[Ada] GDB crash during "finish" of function with out parameters
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b90efa5b 3// Copyright (C) 2009-2015 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
2e702c99 54#include "nacl.h"
4a657b0d
DK
55
56namespace
57{
58
59using namespace gold;
60
94cdfcff
DK
61template<bool big_endian>
62class Output_data_plt_arm;
63
2e702c99
RM
64template<bool big_endian>
65class Output_data_plt_arm_standard;
66
56ee5e00
DK
67template<bool big_endian>
68class Stub_table;
69
70template<bool big_endian>
71class Arm_input_section;
72
af2cdeae
DK
73class Arm_exidx_cantunwind;
74
75class Arm_exidx_merged_section;
76
80d0d023
DK
77class Arm_exidx_fixup;
78
07f508a2
DK
79template<bool big_endian>
80class Arm_output_section;
81
993d07c1
DK
82class Arm_exidx_input_section;
83
07f508a2
DK
84template<bool big_endian>
85class Arm_relobj;
86
f96accdf
DK
87template<bool big_endian>
88class Arm_relocate_functions;
89
4a54abbb
DK
90template<bool big_endian>
91class Arm_output_data_got;
92
b569affa
DK
93template<bool big_endian>
94class Target_arm;
95
96// For convenience.
97typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
98
99// Maximum branch offsets for ARM, THUMB and THUMB2.
100const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
101const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
102const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
103const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
104const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
105const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
106
4a54abbb
DK
107// Thread Control Block size.
108const size_t ARM_TCB_SIZE = 8;
109
4a657b0d
DK
110// The arm target class.
111//
112// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 113// supporting Android only for the time being.
2e702c99 114//
4a657b0d 115// TODOs:
0d31c79d 116// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
117// - Make PLTs more flexible for different architecture features like
118// Thumb-2 and BE8.
11af873f 119// There are probably a lot more.
4a657b0d 120
0d31c79d
DK
121// Ideally we would like to avoid using global variables but this is used
122// very in many places and sometimes in loops. If we use a function
9b547ce6 123// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
124// slow in an threaded environment since the static instance needs to be
125// locked. The pointer is below initialized in the
126// Target::do_select_as_default_target() hook so that we do not spend time
127// building the table if we are not linking ARM objects.
128//
129// An alternative is to to process the information in arm-reloc.def in
130// compilation time and generate a representation of it in PODs only. That
131// way we can avoid initialization when the linker starts.
132
ca09d69a 133Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 134
b569affa
DK
135// Instruction template class. This class is similar to the insn_sequence
136// struct in bfd/elf32-arm.c.
137
138class Insn_template
139{
140 public:
141 // Types of instruction templates.
142 enum Type
143 {
144 THUMB16_TYPE = 1,
2e702c99 145 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
bb0d3eb0
DK
146 // templates with class-specific semantics. Currently this is used
147 // only by the Cortex_a8_stub class for handling condition codes in
148 // conditional branches.
149 THUMB16_SPECIAL_TYPE,
b569affa
DK
150 THUMB32_TYPE,
151 ARM_TYPE,
152 DATA_TYPE
153 };
154
bb0d3eb0 155 // Factory methods to create instruction templates in different formats.
b569affa
DK
156
157 static const Insn_template
158 thumb16_insn(uint32_t data)
2e702c99 159 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa 160
bb0d3eb0
DK
161 // A Thumb conditional branch, in which the proper condition is inserted
162 // when we build the stub.
b569affa
DK
163 static const Insn_template
164 thumb16_bcond_insn(uint32_t data)
2e702c99 165 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
166
167 static const Insn_template
168 thumb32_insn(uint32_t data)
2e702c99 169 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
b569affa
DK
170
171 static const Insn_template
172 thumb32_b_insn(uint32_t data, int reloc_addend)
173 {
174 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
175 reloc_addend);
2e702c99 176 }
b569affa
DK
177
178 static const Insn_template
179 arm_insn(uint32_t data)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
181
182 static const Insn_template
183 arm_rel_insn(unsigned data, int reloc_addend)
184 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
185
186 static const Insn_template
187 data_word(unsigned data, unsigned int r_type, int reloc_addend)
2e702c99 188 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
b569affa
DK
189
190 // Accessors. This class is used for read-only objects so no modifiers
191 // are provided.
