sim: constify sim_write source buffer
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b10d2873 3// Copyright 2009, 2010 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
119// returning a static instance of Arm_reloc_property_table, it will very
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
129Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
b569affa 604 // Arm_relobj. This is done to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 private:
7296d933 1068 // Implement do_write for a given endianness.
af2cdeae
DK
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1072
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1077};
1078
1079// During EXIDX coverage fix-up, we compact an EXIDX section. The
1080// Offset map is used to map input section offset within the EXIDX section
1081// to the output offset from the start of this EXIDX section.
1082
1083typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1085
1086// Arm_exidx_merged_section class. This represents an EXIDX input section
1087// with some of its entries merged.
1088
1089class Arm_exidx_merged_section : public Output_relaxed_input_section
1090{
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1101
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1106
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1111
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1116
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1120
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1126};
1127
10ad9fe5
DK
1128// A class to wrap an ordinary input section containing executable code.
1129
1130template<bool big_endian>
1131class Arm_input_section : public Output_relaxed_input_section
1132{
1133 public:
2ea97941
ILT
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
10ad9fe5
DK
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1137 { }
1138
1139 ~Arm_input_section()
1140 { }
1141
1142 // Initialize.
1143 void
1144 init();
1145
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1155
1156 // Set the stub_table.
1157 void
2ea97941
ILT
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
10ad9fe5 1160
07f508a2
DK
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
10ad9fe5
DK
1167 protected:
1168 // Write data to output file.
1169 void
1170 do_write(Output_file*);
1171
1172 // Return required alignment of this.
1173 uint64_t
1174 do_addralign() const
1175 {
1176 if (this->is_stub_table_owner())
1177 return std::max(this->stub_table_->addralign(),
1178 this->original_addralign_);
1179 else
1180 return this->original_addralign_;
1181 }
1182
1183 // Finalize data size.
1184 void
1185 set_final_data_size();
1186
1187 // Reset address and file offset.
1188 void
1189 do_reset_address_and_file_offset();
1190
1191 // Output offset.
1192 bool
2ea97941
ILT
1193 do_output_offset(const Relobj* object, unsigned int shndx,
1194 section_offset_type offset,
10ad9fe5
DK
1195 section_offset_type* poutput) const
1196 {
1197 if ((object == this->relobj())
2ea97941
ILT
1198 && (shndx == this->shndx())
1199 && (offset >= 0)
1200 && (convert_types<uint64_t, section_offset_type>(offset)
10ad9fe5
DK
1201 <= this->original_size_))
1202 {
2ea97941 1203 *poutput = offset;
10ad9fe5
DK
1204 return true;
1205 }
1206 else
1207 return false;
1208 }
1209
1210 private:
1211 // Copying is not allowed.
1212 Arm_input_section(const Arm_input_section&);
1213 Arm_input_section& operator=(const Arm_input_section&);
1214
1215 // Address alignment of the original input section.
1216 uint64_t original_addralign_;
1217 // Section size of the original input section.
1218 uint64_t original_size_;
1219 // Stub table.
1220 Stub_table<big_endian>* stub_table_;
1221};
1222
80d0d023
DK
1223// Arm_exidx_fixup class. This is used to define a number of methods
1224// and keep states for fixing up EXIDX coverage.
1225
1226class Arm_exidx_fixup
1227{
1228 public:
1229 Arm_exidx_fixup(Output_section* exidx_output_section)
1230 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1231 last_inlined_entry_(0), last_input_section_(NULL),
546c7457 1232 section_offset_map_(NULL), first_output_text_section_(NULL)
80d0d023
DK
1233 { }
1234
1235 ~Arm_exidx_fixup()
1236 { delete this->section_offset_map_; }
1237
1238 // Process an EXIDX section for entry merging. Return number of bytes to
1239 // be deleted in output. If parts of the input EXIDX section are merged
1240 // a heap allocated Arm_exidx_section_offset_map is store in the located
1241 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1242 // releasing it.
1243 template<bool big_endian>
1244 uint32_t
1245 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1246 Arm_exidx_section_offset_map** psection_offset_map);
1247
1248 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1249 // input section, if there is not one already.
1250 void
1251 add_exidx_cantunwind_as_needed();
1252
546c7457
DK
1253 // Return the output section for the text section which is linked to the
1254 // first exidx input in output.
1255 Output_section*
1256 first_output_text_section() const
1257 { return this->first_output_text_section_; }
1258
80d0d023
DK
1259 private:
1260 // Copying is not allowed.
1261 Arm_exidx_fixup(const Arm_exidx_fixup&);
1262 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1263
1264 // Type of EXIDX unwind entry.
1265 enum Unwind_type
1266 {
1267 // No type.
1268 UT_NONE,
1269 // EXIDX_CANTUNWIND.
1270 UT_EXIDX_CANTUNWIND,
1271 // Inlined entry.
1272 UT_INLINED_ENTRY,
1273 // Normal entry.
1274 UT_NORMAL_ENTRY,
1275 };
1276
1277 // Process an EXIDX entry. We only care about the second word of the
1278 // entry. Return true if the entry can be deleted.
1279 bool
1280 process_exidx_entry(uint32_t second_word);
1281
1282 // Update the current section offset map during EXIDX section fix-up.
1283 // If there is no map, create one. INPUT_OFFSET is the offset of a
1284 // reference point, DELETED_BYTES is the number of deleted by in the
1285 // section so far. If DELETE_ENTRY is true, the reference point and
1286 // all offsets after the previous reference point are discarded.
1287 void
1288 update_offset_map(section_offset_type input_offset,
1289 section_size_type deleted_bytes, bool delete_entry);
1290
1291 // EXIDX output section.
1292 Output_section* exidx_output_section_;
1293 // Unwind type of the last EXIDX entry processed.
1294 Unwind_type last_unwind_type_;
1295 // Last seen inlined EXIDX entry.
1296 uint32_t last_inlined_entry_;
1297 // Last processed EXIDX input section.
2b328d4e 1298 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1299 // Section offset map created in process_exidx_section.
1300 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1301 // Output section for the text section which is linked to the first exidx
1302 // input in output.
1303 Output_section* first_output_text_section_;
80d0d023
DK
1304};
1305
07f508a2
DK
1306// Arm output section class. This is defined mainly to add a number of
1307// stub generation methods.
1308
1309template<bool big_endian>
1310class Arm_output_section : public Output_section
1311{
1312 public:
2b328d4e
DK
1313 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1314
2ea97941
ILT
1315 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1316 elfcpp::Elf_Xword flags)
1317 : Output_section(name, type, flags)
07f508a2
DK
1318 { }
1319
1320 ~Arm_output_section()
1321 { }
1322
1323 // Group input sections for stub generation.
1324 void
1325 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1326
1327 // Downcast a base pointer to an Arm_output_section pointer. This is
1328 // not type-safe but we only use Arm_output_section not the base class.
1329 static Arm_output_section<big_endian>*
1330 as_arm_output_section(Output_section* os)
1331 { return static_cast<Arm_output_section<big_endian>*>(os); }
1332
2b328d4e
DK
1333 // Append all input text sections in this into LIST.
1334 void
1335 append_text_sections_to_list(Text_section_list* list);
1336
1337 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1338 // is a list of text input sections sorted in ascending order of their
1339 // output addresses.
1340 void
4a54abbb
DK
1341 fix_exidx_coverage(Layout* layout,
1342 const Text_section_list& sorted_text_section,
2b328d4e
DK
1343 Symbol_table* symtab);
1344
07f508a2
DK
1345 private:
1346 // For convenience.
1347 typedef Output_section::Input_section Input_section;
1348 typedef Output_section::Input_section_list Input_section_list;
1349
1350 // Create a stub group.
1351 void create_stub_group(Input_section_list::const_iterator,
1352 Input_section_list::const_iterator,
1353 Input_section_list::const_iterator,
1354 Target_arm<big_endian>*,
1355 std::vector<Output_relaxed_input_section*>*);
1356};
1357
993d07c1
DK
1358// Arm_exidx_input_section class. This represents an EXIDX input section.
1359
1360class Arm_exidx_input_section
1361{
1362 public:
1363 static const section_offset_type invalid_offset =
1364 static_cast<section_offset_type>(-1);
1365
1366 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1367 unsigned int link, uint32_t size, uint32_t addralign)
1368 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1369 addralign_(addralign)
1370 { }
1371
1372 ~Arm_exidx_input_section()
1373 { }
1374
1375 // Accessors: This is a read-only class.
1376
1377 // Return the object containing this EXIDX input section.
1378 Relobj*
1379 relobj() const
1380 { return this->relobj_; }
1381
1382 // Return the section index of this EXIDX input section.
1383 unsigned int
1384 shndx() const
1385 { return this->shndx_; }
1386
1387 // Return the section index of linked text section in the same object.
1388 unsigned int
1389 link() const
1390 { return this->link_; }
1391
1392 // Return size of the EXIDX input section.
1393 uint32_t
1394 size() const
1395 { return this->size_; }
1396
1397 // Reutnr address alignment of EXIDX input section.
1398 uint32_t
1399 addralign() const
1400 { return this->addralign_; }
1401
1402 private:
1403 // Object containing this.
1404 Relobj* relobj_;
1405 // Section index of this.
1406 unsigned int shndx_;
1407 // text section linked to this in the same object.
1408 unsigned int link_;
1409 // Size of this. For ARM 32-bit is sufficient.
1410 uint32_t size_;
1411 // Address alignment of this. For ARM 32-bit is sufficient.
1412 uint32_t addralign_;
1413};
1414
8ffa3667
DK
1415// Arm_relobj class.
1416
1417template<bool big_endian>
1418class Arm_relobj : public Sized_relobj<32, big_endian>
1419{
1420 public:
1421 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1422
2ea97941 1423 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1424 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941 1425 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1426 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1427 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1428 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1429 output_local_symbol_count_needs_update_(false),
1430 merge_flags_and_attributes_(true)
8ffa3667
DK
1431 { }
1432
1433 ~Arm_relobj()
a0351a69 1434 { delete this->attributes_section_data_; }
8ffa3667
DK
1435
1436 // Return the stub table of the SHNDX-th section if there is one.
1437 Stub_table<big_endian>*
2ea97941 1438 stub_table(unsigned int shndx) const
8ffa3667 1439 {
2ea97941
ILT
1440 gold_assert(shndx < this->stub_tables_.size());
1441 return this->stub_tables_[shndx];
8ffa3667
DK
1442 }
1443
1444 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1445 void
2ea97941 1446 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1447 {
2ea97941
ILT
1448 gold_assert(shndx < this->stub_tables_.size());
1449 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1450 }
1451
1452 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1453 // index. This is only valid after do_count_local_symbol is called.
1454 bool
1455 local_symbol_is_thumb_function(unsigned int r_sym) const
1456 {
1457 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1458 return this->local_symbol_is_thumb_function_[r_sym];
1459 }
1460
1461 // Scan all relocation sections for stub generation.
1462 void
1463 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1464 const Layout*);
1465
1466 // Convert regular input section with index SHNDX to a relaxed section.
1467 void
2ea97941 1468 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1469 {
1470 // The stubs have relocations and we need to process them after writing
1471 // out the stubs. So relocation now must follow section write.
2b328d4e 1472 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1473 this->set_relocs_must_follow_section_writes();
1474 }
1475
1476 // Downcast a base pointer to an Arm_relobj pointer. This is
1477 // not type-safe but we only use Arm_relobj not the base class.
1478 static Arm_relobj<big_endian>*
2ea97941
ILT
1479 as_arm_relobj(Relobj* relobj)
1480 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1481
d5b40221
DK
1482 // Processor-specific flags in ELF file header. This is valid only after
1483 // reading symbols.
1484 elfcpp::Elf_Word
1485 processor_specific_flags() const
1486 { return this->processor_specific_flags_; }
1487
a0351a69
DK
1488 // Attribute section data This is the contents of the .ARM.attribute section
1489 // if there is one.
1490 const Attributes_section_data*
1491 attributes_section_data() const
1492 { return this->attributes_section_data_; }
1493
20138696
DK
1494 // Mapping symbol location.
1495 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1496
1497 // Functor for STL container.
1498 struct Mapping_symbol_position_less
1499 {
1500 bool
1501 operator()(const Mapping_symbol_position& p1,
1502 const Mapping_symbol_position& p2) const
1503 {
1504 return (p1.first < p2.first
1505 || (p1.first == p2.first && p1.second < p2.second));
1506 }
1507 };
1508
1509 // We only care about the first character of a mapping symbol, so
1510 // we only store that instead of the whole symbol name.
1511 typedef std::map<Mapping_symbol_position, char,
1512 Mapping_symbol_position_less> Mapping_symbols_info;
1513
2fb7225c
DK
1514 // Whether a section contains any Cortex-A8 workaround.
1515 bool
1516 section_has_cortex_a8_workaround(unsigned int shndx) const
1517 {
1518 return (this->section_has_cortex_a8_workaround_ != NULL
1519 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1520 }
1521
1522 // Mark a section that has Cortex-A8 workaround.
1523 void
1524 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1525 {
1526 if (this->section_has_cortex_a8_workaround_ == NULL)
1527 this->section_has_cortex_a8_workaround_ =
1528 new std::vector<bool>(this->shnum(), false);
1529 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1530 }
1531
993d07c1
DK
1532 // Return the EXIDX section of an text section with index SHNDX or NULL
1533 // if the text section has no associated EXIDX section.
1534 const Arm_exidx_input_section*
1535 exidx_input_section_by_link(unsigned int shndx) const
1536 {
1537 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1538 return ((p != this->exidx_section_map_.end()
1539 && p->second->link() == shndx)
1540 ? p->second
1541 : NULL);
1542 }
1543
1544 // Return the EXIDX section with index SHNDX or NULL if there is none.
1545 const Arm_exidx_input_section*
1546 exidx_input_section_by_shndx(unsigned shndx) const
1547 {
1548 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1549 return ((p != this->exidx_section_map_.end()
1550 && p->second->shndx() == shndx)
1551 ? p->second
1552 : NULL);
1553 }
1554
e7eca48c
DK
1555 // Whether output local symbol count needs updating.
1556 bool
1557 output_local_symbol_count_needs_update() const
1558 { return this->output_local_symbol_count_needs_update_; }
1559
1560 // Set output_local_symbol_count_needs_update flag to be true.
1561 void
1562 set_output_local_symbol_count_needs_update()
1563 { this->output_local_symbol_count_needs_update_ = true; }
1564
1565 // Update output local symbol count at the end of relaxation.
1566 void
1567 update_output_local_symbol_count();
1568
7296d933
DK
1569 // Whether we want to merge processor-specific flags and attributes.
1570 bool
1571 merge_flags_and_attributes() const
1572 { return this->merge_flags_and_attributes_; }
1573
8ffa3667
DK
1574 protected:
1575 // Post constructor setup.
1576 void
1577 do_setup()
1578 {
1579 // Call parent's setup method.
1580 Sized_relobj<32, big_endian>::do_setup();
1581
1582 // Initialize look-up tables.
1583 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1584 this->stub_tables_.swap(empty_stub_table_list);
1585 }
1586
1587 // Count the local symbols.
1588 void
1589 do_count_local_symbols(Stringpool_template<char>*,
1590 Stringpool_template<char>*);
1591
1592 void
43d12afe 1593 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
8ffa3667
DK
1594 const unsigned char* pshdrs,
1595 typename Sized_relobj<32, big_endian>::Views* pivews);
1596
d5b40221
DK
1597 // Read the symbol information.
1598 void
1599 do_read_symbols(Read_symbols_data* sd);
1600
99e5bff2
DK
1601 // Process relocs for garbage collection.
1602 void
1603 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1604
8ffa3667 1605 private:
44272192
DK
1606
1607 // Whether a section needs to be scanned for relocation stubs.
1608 bool
1609 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1610 const Relobj::Output_sections&,
2b328d4e 1611 const Symbol_table *, const unsigned char*);
44272192 1612
cf846138
DK
1613 // Whether a section is a scannable text section.
1614 bool
1615 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1616 const Output_section*, const Symbol_table *);
1617
44272192
DK
1618 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1619 bool
1620 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1621 unsigned int, Output_section*,
1622 const Symbol_table *);
1623
1624 // Scan a section for the Cortex-A8 erratum.
1625 void
1626 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1627 unsigned int, Output_section*,
1628 Target_arm<big_endian>*);
1629
c8761b9a
DK
1630 // Find the linked text section of an EXIDX section by looking at the
1631 // first reloction of the EXIDX section. PSHDR points to the section
1632 // headers of a relocation section and PSYMS points to the local symbols.
1633 // PSHNDX points to a location storing the text section index if found.
1634 // Return whether we can find the linked section.
1635 bool
1636 find_linked_text_section(const unsigned char* pshdr,
1637 const unsigned char* psyms, unsigned int* pshndx);
1638
1639 //
993d07c1 1640 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1641 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1642 // index of the linked text section.
993d07c1
DK
1643 void
1644 make_exidx_input_section(unsigned int shndx,
c8761b9a
DK
1645 const elfcpp::Shdr<32, big_endian>& shdr,
1646 unsigned int text_shndx);
993d07c1 1647
cb1be87e
DK
1648 // Return the output address of either a plain input section or a
1649 // relaxed input section. SHNDX is the section index.
1650 Arm_address
1651 simple_input_section_output_address(unsigned int, Output_section*);
1652
8ffa3667 1653 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1654 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1655 Exidx_section_map;
1656
1657 // List of stub tables.
8ffa3667
DK
1658 Stub_table_list stub_tables_;
1659 // Bit vector to tell if a local symbol is a thumb function or not.
1660 // This is only valid after do_count_local_symbol is called.
1661 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1662 // processor-specific flags in ELF file header.
1663 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1664 // Object attributes if there is an .ARM.attributes section or NULL.
1665 Attributes_section_data* attributes_section_data_;
20138696
DK
1666 // Mapping symbols information.
1667 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1668 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1669 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1670 // Map a text section to its associated .ARM.exidx section, if there is one.
1671 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1672 // Whether output local symbol count needs updating.
1673 bool output_local_symbol_count_needs_update_;
7296d933
DK
1674 // Whether we merge processor flags and attributes of this object to
1675 // output.
1676 bool merge_flags_and_attributes_;
d5b40221
DK
1677};
1678
1679// Arm_dynobj class.
1680
1681template<bool big_endian>
1682class Arm_dynobj : public Sized_dynobj<32, big_endian>
1683{
1684 public:
2ea97941 1685 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1686 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1687 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1688 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1689 { }
1690
1691 ~Arm_dynobj()
a0351a69 1692 { delete this->attributes_section_data_; }
d5b40221
DK
1693
1694 // Downcast a base pointer to an Arm_relobj pointer. This is
1695 // not type-safe but we only use Arm_relobj not the base class.
1696 static Arm_dynobj<big_endian>*
1697 as_arm_dynobj(Dynobj* dynobj)
1698 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1699
1700 // Processor-specific flags in ELF file header. This is valid only after
1701 // reading symbols.
1702 elfcpp::Elf_Word
1703 processor_specific_flags() const
1704 { return this->processor_specific_flags_; }
1705
a0351a69
DK
1706 // Attributes section data.
1707 const Attributes_section_data*
1708 attributes_section_data() const
1709 { return this->attributes_section_data_; }
1710
d5b40221
DK
1711 protected:
1712 // Read the symbol information.
1713 void
1714 do_read_symbols(Read_symbols_data* sd);
1715
1716 private:
1717 // processor-specific flags in ELF file header.
1718 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1719 // Object attributes if there is an .ARM.attributes section or NULL.
1720 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1721};
1722
e9bbb538
DK
1723// Functor to read reloc addends during stub generation.
1724
1725template<int sh_type, bool big_endian>
1726struct Stub_addend_reader
1727{
1728 // Return the addend for a relocation of a particular type. Depending
1729 // on whether this is a REL or RELA relocation, read the addend from a
1730 // view or from a Reloc object.
1731 elfcpp::Elf_types<32>::Elf_Swxword
1732 operator()(
1733 unsigned int /* r_type */,
1734 const unsigned char* /* view */,
1735 const typename Reloc_types<sh_type,
ebd95253 1736 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1737};
1738
1739// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1740
1741template<bool big_endian>
1742struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1743{
1744 elfcpp::Elf_types<32>::Elf_Swxword
1745 operator()(
1746 unsigned int,
1747 const unsigned char*,
1748 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1749};
1750
1751// Specialized Stub_addend_reader for RELA type relocation sections.
1752// We currently do not handle RELA type relocation sections but it is trivial
1753// to implement the addend reader. This is provided for completeness and to
1754// make it easier to add support for RELA relocation sections in the future.
1755
1756template<bool big_endian>
1757struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1758{
1759 elfcpp::Elf_types<32>::Elf_Swxword
1760 operator()(
1761 unsigned int,
1762 const unsigned char*,
1763 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1764 big_endian>::Reloc& reloc) const
1765 { return reloc.get_r_addend(); }
e9bbb538
DK
1766};
1767
a120bc7f
DK
1768// Cortex_a8_reloc class. We keep record of relocation that may need
1769// the Cortex-A8 erratum workaround.
1770
1771class Cortex_a8_reloc
1772{
1773 public:
1774 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1775 Arm_address destination)
1776 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1777 { }
1778
1779 ~Cortex_a8_reloc()
1780 { }
1781
1782 // Accessors: This is a read-only class.
1783
1784 // Return the relocation stub associated with this relocation if there is
1785 // one.
1786 const Reloc_stub*
1787 reloc_stub() const
1788 { return this->reloc_stub_; }
1789
1790 // Return the relocation type.
1791 unsigned int
1792 r_type() const
1793 { return this->r_type_; }
1794
1795 // Return the destination address of the relocation. LSB stores the THUMB
1796 // bit.
1797 Arm_address
1798 destination() const
1799 { return this->destination_; }
1800
1801 private:
1802 // Associated relocation stub if there is one, or NULL.
1803 const Reloc_stub* reloc_stub_;
1804 // Relocation type.
1805 unsigned int r_type_;
1806 // Destination address of this relocation. LSB is used to distinguish
1807 // ARM/THUMB mode.
1808 Arm_address destination_;
1809};
1810
4a54abbb
DK
1811// Arm_output_data_got class. We derive this from Output_data_got to add
1812// extra methods to handle TLS relocations in a static link.
1813
1814template<bool big_endian>
1815class Arm_output_data_got : public Output_data_got<32, big_endian>
1816{
1817 public:
1818 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1819 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1820 { }
1821
1822 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1823 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1824 // applied in a static link.
1825 void
1826 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1827 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1828
1829 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1830 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1831 // relocation that needs to be applied in a static link.
1832 void
1833 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1834 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1835 {
1836 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1837 index));
1838 }
1839
1840 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1841 // The first one is initialized to be 1, which is the module index for
1842 // the main executable and the second one 0. A reloc of the type
1843 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1844 // be applied by gold. GSYM is a global symbol.
1845 void
1846 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1847
1848 // Same as the above but for a local symbol in OBJECT with INDEX.
1849 void
1850 add_tls_gd32_with_static_reloc(unsigned int got_type,
1851 Sized_relobj<32, big_endian>* object,
1852 unsigned int index);
1853
1854 protected:
1855 // Write out the GOT table.
1856 void
1857 do_write(Output_file*);
1858
1859 private:
1860 // This class represent dynamic relocations that need to be applied by
1861 // gold because we are using TLS relocations in a static link.
1862 class Static_reloc
1863 {
1864 public:
1865 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1866 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1867 { this->u_.global.symbol = gsym; }
1868
1869 Static_reloc(unsigned int got_offset, unsigned int r_type,
1870 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1871 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1872 {
1873 this->u_.local.relobj = relobj;
1874 this->u_.local.index = index;
1875 }
1876
1877 // Return the GOT offset.
1878 unsigned int
1879 got_offset() const
1880 { return this->got_offset_; }
1881
1882 // Relocation type.
1883 unsigned int
1884 r_type() const
1885 { return this->r_type_; }
1886
1887 // Whether the symbol is global or not.
1888 bool
1889 symbol_is_global() const
1890 { return this->symbol_is_global_; }
1891
1892 // For a relocation against a global symbol, the global symbol.
1893 Symbol*
1894 symbol() const
1895 {
1896 gold_assert(this->symbol_is_global_);
1897 return this->u_.global.symbol;
1898 }
1899
1900 // For a relocation against a local symbol, the defining object.
1901 Sized_relobj<32, big_endian>*
1902 relobj() const
1903 {
1904 gold_assert(!this->symbol_is_global_);
1905 return this->u_.local.relobj;
1906 }
1907
1908 // For a relocation against a local symbol, the local symbol index.
1909 unsigned int
1910 index() const
1911 {
1912 gold_assert(!this->symbol_is_global_);
1913 return this->u_.local.index;
1914 }
1915
1916 private:
1917 // GOT offset of the entry to which this relocation is applied.
1918 unsigned int got_offset_;
1919 // Type of relocation.
1920 unsigned int r_type_;
1921 // Whether this relocation is against a global symbol.
1922 bool symbol_is_global_;
1923 // A global or local symbol.
1924 union
1925 {
1926 struct
1927 {
1928 // For a global symbol, the symbol itself.
1929 Symbol* symbol;
1930 } global;
1931 struct
1932 {
1933 // For a local symbol, the object defining object.
1934 Sized_relobj<32, big_endian>* relobj;
1935 // For a local symbol, the symbol index.
1936 unsigned int index;
1937 } local;
1938 } u_;
1939 };
1940
1941 // Symbol table of the output object.
1942 Symbol_table* symbol_table_;
1943 // Layout of the output object.
1944 Layout* layout_;
1945 // Static relocs to be applied to the GOT.
1946 std::vector<Static_reloc> static_relocs_;
1947};
1948
c121c671
DK
1949// Utilities for manipulating integers of up to 32-bits
1950
1951namespace utils
1952{
1953 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1954 // an int32_t. NO_BITS must be between 1 to 32.
1955 template<int no_bits>
1956 static inline int32_t
1957 sign_extend(uint32_t bits)
1958 {
96d49306 1959 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1960 if (no_bits == 32)
1961 return static_cast<int32_t>(bits);
1962 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1963 bits &= mask;
1964 uint32_t top_bit = 1U << (no_bits - 1);
1965 int32_t as_signed = static_cast<int32_t>(bits);
1966 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1967 }
1968
1969 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1970 template<int no_bits>
1971 static inline bool
1972 has_overflow(uint32_t bits)
1973 {
96d49306 1974 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1975 if (no_bits == 32)
1976 return false;
1977 int32_t max = (1 << (no_bits - 1)) - 1;
1978 int32_t min = -(1 << (no_bits - 1));
1979 int32_t as_signed = static_cast<int32_t>(bits);
1980 return as_signed > max || as_signed < min;
1981 }
1982
5e445df6
ILT
1983 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1984 // fits in the given number of bits as either a signed or unsigned value.
1985 // For example, has_signed_unsigned_overflow<8> would check
1986 // -128 <= bits <= 255
1987 template<int no_bits>
1988 static inline bool
1989 has_signed_unsigned_overflow(uint32_t bits)
1990 {
1991 gold_assert(no_bits >= 2 && no_bits <= 32);
1992 if (no_bits == 32)
1993 return false;
1994 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1995 int32_t min = -(1 << (no_bits - 1));
1996 int32_t as_signed = static_cast<int32_t>(bits);
1997 return as_signed > max || as_signed < min;
1998 }
1999
c121c671
DK
2000 // Select bits from A and B using bits in MASK. For each n in [0..31],
2001 // the n-th bit in the result is chosen from the n-th bits of A and B.
2002 // A zero selects A and a one selects B.
2003 static inline uint32_t
2004 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2005 { return (a & ~mask) | (b & mask); }
2006};
2007
4a657b0d
DK
2008template<bool big_endian>
2009class Target_arm : public Sized_target<32, big_endian>
2010{
2011 public:
2012 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2013 Reloc_section;
2014
2daedcd6
DK
2015 // When were are relocating a stub, we pass this as the relocation number.
2016 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2017
a6d1ef57
DK
2018 Target_arm()
2019 : Sized_target<32, big_endian>(&arm_info),
2020 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2021 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2022 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2023 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2024 may_use_blx_(false), should_force_pic_veneer_(false),
2025 arm_input_section_map_(), attributes_section_data_(NULL),
2026 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2027 { }
4a657b0d 2028
b569affa
DK
2029 // Whether we can use BLX.
2030 bool
2031 may_use_blx() const
2032 { return this->may_use_blx_; }
2033
2034 // Set use-BLX flag.
2035 void
2036 set_may_use_blx(bool value)
2037 { this->may_use_blx_ = value; }
2038
2039 // Whether we force PCI branch veneers.
2040 bool
2041 should_force_pic_veneer() const
2042 { return this->should_force_pic_veneer_; }
2043
2044 // Set PIC veneer flag.
2045 void
2046 set_should_force_pic_veneer(bool value)
2047 { this->should_force_pic_veneer_ = value; }
2048
2049 // Whether we use THUMB-2 instructions.
2050 bool
2051 using_thumb2() const
2052 {
a0351a69
DK
2053 Object_attribute* attr =
2054 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055 int arch = attr->int_value();
2056 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2057 }
2058
2059 // Whether we use THUMB/THUMB-2 instructions only.
2060 bool
2061 using_thumb_only() const
2062 {
a0351a69
DK
2063 Object_attribute* attr =
2064 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2065
2066 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2067 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2068 return true;
a0351a69
DK
2069 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2070 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2071 return false;
2072 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2073 return attr->int_value() == 'M';
b569affa
DK
2074 }
2075
d204b6e9
DK
2076 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2077 bool
2078 may_use_arm_nop() const
2079 {
a0351a69
DK
2080 Object_attribute* attr =
2081 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2082 int arch = attr->int_value();
2083 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2084 || arch == elfcpp::TAG_CPU_ARCH_V6K
2085 || arch == elfcpp::TAG_CPU_ARCH_V7
2086 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2087 }
2088
51938283
DK
2089 // Whether we have THUMB-2 NOP.W instruction.
2090 bool
2091 may_use_thumb2_nop() const
2092 {
a0351a69
DK
2093 Object_attribute* attr =
2094 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2095 int arch = attr->int_value();
2096 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2097 || arch == elfcpp::TAG_CPU_ARCH_V7
2098 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
2099 }
2100
4a657b0d
DK
2101 // Process the relocations to determine unreferenced sections for
2102 // garbage collection.
2103 void
ad0f2072 2104 gc_process_relocs(Symbol_table* symtab,
4a657b0d
DK
2105 Layout* layout,
2106 Sized_relobj<32, big_endian>* object,
2107 unsigned int data_shndx,
2108 unsigned int sh_type,
2109 const unsigned char* prelocs,
2110 size_t reloc_count,
2111 Output_section* output_section,
2112 bool needs_special_offset_handling,
2113 size_t local_symbol_count,
2114 const unsigned char* plocal_symbols);
2115
2116 // Scan the relocations to look for symbol adjustments.
2117 void
ad0f2072 2118 scan_relocs(Symbol_table* symtab,
4a657b0d
DK
2119 Layout* layout,
2120 Sized_relobj<32, big_endian>* object,
2121 unsigned int data_shndx,
2122 unsigned int sh_type,
2123 const unsigned char* prelocs,
2124 size_t reloc_count,
2125 Output_section* output_section,
2126 bool needs_special_offset_handling,
2127 size_t local_symbol_count,
2128 const unsigned char* plocal_symbols);
2129
2130 // Finalize the sections.
2131 void
f59f41f3 2132 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2133
94cdfcff 2134 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2135 // treatment.
2136 uint64_t
2137 do_dynsym_value(const Symbol*) const;
2138
2139 // Relocate a section.
2140 void
2141 relocate_section(const Relocate_info<32, big_endian>*,
2142 unsigned int sh_type,
2143 const unsigned char* prelocs,
2144 size_t reloc_count,
2145 Output_section* output_section,
2146 bool needs_special_offset_handling,
2147 unsigned char* view,
ebabffbd 2148 Arm_address view_address,
364c7fa5
ILT
2149 section_size_type view_size,
2150 const Reloc_symbol_changes*);
4a657b0d
DK
2151
2152 // Scan the relocs during a relocatable link.
2153 void
ad0f2072 2154 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d
DK
2155 Layout* layout,
2156 Sized_relobj<32, big_endian>* object,
2157 unsigned int data_shndx,
2158 unsigned int sh_type,
2159 const unsigned char* prelocs,
2160 size_t reloc_count,
2161 Output_section* output_section,
2162 bool needs_special_offset_handling,
2163 size_t local_symbol_count,
2164 const unsigned char* plocal_symbols,
2165 Relocatable_relocs*);
2166
2167 // Relocate a section during a relocatable link.
2168 void
2169 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2170 unsigned int sh_type,
2171 const unsigned char* prelocs,
2172 size_t reloc_count,
2173 Output_section* output_section,
2174 off_t offset_in_output_section,
2175 const Relocatable_relocs*,
2176 unsigned char* view,
ebabffbd 2177 Arm_address view_address,
4a657b0d
DK
2178 section_size_type view_size,
2179 unsigned char* reloc_view,
2180 section_size_type reloc_view_size);
2181
2182 // Return whether SYM is defined by the ABI.
2183 bool
2184 do_is_defined_by_abi(Symbol* sym) const
2185 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2186
c8761b9a
DK
2187 // Return whether there is a GOT section.
2188 bool
2189 has_got_section() const
2190 { return this->got_ != NULL; }
2191
94cdfcff
DK
2192 // Return the size of the GOT section.
2193 section_size_type
2194 got_size()
2195 {
2196 gold_assert(this->got_ != NULL);
2197 return this->got_->data_size();
2198 }
2199
4a657b0d 2200 // Map platform-specific reloc types
a6d1ef57
DK
2201 static unsigned int
2202 get_real_reloc_type (unsigned int r_type);
4a657b0d 2203
55da9579
DK
2204 //
2205 // Methods to support stub-generations.
2206 //
2207
2208 // Return the stub factory
2209 const Stub_factory&
2210 stub_factory() const
2211 { return this->stub_factory_; }
2212
2213 // Make a new Arm_input_section object.
2214 Arm_input_section<big_endian>*
2215 new_arm_input_section(Relobj*, unsigned int);
2216
2217 // Find the Arm_input_section object corresponding to the SHNDX-th input
2218 // section of RELOBJ.
2219 Arm_input_section<big_endian>*
2ea97941 2220 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2221
2222 // Make a new Stub_table
2223 Stub_table<big_endian>*
2224 new_stub_table(Arm_input_section<big_endian>*);
2225
eb44217c
DK
2226 // Scan a section for stub generation.
2227 void
2228 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2229 const unsigned char*, size_t, Output_section*,
2230 bool, const unsigned char*, Arm_address,
2231 section_size_type);
2232
43d12afe
DK
2233 // Relocate a stub.
2234 void
2fb7225c 2235 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2236 Output_section*, unsigned char*, Arm_address,
2237 section_size_type);
2238
b569affa 2239 // Get the default ARM target.
43d12afe 2240 static Target_arm<big_endian>*
b569affa
DK
2241 default_target()
2242 {
2243 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2244 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2245 return static_cast<Target_arm<big_endian>*>(
2246 parameters->sized_target<32, big_endian>());
b569affa
DK
2247 }
2248
20138696
DK
2249 // Whether NAME belongs to a mapping symbol.
2250 static bool
2251 is_mapping_symbol_name(const char* name)
2252 {
2253 return (name
2254 && name[0] == '$'
2255 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2256 && (name[2] == '\0' || name[2] == '.'));
2257 }
2258
a120bc7f
DK
2259 // Whether we work around the Cortex-A8 erratum.
2260 bool
2261 fix_cortex_a8() const
2262 { return this->fix_cortex_a8_; }
2263
a2162063
ILT
2264 // Whether we fix R_ARM_V4BX relocation.
2265 // 0 - do not fix
2266 // 1 - replace with MOV instruction (armv4 target)
2267 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2268 General_options::Fix_v4bx
a2162063 2269 fix_v4bx() const
9b2fd367 2270 { return parameters->options().fix_v4bx(); }
a2162063 2271
44272192
DK
2272 // Scan a span of THUMB code section for Cortex-A8 erratum.
2273 void
2274 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2275 section_size_type, section_size_type,
2276 const unsigned char*, Arm_address);
2277
41263c05
DK
2278 // Apply Cortex-A8 workaround to a branch.
2279 void
2280 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2281 unsigned char*, Arm_address);
2282
d5b40221 2283 protected:
eb44217c
DK
2284 // Make an ELF object.
2285 Object*
2286 do_make_elf_object(const std::string&, Input_file*, off_t,
2287 const elfcpp::Ehdr<32, big_endian>& ehdr);
2288
2289 Object*
2290 do_make_elf_object(const std::string&, Input_file*, off_t,
2291 const elfcpp::Ehdr<32, !big_endian>&)
2292 { gold_unreachable(); }
2293
2294 Object*
2295 do_make_elf_object(const std::string&, Input_file*, off_t,
2296 const elfcpp::Ehdr<64, false>&)
2297 { gold_unreachable(); }
2298
2299 Object*
2300 do_make_elf_object(const std::string&, Input_file*, off_t,
2301 const elfcpp::Ehdr<64, true>&)
2302 { gold_unreachable(); }
2303
2304 // Make an output section.
2305 Output_section*
2306 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2307 elfcpp::Elf_Xword flags)
2308 { return new Arm_output_section<big_endian>(name, type, flags); }
2309
d5b40221
DK
2310 void
2311 do_adjust_elf_header(unsigned char* view, int len) const;
2312
eb44217c
DK
2313 // We only need to generate stubs, and hence perform relaxation if we are
2314 // not doing relocatable linking.
2315 bool
2316 do_may_relax() const
2317 { return !parameters->options().relocatable(); }
2318
2319 bool
2320 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2321
a0351a69
DK
2322 // Determine whether an object attribute tag takes an integer, a
2323 // string or both.
2324 int
2325 do_attribute_arg_type(int tag) const;
2326
2327 // Reorder tags during output.
2328 int
2329 do_attributes_order(int num) const;
2330
0d31c79d
DK
2331 // This is called when the target is selected as the default.
2332 void
2333 do_select_as_default_target()
2334 {
2335 // No locking is required since there should only be one default target.
2336 // We cannot have both the big-endian and little-endian ARM targets
2337 // as the default.
2338 gold_assert(arm_reloc_property_table == NULL);
2339 arm_reloc_property_table = new Arm_reloc_property_table();
2340 }
2341
4a657b0d
DK
2342 private:
2343 // The class which scans relocations.
2344 class Scan
2345 {
2346 public:
2347 Scan()
bec53400 2348 : issued_non_pic_error_(false)
4a657b0d
DK
2349 { }
2350
2351 inline void
ad0f2072 2352 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2353 Sized_relobj<32, big_endian>* object,
2354 unsigned int data_shndx,
2355 Output_section* output_section,
2356 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2357 const elfcpp::Sym<32, big_endian>& lsym);
2358
2359 inline void
ad0f2072 2360 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2361 Sized_relobj<32, big_endian>* object,
2362 unsigned int data_shndx,
2363 Output_section* output_section,
2364 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2365 Symbol* gsym);
2366
21bb3914
ST
2367 inline bool
2368 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2369 Sized_relobj<32, big_endian>* ,
2370 unsigned int ,
2371 Output_section* ,
2372 const elfcpp::Rel<32, big_endian>& ,
2373 unsigned int ,
2374 const elfcpp::Sym<32, big_endian>&)
2375 { return false; }
2376
2377 inline bool
2378 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2379 Sized_relobj<32, big_endian>* ,
2380 unsigned int ,
2381 Output_section* ,
2382 const elfcpp::Rel<32, big_endian>& ,
2383 unsigned int , Symbol*)
2384 { return false; }
2385
4a657b0d
DK
2386 private:
2387 static void
2388 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2389 unsigned int r_type);
2390
2391 static void
2392 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2393 unsigned int r_type, Symbol*);
bec53400
DK
2394
2395 void
2396 check_non_pic(Relobj*, unsigned int r_type);
2397
2398 // Almost identical to Symbol::needs_plt_entry except that it also
2399 // handles STT_ARM_TFUNC.
