is absolute (not pc- or segment-relative), and
4816 // (c) the relocation is not 32 bits wide.
4817 if (gsym == NULL)
4818 return !(parameters->options().output_is_position_independent()
4819 && (ref_flags & Symbol::ABSOLUTE_REF)
4820 && !is_32bit);
4821
4822 // For global symbols, we use the same helper routines used in the
4823 // scan pass. If we did not create a dynamic relocation, or if we
4824 // created a RELATIVE dynamic relocation, we should apply the static
4825 // relocation.
4826 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
4827 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
4828 && gsym->can_use_relative_reloc(ref_flags
4829 & Symbol::FUNCTION_CALL);
4830 return !has_dyn || is_rel;
4831}
4832
4a657b0d
DK
4833// Perform a relocation.
4834
4835template<bool big_endian>
4836inline bool
4837Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
4838 const Relocate_info<32, big_endian>* relinfo,
4839 Target_arm* target,
4840 Output_section *output_section,
4841 size_t relnum,
4842 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 4843 unsigned int r_type,
c121c671
DK
4844 const Sized_symbol<32>* gsym,
4845 const Symbol_value<32>* psymval,
4846 unsigned char* view,
ebabffbd 4847 Arm_address address,
4a657b0d
DK
4848 section_size_type /* view_size */ )
4849{
c121c671
DK
4850 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
4851
a6d1ef57 4852 r_type = get_real_reloc_type(r_type);
c121c671 4853
2daedcd6
DK
4854 const Arm_relobj<big_endian>* object =
4855 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 4856
2daedcd6
DK
4857 // If the final branch target of a relocation is THUMB instruction, this
4858 // is 1. Otherwise it is 0.
4859 Arm_address thumb_bit = 0;
c121c671 4860 Symbol_value<32> symval;
d204b6e9 4861 bool is_weakly_undefined_without_plt = false;
2daedcd6 4862 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 4863 {
2daedcd6
DK
4864 if (gsym != NULL)
4865 {
4866 // This is a global symbol. Determine if we use PLT and if the
4867 // final target is THUMB.
4868 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
4869 {
4870 // This uses a PLT, change the symbol value.
4871 symval.set_output_value(target->plt_section()->address()
4872 + gsym->plt_offset());
4873 psymval = &symval;
4874 }
d204b6e9
DK
4875 else if (gsym->is_weak_undefined())
4876 {
4877 // This is a weakly undefined symbol and we do not use PLT
4878 // for this relocation. A branch targeting this symbol will
4879 // be converted into an NOP.
4880 is_weakly_undefined_without_plt = true;
4881 }
2daedcd6
DK
4882 else
4883 {
4884 // Set thumb bit if symbol:
4885 // -Has type STT_ARM_TFUNC or
4886 // -Has type STT_FUNC, is defined and with LSB in value set.
4887 thumb_bit =
4888 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
4889 || (gsym->type() == elfcpp::STT_FUNC
4890 && !gsym->is_undefined()
4891 && ((psymval->value(object, 0) & 1) != 0)))
4892 ? 1
4893 : 0);
4894 }
4895 }
4896 else
4897 {
4898 // This is a local symbol. Determine if the final target is THUMB.
4899 // We saved this information when all the local symbols were read.
4900 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
4901 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
4902 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
4903 }
4904 }
4905 else
4906 {
4907 // This is a fake relocation synthesized for a stub. It does not have
4908 // a real symbol. We just look at the LSB of the symbol value to
4909 // determine if the target is THUMB or not.
4910 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
4911 }
4912
2daedcd6
DK
4913 // Strip LSB if this points to a THUMB target.
4914 if (thumb_bit != 0
4915 && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
4916 && ((psymval->value(object, 0) & 1) != 0))
4917 {
4918 Arm_address stripped_value =
4919 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
4920 symval.set_output_value(stripped_value);
4921 psymval = &symval;
4922 }
4923
c121c671
DK
4924 // Get the GOT offset if needed.
4925 // The GOT pointer points to the end of the GOT section.
4926 // We need to subtract the size of the GOT section to get
4927 // the actual offset to use in the relocation.
4928 bool have_got_offset = false;
4929 unsigned int got_offset = 0;
4930 switch (r_type)
4931 {
4932 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4933 case elfcpp::R_ARM_GOT_PREL:
c121c671
DK
4934 if (gsym != NULL)
4935 {
4936 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4937 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4938 - target->got_size());
4939 }
4940 else
4941 {
4942 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
4943 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4944 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4945 - target->got_size());
4946 }
4947 have_got_offset = true;
4948 break;
4949
4950 default:
4951 break;
4952 }
4953
d204b6e9
DK
4954 // To look up relocation stubs, we need to pass the symbol table index of
4955 // a local symbol.
4956 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
4957
c121c671
DK
4958 typename Arm_relocate_functions::Status reloc_status =
4959 Arm_relocate_functions::STATUS_OKAY;
4a657b0d
DK
4960 switch (r_type)
4961 {
4962 case elfcpp::R_ARM_NONE:
4963 break;
4964
5e445df6
ILT
4965 case elfcpp::R_ARM_ABS8:
4966 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4967 output_section))
be8fcb75
ILT
4968 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
4969 break;
4970
4971 case elfcpp::R_ARM_ABS12:
4972 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4973 output_section))
4974 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
4975 break;
4976
4977 case elfcpp::R_ARM_ABS16:
4978 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4979 output_section))
4980 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
4981 break;
4982
c121c671
DK
4983 case elfcpp::R_ARM_ABS32:
4984 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
4985 output_section))
4986 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 4987 thumb_bit);
c121c671
DK
4988 break;
4989
be8fcb75
ILT
4990 case elfcpp::R_ARM_ABS32_NOI:
4991 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
4992 output_section))
4993 // No thumb bit for this relocation: (S + A)
4994 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 4995 0);
be8fcb75
ILT
4996 break;
4997
fd3c5f0b
ILT
4998 case elfcpp::R_ARM_MOVW_ABS_NC:
4999 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5000 output_section))
5001 reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
5002 psymval,
2daedcd6 5003 thumb_bit);
fd3c5f0b
ILT
5004 else
5005 gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
5006 "a shared object; recompile with -fPIC"));
5007 break;
5008
5009 case elfcpp::R_ARM_MOVT_ABS:
5010 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5011 output_section))
5012 reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
5013 else
5014 gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
5015 "a shared object; recompile with -fPIC"));
5016 break;
5017
5018 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
5019 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5020 output_section))
5021 reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
5022 psymval,
2daedcd6 5023 thumb_bit);
fd3c5f0b
ILT
5024 else
5025 gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
5026 "making a shared object; recompile with -fPIC"));
5027 break;
5028
5029 case elfcpp::R_ARM_THM_MOVT_ABS:
5030 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5031 output_section))
5032 reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
5033 psymval);
5034 else
5035 gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
5036 "making a shared object; recompile with -fPIC"));
5037 break;
5038
c2a122b6
ILT
5039 case elfcpp::R_ARM_MOVW_PREL_NC:
5040 reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
5041 psymval, address,
2daedcd6 5042 thumb_bit);
c2a122b6
ILT
5043 break;
5044
5045 case elfcpp::R_ARM_MOVT_PREL:
5046 reloc_status = Arm_relocate_functions::movt_prel(view, object,
5047 psymval, address);
5048 break;
5049
5050 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
5051 reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
5052 psymval, address,
2daedcd6 5053 thumb_bit);
c2a122b6
ILT
5054 break;
5055
5056 case elfcpp::R_ARM_THM_MOVT_PREL:
5057 reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
5058 psymval, address);
5059 break;
5060
c121c671
DK
5061 case elfcpp::R_ARM_REL32:
5062 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 5063 address, thumb_bit);
c121c671
DK
5064 break;
5065
be8fcb75
ILT
5066 case elfcpp::R_ARM_THM_ABS5:
5067 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
5068 output_section))
5069 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
5070 break;
5071
c121c671 5072 case elfcpp::R_ARM_THM_CALL:
51938283
DK
5073 reloc_status =
5074 Arm_relocate_functions::thm_call(relinfo, view, gsym, object, r_sym,
5075 psymval, address, thumb_bit,
5076 is_weakly_undefined_without_plt);
c121c671
DK
5077 break;
5078
d204b6e9
DK
5079 case elfcpp::R_ARM_XPC25:
5080 reloc_status =
5081 Arm_relocate_functions::xpc25(relinfo, view, gsym, object, r_sym,
5082 psymval, address, thumb_bit,
5083 is_weakly_undefined_without_plt);
5084 break;
5085
51938283
DK
5086 case elfcpp::R_ARM_THM_XPC22:
5087 reloc_status =
5088 Arm_relocate_functions::thm_xpc22(relinfo, view, gsym, object, r_sym,
5089 psymval, address, thumb_bit,
5090 is_weakly_undefined_without_plt);
5091 break;
5092
c121c671
DK
5093 case elfcpp::R_ARM_GOTOFF32:
5094 {
ebabffbd 5095 Arm_address got_origin;
c121c671
DK
5096 got_origin = target->got_plt_section()->address();
5097 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 5098 got_origin, thumb_bit);
c121c671
DK
5099 }
5100 break;
5101
5102 case elfcpp::R_ARM_BASE_PREL:
5103 {
5104 uint32_t origin;
5105 // Get the addressing origin of the output segment defining the
5106 // symbol gsym (AAELF 4.6.1.2 Relocation types)
5107 gold_assert(gsym != NULL);
5108 if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
5109 origin = gsym->output_segment()->vaddr();
5110 else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
5111 origin = gsym->output_data()->address();
5112 else
5113 {
5114 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5115 _("cannot find origin of R_ARM_BASE_PREL"));
5116 return true;
5117 }
5118 reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
5119 }
5120 break;
5121
be8fcb75
ILT
5122 case elfcpp::R_ARM_BASE_ABS:
5123 {
5124 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5125 output_section))
5126 break;
5127
5128 uint32_t origin;
5129 // Get the addressing origin of the output segment defining
5130 // the symbol gsym (AAELF 4.6.1.2 Relocation types).
