Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b90efa5b 3// Copyright (C) 2009-2015 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
fa89cc82
HS
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
fa89cc82
HS
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
4a657b0d
DK
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
ebabffbd 2282 Arm_address view_address,
364c7fa5
ILT
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
4a657b0d
DK
2285
2286 // Scan the relocs during a relocatable link.
2287 void
ad0f2072 2288 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2289 Layout* layout,
6fa2a40b 2290 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
7404fe1b 2301 // Emit relocations for a section.
4a657b0d 2302 void
7404fe1b
AM
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
62fe925a
RM
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
7404fe1b
AM
2310 const Relocatable_relocs*,
2311 unsigned char* view,
2312 Arm_address view_address,
2313 section_size_type view_size,
2314 unsigned char* reloc_view,
2315 section_size_type reloc_view_size);
4a657b0d 2316
5c388529
DK
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 void
2320 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321 unsigned int sh_type,
2322 const unsigned char* preloc_in,
2323 size_t relnum,
2324 Output_section* output_section,
62fe925a
RM
2325 typename elfcpp::Elf_types<32>::Elf_Off
2326 offset_in_output_section,
5c388529
DK
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2e702c99 2332
4a657b0d
DK
2333 // Return whether SYM is defined by the ABI.
2334 bool
2c54b4f4 2335 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
c8761b9a
DK
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2342
94cdfcff
DK
2343 // Return the size of the GOT section.
2344 section_size_type
0e70b911 2345 got_size() const
94cdfcff
DK
2346 {
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2349 }
2350
0e70b911
CC
2351 // Return the number of entries in the GOT.
2352 unsigned int
2353 got_entry_count() const
2354 {
2355 if (!this->has_got_section())
2356 return 0;
2357 return this->got_size() / 4;
2358 }
2359
2360 // Return the number of entries in the PLT.
2361 unsigned int
2362 plt_entry_count() const;
2363
2364 // Return the offset of the first non-reserved PLT entry.
2365 unsigned int
2366 first_plt_entry_offset() const;
2367
2368 // Return the size of each PLT entry.
2369 unsigned int
2370 plt_entry_size() const;
2371
fa89cc82
HS
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 Reloc_section*
2374 rel_irelative_section(Layout*);
2375
4a657b0d 2376 // Map platform-specific reloc types
a6d1ef57 2377 static unsigned int
ca09d69a 2378 get_real_reloc_type(unsigned int r_type);
4a657b0d 2379
55da9579
DK
2380 //
2381 // Methods to support stub-generations.
2382 //
2e702c99 2383
55da9579
DK
2384 // Return the stub factory
2385 const Stub_factory&
2386 stub_factory() const
2387 { return this->stub_factory_; }
2388
2389 // Make a new Arm_input_section object.
2390 Arm_input_section<big_endian>*
2391 new_arm_input_section(Relobj*, unsigned int);
2392
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section<big_endian>*
2ea97941 2396 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2397
2398 // Make a new Stub_table
2399 Stub_table<big_endian>*
2400 new_stub_table(Arm_input_section<big_endian>*);
2401
eb44217c
DK
2402 // Scan a section for stub generation.
2403 void
2404 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405 const unsigned char*, size_t, Output_section*,
2406 bool, const unsigned char*, Arm_address,
2407 section_size_type);
2408
2e702c99 2409 // Relocate a stub.
43d12afe 2410 void
2fb7225c 2411 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2412 Output_section*, unsigned char*, Arm_address,
2413 section_size_type);
2e702c99 2414
b569affa 2415 // Get the default ARM target.
43d12afe 2416 static Target_arm<big_endian>*
b569affa
DK
2417 default_target()
2418 {
2419 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2421 return static_cast<Target_arm<big_endian>*>(
2422 parameters->sized_target<32, big_endian>());
b569affa
DK
2423 }
2424
20138696
DK
2425 // Whether NAME belongs to a mapping symbol.
2426 static bool
2427 is_mapping_symbol_name(const char* name)
2428 {
2429 return (name
2430 && name[0] == '$'
2431 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432 && (name[2] == '\0' || name[2] == '.'));
2433 }
2434
a120bc7f
DK
2435 // Whether we work around the Cortex-A8 erratum.
2436 bool
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_; }
2439
85fdf906
AH
2440 // Whether we merge exidx entries in debuginfo.
2441 bool
2442 merge_exidx_entries() const
2443 { return parameters->options().merge_exidx_entries(); }
2444
a2162063
ILT
2445 // Whether we fix R_ARM_V4BX relocation.
2446 // 0 - do not fix
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2449 General_options::Fix_v4bx
a2162063 2450 fix_v4bx() const
9b2fd367 2451 { return parameters->options().fix_v4bx(); }
a2162063 2452
44272192
DK
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 void
2455 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456 section_size_type, section_size_type,
2457 const unsigned char*, Arm_address);
2458
41263c05
DK
2459 // Apply Cortex-A8 workaround to a branch.
2460 void
2461 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462 unsigned char*, Arm_address);
2463
d5b40221 2464 protected:
2e702c99
RM
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm<big_endian>*
fa89cc82
HS
2467 make_data_plt(Layout* layout,
2468 Arm_output_data_got<big_endian>* got,
2469 Output_data_space* got_plt,
2470 Output_data_space* got_irelative)
2471 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2e702c99 2472
eb44217c
DK
2473 // Make an ELF object.
2474 Object*
2475 do_make_elf_object(const std::string&, Input_file*, off_t,
2476 const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478 Object*
2479 do_make_elf_object(const std::string&, Input_file*, off_t,
2480 const elfcpp::Ehdr<32, !big_endian>&)
2481 { gold_unreachable(); }
2482
2483 Object*
2484 do_make_elf_object(const std::string&, Input_file*, off_t,
2485 const elfcpp::Ehdr<64, false>&)
2486 { gold_unreachable(); }
2487
2488 Object*
2489 do_make_elf_object(const std::string&, Input_file*, off_t,
2490 const elfcpp::Ehdr<64, true>&)
2491 { gold_unreachable(); }
2492
2493 // Make an output section.
2494 Output_section*
2495 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496 elfcpp::Elf_Xword flags)
2497 { return new Arm_output_section<big_endian>(name, type, flags); }
2498
d5b40221 2499 void
3bfcb652 2500 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2501
eb44217c
DK
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2504 bool
2505 do_may_relax() const
2506 { return !parameters->options().relocatable(); }
2507
2508 bool
f625ae50 2509 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2510
a0351a69
DK
2511 // Determine whether an object attribute tag takes an integer, a
2512 // string or both.
2513 int
2514 do_attribute_arg_type(int tag) const;
2515
2516 // Reorder tags during output.
2517 int
2518 do_attributes_order(int num) const;
2519
0d31c79d
DK
2520 // This is called when the target is selected as the default.
2521 void
2522 do_select_as_default_target()
2523 {
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2526 // as the default.
2527 gold_assert(arm_reloc_property_table == NULL);
2528 arm_reloc_property_table = new Arm_reloc_property_table();
2529 }
2530
b3ce541e
ILT
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2534 virtual bool
2535 do_can_check_for_function_pointers() const
2536 { return true; }
2537
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2540 virtual bool
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 {
2543 return (!is_prefix_of(".ARM.exidx", section_name)
2544 && !is_prefix_of(".ARM.extab", section_name)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546 }
2e702c99 2547
647f1574
DK
2548 virtual void
2549 do_define_standard_symbols(Symbol_table*, Layout*);
2550
2e702c99 2551 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
2552 do_make_data_plt(Layout* layout,
2553 Arm_output_data_got<big_endian>* got,
2554 Output_data_space* got_plt,
2555 Output_data_space* got_irelative)
2e702c99 2556 {
fa89cc82
HS
2557 gold_assert(got_plt != NULL && got_irelative != NULL);
2558 return new Output_data_plt_arm_standard<big_endian>(
2559 layout, got, got_plt, got_irelative);
2e702c99
RM
2560 }
2561
4a657b0d
DK
2562 private:
2563 // The class which scans relocations.
2564 class Scan
2565 {
2566 public:
2567 Scan()
bec53400 2568 : issued_non_pic_error_(false)
4a657b0d
DK
2569 { }
2570
95a2c8d6
RS
2571 static inline int
2572 get_reference_flags(unsigned int r_type);
2573
4a657b0d 2574 inline void
ad0f2072 2575 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2576 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2577 unsigned int data_shndx,
2578 Output_section* output_section,
2579 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2580 const elfcpp::Sym<32, big_endian>& lsym,
2581 bool is_discarded);
4a657b0d
DK
2582
2583 inline void
ad0f2072 2584 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2585 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2586 unsigned int data_shndx,
2587 Output_section* output_section,
2588 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589 Symbol* gsym);
2590
21bb3914
ST
2591 inline bool
2592 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2593 Sized_relobj_file<32, big_endian>* ,
2594 unsigned int ,
2595 Output_section* ,
2596 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2597 unsigned int ,
2e702c99 2598 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2599
2600 inline bool
2601 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2602 Sized_relobj_file<32, big_endian>* ,
2603 unsigned int ,
2604 Output_section* ,
2605 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2606 unsigned int , Symbol*);
21bb3914 2607
4a657b0d
DK
2608 private:
2609 static void
6fa2a40b 2610 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2611 unsigned int r_type);
2612
2613 static void
6fa2a40b 2614 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2615 unsigned int r_type, Symbol*);
bec53400
DK
2616
2617 void
2618 check_non_pic(Relobj*, unsigned int r_type);
2619
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2622 static bool
2623 symbol_needs_plt_entry(const Symbol* sym)
2624 {
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym->is_undefined() && !parameters->options().shared())
2627 return false;
2628
fa89cc82
HS
2629 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630 return true;
2631
bec53400
DK
2632 return (!parameters->doing_static_link()
2633 && (sym->type() == elfcpp::STT_FUNC
2634 || sym->type() == elfcpp::STT_ARM_TFUNC)
2635 && (sym->is_from_dynobj()
2636 || sym->is_undefined()
2637 || sym->is_preemptible()));
2638 }
2639
8a75a161
DK
2640 inline bool
2641 possible_function_pointer_reloc(unsigned int r_type);
2642
fa89cc82
HS
2643 // Whether a plt entry is needed for ifunc.
2644 bool
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646 unsigned int r_type);
2647
bec53400
DK
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_;
4a657b0d
DK
2650 };
2651
2652 // The class which implements relocation.
2653 class Relocate
2654 {
2655 public:
2656 Relocate()
2657 { }
2658
2659 ~Relocate()
2660 { }
2661
bec53400
DK
2662 // Return whether the static relocation needs to be applied.
2663 inline bool
2664 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2665 unsigned int r_type,
bec53400
DK
2666 bool is_32bit,
2667 Output_section* output_section);
2668
4a657b0d
DK
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2671 inline bool
2672 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673 Output_section*, size_t relnum,
2674 const elfcpp::Rel<32, big_endian>&,
2675 unsigned int r_type, const Sized_symbol<32>*,
2676 const Symbol_value<32>*,
ebabffbd 2677 unsigned char*, Arm_address,
4a657b0d 2678 section_size_type);
c121c671
DK
2679
2680 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2681 // reloc. This means the relocation type accesses a symbol not via
2682 // GOT or PLT.
c121c671 2683 static inline bool
ca09d69a 2684 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2685 {
2686 switch (r_type)
2687 {
f4e5969c
DK
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL:
2690 case elfcpp::R_ARM_GOT_ABS:
2691 case elfcpp::R_ARM_GOT_PREL:
2692 case elfcpp::R_ARM_GOT_BREL12:
2693 case elfcpp::R_ARM_PLT32_ABS:
2694 case elfcpp::R_ARM_TLS_GD32:
2695 case elfcpp::R_ARM_TLS_LDM32:
2696 case elfcpp::R_ARM_TLS_IE32:
2697 case elfcpp::R_ARM_TLS_IE12GP:
2698
2699 // These relocate types may use PLT entries.
c121c671 2700 case elfcpp::R_ARM_CALL:
f4e5969c 2701 case elfcpp::R_ARM_THM_CALL:
c121c671 2702 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2703 case elfcpp::R_ARM_THM_JUMP24:
2704 case elfcpp::R_ARM_THM_JUMP19:
2705 case elfcpp::R_ARM_PLT32:
2706 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2707 case elfcpp::R_ARM_PREL31:
2708 case elfcpp::R_ARM_SBREL31:
c121c671 2709 return false;
f4e5969c
DK
2710
2711 default:
2712 return true;
c121c671
DK
2713 }
2714 }
f96accdf
DK
2715
2716 private:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions<big_endian>::Status
2719 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2720 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2721 const Sized_symbol<32>*, const Symbol_value<32>*,
2722 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 section_size_type);
2724
4a657b0d
DK
2725 };
2726
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2730 {
2731 public:
2732 unsigned int
2733 get_size_for_reloc(unsigned int, Relobj*);
2734 };
2735
f96accdf
DK
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final, int r_type);
2740
94cdfcff 2741 // Get the GOT section, creating it if necessary.
4a54abbb 2742 Arm_output_data_got<big_endian>*
94cdfcff
DK
2743 got_section(Symbol_table*, Layout*);
2744
2745 // Get the GOT PLT section.
2746 Output_data_space*
2747 got_plt_section() const
2748 {
2749 gold_assert(this->got_plt_ != NULL);
2750 return this->got_plt_;
2751 }
2752
fa89cc82
HS
2753 // Create the PLT section.
2754 void
2755 make_plt_section(Symbol_table* symtab, Layout* layout);
2756
94cdfcff
DK
2757 // Create a PLT entry for a global symbol.
2758 void
2759 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
fa89cc82
HS
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762 void
2763 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764 Sized_relobj_file<32, big_endian>* relobj,
2765 unsigned int local_sym_index);
2766
f96accdf
DK
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768 void
2769 define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771 // Create a GOT entry for the TLS module index.
2772 unsigned int
2773 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2774 Sized_relobj_file<32, big_endian>* object);
f96accdf 2775
94cdfcff
DK
2776 // Get the PLT section.
2777 const Output_data_plt_arm<big_endian>*
2778 plt_section() const
2779 {
2780 gold_assert(this->plt_ != NULL);
2781 return this->plt_;
2782 }
2783
2784 // Get the dynamic reloc section, creating it if necessary.
2785 Reloc_section*
2786 rel_dyn_section(Layout*);
2787
f96accdf
DK
2788 // Get the section to use for TLS_DESC relocations.
2789 Reloc_section*
2790 rel_tls_desc_section(Layout*) const;
2791
94cdfcff
DK
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2795 bool
2796 may_need_copy_reloc(Symbol* gsym)
2797 {
966d4097
DK
2798 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym->may_need_copy_reloc());
94cdfcff
DK
2800 }
2801
2802 // Add a potential copy relocation.
2803 void
2804 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2805 Sized_relobj_file<32, big_endian>* object,
2ea97941 2806 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2807 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808 {
859d7987 2809 unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
94cdfcff
DK
2810 this->copy_relocs_.copy_reloc(symtab, layout,
2811 symtab->get_sized_symbol<32>(sym),
859d7987
CC
2812 object, shndx, output_section,
2813 r_type, reloc.get_r_offset(), 0,
94cdfcff
DK
2814 this->rel_dyn_section(layout));
2815 }
2816
d5b40221
DK
2817 // Whether two EABI versions are compatible.
2818 static bool
2819 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2820
2821 // Merge processor-specific flags from input object and those in the ELF
2822 // header of the output.
2823 void
2824 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2825
a0351a69
DK
2826 // Get the secondary compatible architecture.
2827 static int
2828 get_secondary_compatible_arch(const Attributes_section_data*);
2829
2830 // Set the secondary compatible architecture.
2831 static void
2832 set_secondary_compatible_arch(Attributes_section_data*, int);
2833
2834 static int
2835 tag_cpu_arch_combine(const char*, int, int*, int, int);
2836
2837 // Helper to print AEABI enum tag value.
2838 static std::string
2839 aeabi_enum_name(unsigned int);
2840
2841 // Return string value for TAG_CPU_name.
2842 static std::string
2843 tag_cpu_name_value(unsigned int);
2844
679af368
ILT
2845 // Query attributes object to see if integer divide instructions may be
2846 // present in an object.
2847 static bool
2848 attributes_accept_div(int arch, int profile,
2849 const Object_attribute* div_attr);
2850
2851 // Query attributes object to see if integer divide instructions are
2852 // forbidden to be in the object. This is not the inverse of
2853 // attributes_accept_div.
2854 static bool
2855 attributes_forbid_div(const Object_attribute* div_attr);
2856
a0351a69
DK
2857 // Merge object attributes from input object and those in the output.
2858 void
2859 merge_object_attributes(const char*, const Attributes_section_data*);
2860
2861 // Helper to get an AEABI object attribute
2862 Object_attribute*
2863 get_aeabi_object_attribute(int tag) const
2864 {
2865 Attributes_section_data* pasd = this->attributes_section_data_;
2866 gold_assert(pasd != NULL);
2867 Object_attribute* attr =
2868 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2869 gold_assert(attr != NULL);
2870 return attr;
2871 }
2872
eb44217c
DK
2873 //
2874 // Methods to support stub-generations.
2875 //
d5b40221 2876
eb44217c
DK
2877 // Group input sections for stub generation.
2878 void
f625ae50 2879 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2880
eb44217c
DK
2881 // Scan a relocation for stub generation.
2882 void
2883 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2884 const Sized_symbol<32>*, unsigned int,
2885 const Symbol_value<32>*,
2886 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2887
eb44217c
DK
2888 // Scan a relocation section for stub.
2889 template<int sh_type>
2890 void
2891 scan_reloc_section_for_stubs(
2892 const Relocate_info<32, big_endian>* relinfo,
2893 const unsigned char* prelocs,
2894 size_t reloc_count,
2895 Output_section* output_section,
2896 bool needs_special_offset_handling,
2897 const unsigned char* view,
2898 elfcpp::Elf_types<32>::Elf_Addr view_address,
2899 section_size_type);
d5b40221 2900
2b328d4e
DK
2901 // Fix .ARM.exidx section coverage.
2902 void
131687b4 2903 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2904 Arm_output_section<big_endian>*, Symbol_table*,
2905 const Task*);
2b328d4e
DK
2906
2907 // Functors for STL set.
2908 struct output_section_address_less_than
2909 {
2910 bool
2911 operator()(const Output_section* s1, const Output_section* s2) const
2912 { return s1->address() < s2->address(); }
2913 };
2914
4a657b0d
DK
2915 // Information about this specific target which we pass to the
2916 // general Target structure.
2917 static const Target::Target_info arm_info;
94cdfcff
DK
2918
2919 // The types of GOT entries needed for this platform.
0e70b911
CC
2920 // These values are exposed to the ABI in an incremental link.
2921 // Do not renumber existing values without changing the version
2922 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2923 enum Got_type
2924 {
f96accdf
DK
2925 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2926 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2927 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2928 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2929 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2930 };
2931
55da9579
DK
2932 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2933
2934 // Map input section to Arm_input_section.
5ac169d4 2935 typedef Unordered_map<Section_id,
55da9579 2936 Arm_input_section<big_endian>*,
5ac169d4 2937 Section_id_hash>
55da9579 2938 Arm_input_section_map;
2e702c99 2939
a120bc7f
DK
2940 // Map output addresses to relocs for Cortex-A8 erratum.
2941 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2942 Cortex_a8_relocs_info;
2943
94cdfcff 2944 // The GOT section.
4a54abbb 2945 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2946 // The PLT section.
2947 Output_data_plt_arm<big_endian>* plt_;
2948 // The GOT PLT section.
2949 Output_data_space* got_plt_;
fa89cc82
HS
2950 // The GOT section for IRELATIVE relocations.
2951 Output_data_space* got_irelative_;
94cdfcff
DK
2952 // The dynamic reloc section.
2953 Reloc_section* rel_dyn_;
fa89cc82
HS
2954 // The section to use for IRELATIVE relocs.
2955 Reloc_section* rel_irelative_;
94cdfcff
DK
2956 // Relocs saved to avoid a COPY reloc.
2957 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
2958 // Offset of the GOT entry for the TLS module index.
2959 unsigned int got_mod_index_offset_;
2960 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2961 bool tls_base_symbol_defined_;
55da9579
DK
2962 // Vector of Stub_tables created.
2963 Stub_table_list stub_tables_;
2964 // Stub factory.
2965 const Stub_factory &stub_factory_;
b569affa
DK
2966 // Whether we force PIC branch veneers.
2967 bool should_force_pic_veneer_;
eb44217c
DK
2968 // Map for locating Arm_input_sections.
2969 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2970 // Attributes section data in output.
2971 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2972 // Whether we want to fix code for Cortex-A8 erratum.
2973 bool fix_cortex_a8_;
2974 // Map addresses to relocs for Cortex-A8 erratum.
2975 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2976};
2977
2978template<bool big_endian>
2979const Target::Target_info Target_arm<big_endian>::arm_info =
2980{
2981 32, // size
2982 big_endian, // is_big_endian
2983 elfcpp::EM_ARM, // machine_code
2984 false, // has_make_symbol
2985 false, // has_resolve
2986 false, // has_code_fill
2987 true, // is_default_stack_executable
b3ce541e 2988 false, // can_icf_inline_merge_sections
4a657b0d
DK
2989 '\0', // wrap_char
2990 "/usr/lib/libc.so.1", // dynamic_linker
2991 0x8000, // default_text_segment_address
2992 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2993 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2994 false, // isolate_execinstr
2995 0, // rosegment_gap
8a5e3e08
ILT
2996 elfcpp::SHN_UNDEF, // small_common_shndx
2997 elfcpp::SHN_UNDEF, // large_common_shndx
2998 0, // small_common_section_flags
05a352e6
DK
2999 0, // large_common_section_flags
3000 ".ARM.attributes", // attributes_section
a67858e0 3001 "aeabi", // attributes_vendor
8d9743bd
MK
3002 "_start", // entry_symbol_name
3003 32, // hash_entry_size
4a657b0d
DK
3004};
3005
c121c671
DK
3006// Arm relocate functions class
3007//
3008
3009template<bool big_endian>
3010class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3011{
3012 public:
3013 typedef enum
3014 {
3015 STATUS_OKAY, // No error during relocation.
9b547ce6 3016 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
3017 STATUS_BAD_RELOC // Relocation cannot be applied.
3018 } Status;
3019
3020 private:
3021 typedef Relocate_functions<32, big_endian> Base;
3022 typedef Arm_relocate_functions<big_endian> This;
3023
fd3c5f0b
ILT
3024 // Encoding of imm16 argument for movt and movw ARM instructions
3025 // from ARM ARM:
2e702c99 3026 //
fd3c5f0b
ILT
3027 // imm16 := imm4 | imm12
3028 //
2e702c99 3029 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3030 // +-------+---------------+-------+-------+-----------------------+
3031 // | | |imm4 | |imm12 |
3032 // +-------+---------------+-------+-------+-----------------------+
3033
3034 // Extract the relocation addend from VAL based on the ARM
3035 // instruction encoding described above.
3036 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3037 extract_arm_movw_movt_addend(
3038 typename elfcpp::Swap<32, big_endian>::Valtype val)
3039 {
3040 // According to the Elf ABI for ARM Architecture the immediate
3041 // field is sign-extended to form the addend.
bef2b434 3042 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
3043 }
3044
3045 // Insert X into VAL based on the ARM instruction encoding described
3046 // above.
3047 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3048 insert_val_arm_movw_movt(
3049 typename elfcpp::Swap<32, big_endian>::Valtype val,
3050 typename elfcpp::Swap<32, big_endian>::Valtype x)
3051 {
3052 val &= 0xfff0f000;
3053 val |= x & 0x0fff;
3054 val |= (x & 0xf000) << 4;
3055 return val;
3056 }
3057
3058 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3059 // from ARM ARM:
2e702c99 3060 //
fd3c5f0b
ILT
3061 // imm16 := imm4 | i | imm3 | imm8
3062 //
2e702c99 3063 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3064 // +---------+-+-----------+-------++-+-----+-------+---------------+
3065 // | |i| |imm4 || |imm3 | |imm8 |
3066 // +---------+-+-----------+-------++-+-----+-------+---------------+
3067
3068 // Extract the relocation addend from VAL based on the Thumb2
3069 // instruction encoding described above.
3070 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3071 extract_thumb_movw_movt_addend(
3072 typename elfcpp::Swap<32, big_endian>::Valtype val)
3073 {
3074 // According to the Elf ABI for ARM Architecture the immediate
3075 // field is sign-extended to form the addend.
bef2b434
ILT
3076 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3077 | ((val >> 15) & 0x0800)
3078 | ((val >> 4) & 0x0700)
3079 | (val & 0x00ff));
fd3c5f0b
ILT
3080 }
3081
3082 // Insert X into VAL based on the Thumb2 instruction encoding
3083 // described above.
3084 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3085 insert_val_thumb_movw_movt(
3086 typename elfcpp::Swap<32, big_endian>::Valtype val,
3087 typename elfcpp::Swap<32, big_endian>::Valtype x)
3088 {
3089 val &= 0xfbf08f00;
3090 val |= (x & 0xf000) << 4;
3091 val |= (x & 0x0800) << 15;
3092 val |= (x & 0x0700) << 4;
3093 val |= (x & 0x00ff);
3094 return val;
3095 }
3096
b10d2873
ILT
3097 // Calculate the smallest constant Kn for the specified residual.
3098 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3099 static uint32_t
3100 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3101 {
3102 int32_t msb;
3103
3104 if (residual == 0)
3105 return 0;
3106 // Determine the most significant bit in the residual and
3107 // align the resulting value to a 2-bit boundary.
3108 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3109 ;
3110 // The desired shift is now (msb - 6), or zero, whichever
3111 // is the greater.
3112 return (((msb - 6) < 0) ? 0 : (msb - 6));
3113 }
3114
3115 // Calculate the final residual for the specified group index.
3116 // If the passed group index is less than zero, the method will return
3117 // the value of the specified residual without any change.
3118 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3119 static typename elfcpp::Swap<32, big_endian>::Valtype
3120 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3121 const int group)
3122 {
3123 for (int n = 0; n <= group; n++)
3124 {
3125 // Calculate which part of the value to mask.
3126 uint32_t shift = calc_grp_kn(residual);
3127 // Calculate the residual for the next time around.
3128 residual &= ~(residual & (0xff << shift));
3129 }
3130
3131 return residual;
3132 }
3133
3134 // Calculate the value of Gn for the specified group index.
3135 // We return it in the form of an encoded constant-and-rotation.
3136 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3137 static typename elfcpp::Swap<32, big_endian>::Valtype
3138 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3139 const int group)
3140 {
3141 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3142 uint32_t shift = 0;
3143
3144 for (int n = 0; n <= group; n++)
3145 {
3146 // Calculate which part of the value to mask.
3147 shift = calc_grp_kn(residual);
3148 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3149 gn = residual & (0xff << shift);
3150 // Calculate the residual for the next time around.
3151 residual &= ~gn;
3152 }
3153 // Return Gn in the form of an encoded constant-and-rotation.
3154 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3155 }
3156
1521477a 3157 public:
d204b6e9
DK
3158 // Handle ARM long branches.
3159 static typename This::Status
3160 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3161 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3162 const Arm_relobj<big_endian>*, unsigned int,
3163 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3164
51938283
DK
3165 // Handle THUMB long branches.
3166 static typename This::Status
3167 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3168 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3169 const Arm_relobj<big_endian>*, unsigned int,
3170 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3171
5e445df6 3172
089d69dc
DK
3173 // Return the branch offset of a 32-bit THUMB branch.
3174 static inline int32_t
3175 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3176 {
3177 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3178 // involving the J1 and J2 bits.
3179 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3180 uint32_t upper = upper_insn & 0x3ffU;
3181 uint32_t lower = lower_insn & 0x7ffU;
3182 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3183 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3184 uint32_t i1 = j1 ^ s ? 0 : 1;
3185 uint32_t i2 = j2 ^ s ? 0 : 1;
3186
bef2b434
ILT
3187 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3188 | (upper << 12) | (lower << 1));
089d69dc
DK
3189 }
3190
3191 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3192 // UPPER_INSN is the original upper instruction of the branch. Caller is
3193 // responsible for overflow checking and BLX offset adjustment.
3194 static inline uint16_t
3195 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3196 {
3197 uint32_t s = offset < 0 ? 1 : 0;
3198 uint32_t bits = static_cast<uint32_t>(offset);
3199 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3200 }
3201
3202 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3203 // LOWER_INSN is the original lower instruction of the branch. Caller is
3204 // responsible for overflow checking and BLX offset adjustment.
3205 static inline uint16_t
3206 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3207 {
3208 uint32_t s = offset < 0 ? 1 : 0;
3209 uint32_t bits = static_cast<uint32_t>(offset);
3210 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3211 | ((((bits >> 23) & 1) ^ !s) << 13)
3212 | ((((bits >> 22) & 1) ^ !s) << 11)
3213 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3214 }
3215
3216 // Return the branch offset of a 32-bit THUMB conditional branch.
3217 static inline int32_t
3218 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3219 {
3220 uint32_t s = (upper_insn & 0x0400U) >> 10;
3221 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3222 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3223 uint32_t lower = (lower_insn & 0x07ffU);
3224 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3225
bef2b434 3226 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3227 }
3228
3229 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3230 // instruction. UPPER_INSN is the original upper instruction of the branch.
3231 // Caller is responsible for overflow checking.
3232 static inline uint16_t
3233 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3234 {
3235 uint32_t s = offset < 0 ? 1 : 0;
3236 uint32_t bits = static_cast<uint32_t>(offset);
3237 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3238 }
3239
3240 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3241 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3242 // The caller is responsible for overflow checking.
089d69dc
DK
3243 static inline uint16_t
3244 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3245 {
3246 uint32_t bits = static_cast<uint32_t>(offset);
3247 uint32_t j2 = (bits & 0x00080000U) >> 19;
3248 uint32_t j1 = (bits & 0x00040000U) >> 18;
3249 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3250
3251 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3252 }
3253
5e445df6
ILT
3254 // R_ARM_ABS8: S + A
3255 static inline typename This::Status
ca09d69a 3256 abs8(unsigned char* view,
6fa2a40b 3257 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3258 const Symbol_value<32>* psymval)
5e445df6
ILT
3259 {
3260 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3261 Valtype* wv = reinterpret_cast<Valtype*>(view);
3262 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3263 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3264 Arm_address x = psymval->value(object, addend);
bef2b434 3265 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3266 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3267
3268 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3269 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3270 ? This::STATUS_OVERFLOW
3271 : This::STATUS_OKAY);
3272 }
3273
be8fcb75
ILT
3274 // R_ARM_THM_ABS5: S + A
3275 static inline typename This::Status
ca09d69a 3276 thm_abs5(unsigned char* view,
6fa2a40b 3277 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3278 const Symbol_value<32>* psymval)
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3284 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3285 Reltype x = psymval->value(object, addend);
bef2b434 3286 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3287 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3288 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3289 ? This::STATUS_OVERFLOW
3290 : This::STATUS_OKAY);
3291 }
3292
3293 // R_ARM_ABS12: S + A
3294 static inline typename This::Status
ca09d69a 3295 abs12(unsigned char* view,
6fa2a40b 3296 const Sized_relobj_file<32, big_endian>* object,
51938283 3297 const Symbol_value<32>* psymval)
be8fcb75
ILT
3298 {
3299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3300 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3301 Valtype* wv = reinterpret_cast<Valtype*>(view);
3302 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3303 Reltype addend = val & 0x0fffU;
2daedcd6 3304 Reltype x = psymval->value(object, addend);
bef2b434 3305 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3306 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3307 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3308 ? This::STATUS_OVERFLOW
3309 : This::STATUS_OKAY);
3310 }
3311
3312 // R_ARM_ABS16: S + A
3313 static inline typename This::Status
ca09d69a 3314 abs16(unsigned char* view,
6fa2a40b 3315 const Sized_relobj_file<32, big_endian>* object,
51938283 3316 const Symbol_value<32>* psymval)
be8fcb75 3317 {
f6cccc2c 3318 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3319 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3320 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3321 Arm_address x = psymval->value(object, addend);
bef2b434 3322 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3323 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3324
3325 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3326 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3327 ? This::STATUS_OVERFLOW
3328 : This::STATUS_OKAY);
3329 }
3330
c121c671
DK
3331 // R_ARM_ABS32: (S + A) | T
3332 static inline typename This::Status
ca09d69a 3333 abs32(unsigned char* view,
6fa2a40b 3334 const Sized_relobj_file<32, big_endian>* object,
c121c671 3335 const Symbol_value<32>* psymval,
2daedcd6 3336 Arm_address thumb_bit)
c121c671 3337 {
f6cccc2c
DK
3338 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3339 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3340 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3341 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3342 return This::STATUS_OKAY;
3343 }
3344
3345 // R_ARM_REL32: (S + A) | T - P
3346 static inline typename This::Status
ca09d69a 3347 rel32(unsigned char* view,
6fa2a40b 3348 const Sized_relobj_file<32, big_endian>* object,
c121c671 3349 const Symbol_value<32>* psymval,
ebabffbd 3350 Arm_address address,
2daedcd6 3351 Arm_address thumb_bit)
c121c671 3352 {
f6cccc2c
DK
3353 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3354 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3355 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3356 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3357 return This::STATUS_OKAY;
3358 }
3359
089d69dc
DK
3360 // R_ARM_THM_JUMP24: (S + A) | T - P
3361 static typename This::Status
ca09d69a 3362 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3363 const Symbol_value<32>* psymval, Arm_address address,
3364 Arm_address thumb_bit);
3365
800d0f56
ILT
3366 // R_ARM_THM_JUMP6: S + A – P
3367 static inline typename This::Status
ca09d69a 3368 thm_jump6(unsigned char* view,
6fa2a40b 3369 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3370 const Symbol_value<32>* psymval,
3371 Arm_address address)
3372 {
3373 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3374 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3375 Valtype* wv = reinterpret_cast<Valtype*>(view);
3376 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3377 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3378 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3379 Reltype x = (psymval->value(object, addend) - address);
3380 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3381 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3382 // CZB does only forward jumps.
3383 return ((x > 0x007e)
3384 ? This::STATUS_OVERFLOW
3385 : This::STATUS_OKAY);
3386 }
3387
3388 // R_ARM_THM_JUMP8: S + A – P
3389 static inline typename This::Status
ca09d69a 3390 thm_jump8(unsigned char* view,
6fa2a40b 3391 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3392 const Symbol_value<32>* psymval,
3393 Arm_address address)
3394 {
3395 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3396 Valtype* wv = reinterpret_cast<Valtype*>(view);
3397 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3398 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3399 int32_t x = (psymval->value(object, addend) - address);
3400 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3401 | ((x & 0x01fe) >> 1)));
57eb9b50 3402 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3403 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3404 ? This::STATUS_OVERFLOW
3405 : This::STATUS_OKAY);
3406 }
3407
3408 // R_ARM_THM_JUMP11: S + A – P
3409 static inline typename This::Status
ca09d69a 3410 thm_jump11(unsigned char* view,
6fa2a40b 3411 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3412 const Symbol_value<32>* psymval,
3413 Arm_address address)
3414 {
3415 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3416 Valtype* wv = reinterpret_cast<Valtype*>(view);
3417 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3418 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3419 int32_t x = (psymval->value(object, addend) - address);
3420 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3421 | ((x & 0x0ffe) >> 1)));
57eb9b50 3422 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3423 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3424 ? This::STATUS_OVERFLOW
3425 : This::STATUS_OKAY);
3426 }
3427
c121c671
DK
3428 // R_ARM_BASE_PREL: B(S) + A - P
3429 static inline typename This::Status
3430 base_prel(unsigned char* view,
ebabffbd
DK
3431 Arm_address origin,
3432 Arm_address address)
c121c671
DK
3433 {
3434 Base::rel32(view, origin - address);
3435 return STATUS_OKAY;
3436 }
3437
be8fcb75
ILT
3438 // R_ARM_BASE_ABS: B(S) + A
3439 static inline typename This::Status
3440 base_abs(unsigned char* view,
f4e5969c 3441 Arm_address origin)
be8fcb75
ILT
3442 {
3443 Base::rel32(view, origin);
3444 return STATUS_OKAY;
3445 }
3446
c121c671
DK
3447 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3448 static inline typename This::Status
3449 got_brel(unsigned char* view,
3450 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3451 {
3452 Base::rel32(view, got_offset);
3453 return This::STATUS_OKAY;
3454 }
3455
f4e5969c 3456 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3457 static inline typename This::Status
ca09d69a 3458 got_prel(unsigned char* view,
f4e5969c 3459 Arm_address got_entry,
ebabffbd 3460 Arm_address address)
7f5309a5 3461 {
f4e5969c 3462 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3463 return This::STATUS_OKAY;
3464 }
3465
c121c671
DK
3466 // R_ARM_PREL: (S + A) | T - P
3467 static inline typename This::Status
ca09d69a 3468 prel31(unsigned char* view,
6fa2a40b 3469 const Sized_relobj_file<32, big_endian>* object,
c121c671 3470 const Symbol_value<32>* psymval,
ebabffbd 3471 Arm_address address,
2daedcd6 3472 Arm_address thumb_bit)
c121c671 3473 {
f6cccc2c
DK
3474 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3475 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3476 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3477 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3478 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3479 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3480 return (Bits<31>::has_overflow32(x)
3481 ? This::STATUS_OVERFLOW
3482 : This::STATUS_OKAY);
c121c671 3483 }
fd3c5f0b 3484
5c57f1be 3485 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3486 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3487 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3488 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3489 static inline typename This::Status
5c57f1be 3490 movw(unsigned char* view,
6fa2a40b 3491 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3492 const Symbol_value<32>* psymval,
3493 Arm_address relative_address_base,
3494 Arm_address thumb_bit,
3495 bool check_overflow)
02961d7e
ILT
3496 {
3497 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3498 Valtype* wv = reinterpret_cast<Valtype*>(view);
3499 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3500 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3501 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3502 - relative_address_base);
02961d7e
ILT
3503 val = This::insert_val_arm_movw_movt(val, x);
3504 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3505 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3506 ? This::STATUS_OVERFLOW
3507 : This::STATUS_OKAY);
02961d7e
ILT
3508 }
3509
5c57f1be 3510 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3511 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3512 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3513 static inline typename This::Status
5c57f1be 3514 movt(unsigned char* view,
6fa2a40b 3515 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3516 const Symbol_value<32>* psymval,
3517 Arm_address relative_address_base)
c2a122b6
ILT
3518 {
3519 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3520 Valtype* wv = reinterpret_cast<Valtype*>(view);
3521 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3522 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3523 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3524 val = This::insert_val_arm_movw_movt(val, x);
3525 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3526 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3527 return This::STATUS_OKAY;
3528 }
3529
5c57f1be 3530 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3531 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3532 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3533 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3534 static inline typename This::Status
ca09d69a 3535 thm_movw(unsigned char* view,
6fa2a40b 3536 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3537 const Symbol_value<32>* psymval,
3538 Arm_address relative_address_base,
3539 Arm_address thumb_bit,
3540 bool check_overflow)
02961d7e
ILT
3541 {
3542 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3543 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3544 Valtype* wv = reinterpret_cast<Valtype*>(view);
3545 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3546 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3547 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3548 Reltype x =
3549 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3550 val = This::insert_val_thumb_movw_movt(val, x);
3551 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3552 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3553 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3554 ? This::STATUS_OVERFLOW
5c57f1be 3555 : This::STATUS_OKAY);
02961d7e
ILT
3556 }
3557
5c57f1be 3558 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3559 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3560 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3561 static inline typename This::Status
5c57f1be 3562 thm_movt(unsigned char* view,
6fa2a40b 3563 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3564 const Symbol_value<32>* psymval,
3565 Arm_address relative_address_base)
c2a122b6
ILT
3566 {
3567 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3568 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3569 Valtype* wv = reinterpret_cast<Valtype*>(view);
3570 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3571 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3572 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3573 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3574 val = This::insert_val_thumb_movw_movt(val, x);
3575 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3576 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3577 return This::STATUS_OKAY;
3578 }
a2162063 3579
11b861d5
DK
3580 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3581 static inline typename This::Status
3582 thm_alu11(unsigned char* view,
6fa2a40b 3583 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3584 const Symbol_value<32>* psymval,
3585 Arm_address address,
3586 Arm_address thumb_bit)
3587 {
3588 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3589 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3590 Valtype* wv = reinterpret_cast<Valtype*>(view);
3591 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3592 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3593
3594 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3595 // -----------------------------------------------------------------------
3596 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3597 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3598 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3599 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3600 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3601 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3602
3603 // Determine a sign for the addend.
3604 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3605 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3606 // Thumb2 addend encoding:
3607 // imm12 := i | imm3 | imm8
3608 int32_t addend = (insn & 0xff)
3609 | ((insn & 0x00007000) >> 4)
3610 | ((insn & 0x04000000) >> 15);
3611 // Apply a sign to the added.
3612 addend *= sign;
3613
3614 int32_t x = (psymval->value(object, addend) | thumb_bit)
3615 - (address & 0xfffffffc);
3616 Reltype val = abs(x);
3617 // Mask out the value and a distinct part of the ADD/SUB opcode
3618 // (bits 7:5 of opword).
3619 insn = (insn & 0xfb0f8f00)
3620 | (val & 0xff)
3621 | ((val & 0x700) << 4)
3622 | ((val & 0x800) << 15);
3623 // Set the opcode according to whether the value to go in the
3624 // place is negative.
3625 if (x < 0)
3626 insn |= 0x00a00000;
3627
3628 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3629 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3630 return ((val > 0xfff) ?
2e702c99 3631 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3632 }
3633
3634 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3635 static inline typename This::Status
3636 thm_pc8(unsigned char* view,
6fa2a40b 3637 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3638 const Symbol_value<32>* psymval,
3639 Arm_address address)
3640 {
3641 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3642 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3643 Valtype* wv = reinterpret_cast<Valtype*>(view);
3644 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3645 Reltype addend = ((insn & 0x00ff) << 2);
3646 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3647 Reltype val = abs(x);
3648 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3649
3650 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3651 return ((val > 0x03fc)
3652 ? This::STATUS_OVERFLOW
3653 : This::STATUS_OKAY);
3654 }
3655
3656 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3657 static inline typename This::Status
3658 thm_pc12(unsigned char* view,
6fa2a40b 3659 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3660 const Symbol_value<32>* psymval,
3661 Arm_address address)
3662 {
3663 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3664 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3665 Valtype* wv = reinterpret_cast<Valtype*>(view);
3666 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3667 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3668 // Determine a sign for the addend (positive if the U bit is 1).
3669 const int sign = (insn & 0x00800000) ? 1 : -1;
3670 int32_t addend = (insn & 0xfff);
3671 // Apply a sign to the added.