2400 static bool
2401 symbol_needs_plt_entry(const Symbol* sym)
2402 {
2403 // An undefined symbol from an executable does not need a PLT entry.
2404 if (sym->is_undefined() && !parameters->options().shared())
2405 return false;
2406
2407 return (!parameters->doing_static_link()
2408 && (sym->type() == elfcpp::STT_FUNC
2409 || sym->type() == elfcpp::STT_ARM_TFUNC)
2410 && (sym->is_from_dynobj()
2411 || sym->is_undefined()
2412 || sym->is_preemptible()));
2413 }
2414
2415 // Whether we have issued an error about a non-PIC compilation.
2416 bool issued_non_pic_error_;
4a657b0d
DK
2417 };
2418
2419 // The class which implements relocation.
2420 class Relocate
2421 {
2422 public:
2423 Relocate()
2424 { }
2425
2426 ~Relocate()
2427 { }
2428
bec53400
DK
2429 // Return whether the static relocation needs to be applied.
2430 inline bool
2431 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2432 int ref_flags,
2433 bool is_32bit,
2434 Output_section* output_section);
2435
4a657b0d
DK
2436 // Do a relocation. Return false if the caller should not issue
2437 // any warnings about this relocation.
2438 inline bool
2439 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2440 Output_section*, size_t relnum,
2441 const elfcpp::Rel<32, big_endian>&,
2442 unsigned int r_type, const Sized_symbol<32>*,
2443 const Symbol_value<32>*,
ebabffbd 2444 unsigned char*, Arm_address,
4a657b0d 2445 section_size_type);
c121c671
DK
2446
2447 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2448 // reloc. This means the relocation type accesses a symbol not via
2449 // GOT or PLT.
c121c671
DK
2450 static inline bool
2451 reloc_is_non_pic (unsigned int r_type)
2452 {
2453 switch (r_type)
2454 {
f4e5969c
DK
2455 // These relocation types reference GOT or PLT entries explicitly.
2456 case elfcpp::R_ARM_GOT_BREL:
2457 case elfcpp::R_ARM_GOT_ABS:
2458 case elfcpp::R_ARM_GOT_PREL:
2459 case elfcpp::R_ARM_GOT_BREL12:
2460 case elfcpp::R_ARM_PLT32_ABS:
2461 case elfcpp::R_ARM_TLS_GD32:
2462 case elfcpp::R_ARM_TLS_LDM32:
2463 case elfcpp::R_ARM_TLS_IE32:
2464 case elfcpp::R_ARM_TLS_IE12GP:
2465
2466 // These relocate types may use PLT entries.
c121c671 2467 case elfcpp::R_ARM_CALL:
f4e5969c 2468 case elfcpp::R_ARM_THM_CALL:
c121c671 2469 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2470 case elfcpp::R_ARM_THM_JUMP24:
2471 case elfcpp::R_ARM_THM_JUMP19:
2472 case elfcpp::R_ARM_PLT32:
2473 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2474 case elfcpp::R_ARM_PREL31:
2475 case elfcpp::R_ARM_SBREL31:
c121c671 2476 return false;
f4e5969c
DK
2477
2478 default:
2479 return true;
c121c671
DK
2480 }
2481 }
f96accdf
DK
2482
2483 private:
2484 // Do a TLS relocation.
2485 inline typename Arm_relocate_functions<big_endian>::Status
2486 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2487 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2488 const Sized_symbol<32>*, const Symbol_value<32>*,
2489 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2490 section_size_type);
2491
4a657b0d
DK
2492 };
2493
2494 // A class which returns the size required for a relocation type,
2495 // used while scanning relocs during a relocatable link.
2496 class Relocatable_size_for_reloc
2497 {
2498 public:
2499 unsigned int
2500 get_size_for_reloc(unsigned int, Relobj*);
2501 };
2502
f96accdf
DK
2503 // Adjust TLS relocation type based on the options and whether this
2504 // is a local symbol.
2505 static tls::Tls_optimization
2506 optimize_tls_reloc(bool is_final, int r_type);
2507
94cdfcff 2508 // Get the GOT section, creating it if necessary.
4a54abbb 2509 Arm_output_data_got<big_endian>*
94cdfcff
DK
2510 got_section(Symbol_table*, Layout*);
2511
2512 // Get the GOT PLT section.
2513 Output_data_space*
2514 got_plt_section() const
2515 {
2516 gold_assert(this->got_plt_ != NULL);
2517 return this->got_plt_;
2518 }
2519
2520 // Create a PLT entry for a global symbol.
2521 void
2522 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2523
f96accdf
DK
2524 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2525 void
2526 define_tls_base_symbol(Symbol_table*, Layout*);
2527
2528 // Create a GOT entry for the TLS module index.
2529 unsigned int
2530 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2531 Sized_relobj<32, big_endian>* object);
2532
94cdfcff
DK
2533 // Get the PLT section.
2534 const Output_data_plt_arm<big_endian>*
2535 plt_section() const
2536 {
2537 gold_assert(this->plt_ != NULL);
2538 return this->plt_;
2539 }
2540
2541 // Get the dynamic reloc section, creating it if necessary.
2542 Reloc_section*
2543 rel_dyn_section(Layout*);
2544
f96accdf
DK
2545 // Get the section to use for TLS_DESC relocations.
2546 Reloc_section*
2547 rel_tls_desc_section(Layout*) const;
2548
94cdfcff
DK
2549 // Return true if the symbol may need a COPY relocation.
2550 // References from an executable object to non-function symbols
2551 // defined in a dynamic object may need a COPY relocation.
2552 bool
2553 may_need_copy_reloc(Symbol* gsym)
2554 {
966d4097
DK
2555 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2556 && gsym->may_need_copy_reloc());
94cdfcff
DK
2557 }
2558
2559 // Add a potential copy relocation.
2560 void
2561 copy_reloc(Symbol_table* symtab, Layout* layout,
2562 Sized_relobj<32, big_endian>* object,
2ea97941 2563 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2564 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2565 {
2566 this->copy_relocs_.copy_reloc(symtab, layout,
2567 symtab->get_sized_symbol<32>(sym),
2ea97941 2568 object, shndx, output_section, reloc,
94cdfcff
DK
2569 this->rel_dyn_section(layout));
2570 }
2571
d5b40221
DK
2572 // Whether two EABI versions are compatible.
2573 static bool
2574 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2575
2576 // Merge processor-specific flags from input object and those in the ELF
2577 // header of the output.
2578 void
2579 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2580
a0351a69
DK
2581 // Get the secondary compatible architecture.
2582 static int
2583 get_secondary_compatible_arch(const Attributes_section_data*);
2584
2585 // Set the secondary compatible architecture.
2586 static void
2587 set_secondary_compatible_arch(Attributes_section_data*, int);
2588
2589 static int
2590 tag_cpu_arch_combine(const char*, int, int*, int, int);
2591
2592 // Helper to print AEABI enum tag value.
2593 static std::string
2594 aeabi_enum_name(unsigned int);
2595
2596 // Return string value for TAG_CPU_name.
2597 static std::string
2598 tag_cpu_name_value(unsigned int);
2599
2600 // Merge object attributes from input object and those in the output.
2601 void
2602 merge_object_attributes(const char*, const Attributes_section_data*);
2603
2604 // Helper to get an AEABI object attribute
2605 Object_attribute*
2606 get_aeabi_object_attribute(int tag) const
2607 {
2608 Attributes_section_data* pasd = this->attributes_section_data_;
2609 gold_assert(pasd != NULL);
2610 Object_attribute* attr =
2611 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2612 gold_assert(attr != NULL);
2613 return attr;
2614 }
2615
eb44217c
DK
2616 //
2617 // Methods to support stub-generations.
2618 //
d5b40221 2619
eb44217c
DK
2620 // Group input sections for stub generation.
2621 void
2622 group_sections(Layout*, section_size_type, bool);
d5b40221 2623
eb44217c
DK
2624 // Scan a relocation for stub generation.
2625 void
2626 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2627 const Sized_symbol<32>*, unsigned int,
2628 const Symbol_value<32>*,
2629 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2630
eb44217c
DK
2631 // Scan a relocation section for stub.
2632 template<int sh_type>
2633 void
2634 scan_reloc_section_for_stubs(
2635 const Relocate_info<32, big_endian>* relinfo,
2636 const unsigned char* prelocs,
2637 size_t reloc_count,
2638 Output_section* output_section,
2639 bool needs_special_offset_handling,
2640 const unsigned char* view,
2641 elfcpp::Elf_types<32>::Elf_Addr view_address,
2642 section_size_type);
d5b40221 2643
2b328d4e
DK
2644 // Fix .ARM.exidx section coverage.
2645 void
2646 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2647
2648 // Functors for STL set.
2649 struct output_section_address_less_than
2650 {
2651 bool
2652 operator()(const Output_section* s1, const Output_section* s2) const
2653 { return s1->address() < s2->address(); }
2654 };
2655
4a657b0d
DK
2656 // Information about this specific target which we pass to the
2657 // general Target structure.
2658 static const Target::Target_info arm_info;
94cdfcff
DK
2659
2660 // The types of GOT entries needed for this platform.
2661 enum Got_type
2662 {
f96accdf
DK
2663 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2664 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2665 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2666 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2667 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2668 };
2669
55da9579
DK
2670 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2671
2672 // Map input section to Arm_input_section.
5ac169d4 2673 typedef Unordered_map<Section_id,
55da9579 2674 Arm_input_section<big_endian>*,
5ac169d4 2675 Section_id_hash>
55da9579
DK
2676 Arm_input_section_map;
2677
a120bc7f
DK
2678 // Map output addresses to relocs for Cortex-A8 erratum.
2679 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2680 Cortex_a8_relocs_info;
2681
94cdfcff 2682 // The GOT section.
4a54abbb 2683 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2684 // The PLT section.
2685 Output_data_plt_arm<big_endian>* plt_;
2686 // The GOT PLT section.
2687 Output_data_space* got_plt_;
2688 // The dynamic reloc section.
2689 Reloc_section* rel_dyn_;
2690 // Relocs saved to avoid a COPY reloc.
2691 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2692 // Space for variables copied with a COPY reloc.
2693 Output_data_space* dynbss_;
f96accdf
DK
2694 // Offset of the GOT entry for the TLS module index.
2695 unsigned int got_mod_index_offset_;
2696 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2697 bool tls_base_symbol_defined_;
55da9579
DK
2698 // Vector of Stub_tables created.
2699 Stub_table_list stub_tables_;
2700 // Stub factory.
2701 const Stub_factory &stub_factory_;
b569affa
DK
2702 // Whether we can use BLX.
2703 bool may_use_blx_;
2704 // Whether we force PIC branch veneers.
2705 bool should_force_pic_veneer_;
eb44217c
DK
2706 // Map for locating Arm_input_sections.
2707 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2708 // Attributes section data in output.
2709 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2710 // Whether we want to fix code for Cortex-A8 erratum.
2711 bool fix_cortex_a8_;
2712 // Map addresses to relocs for Cortex-A8 erratum.
2713 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2714};
2715
2716template<bool big_endian>
2717const Target::Target_info Target_arm<big_endian>::arm_info =
2718{
2719 32, // size
2720 big_endian, // is_big_endian
2721 elfcpp::EM_ARM, // machine_code
2722 false, // has_make_symbol
2723 false, // has_resolve
2724 false, // has_code_fill
2725 true, // is_default_stack_executable
2726 '\0', // wrap_char
2727 "/usr/lib/libc.so.1", // dynamic_linker
2728 0x8000, // default_text_segment_address
2729 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2730 0x1000, // common_pagesize (overridable by -z common-page-size)
2731 elfcpp::SHN_UNDEF, // small_common_shndx
2732 elfcpp::SHN_UNDEF, // large_common_shndx
2733 0, // small_common_section_flags
05a352e6
DK
2734 0, // large_common_section_flags
2735 ".ARM.attributes", // attributes_section
2736 "aeabi" // attributes_vendor
4a657b0d
DK
2737};
2738
c121c671
DK
2739// Arm relocate functions class
2740//
2741
2742template<bool big_endian>
2743class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2744{
2745 public:
2746 typedef enum
2747 {
2748 STATUS_OKAY, // No error during relocation.
2749 STATUS_OVERFLOW, // Relocation oveflow.
2750 STATUS_BAD_RELOC // Relocation cannot be applied.
2751 } Status;
2752
2753 private:
2754 typedef Relocate_functions<32, big_endian> Base;
2755 typedef Arm_relocate_functions<big_endian> This;
2756
fd3c5f0b
ILT
2757 // Encoding of imm16 argument for movt and movw ARM instructions
2758 // from ARM ARM:
2759 //
2760 // imm16 := imm4 | imm12
2761 //
2762 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2763 // +-------+---------------+-------+-------+-----------------------+
2764 // | | |imm4 | |imm12 |
2765 // +-------+---------------+-------+-------+-----------------------+
2766
2767 // Extract the relocation addend from VAL based on the ARM
2768 // instruction encoding described above.
2769 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2770 extract_arm_movw_movt_addend(
2771 typename elfcpp::Swap<32, big_endian>::Valtype val)
2772 {
2773 // According to the Elf ABI for ARM Architecture the immediate
2774 // field is sign-extended to form the addend.
2775 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2776 }
2777
2778 // Insert X into VAL based on the ARM instruction encoding described
2779 // above.
2780 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2781 insert_val_arm_movw_movt(
2782 typename elfcpp::Swap<32, big_endian>::Valtype val,
2783 typename elfcpp::Swap<32, big_endian>::Valtype x)
2784 {
2785 val &= 0xfff0f000;
2786 val |= x & 0x0fff;
2787 val |= (x & 0xf000) << 4;
2788 return val;
2789 }
2790
2791 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2792 // from ARM ARM:
2793 //
2794 // imm16 := imm4 | i | imm3 | imm8
2795 //
2796 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2797 // +---------+-+-----------+-------++-+-----+-------+---------------+
2798 // | |i| |imm4 || |imm3 | |imm8 |
2799 // +---------+-+-----------+-------++-+-----+-------+---------------+
2800
2801 // Extract the relocation addend from VAL based on the Thumb2
2802 // instruction encoding described above.
2803 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2804 extract_thumb_movw_movt_addend(
2805 typename elfcpp::Swap<32, big_endian>::Valtype val)
2806 {
2807 // According to the Elf ABI for ARM Architecture the immediate
2808 // field is sign-extended to form the addend.
2809 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2810 | ((val >> 15) & 0x0800)
2811 | ((val >> 4) & 0x0700)
2812 | (val & 0x00ff));
2813 }
2814
2815 // Insert X into VAL based on the Thumb2 instruction encoding
2816 // described above.
2817 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2818 insert_val_thumb_movw_movt(
2819 typename elfcpp::Swap<32, big_endian>::Valtype val,
2820 typename elfcpp::Swap<32, big_endian>::Valtype x)
2821 {
2822 val &= 0xfbf08f00;
2823 val |= (x & 0xf000) << 4;
2824 val |= (x & 0x0800) << 15;
2825 val |= (x & 0x0700) << 4;
2826 val |= (x & 0x00ff);
2827 return val;
2828 }
2829
b10d2873
ILT
2830 // Calculate the smallest constant Kn for the specified residual.
2831 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2832 static uint32_t
2833 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2834 {
2835 int32_t msb;
2836
2837 if (residual == 0)
2838 return 0;
2839 // Determine the most significant bit in the residual and
2840 // align the resulting value to a 2-bit boundary.
2841 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2842 ;
2843 // The desired shift is now (msb - 6), or zero, whichever
2844 // is the greater.
2845 return (((msb - 6) < 0) ? 0 : (msb - 6));
2846 }
2847
2848 // Calculate the final residual for the specified group index.
2849 // If the passed group index is less than zero, the method will return
2850 // the value of the specified residual without any change.
2851 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2852 static typename elfcpp::Swap<32, big_endian>::Valtype
2853 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2854 const int group)
2855 {
2856 for (int n = 0; n <= group; n++)
2857 {
2858 // Calculate which part of the value to mask.
2859 uint32_t shift = calc_grp_kn(residual);
2860 // Calculate the residual for the next time around.
2861 residual &= ~(residual & (0xff << shift));
2862 }
2863
2864 return residual;
2865 }
2866
2867 // Calculate the value of Gn for the specified group index.
2868 // We return it in the form of an encoded constant-and-rotation.
2869 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2870 static typename elfcpp::Swap<32, big_endian>::Valtype
2871 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2872 const int group)
2873 {
2874 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2875 uint32_t shift = 0;
2876
2877 for (int n = 0; n <= group; n++)
2878 {
2879 // Calculate which part of the value to mask.
2880 shift = calc_grp_kn(residual);
2881 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2882 gn = residual & (0xff << shift);
2883 // Calculate the residual for the next time around.
2884 residual &= ~gn;
2885 }
2886 // Return Gn in the form of an encoded constant-and-rotation.
2887 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2888 }
2889
1521477a 2890 public:
d204b6e9
DK
2891 // Handle ARM long branches.
2892 static typename This::Status
2893 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2894 unsigned char *, const Sized_symbol<32>*,
2895 const Arm_relobj<big_endian>*, unsigned int,
2896 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 2897
51938283
DK
2898 // Handle THUMB long branches.
2899 static typename This::Status
2900 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2901 unsigned char *, const Sized_symbol<32>*,
2902 const Arm_relobj<big_endian>*, unsigned int,
2903 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2904
5e445df6 2905
089d69dc
DK
2906 // Return the branch offset of a 32-bit THUMB branch.
2907 static inline int32_t
2908 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2909 {
2910 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2911 // involving the J1 and J2 bits.
2912 uint32_t s = (upper_insn & (1U << 10)) >> 10;
2913 uint32_t upper = upper_insn & 0x3ffU;
2914 uint32_t lower = lower_insn & 0x7ffU;
2915 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2916 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2917 uint32_t i1 = j1 ^ s ? 0 : 1;
2918 uint32_t i2 = j2 ^ s ? 0 : 1;
2919
2920 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2921 | (upper << 12) | (lower << 1));
2922 }
2923
2924 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2925 // UPPER_INSN is the original upper instruction of the branch. Caller is
2926 // responsible for overflow checking and BLX offset adjustment.
2927 static inline uint16_t
2928 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2929 {
2930 uint32_t s = offset < 0 ? 1 : 0;
2931 uint32_t bits = static_cast<uint32_t>(offset);
2932 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2933 }
2934
2935 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2936 // LOWER_INSN is the original lower instruction of the branch. Caller is
2937 // responsible for overflow checking and BLX offset adjustment.
2938 static inline uint16_t
2939 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2940 {
2941 uint32_t s = offset < 0 ? 1 : 0;
2942 uint32_t bits = static_cast<uint32_t>(offset);
2943 return ((lower_insn & ~0x2fffU)
2944 | ((((bits >> 23) & 1) ^ !s) << 13)
2945 | ((((bits >> 22) & 1) ^ !s) << 11)
2946 | ((bits >> 1) & 0x7ffU));
2947 }
2948
2949 // Return the branch offset of a 32-bit THUMB conditional branch.
2950 static inline int32_t
2951 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2952 {
2953 uint32_t s = (upper_insn & 0x0400U) >> 10;
2954 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2955 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2956 uint32_t lower = (lower_insn & 0x07ffU);
2957 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2958
2959 return utils::sign_extend<21>((upper << 12) | (lower << 1));
2960 }
2961
2962 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2963 // instruction. UPPER_INSN is the original upper instruction of the branch.
2964 // Caller is responsible for overflow checking.
2965 static inline uint16_t
2966 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2967 {
2968 uint32_t s = offset < 0 ? 1 : 0;
2969 uint32_t bits = static_cast<uint32_t>(offset);
2970 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2971 }
2972
2973 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2974 // instruction. LOWER_INSN is the original lower instruction of the branch.
2975 // Caller is reponsible for overflow checking.
2976 static inline uint16_t
2977 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2978 {
2979 uint32_t bits = static_cast<uint32_t>(offset);
2980 uint32_t j2 = (bits & 0x00080000U) >> 19;
2981 uint32_t j1 = (bits & 0x00040000U) >> 18;
2982 uint32_t lo = (bits & 0x00000ffeU) >> 1;
2983
2984 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2985 }
2986
5e445df6
ILT
2987 // R_ARM_ABS8: S + A
2988 static inline typename This::Status
2989 abs8(unsigned char *view,
2990 const Sized_relobj<32, big_endian>* object,
be8fcb75 2991 const Symbol_value<32>* psymval)
5e445df6
ILT
2992 {
2993 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2994 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2995 Valtype* wv = reinterpret_cast<Valtype*>(view);
2996 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2997 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 2998 Reltype x = psymval->value(object, addend);
5e445df6
ILT
2999 val = utils::bit_select(val, x, 0xffU);
3000 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3001
3002 // R_ARM_ABS8 permits signed or unsigned results.
3003 int signed_x = static_cast<int32_t>(x);
3004 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3005 ? This::STATUS_OVERFLOW
3006 : This::STATUS_OKAY);
3007 }
3008
be8fcb75
ILT
3009 // R_ARM_THM_ABS5: S + A
3010 static inline typename This::Status
3011 thm_abs5(unsigned char *view,
3012 const Sized_relobj<32, big_endian>* object,
3013 const Symbol_value<32>* psymval)
3014 {
3015 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3016 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3017 Valtype* wv = reinterpret_cast<Valtype*>(view);
3018 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3019 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3020 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3021 val = utils::bit_select(val, x << 6, 0x7e0U);
3022 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3023
3024 // R_ARM_ABS16 permits signed or unsigned results.
3025 int signed_x = static_cast<int32_t>(x);
3026 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3027 ? This::STATUS_OVERFLOW
3028 : This::STATUS_OKAY);
3029 }
3030
3031 // R_ARM_ABS12: S + A
3032 static inline typename This::Status
3033 abs12(unsigned char *view,
51938283
DK
3034 const Sized_relobj<32, big_endian>* object,
3035 const Symbol_value<32>* psymval)
be8fcb75
ILT
3036 {
3037 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3038 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3039 Valtype* wv = reinterpret_cast<Valtype*>(view);
3040 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3041 Reltype addend = val & 0x0fffU;
2daedcd6 3042 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3043 val = utils::bit_select(val, x, 0x0fffU);
3044 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3045 return (utils::has_overflow<12>(x)
3046 ? This::STATUS_OVERFLOW
3047 : This::STATUS_OKAY);
3048 }
3049
3050 // R_ARM_ABS16: S + A
3051 static inline typename This::Status
3052 abs16(unsigned char *view,
51938283
DK
3053 const Sized_relobj<32, big_endian>* object,
3054 const Symbol_value<32>* psymval)
be8fcb75
ILT
3055 {
3056 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3057 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3058 Valtype* wv = reinterpret_cast<Valtype*>(view);
3059 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3060 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 3061 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3062 val = utils::bit_select(val, x, 0xffffU);
3063 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3064 return (utils::has_signed_unsigned_overflow<16>(x)
3065 ? This::STATUS_OVERFLOW
3066 : This::STATUS_OKAY);
3067 }
3068
c121c671
DK
3069 // R_ARM_ABS32: (S + A) | T
3070 static inline typename This::Status
3071 abs32(unsigned char *view,
3072 const Sized_relobj<32, big_endian>* object,
3073 const Symbol_value<32>* psymval,
2daedcd6 3074 Arm_address thumb_bit)
c121c671
DK
3075 {
3076 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3077 Valtype* wv = reinterpret_cast<Valtype*>(view);
3078 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3079 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
3080 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3081 return This::STATUS_OKAY;
3082 }
3083
3084 // R_ARM_REL32: (S + A) | T - P
3085 static inline typename This::Status
3086 rel32(unsigned char *view,
3087 const Sized_relobj<32, big_endian>* object,
3088 const Symbol_value<32>* psymval,
ebabffbd 3089 Arm_address address,
2daedcd6 3090 Arm_address thumb_bit)
c121c671
DK
3091 {
3092 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3093 Valtype* wv = reinterpret_cast<Valtype*>(view);
3094 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3095 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3096 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3097 return This::STATUS_OKAY;
3098 }
3099
089d69dc
DK
3100 // R_ARM_THM_JUMP24: (S + A) | T - P
3101 static typename This::Status
3102 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3103 const Symbol_value<32>* psymval, Arm_address address,
3104 Arm_address thumb_bit);
3105
800d0f56
ILT
3106 // R_ARM_THM_JUMP6: S + A – P
3107 static inline typename This::Status
3108 thm_jump6(unsigned char *view,
3109 const Sized_relobj<32, big_endian>* object,
3110 const Symbol_value<32>* psymval,
3111 Arm_address address)
3112 {
3113 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3114 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3115 Valtype* wv = reinterpret_cast<Valtype*>(view);
3116 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3117 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3118 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3119 Reltype x = (psymval->value(object, addend) - address);
3120 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3121 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3122 // CZB does only forward jumps.
3123 return ((x > 0x007e)
3124 ? This::STATUS_OVERFLOW
3125 : This::STATUS_OKAY);
3126 }
3127
3128 // R_ARM_THM_JUMP8: S + A – P
3129 static inline typename This::Status
3130 thm_jump8(unsigned char *view,
3131 const Sized_relobj<32, big_endian>* object,
3132 const Symbol_value<32>* psymval,
3133 Arm_address address)
3134 {
3135 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3137 Valtype* wv = reinterpret_cast<Valtype*>(view);
3138 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3139 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3140 Reltype x = (psymval->value(object, addend) - address);
3141 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3142 return (utils::has_overflow<8>(x)
3143 ? This::STATUS_OVERFLOW
3144 : This::STATUS_OKAY);
3145 }
3146
3147 // R_ARM_THM_JUMP11: S + A – P
3148 static inline typename This::Status
3149 thm_jump11(unsigned char *view,
3150 const Sized_relobj<32, big_endian>* object,
3151 const Symbol_value<32>* psymval,
3152 Arm_address address)
3153 {
3154 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3155 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3156 Valtype* wv = reinterpret_cast<Valtype*>(view);
3157 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3158 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3159 Reltype x = (psymval->value(object, addend) - address);
3160 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3161 return (utils::has_overflow<11>(x)
3162 ? This::STATUS_OVERFLOW
3163 : This::STATUS_OKAY);
3164 }
3165
c121c671
DK
3166 // R_ARM_BASE_PREL: B(S) + A - P
3167 static inline typename This::Status
3168 base_prel(unsigned char* view,
ebabffbd
DK
3169 Arm_address origin,
3170 Arm_address address)
c121c671
DK
3171 {
3172 Base::rel32(view, origin - address);
3173 return STATUS_OKAY;
3174 }
3175
be8fcb75
ILT
3176 // R_ARM_BASE_ABS: B(S) + A
3177 static inline typename This::Status
3178 base_abs(unsigned char* view,
f4e5969c 3179 Arm_address origin)
be8fcb75
ILT
3180 {
3181 Base::rel32(view, origin);
3182 return STATUS_OKAY;
3183 }
3184
c121c671
DK
3185 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3186 static inline typename This::Status
3187 got_brel(unsigned char* view,
3188 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3189 {
3190 Base::rel32(view, got_offset);
3191 return This::STATUS_OKAY;
3192 }
3193
f4e5969c 3194 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3195 static inline typename This::Status
f4e5969c
DK
3196 got_prel(unsigned char *view,
3197 Arm_address got_entry,
ebabffbd 3198 Arm_address address)
7f5309a5 3199 {
f4e5969c 3200 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3201 return This::STATUS_OKAY;
3202 }
3203
c121c671
DK
3204 // R_ARM_PREL: (S + A) | T - P
3205 static inline typename This::Status
3206 prel31(unsigned char *view,
3207 const Sized_relobj<32, big_endian>* object,
3208 const Symbol_value<32>* psymval,
ebabffbd 3209 Arm_address address,
2daedcd6 3210 Arm_address thumb_bit)
c121c671
DK
3211 {
3212 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3213 Valtype* wv = reinterpret_cast<Valtype*>(view);
3214 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3215 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3217 val = utils::bit_select(val, x, 0x7fffffffU);
3218 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3219 return (utils::has_overflow<31>(x) ?
3220 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3221 }
fd3c5f0b 3222
5c57f1be 3223 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3224 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3225 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3226 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3227 static inline typename This::Status
5c57f1be
DK
3228 movw(unsigned char* view,
3229 const Sized_relobj<32, big_endian>* object,
3230 const Symbol_value<32>* psymval,
3231 Arm_address relative_address_base,
3232 Arm_address thumb_bit,
3233 bool check_overflow)
02961d7e
ILT
3234 {
3235 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3238 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3239 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3240 - relative_address_base);
02961d7e
ILT
3241 val = This::insert_val_arm_movw_movt(val, x);
3242 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be
DK
3243 return ((check_overflow && utils::has_overflow<16>(x))
3244 ? This::STATUS_OVERFLOW
3245 : This::STATUS_OKAY);
02961d7e
ILT
3246 }
3247
5c57f1be 3248 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3249 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3250 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3251 static inline typename This::Status
5c57f1be
DK
3252 movt(unsigned char* view,
3253 const Sized_relobj<32, big_endian>* object,
3254 const Symbol_value<32>* psymval,
3255 Arm_address relative_address_base)
c2a122b6
ILT
3256 {
3257 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3260 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3261 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3262 val = This::insert_val_arm_movw_movt(val, x);
3263 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3264 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3265 return This::STATUS_OKAY;
3266 }
3267
5c57f1be 3268 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3269 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3270 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3271 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3272 static inline typename This::Status
5c57f1be
DK
3273 thm_movw(unsigned char *view,
3274 const Sized_relobj<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address relative_address_base,
3277 Arm_address thumb_bit,
3278 bool check_overflow)
02961d7e
ILT
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3284 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3285 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3286 Reltype x =
3287 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3288 val = This::insert_val_thumb_movw_movt(val, x);
3289 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3290 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
5c57f1be
DK
3291 return ((check_overflow && utils::has_overflow<16>(x))
3292 ? This::STATUS_OVERFLOW
3293 : This::STATUS_OKAY);
02961d7e
ILT
3294 }
3295
5c57f1be 3296 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3297 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3298 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3299 static inline typename This::Status
5c57f1be
DK
3300 thm_movt(unsigned char* view,
3301 const Sized_relobj<32, big_endian>* object,
3302 const Symbol_value<32>* psymval,
3303 Arm_address relative_address_base)
c2a122b6
ILT
3304 {
3305 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3306 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3307 Valtype* wv = reinterpret_cast<Valtype*>(view);
3308 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3309 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3310 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3311 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3312 val = This::insert_val_thumb_movw_movt(val, x);
3313 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3314 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3315 return This::STATUS_OKAY;
3316 }
a2162063 3317
11b861d5
DK
3318 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3319 static inline typename This::Status
3320 thm_alu11(unsigned char* view,
3321 const Sized_relobj<32, big_endian>* object,
3322 const Symbol_value<32>* psymval,
3323 Arm_address address,
3324 Arm_address thumb_bit)
3325 {
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3327 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3328 Valtype* wv = reinterpret_cast<Valtype*>(view);
3329 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3330 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3331
3332 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3333 // -----------------------------------------------------------------------
3334 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3335 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3336 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3337 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3338 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3339 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3340
3341 // Determine a sign for the addend.
3342 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3343 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3344 // Thumb2 addend encoding:
3345 // imm12 := i | imm3 | imm8
3346 int32_t addend = (insn & 0xff)
3347 | ((insn & 0x00007000) >> 4)
3348 | ((insn & 0x04000000) >> 15);
3349 // Apply a sign to the added.
3350 addend *= sign;
3351
3352 int32_t x = (psymval->value(object, addend) | thumb_bit)
3353 - (address & 0xfffffffc);
3354 Reltype val = abs(x);
3355 // Mask out the value and a distinct part of the ADD/SUB opcode
3356 // (bits 7:5 of opword).
3357 insn = (insn & 0xfb0f8f00)
3358 | (val & 0xff)
3359 | ((val & 0x700) << 4)
3360 | ((val & 0x800) << 15);
3361 // Set the opcode according to whether the value to go in the
3362 // place is negative.
3363 if (x < 0)
3364 insn |= 0x00a00000;
3365
3366 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3367 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3368 return ((val > 0xfff) ?
3369 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3370 }
3371
3372 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3373 static inline typename This::Status
3374 thm_pc8(unsigned char* view,
3375 const Sized_relobj<32, big_endian>* object,
3376 const Symbol_value<32>* psymval,
3377 Arm_address address)
3378 {
3379 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3381 Valtype* wv = reinterpret_cast<Valtype*>(view);
3382 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3383 Reltype addend = ((insn & 0x00ff) << 2);
3384 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3385 Reltype val = abs(x);
3386 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3387
3388 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3389 return ((val > 0x03fc)
3390 ? This::STATUS_OVERFLOW
3391 : This::STATUS_OKAY);
3392 }
3393
3394 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3395 static inline typename This::Status
3396 thm_pc12(unsigned char* view,
3397 const Sized_relobj<32, big_endian>* object,
3398 const Symbol_value<32>* psymval,
3399 Arm_address address)
3400 {
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 // Determine a sign for the addend (positive if the U bit is 1).
3407 const int sign = (insn & 0x00800000) ? 1 : -1;
3408 int32_t addend = (insn & 0xfff);
3409 // Apply a sign to the added.
3410 addend *= sign;
3411
3412 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3413 Reltype val = abs(x);
3414 // Mask out and apply the value and the U bit.
3415 insn = (insn & 0xff7ff000) | (val & 0xfff);
3416 // Set the U bit according to whether the value to go in the
3417 // place is positive.
3418 if (x >= 0)
3419 insn |= 0x00800000;
3420
3421 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3422 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3423 return ((val > 0xfff) ?
3424 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3425 }
3426
a2162063
ILT
3427 // R_ARM_V4BX
3428 static inline typename This::Status
3429 v4bx(const Relocate_info<32, big_endian>* relinfo,
3430 unsigned char *view,
3431 const Arm_relobj<big_endian>* object,
3432 const Arm_address address,
3433 const bool is_interworking)
3434 {
3435
3436 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3437 Valtype* wv = reinterpret_cast<Valtype*>(view);
3438 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3439
3440 // Ensure that we have a BX instruction.
3441 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3442 const uint32_t reg = (val & 0xf);
3443 if (is_interworking && reg != 0xf)
3444 {
3445 Stub_table<big_endian>* stub_table =
3446 object->stub_table(relinfo->data_shndx);
3447 gold_assert(stub_table != NULL);
3448
3449 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3450 gold_assert(stub != NULL);
3451
3452 int32_t veneer_address =
3453 stub_table->address() + stub->offset() - 8 - address;
3454 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3455 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3456 // Replace with a branch to veneer (B <addr>)
3457 val = (val & 0xf0000000) | 0x0a000000
3458 | ((veneer_address >> 2) & 0x00ffffff);
3459 }
3460 else
3461 {
3462 // Preserve Rm (lowest four bits) and the condition code
3463 // (highest four bits). Other bits encode MOV PC,Rm.
3464 val = (val & 0xf000000f) | 0x01a0f000;
3465 }
3466 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3467 return This::STATUS_OKAY;
3468 }
b10d2873
ILT
3469
3470 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3471 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3472 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3473 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3474 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3475 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3476 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3477 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3478 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3479 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3480 static inline typename This::Status
3481 arm_grp_alu(unsigned char* view,
3482 const Sized_relobj<32, big_endian>* object,
3483 const Symbol_value<32>* psymval,
3484 const int group,
3485 Arm_address address,
3486 Arm_address thumb_bit,
3487 bool check_overflow)
3488 {
5c57f1be 3489 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3490 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3491 Valtype* wv = reinterpret_cast<Valtype*>(view);
3492 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3493
3494 // ALU group relocations are allowed only for the ADD/SUB instructions.
3495 // (0x00800000 - ADD, 0x00400000 - SUB)
3496 const Valtype opcode = insn & 0x01e00000;
3497 if (opcode != 0x00800000 && opcode != 0x00400000)
3498 return This::STATUS_BAD_RELOC;
3499
3500 // Determine a sign for the addend.
3501 const int sign = (opcode == 0x00800000) ? 1 : -1;
3502 // shifter = rotate_imm * 2
3503 const uint32_t shifter = (insn & 0xf00) >> 7;
3504 // Initial addend value.
3505 int32_t addend = insn & 0xff;
3506 // Rotate addend right by shifter.
3507 addend = (addend >> shifter) | (addend << (32 - shifter));
3508 // Apply a sign to the added.
3509 addend *= sign;
3510
3511 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3512 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3513 // Check for overflow if required
3514 if (check_overflow
3515 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3516 return This::STATUS_OVERFLOW;
3517
3518 // Mask out the value and the ADD/SUB part of the opcode; take care
3519 // not to destroy the S bit.
3520 insn &= 0xff1ff000;
3521 // Set the opcode according to whether the value to go in the
3522 // place is negative.
3523 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3524 // Encode the offset (encoded Gn).
3525 insn |= gn;
3526
3527 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3528 return This::STATUS_OKAY;
3529 }
3530
3531 // R_ARM_LDR_PC_G0: S + A - P
3532 // R_ARM_LDR_PC_G1: S + A - P
3533 // R_ARM_LDR_PC_G2: S + A - P
3534 // R_ARM_LDR_SB_G0: S + A - B(S)
3535 // R_ARM_LDR_SB_G1: S + A - B(S)
3536 // R_ARM_LDR_SB_G2: S + A - B(S)
3537 static inline typename This::Status
3538 arm_grp_ldr(unsigned char* view,
3539 const Sized_relobj<32, big_endian>* object,
3540 const Symbol_value<32>* psymval,
3541 const int group,
3542 Arm_address address)
3543 {
5c57f1be 3544 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3545 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3546 Valtype* wv = reinterpret_cast<Valtype*>(view);
3547 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3548
3549 const int sign = (insn & 0x00800000) ? 1 : -1;
3550 int32_t addend = (insn & 0xfff) * sign;
3551 int32_t x = (psymval->value(object, addend) - address);
3552 // Calculate the relevant G(n-1) value to obtain this stage residual.
3553 Valtype residual =
3554 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3555 if (residual >= 0x1000)
3556 return This::STATUS_OVERFLOW;
3557
3558 // Mask out the value and U bit.
3559 insn &= 0xff7ff000;
3560 // Set the U bit for non-negative values.