5131 if (gsym == NULL)
5132 // R_ARM_BASE_ABS with the NULL symbol will give the
5133 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
5134 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
5135 origin = target->got_plt_section()->address();
5136 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
5137 origin = gsym->output_segment()->vaddr();
5138 else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
5139 origin = gsym->output_data()->address();
5140 else
5141 {
5142 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5143 _("cannot find origin of R_ARM_BASE_ABS"));
5144 return true;
5145 }
5146
5147 reloc_status = Arm_relocate_functions::base_abs(view, origin);
5148 }
5149 break;
5150
c121c671
DK
5151 case elfcpp::R_ARM_GOT_BREL:
5152 gold_assert(have_got_offset);
5153 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
5154 break;
5155
7f5309a5
ILT
5156 case elfcpp::R_ARM_GOT_PREL:
5157 gold_assert(have_got_offset);
5158 // Get the address origin for GOT PLT, which is allocated right
5159 // after the GOT section, to calculate an absolute address of
5160 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 5161 Arm_address got_origin;
7f5309a5
ILT
5162 got_origin = target->got_plt_section()->address();
5163 reloc_status = Arm_relocate_functions::got_prel(view,
5164 got_origin + got_offset,
5165 address);
5166 break;
5167
c121c671
DK
5168 case elfcpp::R_ARM_PLT32:
5169 gold_assert(gsym == NULL
5170 || gsym->has_plt_offset()
5171 || gsym->final_value_is_known()
5172 || (gsym->is_defined()
5173 && !gsym->is_from_dynobj()
5174 && !gsym->is_preemptible()));
d204b6e9
DK
5175 reloc_status =
5176 Arm_relocate_functions::plt32(relinfo, view, gsym, object, r_sym,
5177 psymval, address, thumb_bit,
5178 is_weakly_undefined_without_plt);
c121c671
DK
5179 break;
5180
5181 case elfcpp::R_ARM_CALL:
d204b6e9
DK
5182 reloc_status =
5183 Arm_relocate_functions::call(relinfo, view, gsym, object, r_sym,
5184 psymval, address, thumb_bit,
5185 is_weakly_undefined_without_plt);
c121c671
DK
5186 break;
5187
5188 case elfcpp::R_ARM_JUMP24:
d204b6e9
DK
5189 reloc_status =
5190 Arm_relocate_functions::jump24(relinfo, view, gsym, object, r_sym,
5191 psymval, address, thumb_bit,
5192 is_weakly_undefined_without_plt);
c121c671
DK
5193 break;
5194
51938283
DK
5195 case elfcpp::R_ARM_THM_JUMP24:
5196 reloc_status =
5197 Arm_relocate_functions::thm_jump24(relinfo, view, gsym, object, r_sym,
5198 psymval, address, thumb_bit,
5199 is_weakly_undefined_without_plt);
5200 break;
5201
c121c671
DK
5202 case elfcpp::R_ARM_PREL31:
5203 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 5204 address, thumb_bit);
c121c671
DK
5205 break;
5206
5207 case elfcpp::R_ARM_TARGET1:
5208 // This should have been mapped to another type already.
5209 // Fall through.
5210 case elfcpp::R_ARM_COPY:
5211 case elfcpp::R_ARM_GLOB_DAT:
5212 case elfcpp::R_ARM_JUMP_SLOT:
5213 case elfcpp::R_ARM_RELATIVE:
5214 // These are relocations which should only be seen by the
5215 // dynamic linker, and should never be seen here.
5216 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5217 _("unexpected reloc %u in object file"),
5218 r_type);
5219 break;
5220
5221 default:
5222 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5223 _("unsupported reloc %u"),
5224 r_type);
5225 break;
5226 }
5227
5228 // Report any errors.
5229 switch (reloc_status)
5230 {
5231 case Arm_relocate_functions::STATUS_OKAY:
5232 break;
5233 case Arm_relocate_functions::STATUS_OVERFLOW:
5234 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5235 _("relocation overflow in relocation %u"),
5236 r_type);
5237 break;
5238 case Arm_relocate_functions::STATUS_BAD_RELOC:
5239 gold_error_at_location(
5240 relinfo,
5241 relnum,
5242 rel.get_r_offset(),
5243 _("unexpected opcode while processing relocation %u"),
5244 r_type);
5245 break;
4a657b0d
DK
5246 default:
5247 gold_unreachable();
5248 }
5249
5250 return true;
5251}
5252
5253// Relocate section data.
5254
5255template<bool big_endian>
5256void
5257Target_arm<big_endian>::relocate_section(
5258 const Relocate_info<32, big_endian>* relinfo,
5259 unsigned int sh_type,
5260 const unsigned char* prelocs,
5261 size_t reloc_count,
5262 Output_section* output_section,
5263 bool needs_special_offset_handling,
5264 unsigned char* view,
ebabffbd 5265 Arm_address address,
364c7fa5
ILT
5266 section_size_type view_size,
5267 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
5268{
5269 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
5270 gold_assert(sh_type == elfcpp::SHT_REL);
5271
43d12afe
DK
5272 Arm_input_section<big_endian>* arm_input_section =
5273 this->find_arm_input_section(relinfo->object, relinfo->data_shndx);
5274
5275 // This is an ARM input section and the view covers the whole output
5276 // section.
5277 if (arm_input_section != NULL)
5278 {
5279 gold_assert(needs_special_offset_handling);
5280 Arm_address section_address = arm_input_section->address();
5281 section_size_type section_size = arm_input_section->data_size();
5282
5283 gold_assert((arm_input_section->address() >= address)
5284 && ((arm_input_section->address()
5285 + arm_input_section->data_size())
5286 <= (address + view_size)));
5287
91d6fa6a
NC
5288 off_t off = section_address - address;
5289 view += off;
5290 address += off;
43d12afe
DK
5291 view_size = section_size;
5292 }
5293
4a657b0d
DK
5294 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
5295 Arm_relocate>(
5296 relinfo,
5297 this,
5298 prelocs,
5299 reloc_count,
5300 output_section,
5301 needs_special_offset_handling,
5302 view,
5303 address,
364c7fa5
ILT
5304 view_size,
5305 reloc_symbol_changes);
4a657b0d
DK
5306}
5307
5308// Return the size of a relocation while scanning during a relocatable
5309// link.
5310
5311template<bool big_endian>
5312unsigned int
5313Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
5314 unsigned int r_type,
5315 Relobj* object)
5316{
a6d1ef57 5317 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
5318 switch (r_type)
5319 {
5320 case elfcpp::R_ARM_NONE:
5321 return 0;
5322
5e445df6
ILT
5323 case elfcpp::R_ARM_ABS8:
5324 return 1;
5325
be8fcb75
ILT
5326 case elfcpp::R_ARM_ABS16:
5327 case elfcpp::R_ARM_THM_ABS5:
5328 return 2;
5329
4a657b0d 5330 case elfcpp::R_ARM_ABS32:
be8fcb75
ILT
5331 case elfcpp::R_ARM_ABS32_NOI:
5332 case elfcpp::R_ARM_ABS12:
5333 case elfcpp::R_ARM_BASE_ABS:
4a657b0d
DK
5334 case elfcpp::R_ARM_REL32:
5335 case elfcpp::R_ARM_THM_CALL:
5336 case elfcpp::R_ARM_GOTOFF32:
5337 case elfcpp::R_ARM_BASE_PREL:
5338 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 5339 case elfcpp::R_ARM_GOT_PREL:
4a657b0d
DK
5340 case elfcpp::R_ARM_PLT32:
5341 case elfcpp::R_ARM_CALL:
5342 case elfcpp::R_ARM_JUMP24:
5343 case elfcpp::R_ARM_PREL31:
fd3c5f0b
ILT
5344 case elfcpp::R_ARM_MOVW_ABS_NC:
5345 case elfcpp::R_ARM_MOVT_ABS:
5346 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
5347 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
5348 case elfcpp::R_ARM_MOVW_PREL_NC:
5349 case elfcpp::R_ARM_MOVT_PREL:
5350 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
5351 case elfcpp::R_ARM_THM_MOVT_PREL:
4a657b0d
DK
5352 return 4;
5353
5354 case elfcpp::R_ARM_TARGET1:
5355 // This should have been mapped to another type already.
5356 // Fall through.
5357 case elfcpp::R_ARM_COPY:
5358 case elfcpp::R_ARM_GLOB_DAT:
5359 case elfcpp::R_ARM_JUMP_SLOT:
5360 case elfcpp::R_ARM_RELATIVE:
5361 // These are relocations which should only be seen by the
5362 // dynamic linker, and should never be seen here.
5363 gold_error(_("%s: unexpected reloc %u in object file"),
5364 object->name().c_str(), r_type);
5365 return 0;
5366
5367 default:
5368 object->error(_("unsupported reloc %u in object file"), r_type);
5369 return 0;
5370 }
5371}
5372
5373// Scan the relocs during a relocatable link.