3672 addend *= sign;
3673
3674 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3675 Reltype val = abs(x);
3676 // Mask out and apply the value and the U bit.
3677 insn = (insn & 0xff7ff000) | (val & 0xfff);
3678 // Set the U bit according to whether the value to go in the
3679 // place is positive.
3680 if (x >= 0)
3681 insn |= 0x00800000;
3682
3683 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3684 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3685 return ((val > 0xfff) ?
2e702c99 3686 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3687 }
3688
a2162063
ILT
3689 // R_ARM_V4BX
3690 static inline typename This::Status
3691 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3692 unsigned char* view,
a2162063
ILT
3693 const Arm_relobj<big_endian>* object,
3694 const Arm_address address,
3695 const bool is_interworking)
3696 {
3697
3698 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3699 Valtype* wv = reinterpret_cast<Valtype*>(view);
3700 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3701
3702 // Ensure that we have a BX instruction.
3703 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3704 const uint32_t reg = (val & 0xf);
3705 if (is_interworking && reg != 0xf)
3706 {
3707 Stub_table<big_endian>* stub_table =
3708 object->stub_table(relinfo->data_shndx);
3709 gold_assert(stub_table != NULL);
3710
3711 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3712 gold_assert(stub != NULL);
3713
3714 int32_t veneer_address =
3715 stub_table->address() + stub->offset() - 8 - address;
3716 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3717 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3718 // Replace with a branch to veneer (B <addr>)
3719 val = (val & 0xf0000000) | 0x0a000000
3720 | ((veneer_address >> 2) & 0x00ffffff);
3721 }
3722 else
3723 {
3724 // Preserve Rm (lowest four bits) and the condition code
3725 // (highest four bits). Other bits encode MOV PC,Rm.
3726 val = (val & 0xf000000f) | 0x01a0f000;
3727 }
3728 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3729 return This::STATUS_OKAY;
3730 }
b10d2873
ILT
3731
3732 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3734 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3735 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3736 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3737 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3739 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3740 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3741 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3742 static inline typename This::Status
3743 arm_grp_alu(unsigned char* view,
6fa2a40b 3744 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3745 const Symbol_value<32>* psymval,
3746 const int group,
3747 Arm_address address,
3748 Arm_address thumb_bit,
3749 bool check_overflow)
3750 {
5c57f1be 3751 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3752 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3753 Valtype* wv = reinterpret_cast<Valtype*>(view);
3754 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3755
3756 // ALU group relocations are allowed only for the ADD/SUB instructions.
3757 // (0x00800000 - ADD, 0x00400000 - SUB)
3758 const Valtype opcode = insn & 0x01e00000;
3759 if (opcode != 0x00800000 && opcode != 0x00400000)
3760 return This::STATUS_BAD_RELOC;
3761
3762 // Determine a sign for the addend.
3763 const int sign = (opcode == 0x00800000) ? 1 : -1;
3764 // shifter = rotate_imm * 2
3765 const uint32_t shifter = (insn & 0xf00) >> 7;
3766 // Initial addend value.
3767 int32_t addend = insn & 0xff;
3768 // Rotate addend right by shifter.
3769 addend = (addend >> shifter) | (addend << (32 - shifter));
3770 // Apply a sign to the added.
3771 addend *= sign;
3772
3773 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3774 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3775 // Check for overflow if required
3776 if (check_overflow
3777 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3778 return This::STATUS_OVERFLOW;
3779
3780 // Mask out the value and the ADD/SUB part of the opcode; take care
3781 // not to destroy the S bit.
3782 insn &= 0xff1ff000;
3783 // Set the opcode according to whether the value to go in the
3784 // place is negative.
3785 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3786 // Encode the offset (encoded Gn).
3787 insn |= gn;
3788
3789 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3790 return This::STATUS_OKAY;
3791 }
3792
3793 // R_ARM_LDR_PC_G0: S + A - P
3794 // R_ARM_LDR_PC_G1: S + A - P
3795 // R_ARM_LDR_PC_G2: S + A - P
3796 // R_ARM_LDR_SB_G0: S + A - B(S)
3797 // R_ARM_LDR_SB_G1: S + A - B(S)
3798 // R_ARM_LDR_SB_G2: S + A - B(S)
3799 static inline typename This::Status
3800 arm_grp_ldr(unsigned char* view,
6fa2a40b 3801 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3802 const Symbol_value<32>* psymval,
3803 const int group,
3804 Arm_address address)
3805 {
5c57f1be 3806 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3807 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3808 Valtype* wv = reinterpret_cast<Valtype*>(view);
3809 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3810
3811 const int sign = (insn & 0x00800000) ? 1 : -1;
3812 int32_t addend = (insn & 0xfff) * sign;
3813 int32_t x = (psymval->value(object, addend) - address);
3814 // Calculate the relevant G(n-1) value to obtain this stage residual.
3815 Valtype residual =
3816 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3817 if (residual >= 0x1000)
3818 return This::STATUS_OVERFLOW;
3819
3820 // Mask out the value and U bit.
3821 insn &= 0xff7ff000;
3822 // Set the U bit for non-negative values.
3823 if (x >= 0)
3824 insn |= 0x00800000;
3825 insn |= residual;
3826
3827 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3828 return This::STATUS_OKAY;
3829 }
3830
3831 // R_ARM_LDRS_PC_G0: S + A - P
3832 // R_ARM_LDRS_PC_G1: S + A - P
3833 // R_ARM_LDRS_PC_G2: S + A - P
3834 // R_ARM_LDRS_SB_G0: S + A - B(S)
3835 // R_ARM_LDRS_SB_G1: S + A - B(S)
3836 // R_ARM_LDRS_SB_G2: S + A - B(S)
3837 static inline typename This::Status
3838 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3839 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3840 const Symbol_value<32>* psymval,
3841 const int group,
3842 Arm_address address)
3843 {
5c57f1be 3844 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3845 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3846 Valtype* wv = reinterpret_cast<Valtype*>(view);
3847 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3848
3849 const int sign = (insn & 0x00800000) ? 1 : -1;
3850 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3851 int32_t x = (psymval->value(object, addend) - address);
3852 // Calculate the relevant G(n-1) value to obtain this stage residual.
3853 Valtype residual =
3854 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3855 if (residual >= 0x100)
3856 return This::STATUS_OVERFLOW;
3857
3858 // Mask out the value and U bit.
3859 insn &= 0xff7ff0f0;
3860 // Set the U bit for non-negative values.
3861 if (x >= 0)
3862 insn |= 0x00800000;
3863 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3864
3865 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3866 return This::STATUS_OKAY;
3867 }
3868
3869 // R_ARM_LDC_PC_G0: S + A - P
3870 // R_ARM_LDC_PC_G1: S + A - P
3871 // R_ARM_LDC_PC_G2: S + A - P
3872 // R_ARM_LDC_SB_G0: S + A - B(S)
3873 // R_ARM_LDC_SB_G1: S + A - B(S)
3874 // R_ARM_LDC_SB_G2: S + A - B(S)
3875 static inline typename This::Status
3876 arm_grp_ldc(unsigned char* view,
6fa2a40b 3877 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3878 const Symbol_value<32>* psymval,
3879 const int group,
3880 Arm_address address)
3881 {
5c57f1be 3882 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3883 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3884 Valtype* wv = reinterpret_cast<Valtype*>(view);
3885 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3886
3887 const int sign = (insn & 0x00800000) ? 1 : -1;
3888 int32_t addend = ((insn & 0xff) << 2) * sign;
3889 int32_t x = (psymval->value(object, addend) - address);
3890 // Calculate the relevant G(n-1) value to obtain this stage residual.
3891 Valtype residual =
3892 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3893 if ((residual & 0x3) != 0 || residual >= 0x400)
3894 return This::STATUS_OVERFLOW;
3895
3896 // Mask out the value and U bit.
3897 insn &= 0xff7fff00;
3898 // Set the U bit for non-negative values.
3899 if (x >= 0)
3900 insn |= 0x00800000;
3901 insn |= (residual >> 2);
3902
3903 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3904 return This::STATUS_OKAY;
3905 }
c121c671
DK
3906};
3907
d204b6e9
DK
3908// Relocate ARM long branches. This handles relocation types
3909// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3910// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3911// undefined and we do not use PLT in this relocation. In such a case,
3912// the branch is converted into an NOP.
3913
3914template<bool big_endian>
3915typename Arm_relocate_functions<big_endian>::Status
3916Arm_relocate_functions<big_endian>::arm_branch_common(
3917 unsigned int r_type,
3918 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3919 unsigned char* view,
d204b6e9
DK
3920 const Sized_symbol<32>* gsym,
3921 const Arm_relobj<big_endian>* object,
3922 unsigned int r_sym,
3923 const Symbol_value<32>* psymval,
3924 Arm_address address,
3925 Arm_address thumb_bit,
3926 bool is_weakly_undefined_without_plt)
3927{
3928 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3929 Valtype* wv = reinterpret_cast<Valtype*>(view);
3930 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3931
d204b6e9 3932 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3933 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3934 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3935 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3936 && ((val & 0x0f000000UL) == 0x0b000000UL);
3937 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3938 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3939
3940 // Check that the instruction is valid.
3941 if (r_type == elfcpp::R_ARM_CALL)
3942 {
3943 if (!insn_is_uncond_bl && !insn_is_blx)
3944 return This::STATUS_BAD_RELOC;
3945 }
3946 else if (r_type == elfcpp::R_ARM_JUMP24)
3947 {
3948 if (!insn_is_b && !insn_is_cond_bl)
3949 return This::STATUS_BAD_RELOC;
3950 }
3951 else if (r_type == elfcpp::R_ARM_PLT32)
3952 {
3953 if (!insn_is_any_branch)
3954 return This::STATUS_BAD_RELOC;
3955 }
3956 else if (r_type == elfcpp::R_ARM_XPC25)
3957 {
3958 // FIXME: AAELF document IH0044C does not say much about it other
3959 // than it being obsolete.
3960 if (!insn_is_any_branch)
3961 return This::STATUS_BAD_RELOC;
3962 }
3963 else
3964 gold_unreachable();
3965
3966 // A branch to an undefined weak symbol is turned into a jump to
3967 // the next instruction unless a PLT entry will be created.
3968 // Do the same for local undefined symbols.
3969 // The jump to the next instruction is optimized as a NOP depending
3970 // on the architecture.
3971 const Target_arm<big_endian>* arm_target =
3972 Target_arm<big_endian>::default_target();
3973 if (is_weakly_undefined_without_plt)
3974 {
5c388529 3975 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3976 Valtype cond = val & 0xf0000000U;
3977 if (arm_target->may_use_arm_nop())
3978 val = cond | 0x0320f000;
3979 else
3980 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3981 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3982 return This::STATUS_OKAY;
3983 }
2e702c99 3984
bef2b434 3985 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3986 Valtype branch_target = psymval->value(object, addend);
3987 int32_t branch_offset = branch_target - address;
3988
3989 // We need a stub if the branch offset is too large or if we need
3990 // to switch mode.
cd6eab1c 3991 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3992 Reloc_stub* stub = NULL;
5c388529
DK
3993
3994 if (!parameters->options().relocatable()
bef2b434 3995 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3996 || ((thumb_bit != 0)
3997 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3998 {
2a2b6d42
DK
3999 Valtype unadjusted_branch_target = psymval->value(object, 0);
4000
d204b6e9 4001 Stub_type stub_type =
2a2b6d42
DK
4002 Reloc_stub::stub_type_for_reloc(r_type, address,
4003 unadjusted_branch_target,
d204b6e9
DK
4004 (thumb_bit != 0));
4005 if (stub_type != arm_stub_none)
4006 {
2ea97941 4007 Stub_table<big_endian>* stub_table =
d204b6e9 4008 object->stub_table(relinfo->data_shndx);
2ea97941 4009 gold_assert(stub_table != NULL);
d204b6e9
DK
4010
4011 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4012 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
4013 gold_assert(stub != NULL);
4014 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4015 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 4016 branch_offset = branch_target - address;
bef2b434 4017 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
4018 }
4019 }
4020
4021 // At this point, if we still need to switch mode, the instruction
4022 // must either be a BLX or a BL that can be converted to a BLX.
4023 if (thumb_bit != 0)
4024 {
4025 // Turn BL to BLX.
4026 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4027 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4028 }
4029
bef2b434 4030 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 4031 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
4032 return (Bits<26>::has_overflow32(branch_offset)
4033 ? This::STATUS_OVERFLOW
4034 : This::STATUS_OKAY);
d204b6e9
DK
4035}
4036
51938283
DK
4037// Relocate THUMB long branches. This handles relocation types
4038// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4039// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4040// undefined and we do not use PLT in this relocation. In such a case,
4041// the branch is converted into an NOP.
4042
4043template<bool big_endian>
4044typename Arm_relocate_functions<big_endian>::Status
4045Arm_relocate_functions<big_endian>::thumb_branch_common(
4046 unsigned int r_type,
4047 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4048 unsigned char* view,
51938283
DK
4049 const Sized_symbol<32>* gsym,
4050 const Arm_relobj<big_endian>* object,
4051 unsigned int r_sym,
4052 const Symbol_value<32>* psymval,
4053 Arm_address address,
4054 Arm_address thumb_bit,
4055 bool is_weakly_undefined_without_plt)
4056{
4057 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4058 Valtype* wv = reinterpret_cast<Valtype*>(view);
4059 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4060 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4061
4062 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4063 // into account.
4064 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4065 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4066
51938283
DK
4067 // Check that the instruction is valid.
4068 if (r_type == elfcpp::R_ARM_THM_CALL)
4069 {
4070 if (!is_bl_insn && !is_blx_insn)
4071 return This::STATUS_BAD_RELOC;
4072 }
4073 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4074 {
4075 // This cannot be a BLX.
4076 if (!is_bl_insn)
4077 return This::STATUS_BAD_RELOC;
4078 }
4079 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4080 {
4081 // Check for Thumb to Thumb call.
4082 if (!is_blx_insn)
4083 return This::STATUS_BAD_RELOC;
4084 if (thumb_bit != 0)
4085 {
4086 gold_warning(_("%s: Thumb BLX instruction targets "
4087 "thumb function '%s'."),
4088 object->name().c_str(),
2e702c99 4089 (gsym ? gsym->name() : "(local)"));
51938283
DK
4090 // Convert BLX to BL.
4091 lower_insn |= 0x1000U;
4092 }
4093 }
4094 else
4095 gold_unreachable();
4096
4097 // A branch to an undefined weak symbol is turned into a jump to
4098 // the next instruction unless a PLT entry will be created.
4099 // The jump to the next instruction is optimized as a NOP.W for
4100 // Thumb-2 enabled architectures.
4101 const Target_arm<big_endian>* arm_target =
4102 Target_arm<big_endian>::default_target();
4103 if (is_weakly_undefined_without_plt)
4104 {
5c388529 4105 gold_assert(!parameters->options().relocatable());
51938283
DK
4106 if (arm_target->may_use_thumb2_nop())
4107 {
4108 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4109 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4110 }
4111 else
4112 {
4113 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4114 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4115 }
4116 return This::STATUS_OKAY;
4117 }
2e702c99 4118
089d69dc 4119 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4120 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4121
4122 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4123 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4124 if (thumb_bit == 0 && may_use_blx)
bef2b434 4125 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4126
51938283
DK
4127 int32_t branch_offset = branch_target - address;
4128
4129 // We need a stub if the branch offset is too large or if we need
4130 // to switch mode.
51938283 4131 bool thumb2 = arm_target->using_thumb2();
5c388529 4132 if (!parameters->options().relocatable()
bef2b434
ILT
4133 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4134 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4135 || ((thumb_bit == 0)
4136 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4137 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4138 {
2a2b6d42
DK
4139 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4140
51938283 4141 Stub_type stub_type =
2a2b6d42
DK
4142 Reloc_stub::stub_type_for_reloc(r_type, address,
4143 unadjusted_branch_target,
51938283 4144 (thumb_bit != 0));
2a2b6d42 4145
51938283
DK
4146 if (stub_type != arm_stub_none)
4147 {
2ea97941 4148 Stub_table<big_endian>* stub_table =
51938283 4149 object->stub_table(relinfo->data_shndx);
2ea97941 4150 gold_assert(stub_table != NULL);
51938283
DK
4151
4152 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4153 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4154 gold_assert(stub != NULL);
4155 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4156 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4157 if (thumb_bit == 0 && may_use_blx)
bef2b434 4158 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4159 branch_offset = branch_target - address;
4160 }
4161 }
4162
4163 // At this point, if we still need to switch mode, the instruction
4164 // must either be a BLX or a BL that can be converted to a BLX.
4165 if (thumb_bit == 0)
4166 {
4167 gold_assert(may_use_blx
4168 && (r_type == elfcpp::R_ARM_THM_CALL
4169 || r_type == elfcpp::R_ARM_THM_XPC22));
4170 // Make sure this is a BLX.
4171 lower_insn &= ~0x1000U;
4172 }
4173 else
4174 {
4175 // Make sure this is a BL.
4176 lower_insn |= 0x1000U;
4177 }
4178
a2c7281b
DK
4179 // For a BLX instruction, make sure that the relocation is rounded up
4180 // to a word boundary. This follows the semantics of the instruction
4181 // which specifies that bit 1 of the target address will come from bit
4182 // 1 of the base address.
51938283 4183 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4184 gold_assert((branch_offset & 3) == 0);
51938283
DK
4185
4186 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4187 // We use the Thumb-2 encoding, which is safe even if dealing with
4188 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4189 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4190 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4191
4192 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4193 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4194
bef2b434 4195 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4196
51938283 4197 return ((thumb2
bef2b434
ILT
4198 ? Bits<25>::has_overflow32(branch_offset)
4199 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4200 ? This::STATUS_OVERFLOW
4201 : This::STATUS_OKAY);
4202}
4203
4204// Relocate THUMB-2 long conditional branches.
4205// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4206// undefined and we do not use PLT in this relocation. In such a case,
4207// the branch is converted into an NOP.
4208
4209template<bool big_endian>
4210typename Arm_relocate_functions<big_endian>::Status
4211Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4212 unsigned char* view,
089d69dc
DK
4213 const Arm_relobj<big_endian>* object,
4214 const Symbol_value<32>* psymval,
4215 Arm_address address,
4216 Arm_address thumb_bit)
4217{
4218 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4219 Valtype* wv = reinterpret_cast<Valtype*>(view);
4220 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4221 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4222 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4223
4224 Arm_address branch_target = psymval->value(object, addend);
4225 int32_t branch_offset = branch_target - address;
4226
4227 // ??? Should handle interworking? GCC might someday try to
4228 // use this for tail calls.
4229 // FIXME: We do support thumb entry to PLT yet.
4230 if (thumb_bit == 0)
4231 {
4232 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4233 return This::STATUS_BAD_RELOC;
4234 }
4235
4236 // Put RELOCATION back into the insn.
4237 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4238 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4239
4240 // Put the relocated value back in the object file:
4241 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4242 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4243
bef2b434 4244 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4245 ? This::STATUS_OVERFLOW
4246 : This::STATUS_OKAY);
4247}
4248
94cdfcff
DK
4249// Get the GOT section, creating it if necessary.
4250
4251template<bool big_endian>
4a54abbb 4252Arm_output_data_got<big_endian>*
94cdfcff
DK
4253Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4254{
4255 if (this->got_ == NULL)
4256 {
4257 gold_assert(symtab != NULL && layout != NULL);
4258
7b8957f8
DK
4259 // When using -z now, we can treat .got as a relro section.
4260 // Without -z now, it is modified after program startup by lazy
4261 // PLT relocations.
4262 bool is_got_relro = parameters->options().now();
4263 Output_section_order got_order = (is_got_relro
4264 ? ORDER_RELRO_LAST
4265 : ORDER_DATA);
4266
4267 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4268 // .got.plt sections in output. The output .got section contains both
4269 // PLT and non-PLT GOT entries.
4a54abbb 4270 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4271
82742395 4272 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4273 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4274 this->got_, got_order, is_got_relro);
22f0da72 4275
94cdfcff
DK
4276 // The old GNU linker creates a .got.plt section. We just
4277 // create another set of data in the .got section. Note that we
4278 // always create a PLT if we create a GOT, although the PLT
4279 // might be empty.
4280 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4281 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4282 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4283 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4284
4285 // The first three entries are reserved.
4286 this->got_plt_->set_current_data_size(3 * 4);
4287
4288 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4289 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4290 Symbol_table::PREDEFINED,
94cdfcff
DK
4291 this->got_plt_,
4292 0, 0, elfcpp::STT_OBJECT,
4293 elfcpp::STB_LOCAL,
4294 elfcpp::STV_HIDDEN, 0,
4295 false, false);
fa89cc82
HS
4296
4297 // If there are any IRELATIVE relocations, they get GOT entries
4298 // in .got.plt after the jump slot entries.
4299 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4300 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4301 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4302 this->got_irelative_,
4303 got_order, is_got_relro);
4304
94cdfcff
DK
4305 }
4306 return this->got_;
4307}
4308
4309// Get the dynamic reloc section, creating it if necessary.
4310
4311template<bool big_endian>
4312typename Target_arm<big_endian>::Reloc_section*
4313Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4314{
4315 if (this->rel_dyn_ == NULL)
4316 {
4317 gold_assert(layout != NULL);
fa89cc82
HS
4318 // Create both relocation sections in the same place, so as to ensure
4319 // their relative order in the output section.
94cdfcff 4320 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
fa89cc82 4321 this->rel_irelative_ = new Reloc_section(false);
94cdfcff 4322 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4323 elfcpp::SHF_ALLOC, this->rel_dyn_,
4324 ORDER_DYNAMIC_RELOCS, false);
fa89cc82
HS
4325 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4326 elfcpp::SHF_ALLOC, this->rel_irelative_,
4327 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4328 }
4329 return this->rel_dyn_;
4330}
4331
fa89cc82
HS
4332
4333// Get the section to use for IRELATIVE relocs, creating it if necessary. These
4334// go in .rela.dyn, but only after all other dynamic relocations. They need to
4335// follow the other dynamic relocations so that they can refer to global
4336// variables initialized by those relocs.
4337
4338template<bool big_endian>
4339typename Target_arm<big_endian>::Reloc_section*
4340Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4341{
4342 if (this->rel_irelative_ == NULL)
4343 {
4344 // Delegate the creation to rel_dyn_section so as to ensure their order in
4345 // the output section.
4346 this->rel_dyn_section(layout);
4347 gold_assert(this->rel_irelative_ != NULL
4348 && (this->rel_dyn_->output_section()
4349 == this->rel_irelative_->output_section()));
4350 }
4351 return this->rel_irelative_;
4352}
4353
4354
b569affa
DK
4355// Insn_template methods.
4356
4357// Return byte size of an instruction template.
4358
4359size_t
4360Insn_template::size() const
4361{
4362 switch (this->type())
4363 {
4364 case THUMB16_TYPE:
2fb7225c 4365 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4366 return 2;
4367 case ARM_TYPE:
4368 case THUMB32_TYPE:
4369 case DATA_TYPE:
4370 return 4;
4371 default:
4372 gold_unreachable();
4373 }
4374}
4375
4376// Return alignment of an instruction template.
4377
4378unsigned
4379Insn_template::alignment() const
4380{
4381 switch (this->type())
4382 {
4383 case THUMB16_TYPE:
2fb7225c 4384 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4385 case THUMB32_TYPE:
4386 return 2;
4387 case ARM_TYPE:
4388 case DATA_TYPE:
4389 return 4;
4390 default:
4391 gold_unreachable();
4392 }
4393}
4394
4395// Stub_template methods.
4396
4397Stub_template::Stub_template(
2ea97941
ILT
4398 Stub_type type, const Insn_template* insns,
4399 size_t insn_count)
4400 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4401 entry_in_thumb_mode_(false), relocs_()
4402{
2ea97941 4403 off_t offset = 0;
b569affa
DK
4404
4405 // Compute byte size and alignment of stub template.
2ea97941 4406 for (size_t i = 0; i < insn_count; i++)
b569affa 4407 {
2ea97941
ILT
4408 unsigned insn_alignment = insns[i].alignment();
4409 size_t insn_size = insns[i].size();
4410 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4411 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4412 switch (insns[i].type())
b569affa
DK
4413 {
4414 case Insn_template::THUMB16_TYPE:
089d69dc 4415 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4416 if (i == 0)
4417 this->entry_in_thumb_mode_ = true;
4418 break;
4419
4420 case Insn_template::THUMB32_TYPE:
2e702c99 4421 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4422 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4423 if (i == 0)
4424 this->entry_in_thumb_mode_ = true;
2e702c99 4425 break;
b569affa
DK
4426
4427 case Insn_template::ARM_TYPE:
4428 // Handle cases where the target is encoded within the
4429 // instruction.
2ea97941
ILT
4430 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4431 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4432 break;
4433
4434 case Insn_template::DATA_TYPE:
4435 // Entry point cannot be data.
4436 gold_assert(i != 0);
2ea97941 4437 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4438 break;
4439
4440 default:
4441 gold_unreachable();
4442 }
2e702c99 4443 offset += insn_size;
b569affa 4444 }
2ea97941 4445 this->size_ = offset;
b569affa
DK
4446}
4447
bb0d3eb0
DK
4448// Stub methods.
4449
7296d933 4450// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4451
4452template<bool big_endian>
4453void inline
4454Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4455{
4456 const Stub_template* stub_template = this->stub_template();
4457 const Insn_template* insns = stub_template->insns();
4458
4459 // FIXME: We do not handle BE8 encoding yet.
4460 unsigned char* pov = view;
4461 for (size_t i = 0; i < stub_template->insn_count(); i++)
4462 {
4463 switch (insns[i].type())
4464 {
4465 case Insn_template::THUMB16_TYPE:
4466 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4467 break;
4468 case Insn_template::THUMB16_SPECIAL_TYPE:
4469 elfcpp::Swap<16, big_endian>::writeval(
4470 pov,
4471 this->thumb16_special(i));
4472 break;
4473 case Insn_template::THUMB32_TYPE:
4474 {
4475 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4476 uint32_t lo = insns[i].data() & 0xffff;
4477 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4478 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4479 }
2e702c99 4480 break;
bb0d3eb0
DK
4481 case Insn_template::ARM_TYPE:
4482 case Insn_template::DATA_TYPE:
4483 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4484 break;
4485 default:
4486 gold_unreachable();
4487 }
4488 pov += insns[i].size();
4489 }
4490 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4491}
bb0d3eb0 4492
b569affa
DK
4493// Reloc_stub::Key methods.
4494
4495// Dump a Key as a string for debugging.
4496
4497std::string
4498Reloc_stub::Key::name() const
4499{
4500 if (this->r_sym_ == invalid_index)
4501 {
4502 // Global symbol key name
4503 // <stub-type>:<symbol name>:<addend>.
4504 const std::string sym_name = this->u_.symbol->name();
4505 // We need to print two hex number and two colons. So just add 100 bytes
4506 // to the symbol name size.
4507 size_t len = sym_name.size() + 100;
4508 char* buffer = new char[len];
4509 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4510 sym_name.c_str(), this->addend_);
4511 gold_assert(c > 0 && c < static_cast<int>(len));
4512 delete[] buffer;
4513 return std::string(buffer);
4514 }
4515 else
4516 {
4517 // local symbol key name
4518 // <stub-type>:<object>:<r_sym>:<addend>.
4519 const size_t len = 200;
4520 char buffer[len];
4521 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4522 this->u_.relobj, this->r_sym_, this->addend_);
4523 gold_assert(c > 0 && c < static_cast<int>(len));
4524 return std::string(buffer);
4525 }
4526}
4527
4528// Reloc_stub methods.
4529
4530// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4531// LOCATION to DESTINATION.
4532// This code is based on the arm_type_of_stub function in
9b547ce6 4533// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4534// class simple.
4535
4536Stub_type
4537Reloc_stub::stub_type_for_reloc(
4538 unsigned int r_type,
4539 Arm_address location,
4540 Arm_address destination,
4541 bool target_is_thumb)
4542{
4543 Stub_type stub_type = arm_stub_none;
4544
4545 // This is a bit ugly but we want to avoid using a templated class for
4546 // big and little endianities.
4547 bool may_use_blx;
cdb06167 4548 bool should_force_pic_veneer = parameters->options().pic_veneer();
b569affa
DK
4549 bool thumb2;
4550 bool thumb_only;
4551 if (parameters->target().is_big_endian())
4552 {
43d12afe 4553 const Target_arm<true>* big_endian_target =
b569affa 4554 Target_arm<true>::default_target();
cd6eab1c 4555 may_use_blx = big_endian_target->may_use_v5t_interworking();
cdb06167 4556 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
43d12afe
DK
4557 thumb2 = big_endian_target->using_thumb2();
4558 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4559 }
4560 else
4561 {
43d12afe 4562 const Target_arm<false>* little_endian_target =
b569affa 4563 Target_arm<false>::default_target();
cd6eab1c 4564 may_use_blx = little_endian_target->may_use_v5t_interworking();
cdb06167
HS
4565 should_force_pic_veneer |=
4566 little_endian_target->should_force_pic_veneer();
43d12afe
DK
4567 thumb2 = little_endian_target->using_thumb2();
4568 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4569 }
4570
a2c7281b 4571 int64_t branch_offset;
90cff06f
DK
4572 bool output_is_position_independent =
4573 parameters->options().output_is_position_independent();
b569affa
DK
4574 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4575 {
a2c7281b
DK
4576 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4577 // base address (instruction address + 4).
4578 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4579 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4580 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4581
b569affa
DK
4582 // Handle cases where:
4583 // - this call goes too far (different Thumb/Thumb2 max
4584 // distance)
4585 // - it's a Thumb->Arm call and blx is not available, or it's a
4586 // Thumb->Arm branch (not bl). A stub is needed in this case.
4587 if ((!thumb2
4588 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4589 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4590 || (thumb2
4591 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4592 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4593 || ((!target_is_thumb)
4594 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4595 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4596 {
4597 if (target_is_thumb)
4598 {
4599 // Thumb to thumb.
4600 if (!thumb_only)
4601 {
90cff06f 4602 stub_type = (output_is_position_independent
51938283 4603 || should_force_pic_veneer)
b569affa
DK
4604 // PIC stubs.
4605 ? ((may_use_blx
4606 && (r_type == elfcpp::R_ARM_THM_CALL))
4607 // V5T and above. Stub starts with ARM code, so
4608 // we must be able to switch mode before
4609 // reaching it, which is only possible for 'bl'
4610 // (ie R_ARM_THM_CALL relocation).
4611 ? arm_stub_long_branch_any_thumb_pic
4612 // On V4T, use Thumb code only.
4613 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4614
4615 // non-PIC stubs.
4616 : ((may_use_blx
4617 && (r_type == elfcpp::R_ARM_THM_CALL))
4618 ? arm_stub_long_branch_any_any // V5T and above.
4619 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4620 }
4621 else
4622 {
90cff06f 4623 stub_type = (output_is_position_independent
51938283 4624 || should_force_pic_veneer)
b569affa
DK
4625 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4626 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4627 }
4628 }
4629 else
4630 {
4631 // Thumb to arm.
2e702c99 4632
b569affa
DK
4633 // FIXME: We should check that the input section is from an
4634 // object that has interwork enabled.
4635
90cff06f 4636 stub_type = (output_is_position_independent
b569affa
DK
4637 || should_force_pic_veneer)
4638 // PIC stubs.
4639 ? ((may_use_blx
4640 && (r_type == elfcpp::R_ARM_THM_CALL))
4641 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4642 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4643
4644 // non-PIC stubs.
4645 : ((may_use_blx
4646 && (r_type == elfcpp::R_ARM_THM_CALL))
4647 ? arm_stub_long_branch_any_any // V5T and above.
4648 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4649
4650 // Handle v4t short branches.
4651 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4652 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4653 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4654 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4655 }
4656 }
4657 }
4658 else if (r_type == elfcpp::R_ARM_CALL
4659 || r_type == elfcpp::R_ARM_JUMP24
4660 || r_type == elfcpp::R_ARM_PLT32)
4661 {
a2c7281b 4662 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4663 if (target_is_thumb)
4664 {
4665 // Arm to thumb.
4666
4667 // FIXME: We should check that the input section is from an
4668 // object that has interwork enabled.
4669
4670 // We have an extra 2-bytes reach because of
4671 // the mode change (bit 24 (H) of BLX encoding).
4672 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4673 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4674 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4675 || (r_type == elfcpp::R_ARM_JUMP24)
4676 || (r_type == elfcpp::R_ARM_PLT32))
4677 {
90cff06f 4678 stub_type = (output_is_position_independent
b569affa
DK
4679 || should_force_pic_veneer)
4680 // PIC stubs.
4681 ? (may_use_blx
4682 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4683 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4684
4685 // non-PIC stubs.
4686 : (may_use_blx
4687 ? arm_stub_long_branch_any_any // V5T and above.
4688 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4689 }
4690 }
4691 else
4692 {
4693 // Arm to arm.
4694 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4695 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4696 {
90cff06f 4697 stub_type = (output_is_position_independent
b569affa
DK
4698 || should_force_pic_veneer)
4699 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4700 : arm_stub_long_branch_any_any; /// non-PIC.
4701 }
4702 }
4703 }
4704
4705 return stub_type;
4706}
4707
bb0d3eb0 4708// Cortex_a8_stub methods.
b569affa 4709
bb0d3eb0
DK
4710// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4711// I is the position of the instruction template in the stub template.
b569affa 4712
bb0d3eb0
DK
4713uint16_t
4714Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4715{
bb0d3eb0
DK
4716 // The only use of this is to copy condition code from a conditional
4717 // branch being worked around to the corresponding conditional branch in
4718 // to the stub.
4719 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4720 && i == 0);
4721 uint16_t data = this->stub_template()->insns()[i].data();
4722 gold_assert((data & 0xff00U) == 0xd000U);
4723 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4724 return data;
b569affa
DK
4725}
4726
4727// Stub_factory methods.
4728
4729Stub_factory::Stub_factory()
4730{
4731 // The instruction template sequences are declared as static
4732 // objects and initialized first time the constructor runs.
2e702c99 4733
b569affa
DK
4734 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4735 // to reach the stub if necessary.
4736 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4737 {
4738 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4739 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4740 // dcd R_ARM_ABS32(X)
b569affa 4741 };
2e702c99 4742
b569affa
DK
4743 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4744 // available.
4745 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4746 {
4747 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4748 Insn_template::arm_insn(0xe12fff1c), // bx ip
4749 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4750 // dcd R_ARM_ABS32(X)
b569affa 4751 };
2e702c99 4752
b569affa
DK
4753 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4754 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4755 {
4756 Insn_template::thumb16_insn(0xb401), // push {r0}
4757 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4758 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4759 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4760 Insn_template::thumb16_insn(0x4760), // bx ip
4761 Insn_template::thumb16_insn(0xbf00), // nop
4762 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4763 // dcd R_ARM_ABS32(X)
b569affa 4764 };
2e702c99 4765
b569affa
DK
4766 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4767 // allowed.
4768 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4769 {
4770 Insn_template::thumb16_insn(0x4778), // bx pc
4771 Insn_template::thumb16_insn(0x46c0), // nop
4772 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4773 Insn_template::arm_insn(0xe12fff1c), // bx ip
4774 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4775 // dcd R_ARM_ABS32(X)
b569affa 4776 };
2e702c99 4777
b569affa
DK
4778 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4779 // available.
4780 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4781 {
4782 Insn_template::thumb16_insn(0x4778), // bx pc
4783 Insn_template::thumb16_insn(0x46c0), // nop
4784 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4785 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4786 // dcd R_ARM_ABS32(X)
b569affa 4787 };
2e702c99 4788
b569affa
DK
4789 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4790 // one, when the destination is close enough.
4791 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4792 {
4793 Insn_template::thumb16_insn(0x4778), // bx pc
4794 Insn_template::thumb16_insn(0x46c0), // nop
4795 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4796 };
2e702c99 4797
b569affa
DK
4798 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4799 // blx to reach the stub if necessary.
4800 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4801 {
4802 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4803 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4804 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4805 // dcd R_ARM_REL32(X-4)
b569affa 4806 };
2e702c99 4807
b569affa
DK
4808 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4809 // blx to reach the stub if necessary. We can not add into pc;
4810 // it is not guaranteed to mode switch (different in ARMv6 and
4811 // ARMv7).
4812 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4813 {
4814 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4815 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4816 Insn_template::arm_insn(0xe12fff1c), // bx ip
4817 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4818 // dcd R_ARM_REL32(X)
b569affa 4819 };
2e702c99 4820
b569affa
DK
4821 // V4T ARM -> ARM long branch stub, PIC.
4822 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4823 {
4824 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4825 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4826 Insn_template::arm_insn(0xe12fff1c), // bx ip
4827 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4828 // dcd R_ARM_REL32(X)
b569affa 4829 };
2e702c99 4830
b569affa
DK
4831 // V4T Thumb -> ARM long branch stub, PIC.
4832 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4833 {
4834 Insn_template::thumb16_insn(0x4778), // bx pc
4835 Insn_template::thumb16_insn(0x46c0), // nop
4836 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4837 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4838 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4839 // dcd R_ARM_REL32(X)
b569affa 4840 };
2e702c99 4841
b569affa
DK
4842 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4843 // architectures.
4844 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4845 {
4846 Insn_template::thumb16_insn(0xb401), // push {r0}
4847 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4848 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4849 Insn_template::thumb16_insn(0x4484), // add ip, r0
4850 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4851 Insn_template::thumb16_insn(0x4760), // bx ip
4852 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4853 // dcd R_ARM_REL32(X)
b569affa 4854 };
2e702c99 4855
b569affa
DK
4856 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4857 // allowed.
4858 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4859 {
4860 Insn_template::thumb16_insn(0x4778), // bx pc
4861 Insn_template::thumb16_insn(0x46c0), // nop
4862 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4863 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4864 Insn_template::arm_insn(0xe12fff1c), // bx ip
4865 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4866 // dcd R_ARM_REL32(X)
b569affa 4867 };
2e702c99 4868
b569affa 4869 // Cortex-A8 erratum-workaround stubs.
2e702c99 4870
b569affa
DK
4871 // Stub used for conditional branches (which may be beyond +/-1MB away,
4872 // so we can't use a conditional branch to reach this stub).
2e702c99 4873
b569affa
DK
4874 // original code:
4875 //
4876 // b<cond> X
4877 // after:
4878 //
4879 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4880 {
4881 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4882 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4883 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4884 // b.w X
b569affa 4885 };
2e702c99 4886
b569affa 4887 // Stub used for b.w and bl.w instructions.
2e702c99 4888
b569affa
DK
4889 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4890 {
4891 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4892 };
2e702c99 4893
b569affa
DK
4894 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4895 {
4896 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4897 };
2e702c99 4898
b569affa
DK
4899 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4900 // instruction (which switches to ARM mode) to point to this stub. Jump to
4901 // the real destination using an ARM-mode branch.
bb0d3eb0 4902 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4903 {
4904 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4905 };
4906
a2162063
ILT
4907 // Stub used to provide an interworking for R_ARM_V4BX relocation
4908 // (bx r[n] instruction).
4909 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4910 {
4911 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4912 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4913 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4914 };
4915
b569affa
DK
4916 // Fill in the stub template look-up table. Stub templates are constructed
4917 // per instance of Stub_factory for fast look-up without locking
4918 // in a thread-enabled environment.
4919
4920 this->stub_templates_[arm_stub_none] =
4921 new Stub_template(arm_stub_none, NULL, 0);
4922
4923#define DEF_STUB(x) \
4924 do \
4925 { \
4926 size_t array_size \
4927 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4928 Stub_type type = arm_stub_##x; \
4929 this->stub_templates_[type] = \
4930 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4931 } \
4932 while (0);
4933
4934 DEF_STUBS
4935#undef DEF_STUB
4936}
4937
56ee5e00
DK
4938// Stub_table methods.
4939
9b547ce6 4940// Remove all Cortex-A8 stub.
56ee5e00
DK
4941
4942template<bool big_endian>
4943void
2fb7225c
DK
4944Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4945{
4946 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4947 p != this->cortex_a8_stubs_.end();
4948 ++p)
4949 delete p->second;
4950 this->cortex_a8_stubs_.clear();
4951}
4952
4953// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4954
4955template<bool big_endian>
4956void
4957Stub_table<big_endian>::relocate_stub(
4958 Stub* stub,
4959 const Relocate_info<32, big_endian>* relinfo,
4960 Target_arm<big_endian>* arm_target,
4961 Output_section* output_section,
4962 unsigned char* view,
4963 Arm_address address,
4964 section_size_type view_size)
56ee5e00 4965{
2ea97941 4966 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4967 if (stub_template->reloc_count() != 0)
4968 {
4969 // Adjust view to cover the stub only.
4970 section_size_type offset = stub->offset();
4971 section_size_type stub_size = stub_template->size();
4972 gold_assert(offset + stub_size <= view_size);
4973
4974 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4975 address + offset, stub_size);
4976 }
56ee5e00
DK
4977}
4978
2fb7225c
DK
4979// Relocate all stubs in this stub table.
4980
56ee5e00
DK
4981template<bool big_endian>
4982void
4983Stub_table<big_endian>::relocate_stubs(
4984 const Relocate_info<32, big_endian>* relinfo,
4985 Target_arm<big_endian>* arm_target,
2ea97941 4986 Output_section* output_section,
56ee5e00 4987 unsigned char* view,
2ea97941 4988 Arm_address address,
56ee5e00
DK
4989 section_size_type view_size)
4990{
4991 // If we are passed a view bigger than the stub table's. we need to
4992 // adjust the view.
2ea97941 4993 gold_assert(address == this->address()
56ee5e00
DK
4994 && (view_size
4995 == static_cast<section_size_type>(this->data_size())));
4996
2fb7225c
DK
4997 // Relocate all relocation stubs.
4998 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4999 p != this->reloc_stubs_.end();
5000 ++p)
5001 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5002 address, view_size);
5003
5004 // Relocate all Cortex-A8 stubs.
5005 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5006 p != this->cortex_a8_stubs_.end();
5007 ++p)
5008 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5009 address, view_size);
a2162063
ILT
5010
5011 // Relocate all ARM V4BX stubs.
5012 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5013 p != this->arm_v4bx_stubs_.end();
5014 ++p)
5015 {
5016 if (*p != NULL)
5017 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5018 address, view_size);
5019 }
2fb7225c
DK
5020}
5021
5022// Write out the stubs to file.
5023
5024template<bool big_endian>
5025void
5026Stub_table<big_endian>::do_write(Output_file* of)
5027{
5028 off_t offset = this->offset();
5029 const section_size_type oview_size =
5030 convert_to_section_size_type(this->data_size());
5031 unsigned char* const oview = of->get_output_view(offset, oview_size);
5032
5033 // Write relocation stubs.