192
193 uint32_t
194 data() const
195 { return this->data_; }
196
197 // Return the instruction sequence type of this.
198 Type
199 type() const
200 { return this->type_; }
201
202 // Return the ARM relocation type of this.
203 unsigned int
204 r_type() const
205 { return this->r_type_; }
206
207 int32_t
208 reloc_addend() const
209 { return this->reloc_addend_; }
210
bb0d3eb0 211 // Return size of instruction template in bytes.
b569affa
DK
212 size_t
213 size() const;
214
bb0d3eb0 215 // Return byte-alignment of instruction template.
b569affa
DK
216 unsigned
217 alignment() const;
218
219 private:
220 // We make the constructor private to ensure that only the factory
221 // methods are used.
222 inline
2ea97941
ILT
223 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
224 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
225 { }
226
227 // Instruction specific data. This is used to store information like
228 // some of the instruction bits.
229 uint32_t data_;
230 // Instruction template type.
231 Type type_;
232 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
233 unsigned int r_type_;
234 // Relocation addend.
235 int32_t reloc_addend_;
236};
237
238// Macro for generating code to stub types. One entry per long/short
239// branch stub
240
241#define DEF_STUBS \
242 DEF_STUB(long_branch_any_any) \
243 DEF_STUB(long_branch_v4t_arm_thumb) \
244 DEF_STUB(long_branch_thumb_only) \
245 DEF_STUB(long_branch_v4t_thumb_thumb) \
246 DEF_STUB(long_branch_v4t_thumb_arm) \
247 DEF_STUB(short_branch_v4t_thumb_arm) \
248 DEF_STUB(long_branch_any_arm_pic) \
249 DEF_STUB(long_branch_any_thumb_pic) \
250 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
251 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
252 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
253 DEF_STUB(long_branch_thumb_only_pic) \
254 DEF_STUB(a8_veneer_b_cond) \
255 DEF_STUB(a8_veneer_b) \
256 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
257 DEF_STUB(a8_veneer_blx) \
258 DEF_STUB(v4_veneer_bx)
b569affa
DK
259
260// Stub types.
261
262#define DEF_STUB(x) arm_stub_##x,
263typedef enum
264 {
265 arm_stub_none,
266 DEF_STUBS
267
268 // First reloc stub type.
269 arm_stub_reloc_first = arm_stub_long_branch_any_any,
270 // Last reloc stub type.
271 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
272
273 // First Cortex-A8 stub type.
274 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
275 // Last Cortex-A8 stub type.
276 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
2e702c99 277
b569affa 278 // Last stub type.
a2162063 279 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
280 } Stub_type;
281#undef DEF_STUB
282
283// Stub template class. Templates are meant to be read-only objects.
284// A stub template for a stub type contains all read-only attributes
285// common to all stubs of the same type.
286
287class Stub_template
288{
289 public:
290 Stub_template(Stub_type, const Insn_template*, size_t);
291
292 ~Stub_template()
293 { }
294
295 // Return stub type.
296 Stub_type
297 type() const
298 { return this->type_; }
299
300 // Return an array of instruction templates.
301 const Insn_template*
302 insns() const
303 { return this->insns_; }
304
305 // Return size of template in number of instructions.
306 size_t
307 insn_count() const
308 { return this->insn_count_; }
309
310 // Return size of template in bytes.
311 size_t
312 size() const
313 { return this->size_; }
314
315 // Return alignment of the stub template.
316 unsigned
317 alignment() const
318 { return this->alignment_; }
2e702c99 319
b569affa
DK
320 // Return whether entry point is in thumb mode.
321 bool
322 entry_in_thumb_mode() const
323 { return this->entry_in_thumb_mode_; }
324
325 // Return number of relocations in this template.
326 size_t
327 reloc_count() const
328 { return this->relocs_.size(); }
329
330 // Return index of the I-th instruction with relocation.
331 size_t
332 reloc_insn_index(size_t i) const
333 {
334 gold_assert(i < this->relocs_.size());
335 return this->relocs_[i].first;
336 }
337
338 // Return the offset of the I-th instruction with relocation from the
339 // beginning of the stub.
340 section_size_type
341 reloc_offset(size_t i) const
342 {
343 gold_assert(i < this->relocs_.size());
344 return this->relocs_[i].second;
345 }
346
347 private:
348 // This contains information about an instruction template with a relocation
349 // and its offset from start of stub.