5374
5375template<bool big_endian>
5376void
5377Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 5378 Symbol_table* symtab,
91d6fa6a 5379 Layout* alayout,
4a657b0d
DK
5380 Sized_relobj<32, big_endian>* object,
5381 unsigned int data_shndx,
5382 unsigned int sh_type,
5383 const unsigned char* prelocs,
5384 size_t reloc_count,
5385 Output_section* output_section,
5386 bool needs_special_offset_handling,
5387 size_t local_symbol_count,
5388 const unsigned char* plocal_symbols,
5389 Relocatable_relocs* rr)
5390{
5391 gold_assert(sh_type == elfcpp::SHT_REL);
5392
5393 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
5394 Relocatable_size_for_reloc> Scan_relocatable_relocs;
5395
5396 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
5397 Scan_relocatable_relocs>(
4a657b0d 5398 symtab,
91d6fa6a 5399 alayout,
4a657b0d
DK
5400 object,
5401 data_shndx,
5402 prelocs,
5403 reloc_count,
5404 output_section,
5405 needs_special_offset_handling,
5406 local_symbol_count,
5407 plocal_symbols,
5408 rr);
5409}
5410
5411// Relocate a section during a relocatable link.
5412
5413template<bool big_endian>
5414void
5415Target_arm<big_endian>::relocate_for_relocatable(
5416 const Relocate_info<32, big_endian>* relinfo,
5417 unsigned int sh_type,
5418 const unsigned char* prelocs,
5419 size_t reloc_count,
5420 Output_section* output_section,
5421 off_t offset_in_output_section,
5422 const Relocatable_relocs* rr,
5423 unsigned char* view,
ebabffbd 5424 Arm_address view_address,
4a657b0d
DK
5425 section_size_type view_size,
5426 unsigned char* reloc_view,
5427 section_size_type reloc_view_size)
5428{
5429 gold_assert(sh_type == elfcpp::SHT_REL);
5430
5431 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
5432 relinfo,
5433 prelocs,
5434 reloc_count,
5435 output_section,
5436 offset_in_output_section,
5437 rr,
5438 view,
5439 view_address,
5440 view_size,
5441 reloc_view,
5442 reloc_view_size);
5443}
5444
94cdfcff
DK
5445// Return the value to use for a dynamic symbol which requires special
5446// treatment. This is how we support equality comparisons of function
5447// pointers across shared library boundaries, as described in the
5448// processor specific ABI supplement.
5449
4a657b0d
DK
5450template<bool big_endian>
5451uint64_t
94cdfcff 5452Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 5453{
94cdfcff
DK
5454 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5455 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
5456}
5457
5458// Map platform-specific relocs to real relocs
5459//
5460template<bool big_endian>
5461unsigned int
a6d1ef57 5462Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
4a657b0d
DK
5463{
5464 switch (r_type)
5465 {
5466 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
5467 // This is either R_ARM_ABS32 or R_ARM_REL32;
5468 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
5469
5470 case elfcpp::R_ARM_TARGET2:
a6d1ef57
DK
5471 // This can be any reloc type but ususally is R_ARM_GOT_PREL
5472 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
5473
5474 default:
5475 return r_type;
5476 }
5477}
5478
d5b40221
DK
5479// Whether if two EABI versions V1 and V2 are compatible.
5480
5481template<bool big_endian>
5482bool
5483Target_arm<big_endian>::are_eabi_versions_compatible(
5484 elfcpp::Elf_Word v1,
5485 elfcpp::Elf_Word v2)
5486{
5487 // v4 and v5 are the same spec before and after it was released,
5488 // so allow mixing them.
5489 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
5490 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
5491 return true;
5492
5493 return v1 == v2;
5494}
5495
5496// Combine FLAGS from an input object called NAME and the processor-specific
5497// flags in the ELF header of the output. Much of this is adapted from the
5498// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
5499// in bfd/elf32-arm.c.
5500
5501template<bool big_endian>
5502void
5503Target_arm<big_endian>::merge_processor_specific_flags(
5504 const std::string& name,
5505 elfcpp::Elf_Word flags)
5506{
5507 if (this->are_processor_specific_flags_set())
5508 {
5509 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
5510
5511 // Nothing to merge if flags equal to those in output.
5512 if (flags == out_flags)
5513 return;
5514
5515 // Complain about various flag mismatches.
5516 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
5517 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
5518 if (!this->are_eabi_versions_compatible(version1, version2))
5519 gold_error(_("Source object %s has EABI version %d but output has "
5520 "EABI version %d."),
5521 name.c_str(),
5522 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
5523 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
5524 }
5525 else
5526 {
5527 // If the input is the default architecture and had the default
5528 // flags then do not bother setting the flags for the output
5529 // architecture, instead allow future merges to do this. If no
5530 // future merges ever set these flags then they will retain their
5531 // uninitialised values, which surprise surprise, correspond
5532 // to the default values.
5533 if (flags == 0)
5534 return;
5535
5536 // This is the first time, just copy the flags.
5537 // We only copy the EABI version for now.
5538 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
5539 }
5540}
5541
5542// Adjust ELF file header.
5543template<bool big_endian>
5544void
5545Target_arm<big_endian>::do_adjust_elf_header(
5546 unsigned char* view,
5547 int len) const
5548{
5549 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
5550
5551 elfcpp::Ehdr<32, big_endian> ehdr(view);
5552 unsigned char e_ident[elfcpp::EI_NIDENT];
5553 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
5554
5555 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
5556 == elfcpp::EF_ARM_EABI_UNKNOWN)
5557 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
5558 else
5559 e_ident[elfcpp::EI_OSABI] = 0;
5560 e_ident[elfcpp::EI_ABIVERSION] = 0;
5561
5562 // FIXME: Do EF_ARM_BE8 adjustment.
5563
5564 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
5565 oehdr.put_e_ident(e_ident);
5566}
5567
5568// do_make_elf_object to override the same function in the base class.
5569// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
5570// to store ARM specific information. Hence we need to have our own
5571// ELF object creation.
5572
5573template<bool big_endian>
5574Object*
5575Target_arm<big_endian>::do_make_elf_object(
5576 const std::string& name,
5577 Input_file* input_file,
91d6fa6a 5578 off_t off, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
5579{
5580 int et = ehdr.get_e_type();
5581 if (et == elfcpp::ET_REL)
5582 {
5583 Arm_relobj<big_endian>* obj =
91d6fa6a 5584 new Arm_relobj<big_endian>(name, input_file, off, ehdr);
d5b40221
DK
5585 obj->setup();
5586 return obj;
5587 }
5588 else if (et == elfcpp::ET_DYN)
5589 {
5590 Sized_dynobj<32, big_endian>* obj =
91d6fa6a 5591 new Arm_dynobj<big_endian>(name, input_file, off, ehdr);
d5b40221
DK
5592 obj->setup();
5593 return obj;
5594 }
5595 else
5596 {
5597 gold_error(_("%s: unsupported ELF file type %d"),
5598 name.c_str(), et);
5599 return NULL;
5600 }
5601}
5602
a0351a69
DK
5603// Read the architecture from the Tag_also_compatible_with attribute, if any.
5604// Returns -1 if no architecture could be read.
5605// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
5606
5607template<bool big_endian>
5608int
5609Target_arm<big_endian>::get_secondary_compatible_arch(
5610 const Attributes_section_data* pasd)
5611{
5612 const Object_attribute *known_attributes =
5613 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
5614
5615 // Note: the tag and its argument below are uleb128 values, though
5616 // currently-defined values fit in one byte for each.
5617 const std::string& sv =
5618 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
5619 if (sv.size() == 2
5620 && sv.data()[0] == elfcpp::Tag_CPU_arch
5621 && (sv.data()[1] & 128) != 128)
5622 return sv.data()[1];
5623
5624 // This tag is "safely ignorable", so don't complain if it looks funny.
5625 return -1;
5626}
5627
5628// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
5629// The tag is removed if ARCH is -1.
5630// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
5631
5632template<bool big_endian>
5633void
5634Target_arm<big_endian>::set_secondary_compatible_arch(
5635 Attributes_section_data* pasd,
5636 int arch)
5637{
5638 Object_attribute *known_attributes =
5639 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
5640
5641 if (arch == -1)
5642 {
5643 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
5644 return;
5645 }
5646
5647 // Note: the tag and its argument below are uleb128 values, though
5648 // currently-defined values fit in one byte for each.
5649 char sv[3];
5650 sv[0] = elfcpp::Tag_CPU_arch;
5651 gold_assert(arch != 0);
5652 sv[1] = arch;
5653 sv[2] = '\0';
5654
5655 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
5656}
5657
5658// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
5659// into account.