56ee5e00
DK
5034 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5035 p != this->reloc_stubs_.end();
5036 ++p)
5037 {
5038 Reloc_stub* stub = p->second;
2fb7225c
DK
5039 Arm_address address = this->address() + stub->offset();
5040 gold_assert(address
5041 == align_address(address,
5042 stub->stub_template()->alignment()));
5043 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5044 big_endian);
56ee5e00 5045 }
2fb7225c
DK
5046
5047 // Write Cortex-A8 stubs.
5048 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5049 p != this->cortex_a8_stubs_.end();
5050 ++p)
5051 {
5052 Cortex_a8_stub* stub = p->second;
5053 Arm_address address = this->address() + stub->offset();
5054 gold_assert(address
5055 == align_address(address,
5056 stub->stub_template()->alignment()));
5057 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5058 big_endian);
5059 }
5060
a2162063
ILT
5061 // Write ARM V4BX relocation stubs.
5062 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5063 p != this->arm_v4bx_stubs_.end();
5064 ++p)
5065 {
5066 if (*p == NULL)
5067 continue;
5068
5069 Arm_address address = this->address() + (*p)->offset();
5070 gold_assert(address
5071 == align_address(address,
5072 (*p)->stub_template()->alignment()));
5073 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5074 big_endian);
5075 }
5076
2fb7225c 5077 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5078}
5079
2fb7225c
DK
5080// Update the data size and address alignment of the stub table at the end
5081// of a relaxation pass. Return true if either the data size or the
5082// alignment changed in this relaxation pass.
5083
5084template<bool big_endian>
5085bool
5086Stub_table<big_endian>::update_data_size_and_addralign()
5087{
2fb7225c 5088 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5089 off_t size = this->reloc_stubs_size_;
5090 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5091
5092 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5093 p != this->cortex_a8_stubs_.end();
5094 ++p)
5095 {
5096 const Stub_template* stub_template = p->second->stub_template();
5097 addralign = std::max(addralign, stub_template->alignment());
5098 size = (align_address(size, stub_template->alignment())
5099 + stub_template->size());
5100 }
5101
a2162063
ILT
5102 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5103 p != this->arm_v4bx_stubs_.end();
5104 ++p)
5105 {
5106 if (*p == NULL)
5107 continue;
5108
5109 const Stub_template* stub_template = (*p)->stub_template();
5110 addralign = std::max(addralign, stub_template->alignment());
5111 size = (align_address(size, stub_template->alignment())
5112 + stub_template->size());
5113 }
5114
2fb7225c
DK
5115 // Check if either data size or alignment changed in this pass.
5116 // Update prev_data_size_ and prev_addralign_. These will be used
5117 // as the current data size and address alignment for the next pass.
5118 bool changed = size != this->prev_data_size_;
2e702c99 5119 this->prev_data_size_ = size;
2fb7225c
DK
5120
5121 if (addralign != this->prev_addralign_)
5122 changed = true;
5123 this->prev_addralign_ = addralign;
5124
5125 return changed;
5126}
5127
5128// Finalize the stubs. This sets the offsets of the stubs within the stub
5129// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5130
5131template<bool big_endian>
5132void
2fb7225c 5133Stub_table<big_endian>::finalize_stubs()
56ee5e00 5134{
d099120c 5135 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5136 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5137 p != this->cortex_a8_stubs_.end();
5138 ++p)
5139 {
5140 Cortex_a8_stub* stub = p->second;
5141 const Stub_template* stub_template = stub->stub_template();
5142 uint64_t stub_addralign = stub_template->alignment();
5143 off = align_address(off, stub_addralign);
5144 stub->set_offset(off);
5145 off += stub_template->size();
5146
5147 // Mark input section so that we can determine later if a code section
5148 // needs the Cortex-A8 workaround quickly.
5149 Arm_relobj<big_endian>* arm_relobj =
5150 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5151 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5152 }
5153
a2162063
ILT
5154 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5155 p != this->arm_v4bx_stubs_.end();
5156 ++p)
5157 {
5158 if (*p == NULL)
5159 continue;
5160
5161 const Stub_template* stub_template = (*p)->stub_template();
5162 uint64_t stub_addralign = stub_template->alignment();
5163 off = align_address(off, stub_addralign);
5164 (*p)->set_offset(off);
5165 off += stub_template->size();
5166 }
5167
2fb7225c 5168 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5169}
5170
2fb7225c
DK
5171// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5172// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5173// of the address range seen by the linker.
56ee5e00
DK
5174
5175template<bool big_endian>
5176void
2fb7225c
DK
5177Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5178 Target_arm<big_endian>* arm_target,
5179 unsigned char* view,
5180 Arm_address view_address,
5181 section_size_type view_size)
56ee5e00 5182{
2fb7225c
DK
5183 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5184 for (Cortex_a8_stub_list::const_iterator p =
5185 this->cortex_a8_stubs_.lower_bound(view_address);
5186 ((p != this->cortex_a8_stubs_.end())
5187 && (p->first < (view_address + view_size)));
5188 ++p)
56ee5e00 5189 {
2fb7225c
DK
5190 // We do not store the THUMB bit in the LSB of either the branch address
5191 // or the stub offset. There is no need to strip the LSB.
5192 Arm_address branch_address = p->first;
5193 const Cortex_a8_stub* stub = p->second;
5194 Arm_address stub_address = this->address() + stub->offset();
5195
5196 // Offset of the branch instruction relative to this view.
5197 section_size_type offset =
5198 convert_to_section_size_type(branch_address - view_address);
5199 gold_assert((offset + 4) <= view_size);
5200
5201 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5202 view + offset, branch_address);
5203 }
56ee5e00
DK
5204}
5205
10ad9fe5
DK
5206// Arm_input_section methods.
5207
5208// Initialize an Arm_input_section.
5209
5210template<bool big_endian>
5211void
5212Arm_input_section<big_endian>::init()
5213{
2ea97941
ILT
5214 Relobj* relobj = this->relobj();
5215 unsigned int shndx = this->shndx();
10ad9fe5 5216
f625ae50
DK
5217 // We have to cache original size, alignment and contents to avoid locking
5218 // the original file.
6625d24e
DK
5219 this->original_addralign_ =
5220 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5221
5222 // This is not efficient but we expect only a small number of relaxed
5223 // input sections for stubs.
5224 section_size_type section_size;
5225 const unsigned char* section_contents =
5226 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5227 this->original_size_ =
5228 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5229
f625ae50
DK
5230 gold_assert(this->original_contents_ == NULL);
5231 this->original_contents_ = new unsigned char[section_size];
5232 memcpy(this->original_contents_, section_contents, section_size);
5233
10ad9fe5
DK
5234 // We want to make this look like the original input section after
5235 // output sections are finalized.
2ea97941
ILT
5236 Output_section* os = relobj->output_section(shndx);
5237 off_t offset = relobj->output_section_offset(shndx);
5238 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5239 this->set_address(os->address() + offset);
5240 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5241
5242 this->set_current_data_size(this->original_size_);
5243 this->finalize_data_size();
5244}
5245
5246template<bool big_endian>
5247void
5248Arm_input_section<big_endian>::do_write(Output_file* of)
5249{
5250 // We have to write out the original section content.
f625ae50
DK
5251 gold_assert(this->original_contents_ != NULL);
5252 of->write(this->offset(), this->original_contents_,
2e702c99 5253 this->original_size_);
10ad9fe5
DK
5254
5255 // If this owns a stub table and it is not empty, write it.
5256 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5257 this->stub_table_->write(of);
5258}
5259
5260// Finalize data size.
5261
5262template<bool big_endian>
5263void
5264Arm_input_section<big_endian>::set_final_data_size()
5265{
153e7da4
DK
5266 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5267
10ad9fe5
DK
5268 if (this->is_stub_table_owner())
5269 {
6625d24e 5270 this->stub_table_->finalize_data_size();
153e7da4 5271 off = align_address(off, this->stub_table_->addralign());
153e7da4 5272 off += this->stub_table_->data_size();
10ad9fe5 5273 }
153e7da4 5274 this->set_data_size(off);
10ad9fe5
DK
5275}
5276
5277// Reset address and file offset.
5278
5279template<bool big_endian>
5280void
5281Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5282{
5283 // Size of the original input section contents.
5284 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5285
5286 // If this is a stub table owner, account for the stub table size.
5287 if (this->is_stub_table_owner())
5288 {
2ea97941 5289 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5290
5291 // Reset the stub table's address and file offset. The
5292 // current data size for child will be updated after that.
5293 stub_table_->reset_address_and_file_offset();
5294 off = align_address(off, stub_table_->addralign());
2ea97941 5295 off += stub_table->current_data_size();
10ad9fe5
DK
5296 }
5297
5298 this->set_current_data_size(off);
5299}
5300
af2cdeae
DK
5301// Arm_exidx_cantunwind methods.
5302
7296d933 5303// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5304
5305template<bool big_endian>
5306void
5307Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5308{
5309 off_t offset = this->offset();
5310 const section_size_type oview_size = 8;
5311 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5312
af2cdeae
DK
5313 Output_section* os = this->relobj_->output_section(this->shndx_);
5314 gold_assert(os != NULL);
5315
5316 Arm_relobj<big_endian>* arm_relobj =
5317 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5318 Arm_address output_offset =
5319 arm_relobj->get_output_section_offset(this->shndx_);
5320 Arm_address section_start;
f625ae50
DK
5321 section_size_type section_size;
5322
5323 // Find out the end of the text section referred by this.
7296d933 5324 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5325 {
5326 section_start = os->address() + output_offset;
5327 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5328 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5329 gold_assert(exidx_input_section != NULL);
5330 section_size =
5331 convert_to_section_size_type(exidx_input_section->text_size());
5332 }
af2cdeae
DK
5333 else
5334 {
5335 // Currently this only happens for a relaxed section.
5336 const Output_relaxed_input_section* poris =
5337 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5338 gold_assert(poris != NULL);
5339 section_start = poris->address();
f625ae50 5340 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5341 }
5342
5343 // We always append this to the end of an EXIDX section.
f625ae50 5344 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5345
5346 // Write out the entry. The first word either points to the beginning
5347 // or after the end of a text section. The second word is the special
5348 // EXIDX_CANTUNWIND value.
e7eca48c 5349 uint32_t prel31_offset = output_address - this->address();
bef2b434 5350 if (Bits<31>::has_overflow32(offset))
e7eca48c 5351 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5352 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5353 prel31_offset & 0x7fffffffU);
5354 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5355 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5356
5357 of->write_output_view(this->offset(), oview_size, oview);
5358}
5359
5360// Arm_exidx_merged_section methods.
5361
5362// Constructor for Arm_exidx_merged_section.
5363// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5364// SECTION_OFFSET_MAP points to a section offset map describing how
5365// parts of the input section are mapped to output. DELETED_BYTES is
5366// the number of bytes deleted from the EXIDX input section.
5367
5368Arm_exidx_merged_section::Arm_exidx_merged_section(
5369 const Arm_exidx_input_section& exidx_input_section,
5370 const Arm_exidx_section_offset_map& section_offset_map,
5371 uint32_t deleted_bytes)
5372 : Output_relaxed_input_section(exidx_input_section.relobj(),
5373 exidx_input_section.shndx(),
5374 exidx_input_section.addralign()),
5375 exidx_input_section_(exidx_input_section),
5376 section_offset_map_(section_offset_map)
5377{
f625ae50
DK
5378 // If we retain or discard the whole EXIDX input section, we would
5379 // not be here.
5380 gold_assert(deleted_bytes != 0
5381 && deleted_bytes != this->exidx_input_section_.size());
5382
af2cdeae 5383 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5384 uint32_t size = exidx_input_section.size() - deleted_bytes;
5385 this->set_data_size(size);
af2cdeae 5386 this->fix_data_size();
f625ae50
DK
5387
5388 // Allocate buffer for section contents and build contents.
5389 this->section_contents_ = new unsigned char[size];
5390}
5391
5392// Build the contents of a merged EXIDX output section.
5393
5394void
5395Arm_exidx_merged_section::build_contents(
5396 const unsigned char* original_contents,
5397 section_size_type original_size)
5398{
5399 // Go over spans of input offsets and write only those that are not
5400 // discarded.
5401 section_offset_type in_start = 0;
5402 section_offset_type out_start = 0;
5403 section_offset_type in_max =
5404 convert_types<section_offset_type>(original_size);
5405 section_offset_type out_max =
5406 convert_types<section_offset_type>(this->data_size());
5407 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5408 this->section_offset_map_.begin();
f625ae50
DK
5409 p != this->section_offset_map_.end();
5410 ++p)
5411 {
5412 section_offset_type in_end = p->first;
5413 gold_assert(in_end >= in_start);
5414 section_offset_type out_end = p->second;
5415 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5416 if (out_end != -1)
5417 {
5418 size_t out_chunk_size =
5419 convert_types<size_t>(out_end - out_start + 1);
5420
5421 gold_assert(out_chunk_size == in_chunk_size
5422 && in_end < in_max && out_end < out_max);
5423
5424 memcpy(this->section_contents_ + out_start,
5425 original_contents + in_start,
5426 out_chunk_size);
5427 out_start += out_chunk_size;
5428 }
5429 in_start += in_chunk_size;
5430 }
af2cdeae
DK
5431}
5432
5433// Given an input OBJECT, an input section index SHNDX within that
5434// object, and an OFFSET relative to the start of that input
5435// section, return whether or not the corresponding offset within
5436// the output section is known. If this function returns true, it
5437// sets *POUTPUT to the output offset. The value -1 indicates that
5438// this input offset is being discarded.
5439
5440bool
5441Arm_exidx_merged_section::do_output_offset(
5442 const Relobj* relobj,
5443 unsigned int shndx,
5444 section_offset_type offset,
5445 section_offset_type* poutput) const
5446{
5447 // We only handle offsets for the original EXIDX input section.
5448 if (relobj != this->exidx_input_section_.relobj()
5449 || shndx != this->exidx_input_section_.shndx())
5450 return false;
5451
c7f3c371
DK
5452 section_offset_type section_size =
5453 convert_types<section_offset_type>(this->exidx_input_section_.size());
5454 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5455 // Input offset is out of valid range.
5456 *poutput = -1;
5457 else
5458 {
5459 // We need to look up the section offset map to determine the output
5460 // offset. Find the reference point in map that is first offset
5461 // bigger than or equal to this offset.
5462 Arm_exidx_section_offset_map::const_iterator p =
5463 this->section_offset_map_.lower_bound(offset);
5464
5465 // The section offset maps are build such that this should not happen if
5466 // input offset is in the valid range.
5467 gold_assert(p != this->section_offset_map_.end());
5468
5469 // We need to check if this is dropped.
5470 section_offset_type ref = p->first;
5471 section_offset_type mapped_ref = p->second;
5472
5473 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5474 // Offset is present in output.
5475 *poutput = mapped_ref + (offset - ref);
5476 else
5477 // Offset is discarded owing to EXIDX entry merging.
5478 *poutput = -1;
5479 }
2e702c99 5480
af2cdeae
DK
5481 return true;
5482}
5483
5484// Write this to output file OF.
5485
5486void
5487Arm_exidx_merged_section::do_write(Output_file* of)
5488{
af2cdeae
DK
5489 off_t offset = this->offset();
5490 const section_size_type oview_size = this->data_size();
5491 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5492
af2cdeae
DK
5493 Output_section* os = this->relobj()->output_section(this->shndx());
5494 gold_assert(os != NULL);
5495
f625ae50 5496 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5497 of->write_output_view(this->offset(), oview_size, oview);
5498}
5499
80d0d023
DK
5500// Arm_exidx_fixup methods.
5501
5502// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5503// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5504// points to the end of the last seen EXIDX section.
5505
5506void
5507Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5508{
5509 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5510 && this->last_input_section_ != NULL)
5511 {
5512 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5513 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5514 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5515 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5516 this->exidx_output_section_->add_output_section_data(cantunwind);
5517 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5518 }
5519}
5520
5521// Process an EXIDX section entry in input. Return whether this entry
5522// can be deleted in the output. SECOND_WORD in the second word of the
5523// EXIDX entry.
5524
5525bool
5526Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5527{
5528 bool delete_entry;
5529 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5530 {
5531 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5532 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5533 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5534 }
5535 else if ((second_word & 0x80000000) != 0)
5536 {
5537 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5538 delete_entry = (merge_exidx_entries_
5539 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5540 && this->last_inlined_entry_ == second_word);
5541 this->last_unwind_type_ = UT_INLINED_ENTRY;
5542 this->last_inlined_entry_ = second_word;
5543 }
5544 else
5545 {
5546 // Normal table entry. In theory we could merge these too,
5547 // but duplicate entries are likely to be much less common.
5548 delete_entry = false;
5549 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5550 }
5551 return delete_entry;
5552}
5553
5554// Update the current section offset map during EXIDX section fix-up.
5555// If there is no map, create one. INPUT_OFFSET is the offset of a
5556// reference point, DELETED_BYTES is the number of deleted by in the
5557// section so far. If DELETE_ENTRY is true, the reference point and
5558// all offsets after the previous reference point are discarded.
5559
5560void
5561Arm_exidx_fixup::update_offset_map(
5562 section_offset_type input_offset,
5563 section_size_type deleted_bytes,
5564 bool delete_entry)
5565{
5566 if (this->section_offset_map_ == NULL)
5567 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5568 section_offset_type output_offset;
5569 if (delete_entry)
5570 output_offset = Arm_exidx_input_section::invalid_offset;
5571 else
5572 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5573 (*this->section_offset_map_)[input_offset] = output_offset;
5574}
5575
5576// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5577// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5578// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5579// If some entries are merged, also store a pointer to a newly created
5580// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5581// owns the map and is responsible for releasing it after use.
80d0d023
DK
5582
5583template<bool big_endian>
5584uint32_t
5585Arm_exidx_fixup::process_exidx_section(
5586 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5587 const unsigned char* section_contents,
5588 section_size_type section_size,
80d0d023
DK
5589 Arm_exidx_section_offset_map** psection_offset_map)
5590{
5591 Relobj* relobj = exidx_input_section->relobj();
5592 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5593
5594 if ((section_size % 8) != 0)
5595 {
5596 // Something is wrong with this section. Better not touch it.
5597 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5598 relobj->name().c_str(), shndx);
5599 this->last_input_section_ = exidx_input_section;
5600 this->last_unwind_type_ = UT_NONE;
5601 return 0;
5602 }
2e702c99 5603
80d0d023
DK
5604 uint32_t deleted_bytes = 0;
5605 bool prev_delete_entry = false;
5606 gold_assert(this->section_offset_map_ == NULL);
5607
5608 for (section_size_type i = 0; i < section_size; i += 8)
5609 {
5610 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5611 const Valtype* wv =
5612 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5613 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5614
5615 bool delete_entry = this->process_exidx_entry(second_word);
5616
5617 // Entry deletion causes changes in output offsets. We use a std::map
5618 // to record these. And entry (x, y) means input offset x
5619 // is mapped to output offset y. If y is invalid_offset, then x is
5620 // dropped in the output. Because of the way std::map::lower_bound
5621 // works, we record the last offset in a region w.r.t to keeping or
5622 // dropping. If there is no entry (x0, y0) for an input offset x0,
5623 // the output offset y0 of it is determined by the output offset y1 of
5624 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5625 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5626 // y0 is also -1.
5627 if (delete_entry != prev_delete_entry && i != 0)
5628 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5629
5630 // Update total deleted bytes for this entry.
5631 if (delete_entry)
5632 deleted_bytes += 8;
5633
5634 prev_delete_entry = delete_entry;
5635 }
2e702c99 5636
80d0d023
DK
5637 // If section offset map is not NULL, make an entry for the end of
5638 // section.
5639 if (this->section_offset_map_ != NULL)
5640 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5641
5642 *psection_offset_map = this->section_offset_map_;
5643 this->section_offset_map_ = NULL;
5644 this->last_input_section_ = exidx_input_section;
2e702c99 5645
546c7457
DK
5646 // Set the first output text section so that we can link the EXIDX output
5647 // section to it. Ignore any EXIDX input section that is completely merged.
5648 if (this->first_output_text_section_ == NULL
5649 && deleted_bytes != section_size)
5650 {
5651 unsigned int link = exidx_input_section->link();
5652 Output_section* os = relobj->output_section(link);
5653 gold_assert(os != NULL);
5654 this->first_output_text_section_ = os;
5655 }
5656
80d0d023
DK
5657 return deleted_bytes;
5658}
5659
07f508a2
DK
5660// Arm_output_section methods.
5661
5662// Create a stub group for input sections from BEGIN to END. OWNER
5663// points to the input section to be the owner a new stub table.
5664
5665template<bool big_endian>
5666void
5667Arm_output_section<big_endian>::create_stub_group(
5668 Input_section_list::const_iterator begin,
5669 Input_section_list::const_iterator end,
5670 Input_section_list::const_iterator owner,
5671 Target_arm<big_endian>* target,
f625ae50
DK
5672 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5673 const Task* task)
07f508a2 5674{
2b328d4e
DK
5675 // We use a different kind of relaxed section in an EXIDX section.
5676 // The static casting from Output_relaxed_input_section to
5677 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5678 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5679 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5680
07f508a2
DK
5681 // Currently we convert ordinary input sections into relaxed sections only
5682 // at this point but we may want to support creating relaxed input section
5683 // very early. So we check here to see if owner is already a relaxed
5684 // section.
2e702c99 5685
07f508a2
DK
5686 Arm_input_section<big_endian>* arm_input_section;
5687 if (owner->is_relaxed_input_section())
5688 {
5689 arm_input_section =
5690 Arm_input_section<big_endian>::as_arm_input_section(
5691 owner->relaxed_input_section());
5692 }
5693 else
5694 {
5695 gold_assert(owner->is_input_section());
f625ae50
DK
5696 // Create a new relaxed input section. We need to lock the original
5697 // file.
5698 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5699 arm_input_section =
5700 target->new_arm_input_section(owner->relobj(), owner->shndx());
5701 new_relaxed_sections->push_back(arm_input_section);
5702 }
5703
5704 // Create a stub table.
2ea97941 5705 Stub_table<big_endian>* stub_table =
07f508a2
DK
5706 target->new_stub_table(arm_input_section);
5707
2ea97941 5708 arm_input_section->set_stub_table(stub_table);
2e702c99 5709
07f508a2
DK
5710 Input_section_list::const_iterator p = begin;
5711 Input_section_list::const_iterator prev_p;
5712
5713 // Look for input sections or relaxed input sections in [begin ... end].
5714 do
5715 {
5716 if (p->is_input_section() || p->is_relaxed_input_section())
5717 {
5718 // The stub table information for input sections live
5719 // in their objects.
5720 Arm_relobj<big_endian>* arm_relobj =
5721 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5722 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5723 }
5724 prev_p = p++;
5725 }
5726 while (prev_p != end);
5727}
5728
5729// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5730// of stub groups. We grow a stub group by adding input section until the
5731// size is just below GROUP_SIZE. The last input section will be converted
5732// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5733// input section after the stub table, effectively double the group size.
2e702c99 5734//
07f508a2
DK
5735// This is similar to the group_sections() function in elf32-arm.c but is
5736// implemented differently.
5737
5738template<bool big_endian>
5739void
5740Arm_output_section<big_endian>::group_sections(
5741 section_size_type group_size,
5742 bool stubs_always_after_branch,
f625ae50
DK
5743 Target_arm<big_endian>* target,
5744 const Task* task)
07f508a2 5745{
07f508a2
DK
5746 // States for grouping.
5747 typedef enum
5748 {
5749 // No group is being built.
5750 NO_GROUP,
5751 // A group is being built but the stub table is not found yet.
5752 // We keep group a stub group until the size is just under GROUP_SIZE.
5753 // The last input section in the group will be used as the stub table.
5754 FINDING_STUB_SECTION,
5755 // A group is being built and we have already found a stub table.
5756 // We enter this state to grow a stub group by adding input section
5757 // after the stub table. This effectively doubles the group size.
5758 HAS_STUB_SECTION
5759 } State;
5760
5761 // Any newly created relaxed sections are stored here.
5762 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5763
5764 State state = NO_GROUP;
5765 section_size_type off = 0;
5766 section_size_type group_begin_offset = 0;
5767 section_size_type group_end_offset = 0;
5768 section_size_type stub_table_end_offset = 0;
5769 Input_section_list::const_iterator group_begin =
5770 this->input_sections().end();
2ea97941 5771 Input_section_list::const_iterator stub_table =
07f508a2
DK
5772 this->input_sections().end();
5773 Input_section_list::const_iterator group_end = this->input_sections().end();
5774 for (Input_section_list::const_iterator p = this->input_sections().begin();
5775 p != this->input_sections().end();
5776 ++p)
5777 {
5778 section_size_type section_begin_offset =
5779 align_address(off, p->addralign());
5780 section_size_type section_end_offset =
2e702c99
RM
5781 section_begin_offset + p->data_size();
5782
9b547ce6 5783 // Check to see if we should group the previously seen sections.
e9bbb538 5784 switch (state)
07f508a2
DK
5785 {
5786 case NO_GROUP:
5787 break;
5788
5789 case FINDING_STUB_SECTION:
5790 // Adding this section makes the group larger than GROUP_SIZE.
5791 if (section_end_offset - group_begin_offset >= group_size)
5792 {
5793 if (stubs_always_after_branch)
2e702c99 5794 {
07f508a2
DK
5795 gold_assert(group_end != this->input_sections().end());
5796 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5797 target, &new_relaxed_sections,
5798 task);
07f508a2
DK
5799 state = NO_GROUP;
5800 }
5801 else
5802 {
5803 // But wait, there's more! Input sections up to
5804 // stub_group_size bytes after the stub table can be
5805 // handled by it too.
5806 state = HAS_STUB_SECTION;
2ea97941 5807 stub_table = group_end;
07f508a2
DK
5808 stub_table_end_offset = group_end_offset;
5809 }
5810 }
5811 break;
5812
5813 case HAS_STUB_SECTION:
5814 // Adding this section makes the post stub-section group larger
5815 // than GROUP_SIZE.
5816 if (section_end_offset - stub_table_end_offset >= group_size)
5817 {
5818 gold_assert(group_end != this->input_sections().end());
2ea97941 5819 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5820 target, &new_relaxed_sections, task);
07f508a2
DK
5821 state = NO_GROUP;
5822 }
5823 break;
5824
5825 default:
5826 gold_unreachable();
2e702c99 5827 }
07f508a2
DK
5828
5829 // If we see an input section and currently there is no group, start
f625ae50
DK
5830 // a new one. Skip any empty sections. We look at the data size
5831 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5832 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5833 && (p->data_size() != 0))
07f508a2
DK
5834 {
5835 if (state == NO_GROUP)
5836 {
5837 state = FINDING_STUB_SECTION;
5838 group_begin = p;
5839 group_begin_offset = section_begin_offset;
5840 }
5841
5842 // Keep track of the last input section seen.
5843 group_end = p;
5844 group_end_offset = section_end_offset;
5845 }
5846
5847 off = section_end_offset;
5848 }
5849
5850 // Create a stub group for any ungrouped sections.
5851 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5852 {
5853 gold_assert(group_end != this->input_sections().end());
5854 this->create_stub_group(group_begin, group_end,
5855 (state == FINDING_STUB_SECTION
5856 ? group_end
2ea97941 5857 : stub_table),
f625ae50 5858 target, &new_relaxed_sections, task);
07f508a2
DK
5859 }
5860
5861 // Convert input section into relaxed input section in a batch.
5862 if (!new_relaxed_sections.empty())
5863 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5864
5865 // Update the section offsets
5866 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5867 {
5868 Arm_relobj<big_endian>* arm_relobj =
5869 Arm_relobj<big_endian>::as_arm_relobj(
5870 new_relaxed_sections[i]->relobj());
2ea97941 5871 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5872 // Tell Arm_relobj that this input section is converted.
2ea97941 5873 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5874 }
5875}
5876
2b328d4e
DK
5877// Append non empty text sections in this to LIST in ascending
5878// order of their position in this.
5879
5880template<bool big_endian>
5881void
5882Arm_output_section<big_endian>::append_text_sections_to_list(
5883 Text_section_list* list)
5884{
2b328d4e
DK
5885 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5886
5887 for (Input_section_list::const_iterator p = this->input_sections().begin();
5888 p != this->input_sections().end();
5889 ++p)
5890 {
5891 // We only care about plain or relaxed input sections. We also
5892 // ignore any merged sections.
a60af0db 5893 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5894 list->push_back(Text_section_list::value_type(p->relobj(),
5895 p->shndx()));
5896 }
5897}
5898
5899template<bool big_endian>
5900void
5901Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5902 Layout* layout,
2b328d4e 5903 const Text_section_list& sorted_text_sections,
85fdf906 5904 Symbol_table* symtab,
f625ae50
DK
5905 bool merge_exidx_entries,
5906 const Task* task)
2b328d4e
DK
5907{
5908 // We should only do this for the EXIDX output section.
5909 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5910
5911 // We don't want the relaxation loop to undo these changes, so we discard
5912 // the current saved states and take another one after the fix-up.
5913 this->discard_states();
5914
5915 // Remove all input sections.
5916 uint64_t address = this->address();
6625d24e
DK
5917 typedef std::list<Output_section::Input_section> Input_section_list;
5918 Input_section_list input_sections;
2b328d4e
DK
5919 this->reset_address_and_file_offset();
5920 this->get_input_sections(address, std::string(""), &input_sections);
5921
5922 if (!this->input_sections().empty())
5923 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5924
2b328d4e
DK
5925 // Go through all the known input sections and record them.
5926 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5927 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5928 Section_id_hash> Text_to_exidx_map;
5929 Text_to_exidx_map text_to_exidx_map;
5930 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5931 p != input_sections.end();
5932 ++p)
5933 {
5934 // This should never happen. At this point, we should only see
5935 // plain EXIDX input sections.
5936 gold_assert(!p->is_relaxed_input_section());
6625d24e 5937 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5938 }
5939
85fdf906 5940 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5941
5942 // Go over the sorted text sections.
6625d24e 5943 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5944 Section_id_set processed_input_sections;
5945 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5946 p != sorted_text_sections.end();
5947 ++p)
5948 {
5949 Relobj* relobj = p->first;
5950 unsigned int shndx = p->second;
5951
5952 Arm_relobj<big_endian>* arm_relobj =
5953 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5954 const Arm_exidx_input_section* exidx_input_section =
5955 arm_relobj->exidx_input_section_by_link(shndx);
5956
131687b4
DK
5957 // If this text section has no EXIDX section or if the EXIDX section
5958 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5959 // of the last seen EXIDX section.
5960 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5961 {
5962 exidx_fixup.add_exidx_cantunwind_as_needed();
5963 continue;
5964 }
5965
5966 Relobj* exidx_relobj = exidx_input_section->relobj();
5967 unsigned int exidx_shndx = exidx_input_section->shndx();
5968 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5969 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5970 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5971 {
5972 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5973 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5974 // issue a warning instead. We assume the user knows what he
5975 // or she is doing. Otherwise, this is an error.
5976 if (layout->script_options()->saw_sections_clause())
5977 gold_warning(_("unwinding may not work because EXIDX input section"
5978 " %u of %s is not in EXIDX output section"),
5979 exidx_shndx, exidx_relobj->name().c_str());
5980 else
5981 gold_error(_("unwinding may not work because EXIDX input section"
5982 " %u of %s is not in EXIDX output section"),
5983 exidx_shndx, exidx_relobj->name().c_str());
5984
2b328d4e
DK
5985 exidx_fixup.add_exidx_cantunwind_as_needed();
5986 continue;
5987 }
5988
f625ae50
DK
5989 // We need to access the contents of the EXIDX section, lock the
5990 // object here.
5991 Task_lock_obj<Object> tl(task, exidx_relobj);
5992 section_size_type exidx_size;
5993 const unsigned char* exidx_contents =
2e702c99 5994 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5995
2b328d4e
DK
5996 // Fix up coverage and append input section to output data list.
5997 Arm_exidx_section_offset_map* section_offset_map = NULL;
5998 uint32_t deleted_bytes =
2e702c99 5999 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
6000 exidx_contents,
6001 exidx_size,
2b328d4e
DK
6002 &section_offset_map);
6003
6004 if (deleted_bytes == exidx_input_section->size())
6005 {
6006 // The whole EXIDX section got merged. Remove it from output.
6007 gold_assert(section_offset_map == NULL);
6008 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
6009
6010 // All local symbols defined in this input section will be dropped.
6011 // We need to adjust output local symbol count.
6012 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6013 }
6014 else if (deleted_bytes > 0)
6015 {
6016 // Some entries are merged. We need to convert this EXIDX input
6017 // section into a relaxed section.
6018 gold_assert(section_offset_map != NULL);
f625ae50 6019
2b328d4e
DK
6020 Arm_exidx_merged_section* merged_section =
6021 new Arm_exidx_merged_section(*exidx_input_section,
6022 *section_offset_map, deleted_bytes);
f625ae50
DK
6023 merged_section->build_contents(exidx_contents, exidx_size);
6024
d06fb4d1
DK
6025 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6026 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 6027 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
6028
6029 // All local symbols defined in discarded portions of this input
6030 // section will be dropped. We need to adjust output local symbol
6031 // count.
6032 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6033 }
6034 else
6035 {
6036 // Just add back the EXIDX input section.
6037 gold_assert(section_offset_map == NULL);
6625d24e
DK
6038 const Output_section::Input_section* pis = iter->second;
6039 gold_assert(pis->is_input_section());
6040 this->add_script_input_section(*pis);
2b328d4e
DK
6041 }
6042
2e702c99 6043 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
6044 }
6045
6046 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6047 exidx_fixup.add_exidx_cantunwind_as_needed();
6048
6049 // Remove any known EXIDX input sections that are not processed.
6625d24e 6050 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
6051 p != input_sections.end();
6052 ++p)
6053 {
6054 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6055 == processed_input_sections.end())
6056 {
131687b4
DK
6057 // We discard a known EXIDX section because its linked
6058 // text section has been folded by ICF. We also discard an
6059 // EXIDX section with error, the output does not matter in this
6060 // case. We do this to avoid triggering asserts.
2b328d4e
DK
6061 Arm_relobj<big_endian>* arm_relobj =
6062 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6063 const Arm_exidx_input_section* exidx_input_section =
6064 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6065 gold_assert(exidx_input_section != NULL);
131687b4
DK
6066 if (!exidx_input_section->has_errors())
6067 {
6068 unsigned int text_shndx = exidx_input_section->link();
6069 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6070 }
2b328d4e 6071
04ceb17c
DK
6072 // Remove this from link. We also need to recount the
6073 // local symbols.
2b328d4e 6074 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6075 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6076 }
6077 }
2e702c99 6078
546c7457
DK
6079 // Link exidx output section to the first seen output section and
6080 // set correct entry size.
6081 this->set_link_section(exidx_fixup.first_output_text_section());
6082 this->set_entsize(8);
6083
2b328d4e
DK
6084 // Make changes permanent.
6085 this->save_states();
6086 this->set_section_offsets_need_adjustment();
6087}
6088
131687b4
DK
6089// Link EXIDX output sections to text output sections.
6090
6091template<bool big_endian>
6092void
6093Arm_output_section<big_endian>::set_exidx_section_link()
6094{
6095 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6096 if (!this->input_sections().empty())
6097 {
6098 Input_section_list::const_iterator p = this->input_sections().begin();
6099 Arm_relobj<big_endian>* arm_relobj =
6100 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6101 unsigned exidx_shndx = p->shndx();
6102 const Arm_exidx_input_section* exidx_input_section =
6103 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6104 gold_assert(exidx_input_section != NULL);
6105 unsigned int text_shndx = exidx_input_section->link();
6106 Output_section* os = arm_relobj->output_section(text_shndx);
6107 this->set_link_section(os);
6108 }
6109}
6110
8ffa3667
DK
6111// Arm_relobj methods.
6112
cf846138
DK
6113// Determine if an input section is scannable for stub processing. SHDR is
6114// the header of the section and SHNDX is the section index. OS is the output
6115// section for the input section and SYMTAB is the global symbol table used to
6116// look up ICF information.
6117
6118template<bool big_endian>
6119bool
6120Arm_relobj<big_endian>::section_is_scannable(
6121 const elfcpp::Shdr<32, big_endian>& shdr,
6122 unsigned int shndx,
6123 const Output_section* os,
ca09d69a 6124 const Symbol_table* symtab)
cf846138
DK
6125{
6126 // Skip any empty sections, unallocated sections or sections whose
6127 // type are not SHT_PROGBITS.
6128 if (shdr.get_sh_size() == 0
6129 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6130 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6131 return false;
6132
6133 // Skip any discarded or ICF'ed sections.
6134 if (os == NULL || symtab->is_section_folded(this, shndx))
6135 return false;
6136
6137 // If this requires special offset handling, check to see if it is
6138 // a relaxed section. If this is not, then it is a merged section that
6139 // we cannot handle.
6140 if (this->is_output_section_offset_invalid(shndx))
6141 {
6142 const Output_relaxed_input_section* poris =
6143 os->find_relaxed_input_section(this, shndx);
6144 if (poris == NULL)
6145 return false;
6146 }
6147
6148 return true;
6149}
6150
44272192
DK
6151// Determine if we want to scan the SHNDX-th section for relocation stubs.
6152// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6153
6154template<bool big_endian>
6155bool
6156Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6157 const elfcpp::Shdr<32, big_endian>& shdr,
6158 const Relobj::Output_sections& out_sections,
ca09d69a 6159 const Symbol_table* symtab,
2b328d4e 6160 const unsigned char* pshdrs)
44272192
DK
6161{
6162 unsigned int sh_type = shdr.get_sh_type();
6163 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6164 return false;
6165
6166 // Ignore empty section.
6167 off_t sh_size = shdr.get_sh_size();
6168 if (sh_size == 0)
6169 return false;
6170
44272192
DK
6171 // Ignore reloc section with unexpected symbol table. The
6172 // error will be reported in the final link.
6173 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6174 return false;
6175
b521dfe4
DK
6176 unsigned int reloc_size;
6177 if (sh_type == elfcpp::SHT_REL)
6178 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6179 else
6180 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6181
6182 // Ignore reloc section with unexpected entsize or uneven size.
6183 // The error will be reported in the final link.
6184 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6185 return false;
6186
cf846138
DK
6187 // Ignore reloc section with bad info. This error will be
6188 // reported in the final link.
6189 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6190 if (index >= this->shnum())
6191 return false;
6192
6193 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6194 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6195 return this->section_is_scannable(text_shdr, index,
6196 out_sections[index], symtab);
44272192
DK
6197}
6198
cb1be87e
DK
6199// Return the output address of either a plain input section or a relaxed
6200// input section. SHNDX is the section index. We define and use this
6201// instead of calling Output_section::output_address because that is slow
6202// for large output.
6203
6204template<bool big_endian>
6205Arm_address
6206Arm_relobj<big_endian>::simple_input_section_output_address(
6207 unsigned int shndx,
6208 Output_section* os)
6209{
6210 if (this->is_output_section_offset_invalid(shndx))
6211 {
6212 const Output_relaxed_input_section* poris =
6213 os->find_relaxed_input_section(this, shndx);
6214 // We do not handle merged sections here.
6215 gold_assert(poris != NULL);
6216 return poris->address();
6217 }
6218 else
6219 return os->address() + this->get_output_section_offset(shndx);
6220}
6221
44272192
DK
6222// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6223// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6224
6225template<bool big_endian>
6226bool
6227Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6228 const elfcpp::Shdr<32, big_endian>& shdr,
6229 unsigned int shndx,
6230 Output_section* os,
6231 const Symbol_table* symtab)
6232{
cf846138 6233 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6234 return false;
6235
44272192
DK
6236 // If the section does not cross any 4K-boundaries, it does not need to
6237 // be scanned.
cb1be87e 6238 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6239 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6240 return false;
6241
6242 return true;
6243}
6244
6245// Scan a section for Cortex-A8 workaround.
6246
6247template<bool big_endian>
6248void
6249Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6250 const elfcpp::Shdr<32, big_endian>& shdr,
6251 unsigned int shndx,
6252 Output_section* os,
6253 Target_arm<big_endian>* arm_target)
6254{
c8761b9a
DK
6255 // Look for the first mapping symbol in this section. It should be
6256 // at (shndx, 0).
6257 Mapping_symbol_position section_start(shndx, 0);
6258 typename Mapping_symbols_info::const_iterator p =
6259 this->mapping_symbols_info_.lower_bound(section_start);
6260
6261 // There are no mapping symbols for this section. Treat it as a data-only
61163dfa 6262 // section.
c8761b9a 6263 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
61163dfa 6264 return;
c8761b9a 6265
cb1be87e
DK
6266 Arm_address output_address =
6267 this->simple_input_section_output_address(shndx, os);
44272192
DK
6268
6269 // Get the section contents.
6270 section_size_type input_view_size = 0;
6271 const unsigned char* input_view =
6272 this->section_contents(shndx, &input_view_size, false);
6273
6274 // We need to go through the mapping symbols to determine what to
6275 // scan. There are two reasons. First, we should look at THUMB code and
6276 // THUMB code only. Second, we only want to look at the 4K-page boundary
6277 // to speed up the scanning.
2e702c99 6278
44272192
DK
6279 while (p != this->mapping_symbols_info_.end()
6280 && p->first.first == shndx)
6281 {
6282 typename Mapping_symbols_info::const_iterator next =
6283 this->mapping_symbols_info_.upper_bound(p->first);
6284
6285 // Only scan part of a section with THUMB code.
6286 if (p->second == 't')
6287 {
6288 // Determine the end of this range.
6289 section_size_type span_start =
6290 convert_to_section_size_type(p->first.second);
6291 section_size_type span_end;
6292 if (next != this->mapping_symbols_info_.end()
6293 && next->first.first == shndx)
6294 span_end = convert_to_section_size_type(next->first.second);
6295 else
6296 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6297
44272192
DK
6298 if (((span_start + output_address) & ~0xfffUL)
6299 != ((span_end + output_address - 1) & ~0xfffUL))
6300 {
6301 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6302 span_start, span_end,
6303 input_view,
6304 output_address);
6305 }
6306 }
6307
2e702c99 6308 p = next;
44272192
DK
6309 }
6310}
6311
8ffa3667
DK
6312// Scan relocations for stub generation.
6313
6314template<bool big_endian>
6315void
6316Arm_relobj<big_endian>::scan_sections_for_stubs(
6317 Target_arm<big_endian>* arm_target,
6318 const Symbol_table* symtab,
2ea97941 6319 const Layout* layout)
8ffa3667 6320{
2ea97941
ILT
6321 unsigned int shnum = this->shnum();
6322 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6323
6324 // Read the section headers.