3561 if (x >= 0)
3562 insn |= 0x00800000;
3563 insn |= residual;
3564
3565 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3566 return This::STATUS_OKAY;
3567 }
3568
3569 // R_ARM_LDRS_PC_G0: S + A - P
3570 // R_ARM_LDRS_PC_G1: S + A - P
3571 // R_ARM_LDRS_PC_G2: S + A - P
3572 // R_ARM_LDRS_SB_G0: S + A - B(S)
3573 // R_ARM_LDRS_SB_G1: S + A - B(S)
3574 // R_ARM_LDRS_SB_G2: S + A - B(S)
3575 static inline typename This::Status
3576 arm_grp_ldrs(unsigned char* view,
3577 const Sized_relobj<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 const int group,
3580 Arm_address address)
3581 {
5c57f1be 3582 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3583 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3584 Valtype* wv = reinterpret_cast<Valtype*>(view);
3585 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3586
3587 const int sign = (insn & 0x00800000) ? 1 : -1;
3588 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3589 int32_t x = (psymval->value(object, addend) - address);
3590 // Calculate the relevant G(n-1) value to obtain this stage residual.
3591 Valtype residual =
3592 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3593 if (residual >= 0x100)
3594 return This::STATUS_OVERFLOW;
3595
3596 // Mask out the value and U bit.
3597 insn &= 0xff7ff0f0;
3598 // Set the U bit for non-negative values.
3599 if (x >= 0)
3600 insn |= 0x00800000;
3601 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3602
3603 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3604 return This::STATUS_OKAY;
3605 }
3606
3607 // R_ARM_LDC_PC_G0: S + A - P
3608 // R_ARM_LDC_PC_G1: S + A - P
3609 // R_ARM_LDC_PC_G2: S + A - P
3610 // R_ARM_LDC_SB_G0: S + A - B(S)
3611 // R_ARM_LDC_SB_G1: S + A - B(S)
3612 // R_ARM_LDC_SB_G2: S + A - B(S)
3613 static inline typename This::Status
3614 arm_grp_ldc(unsigned char* view,
3615 const Sized_relobj<32, big_endian>* object,
3616 const Symbol_value<32>* psymval,
3617 const int group,
3618 Arm_address address)
3619 {
5c57f1be 3620 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3621 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3622 Valtype* wv = reinterpret_cast<Valtype*>(view);
3623 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3624
3625 const int sign = (insn & 0x00800000) ? 1 : -1;
3626 int32_t addend = ((insn & 0xff) << 2) * sign;
3627 int32_t x = (psymval->value(object, addend) - address);
3628 // Calculate the relevant G(n-1) value to obtain this stage residual.
3629 Valtype residual =
3630 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3631 if ((residual & 0x3) != 0 || residual >= 0x400)
3632 return This::STATUS_OVERFLOW;
3633
3634 // Mask out the value and U bit.
3635 insn &= 0xff7fff00;
3636 // Set the U bit for non-negative values.
3637 if (x >= 0)
3638 insn |= 0x00800000;
3639 insn |= (residual >> 2);
3640
3641 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3642 return This::STATUS_OKAY;
3643 }
c121c671
DK
3644};
3645
d204b6e9
DK
3646// Relocate ARM long branches. This handles relocation types
3647// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3648// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3649// undefined and we do not use PLT in this relocation. In such a case,
3650// the branch is converted into an NOP.
3651
3652template<bool big_endian>
3653typename Arm_relocate_functions<big_endian>::Status
3654Arm_relocate_functions<big_endian>::arm_branch_common(
3655 unsigned int r_type,
3656 const Relocate_info<32, big_endian>* relinfo,
3657 unsigned char *view,
3658 const Sized_symbol<32>* gsym,
3659 const Arm_relobj<big_endian>* object,
3660 unsigned int r_sym,
3661 const Symbol_value<32>* psymval,
3662 Arm_address address,
3663 Arm_address thumb_bit,
3664 bool is_weakly_undefined_without_plt)
3665{
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3669
3670 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3671 && ((val & 0x0f000000UL) == 0x0a000000UL);
3672 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3673 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3674 && ((val & 0x0f000000UL) == 0x0b000000UL);
3675 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3676 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3677
3678 // Check that the instruction is valid.
3679 if (r_type == elfcpp::R_ARM_CALL)
3680 {
3681 if (!insn_is_uncond_bl && !insn_is_blx)
3682 return This::STATUS_BAD_RELOC;
3683 }
3684 else if (r_type == elfcpp::R_ARM_JUMP24)
3685 {
3686 if (!insn_is_b && !insn_is_cond_bl)
3687 return This::STATUS_BAD_RELOC;
3688 }
3689 else if (r_type == elfcpp::R_ARM_PLT32)
3690 {
3691 if (!insn_is_any_branch)
3692 return This::STATUS_BAD_RELOC;
3693 }
3694 else if (r_type == elfcpp::R_ARM_XPC25)
3695 {
3696 // FIXME: AAELF document IH0044C does not say much about it other
3697 // than it being obsolete.
3698 if (!insn_is_any_branch)
3699 return This::STATUS_BAD_RELOC;
3700 }
3701 else
3702 gold_unreachable();
3703
3704 // A branch to an undefined weak symbol is turned into a jump to
3705 // the next instruction unless a PLT entry will be created.
3706 // Do the same for local undefined symbols.
3707 // The jump to the next instruction is optimized as a NOP depending
3708 // on the architecture.
3709 const Target_arm<big_endian>* arm_target =
3710 Target_arm<big_endian>::default_target();
3711 if (is_weakly_undefined_without_plt)
3712 {
3713 Valtype cond = val & 0xf0000000U;
3714 if (arm_target->may_use_arm_nop())
3715 val = cond | 0x0320f000;
3716 else
3717 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3718 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3719 return This::STATUS_OKAY;
3720 }
3721
3722 Valtype addend = utils::sign_extend<26>(val << 2);
3723 Valtype branch_target = psymval->value(object, addend);
3724 int32_t branch_offset = branch_target - address;
3725
3726 // We need a stub if the branch offset is too large or if we need
3727 // to switch mode.
3728 bool may_use_blx = arm_target->may_use_blx();
3729 Reloc_stub* stub = NULL;
2a2b6d42 3730 if (utils::has_overflow<26>(branch_offset)
d204b6e9
DK
3731 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3732 {
2a2b6d42
DK
3733 Valtype unadjusted_branch_target = psymval->value(object, 0);
3734
d204b6e9 3735 Stub_type stub_type =
2a2b6d42
DK
3736 Reloc_stub::stub_type_for_reloc(r_type, address,
3737 unadjusted_branch_target,
d204b6e9
DK
3738 (thumb_bit != 0));
3739 if (stub_type != arm_stub_none)
3740 {
2ea97941 3741 Stub_table<big_endian>* stub_table =
d204b6e9 3742 object->stub_table(relinfo->data_shndx);
2ea97941 3743 gold_assert(stub_table != NULL);
d204b6e9
DK
3744
3745 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3746 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3747 gold_assert(stub != NULL);
3748 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3749 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3750 branch_offset = branch_target - address;
2a2b6d42 3751 gold_assert(!utils::has_overflow<26>(branch_offset));
d204b6e9
DK
3752 }
3753 }
3754
3755 // At this point, if we still need to switch mode, the instruction
3756 // must either be a BLX or a BL that can be converted to a BLX.
3757 if (thumb_bit != 0)
3758 {
3759 // Turn BL to BLX.
3760 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3761 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3762 }
3763
3764 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3765 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3766 return (utils::has_overflow<26>(branch_offset)
3767 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3768}
3769
51938283
DK
3770// Relocate THUMB long branches. This handles relocation types
3771// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3772// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3773// undefined and we do not use PLT in this relocation. In such a case,
3774// the branch is converted into an NOP.
3775
3776template<bool big_endian>
3777typename Arm_relocate_functions<big_endian>::Status
3778Arm_relocate_functions<big_endian>::thumb_branch_common(
3779 unsigned int r_type,
3780 const Relocate_info<32, big_endian>* relinfo,
3781 unsigned char *view,
3782 const Sized_symbol<32>* gsym,
3783 const Arm_relobj<big_endian>* object,
3784 unsigned int r_sym,
3785 const Symbol_value<32>* psymval,
3786 Arm_address address,
3787 Arm_address thumb_bit,
3788 bool is_weakly_undefined_without_plt)
3789{
3790 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3791 Valtype* wv = reinterpret_cast<Valtype*>(view);
3792 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3793 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3794
3795 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3796 // into account.
3797 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3798 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3799
3800 // Check that the instruction is valid.
3801 if (r_type == elfcpp::R_ARM_THM_CALL)
3802 {
3803 if (!is_bl_insn && !is_blx_insn)
3804 return This::STATUS_BAD_RELOC;
3805 }
3806 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3807 {
3808 // This cannot be a BLX.
3809 if (!is_bl_insn)
3810 return This::STATUS_BAD_RELOC;
3811 }
3812 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3813 {
3814 // Check for Thumb to Thumb call.
3815 if (!is_blx_insn)
3816 return This::STATUS_BAD_RELOC;
3817 if (thumb_bit != 0)
3818 {
3819 gold_warning(_("%s: Thumb BLX instruction targets "
3820 "thumb function '%s'."),
3821 object->name().c_str(),
3822 (gsym ? gsym->name() : "(local)"));
3823 // Convert BLX to BL.
3824 lower_insn |= 0x1000U;
3825 }
3826 }
3827 else
3828 gold_unreachable();
3829
3830 // A branch to an undefined weak symbol is turned into a jump to
3831 // the next instruction unless a PLT entry will be created.
3832 // The jump to the next instruction is optimized as a NOP.W for
3833 // Thumb-2 enabled architectures.
3834 const Target_arm<big_endian>* arm_target =
3835 Target_arm<big_endian>::default_target();
3836 if (is_weakly_undefined_without_plt)
3837 {
3838 if (arm_target->may_use_thumb2_nop())
3839 {
3840 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3841 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3842 }
3843 else
3844 {
3845 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3846 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3847 }
3848 return This::STATUS_OKAY;
3849 }
3850
089d69dc 3851 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 3852 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
3853
3854 // For BLX, bit 1 of target address comes from bit 1 of base address.
3855 bool may_use_blx = arm_target->may_use_blx();
3856 if (thumb_bit == 0 && may_use_blx)
3857 branch_target = utils::bit_select(branch_target, address, 0x2);
3858
51938283
DK
3859 int32_t branch_offset = branch_target - address;
3860
3861 // We need a stub if the branch offset is too large or if we need
3862 // to switch mode.
51938283 3863 bool thumb2 = arm_target->using_thumb2();
2a2b6d42
DK
3864 if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3865 || (thumb2 && utils::has_overflow<25>(branch_offset))
51938283
DK
3866 || ((thumb_bit == 0)
3867 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3868 || r_type == elfcpp::R_ARM_THM_JUMP24)))
3869 {
2a2b6d42
DK
3870 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3871
51938283 3872 Stub_type stub_type =
2a2b6d42
DK
3873 Reloc_stub::stub_type_for_reloc(r_type, address,
3874 unadjusted_branch_target,
51938283 3875 (thumb_bit != 0));
2a2b6d42 3876
51938283
DK
3877 if (stub_type != arm_stub_none)
3878 {
2ea97941 3879 Stub_table<big_endian>* stub_table =
51938283 3880 object->stub_table(relinfo->data_shndx);
2ea97941 3881 gold_assert(stub_table != NULL);
51938283
DK
3882
3883 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3884 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
3885 gold_assert(stub != NULL);
3886 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3887 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b
DK
3888 if (thumb_bit == 0 && may_use_blx)
3889 branch_target = utils::bit_select(branch_target, address, 0x2);
51938283
DK
3890 branch_offset = branch_target - address;
3891 }
3892 }
3893
3894 // At this point, if we still need to switch mode, the instruction
3895 // must either be a BLX or a BL that can be converted to a BLX.
3896 if (thumb_bit == 0)
3897 {
3898 gold_assert(may_use_blx
3899 && (r_type == elfcpp::R_ARM_THM_CALL
3900 || r_type == elfcpp::R_ARM_THM_XPC22));
3901 // Make sure this is a BLX.
3902 lower_insn &= ~0x1000U;
3903 }
3904 else
3905 {
3906 // Make sure this is a BL.
3907 lower_insn |= 0x1000U;
3908 }
3909
a2c7281b
DK
3910 // For a BLX instruction, make sure that the relocation is rounded up
3911 // to a word boundary. This follows the semantics of the instruction
3912 // which specifies that bit 1 of the target address will come from bit
3913 // 1 of the base address.
51938283 3914 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 3915 gold_assert((branch_offset & 3) == 0);
51938283
DK
3916
3917 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
3918 // We use the Thumb-2 encoding, which is safe even if dealing with
3919 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
3920 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3921 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
3922
3923 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3924 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3925
a2c7281b
DK
3926 gold_assert(!utils::has_overflow<25>(branch_offset));
3927
51938283 3928 return ((thumb2
089d69dc
DK
3929 ? utils::has_overflow<25>(branch_offset)
3930 : utils::has_overflow<23>(branch_offset))
3931 ? This::STATUS_OVERFLOW
3932 : This::STATUS_OKAY);
3933}
3934
3935// Relocate THUMB-2 long conditional branches.
3936// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3937// undefined and we do not use PLT in this relocation. In such a case,
3938// the branch is converted into an NOP.
3939
3940template<bool big_endian>
3941typename Arm_relocate_functions<big_endian>::Status
3942Arm_relocate_functions<big_endian>::thm_jump19(
3943 unsigned char *view,
3944 const Arm_relobj<big_endian>* object,
3945 const Symbol_value<32>* psymval,
3946 Arm_address address,
3947 Arm_address thumb_bit)
3948{
3949 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3950 Valtype* wv = reinterpret_cast<Valtype*>(view);
3951 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3952 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3953 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3954
3955 Arm_address branch_target = psymval->value(object, addend);
3956 int32_t branch_offset = branch_target - address;
3957
3958 // ??? Should handle interworking? GCC might someday try to
3959 // use this for tail calls.
3960 // FIXME: We do support thumb entry to PLT yet.
3961 if (thumb_bit == 0)
3962 {
3963 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3964 return This::STATUS_BAD_RELOC;
3965 }
3966
3967 // Put RELOCATION back into the insn.
3968 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3969 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3970
3971 // Put the relocated value back in the object file:
3972 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3973 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3974
3975 return (utils::has_overflow<21>(branch_offset)
51938283
DK
3976 ? This::STATUS_OVERFLOW
3977 : This::STATUS_OKAY);
3978}
3979
94cdfcff
DK
3980// Get the GOT section, creating it if necessary.
3981
3982template<bool big_endian>
4a54abbb 3983Arm_output_data_got<big_endian>*
94cdfcff
DK
3984Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3985{
3986 if (this->got_ == NULL)
3987 {
3988 gold_assert(symtab != NULL && layout != NULL);
3989
4a54abbb 3990 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff
DK
3991
3992 Output_section* os;
3993 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3994 (elfcpp::SHF_ALLOC
3995 | elfcpp::SHF_WRITE),
67ec7d0b
DK
3996 this->got_, false, false, false,
3997 true);
94cdfcff
DK
3998 // The old GNU linker creates a .got.plt section. We just
3999 // create another set of data in the .got section. Note that we
4000 // always create a PLT if we create a GOT, although the PLT
4001 // might be empty.
4002 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4003 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4004 (elfcpp::SHF_ALLOC
4005 | elfcpp::SHF_WRITE),
1a2dff53 4006 this->got_plt_, false, false,
67ec7d0b 4007 false, false);
94cdfcff
DK
4008
4009 // The first three entries are reserved.
4010 this->got_plt_->set_current_data_size(3 * 4);
4011
4012 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4013 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4014 Symbol_table::PREDEFINED,
94cdfcff
DK
4015 this->got_plt_,
4016 0, 0, elfcpp::STT_OBJECT,
4017 elfcpp::STB_LOCAL,
4018 elfcpp::STV_HIDDEN, 0,
4019 false, false);
4020 }
4021 return this->got_;
4022}
4023
4024// Get the dynamic reloc section, creating it if necessary.
4025
4026template<bool big_endian>
4027typename Target_arm<big_endian>::Reloc_section*
4028Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4029{
4030 if (this->rel_dyn_ == NULL)
4031 {
4032 gold_assert(layout != NULL);
4033 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4034 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1a2dff53
ILT
4035 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4036 false, false, false);
94cdfcff
DK
4037 }
4038 return this->rel_dyn_;
4039}
4040
b569affa
DK
4041// Insn_template methods.
4042
4043// Return byte size of an instruction template.
4044
4045size_t
4046Insn_template::size() const
4047{
4048 switch (this->type())
4049 {
4050 case THUMB16_TYPE:
2fb7225c 4051 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4052 return 2;
4053 case ARM_TYPE:
4054 case THUMB32_TYPE:
4055 case DATA_TYPE:
4056 return 4;
4057 default:
4058 gold_unreachable();
4059 }
4060}
4061
4062// Return alignment of an instruction template.
4063
4064unsigned
4065Insn_template::alignment() const
4066{
4067 switch (this->type())
4068 {
4069 case THUMB16_TYPE:
2fb7225c 4070 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4071 case THUMB32_TYPE:
4072 return 2;
4073 case ARM_TYPE:
4074 case DATA_TYPE:
4075 return 4;
4076 default:
4077 gold_unreachable();
4078 }
4079}
4080
4081// Stub_template methods.
4082
4083Stub_template::Stub_template(
2ea97941
ILT
4084 Stub_type type, const Insn_template* insns,
4085 size_t insn_count)
4086 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4087 entry_in_thumb_mode_(false), relocs_()
4088{
2ea97941 4089 off_t offset = 0;
b569affa
DK
4090
4091 // Compute byte size and alignment of stub template.
2ea97941 4092 for (size_t i = 0; i < insn_count; i++)
b569affa 4093 {
2ea97941
ILT
4094 unsigned insn_alignment = insns[i].alignment();
4095 size_t insn_size = insns[i].size();
4096 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4097 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4098 switch (insns[i].type())
b569affa
DK
4099 {
4100 case Insn_template::THUMB16_TYPE:
089d69dc 4101 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4102 if (i == 0)
4103 this->entry_in_thumb_mode_ = true;
4104 break;
4105
4106 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4107 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4108 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4109 if (i == 0)
4110 this->entry_in_thumb_mode_ = true;
4111 break;
4112
4113 case Insn_template::ARM_TYPE:
4114 // Handle cases where the target is encoded within the
4115 // instruction.
2ea97941
ILT
4116 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4117 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4118 break;
4119
4120 case Insn_template::DATA_TYPE:
4121 // Entry point cannot be data.
4122 gold_assert(i != 0);
2ea97941 4123 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4124 break;
4125
4126 default:
4127 gold_unreachable();
4128 }
2ea97941 4129 offset += insn_size;
b569affa 4130 }
2ea97941 4131 this->size_ = offset;
b569affa
DK
4132}
4133
bb0d3eb0
DK
4134// Stub methods.
4135
7296d933 4136// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4137
4138template<bool big_endian>
4139void inline
4140Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4141{
4142 const Stub_template* stub_template = this->stub_template();
4143 const Insn_template* insns = stub_template->insns();
4144
4145 // FIXME: We do not handle BE8 encoding yet.
4146 unsigned char* pov = view;
4147 for (size_t i = 0; i < stub_template->insn_count(); i++)
4148 {
4149 switch (insns[i].type())
4150 {
4151 case Insn_template::THUMB16_TYPE:
4152 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4153 break;
4154 case Insn_template::THUMB16_SPECIAL_TYPE:
4155 elfcpp::Swap<16, big_endian>::writeval(
4156 pov,
4157 this->thumb16_special(i));
4158 break;
4159 case Insn_template::THUMB32_TYPE:
4160 {
4161 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4162 uint32_t lo = insns[i].data() & 0xffff;
4163 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4164 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4165 }
4166 break;
4167 case Insn_template::ARM_TYPE:
4168 case Insn_template::DATA_TYPE:
4169 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4170 break;
4171 default:
4172 gold_unreachable();
4173 }
4174 pov += insns[i].size();
4175 }
4176 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4177}
4178
b569affa
DK
4179// Reloc_stub::Key methods.
4180
4181// Dump a Key as a string for debugging.
4182
4183std::string
4184Reloc_stub::Key::name() const
4185{
4186 if (this->r_sym_ == invalid_index)
4187 {
4188 // Global symbol key name
4189 // <stub-type>:<symbol name>:<addend>.
4190 const std::string sym_name = this->u_.symbol->name();
4191 // We need to print two hex number and two colons. So just add 100 bytes
4192 // to the symbol name size.
4193 size_t len = sym_name.size() + 100;
4194 char* buffer = new char[len];
4195 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4196 sym_name.c_str(), this->addend_);
4197 gold_assert(c > 0 && c < static_cast<int>(len));
4198 delete[] buffer;
4199 return std::string(buffer);
4200 }
4201 else
4202 {
4203 // local symbol key name
4204 // <stub-type>:<object>:<r_sym>:<addend>.
4205 const size_t len = 200;
4206 char buffer[len];
4207 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4208 this->u_.relobj, this->r_sym_, this->addend_);
4209 gold_assert(c > 0 && c < static_cast<int>(len));
4210 return std::string(buffer);
4211 }
4212}
4213
4214// Reloc_stub methods.
4215
4216// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4217// LOCATION to DESTINATION.
4218// This code is based on the arm_type_of_stub function in
4219// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4220// class simple.
4221
4222Stub_type
4223Reloc_stub::stub_type_for_reloc(
4224 unsigned int r_type,
4225 Arm_address location,
4226 Arm_address destination,
4227 bool target_is_thumb)
4228{
4229 Stub_type stub_type = arm_stub_none;
4230
4231 // This is a bit ugly but we want to avoid using a templated class for
4232 // big and little endianities.
4233 bool may_use_blx;
4234 bool should_force_pic_veneer;
4235 bool thumb2;
4236 bool thumb_only;
4237 if (parameters->target().is_big_endian())
4238 {
43d12afe 4239 const Target_arm<true>* big_endian_target =
b569affa 4240 Target_arm<true>::default_target();
43d12afe
DK
4241 may_use_blx = big_endian_target->may_use_blx();
4242 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4243 thumb2 = big_endian_target->using_thumb2();
4244 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4245 }
4246 else
4247 {
43d12afe 4248 const Target_arm<false>* little_endian_target =
b569affa 4249 Target_arm<false>::default_target();
43d12afe
DK
4250 may_use_blx = little_endian_target->may_use_blx();
4251 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4252 thumb2 = little_endian_target->using_thumb2();
4253 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4254 }
4255
a2c7281b 4256 int64_t branch_offset;
b569affa
DK
4257 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4258 {
a2c7281b
DK
4259 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4260 // base address (instruction address + 4).
4261 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4262 destination = utils::bit_select(destination, location, 0x2);
4263 branch_offset = static_cast<int64_t>(destination) - location;
4264
b569affa
DK
4265 // Handle cases where:
4266 // - this call goes too far (different Thumb/Thumb2 max
4267 // distance)
4268 // - it's a Thumb->Arm call and blx is not available, or it's a
4269 // Thumb->Arm branch (not bl). A stub is needed in this case.
4270 if ((!thumb2
4271 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4272 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4273 || (thumb2
4274 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4275 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4276 || ((!target_is_thumb)
4277 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4278 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4279 {
4280 if (target_is_thumb)
4281 {
4282 // Thumb to thumb.
4283 if (!thumb_only)
4284 {
51938283
DK
4285 stub_type = (parameters->options().shared()
4286 || should_force_pic_veneer)
b569affa
DK
4287 // PIC stubs.
4288 ? ((may_use_blx
4289 && (r_type == elfcpp::R_ARM_THM_CALL))
4290 // V5T and above. Stub starts with ARM code, so
4291 // we must be able to switch mode before
4292 // reaching it, which is only possible for 'bl'
4293 // (ie R_ARM_THM_CALL relocation).
4294 ? arm_stub_long_branch_any_thumb_pic
4295 // On V4T, use Thumb code only.
4296 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4297
4298 // non-PIC stubs.
4299 : ((may_use_blx
4300 && (r_type == elfcpp::R_ARM_THM_CALL))
4301 ? arm_stub_long_branch_any_any // V5T and above.
4302 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4303 }
4304 else
4305 {
51938283
DK
4306 stub_type = (parameters->options().shared()
4307 || should_force_pic_veneer)
b569affa
DK
4308 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4309 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4310 }
4311 }
4312 else
4313 {
4314 // Thumb to arm.
4315
4316 // FIXME: We should check that the input section is from an
4317 // object that has interwork enabled.
4318
4319 stub_type = (parameters->options().shared()
4320 || should_force_pic_veneer)
4321 // PIC stubs.
4322 ? ((may_use_blx
4323 && (r_type == elfcpp::R_ARM_THM_CALL))
4324 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4325 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4326
4327 // non-PIC stubs.
4328 : ((may_use_blx
4329 && (r_type == elfcpp::R_ARM_THM_CALL))
4330 ? arm_stub_long_branch_any_any // V5T and above.
4331 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4332
4333 // Handle v4t short branches.
4334 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4335 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4336 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4337 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4338 }
4339 }
4340 }
4341 else if (r_type == elfcpp::R_ARM_CALL
4342 || r_type == elfcpp::R_ARM_JUMP24
4343 || r_type == elfcpp::R_ARM_PLT32)
4344 {
a2c7281b 4345 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4346 if (target_is_thumb)
4347 {
4348 // Arm to thumb.
4349
4350 // FIXME: We should check that the input section is from an
4351 // object that has interwork enabled.
4352
4353 // We have an extra 2-bytes reach because of
4354 // the mode change (bit 24 (H) of BLX encoding).
4355 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4356 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4357 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4358 || (r_type == elfcpp::R_ARM_JUMP24)
4359 || (r_type == elfcpp::R_ARM_PLT32))
4360 {
4361 stub_type = (parameters->options().shared()
4362 || should_force_pic_veneer)
4363 // PIC stubs.
4364 ? (may_use_blx
4365 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4366 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4367
4368 // non-PIC stubs.
4369 : (may_use_blx
4370 ? arm_stub_long_branch_any_any // V5T and above.
4371 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4372 }
4373 }
4374 else
4375 {
4376 // Arm to arm.
4377 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4378 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4379 {
4380 stub_type = (parameters->options().shared()
4381 || should_force_pic_veneer)
4382 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4383 : arm_stub_long_branch_any_any; /// non-PIC.
4384 }
4385 }
4386 }
4387
4388 return stub_type;
4389}
4390
bb0d3eb0 4391// Cortex_a8_stub methods.
b569affa 4392
bb0d3eb0
DK
4393// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4394// I is the position of the instruction template in the stub template.
b569affa 4395
bb0d3eb0
DK
4396uint16_t
4397Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4398{
bb0d3eb0
DK
4399 // The only use of this is to copy condition code from a conditional
4400 // branch being worked around to the corresponding conditional branch in
4401 // to the stub.
4402 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4403 && i == 0);
4404 uint16_t data = this->stub_template()->insns()[i].data();
4405 gold_assert((data & 0xff00U) == 0xd000U);
4406 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4407 return data;
b569affa
DK
4408}
4409
4410// Stub_factory methods.
4411
4412Stub_factory::Stub_factory()
4413{
4414 // The instruction template sequences are declared as static
4415 // objects and initialized first time the constructor runs.
4416
4417 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4418 // to reach the stub if necessary.
4419 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4420 {
4421 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4422 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4423 // dcd R_ARM_ABS32(X)
4424 };
4425
4426 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4427 // available.
4428 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4429 {
4430 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4431 Insn_template::arm_insn(0xe12fff1c), // bx ip
4432 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4433 // dcd R_ARM_ABS32(X)
4434 };
4435
4436 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4437 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4438 {
4439 Insn_template::thumb16_insn(0xb401), // push {r0}
4440 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4441 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4442 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4443 Insn_template::thumb16_insn(0x4760), // bx ip
4444 Insn_template::thumb16_insn(0xbf00), // nop
4445 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4446 // dcd R_ARM_ABS32(X)
4447 };
4448
4449 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4450 // allowed.
4451 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4452 {
4453 Insn_template::thumb16_insn(0x4778), // bx pc
4454 Insn_template::thumb16_insn(0x46c0), // nop
4455 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4456 Insn_template::arm_insn(0xe12fff1c), // bx ip
4457 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4458 // dcd R_ARM_ABS32(X)
4459 };
4460
4461 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4462 // available.
4463 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4464 {
4465 Insn_template::thumb16_insn(0x4778), // bx pc
4466 Insn_template::thumb16_insn(0x46c0), // nop
4467 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4468 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4469 // dcd R_ARM_ABS32(X)
4470 };
4471
4472 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4473 // one, when the destination is close enough.
4474 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4475 {
4476 Insn_template::thumb16_insn(0x4778), // bx pc
4477 Insn_template::thumb16_insn(0x46c0), // nop
4478 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4479 };
4480
4481 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4482 // blx to reach the stub if necessary.
4483 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4484 {
4485 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4486 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4487 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4488 // dcd R_ARM_REL32(X-4)
4489 };
4490
4491 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4492 // blx to reach the stub if necessary. We can not add into pc;
4493 // it is not guaranteed to mode switch (different in ARMv6 and
4494 // ARMv7).
4495 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4496 {
4497 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4498 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4499 Insn_template::arm_insn(0xe12fff1c), // bx ip
4500 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4501 // dcd R_ARM_REL32(X)
4502 };
4503
4504 // V4T ARM -> ARM long branch stub, PIC.
4505 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4506 {
4507 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4508 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4509 Insn_template::arm_insn(0xe12fff1c), // bx ip
4510 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4511 // dcd R_ARM_REL32(X)
4512 };
4513
4514 // V4T Thumb -> ARM long branch stub, PIC.
4515 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4516 {
4517 Insn_template::thumb16_insn(0x4778), // bx pc
4518 Insn_template::thumb16_insn(0x46c0), // nop
4519 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4520 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4521 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4522 // dcd R_ARM_REL32(X)
4523 };
4524
4525 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4526 // architectures.
4527 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4528 {
4529 Insn_template::thumb16_insn(0xb401), // push {r0}
4530 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4531 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4532 Insn_template::thumb16_insn(0x4484), // add ip, r0
4533 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4534 Insn_template::thumb16_insn(0x4760), // bx ip
4535 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4536 // dcd R_ARM_REL32(X)
4537 };
4538
4539 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4540 // allowed.
4541 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4542 {
4543 Insn_template::thumb16_insn(0x4778), // bx pc
4544 Insn_template::thumb16_insn(0x46c0), // nop
4545 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4546 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4547 Insn_template::arm_insn(0xe12fff1c), // bx ip
4548 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4549 // dcd R_ARM_REL32(X)
4550 };
4551
4552 // Cortex-A8 erratum-workaround stubs.
4553
4554 // Stub used for conditional branches (which may be beyond +/-1MB away,
4555 // so we can't use a conditional branch to reach this stub).
4556
4557 // original code:
4558 //
4559 // b<cond> X
4560 // after:
4561 //
4562 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4563 {
4564 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4565 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4566 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4567 // b.w X
4568 };
4569
4570 // Stub used for b.w and bl.w instructions.
4571
4572 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4573 {
4574 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4575 };
4576
4577 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4578 {
4579 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4580 };
4581
4582 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4583 // instruction (which switches to ARM mode) to point to this stub. Jump to
4584 // the real destination using an ARM-mode branch.
bb0d3eb0 4585 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4586 {
4587 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4588 };
4589
a2162063
ILT
4590 // Stub used to provide an interworking for R_ARM_V4BX relocation
4591 // (bx r[n] instruction).
4592 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4593 {
4594 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4595 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4596 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4597 };
4598
b569affa
DK
4599 // Fill in the stub template look-up table. Stub templates are constructed
4600 // per instance of Stub_factory for fast look-up without locking
4601 // in a thread-enabled environment.
4602
4603 this->stub_templates_[arm_stub_none] =
4604 new Stub_template(arm_stub_none, NULL, 0);
4605
4606#define DEF_STUB(x) \
4607 do \
4608 { \
4609 size_t array_size \
4610 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4611 Stub_type type = arm_stub_##x; \
4612 this->stub_templates_[type] = \
4613 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4614 } \
4615 while (0);
4616
4617 DEF_STUBS
4618#undef DEF_STUB
4619}
4620
56ee5e00
DK
4621// Stub_table methods.
4622
2fb7225c 4623// Removel all Cortex-A8 stub.
56ee5e00
DK
4624
4625template<bool big_endian>
4626void
2fb7225c
DK
4627Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4628{
4629 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4630 p != this->cortex_a8_stubs_.end();
4631 ++p)
4632 delete p->second;
4633 this->cortex_a8_stubs_.clear();
4634}
4635
4636// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4637
4638template<bool big_endian>
4639void
4640Stub_table<big_endian>::relocate_stub(
4641 Stub* stub,
4642 const Relocate_info<32, big_endian>* relinfo,
4643 Target_arm<big_endian>* arm_target,
4644 Output_section* output_section,
4645 unsigned char* view,
4646 Arm_address address,
4647 section_size_type view_size)
56ee5e00 4648{
2ea97941 4649 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4650 if (stub_template->reloc_count() != 0)
4651 {
4652 // Adjust view to cover the stub only.
4653 section_size_type offset = stub->offset();
4654 section_size_type stub_size = stub_template->size();
4655 gold_assert(offset + stub_size <= view_size);
4656
4657 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4658 address + offset, stub_size);
4659 }
56ee5e00
DK
4660}
4661
2fb7225c
DK
4662// Relocate all stubs in this stub table.
4663
56ee5e00
DK
4664template<bool big_endian>
4665void
4666Stub_table<big_endian>::relocate_stubs(
4667 const Relocate_info<32, big_endian>* relinfo,
4668 Target_arm<big_endian>* arm_target,
2ea97941 4669 Output_section* output_section,
56ee5e00 4670 unsigned char* view,
2ea97941 4671 Arm_address address,
56ee5e00
DK
4672 section_size_type view_size)
4673{
4674 // If we are passed a view bigger than the stub table's. we need to
4675 // adjust the view.
2ea97941 4676 gold_assert(address == this->address()
56ee5e00
DK
4677 && (view_size
4678 == static_cast<section_size_type>(this->data_size())));
4679
2fb7225c
DK
4680 // Relocate all relocation stubs.
4681 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4682 p != this->reloc_stubs_.end();
4683 ++p)
4684 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4685 address, view_size);
4686
4687 // Relocate all Cortex-A8 stubs.
4688 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4689 p != this->cortex_a8_stubs_.end();
4690 ++p)
4691 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4692 address, view_size);
a2162063
ILT
4693
4694 // Relocate all ARM V4BX stubs.
4695 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4696 p != this->arm_v4bx_stubs_.end();
4697 ++p)
4698 {
4699 if (*p != NULL)
4700 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4701 address, view_size);
4702 }
2fb7225c
DK
4703}
4704
4705// Write out the stubs to file.
4706
4707template<bool big_endian>
4708void
4709Stub_table<big_endian>::do_write(Output_file* of)
4710{
4711 off_t offset = this->offset();
4712 const section_size_type oview_size =
4713 convert_to_section_size_type(this->data_size());
4714 unsigned char* const oview = of->get_output_view(offset, oview_size);
4715
4716 // Write relocation stubs.
56ee5e00
DK
4717 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4718 p != this->reloc_stubs_.end();
4719 ++p)
4720 {
4721 Reloc_stub* stub = p->second;
2fb7225c
DK
4722 Arm_address address = this->address() + stub->offset();
4723 gold_assert(address
4724 == align_address(address,
4725 stub->stub_template()->alignment()));
4726 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4727 big_endian);
56ee5e00 4728 }
2fb7225c
DK
4729
4730 // Write Cortex-A8 stubs.
4731 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4732 p != this->cortex_a8_stubs_.end();
4733 ++p)
4734 {
4735 Cortex_a8_stub* stub = p->second;
4736 Arm_address address = this->address() + stub->offset();
4737 gold_assert(address
4738 == align_address(address,
4739 stub->stub_template()->alignment()));
4740 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4741 big_endian);
4742 }
4743
a2162063
ILT
4744 // Write ARM V4BX relocation stubs.
4745 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4746 p != this->arm_v4bx_stubs_.end();
4747 ++p)
4748 {
4749 if (*p == NULL)
4750 continue;
4751
4752 Arm_address address = this->address() + (*p)->offset();
4753 gold_assert(address
4754 == align_address(address,
4755 (*p)->stub_template()->alignment()));
4756 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4757 big_endian);
4758 }
4759
2fb7225c 4760 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4761}
4762
2fb7225c
DK
4763// Update the data size and address alignment of the stub table at the end
4764// of a relaxation pass. Return true if either the data size or the
4765// alignment changed in this relaxation pass.
4766
4767template<bool big_endian>
4768bool
4769Stub_table<big_endian>::update_data_size_and_addralign()
4770{
2fb7225c 4771 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4772 off_t size = this->reloc_stubs_size_;
4773 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4774
4775 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4776 p != this->cortex_a8_stubs_.end();
4777 ++p)
4778 {
4779 const Stub_template* stub_template = p->second->stub_template();
4780 addralign = std::max(addralign, stub_template->alignment());
4781 size = (align_address(size, stub_template->alignment())
4782 + stub_template->size());
4783 }
4784
a2162063
ILT
4785 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4786 p != this->arm_v4bx_stubs_.end();
4787 ++p)
4788 {
4789 if (*p == NULL)
4790 continue;
4791
4792 const Stub_template* stub_template = (*p)->stub_template();
4793 addralign = std::max(addralign, stub_template->alignment());
4794 size = (align_address(size, stub_template->alignment())
4795 + stub_template->size());
4796 }
4797
2fb7225c
DK
4798 // Check if either data size or alignment changed in this pass.
4799 // Update prev_data_size_ and prev_addralign_. These will be used
4800 // as the current data size and address alignment for the next pass.
4801 bool changed = size != this->prev_data_size_;
4802 this->prev_data_size_ = size;
4803
4804 if (addralign != this->prev_addralign_)
4805 changed = true;
4806 this->prev_addralign_ = addralign;
4807
4808 return changed;
4809}
4810
4811// Finalize the stubs. This sets the offsets of the stubs within the stub
4812// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
4813
4814template<bool big_endian>
4815void
2fb7225c 4816Stub_table<big_endian>::finalize_stubs()
56ee5e00 4817{
d099120c 4818 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
4819 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4820 p != this->cortex_a8_stubs_.end();
4821 ++p)
4822 {
4823 Cortex_a8_stub* stub = p->second;
4824 const Stub_template* stub_template = stub->stub_template();
4825 uint64_t stub_addralign = stub_template->alignment();
4826 off = align_address(off, stub_addralign);
4827 stub->set_offset(off);
4828 off += stub_template->size();
4829
4830 // Mark input section so that we can determine later if a code section
4831 // needs the Cortex-A8 workaround quickly.
4832 Arm_relobj<big_endian>* arm_relobj =
4833 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4834 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4835 }
4836
a2162063
ILT
4837 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4838 p != this->arm_v4bx_stubs_.end();
4839 ++p)
4840 {
4841 if (*p == NULL)
4842 continue;
4843
4844 const Stub_template* stub_template = (*p)->stub_template();
4845 uint64_t stub_addralign = stub_template->alignment();
4846 off = align_address(off, stub_addralign);
4847 (*p)->set_offset(off);
4848 off += stub_template->size();
4849 }
4850
2fb7225c 4851 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
4852}
4853
2fb7225c
DK
4854// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4855// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4856// of the address range seen by the linker.