5660// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
5661
5662template<bool big_endian>
5663int
5664Target_arm<big_endian>::tag_cpu_arch_combine(
5665 const char* name,
5666 int oldtag,
5667 int* secondary_compat_out,
5668 int newtag,
5669 int secondary_compat)
5670{
5671#define T(X) elfcpp::TAG_CPU_ARCH_##X
5672 static const int v6t2[] =
5673 {
5674 T(V6T2), // PRE_V4.
5675 T(V6T2), // V4.
5676 T(V6T2), // V4T.
5677 T(V6T2), // V5T.
5678 T(V6T2), // V5TE.
5679 T(V6T2), // V5TEJ.
5680 T(V6T2), // V6.
5681 T(V7), // V6KZ.
5682 T(V6T2) // V6T2.
5683 };
5684 static const int v6k[] =
5685 {
5686 T(V6K), // PRE_V4.
5687 T(V6K), // V4.
5688 T(V6K), // V4T.
5689 T(V6K), // V5T.
5690 T(V6K), // V5TE.
5691 T(V6K), // V5TEJ.
5692 T(V6K), // V6.
5693 T(V6KZ), // V6KZ.
5694 T(V7), // V6T2.
5695 T(V6K) // V6K.
5696 };
5697 static const int v7[] =
5698 {
5699 T(V7), // PRE_V4.
5700 T(V7), // V4.
5701 T(V7), // V4T.
5702 T(V7), // V5T.
5703 T(V7), // V5TE.
5704 T(V7), // V5TEJ.
5705 T(V7), // V6.
5706 T(V7), // V6KZ.
5707 T(V7), // V6T2.
5708 T(V7), // V6K.
5709 T(V7) // V7.
5710 };
5711 static const int v6_m[] =
5712 {
5713 -1, // PRE_V4.
5714 -1, // V4.
5715 T(V6K), // V4T.
5716 T(V6K), // V5T.
5717 T(V6K), // V5TE.
5718 T(V6K), // V5TEJ.
5719 T(V6K), // V6.
5720 T(V6KZ), // V6KZ.
5721 T(V7), // V6T2.
5722 T(V6K), // V6K.
5723 T(V7), // V7.
5724 T(V6_M) // V6_M.
5725 };
5726 static const int v6s_m[] =
5727 {
5728 -1, // PRE_V4.
5729 -1, // V4.
5730 T(V6K), // V4T.
5731 T(V6K), // V5T.
5732 T(V6K), // V5TE.
5733 T(V6K), // V5TEJ.
5734 T(V6K), // V6.
5735 T(V6KZ), // V6KZ.
5736 T(V7), // V6T2.
5737 T(V6K), // V6K.
5738 T(V7), // V7.
5739 T(V6S_M), // V6_M.
5740 T(V6S_M) // V6S_M.
5741 };
5742 static const int v7e_m[] =
5743 {
5744 -1, // PRE_V4.
5745 -1, // V4.
5746 T(V7E_M), // V4T.
5747 T(V7E_M), // V5T.
5748 T(V7E_M), // V5TE.
5749 T(V7E_M), // V5TEJ.
5750 T(V7E_M), // V6.
5751 T(V7E_M), // V6KZ.
5752 T(V7E_M), // V6T2.
5753 T(V7E_M), // V6K.
5754 T(V7E_M), // V7.
5755 T(V7E_M), // V6_M.
5756 T(V7E_M), // V6S_M.
5757 T(V7E_M) // V7E_M.
5758 };
5759 static const int v4t_plus_v6_m[] =
5760 {
5761 -1, // PRE_V4.
5762 -1, // V4.
5763 T(V4T), // V4T.
5764 T(V5T), // V5T.
5765 T(V5TE), // V5TE.
5766 T(V5TEJ), // V5TEJ.
5767 T(V6), // V6.
5768 T(V6KZ), // V6KZ.
5769 T(V6T2), // V6T2.
5770 T(V6K), // V6K.
5771 T(V7), // V7.
5772 T(V6_M), // V6_M.
5773 T(V6S_M), // V6S_M.
5774 T(V7E_M), // V7E_M.
5775 T(V4T_PLUS_V6_M) // V4T plus V6_M.
5776 };
5777 static const int *comb[] =
5778 {
5779 v6t2,
5780 v6k,
5781 v7,
5782 v6_m,
5783 v6s_m,
5784 v7e_m,
5785 // Pseudo-architecture.
5786 v4t_plus_v6_m
5787 };
5788
5789 // Check we've not got a higher architecture than we know about.
5790
5791 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
5792 {
5793 gold_error(_("%s: unknown CPU architecture"), name);
5794 return -1;
5795 }
5796
5797 // Override old tag if we have a Tag_also_compatible_with on the output.
5798
5799 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
5800 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
5801 oldtag = T(V4T_PLUS_V6_M);
5802
5803 // And override the new tag if we have a Tag_also_compatible_with on the
5804 // input.
5805
5806 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
5807 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
5808 newtag = T(V4T_PLUS_V6_M);
5809
5810 // Architectures before V6KZ add features monotonically.
5811 int tagh = std::max(oldtag, newtag);
5812 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
5813 return tagh;
5814
5815 int tagl = std::min(oldtag, newtag);
5816 int result = comb[tagh - T(V6T2)][tagl];
5817
5818 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
5819 // as the canonical version.
5820 if (result == T(V4T_PLUS_V6_M))
5821 {
5822 result = T(V4T);
5823 *secondary_compat_out = T(V6_M);
5824 }
5825 else
5826 *secondary_compat_out = -1;
5827
5828 if (result == -1)
5829 {
5830 gold_error(_("%s: conflicting CPU architectures %d/%d"),
5831 name, oldtag, newtag);
5832 return -1;
5833 }
5834
5835 return result;
5836#undef T
5837}
5838
5839// Helper to print AEABI enum tag value.
5840
5841template<bool big_endian>
5842std::string
5843Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
5844{
5845 static const char *aeabi_enum_names[] =
5846 { "", "variable-size", "32-bit", "" };
5847 const size_t aeabi_enum_names_size =
5848 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
5849
5850 if (value < aeabi_enum_names_size)
5851 return std::string(aeabi_enum_names[value]);
5852 else
5853 {
5854 char buffer[100];
5855 sprintf(buffer, "<unknown value %u>", value);
5856 return std::string(buffer);
5857 }
5858}
5859
5860// Return the string value to store in TAG_CPU_name.
5861
5862template<bool big_endian>
5863std::string
5864Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
5865{
5866 static const char *name_table[] = {
5867 // These aren't real CPU names, but we can't guess
5868 // that from the architecture version alone.
5869 "Pre v4",
5870 "ARM v4",
5871 "ARM v4T",
5872 "ARM v5T",
5873 "ARM v5TE",
5874 "ARM v5TEJ",
5875 "ARM v6",
5876 "ARM v6KZ",
5877 "ARM v6T2",
5878 "ARM v6K",
5879 "ARM v7",
5880 "ARM v6-M",
5881 "ARM v6S-M",
5882 "ARM v7E-M"
5883 };
5884 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
5885
5886 if (value < name_table_size)
5887 return std::string(name_table[value]);
5888 else
5889 {
5890 char buffer[100];
5891 sprintf(buffer, "<unknown CPU value %u>", value);
5892 return std::string(buffer);
5893 }
5894}
5895
5896// Merge object attributes from input file called NAME with those of the
5897// output. The input object attributes are in the object pointed by PASD.
5898
5899template<bool big_endian>
5900void
5901Target_arm<big_endian>::merge_object_attributes(
5902 const char* name,
5903 const Attributes_section_data* pasd)
5904{
5905 // Return if there is no attributes section data.
5906 if (pasd == NULL)
5907 return;
5908
5909 // If output has no object attributes, just copy.
5910 if (this->attributes_section_data_ == NULL)
5911 {
5912 this->attributes_section_data_ = new Attributes_section_data(*pasd);
5913 return;
5914 }
5915
5916 const int vendor = Object_attribute::OBJ_ATTR_PROC;
5917 const Object_attribute* in_attr = pasd->known_attributes(vendor);
5918 Object_attribute* out_attr =
5919 this->attributes_section_data_->known_attributes(vendor);
5920
5921 // This needs to happen before Tag_ABI_FP_number_model is merged. */
5922 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
5923 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
5924 {
5925 // Ignore mismatches if the object doesn't use floating point. */
5926 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
5927 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
5928 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5929 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
5930 gold_error(_("%s uses VFP register arguments, output does not"),
5931 name);
5932 }
5933
5934 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
5935 {
5936 // Merge this attribute with existing attributes.
5937 switch (i)
5938 {
5939 case elfcpp::Tag_CPU_raw_name:
5940 case elfcpp::Tag_CPU_name:
5941 // These are merged after Tag_CPU_arch.
5942 break;
5943
5944 case elfcpp::Tag_ABI_optimization_goals:
5945 case elfcpp::Tag_ABI_FP_optimization_goals:
5946 // Use the first value seen.
5947 break;
5948
5949 case elfcpp::Tag_CPU_arch:
5950 {
5951 unsigned int saved_out_attr = out_attr->int_value();
5952 // Merge Tag_CPU_arch and Tag_also_compatible_with.
5953 int secondary_compat =
5954 this->get_secondary_compatible_arch(pasd);
5955 int secondary_compat_out =
5956 this->get_secondary_compatible_arch(
5957 this->attributes_section_data_);
5958 out_attr[i].set_int_value(
5959 tag_cpu_arch_combine(name, out_attr[i].int_value(),
5960 &secondary_compat_out,
5961 in_attr[i].int_value(),
5962 secondary_compat));
5963 this->set_secondary_compatible_arch(this->attributes_section_data_,
5964 secondary_compat_out);
5965
5966 // Merge Tag_CPU_name and Tag_CPU_raw_name.
5967 if (out_attr[i].int_value() == saved_out_attr)
5968 ; // Leave the names alone.
5969 else if (out_attr[i].int_value() == in_attr[i].int_value())
5970 {
5971 // The output architecture has been changed to match the
5972 // input architecture. Use the input names.
5973 out_attr[elfcpp::Tag_CPU_name].set_string_value(
5974 in_attr[elfcpp::Tag_CPU_name].string_value());
5975 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
5976 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
5977 }
5978 else
5979 {
5980 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
5981 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
5982 }
5983
5984 // If we still don't have a value for Tag_CPU_name,
5985 // make one up now. Tag_CPU_raw_name remains blank.