6325 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6326 shnum * shdr_size,
8ffa3667
DK
6327 true, true);
6328
6329 // To speed up processing, we set up hash tables for fast lookup of
6330 // input offsets to output addresses.
6331 this->initialize_input_to_output_maps();
6332
6333 const Relobj::Output_sections& out_sections(this->output_sections());
6334
6335 Relocate_info<32, big_endian> relinfo;
8ffa3667 6336 relinfo.symtab = symtab;
2ea97941 6337 relinfo.layout = layout;
8ffa3667
DK
6338 relinfo.object = this;
6339
44272192 6340 // Do relocation stubs scanning.
2ea97941
ILT
6341 const unsigned char* p = pshdrs + shdr_size;
6342 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6343 {
44272192 6344 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6345 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6346 pshdrs))
8ffa3667 6347 {
44272192
DK
6348 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6349 Arm_address output_offset = this->get_output_section_offset(index);
6350 Arm_address output_address;
7296d933 6351 if (output_offset != invalid_address)
44272192
DK
6352 output_address = out_sections[index]->address() + output_offset;
6353 else
6354 {
6355 // Currently this only happens for a relaxed section.
6356 const Output_relaxed_input_section* poris =
6357 out_sections[index]->find_relaxed_input_section(this, index);
6358 gold_assert(poris != NULL);
6359 output_address = poris->address();
6360 }
8ffa3667 6361
44272192
DK
6362 // Get the relocations.
6363 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6364 shdr.get_sh_size(),
6365 true, false);
6366
6367 // Get the section contents. This does work for the case in which
6368 // we modify the contents of an input section. We need to pass the
6369 // output view under such circumstances.
6370 section_size_type input_view_size = 0;
6371 const unsigned char* input_view =
6372 this->section_contents(index, &input_view_size, false);
6373
6374 relinfo.reloc_shndx = i;
6375 relinfo.data_shndx = index;
6376 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6377 unsigned int reloc_size;
6378 if (sh_type == elfcpp::SHT_REL)
6379 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6380 else
6381 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6382
6383 Output_section* os = out_sections[index];
6384 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6385 shdr.get_sh_size() / reloc_size,
6386 os,
6387 output_offset == invalid_address,
6388 input_view, output_address,
6389 input_view_size);
8ffa3667 6390 }
44272192 6391 }
8ffa3667 6392
44272192
DK
6393 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6394 // after its relocation section, if there is one, is processed for
6395 // relocation stubs. Merging this loop with the one above would have been
6396 // complicated since we would have had to make sure that relocation stub
6397 // scanning is done first.
6398 if (arm_target->fix_cortex_a8())
6399 {
6400 const unsigned char* p = pshdrs + shdr_size;
6401 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6402 {
44272192
DK
6403 const elfcpp::Shdr<32, big_endian> shdr(p);
6404 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6405 out_sections[i],
6406 symtab))
6407 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6408 arm_target);
8ffa3667 6409 }
8ffa3667
DK
6410 }
6411
6412 // After we've done the relocations, we release the hash tables,
6413 // since we no longer need them.
6414 this->free_input_to_output_maps();
6415}
6416
6417// Count the local symbols. The ARM backend needs to know if a symbol
6418// is a THUMB function or not. For global symbols, it is easy because
6419// the Symbol object keeps the ELF symbol type. For local symbol it is
6420// harder because we cannot access this information. So we override the
6421// do_count_local_symbol in parent and scan local symbols to mark
6422// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6423// slow down other ports by calling a per symbol target hook inside
2e702c99 6424// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6425
6426template<bool big_endian>
6427void
6428Arm_relobj<big_endian>::do_count_local_symbols(
6429 Stringpool_template<char>* pool,
6430 Stringpool_template<char>* dynpool)
6431{
6432 // We need to fix-up the values of any local symbols whose type are
6433 // STT_ARM_TFUNC.
2e702c99 6434
8ffa3667 6435 // Ask parent to count the local symbols.
6fa2a40b 6436 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6437 const unsigned int loccount = this->local_symbol_count();
6438 if (loccount == 0)
6439 return;
6440
9b547ce6 6441 // Initialize the thumb function bit-vector.
8ffa3667
DK
6442 std::vector<bool> empty_vector(loccount, false);
6443 this->local_symbol_is_thumb_function_.swap(empty_vector);
6444
6445 // Read the symbol table section header.
2ea97941 6446 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6447 elfcpp::Shdr<32, big_endian>
2ea97941 6448 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6449 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6450
6451 // Read the local symbols.
2ea97941 6452 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6453 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6454 off_t locsize = loccount * sym_size;
8ffa3667
DK
6455 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6456 locsize, true, true);
6457
20138696
DK
6458 // For mapping symbol processing, we need to read the symbol names.
6459 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6460 if (strtab_shndx >= this->shnum())
6461 {
6462 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6463 return;
6464 }
6465
6466 elfcpp::Shdr<32, big_endian>
6467 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6468 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6469 {
6470 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6471 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6472 return;
6473 }
6474 const char* pnames =
6475 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6476 strtabshdr.get_sh_size(),
6477 false, false));
6478
8ffa3667
DK
6479 // Loop over the local symbols and mark any local symbols pointing
6480 // to THUMB functions.
6481
6482 // Skip the first dummy symbol.
2ea97941 6483 psyms += sym_size;
6fa2a40b 6484 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6485 this->local_values();
2ea97941 6486 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6487 {
6488 elfcpp::Sym<32, big_endian> sym(psyms);
6489 elfcpp::STT st_type = sym.get_st_type();
6490 Symbol_value<32>& lv((*plocal_values)[i]);
6491 Arm_address input_value = lv.input_value();
6492
20138696
DK
6493 // Check to see if this is a mapping symbol.
6494 const char* sym_name = pnames + sym.get_st_name();
6495 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6496 {
24af6f92
DK
6497 bool is_ordinary;
6498 unsigned int input_shndx =
6499 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6500 gold_assert(is_ordinary);
20138696
DK
6501
6502 // Strip of LSB in case this is a THUMB symbol.
6503 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6504 this->mapping_symbols_info_[msp] = sym_name[1];
6505 }
6506
8ffa3667
DK
6507 if (st_type == elfcpp::STT_ARM_TFUNC
6508 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6509 {
6510 // This is a THUMB function. Mark this and canonicalize the
6511 // symbol value by setting LSB.
6512 this->local_symbol_is_thumb_function_[i] = true;
6513 if ((input_value & 1) == 0)
6514 lv.set_input_value(input_value | 1);
6515 }
6516 }
6517}
6518
6519// Relocate sections.
6520template<bool big_endian>
6521void
6522Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6523 const Symbol_table* symtab,
2ea97941 6524 const Layout* layout,
8ffa3667 6525 const unsigned char* pshdrs,
aa98ff75 6526 Output_file* of,
6fa2a40b 6527 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6528{
6529 // Call parent to relocate sections.
6fa2a40b 6530 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6531 pshdrs, of, pviews);
8ffa3667
DK
6532
6533 // We do not generate stubs if doing a relocatable link.
6534 if (parameters->options().relocatable())
6535 return;
6536
6537 // Relocate stub tables.
2ea97941 6538 unsigned int shnum = this->shnum();
8ffa3667
DK
6539
6540 Target_arm<big_endian>* arm_target =
6541 Target_arm<big_endian>::default_target();
6542
6543 Relocate_info<32, big_endian> relinfo;
8ffa3667 6544 relinfo.symtab = symtab;
2ea97941 6545 relinfo.layout = layout;
8ffa3667
DK
6546 relinfo.object = this;
6547
2ea97941 6548 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6549 {
6550 Arm_input_section<big_endian>* arm_input_section =
6551 arm_target->find_arm_input_section(this, i);
6552
41263c05
DK
6553 if (arm_input_section != NULL
6554 && arm_input_section->is_stub_table_owner()
6555 && !arm_input_section->stub_table()->empty())
6556 {
6557 // We cannot discard a section if it owns a stub table.
6558 Output_section* os = this->output_section(i);
6559 gold_assert(os != NULL);
6560
6561 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6562 relinfo.reloc_shdr = NULL;
6563 relinfo.data_shndx = i;
6564 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6565
6566 gold_assert((*pviews)[i].view != NULL);
6567
6568 // We are passed the output section view. Adjust it to cover the
6569 // stub table only.
6570 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6571 gold_assert((stub_table->address() >= (*pviews)[i].address)
6572 && ((stub_table->address() + stub_table->data_size())
6573 <= (*pviews)[i].address + (*pviews)[i].view_size));
6574
6575 off_t offset = stub_table->address() - (*pviews)[i].address;
6576 unsigned char* view = (*pviews)[i].view + offset;
6577 Arm_address address = stub_table->address();
6578 section_size_type view_size = stub_table->data_size();
2e702c99 6579
41263c05
DK
6580 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6581 view_size);
6582 }
6583
6584 // Apply Cortex A8 workaround if applicable.
6585 if (this->section_has_cortex_a8_workaround(i))
6586 {
6587 unsigned char* view = (*pviews)[i].view;
6588 Arm_address view_address = (*pviews)[i].address;
6589 section_size_type view_size = (*pviews)[i].view_size;
6590 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6591
6592 // Adjust view to cover section.
6593 Output_section* os = this->output_section(i);
6594 gold_assert(os != NULL);
cb1be87e
DK
6595 Arm_address section_address =
6596 this->simple_input_section_output_address(i, os);
41263c05
DK
6597 uint64_t section_size = this->section_size(i);
6598
6599 gold_assert(section_address >= view_address
6600 && ((section_address + section_size)
6601 <= (view_address + view_size)));
6602
6603 unsigned char* section_view = view + (section_address - view_address);
6604
6605 // Apply the Cortex-A8 workaround to the output address range
6606 // corresponding to this input section.
6607 stub_table->apply_cortex_a8_workaround_to_address_range(
6608 arm_target,
6609 section_view,
6610 section_address,
6611 section_size);
6612 }
8ffa3667
DK
6613 }
6614}
6615
9b547ce6 6616// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6617// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6618// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6619// its section header. However, some tools are broken and the link is not
6620// always set. LD just drops such an EXIDX section silently, causing the
6621// associated code not unwindabled. Here we try a little bit harder to
6622// discover the linked code section.
6623//
6624// PSHDR points to the section header of a relocation section of an EXIDX
6625// section. If we can find a linked text section, return true and
6626// store the text section index in the location PSHNDX. Otherwise
6627// return false.
a0351a69
DK
6628
6629template<bool big_endian>
c8761b9a
DK
6630bool
6631Arm_relobj<big_endian>::find_linked_text_section(
6632 const unsigned char* pshdr,
6633 const unsigned char* psyms,
6634 unsigned int* pshndx)
a0351a69 6635{
c8761b9a 6636 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6637
c8761b9a
DK
6638 // If there is no relocation, we cannot find the linked text section.
6639 size_t reloc_size;
6640 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6641 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6642 else
6643 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6644 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6645
c8761b9a
DK
6646 // Get the relocations.
6647 const unsigned char* prelocs =
2e702c99 6648 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6649
c8761b9a
DK
6650 // Find the REL31 relocation for the first word of the first EXIDX entry.
6651 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6652 {
c8761b9a
DK
6653 Arm_address r_offset;
6654 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6655 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6656 {
6657 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6658 r_info = reloc.get_r_info();
6659 r_offset = reloc.get_r_offset();
6660 }
6661 else
6662 {
6663 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6664 r_info = reloc.get_r_info();
6665 r_offset = reloc.get_r_offset();
6666 }
6667
6668 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6669 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6670 continue;
6671
6672 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6673 if (r_sym == 0
6674 || r_sym >= this->local_symbol_count()
6675 || r_offset != 0)
6676 continue;
6677
6678 // This is the relocation for the first word of the first EXIDX entry.
6679 // We expect to see a local section symbol.
6680 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6681 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6682 if (sym.get_st_type() == elfcpp::STT_SECTION)
6683 {
24af6f92
DK
6684 bool is_ordinary;
6685 *pshndx =
6686 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6687 gold_assert(is_ordinary);
c8761b9a
DK
6688 return true;
6689 }
6690 else
6691 return false;
993d07c1 6692 }
c8761b9a
DK
6693
6694 return false;
6695}
6696
6697// Make an EXIDX input section object for an EXIDX section whose index is
6698// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6699// is the section index of the linked text section.
6700
6701template<bool big_endian>
6702void
6703Arm_relobj<big_endian>::make_exidx_input_section(
6704 unsigned int shndx,
6705 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6706 unsigned int text_shndx,
6707 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6708{
993d07c1
DK
6709 // Create an Arm_exidx_input_section object for this EXIDX section.
6710 Arm_exidx_input_section* exidx_input_section =
6711 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6712 shdr.get_sh_addralign(),
6713 text_shdr.get_sh_size());
993d07c1 6714
993d07c1
DK
6715 gold_assert(this->exidx_section_map_[shndx] == NULL);
6716 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6717
6718 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6719 {
6720 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6721 this->section_name(shndx).c_str(), shndx, text_shndx,
6722 this->name().c_str());
6723 exidx_input_section->set_has_errors();
2e702c99 6724 }
131687b4
DK
6725 else if (this->exidx_section_map_[text_shndx] != NULL)
6726 {
6727 unsigned other_exidx_shndx =
6728 this->exidx_section_map_[text_shndx]->shndx();
6729 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6730 "%s(%u) in %s"),
6731 this->section_name(shndx).c_str(), shndx,
6732 this->section_name(other_exidx_shndx).c_str(),
6733 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6734 text_shndx, this->name().c_str());
6735 exidx_input_section->set_has_errors();
6736 }
6737 else
6738 this->exidx_section_map_[text_shndx] = exidx_input_section;
6739
6740 // Check section flags of text section.
6741 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6742 {
6743 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6744 " in %s"),
6745 this->section_name(shndx).c_str(), shndx,
6746 this->section_name(text_shndx).c_str(), text_shndx,
6747 this->name().c_str());
6748 exidx_input_section->set_has_errors();
6749 }
6750 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6751 // I would like to make this an error but currently ld just ignores
131687b4
DK
6752 // this.
6753 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6754 "%s(%u) in %s"),
6755 this->section_name(shndx).c_str(), shndx,
6756 this->section_name(text_shndx).c_str(), text_shndx,
6757 this->name().c_str());
a0351a69
DK
6758}
6759
d5b40221
DK
6760// Read the symbol information.
6761
6762template<bool big_endian>
6763void
6764Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6765{
6766 // Call parent class to read symbol information.
f35c4853 6767 this->base_read_symbols(sd);
d5b40221 6768
7296d933
DK
6769 // If this input file is a binary file, it has no processor
6770 // specific flags and attributes section.
6771 Input_file::Format format = this->input_file()->format();
6772 if (format != Input_file::FORMAT_ELF)
6773 {
6774 gold_assert(format == Input_file::FORMAT_BINARY);
6775 this->merge_flags_and_attributes_ = false;
6776 return;
6777 }
6778
d5b40221
DK
6779 // Read processor-specific flags in ELF file header.
6780 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6781 elfcpp::Elf_sizes<32>::ehdr_size,
6782 true, false);
6783 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6784 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6785
6786 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6787 // sections.
c8761b9a 6788 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6789 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6790 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6791 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6792 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6793 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6794 {
6795 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6796
6797 // Sometimes an object has no contents except the section name string
6798 // table and an empty symbol table with the undefined symbol. We
6799 // don't want to merge processor-specific flags from such an object.
6800 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6801 {
6802 // Symbol table is not empty.
6803 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6804 elfcpp::Elf_sizes<32>::sym_size;
6805 if (shdr.get_sh_size() > sym_size)
6806 must_merge_flags_and_attributes = true;
6807 }
6808 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6809 // If this is neither an empty symbol table nor a string table,
6810 // be conservative.
6811 must_merge_flags_and_attributes = true;
6812
993d07c1
DK
6813 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6814 {
2e702c99 6815 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6816 section_offset_type section_offset = shdr.get_sh_offset();
6817 section_size_type section_size =
6818 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6819 const unsigned char* view =
6820 this->get_view(section_offset, section_size, true, false);
993d07c1 6821 this->attributes_section_data_ =
f625ae50 6822 new Attributes_section_data(view, section_size);
993d07c1
DK
6823 }
6824 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6825 {
6826 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6827 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6828 deferred_exidx_sections.push_back(i);
6829 else
131687b4
DK
6830 {
6831 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6832 + text_shndx * shdr_size);
6833 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6834 }
c9484ea5
DK
6835 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6836 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6837 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6838 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6839 }
6840 }
6841
7296d933
DK
6842 // This is rare.
6843 if (!must_merge_flags_and_attributes)
6844 {
131687b4 6845 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6846 this->merge_flags_and_attributes_ = false;
6847 return;
6848 }
6849
2e702c99 6850 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6851 // We look at the first relocation to figure out the linked sections.
6852 if (!deferred_exidx_sections.empty())
6853 {
6854 // We need to go over the section headers again to find the mapping
6855 // from sections being relocated to their relocation sections. This is
6856 // a bit inefficient as we could do that in the loop above. However,
6857 // we do not expect any deferred EXIDX sections normally. So we do not
6858 // want to slow down the most common path.
6859 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6860 Reloc_map reloc_map;
6861 ps = pshdrs + shdr_size;
6862 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6863 {
6864 elfcpp::Shdr<32, big_endian> shdr(ps);
6865 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6866 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6867 {
6868 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6869 if (info_shndx >= this->shnum())
6870 gold_error(_("relocation section %u has invalid info %u"),
6871 i, info_shndx);
6872 Reloc_map::value_type value(info_shndx, i);
6873 std::pair<Reloc_map::iterator, bool> result =
6874 reloc_map.insert(value);
6875 if (!result.second)
6876 gold_error(_("section %u has multiple relocation sections "
6877 "%u and %u"),
6878 info_shndx, i, reloc_map[info_shndx]);
6879 }
6880 }
6881
6882 // Read the symbol table section header.
6883 const unsigned int symtab_shndx = this->symtab_shndx();
6884 elfcpp::Shdr<32, big_endian>
6885 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6886 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6887
6888 // Read the local symbols.
6889 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6890 const unsigned int loccount = this->local_symbol_count();
6891 gold_assert(loccount == symtabshdr.get_sh_info());
6892 off_t locsize = loccount * sym_size;
6893 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6894 locsize, true, true);
6895
2e702c99 6896 // Process the deferred EXIDX sections.
f625ae50 6897 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6898 {
6899 unsigned int shndx = deferred_exidx_sections[i];
6900 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6901 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6902 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6903 if (it != reloc_map.end())
6904 find_linked_text_section(pshdrs + it->second * shdr_size,
6905 psyms, &text_shndx);
6906 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6907 + text_shndx * shdr_size);
6908 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6909 }
993d07c1 6910 }
d5b40221
DK
6911}
6912
99e5bff2 6913// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6914// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6915// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6916// references, the .ARM.exidx sections and any .ARM.extab sections they use
6917// will be garbage-collected incorrectly. Hence we override the same function
6918// in the base class to handle these implicit references.
6919
6920template<bool big_endian>
6921void
6922Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6923 Layout* layout,
6924 Read_relocs_data* rd)
6925{
6926 // First, call base class method to process relocations in this object.
6fa2a40b 6927 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6928
4a54abbb
DK
6929 // If --gc-sections is not specified, there is nothing more to do.
6930 // This happens when --icf is used but --gc-sections is not.
6931 if (!parameters->options().gc_sections())
6932 return;
2e702c99 6933
99e5bff2
DK
6934 unsigned int shnum = this->shnum();
6935 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6936 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6937 shnum * shdr_size,
6938 true, true);
6939
6940 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6941 // to these from the linked text sections.
6942 const unsigned char* ps = pshdrs + shdr_size;
6943 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6944 {
6945 elfcpp::Shdr<32, big_endian> shdr(ps);
6946 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6947 {
6948 // Found an .ARM.exidx section, add it to the set of reachable
6949 // sections from its linked text section.
6950 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6951 symtab->gc()->add_reference(this, text_shndx, this, i);
6952 }
6953 }
6954}
6955
e7eca48c
DK
6956// Update output local symbol count. Owing to EXIDX entry merging, some local
6957// symbols will be removed in output. Adjust output local symbol count
6958// accordingly. We can only changed the static output local symbol count. It
6959// is too late to change the dynamic symbols.
6960
6961template<bool big_endian>
6962void
6963Arm_relobj<big_endian>::update_output_local_symbol_count()
6964{
6965 // Caller should check that this needs updating. We want caller checking
6966 // because output_local_symbol_count_needs_update() is most likely inlined.
6967 gold_assert(this->output_local_symbol_count_needs_update_);
6968
6969 gold_assert(this->symtab_shndx() != -1U);
6970 if (this->symtab_shndx() == 0)
6971 {
6972 // This object has no symbols. Weird but legal.
6973 return;
6974 }
6975
6976 // Read the symbol table section header.
6977 const unsigned int symtab_shndx = this->symtab_shndx();
6978 elfcpp::Shdr<32, big_endian>
6979 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6980 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6981
6982 // Read the local symbols.
6983 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6984 const unsigned int loccount = this->local_symbol_count();
6985 gold_assert(loccount == symtabshdr.get_sh_info());
6986 off_t locsize = loccount * sym_size;
6987 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6988 locsize, true, true);
6989
6990 // Loop over the local symbols.
6991
6fa2a40b 6992 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6993 Output_sections;
6994 const Output_sections& out_sections(this->output_sections());
6995 unsigned int shnum = this->shnum();
6996 unsigned int count = 0;
6997 // Skip the first, dummy, symbol.
6998 psyms += sym_size;
6999 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
7000 {
7001 elfcpp::Sym<32, big_endian> sym(psyms);
7002
7003 Symbol_value<32>& lv((*this->local_values())[i]);
7004
7005 // This local symbol was already discarded by do_count_local_symbols.
9177756d 7006 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
7007 continue;
7008
7009 bool is_ordinary;
7010 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7011 &is_ordinary);
7012
7013 if (shndx < shnum)
7014 {
7015 Output_section* os = out_sections[shndx];
7016
7017 // This local symbol no longer has an output section. Discard it.
7018 if (os == NULL)
7019 {
7020 lv.set_no_output_symtab_entry();
7021 continue;
7022 }
7023
7024 // Currently we only discard parts of EXIDX input sections.
7025 // We explicitly check for a merged EXIDX input section to avoid
7026 // calling Output_section_data::output_offset unless necessary.
7027 if ((this->get_output_section_offset(shndx) == invalid_address)
7028 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7029 {
7030 section_offset_type output_offset =
7031 os->output_offset(this, shndx, lv.input_value());
7032 if (output_offset == -1)
7033 {
7034 // This symbol is defined in a part of an EXIDX input section
7035 // that is discarded due to entry merging.
7036 lv.set_no_output_symtab_entry();
7037 continue;
2e702c99 7038 }
e7eca48c
DK
7039 }
7040 }
7041
7042 ++count;
7043 }
7044
7045 this->set_output_local_symbol_count(count);
7046 this->output_local_symbol_count_needs_update_ = false;
7047}
7048
d5b40221
DK
7049// Arm_dynobj methods.
7050
7051// Read the symbol information.
7052
7053template<bool big_endian>
7054void
7055Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7056{
7057 // Call parent class to read symbol information.
f35c4853 7058 this->base_read_symbols(sd);
d5b40221
DK
7059
7060 // Read processor-specific flags in ELF file header.
7061 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7062 elfcpp::Elf_sizes<32>::ehdr_size,
7063 true, false);
7064 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7065 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7066
7067 // Read the attributes section if there is one.
7068 // We read from the end because gas seems to put it near the end of
7069 // the section headers.
7070 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7071 const unsigned char* ps =
993d07c1
DK
7072 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7073 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7074 {
7075 elfcpp::Shdr<32, big_endian> shdr(ps);
7076 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7077 {
7078 section_offset_type section_offset = shdr.get_sh_offset();
7079 section_size_type section_size =
7080 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7081 const unsigned char* view =
7082 this->get_view(section_offset, section_size, true, false);
993d07c1 7083 this->attributes_section_data_ =
f625ae50 7084 new Attributes_section_data(view, section_size);
993d07c1
DK
7085 break;
7086 }
7087 }
d5b40221
DK
7088}
7089
e9bbb538
DK
7090// Stub_addend_reader methods.
7091
7092// Read the addend of a REL relocation of type R_TYPE at VIEW.
7093
7094template<bool big_endian>
7095elfcpp::Elf_types<32>::Elf_Swxword
7096Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7097 unsigned int r_type,
7098 const unsigned char* view,
7099 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7100{
2c54b4f4 7101 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7102
e9bbb538
DK
7103 switch (r_type)
7104 {
7105 case elfcpp::R_ARM_CALL:
7106 case elfcpp::R_ARM_JUMP24:
7107 case elfcpp::R_ARM_PLT32:
7108 {
7109 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7110 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7111 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7112 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7113 }
7114
7115 case elfcpp::R_ARM_THM_CALL:
7116 case elfcpp::R_ARM_THM_JUMP24:
7117 case elfcpp::R_ARM_THM_XPC22:
7118 {
e9bbb538
DK
7119 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7120 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7121 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7122 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7123 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7124 }
7125
7126 case elfcpp::R_ARM_THM_JUMP19:
7127 {
7128 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7129 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7130 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7131 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7132 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7133 }
7134
7135 default:
7136 gold_unreachable();
7137 }
7138}
7139
4a54abbb
DK
7140// Arm_output_data_got methods.
7141
7142// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7143// The first one is initialized to be 1, which is the module index for
7144// the main executable and the second one 0. A reloc of the type
7145// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7146// be applied by gold. GSYM is a global symbol.
7147//
7148template<bool big_endian>
7149void
7150Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7151 unsigned int got_type,
7152 Symbol* gsym)
7153{
7154 if (gsym->has_got_offset(got_type))
7155 return;
7156
7157 // We are doing a static link. Just mark it as belong to module 1,
7158 // the executable.
7159 unsigned int got_offset = this->add_constant(1);
2e702c99 7160 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7161 got_offset = this->add_constant(0);
7162 this->static_relocs_.push_back(Static_reloc(got_offset,
7163 elfcpp::R_ARM_TLS_DTPOFF32,
7164 gsym));
7165}
7166
7167// Same as the above but for a local symbol.
7168
7169template<bool big_endian>
7170void
7171Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7172 unsigned int got_type,
6fa2a40b 7173 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7174 unsigned int index)
7175{
7176 if (object->local_has_got_offset(index, got_type))
7177 return;
7178
7179 // We are doing a static link. Just mark it as belong to module 1,
7180 // the executable.
7181 unsigned int got_offset = this->add_constant(1);
7182 object->set_local_got_offset(index, got_type, got_offset);
7183 got_offset = this->add_constant(0);
2e702c99
RM
7184 this->static_relocs_.push_back(Static_reloc(got_offset,
7185 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7186 object, index));
7187}
7188
7189template<bool big_endian>
7190void
7191Arm_output_data_got<big_endian>::do_write(Output_file* of)
7192{
7193 // Call parent to write out GOT.
7194 Output_data_got<32, big_endian>::do_write(of);
7195
7196 // We are done if there is no fix up.
7197 if (this->static_relocs_.empty())
7198 return;
7199
7200 gold_assert(parameters->doing_static_link());
7201
7202 const off_t offset = this->offset();
7203 const section_size_type oview_size =
7204 convert_to_section_size_type(this->data_size());
7205 unsigned char* const oview = of->get_output_view(offset, oview_size);
7206
7207 Output_segment* tls_segment = this->layout_->tls_segment();
7208 gold_assert(tls_segment != NULL);
2e702c99 7209
4a54abbb
DK
7210 // The thread pointer $tp points to the TCB, which is followed by the
7211 // TLS. So we need to adjust $tp relative addressing by this amount.
7212 Arm_address aligned_tcb_size =
7213 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7214
7215 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7216 {
7217 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7218
4a54abbb
DK
7219 Arm_address value;
7220 if (!reloc.symbol_is_global())
7221 {
6fa2a40b 7222 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7223 const Symbol_value<32>* psymval =
7224 reloc.relobj()->local_symbol(reloc.index());
7225
7226 // We are doing static linking. Issue an error and skip this
7227 // relocation if the symbol is undefined or in a discarded_section.
7228 bool is_ordinary;
7229 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7230 if ((shndx == elfcpp::SHN_UNDEF)
7231 || (is_ordinary
7232 && shndx != elfcpp::SHN_UNDEF
7233 && !object->is_section_included(shndx)
7234 && !this->symbol_table_->is_section_folded(object, shndx)))
7235 {
7236 gold_error(_("undefined or discarded local symbol %u from "
7237 " object %s in GOT"),
7238 reloc.index(), reloc.relobj()->name().c_str());
7239 continue;
7240 }
2e702c99 7241
4a54abbb
DK
7242 value = psymval->value(object, 0);
7243 }
7244 else
7245 {
7246 const Symbol* gsym = reloc.symbol();
7247 gold_assert(gsym != NULL);
7248 if (gsym->is_forwarder())
7249 gsym = this->symbol_table_->resolve_forwards(gsym);
7250
7251 // We are doing static linking. Issue an error and skip this
7252 // relocation if the symbol is undefined or in a discarded_section
7253 // unless it is a weakly_undefined symbol.
7254 if ((gsym->is_defined_in_discarded_section()
7255 || gsym->is_undefined())
7256 && !gsym->is_weak_undefined())
7257 {
7258 gold_error(_("undefined or discarded symbol %s in GOT"),
7259 gsym->name());
7260 continue;
7261 }
7262
7263 if (!gsym->is_weak_undefined())
7264 {
7265 const Sized_symbol<32>* sym =
7266 static_cast<const Sized_symbol<32>*>(gsym);
7267 value = sym->value();
7268 }
7269 else
7270 value = 0;
7271 }
7272
7273 unsigned got_offset = reloc.got_offset();
7274 gold_assert(got_offset < oview_size);
7275
7276 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7277 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7278 Valtype x;
7279 switch (reloc.r_type())
7280 {
7281 case elfcpp::R_ARM_TLS_DTPOFF32:
7282 x = value;
7283 break;
7284 case elfcpp::R_ARM_TLS_TPOFF32:
7285 x = value + aligned_tcb_size;
7286 break;
7287 default:
7288 gold_unreachable();
7289 }
7290 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7291 }
7292
7293 of->write_output_view(offset, oview_size, oview);
7294}
7295
94cdfcff 7296// A class to handle the PLT data.
2e702c99
RM
7297// This is an abstract base class that handles most of the linker details
7298// but does not know the actual contents of PLT entries. The derived
7299// classes below fill in those details.
94cdfcff
DK
7300
7301template<bool big_endian>
7302class Output_data_plt_arm : public Output_section_data
7303{
7304 public:
fa89cc82
HS
7305 // Unlike aarch64, which records symbol value in "addend" field of relocations
7306 // and could be done at the same time an IRelative reloc is created for the
7307 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7308 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7309 // to keep necessary symbol information for later use in do_write. We usually
7310 // have only a very limited number of ifuncs, so the extra data required here
7311 // is also limited.
7312
7313 struct IRelative_data
7314 {
7315 IRelative_data(Sized_symbol<32>* sized_symbol)
7316 : symbol_is_global_(true)
7317 {
7318 u_.global = sized_symbol;
7319 }
7320
7321 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7322 unsigned int index)
7323 : symbol_is_global_(false)
7324 {
7325 u_.local.relobj = relobj;
7326 u_.local.index = index;
7327 }
7328
7329 union
7330 {
7331 Sized_symbol<32>* global;
7332
7333 struct
7334 {
7335 Sized_relobj_file<32, big_endian>* relobj;
7336 unsigned int index;
7337 } local;
7338 } u_;
7339
7340 bool symbol_is_global_;
7341 };
7342
94cdfcff
DK
7343 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7344 Reloc_section;
7345
fa89cc82
HS
7346 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7347 Arm_output_data_got<big_endian>* got,
7348 Output_data_space* got_plt,
7349 Output_data_space* got_irelative);
94cdfcff
DK
7350
7351 // Add an entry to the PLT.
7352 void
fa89cc82
HS
7353 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7354
7355 // Add the relocation for a plt entry.
7356 void
7357 add_relocation(Symbol_table* symtab, Layout* layout,
7358 Symbol* gsym, unsigned int got_offset);
7359
7360 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7361 unsigned int
7362 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7363 Sized_relobj_file<32, big_endian>* relobj,
7364 unsigned int local_sym_index);
94cdfcff
DK
7365
7366 // Return the .rel.plt section data.
7367 const Reloc_section*
7368 rel_plt() const
7369 { return this->rel_; }
7370
fa89cc82
HS
7371 // Return the PLT relocation container for IRELATIVE.
7372 Reloc_section*
7373 rel_irelative(Symbol_table*, Layout*);
7374
0e70b911
CC
7375 // Return the number of PLT entries.
7376 unsigned int
7377 entry_count() const
fa89cc82 7378 { return this->count_ + this->irelative_count_; }
0e70b911
CC
7379
7380 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7381 unsigned int
7382 first_plt_entry_offset() const
7383 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7384
7385 // Return the size of a PLT entry.
2e702c99
RM
7386 unsigned int
7387 get_plt_entry_size() const
7388 { return this->do_get_plt_entry_size(); }
0e70b911 7389
fa89cc82
HS
7390 // Return the PLT address for globals.
7391 uint32_t
7392 address_for_global(const Symbol*) const;
7393
7394 // Return the PLT address for locals.
7395 uint32_t
7396 address_for_local(const Relobj*, unsigned int symndx) const;
7397
94cdfcff 7398 protected:
2e702c99
RM
7399 // Fill in the first PLT entry.
7400 void
7401 fill_first_plt_entry(unsigned char* pov,
7402 Arm_address got_address,
7403 Arm_address plt_address)
7404 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7405
7406 void
7407 fill_plt_entry(unsigned char* pov,
7408 Arm_address got_address,
7409 Arm_address plt_address,
7410 unsigned int got_offset,
7411 unsigned int plt_offset)
7412 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7413
7414 virtual unsigned int
7415 do_first_plt_entry_offset() const = 0;
7416
7417 virtual unsigned int
7418 do_get_plt_entry_size() const = 0;
7419
7420 virtual void
7421 do_fill_first_plt_entry(unsigned char* pov,
7422 Arm_address got_address,
7423 Arm_address plt_address) = 0;
7424
7425 virtual void
7426 do_fill_plt_entry(unsigned char* pov,
7427 Arm_address got_address,
7428 Arm_address plt_address,
7429 unsigned int got_offset,
7430 unsigned int plt_offset) = 0;
7431
94cdfcff
DK
7432 void
7433 do_adjust_output_section(Output_section* os);
7434
7435 // Write to a map file.
7436 void
7437 do_print_to_mapfile(Mapfile* mapfile) const
7438 { mapfile->print_output_data(this, _("** PLT")); }
7439
7440 private:
94cdfcff
DK
7441 // Set the final size.
7442 void
7443 set_final_data_size()
7444 {
2e702c99 7445 this->set_data_size(this->first_plt_entry_offset()
fa89cc82
HS
7446 + ((this->count_ + this->irelative_count_)
7447 * this->get_plt_entry_size()));
94cdfcff
DK
7448 }
7449
7450 // Write out the PLT data.
7451 void
7452 do_write(Output_file*);
7453
fa89cc82
HS
7454 // Record irelative symbol data.
7455 void insert_irelative_data(const IRelative_data& idata)
7456 { irelative_data_vec_.push_back(idata); }
7457
94cdfcff
DK
7458 // The reloc section.
7459 Reloc_section* rel_;
fa89cc82
HS
7460 // The IRELATIVE relocs, if necessary. These must follow the
7461 // regular PLT relocations.
7462 Reloc_section* irelative_rel_;
7463 // The .got section.
7464 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
7465 // The .got.plt section.
7466 Output_data_space* got_plt_;
fa89cc82
HS
7467 // The part of the .got.plt section used for IRELATIVE relocs.
7468 Output_data_space* got_irelative_;
94cdfcff
DK
7469 // The number of PLT entries.
7470 unsigned int count_;
fa89cc82
HS
7471 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7472 // follow the regular PLT entries.
7473 unsigned int irelative_count_;
7474 // Vector for irelative data.
7475 typedef std::vector<IRelative_data> IRelative_data_vec;
7476 IRelative_data_vec irelative_data_vec_;
94cdfcff
DK
7477};
7478
7479// Create the PLT section. The ordinary .got section is an argument,
7480// since we need to refer to the start. We also create our own .got
7481// section just for PLT entries.
7482
7483template<bool big_endian>
fa89cc82
HS
7484Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7485 Layout* layout, uint64_t addralign,
7486 Arm_output_data_got<big_endian>* got,
7487 Output_data_space* got_plt,
7488 Output_data_space* got_irelative)
7489 : Output_section_data(addralign), irelative_rel_(NULL),
7490 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7491 count_(0), irelative_count_(0)
94cdfcff
DK
7492{
7493 this->rel_ = new Reloc_section(false);
2ea97941 7494 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7495 elfcpp::SHF_ALLOC, this->rel_,
7496 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7497}
7498
7499template<bool big_endian>
7500void
7501Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7502{
7503 os->set_entsize(0);
7504}
7505
7506// Add an entry to the PLT.
7507
7508template<bool big_endian>
7509void
fa89cc82
HS
7510Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7511 Layout* layout,
7512 Symbol* gsym)
94cdfcff
DK
7513{
7514 gold_assert(!gsym->has_plt_offset());
7515
fa89cc82
HS
7516 unsigned int* entry_count;
7517 Output_section_data_build* got;
7518
7519 // We have 2 different types of plt entry here, normal and ifunc.
7520
7521 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7522 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7523
7524 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7525 // second 12, third 24 ... etc.
7526
7527 // IFunc plt entries *always* come after *normal* plt entries.
7528
7529 // Notice, when computing the plt address of a certain symbol, "plt_address +
7530 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7531 // target->plt_address_for_local() instead.
7532
7533 int begin_offset = 0;
7534 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7535 && gsym->can_use_relative_reloc(false))
7536 {
7537 entry_count = &this->irelative_count_;
7538 got = this->got_irelative_;
7539 // For irelative plt entries, offset is relative to the end of normal plt
7540 // entries, so it starts from 0.
7541 begin_offset = 0;
7542 // Record symbol information.
7543 this->insert_irelative_data(
7544 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7545 }
7546 else
7547 {
7548 entry_count = &this->count_;
7549 got = this->got_plt_;
7550 // Note that for normal plt entries, when setting the PLT offset we skip
7551 // the initial reserved PLT entry.
7552 begin_offset = this->first_plt_entry_offset();
7553 }
7554
7555 gsym->set_plt_offset(begin_offset
7556 + (*entry_count) * this->get_plt_entry_size());
94cdfcff 7557
fa89cc82 7558 ++(*entry_count);
94cdfcff 7559
fa89cc82 7560 section_offset_type got_offset = got->current_data_size();
94cdfcff
DK
7561
7562 // Every PLT entry needs a GOT entry which points back to the PLT
7563 // entry (this will be changed by the dynamic linker, normally
7564 // lazily when the function is called).
fa89cc82 7565 got->set_current_data_size(got_offset + 4);
94cdfcff
DK
7566
7567 // Every PLT entry needs a reloc.
fa89cc82 7568 this->add_relocation(symtab, layout, gsym, got_offset);
94cdfcff
DK
7569
7570 // Note that we don't need to save the symbol. The contents of the
7571 // PLT are independent of which symbols are used. The symbols only
7572 // appear in the relocations.
7573}
7574
fa89cc82
HS
7575// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7576// the PLT offset.
7577
7578template<bool big_endian>
7579unsigned int
7580Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7581 Symbol_table* symtab,
7582 Layout* layout,
7583 Sized_relobj_file<32, big_endian>* relobj,
7584 unsigned int local_sym_index)
7585{
7586 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7587
7588 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7589 // no longer correct. Use target->plt_address_for_local() instead.
7590 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7591 ++this->irelative_count_;
7592
7593 section_offset_type got_offset = this->got_irelative_->current_data_size();
7594
7595 // Every PLT entry needs a GOT entry which points back to the PLT
7596 // entry.
7597 this->got_irelative_->set_current_data_size(got_offset + 4);
7598
7599
7600 // Every PLT entry needs a reloc.
7601 Reloc_section* rel = this->rel_irelative(symtab, layout);
7602 rel->add_symbolless_local_addend(relobj, local_sym_index,
7603 elfcpp::R_ARM_IRELATIVE,
7604 this->got_irelative_, got_offset);
7605 return plt_offset;
7606}
7607
7608
7609// Add the relocation for a PLT entry.
7610
7611template<bool big_endian>
7612void
7613Output_data_plt_arm<big_endian>::add_relocation(
7614 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7615{
7616 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7617 && gsym->can_use_relative_reloc(false))
7618 {
7619 Reloc_section* rel = this->rel_irelative(symtab, layout);
7620 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7621 this->got_irelative_, got_offset);
7622 }
7623 else
7624 {
7625 gsym->set_needs_dynsym_entry();
7626 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7627 got_offset);
7628 }
7629}
7630
7631
7632// Create the irelative relocation data.
7633
7634template<bool big_endian>
7635typename Output_data_plt_arm<big_endian>::Reloc_section*
7636Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7637 Layout* layout)
7638{
7639 if (this->irelative_rel_ == NULL)
7640 {
7641 // Since irelative relocations goes into 'rel.dyn', we delegate the
7642 // creation of irelative_rel_ to where rel_dyn section gets created.
7643 Target_arm<big_endian>* arm_target =
7644 Target_arm<big_endian>::default_target();
7645 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7646
7647 // Make sure we have a place for the TLSDESC relocations, in
7648 // case we see any later on.
7649 // this->rel_tlsdesc(layout);
7650 if (parameters->doing_static_link())
7651 {
7652 // A statically linked executable will only have a .rel.plt section to
7653 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7654 // will use these symbols to locate the IRELATIVE relocs at program
7655 // startup time.
7656 symtab->define_in_output_data("__rel_iplt_start", NULL,
7657 Symbol_table::PREDEFINED,
7658 this->irelative_rel_, 0, 0,
7659 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7660 elfcpp::STV_HIDDEN, 0, false, true);
7661 symtab->define_in_output_data("__rel_iplt_end", NULL,
7662 Symbol_table::PREDEFINED,
7663 this->irelative_rel_, 0, 0,
7664 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7665 elfcpp::STV_HIDDEN, 0, true, true);
7666 }
7667 }
7668 return this->irelative_rel_;
7669}
7670
7671
7672// Return the PLT address for a global symbol.
7673
7674template<bool big_endian>
7675uint32_t
7676Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7677{
7678 uint64_t begin_offset = 0;
7679 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7680 && gsym->can_use_relative_reloc(false))
7681 {
7682 begin_offset = (this->first_plt_entry_offset() +
7683 this->count_ * this->get_plt_entry_size());
7684 }
7685 return this->address() + begin_offset + gsym->plt_offset();
7686}
7687
7688
7689// Return the PLT address for a local symbol. These are always
7690// IRELATIVE relocs.