56ee5e00
DK
4857
4858template<bool big_endian>
4859void
2fb7225c
DK
4860Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4861 Target_arm<big_endian>* arm_target,
4862 unsigned char* view,
4863 Arm_address view_address,
4864 section_size_type view_size)
56ee5e00 4865{
2fb7225c
DK
4866 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4867 for (Cortex_a8_stub_list::const_iterator p =
4868 this->cortex_a8_stubs_.lower_bound(view_address);
4869 ((p != this->cortex_a8_stubs_.end())
4870 && (p->first < (view_address + view_size)));
4871 ++p)
56ee5e00 4872 {
2fb7225c
DK
4873 // We do not store the THUMB bit in the LSB of either the branch address
4874 // or the stub offset. There is no need to strip the LSB.
4875 Arm_address branch_address = p->first;
4876 const Cortex_a8_stub* stub = p->second;
4877 Arm_address stub_address = this->address() + stub->offset();
4878
4879 // Offset of the branch instruction relative to this view.
4880 section_size_type offset =
4881 convert_to_section_size_type(branch_address - view_address);
4882 gold_assert((offset + 4) <= view_size);
4883
4884 arm_target->apply_cortex_a8_workaround(stub, stub_address,
4885 view + offset, branch_address);
4886 }
56ee5e00
DK
4887}
4888
10ad9fe5
DK
4889// Arm_input_section methods.
4890
4891// Initialize an Arm_input_section.
4892
4893template<bool big_endian>
4894void
4895Arm_input_section<big_endian>::init()
4896{
2ea97941
ILT
4897 Relobj* relobj = this->relobj();
4898 unsigned int shndx = this->shndx();
10ad9fe5
DK
4899
4900 // Cache these to speed up size and alignment queries. It is too slow
4901 // to call section_addraglin and section_size every time.
2ea97941
ILT
4902 this->original_addralign_ = relobj->section_addralign(shndx);
4903 this->original_size_ = relobj->section_size(shndx);
10ad9fe5
DK
4904
4905 // We want to make this look like the original input section after
4906 // output sections are finalized.
2ea97941
ILT
4907 Output_section* os = relobj->output_section(shndx);
4908 off_t offset = relobj->output_section_offset(shndx);
4909 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4910 this->set_address(os->address() + offset);
4911 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
4912
4913 this->set_current_data_size(this->original_size_);
4914 this->finalize_data_size();
4915}
4916
4917template<bool big_endian>
4918void
4919Arm_input_section<big_endian>::do_write(Output_file* of)
4920{
4921 // We have to write out the original section content.
4922 section_size_type section_size;
4923 const unsigned char* section_contents =
4924 this->relobj()->section_contents(this->shndx(), &section_size, false);
4925 of->write(this->offset(), section_contents, section_size);
4926
4927 // If this owns a stub table and it is not empty, write it.
4928 if (this->is_stub_table_owner() && !this->stub_table_->empty())
4929 this->stub_table_->write(of);
4930}
4931
4932// Finalize data size.
4933
4934template<bool big_endian>
4935void
4936Arm_input_section<big_endian>::set_final_data_size()
4937{
4938 // If this owns a stub table, finalize its data size as well.
4939 if (this->is_stub_table_owner())
4940 {
2ea97941 4941 uint64_t address = this->address();
10ad9fe5
DK
4942
4943 // The stub table comes after the original section contents.
2ea97941
ILT
4944 address += this->original_size_;
4945 address = align_address(address, this->stub_table_->addralign());
4946 off_t offset = this->offset() + (address - this->address());
4947 this->stub_table_->set_address_and_file_offset(address, offset);
4948 address += this->stub_table_->data_size();
4949 gold_assert(address == this->address() + this->current_data_size());
10ad9fe5
DK
4950 }
4951
4952 this->set_data_size(this->current_data_size());
4953}
4954
4955// Reset address and file offset.
4956
4957template<bool big_endian>
4958void
4959Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4960{
4961 // Size of the original input section contents.
4962 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4963
4964 // If this is a stub table owner, account for the stub table size.
4965 if (this->is_stub_table_owner())
4966 {
2ea97941 4967 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
4968
4969 // Reset the stub table's address and file offset. The
4970 // current data size for child will be updated after that.
4971 stub_table_->reset_address_and_file_offset();
4972 off = align_address(off, stub_table_->addralign());
2ea97941 4973 off += stub_table->current_data_size();
10ad9fe5
DK
4974 }
4975
4976 this->set_current_data_size(off);
4977}
4978
af2cdeae
DK
4979// Arm_exidx_cantunwind methods.
4980
7296d933 4981// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
4982
4983template<bool big_endian>
4984void
4985Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4986{
4987 off_t offset = this->offset();
4988 const section_size_type oview_size = 8;
4989 unsigned char* const oview = of->get_output_view(offset, oview_size);
4990
4991 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4992 Valtype* wv = reinterpret_cast<Valtype*>(oview);
4993
4994 Output_section* os = this->relobj_->output_section(this->shndx_);
4995 gold_assert(os != NULL);
4996
4997 Arm_relobj<big_endian>* arm_relobj =
4998 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4999 Arm_address output_offset =
5000 arm_relobj->get_output_section_offset(this->shndx_);
5001 Arm_address section_start;
7296d933 5002 if (output_offset != Arm_relobj<big_endian>::invalid_address)
af2cdeae
DK
5003 section_start = os->address() + output_offset;
5004 else
5005 {
5006 // Currently this only happens for a relaxed section.
5007 const Output_relaxed_input_section* poris =
5008 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5009 gold_assert(poris != NULL);
5010 section_start = poris->address();
5011 }
5012
5013 // We always append this to the end of an EXIDX section.
5014 Arm_address output_address =
5015 section_start + this->relobj_->section_size(this->shndx_);
5016
5017 // Write out the entry. The first word either points to the beginning
5018 // or after the end of a text section. The second word is the special
5019 // EXIDX_CANTUNWIND value.
e7eca48c
DK
5020 uint32_t prel31_offset = output_address - this->address();
5021 if (utils::has_overflow<31>(offset))
5022 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5023 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
af2cdeae
DK
5024 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5025
5026 of->write_output_view(this->offset(), oview_size, oview);
5027}
5028
5029// Arm_exidx_merged_section methods.
5030
5031// Constructor for Arm_exidx_merged_section.
5032// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5033// SECTION_OFFSET_MAP points to a section offset map describing how
5034// parts of the input section are mapped to output. DELETED_BYTES is
5035// the number of bytes deleted from the EXIDX input section.
5036
5037Arm_exidx_merged_section::Arm_exidx_merged_section(
5038 const Arm_exidx_input_section& exidx_input_section,
5039 const Arm_exidx_section_offset_map& section_offset_map,
5040 uint32_t deleted_bytes)
5041 : Output_relaxed_input_section(exidx_input_section.relobj(),
5042 exidx_input_section.shndx(),
5043 exidx_input_section.addralign()),
5044 exidx_input_section_(exidx_input_section),
5045 section_offset_map_(section_offset_map)
5046{
5047 // Fix size here so that we do not need to implement set_final_data_size.
5048 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5049 this->fix_data_size();
5050}
5051
5052// Given an input OBJECT, an input section index SHNDX within that
5053// object, and an OFFSET relative to the start of that input
5054// section, return whether or not the corresponding offset within
5055// the output section is known. If this function returns true, it
5056// sets *POUTPUT to the output offset. The value -1 indicates that
5057// this input offset is being discarded.
5058
5059bool
5060Arm_exidx_merged_section::do_output_offset(
5061 const Relobj* relobj,
5062 unsigned int shndx,
5063 section_offset_type offset,
5064 section_offset_type* poutput) const
5065{
5066 // We only handle offsets for the original EXIDX input section.
5067 if (relobj != this->exidx_input_section_.relobj()
5068 || shndx != this->exidx_input_section_.shndx())
5069 return false;
5070
c7f3c371
DK
5071 section_offset_type section_size =
5072 convert_types<section_offset_type>(this->exidx_input_section_.size());
5073 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5074 // Input offset is out of valid range.
5075 *poutput = -1;
5076 else
5077 {
5078 // We need to look up the section offset map to determine the output
5079 // offset. Find the reference point in map that is first offset
5080 // bigger than or equal to this offset.
5081 Arm_exidx_section_offset_map::const_iterator p =
5082 this->section_offset_map_.lower_bound(offset);
5083
5084 // The section offset maps are build such that this should not happen if
5085 // input offset is in the valid range.
5086 gold_assert(p != this->section_offset_map_.end());
5087
5088 // We need to check if this is dropped.
5089 section_offset_type ref = p->first;
5090 section_offset_type mapped_ref = p->second;
5091
5092 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5093 // Offset is present in output.
5094 *poutput = mapped_ref + (offset - ref);
5095 else
5096 // Offset is discarded owing to EXIDX entry merging.
5097 *poutput = -1;
5098 }
5099
5100 return true;
5101}
5102
5103// Write this to output file OF.
5104
5105void
5106Arm_exidx_merged_section::do_write(Output_file* of)
5107{
5108 // If we retain or discard the whole EXIDX input section, we would
5109 // not be here.
5110 gold_assert(this->data_size() != this->exidx_input_section_.size()
5111 && this->data_size() != 0);
5112
5113 off_t offset = this->offset();
5114 const section_size_type oview_size = this->data_size();
5115 unsigned char* const oview = of->get_output_view(offset, oview_size);
5116
5117 Output_section* os = this->relobj()->output_section(this->shndx());
5118 gold_assert(os != NULL);
5119
5120 // Get contents of EXIDX input section.
5121 section_size_type section_size;
5122 const unsigned char* section_contents =
5123 this->relobj()->section_contents(this->shndx(), &section_size, false);
5124 gold_assert(section_size == this->exidx_input_section_.size());
5125
5126 // Go over spans of input offsets and write only those that are not
5127 // discarded.
5128 section_offset_type in_start = 0;
5129 section_offset_type out_start = 0;
5130 for(Arm_exidx_section_offset_map::const_iterator p =
5131 this->section_offset_map_.begin();
5132 p != this->section_offset_map_.end();
5133 ++p)
5134 {
5135 section_offset_type in_end = p->first;
5136 gold_assert(in_end >= in_start);
5137 section_offset_type out_end = p->second;
5138 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5139 if (out_end != -1)
5140 {
5141 size_t out_chunk_size =
5142 convert_types<size_t>(out_end - out_start + 1);
5143 gold_assert(out_chunk_size == in_chunk_size);
5144 memcpy(oview + out_start, section_contents + in_start,
5145 out_chunk_size);
5146 out_start += out_chunk_size;
5147 }
5148 in_start += in_chunk_size;
5149 }
5150
5151 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5152 of->write_output_view(this->offset(), oview_size, oview);
5153}
5154
80d0d023
DK
5155// Arm_exidx_fixup methods.
5156
5157// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5158// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5159// points to the end of the last seen EXIDX section.
5160
5161void
5162Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5163{
5164 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5165 && this->last_input_section_ != NULL)
5166 {
5167 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5168 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5169 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5170 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5171 this->exidx_output_section_->add_output_section_data(cantunwind);
5172 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5173 }
5174}
5175
5176// Process an EXIDX section entry in input. Return whether this entry
5177// can be deleted in the output. SECOND_WORD in the second word of the
5178// EXIDX entry.
5179
5180bool
5181Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5182{
5183 bool delete_entry;
5184 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5185 {
5186 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5187 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5188 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5189 }
5190 else if ((second_word & 0x80000000) != 0)
5191 {
5192 // Inlined unwinding data. Merge if equal to previous.
5193 delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5194 && this->last_inlined_entry_ == second_word);
5195 this->last_unwind_type_ = UT_INLINED_ENTRY;
5196 this->last_inlined_entry_ = second_word;
5197 }
5198 else
5199 {
5200 // Normal table entry. In theory we could merge these too,
5201 // but duplicate entries are likely to be much less common.
5202 delete_entry = false;
5203 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5204 }
5205 return delete_entry;
5206}
5207
5208// Update the current section offset map during EXIDX section fix-up.
5209// If there is no map, create one. INPUT_OFFSET is the offset of a
5210// reference point, DELETED_BYTES is the number of deleted by in the
5211// section so far. If DELETE_ENTRY is true, the reference point and
5212// all offsets after the previous reference point are discarded.
5213
5214void
5215Arm_exidx_fixup::update_offset_map(
5216 section_offset_type input_offset,
5217 section_size_type deleted_bytes,
5218 bool delete_entry)
5219{
5220 if (this->section_offset_map_ == NULL)
5221 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5222 section_offset_type output_offset;
5223 if (delete_entry)
5224 output_offset = Arm_exidx_input_section::invalid_offset;
5225 else
5226 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5227 (*this->section_offset_map_)[input_offset] = output_offset;
5228}
5229
5230// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5231// bytes deleted. If some entries are merged, also store a pointer to a newly
5232// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5233// caller owns the map and is responsible for releasing it after use.
5234
5235template<bool big_endian>
5236uint32_t
5237Arm_exidx_fixup::process_exidx_section(
5238 const Arm_exidx_input_section* exidx_input_section,
5239 Arm_exidx_section_offset_map** psection_offset_map)
5240{
5241 Relobj* relobj = exidx_input_section->relobj();
5242 unsigned shndx = exidx_input_section->shndx();
5243 section_size_type section_size;
5244 const unsigned char* section_contents =
5245 relobj->section_contents(shndx, &section_size, false);
5246
5247 if ((section_size % 8) != 0)
5248 {
5249 // Something is wrong with this section. Better not touch it.
5250 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5251 relobj->name().c_str(), shndx);
5252 this->last_input_section_ = exidx_input_section;
5253 this->last_unwind_type_ = UT_NONE;
5254 return 0;
5255 }
5256
5257 uint32_t deleted_bytes = 0;
5258 bool prev_delete_entry = false;
5259 gold_assert(this->section_offset_map_ == NULL);
5260
5261 for (section_size_type i = 0; i < section_size; i += 8)
5262 {
5263 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5264 const Valtype* wv =
5265 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5266 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5267
5268 bool delete_entry = this->process_exidx_entry(second_word);
5269
5270 // Entry deletion causes changes in output offsets. We use a std::map
5271 // to record these. And entry (x, y) means input offset x
5272 // is mapped to output offset y. If y is invalid_offset, then x is
5273 // dropped in the output. Because of the way std::map::lower_bound
5274 // works, we record the last offset in a region w.r.t to keeping or
5275 // dropping. If there is no entry (x0, y0) for an input offset x0,
5276 // the output offset y0 of it is determined by the output offset y1 of
5277 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5278 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5279 // y0 is also -1.
5280 if (delete_entry != prev_delete_entry && i != 0)
5281 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5282
5283 // Update total deleted bytes for this entry.
5284 if (delete_entry)
5285 deleted_bytes += 8;
5286
5287 prev_delete_entry = delete_entry;
5288 }
5289
5290 // If section offset map is not NULL, make an entry for the end of
5291 // section.
5292 if (this->section_offset_map_ != NULL)
5293 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5294
5295 *psection_offset_map = this->section_offset_map_;
5296 this->section_offset_map_ = NULL;
5297 this->last_input_section_ = exidx_input_section;
5298
546c7457
DK
5299 // Set the first output text section so that we can link the EXIDX output
5300 // section to it. Ignore any EXIDX input section that is completely merged.
5301 if (this->first_output_text_section_ == NULL
5302 && deleted_bytes != section_size)
5303 {
5304 unsigned int link = exidx_input_section->link();
5305 Output_section* os = relobj->output_section(link);
5306 gold_assert(os != NULL);
5307 this->first_output_text_section_ = os;
5308 }
5309
80d0d023
DK
5310 return deleted_bytes;
5311}
5312
07f508a2
DK
5313// Arm_output_section methods.
5314
5315// Create a stub group for input sections from BEGIN to END. OWNER
5316// points to the input section to be the owner a new stub table.
5317
5318template<bool big_endian>
5319void
5320Arm_output_section<big_endian>::create_stub_group(
5321 Input_section_list::const_iterator begin,
5322 Input_section_list::const_iterator end,
5323 Input_section_list::const_iterator owner,
5324 Target_arm<big_endian>* target,
5325 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5326{
2b328d4e
DK
5327 // We use a different kind of relaxed section in an EXIDX section.
5328 // The static casting from Output_relaxed_input_section to
5329 // Arm_input_section is invalid in an EXIDX section. We are okay
5330 // because we should not be calling this for an EXIDX section.
5331 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5332
07f508a2
DK
5333 // Currently we convert ordinary input sections into relaxed sections only
5334 // at this point but we may want to support creating relaxed input section
5335 // very early. So we check here to see if owner is already a relaxed
5336 // section.
5337
5338 Arm_input_section<big_endian>* arm_input_section;
5339 if (owner->is_relaxed_input_section())
5340 {
5341 arm_input_section =
5342 Arm_input_section<big_endian>::as_arm_input_section(
5343 owner->relaxed_input_section());
5344 }
5345 else
5346 {
5347 gold_assert(owner->is_input_section());
5348 // Create a new relaxed input section.
5349 arm_input_section =
5350 target->new_arm_input_section(owner->relobj(), owner->shndx());
5351 new_relaxed_sections->push_back(arm_input_section);
5352 }
5353
5354 // Create a stub table.
2ea97941 5355 Stub_table<big_endian>* stub_table =
07f508a2
DK
5356 target->new_stub_table(arm_input_section);
5357
2ea97941 5358 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5359
5360 Input_section_list::const_iterator p = begin;
5361 Input_section_list::const_iterator prev_p;
5362
5363 // Look for input sections or relaxed input sections in [begin ... end].
5364 do
5365 {
5366 if (p->is_input_section() || p->is_relaxed_input_section())
5367 {
5368 // The stub table information for input sections live
5369 // in their objects.
5370 Arm_relobj<big_endian>* arm_relobj =
5371 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5372 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5373 }
5374 prev_p = p++;
5375 }
5376 while (prev_p != end);
5377}
5378
5379// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5380// of stub groups. We grow a stub group by adding input section until the
5381// size is just below GROUP_SIZE. The last input section will be converted
5382// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5383// input section after the stub table, effectively double the group size.
5384//
5385// This is similar to the group_sections() function in elf32-arm.c but is
5386// implemented differently.
5387
5388template<bool big_endian>
5389void
5390Arm_output_section<big_endian>::group_sections(
5391 section_size_type group_size,
5392 bool stubs_always_after_branch,
5393 Target_arm<big_endian>* target)
5394{
5395 // We only care about sections containing code.
5396 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5397 return;
5398
5399 // States for grouping.
5400 typedef enum
5401 {
5402 // No group is being built.
5403 NO_GROUP,
5404 // A group is being built but the stub table is not found yet.
5405 // We keep group a stub group until the size is just under GROUP_SIZE.
5406 // The last input section in the group will be used as the stub table.
5407 FINDING_STUB_SECTION,
5408 // A group is being built and we have already found a stub table.
5409 // We enter this state to grow a stub group by adding input section
5410 // after the stub table. This effectively doubles the group size.
5411 HAS_STUB_SECTION
5412 } State;
5413
5414 // Any newly created relaxed sections are stored here.
5415 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5416
5417 State state = NO_GROUP;
5418 section_size_type off = 0;
5419 section_size_type group_begin_offset = 0;
5420 section_size_type group_end_offset = 0;
5421 section_size_type stub_table_end_offset = 0;
5422 Input_section_list::const_iterator group_begin =
5423 this->input_sections().end();
2ea97941 5424 Input_section_list::const_iterator stub_table =
07f508a2
DK
5425 this->input_sections().end();
5426 Input_section_list::const_iterator group_end = this->input_sections().end();
5427 for (Input_section_list::const_iterator p = this->input_sections().begin();
5428 p != this->input_sections().end();
5429 ++p)
5430 {
5431 section_size_type section_begin_offset =
5432 align_address(off, p->addralign());
5433 section_size_type section_end_offset =
5434 section_begin_offset + p->data_size();
5435
5436 // Check to see if we should group the previously seens sections.
e9bbb538 5437 switch (state)
07f508a2
DK
5438 {
5439 case NO_GROUP:
5440 break;
5441
5442 case FINDING_STUB_SECTION:
5443 // Adding this section makes the group larger than GROUP_SIZE.
5444 if (section_end_offset - group_begin_offset >= group_size)
5445 {
5446 if (stubs_always_after_branch)
5447 {
5448 gold_assert(group_end != this->input_sections().end());
5449 this->create_stub_group(group_begin, group_end, group_end,
5450 target, &new_relaxed_sections);
5451 state = NO_GROUP;
5452 }
5453 else
5454 {
5455 // But wait, there's more! Input sections up to
5456 // stub_group_size bytes after the stub table can be
5457 // handled by it too.
5458 state = HAS_STUB_SECTION;
2ea97941 5459 stub_table = group_end;
07f508a2
DK
5460 stub_table_end_offset = group_end_offset;
5461 }
5462 }
5463 break;
5464
5465 case HAS_STUB_SECTION:
5466 // Adding this section makes the post stub-section group larger
5467 // than GROUP_SIZE.
5468 if (section_end_offset - stub_table_end_offset >= group_size)
5469 {
5470 gold_assert(group_end != this->input_sections().end());
2ea97941 5471 this->create_stub_group(group_begin, group_end, stub_table,
07f508a2
DK
5472 target, &new_relaxed_sections);
5473 state = NO_GROUP;
5474 }
5475 break;
5476
5477 default:
5478 gold_unreachable();
5479 }
5480
5481 // If we see an input section and currently there is no group, start
5482 // a new one. Skip any empty sections.
5483 if ((p->is_input_section() || p->is_relaxed_input_section())
5484 && (p->relobj()->section_size(p->shndx()) != 0))
5485 {
5486 if (state == NO_GROUP)
5487 {
5488 state = FINDING_STUB_SECTION;
5489 group_begin = p;
5490 group_begin_offset = section_begin_offset;
5491 }
5492
5493 // Keep track of the last input section seen.
5494 group_end = p;
5495 group_end_offset = section_end_offset;
5496 }
5497
5498 off = section_end_offset;
5499 }
5500
5501 // Create a stub group for any ungrouped sections.
5502 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5503 {
5504 gold_assert(group_end != this->input_sections().end());
5505 this->create_stub_group(group_begin, group_end,
5506 (state == FINDING_STUB_SECTION
5507 ? group_end
2ea97941 5508 : stub_table),
07f508a2
DK
5509 target, &new_relaxed_sections);
5510 }
5511
5512 // Convert input section into relaxed input section in a batch.
5513 if (!new_relaxed_sections.empty())
5514 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5515
5516 // Update the section offsets
5517 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5518 {
5519 Arm_relobj<big_endian>* arm_relobj =
5520 Arm_relobj<big_endian>::as_arm_relobj(
5521 new_relaxed_sections[i]->relobj());
2ea97941 5522 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5523 // Tell Arm_relobj that this input section is converted.
2ea97941 5524 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5525 }
5526}
5527
2b328d4e
DK
5528// Append non empty text sections in this to LIST in ascending
5529// order of their position in this.
5530
5531template<bool big_endian>
5532void
5533Arm_output_section<big_endian>::append_text_sections_to_list(
5534 Text_section_list* list)
5535{
5536 // We only care about text sections.
5537 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5538 return;
5539
5540 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5541
5542 for (Input_section_list::const_iterator p = this->input_sections().begin();
5543 p != this->input_sections().end();
5544 ++p)
5545 {
5546 // We only care about plain or relaxed input sections. We also
5547 // ignore any merged sections.
5548 if ((p->is_input_section() || p->is_relaxed_input_section())
5549 && p->data_size() != 0)
5550 list->push_back(Text_section_list::value_type(p->relobj(),
5551 p->shndx()));
5552 }
5553}
5554
5555template<bool big_endian>
5556void
5557Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5558 Layout* layout,
2b328d4e
DK
5559 const Text_section_list& sorted_text_sections,
5560 Symbol_table* symtab)
5561{
5562 // We should only do this for the EXIDX output section.
5563 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5564
5565 // We don't want the relaxation loop to undo these changes, so we discard
5566 // the current saved states and take another one after the fix-up.
5567 this->discard_states();
5568
5569 // Remove all input sections.
5570 uint64_t address = this->address();
5571 typedef std::list<Simple_input_section> Simple_input_section_list;
5572 Simple_input_section_list input_sections;
5573 this->reset_address_and_file_offset();
5574 this->get_input_sections(address, std::string(""), &input_sections);
5575
5576 if (!this->input_sections().empty())
5577 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5578
5579 // Go through all the known input sections and record them.
5580 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5581 Section_id_set known_input_sections;
5582 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5583 p != input_sections.end();
5584 ++p)
5585 {
5586 // This should never happen. At this point, we should only see
5587 // plain EXIDX input sections.
5588 gold_assert(!p->is_relaxed_input_section());
5589 known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5590 }
5591
5592 Arm_exidx_fixup exidx_fixup(this);
5593
5594 // Go over the sorted text sections.
5595 Section_id_set processed_input_sections;
5596 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5597 p != sorted_text_sections.end();
5598 ++p)
5599 {
5600 Relobj* relobj = p->first;
5601 unsigned int shndx = p->second;
5602
5603 Arm_relobj<big_endian>* arm_relobj =
5604 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5605 const Arm_exidx_input_section* exidx_input_section =
5606 arm_relobj->exidx_input_section_by_link(shndx);
5607
5608 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5609 // entry pointing to the end of the last seen EXIDX section.
5610 if (exidx_input_section == NULL)
5611 {
5612 exidx_fixup.add_exidx_cantunwind_as_needed();
5613 continue;
5614 }
5615
5616 Relobj* exidx_relobj = exidx_input_section->relobj();
5617 unsigned int exidx_shndx = exidx_input_section->shndx();
5618 Section_id sid(exidx_relobj, exidx_shndx);
5619 if (known_input_sections.find(sid) == known_input_sections.end())
5620 {
5621 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5622 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5623 // issue a warning instead. We assume the user knows what he
5624 // or she is doing. Otherwise, this is an error.
5625 if (layout->script_options()->saw_sections_clause())
5626 gold_warning(_("unwinding may not work because EXIDX input section"
5627 " %u of %s is not in EXIDX output section"),
5628 exidx_shndx, exidx_relobj->name().c_str());
5629 else
5630 gold_error(_("unwinding may not work because EXIDX input section"
5631 " %u of %s is not in EXIDX output section"),
5632 exidx_shndx, exidx_relobj->name().c_str());
5633
2b328d4e
DK
5634 exidx_fixup.add_exidx_cantunwind_as_needed();
5635 continue;
5636 }
5637
5638 // Fix up coverage and append input section to output data list.
5639 Arm_exidx_section_offset_map* section_offset_map = NULL;
5640 uint32_t deleted_bytes =
5641 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5642 &section_offset_map);
5643
5644 if (deleted_bytes == exidx_input_section->size())
5645 {
5646 // The whole EXIDX section got merged. Remove it from output.
5647 gold_assert(section_offset_map == NULL);
5648 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5649
5650 // All local symbols defined in this input section will be dropped.
5651 // We need to adjust output local symbol count.
5652 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5653 }
5654 else if (deleted_bytes > 0)
5655 {
5656 // Some entries are merged. We need to convert this EXIDX input
5657 // section into a relaxed section.
5658 gold_assert(section_offset_map != NULL);
5659 Arm_exidx_merged_section* merged_section =
5660 new Arm_exidx_merged_section(*exidx_input_section,
5661 *section_offset_map, deleted_bytes);
5662 this->add_relaxed_input_section(merged_section);
5663 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5664
5665 // All local symbols defined in discarded portions of this input
5666 // section will be dropped. We need to adjust output local symbol
5667 // count.
5668 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5669 }
5670 else
5671 {
5672 // Just add back the EXIDX input section.
5673 gold_assert(section_offset_map == NULL);
5674 Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5675 this->add_simple_input_section(sis, exidx_input_section->size(),
5676 exidx_input_section->addralign());
5677 }
5678
5679 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5680 }
5681
5682 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5683 exidx_fixup.add_exidx_cantunwind_as_needed();
5684
5685 // Remove any known EXIDX input sections that are not processed.
5686 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5687 p != input_sections.end();
5688 ++p)
5689 {
5690 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5691 == processed_input_sections.end())
5692 {
5693 // We only discard a known EXIDX section because its linked
5694 // text section has been folded by ICF.
5695 Arm_relobj<big_endian>* arm_relobj =
5696 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5697 const Arm_exidx_input_section* exidx_input_section =
5698 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5699 gold_assert(exidx_input_section != NULL);
5700 unsigned int text_shndx = exidx_input_section->link();
5701 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5702
5703 // Remove this from link.
5704 p->relobj()->set_output_section(p->shndx(), NULL);
5705 }
5706 }
5707
546c7457
DK
5708 // Link exidx output section to the first seen output section and
5709 // set correct entry size.
5710 this->set_link_section(exidx_fixup.first_output_text_section());
5711 this->set_entsize(8);
5712
2b328d4e
DK
5713 // Make changes permanent.
5714 this->save_states();
5715 this->set_section_offsets_need_adjustment();
5716}
5717
8ffa3667
DK
5718// Arm_relobj methods.
5719
cf846138
DK
5720// Determine if an input section is scannable for stub processing. SHDR is
5721// the header of the section and SHNDX is the section index. OS is the output
5722// section for the input section and SYMTAB is the global symbol table used to
5723// look up ICF information.
5724
5725template<bool big_endian>
5726bool
5727Arm_relobj<big_endian>::section_is_scannable(
5728 const elfcpp::Shdr<32, big_endian>& shdr,
5729 unsigned int shndx,
5730 const Output_section* os,
5731 const Symbol_table *symtab)
5732{
5733 // Skip any empty sections, unallocated sections or sections whose
5734 // type are not SHT_PROGBITS.
5735 if (shdr.get_sh_size() == 0
5736 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5737 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5738 return false;
5739
5740 // Skip any discarded or ICF'ed sections.
5741 if (os == NULL || symtab->is_section_folded(this, shndx))
5742 return false;
5743
5744 // If this requires special offset handling, check to see if it is
5745 // a relaxed section. If this is not, then it is a merged section that
5746 // we cannot handle.
5747 if (this->is_output_section_offset_invalid(shndx))
5748 {
5749 const Output_relaxed_input_section* poris =
5750 os->find_relaxed_input_section(this, shndx);
5751 if (poris == NULL)
5752 return false;
5753 }
5754
5755 return true;
5756}
5757
44272192
DK
5758// Determine if we want to scan the SHNDX-th section for relocation stubs.
5759// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5760
5761template<bool big_endian>
5762bool
5763Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5764 const elfcpp::Shdr<32, big_endian>& shdr,
5765 const Relobj::Output_sections& out_sections,
2b328d4e
DK
5766 const Symbol_table *symtab,
5767 const unsigned char* pshdrs)
44272192
DK
5768{
5769 unsigned int sh_type = shdr.get_sh_type();
5770 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5771 return false;
5772
5773 // Ignore empty section.
5774 off_t sh_size = shdr.get_sh_size();
5775 if (sh_size == 0)
5776 return false;
5777
44272192
DK
5778 // Ignore reloc section with unexpected symbol table. The
5779 // error will be reported in the final link.
5780 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5781 return false;
5782
b521dfe4
DK
5783 unsigned int reloc_size;
5784 if (sh_type == elfcpp::SHT_REL)
5785 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5786 else
5787 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
5788
5789 // Ignore reloc section with unexpected entsize or uneven size.
5790 // The error will be reported in the final link.
5791 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5792 return false;
5793
cf846138
DK
5794 // Ignore reloc section with bad info. This error will be
5795 // reported in the final link.
5796 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5797 if (index >= this->shnum())
5798 return false;
5799
5800 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5801 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5802 return this->section_is_scannable(text_shdr, index,
5803 out_sections[index], symtab);
44272192
DK
5804}
5805
cb1be87e
DK
5806// Return the output address of either a plain input section or a relaxed
5807// input section. SHNDX is the section index. We define and use this
5808// instead of calling Output_section::output_address because that is slow
5809// for large output.
5810
5811template<bool big_endian>
5812Arm_address
5813Arm_relobj<big_endian>::simple_input_section_output_address(
5814 unsigned int shndx,
5815 Output_section* os)
5816{
5817 if (this->is_output_section_offset_invalid(shndx))
5818 {
5819 const Output_relaxed_input_section* poris =
5820 os->find_relaxed_input_section(this, shndx);
5821 // We do not handle merged sections here.
5822 gold_assert(poris != NULL);
5823 return poris->address();
5824 }
5825 else
5826 return os->address() + this->get_output_section_offset(shndx);
5827}
5828
44272192
DK
5829// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5830// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5831
5832template<bool big_endian>
5833bool
5834Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5835 const elfcpp::Shdr<32, big_endian>& shdr,
5836 unsigned int shndx,
5837 Output_section* os,
5838 const Symbol_table* symtab)
5839{
cf846138 5840 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
5841 return false;
5842
44272192
DK
5843 // If the section does not cross any 4K-boundaries, it does not need to
5844 // be scanned.
cb1be87e 5845 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
5846 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5847 return false;
5848
5849 return true;
5850}
5851
5852// Scan a section for Cortex-A8 workaround.
5853
5854template<bool big_endian>
5855void
5856Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5857 const elfcpp::Shdr<32, big_endian>& shdr,
5858 unsigned int shndx,
5859 Output_section* os,
5860 Target_arm<big_endian>* arm_target)
5861{
c8761b9a
DK
5862 // Look for the first mapping symbol in this section. It should be
5863 // at (shndx, 0).
5864 Mapping_symbol_position section_start(shndx, 0);
5865 typename Mapping_symbols_info::const_iterator p =
5866 this->mapping_symbols_info_.lower_bound(section_start);
5867
5868 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
5869 // section. Issue a warning if section is marked as containing
5870 // instructions.
c8761b9a 5871 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
5872 {
5873 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
5874 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
5875 "erratum because it has no mapping symbols."),
5876 shndx, this->name().c_str());
5877 return;
5878 }
c8761b9a 5879
cb1be87e
DK
5880 Arm_address output_address =
5881 this->simple_input_section_output_address(shndx, os);
44272192
DK
5882
5883 // Get the section contents.
5884 section_size_type input_view_size = 0;
5885 const unsigned char* input_view =
5886 this->section_contents(shndx, &input_view_size, false);
5887
5888 // We need to go through the mapping symbols to determine what to
5889 // scan. There are two reasons. First, we should look at THUMB code and
5890 // THUMB code only. Second, we only want to look at the 4K-page boundary
5891 // to speed up the scanning.
5892
44272192
DK
5893 while (p != this->mapping_symbols_info_.end()
5894 && p->first.first == shndx)
5895 {
5896 typename Mapping_symbols_info::const_iterator next =
5897 this->mapping_symbols_info_.upper_bound(p->first);
5898
5899 // Only scan part of a section with THUMB code.
5900 if (p->second == 't')
5901 {
5902 // Determine the end of this range.
5903 section_size_type span_start =
5904 convert_to_section_size_type(p->first.second);
5905 section_size_type span_end;
5906 if (next != this->mapping_symbols_info_.end()
5907 && next->first.first == shndx)
5908 span_end = convert_to_section_size_type(next->first.second);
5909 else
5910 span_end = convert_to_section_size_type(shdr.get_sh_size());
5911
5912 if (((span_start + output_address) & ~0xfffUL)
5913 != ((span_end + output_address - 1) & ~0xfffUL))
5914 {
5915 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5916 span_start, span_end,
5917 input_view,
5918 output_address);
5919 }
5920 }
5921
5922 p = next;
5923 }
5924}
5925
8ffa3667
DK
5926// Scan relocations for stub generation.
5927
5928template<bool big_endian>
5929void
5930Arm_relobj<big_endian>::scan_sections_for_stubs(
5931 Target_arm<big_endian>* arm_target,
5932 const Symbol_table* symtab,
2ea97941 5933 const Layout* layout)
8ffa3667 5934{
2ea97941
ILT
5935 unsigned int shnum = this->shnum();
5936 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
5937
5938 // Read the section headers.
5939 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 5940 shnum * shdr_size,
8ffa3667
DK
5941 true, true);
5942
5943 // To speed up processing, we set up hash tables for fast lookup of
5944 // input offsets to output addresses.
5945 this->initialize_input_to_output_maps();
5946
5947 const Relobj::Output_sections& out_sections(this->output_sections());
5948
5949 Relocate_info<32, big_endian> relinfo;
8ffa3667 5950 relinfo.symtab = symtab;
2ea97941 5951 relinfo.layout = layout;
8ffa3667
DK
5952 relinfo.object = this;
5953
44272192 5954 // Do relocation stubs scanning.
2ea97941
ILT
5955 const unsigned char* p = pshdrs + shdr_size;
5956 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 5957 {
44272192 5958 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
5959 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5960 pshdrs))
8ffa3667 5961 {
44272192
DK
5962 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5963 Arm_address output_offset = this->get_output_section_offset(index);
5964 Arm_address output_address;
7296d933 5965 if (output_offset != invalid_address)
44272192
DK
5966 output_address = out_sections[index]->address() + output_offset;
5967 else
5968 {
5969 // Currently this only happens for a relaxed section.
5970 const Output_relaxed_input_section* poris =
5971 out_sections[index]->find_relaxed_input_section(this, index);
5972 gold_assert(poris != NULL);
5973 output_address = poris->address();
5974 }
8ffa3667 5975
44272192
DK
5976 // Get the relocations.
5977 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5978 shdr.get_sh_size(),
5979 true, false);
5980
5981 // Get the section contents. This does work for the case in which
5982 // we modify the contents of an input section. We need to pass the
5983 // output view under such circumstances.
5984 section_size_type input_view_size = 0;
5985 const unsigned char* input_view =
5986 this->section_contents(index, &input_view_size, false);
5987
5988 relinfo.reloc_shndx = i;
5989 relinfo.data_shndx = index;
5990 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
5991 unsigned int reloc_size;
5992 if (sh_type == elfcpp::SHT_REL)
5993 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5994 else
5995 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
5996
5997 Output_section* os = out_sections[index];
5998 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5999 shdr.get_sh_size() / reloc_size,
6000 os,
6001 output_offset == invalid_address,
6002 input_view, output_address,
6003 input_view_size);
8ffa3667 6004 }
44272192 6005 }
8ffa3667 6006
44272192
DK
6007 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6008 // after its relocation section, if there is one, is processed for
6009 // relocation stubs. Merging this loop with the one above would have been
6010 // complicated since we would have had to make sure that relocation stub
6011 // scanning is done first.
6012 if (arm_target->fix_cortex_a8())
6013 {
6014 const unsigned char* p = pshdrs + shdr_size;
6015 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6016 {
44272192
DK
6017 const elfcpp::Shdr<32, big_endian> shdr(p);
6018 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6019 out_sections[i],
6020 symtab))
6021 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6022 arm_target);
8ffa3667 6023 }
8ffa3667
DK
6024 }
6025
6026 // After we've done the relocations, we release the hash tables,
6027 // since we no longer need them.
6028 this->free_input_to_output_maps();
6029}
6030
6031// Count the local symbols. The ARM backend needs to know if a symbol
6032// is a THUMB function or not. For global symbols, it is easy because
6033// the Symbol object keeps the ELF symbol type. For local symbol it is
6034// harder because we cannot access this information. So we override the
6035// do_count_local_symbol in parent and scan local symbols to mark
6036// THUMB functions. This is not the most efficient way but I do not want to
6037// slow down other ports by calling a per symbol targer hook inside
6038// Sized_relobj<size, big_endian>::do_count_local_symbols.