5986 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
5987 {
5988 const std::string cpu_name =
5989 this->tag_cpu_name_value(out_attr[i].int_value());
5990 // FIXME: If we see an unknown CPU, this will be set
5991 // to "<unknown CPU n>", where n is the attribute value.
5992 // This is different from BFD, which leaves the name alone.
5993 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
5994 }
5995 }
5996 break;
5997
5998 case elfcpp::Tag_ARM_ISA_use:
5999 case elfcpp::Tag_THUMB_ISA_use:
6000 case elfcpp::Tag_WMMX_arch:
6001 case elfcpp::Tag_Advanced_SIMD_arch:
6002 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
6003 case elfcpp::Tag_ABI_FP_rounding:
6004 case elfcpp::Tag_ABI_FP_exceptions:
6005 case elfcpp::Tag_ABI_FP_user_exceptions:
6006 case elfcpp::Tag_ABI_FP_number_model:
6007 case elfcpp::Tag_VFP_HP_extension:
6008 case elfcpp::Tag_CPU_unaligned_access:
6009 case elfcpp::Tag_T2EE_use:
6010 case elfcpp::Tag_Virtualization_use:
6011 case elfcpp::Tag_MPextension_use:
6012 // Use the largest value specified.
6013 if (in_attr[i].int_value() > out_attr[i].int_value())
6014 out_attr[i].set_int_value(in_attr[i].int_value());
6015 break;
6016
6017 case elfcpp::Tag_ABI_align8_preserved:
6018 case elfcpp::Tag_ABI_PCS_RO_data:
6019 // Use the smallest value specified.
6020 if (in_attr[i].int_value() < out_attr[i].int_value())
6021 out_attr[i].set_int_value(in_attr[i].int_value());
6022 break;
6023
6024 case elfcpp::Tag_ABI_align8_needed:
6025 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
6026 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
6027 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
6028 == 0)))
6029 {
6030 // This error message should be enabled once all non-conformant
6031 // binaries in the toolchain have had the attributes set
6032 // properly.
6033 // gold_error(_("output 8-byte data alignment conflicts with %s"),
6034 // name);
6035 }
6036 // Fall through.
6037 case elfcpp::Tag_ABI_FP_denormal:
6038 case elfcpp::Tag_ABI_PCS_GOT_use:
6039 {
6040 // These tags have 0 = don't care, 1 = strong requirement,
6041 // 2 = weak requirement.
6042 static const int order_021[3] = {0, 2, 1};
6043
6044 // Use the "greatest" from the sequence 0, 2, 1, or the largest
6045 // value if greater than 2 (for future-proofing).
6046 if ((in_attr[i].int_value() > 2
6047 && in_attr[i].int_value() > out_attr[i].int_value())
6048 || (in_attr[i].int_value() <= 2
6049 && out_attr[i].int_value() <= 2
6050 && (order_021[in_attr[i].int_value()]
6051 > order_021[out_attr[i].int_value()])))
6052 out_attr[i].set_int_value(in_attr[i].int_value());
6053 }
6054 break;
6055
6056 case elfcpp::Tag_CPU_arch_profile:
6057 if (out_attr[i].int_value() != in_attr[i].int_value())
6058 {
6059 // 0 will merge with anything.
6060 // 'A' and 'S' merge to 'A'.
6061 // 'R' and 'S' merge to 'R'.
6062 // 'M' and 'A|R|S' is an error.
6063 if (out_attr[i].int_value() == 0
6064 || (out_attr[i].int_value() == 'S'
6065 && (in_attr[i].int_value() == 'A'
6066 || in_attr[i].int_value() == 'R')))
6067 out_attr[i].set_int_value(in_attr[i].int_value());
6068 else if (in_attr[i].int_value() == 0
6069 || (in_attr[i].int_value() == 'S'
6070 && (out_attr[i].int_value() == 'A'
6071 || out_attr[i].int_value() == 'R')))
6072 ; // Do nothing.
6073 else
6074 {
6075 gold_error
6076 (_("conflicting architecture profiles %c/%c"),
6077 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
6078 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
6079 }
6080 }
6081 break;
6082 case elfcpp::Tag_VFP_arch:
6083 {
6084 static const struct
6085 {
6086 int ver;
6087 int regs;
6088 } vfp_versions[7] =
6089 {
6090 {0, 0},
6091 {1, 16},
6092 {2, 16},
6093 {3, 32},
6094 {3, 16},
6095 {4, 32},
6096 {4, 16}
6097 };
6098
6099 // Values greater than 6 aren't defined, so just pick the
6100 // biggest.
6101 if (in_attr[i].int_value() > 6
6102 && in_attr[i].int_value() > out_attr[i].int_value())
6103 {
6104 *out_attr = *in_attr;
6105 break;
6106 }
6107 // The output uses the superset of input features
6108 // (ISA version) and registers.
6109 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
6110 vfp_versions[out_attr[i].int_value()].ver);
6111 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
6112 vfp_versions[out_attr[i].int_value()].regs);
6113 // This assumes all possible supersets are also a valid
6114 // options.
6115 int newval;
6116 for (newval = 6; newval > 0; newval--)
6117 {
6118 if (regs == vfp_versions[newval].regs
6119 && ver == vfp_versions[newval].ver)
6120 break;
6121 }
6122 out_attr[i].set_int_value(newval);
6123 }
6124 break;
6125 case elfcpp::Tag_PCS_config:
6126 if (out_attr[i].int_value() == 0)
6127 out_attr[i].set_int_value(in_attr[i].int_value());
6128 else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
6129 {
6130 // It's sometimes ok to mix different configs, so this is only
6131 // a warning.
6132 gold_warning(_("%s: conflicting platform configuration"), name);
6133 }
6134 break;
6135 case elfcpp::Tag_ABI_PCS_R9_use:
6136 if (in_attr[i].int_value() != out_attr[i].int_value()
6137 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
6138 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
6139 {
6140 gold_error(_("%s: conflicting use of R9"), name);
6141 }
6142 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
6143 out_attr[i].set_int_value(in_attr[i].int_value());
6144 break;
6145 case elfcpp::Tag_ABI_PCS_RW_data:
6146 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
6147 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
6148 != elfcpp::AEABI_R9_SB)
6149 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
6150 != elfcpp::AEABI_R9_unused))
6151 {
6152 gold_error(_("%s: SB relative addressing conflicts with use "
6153 "of R9"),
6154 name);
6155 }
6156 // Use the smallest value specified.
6157 if (in_attr[i].int_value() < out_attr[i].int_value())
6158 out_attr[i].set_int_value(in_attr[i].int_value());
6159 break;
6160 case elfcpp::Tag_ABI_PCS_wchar_t:
6161 // FIXME: Make it possible to turn off this warning.
6162 if (out_attr[i].int_value()
6163 && in_attr[i].int_value()
6164 && out_attr[i].int_value() != in_attr[i].int_value())
6165 {
6166 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
6167 "use %u-byte wchar_t; use of wchar_t values "
6168 "across objects may fail"),
6169 name, in_attr[i].int_value(),
6170 out_attr[i].int_value());
6171 }
6172 else if (in_attr[i].int_value() && !out_attr[i].int_value())
6173 out_attr[i].set_int_value(in_attr[i].int_value());
6174 break;
6175 case elfcpp::Tag_ABI_enum_size:
6176 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
6177 {
6178 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
6179 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
6180 {
6181 // The existing object is compatible with anything.
6182 // Use whatever requirements the new object has.
6183 out_attr[i].set_int_value(in_attr[i].int_value());
6184 }
6185 // FIXME: Make it possible to turn off this warning.
6186 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
6187 && out_attr[i].int_value() != in_attr[i].int_value())
6188 {
6189 unsigned int in_value = in_attr[i].int_value();
6190 unsigned int out_value = out_attr[i].int_value();
6191 gold_warning(_("%s uses %s enums yet the output is to use "
6192 "%s enums; use of enum values across objects "
6193 "may fail"),
6194 name,
6195 this->aeabi_enum_name(in_value).c_str(),
6196 this->aeabi_enum_name(out_value).c_str());
6197 }
6198 }
6199 break;
6200 case elfcpp::Tag_ABI_VFP_args:
6201 // Aready done.
6202 break;
6203 case elfcpp::Tag_ABI_WMMX_args:
6204 if (in_attr[i].int_value() != out_attr[i].int_value())
6205 {
6206 gold_error(_("%s uses iWMMXt register arguments, output does "
6207 "not"),
6208 name);
6209 }
6210 break;
6211 case Object_attribute::Tag_compatibility:
6212 // Merged in target-independent code.
6213 break;
6214 case elfcpp::Tag_ABI_HardFP_use:
6215 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
6216 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
6217 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
6218 out_attr[i].set_int_value(3);
6219 else if (in_attr[i].int_value() > out_attr[i].int_value())
6220 out_attr[i].set_int_value(in_attr[i].int_value());
6221 break;
6222 case elfcpp::Tag_ABI_FP_16bit_format:
6223 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
6224 {
6225 if (in_attr[i].int_value() != out_attr[i].int_value())
6226 gold_error(_("fp16 format mismatch between %s and output"),
6227 name);
6228 }
6229 if (in_attr[i].int_value() != 0)
6230 out_attr[i].set_int_value(in_attr[i].int_value());
6231 break;
6232
6233 case elfcpp::Tag_nodefaults:
6234 // This tag is set if it exists, but the value is unused (and is
6235 // typically zero). We don't actually need to do anything here -
6236 // the merge happens automatically when the type flags are merged
6237 // below.