7691
7692template<bool big_endian>
7693uint32_t
7694Output_data_plt_arm<big_endian>::address_for_local(
7695 const Relobj* object,
7696 unsigned int r_sym) const
7697{
7698 return (this->address()
7699 + this->first_plt_entry_offset()
7700 + this->count_ * this->get_plt_entry_size()
7701 + object->local_plt_offset(r_sym));
7702}
7703
7704
2e702c99
RM
7705template<bool big_endian>
7706class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7707{
7708 public:
fa89cc82
HS
7709 Output_data_plt_arm_standard(Layout* layout,
7710 Arm_output_data_got<big_endian>* got,
7711 Output_data_space* got_plt,
7712 Output_data_space* got_irelative)
7713 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
2e702c99
RM
7714 { }
7715
7716 protected:
7717 // Return the offset of the first non-reserved PLT entry.
7718 virtual unsigned int
7719 do_first_plt_entry_offset() const
7720 { return sizeof(first_plt_entry); }
7721
7722 // Return the size of a PLT entry.
7723 virtual unsigned int
7724 do_get_plt_entry_size() const
7725 { return sizeof(plt_entry); }
7726
7727 virtual void
7728 do_fill_first_plt_entry(unsigned char* pov,
7729 Arm_address got_address,
7730 Arm_address plt_address);
7731
7732 virtual void
7733 do_fill_plt_entry(unsigned char* pov,
7734 Arm_address got_address,
7735 Arm_address plt_address,
7736 unsigned int got_offset,
7737 unsigned int plt_offset);
7738
7739 private:
7740 // Template for the first PLT entry.
7741 static const uint32_t first_plt_entry[5];
7742
7743 // Template for subsequent PLT entries.
7744 static const uint32_t plt_entry[3];
7745};
7746
94cdfcff
DK
7747// ARM PLTs.
7748// FIXME: This is not very flexible. Right now this has only been tested
7749// on armv5te. If we are to support additional architecture features like
7750// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7751
7752// The first entry in the PLT.
7753template<bool big_endian>
2e702c99 7754const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7755{
7756 0xe52de004, // str lr, [sp, #-4]!
7757 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7758 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7759 0xe5bef008, // ldr pc, [lr, #8]!
7760 0x00000000, // &GOT[0] - .
7761};
7762
2e702c99
RM
7763template<bool big_endian>
7764void
7765Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7766 unsigned char* pov,
7767 Arm_address got_address,
7768 Arm_address plt_address)
7769{
7770 // Write first PLT entry. All but the last word are constants.
7771 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7772 / sizeof(plt_entry[0]));
7773 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7774 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7775 // Last word in first PLT entry is &GOT[0] - .
7776 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7777 got_address - (plt_address + 16));
7778}
7779
94cdfcff
DK
7780// Subsequent entries in the PLT.
7781
7782template<bool big_endian>
2e702c99 7783const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7784{
7785 0xe28fc600, // add ip, pc, #0xNN00000
7786 0xe28cca00, // add ip, ip, #0xNN000
7787 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7788};
7789
2e702c99
RM
7790template<bool big_endian>
7791void
7792Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7793 unsigned char* pov,
7794 Arm_address got_address,
7795 Arm_address plt_address,
7796 unsigned int got_offset,
7797 unsigned int plt_offset)
7798{
7799 int32_t offset = ((got_address + got_offset)
7800 - (plt_address + plt_offset + 8));
7801
7802 gold_assert(offset >= 0 && offset < 0x0fffffff);
7803 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7804 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7805 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7806 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7807 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7808 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7809}
7810
94cdfcff
DK
7811// Write out the PLT. This uses the hand-coded instructions above,
7812// and adjusts them as needed. This is all specified by the arm ELF
7813// Processor Supplement.
7814
7815template<bool big_endian>
7816void
7817Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7818{
2ea97941 7819 const off_t offset = this->offset();
94cdfcff
DK
7820 const section_size_type oview_size =
7821 convert_to_section_size_type(this->data_size());
2ea97941 7822 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7823
7824 const off_t got_file_offset = this->got_plt_->offset();
fa89cc82
HS
7825 gold_assert(got_file_offset + this->got_plt_->data_size()
7826 == this->got_irelative_->offset());
94cdfcff 7827 const section_size_type got_size =
fa89cc82
HS
7828 convert_to_section_size_type(this->got_plt_->data_size()
7829 + this->got_irelative_->data_size());
94cdfcff
DK
7830 unsigned char* const got_view = of->get_output_view(got_file_offset,
7831 got_size);
7832 unsigned char* pov = oview;
7833
ebabffbd
DK
7834 Arm_address plt_address = this->address();
7835 Arm_address got_address = this->got_plt_->address();
94cdfcff 7836
2e702c99
RM
7837 // Write first PLT entry.
7838 this->fill_first_plt_entry(pov, got_address, plt_address);
7839 pov += this->first_plt_entry_offset();
94cdfcff
DK
7840
7841 unsigned char* got_pov = got_view;
7842
7843 memset(got_pov, 0, 12);
7844 got_pov += 12;
7845
2e702c99 7846 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff 7847 unsigned int got_offset = 12;
fa89cc82
HS
7848 const unsigned int count = this->count_ + this->irelative_count_;
7849 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
94cdfcff
DK
7850 for (unsigned int i = 0;
7851 i < count;
7852 ++i,
2e702c99 7853 pov += this->get_plt_entry_size(),
94cdfcff 7854 got_pov += 4,
2e702c99 7855 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7856 got_offset += 4)
7857 {
7858 // Set and adjust the PLT entry itself.
2e702c99
RM
7859 this->fill_plt_entry(pov, got_address, plt_address,
7860 got_offset, plt_offset);
94cdfcff 7861
fa89cc82
HS
7862 Arm_address value;
7863 if (i < this->count_)
7864 {
7865 // For non-irelative got entries, the value is the beginning of plt.
7866 value = plt_address;
7867 }
7868 else
7869 {
7870 // For irelative got entries, the value is the (global/local) symbol
7871 // address.
7872 const IRelative_data& idata =
7873 this->irelative_data_vec_[i - this->count_];
7874 if (idata.symbol_is_global_)
7875 {
7876 // Set the entry in the GOT for irelative symbols. The content is
7877 // the address of the ifunc, not the address of plt start.
7878 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7879 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7880 value = sized_symbol->value();
7881 }
7882 else
7883 {
7884 value = idata.u_.local.relobj->local_symbol_value(
7885 idata.u_.local.index, 0);
7886 }
7887 }
7888 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
94cdfcff
DK
7889 }
7890
7891 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7892 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7893
2ea97941 7894 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7895 of->write_output_view(got_file_offset, got_size, got_view);
7896}
7897
fa89cc82 7898
94cdfcff
DK
7899// Create a PLT entry for a global symbol.
7900
7901template<bool big_endian>
7902void
2ea97941 7903Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7904 Symbol* gsym)
7905{
7906 if (gsym->has_plt_offset())
7907 return;
7908
fa89cc82
HS
7909 if (this->plt_ == NULL)
7910 this->make_plt_section(symtab, layout);
7911
7912 this->plt_->add_entry(symtab, layout, gsym);
7913}
7914
7915
7916// Create the PLT section.
7917template<bool big_endian>
7918void
7919Target_arm<big_endian>::make_plt_section(
7920 Symbol_table* symtab, Layout* layout)
7921{
94cdfcff
DK
7922 if (this->plt_ == NULL)
7923 {
fa89cc82 7924 // Create the GOT section first.
2ea97941 7925 this->got_section(symtab, layout);
94cdfcff 7926
fa89cc82
HS
7927 // GOT for irelatives is create along with got.plt.
7928 gold_assert(this->got_ != NULL
7929 && this->got_plt_ != NULL
7930 && this->got_irelative_ != NULL);
7931 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7932 this->got_irelative_);
2e702c99 7933
2ea97941
ILT
7934 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7935 (elfcpp::SHF_ALLOC
7936 | elfcpp::SHF_EXECINSTR),
22f0da72 7937 this->plt_, ORDER_PLT, false);
07f107f3
WN
7938 symtab->define_in_output_data("$a", NULL,
7939 Symbol_table::PREDEFINED,
7940 this->plt_,
7941 0, 0, elfcpp::STT_NOTYPE,
7942 elfcpp::STB_LOCAL,
7943 elfcpp::STV_DEFAULT, 0,
7944 false, false);
94cdfcff 7945 }
94cdfcff
DK
7946}
7947
fa89cc82
HS
7948
7949// Make a PLT entry for a local STT_GNU_IFUNC symbol.
7950
7951template<bool big_endian>
7952void
7953Target_arm<big_endian>::make_local_ifunc_plt_entry(
7954 Symbol_table* symtab, Layout* layout,
7955 Sized_relobj_file<32, big_endian>* relobj,
7956 unsigned int local_sym_index)
7957{
7958 if (relobj->local_has_plt_offset(local_sym_index))
7959 return;
7960 if (this->plt_ == NULL)
7961 this->make_plt_section(symtab, layout);
7962 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7963 relobj,
7964 local_sym_index);
7965 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7966}
7967
7968
0e70b911
CC
7969// Return the number of entries in the PLT.
7970
7971template<bool big_endian>
7972unsigned int
7973Target_arm<big_endian>::plt_entry_count() const
7974{
7975 if (this->plt_ == NULL)
7976 return 0;
7977 return this->plt_->entry_count();
7978}
7979
7980// Return the offset of the first non-reserved PLT entry.
7981
7982template<bool big_endian>
7983unsigned int
7984Target_arm<big_endian>::first_plt_entry_offset() const
7985{
2e702c99 7986 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7987}
7988
7989// Return the size of each PLT entry.
7990
7991template<bool big_endian>
7992unsigned int
7993Target_arm<big_endian>::plt_entry_size() const
7994{
2e702c99 7995 return this->plt_->get_plt_entry_size();
0e70b911
CC
7996}
7997
f96accdf
DK
7998// Get the section to use for TLS_DESC relocations.
7999
8000template<bool big_endian>
8001typename Target_arm<big_endian>::Reloc_section*
8002Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8003{
8004 return this->plt_section()->rel_tls_desc(layout);
8005}
8006
8007// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8008
8009template<bool big_endian>
8010void
8011Target_arm<big_endian>::define_tls_base_symbol(
8012 Symbol_table* symtab,
8013 Layout* layout)
8014{
8015 if (this->tls_base_symbol_defined_)
8016 return;
8017
8018 Output_segment* tls_segment = layout->tls_segment();
8019 if (tls_segment != NULL)
8020 {
8021 bool is_exec = parameters->options().output_is_executable();
8022 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8023 Symbol_table::PREDEFINED,
8024 tls_segment, 0, 0,
8025 elfcpp::STT_TLS,
8026 elfcpp::STB_LOCAL,
8027 elfcpp::STV_HIDDEN, 0,
8028 (is_exec
8029 ? Symbol::SEGMENT_END
8030 : Symbol::SEGMENT_START),
8031 true);
8032 }
8033 this->tls_base_symbol_defined_ = true;
8034}
8035
8036// Create a GOT entry for the TLS module index.
8037
8038template<bool big_endian>
8039unsigned int
8040Target_arm<big_endian>::got_mod_index_entry(
8041 Symbol_table* symtab,
8042 Layout* layout,
6fa2a40b 8043 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
8044{
8045 if (this->got_mod_index_offset_ == -1U)
8046 {
8047 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
8048 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8049 unsigned int got_offset;
8050 if (!parameters->doing_static_link())
8051 {
8052 got_offset = got->add_constant(0);
8053 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8054 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8055 got_offset);
8056 }
8057 else
8058 {
8059 // We are doing a static link. Just mark it as belong to module 1,
8060 // the executable.
8061 got_offset = got->add_constant(1);
8062 }
8063
f96accdf
DK
8064 got->add_constant(0);
8065 this->got_mod_index_offset_ = got_offset;
8066 }
8067 return this->got_mod_index_offset_;
8068}
8069
8070// Optimize the TLS relocation type based on what we know about the
8071// symbol. IS_FINAL is true if the final address of this symbol is
8072// known at link time.
8073
8074template<bool big_endian>
8075tls::Tls_optimization
8076Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8077{
8078 // FIXME: Currently we do not do any TLS optimization.
8079 return tls::TLSOPT_NONE;
8080}
8081
95a2c8d6
RS
8082// Get the Reference_flags for a particular relocation.
8083
8084template<bool big_endian>
8085int
8086Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8087{
8088 switch (r_type)
8089 {
8090 case elfcpp::R_ARM_NONE:
8091 case elfcpp::R_ARM_V4BX:
8092 case elfcpp::R_ARM_GNU_VTENTRY:
8093 case elfcpp::R_ARM_GNU_VTINHERIT:
8094 // No symbol reference.
8095 return 0;
8096
8097 case elfcpp::R_ARM_ABS32:
8098 case elfcpp::R_ARM_ABS16:
8099 case elfcpp::R_ARM_ABS12:
8100 case elfcpp::R_ARM_THM_ABS5:
8101 case elfcpp::R_ARM_ABS8:
8102 case elfcpp::R_ARM_BASE_ABS:
8103 case elfcpp::R_ARM_MOVW_ABS_NC:
8104 case elfcpp::R_ARM_MOVT_ABS:
8105 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8106 case elfcpp::R_ARM_THM_MOVT_ABS:
8107 case elfcpp::R_ARM_ABS32_NOI:
8108 return Symbol::ABSOLUTE_REF;
8109
8110 case elfcpp::R_ARM_REL32:
8111 case elfcpp::R_ARM_LDR_PC_G0:
8112 case elfcpp::R_ARM_SBREL32:
8113 case elfcpp::R_ARM_THM_PC8:
8114 case elfcpp::R_ARM_BASE_PREL:
8115 case elfcpp::R_ARM_MOVW_PREL_NC:
8116 case elfcpp::R_ARM_MOVT_PREL:
8117 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8118 case elfcpp::R_ARM_THM_MOVT_PREL:
8119 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8120 case elfcpp::R_ARM_THM_PC12:
8121 case elfcpp::R_ARM_REL32_NOI:
8122 case elfcpp::R_ARM_ALU_PC_G0_NC:
8123 case elfcpp::R_ARM_ALU_PC_G0:
8124 case elfcpp::R_ARM_ALU_PC_G1_NC:
8125 case elfcpp::R_ARM_ALU_PC_G1:
8126 case elfcpp::R_ARM_ALU_PC_G2:
8127 case elfcpp::R_ARM_LDR_PC_G1:
8128 case elfcpp::R_ARM_LDR_PC_G2:
8129 case elfcpp::R_ARM_LDRS_PC_G0:
8130 case elfcpp::R_ARM_LDRS_PC_G1:
8131 case elfcpp::R_ARM_LDRS_PC_G2:
8132 case elfcpp::R_ARM_LDC_PC_G0:
8133 case elfcpp::R_ARM_LDC_PC_G1:
8134 case elfcpp::R_ARM_LDC_PC_G2:
8135 case elfcpp::R_ARM_ALU_SB_G0_NC:
8136 case elfcpp::R_ARM_ALU_SB_G0:
8137 case elfcpp::R_ARM_ALU_SB_G1_NC:
8138 case elfcpp::R_ARM_ALU_SB_G1:
8139 case elfcpp::R_ARM_ALU_SB_G2:
8140 case elfcpp::R_ARM_LDR_SB_G0:
8141 case elfcpp::R_ARM_LDR_SB_G1:
8142 case elfcpp::R_ARM_LDR_SB_G2:
8143 case elfcpp::R_ARM_LDRS_SB_G0:
8144 case elfcpp::R_ARM_LDRS_SB_G1:
8145 case elfcpp::R_ARM_LDRS_SB_G2:
8146 case elfcpp::R_ARM_LDC_SB_G0:
8147 case elfcpp::R_ARM_LDC_SB_G1:
8148 case elfcpp::R_ARM_LDC_SB_G2:
8149 case elfcpp::R_ARM_MOVW_BREL_NC:
8150 case elfcpp::R_ARM_MOVT_BREL:
8151 case elfcpp::R_ARM_MOVW_BREL:
8152 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8153 case elfcpp::R_ARM_THM_MOVT_BREL:
8154 case elfcpp::R_ARM_THM_MOVW_BREL:
8155 case elfcpp::R_ARM_GOTOFF32:
8156 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
8157 case elfcpp::R_ARM_SBREL31:
8158 return Symbol::RELATIVE_REF;
8159
8160 case elfcpp::R_ARM_PLT32:
8161 case elfcpp::R_ARM_CALL:
8162 case elfcpp::R_ARM_JUMP24:
8163 case elfcpp::R_ARM_THM_CALL:
8164 case elfcpp::R_ARM_THM_JUMP24:
8165 case elfcpp::R_ARM_THM_JUMP19:
8166 case elfcpp::R_ARM_THM_JUMP6:
8167 case elfcpp::R_ARM_THM_JUMP11:
8168 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
8169 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8170 // in unwind tables. It may point to functions via PLTs.
8171 // So we treat it like call/jump relocations above.
8172 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
8173 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8174
8175 case elfcpp::R_ARM_GOT_BREL:
8176 case elfcpp::R_ARM_GOT_ABS:
8177 case elfcpp::R_ARM_GOT_PREL:
8178 // Absolute in GOT.
8179 return Symbol::ABSOLUTE_REF;
8180
8181 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8182 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8183 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8184 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8185 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8186 return Symbol::TLS_REF;
8187
8188 case elfcpp::R_ARM_TARGET1:
8189 case elfcpp::R_ARM_TARGET2:
8190 case elfcpp::R_ARM_COPY:
8191 case elfcpp::R_ARM_GLOB_DAT:
8192 case elfcpp::R_ARM_JUMP_SLOT:
8193 case elfcpp::R_ARM_RELATIVE:
8194 case elfcpp::R_ARM_PC24:
8195 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8196 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8197 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8198 default:
8199 // Not expected. We will give an error later.
8200 return 0;
8201 }
8202}
8203
4a657b0d
DK
8204// Report an unsupported relocation against a local symbol.
8205
8206template<bool big_endian>
8207void
8208Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 8209 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8210 unsigned int r_type)
8211{
8212 gold_error(_("%s: unsupported reloc %u against local symbol"),
8213 object->name().c_str(), r_type);
8214}
8215
bec53400
DK
8216// We are about to emit a dynamic relocation of type R_TYPE. If the
8217// dynamic linker does not support it, issue an error. The GNU linker
8218// only issues a non-PIC error for an allocated read-only section.
8219// Here we know the section is allocated, but we don't know that it is
8220// read-only. But we check for all the relocation types which the
8221// glibc dynamic linker supports, so it seems appropriate to issue an
8222// error even if the section is not read-only.
8223
8224template<bool big_endian>
8225void
8226Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8227 unsigned int r_type)
8228{
8229 switch (r_type)
8230 {
8231 // These are the relocation types supported by glibc for ARM.
8232 case elfcpp::R_ARM_RELATIVE:
8233 case elfcpp::R_ARM_COPY:
8234 case elfcpp::R_ARM_GLOB_DAT:
8235 case elfcpp::R_ARM_JUMP_SLOT:
8236 case elfcpp::R_ARM_ABS32:
be8fcb75 8237 case elfcpp::R_ARM_ABS32_NOI:
fa89cc82 8238 case elfcpp::R_ARM_IRELATIVE:
bec53400
DK
8239 case elfcpp::R_ARM_PC24:
8240 // FIXME: The following 3 types are not supported by Android's dynamic
8241 // linker.
8242 case elfcpp::R_ARM_TLS_DTPMOD32:
8243 case elfcpp::R_ARM_TLS_DTPOFF32:
8244 case elfcpp::R_ARM_TLS_TPOFF32:
8245 return;
8246
8247 default:
c8761b9a
DK
8248 {
8249 // This prevents us from issuing more than one error per reloc
8250 // section. But we can still wind up issuing more than one
8251 // error per object file.
8252 if (this->issued_non_pic_error_)
8253 return;
8254 const Arm_reloc_property* reloc_property =
8255 arm_reloc_property_table->get_reloc_property(r_type);
8256 gold_assert(reloc_property != NULL);
8257 object->error(_("requires unsupported dynamic reloc %s; "
8258 "recompile with -fPIC"),
8259 reloc_property->name().c_str());
8260 this->issued_non_pic_error_ = true;
bec53400 8261 return;
c8761b9a 8262 }
bec53400
DK
8263
8264 case elfcpp::R_ARM_NONE:
8265 gold_unreachable();
8266 }
8267}
8268
fa89cc82
HS
8269
8270// Return whether we need to make a PLT entry for a relocation of the
8271// given type against a STT_GNU_IFUNC symbol.
8272
8273template<bool big_endian>
8274bool
8275Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8276 Sized_relobj_file<32, big_endian>* object,
8277 unsigned int r_type)
8278{
8279 int flags = Scan::get_reference_flags(r_type);
8280 if (flags & Symbol::TLS_REF)
8281 {
8282 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8283 object->name().c_str(), r_type);
8284 return false;
8285 }
8286 return flags != 0;
8287}
8288
8289
4a657b0d 8290// Scan a relocation for a local symbol.
bec53400
DK
8291// FIXME: This only handles a subset of relocation types used by Android
8292// on ARM v5te devices.
4a657b0d
DK
8293
8294template<bool big_endian>
8295inline void
ad0f2072 8296Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 8297 Layout* layout,
bec53400 8298 Target_arm* target,
6fa2a40b 8299 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8300 unsigned int data_shndx,
8301 Output_section* output_section,
8302 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 8303 unsigned int r_type,
bfdfa4cd
AM
8304 const elfcpp::Sym<32, big_endian>& lsym,
8305 bool is_discarded)
4a657b0d 8306{
bfdfa4cd
AM
8307 if (is_discarded)
8308 return;
8309
a6d1ef57 8310 r_type = get_real_reloc_type(r_type);
fa89cc82
HS
8311
8312 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8313 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8314 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8315 {
8316 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8317 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8318 }
8319
4a657b0d
DK
8320 switch (r_type)
8321 {
8322 case elfcpp::R_ARM_NONE:
e4782e83
DK
8323 case elfcpp::R_ARM_V4BX:
8324 case elfcpp::R_ARM_GNU_VTENTRY:
8325 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8326 break;
8327
bec53400 8328 case elfcpp::R_ARM_ABS32:
be8fcb75 8329 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
8330 // If building a shared library (or a position-independent
8331 // executable), we need to create a dynamic relocation for
8332 // this location. The relocation applied at link time will
8333 // apply the link-time value, so we flag the location with
8334 // an R_ARM_RELATIVE relocation so the dynamic loader can
8335 // relocate it easily.
8336 if (parameters->options().output_is_position_independent())
8337 {
2ea97941 8338 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 8339 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
8340 // If we are to add more other reloc types than R_ARM_ABS32,
8341 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
8342 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8343 output_section, data_shndx,
fa89cc82 8344 reloc.get_r_offset(), is_ifunc);
bec53400
DK
8345 }
8346 break;
8347
e4782e83
DK
8348 case elfcpp::R_ARM_ABS16:
8349 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
8350 case elfcpp::R_ARM_THM_ABS5:
8351 case elfcpp::R_ARM_ABS8:
be8fcb75 8352 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
8353 case elfcpp::R_ARM_MOVW_ABS_NC:
8354 case elfcpp::R_ARM_MOVT_ABS:
8355 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8356 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
8357 // If building a shared library (or a position-independent
8358 // executable), we need to create a dynamic relocation for
8359 // this location. Because the addend needs to remain in the
8360 // data section, we need to be careful not to apply this
8361 // relocation statically.
8362 if (parameters->options().output_is_position_independent())
2e702c99 8363 {
e4782e83 8364 check_non_pic(object, r_type);
2e702c99 8365 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 8366 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 8367 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
8368 rel_dyn->add_local(object, r_sym, r_type, output_section,
8369 data_shndx, reloc.get_r_offset());
2e702c99
RM
8370 else
8371 {
8372 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
8373 unsigned int shndx = lsym.get_st_shndx();
8374 bool is_ordinary;
8375 shndx = object->adjust_sym_shndx(r_sym, shndx,
8376 &is_ordinary);
8377 if (!is_ordinary)
8378 object->error(_("section symbol %u has bad shndx %u"),
8379 r_sym, shndx);
8380 else
8381 rel_dyn->add_local_section(object, shndx,
8382 r_type, output_section,
8383 data_shndx, reloc.get_r_offset());
2e702c99
RM
8384 }
8385 }
e4782e83
DK
8386 break;
8387
e4782e83
DK
8388 case elfcpp::R_ARM_REL32:
8389 case elfcpp::R_ARM_LDR_PC_G0:
8390 case elfcpp::R_ARM_SBREL32:
8391 case elfcpp::R_ARM_THM_CALL:
8392 case elfcpp::R_ARM_THM_PC8:
8393 case elfcpp::R_ARM_BASE_PREL:
8394 case elfcpp::R_ARM_PLT32:
8395 case elfcpp::R_ARM_CALL:
8396 case elfcpp::R_ARM_JUMP24:
8397 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
8398 case elfcpp::R_ARM_SBREL31:
8399 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
8400 case elfcpp::R_ARM_MOVW_PREL_NC:
8401 case elfcpp::R_ARM_MOVT_PREL:
8402 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8403 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 8404 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 8405 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 8406 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8407 case elfcpp::R_ARM_THM_PC12:
8408 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8409 case elfcpp::R_ARM_ALU_PC_G0_NC:
8410 case elfcpp::R_ARM_ALU_PC_G0:
8411 case elfcpp::R_ARM_ALU_PC_G1_NC:
8412 case elfcpp::R_ARM_ALU_PC_G1:
8413 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8414 case elfcpp::R_ARM_LDR_PC_G1:
8415 case elfcpp::R_ARM_LDR_PC_G2:
8416 case elfcpp::R_ARM_LDRS_PC_G0:
8417 case elfcpp::R_ARM_LDRS_PC_G1:
8418 case elfcpp::R_ARM_LDRS_PC_G2:
8419 case elfcpp::R_ARM_LDC_PC_G0:
8420 case elfcpp::R_ARM_LDC_PC_G1:
8421 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8422 case elfcpp::R_ARM_ALU_SB_G0_NC:
8423 case elfcpp::R_ARM_ALU_SB_G0:
8424 case elfcpp::R_ARM_ALU_SB_G1_NC:
8425 case elfcpp::R_ARM_ALU_SB_G1:
8426 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8427 case elfcpp::R_ARM_LDR_SB_G0:
8428 case elfcpp::R_ARM_LDR_SB_G1:
8429 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8430 case elfcpp::R_ARM_LDRS_SB_G0:
8431 case elfcpp::R_ARM_LDRS_SB_G1:
8432 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8433 case elfcpp::R_ARM_LDC_SB_G0:
8434 case elfcpp::R_ARM_LDC_SB_G1:
8435 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8436 case elfcpp::R_ARM_MOVW_BREL_NC:
8437 case elfcpp::R_ARM_MOVT_BREL:
8438 case elfcpp::R_ARM_MOVW_BREL:
8439 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8440 case elfcpp::R_ARM_THM_MOVT_BREL:
8441 case elfcpp::R_ARM_THM_MOVW_BREL:
8442 case elfcpp::R_ARM_THM_JUMP11:
8443 case elfcpp::R_ARM_THM_JUMP8:
8444 // We don't need to do anything for a relative addressing relocation
8445 // against a local symbol if it does not reference the GOT.
bec53400
DK
8446 break;
8447
8448 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8449 case elfcpp::R_ARM_GOTOFF12:
bec53400 8450 // We need a GOT section:
2ea97941 8451 target->got_section(symtab, layout);
bec53400
DK
8452 break;
8453
bec53400 8454 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8455 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8456 {
8457 // The symbol requires a GOT entry.
4a54abbb 8458 Arm_output_data_got<big_endian>* got =
2ea97941 8459 target->got_section(symtab, layout);
bec53400
DK
8460 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8461 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8462 {
8463 // If we are generating a shared object, we need to add a
8464 // dynamic RELATIVE relocation for this symbol's GOT entry.
8465 if (parameters->options().output_is_position_independent())
8466 {
2ea97941
ILT
8467 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8468 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8469 rel_dyn->add_local_relative(
2ea97941
ILT
8470 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8471 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8472 }
8473 }
8474 }
8475 break;
8476
8477 case elfcpp::R_ARM_TARGET1:
e4782e83 8478 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8479 // This should have been mapped to another type already.
8480 // Fall through.
8481 case elfcpp::R_ARM_COPY:
8482 case elfcpp::R_ARM_GLOB_DAT:
8483 case elfcpp::R_ARM_JUMP_SLOT:
8484 case elfcpp::R_ARM_RELATIVE:
8485 // These are relocations which should only be seen by the
8486 // dynamic linker, and should never be seen here.
8487 gold_error(_("%s: unexpected reloc %u in object file"),
8488 object->name().c_str(), r_type);
8489 break;
8490
f96accdf
DK
8491
8492 // These are initial TLS relocs, which are expected when
8493 // linking.
8494 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8495 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8496 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8497 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8498 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8499 {
8500 bool output_is_shared = parameters->options().shared();
8501 const tls::Tls_optimization optimized_type
2e702c99 8502 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8503 r_type);
8504 switch (r_type)
8505 {
8506 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8507 if (optimized_type == tls::TLSOPT_NONE)
8508 {
2e702c99
RM
8509 // Create a pair of GOT entries for the module index and
8510 // dtv-relative offset.
8511 Arm_output_data_got<big_endian>* got
8512 = target->got_section(symtab, layout);
8513 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8514 unsigned int shndx = lsym.get_st_shndx();
8515 bool is_ordinary;
8516 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8517 if (!is_ordinary)
4a54abbb
DK
8518 {
8519 object->error(_("local symbol %u has bad shndx %u"),
8520 r_sym, shndx);
8521 break;
8522 }
8523
8524 if (!parameters->doing_static_link())
f96accdf
DK
8525 got->add_local_pair_with_rel(object, r_sym, shndx,
8526 GOT_TYPE_TLS_PAIR,
8527 target->rel_dyn_section(layout),
bd73a62d 8528 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8529 else
8530 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8531 object, r_sym);
f96accdf
DK
8532 }
8533 else
8534 // FIXME: TLS optimization not supported yet.
8535 gold_unreachable();
8536 break;
8537
8538 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8539 if (optimized_type == tls::TLSOPT_NONE)
8540 {
2e702c99
RM
8541 // Create a GOT entry for the module index.
8542 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8543 }
8544 else
8545 // FIXME: TLS optimization not supported yet.
8546 gold_unreachable();
8547 break;
8548
8549 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8550 break;
8551
8552 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8553 layout->set_has_static_tls();
8554 if (optimized_type == tls::TLSOPT_NONE)
8555 {
4a54abbb
DK
8556 // Create a GOT entry for the tp-relative offset.
8557 Arm_output_data_got<big_endian>* got
8558 = target->got_section(symtab, layout);
8559 unsigned int r_sym =
8560 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8561 if (!parameters->doing_static_link())
8562 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8563 target->rel_dyn_section(layout),
8564 elfcpp::R_ARM_TLS_TPOFF32);
8565 else if (!object->local_has_got_offset(r_sym,
8566 GOT_TYPE_TLS_OFFSET))
8567 {
8568 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8569 unsigned int got_offset =
8570 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8571 got->add_static_reloc(got_offset,
8572 elfcpp::R_ARM_TLS_TPOFF32, object,
8573 r_sym);
8574 }
f96accdf
DK
8575 }
8576 else
8577 // FIXME: TLS optimization not supported yet.
8578 gold_unreachable();
8579 break;
8580
8581 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8582 layout->set_has_static_tls();
8583 if (output_is_shared)
8584 {
2e702c99
RM
8585 // We need to create a dynamic relocation.
8586 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8587 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8588 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8589 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8590 output_section, data_shndx,
8591 reloc.get_r_offset());
8592 }
8593 break;
8594
8595 default:
8596 gold_unreachable();
8597 }
8598 }
8599 break;
8600
3cef7179
ILT
8601 case elfcpp::R_ARM_PC24:
8602 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8603 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8604 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8605 default:
8606 unsupported_reloc_local(object, r_type);
8607 break;
8608 }
8609}
8610
8611// Report an unsupported relocation against a global symbol.
8612
8613template<bool big_endian>
8614void
8615Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8616 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8617 unsigned int r_type,
8618 Symbol* gsym)
8619{
8620 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8621 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8622}
8623
8a75a161
DK
8624template<bool big_endian>
8625inline bool
8626Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8627 unsigned int r_type)
8628{
8629 switch (r_type)
8630 {
8631 case elfcpp::R_ARM_PC24:
8632 case elfcpp::R_ARM_THM_CALL:
8633 case elfcpp::R_ARM_PLT32:
8634 case elfcpp::R_ARM_CALL:
8635 case elfcpp::R_ARM_JUMP24:
8636 case elfcpp::R_ARM_THM_JUMP24:
8637 case elfcpp::R_ARM_SBREL31:
8638 case elfcpp::R_ARM_PREL31:
8639 case elfcpp::R_ARM_THM_JUMP19:
8640 case elfcpp::R_ARM_THM_JUMP6:
8641 case elfcpp::R_ARM_THM_JUMP11:
8642 case elfcpp::R_ARM_THM_JUMP8:
8643 // All the relocations above are branches except SBREL31 and PREL31.
8644 return false;
8645
8646 default:
8647 // Be conservative and assume this is a function pointer.
8648 return true;
8649 }
8650}
8651
8652template<bool big_endian>
8653inline bool
8654Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8655 Symbol_table*,
8656 Layout*,
8657 Target_arm<big_endian>* target,
6fa2a40b 8658 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8659 unsigned int,
8660 Output_section*,
8661 const elfcpp::Rel<32, big_endian>&,
8662 unsigned int r_type,
8663 const elfcpp::Sym<32, big_endian>&)
8664{
8665 r_type = target->get_real_reloc_type(r_type);
8666 return possible_function_pointer_reloc(r_type);
8667}
8668
8669template<bool big_endian>
8670inline bool
8671Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8672 Symbol_table*,
8673 Layout*,
8674 Target_arm<big_endian>* target,
6fa2a40b 8675 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8676 unsigned int,
8677 Output_section*,
8678 const elfcpp::Rel<32, big_endian>&,
8679 unsigned int r_type,
8680 Symbol* gsym)
8681{
8682 // GOT is not a function.
8683 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8684 return false;
8685
8686 r_type = target->get_real_reloc_type(r_type);
8687 return possible_function_pointer_reloc(r_type);
8688}
8689
4a657b0d
DK
8690// Scan a relocation for a global symbol.
8691
8692template<bool big_endian>
8693inline void
ad0f2072 8694Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8695 Layout* layout,
bec53400 8696 Target_arm* target,
6fa2a40b 8697 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8698 unsigned int data_shndx,
8699 Output_section* output_section,
8700 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8701 unsigned int r_type,
8702 Symbol* gsym)
8703{
c8761b9a
DK
8704 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8705 // section. We check here to avoid creating a dynamic reloc against
8706 // _GLOBAL_OFFSET_TABLE_.
8707 if (!target->has_got_section()
8708 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8709 target->got_section(symtab, layout);
8710
fa89cc82
HS
8711 // A STT_GNU_IFUNC symbol may require a PLT entry.
8712 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8713 && this->reloc_needs_plt_for_ifunc(object, r_type))
8714 target->make_plt_entry(symtab, layout, gsym);
8715
a6d1ef57 8716 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8717 switch (r_type)
8718 {
8719 case elfcpp::R_ARM_NONE:
e4782e83
DK
8720 case elfcpp::R_ARM_V4BX:
8721 case elfcpp::R_ARM_GNU_VTENTRY:
8722 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8723 break;
8724
bec53400 8725 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8726 case elfcpp::R_ARM_ABS16:
8727 case elfcpp::R_ARM_ABS12:
8728 case elfcpp::R_ARM_THM_ABS5:
8729 case elfcpp::R_ARM_ABS8:
8730 case elfcpp::R_ARM_BASE_ABS:
8731 case elfcpp::R_ARM_MOVW_ABS_NC:
8732 case elfcpp::R_ARM_MOVT_ABS:
8733 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8734 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8735 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8736 // Absolute addressing relocations.
bec53400 8737 {
2e702c99
RM
8738 // Make a PLT entry if necessary.
8739 if (this->symbol_needs_plt_entry(gsym))
8740 {
8741 target->make_plt_entry(symtab, layout, gsym);
8742 // Since this is not a PC-relative relocation, we may be
8743 // taking the address of a function. In that case we need to
8744 // set the entry in the dynamic symbol table to the address of
8745 // the PLT entry.
8746 if (gsym->is_from_dynobj() && !parameters->options().shared())
8747 gsym->set_needs_dynsym_value();
8748 }
8749 // Make a dynamic relocation if necessary.
8750 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8751 {
a82bef93
ST
8752 if (!parameters->options().output_is_position_independent()
8753 && gsym->may_need_copy_reloc())
2e702c99
RM
8754 {
8755 target->copy_reloc(symtab, layout, object,
8756 data_shndx, output_section, gsym, reloc);
8757 }
fa89cc82
HS
8758 else if ((r_type == elfcpp::R_ARM_ABS32
8759 || r_type == elfcpp::R_ARM_ABS32_NOI)
8760 && gsym->type() == elfcpp::STT_GNU_IFUNC
8761 && gsym->can_use_relative_reloc(false)
8762 && !gsym->is_from_dynobj()
8763 && !gsym->is_undefined()
8764 && !gsym->is_preemptible())
8765 {
8766 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8767 // symbol. This makes a function address in a PIE executable
8768 // match the address in a shared library that it links against.
8769 Reloc_section* rel_irelative =
8770 target->rel_irelative_section(layout);
8771 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8772 rel_irelative->add_symbolless_global_addend(
8773 gsym, r_type, output_section, object,
8774 data_shndx, reloc.get_r_offset());
8775 }
2e702c99 8776 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8777 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8778 && gsym->can_use_relative_reloc(false))
8779 {
8780 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8781 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8782 output_section, object,
8783 data_shndx, reloc.get_r_offset());
8784 }
8785 else
8786 {
e4782e83 8787 check_non_pic(object, r_type);
2e702c99
RM
8788 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8789 rel_dyn->add_global(gsym, r_type, output_section, object,
8790 data_shndx, reloc.get_r_offset());
8791 }
8792 }
bec53400
DK
8793 }
8794 break;
8795
e4782e83
DK
8796 case elfcpp::R_ARM_GOTOFF32:
8797 case elfcpp::R_ARM_GOTOFF12:
8798 // We need a GOT section.
8799 target->got_section(symtab, layout);
8800 break;
2e702c99 8801
e4782e83
DK
8802 case elfcpp::R_ARM_REL32:
8803 case elfcpp::R_ARM_LDR_PC_G0:
8804 case elfcpp::R_ARM_SBREL32:
8805 case elfcpp::R_ARM_THM_PC8:
8806 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8807 case elfcpp::R_ARM_MOVW_PREL_NC:
8808 case elfcpp::R_ARM_MOVT_PREL:
8809 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8810 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8811 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8812 case elfcpp::R_ARM_THM_PC12:
8813 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8814 case elfcpp::R_ARM_ALU_PC_G0_NC:
8815 case elfcpp::R_ARM_ALU_PC_G0:
8816 case elfcpp::R_ARM_ALU_PC_G1_NC:
8817 case elfcpp::R_ARM_ALU_PC_G1:
8818 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8819 case elfcpp::R_ARM_LDR_PC_G1:
8820 case elfcpp::R_ARM_LDR_PC_G2:
8821 case elfcpp::R_ARM_LDRS_PC_G0:
8822 case elfcpp::R_ARM_LDRS_PC_G1:
8823 case elfcpp::R_ARM_LDRS_PC_G2:
8824 case elfcpp::R_ARM_LDC_PC_G0:
8825 case elfcpp::R_ARM_LDC_PC_G1:
8826 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8827 case elfcpp::R_ARM_ALU_SB_G0_NC:
8828 case elfcpp::R_ARM_ALU_SB_G0:
8829 case elfcpp::R_ARM_ALU_SB_G1_NC:
8830 case elfcpp::R_ARM_ALU_SB_G1:
8831 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8832 case elfcpp::R_ARM_LDR_SB_G0:
8833 case elfcpp::R_ARM_LDR_SB_G1:
8834 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8835 case elfcpp::R_ARM_LDRS_SB_G0:
8836 case elfcpp::R_ARM_LDRS_SB_G1:
8837 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8838 case elfcpp::R_ARM_LDC_SB_G0:
8839 case elfcpp::R_ARM_LDC_SB_G1:
8840 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8841 case elfcpp::R_ARM_MOVW_BREL_NC:
8842 case elfcpp::R_ARM_MOVT_BREL:
8843 case elfcpp::R_ARM_MOVW_BREL:
8844 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8845 case elfcpp::R_ARM_THM_MOVT_BREL:
8846 case elfcpp::R_ARM_THM_MOVW_BREL:
8847 // Relative addressing relocations.
bec53400
DK
8848 {
8849 // Make a dynamic relocation if necessary.
95a2c8d6 8850 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400 8851 {
a82bef93
ST
8852 if (parameters->options().output_is_executable()
8853 && target->may_need_copy_reloc(gsym))
bec53400 8854 {
2ea97941 8855 target->copy_reloc(symtab, layout, object,
bec53400
DK
8856 data_shndx, output_section, gsym, reloc);
8857 }
8858 else
8859 {
8860 check_non_pic(object, r_type);
2ea97941 8861 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8862 rel_dyn->add_global(gsym, r_type, output_section, object,
8863 data_shndx, reloc.get_r_offset());
8864 }
8865 }
8866 }
8867 break;
8868
f4e5969c 8869 case elfcpp::R_ARM_THM_CALL:
bec53400 8870 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8871 case elfcpp::R_ARM_CALL:
8872 case elfcpp::R_ARM_JUMP24:
8873 case elfcpp::R_ARM_THM_JUMP24:
8874 case elfcpp::R_ARM_SBREL31:
c9a2c125 8875 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8876 case elfcpp::R_ARM_THM_JUMP19:
8877 case elfcpp::R_ARM_THM_JUMP6:
8878 case elfcpp::R_ARM_THM_JUMP11:
8879 case elfcpp::R_ARM_THM_JUMP8:
8880 // All the relocation above are branches except for the PREL31 ones.
8881 // A PREL31 relocation can point to a personality function in a shared
8882 // library. In that case we want to use a PLT because we want to
9b547ce6 8883 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8884 // do not support dynamic PREL31 relocations. An REL31 relocation may
8885 // point to a function whose unwinding behaviour is being described but
8886 // we will not mistakenly generate a PLT for that because we should use
8887 // a local section symbol.