6039
6040template<bool big_endian>
6041void
6042Arm_relobj<big_endian>::do_count_local_symbols(
6043 Stringpool_template<char>* pool,
6044 Stringpool_template<char>* dynpool)
6045{
6046 // We need to fix-up the values of any local symbols whose type are
6047 // STT_ARM_TFUNC.
6048
6049 // Ask parent to count the local symbols.
6050 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6051 const unsigned int loccount = this->local_symbol_count();
6052 if (loccount == 0)
6053 return;
6054
6055 // Intialize the thumb function bit-vector.
6056 std::vector<bool> empty_vector(loccount, false);
6057 this->local_symbol_is_thumb_function_.swap(empty_vector);
6058
6059 // Read the symbol table section header.
2ea97941 6060 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6061 elfcpp::Shdr<32, big_endian>
2ea97941 6062 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6063 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6064
6065 // Read the local symbols.
2ea97941 6066 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6067 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6068 off_t locsize = loccount * sym_size;
8ffa3667
DK
6069 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6070 locsize, true, true);
6071
20138696
DK
6072 // For mapping symbol processing, we need to read the symbol names.
6073 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6074 if (strtab_shndx >= this->shnum())
6075 {
6076 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6077 return;
6078 }
6079
6080 elfcpp::Shdr<32, big_endian>
6081 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6082 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6083 {
6084 this->error(_("symbol table name section has wrong type: %u"),
6085 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6086 return;
6087 }
6088 const char* pnames =
6089 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6090 strtabshdr.get_sh_size(),
6091 false, false));
6092
8ffa3667
DK
6093 // Loop over the local symbols and mark any local symbols pointing
6094 // to THUMB functions.
6095
6096 // Skip the first dummy symbol.
2ea97941 6097 psyms += sym_size;
8ffa3667
DK
6098 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6099 this->local_values();
2ea97941 6100 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6101 {
6102 elfcpp::Sym<32, big_endian> sym(psyms);
6103 elfcpp::STT st_type = sym.get_st_type();
6104 Symbol_value<32>& lv((*plocal_values)[i]);
6105 Arm_address input_value = lv.input_value();
6106
20138696
DK
6107 // Check to see if this is a mapping symbol.
6108 const char* sym_name = pnames + sym.get_st_name();
6109 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6110 {
24af6f92
DK
6111 bool is_ordinary;
6112 unsigned int input_shndx =
6113 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6114 gold_assert(is_ordinary);
20138696
DK
6115
6116 // Strip of LSB in case this is a THUMB symbol.
6117 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6118 this->mapping_symbols_info_[msp] = sym_name[1];
6119 }
6120
8ffa3667
DK
6121 if (st_type == elfcpp::STT_ARM_TFUNC
6122 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6123 {
6124 // This is a THUMB function. Mark this and canonicalize the
6125 // symbol value by setting LSB.
6126 this->local_symbol_is_thumb_function_[i] = true;
6127 if ((input_value & 1) == 0)
6128 lv.set_input_value(input_value | 1);
6129 }
6130 }
6131}
6132
6133// Relocate sections.
6134template<bool big_endian>
6135void
6136Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6137 const Symbol_table* symtab,
2ea97941 6138 const Layout* layout,
8ffa3667
DK
6139 const unsigned char* pshdrs,
6140 typename Sized_relobj<32, big_endian>::Views* pviews)
6141{
6142 // Call parent to relocate sections.
2ea97941 6143 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
43d12afe 6144 pviews);
8ffa3667
DK
6145
6146 // We do not generate stubs if doing a relocatable link.
6147 if (parameters->options().relocatable())
6148 return;
6149
6150 // Relocate stub tables.
2ea97941 6151 unsigned int shnum = this->shnum();
8ffa3667
DK
6152
6153 Target_arm<big_endian>* arm_target =
6154 Target_arm<big_endian>::default_target();
6155
6156 Relocate_info<32, big_endian> relinfo;
8ffa3667 6157 relinfo.symtab = symtab;
2ea97941 6158 relinfo.layout = layout;
8ffa3667
DK
6159 relinfo.object = this;
6160
2ea97941 6161 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6162 {
6163 Arm_input_section<big_endian>* arm_input_section =
6164 arm_target->find_arm_input_section(this, i);
6165
41263c05
DK
6166 if (arm_input_section != NULL
6167 && arm_input_section->is_stub_table_owner()
6168 && !arm_input_section->stub_table()->empty())
6169 {
6170 // We cannot discard a section if it owns a stub table.
6171 Output_section* os = this->output_section(i);
6172 gold_assert(os != NULL);
6173
6174 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6175 relinfo.reloc_shdr = NULL;
6176 relinfo.data_shndx = i;
6177 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6178
6179 gold_assert((*pviews)[i].view != NULL);
6180
6181 // We are passed the output section view. Adjust it to cover the
6182 // stub table only.
6183 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6184 gold_assert((stub_table->address() >= (*pviews)[i].address)
6185 && ((stub_table->address() + stub_table->data_size())
6186 <= (*pviews)[i].address + (*pviews)[i].view_size));
6187
6188 off_t offset = stub_table->address() - (*pviews)[i].address;
6189 unsigned char* view = (*pviews)[i].view + offset;
6190 Arm_address address = stub_table->address();
6191 section_size_type view_size = stub_table->data_size();
8ffa3667 6192
41263c05
DK
6193 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6194 view_size);
6195 }
6196
6197 // Apply Cortex A8 workaround if applicable.
6198 if (this->section_has_cortex_a8_workaround(i))
6199 {
6200 unsigned char* view = (*pviews)[i].view;
6201 Arm_address view_address = (*pviews)[i].address;
6202 section_size_type view_size = (*pviews)[i].view_size;
6203 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6204
6205 // Adjust view to cover section.
6206 Output_section* os = this->output_section(i);
6207 gold_assert(os != NULL);
cb1be87e
DK
6208 Arm_address section_address =
6209 this->simple_input_section_output_address(i, os);
41263c05
DK
6210 uint64_t section_size = this->section_size(i);
6211
6212 gold_assert(section_address >= view_address
6213 && ((section_address + section_size)
6214 <= (view_address + view_size)));
6215
6216 unsigned char* section_view = view + (section_address - view_address);
6217
6218 // Apply the Cortex-A8 workaround to the output address range
6219 // corresponding to this input section.
6220 stub_table->apply_cortex_a8_workaround_to_address_range(
6221 arm_target,
6222 section_view,
6223 section_address,
6224 section_size);
6225 }
8ffa3667
DK
6226 }
6227}
6228
c8761b9a
DK
6229// Find the linked text section of an EXIDX section by looking the the first
6230// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6231// must be linked to to its associated code section via the sh_link field of
6232// its section header. However, some tools are broken and the link is not
6233// always set. LD just drops such an EXIDX section silently, causing the
6234// associated code not unwindabled. Here we try a little bit harder to
6235// discover the linked code section.
6236//
6237// PSHDR points to the section header of a relocation section of an EXIDX
6238// section. If we can find a linked text section, return true and
6239// store the text section index in the location PSHNDX. Otherwise
6240// return false.
a0351a69
DK
6241
6242template<bool big_endian>
c8761b9a
DK
6243bool
6244Arm_relobj<big_endian>::find_linked_text_section(
6245 const unsigned char* pshdr,
6246 const unsigned char* psyms,
6247 unsigned int* pshndx)
a0351a69 6248{
c8761b9a
DK
6249 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6250
6251 // If there is no relocation, we cannot find the linked text section.
6252 size_t reloc_size;
6253 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6254 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6255 else
6256 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6257 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6258
6259 // Get the relocations.
6260 const unsigned char* prelocs =
6261 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6262
c8761b9a
DK
6263 // Find the REL31 relocation for the first word of the first EXIDX entry.
6264 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6265 {
c8761b9a
DK
6266 Arm_address r_offset;
6267 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6268 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6269 {
6270 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6271 r_info = reloc.get_r_info();
6272 r_offset = reloc.get_r_offset();
6273 }
6274 else
6275 {
6276 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6277 r_info = reloc.get_r_info();
6278 r_offset = reloc.get_r_offset();
6279 }
6280
6281 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6282 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6283 continue;
6284
6285 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6286 if (r_sym == 0
6287 || r_sym >= this->local_symbol_count()
6288 || r_offset != 0)
6289 continue;
6290
6291 // This is the relocation for the first word of the first EXIDX entry.
6292 // We expect to see a local section symbol.
6293 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6294 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6295 if (sym.get_st_type() == elfcpp::STT_SECTION)
6296 {
24af6f92
DK
6297 bool is_ordinary;
6298 *pshndx =
6299 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6300 gold_assert(is_ordinary);
c8761b9a
DK
6301 return true;
6302 }
6303 else
6304 return false;
993d07c1 6305 }
c8761b9a
DK
6306
6307 return false;
6308}
6309
6310// Make an EXIDX input section object for an EXIDX section whose index is
6311// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6312// is the section index of the linked text section.
6313
6314template<bool big_endian>
6315void
6316Arm_relobj<big_endian>::make_exidx_input_section(
6317 unsigned int shndx,
6318 const elfcpp::Shdr<32, big_endian>& shdr,
6319 unsigned int text_shndx)
6320{
993d07c1
DK
6321 // Issue an error and ignore this EXIDX section if it points to a text
6322 // section already has an EXIDX section.
6323 if (this->exidx_section_map_[text_shndx] != NULL)
6324 {
6325 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6326 "in %s"),
6327 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6328 text_shndx, this->name().c_str());
6329 return;
a0351a69 6330 }
993d07c1
DK
6331
6332 // Create an Arm_exidx_input_section object for this EXIDX section.
6333 Arm_exidx_input_section* exidx_input_section =
6334 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6335 shdr.get_sh_addralign());
6336 this->exidx_section_map_[text_shndx] = exidx_input_section;
6337
6338 // Also map the EXIDX section index to this.
6339 gold_assert(this->exidx_section_map_[shndx] == NULL);
6340 this->exidx_section_map_[shndx] = exidx_input_section;
a0351a69
DK
6341}
6342
d5b40221
DK
6343// Read the symbol information.
6344
6345template<bool big_endian>
6346void
6347Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6348{
6349 // Call parent class to read symbol information.
6350 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6351
7296d933
DK
6352 // If this input file is a binary file, it has no processor
6353 // specific flags and attributes section.
6354 Input_file::Format format = this->input_file()->format();
6355 if (format != Input_file::FORMAT_ELF)
6356 {
6357 gold_assert(format == Input_file::FORMAT_BINARY);
6358 this->merge_flags_and_attributes_ = false;
6359 return;
6360 }
6361
d5b40221
DK
6362 // Read processor-specific flags in ELF file header.
6363 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6364 elfcpp::Elf_sizes<32>::ehdr_size,
6365 true, false);
6366 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6367 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6368
6369 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6370 // sections.
c8761b9a 6371 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6372 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a
DK
6373 const unsigned char* pshdrs = sd->section_headers->data();
6374 const unsigned char *ps = pshdrs + shdr_size;
7296d933 6375 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6376 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6377 {
6378 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6379
6380 // Sometimes an object has no contents except the section name string
6381 // table and an empty symbol table with the undefined symbol. We
6382 // don't want to merge processor-specific flags from such an object.
6383 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6384 {
6385 // Symbol table is not empty.
6386 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6387 elfcpp::Elf_sizes<32>::sym_size;
6388 if (shdr.get_sh_size() > sym_size)
6389 must_merge_flags_and_attributes = true;
6390 }
6391 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6392 // If this is neither an empty symbol table nor a string table,
6393 // be conservative.
6394 must_merge_flags_and_attributes = true;
6395
993d07c1
DK
6396 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6397 {
6398 gold_assert(this->attributes_section_data_ == NULL);
6399 section_offset_type section_offset = shdr.get_sh_offset();
6400 section_size_type section_size =
6401 convert_to_section_size_type(shdr.get_sh_size());
6402 File_view* view = this->get_lasting_view(section_offset,
6403 section_size, true, false);
6404 this->attributes_section_data_ =
6405 new Attributes_section_data(view->data(), section_size);
6406 }
6407 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6408 {
6409 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6410 if (text_shndx >= this->shnum())
6411 gold_error(_("EXIDX section %u linked to invalid section %u"),
6412 i, text_shndx);
6413 else if (text_shndx == elfcpp::SHN_UNDEF)
6414 deferred_exidx_sections.push_back(i);
6415 else
6416 this->make_exidx_input_section(i, shdr, text_shndx);
6417 }
6418 }
6419
7296d933
DK
6420 // This is rare.
6421 if (!must_merge_flags_and_attributes)
6422 {
6423 this->merge_flags_and_attributes_ = false;
6424 return;
6425 }
6426
c8761b9a
DK
6427 // Some tools are broken and they do not set the link of EXIDX sections.
6428 // We look at the first relocation to figure out the linked sections.
6429 if (!deferred_exidx_sections.empty())
6430 {
6431 // We need to go over the section headers again to find the mapping
6432 // from sections being relocated to their relocation sections. This is
6433 // a bit inefficient as we could do that in the loop above. However,
6434 // we do not expect any deferred EXIDX sections normally. So we do not
6435 // want to slow down the most common path.
6436 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6437 Reloc_map reloc_map;
6438 ps = pshdrs + shdr_size;
6439 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6440 {
6441 elfcpp::Shdr<32, big_endian> shdr(ps);
6442 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6443 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6444 {
6445 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6446 if (info_shndx >= this->shnum())
6447 gold_error(_("relocation section %u has invalid info %u"),
6448 i, info_shndx);
6449 Reloc_map::value_type value(info_shndx, i);
6450 std::pair<Reloc_map::iterator, bool> result =
6451 reloc_map.insert(value);
6452 if (!result.second)
6453 gold_error(_("section %u has multiple relocation sections "
6454 "%u and %u"),
6455 info_shndx, i, reloc_map[info_shndx]);
6456 }
6457 }
6458
6459 // Read the symbol table section header.
6460 const unsigned int symtab_shndx = this->symtab_shndx();
6461 elfcpp::Shdr<32, big_endian>
6462 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6463 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6464
6465 // Read the local symbols.
6466 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6467 const unsigned int loccount = this->local_symbol_count();
6468 gold_assert(loccount == symtabshdr.get_sh_info());
6469 off_t locsize = loccount * sym_size;
6470 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6471 locsize, true, true);
6472
6473 // Process the deferred EXIDX sections.
6474 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6475 {
6476 unsigned int shndx = deferred_exidx_sections[i];
6477 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6478 unsigned int text_shndx;
6479 Reloc_map::const_iterator it = reloc_map.find(shndx);
6480 if (it != reloc_map.end()
6481 && find_linked_text_section(pshdrs + it->second * shdr_size,
6482 psyms, &text_shndx))
6483 this->make_exidx_input_section(shndx, shdr, text_shndx);
6484 else
6485 gold_error(_("EXIDX section %u has no linked text section."),
6486 shndx);
6487 }
993d07c1 6488 }
d5b40221
DK
6489}
6490
99e5bff2
DK
6491// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6492// sections for unwinding. These sections are referenced implicitly by
6493// text sections linked in the section headers. If we ignore these implict
6494// references, the .ARM.exidx sections and any .ARM.extab sections they use
6495// will be garbage-collected incorrectly. Hence we override the same function
6496// in the base class to handle these implicit references.
6497
6498template<bool big_endian>
6499void
6500Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6501 Layout* layout,
6502 Read_relocs_data* rd)
6503{
6504 // First, call base class method to process relocations in this object.
6505 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6506
4a54abbb
DK
6507 // If --gc-sections is not specified, there is nothing more to do.
6508 // This happens when --icf is used but --gc-sections is not.
6509 if (!parameters->options().gc_sections())
6510 return;
6511
99e5bff2
DK
6512 unsigned int shnum = this->shnum();
6513 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6514 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6515 shnum * shdr_size,
6516 true, true);
6517
6518 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6519 // to these from the linked text sections.
6520 const unsigned char* ps = pshdrs + shdr_size;
6521 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6522 {
6523 elfcpp::Shdr<32, big_endian> shdr(ps);
6524 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6525 {
6526 // Found an .ARM.exidx section, add it to the set of reachable
6527 // sections from its linked text section.
6528 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6529 symtab->gc()->add_reference(this, text_shndx, this, i);
6530 }
6531 }
6532}
6533
e7eca48c
DK
6534// Update output local symbol count. Owing to EXIDX entry merging, some local
6535// symbols will be removed in output. Adjust output local symbol count
6536// accordingly. We can only changed the static output local symbol count. It
6537// is too late to change the dynamic symbols.
6538
6539template<bool big_endian>
6540void
6541Arm_relobj<big_endian>::update_output_local_symbol_count()
6542{
6543 // Caller should check that this needs updating. We want caller checking
6544 // because output_local_symbol_count_needs_update() is most likely inlined.
6545 gold_assert(this->output_local_symbol_count_needs_update_);
6546
6547 gold_assert(this->symtab_shndx() != -1U);
6548 if (this->symtab_shndx() == 0)
6549 {
6550 // This object has no symbols. Weird but legal.
6551 return;
6552 }
6553
6554 // Read the symbol table section header.
6555 const unsigned int symtab_shndx = this->symtab_shndx();
6556 elfcpp::Shdr<32, big_endian>
6557 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6558 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6559
6560 // Read the local symbols.
6561 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6562 const unsigned int loccount = this->local_symbol_count();
6563 gold_assert(loccount == symtabshdr.get_sh_info());
6564 off_t locsize = loccount * sym_size;
6565 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6566 locsize, true, true);
6567
6568 // Loop over the local symbols.
6569
6570 typedef typename Sized_relobj<32, big_endian>::Output_sections
6571 Output_sections;
6572 const Output_sections& out_sections(this->output_sections());
6573 unsigned int shnum = this->shnum();
6574 unsigned int count = 0;
6575 // Skip the first, dummy, symbol.
6576 psyms += sym_size;
6577 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6578 {
6579 elfcpp::Sym<32, big_endian> sym(psyms);
6580
6581 Symbol_value<32>& lv((*this->local_values())[i]);
6582
6583 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6584 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6585 continue;
6586
6587 bool is_ordinary;
6588 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6589 &is_ordinary);
6590
6591 if (shndx < shnum)
6592 {
6593 Output_section* os = out_sections[shndx];
6594
6595 // This local symbol no longer has an output section. Discard it.
6596 if (os == NULL)
6597 {
6598 lv.set_no_output_symtab_entry();
6599 continue;
6600 }
6601
6602 // Currently we only discard parts of EXIDX input sections.
6603 // We explicitly check for a merged EXIDX input section to avoid
6604 // calling Output_section_data::output_offset unless necessary.
6605 if ((this->get_output_section_offset(shndx) == invalid_address)
6606 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6607 {
6608 section_offset_type output_offset =
6609 os->output_offset(this, shndx, lv.input_value());
6610 if (output_offset == -1)
6611 {
6612 // This symbol is defined in a part of an EXIDX input section
6613 // that is discarded due to entry merging.
6614 lv.set_no_output_symtab_entry();
6615 continue;
6616 }
6617 }
6618 }
6619
6620 ++count;
6621 }
6622
6623 this->set_output_local_symbol_count(count);
6624 this->output_local_symbol_count_needs_update_ = false;
6625}
6626
d5b40221
DK
6627// Arm_dynobj methods.
6628
6629// Read the symbol information.
6630
6631template<bool big_endian>
6632void
6633Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6634{
6635 // Call parent class to read symbol information.
6636 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6637
6638 // Read processor-specific flags in ELF file header.
6639 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6640 elfcpp::Elf_sizes<32>::ehdr_size,
6641 true, false);
6642 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6643 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6644
6645 // Read the attributes section if there is one.
6646 // We read from the end because gas seems to put it near the end of
6647 // the section headers.
6648 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6649 const unsigned char *ps =
6650 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6651 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6652 {
6653 elfcpp::Shdr<32, big_endian> shdr(ps);
6654 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6655 {
6656 section_offset_type section_offset = shdr.get_sh_offset();
6657 section_size_type section_size =
6658 convert_to_section_size_type(shdr.get_sh_size());
6659 File_view* view = this->get_lasting_view(section_offset,
6660 section_size, true, false);
6661 this->attributes_section_data_ =
6662 new Attributes_section_data(view->data(), section_size);
6663 break;
6664 }
6665 }
d5b40221
DK
6666}
6667
e9bbb538
DK
6668// Stub_addend_reader methods.
6669
6670// Read the addend of a REL relocation of type R_TYPE at VIEW.
6671
6672template<bool big_endian>
6673elfcpp::Elf_types<32>::Elf_Swxword
6674Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6675 unsigned int r_type,
6676 const unsigned char* view,
6677 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6678{
089d69dc
DK
6679 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6680
e9bbb538
DK
6681 switch (r_type)
6682 {
6683 case elfcpp::R_ARM_CALL:
6684 case elfcpp::R_ARM_JUMP24:
6685 case elfcpp::R_ARM_PLT32:
6686 {
6687 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6688 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6689 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6690 return utils::sign_extend<26>(val << 2);
6691 }
6692
6693 case elfcpp::R_ARM_THM_CALL:
6694 case elfcpp::R_ARM_THM_JUMP24:
6695 case elfcpp::R_ARM_THM_XPC22:
6696 {
e9bbb538
DK
6697 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6698 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6699 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6700 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6701 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6702 }
6703
6704 case elfcpp::R_ARM_THM_JUMP19:
6705 {
6706 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6707 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6708 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6709 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6710 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6711 }
6712
6713 default:
6714 gold_unreachable();
6715 }
6716}
6717
4a54abbb
DK
6718// Arm_output_data_got methods.
6719
6720// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6721// The first one is initialized to be 1, which is the module index for
6722// the main executable and the second one 0. A reloc of the type
6723// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6724// be applied by gold. GSYM is a global symbol.
6725//
6726template<bool big_endian>
6727void
6728Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6729 unsigned int got_type,
6730 Symbol* gsym)
6731{
6732 if (gsym->has_got_offset(got_type))
6733 return;
6734
6735 // We are doing a static link. Just mark it as belong to module 1,
6736 // the executable.
6737 unsigned int got_offset = this->add_constant(1);
6738 gsym->set_got_offset(got_type, got_offset);
6739 got_offset = this->add_constant(0);
6740 this->static_relocs_.push_back(Static_reloc(got_offset,
6741 elfcpp::R_ARM_TLS_DTPOFF32,
6742 gsym));
6743}
6744
6745// Same as the above but for a local symbol.
6746
6747template<bool big_endian>
6748void
6749Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6750 unsigned int got_type,
6751 Sized_relobj<32, big_endian>* object,
6752 unsigned int index)
6753{
6754 if (object->local_has_got_offset(index, got_type))
6755 return;
6756
6757 // We are doing a static link. Just mark it as belong to module 1,
6758 // the executable.
6759 unsigned int got_offset = this->add_constant(1);
6760 object->set_local_got_offset(index, got_type, got_offset);
6761 got_offset = this->add_constant(0);
6762 this->static_relocs_.push_back(Static_reloc(got_offset,
6763 elfcpp::R_ARM_TLS_DTPOFF32,
6764 object, index));
6765}
6766
6767template<bool big_endian>
6768void
6769Arm_output_data_got<big_endian>::do_write(Output_file* of)
6770{
6771 // Call parent to write out GOT.
6772 Output_data_got<32, big_endian>::do_write(of);
6773
6774 // We are done if there is no fix up.
6775 if (this->static_relocs_.empty())
6776 return;
6777
6778 gold_assert(parameters->doing_static_link());
6779
6780 const off_t offset = this->offset();
6781 const section_size_type oview_size =
6782 convert_to_section_size_type(this->data_size());
6783 unsigned char* const oview = of->get_output_view(offset, oview_size);
6784
6785 Output_segment* tls_segment = this->layout_->tls_segment();
6786 gold_assert(tls_segment != NULL);
6787
6788 // The thread pointer $tp points to the TCB, which is followed by the
6789 // TLS. So we need to adjust $tp relative addressing by this amount.
6790 Arm_address aligned_tcb_size =
6791 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6792
6793 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6794 {
6795 Static_reloc& reloc(this->static_relocs_[i]);
6796
6797 Arm_address value;
6798 if (!reloc.symbol_is_global())
6799 {
6800 Sized_relobj<32, big_endian>* object = reloc.relobj();
6801 const Symbol_value<32>* psymval =
6802 reloc.relobj()->local_symbol(reloc.index());
6803
6804 // We are doing static linking. Issue an error and skip this
6805 // relocation if the symbol is undefined or in a discarded_section.
6806 bool is_ordinary;
6807 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6808 if ((shndx == elfcpp::SHN_UNDEF)
6809 || (is_ordinary
6810 && shndx != elfcpp::SHN_UNDEF
6811 && !object->is_section_included(shndx)
6812 && !this->symbol_table_->is_section_folded(object, shndx)))
6813 {
6814 gold_error(_("undefined or discarded local symbol %u from "
6815 " object %s in GOT"),
6816 reloc.index(), reloc.relobj()->name().c_str());
6817 continue;
6818 }
6819
6820 value = psymval->value(object, 0);
6821 }
6822 else
6823 {
6824 const Symbol* gsym = reloc.symbol();
6825 gold_assert(gsym != NULL);
6826 if (gsym->is_forwarder())
6827 gsym = this->symbol_table_->resolve_forwards(gsym);
6828
6829 // We are doing static linking. Issue an error and skip this
6830 // relocation if the symbol is undefined or in a discarded_section
6831 // unless it is a weakly_undefined symbol.
6832 if ((gsym->is_defined_in_discarded_section()
6833 || gsym->is_undefined())
6834 && !gsym->is_weak_undefined())
6835 {
6836 gold_error(_("undefined or discarded symbol %s in GOT"),
6837 gsym->name());
6838 continue;
6839 }
6840
6841 if (!gsym->is_weak_undefined())
6842 {
6843 const Sized_symbol<32>* sym =
6844 static_cast<const Sized_symbol<32>*>(gsym);
6845 value = sym->value();
6846 }
6847 else
6848 value = 0;
6849 }
6850
6851 unsigned got_offset = reloc.got_offset();
6852 gold_assert(got_offset < oview_size);
6853
6854 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6855 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6856 Valtype x;
6857 switch (reloc.r_type())
6858 {
6859 case elfcpp::R_ARM_TLS_DTPOFF32:
6860 x = value;
6861 break;
6862 case elfcpp::R_ARM_TLS_TPOFF32:
6863 x = value + aligned_tcb_size;
6864 break;
6865 default:
6866 gold_unreachable();
6867 }
6868 elfcpp::Swap<32, big_endian>::writeval(wv, x);
6869 }
6870
6871 of->write_output_view(offset, oview_size, oview);
6872}
6873
94cdfcff
DK
6874// A class to handle the PLT data.
6875
6876template<bool big_endian>
6877class Output_data_plt_arm : public Output_section_data
6878{
6879 public:
6880 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6881 Reloc_section;
6882
6883 Output_data_plt_arm(Layout*, Output_data_space*);
6884
6885 // Add an entry to the PLT.
6886 void
6887 add_entry(Symbol* gsym);
6888
6889 // Return the .rel.plt section data.
6890 const Reloc_section*
6891 rel_plt() const
6892 { return this->rel_; }
6893
6894 protected:
6895 void
6896 do_adjust_output_section(Output_section* os);
6897
6898 // Write to a map file.
6899 void
6900 do_print_to_mapfile(Mapfile* mapfile) const
6901 { mapfile->print_output_data(this, _("** PLT")); }
6902
6903 private:
6904 // Template for the first PLT entry.
6905 static const uint32_t first_plt_entry[5];
6906
6907 // Template for subsequent PLT entries.
6908 static const uint32_t plt_entry[3];
6909
6910 // Set the final size.
6911 void
6912 set_final_data_size()
6913 {
6914 this->set_data_size(sizeof(first_plt_entry)
6915 + this->count_ * sizeof(plt_entry));
6916 }
6917
6918 // Write out the PLT data.
6919 void
6920 do_write(Output_file*);
6921
6922 // The reloc section.
6923 Reloc_section* rel_;
6924 // The .got.plt section.
6925 Output_data_space* got_plt_;
6926 // The number of PLT entries.
6927 unsigned int count_;
6928};
6929
6930// Create the PLT section. The ordinary .got section is an argument,
6931// since we need to refer to the start. We also create our own .got
6932// section just for PLT entries.
6933
6934template<bool big_endian>
2ea97941 6935Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
6936 Output_data_space* got_plt)
6937 : Output_section_data(4), got_plt_(got_plt), count_(0)
6938{
6939 this->rel_ = new Reloc_section(false);
2ea97941 6940 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1a2dff53
ILT
6941 elfcpp::SHF_ALLOC, this->rel_, true, false,
6942 false, false);
94cdfcff
DK
6943}
6944
6945template<bool big_endian>
6946void
6947Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6948{
6949 os->set_entsize(0);
6950}
6951
6952// Add an entry to the PLT.
6953
6954template<bool big_endian>
6955void
6956Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6957{
6958 gold_assert(!gsym->has_plt_offset());
6959
6960 // Note that when setting the PLT offset we skip the initial
6961 // reserved PLT entry.
6962 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6963 + sizeof(first_plt_entry));
6964
6965 ++this->count_;
6966
6967 section_offset_type got_offset = this->got_plt_->current_data_size();
6968
6969 // Every PLT entry needs a GOT entry which points back to the PLT
6970 // entry (this will be changed by the dynamic linker, normally
6971 // lazily when the function is called).
6972 this->got_plt_->set_current_data_size(got_offset + 4);
6973
6974 // Every PLT entry needs a reloc.
6975 gsym->set_needs_dynsym_entry();
6976 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6977 got_offset);
6978
6979 // Note that we don't need to save the symbol. The contents of the
6980 // PLT are independent of which symbols are used. The symbols only
6981 // appear in the relocations.
6982}
6983
6984// ARM PLTs.
6985// FIXME: This is not very flexible. Right now this has only been tested
6986// on armv5te. If we are to support additional architecture features like
6987// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6988
6989// The first entry in the PLT.
6990template<bool big_endian>
6991const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6992{
6993 0xe52de004, // str lr, [sp, #-4]!
6994 0xe59fe004, // ldr lr, [pc, #4]
6995 0xe08fe00e, // add lr, pc, lr
6996 0xe5bef008, // ldr pc, [lr, #8]!
6997 0x00000000, // &GOT[0] - .
6998};
6999
7000// Subsequent entries in the PLT.
7001
7002template<bool big_endian>
7003const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7004{
7005 0xe28fc600, // add ip, pc, #0xNN00000
7006 0xe28cca00, // add ip, ip, #0xNN000
7007 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7008};
7009
7010// Write out the PLT. This uses the hand-coded instructions above,
7011// and adjusts them as needed. This is all specified by the arm ELF
7012// Processor Supplement.
7013
7014template<bool big_endian>
7015void
7016Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7017{
2ea97941 7018 const off_t offset = this->offset();
94cdfcff
DK
7019 const section_size_type oview_size =
7020 convert_to_section_size_type(this->data_size());
2ea97941 7021 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7022
7023 const off_t got_file_offset = this->got_plt_->offset();
7024 const section_size_type got_size =
7025 convert_to_section_size_type(this->got_plt_->data_size());
7026 unsigned char* const got_view = of->get_output_view(got_file_offset,
7027 got_size);
7028 unsigned char* pov = oview;
7029
ebabffbd
DK
7030 Arm_address plt_address = this->address();
7031 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7032
7033 // Write first PLT entry. All but the last word are constants.
7034 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7035 / sizeof(plt_entry[0]));
7036 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7037 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7038 // Last word in first PLT entry is &GOT[0] - .
7039 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7040 got_address - (plt_address + 16));
7041 pov += sizeof(first_plt_entry);
7042
7043 unsigned char* got_pov = got_view;
7044
7045 memset(got_pov, 0, 12);
7046 got_pov += 12;
7047
7048 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7049 unsigned int plt_offset = sizeof(first_plt_entry);
7050 unsigned int plt_rel_offset = 0;
7051 unsigned int got_offset = 12;
7052 const unsigned int count = this->count_;
7053 for (unsigned int i = 0;
7054 i < count;
7055 ++i,
7056 pov += sizeof(plt_entry),
7057 got_pov += 4,
7058 plt_offset += sizeof(plt_entry),
7059 plt_rel_offset += rel_size,
7060 got_offset += 4)
7061 {
7062 // Set and adjust the PLT entry itself.
2ea97941
ILT
7063 int32_t offset = ((got_address + got_offset)
7064 - (plt_address + plt_offset + 8));
94cdfcff 7065
2ea97941
ILT
7066 gold_assert(offset >= 0 && offset < 0x0fffffff);
7067 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7068 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7069 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7070 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7071 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7072 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7073
7074 // Set the entry in the GOT.
7075 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7076 }
7077
7078 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7079 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7080
2ea97941 7081 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7082 of->write_output_view(got_file_offset, got_size, got_view);
7083}
7084
7085// Create a PLT entry for a global symbol.
7086
7087template<bool big_endian>
7088void
2ea97941 7089Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7090 Symbol* gsym)
7091{
7092 if (gsym->has_plt_offset())
7093 return;
7094
7095 if (this->plt_ == NULL)
7096 {
7097 // Create the GOT sections first.
2ea97941 7098 this->got_section(symtab, layout);
94cdfcff 7099
2ea97941
ILT
7100 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7101 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7102 (elfcpp::SHF_ALLOC
7103 | elfcpp::SHF_EXECINSTR),
1a2dff53 7104 this->plt_, false, false, false, false);
94cdfcff
DK
7105 }
7106 this->plt_->add_entry(gsym);
7107}
7108
f96accdf
DK
7109// Get the section to use for TLS_DESC relocations.
7110
7111template<bool big_endian>
7112typename Target_arm<big_endian>::Reloc_section*
7113Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7114{
7115 return this->plt_section()->rel_tls_desc(layout);
7116}
7117
7118// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7119
7120template<bool big_endian>
7121void
7122Target_arm<big_endian>::define_tls_base_symbol(
7123 Symbol_table* symtab,
7124 Layout* layout)
7125{
7126 if (this->tls_base_symbol_defined_)
7127 return;
7128
7129 Output_segment* tls_segment = layout->tls_segment();
7130 if (tls_segment != NULL)
7131 {
7132 bool is_exec = parameters->options().output_is_executable();
7133 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7134 Symbol_table::PREDEFINED,
7135 tls_segment, 0, 0,
7136 elfcpp::STT_TLS,
7137 elfcpp::STB_LOCAL,
7138 elfcpp::STV_HIDDEN, 0,
7139 (is_exec
7140 ? Symbol::SEGMENT_END
7141 : Symbol::SEGMENT_START),
7142 true);
7143 }
7144 this->tls_base_symbol_defined_ = true;
7145}
7146
7147// Create a GOT entry for the TLS module index.
7148
7149template<bool big_endian>
7150unsigned int
7151Target_arm<big_endian>::got_mod_index_entry(
7152 Symbol_table* symtab,
7153 Layout* layout,
7154 Sized_relobj<32, big_endian>* object)
7155{
7156 if (this->got_mod_index_offset_ == -1U)
7157 {
7158 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7159 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7160 unsigned int got_offset;
7161 if (!parameters->doing_static_link())
7162 {
7163 got_offset = got->add_constant(0);
7164 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7165 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7166 got_offset);
7167 }
7168 else
7169 {
7170 // We are doing a static link. Just mark it as belong to module 1,
7171 // the executable.
7172 got_offset = got->add_constant(1);
7173 }
7174
f96accdf
DK
7175 got->add_constant(0);
7176 this->got_mod_index_offset_ = got_offset;
7177 }
7178 return this->got_mod_index_offset_;
7179}
7180
7181// Optimize the TLS relocation type based on what we know about the
7182// symbol. IS_FINAL is true if the final address of this symbol is
7183// known at link time.
7184
7185template<bool big_endian>
7186tls::Tls_optimization
7187Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7188{
7189 // FIXME: Currently we do not do any TLS optimization.
7190 return tls::TLSOPT_NONE;
7191}
7192
4a657b0d
DK
7193// Report an unsupported relocation against a local symbol.
7194
7195template<bool big_endian>
7196void
7197Target_arm<big_endian>::Scan::unsupported_reloc_local(
7198 Sized_relobj<32, big_endian>* object,
7199 unsigned int r_type)
7200{
7201 gold_error(_("%s: unsupported reloc %u against local symbol"),
7202 object->name().c_str(), r_type);
7203}
7204
bec53400
DK
7205// We are about to emit a dynamic relocation of type R_TYPE. If the
7206// dynamic linker does not support it, issue an error. The GNU linker
7207// only issues a non-PIC error for an allocated read-only section.
7208// Here we know the section is allocated, but we don't know that it is
7209// read-only. But we check for all the relocation types which the
7210// glibc dynamic linker supports, so it seems appropriate to issue an
7211// error even if the section is not read-only.
7212
7213template<bool big_endian>
7214void
7215Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7216 unsigned int r_type)
7217{
7218 switch (r_type)
7219 {
7220 // These are the relocation types supported by glibc for ARM.
7221 case elfcpp::R_ARM_RELATIVE:
7222 case elfcpp::R_ARM_COPY:
7223 case elfcpp::R_ARM_GLOB_DAT:
7224 case elfcpp::R_ARM_JUMP_SLOT:
7225 case elfcpp::R_ARM_ABS32:
be8fcb75 7226 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7227 case elfcpp::R_ARM_PC24:
7228 // FIXME: The following 3 types are not supported by Android's dynamic
7229 // linker.
7230 case elfcpp::R_ARM_TLS_DTPMOD32:
7231 case elfcpp::R_ARM_TLS_DTPOFF32:
7232 case elfcpp::R_ARM_TLS_TPOFF32:
7233 return;
7234
7235 default:
c8761b9a
DK
7236 {
7237 // This prevents us from issuing more than one error per reloc
7238 // section. But we can still wind up issuing more than one
7239 // error per object file.
7240 if (this->issued_non_pic_error_)
7241 return;
7242 const Arm_reloc_property* reloc_property =
7243 arm_reloc_property_table->get_reloc_property(r_type);
7244 gold_assert(reloc_property != NULL);
7245 object->error(_("requires unsupported dynamic reloc %s; "
7246 "recompile with -fPIC"),
7247 reloc_property->name().c_str());
7248 this->issued_non_pic_error_ = true;
bec53400 7249 return;
c8761b9a 7250 }
bec53400
DK
7251
7252 case elfcpp::R_ARM_NONE:
7253 gold_unreachable();
7254 }
7255}
7256
4a657b0d 7257// Scan a relocation for a local symbol.
bec53400
DK
7258// FIXME: This only handles a subset of relocation types used by Android
7259// on ARM v5te devices.
4a657b0d
DK
7260
7261template<bool big_endian>
7262inline void
ad0f2072 7263Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7264 Layout* layout,
bec53400 7265 Target_arm* target,
4a657b0d 7266 Sized_relobj<32, big_endian>* object,
bec53400
DK
7267 unsigned int data_shndx,
7268 Output_section* output_section,
7269 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7270 unsigned int r_type,
e4782e83 7271 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7272{
a6d1ef57 7273 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7274 switch (r_type)
7275 {
7276 case elfcpp::R_ARM_NONE:
e4782e83
DK
7277 case elfcpp::R_ARM_V4BX:
7278 case elfcpp::R_ARM_GNU_VTENTRY:
7279 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7280 break;
7281
bec53400 7282 case elfcpp::R_ARM_ABS32:
be8fcb75 7283 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7284 // If building a shared library (or a position-independent
7285 // executable), we need to create a dynamic relocation for
7286 // this location. The relocation applied at link time will
7287 // apply the link-time value, so we flag the location with
7288 // an R_ARM_RELATIVE relocation so the dynamic loader can
7289 // relocate it easily.