6238 break;
6239 case elfcpp::Tag_also_compatible_with:
6240 // Already done in Tag_CPU_arch.
6241 break;
6242 case elfcpp::Tag_conformance:
6243 // Keep the attribute if it matches. Throw it away otherwise.
6244 // No attribute means no claim to conform.
6245 if (in_attr[i].string_value() != out_attr[i].string_value())
6246 out_attr[i].set_string_value("");
6247 break;
6248
6249 default:
6250 {
6251 const char* err_object = NULL;
6252
6253 // The "known_obj_attributes" table does contain some undefined
6254 // attributes. Ensure that there are unused.
6255 if (out_attr[i].int_value() != 0
6256 || out_attr[i].string_value() != "")
6257 err_object = "output";
6258 else if (in_attr[i].int_value() != 0
6259 || in_attr[i].string_value() != "")
6260 err_object = name;
6261
6262 if (err_object != NULL)
6263 {
6264 // Attribute numbers >=64 (mod 128) can be safely ignored.
6265 if ((i & 127) < 64)
6266 gold_error(_("%s: unknown mandatory EABI object attribute "
6267 "%d"),
6268 err_object, i);
6269 else
6270 gold_warning(_("%s: unknown EABI object attribute %d"),
6271 err_object, i);
6272 }
6273
6274 // Only pass on attributes that match in both inputs.
6275 if (!in_attr[i].matches(out_attr[i]))
6276 {
6277 out_attr[i].set_int_value(0);
6278 out_attr[i].set_string_value("");
6279 }
6280 }
6281 }
6282
6283 // If out_attr was copied from in_attr then it won't have a type yet.
6284 if (in_attr[i].type() && !out_attr[i].type())
6285 out_attr[i].set_type(in_attr[i].type());
6286 }
6287
6288 // Merge Tag_compatibility attributes and any common GNU ones.
6289 this->attributes_section_data_->merge(name, pasd);
6290
6291 // Check for any attributes not known on ARM.
6292 typedef Vendor_object_attributes::Other_attributes Other_attributes;
6293 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
6294 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
6295 Other_attributes* out_other_attributes =
6296 this->attributes_section_data_->other_attributes(vendor);
6297 Other_attributes::iterator out_iter = out_other_attributes->begin();
6298
6299 while (in_iter != in_other_attributes->end()
6300 || out_iter != out_other_attributes->end())
6301 {
6302 const char* err_object = NULL;
6303 int err_tag = 0;
6304
6305 // The tags for each list are in numerical order.
6306 // If the tags are equal, then merge.
6307 if (out_iter != out_other_attributes->end()
6308 && (in_iter == in_other_attributes->end()
6309 || in_iter->first > out_iter->first))
6310 {
6311 // This attribute only exists in output. We can't merge, and we
6312 // don't know what the tag means, so delete it.
6313 err_object = "output";
6314 err_tag = out_iter->first;
6315 int saved_tag = out_iter->first;
6316 delete out_iter->second;
6317 out_other_attributes->erase(out_iter);
6318 out_iter = out_other_attributes->upper_bound(saved_tag);
6319 }
6320 else if (in_iter != in_other_attributes->end()
6321 && (out_iter != out_other_attributes->end()
6322 || in_iter->first < out_iter->first))
6323 {
6324 // This attribute only exists in input. We can't merge, and we
6325 // don't know what the tag means, so ignore it.
6326 err_object = name;
6327 err_tag = in_iter->first;
6328 ++in_iter;
6329 }
6330 else // The tags are equal.
6331 {
6332 // As present, all attributes in the list are unknown, and
6333 // therefore can't be merged meaningfully.
6334 err_object = "output";
6335 err_tag = out_iter->first;
6336
6337 // Only pass on attributes that match in both inputs.
6338 if (!in_iter->second->matches(*(out_iter->second)))
6339 {
6340 // No match. Delete the attribute.
6341 int saved_tag = out_iter->first;
6342 delete out_iter->second;
6343 out_other_attributes->erase(out_iter);
6344 out_iter = out_other_attributes->upper_bound(saved_tag);
6345 }
6346 else
6347 {
6348 // Matched. Keep the attribute and move to the next.
6349 ++out_iter;
6350 ++in_iter;
6351 }
6352 }
6353
6354 if (err_object)
6355 {
6356 // Attribute numbers >=64 (mod 128) can be safely ignored. */
6357 if ((err_tag & 127) < 64)
6358 {
6359 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
6360 err_object, err_tag);
6361 }
6362 else
6363 {
6364 gold_warning(_("%s: unknown EABI object attribute %d"),
6365 err_object, err_tag);
6366 }
6367 }
6368 }
6369}
6370
55da9579
DK
6371// Return whether a relocation type used the LSB to distinguish THUMB
6372// addresses.
6373template<bool big_endian>
6374bool
6375Target_arm<big_endian>::reloc_uses_thumb_bit(unsigned int r_type)
6376{
6377 switch (r_type)
6378 {
6379 case elfcpp::R_ARM_PC24:
6380 case elfcpp::R_ARM_ABS32:
6381 case elfcpp::R_ARM_REL32:
6382 case elfcpp::R_ARM_SBREL32:
6383 case elfcpp::R_ARM_THM_CALL:
6384 case elfcpp::R_ARM_GLOB_DAT:
6385 case elfcpp::R_ARM_JUMP_SLOT:
6386 case elfcpp::R_ARM_GOTOFF32:
6387 case elfcpp::R_ARM_PLT32:
6388 case elfcpp::R_ARM_CALL:
6389 case elfcpp::R_ARM_JUMP24:
6390 case elfcpp::R_ARM_THM_JUMP24:
6391 case elfcpp::R_ARM_SBREL31:
6392 case elfcpp::R_ARM_PREL31:
6393 case elfcpp::R_ARM_MOVW_ABS_NC:
6394 case elfcpp::R_ARM_MOVW_PREL_NC:
6395 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
6396 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
6397 case elfcpp::R_ARM_THM_JUMP19:
6398 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
6399 case elfcpp::R_ARM_ALU_PC_G0_NC:
6400 case elfcpp::R_ARM_ALU_PC_G0:
6401 case elfcpp::R_ARM_ALU_PC_G1_NC:
6402 case elfcpp::R_ARM_ALU_PC_G1:
6403 case elfcpp::R_ARM_ALU_PC_G2:
6404 case elfcpp::R_ARM_ALU_SB_G0_NC:
6405 case elfcpp::R_ARM_ALU_SB_G0:
6406 case elfcpp::R_ARM_ALU_SB_G1_NC:
6407 case elfcpp::R_ARM_ALU_SB_G1:
6408 case elfcpp::R_ARM_ALU_SB_G2:
6409 case elfcpp::R_ARM_MOVW_BREL_NC:
6410 case elfcpp::R_ARM_MOVW_BREL:
6411 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
6412 case elfcpp::R_ARM_THM_MOVW_BREL:
6413 return true;
6414 default:
6415 return false;
6416 }
6417}
6418
6419// Stub-generation methods for Target_arm.
6420
6421// Make a new Arm_input_section object.
6422
6423template<bool big_endian>
6424Arm_input_section<big_endian>*
6425Target_arm<big_endian>::new_arm_input_section(
91d6fa6a
NC
6426 Relobj* rel_obj,
6427 unsigned int sec_shndx)
55da9579 6428{
91d6fa6a 6429 Input_section_specifier iss(rel_obj, sec_shndx);
55da9579
DK
6430
6431 Arm_input_section<big_endian>* arm_input_section =
91d6fa6a 6432 new Arm_input_section<big_endian>(rel_obj, sec_shndx);
55da9579
DK
6433 arm_input_section->init();
6434
6435 // Register new Arm_input_section in map for look-up.
6436 std::pair<typename Arm_input_section_map::iterator, bool> ins =
6437 this->arm_input_section_map_.insert(std::make_pair(iss, arm_input_section));
6438
6439 // Make sure that it we have not created another Arm_input_section
6440 // for this input section already.
6441 gold_assert(ins.second);
6442
6443 return arm_input_section;
6444}
6445
6446// Find the Arm_input_section object corresponding to the SHNDX-th input
6447// section of RELOBJ.
6448
6449template<bool big_endian>
6450Arm_input_section<big_endian>*
6451Target_arm<big_endian>::find_arm_input_section(
91d6fa6a
NC
6452 Relobj* rel_obj,
6453 unsigned int sec_shndx) const
55da9579 6454{
91d6fa6a 6455 Input_section_specifier iss(rel_obj, sec_shndx);
55da9579
DK
6456 typename Arm_input_section_map::const_iterator p =
6457 this->arm_input_section_map_.find(iss);
6458 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
6459}
6460
6461// Make a new stub table.
6462
6463template<bool big_endian>
6464Stub_table<big_endian>*
6465Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
6466{
91d6fa6a 6467 Stub_table<big_endian>* stubtable =
55da9579 6468 new Stub_table<big_endian>(owner);
91d6fa6a 6469 this->stub_tables_.push_back(stubtable);
55da9579 6470
91d6fa6a
NC
6471 stubtable->set_address(owner->address() + owner->data_size());
6472 stubtable->set_file_offset(owner->offset() + owner->data_size());
6473 stubtable->finalize_data_size();
55da9579 6474
91d6fa6a 6475 return stubtable;
55da9579
DK
6476}
6477
eb44217c
DK
6478// Scan a relocation for stub generation.