350 typedef std::pair<size_t, section_size_type> Reloc;
351
352 // A Stub_template may not be copied. We want to share templates as much
353 // as possible.
354 Stub_template(const Stub_template&);
355 Stub_template& operator=(const Stub_template&);
2e702c99 356
b569affa
DK
357 // Stub type.
358 Stub_type type_;
359 // Points to an array of Insn_templates.
360 const Insn_template* insns_;
361 // Number of Insn_templates in insns_[].
362 size_t insn_count_;
363 // Size of templated instructions in bytes.
364 size_t size_;
365 // Alignment of templated instructions.
366 unsigned alignment_;
367 // Flag to indicate if entry is in thumb mode.
368 bool entry_in_thumb_mode_;
369 // A table of reloc instruction indices and offsets. We can find these by
370 // looking at the instruction templates but we pre-compute and then stash
2e702c99 371 // them here for speed.
b569affa
DK
372 std::vector<Reloc> relocs_;
373};
374
375//
376// A class for code stubs. This is a base class for different type of
377// stubs used in the ARM target.
378//
379
380class Stub
381{
382 private:
383 static const section_offset_type invalid_offset =
384 static_cast<section_offset_type>(-1);
385
386 public:
2ea97941
ILT
387 Stub(const Stub_template* stub_template)
388 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
389 { }
390
391 virtual
392 ~Stub()
393 { }
394
395 // Return the stub template.
396 const Stub_template*
397 stub_template() const
398 { return this->stub_template_; }
399
400 // Return offset of code stub from beginning of its containing stub table.
401 section_offset_type
402 offset() const
403 {
404 gold_assert(this->offset_ != invalid_offset);
405 return this->offset_;
406 }
407
408 // Set offset of code stub from beginning of its containing stub table.
409 void
2ea97941
ILT
410 set_offset(section_offset_type offset)
411 { this->offset_ = offset; }
2e702c99 412
b569affa
DK
413 // Return the relocation target address of the i-th relocation in the
414 // stub. This must be defined in a child class.
415 Arm_address
416 reloc_target(size_t i)
417 { return this->do_reloc_target(i); }
418
419 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
420 void
421 write(unsigned char* view, section_size_type view_size, bool big_endian)
422 { this->do_write(view, view_size, big_endian); }
423
bb0d3eb0
DK
424 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
425 // for the i-th instruction.
426 uint16_t
427 thumb16_special(size_t i)
428 { return this->do_thumb16_special(i); }
429
b569affa
DK
430 protected:
431 // This must be defined in the child class.
432 virtual Arm_address
433 do_reloc_target(size_t) = 0;
434
bb0d3eb0 435 // This may be overridden in the child class.
b569affa 436 virtual void
bb0d3eb0
DK
437 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
438 {
439 if (big_endian)
440 this->do_fixed_endian_write<true>(view, view_size);
441 else
442 this->do_fixed_endian_write<false>(view, view_size);
443 }
2e702c99 444
bb0d3eb0
DK
445 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
446 // instruction template.
447 virtual uint16_t
448 do_thumb16_special(size_t)
449 { gold_unreachable(); }
450
b569affa 451 private:
bb0d3eb0
DK
452 // A template to implement do_write.
453 template<bool big_endian>
454 void inline
455 do_fixed_endian_write(unsigned char*, section_size_type);
456
b569affa
DK
457 // Its template.
458 const Stub_template* stub_template_;
459 // Offset within the section of containing this stub.
460 section_offset_type offset_;
461};
462
463// Reloc stub class. These are stubs we use to fix up relocation because
464// of limited branch ranges.
465
466class Reloc_stub : public Stub
467{
468 public:
469 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
470 // We assume we never jump to this address.
471 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
472
473 // Return destination address.
474 Arm_address
475 destination_address() const
476 {
477 gold_assert(this->destination_address_ != this->invalid_address);
478 return this->destination_address_;
479 }
480
481 // Set destination address.
482 void
483 set_destination_address(Arm_address address)
484 {
485 gold_assert(address != this->invalid_address);
486 this->destination_address_ = address;
487 }
488
489 // Reset destination address.
490 void
491 reset_destination_address()
492 { this->destination_address_ = this->invalid_address; }
493
494 // Determine stub type for a branch of a relocation of R_TYPE going
495 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
496 // the branch target is a thumb instruction. TARGET is used for look
497 // up ARM-specific linker settings.