7290 if (parameters->options().output_is_position_independent())
7291 {
2ea97941 7292 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7293 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7294 // If we are to add more other reloc types than R_ARM_ABS32,
7295 // we need to add check_non_pic(object, r_type) here.
7296 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7297 output_section, data_shndx,
7298 reloc.get_r_offset());
7299 }
7300 break;
7301
e4782e83
DK
7302 case elfcpp::R_ARM_ABS16:
7303 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7304 case elfcpp::R_ARM_THM_ABS5:
7305 case elfcpp::R_ARM_ABS8:
be8fcb75 7306 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7307 case elfcpp::R_ARM_MOVW_ABS_NC:
7308 case elfcpp::R_ARM_MOVT_ABS:
7309 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7310 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7311 // If building a shared library (or a position-independent
7312 // executable), we need to create a dynamic relocation for
7313 // this location. Because the addend needs to remain in the
7314 // data section, we need to be careful not to apply this
7315 // relocation statically.
7316 if (parameters->options().output_is_position_independent())
7317 {
7318 check_non_pic(object, r_type);
7319 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7320 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7321 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7322 rel_dyn->add_local(object, r_sym, r_type, output_section,
7323 data_shndx, reloc.get_r_offset());
7324 else
7325 {
7326 gold_assert(lsym.get_st_value() == 0);
7327 unsigned int shndx = lsym.get_st_shndx();
7328 bool is_ordinary;
7329 shndx = object->adjust_sym_shndx(r_sym, shndx,
7330 &is_ordinary);
7331 if (!is_ordinary)
7332 object->error(_("section symbol %u has bad shndx %u"),
7333 r_sym, shndx);
7334 else
7335 rel_dyn->add_local_section(object, shndx,
7336 r_type, output_section,
7337 data_shndx, reloc.get_r_offset());
7338 }
7339 }
7340 break;
7341
7342 case elfcpp::R_ARM_PC24:
7343 case elfcpp::R_ARM_REL32:
7344 case elfcpp::R_ARM_LDR_PC_G0:
7345 case elfcpp::R_ARM_SBREL32:
7346 case elfcpp::R_ARM_THM_CALL:
7347 case elfcpp::R_ARM_THM_PC8:
7348 case elfcpp::R_ARM_BASE_PREL:
7349 case elfcpp::R_ARM_PLT32:
7350 case elfcpp::R_ARM_CALL:
7351 case elfcpp::R_ARM_JUMP24:
7352 case elfcpp::R_ARM_THM_JUMP24:
7353 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7354 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7355 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7356 case elfcpp::R_ARM_SBREL31:
7357 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7358 case elfcpp::R_ARM_MOVW_PREL_NC:
7359 case elfcpp::R_ARM_MOVT_PREL:
7360 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7361 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7362 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7363 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7364 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7365 case elfcpp::R_ARM_THM_PC12:
7366 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7367 case elfcpp::R_ARM_ALU_PC_G0_NC:
7368 case elfcpp::R_ARM_ALU_PC_G0:
7369 case elfcpp::R_ARM_ALU_PC_G1_NC:
7370 case elfcpp::R_ARM_ALU_PC_G1:
7371 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7372 case elfcpp::R_ARM_LDR_PC_G1:
7373 case elfcpp::R_ARM_LDR_PC_G2:
7374 case elfcpp::R_ARM_LDRS_PC_G0:
7375 case elfcpp::R_ARM_LDRS_PC_G1:
7376 case elfcpp::R_ARM_LDRS_PC_G2:
7377 case elfcpp::R_ARM_LDC_PC_G0:
7378 case elfcpp::R_ARM_LDC_PC_G1:
7379 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7380 case elfcpp::R_ARM_ALU_SB_G0_NC:
7381 case elfcpp::R_ARM_ALU_SB_G0:
7382 case elfcpp::R_ARM_ALU_SB_G1_NC:
7383 case elfcpp::R_ARM_ALU_SB_G1:
7384 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7385 case elfcpp::R_ARM_LDR_SB_G0:
7386 case elfcpp::R_ARM_LDR_SB_G1:
7387 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7388 case elfcpp::R_ARM_LDRS_SB_G0:
7389 case elfcpp::R_ARM_LDRS_SB_G1:
7390 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7391 case elfcpp::R_ARM_LDC_SB_G0:
7392 case elfcpp::R_ARM_LDC_SB_G1:
7393 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7394 case elfcpp::R_ARM_MOVW_BREL_NC:
7395 case elfcpp::R_ARM_MOVT_BREL:
7396 case elfcpp::R_ARM_MOVW_BREL:
7397 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7398 case elfcpp::R_ARM_THM_MOVT_BREL:
7399 case elfcpp::R_ARM_THM_MOVW_BREL:
7400 case elfcpp::R_ARM_THM_JUMP11:
7401 case elfcpp::R_ARM_THM_JUMP8:
7402 // We don't need to do anything for a relative addressing relocation
7403 // against a local symbol if it does not reference the GOT.
bec53400
DK
7404 break;
7405
7406 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7407 case elfcpp::R_ARM_GOTOFF12:
bec53400 7408 // We need a GOT section:
2ea97941 7409 target->got_section(symtab, layout);
bec53400
DK
7410 break;
7411
bec53400 7412 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7413 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7414 {
7415 // The symbol requires a GOT entry.
4a54abbb 7416 Arm_output_data_got<big_endian>* got =
2ea97941 7417 target->got_section(symtab, layout);
bec53400
DK
7418 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7419 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7420 {
7421 // If we are generating a shared object, we need to add a
7422 // dynamic RELATIVE relocation for this symbol's GOT entry.
7423 if (parameters->options().output_is_position_independent())
7424 {
2ea97941
ILT
7425 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7426 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7427 rel_dyn->add_local_relative(
2ea97941
ILT
7428 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7429 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7430 }
7431 }
7432 }
7433 break;
7434
7435 case elfcpp::R_ARM_TARGET1:
e4782e83 7436 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7437 // This should have been mapped to another type already.
7438 // Fall through.
7439 case elfcpp::R_ARM_COPY:
7440 case elfcpp::R_ARM_GLOB_DAT:
7441 case elfcpp::R_ARM_JUMP_SLOT:
7442 case elfcpp::R_ARM_RELATIVE:
7443 // These are relocations which should only be seen by the
7444 // dynamic linker, and should never be seen here.
7445 gold_error(_("%s: unexpected reloc %u in object file"),
7446 object->name().c_str(), r_type);
7447 break;
7448
f96accdf
DK
7449
7450 // These are initial TLS relocs, which are expected when
7451 // linking.
7452 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7453 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7454 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7455 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7456 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7457 {
7458 bool output_is_shared = parameters->options().shared();
7459 const tls::Tls_optimization optimized_type
7460 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7461 r_type);
7462 switch (r_type)
7463 {
7464 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7465 if (optimized_type == tls::TLSOPT_NONE)
7466 {
7467 // Create a pair of GOT entries for the module index and
7468 // dtv-relative offset.
4a54abbb 7469 Arm_output_data_got<big_endian>* got
f96accdf
DK
7470 = target->got_section(symtab, layout);
7471 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7472 unsigned int shndx = lsym.get_st_shndx();
7473 bool is_ordinary;
7474 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7475 if (!is_ordinary)
4a54abbb
DK
7476 {
7477 object->error(_("local symbol %u has bad shndx %u"),
7478 r_sym, shndx);
7479 break;
7480 }
7481
7482 if (!parameters->doing_static_link())
f96accdf
DK
7483 got->add_local_pair_with_rel(object, r_sym, shndx,
7484 GOT_TYPE_TLS_PAIR,
7485 target->rel_dyn_section(layout),
7486 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7487 else
7488 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7489 object, r_sym);
f96accdf
DK
7490 }
7491 else
7492 // FIXME: TLS optimization not supported yet.
7493 gold_unreachable();
7494 break;
7495
7496 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7497 if (optimized_type == tls::TLSOPT_NONE)
7498 {
7499 // Create a GOT entry for the module index.
7500 target->got_mod_index_entry(symtab, layout, object);
7501 }
7502 else
7503 // FIXME: TLS optimization not supported yet.
7504 gold_unreachable();
7505 break;
7506
7507 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7508 break;
7509
7510 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7511 layout->set_has_static_tls();
7512 if (optimized_type == tls::TLSOPT_NONE)
7513 {
4a54abbb
DK
7514 // Create a GOT entry for the tp-relative offset.
7515 Arm_output_data_got<big_endian>* got
7516 = target->got_section(symtab, layout);
7517 unsigned int r_sym =
7518 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7519 if (!parameters->doing_static_link())
7520 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7521 target->rel_dyn_section(layout),
7522 elfcpp::R_ARM_TLS_TPOFF32);
7523 else if (!object->local_has_got_offset(r_sym,
7524 GOT_TYPE_TLS_OFFSET))
7525 {
7526 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7527 unsigned int got_offset =
7528 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7529 got->add_static_reloc(got_offset,
7530 elfcpp::R_ARM_TLS_TPOFF32, object,
7531 r_sym);
7532 }
f96accdf
DK
7533 }
7534 else
7535 // FIXME: TLS optimization not supported yet.
7536 gold_unreachable();
7537 break;
7538
7539 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7540 layout->set_has_static_tls();
7541 if (output_is_shared)
7542 {
7543 // We need to create a dynamic relocation.
7544 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7545 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7546 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7547 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7548 output_section, data_shndx,
7549 reloc.get_r_offset());
7550 }
7551 break;
7552
7553 default:
7554 gold_unreachable();
7555 }
7556 }
7557 break;
7558
4a657b0d
DK
7559 default:
7560 unsupported_reloc_local(object, r_type);
7561 break;
7562 }
7563}
7564
7565// Report an unsupported relocation against a global symbol.
7566
7567template<bool big_endian>
7568void
7569Target_arm<big_endian>::Scan::unsupported_reloc_global(
7570 Sized_relobj<32, big_endian>* object,
7571 unsigned int r_type,
7572 Symbol* gsym)
7573{
7574 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7575 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7576}
7577
7578// Scan a relocation for a global symbol.
7579
7580template<bool big_endian>
7581inline void
ad0f2072 7582Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 7583 Layout* layout,
bec53400 7584 Target_arm* target,
4a657b0d 7585 Sized_relobj<32, big_endian>* object,
bec53400
DK
7586 unsigned int data_shndx,
7587 Output_section* output_section,
7588 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
7589 unsigned int r_type,
7590 Symbol* gsym)
7591{
c8761b9a
DK
7592 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7593 // section. We check here to avoid creating a dynamic reloc against
7594 // _GLOBAL_OFFSET_TABLE_.
7595 if (!target->has_got_section()
7596 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7597 target->got_section(symtab, layout);
7598
a6d1ef57 7599 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7600 switch (r_type)
7601 {
7602 case elfcpp::R_ARM_NONE:
e4782e83
DK
7603 case elfcpp::R_ARM_V4BX:
7604 case elfcpp::R_ARM_GNU_VTENTRY:
7605 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7606 break;
7607
bec53400 7608 case elfcpp::R_ARM_ABS32:
e4782e83
DK
7609 case elfcpp::R_ARM_ABS16:
7610 case elfcpp::R_ARM_ABS12:
7611 case elfcpp::R_ARM_THM_ABS5:
7612 case elfcpp::R_ARM_ABS8:
7613 case elfcpp::R_ARM_BASE_ABS:
7614 case elfcpp::R_ARM_MOVW_ABS_NC:
7615 case elfcpp::R_ARM_MOVT_ABS:
7616 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7617 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 7618 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 7619 // Absolute addressing relocations.
bec53400 7620 {
e4782e83
DK
7621 // Make a PLT entry if necessary.
7622 if (this->symbol_needs_plt_entry(gsym))
7623 {
7624 target->make_plt_entry(symtab, layout, gsym);
7625 // Since this is not a PC-relative relocation, we may be
7626 // taking the address of a function. In that case we need to
7627 // set the entry in the dynamic symbol table to the address of
7628 // the PLT entry.
7629 if (gsym->is_from_dynobj() && !parameters->options().shared())
7630 gsym->set_needs_dynsym_value();
7631 }
7632 // Make a dynamic relocation if necessary.
7633 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7634 {
7635 if (gsym->may_need_copy_reloc())
7636 {
7637 target->copy_reloc(symtab, layout, object,
7638 data_shndx, output_section, gsym, reloc);
7639 }
7640 else if ((r_type == elfcpp::R_ARM_ABS32
7641 || r_type == elfcpp::R_ARM_ABS32_NOI)
7642 && gsym->can_use_relative_reloc(false))
7643 {
7644 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7645 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7646 output_section, object,
7647 data_shndx, reloc.get_r_offset());
7648 }
7649 else
7650 {
7651 check_non_pic(object, r_type);
7652 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7653 rel_dyn->add_global(gsym, r_type, output_section, object,
7654 data_shndx, reloc.get_r_offset());
7655 }
7656 }
bec53400
DK
7657 }
7658 break;
7659
e4782e83
DK
7660 case elfcpp::R_ARM_GOTOFF32:
7661 case elfcpp::R_ARM_GOTOFF12:
7662 // We need a GOT section.
7663 target->got_section(symtab, layout);
7664 break;
7665
7666 case elfcpp::R_ARM_REL32:
7667 case elfcpp::R_ARM_LDR_PC_G0:
7668 case elfcpp::R_ARM_SBREL32:
7669 case elfcpp::R_ARM_THM_PC8:
7670 case elfcpp::R_ARM_BASE_PREL:
7671 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7672 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7673 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c2a122b6
ILT
7674 case elfcpp::R_ARM_MOVW_PREL_NC:
7675 case elfcpp::R_ARM_MOVT_PREL:
7676 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7677 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 7678 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7679 case elfcpp::R_ARM_THM_PC12:
7680 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7681 case elfcpp::R_ARM_ALU_PC_G0_NC:
7682 case elfcpp::R_ARM_ALU_PC_G0:
7683 case elfcpp::R_ARM_ALU_PC_G1_NC:
7684 case elfcpp::R_ARM_ALU_PC_G1:
7685 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7686 case elfcpp::R_ARM_LDR_PC_G1:
7687 case elfcpp::R_ARM_LDR_PC_G2:
7688 case elfcpp::R_ARM_LDRS_PC_G0:
7689 case elfcpp::R_ARM_LDRS_PC_G1:
7690 case elfcpp::R_ARM_LDRS_PC_G2:
7691 case elfcpp::R_ARM_LDC_PC_G0:
7692 case elfcpp::R_ARM_LDC_PC_G1:
7693 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7694 case elfcpp::R_ARM_ALU_SB_G0_NC:
7695 case elfcpp::R_ARM_ALU_SB_G0:
7696 case elfcpp::R_ARM_ALU_SB_G1_NC:
7697 case elfcpp::R_ARM_ALU_SB_G1:
7698 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7699 case elfcpp::R_ARM_LDR_SB_G0:
7700 case elfcpp::R_ARM_LDR_SB_G1:
7701 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7702 case elfcpp::R_ARM_LDRS_SB_G0:
7703 case elfcpp::R_ARM_LDRS_SB_G1:
7704 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7705 case elfcpp::R_ARM_LDC_SB_G0:
7706 case elfcpp::R_ARM_LDC_SB_G1:
7707 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7708 case elfcpp::R_ARM_MOVW_BREL_NC:
7709 case elfcpp::R_ARM_MOVT_BREL:
7710 case elfcpp::R_ARM_MOVW_BREL:
7711 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7712 case elfcpp::R_ARM_THM_MOVT_BREL:
7713 case elfcpp::R_ARM_THM_MOVW_BREL:
7714 // Relative addressing relocations.
bec53400
DK
7715 {
7716 // Make a dynamic relocation if necessary.
7717 int flags = Symbol::NON_PIC_REF;
7718 if (gsym->needs_dynamic_reloc(flags))
7719 {
7720 if (target->may_need_copy_reloc(gsym))
7721 {
2ea97941 7722 target->copy_reloc(symtab, layout, object,
bec53400
DK
7723 data_shndx, output_section, gsym, reloc);
7724 }
7725 else
7726 {
7727 check_non_pic(object, r_type);
2ea97941 7728 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7729 rel_dyn->add_global(gsym, r_type, output_section, object,
7730 data_shndx, reloc.get_r_offset());
7731 }
7732 }
7733 }
7734 break;
7735
e4782e83 7736 case elfcpp::R_ARM_PC24:
f4e5969c 7737 case elfcpp::R_ARM_THM_CALL:
bec53400 7738 case elfcpp::R_ARM_PLT32:
e4782e83
DK
7739 case elfcpp::R_ARM_CALL:
7740 case elfcpp::R_ARM_JUMP24:
7741 case elfcpp::R_ARM_THM_JUMP24:
7742 case elfcpp::R_ARM_SBREL31:
c9a2c125 7743 case elfcpp::R_ARM_PREL31:
e4782e83
DK
7744 case elfcpp::R_ARM_THM_JUMP19:
7745 case elfcpp::R_ARM_THM_JUMP6:
7746 case elfcpp::R_ARM_THM_JUMP11:
7747 case elfcpp::R_ARM_THM_JUMP8:
7748 // All the relocation above are branches except for the PREL31 ones.
7749 // A PREL31 relocation can point to a personality function in a shared
7750 // library. In that case we want to use a PLT because we want to
7751 // call the personality routine and the dyanmic linkers we care about
7752 // do not support dynamic PREL31 relocations. An REL31 relocation may
7753 // point to a function whose unwinding behaviour is being described but
7754 // we will not mistakenly generate a PLT for that because we should use
7755 // a local section symbol.
7756
bec53400
DK
7757 // If the symbol is fully resolved, this is just a relative
7758 // local reloc. Otherwise we need a PLT entry.
7759 if (gsym->final_value_is_known())
7760 break;
7761 // If building a shared library, we can also skip the PLT entry
7762 // if the symbol is defined in the output file and is protected
7763 // or hidden.
7764 if (gsym->is_defined()
7765 && !gsym->is_from_dynobj()
7766 && !gsym->is_preemptible())
7767 break;
2ea97941 7768 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
7769 break;
7770
bec53400 7771 case elfcpp::R_ARM_GOT_BREL:
e4782e83 7772 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 7773 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7774 {
7775 // The symbol requires a GOT entry.
4a54abbb 7776 Arm_output_data_got<big_endian>* got =
2ea97941 7777 target->got_section(symtab, layout);
bec53400
DK
7778 if (gsym->final_value_is_known())
7779 got->add_global(gsym, GOT_TYPE_STANDARD);
7780 else
7781 {
7782 // If this symbol is not fully resolved, we need to add a
7783 // GOT entry with a dynamic relocation.
2ea97941 7784 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7785 if (gsym->is_from_dynobj()
7786 || gsym->is_undefined()
7787 || gsym->is_preemptible())
7788 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7789 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7790 else
7791 {
7792 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7793 rel_dyn->add_global_relative(
7794 gsym, elfcpp::R_ARM_RELATIVE, got,
7795 gsym->got_offset(GOT_TYPE_STANDARD));
7796 }
7797 }
7798 }
7799 break;
7800
7801 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
7802 case elfcpp::R_ARM_TARGET2:
7803 // These should have been mapped to other types already.
bec53400
DK
7804 // Fall through.
7805 case elfcpp::R_ARM_COPY:
7806 case elfcpp::R_ARM_GLOB_DAT:
7807 case elfcpp::R_ARM_JUMP_SLOT:
7808 case elfcpp::R_ARM_RELATIVE:
7809 // These are relocations which should only be seen by the
7810 // dynamic linker, and should never be seen here.
7811 gold_error(_("%s: unexpected reloc %u in object file"),
7812 object->name().c_str(), r_type);
7813 break;
7814
f96accdf
DK
7815 // These are initial tls relocs, which are expected when
7816 // linking.
7817 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7818 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7819 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7820 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7821 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7822 {
7823 const bool is_final = gsym->final_value_is_known();
7824 const tls::Tls_optimization optimized_type
7825 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7826 switch (r_type)
7827 {
7828 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7829 if (optimized_type == tls::TLSOPT_NONE)
7830 {
7831 // Create a pair of GOT entries for the module index and
7832 // dtv-relative offset.
4a54abbb 7833 Arm_output_data_got<big_endian>* got
f96accdf 7834 = target->got_section(symtab, layout);
4a54abbb
DK
7835 if (!parameters->doing_static_link())
7836 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7837 target->rel_dyn_section(layout),
7838 elfcpp::R_ARM_TLS_DTPMOD32,
7839 elfcpp::R_ARM_TLS_DTPOFF32);
7840 else
7841 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
7842 }
7843 else
7844 // FIXME: TLS optimization not supported yet.
7845 gold_unreachable();
7846 break;
7847
7848 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7849 if (optimized_type == tls::TLSOPT_NONE)
7850 {
7851 // Create a GOT entry for the module index.
7852 target->got_mod_index_entry(symtab, layout, object);
7853 }
7854 else
7855 // FIXME: TLS optimization not supported yet.
7856 gold_unreachable();
7857 break;
7858
7859 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7860 break;
7861
7862 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7863 layout->set_has_static_tls();
7864 if (optimized_type == tls::TLSOPT_NONE)
7865 {
4a54abbb
DK
7866 // Create a GOT entry for the tp-relative offset.
7867 Arm_output_data_got<big_endian>* got
7868 = target->got_section(symtab, layout);
7869 if (!parameters->doing_static_link())
7870 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7871 target->rel_dyn_section(layout),
7872 elfcpp::R_ARM_TLS_TPOFF32);
7873 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7874 {
7875 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7876 unsigned int got_offset =
7877 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7878 got->add_static_reloc(got_offset,
7879 elfcpp::R_ARM_TLS_TPOFF32, gsym);
7880 }
f96accdf
DK
7881 }
7882 else
7883 // FIXME: TLS optimization not supported yet.
7884 gold_unreachable();
7885 break;
7886
7887 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7888 layout->set_has_static_tls();
7889 if (parameters->options().shared())
7890 {
7891 // We need to create a dynamic relocation.
7892 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7893 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7894 output_section, object,
7895 data_shndx, reloc.get_r_offset());
7896 }
7897 break;
7898
7899 default:
7900 gold_unreachable();
7901 }
7902 }
7903 break;
7904
4a657b0d
DK
7905 default:
7906 unsupported_reloc_global(object, r_type, gsym);
7907 break;
7908 }
7909}
7910
7911// Process relocations for gc.
7912
7913template<bool big_endian>
7914void
ad0f2072 7915Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
2ea97941 7916 Layout* layout,
4a657b0d
DK
7917 Sized_relobj<32, big_endian>* object,
7918 unsigned int data_shndx,
7919 unsigned int,
7920 const unsigned char* prelocs,
7921 size_t reloc_count,
7922 Output_section* output_section,
7923 bool needs_special_offset_handling,
7924 size_t local_symbol_count,
7925 const unsigned char* plocal_symbols)
7926{
7927 typedef Target_arm<big_endian> Arm;
2ea97941 7928 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 7929
2ea97941 7930 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
4a657b0d 7931 symtab,
2ea97941 7932 layout,
4a657b0d
DK
7933 this,
7934 object,
7935 data_shndx,
7936 prelocs,
7937 reloc_count,
7938 output_section,
7939 needs_special_offset_handling,
7940 local_symbol_count,
7941 plocal_symbols);
7942}
7943
7944// Scan relocations for a section.
7945
7946template<bool big_endian>
7947void
ad0f2072 7948Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 7949 Layout* layout,
4a657b0d
DK
7950 Sized_relobj<32, big_endian>* object,
7951 unsigned int data_shndx,
7952 unsigned int sh_type,
7953 const unsigned char* prelocs,
7954 size_t reloc_count,
7955 Output_section* output_section,
7956 bool needs_special_offset_handling,
7957 size_t local_symbol_count,
7958 const unsigned char* plocal_symbols)
7959{
2ea97941 7960 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
7961 if (sh_type == elfcpp::SHT_RELA)
7962 {
7963 gold_error(_("%s: unsupported RELA reloc section"),
7964 object->name().c_str());
7965 return;
7966 }
7967
2ea97941 7968 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 7969 symtab,
2ea97941 7970 layout,
4a657b0d
DK
7971 this,
7972 object,
7973 data_shndx,
7974 prelocs,
7975 reloc_count,
7976 output_section,
7977 needs_special_offset_handling,
7978 local_symbol_count,
7979 plocal_symbols);
7980}
7981
7982// Finalize the sections.
7983
7984template<bool big_endian>
7985void
d5b40221 7986Target_arm<big_endian>::do_finalize_sections(
2ea97941 7987 Layout* layout,
f59f41f3
DK
7988 const Input_objects* input_objects,
7989 Symbol_table* symtab)
4a657b0d 7990{
ca419a6f
ILT
7991 // Create an empty uninitialized attribute section if we still don't have it
7992 // at this moment.
7993 if (this->attributes_section_data_ == NULL)
7994 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7995
d5b40221
DK
7996 // Merge processor-specific flags.
7997 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7998 p != input_objects->relobj_end();
7999 ++p)
8000 {
8001 Arm_relobj<big_endian>* arm_relobj =
8002 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8003 if (arm_relobj->merge_flags_and_attributes())
8004 {
8005 this->merge_processor_specific_flags(
8006 arm_relobj->name(),
8007 arm_relobj->processor_specific_flags());
8008 this->merge_object_attributes(arm_relobj->name().c_str(),
8009 arm_relobj->attributes_section_data());
8010 }
d5b40221
DK
8011 }
8012
8013 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8014 p != input_objects->dynobj_end();
8015 ++p)
8016 {
8017 Arm_dynobj<big_endian>* arm_dynobj =
8018 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8019 this->merge_processor_specific_flags(
8020 arm_dynobj->name(),
8021 arm_dynobj->processor_specific_flags());
a0351a69
DK
8022 this->merge_object_attributes(arm_dynobj->name().c_str(),
8023 arm_dynobj->attributes_section_data());
d5b40221
DK
8024 }
8025
a0351a69 8026 // Check BLX use.
41263c05 8027 const Object_attribute* cpu_arch_attr =
a0351a69 8028 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05 8029 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
a0351a69
DK
8030 this->set_may_use_blx(true);
8031
41263c05
DK
8032 // Check if we need to use Cortex-A8 workaround.
8033 if (parameters->options().user_set_fix_cortex_a8())
8034 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8035 else
8036 {
8037 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8038 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8039 // profile.
8040 const Object_attribute* cpu_arch_profile_attr =
8041 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8042 this->fix_cortex_a8_ =
8043 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8044 && (cpu_arch_profile_attr->int_value() == 'A'
8045 || cpu_arch_profile_attr->int_value() == 0));
8046 }
8047
a2162063
ILT
8048 // Check if we can use V4BX interworking.
8049 // The V4BX interworking stub contains BX instruction,
8050 // which is not specified for some profiles.
9b2fd367
DK
8051 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8052 && !this->may_use_blx())
a2162063
ILT
8053 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8054 "the target profile does not support BX instruction"));
8055
94cdfcff 8056 // Fill in some more dynamic tags.
ea715a34
ILT
8057 const Reloc_section* rel_plt = (this->plt_ == NULL
8058 ? NULL
8059 : this->plt_->rel_plt());
8060 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8061 this->rel_dyn_, true, false);
94cdfcff
DK
8062
8063 // Emit any relocs we saved in an attempt to avoid generating COPY
8064 // relocs.
8065 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8066 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8067
f59f41f3 8068 // Handle the .ARM.exidx section.
2ea97941 8069 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
f59f41f3
DK
8070 if (exidx_section != NULL
8071 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
11af873f
DK
8072 && !parameters->options().relocatable())
8073 {
f59f41f3 8074 // Create __exidx_start and __exdix_end symbols.
99fff23b
ILT
8075 symtab->define_in_output_data("__exidx_start", NULL,
8076 Symbol_table::PREDEFINED,
8077 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8078 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8079 false, true);
99fff23b
ILT
8080 symtab->define_in_output_data("__exidx_end", NULL,
8081 Symbol_table::PREDEFINED,
8082 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8083 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8084 true, true);
11af873f 8085
f59f41f3
DK
8086 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8087 // the .ARM.exidx section.
2ea97941 8088 if (!layout->script_options()->saw_phdrs_clause())
11af873f 8089 {
2ea97941 8090 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
11af873f
DK
8091 == NULL);
8092 Output_segment* exidx_segment =
2ea97941 8093 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
f5c870d2
ILT
8094 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8095 false);
11af873f
DK
8096 }
8097 }
a0351a69 8098
7296d933
DK
8099 // Create an .ARM.attributes section unless we have no regular input
8100 // object. In that case the output will be empty.
8101 if (input_objects->number_of_relobjs() != 0)
8102 {
8103 Output_attributes_section_data* attributes_section =
8104 new Output_attributes_section_data(*this->attributes_section_data_);
8105 layout->add_output_section_data(".ARM.attributes",
8106 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8107 attributes_section, false, false, false,
8108 false);
8109 }
4a657b0d
DK
8110}
8111
bec53400
DK
8112// Return whether a direct absolute static relocation needs to be applied.
8113// In cases where Scan::local() or Scan::global() has created
8114// a dynamic relocation other than R_ARM_RELATIVE, the addend
8115// of the relocation is carried in the data, and we must not
8116// apply the static relocation.
8117
8118template<bool big_endian>
8119inline bool
8120Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8121 const Sized_symbol<32>* gsym,
8122 int ref_flags,
8123 bool is_32bit,
8124 Output_section* output_section)
8125{
8126 // If the output section is not allocated, then we didn't call
8127 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8128 // the reloc here.
8129 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8130 return true;
8131
8132 // For local symbols, we will have created a non-RELATIVE dynamic
8133 // relocation only if (a) the output is position independent,
8134 // (b) the relocation is absolute (not pc- or segment-relative), and
8135 // (c) the relocation is not 32 bits wide.
8136 if (gsym == NULL)
8137 return !(parameters->options().output_is_position_independent()
8138 && (ref_flags & Symbol::ABSOLUTE_REF)
8139 && !is_32bit);
8140
8141 // For global symbols, we use the same helper routines used in the
8142 // scan pass. If we did not create a dynamic relocation, or if we
8143 // created a RELATIVE dynamic relocation, we should apply the static
8144 // relocation.
8145 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8146 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8147 && gsym->can_use_relative_reloc(ref_flags
8148 & Symbol::FUNCTION_CALL);
8149 return !has_dyn || is_rel;
8150}
8151
4a657b0d
DK
8152// Perform a relocation.
8153
8154template<bool big_endian>
8155inline bool
8156Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8157 const Relocate_info<32, big_endian>* relinfo,
8158 Target_arm* target,
8159 Output_section *output_section,
8160 size_t relnum,
8161 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8162 unsigned int r_type,
c121c671
DK
8163 const Sized_symbol<32>* gsym,
8164 const Symbol_value<32>* psymval,
8165 unsigned char* view,
ebabffbd 8166 Arm_address address,
f96accdf 8167 section_size_type view_size)
4a657b0d 8168{
c121c671
DK
8169 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8170
a6d1ef57 8171 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8172 const Arm_reloc_property* reloc_property =
8173 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8174 if (reloc_property == NULL)
8175 {
8176 std::string reloc_name =
8177 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8178 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8179 _("cannot relocate %s in object file"),
8180 reloc_name.c_str());
8181 return true;
8182 }
c121c671 8183
2daedcd6
DK
8184 const Arm_relobj<big_endian>* object =
8185 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8186
2daedcd6
DK
8187 // If the final branch target of a relocation is THUMB instruction, this
8188 // is 1. Otherwise it is 0.
8189 Arm_address thumb_bit = 0;
c121c671 8190 Symbol_value<32> symval;
d204b6e9 8191 bool is_weakly_undefined_without_plt = false;
2daedcd6 8192 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8193 {
2daedcd6
DK
8194 if (gsym != NULL)
8195 {
8196 // This is a global symbol. Determine if we use PLT and if the
8197 // final target is THUMB.
8198 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8199 {
8200 // This uses a PLT, change the symbol value.
8201 symval.set_output_value(target->plt_section()->address()
8202 + gsym->plt_offset());
8203 psymval = &symval;
8204 }
d204b6e9
DK
8205 else if (gsym->is_weak_undefined())
8206 {
8207 // This is a weakly undefined symbol and we do not use PLT
8208 // for this relocation. A branch targeting this symbol will
8209 // be converted into an NOP.
8210 is_weakly_undefined_without_plt = true;
8211 }
2daedcd6
DK
8212 else
8213 {
8214 // Set thumb bit if symbol:
8215 // -Has type STT_ARM_TFUNC or
8216 // -Has type STT_FUNC, is defined and with LSB in value set.
8217 thumb_bit =
8218 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8219 || (gsym->type() == elfcpp::STT_FUNC
8220 && !gsym->is_undefined()
8221 && ((psymval->value(object, 0) & 1) != 0)))
8222 ? 1
8223 : 0);
8224 }
8225 }
8226 else
8227 {
8228 // This is a local symbol. Determine if the final target is THUMB.
8229 // We saved this information when all the local symbols were read.
8230 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8231 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8232 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8233 }
8234 }
8235 else
8236 {
8237 // This is a fake relocation synthesized for a stub. It does not have
8238 // a real symbol. We just look at the LSB of the symbol value to
8239 // determine if the target is THUMB or not.
8240 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8241 }
8242
2daedcd6
DK
8243 // Strip LSB if this points to a THUMB target.
8244 if (thumb_bit != 0
5c57f1be 8245 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8246 && ((psymval->value(object, 0) & 1) != 0))
8247 {
8248 Arm_address stripped_value =
8249 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8250 symval.set_output_value(stripped_value);
8251 psymval = &symval;
8252 }
8253
c121c671
DK
8254 // Get the GOT offset if needed.
8255 // The GOT pointer points to the end of the GOT section.
8256 // We need to subtract the size of the GOT section to get
8257 // the actual offset to use in the relocation.
8258 bool have_got_offset = false;
8259 unsigned int got_offset = 0;
8260 switch (r_type)
8261 {
8262 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8263 case elfcpp::R_ARM_GOT_PREL:
c121c671
DK
8264 if (gsym != NULL)
8265 {
8266 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8267 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8268 - target->got_size());
8269 }
8270 else
8271 {
8272 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8273 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8274 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8275 - target->got_size());
8276 }
8277 have_got_offset = true;
8278 break;
8279
8280 default:
8281 break;
8282 }
8283
d204b6e9
DK
8284 // To look up relocation stubs, we need to pass the symbol table index of
8285 // a local symbol.
8286 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8287
b10d2873
ILT
8288 // Get the addressing origin of the output segment defining the
8289 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8290 Arm_address sym_origin = 0;
5c57f1be 8291 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8292 {
8293 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8294 // R_ARM_BASE_ABS with the NULL symbol will give the
8295 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8296 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8297 sym_origin = target->got_plt_section()->address();
8298 else if (gsym == NULL)
8299 sym_origin = 0;
8300 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8301 sym_origin = gsym->output_segment()->vaddr();
8302 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8303 sym_origin = gsym->output_data()->address();
8304
8305 // TODO: Assumes the segment base to be zero for the global symbols
8306 // till the proper support for the segment-base-relative addressing
8307 // will be implemented. This is consistent with GNU ld.
8308 }
8309
5c57f1be
DK
8310 // For relative addressing relocation, find out the relative address base.
8311 Arm_address relative_address_base = 0;
8312 switch(reloc_property->relative_address_base())
8313 {
8314 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8315 // Relocations with relative address bases RAB_TLS and RAB_tp are
8316 // handled by relocate_tls. So we do not need to do anything here.