8888
bec53400
DK
8889 // If the symbol is fully resolved, this is just a relative
8890 // local reloc. Otherwise we need a PLT entry.
8891 if (gsym->final_value_is_known())
8892 break;
8893 // If building a shared library, we can also skip the PLT entry
8894 // if the symbol is defined in the output file and is protected
8895 // or hidden.
8896 if (gsym->is_defined()
8897 && !gsym->is_from_dynobj()
8898 && !gsym->is_preemptible())
8899 break;
2ea97941 8900 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8901 break;
8902
bec53400 8903 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8904 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8905 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8906 {
8907 // The symbol requires a GOT entry.
4a54abbb 8908 Arm_output_data_got<big_endian>* got =
2ea97941 8909 target->got_section(symtab, layout);
bec53400 8910 if (gsym->final_value_is_known())
fa89cc82
HS
8911 {
8912 // For a STT_GNU_IFUNC symbol we want the PLT address.
8913 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8914 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8915 else
8916 got->add_global(gsym, GOT_TYPE_STANDARD);
8917 }
bec53400
DK
8918 else
8919 {
8920 // If this symbol is not fully resolved, we need to add a
8921 // GOT entry with a dynamic relocation.
2ea97941 8922 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8923 if (gsym->is_from_dynobj()
8924 || gsym->is_undefined()
fa40b62a
DK
8925 || gsym->is_preemptible()
8926 || (gsym->visibility() == elfcpp::STV_PROTECTED
fa89cc82
HS
8927 && parameters->options().shared())
8928 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8929 && parameters->options().output_is_position_independent()))
bec53400
DK
8930 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8931 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8932 else
8933 {
fa89cc82
HS
8934 // For a STT_GNU_IFUNC symbol we want to write the PLT
8935 // offset into the GOT, so that function pointer
8936 // comparisons work correctly.
8937 bool is_new;
8938 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8939 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8940 else
8941 {
8942 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8943 // Tell the dynamic linker to use the PLT address
8944 // when resolving relocations.
8945 if (gsym->is_from_dynobj()
8946 && !parameters->options().shared())
8947 gsym->set_needs_dynsym_value();
8948 }
8949 if (is_new)
bec53400
DK
8950 rel_dyn->add_global_relative(
8951 gsym, elfcpp::R_ARM_RELATIVE, got,
8952 gsym->got_offset(GOT_TYPE_STANDARD));
8953 }
8954 }
8955 }
8956 break;
8957
8958 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8959 case elfcpp::R_ARM_TARGET2:
8960 // These should have been mapped to other types already.
bec53400
DK
8961 // Fall through.
8962 case elfcpp::R_ARM_COPY:
8963 case elfcpp::R_ARM_GLOB_DAT:
8964 case elfcpp::R_ARM_JUMP_SLOT:
8965 case elfcpp::R_ARM_RELATIVE:
8966 // These are relocations which should only be seen by the
8967 // dynamic linker, and should never be seen here.
8968 gold_error(_("%s: unexpected reloc %u in object file"),
8969 object->name().c_str(), r_type);
8970 break;
8971
f96accdf
DK
8972 // These are initial tls relocs, which are expected when
8973 // linking.
8974 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8975 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8976 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8977 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8978 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8979 {
8980 const bool is_final = gsym->final_value_is_known();
8981 const tls::Tls_optimization optimized_type
2e702c99 8982 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8983 switch (r_type)
8984 {
8985 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8986 if (optimized_type == tls::TLSOPT_NONE)
8987 {
2e702c99
RM
8988 // Create a pair of GOT entries for the module index and
8989 // dtv-relative offset.
8990 Arm_output_data_got<big_endian>* got
8991 = target->got_section(symtab, layout);
4a54abbb
DK
8992 if (!parameters->doing_static_link())
8993 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8994 target->rel_dyn_section(layout),
8995 elfcpp::R_ARM_TLS_DTPMOD32,
8996 elfcpp::R_ARM_TLS_DTPOFF32);
8997 else
8998 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8999 }
9000 else
9001 // FIXME: TLS optimization not supported yet.
9002 gold_unreachable();
9003 break;
9004
9005 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9006 if (optimized_type == tls::TLSOPT_NONE)
9007 {
2e702c99
RM
9008 // Create a GOT entry for the module index.
9009 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
9010 }
9011 else
9012 // FIXME: TLS optimization not supported yet.
9013 gold_unreachable();
9014 break;
9015
9016 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9017 break;
9018
9019 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9020 layout->set_has_static_tls();
9021 if (optimized_type == tls::TLSOPT_NONE)
9022 {
4a54abbb
DK
9023 // Create a GOT entry for the tp-relative offset.
9024 Arm_output_data_got<big_endian>* got
9025 = target->got_section(symtab, layout);
9026 if (!parameters->doing_static_link())
9027 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9028 target->rel_dyn_section(layout),
9029 elfcpp::R_ARM_TLS_TPOFF32);
9030 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9031 {
9032 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9033 unsigned int got_offset =
9034 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9035 got->add_static_reloc(got_offset,
9036 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9037 }
f96accdf
DK
9038 }
9039 else
9040 // FIXME: TLS optimization not supported yet.
9041 gold_unreachable();
9042 break;
9043
9044 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9045 layout->set_has_static_tls();
9046 if (parameters->options().shared())
9047 {
2e702c99
RM
9048 // We need to create a dynamic relocation.
9049 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9050 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 9051 output_section, object,
2e702c99 9052 data_shndx, reloc.get_r_offset());
f96accdf
DK
9053 }
9054 break;
9055
9056 default:
9057 gold_unreachable();
9058 }
9059 }
9060 break;
9061
3cef7179
ILT
9062 case elfcpp::R_ARM_PC24:
9063 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9064 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9065 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
9066 default:
9067 unsupported_reloc_global(object, r_type, gsym);
9068 break;
9069 }
9070}
9071
9072// Process relocations for gc.
9073
9074template<bool big_endian>
9075void
6fa2a40b
CC
9076Target_arm<big_endian>::gc_process_relocs(
9077 Symbol_table* symtab,
9078 Layout* layout,
9079 Sized_relobj_file<32, big_endian>* object,
9080 unsigned int data_shndx,
9081 unsigned int,
9082 const unsigned char* prelocs,
9083 size_t reloc_count,
9084 Output_section* output_section,
9085 bool needs_special_offset_handling,
9086 size_t local_symbol_count,
9087 const unsigned char* plocal_symbols)
4a657b0d
DK
9088{
9089 typedef Target_arm<big_endian> Arm;
2ea97941 9090 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 9091
41cbeecc 9092 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 9093 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 9094 symtab,
2ea97941 9095 layout,
4a657b0d
DK
9096 this,
9097 object,
9098 data_shndx,
9099 prelocs,
9100 reloc_count,
9101 output_section,
9102 needs_special_offset_handling,
9103 local_symbol_count,
9104 plocal_symbols);
9105}
9106
9107// Scan relocations for a section.
9108
9109template<bool big_endian>
9110void
ad0f2072 9111Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 9112 Layout* layout,
6fa2a40b 9113 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9114 unsigned int data_shndx,
9115 unsigned int sh_type,
9116 const unsigned char* prelocs,
9117 size_t reloc_count,
9118 Output_section* output_section,
9119 bool needs_special_offset_handling,
9120 size_t local_symbol_count,
9121 const unsigned char* plocal_symbols)
9122{
2ea97941 9123 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
9124 if (sh_type == elfcpp::SHT_RELA)
9125 {
9126 gold_error(_("%s: unsupported RELA reloc section"),
9127 object->name().c_str());
9128 return;
9129 }
9130
2ea97941 9131 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 9132 symtab,
2ea97941 9133 layout,
4a657b0d
DK
9134 this,
9135 object,
9136 data_shndx,
9137 prelocs,
9138 reloc_count,
9139 output_section,
9140 needs_special_offset_handling,
9141 local_symbol_count,
9142 plocal_symbols);
9143}
9144
9145// Finalize the sections.
9146
9147template<bool big_endian>
9148void
d5b40221 9149Target_arm<big_endian>::do_finalize_sections(
2ea97941 9150 Layout* layout,
f59f41f3 9151 const Input_objects* input_objects,
647f1574 9152 Symbol_table*)
4a657b0d 9153{
3e235302 9154 bool merged_any_attributes = false;
d5b40221
DK
9155 // Merge processor-specific flags.
9156 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9157 p != input_objects->relobj_end();
9158 ++p)
9159 {
9160 Arm_relobj<big_endian>* arm_relobj =
9161 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
9162 if (arm_relobj->merge_flags_and_attributes())
9163 {
9164 this->merge_processor_specific_flags(
9165 arm_relobj->name(),
9166 arm_relobj->processor_specific_flags());
9167 this->merge_object_attributes(arm_relobj->name().c_str(),
9168 arm_relobj->attributes_section_data());
3e235302 9169 merged_any_attributes = true;
7296d933 9170 }
2e702c99 9171 }
d5b40221
DK
9172
9173 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9174 p != input_objects->dynobj_end();
9175 ++p)
9176 {
9177 Arm_dynobj<big_endian>* arm_dynobj =
9178 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9179 this->merge_processor_specific_flags(
9180 arm_dynobj->name(),
9181 arm_dynobj->processor_specific_flags());
a0351a69
DK
9182 this->merge_object_attributes(arm_dynobj->name().c_str(),
9183 arm_dynobj->attributes_section_data());
3e235302 9184 merged_any_attributes = true;
d5b40221
DK
9185 }
9186
da59ad79
DK
9187 // Create an empty uninitialized attribute section if we still don't have it
9188 // at this moment. This happens if there is no attributes sections in all
9189 // inputs.
9190 if (this->attributes_section_data_ == NULL)
9191 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9192
41263c05 9193 const Object_attribute* cpu_arch_attr =
a0351a69 9194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
9195 // Check if we need to use Cortex-A8 workaround.
9196 if (parameters->options().user_set_fix_cortex_a8())
9197 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9198 else
9199 {
9200 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9201 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 9202 // profile.
41263c05
DK
9203 const Object_attribute* cpu_arch_profile_attr =
9204 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9205 this->fix_cortex_a8_ =
9206 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
9207 && (cpu_arch_profile_attr->int_value() == 'A'
9208 || cpu_arch_profile_attr->int_value() == 0));
41263c05 9209 }
2e702c99 9210
a2162063
ILT
9211 // Check if we can use V4BX interworking.
9212 // The V4BX interworking stub contains BX instruction,
9213 // which is not specified for some profiles.
9b2fd367 9214 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 9215 && !this->may_use_v4t_interworking())
a2162063 9216 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 9217 "the target profile does not support BX instruction"));
a2162063 9218
94cdfcff 9219 // Fill in some more dynamic tags.
ea715a34
ILT
9220 const Reloc_section* rel_plt = (this->plt_ == NULL
9221 ? NULL
9222 : this->plt_->rel_plt());
9223 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 9224 this->rel_dyn_, true, false);
94cdfcff
DK
9225
9226 // Emit any relocs we saved in an attempt to avoid generating COPY
9227 // relocs.
9228 if (this->copy_relocs_.any_saved_relocs())
2ea97941 9229 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 9230
f59f41f3 9231 // Handle the .ARM.exidx section.
2ea97941 9232 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 9233
731ca54a
RÁE
9234 if (!parameters->options().relocatable())
9235 {
9236 if (exidx_section != NULL
2e702c99
RM
9237 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9238 {
9239 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9240 // the .ARM.exidx section.
9241 if (!layout->script_options()->saw_phdrs_clause())
9242 {
9243 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9244 0)
9245 == NULL);
9246 Output_segment* exidx_segment =
9247 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9248 exidx_segment->add_output_section_to_nonload(exidx_section,
9249 elfcpp::PF_R);
9250 }
9251 }
11af873f 9252 }
a0351a69 9253
3e235302
DK
9254 // Create an .ARM.attributes section if we have merged any attributes
9255 // from inputs.
9256 if (merged_any_attributes)
7296d933
DK
9257 {
9258 Output_attributes_section_data* attributes_section =
9259 new Output_attributes_section_data(*this->attributes_section_data_);
9260 layout->add_output_section_data(".ARM.attributes",
9261 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 9262 attributes_section, ORDER_INVALID,
7296d933
DK
9263 false);
9264 }
131687b4
DK
9265
9266 // Fix up links in section EXIDX headers.
9267 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9268 p != layout->section_list().end();
9269 ++p)
9270 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9271 {
9272 Arm_output_section<big_endian>* os =
9273 Arm_output_section<big_endian>::as_arm_output_section(*p);
9274 os->set_exidx_section_link();
9275 }
4a657b0d
DK
9276}
9277
bec53400
DK
9278// Return whether a direct absolute static relocation needs to be applied.
9279// In cases where Scan::local() or Scan::global() has created
9280// a dynamic relocation other than R_ARM_RELATIVE, the addend
9281// of the relocation is carried in the data, and we must not
9282// apply the static relocation.
9283
9284template<bool big_endian>
9285inline bool
9286Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9287 const Sized_symbol<32>* gsym,
95a2c8d6 9288 unsigned int r_type,
bec53400
DK
9289 bool is_32bit,
9290 Output_section* output_section)
9291{
9292 // If the output section is not allocated, then we didn't call
9293 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9294 // the reloc here.
9295 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9296 return true;
9297
95a2c8d6
RS
9298 int ref_flags = Scan::get_reference_flags(r_type);
9299
bec53400
DK
9300 // For local symbols, we will have created a non-RELATIVE dynamic
9301 // relocation only if (a) the output is position independent,
9302 // (b) the relocation is absolute (not pc- or segment-relative), and
9303 // (c) the relocation is not 32 bits wide.
9304 if (gsym == NULL)
9305 return !(parameters->options().output_is_position_independent()
9306 && (ref_flags & Symbol::ABSOLUTE_REF)
9307 && !is_32bit);
9308
9309 // For global symbols, we use the same helper routines used in the
9310 // scan pass. If we did not create a dynamic relocation, or if we
9311 // created a RELATIVE dynamic relocation, we should apply the static
9312 // relocation.
9313 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9314 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9315 && gsym->can_use_relative_reloc(ref_flags
9316 & Symbol::FUNCTION_CALL);
9317 return !has_dyn || is_rel;
9318}
9319
4a657b0d
DK
9320// Perform a relocation.
9321
9322template<bool big_endian>
9323inline bool
9324Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
9325 const Relocate_info<32, big_endian>* relinfo,
9326 Target_arm* target,
ca09d69a 9327 Output_section* output_section,
c121c671
DK
9328 size_t relnum,
9329 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 9330 unsigned int r_type,
c121c671
DK
9331 const Sized_symbol<32>* gsym,
9332 const Symbol_value<32>* psymval,
9333 unsigned char* view,
ebabffbd 9334 Arm_address address,
f96accdf 9335 section_size_type view_size)
4a657b0d 9336{
0e804863
ILT
9337 if (view == NULL)
9338 return true;
9339
c121c671
DK
9340 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9341
a6d1ef57 9342 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9343 const Arm_reloc_property* reloc_property =
9344 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9345 if (reloc_property == NULL)
9346 {
9347 std::string reloc_name =
9348 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9349 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9350 _("cannot relocate %s in object file"),
9351 reloc_name.c_str());
9352 return true;
9353 }
c121c671 9354
2daedcd6
DK
9355 const Arm_relobj<big_endian>* object =
9356 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 9357
2daedcd6
DK
9358 // If the final branch target of a relocation is THUMB instruction, this
9359 // is 1. Otherwise it is 0.
9360 Arm_address thumb_bit = 0;
c121c671 9361 Symbol_value<32> symval;
d204b6e9 9362 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
9363 bool have_got_offset = false;
9364 unsigned int got_offset = 0;
9365
9366 // If the relocation uses the GOT entry of a symbol instead of the symbol
9367 // itself, we don't care about whether the symbol is defined or what kind
9368 // of symbol it is.
9369 if (reloc_property->uses_got_entry())
9370 {
9371 // Get the GOT offset.
9372 // The GOT pointer points to the end of the GOT section.
9373 // We need to subtract the size of the GOT section to get
9374 // the actual offset to use in the relocation.
9375 // TODO: We should move GOT offset computing code in TLS relocations
9376 // to here.
9377 switch (r_type)
9378 {
9379 case elfcpp::R_ARM_GOT_BREL:
9380 case elfcpp::R_ARM_GOT_PREL:
9381 if (gsym != NULL)
9382 {
9383 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9384 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9385 - target->got_size());
9386 }
9387 else
9388 {
9389 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9390 gold_assert(object->local_has_got_offset(r_sym,
9391 GOT_TYPE_STANDARD));
9392 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9393 - target->got_size());
9394 }
9395 have_got_offset = true;
9396 break;
9397
9398 default:
9399 break;
9400 }
9401 }
9402 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 9403 {
2daedcd6
DK
9404 if (gsym != NULL)
9405 {
9406 // This is a global symbol. Determine if we use PLT and if the
9407 // final target is THUMB.
95a2c8d6 9408 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
9409 {
9410 // This uses a PLT, change the symbol value.
fa89cc82 9411 symval.set_output_value(target->plt_address_for_global(gsym));
2daedcd6
DK
9412 psymval = &symval;
9413 }
d204b6e9
DK
9414 else if (gsym->is_weak_undefined())
9415 {
9416 // This is a weakly undefined symbol and we do not use PLT
9417 // for this relocation. A branch targeting this symbol will
9418 // be converted into an NOP.
9419 is_weakly_undefined_without_plt = true;
9420 }
b2286c10
DK
9421 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9422 {
9423 // This relocation uses the symbol value but the symbol is
9424 // undefined. Exit early and have the caller reporting an
9425 // error.
9426 return true;
9427 }
2daedcd6
DK
9428 else
9429 {
9430 // Set thumb bit if symbol:
9431 // -Has type STT_ARM_TFUNC or
9432 // -Has type STT_FUNC, is defined and with LSB in value set.
9433 thumb_bit =
9434 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9435 || (gsym->type() == elfcpp::STT_FUNC
9436 && !gsym->is_undefined()
9437 && ((psymval->value(object, 0) & 1) != 0)))
9438 ? 1
9439 : 0);
9440 }
9441 }
9442 else
9443 {
2e702c99
RM
9444 // This is a local symbol. Determine if the final target is THUMB.
9445 // We saved this information when all the local symbols were read.
2daedcd6
DK
9446 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9447 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9448 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
fa89cc82
HS
9449
9450 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9451 {
9452 symval.set_output_value(
9453 target->plt_address_for_local(object, r_sym));
9454 psymval = &symval;
9455 }
2daedcd6
DK
9456 }
9457 }
9458 else
9459 {
9460 // This is a fake relocation synthesized for a stub. It does not have
9461 // a real symbol. We just look at the LSB of the symbol value to
9462 // determine if the target is THUMB or not.
9463 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
9464 }
9465
2daedcd6
DK
9466 // Strip LSB if this points to a THUMB target.
9467 if (thumb_bit != 0
2e702c99 9468 && reloc_property->uses_thumb_bit()
2daedcd6
DK
9469 && ((psymval->value(object, 0) & 1) != 0))
9470 {
9471 Arm_address stripped_value =
9472 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9473 symval.set_output_value(stripped_value);
9474 psymval = &symval;
2e702c99 9475 }
2daedcd6 9476
d204b6e9
DK
9477 // To look up relocation stubs, we need to pass the symbol table index of
9478 // a local symbol.
9479 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9480
b10d2873
ILT
9481 // Get the addressing origin of the output segment defining the
9482 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9483 Arm_address sym_origin = 0;
5c57f1be 9484 if (reloc_property->uses_symbol_base())
b10d2873
ILT
9485 {
9486 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9487 // R_ARM_BASE_ABS with the NULL symbol will give the
9488 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9489 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9490 sym_origin = target->got_plt_section()->address();
9491 else if (gsym == NULL)
9492 sym_origin = 0;
9493 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9494 sym_origin = gsym->output_segment()->vaddr();
9495 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9496 sym_origin = gsym->output_data()->address();
9497
9498 // TODO: Assumes the segment base to be zero for the global symbols
9499 // till the proper support for the segment-base-relative addressing
9500 // will be implemented. This is consistent with GNU ld.
9501 }
9502
5c57f1be
DK
9503 // For relative addressing relocation, find out the relative address base.
9504 Arm_address relative_address_base = 0;
9505 switch(reloc_property->relative_address_base())
9506 {
9507 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9508 // Relocations with relative address bases RAB_TLS and RAB_tp are
9509 // handled by relocate_tls. So we do not need to do anything here.
9510 case Arm_reloc_property::RAB_TLS:
9511 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9512 break;
9513 case Arm_reloc_property::RAB_B_S:
9514 relative_address_base = sym_origin;
9515 break;
9516 case Arm_reloc_property::RAB_GOT_ORG:
9517 relative_address_base = target->got_plt_section()->address();
9518 break;
9519 case Arm_reloc_property::RAB_P:
9520 relative_address_base = address;
9521 break;
9522 case Arm_reloc_property::RAB_Pa:
9523 relative_address_base = address & 0xfffffffcU;
9524 break;
9525 default:
2e702c99 9526 gold_unreachable();
5c57f1be 9527 }
2e702c99 9528
c121c671
DK
9529 typename Arm_relocate_functions::Status reloc_status =
9530 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9531 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9532 switch (r_type)
9533 {
9534 case elfcpp::R_ARM_NONE:
9535 break;
9536
5e445df6 9537 case elfcpp::R_ARM_ABS8:
95a2c8d6 9538 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9539 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9540 break;
9541
9542 case elfcpp::R_ARM_ABS12:
95a2c8d6 9543 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9544 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9545 break;
9546
9547 case elfcpp::R_ARM_ABS16:
95a2c8d6 9548 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9549 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9550 break;
9551
c121c671 9552 case elfcpp::R_ARM_ABS32:
95a2c8d6 9553 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9554 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9555 thumb_bit);
c121c671
DK
9556 break;
9557
be8fcb75 9558 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9559 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9560 // No thumb bit for this relocation: (S + A)
9561 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9562 0);
be8fcb75
ILT
9563 break;
9564
fd3c5f0b 9565 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9566 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9567 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9568 0, thumb_bit,
9569 check_overflow);
fd3c5f0b
ILT
9570 break;
9571
9572 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9573 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9574 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9575 break;
9576
9577 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9578 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9579 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9580 0, thumb_bit, false);
fd3c5f0b
ILT
9581 break;
9582
9583 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9584 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9585 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9586 psymval, 0);
fd3c5f0b
ILT
9587 break;
9588
c2a122b6 9589 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9590 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9591 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9592 reloc_status =
9593 Arm_relocate_functions::movw(view, object, psymval,
9594 relative_address_base, thumb_bit,
9595 check_overflow);
c2a122b6
ILT
9596 break;
9597
9598 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9599 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9600 reloc_status =
9601 Arm_relocate_functions::movt(view, object, psymval,
9602 relative_address_base);
c2a122b6
ILT
9603 break;
9604
9605 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9606 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9607 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9608 reloc_status =
9609 Arm_relocate_functions::thm_movw(view, object, psymval,
9610 relative_address_base,
9611 thumb_bit, check_overflow);
c2a122b6
ILT
9612 break;
9613
9614 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9615 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9616 reloc_status =
9617 Arm_relocate_functions::thm_movt(view, object, psymval,
9618 relative_address_base);
02961d7e 9619 break;
2e702c99 9620
c121c671
DK
9621 case elfcpp::R_ARM_REL32:
9622 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9623 address, thumb_bit);
c121c671
DK
9624 break;
9625
be8fcb75 9626 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9627 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9628 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9629 break;
9630
1521477a 9631 // Thumb long branches.
c121c671 9632 case elfcpp::R_ARM_THM_CALL:
51938283 9633 case elfcpp::R_ARM_THM_XPC22:
1521477a 9634 case elfcpp::R_ARM_THM_JUMP24:
51938283 9635 reloc_status =
1521477a
DK
9636 Arm_relocate_functions::thumb_branch_common(
9637 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9638 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9639 break;
9640
c121c671
DK
9641 case elfcpp::R_ARM_GOTOFF32:
9642 {
ebabffbd 9643 Arm_address got_origin;
c121c671
DK
9644 got_origin = target->got_plt_section()->address();
9645 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9646 got_origin, thumb_bit);
c121c671
DK
9647 }
9648 break;
9649
9650 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9651 gold_assert(gsym != NULL);
9652 reloc_status =
9653 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9654 break;
9655
be8fcb75 9656 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9657 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9658 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9659 break;
9660
c121c671
DK
9661 case elfcpp::R_ARM_GOT_BREL:
9662 gold_assert(have_got_offset);
9663 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9664 break;
9665
7f5309a5
ILT
9666 case elfcpp::R_ARM_GOT_PREL:
9667 gold_assert(have_got_offset);
9668 // Get the address origin for GOT PLT, which is allocated right
9669 // after the GOT section, to calculate an absolute address of
9670 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9671 Arm_address got_origin;
7f5309a5
ILT
9672 got_origin = target->got_plt_section()->address();
9673 reloc_status = Arm_relocate_functions::got_prel(view,
9674 got_origin + got_offset,
9675 address);
9676 break;
9677
c121c671 9678 case elfcpp::R_ARM_PLT32:
1521477a
DK
9679 case elfcpp::R_ARM_CALL:
9680 case elfcpp::R_ARM_JUMP24:
9681 case elfcpp::R_ARM_XPC25:
c121c671
DK
9682 gold_assert(gsym == NULL
9683 || gsym->has_plt_offset()
9684 || gsym->final_value_is_known()
9685 || (gsym->is_defined()
9686 && !gsym->is_from_dynobj()
9687 && !gsym->is_preemptible()));
d204b6e9 9688 reloc_status =
2e702c99 9689 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9690 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9691 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9692 break;
9693
41263c05
DK
9694 case elfcpp::R_ARM_THM_JUMP19:
9695 reloc_status =
9696 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9697 thumb_bit);
9698 break;
9699
800d0f56
ILT
9700 case elfcpp::R_ARM_THM_JUMP6:
9701 reloc_status =
9702 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9703 break;
9704
9705 case elfcpp::R_ARM_THM_JUMP8:
9706 reloc_status =
9707 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9708 break;
9709
9710 case elfcpp::R_ARM_THM_JUMP11:
9711 reloc_status =
9712 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9713 break;
9714
c121c671
DK
9715 case elfcpp::R_ARM_PREL31:
9716 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9717 address, thumb_bit);
c121c671
DK
9718 break;
9719
a2162063 9720 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9721 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9722 {
9723 const bool is_v4bx_interworking =
9724 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9725 reloc_status =
9726 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9727 is_v4bx_interworking);
9728 }
a2162063
ILT
9729 break;
9730
11b861d5
DK
9731 case elfcpp::R_ARM_THM_PC8:
9732 reloc_status =
9733 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9734 break;
9735
9736 case elfcpp::R_ARM_THM_PC12:
9737 reloc_status =
9738 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9739 break;
9740
9741 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9742 reloc_status =
9743 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9744 thumb_bit);
9745 break;
9746
b10d2873 9747 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9748 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9749 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9750 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9751 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9752 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9753 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9754 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9755 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9756 case elfcpp::R_ARM_ALU_SB_G2:
9757 reloc_status =
5c57f1be
DK
9758 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9759 reloc_property->group_index(),
9760 relative_address_base,
9761 thumb_bit, check_overflow);
b10d2873
ILT
9762 break;
9763
9764 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9765 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9766 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9767 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9768 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9769 case elfcpp::R_ARM_LDR_SB_G2:
9770 reloc_status =
5c57f1be
DK
9771 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9772 reloc_property->group_index(),
9773 relative_address_base);
b10d2873
ILT
9774 break;
9775
9776 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9777 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9778 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9779 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9780 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9781 case elfcpp::R_ARM_LDRS_SB_G2:
9782 reloc_status =
5c57f1be
DK
9783 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9784 reloc_property->group_index(),
9785 relative_address_base);
b10d2873
ILT
9786 break;
9787
9788 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9789 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9790 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9791 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9792 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9793 case elfcpp::R_ARM_LDC_SB_G2:
9794 reloc_status =
5c57f1be
DK
9795 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9796 reloc_property->group_index(),
9797 relative_address_base);
c121c671
DK
9798 break;
9799
f96accdf
DK
9800 // These are initial tls relocs, which are expected when
9801 // linking.
9802 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9803 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9804 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9805 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9806 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9807 reloc_status =
9808 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9809 view, address, view_size);
9810 break;
9811
3cef7179
ILT
9812 // The known and unknown unsupported and/or deprecated relocations.
9813 case elfcpp::R_ARM_PC24:
9814 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9815 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9816 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9817 default:
3cef7179
ILT
9818 // Just silently leave the method. We should get an appropriate error
9819 // message in the scan methods.
9820 break;
c121c671
DK
9821 }
9822
9823 // Report any errors.
9824 switch (reloc_status)
9825 {
9826 case Arm_relocate_functions::STATUS_OKAY:
9827 break;
9828 case Arm_relocate_functions::STATUS_OVERFLOW:
9829 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9830 _("relocation overflow in %s"),
9831 reloc_property->name().c_str());
c121c671
DK
9832 break;
9833 case Arm_relocate_functions::STATUS_BAD_RELOC:
9834 gold_error_at_location(
9835 relinfo,
9836 relnum,
9837 rel.get_r_offset(),
a2c7281b
DK
9838 _("unexpected opcode while processing relocation %s"),
9839 reloc_property->name().c_str());
c121c671 9840 break;
4a657b0d
DK
9841 default:
9842 gold_unreachable();
9843 }
9844
9845 return true;
9846}
9847
f96accdf
DK
9848// Perform a TLS relocation.
9849
9850template<bool big_endian>
9851inline typename Arm_relocate_functions<big_endian>::Status
9852Target_arm<big_endian>::Relocate::relocate_tls(
9853 const Relocate_info<32, big_endian>* relinfo,
9854 Target_arm<big_endian>* target,
9855 size_t relnum,
9856 const elfcpp::Rel<32, big_endian>& rel,
9857 unsigned int r_type,
9858 const Sized_symbol<32>* gsym,
9859 const Symbol_value<32>* psymval,
9860 unsigned char* view,
4a54abbb 9861 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9862 section_size_type /*view_size*/ )
9863{
9864 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9865 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9866 Output_segment* tls_segment = relinfo->layout->tls_segment();
9867
6fa2a40b 9868 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9869
9870 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9871
9872 const bool is_final = (gsym == NULL
9873 ? !parameters->options().shared()
9874 : gsym->final_value_is_known());
9875 const tls::Tls_optimization optimized_type
9876 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9877 switch (r_type)
9878 {
9879 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9880 {
9881 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9882 unsigned int got_offset;
9883 if (gsym != NULL)
9884 {
9885 gold_assert(gsym->has_got_offset(got_type));
9886 got_offset = gsym->got_offset(got_type) - target->got_size();
9887 }
9888 else
9889 {
9890 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9891 gold_assert(object->local_has_got_offset(r_sym, got_type));
9892 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9893 - target->got_size());
2e702c99
RM
9894 }
9895 if (optimized_type == tls::TLSOPT_NONE)
9896 {
4a54abbb
DK
9897 Arm_address got_entry =
9898 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9899
9900 // Relocate the field with the PC relative offset of the pair of
9901 // GOT entries.
29ab395d 9902 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9903 return ArmRelocFuncs::STATUS_OKAY;
9904 }
9905 }
f96accdf
DK
9906 break;
9907
9908 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9909 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9910 {
9911 // Relocate the field with the offset of the GOT entry for
9912 // the module index.
9913 unsigned int got_offset;
9914 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9915 - target->got_size());
4a54abbb
DK
9916 Arm_address got_entry =
9917 target->got_plt_section()->address() + got_offset;
9918
2e702c99
RM
9919 // Relocate the field with the PC relative offset of the pair of
9920 // GOT entries.
9921 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9922 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9923 }
f96accdf
DK
9924 break;
9925
9926 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9927 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9928 return ArmRelocFuncs::STATUS_OKAY;
9929
9930 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9931 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9932 {
9933 // Relocate the field with the offset of the GOT entry for
9934 // the tp-relative offset of the symbol.
f96accdf 9935 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9936 unsigned int got_offset;
9937 if (gsym != NULL)
9938 {
9939 gold_assert(gsym->has_got_offset(got_type));
9940 got_offset = gsym->got_offset(got_type);
9941 }
9942 else
9943 {
9944 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9945 gold_assert(object->local_has_got_offset(r_sym, got_type));
9946 got_offset = object->local_got_offset(r_sym, got_type);
9947 }
9948
9949 // All GOT offsets are relative to the end of the GOT.
9950 got_offset -= target->got_size();
4a54abbb
DK
9951
9952 Arm_address got_entry =
9953 target->got_plt_section()->address() + got_offset;
9954
2e702c99 9955 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9956 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9957 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9958 }
f96accdf
DK
9959 break;
9960
9961 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9962 // If we're creating a shared library, a dynamic relocation will
9963 // have been created for this location, so do not apply it now.
9964 if (!parameters->options().shared())
2e702c99
RM
9965 {
9966 gold_assert(tls_segment != NULL);
4a54abbb
DK
9967
9968 // $tp points to the TCB, which is followed by the TLS, so we
9969 // need to add TCB size to the offset.
9970 Arm_address aligned_tcb_size =
9971 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9972 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9973
2e702c99 9974 }
f96accdf 9975 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9976
f96accdf
DK
9977 default:
9978 gold_unreachable();
9979 }
9980
9981 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9982 _("unsupported reloc %u"),
9983 r_type);
9984 return ArmRelocFuncs::STATUS_BAD_RELOC;
9985}
9986
4a657b0d
DK
9987// Relocate section data.
9988
9989template<bool big_endian>
9990void
9991Target_arm<big_endian>::relocate_section(
9992 const Relocate_info<32, big_endian>* relinfo,
9993 unsigned int sh_type,
9994 const unsigned char* prelocs,
9995 size_t reloc_count,
9996 Output_section* output_section,
9997 bool needs_special_offset_handling,
9998 unsigned char* view,
ebabffbd 9999 Arm_address address,
364c7fa5
ILT
10000 section_size_type view_size,
10001 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
10002{
10003 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10004 gold_assert(sh_type == elfcpp::SHT_REL);
10005
218c5831
DK
10006 // See if we are relocating a relaxed input section. If so, the view
10007 // covers the whole output section and we need to adjust accordingly.
10008 if (needs_special_offset_handling)
43d12afe 10009 {
218c5831
DK
10010 const Output_relaxed_input_section* poris =
10011 output_section->find_relaxed_input_section(relinfo->object,
10012 relinfo->data_shndx);
10013 if (poris != NULL)
10014 {
10015 Arm_address section_address = poris->address();
10016 section_size_type section_size = poris->data_size();
10017
10018 gold_assert((section_address >= address)
10019 && ((section_address + section_size)
10020 <= (address + view_size)));
10021
10022 off_t offset = section_address - address;
10023 view += offset;
10024 address += offset;
10025 view_size = section_size;
10026 }
43d12afe
DK
10027 }
10028
4a657b0d 10029 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 10030 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
10031 relinfo,
10032 this,
10033 prelocs,
10034 reloc_count,
10035 output_section,
10036 needs_special_offset_handling,
10037 view,
10038 address,
364c7fa5
ILT
10039 view_size,
10040 reloc_symbol_changes);
4a657b0d
DK
10041}
10042
10043// Return the size of a relocation while scanning during a relocatable
10044// link.
10045
10046template<bool big_endian>
10047unsigned int
10048Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10049 unsigned int r_type,
10050 Relobj* object)
10051{
a6d1ef57 10052 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
10053 const Arm_reloc_property* arp =
10054 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10055 if (arp != NULL)
10056 return arp->size();
10057 else
4a657b0d 10058 {
5c57f1be
DK
10059 std::string reloc_name =
10060 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10061 gold_error(_("%s: unexpected %s in object file"),
10062 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
10063 return 0;
10064 }
10065}
10066
10067// Scan the relocs during a relocatable link.
10068
10069template<bool big_endian>
10070void
10071Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 10072 Symbol_table* symtab,
2ea97941 10073 Layout* layout,
6fa2a40b 10074 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
10075 unsigned int data_shndx,
10076 unsigned int sh_type,
10077 const unsigned char* prelocs,
10078 size_t reloc_count,
10079 Output_section* output_section,
10080 bool needs_special_offset_handling,
10081 size_t local_symbol_count,
10082 const unsigned char* plocal_symbols,
10083 Relocatable_relocs* rr)
10084{
10085 gold_assert(sh_type == elfcpp::SHT_REL);
10086
5c388529 10087 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
10088 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10089
10090 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10091 Scan_relocatable_relocs>(
4a657b0d 10092 symtab,
2ea97941 10093 layout,
4a657b0d
DK
10094 object,
10095 data_shndx,
10096 prelocs,
10097 reloc_count,
10098 output_section,
10099 needs_special_offset_handling,
10100 local_symbol_count,
10101 plocal_symbols,
10102 rr);
10103}
10104
7404fe1b 10105// Emit relocations for a section.
4a657b0d
DK
10106
10107template<bool big_endian>
10108void
7404fe1b 10109Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
10110 const Relocate_info<32, big_endian>* relinfo,
10111 unsigned int sh_type,
10112 const unsigned char* prelocs,
10113 size_t reloc_count,
10114 Output_section* output_section,
62fe925a 10115 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
10116 const Relocatable_relocs* rr,
10117 unsigned char* view,
ebabffbd 10118 Arm_address view_address,
4a657b0d
DK
10119 section_size_type view_size,
10120 unsigned char* reloc_view,
10121 section_size_type reloc_view_size)
10122{
10123 gold_assert(sh_type == elfcpp::SHT_REL);
10124
7404fe1b 10125 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
10126 relinfo,
10127 prelocs,
10128 reloc_count,
10129 output_section,
10130 offset_in_output_section,
10131 rr,
10132 view,
10133 view_address,
10134 view_size,
10135 reloc_view,
10136 reloc_view_size);
10137}
10138
5c388529
DK
10139// Perform target-specific processing in a relocatable link. This is
10140// only used if we use the relocation strategy RELOC_SPECIAL.
10141
10142template<bool big_endian>
10143void
10144Target_arm<big_endian>::relocate_special_relocatable(
10145 const Relocate_info<32, big_endian>* relinfo,
10146 unsigned int sh_type,
10147 const unsigned char* preloc_in,
10148 size_t relnum,
10149 Output_section* output_section,
62fe925a 10150 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
10151 unsigned char* view,
10152 elfcpp::Elf_types<32>::Elf_Addr view_address,
10153 section_size_type,
10154 unsigned char* preloc_out)
10155{
10156 // We can only handle REL type relocation sections.
10157 gold_assert(sh_type == elfcpp::SHT_REL);
10158
10159 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10160 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10161 Reltype_write;
10162 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10163
10164 const Arm_relobj<big_endian>* object =
10165 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10166 const unsigned int local_count = object->local_symbol_count();
10167
10168 Reltype reloc(preloc_in);
10169 Reltype_write reloc_write(preloc_out);
10170
10171 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10172 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10173 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10174
10175 const Arm_reloc_property* arp =
10176 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10177 gold_assert(arp != NULL);
10178
10179 // Get the new symbol index.
10180 // We only use RELOC_SPECIAL strategy in local relocations.
10181 gold_assert(r_sym < local_count);
10182
10183 // We are adjusting a section symbol. We need to find
10184 // the symbol table index of the section symbol for
10185 // the output section corresponding to input section
10186 // in which this symbol is defined.
10187 bool is_ordinary;
10188 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10189 gold_assert(is_ordinary);
10190 Output_section* os = object->output_section(shndx);
10191 gold_assert(os != NULL);
10192 gold_assert(os->needs_symtab_index());
10193 unsigned int new_symndx = os->symtab_index();
10194
10195 // Get the new offset--the location in the output section where
10196 // this relocation should be applied.
10197
10198 Arm_address offset = reloc.get_r_offset();
10199 Arm_address new_offset;
10200 if (offset_in_output_section != invalid_address)
10201 new_offset = offset + offset_in_output_section;
10202 else
10203 {
10204 section_offset_type sot_offset =
2e702c99 10205 convert_types<section_offset_type, Arm_address>(offset);
5c388529 10206 section_offset_type new_sot_offset =
2e702c99
RM
10207 output_section->output_offset(object, relinfo->data_shndx,
10208 sot_offset);
5c388529
DK
10209 gold_assert(new_sot_offset != -1);
10210 new_offset = new_sot_offset;
10211 }
10212
10213 // In an object file, r_offset is an offset within the section.
10214 // In an executable or dynamic object, generated by
10215 // --emit-relocs, r_offset is an absolute address.
10216 if (!parameters->options().relocatable())
10217 {
10218 new_offset += view_address;
10219 if (offset_in_output_section != invalid_address)
2e702c99 10220 new_offset -= offset_in_output_section;
5c388529
DK
10221 }
10222
10223 reloc_write.put_r_offset(new_offset);
10224 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10225
10226 // Handle the reloc addend.
10227 // The relocation uses a section symbol in the input file.
10228 // We are adjusting it to use a section symbol in the output
10229 // file. The input section symbol refers to some address in
10230 // the input section. We need the relocation in the output
10231 // file to refer to that same address. This adjustment to
10232 // the addend is the same calculation we use for a simple
10233 // absolute relocation for the input section symbol.
10234
10235 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10236
10237 // Handle THUMB bit.