498 static Stub_type
499 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
500 Arm_address branch_target, bool target_is_thumb);
501
502 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
503 // and an addend. Since we treat global and local symbol differently, we
504 // use a Symbol object for a global symbol and a object-index pair for
505 // a local symbol.
506 class Key
507 {
508 public:
509 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
510 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
511 // and R_SYM must not be invalid_index.
2ea97941
ILT
512 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
513 unsigned int r_sym, int32_t addend)
514 : stub_type_(stub_type), addend_(addend)
b569affa 515 {
2ea97941 516 if (symbol != NULL)
b569affa
DK
517 {
518 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 519 this->u_.symbol = symbol;
b569affa
DK
520 }
521 else
522 {
2ea97941
ILT
523 gold_assert(relobj != NULL && r_sym != invalid_index);
524 this->r_sym_ = r_sym;
525 this->u_.relobj = relobj;
b569affa
DK
526 }
527 }
528
529 ~Key()
530 { }
531
532 // Accessors: Keys are meant to be read-only object so no modifiers are
533 // provided.
534
535 // Return stub type.
536 Stub_type
537 stub_type() const
538 { return this->stub_type_; }
539
540 // Return the local symbol index or invalid_index.
541 unsigned int
542 r_sym() const
543 { return this->r_sym_; }
544
545 // Return the symbol if there is one.
546 const Symbol*
547 symbol() const
548 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
549
550 // Return the relobj if there is one.
551 const Relobj*
552 relobj() const
553 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
554
555 // Whether this equals to another key k.
556 bool
2e702c99 557 eq(const Key& k) const
b569affa
DK
558 {
559 return ((this->stub_type_ == k.stub_type_)
560 && (this->r_sym_ == k.r_sym_)
561 && ((this->r_sym_ != Reloc_stub::invalid_index)
562 ? (this->u_.relobj == k.u_.relobj)
563 : (this->u_.symbol == k.u_.symbol))
564 && (this->addend_ == k.addend_));
565 }
566
567 // Return a hash value.
568 size_t
569 hash_value() const
570 {
571 return (this->stub_type_
572 ^ this->r_sym_
573 ^ gold::string_hash<char>(
574 (this->r_sym_ != Reloc_stub::invalid_index)
575 ? this->u_.relobj->name().c_str()
576 : this->u_.symbol->name())
577 ^ this->addend_);
578 }
579
580 // Functors for STL associative containers.
581 struct hash
582 {
583 size_t
584 operator()(const Key& k) const
585 { return k.hash_value(); }
586 };
587
588 struct equal_to
589 {
590 bool
591 operator()(const Key& k1, const Key& k2) const
592 { return k1.eq(k2); }
593 };
594
595 // Name of key. This is mainly for debugging.
596 std::string
597 name() const;
598
599 private:
600 // Stub type.
601 Stub_type stub_type_;
602 // If this is a local symbol, this is the index in the defining object.
603 // Otherwise, it is invalid_index for a global symbol.
604 unsigned int r_sym_;
9b547ce6
RW
605 // If r_sym_ is an invalid index, this points to a global symbol.
606 // Otherwise, it points to a relobj. We used the unsized and target
2e702c99 607 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 608 // Arm_relobj, in order to avoid making the stub class a template
7296d933 609 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
610 // may require a bit of casting done by users of this class.
611 union
612 {
613 const Symbol* symbol;
614 const Relobj* relobj;
615 } u_;
616 // Addend associated with a reloc.
617 int32_t addend_;
618 };
619
620 protected:
621 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
622 Reloc_stub(const Stub_template* stub_template)
623 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
624 { }
625
626 ~Reloc_stub()
627 { }
628
629 friend class Stub_factory;
630
b569affa
DK
631 // Return the relocation target address of the i-th relocation in the
632 // stub.
633 Arm_address
634 do_reloc_target(size_t i)
635 {
636 // All reloc stub have only one relocation.
637 gold_assert(i == 0);
638 return this->destination_address_;
639 }
640
bb0d3eb0
DK
641 private:
642 // Address of destination.
643 Arm_address destination_address_;
644};
b569affa 645
bb0d3eb0
DK
646// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
647// THUMB branch that meets the following conditions:
2e702c99 648//
bb0d3eb0
DK
649// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
650// branch address is 0xffe.
651// 2. The branch target address is in the same page as the first word of the
652// branch.