8317 case Arm_reloc_property::RAB_TLS:
8318 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8319 break;
8320 case Arm_reloc_property::RAB_B_S:
8321 relative_address_base = sym_origin;
8322 break;
8323 case Arm_reloc_property::RAB_GOT_ORG:
8324 relative_address_base = target->got_plt_section()->address();
8325 break;
8326 case Arm_reloc_property::RAB_P:
8327 relative_address_base = address;
8328 break;
8329 case Arm_reloc_property::RAB_Pa:
8330 relative_address_base = address & 0xfffffffcU;
8331 break;
8332 default:
8333 gold_unreachable();
8334 }
8335
c121c671
DK
8336 typename Arm_relocate_functions::Status reloc_status =
8337 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8338 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8339 switch (r_type)
8340 {
8341 case elfcpp::R_ARM_NONE:
8342 break;
8343
5e445df6
ILT
8344 case elfcpp::R_ARM_ABS8:
8345 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8346 output_section))
be8fcb75
ILT
8347 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8348 break;
8349
8350 case elfcpp::R_ARM_ABS12:
8351 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8352 output_section))
8353 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8354 break;
8355
8356 case elfcpp::R_ARM_ABS16:
8357 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8358 output_section))
8359 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8360 break;
8361
c121c671
DK
8362 case elfcpp::R_ARM_ABS32:
8363 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8364 output_section))
8365 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8366 thumb_bit);
c121c671
DK
8367 break;
8368
be8fcb75
ILT
8369 case elfcpp::R_ARM_ABS32_NOI:
8370 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8371 output_section))
8372 // No thumb bit for this relocation: (S + A)
8373 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8374 0);
be8fcb75
ILT
8375 break;
8376
fd3c5f0b 8377 case elfcpp::R_ARM_MOVW_ABS_NC:
e4782e83 8378 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8379 output_section))
5c57f1be
DK
8380 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8381 0, thumb_bit,
8382 check_overflow);
fd3c5f0b
ILT
8383 break;
8384
8385 case elfcpp::R_ARM_MOVT_ABS:
e4782e83 8386 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8387 output_section))
5c57f1be 8388 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
8389 break;
8390
8391 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
e4782e83 8392 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8393 output_section))
5c57f1be
DK
8394 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8395 0, thumb_bit, false);
fd3c5f0b
ILT
8396 break;
8397
8398 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83 8399 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8400 output_section))
5c57f1be
DK
8401 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8402 psymval, 0);
fd3c5f0b
ILT
8403 break;
8404
c2a122b6 8405 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 8406 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 8407 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
8408 reloc_status =
8409 Arm_relocate_functions::movw(view, object, psymval,
8410 relative_address_base, thumb_bit,
8411 check_overflow);
c2a122b6
ILT
8412 break;
8413
8414 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 8415 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
8416 reloc_status =
8417 Arm_relocate_functions::movt(view, object, psymval,
8418 relative_address_base);
c2a122b6
ILT
8419 break;
8420
8421 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 8422 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 8423 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
8424 reloc_status =
8425 Arm_relocate_functions::thm_movw(view, object, psymval,
8426 relative_address_base,
8427 thumb_bit, check_overflow);
c2a122b6
ILT
8428 break;
8429
8430 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 8431 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
8432 reloc_status =
8433 Arm_relocate_functions::thm_movt(view, object, psymval,
8434 relative_address_base);
02961d7e 8435 break;
5c57f1be 8436
c121c671
DK
8437 case elfcpp::R_ARM_REL32:
8438 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8439 address, thumb_bit);
c121c671
DK
8440 break;
8441
be8fcb75
ILT
8442 case elfcpp::R_ARM_THM_ABS5:
8443 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8444 output_section))
8445 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8446 break;
8447
1521477a 8448 // Thumb long branches.
c121c671 8449 case elfcpp::R_ARM_THM_CALL:
51938283 8450 case elfcpp::R_ARM_THM_XPC22:
1521477a 8451 case elfcpp::R_ARM_THM_JUMP24:
51938283 8452 reloc_status =
1521477a
DK
8453 Arm_relocate_functions::thumb_branch_common(
8454 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8455 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8456 break;
8457
c121c671
DK
8458 case elfcpp::R_ARM_GOTOFF32:
8459 {
ebabffbd 8460 Arm_address got_origin;
c121c671
DK
8461 got_origin = target->got_plt_section()->address();
8462 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8463 got_origin, thumb_bit);
c121c671
DK
8464 }
8465 break;
8466
8467 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
8468 gold_assert(gsym != NULL);
8469 reloc_status =
8470 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
8471 break;
8472
be8fcb75
ILT
8473 case elfcpp::R_ARM_BASE_ABS:
8474 {
e4782e83 8475 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
be8fcb75
ILT
8476 output_section))
8477 break;
8478
b10d2873 8479 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
8480 }
8481 break;
8482
c121c671
DK
8483 case elfcpp::R_ARM_GOT_BREL:
8484 gold_assert(have_got_offset);
8485 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8486 break;
8487
7f5309a5
ILT
8488 case elfcpp::R_ARM_GOT_PREL:
8489 gold_assert(have_got_offset);
8490 // Get the address origin for GOT PLT, which is allocated right
8491 // after the GOT section, to calculate an absolute address of
8492 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 8493 Arm_address got_origin;
7f5309a5
ILT
8494 got_origin = target->got_plt_section()->address();
8495 reloc_status = Arm_relocate_functions::got_prel(view,
8496 got_origin + got_offset,
8497 address);
8498 break;
8499
c121c671 8500 case elfcpp::R_ARM_PLT32:
1521477a
DK
8501 case elfcpp::R_ARM_CALL:
8502 case elfcpp::R_ARM_JUMP24:
8503 case elfcpp::R_ARM_XPC25:
c121c671
DK
8504 gold_assert(gsym == NULL
8505 || gsym->has_plt_offset()
8506 || gsym->final_value_is_known()
8507 || (gsym->is_defined()
8508 && !gsym->is_from_dynobj()
8509 && !gsym->is_preemptible()));
d204b6e9 8510 reloc_status =
1521477a
DK
8511 Arm_relocate_functions::arm_branch_common(
8512 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8513 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8514 break;
8515
41263c05
DK
8516 case elfcpp::R_ARM_THM_JUMP19:
8517 reloc_status =
8518 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8519 thumb_bit);
8520 break;
8521
800d0f56
ILT
8522 case elfcpp::R_ARM_THM_JUMP6:
8523 reloc_status =
8524 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8525 break;
8526
8527 case elfcpp::R_ARM_THM_JUMP8:
8528 reloc_status =
8529 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8530 break;
8531
8532 case elfcpp::R_ARM_THM_JUMP11:
8533 reloc_status =
8534 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8535 break;
8536
c121c671
DK
8537 case elfcpp::R_ARM_PREL31:
8538 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 8539 address, thumb_bit);
c121c671
DK
8540 break;
8541
a2162063 8542 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
8543 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8544 {
8545 const bool is_v4bx_interworking =
8546 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8547 reloc_status =
8548 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8549 is_v4bx_interworking);
8550 }
a2162063
ILT
8551 break;
8552
11b861d5
DK
8553 case elfcpp::R_ARM_THM_PC8:
8554 reloc_status =
8555 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8556 break;
8557
8558 case elfcpp::R_ARM_THM_PC12:
8559 reloc_status =
8560 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8561 break;
8562
8563 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8564 reloc_status =
8565 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8566 thumb_bit);
8567 break;
8568
b10d2873 8569 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 8570 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 8571 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 8572 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 8573 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 8574 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 8575 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 8576 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 8577 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
8578 case elfcpp::R_ARM_ALU_SB_G2:
8579 reloc_status =
5c57f1be
DK
8580 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8581 reloc_property->group_index(),
8582 relative_address_base,
8583 thumb_bit, check_overflow);
b10d2873
ILT
8584 break;
8585
8586 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 8587 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 8588 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 8589 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 8590 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
8591 case elfcpp::R_ARM_LDR_SB_G2:
8592 reloc_status =
5c57f1be
DK
8593 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8594 reloc_property->group_index(),
8595 relative_address_base);
b10d2873
ILT
8596 break;
8597
8598 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 8599 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 8600 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 8601 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 8602 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
8603 case elfcpp::R_ARM_LDRS_SB_G2:
8604 reloc_status =
5c57f1be
DK
8605 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8606 reloc_property->group_index(),
8607 relative_address_base);
b10d2873
ILT
8608 break;
8609
8610 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 8611 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 8612 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 8613 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 8614 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
8615 case elfcpp::R_ARM_LDC_SB_G2:
8616 reloc_status =
5c57f1be
DK
8617 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8618 reloc_property->group_index(),
8619 relative_address_base);
c121c671
DK
8620 break;
8621
f96accdf
DK
8622 // These are initial tls relocs, which are expected when
8623 // linking.
8624 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8625 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8626 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8627 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8628 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8629 reloc_status =
8630 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8631 view, address, view_size);
8632 break;
8633
c121c671 8634 default:
5c57f1be 8635 gold_unreachable();
c121c671
DK
8636 }
8637
8638 // Report any errors.
8639 switch (reloc_status)
8640 {
8641 case Arm_relocate_functions::STATUS_OKAY:
8642 break;
8643 case Arm_relocate_functions::STATUS_OVERFLOW:
8644 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
8645 _("relocation overflow in %s"),
8646 reloc_property->name().c_str());
c121c671
DK
8647 break;
8648 case Arm_relocate_functions::STATUS_BAD_RELOC:
8649 gold_error_at_location(
8650 relinfo,
8651 relnum,
8652 rel.get_r_offset(),
a2c7281b
DK
8653 _("unexpected opcode while processing relocation %s"),
8654 reloc_property->name().c_str());
c121c671 8655 break;
4a657b0d
DK
8656 default:
8657 gold_unreachable();
8658 }
8659
8660 return true;
8661}
8662
f96accdf
DK
8663// Perform a TLS relocation.
8664
8665template<bool big_endian>
8666inline typename Arm_relocate_functions<big_endian>::Status
8667Target_arm<big_endian>::Relocate::relocate_tls(
8668 const Relocate_info<32, big_endian>* relinfo,
8669 Target_arm<big_endian>* target,
8670 size_t relnum,
8671 const elfcpp::Rel<32, big_endian>& rel,
8672 unsigned int r_type,
8673 const Sized_symbol<32>* gsym,
8674 const Symbol_value<32>* psymval,
8675 unsigned char* view,
4a54abbb 8676 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
8677 section_size_type /*view_size*/ )
8678{
8679 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 8680 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
8681 Output_segment* tls_segment = relinfo->layout->tls_segment();
8682
8683 const Sized_relobj<32, big_endian>* object = relinfo->object;
8684
8685 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8686
8687 const bool is_final = (gsym == NULL
8688 ? !parameters->options().shared()
8689 : gsym->final_value_is_known());
8690 const tls::Tls_optimization optimized_type
8691 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8692 switch (r_type)
8693 {
8694 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8695 {
8696 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8697 unsigned int got_offset;
8698 if (gsym != NULL)
8699 {
8700 gold_assert(gsym->has_got_offset(got_type));
8701 got_offset = gsym->got_offset(got_type) - target->got_size();
8702 }
8703 else
8704 {
8705 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8706 gold_assert(object->local_has_got_offset(r_sym, got_type));
8707 got_offset = (object->local_got_offset(r_sym, got_type)
8708 - target->got_size());
8709 }
8710 if (optimized_type == tls::TLSOPT_NONE)
8711 {
4a54abbb
DK
8712 Arm_address got_entry =
8713 target->got_plt_section()->address() + got_offset;
8714
8715 // Relocate the field with the PC relative offset of the pair of
8716 // GOT entries.
8717 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8718 return ArmRelocFuncs::STATUS_OKAY;
8719 }
8720 }
8721 break;
8722
8723 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8724 if (optimized_type == tls::TLSOPT_NONE)
8725 {
8726 // Relocate the field with the offset of the GOT entry for
8727 // the module index.
8728 unsigned int got_offset;
8729 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8730 - target->got_size());
4a54abbb
DK
8731 Arm_address got_entry =
8732 target->got_plt_section()->address() + got_offset;
8733
8734 // Relocate the field with the PC relative offset of the pair of
8735 // GOT entries.
8736 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8737 return ArmRelocFuncs::STATUS_OKAY;
8738 }
8739 break;
8740
8741 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
4a54abbb 8742 RelocFuncs::rel32(view, value);
f96accdf
DK
8743 return ArmRelocFuncs::STATUS_OKAY;
8744
8745 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8746 if (optimized_type == tls::TLSOPT_NONE)
8747 {
8748 // Relocate the field with the offset of the GOT entry for
8749 // the tp-relative offset of the symbol.
8750 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8751 unsigned int got_offset;
8752 if (gsym != NULL)
8753 {
8754 gold_assert(gsym->has_got_offset(got_type));
8755 got_offset = gsym->got_offset(got_type);
8756 }
8757 else
8758 {
8759 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8760 gold_assert(object->local_has_got_offset(r_sym, got_type));
8761 got_offset = object->local_got_offset(r_sym, got_type);
8762 }
4a54abbb 8763
f96accdf
DK
8764 // All GOT offsets are relative to the end of the GOT.
8765 got_offset -= target->got_size();
4a54abbb
DK
8766
8767 Arm_address got_entry =
8768 target->got_plt_section()->address() + got_offset;
8769
8770 // Relocate the field with the PC relative offset of the GOT entry.
8771 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8772 return ArmRelocFuncs::STATUS_OKAY;
8773 }
8774 break;
8775
8776 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8777 // If we're creating a shared library, a dynamic relocation will
8778 // have been created for this location, so do not apply it now.
8779 if (!parameters->options().shared())
8780 {
8781 gold_assert(tls_segment != NULL);
4a54abbb
DK
8782
8783 // $tp points to the TCB, which is followed by the TLS, so we
8784 // need to add TCB size to the offset.
8785 Arm_address aligned_tcb_size =
8786 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8787 RelocFuncs::rel32(view, value + aligned_tcb_size);
8788
f96accdf
DK
8789 }
8790 return ArmRelocFuncs::STATUS_OKAY;
8791
8792 default:
8793 gold_unreachable();
8794 }
8795
8796 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8797 _("unsupported reloc %u"),
8798 r_type);
8799 return ArmRelocFuncs::STATUS_BAD_RELOC;
8800}
8801
4a657b0d
DK
8802// Relocate section data.
8803
8804template<bool big_endian>
8805void
8806Target_arm<big_endian>::relocate_section(
8807 const Relocate_info<32, big_endian>* relinfo,
8808 unsigned int sh_type,
8809 const unsigned char* prelocs,
8810 size_t reloc_count,
8811 Output_section* output_section,
8812 bool needs_special_offset_handling,
8813 unsigned char* view,
ebabffbd 8814 Arm_address address,
364c7fa5
ILT
8815 section_size_type view_size,
8816 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
8817{
8818 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8819 gold_assert(sh_type == elfcpp::SHT_REL);
8820
218c5831
DK
8821 // See if we are relocating a relaxed input section. If so, the view
8822 // covers the whole output section and we need to adjust accordingly.
8823 if (needs_special_offset_handling)
43d12afe 8824 {
218c5831
DK
8825 const Output_relaxed_input_section* poris =
8826 output_section->find_relaxed_input_section(relinfo->object,
8827 relinfo->data_shndx);
8828 if (poris != NULL)
8829 {
8830 Arm_address section_address = poris->address();
8831 section_size_type section_size = poris->data_size();
8832
8833 gold_assert((section_address >= address)
8834 && ((section_address + section_size)
8835 <= (address + view_size)));
8836
8837 off_t offset = section_address - address;
8838 view += offset;
8839 address += offset;
8840 view_size = section_size;
8841 }
43d12afe
DK
8842 }
8843
4a657b0d
DK
8844 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8845 Arm_relocate>(
8846 relinfo,
8847 this,
8848 prelocs,
8849 reloc_count,
8850 output_section,
8851 needs_special_offset_handling,
8852 view,
8853 address,
364c7fa5
ILT
8854 view_size,
8855 reloc_symbol_changes);
4a657b0d
DK
8856}
8857
8858// Return the size of a relocation while scanning during a relocatable
8859// link.
8860
8861template<bool big_endian>
8862unsigned int
8863Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8864 unsigned int r_type,
8865 Relobj* object)
8866{
a6d1ef57 8867 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8868 const Arm_reloc_property* arp =
8869 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8870 if (arp != NULL)
8871 return arp->size();
8872 else
4a657b0d 8873 {
5c57f1be
DK
8874 std::string reloc_name =
8875 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8876 gold_error(_("%s: unexpected %s in object file"),
8877 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
8878 return 0;
8879 }
8880}
8881
8882// Scan the relocs during a relocatable link.
8883
8884template<bool big_endian>
8885void
8886Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 8887 Symbol_table* symtab,
2ea97941 8888 Layout* layout,
4a657b0d
DK
8889 Sized_relobj<32, big_endian>* object,
8890 unsigned int data_shndx,
8891 unsigned int sh_type,
8892 const unsigned char* prelocs,
8893 size_t reloc_count,
8894 Output_section* output_section,
8895 bool needs_special_offset_handling,
8896 size_t local_symbol_count,
8897 const unsigned char* plocal_symbols,
8898 Relocatable_relocs* rr)
8899{
8900 gold_assert(sh_type == elfcpp::SHT_REL);
8901
8902 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8903 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8904
8905 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8906 Scan_relocatable_relocs>(
4a657b0d 8907 symtab,
2ea97941 8908 layout,
4a657b0d
DK
8909 object,
8910 data_shndx,
8911 prelocs,
8912 reloc_count,
8913 output_section,
8914 needs_special_offset_handling,
8915 local_symbol_count,
8916 plocal_symbols,
8917 rr);
8918}
8919
8920// Relocate a section during a relocatable link.
8921
8922template<bool big_endian>
8923void
8924Target_arm<big_endian>::relocate_for_relocatable(
8925 const Relocate_info<32, big_endian>* relinfo,
8926 unsigned int sh_type,
8927 const unsigned char* prelocs,
8928 size_t reloc_count,
8929 Output_section* output_section,
8930 off_t offset_in_output_section,
8931 const Relocatable_relocs* rr,
8932 unsigned char* view,
ebabffbd 8933 Arm_address view_address,
4a657b0d
DK
8934 section_size_type view_size,
8935 unsigned char* reloc_view,
8936 section_size_type reloc_view_size)
8937{
8938 gold_assert(sh_type == elfcpp::SHT_REL);
8939
8940 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8941 relinfo,
8942 prelocs,
8943 reloc_count,
8944 output_section,
8945 offset_in_output_section,
8946 rr,
8947 view,
8948 view_address,
8949 view_size,
8950 reloc_view,
8951 reloc_view_size);
8952}
8953
94cdfcff
DK
8954// Return the value to use for a dynamic symbol which requires special
8955// treatment. This is how we support equality comparisons of function
8956// pointers across shared library boundaries, as described in the
8957// processor specific ABI supplement.
8958
4a657b0d
DK
8959template<bool big_endian>
8960uint64_t
94cdfcff 8961Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 8962{
94cdfcff
DK
8963 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8964 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
8965}
8966
8967// Map platform-specific relocs to real relocs
8968//
8969template<bool big_endian>
8970unsigned int
a6d1ef57 8971Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
4a657b0d
DK
8972{
8973 switch (r_type)
8974 {
8975 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
8976 // This is either R_ARM_ABS32 or R_ARM_REL32;
8977 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
8978
8979 case elfcpp::R_ARM_TARGET2:
a6d1ef57
DK
8980 // This can be any reloc type but ususally is R_ARM_GOT_PREL
8981 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
8982
8983 default:
8984 return r_type;
8985 }
8986}
8987
d5b40221
DK
8988// Whether if two EABI versions V1 and V2 are compatible.
8989
8990template<bool big_endian>
8991bool
8992Target_arm<big_endian>::are_eabi_versions_compatible(
8993 elfcpp::Elf_Word v1,
8994 elfcpp::Elf_Word v2)
8995{
8996 // v4 and v5 are the same spec before and after it was released,
8997 // so allow mixing them.
8998 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8999 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9000 return true;
9001
9002 return v1 == v2;
9003}
9004
9005// Combine FLAGS from an input object called NAME and the processor-specific
9006// flags in the ELF header of the output. Much of this is adapted from the
9007// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9008// in bfd/elf32-arm.c.
9009
9010template<bool big_endian>
9011void
9012Target_arm<big_endian>::merge_processor_specific_flags(
9013 const std::string& name,
9014 elfcpp::Elf_Word flags)
9015{
9016 if (this->are_processor_specific_flags_set())
9017 {
9018 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9019
9020 // Nothing to merge if flags equal to those in output.
9021 if (flags == out_flags)
9022 return;
9023
9024 // Complain about various flag mismatches.
9025 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9026 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9027 if (!this->are_eabi_versions_compatible(version1, version2)
9028 && parameters->options().warn_mismatch())
d5b40221
DK
9029 gold_error(_("Source object %s has EABI version %d but output has "
9030 "EABI version %d."),
9031 name.c_str(),
9032 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9033 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9034 }
9035 else
9036 {
9037 // If the input is the default architecture and had the default
9038 // flags then do not bother setting the flags for the output
9039 // architecture, instead allow future merges to do this. If no
9040 // future merges ever set these flags then they will retain their
9041 // uninitialised values, which surprise surprise, correspond
9042 // to the default values.
9043 if (flags == 0)
9044 return;
9045
9046 // This is the first time, just copy the flags.
9047 // We only copy the EABI version for now.
9048 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9049 }
9050}
9051
9052// Adjust ELF file header.
9053template<bool big_endian>
9054void
9055Target_arm<big_endian>::do_adjust_elf_header(
9056 unsigned char* view,
9057 int len) const
9058{
9059 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9060
9061 elfcpp::Ehdr<32, big_endian> ehdr(view);
9062 unsigned char e_ident[elfcpp::EI_NIDENT];
9063 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9064
9065 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9066 == elfcpp::EF_ARM_EABI_UNKNOWN)
9067 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9068 else
9069 e_ident[elfcpp::EI_OSABI] = 0;
9070 e_ident[elfcpp::EI_ABIVERSION] = 0;
9071
9072 // FIXME: Do EF_ARM_BE8 adjustment.
9073
9074 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9075 oehdr.put_e_ident(e_ident);
9076}
9077
9078// do_make_elf_object to override the same function in the base class.
9079// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9080// to store ARM specific information. Hence we need to have our own
9081// ELF object creation.
9082
9083template<bool big_endian>
9084Object*
9085Target_arm<big_endian>::do_make_elf_object(
9086 const std::string& name,
9087 Input_file* input_file,
2ea97941 9088 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9089{
9090 int et = ehdr.get_e_type();
9091 if (et == elfcpp::ET_REL)
9092 {
9093 Arm_relobj<big_endian>* obj =
2ea97941 9094 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9095 obj->setup();
9096 return obj;
9097 }
9098 else if (et == elfcpp::ET_DYN)
9099 {
9100 Sized_dynobj<32, big_endian>* obj =
2ea97941 9101 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9102 obj->setup();
9103 return obj;
9104 }
9105 else
9106 {
9107 gold_error(_("%s: unsupported ELF file type %d"),
9108 name.c_str(), et);
9109 return NULL;
9110 }
9111}
9112
a0351a69
DK
9113// Read the architecture from the Tag_also_compatible_with attribute, if any.
9114// Returns -1 if no architecture could be read.
9115// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9116
9117template<bool big_endian>
9118int
9119Target_arm<big_endian>::get_secondary_compatible_arch(
9120 const Attributes_section_data* pasd)
9121{
9122 const Object_attribute *known_attributes =
9123 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9124
9125 // Note: the tag and its argument below are uleb128 values, though
9126 // currently-defined values fit in one byte for each.
9127 const std::string& sv =
9128 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9129 if (sv.size() == 2
9130 && sv.data()[0] == elfcpp::Tag_CPU_arch
9131 && (sv.data()[1] & 128) != 128)
9132 return sv.data()[1];
9133
9134 // This tag is "safely ignorable", so don't complain if it looks funny.
9135 return -1;
9136}
9137
9138// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9139// The tag is removed if ARCH is -1.
9140// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9141
9142template<bool big_endian>
9143void
9144Target_arm<big_endian>::set_secondary_compatible_arch(
9145 Attributes_section_data* pasd,
9146 int arch)
9147{
9148 Object_attribute *known_attributes =
9149 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9150
9151 if (arch == -1)
9152 {
9153 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9154 return;
9155 }
9156
9157 // Note: the tag and its argument below are uleb128 values, though
9158 // currently-defined values fit in one byte for each.
9159 char sv[3];
9160 sv[0] = elfcpp::Tag_CPU_arch;
9161 gold_assert(arch != 0);
9162 sv[1] = arch;
9163 sv[2] = '\0';
9164
9165 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9166}
9167
9168// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9169// into account.
9170// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9171
9172template<bool big_endian>
9173int
9174Target_arm<big_endian>::tag_cpu_arch_combine(
9175 const char* name,
9176 int oldtag,
9177 int* secondary_compat_out,
9178 int newtag,
9179 int secondary_compat)
9180{
9181#define T(X) elfcpp::TAG_CPU_ARCH_##X
9182 static const int v6t2[] =
9183 {
9184 T(V6T2), // PRE_V4.
9185 T(V6T2), // V4.
9186 T(V6T2), // V4T.
9187 T(V6T2), // V5T.
9188 T(V6T2), // V5TE.
9189 T(V6T2), // V5TEJ.
9190 T(V6T2), // V6.
9191 T(V7), // V6KZ.
9192 T(V6T2) // V6T2.
9193 };
9194 static const int v6k[] =
9195 {
9196 T(V6K), // PRE_V4.
9197 T(V6K), // V4.
9198 T(V6K), // V4T.
9199 T(V6K), // V5T.
9200 T(V6K), // V5TE.
9201 T(V6K), // V5TEJ.
9202 T(V6K), // V6.
9203 T(V6KZ), // V6KZ.
9204 T(V7), // V6T2.
9205 T(V6K) // V6K.
9206 };
9207 static const int v7[] =
9208 {
9209 T(V7), // PRE_V4.
9210 T(V7), // V4.
9211 T(V7), // V4T.
9212 T(V7), // V5T.
9213 T(V7), // V5TE.
9214 T(V7), // V5TEJ.
9215 T(V7), // V6.
9216 T(V7), // V6KZ.
9217 T(V7), // V6T2.
9218 T(V7), // V6K.
9219 T(V7) // V7.
9220 };
9221 static const int v6_m[] =
9222 {
9223 -1, // PRE_V4.
9224 -1, // V4.
9225 T(V6K), // V4T.
9226 T(V6K), // V5T.
9227 T(V6K), // V5TE.
9228 T(V6K), // V5TEJ.
9229 T(V6K), // V6.
9230 T(V6KZ), // V6KZ.
9231 T(V7), // V6T2.
9232 T(V6K), // V6K.
9233 T(V7), // V7.
9234 T(V6_M) // V6_M.
9235 };
9236 static const int v6s_m[] =
9237 {
9238 -1, // PRE_V4.
9239 -1, // V4.
9240 T(V6K), // V4T.
9241 T(V6K), // V5T.
9242 T(V6K), // V5TE.
9243 T(V6K), // V5TEJ.
9244 T(V6K), // V6.
9245 T(V6KZ), // V6KZ.
9246 T(V7), // V6T2.
9247 T(V6K), // V6K.
9248 T(V7), // V7.
9249 T(V6S_M), // V6_M.
9250 T(V6S_M) // V6S_M.
9251 };
9252 static const int v7e_m[] =
9253 {
9254 -1, // PRE_V4.
9255 -1, // V4.
9256 T(V7E_M), // V4T.
9257 T(V7E_M), // V5T.
9258 T(V7E_M), // V5TE.
9259 T(V7E_M), // V5TEJ.
9260 T(V7E_M), // V6.
9261 T(V7E_M), // V6KZ.
9262 T(V7E_M), // V6T2.
9263 T(V7E_M), // V6K.
9264 T(V7E_M), // V7.
9265 T(V7E_M), // V6_M.
9266 T(V7E_M), // V6S_M.
9267 T(V7E_M) // V7E_M.
9268 };
9269 static const int v4t_plus_v6_m[] =
9270 {
9271 -1, // PRE_V4.
9272 -1, // V4.
9273 T(V4T), // V4T.
9274 T(V5T), // V5T.
9275 T(V5TE), // V5TE.
9276 T(V5TEJ), // V5TEJ.
9277 T(V6), // V6.
9278 T(V6KZ), // V6KZ.
9279 T(V6T2), // V6T2.
9280 T(V6K), // V6K.
9281 T(V7), // V7.
9282 T(V6_M), // V6_M.
9283 T(V6S_M), // V6S_M.
9284 T(V7E_M), // V7E_M.
9285 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9286 };
9287 static const int *comb[] =
9288 {
9289 v6t2,
9290 v6k,
9291 v7,
9292 v6_m,
9293 v6s_m,
9294 v7e_m,
9295 // Pseudo-architecture.
9296 v4t_plus_v6_m
9297 };
9298
9299 // Check we've not got a higher architecture than we know about.
9300
9301 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9302 {
9303 gold_error(_("%s: unknown CPU architecture"), name);
9304 return -1;
9305 }
9306
9307 // Override old tag if we have a Tag_also_compatible_with on the output.
9308
9309 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9310 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9311 oldtag = T(V4T_PLUS_V6_M);
9312
9313 // And override the new tag if we have a Tag_also_compatible_with on the
9314 // input.
9315
9316 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9317 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9318 newtag = T(V4T_PLUS_V6_M);
9319
9320 // Architectures before V6KZ add features monotonically.
9321 int tagh = std::max(oldtag, newtag);
9322 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9323 return tagh;
9324
9325 int tagl = std::min(oldtag, newtag);
9326 int result = comb[tagh - T(V6T2)][tagl];
9327
9328 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9329 // as the canonical version.
9330 if (result == T(V4T_PLUS_V6_M))
9331 {
9332 result = T(V4T);
9333 *secondary_compat_out = T(V6_M);
9334 }
9335 else
9336 *secondary_compat_out = -1;
9337
9338 if (result == -1)
9339 {
9340 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9341 name, oldtag, newtag);
9342 return -1;
9343 }
9344
9345 return result;
9346#undef T
9347}
9348
9349// Helper to print AEABI enum tag value.
9350
9351template<bool big_endian>
9352std::string
9353Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9354{
9355 static const char *aeabi_enum_names[] =
9356 { "", "variable-size", "32-bit", "" };
9357 const size_t aeabi_enum_names_size =
9358 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9359
9360 if (value < aeabi_enum_names_size)
9361 return std::string(aeabi_enum_names[value]);
9362 else
9363 {
9364 char buffer[100];
9365 sprintf(buffer, "<unknown value %u>", value);
9366 return std::string(buffer);
9367 }
9368}
9369
9370// Return the string value to store in TAG_CPU_name.
9371
9372template<bool big_endian>
9373std::string
9374Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9375{
9376 static const char *name_table[] = {
9377 // These aren't real CPU names, but we can't guess
9378 // that from the architecture version alone.
9379 "Pre v4",
9380 "ARM v4",
9381 "ARM v4T",
9382 "ARM v5T",
9383 "ARM v5TE",
9384 "ARM v5TEJ",
9385 "ARM v6",
9386 "ARM v6KZ",
9387 "ARM v6T2",
9388 "ARM v6K",
9389 "ARM v7",
9390 "ARM v6-M",
9391 "ARM v6S-M",
9392 "ARM v7E-M"
9393 };
9394 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9395
9396 if (value < name_table_size)
9397 return std::string(name_table[value]);
9398 else
9399 {
9400 char buffer[100];
9401 sprintf(buffer, "<unknown CPU value %u>", value);
9402 return std::string(buffer);
9403 }
9404}
9405
9406// Merge object attributes from input file called NAME with those of the
9407// output. The input object attributes are in the object pointed by PASD.
9408
9409template<bool big_endian>
9410void
9411Target_arm<big_endian>::merge_object_attributes(
9412 const char* name,
9413 const Attributes_section_data* pasd)
9414{
9415 // Return if there is no attributes section data.
9416 if (pasd == NULL)
9417 return;
9418
9419 // If output has no object attributes, just copy.
9420 if (this->attributes_section_data_ == NULL)
9421 {
9422 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9423 return;
9424 }
9425
9426 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9427 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9428 Object_attribute* out_attr =
9429 this->attributes_section_data_->known_attributes(vendor);
9430
9431 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9432 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9433 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9434 {
9435 // Ignore mismatches if the object doesn't use floating point. */
9436 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9437 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9438 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
9439 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9440 && parameters->options().warn_mismatch())
a0351a69
DK
9441 gold_error(_("%s uses VFP register arguments, output does not"),
9442 name);
9443 }
9444
9445 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9446 {
9447 // Merge this attribute with existing attributes.
9448 switch (i)
9449 {
9450 case elfcpp::Tag_CPU_raw_name:
9451 case elfcpp::Tag_CPU_name:
9452 // These are merged after Tag_CPU_arch.
9453 break;
9454
9455 case elfcpp::Tag_ABI_optimization_goals:
9456 case elfcpp::Tag_ABI_FP_optimization_goals:
9457 // Use the first value seen.
9458 break;
9459
9460 case elfcpp::Tag_CPU_arch:
9461 {
9462 unsigned int saved_out_attr = out_attr->int_value();
9463 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9464 int secondary_compat =
9465 this->get_secondary_compatible_arch(pasd);
9466 int secondary_compat_out =
9467 this->get_secondary_compatible_arch(
9468 this->attributes_section_data_);
9469 out_attr[i].set_int_value(
9470 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9471 &secondary_compat_out,
9472 in_attr[i].int_value(),
9473 secondary_compat));
9474 this->set_secondary_compatible_arch(this->attributes_section_data_,
9475 secondary_compat_out);
9476
9477 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9478 if (out_attr[i].int_value() == saved_out_attr)
9479 ; // Leave the names alone.
9480 else if (out_attr[i].int_value() == in_attr[i].int_value())
9481 {
9482 // The output architecture has been changed to match the
9483 // input architecture. Use the input names.
9484 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9485 in_attr[elfcpp::Tag_CPU_name].string_value());
9486 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9487 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9488 }
9489 else
9490 {
9491 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9492 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9493 }
9494
9495 // If we still don't have a value for Tag_CPU_name,
9496 // make one up now. Tag_CPU_raw_name remains blank.
9497 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9498 {
9499 const std::string cpu_name =
9500 this->tag_cpu_name_value(out_attr[i].int_value());
9501 // FIXME: If we see an unknown CPU, this will be set
9502 // to "<unknown CPU n>", where n is the attribute value.
9503 // This is different from BFD, which leaves the name alone.
9504 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9505 }
9506 }
9507 break;
9508
9509 case elfcpp::Tag_ARM_ISA_use:
9510 case elfcpp::Tag_THUMB_ISA_use:
9511 case elfcpp::Tag_WMMX_arch:
9512 case elfcpp::Tag_Advanced_SIMD_arch:
9513 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9514 case elfcpp::Tag_ABI_FP_rounding:
9515 case elfcpp::Tag_ABI_FP_exceptions:
9516 case elfcpp::Tag_ABI_FP_user_exceptions:
9517 case elfcpp::Tag_ABI_FP_number_model:
9518 case elfcpp::Tag_VFP_HP_extension:
9519 case elfcpp::Tag_CPU_unaligned_access:
9520 case elfcpp::Tag_T2EE_use:
9521 case elfcpp::Tag_Virtualization_use:
9522 case elfcpp::Tag_MPextension_use:
9523 // Use the largest value specified.
9524 if (in_attr[i].int_value() > out_attr[i].int_value())
9525 out_attr[i].set_int_value(in_attr[i].int_value());
9526 break;
9527
9528 case elfcpp::Tag_ABI_align8_preserved:
9529 case elfcpp::Tag_ABI_PCS_RO_data:
9530 // Use the smallest value specified.
9531 if (in_attr[i].int_value() < out_attr[i].int_value())
9532 out_attr[i].set_int_value(in_attr[i].int_value());
9533 break;
9534
9535 case elfcpp::Tag_ABI_align8_needed:
9536 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9537 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9538 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9539 == 0)))
9540 {
9541 // This error message should be enabled once all non-conformant
9542 // binaries in the toolchain have had the attributes set
9543 // properly.
9544 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9545 // name);
9546 }
9547 // Fall through.
9548 case elfcpp::Tag_ABI_FP_denormal:
9549 case elfcpp::Tag_ABI_PCS_GOT_use:
9550 {
9551 // These tags have 0 = don't care, 1 = strong requirement,
9552 // 2 = weak requirement.
9553 static const int order_021[3] = {0, 2, 1};
9554
9555 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9556 // value if greater than 2 (for future-proofing).
9557 if ((in_attr[i].int_value() > 2
9558 && in_attr[i].int_value() > out_attr[i].int_value())
9559 || (in_attr[i].int_value() <= 2
9560 && out_attr[i].int_value() <= 2
9561 && (order_021[in_attr[i].int_value()]
9562 > order_021[out_attr[i].int_value()])))
9563 out_attr[i].set_int_value(in_attr[i].int_value());
9564 }
9565 break;
9566
9567 case elfcpp::Tag_CPU_arch_profile:
9568 if (out_attr[i].int_value() != in_attr[i].int_value())
9569 {
9570 // 0 will merge with anything.
9571 // 'A' and 'S' merge to 'A'.
9572 // 'R' and 'S' merge to 'R'.
9573 // 'M' and 'A|R|S' is an error.
9574 if (out_attr[i].int_value() == 0
9575 || (out_attr[i].int_value() == 'S'
9576 && (in_attr[i].int_value() == 'A'
9577 || in_attr[i].int_value() == 'R')))
9578 out_attr[i].set_int_value(in_attr[i].int_value());
9579 else if (in_attr[i].int_value() == 0
9580 || (in_attr[i].int_value() == 'S'
9581 && (out_attr[i].int_value() == 'A'
9582 || out_attr[i].int_value() == 'R')))
9583 ; // Do nothing.
7296d933 9584 else if (parameters->options().warn_mismatch())
a0351a69
DK
9585 {
9586 gold_error
9587 (_("conflicting architecture profiles %c/%c"),
9588 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9589 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9590 }
9591 }
9592 break;
9593 case elfcpp::Tag_VFP_arch:
9594 {
9595 static const struct
9596 {
9597 int ver;
9598 int regs;
9599 } vfp_versions[7] =
9600 {
9601 {0, 0},
9602 {1, 16},
9603 {2, 16},
9604 {3, 32},
9605 {3, 16},
9606 {4, 32},
9607 {4, 16}
9608 };
9609
9610 // Values greater than 6 aren't defined, so just pick the
9611 // biggest.
9612 if (in_attr[i].int_value() > 6
9613 && in_attr[i].int_value() > out_attr[i].int_value())
9614 {
9615 *out_attr = *in_attr;
9616 break;
9617 }
9618 // The output uses the superset of input features
9619 // (ISA version) and registers.
9620 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9621 vfp_versions[out_attr[i].int_value()].ver);
9622 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9623 vfp_versions[out_attr[i].int_value()].regs);
9624 // This assumes all possible supersets are also a valid
9625 // options.
9626 int newval;
9627 for (newval = 6; newval > 0; newval--)
9628 {
9629 if (regs == vfp_versions[newval].regs
9630 && ver == vfp_versions[newval].ver)
9631 break;
9632 }
9633 out_attr[i].set_int_value(newval);
9634 }
9635 break;
9636 case elfcpp::Tag_PCS_config:
9637 if (out_attr[i].int_value() == 0)
9638 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
9639 else if (in_attr[i].int_value() != 0
9640 && out_attr[i].int_value() != 0
9641 && parameters->options().warn_mismatch())
a0351a69
DK
9642 {
9643 // It's sometimes ok to mix different configs, so this is only
9644 // a warning.
9645 gold_warning(_("%s: conflicting platform configuration"), name);
9646 }
9647 break;
9648 case elfcpp::Tag_ABI_PCS_R9_use:
9649 if (in_attr[i].int_value() != out_attr[i].int_value()
9650 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
9651 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
9652 && parameters->options().warn_mismatch())
a0351a69
DK
9653 {
9654 gold_error(_("%s: conflicting use of R9"), name);
9655 }
9656 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9657 out_attr[i].set_int_value(in_attr[i].int_value());
9658 break;
9659 case elfcpp::Tag_ABI_PCS_RW_data:
9660 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9661 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9662 != elfcpp::AEABI_R9_SB)
9663 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
9664 != elfcpp::AEABI_R9_unused)
9665 && parameters->options().warn_mismatch())
a0351a69
DK
9666 {
9667 gold_error(_("%s: SB relative addressing conflicts with use "
9668 "of R9"),
7296d933 9669 name);
a0351a69
DK
9670 }
9671 // Use the smallest value specified.
9672 if (in_attr[i].int_value() < out_attr[i].int_value())
9673 out_attr[i].set_int_value(in_attr[i].int_value());
9674 break;
9675 case elfcpp::Tag_ABI_PCS_wchar_t:
9676 // FIXME: Make it possible to turn off this warning.
9677 if (out_attr[i].int_value()
9678 && in_attr[i].int_value()
7296d933
DK
9679 && out_attr[i].int_value() != in_attr[i].int_value()
9680 && parameters->options().warn_mismatch())
a0351a69
DK
9681 {
9682 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9683 "use %u-byte wchar_t; use of wchar_t values "
9684 "across objects may fail"),
9685 name, in_attr[i].int_value(),
9686 out_attr[i].int_value());
9687 }
9688 else if (in_attr[i].int_value() && !out_attr[i].int_value())
9689 out_attr[i].set_int_value(in_attr[i].int_value());
9690 break;
9691 case elfcpp::Tag_ABI_enum_size:
9692 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9693 {
9694 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9695 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9696 {
9697 // The existing object is compatible with anything.
9698 // Use whatever requirements the new object has.
9699 out_attr[i].set_int_value(in_attr[i].int_value());
9700 }
9701 // FIXME: Make it possible to turn off this warning.
9702 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933
DK
9703 && out_attr[i].int_value() != in_attr[i].int_value()
9704 && parameters->options().warn_mismatch())
a0351a69
DK
9705 {
9706 unsigned int in_value = in_attr[i].int_value();
9707 unsigned int out_value = out_attr[i].int_value();
9708 gold_warning(_("%s uses %s enums yet the output is to use "
9709 "%s enums; use of enum values across objects "
9710 "may fail"),
9711 name,
9712 this->aeabi_enum_name(in_value).c_str(),
9713 this->aeabi_enum_name(out_value).c_str());
9714 }
9715 }
9716 break;
9717 case elfcpp::Tag_ABI_VFP_args:
9718 // Aready done.
9719 break;
9720 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
9721 if (in_attr[i].int_value() != out_attr[i].int_value()
9722 && parameters->options().warn_mismatch())
a0351a69
DK
9723 {
9724 gold_error(_("%s uses iWMMXt register arguments, output does "
9725 "not"),
9726 name);
9727 }
9728 break;
9729 case Object_attribute::Tag_compatibility:
9730 // Merged in target-independent code.