6479
6480template<bool big_endian>
6481void
6482Target_arm<big_endian>::scan_reloc_for_stub(
6483 const Relocate_info<32, big_endian>* relinfo,
6484 unsigned int r_type,
6485 const Sized_symbol<32>* gsym,
6486 unsigned int r_sym,
6487 const Symbol_value<32>* psymval,
6488 elfcpp::Elf_types<32>::Elf_Swxword addend,
6489 Arm_address address)
6490{
91d6fa6a 6491 typedef typename Target_arm<big_endian>::Relocate relocate;
eb44217c
DK
6492
6493 const Arm_relobj<big_endian>* arm_relobj =
6494 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
6495
6496 bool target_is_thumb;
6497 Symbol_value<32> symval;
6498 if (gsym != NULL)
6499 {
6500 // This is a global symbol. Determine if we use PLT and if the
6501 // final target is THUMB.
91d6fa6a 6502 if (gsym->use_plt_offset(relocate::reloc_is_non_pic(r_type)))
eb44217c
DK
6503 {
6504 // This uses a PLT, change the symbol value.
6505 symval.set_output_value(this->plt_section()->address()
6506 + gsym->plt_offset());
6507 psymval = &symval;
6508 target_is_thumb = false;
6509 }
6510 else if (gsym->is_undefined())
6511 // There is no need to generate a stub symbol is undefined.
6512 return;
6513 else
6514 {
6515 target_is_thumb =
6516 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
6517 || (gsym->type() == elfcpp::STT_FUNC
6518 && !gsym->is_undefined()
6519 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
6520 }
6521 }
6522 else
6523 {
6524 // This is a local symbol. Determine if the final target is THUMB.
6525 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
6526 }
6527
6528 // Strip LSB if this points to a THUMB target.
6529 if (target_is_thumb
6530 && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
6531 && ((psymval->value(arm_relobj, 0) & 1) != 0))
6532 {
6533 Arm_address stripped_value =
6534 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
6535 symval.set_output_value(stripped_value);
6536 psymval = &symval;
6537 }
6538
6539 // Get the symbol value.
6540 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
6541
6542 // Owing to pipelining, the PC relative branches below actually skip
6543 // two instructions when the branch offset is 0.
6544 Arm_address destination;
6545 switch (r_type)
6546 {
6547 case elfcpp::R_ARM_CALL:
6548 case elfcpp::R_ARM_JUMP24:
6549 case elfcpp::R_ARM_PLT32:
6550 // ARM branches.
6551 destination = value + addend + 8;
6552 break;
6553 case elfcpp::R_ARM_THM_CALL:
6554 case elfcpp::R_ARM_THM_XPC22:
6555 case elfcpp::R_ARM_THM_JUMP24:
6556 case elfcpp::R_ARM_THM_JUMP19:
6557 // THUMB branches.
6558 destination = value + addend + 4;
6559 break;
6560 default:
6561 gold_unreachable();
6562 }
6563
6564 Stub_type stub_type =
6565 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
6566 target_is_thumb);
6567
6568 // This reloc does not need a stub.
6569 if (stub_type == arm_stub_none)
6570 return;
6571
6572 // Try looking up an existing stub from a stub table.
91d6fa6a 6573 Stub_table<big_endian>* stubtable =
eb44217c 6574 arm_relobj->stub_table(relinfo->data_shndx);
91d6fa6a 6575 gold_assert(stubtable != NULL);
eb44217c
DK
6576
6577 // Locate stub by destination.
6578 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
6579
6580 // Create a stub if there is not one already
91d6fa6a 6581 Reloc_stub* stub = stubtable->find_reloc_stub(stub_key);
eb44217c
DK
6582 if (stub == NULL)
6583 {
6584 // create a new stub and add it to stub table.
6585 stub = this->stub_factory().make_reloc_stub(stub_type);
91d6fa6a 6586 stubtable->add_reloc_stub(stub, stub_key);
eb44217c
DK
6587 }
6588
6589 // Record the destination address.
6590 stub->set_destination_address(destination
6591 | (target_is_thumb ? 1 : 0));
6592}
6593
6594// This function scans a relocation sections for stub generation.
6595// The template parameter Relocate must be a class type which provides
6596// a single function, relocate(), which implements the machine
6597// specific part of a relocation.
6598
6599// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
6600// SHT_REL or SHT_RELA.
6601
6602// PRELOCS points to the relocation data. RELOC_COUNT is the number
6603// of relocs. OUTPUT_SECTION is the output section.
6604// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
6605// mapped to output offsets.
6606
6607// VIEW is the section data, VIEW_ADDRESS is its memory address, and
6608// VIEW_SIZE is the size. These refer to the input section, unless
6609// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
6610// the output section.
6611
6612template<bool big_endian>
6613template<int sh_type>
6614void inline
6615Target_arm<big_endian>::scan_reloc_section_for_stubs(
6616 const Relocate_info<32, big_endian>* relinfo,
6617 const unsigned char* prelocs,
6618 size_t reloc_count,
6619 Output_section* output_section,
6620 bool needs_special_offset_handling,
6621 const unsigned char* view,
6622 elfcpp::Elf_types<32>::Elf_Addr view_address,
6623 section_size_type)
6624{
6625 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
6626 const int reloc_size =
6627 Reloc_types<sh_type, 32, big_endian>::reloc_size;
6628
6629 Arm_relobj<big_endian>* arm_object =
6630 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
6631 unsigned int local_count = arm_object->local_symbol_count();
6632
6633 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
6634
6635 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6636 {
6637 Reltype reloc(prelocs);
6638
6639 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
6640 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6641 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6642
6643 r_type = this->get_real_reloc_type(r_type);
6644
6645 // Only a few relocation types need stubs.
6646 if ((r_type != elfcpp::R_ARM_CALL)
6647 && (r_type != elfcpp::R_ARM_JUMP24)
6648 && (r_type != elfcpp::R_ARM_PLT32)
6649 && (r_type != elfcpp::R_ARM_THM_CALL)
6650 && (r_type != elfcpp::R_ARM_THM_XPC22)
6651 && (r_type != elfcpp::R_ARM_THM_JUMP24)
6652 && (r_type != elfcpp::R_ARM_THM_JUMP19))
6653 continue;
6654
91d6fa6a 6655 section_offset_type off =
eb44217c
DK
6656 convert_to_section_size_type(reloc.get_r_offset());
6657
6658 if (needs_special_offset_handling)
6659 {
91d6fa6a
NC
6660 off = output_section->output_offset(relinfo->object,
6661 relinfo->data_shndx,
6662 off);
6663 if (off == -1)
eb44217c
DK
6664 continue;
6665 }
6666
6667 // Get the addend.
6668 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
6669 elfcpp::Elf_types<32>::Elf_Swxword addend =
91d6fa6a 6670 stub_addend_reader(r_type, view + off, reloc);
eb44217c
DK
6671
6672 const Sized_symbol<32>* sym;
6673
6674 Symbol_value<32> symval;
6675 const Symbol_value<32> *psymval;
6676 if (r_sym < local_count)
6677 {
6678 sym = NULL;
6679 psymval = arm_object->local_symbol(r_sym);
6680
6681 // If the local symbol belongs to a section we are discarding,
6682 // and that section is a debug section, try to find the
6683 // corresponding kept section and map this symbol to its
6684 // counterpart in the kept section. The symbol must not
6685 // correspond to a section we are folding.
6686 bool is_ordinary;
91d6fa6a 6687 unsigned int sec_shndx = psymval->input_shndx(&is_ordinary);
eb44217c 6688 if (is_ordinary
91d6fa6a
NC
6689 && sec_shndx != elfcpp::SHN_UNDEF
6690 && !arm_object->is_section_included(sec_shndx)
6691 && !(relinfo->symtab->is_section_folded(arm_object, sec_shndx)))
eb44217c
DK
6692 {
6693 if (comdat_behavior == CB_UNDETERMINED)
6694 {
6695 std::string name =
6696 arm_object->section_name(relinfo->data_shndx);
6697 comdat_behavior = get_comdat_behavior(name.c_str());
6698 }
6699 if (comdat_behavior == CB_PRETEND)
6700 {
6701 bool found;
6702 typename elfcpp::Elf_types<32>::Elf_Addr value =
91d6fa6a 6703 arm_object->map_to_kept_section(sec_shndx, &found);
eb44217c
DK
6704 if (found)
6705 symval.set_output_value(value + psymval->input_value());
6706 else
6707 symval.set_output_value(0);
6708 }
6709 else
6710 {
6711 symval.set_output_value(0);
6712 }
6713 symval.set_no_output_symtab_entry();
6714 psymval = &symval;
6715 }
6716 }
6717 else
6718 {
6719 const Symbol* gsym = arm_object->global_symbol(r_sym);
6720 gold_assert(gsym != NULL);
6721 if (gsym->is_forwarder())
6722 gsym = relinfo->symtab->resolve_forwards(gsym);
6723
6724 sym = static_cast<const Sized_symbol<32>*>(gsym);
6725 if (sym->has_symtab_index())
6726 symval.set_output_symtab_index(sym->symtab_index());
6727 else
6728 symval.set_no_output_symtab_entry();
6729
6730 // We need to compute the would-be final value of this global
6731 // symbol.
6732 const Symbol_table* symtab = relinfo->symtab;
6733 const Sized_symbol<32>* sized_symbol =
6734 symtab->get_sized_symbol<32>(gsym);
6735 Symbol_table::Compute_final_value_status status;
6736 Arm_address value =
6737 symtab->compute_final_value<32>(sized_symbol, &status);
6738
6739 // Skip this if the symbol has not output section.