653// 3. The branch follows a 32-bit instruction which is not a branch.
654//
655// To do the fix up, we need to store the address of the branch instruction
656// and its target at least. We also need to store the original branch
657// instruction bits for the condition code in a conditional branch. The
658// condition code is used in a special instruction template. We also want
659// to identify input sections needing Cortex-A8 workaround quickly. We store
660// extra information about object and section index of the code section
661// containing a branch being fixed up. The information is used to mark
662// the code section when we finalize the Cortex-A8 stubs.
663//
b569affa 664
bb0d3eb0
DK
665class Cortex_a8_stub : public Stub
666{
667 public:
668 ~Cortex_a8_stub()
669 { }
670
671 // Return the object of the code section containing the branch being fixed
672 // up.
673 Relobj*
674 relobj() const
675 { return this->relobj_; }
676
677 // Return the section index of the code section containing the branch being
678 // fixed up.
679 unsigned int
680 shndx() const
681 { return this->shndx_; }
682
683 // Return the source address of stub. This is the address of the original
684 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
685 // instruction.
686 Arm_address
687 source_address() const
688 { return this->source_address_; }
689
690 // Return the destination address of the stub. This is the branch taken
691 // address of the original branch instruction. LSB is 1 if it is a THUMB
692 // instruction address.
693 Arm_address
694 destination_address() const
695 { return this->destination_address_; }
696
697 // Return the instruction being fixed up.
698 uint32_t
699 original_insn() const
700 { return this->original_insn_; }
701
702 protected:
703 // Cortex_a8_stubs are created via a stub factory. So these are protected.
704 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
705 unsigned int shndx, Arm_address source_address,
706 Arm_address destination_address, uint32_t original_insn)
707 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
708 source_address_(source_address | 1U),
709 destination_address_(destination_address),
710 original_insn_(original_insn)
711 { }
712
713 friend class Stub_factory;
714
715 // Return the relocation target address of the i-th relocation in the
716 // stub.
717 Arm_address
718 do_reloc_target(size_t i)
719 {
720 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
721 {
2e702c99
RM
722 // The conditional branch veneer has two relocations.
723 gold_assert(i < 2);
bb0d3eb0
DK
724 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
725 }
726 else
727 {
2e702c99
RM
728 // All other Cortex-A8 stubs have only one relocation.
729 gold_assert(i == 0);
730 return this->destination_address_;
bb0d3eb0
DK
731 }
732 }
733
734 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
735 uint16_t
736 do_thumb16_special(size_t);
737
738 private:
739 // Object of the code section containing the branch being fixed up.
740 Relobj* relobj_;
741 // Section index of the code section containing the branch begin fixed up.
742 unsigned int shndx_;
743 // Source address of original branch.
744 Arm_address source_address_;
745 // Destination address of the original branch.
b569affa 746 Arm_address destination_address_;
bb0d3eb0
DK
747 // Original branch instruction. This is needed for copying the condition
748 // code from a condition branch to its stub.
749 uint32_t original_insn_;
b569affa
DK
750};
751
a2162063
ILT
752// ARMv4 BX Rx branch relocation stub class.
753class Arm_v4bx_stub : public Stub
754{
755 public:
756 ~Arm_v4bx_stub()
757 { }
758
759 // Return the associated register.
760 uint32_t
761 reg() const
762 { return this->reg_; }
763
764 protected:
765 // Arm V4BX stubs are created via a stub factory. So these are protected.
766 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
767 : Stub(stub_template), reg_(reg)
768 { }
769
770 friend class Stub_factory;
771
772 // Return the relocation target address of the i-th relocation in the
773 // stub.
774 Arm_address
775 do_reloc_target(size_t)
776 { gold_unreachable(); }
777
778 // This may be overridden in the child class.
779 virtual void
780 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
781 {
782 if (big_endian)
783 this->do_fixed_endian_v4bx_write<true>(view, view_size);
784 else
785 this->do_fixed_endian_v4bx_write<false>(view, view_size);
786 }
787
788 private:
789 // A template to implement do_write.
790 template<bool big_endian>
791 void inline
792 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
793 {
794 const Insn_template* insns = this->stub_template()->insns();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[0].data()
797 + (this->reg_ << 16)));
798 view += insns[0].size();
799 elfcpp::Swap<32, big_endian>::writeval(view,
800 (insns[1].data() + this->reg_));
801 view += insns[1].size();
802 elfcpp::Swap<32, big_endian>::writeval(view,
803 (insns[2].data() + this->reg_));
804 }
805
806 // A register index (r0-r14), which is associated with the stub.