9731 break;
9732 case elfcpp::Tag_ABI_HardFP_use:
9733 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9734 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9735 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9736 out_attr[i].set_int_value(3);
9737 else if (in_attr[i].int_value() > out_attr[i].int_value())
9738 out_attr[i].set_int_value(in_attr[i].int_value());
9739 break;
9740 case elfcpp::Tag_ABI_FP_16bit_format:
9741 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9742 {
7296d933
DK
9743 if (in_attr[i].int_value() != out_attr[i].int_value()
9744 && parameters->options().warn_mismatch())
a0351a69
DK
9745 gold_error(_("fp16 format mismatch between %s and output"),
9746 name);
9747 }
9748 if (in_attr[i].int_value() != 0)
9749 out_attr[i].set_int_value(in_attr[i].int_value());
9750 break;
9751
9752 case elfcpp::Tag_nodefaults:
9753 // This tag is set if it exists, but the value is unused (and is
9754 // typically zero). We don't actually need to do anything here -
9755 // the merge happens automatically when the type flags are merged
9756 // below.
9757 break;
9758 case elfcpp::Tag_also_compatible_with:
9759 // Already done in Tag_CPU_arch.
9760 break;
9761 case elfcpp::Tag_conformance:
9762 // Keep the attribute if it matches. Throw it away otherwise.
9763 // No attribute means no claim to conform.
9764 if (in_attr[i].string_value() != out_attr[i].string_value())
9765 out_attr[i].set_string_value("");
9766 break;
9767
9768 default:
9769 {
9770 const char* err_object = NULL;
9771
9772 // The "known_obj_attributes" table does contain some undefined
9773 // attributes. Ensure that there are unused.
9774 if (out_attr[i].int_value() != 0
9775 || out_attr[i].string_value() != "")
9776 err_object = "output";
9777 else if (in_attr[i].int_value() != 0
9778 || in_attr[i].string_value() != "")
9779 err_object = name;
9780
7296d933
DK
9781 if (err_object != NULL
9782 && parameters->options().warn_mismatch())
a0351a69
DK
9783 {
9784 // Attribute numbers >=64 (mod 128) can be safely ignored.
9785 if ((i & 127) < 64)
9786 gold_error(_("%s: unknown mandatory EABI object attribute "
9787 "%d"),
9788 err_object, i);
9789 else
9790 gold_warning(_("%s: unknown EABI object attribute %d"),
9791 err_object, i);
9792 }
9793
9794 // Only pass on attributes that match in both inputs.
9795 if (!in_attr[i].matches(out_attr[i]))
9796 {
9797 out_attr[i].set_int_value(0);
9798 out_attr[i].set_string_value("");
9799 }
9800 }
9801 }
9802
9803 // If out_attr was copied from in_attr then it won't have a type yet.
9804 if (in_attr[i].type() && !out_attr[i].type())
9805 out_attr[i].set_type(in_attr[i].type());
9806 }
9807
9808 // Merge Tag_compatibility attributes and any common GNU ones.
9809 this->attributes_section_data_->merge(name, pasd);
9810
9811 // Check for any attributes not known on ARM.
9812 typedef Vendor_object_attributes::Other_attributes Other_attributes;
9813 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9814 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9815 Other_attributes* out_other_attributes =
9816 this->attributes_section_data_->other_attributes(vendor);
9817 Other_attributes::iterator out_iter = out_other_attributes->begin();
9818
9819 while (in_iter != in_other_attributes->end()
9820 || out_iter != out_other_attributes->end())
9821 {
9822 const char* err_object = NULL;
9823 int err_tag = 0;
9824
9825 // The tags for each list are in numerical order.
9826 // If the tags are equal, then merge.
9827 if (out_iter != out_other_attributes->end()
9828 && (in_iter == in_other_attributes->end()
9829 || in_iter->first > out_iter->first))
9830 {
9831 // This attribute only exists in output. We can't merge, and we
9832 // don't know what the tag means, so delete it.
9833 err_object = "output";
9834 err_tag = out_iter->first;
9835 int saved_tag = out_iter->first;
9836 delete out_iter->second;
9837 out_other_attributes->erase(out_iter);
9838 out_iter = out_other_attributes->upper_bound(saved_tag);
9839 }
9840 else if (in_iter != in_other_attributes->end()
9841 && (out_iter != out_other_attributes->end()
9842 || in_iter->first < out_iter->first))
9843 {
9844 // This attribute only exists in input. We can't merge, and we
9845 // don't know what the tag means, so ignore it.
9846 err_object = name;
9847 err_tag = in_iter->first;
9848 ++in_iter;
9849 }
9850 else // The tags are equal.
9851 {
9852 // As present, all attributes in the list are unknown, and
9853 // therefore can't be merged meaningfully.
9854 err_object = "output";
9855 err_tag = out_iter->first;
9856
9857 // Only pass on attributes that match in both inputs.
9858 if (!in_iter->second->matches(*(out_iter->second)))
9859 {
9860 // No match. Delete the attribute.
9861 int saved_tag = out_iter->first;
9862 delete out_iter->second;
9863 out_other_attributes->erase(out_iter);
9864 out_iter = out_other_attributes->upper_bound(saved_tag);
9865 }
9866 else
9867 {
9868 // Matched. Keep the attribute and move to the next.
9869 ++out_iter;
9870 ++in_iter;
9871 }
9872 }
9873
7296d933 9874 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
9875 {
9876 // Attribute numbers >=64 (mod 128) can be safely ignored. */
9877 if ((err_tag & 127) < 64)
9878 {
9879 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9880 err_object, err_tag);
9881 }
9882 else
9883 {
9884 gold_warning(_("%s: unknown EABI object attribute %d"),
9885 err_object, err_tag);
9886 }
9887 }
9888 }
9889}
9890
55da9579
DK
9891// Stub-generation methods for Target_arm.
9892
9893// Make a new Arm_input_section object.
9894
9895template<bool big_endian>
9896Arm_input_section<big_endian>*
9897Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
9898 Relobj* relobj,
9899 unsigned int shndx)
55da9579 9900{
5ac169d4 9901 Section_id sid(relobj, shndx);
55da9579
DK
9902
9903 Arm_input_section<big_endian>* arm_input_section =
2ea97941 9904 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
9905 arm_input_section->init();
9906
9907 // Register new Arm_input_section in map for look-up.
9908 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 9909 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
9910
9911 // Make sure that it we have not created another Arm_input_section
9912 // for this input section already.
9913 gold_assert(ins.second);
9914
9915 return arm_input_section;
9916}
9917
9918// Find the Arm_input_section object corresponding to the SHNDX-th input
9919// section of RELOBJ.
9920
9921template<bool big_endian>
9922Arm_input_section<big_endian>*
9923Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
9924 Relobj* relobj,
9925 unsigned int shndx) const
55da9579 9926{
5ac169d4 9927 Section_id sid(relobj, shndx);
55da9579 9928 typename Arm_input_section_map::const_iterator p =
5ac169d4 9929 this->arm_input_section_map_.find(sid);
55da9579
DK
9930 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9931}
9932
9933// Make a new stub table.
9934
9935template<bool big_endian>
9936Stub_table<big_endian>*
9937Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9938{
2ea97941 9939 Stub_table<big_endian>* stub_table =
55da9579 9940 new Stub_table<big_endian>(owner);
2ea97941 9941 this->stub_tables_.push_back(stub_table);
55da9579 9942
2ea97941
ILT
9943 stub_table->set_address(owner->address() + owner->data_size());
9944 stub_table->set_file_offset(owner->offset() + owner->data_size());
9945 stub_table->finalize_data_size();
55da9579 9946
2ea97941 9947 return stub_table;
55da9579
DK
9948}
9949
eb44217c
DK
9950// Scan a relocation for stub generation.
9951
9952template<bool big_endian>
9953void
9954Target_arm<big_endian>::scan_reloc_for_stub(
9955 const Relocate_info<32, big_endian>* relinfo,
9956 unsigned int r_type,
9957 const Sized_symbol<32>* gsym,
9958 unsigned int r_sym,
9959 const Symbol_value<32>* psymval,
9960 elfcpp::Elf_types<32>::Elf_Swxword addend,
9961 Arm_address address)
9962{
2ea97941 9963 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
9964
9965 const Arm_relobj<big_endian>* arm_relobj =
9966 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9967
9968 bool target_is_thumb;
9969 Symbol_value<32> symval;
9970 if (gsym != NULL)
9971 {
9972 // This is a global symbol. Determine if we use PLT and if the
9973 // final target is THUMB.
2ea97941 9974 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
eb44217c
DK
9975 {
9976 // This uses a PLT, change the symbol value.
9977 symval.set_output_value(this->plt_section()->address()
9978 + gsym->plt_offset());
9979 psymval = &symval;
9980 target_is_thumb = false;
9981 }
9982 else if (gsym->is_undefined())
9983 // There is no need to generate a stub symbol is undefined.
9984 return;
9985 else
9986 {
9987 target_is_thumb =
9988 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9989 || (gsym->type() == elfcpp::STT_FUNC
9990 && !gsym->is_undefined()
9991 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9992 }
9993 }
9994 else
9995 {
9996 // This is a local symbol. Determine if the final target is THUMB.
9997 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9998 }
9999
10000 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10001 const Arm_reloc_property* reloc_property =
10002 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10003 gold_assert(reloc_property != NULL);
eb44217c 10004 if (target_is_thumb
5c57f1be 10005 && reloc_property->uses_thumb_bit()
eb44217c
DK
10006 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10007 {
10008 Arm_address stripped_value =
10009 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10010 symval.set_output_value(stripped_value);
10011 psymval = &symval;
10012 }
10013
10014 // Get the symbol value.
10015 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10016
10017 // Owing to pipelining, the PC relative branches below actually skip
10018 // two instructions when the branch offset is 0.
10019 Arm_address destination;
10020 switch (r_type)
10021 {
10022 case elfcpp::R_ARM_CALL:
10023 case elfcpp::R_ARM_JUMP24:
10024 case elfcpp::R_ARM_PLT32:
10025 // ARM branches.
10026 destination = value + addend + 8;
10027 break;
10028 case elfcpp::R_ARM_THM_CALL:
10029 case elfcpp::R_ARM_THM_XPC22:
10030 case elfcpp::R_ARM_THM_JUMP24:
10031 case elfcpp::R_ARM_THM_JUMP19:
10032 // THUMB branches.
10033 destination = value + addend + 4;
10034 break;
10035 default:
10036 gold_unreachable();
10037 }
10038
a120bc7f 10039 Reloc_stub* stub = NULL;
eb44217c
DK
10040 Stub_type stub_type =
10041 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10042 target_is_thumb);
a120bc7f
DK
10043 if (stub_type != arm_stub_none)
10044 {
10045 // Try looking up an existing stub from a stub table.
10046 Stub_table<big_endian>* stub_table =
10047 arm_relobj->stub_table(relinfo->data_shndx);
10048 gold_assert(stub_table != NULL);
eb44217c 10049
a120bc7f
DK
10050 // Locate stub by destination.
10051 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 10052
a120bc7f
DK
10053 // Create a stub if there is not one already
10054 stub = stub_table->find_reloc_stub(stub_key);
10055 if (stub == NULL)
10056 {
10057 // create a new stub and add it to stub table.
10058 stub = this->stub_factory().make_reloc_stub(stub_type);
10059 stub_table->add_reloc_stub(stub, stub_key);
10060 }
10061
10062 // Record the destination address.
10063 stub->set_destination_address(destination
10064 | (target_is_thumb ? 1 : 0));
eb44217c
DK
10065 }
10066
a120bc7f
DK
10067 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10068 if (this->fix_cortex_a8_
10069 && (r_type == elfcpp::R_ARM_THM_JUMP24
10070 || r_type == elfcpp::R_ARM_THM_JUMP19
10071 || r_type == elfcpp::R_ARM_THM_CALL
10072 || r_type == elfcpp::R_ARM_THM_XPC22)
10073 && (address & 0xfffU) == 0xffeU)
10074 {
10075 // Found a candidate. Note we haven't checked the destination is
10076 // within 4K here: if we do so (and don't create a record) we can't
10077 // tell that a branch should have been relocated when scanning later.
10078 this->cortex_a8_relocs_info_[address] =
10079 new Cortex_a8_reloc(stub, r_type,
10080 destination | (target_is_thumb ? 1 : 0));
10081 }
eb44217c
DK
10082}
10083
10084// This function scans a relocation sections for stub generation.
10085// The template parameter Relocate must be a class type which provides
10086// a single function, relocate(), which implements the machine
10087// specific part of a relocation.
10088
10089// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10090// SHT_REL or SHT_RELA.
10091
10092// PRELOCS points to the relocation data. RELOC_COUNT is the number
10093// of relocs. OUTPUT_SECTION is the output section.
10094// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10095// mapped to output offsets.
10096
10097// VIEW is the section data, VIEW_ADDRESS is its memory address, and
10098// VIEW_SIZE is the size. These refer to the input section, unless
10099// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10100// the output section.
10101
10102template<bool big_endian>
10103template<int sh_type>
10104void inline
10105Target_arm<big_endian>::scan_reloc_section_for_stubs(
10106 const Relocate_info<32, big_endian>* relinfo,
10107 const unsigned char* prelocs,
10108 size_t reloc_count,
10109 Output_section* output_section,
10110 bool needs_special_offset_handling,
10111 const unsigned char* view,
10112 elfcpp::Elf_types<32>::Elf_Addr view_address,
10113 section_size_type)
10114{
10115 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10116 const int reloc_size =
10117 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10118
10119 Arm_relobj<big_endian>* arm_object =
10120 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10121 unsigned int local_count = arm_object->local_symbol_count();
10122
10123 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10124
10125 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10126 {
10127 Reltype reloc(prelocs);
10128
10129 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10130 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10131 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10132
10133 r_type = this->get_real_reloc_type(r_type);
10134
10135 // Only a few relocation types need stubs.
10136 if ((r_type != elfcpp::R_ARM_CALL)
10137 && (r_type != elfcpp::R_ARM_JUMP24)
10138 && (r_type != elfcpp::R_ARM_PLT32)
10139 && (r_type != elfcpp::R_ARM_THM_CALL)
10140 && (r_type != elfcpp::R_ARM_THM_XPC22)
10141 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
10142 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10143 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
10144 continue;
10145
2ea97941 10146 section_offset_type offset =
eb44217c
DK
10147 convert_to_section_size_type(reloc.get_r_offset());
10148
10149 if (needs_special_offset_handling)
10150 {
2ea97941
ILT
10151 offset = output_section->output_offset(relinfo->object,
10152 relinfo->data_shndx,
10153 offset);
10154 if (offset == -1)
eb44217c
DK
10155 continue;
10156 }
10157
2fd9ae7a 10158 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
10159 if (r_type == elfcpp::R_ARM_V4BX)
10160 {
2fd9ae7a
DK
10161 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10162 {
10163 // Get the BX instruction.
10164 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10165 const Valtype* wv =
10166 reinterpret_cast<const Valtype*>(view + offset);
10167 elfcpp::Elf_types<32>::Elf_Swxword insn =
10168 elfcpp::Swap<32, big_endian>::readval(wv);
10169 const uint32_t reg = (insn & 0xf);
10170
10171 if (reg < 0xf)
10172 {
10173 // Try looking up an existing stub from a stub table.
10174 Stub_table<big_endian>* stub_table =
10175 arm_object->stub_table(relinfo->data_shndx);
10176 gold_assert(stub_table != NULL);
10177
10178 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10179 {
10180 // create a new stub and add it to stub table.
10181 Arm_v4bx_stub* stub =
10182 this->stub_factory().make_arm_v4bx_stub(reg);
10183 gold_assert(stub != NULL);
10184 stub_table->add_arm_v4bx_stub(stub);
10185 }
10186 }
10187 }
a2162063
ILT
10188 continue;
10189 }
10190
eb44217c
DK
10191 // Get the addend.
10192 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10193 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 10194 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
10195
10196 const Sized_symbol<32>* sym;
10197
10198 Symbol_value<32> symval;
10199 const Symbol_value<32> *psymval;
10200 if (r_sym < local_count)
10201 {
10202 sym = NULL;
10203 psymval = arm_object->local_symbol(r_sym);
10204
10205 // If the local symbol belongs to a section we are discarding,
10206 // and that section is a debug section, try to find the
10207 // corresponding kept section and map this symbol to its
10208 // counterpart in the kept section. The symbol must not
10209 // correspond to a section we are folding.
10210 bool is_ordinary;
2ea97941 10211 unsigned int shndx = psymval->input_shndx(&is_ordinary);
eb44217c 10212 if (is_ordinary
2ea97941
ILT
10213 && shndx != elfcpp::SHN_UNDEF
10214 && !arm_object->is_section_included(shndx)
10215 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
eb44217c
DK
10216 {
10217 if (comdat_behavior == CB_UNDETERMINED)
10218 {
10219 std::string name =
10220 arm_object->section_name(relinfo->data_shndx);
10221 comdat_behavior = get_comdat_behavior(name.c_str());
10222 }
10223 if (comdat_behavior == CB_PRETEND)
10224 {
10225 bool found;
10226 typename elfcpp::Elf_types<32>::Elf_Addr value =
2ea97941 10227 arm_object->map_to_kept_section(shndx, &found);
eb44217c
DK
10228 if (found)
10229 symval.set_output_value(value + psymval->input_value());
10230 else
10231 symval.set_output_value(0);
10232 }
10233 else
10234 {
10235 symval.set_output_value(0);
10236 }
10237 symval.set_no_output_symtab_entry();
10238 psymval = &symval;
10239 }
10240 }
10241 else
10242 {
10243 const Symbol* gsym = arm_object->global_symbol(r_sym);
10244 gold_assert(gsym != NULL);
10245 if (gsym->is_forwarder())
10246 gsym = relinfo->symtab->resolve_forwards(gsym);
10247
10248 sym = static_cast<const Sized_symbol<32>*>(gsym);
10249 if (sym->has_symtab_index())
10250 symval.set_output_symtab_index(sym->symtab_index());
10251 else
10252 symval.set_no_output_symtab_entry();
10253
10254 // We need to compute the would-be final value of this global
10255 // symbol.
10256 const Symbol_table* symtab = relinfo->symtab;
10257 const Sized_symbol<32>* sized_symbol =
10258 symtab->get_sized_symbol<32>(gsym);
10259 Symbol_table::Compute_final_value_status status;
10260 Arm_address value =
10261 symtab->compute_final_value<32>(sized_symbol, &status);
10262
10263 // Skip this if the symbol has not output section.
10264 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10265 continue;
10266
10267 symval.set_output_value(value);
10268 psymval = &symval;
10269 }
10270
10271 // If symbol is a section symbol, we don't know the actual type of
10272 // destination. Give up.
10273 if (psymval->is_section_symbol())
10274 continue;
10275
10276 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 10277 addend, view_address + offset);
eb44217c
DK
10278 }
10279}
10280
10281// Scan an input section for stub generation.
10282
10283template<bool big_endian>
10284void
10285Target_arm<big_endian>::scan_section_for_stubs(
10286 const Relocate_info<32, big_endian>* relinfo,
10287 unsigned int sh_type,
10288 const unsigned char* prelocs,
10289 size_t reloc_count,
10290 Output_section* output_section,
10291 bool needs_special_offset_handling,
10292 const unsigned char* view,
10293 Arm_address view_address,
10294 section_size_type view_size)
10295{
10296 if (sh_type == elfcpp::SHT_REL)
10297 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10298 relinfo,
10299 prelocs,
10300 reloc_count,
10301 output_section,
10302 needs_special_offset_handling,
10303 view,
10304 view_address,
10305 view_size);
10306 else if (sh_type == elfcpp::SHT_RELA)
10307 // We do not support RELA type relocations yet. This is provided for
10308 // completeness.
10309 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10310 relinfo,
10311 prelocs,
10312 reloc_count,
10313 output_section,
10314 needs_special_offset_handling,
10315 view,
10316 view_address,
10317 view_size);
10318 else
10319 gold_unreachable();
10320}
10321
10322// Group input sections for stub generation.
10323//
10324// We goup input sections in an output sections so that the total size,
10325// including any padding space due to alignment is smaller than GROUP_SIZE
10326// unless the only input section in group is bigger than GROUP_SIZE already.
10327// Then an ARM stub table is created to follow the last input section
10328// in group. For each group an ARM stub table is created an is placed
10329// after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10330// extend the group after the stub table.
10331
10332template<bool big_endian>
10333void
10334Target_arm<big_endian>::group_sections(
2ea97941 10335 Layout* layout,
eb44217c
DK
10336 section_size_type group_size,
10337 bool stubs_always_after_branch)
10338{
10339 // Group input sections and insert stub table
10340 Layout::Section_list section_list;
2ea97941 10341 layout->get_allocated_sections(&section_list);
eb44217c
DK
10342 for (Layout::Section_list::const_iterator p = section_list.begin();
10343 p != section_list.end();
10344 ++p)
10345 {
10346 Arm_output_section<big_endian>* output_section =
10347 Arm_output_section<big_endian>::as_arm_output_section(*p);
10348 output_section->group_sections(group_size, stubs_always_after_branch,
10349 this);
10350 }
10351}
10352
10353// Relaxation hook. This is where we do stub generation.
10354
10355template<bool big_endian>
10356bool
10357Target_arm<big_endian>::do_relax(
10358 int pass,
10359 const Input_objects* input_objects,
10360 Symbol_table* symtab,
2ea97941 10361 Layout* layout)
eb44217c
DK
10362{
10363 // No need to generate stubs if this is a relocatable link.
10364 gold_assert(!parameters->options().relocatable());
10365
10366 // If this is the first pass, we need to group input sections into
10367 // stub groups.
2b328d4e 10368 bool done_exidx_fixup = false;
eb44217c
DK
10369 if (pass == 1)
10370 {
10371 // Determine the stub group size. The group size is the absolute
10372 // value of the parameter --stub-group-size. If --stub-group-size
10373 // is passed a negative value, we restict stubs to be always after
10374 // the stubbed branches.
10375 int32_t stub_group_size_param =
10376 parameters->options().stub_group_size();
10377 bool stubs_always_after_branch = stub_group_size_param < 0;
10378 section_size_type stub_group_size = abs(stub_group_size_param);
10379
44272192
DK
10380 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10381 // page as the first half of a 32-bit branch straddling two 4K pages.
10382 // This is a crude way of enforcing that.
10383 if (this->fix_cortex_a8_)
10384 stubs_always_after_branch = true;
10385
eb44217c
DK
10386 if (stub_group_size == 1)
10387 {
10388 // Default value.
10389 // Thumb branch range is +-4MB has to be used as the default
10390 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
10391 // code, so the worst case has to be taken into account). If we are
10392 // fixing cortex-a8 errata, the branch range has to be even smaller,
10393 // since wide conditional branch has a range of +-1MB only.
eb44217c
DK
10394 //
10395 // This value is 24K less than that, which allows for 2025
10396 // 12-byte stubs. If we exceed that, then we will fail to link.
10397 // The user will have to relink with an explicit group size
10398 // option.
a2c7281b
DK
10399 if (this->fix_cortex_a8_)
10400 stub_group_size = 1024276;
10401 else
10402 stub_group_size = 4170000;
eb44217c
DK
10403 }
10404
2ea97941 10405 group_sections(layout, stub_group_size, stubs_always_after_branch);
2b328d4e
DK
10406
10407 // Also fix .ARM.exidx section coverage.
10408 Output_section* os = layout->find_output_section(".ARM.exidx");
10409 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10410 {
10411 Arm_output_section<big_endian>* exidx_output_section =
10412 Arm_output_section<big_endian>::as_arm_output_section(os);
10413 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10414 done_exidx_fixup = true;
10415 }
eb44217c
DK
10416 }
10417
44272192
DK
10418 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10419 // beginning of each relaxation pass, just blow away all the stubs.
10420 // Alternatively, we could selectively remove only the stubs and reloc
10421 // information for code sections that have moved since the last pass.
10422 // That would require more book-keeping.
eb44217c 10423 typedef typename Stub_table_list::iterator Stub_table_iterator;
a120bc7f
DK
10424 if (this->fix_cortex_a8_)
10425 {
10426 // Clear all Cortex-A8 reloc information.
10427 for (typename Cortex_a8_relocs_info::const_iterator p =
10428 this->cortex_a8_relocs_info_.begin();
10429 p != this->cortex_a8_relocs_info_.end();
10430 ++p)
10431 delete p->second;
10432 this->cortex_a8_relocs_info_.clear();
44272192
DK
10433
10434 // Remove all Cortex-A8 stubs.
10435 for (Stub_table_iterator sp = this->stub_tables_.begin();
10436 sp != this->stub_tables_.end();
10437 ++sp)
10438 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
10439 }
10440
44272192 10441 // Scan relocs for relocation stubs
eb44217c
DK
10442 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10443 op != input_objects->relobj_end();
10444 ++op)
10445 {
10446 Arm_relobj<big_endian>* arm_relobj =
10447 Arm_relobj<big_endian>::as_arm_relobj(*op);
2ea97941 10448 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
10449 }
10450
2fb7225c
DK
10451 // Check all stub tables to see if any of them have their data sizes
10452 // or addresses alignments changed. These are the only things that
10453 // matter.
eb44217c 10454 bool any_stub_table_changed = false;
8923b24c 10455 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
10456 for (Stub_table_iterator sp = this->stub_tables_.begin();
10457 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10458 ++sp)
10459 {
2fb7225c 10460 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
10461 {
10462 // Update data size of stub table owner.
10463 Arm_input_section<big_endian>* owner = (*sp)->owner();
10464 uint64_t address = owner->address();
10465 off_t offset = owner->offset();
10466 owner->reset_address_and_file_offset();
10467 owner->set_address_and_file_offset(address, offset);
10468
10469 sections_needing_adjustment.insert(owner->output_section());
10470 any_stub_table_changed = true;
10471 }
10472 }
10473
10474 // Output_section_data::output_section() returns a const pointer but we
10475 // need to update output sections, so we record all output sections needing
10476 // update above and scan the sections here to find out what sections need
10477 // to be updated.
10478 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10479 p != layout->section_list().end();
10480 ++p)
10481 {
10482 if (sections_needing_adjustment.find(*p)
10483 != sections_needing_adjustment.end())
10484 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
10485 }
10486
2b328d4e
DK
10487 // Stop relaxation if no EXIDX fix-up and no stub table change.
10488 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10489
2fb7225c 10490 // Finalize the stubs in the last relaxation pass.
2b328d4e 10491 if (!continue_relaxation)
e7eca48c
DK
10492 {
10493 for (Stub_table_iterator sp = this->stub_tables_.begin();
10494 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10495 ++sp)
10496 (*sp)->finalize_stubs();
10497
10498 // Update output local symbol counts of objects if necessary.
10499 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10500 op != input_objects->relobj_end();
10501 ++op)
10502 {
10503 Arm_relobj<big_endian>* arm_relobj =
10504 Arm_relobj<big_endian>::as_arm_relobj(*op);
10505
10506 // Update output local symbol counts. We need to discard local
10507 // symbols defined in parts of input sections that are discarded by
10508 // relaxation.
10509 if (arm_relobj->output_local_symbol_count_needs_update())
10510 arm_relobj->update_output_local_symbol_count();
10511 }
10512 }
2fb7225c 10513
2b328d4e 10514 return continue_relaxation;
eb44217c
DK
10515}
10516
43d12afe
DK
10517// Relocate a stub.
10518
10519template<bool big_endian>
10520void
10521Target_arm<big_endian>::relocate_stub(
2fb7225c 10522 Stub* stub,
43d12afe
DK
10523 const Relocate_info<32, big_endian>* relinfo,
10524 Output_section* output_section,
10525 unsigned char* view,
10526 Arm_address address,
10527 section_size_type view_size)
10528{
10529 Relocate relocate;
2ea97941
ILT
10530 const Stub_template* stub_template = stub->stub_template();
10531 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 10532 {
2ea97941
ILT
10533 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10534 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
10535
10536 unsigned int r_type = insn->r_type();
2ea97941 10537 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
10538 section_size_type reloc_size = insn->size();
10539 gold_assert(reloc_offset + reloc_size <= view_size);
10540
10541 // This is the address of the stub destination.
41263c05 10542 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
10543 Symbol_value<32> symval;
10544 symval.set_output_value(target);
10545
10546 // Synthesize a fake reloc just in case. We don't have a symbol so
10547 // we use 0.
10548 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10549 memset(reloc_buffer, 0, sizeof(reloc_buffer));
10550 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10551 reloc_write.put_r_offset(reloc_offset);
10552 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10553 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10554
10555 relocate.relocate(relinfo, this, output_section,
10556 this->fake_relnum_for_stubs, rel, r_type,
10557 NULL, &symval, view + reloc_offset,
10558 address + reloc_offset, reloc_size);
10559 }
10560}
10561
a0351a69
DK
10562// Determine whether an object attribute tag takes an integer, a
10563// string or both.
10564
10565template<bool big_endian>
10566int
10567Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10568{
10569 if (tag == Object_attribute::Tag_compatibility)
10570 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10571 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10572 else if (tag == elfcpp::Tag_nodefaults)
10573 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10574 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10575 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10576 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10577 else if (tag < 32)
10578 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10579 else
10580 return ((tag & 1) != 0
10581 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10582 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10583}
10584
10585// Reorder attributes.
10586//
10587// The ABI defines that Tag_conformance should be emitted first, and that
10588// Tag_nodefaults should be second (if either is defined). This sets those
10589// two positions, and bumps up the position of all the remaining tags to
10590// compensate.
10591
10592template<bool big_endian>
10593int
10594Target_arm<big_endian>::do_attributes_order(int num) const
10595{
10596 // Reorder the known object attributes in output. We want to move
10597 // Tag_conformance to position 4 and Tag_conformance to position 5
10598 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10599 if (num == 4)
10600 return elfcpp::Tag_conformance;
10601 if (num == 5)
10602 return elfcpp::Tag_nodefaults;
10603 if ((num - 2) < elfcpp::Tag_nodefaults)
10604 return num - 2;
10605 if ((num - 1) < elfcpp::Tag_conformance)
10606 return num - 1;
10607 return num;
10608}
4a657b0d 10609
44272192
DK
10610// Scan a span of THUMB code for Cortex-A8 erratum.
10611
10612template<bool big_endian>
10613void
10614Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10615 Arm_relobj<big_endian>* arm_relobj,
10616 unsigned int shndx,
10617 section_size_type span_start,
10618 section_size_type span_end,
10619 const unsigned char* view,
10620 Arm_address address)
10621{
10622 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10623 //
10624 // The opcode is BLX.W, BL.W, B.W, Bcc.W
10625 // The branch target is in the same 4KB region as the
10626 // first half of the branch.
10627 // The instruction before the branch is a 32-bit
10628 // length non-branch instruction.
10629 section_size_type i = span_start;
10630 bool last_was_32bit = false;
10631 bool last_was_branch = false;
10632 while (i < span_end)
10633 {
10634 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10635 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10636 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10637 bool is_blx = false, is_b = false;
10638 bool is_bl = false, is_bcc = false;
10639
10640 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10641 if (insn_32bit)
10642 {
10643 // Load the rest of the insn (in manual-friendly order).
10644 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10645
10646 // Encoding T4: B<c>.W.
10647 is_b = (insn & 0xf800d000U) == 0xf0009000U;
10648 // Encoding T1: BL<c>.W.
10649 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10650 // Encoding T2: BLX<c>.W.
10651 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10652 // Encoding T3: B<c>.W (not permitted in IT block).
10653 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10654 && (insn & 0x07f00000U) != 0x03800000U);
10655 }
10656
10657 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10658
10659 // If this instruction is a 32-bit THUMB branch that crosses a 4K
10660 // page boundary and it follows 32-bit non-branch instruction,
10661 // we need to work around.
10662 if (is_32bit_branch
10663 && ((address + i) & 0xfffU) == 0xffeU
10664 && last_was_32bit
10665 && !last_was_branch)
10666 {
10667 // Check to see if there is a relocation stub for this branch.
10668 bool force_target_arm = false;
10669 bool force_target_thumb = false;
10670 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10671 Cortex_a8_relocs_info::const_iterator p =
10672 this->cortex_a8_relocs_info_.find(address + i);
10673
10674 if (p != this->cortex_a8_relocs_info_.end())
10675 {
10676 cortex_a8_reloc = p->second;
10677 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10678
10679 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10680 && !target_is_thumb)
10681 force_target_arm = true;
10682 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10683 && target_is_thumb)
10684 force_target_thumb = true;
10685 }
10686
10687 off_t offset;
10688 Stub_type stub_type = arm_stub_none;
10689
10690 // Check if we have an offending branch instruction.
10691 uint16_t upper_insn = (insn >> 16) & 0xffffU;
10692 uint16_t lower_insn = insn & 0xffffU;
10693 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10694
10695 if (cortex_a8_reloc != NULL
10696 && cortex_a8_reloc->reloc_stub() != NULL)
10697 // We've already made a stub for this instruction, e.g.
10698 // it's a long branch or a Thumb->ARM stub. Assume that
10699 // stub will suffice to work around the A8 erratum (see
10700 // setting of always_after_branch above).
10701 ;
10702 else if (is_bcc)
10703 {
10704 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10705 lower_insn);
10706 stub_type = arm_stub_a8_veneer_b_cond;
10707 }
10708 else if (is_b || is_bl || is_blx)
10709 {
10710 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10711 lower_insn);
10712 if (is_blx)
10713 offset &= ~3;
10714
10715 stub_type = (is_blx
10716 ? arm_stub_a8_veneer_blx
10717 : (is_bl
10718 ? arm_stub_a8_veneer_bl
10719 : arm_stub_a8_veneer_b));
10720 }
10721
10722 if (stub_type != arm_stub_none)
10723 {
10724 Arm_address pc_for_insn = address + i + 4;
10725
10726 // The original instruction is a BL, but the target is
10727 // an ARM instruction. If we were not making a stub,
10728 // the BL would have been converted to a BLX. Use the
10729 // BLX stub instead in that case.
10730 if (this->may_use_blx() && force_target_arm
10731 && stub_type == arm_stub_a8_veneer_bl)
10732 {
10733 stub_type = arm_stub_a8_veneer_blx;
10734 is_blx = true;
10735 is_bl = false;
10736 }
10737 // Conversely, if the original instruction was
10738 // BLX but the target is Thumb mode, use the BL stub.
10739 else if (force_target_thumb
10740 && stub_type == arm_stub_a8_veneer_blx)
10741 {
10742 stub_type = arm_stub_a8_veneer_bl;
10743 is_blx = false;
10744 is_bl = true;
10745 }
10746
10747 if (is_blx)
10748 pc_for_insn &= ~3;
10749
10750 // If we found a relocation, use the proper destination,
10751 // not the offset in the (unrelocated) instruction.
10752 // Note this is always done if we switched the stub type above.
10753 if (cortex_a8_reloc != NULL)
10754 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10755
10756 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10757
10758 // Add a new stub if destination address in in the same page.
10759 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10760 {
10761 Cortex_a8_stub* stub =
10762 this->stub_factory_.make_cortex_a8_stub(stub_type,
10763 arm_relobj, shndx,
10764 address + i,
10765 target, insn);
10766 Stub_table<big_endian>* stub_table =
10767 arm_relobj->stub_table(shndx);
10768 gold_assert(stub_table != NULL);
10769 stub_table->add_cortex_a8_stub(address + i, stub);
10770 }
10771 }
10772 }
10773
10774 i += insn_32bit ? 4 : 2;
10775 last_was_32bit = insn_32bit;
10776 last_was_branch = is_32bit_branch;
10777 }
10778}
10779
41263c05
DK
10780// Apply the Cortex-A8 workaround.
10781
10782template<bool big_endian>
10783void
10784Target_arm<big_endian>::apply_cortex_a8_workaround(
10785 const Cortex_a8_stub* stub,
10786 Arm_address stub_address,
10787 unsigned char* insn_view,
10788 Arm_address insn_address)
10789{
10790 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10791 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10792 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10793 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10794 off_t branch_offset = stub_address - (insn_address + 4);
10795
10796 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10797 switch (stub->stub_template()->type())
10798 {
10799 case arm_stub_a8_veneer_b_cond:
10800 gold_assert(!utils::has_overflow<21>(branch_offset));
10801 upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10802 branch_offset);
10803 lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10804 branch_offset);
10805 break;
10806
10807 case arm_stub_a8_veneer_b:
10808 case arm_stub_a8_veneer_bl:
10809 case arm_stub_a8_veneer_blx:
10810 if ((lower_insn & 0x5000U) == 0x4000U)
10811 // For a BLX instruction, make sure that the relocation is
10812 // rounded up to a word boundary. This follows the semantics of
10813 // the instruction which specifies that bit 1 of the target
10814 // address will come from bit 1 of the base address.
10815 branch_offset = (branch_offset + 2) & ~3;
10816
10817 // Put BRANCH_OFFSET back into the insn.
10818 gold_assert(!utils::has_overflow<25>(branch_offset));
10819 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10820 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10821 break;
10822
10823 default:
10824 gold_unreachable();
10825 }
10826
10827 // Put the relocated value back in the object file:
10828 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10829 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10830}
10831
4a657b0d
DK
10832template<bool big_endian>
10833class Target_selector_arm : public Target_selector
10834{
10835 public:
10836 Target_selector_arm()
10837 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10838 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10839 { }
10840
10841 Target*
10842 do_instantiate_target()
10843 { return new Target_arm<big_endian>(); }
10844};
10845
2b328d4e
DK
10846// Fix .ARM.exidx section coverage.
10847
10848template<bool big_endian>
10849void
10850Target_arm<big_endian>::fix_exidx_coverage(
10851 Layout* layout,
10852 Arm_output_section<big_endian>* exidx_section,
10853 Symbol_table* symtab)
10854{
10855 // We need to look at all the input sections in output in ascending
10856 // order of of output address. We do that by building a sorted list
10857 // of output sections by addresses. Then we looks at the output sections
10858 // in order. The input sections in an output section are already sorted
10859 // by addresses within the output section.
10860
10861 typedef std::set<Output_section*, output_section_address_less_than>
10862 Sorted_output_section_list;
10863 Sorted_output_section_list sorted_output_sections;
10864 Layout::Section_list section_list;
10865 layout->get_allocated_sections(&section_list);
10866 for (Layout::Section_list::const_iterator p = section_list.begin();
10867 p != section_list.end();
10868 ++p)
10869 {
10870 // We only care about output sections that contain executable code.
10871 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10872 sorted_output_sections.insert(*p);
10873 }
10874
10875 // Go over the output sections in ascending order of output addresses.
10876 typedef typename Arm_output_section<big_endian>::Text_section_list
10877 Text_section_list;
10878 Text_section_list sorted_text_sections;
10879 for(typename Sorted_output_section_list::iterator p =
10880 sorted_output_sections.begin();
10881 p != sorted_output_sections.end();
10882 ++p)
10883 {
10884 Arm_output_section<big_endian>* arm_output_section =
10885 Arm_output_section<big_endian>::as_arm_output_section(*p);
10886 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10887 }
10888
4a54abbb 10889 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
2b328d4e
DK
10890}
10891
4a657b0d
DK
10892Target_selector_arm<false> target_selector_arm;
10893Target_selector_arm<true> target_selector_armbe;
10894
10895} // End anonymous namespace.
This page took 0.572677 seconds and 4 git commands to generate.