10238 Symbol_value<32> symval;
10239 Arm_address thumb_bit =
10240 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10241 if (thumb_bit != 0
2e702c99 10242 && arp->uses_thumb_bit()
5c388529
DK
10243 && ((psymval->value(object, 0) & 1) != 0))
10244 {
10245 Arm_address stripped_value =
10246 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10247 symval.set_output_value(stripped_value);
10248 psymval = &symval;
2e702c99 10249 }
5c388529
DK
10250
10251 unsigned char* paddend = view + offset;
10252 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10253 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10254 switch (r_type)
10255 {
10256 case elfcpp::R_ARM_ABS8:
10257 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10258 psymval);
10259 break;
10260
10261 case elfcpp::R_ARM_ABS12:
10262 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10263 psymval);
10264 break;
10265
10266 case elfcpp::R_ARM_ABS16:
10267 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10268 psymval);
10269 break;
10270
10271 case elfcpp::R_ARM_THM_ABS5:
10272 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10273 object,
10274 psymval);
10275 break;
10276
10277 case elfcpp::R_ARM_MOVW_ABS_NC:
10278 case elfcpp::R_ARM_MOVW_PREL_NC:
10279 case elfcpp::R_ARM_MOVW_BREL_NC:
10280 case elfcpp::R_ARM_MOVW_BREL:
10281 reloc_status = Arm_relocate_functions<big_endian>::movw(
10282 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10283 break;
10284
10285 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10286 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10287 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10288 case elfcpp::R_ARM_THM_MOVW_BREL:
10289 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10290 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10291 break;
10292
10293 case elfcpp::R_ARM_THM_CALL:
10294 case elfcpp::R_ARM_THM_XPC22:
10295 case elfcpp::R_ARM_THM_JUMP24:
10296 reloc_status =
10297 Arm_relocate_functions<big_endian>::thumb_branch_common(
10298 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10299 false);
10300 break;
10301
10302 case elfcpp::R_ARM_PLT32:
10303 case elfcpp::R_ARM_CALL:
10304 case elfcpp::R_ARM_JUMP24:
10305 case elfcpp::R_ARM_XPC25:
10306 reloc_status =
2e702c99 10307 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
10308 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10309 false);
10310 break;
10311
10312 case elfcpp::R_ARM_THM_JUMP19:
10313 reloc_status =
10314 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10315 psymval, 0, thumb_bit);
10316 break;
10317
10318 case elfcpp::R_ARM_THM_JUMP6:
10319 reloc_status =
10320 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10321 0);
10322 break;
10323
10324 case elfcpp::R_ARM_THM_JUMP8:
10325 reloc_status =
10326 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10327 0);
10328 break;
10329
10330 case elfcpp::R_ARM_THM_JUMP11:
10331 reloc_status =
10332 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10333 0);
10334 break;
10335
10336 case elfcpp::R_ARM_PREL31:
10337 reloc_status =
10338 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10339 thumb_bit);
10340 break;
10341
10342 case elfcpp::R_ARM_THM_PC8:
10343 reloc_status =
10344 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10345 0);
10346 break;
10347
10348 case elfcpp::R_ARM_THM_PC12:
10349 reloc_status =
10350 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10351 0);
10352 break;
10353
10354 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10355 reloc_status =
10356 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10357 0, thumb_bit);
10358 break;
10359
10360 // These relocation truncate relocation results so we cannot handle them
10361 // in a relocatable link.
10362 case elfcpp::R_ARM_MOVT_ABS:
10363 case elfcpp::R_ARM_THM_MOVT_ABS:
10364 case elfcpp::R_ARM_MOVT_PREL:
10365 case elfcpp::R_ARM_MOVT_BREL:
10366 case elfcpp::R_ARM_THM_MOVT_PREL:
10367 case elfcpp::R_ARM_THM_MOVT_BREL:
10368 case elfcpp::R_ARM_ALU_PC_G0_NC:
10369 case elfcpp::R_ARM_ALU_PC_G0:
10370 case elfcpp::R_ARM_ALU_PC_G1_NC:
10371 case elfcpp::R_ARM_ALU_PC_G1:
10372 case elfcpp::R_ARM_ALU_PC_G2:
10373 case elfcpp::R_ARM_ALU_SB_G0_NC:
10374 case elfcpp::R_ARM_ALU_SB_G0:
10375 case elfcpp::R_ARM_ALU_SB_G1_NC:
10376 case elfcpp::R_ARM_ALU_SB_G1:
10377 case elfcpp::R_ARM_ALU_SB_G2:
10378 case elfcpp::R_ARM_LDR_PC_G0:
10379 case elfcpp::R_ARM_LDR_PC_G1:
10380 case elfcpp::R_ARM_LDR_PC_G2:
10381 case elfcpp::R_ARM_LDR_SB_G0:
10382 case elfcpp::R_ARM_LDR_SB_G1:
10383 case elfcpp::R_ARM_LDR_SB_G2:
10384 case elfcpp::R_ARM_LDRS_PC_G0:
10385 case elfcpp::R_ARM_LDRS_PC_G1:
10386 case elfcpp::R_ARM_LDRS_PC_G2:
10387 case elfcpp::R_ARM_LDRS_SB_G0:
10388 case elfcpp::R_ARM_LDRS_SB_G1:
10389 case elfcpp::R_ARM_LDRS_SB_G2:
10390 case elfcpp::R_ARM_LDC_PC_G0:
10391 case elfcpp::R_ARM_LDC_PC_G1:
10392 case elfcpp::R_ARM_LDC_PC_G2:
10393 case elfcpp::R_ARM_LDC_SB_G0:
10394 case elfcpp::R_ARM_LDC_SB_G1:
10395 case elfcpp::R_ARM_LDC_SB_G2:
10396 gold_error(_("cannot handle %s in a relocatable link"),
10397 arp->name().c_str());
10398 break;
10399
10400 default:
10401 gold_unreachable();
10402 }
10403
10404 // Report any errors.
10405 switch (reloc_status)
10406 {
10407 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10408 break;
10409 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10410 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10411 _("relocation overflow in %s"),
10412 arp->name().c_str());
10413 break;
10414 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10415 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10416 _("unexpected opcode while processing relocation %s"),
10417 arp->name().c_str());
10418 break;
10419 default:
10420 gold_unreachable();
10421 }
10422}
10423
94cdfcff
DK
10424// Return the value to use for a dynamic symbol which requires special
10425// treatment. This is how we support equality comparisons of function
10426// pointers across shared library boundaries, as described in the
10427// processor specific ABI supplement.
10428
4a657b0d
DK
10429template<bool big_endian>
10430uint64_t
94cdfcff 10431Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 10432{
94cdfcff 10433 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
fa89cc82 10434 return this->plt_address_for_global(gsym);
4a657b0d
DK
10435}
10436
10437// Map platform-specific relocs to real relocs
10438//
10439template<bool big_endian>
10440unsigned int
ca09d69a 10441Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
10442{
10443 switch (r_type)
10444 {
10445 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
10446 // This is either R_ARM_ABS32 or R_ARM_REL32;
10447 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
10448
10449 case elfcpp::R_ARM_TARGET2:
9b547ce6 10450 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 10451 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
10452
10453 default:
10454 return r_type;
10455 }
10456}
10457
d5b40221
DK
10458// Whether if two EABI versions V1 and V2 are compatible.
10459
10460template<bool big_endian>
10461bool
10462Target_arm<big_endian>::are_eabi_versions_compatible(
10463 elfcpp::Elf_Word v1,
10464 elfcpp::Elf_Word v2)
10465{
10466 // v4 and v5 are the same spec before and after it was released,
10467 // so allow mixing them.
106e8a6c
DK
10468 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10469 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
10470 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10471 return true;
10472
10473 return v1 == v2;
10474}
10475
10476// Combine FLAGS from an input object called NAME and the processor-specific
10477// flags in the ELF header of the output. Much of this is adapted from the
10478// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10479// in bfd/elf32-arm.c.
10480
10481template<bool big_endian>
10482void
10483Target_arm<big_endian>::merge_processor_specific_flags(
10484 const std::string& name,
10485 elfcpp::Elf_Word flags)
10486{
10487 if (this->are_processor_specific_flags_set())
10488 {
10489 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10490
10491 // Nothing to merge if flags equal to those in output.
10492 if (flags == out_flags)
10493 return;
10494
10495 // Complain about various flag mismatches.
10496 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10497 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10498 if (!this->are_eabi_versions_compatible(version1, version2)
10499 && parameters->options().warn_mismatch())
d5b40221
DK
10500 gold_error(_("Source object %s has EABI version %d but output has "
10501 "EABI version %d."),
10502 name.c_str(),
10503 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10504 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10505 }
10506 else
10507 {
10508 // If the input is the default architecture and had the default
10509 // flags then do not bother setting the flags for the output
10510 // architecture, instead allow future merges to do this. If no
10511 // future merges ever set these flags then they will retain their
10512 // uninitialised values, which surprise surprise, correspond
10513 // to the default values.
10514 if (flags == 0)
10515 return;
10516
10517 // This is the first time, just copy the flags.
10518 // We only copy the EABI version for now.
10519 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10520 }
10521}
10522
10523// Adjust ELF file header.
10524template<bool big_endian>
10525void
10526Target_arm<big_endian>::do_adjust_elf_header(
10527 unsigned char* view,
3bfcb652 10528 int len)
d5b40221
DK
10529{
10530 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10531
10532 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10533 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10534 unsigned char e_ident[elfcpp::EI_NIDENT];
10535 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10536
3bfcb652 10537 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10538 == elfcpp::EF_ARM_EABI_UNKNOWN)
10539 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10540 else
10541 e_ident[elfcpp::EI_OSABI] = 0;
10542 e_ident[elfcpp::EI_ABIVERSION] = 0;
10543
10544 // FIXME: Do EF_ARM_BE8 adjustment.
10545
3bfcb652
NC
10546 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10547 // as appropriate.
10548 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10549 {
10550 elfcpp::Elf_Half type = ehdr.get_e_type();
10551 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10552 {
10553 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
f12d1e8a 10554 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
3bfcb652
NC
10555 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10556 else
10557 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10558 this->set_processor_specific_flags(flags);
10559 }
10560 }
d5b40221
DK
10561 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10562 oehdr.put_e_ident(e_ident);
2bca0377 10563 oehdr.put_e_flags(this->processor_specific_flags());
d5b40221
DK
10564}
10565
10566// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10567// We need to use a target-specific sub-class of
10568// Sized_relobj_file<32, big_endian> to store ARM specific information.
10569// Hence we need to have our own ELF object creation.
d5b40221
DK
10570
10571template<bool big_endian>
10572Object*
10573Target_arm<big_endian>::do_make_elf_object(
10574 const std::string& name,
10575 Input_file* input_file,
2ea97941 10576 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10577{
10578 int et = ehdr.get_e_type();
f4a8b6d7
DK
10579 // ET_EXEC files are valid input for --just-symbols/-R,
10580 // and we treat them as relocatable objects.
10581 if (et == elfcpp::ET_REL
10582 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10583 {
10584 Arm_relobj<big_endian>* obj =
2e702c99 10585 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10586 obj->setup();
10587 return obj;
10588 }
10589 else if (et == elfcpp::ET_DYN)
10590 {
10591 Sized_dynobj<32, big_endian>* obj =
2e702c99 10592 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10593 obj->setup();
10594 return obj;
10595 }
10596 else
10597 {
10598 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10599 name.c_str(), et);
d5b40221
DK
10600 return NULL;
10601 }
10602}
10603
a0351a69
DK
10604// Read the architecture from the Tag_also_compatible_with attribute, if any.
10605// Returns -1 if no architecture could be read.
10606// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10607
10608template<bool big_endian>
10609int
10610Target_arm<big_endian>::get_secondary_compatible_arch(
10611 const Attributes_section_data* pasd)
10612{
ca09d69a 10613 const Object_attribute* known_attributes =
a0351a69
DK
10614 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10615
10616 // Note: the tag and its argument below are uleb128 values, though
10617 // currently-defined values fit in one byte for each.
10618 const std::string& sv =
10619 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10620 if (sv.size() == 2
10621 && sv.data()[0] == elfcpp::Tag_CPU_arch
10622 && (sv.data()[1] & 128) != 128)
10623 return sv.data()[1];
10624
10625 // This tag is "safely ignorable", so don't complain if it looks funny.
10626 return -1;
10627}
10628
10629// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10630// The tag is removed if ARCH is -1.
10631// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10632
10633template<bool big_endian>
10634void
10635Target_arm<big_endian>::set_secondary_compatible_arch(
10636 Attributes_section_data* pasd,
10637 int arch)
10638{
ca09d69a 10639 Object_attribute* known_attributes =
a0351a69
DK
10640 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10641
10642 if (arch == -1)
10643 {
10644 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10645 return;
10646 }
10647
10648 // Note: the tag and its argument below are uleb128 values, though
10649 // currently-defined values fit in one byte for each.
10650 char sv[3];
10651 sv[0] = elfcpp::Tag_CPU_arch;
10652 gold_assert(arch != 0);
10653 sv[1] = arch;
10654 sv[2] = '\0';
10655
10656 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10657}
10658
10659// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10660// into account.
10661// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10662
10663template<bool big_endian>
10664int
10665Target_arm<big_endian>::tag_cpu_arch_combine(
10666 const char* name,
10667 int oldtag,
10668 int* secondary_compat_out,
10669 int newtag,
10670 int secondary_compat)
10671{
10672#define T(X) elfcpp::TAG_CPU_ARCH_##X
10673 static const int v6t2[] =
10674 {
10675 T(V6T2), // PRE_V4.
10676 T(V6T2), // V4.
10677 T(V6T2), // V4T.
10678 T(V6T2), // V5T.
10679 T(V6T2), // V5TE.
10680 T(V6T2), // V5TEJ.
10681 T(V6T2), // V6.
10682 T(V7), // V6KZ.
10683 T(V6T2) // V6T2.
10684 };
10685 static const int v6k[] =
10686 {
10687 T(V6K), // PRE_V4.
10688 T(V6K), // V4.
10689 T(V6K), // V4T.
10690 T(V6K), // V5T.
10691 T(V6K), // V5TE.
10692 T(V6K), // V5TEJ.
10693 T(V6K), // V6.
10694 T(V6KZ), // V6KZ.
10695 T(V7), // V6T2.
10696 T(V6K) // V6K.
10697 };
10698 static const int v7[] =
10699 {
10700 T(V7), // PRE_V4.
10701 T(V7), // V4.
10702 T(V7), // V4T.
10703 T(V7), // V5T.
10704 T(V7), // V5TE.
10705 T(V7), // V5TEJ.
10706 T(V7), // V6.
10707 T(V7), // V6KZ.
10708 T(V7), // V6T2.
10709 T(V7), // V6K.
10710 T(V7) // V7.
10711 };
10712 static const int v6_m[] =
10713 {
10714 -1, // PRE_V4.
10715 -1, // V4.
10716 T(V6K), // V4T.
10717 T(V6K), // V5T.
10718 T(V6K), // V5TE.
10719 T(V6K), // V5TEJ.
10720 T(V6K), // V6.
10721 T(V6KZ), // V6KZ.
10722 T(V7), // V6T2.
10723 T(V6K), // V6K.
10724 T(V7), // V7.
10725 T(V6_M) // V6_M.
10726 };
10727 static const int v6s_m[] =
10728 {
10729 -1, // PRE_V4.
10730 -1, // V4.
10731 T(V6K), // V4T.
10732 T(V6K), // V5T.
10733 T(V6K), // V5TE.
10734 T(V6K), // V5TEJ.
10735 T(V6K), // V6.
10736 T(V6KZ), // V6KZ.
10737 T(V7), // V6T2.
10738 T(V6K), // V6K.
10739 T(V7), // V7.
10740 T(V6S_M), // V6_M.
10741 T(V6S_M) // V6S_M.
10742 };
10743 static const int v7e_m[] =
10744 {
10745 -1, // PRE_V4.
10746 -1, // V4.
10747 T(V7E_M), // V4T.
10748 T(V7E_M), // V5T.
10749 T(V7E_M), // V5TE.
10750 T(V7E_M), // V5TEJ.
10751 T(V7E_M), // V6.
10752 T(V7E_M), // V6KZ.
10753 T(V7E_M), // V6T2.
10754 T(V7E_M), // V6K.
10755 T(V7E_M), // V7.
10756 T(V7E_M), // V6_M.
10757 T(V7E_M), // V6S_M.
10758 T(V7E_M) // V7E_M.
10759 };
24491327
HS
10760 static const int v8[] =
10761 {
10762 T(V8), // PRE_V4.
10763 T(V8), // V4.
10764 T(V8), // V4T.
10765 T(V8), // V5T.
10766 T(V8), // V5TE.
10767 T(V8), // V5TEJ.
10768 T(V8), // V6.
10769 T(V8), // V6KZ.
10770 T(V8), // V6T2.
10771 T(V8), // V6K.
10772 T(V8), // V7.
10773 T(V8), // V6_M.
10774 T(V8), // V6S_M.
10775 T(V8), // V7E_M.
10776 T(V8) // V8.
10777 };
a0351a69
DK
10778 static const int v4t_plus_v6_m[] =
10779 {
10780 -1, // PRE_V4.
10781 -1, // V4.
10782 T(V4T), // V4T.
10783 T(V5T), // V5T.
10784 T(V5TE), // V5TE.
10785 T(V5TEJ), // V5TEJ.
10786 T(V6), // V6.
10787 T(V6KZ), // V6KZ.
10788 T(V6T2), // V6T2.
10789 T(V6K), // V6K.
10790 T(V7), // V7.
10791 T(V6_M), // V6_M.
10792 T(V6S_M), // V6S_M.
10793 T(V7E_M), // V7E_M.
24491327 10794 T(V8), // V8.
a0351a69
DK
10795 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10796 };
ca09d69a 10797 static const int* comb[] =
a0351a69
DK
10798 {
10799 v6t2,
10800 v6k,
10801 v7,
10802 v6_m,
10803 v6s_m,
10804 v7e_m,
24491327 10805 v8,
a0351a69
DK
10806 // Pseudo-architecture.
10807 v4t_plus_v6_m
10808 };
10809
10810 // Check we've not got a higher architecture than we know about.
10811
f62a3ca7 10812 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10813 {
10814 gold_error(_("%s: unknown CPU architecture"), name);
10815 return -1;
10816 }
10817
10818 // Override old tag if we have a Tag_also_compatible_with on the output.
10819
10820 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10821 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10822 oldtag = T(V4T_PLUS_V6_M);
10823
10824 // And override the new tag if we have a Tag_also_compatible_with on the
10825 // input.
10826
10827 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10828 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10829 newtag = T(V4T_PLUS_V6_M);
10830
10831 // Architectures before V6KZ add features monotonically.
10832 int tagh = std::max(oldtag, newtag);
10833 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10834 return tagh;
10835
10836 int tagl = std::min(oldtag, newtag);
10837 int result = comb[tagh - T(V6T2)][tagl];
10838
10839 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10840 // as the canonical version.
10841 if (result == T(V4T_PLUS_V6_M))
10842 {
10843 result = T(V4T);
10844 *secondary_compat_out = T(V6_M);
10845 }
10846 else
10847 *secondary_compat_out = -1;
10848
10849 if (result == -1)
10850 {
10851 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10852 name, oldtag, newtag);
10853 return -1;
10854 }
10855
10856 return result;
10857#undef T
10858}
10859
10860// Helper to print AEABI enum tag value.
10861
10862template<bool big_endian>
10863std::string
10864Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10865{
ca09d69a 10866 static const char* aeabi_enum_names[] =
a0351a69
DK
10867 { "", "variable-size", "32-bit", "" };
10868 const size_t aeabi_enum_names_size =
10869 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10870
10871 if (value < aeabi_enum_names_size)
10872 return std::string(aeabi_enum_names[value]);
10873 else
10874 {
10875 char buffer[100];
10876 sprintf(buffer, "<unknown value %u>", value);
10877 return std::string(buffer);
10878 }
10879}
10880
10881// Return the string value to store in TAG_CPU_name.
10882
10883template<bool big_endian>
10884std::string
10885Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10886{
ca09d69a 10887 static const char* name_table[] = {
a0351a69
DK
10888 // These aren't real CPU names, but we can't guess
10889 // that from the architecture version alone.
10890 "Pre v4",
10891 "ARM v4",
10892 "ARM v4T",
10893 "ARM v5T",
10894 "ARM v5TE",
10895 "ARM v5TEJ",
10896 "ARM v6",
10897 "ARM v6KZ",
10898 "ARM v6T2",
10899 "ARM v6K",
10900 "ARM v7",
10901 "ARM v6-M",
10902 "ARM v6S-M",
24491327
HS
10903 "ARM v7E-M",
10904 "ARM v8"
a0351a69
DK
10905 };
10906 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10907
10908 if (value < name_table_size)
10909 return std::string(name_table[value]);
10910 else
10911 {
10912 char buffer[100];
10913 sprintf(buffer, "<unknown CPU value %u>", value);
10914 return std::string(buffer);
2e702c99 10915 }
a0351a69
DK
10916}
10917
679af368
ILT
10918// Query attributes object to see if integer divide instructions may be
10919// present in an object.
10920
10921template<bool big_endian>
10922bool
10923Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10924 const Object_attribute* div_attr)
10925{
10926 switch (div_attr->int_value())
10927 {
10928 case 0:
10929 // Integer divide allowed if instruction contained in
10930 // archetecture.
10931 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10932 return true;
10933 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10934 return true;
10935 else
10936 return false;
10937
10938 case 1:
10939 // Integer divide explicitly prohibited.
10940 return false;
10941
10942 default:
10943 // Unrecognised case - treat as allowing divide everywhere.
10944 case 2:
10945 // Integer divide allowed in ARM state.
10946 return true;
10947 }
10948}
10949
10950// Query attributes object to see if integer divide instructions are
10951// forbidden to be in the object. This is not the inverse of
10952// attributes_accept_div.
10953
10954template<bool big_endian>
10955bool
10956Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10957{
10958 return div_attr->int_value() == 1;
10959}
10960
a0351a69
DK
10961// Merge object attributes from input file called NAME with those of the
10962// output. The input object attributes are in the object pointed by PASD.
10963
10964template<bool big_endian>
10965void
10966Target_arm<big_endian>::merge_object_attributes(
10967 const char* name,
10968 const Attributes_section_data* pasd)
10969{
10970 // Return if there is no attributes section data.
10971 if (pasd == NULL)
10972 return;
10973
10974 // If output has no object attributes, just copy.
da59ad79 10975 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10976 if (this->attributes_section_data_ == NULL)
10977 {
10978 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10979 Object_attribute* out_attr =
10980 this->attributes_section_data_->known_attributes(vendor);
10981
10982 // We do not output objects with Tag_MPextension_use_legacy - we move
10983 // the attribute's value to Tag_MPextension_use. */
10984 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10985 {
10986 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10987 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10988 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10989 {
10990 gold_error(_("%s has both the current and legacy "
10991 "Tag_MPextension_use attributes"),
10992 name);
10993 }
10994
10995 out_attr[elfcpp::Tag_MPextension_use] =
10996 out_attr[elfcpp::Tag_MPextension_use_legacy];
10997 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10998 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10999 }
11000
a0351a69
DK
11001 return;
11002 }
11003
a0351a69
DK
11004 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11005 Object_attribute* out_attr =
11006 this->attributes_section_data_->known_attributes(vendor);
11007
11008 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11009 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11010 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11011 {
11012 // Ignore mismatches if the object doesn't use floating point. */
5c294fee 11013 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11014 == elfcpp::AEABI_FP_number_model_none
5c294fee 11015 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11016 != elfcpp::AEABI_FP_number_model_none
5c294fee 11017 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11018 == elfcpp::AEABI_VFP_args_compatible))
a0351a69
DK
11019 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11020 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5c294fee 11021 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11022 != elfcpp::AEABI_FP_number_model_none
5c294fee 11023 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11024 != elfcpp::AEABI_VFP_args_compatible
7296d933 11025 && parameters->options().warn_mismatch())
2e702c99 11026 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
11027 name);
11028 }
11029
11030 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11031 {
11032 // Merge this attribute with existing attributes.
11033 switch (i)
11034 {
11035 case elfcpp::Tag_CPU_raw_name:
11036 case elfcpp::Tag_CPU_name:
11037 // These are merged after Tag_CPU_arch.
11038 break;
11039
11040 case elfcpp::Tag_ABI_optimization_goals:
11041 case elfcpp::Tag_ABI_FP_optimization_goals:
11042 // Use the first value seen.
11043 break;
11044
11045 case elfcpp::Tag_CPU_arch:
11046 {
11047 unsigned int saved_out_attr = out_attr->int_value();
11048 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11049 int secondary_compat =
11050 this->get_secondary_compatible_arch(pasd);
11051 int secondary_compat_out =
11052 this->get_secondary_compatible_arch(
11053 this->attributes_section_data_);
11054 out_attr[i].set_int_value(
11055 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11056 &secondary_compat_out,
11057 in_attr[i].int_value(),
11058 secondary_compat));
11059 this->set_secondary_compatible_arch(this->attributes_section_data_,
11060 secondary_compat_out);
11061
11062 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11063 if (out_attr[i].int_value() == saved_out_attr)
11064 ; // Leave the names alone.
11065 else if (out_attr[i].int_value() == in_attr[i].int_value())
11066 {
11067 // The output architecture has been changed to match the
11068 // input architecture. Use the input names.
11069 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11070 in_attr[elfcpp::Tag_CPU_name].string_value());
11071 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11072 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11073 }
11074 else
11075 {
11076 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11077 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11078 }
11079
11080 // If we still don't have a value for Tag_CPU_name,
11081 // make one up now. Tag_CPU_raw_name remains blank.
11082 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11083 {
11084 const std::string cpu_name =
11085 this->tag_cpu_name_value(out_attr[i].int_value());
11086 // FIXME: If we see an unknown CPU, this will be set
11087 // to "<unknown CPU n>", where n is the attribute value.
11088 // This is different from BFD, which leaves the name alone.
11089 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11090 }
11091 }
11092 break;
11093
11094 case elfcpp::Tag_ARM_ISA_use:
11095 case elfcpp::Tag_THUMB_ISA_use:
11096 case elfcpp::Tag_WMMX_arch:
11097 case elfcpp::Tag_Advanced_SIMD_arch:
11098 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11099 case elfcpp::Tag_ABI_FP_rounding:
11100 case elfcpp::Tag_ABI_FP_exceptions:
11101 case elfcpp::Tag_ABI_FP_user_exceptions:
11102 case elfcpp::Tag_ABI_FP_number_model:
11103 case elfcpp::Tag_VFP_HP_extension:
11104 case elfcpp::Tag_CPU_unaligned_access:
11105 case elfcpp::Tag_T2EE_use:
11106 case elfcpp::Tag_Virtualization_use:
11107 case elfcpp::Tag_MPextension_use:
11108 // Use the largest value specified.
11109 if (in_attr[i].int_value() > out_attr[i].int_value())
11110 out_attr[i].set_int_value(in_attr[i].int_value());
11111 break;
11112
11113 case elfcpp::Tag_ABI_align8_preserved:
11114 case elfcpp::Tag_ABI_PCS_RO_data:
11115 // Use the smallest value specified.
11116 if (in_attr[i].int_value() < out_attr[i].int_value())
11117 out_attr[i].set_int_value(in_attr[i].int_value());
11118 break;
11119
11120 case elfcpp::Tag_ABI_align8_needed:
11121 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11122 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11123 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11124 == 0)))
11125 {
9b547ce6 11126 // This error message should be enabled once all non-conforming
a0351a69
DK
11127 // binaries in the toolchain have had the attributes set
11128 // properly.
11129 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11130 // name);
11131 }
11132 // Fall through.
11133 case elfcpp::Tag_ABI_FP_denormal:
11134 case elfcpp::Tag_ABI_PCS_GOT_use:
11135 {
11136 // These tags have 0 = don't care, 1 = strong requirement,
11137 // 2 = weak requirement.
11138 static const int order_021[3] = {0, 2, 1};
11139
11140 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11141 // value if greater than 2 (for future-proofing).
11142 if ((in_attr[i].int_value() > 2
11143 && in_attr[i].int_value() > out_attr[i].int_value())
11144 || (in_attr[i].int_value() <= 2
11145 && out_attr[i].int_value() <= 2
11146 && (order_021[in_attr[i].int_value()]
11147 > order_021[out_attr[i].int_value()])))
11148 out_attr[i].set_int_value(in_attr[i].int_value());
11149 }
11150 break;
11151
11152 case elfcpp::Tag_CPU_arch_profile:
11153 if (out_attr[i].int_value() != in_attr[i].int_value())
11154 {
11155 // 0 will merge with anything.
11156 // 'A' and 'S' merge to 'A'.
11157 // 'R' and 'S' merge to 'R'.
11158 // 'M' and 'A|R|S' is an error.
11159 if (out_attr[i].int_value() == 0
11160 || (out_attr[i].int_value() == 'S'
11161 && (in_attr[i].int_value() == 'A'
11162 || in_attr[i].int_value() == 'R')))
11163 out_attr[i].set_int_value(in_attr[i].int_value());
11164 else if (in_attr[i].int_value() == 0
11165 || (in_attr[i].int_value() == 'S'
11166 && (out_attr[i].int_value() == 'A'
11167 || out_attr[i].int_value() == 'R')))
11168 ; // Do nothing.
7296d933 11169 else if (parameters->options().warn_mismatch())
a0351a69
DK
11170 {
11171 gold_error
11172 (_("conflicting architecture profiles %c/%c"),
11173 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11174 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11175 }
11176 }
11177 break;
11178 case elfcpp::Tag_VFP_arch:
11179 {
11180 static const struct
11181 {
11182 int ver;
11183 int regs;
11184 } vfp_versions[7] =
11185 {
11186 {0, 0},
11187 {1, 16},
11188 {2, 16},
11189 {3, 32},
11190 {3, 16},
11191 {4, 32},
11192 {4, 16}
11193 };
11194
11195 // Values greater than 6 aren't defined, so just pick the
11196 // biggest.
11197 if (in_attr[i].int_value() > 6
11198 && in_attr[i].int_value() > out_attr[i].int_value())
11199 {
11200 *out_attr = *in_attr;
11201 break;
11202 }
11203 // The output uses the superset of input features
11204 // (ISA version) and registers.
11205 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11206 vfp_versions[out_attr[i].int_value()].ver);
11207 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11208 vfp_versions[out_attr[i].int_value()].regs);
11209 // This assumes all possible supersets are also a valid
11210 // options.
11211 int newval;
11212 for (newval = 6; newval > 0; newval--)
11213 {
11214 if (regs == vfp_versions[newval].regs
11215 && ver == vfp_versions[newval].ver)
11216 break;
11217 }
11218 out_attr[i].set_int_value(newval);
11219 }
11220 break;
11221 case elfcpp::Tag_PCS_config:
11222 if (out_attr[i].int_value() == 0)
11223 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
11224 else if (in_attr[i].int_value() != 0
11225 && out_attr[i].int_value() != 0
11226 && parameters->options().warn_mismatch())
a0351a69
DK
11227 {
11228 // It's sometimes ok to mix different configs, so this is only
11229 // a warning.
11230 gold_warning(_("%s: conflicting platform configuration"), name);
11231 }
11232 break;
11233 case elfcpp::Tag_ABI_PCS_R9_use:
11234 if (in_attr[i].int_value() != out_attr[i].int_value()
11235 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
11236 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11237 && parameters->options().warn_mismatch())
a0351a69
DK
11238 {
11239 gold_error(_("%s: conflicting use of R9"), name);
11240 }
11241 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11242 out_attr[i].set_int_value(in_attr[i].int_value());
11243 break;
11244 case elfcpp::Tag_ABI_PCS_RW_data:
11245 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11246 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11247 != elfcpp::AEABI_R9_SB)
11248 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
11249 != elfcpp::AEABI_R9_unused)
11250 && parameters->options().warn_mismatch())
a0351a69
DK
11251 {
11252 gold_error(_("%s: SB relative addressing conflicts with use "
11253 "of R9"),
7296d933 11254 name);
a0351a69
DK
11255 }
11256 // Use the smallest value specified.
11257 if (in_attr[i].int_value() < out_attr[i].int_value())
11258 out_attr[i].set_int_value(in_attr[i].int_value());
11259 break;
11260 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
11261 if (out_attr[i].int_value()
11262 && in_attr[i].int_value()
7296d933 11263 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11264 && parameters->options().warn_mismatch()
11265 && parameters->options().wchar_size_warning())
a0351a69
DK
11266 {
11267 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11268 "use %u-byte wchar_t; use of wchar_t values "
11269 "across objects may fail"),
11270 name, in_attr[i].int_value(),
11271 out_attr[i].int_value());
11272 }
11273 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11274 out_attr[i].set_int_value(in_attr[i].int_value());
11275 break;
11276 case elfcpp::Tag_ABI_enum_size:
11277 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11278 {
11279 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11280 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11281 {
11282 // The existing object is compatible with anything.
11283 // Use whatever requirements the new object has.
11284 out_attr[i].set_int_value(in_attr[i].int_value());
11285 }
a0351a69 11286 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 11287 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11288 && parameters->options().warn_mismatch()
11289 && parameters->options().enum_size_warning())
a0351a69
DK
11290 {
11291 unsigned int in_value = in_attr[i].int_value();
11292 unsigned int out_value = out_attr[i].int_value();
11293 gold_warning(_("%s uses %s enums yet the output is to use "
11294 "%s enums; use of enum values across objects "
11295 "may fail"),
11296 name,
11297 this->aeabi_enum_name(in_value).c_str(),
11298 this->aeabi_enum_name(out_value).c_str());
11299 }
11300 }
11301 break;
11302 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 11303 // Already done.
a0351a69
DK
11304 break;
11305 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
11306 if (in_attr[i].int_value() != out_attr[i].int_value()
11307 && parameters->options().warn_mismatch())
a0351a69
DK
11308 {
11309 gold_error(_("%s uses iWMMXt register arguments, output does "
11310 "not"),
11311 name);
11312 }
11313 break;
11314 case Object_attribute::Tag_compatibility:
11315 // Merged in target-independent code.
11316 break;
11317 case elfcpp::Tag_ABI_HardFP_use:
11318 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11319 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11320 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11321 out_attr[i].set_int_value(3);
11322 else if (in_attr[i].int_value() > out_attr[i].int_value())
11323 out_attr[i].set_int_value(in_attr[i].int_value());
11324 break;
11325 case elfcpp::Tag_ABI_FP_16bit_format:
11326 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11327 {
7296d933
DK
11328 if (in_attr[i].int_value() != out_attr[i].int_value()
11329 && parameters->options().warn_mismatch())
a0351a69
DK
11330 gold_error(_("fp16 format mismatch between %s and output"),
11331 name);
11332 }
11333 if (in_attr[i].int_value() != 0)
11334 out_attr[i].set_int_value(in_attr[i].int_value());
11335 break;
11336
da59ad79 11337 case elfcpp::Tag_DIV_use:
679af368
ILT
11338 {
11339 // A value of zero on input means that the divide
11340 // instruction may be used if available in the base
11341 // architecture as specified via Tag_CPU_arch and
11342 // Tag_CPU_arch_profile. A value of 1 means that the user
11343 // did not want divide instructions. A value of 2
11344 // explicitly means that divide instructions were allowed
11345 // in ARM and Thumb state.
11346 int arch = this->
11347 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11348 int_value();
11349 int profile = this->
11350 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11351 int_value();
11352 if (in_attr[i].int_value() == out_attr[i].int_value())
11353 {
11354 // Do nothing.
11355 }
11356 else if (attributes_forbid_div(&in_attr[i])
43819297 11357 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
11358 out_attr[i].set_int_value(1);
11359 else if (attributes_forbid_div(&out_attr[i])
11360 && attributes_accept_div(arch, profile, &in_attr[i]))
11361 out_attr[i].set_int_value(in_attr[i].int_value());
11362 else if (in_attr[i].int_value() == 2)
11363 out_attr[i].set_int_value(in_attr[i].int_value());
11364 }
da59ad79
DK
11365 break;
11366
11367 case elfcpp::Tag_MPextension_use_legacy:
11368 // We don't output objects with Tag_MPextension_use_legacy - we
11369 // move the value to Tag_MPextension_use.
11370 if (in_attr[i].int_value() != 0
11371 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11372 {
11373 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11374 != in_attr[i].int_value())
11375 {
11376 gold_error(_("%s has has both the current and legacy "
2e702c99 11377 "Tag_MPextension_use attributes"),
da59ad79
DK
11378 name);
11379 }
11380 }
11381
11382 if (in_attr[i].int_value()
11383 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11384 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11385
11386 break;
11387
a0351a69
DK
11388 case elfcpp::Tag_nodefaults:
11389 // This tag is set if it exists, but the value is unused (and is
11390 // typically zero). We don't actually need to do anything here -
11391 // the merge happens automatically when the type flags are merged
11392 // below.
11393 break;
11394 case elfcpp::Tag_also_compatible_with:
11395 // Already done in Tag_CPU_arch.
11396 break;
11397 case elfcpp::Tag_conformance:
11398 // Keep the attribute if it matches. Throw it away otherwise.
11399 // No attribute means no claim to conform.
11400 if (in_attr[i].string_value() != out_attr[i].string_value())
11401 out_attr[i].set_string_value("");
11402 break;
11403
11404 default:
11405 {
11406 const char* err_object = NULL;
11407
11408 // The "known_obj_attributes" table does contain some undefined
11409 // attributes. Ensure that there are unused.
11410 if (out_attr[i].int_value() != 0
11411 || out_attr[i].string_value() != "")
11412 err_object = "output";
11413 else if (in_attr[i].int_value() != 0
11414 || in_attr[i].string_value() != "")
11415 err_object = name;
11416
7296d933
DK
11417 if (err_object != NULL
11418 && parameters->options().warn_mismatch())
a0351a69
DK
11419 {
11420 // Attribute numbers >=64 (mod 128) can be safely ignored.
11421 if ((i & 127) < 64)
11422 gold_error(_("%s: unknown mandatory EABI object attribute "
11423 "%d"),
11424 err_object, i);
11425 else
11426 gold_warning(_("%s: unknown EABI object attribute %d"),
11427 err_object, i);
11428 }
11429
11430 // Only pass on attributes that match in both inputs.
11431 if (!in_attr[i].matches(out_attr[i]))
11432 {
11433 out_attr[i].set_int_value(0);
11434 out_attr[i].set_string_value("");
11435 }
11436 }
11437 }
11438
11439 // If out_attr was copied from in_attr then it won't have a type yet.
11440 if (in_attr[i].type() && !out_attr[i].type())
11441 out_attr[i].set_type(in_attr[i].type());
11442 }
11443
11444 // Merge Tag_compatibility attributes and any common GNU ones.
11445 this->attributes_section_data_->merge(name, pasd);
11446
11447 // Check for any attributes not known on ARM.
11448 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11449 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11450 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11451 Other_attributes* out_other_attributes =
11452 this->attributes_section_data_->other_attributes(vendor);
11453 Other_attributes::iterator out_iter = out_other_attributes->begin();
11454
11455 while (in_iter != in_other_attributes->end()
11456 || out_iter != out_other_attributes->end())
11457 {
11458 const char* err_object = NULL;
11459 int err_tag = 0;
11460
11461 // The tags for each list are in numerical order.
11462 // If the tags are equal, then merge.
11463 if (out_iter != out_other_attributes->end()
11464 && (in_iter == in_other_attributes->end()
11465 || in_iter->first > out_iter->first))
11466 {
11467 // This attribute only exists in output. We can't merge, and we
11468 // don't know what the tag means, so delete it.
11469 err_object = "output";
11470 err_tag = out_iter->first;
11471 int saved_tag = out_iter->first;
11472 delete out_iter->second;
2e702c99 11473 out_other_attributes->erase(out_iter);
a0351a69
DK
11474 out_iter = out_other_attributes->upper_bound(saved_tag);
11475 }
11476 else if (in_iter != in_other_attributes->end()
11477 && (out_iter != out_other_attributes->end()
11478 || in_iter->first < out_iter->first))
11479 {
11480 // This attribute only exists in input. We can't merge, and we
11481 // don't know what the tag means, so ignore it.
11482 err_object = name;
11483 err_tag = in_iter->first;
11484 ++in_iter;
11485 }
11486 else // The tags are equal.
11487 {
11488 // As present, all attributes in the list are unknown, and
11489 // therefore can't be merged meaningfully.
11490 err_object = "output";
11491 err_tag = out_iter->first;
11492
11493 // Only pass on attributes that match in both inputs.
11494 if (!in_iter->second->matches(*(out_iter->second)))
11495 {
11496 // No match. Delete the attribute.
11497 int saved_tag = out_iter->first;
11498 delete out_iter->second;
11499 out_other_attributes->erase(out_iter);
11500 out_iter = out_other_attributes->upper_bound(saved_tag);
11501 }
11502 else
11503 {
11504 // Matched. Keep the attribute and move to the next.
11505 ++out_iter;
11506 ++in_iter;
11507 }
11508 }
11509
7296d933 11510 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
11511 {
11512 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11513 if ((err_tag & 127) < 64)
11514 {
11515 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11516 err_object, err_tag);
11517 }
11518 else
11519 {
11520 gold_warning(_("%s: unknown EABI object attribute %d"),
11521 err_object, err_tag);
11522 }
11523 }
11524 }
11525}
11526
55da9579
DK
11527// Stub-generation methods for Target_arm.
11528
11529// Make a new Arm_input_section object.
11530
11531template<bool big_endian>
11532Arm_input_section<big_endian>*
11533Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11534 Relobj* relobj,
11535 unsigned int shndx)
55da9579 11536{
5ac169d4 11537 Section_id sid(relobj, shndx);
55da9579
DK
11538
11539 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11540 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11541 arm_input_section->init();
11542
11543 // Register new Arm_input_section in map for look-up.
11544 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11545 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11546
11547 // Make sure that it we have not created another Arm_input_section
11548 // for this input section already.
11549 gold_assert(ins.second);
11550
2e702c99 11551 return arm_input_section;
55da9579
DK
11552}
11553
11554// Find the Arm_input_section object corresponding to the SHNDX-th input
11555// section of RELOBJ.
11556
11557template<bool big_endian>
11558Arm_input_section<big_endian>*
11559Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11560 Relobj* relobj,
11561 unsigned int shndx) const
55da9579 11562{
5ac169d4 11563 Section_id sid(relobj, shndx);
55da9579 11564 typename Arm_input_section_map::const_iterator p =
5ac169d4 11565 this->arm_input_section_map_.find(sid);
55da9579
DK
11566 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11567}
11568
11569// Make a new stub table.
11570
11571template<bool big_endian>
11572Stub_table<big_endian>*
11573Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11574{
2ea97941 11575 Stub_table<big_endian>* stub_table =
55da9579 11576 new Stub_table<big_endian>(owner);
2ea97941 11577 this->stub_tables_.push_back(stub_table);
55da9579 11578
2ea97941
ILT
11579 stub_table->set_address(owner->address() + owner->data_size());
11580 stub_table->set_file_offset(owner->offset() + owner->data_size());
11581 stub_table->finalize_data_size();
55da9579 11582
2ea97941 11583 return stub_table;
55da9579
DK
11584}
11585
eb44217c
DK
11586// Scan a relocation for stub generation.
11587
11588template<bool big_endian>
11589void
11590Target_arm<big_endian>::scan_reloc_for_stub(
11591 const Relocate_info<32, big_endian>* relinfo,
11592 unsigned int r_type,
11593 const Sized_symbol<32>* gsym,
11594 unsigned int r_sym,
11595 const Symbol_value<32>* psymval,
11596 elfcpp::Elf_types<32>::Elf_Swxword addend,
11597 Arm_address address)
11598{
eb44217c
DK
11599 const Arm_relobj<big_endian>* arm_relobj =
11600 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11601
11602 bool target_is_thumb;
11603 Symbol_value<32> symval;
11604 if (gsym != NULL)
11605 {
11606 // This is a global symbol. Determine if we use PLT and if the
11607 // final target is THUMB.