6740 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
6741 continue;
6742
6743 symval.set_output_value(value);
6744 psymval = &symval;
6745 }
6746
6747 // If symbol is a section symbol, we don't know the actual type of
6748 // destination. Give up.
6749 if (psymval->is_section_symbol())
6750 continue;
6751
6752 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
91d6fa6a 6753 addend, view_address + off);
eb44217c
DK
6754 }
6755}
6756
6757// Scan an input section for stub generation.
6758
6759template<bool big_endian>
6760void
6761Target_arm<big_endian>::scan_section_for_stubs(
6762 const Relocate_info<32, big_endian>* relinfo,
6763 unsigned int sh_type,
6764 const unsigned char* prelocs,
6765 size_t reloc_count,
6766 Output_section* output_section,
6767 bool needs_special_offset_handling,
6768 const unsigned char* view,
6769 Arm_address view_address,
6770 section_size_type view_size)
6771{
6772 if (sh_type == elfcpp::SHT_REL)
6773 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
6774 relinfo,
6775 prelocs,
6776 reloc_count,
6777 output_section,
6778 needs_special_offset_handling,
6779 view,
6780 view_address,
6781 view_size);
6782 else if (sh_type == elfcpp::SHT_RELA)
6783 // We do not support RELA type relocations yet. This is provided for
6784 // completeness.
6785 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
6786 relinfo,
6787 prelocs,
6788 reloc_count,
6789 output_section,
6790 needs_special_offset_handling,
6791 view,
6792 view_address,
6793 view_size);
6794 else
6795 gold_unreachable();
6796}
6797
6798// Group input sections for stub generation.
6799//
6800// We goup input sections in an output sections so that the total size,
6801// including any padding space due to alignment is smaller than GROUP_SIZE
6802// unless the only input section in group is bigger than GROUP_SIZE already.
6803// Then an ARM stub table is created to follow the last input section
6804// in group. For each group an ARM stub table is created an is placed
6805// after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
6806// extend the group after the stub table.
6807
6808template<bool big_endian>
6809void
6810Target_arm<big_endian>::group_sections(
91d6fa6a 6811 Layout* alayout,
eb44217c
DK
6812 section_size_type group_size,
6813 bool stubs_always_after_branch)
6814{
6815 // Group input sections and insert stub table
6816 Layout::Section_list section_list;
91d6fa6a 6817 alayout->get_allocated_sections(&section_list);
eb44217c
DK
6818 for (Layout::Section_list::const_iterator p = section_list.begin();
6819 p != section_list.end();
6820 ++p)
6821 {
6822 Arm_output_section<big_endian>* output_section =
6823 Arm_output_section<big_endian>::as_arm_output_section(*p);
6824 output_section->group_sections(group_size, stubs_always_after_branch,
6825 this);
6826 }
6827}
6828
6829// Relaxation hook. This is where we do stub generation.
6830
6831template<bool big_endian>
6832bool
6833Target_arm<big_endian>::do_relax(
6834 int pass,
6835 const Input_objects* input_objects,
6836 Symbol_table* symtab,
91d6fa6a 6837 Layout* alayout)
eb44217c
DK
6838{
6839 // No need to generate stubs if this is a relocatable link.
6840 gold_assert(!parameters->options().relocatable());
6841
6842 // If this is the first pass, we need to group input sections into
6843 // stub groups.
6844 if (pass == 1)
6845 {
6846 // Determine the stub group size. The group size is the absolute
6847 // value of the parameter --stub-group-size. If --stub-group-size
6848 // is passed a negative value, we restict stubs to be always after
6849 // the stubbed branches.
6850 int32_t stub_group_size_param =
6851 parameters->options().stub_group_size();
6852 bool stubs_always_after_branch = stub_group_size_param < 0;
6853 section_size_type stub_group_size = abs(stub_group_size_param);
6854
6855 if (stub_group_size == 1)
6856 {
6857 // Default value.
6858 // Thumb branch range is +-4MB has to be used as the default
6859 // maximum size (a given section can contain both ARM and Thumb
6860 // code, so the worst case has to be taken into account).
6861 //
6862 // This value is 24K less than that, which allows for 2025
6863 // 12-byte stubs. If we exceed that, then we will fail to link.
6864 // The user will have to relink with an explicit group size
6865 // option.
6866 stub_group_size = 4170000;
6867 }
6868
91d6fa6a 6869 group_sections(alayout, stub_group_size, stubs_always_after_branch);
eb44217c
DK
6870 }
6871
6872 // clear changed flags for all stub_tables
6873 typedef typename Stub_table_list::iterator Stub_table_iterator;
6874 for (Stub_table_iterator sp = this->stub_tables_.begin();
6875 sp != this->stub_tables_.end();
6876 ++sp)
6877 (*sp)->set_has_been_changed(false);
6878
6879 // scan relocs for stubs
6880 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
6881 op != input_objects->relobj_end();
6882 ++op)
6883 {
6884 Arm_relobj<big_endian>* arm_relobj =
6885 Arm_relobj<big_endian>::as_arm_relobj(*op);
91d6fa6a 6886 arm_relobj->scan_sections_for_stubs(this, symtab, alayout);
eb44217c
DK
6887 }
6888
6889 bool any_stub_table_changed = false;
6890 for (Stub_table_iterator sp = this->stub_tables_.begin();
6891 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
6892 ++sp)
6893 {
6894 if ((*sp)->has_been_changed())
6895 any_stub_table_changed = true;
6896 }
6897
6898 return any_stub_table_changed;
6899}
6900
43d12afe
DK
6901// Relocate a stub.
6902
6903template<bool big_endian>
6904void
6905Target_arm<big_endian>::relocate_stub(
6906 Reloc_stub* stub,
6907 const Relocate_info<32, big_endian>* relinfo,
6908 Output_section* output_section,
6909 unsigned char* view,
6910 Arm_address address,
6911 section_size_type view_size)
6912{
6913 Relocate relocate;
91d6fa6a
NC
6914 const Stub_template* stubtemplate = stub->stub_template();
6915 for (size_t i = 0; i < stubtemplate->reloc_count(); i++)
43d12afe 6916 {
91d6fa6a
NC
6917 size_t reloc_insn_index = stubtemplate->reloc_insn_index(i);
6918 const Insn_template* insn = &stubtemplate->insns()[reloc_insn_index];
43d12afe
DK
6919
6920 unsigned int r_type = insn->r_type();
91d6fa6a 6921 section_size_type reloc_offset = stubtemplate->reloc_offset(i);
43d12afe
DK
6922 section_size_type reloc_size = insn->size();
6923 gold_assert(reloc_offset + reloc_size <= view_size);
6924
6925 // This is the address of the stub destination.
6926 Arm_address target = stub->reloc_target(i);
6927 Symbol_value<32> symval;
6928 symval.set_output_value(target);
6929
6930 // Synthesize a fake reloc just in case. We don't have a symbol so
6931 // we use 0.
6932 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
6933 memset(reloc_buffer, 0, sizeof(reloc_buffer));
6934 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
6935 reloc_write.put_r_offset(reloc_offset);
6936 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
6937 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
6938
6939 relocate.relocate(relinfo, this, output_section,
6940 this->fake_relnum_for_stubs, rel, r_type,
6941 NULL, &symval, view + reloc_offset,
6942 address + reloc_offset, reloc_size);
6943 }
6944}
6945
a0351a69
DK
6946// Determine whether an object attribute tag takes an integer, a
6947// string or both.
6948
6949template<bool big_endian>
6950int
6951Target_arm<big_endian>::do_attribute_arg_type(int tag) const
6952{
6953 if (tag == Object_attribute::Tag_compatibility)
6954 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
6955 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
6956 else if (tag == elfcpp::Tag_nodefaults)
6957 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
6958 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
6959 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
6960 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
6961 else if (tag < 32)
6962 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
6963 else
6964 return ((tag & 1) != 0
6965 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
6966 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
6967}
6968
6969// Reorder attributes.
6970//
6971// The ABI defines that Tag_conformance should be emitted first, and that
6972// Tag_nodefaults should be second (if either is defined). This sets those
6973// two positions, and bumps up the position of all the remaining tags to
6974// compensate.
6975
6976template<bool big_endian>
6977int
6978Target_arm<big_endian>::do_attributes_order(int num) const
6979{
6980 // Reorder the known object attributes in output. We want to move
6981 // Tag_conformance to position 4 and Tag_conformance to position 5
6982 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
6983 if (num == 4)
6984 return elfcpp::Tag_conformance;
6985 if (num == 5)
6986 return elfcpp::Tag_nodefaults;
6987 if ((num - 2) < elfcpp::Tag_nodefaults)
6988 return num - 2;
6989 if ((num - 1) < elfcpp::Tag_conformance)
6990 return num - 1;
6991 return num;
6992}
4a657b0d
DK
6993
6994template<bool big_endian>
6995class Target_selector_arm : public Target_selector
6996{
6997 public:
6998 Target_selector_arm()
6999 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
7000 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
7001 { }
7002
7003 Target*
7004 do_instantiate_target()
7005 { return new Target_arm<big_endian>(); }
7006};
7007
7008Target_selector_arm<false> target_selector_arm;
7009Target_selector_arm<true> target_selector_armbe;
7010
7011} // End anonymous namespace.
This page took 0.390135 seconds and 4 git commands to generate.