95a2c8d6 11608 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11609 {
11610 // This uses a PLT, change the symbol value.
fa89cc82 11611 symval.set_output_value(this->plt_address_for_global(gsym));
eb44217c
DK
11612 psymval = &symval;
11613 target_is_thumb = false;
11614 }
11615 else if (gsym->is_undefined())
11616 // There is no need to generate a stub symbol is undefined.
11617 return;
11618 else
11619 {
11620 target_is_thumb =
11621 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11622 || (gsym->type() == elfcpp::STT_FUNC
11623 && !gsym->is_undefined()
11624 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11625 }
11626 }
11627 else
11628 {
11629 // This is a local symbol. Determine if the final target is THUMB.
11630 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11631 }
11632
11633 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11634 const Arm_reloc_property* reloc_property =
11635 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11636 gold_assert(reloc_property != NULL);
eb44217c 11637 if (target_is_thumb
5c57f1be 11638 && reloc_property->uses_thumb_bit()
eb44217c
DK
11639 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11640 {
11641 Arm_address stripped_value =
11642 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11643 symval.set_output_value(stripped_value);
11644 psymval = &symval;
2e702c99 11645 }
eb44217c
DK
11646
11647 // Get the symbol value.
11648 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11649
11650 // Owing to pipelining, the PC relative branches below actually skip
11651 // two instructions when the branch offset is 0.
11652 Arm_address destination;
11653 switch (r_type)
11654 {
11655 case elfcpp::R_ARM_CALL:
11656 case elfcpp::R_ARM_JUMP24:
11657 case elfcpp::R_ARM_PLT32:
11658 // ARM branches.
11659 destination = value + addend + 8;
11660 break;
11661 case elfcpp::R_ARM_THM_CALL:
11662 case elfcpp::R_ARM_THM_XPC22:
11663 case elfcpp::R_ARM_THM_JUMP24:
11664 case elfcpp::R_ARM_THM_JUMP19:
11665 // THUMB branches.
11666 destination = value + addend + 4;
11667 break;
11668 default:
11669 gold_unreachable();
11670 }
11671
a120bc7f 11672 Reloc_stub* stub = NULL;
eb44217c
DK
11673 Stub_type stub_type =
11674 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11675 target_is_thumb);
a120bc7f
DK
11676 if (stub_type != arm_stub_none)
11677 {
11678 // Try looking up an existing stub from a stub table.
2e702c99 11679 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11680 arm_relobj->stub_table(relinfo->data_shndx);
11681 gold_assert(stub_table != NULL);
2e702c99 11682
a120bc7f
DK
11683 // Locate stub by destination.
11684 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11685
a120bc7f
DK
11686 // Create a stub if there is not one already
11687 stub = stub_table->find_reloc_stub(stub_key);
11688 if (stub == NULL)
11689 {
11690 // create a new stub and add it to stub table.
11691 stub = this->stub_factory().make_reloc_stub(stub_type);
11692 stub_table->add_reloc_stub(stub, stub_key);
11693 }
11694
11695 // Record the destination address.
11696 stub->set_destination_address(destination
11697 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11698 }
11699
a120bc7f
DK
11700 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11701 if (this->fix_cortex_a8_
11702 && (r_type == elfcpp::R_ARM_THM_JUMP24
11703 || r_type == elfcpp::R_ARM_THM_JUMP19
11704 || r_type == elfcpp::R_ARM_THM_CALL
11705 || r_type == elfcpp::R_ARM_THM_XPC22)
11706 && (address & 0xfffU) == 0xffeU)
11707 {
11708 // Found a candidate. Note we haven't checked the destination is
11709 // within 4K here: if we do so (and don't create a record) we can't
11710 // tell that a branch should have been relocated when scanning later.
11711 this->cortex_a8_relocs_info_[address] =
11712 new Cortex_a8_reloc(stub, r_type,
11713 destination | (target_is_thumb ? 1 : 0));
11714 }
eb44217c
DK
11715}
11716
11717// This function scans a relocation sections for stub generation.
11718// The template parameter Relocate must be a class type which provides
11719// a single function, relocate(), which implements the machine
11720// specific part of a relocation.
11721
11722// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11723// SHT_REL or SHT_RELA.
11724
11725// PRELOCS points to the relocation data. RELOC_COUNT is the number
11726// of relocs. OUTPUT_SECTION is the output section.
11727// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11728// mapped to output offsets.
11729
11730// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11731// VIEW_SIZE is the size. These refer to the input section, unless
11732// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11733// the output section.
11734
11735template<bool big_endian>
11736template<int sh_type>
11737void inline
11738Target_arm<big_endian>::scan_reloc_section_for_stubs(
11739 const Relocate_info<32, big_endian>* relinfo,
11740 const unsigned char* prelocs,
11741 size_t reloc_count,
11742 Output_section* output_section,
11743 bool needs_special_offset_handling,
11744 const unsigned char* view,
11745 elfcpp::Elf_types<32>::Elf_Addr view_address,
11746 section_size_type)
11747{
11748 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11749 const int reloc_size =
11750 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11751
11752 Arm_relobj<big_endian>* arm_object =
11753 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11754 unsigned int local_count = arm_object->local_symbol_count();
11755
168a4726 11756 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11757 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11758
11759 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11760 {
11761 Reltype reloc(prelocs);
11762
11763 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11764 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11765 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11766
11767 r_type = this->get_real_reloc_type(r_type);
11768
11769 // Only a few relocation types need stubs.
11770 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11771 && (r_type != elfcpp::R_ARM_JUMP24)
11772 && (r_type != elfcpp::R_ARM_PLT32)
11773 && (r_type != elfcpp::R_ARM_THM_CALL)
11774 && (r_type != elfcpp::R_ARM_THM_XPC22)
11775 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11776 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11777 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11778 continue;
11779
2ea97941 11780 section_offset_type offset =
eb44217c
DK
11781 convert_to_section_size_type(reloc.get_r_offset());
11782
11783 if (needs_special_offset_handling)
11784 {
2ea97941
ILT
11785 offset = output_section->output_offset(relinfo->object,
11786 relinfo->data_shndx,
11787 offset);
11788 if (offset == -1)
eb44217c
DK
11789 continue;
11790 }
11791
2fd9ae7a 11792 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11793 if (r_type == elfcpp::R_ARM_V4BX)
11794 {
2fd9ae7a
DK
11795 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11796 {
11797 // Get the BX instruction.
11798 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11799 const Valtype* wv =
11800 reinterpret_cast<const Valtype*>(view + offset);
11801 elfcpp::Elf_types<32>::Elf_Swxword insn =
11802 elfcpp::Swap<32, big_endian>::readval(wv);
11803 const uint32_t reg = (insn & 0xf);
11804
11805 if (reg < 0xf)
11806 {
11807 // Try looking up an existing stub from a stub table.
11808 Stub_table<big_endian>* stub_table =
11809 arm_object->stub_table(relinfo->data_shndx);
11810 gold_assert(stub_table != NULL);
11811
11812 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11813 {
11814 // create a new stub and add it to stub table.
11815 Arm_v4bx_stub* stub =
2e702c99 11816 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11817 gold_assert(stub != NULL);
11818 stub_table->add_arm_v4bx_stub(stub);
11819 }
11820 }
11821 }
a2162063
ILT
11822 continue;
11823 }
11824
eb44217c
DK
11825 // Get the addend.
11826 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11827 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11828 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11829
11830 const Sized_symbol<32>* sym;
11831
11832 Symbol_value<32> symval;
11833 const Symbol_value<32> *psymval;
aa98ff75
DK
11834 bool is_defined_in_discarded_section;
11835 unsigned int shndx;
eb44217c
DK
11836 if (r_sym < local_count)
11837 {
11838 sym = NULL;
11839 psymval = arm_object->local_symbol(r_sym);
11840
2e702c99
RM
11841 // If the local symbol belongs to a section we are discarding,
11842 // and that section is a debug section, try to find the
11843 // corresponding kept section and map this symbol to its
11844 // counterpart in the kept section. The symbol must not
11845 // correspond to a section we are folding.
eb44217c 11846 bool is_ordinary;
aa98ff75
DK
11847 shndx = psymval->input_shndx(&is_ordinary);
11848 is_defined_in_discarded_section =
11849 (is_ordinary
11850 && shndx != elfcpp::SHN_UNDEF
11851 && !arm_object->is_section_included(shndx)
11852 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11853
11854 // We need to compute the would-be final value of this local
11855 // symbol.
11856 if (!is_defined_in_discarded_section)
eb44217c 11857 {
6fa2a40b 11858 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11859 typename ObjType::Compute_final_local_value_status status =
11860 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11861 relinfo->symtab);
aa98ff75
DK
11862 if (status == ObjType::CFLV_OK)
11863 {
11864 // Currently we cannot handle a branch to a target in
11865 // a merged section. If this is the case, issue an error
11866 // and also free the merge symbol value.
11867 if (!symval.has_output_value())
11868 {
11869 const std::string& section_name =
11870 arm_object->section_name(shndx);
11871 arm_object->error(_("cannot handle branch to local %u "
11872 "in a merged section %s"),
11873 r_sym, section_name.c_str());
11874 }
11875 psymval = &symval;
11876 }
eb44217c 11877 else
aa98ff75
DK
11878 {
11879 // We cannot determine the final value.
2e702c99 11880 continue;
aa98ff75 11881 }
eb44217c
DK
11882 }
11883 }
11884 else
11885 {
aa98ff75
DK
11886 const Symbol* gsym;
11887 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11888 gold_assert(gsym != NULL);
11889 if (gsym->is_forwarder())
11890 gsym = relinfo->symtab->resolve_forwards(gsym);
11891
11892 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11893 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11894 symval.set_output_symtab_index(sym->symtab_index());
11895 else
11896 symval.set_no_output_symtab_entry();
11897
11898 // We need to compute the would-be final value of this global
11899 // symbol.
11900 const Symbol_table* symtab = relinfo->symtab;
11901 const Sized_symbol<32>* sized_symbol =
11902 symtab->get_sized_symbol<32>(gsym);
11903 Symbol_table::Compute_final_value_status status;
11904 Arm_address value =
11905 symtab->compute_final_value<32>(sized_symbol, &status);
11906
11907 // Skip this if the symbol has not output section.
11908 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11909 continue;
eb44217c 11910 symval.set_output_value(value);
aa98ff75
DK
11911
11912 if (gsym->type() == elfcpp::STT_TLS)
11913 symval.set_is_tls_symbol();
11914 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11915 symval.set_is_ifunc_symbol();
eb44217c 11916 psymval = &symval;
aa98ff75
DK
11917
11918 is_defined_in_discarded_section =
11919 (gsym->is_defined_in_discarded_section()
11920 && gsym->is_undefined());
11921 shndx = 0;
11922 }
11923
11924 Symbol_value<32> symval2;
11925 if (is_defined_in_discarded_section)
11926 {
11927 if (comdat_behavior == CB_UNDETERMINED)
11928 {
11929 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11930 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11931 }
11932 if (comdat_behavior == CB_PRETEND)
11933 {
11934 // FIXME: This case does not work for global symbols.
11935 // We have no place to store the original section index.
11936 // Fortunately this does not matter for comdat sections,
11937 // only for sections explicitly discarded by a linker
11938 // script.
11939 bool found;
11940 typename elfcpp::Elf_types<32>::Elf_Addr value =
11941 arm_object->map_to_kept_section(shndx, &found);
11942 if (found)
11943 symval2.set_output_value(value + psymval->input_value());
11944 else
11945 symval2.set_output_value(0);
11946 }
11947 else
11948 {
11949 if (comdat_behavior == CB_WARNING)
11950 gold_warning_at_location(relinfo, i, offset,
11951 _("relocation refers to discarded "
11952 "section"));
11953 symval2.set_output_value(0);
11954 }
11955 symval2.set_no_output_symtab_entry();
11956 psymval = &symval2;
eb44217c
DK
11957 }
11958
11959 // If symbol is a section symbol, we don't know the actual type of
11960 // destination. Give up.
11961 if (psymval->is_section_symbol())
11962 continue;
11963
11964 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11965 addend, view_address + offset);
eb44217c
DK
11966 }
11967}
11968
11969// Scan an input section for stub generation.
11970
11971template<bool big_endian>
11972void
11973Target_arm<big_endian>::scan_section_for_stubs(
11974 const Relocate_info<32, big_endian>* relinfo,
11975 unsigned int sh_type,
11976 const unsigned char* prelocs,
11977 size_t reloc_count,
11978 Output_section* output_section,
11979 bool needs_special_offset_handling,
11980 const unsigned char* view,
11981 Arm_address view_address,
11982 section_size_type view_size)
11983{
11984 if (sh_type == elfcpp::SHT_REL)
11985 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11986 relinfo,
11987 prelocs,
11988 reloc_count,
11989 output_section,
11990 needs_special_offset_handling,
11991 view,
11992 view_address,
11993 view_size);
11994 else if (sh_type == elfcpp::SHT_RELA)
11995 // We do not support RELA type relocations yet. This is provided for
11996 // completeness.
11997 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11998 relinfo,
11999 prelocs,
12000 reloc_count,
12001 output_section,
12002 needs_special_offset_handling,
12003 view,
12004 view_address,
12005 view_size);
12006 else
12007 gold_unreachable();
12008}
12009
12010// Group input sections for stub generation.
12011//
9b547ce6 12012// We group input sections in an output section so that the total size,
eb44217c
DK
12013// including any padding space due to alignment is smaller than GROUP_SIZE
12014// unless the only input section in group is bigger than GROUP_SIZE already.
12015// Then an ARM stub table is created to follow the last input section
12016// in group. For each group an ARM stub table is created an is placed
9b547ce6 12017// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
12018// extend the group after the stub table.
12019
12020template<bool big_endian>
12021void
12022Target_arm<big_endian>::group_sections(
2ea97941 12023 Layout* layout,
eb44217c 12024 section_size_type group_size,
f625ae50
DK
12025 bool stubs_always_after_branch,
12026 const Task* task)
eb44217c
DK
12027{
12028 // Group input sections and insert stub table
12029 Layout::Section_list section_list;
ec661b9d 12030 layout->get_executable_sections(&section_list);
eb44217c
DK
12031 for (Layout::Section_list::const_iterator p = section_list.begin();
12032 p != section_list.end();
12033 ++p)
12034 {
12035 Arm_output_section<big_endian>* output_section =
12036 Arm_output_section<big_endian>::as_arm_output_section(*p);
12037 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 12038 this, task);
eb44217c
DK
12039 }
12040}
12041
12042// Relaxation hook. This is where we do stub generation.
12043
12044template<bool big_endian>
12045bool
12046Target_arm<big_endian>::do_relax(
12047 int pass,
12048 const Input_objects* input_objects,
12049 Symbol_table* symtab,
f625ae50
DK
12050 Layout* layout,
12051 const Task* task)
eb44217c
DK
12052{
12053 // No need to generate stubs if this is a relocatable link.
12054 gold_assert(!parameters->options().relocatable());
12055
12056 // If this is the first pass, we need to group input sections into
12057 // stub groups.
2b328d4e 12058 bool done_exidx_fixup = false;
6625d24e 12059 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
12060 if (pass == 1)
12061 {
12062 // Determine the stub group size. The group size is the absolute
12063 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 12064 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
12065 // the stubbed branches.
12066 int32_t stub_group_size_param =
12067 parameters->options().stub_group_size();
12068 bool stubs_always_after_branch = stub_group_size_param < 0;
12069 section_size_type stub_group_size = abs(stub_group_size_param);
12070
12071 if (stub_group_size == 1)
12072 {
12073 // Default value.
12074 // Thumb branch range is +-4MB has to be used as the default
12075 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
12076 // code, so the worst case has to be taken into account). If we are
12077 // fixing cortex-a8 errata, the branch range has to be even smaller,
12078 // since wide conditional branch has a range of +-1MB only.
eb44217c 12079 //
25bbe950 12080 // This value is 48K less than that, which allows for 4096
eb44217c
DK
12081 // 12-byte stubs. If we exceed that, then we will fail to link.
12082 // The user will have to relink with an explicit group size
12083 // option.
25bbe950
DK
12084 stub_group_size = 4145152;
12085 }
12086
12087 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12088 // page as the first half of a 32-bit branch straddling two 4K pages.
12089 // This is a crude way of enforcing that. In addition, long conditional
12090 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12091 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12092 // cortex-A8 stubs from long conditional branches.
12093 if (this->fix_cortex_a8_)
12094 {
12095 stubs_always_after_branch = true;
12096 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12097 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
12098 }
12099
f625ae50 12100 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 12101
2b328d4e 12102 // Also fix .ARM.exidx section coverage.
131687b4
DK
12103 Arm_output_section<big_endian>* exidx_output_section = NULL;
12104 for (Layout::Section_list::const_iterator p =
12105 layout->section_list().begin();
12106 p != layout->section_list().end();
12107 ++p)
12108 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12109 {
12110 if (exidx_output_section == NULL)
12111 exidx_output_section =
12112 Arm_output_section<big_endian>::as_arm_output_section(*p);
12113 else
12114 // We cannot handle this now.
12115 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12116 "non-relocatable link"),
12117 exidx_output_section->name(),
12118 (*p)->name());
12119 }
12120
12121 if (exidx_output_section != NULL)
2b328d4e 12122 {
131687b4 12123 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 12124 symtab, task);
2b328d4e
DK
12125 done_exidx_fixup = true;
12126 }
eb44217c 12127 }
6625d24e
DK
12128 else
12129 {
12130 // If this is not the first pass, addresses and file offsets have
12131 // been reset at this point, set them here.
12132 for (Stub_table_iterator sp = this->stub_tables_.begin();
12133 sp != this->stub_tables_.end();
12134 ++sp)
12135 {
12136 Arm_input_section<big_endian>* owner = (*sp)->owner();
12137 off_t off = align_address(owner->original_size(),
12138 (*sp)->addralign());
12139 (*sp)->set_address_and_file_offset(owner->address() + off,
12140 owner->offset() + off);
12141 }
12142 }
eb44217c 12143
44272192
DK
12144 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12145 // beginning of each relaxation pass, just blow away all the stubs.
12146 // Alternatively, we could selectively remove only the stubs and reloc
12147 // information for code sections that have moved since the last pass.
12148 // That would require more book-keeping.
a120bc7f
DK
12149 if (this->fix_cortex_a8_)
12150 {
12151 // Clear all Cortex-A8 reloc information.
12152 for (typename Cortex_a8_relocs_info::const_iterator p =
12153 this->cortex_a8_relocs_info_.begin();
12154 p != this->cortex_a8_relocs_info_.end();
12155 ++p)
12156 delete p->second;
12157 this->cortex_a8_relocs_info_.clear();
44272192
DK
12158
12159 // Remove all Cortex-A8 stubs.
12160 for (Stub_table_iterator sp = this->stub_tables_.begin();
12161 sp != this->stub_tables_.end();
12162 ++sp)
12163 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 12164 }
2e702c99 12165
44272192 12166 // Scan relocs for relocation stubs
eb44217c
DK
12167 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12168 op != input_objects->relobj_end();
12169 ++op)
12170 {
12171 Arm_relobj<big_endian>* arm_relobj =
12172 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
12173 // Lock the object so we can read from it. This is only called
12174 // single-threaded from Layout::finalize, so it is OK to lock.
12175 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 12176 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
12177 }
12178
2fb7225c
DK
12179 // Check all stub tables to see if any of them have their data sizes
12180 // or addresses alignments changed. These are the only things that
12181 // matter.
eb44217c 12182 bool any_stub_table_changed = false;
8923b24c 12183 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
12184 for (Stub_table_iterator sp = this->stub_tables_.begin();
12185 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12186 ++sp)
12187 {
2fb7225c 12188 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
12189 {
12190 // Update data size of stub table owner.
12191 Arm_input_section<big_endian>* owner = (*sp)->owner();
12192 uint64_t address = owner->address();
12193 off_t offset = owner->offset();
12194 owner->reset_address_and_file_offset();
12195 owner->set_address_and_file_offset(address, offset);
12196
12197 sections_needing_adjustment.insert(owner->output_section());
12198 any_stub_table_changed = true;
12199 }
12200 }
12201
12202 // Output_section_data::output_section() returns a const pointer but we
12203 // need to update output sections, so we record all output sections needing
12204 // update above and scan the sections here to find out what sections need
12205 // to be updated.
f625ae50 12206 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
12207 p != layout->section_list().end();
12208 ++p)
12209 {
12210 if (sections_needing_adjustment.find(*p)
12211 != sections_needing_adjustment.end())
12212 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
12213 }
12214
2b328d4e
DK
12215 // Stop relaxation if no EXIDX fix-up and no stub table change.
12216 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12217
2fb7225c 12218 // Finalize the stubs in the last relaxation pass.
2b328d4e 12219 if (!continue_relaxation)
e7eca48c
DK
12220 {
12221 for (Stub_table_iterator sp = this->stub_tables_.begin();
12222 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12223 ++sp)
12224 (*sp)->finalize_stubs();
12225
12226 // Update output local symbol counts of objects if necessary.
12227 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12228 op != input_objects->relobj_end();
12229 ++op)
12230 {
12231 Arm_relobj<big_endian>* arm_relobj =
12232 Arm_relobj<big_endian>::as_arm_relobj(*op);
12233
12234 // Update output local symbol counts. We need to discard local
12235 // symbols defined in parts of input sections that are discarded by
12236 // relaxation.
12237 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
12238 {
12239 // We need to lock the object's file to update it.
12240 Task_lock_obj<Object> tl(task, arm_relobj);
12241 arm_relobj->update_output_local_symbol_count();
12242 }
e7eca48c
DK
12243 }
12244 }
2fb7225c 12245
2b328d4e 12246 return continue_relaxation;
eb44217c
DK
12247}
12248
43d12afe
DK
12249// Relocate a stub.
12250
12251template<bool big_endian>
12252void
12253Target_arm<big_endian>::relocate_stub(
2fb7225c 12254 Stub* stub,
43d12afe
DK
12255 const Relocate_info<32, big_endian>* relinfo,
12256 Output_section* output_section,
12257 unsigned char* view,
12258 Arm_address address,
12259 section_size_type view_size)
12260{
12261 Relocate relocate;
2ea97941
ILT
12262 const Stub_template* stub_template = stub->stub_template();
12263 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 12264 {
2ea97941
ILT
12265 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12266 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
12267
12268 unsigned int r_type = insn->r_type();
2ea97941 12269 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
12270 section_size_type reloc_size = insn->size();
12271 gold_assert(reloc_offset + reloc_size <= view_size);
12272
12273 // This is the address of the stub destination.
41263c05 12274 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
12275 Symbol_value<32> symval;
12276 symval.set_output_value(target);
12277
12278 // Synthesize a fake reloc just in case. We don't have a symbol so
12279 // we use 0.
12280 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12281 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12282 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12283 reloc_write.put_r_offset(reloc_offset);
12284 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12285 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12286
12287 relocate.relocate(relinfo, this, output_section,
12288 this->fake_relnum_for_stubs, rel, r_type,
12289 NULL, &symval, view + reloc_offset,
12290 address + reloc_offset, reloc_size);
12291 }
12292}
12293
a0351a69
DK
12294// Determine whether an object attribute tag takes an integer, a
12295// string or both.
12296
12297template<bool big_endian>
12298int
12299Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12300{
12301 if (tag == Object_attribute::Tag_compatibility)
12302 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12303 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12304 else if (tag == elfcpp::Tag_nodefaults)
12305 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12306 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12307 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12308 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12309 else if (tag < 32)
12310 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12311 else
12312 return ((tag & 1) != 0
12313 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12314 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12315}
12316
12317// Reorder attributes.
12318//
12319// The ABI defines that Tag_conformance should be emitted first, and that
12320// Tag_nodefaults should be second (if either is defined). This sets those
12321// two positions, and bumps up the position of all the remaining tags to
12322// compensate.
12323
12324template<bool big_endian>
12325int
12326Target_arm<big_endian>::do_attributes_order(int num) const
12327{
12328 // Reorder the known object attributes in output. We want to move
12329 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 12330 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
12331 if (num == 4)
12332 return elfcpp::Tag_conformance;
12333 if (num == 5)
12334 return elfcpp::Tag_nodefaults;
12335 if ((num - 2) < elfcpp::Tag_nodefaults)
12336 return num - 2;
12337 if ((num - 1) < elfcpp::Tag_conformance)
12338 return num - 1;
12339 return num;
12340}
4a657b0d 12341
44272192
DK
12342// Scan a span of THUMB code for Cortex-A8 erratum.
12343
12344template<bool big_endian>
12345void
12346Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12347 Arm_relobj<big_endian>* arm_relobj,
12348 unsigned int shndx,
12349 section_size_type span_start,
12350 section_size_type span_end,
12351 const unsigned char* view,
12352 Arm_address address)
12353{
12354 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12355 //
12356 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12357 // The branch target is in the same 4KB region as the
12358 // first half of the branch.
12359 // The instruction before the branch is a 32-bit
12360 // length non-branch instruction.
12361 section_size_type i = span_start;
12362 bool last_was_32bit = false;
12363 bool last_was_branch = false;
12364 while (i < span_end)
12365 {
12366 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12367 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12368 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12369 bool is_blx = false, is_b = false;
12370 bool is_bl = false, is_bcc = false;
12371
12372 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12373 if (insn_32bit)
12374 {
12375 // Load the rest of the insn (in manual-friendly order).
12376 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12377
12378 // Encoding T4: B<c>.W.
12379 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12380 // Encoding T1: BL<c>.W.
2e702c99
RM
12381 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12382 // Encoding T2: BLX<c>.W.
12383 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
12384 // Encoding T3: B<c>.W (not permitted in IT block).
12385 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12386 && (insn & 0x07f00000U) != 0x03800000U);
12387 }
12388
12389 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 12390
44272192
DK
12391 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12392 // page boundary and it follows 32-bit non-branch instruction,
12393 // we need to work around.
12394 if (is_32bit_branch
12395 && ((address + i) & 0xfffU) == 0xffeU
12396 && last_was_32bit
12397 && !last_was_branch)
12398 {
12399 // Check to see if there is a relocation stub for this branch.
12400 bool force_target_arm = false;
12401 bool force_target_thumb = false;
12402 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12403 Cortex_a8_relocs_info::const_iterator p =
12404 this->cortex_a8_relocs_info_.find(address + i);
12405
12406 if (p != this->cortex_a8_relocs_info_.end())
12407 {
12408 cortex_a8_reloc = p->second;
12409 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12410
12411 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12412 && !target_is_thumb)
12413 force_target_arm = true;
12414 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12415 && target_is_thumb)
12416 force_target_thumb = true;
12417 }
12418
12419 off_t offset;
12420 Stub_type stub_type = arm_stub_none;
12421
12422 // Check if we have an offending branch instruction.
12423 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12424 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 12425 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
12426
12427 if (cortex_a8_reloc != NULL
12428 && cortex_a8_reloc->reloc_stub() != NULL)
12429 // We've already made a stub for this instruction, e.g.
12430 // it's a long branch or a Thumb->ARM stub. Assume that
12431 // stub will suffice to work around the A8 erratum (see
12432 // setting of always_after_branch above).
12433 ;
12434 else if (is_bcc)
12435 {
12436 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12437 lower_insn);
12438 stub_type = arm_stub_a8_veneer_b_cond;
12439 }
12440 else if (is_b || is_bl || is_blx)
12441 {
12442 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12443 lower_insn);
12444 if (is_blx)
2e702c99 12445 offset &= ~3;
44272192
DK
12446
12447 stub_type = (is_blx
12448 ? arm_stub_a8_veneer_blx
12449 : (is_bl
12450 ? arm_stub_a8_veneer_bl
12451 : arm_stub_a8_veneer_b));
12452 }
12453
12454 if (stub_type != arm_stub_none)
12455 {
12456 Arm_address pc_for_insn = address + i + 4;
12457
12458 // The original instruction is a BL, but the target is
12459 // an ARM instruction. If we were not making a stub,
12460 // the BL would have been converted to a BLX. Use the
12461 // BLX stub instead in that case.
cd6eab1c 12462 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
12463 && stub_type == arm_stub_a8_veneer_bl)
12464 {
12465 stub_type = arm_stub_a8_veneer_blx;
12466 is_blx = true;
12467 is_bl = false;
12468 }
12469 // Conversely, if the original instruction was
12470 // BLX but the target is Thumb mode, use the BL stub.
12471 else if (force_target_thumb
12472 && stub_type == arm_stub_a8_veneer_blx)
12473 {
12474 stub_type = arm_stub_a8_veneer_bl;
12475 is_blx = false;
12476 is_bl = true;
12477 }
12478
12479 if (is_blx)
12480 pc_for_insn &= ~3;
12481
2e702c99 12482 // If we found a relocation, use the proper destination,
44272192
DK
12483 // not the offset in the (unrelocated) instruction.
12484 // Note this is always done if we switched the stub type above.
2e702c99
RM
12485 if (cortex_a8_reloc != NULL)
12486 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 12487
2e702c99 12488 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
12489
12490 // Add a new stub if destination address in in the same page.
2e702c99
RM
12491 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12492 {
44272192
DK
12493 Cortex_a8_stub* stub =
12494 this->stub_factory_.make_cortex_a8_stub(stub_type,
12495 arm_relobj, shndx,
12496 address + i,
12497 target, insn);
12498 Stub_table<big_endian>* stub_table =
12499 arm_relobj->stub_table(shndx);
12500 gold_assert(stub_table != NULL);
12501 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
12502 }
12503 }
12504 }
44272192
DK
12505
12506 i += insn_32bit ? 4 : 2;
12507 last_was_32bit = insn_32bit;
12508 last_was_branch = is_32bit_branch;
12509 }
12510}
12511
41263c05
DK
12512// Apply the Cortex-A8 workaround.
12513
12514template<bool big_endian>
12515void
12516Target_arm<big_endian>::apply_cortex_a8_workaround(
12517 const Cortex_a8_stub* stub,
12518 Arm_address stub_address,
12519 unsigned char* insn_view,
12520 Arm_address insn_address)
12521{
12522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12523 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12524 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12525 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12526 off_t branch_offset = stub_address - (insn_address + 4);
12527
2c54b4f4 12528 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12529 switch (stub->stub_template()->type())
12530 {
12531 case arm_stub_a8_veneer_b_cond:
9b547ce6 12532 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12533 // branch to the stub. We use the THUMB-2 encoding here.
12534 upper_insn = 0xf000U;
12535 lower_insn = 0xb800U;
12536 // Fall through
41263c05
DK
12537 case arm_stub_a8_veneer_b:
12538 case arm_stub_a8_veneer_bl:
12539 case arm_stub_a8_veneer_blx:
12540 if ((lower_insn & 0x5000U) == 0x4000U)
12541 // For a BLX instruction, make sure that the relocation is
12542 // rounded up to a word boundary. This follows the semantics of
12543 // the instruction which specifies that bit 1 of the target
12544 // address will come from bit 1 of the base address.
12545 branch_offset = (branch_offset + 2) & ~3;
12546
12547 // Put BRANCH_OFFSET back into the insn.
bef2b434 12548 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12549 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12550 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12551 break;
12552
12553 default:
12554 gold_unreachable();
12555 }
12556
12557 // Put the relocated value back in the object file:
12558 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12559 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12560}
12561
2e702c99
RM
12562// Target selector for ARM. Note this is never instantiated directly.
12563// It's only used in Target_selector_arm_nacl, below.
12564
4a657b0d
DK
12565template<bool big_endian>
12566class Target_selector_arm : public Target_selector
12567{
12568 public:
12569 Target_selector_arm()
12570 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12571 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12572 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12573 { }
12574
12575 Target*
12576 do_instantiate_target()
12577 { return new Target_arm<big_endian>(); }
12578};
12579
2b328d4e
DK
12580// Fix .ARM.exidx section coverage.
12581
12582template<bool big_endian>
12583void
12584Target_arm<big_endian>::fix_exidx_coverage(
12585 Layout* layout,
131687b4 12586 const Input_objects* input_objects,
2b328d4e 12587 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12588 Symbol_table* symtab,
12589 const Task* task)
2b328d4e
DK
12590{
12591 // We need to look at all the input sections in output in ascending
12592 // order of of output address. We do that by building a sorted list
12593 // of output sections by addresses. Then we looks at the output sections
12594 // in order. The input sections in an output section are already sorted
12595 // by addresses within the output section.
12596
12597 typedef std::set<Output_section*, output_section_address_less_than>
12598 Sorted_output_section_list;
12599 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12600
12601 // Find out all the output sections of input sections pointed by
12602 // EXIDX input sections.
12603 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12604 p != input_objects->relobj_end();
2b328d4e
DK
12605 ++p)
12606 {
131687b4
DK
12607 Arm_relobj<big_endian>* arm_relobj =
12608 Arm_relobj<big_endian>::as_arm_relobj(*p);
12609 std::vector<unsigned int> shndx_list;
12610 arm_relobj->get_exidx_shndx_list(&shndx_list);
12611 for (size_t i = 0; i < shndx_list.size(); ++i)
12612 {
12613 const Arm_exidx_input_section* exidx_input_section =
12614 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12615 gold_assert(exidx_input_section != NULL);
12616 if (!exidx_input_section->has_errors())
12617 {
12618 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12619 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12620 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12621 sorted_output_sections.insert(os);
12622 }
12623 }
2b328d4e
DK
12624 }
12625
12626 // Go over the output sections in ascending order of output addresses.
12627 typedef typename Arm_output_section<big_endian>::Text_section_list
12628 Text_section_list;
12629 Text_section_list sorted_text_sections;
f625ae50 12630 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12631 sorted_output_sections.begin();
12632 p != sorted_output_sections.end();
12633 ++p)
12634 {
12635 Arm_output_section<big_endian>* arm_output_section =
12636 Arm_output_section<big_endian>::as_arm_output_section(*p);
12637 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12638 }
2b328d4e 12639
85fdf906 12640 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12641 merge_exidx_entries(), task);
2b328d4e
DK
12642}
12643
647f1574
DK
12644template<bool big_endian>
12645void
12646Target_arm<big_endian>::do_define_standard_symbols(
12647 Symbol_table* symtab,
12648 Layout* layout)
12649{
12650 // Handle the .ARM.exidx section.
12651 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12652
12653 if (exidx_section != NULL)
12654 {
12655 // Create __exidx_start and __exidx_end symbols.
12656 symtab->define_in_output_data("__exidx_start",
12657 NULL, // version
12658 Symbol_table::PREDEFINED,
12659 exidx_section,
12660 0, // value
12661 0, // symsize
12662 elfcpp::STT_NOTYPE,
12663 elfcpp::STB_GLOBAL,
12664 elfcpp::STV_HIDDEN,
12665 0, // nonvis
12666 false, // offset_is_from_end
12667 true); // only_if_ref
12668
12669 symtab->define_in_output_data("__exidx_end",
12670 NULL, // version
12671 Symbol_table::PREDEFINED,
12672 exidx_section,
2e702c99 12673 0, // value
647f1574
DK
12674 0, // symsize
12675 elfcpp::STT_NOTYPE,
12676 elfcpp::STB_GLOBAL,
12677 elfcpp::STV_HIDDEN,
12678 0, // nonvis
12679 true, // offset_is_from_end
12680 true); // only_if_ref
12681 }
12682 else
12683 {
12684 // Define __exidx_start and __exidx_end even when .ARM.exidx
12685 // section is missing to match ld's behaviour.
12686 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12687 Symbol_table::PREDEFINED,
12688 0, 0, elfcpp::STT_OBJECT,
12689 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12690 true, false);
647f1574 12691 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12692 Symbol_table::PREDEFINED,
12693 0, 0, elfcpp::STT_OBJECT,
12694 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12695 true, false);
647f1574
DK
12696 }
12697}
12698
2e702c99
RM
12699// NaCl variant. It uses different PLT contents.
12700
12701template<bool big_endian>
12702class Output_data_plt_arm_nacl;
12703
12704template<bool big_endian>
12705class Target_arm_nacl : public Target_arm<big_endian>
12706{
12707 public:
12708 Target_arm_nacl()
12709 : Target_arm<big_endian>(&arm_nacl_info)
12710 { }
12711
12712 protected:
12713 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
12714 do_make_data_plt(
12715 Layout* layout,
12716 Arm_output_data_got<big_endian>* got,
12717 Output_data_space* got_plt,
12718 Output_data_space* got_irelative)
12719 { return new Output_data_plt_arm_nacl<big_endian>(
12720 layout, got, got_plt, got_irelative); }
2e702c99
RM
12721
12722 private:
12723 static const Target::Target_info arm_nacl_info;
12724};
12725
12726template<bool big_endian>
12727const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12728{
12729 32, // size
12730 big_endian, // is_big_endian
12731 elfcpp::EM_ARM, // machine_code
12732 false, // has_make_symbol
12733 false, // has_resolve
12734 false, // has_code_fill
12735 true, // is_default_stack_executable
12736 false, // can_icf_inline_merge_sections
12737 '\0', // wrap_char
12738 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12739 0x20000, // default_text_segment_address
12740 0x10000, // abi_pagesize (overridable by -z max-page-size)
12741 0x10000, // common_pagesize (overridable by -z common-page-size)
12742 true, // isolate_execinstr
12743 0x10000000, // rosegment_gap
12744 elfcpp::SHN_UNDEF, // small_common_shndx
12745 elfcpp::SHN_UNDEF, // large_common_shndx
12746 0, // small_common_section_flags
12747 0, // large_common_section_flags
12748 ".ARM.attributes", // attributes_section
a67858e0 12749 "aeabi", // attributes_vendor
8d9743bd
MK
12750 "_start", // entry_symbol_name
12751 32, // hash_entry_size
2e702c99
RM
12752};
12753
12754template<bool big_endian>
12755class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12756{
12757 public:
fa89cc82
HS
12758 Output_data_plt_arm_nacl(
12759 Layout* layout,
12760 Arm_output_data_got<big_endian>* got,
12761 Output_data_space* got_plt,
12762 Output_data_space* got_irelative)
12763 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
2e702c99
RM
12764 { }
12765
12766 protected:
12767 // Return the offset of the first non-reserved PLT entry.
12768 virtual unsigned int
12769 do_first_plt_entry_offset() const
12770 { return sizeof(first_plt_entry); }
12771
12772 // Return the size of a PLT entry.
12773 virtual unsigned int
12774 do_get_plt_entry_size() const
12775 { return sizeof(plt_entry); }
12776
12777 virtual void
12778 do_fill_first_plt_entry(unsigned char* pov,
12779 Arm_address got_address,
12780 Arm_address plt_address);
12781
12782 virtual void
12783 do_fill_plt_entry(unsigned char* pov,
12784 Arm_address got_address,
12785 Arm_address plt_address,
12786 unsigned int got_offset,
12787 unsigned int plt_offset);
12788
12789 private:
12790 inline uint32_t arm_movw_immediate(uint32_t value)
12791 {
12792 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12793 }
12794
12795 inline uint32_t arm_movt_immediate(uint32_t value)
12796 {
12797 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12798 }
12799
12800 // Template for the first PLT entry.
12801 static const uint32_t first_plt_entry[16];
12802
12803 // Template for subsequent PLT entries.
12804 static const uint32_t plt_entry[4];
12805};
12806
12807// The first entry in the PLT.
12808template<bool big_endian>
12809const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12810{
12811 // First bundle:
12812 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12813 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12814 0xe08cc00f, // add ip, ip, pc
12815 0xe52dc008, // str ip, [sp, #-8]!
12816 // Second bundle:
edccdf7c 12817 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12818 0xe59cc000, // ldr ip, [ip]
12819 0xe3ccc13f, // bic ip, ip, #0xc000000f
12820 0xe12fff1c, // bx ip
12821 // Third bundle:
12822 0xe320f000, // nop
12823 0xe320f000, // nop
12824 0xe320f000, // nop
12825 // .Lplt_tail:
12826 0xe50dc004, // str ip, [sp, #-4]
12827 // Fourth bundle:
edccdf7c 12828 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12829 0xe59cc000, // ldr ip, [ip]
12830 0xe3ccc13f, // bic ip, ip, #0xc000000f
12831 0xe12fff1c, // bx ip
12832};
12833
12834template<bool big_endian>
12835void
12836Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12837 unsigned char* pov,
12838 Arm_address got_address,
12839 Arm_address plt_address)
12840{
12841 // Write first PLT entry. All but first two words are constants.
12842 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12843 / sizeof(first_plt_entry[0]));
12844
12845 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12846
12847 elfcpp::Swap<32, big_endian>::writeval
12848 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12849 elfcpp::Swap<32, big_endian>::writeval
12850 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12851
12852 for (size_t i = 2; i < num_first_plt_words; ++i)
12853 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12854}
12855
12856// Subsequent entries in the PLT.
12857
12858template<bool big_endian>
12859const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12860{
12861 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12862 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12863 0xe08cc00f, // add ip, ip, pc
12864 0xea000000, // b .Lplt_tail
12865};
12866
12867template<bool big_endian>
12868void
12869Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12870 unsigned char* pov,
12871 Arm_address got_address,
12872 Arm_address plt_address,
12873 unsigned int got_offset,
12874 unsigned int plt_offset)
12875{
12876 // Calculate the displacement between the PLT slot and the
12877 // common tail that's part of the special initial PLT slot.
12878 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12879 - (plt_address + plt_offset
12880 + sizeof(plt_entry) + sizeof(uint32_t)));
12881 gold_assert((tail_displacement & 3) == 0);
12882 tail_displacement >>= 2;
12883
12884 gold_assert ((tail_displacement & 0xff000000) == 0
12885 || (-tail_displacement & 0xff000000) == 0);
12886
12887 // Calculate the displacement between the PLT slot and the entry
12888 // in the GOT. The offset accounts for the value produced by
12889 // adding to pc in the penultimate instruction of the PLT stub.
12890 const int32_t got_displacement = (got_address + got_offset
12891 - (plt_address + sizeof(plt_entry)));
12892
12893 elfcpp::Swap<32, big_endian>::writeval
12894 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12895 elfcpp::Swap<32, big_endian>::writeval
12896 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12897 elfcpp::Swap<32, big_endian>::writeval
12898 (pov + 8, plt_entry[2]);
12899 elfcpp::Swap<32, big_endian>::writeval
12900 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12901}
12902
12903// Target selectors.
12904
12905template<bool big_endian>
12906class Target_selector_arm_nacl
12907 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12908 Target_arm_nacl<big_endian> >
12909{
12910 public:
12911 Target_selector_arm_nacl()
12912 : Target_selector_nacl<Target_selector_arm<big_endian>,
12913 Target_arm_nacl<big_endian> >(
12914 "arm",
12915 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12916 big_endian ? "armelfb_nacl" : "armelf_nacl")
12917 { }
12918};
12919
12920Target_selector_arm_nacl<false> target_selector_arm;
12921Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12922
12923} // End anonymous namespace.
This page took 1.125273 seconds and 4 git commands to generate.