807 uint32_t reg_;
808};
809
b569affa
DK
810// Stub factory class.
811
812class Stub_factory
813{
814 public:
815 // Return the unique instance of this class.
816 static const Stub_factory&
817 get_instance()
818 {
819 static Stub_factory singleton;
820 return singleton;
821 }
822
823 // Make a relocation stub.
824 Reloc_stub*
825 make_reloc_stub(Stub_type stub_type) const
826 {
827 gold_assert(stub_type >= arm_stub_reloc_first
828 && stub_type <= arm_stub_reloc_last);
829 return new Reloc_stub(this->stub_templates_[stub_type]);
830 }
831
bb0d3eb0
DK
832 // Make a Cortex-A8 stub.
833 Cortex_a8_stub*
834 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
835 Arm_address source, Arm_address destination,
836 uint32_t original_insn) const
837 {
838 gold_assert(stub_type >= arm_stub_cortex_a8_first
839 && stub_type <= arm_stub_cortex_a8_last);
840 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
841 source, destination, original_insn);
842 }
843
a2162063
ILT
844 // Make an ARM V4BX relocation stub.
845 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
846 Arm_v4bx_stub*
847 make_arm_v4bx_stub(uint32_t reg) const
848 {
849 gold_assert(reg < 0xf);
850 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
851 reg);
852 }
853
b569affa
DK
854 private:
855 // Constructor and destructor are protected since we only return a single
856 // instance created in Stub_factory::get_instance().
2e702c99 857
b569affa
DK
858 Stub_factory();
859
860 // A Stub_factory may not be copied since it is a singleton.
861 Stub_factory(const Stub_factory&);
862 Stub_factory& operator=(Stub_factory&);
2e702c99 863
b569affa
DK
864 // Stub templates. These are initialized in the constructor.
865 const Stub_template* stub_templates_[arm_stub_type_last+1];
866};
867
56ee5e00
DK
868// A class to hold stubs for the ARM target.
869
870template<bool big_endian>
871class Stub_table : public Output_data
872{
873 public:
2ea97941 874 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
875 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
876 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
877 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
878 { }
879
880 ~Stub_table()
881 { }
882
883 // Owner of this stub table.
884 Arm_input_section<big_endian>*
885 owner() const
886 { return this->owner_; }
887
888 // Whether this stub table is empty.
889 bool
890 empty() const
a2162063
ILT
891 {
892 return (this->reloc_stubs_.empty()
893 && this->cortex_a8_stubs_.empty()
894 && this->arm_v4bx_stubs_.empty());
895 }
56ee5e00
DK
896
897 // Return the current data size.
898 off_t
899 current_data_size() const
900 { return this->current_data_size_for_child(); }
901
9b547ce6
RW
902 // Add a STUB using KEY. The caller is responsible for avoiding addition
903 // if a STUB with the same key has already been added.
56ee5e00 904 void
2fb7225c
DK
905 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
906 {
907 const Stub_template* stub_template = stub->stub_template();
908 gold_assert(stub_template->type() == key.stub_type());
909 this->reloc_stubs_[key] = stub;
d099120c
DK
910
911 // Assign stub offset early. We can do this because we never remove
912 // reloc stubs and they are in the beginning of the stub table.
913 uint64_t align = stub_template->alignment();
914 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
915 stub->set_offset(this->reloc_stubs_size_);
916 this->reloc_stubs_size_ += stub_template->size();
917 this->reloc_stubs_addralign_ =
918 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
919 }
920
921 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
922 // The caller is responsible for avoiding addition if a STUB with the same
923 // address has already been added.
2fb7225c
DK
924 void
925 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
926 {
927 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
928 this->cortex_a8_stubs_.insert(value);
929 }
930
a2162063
ILT
931 // Add an ARM V4BX relocation stub. A register index will be retrieved
932 // from the stub.
933 void
934 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
935 {
936 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
937 this->arm_v4bx_stubs_[stub->reg()] = stub;
938 }
939
2fb7225c
DK
940 // Remove all Cortex-A8 stubs.
941 void
942 remove_all_cortex_a8_stubs();
56ee5e00
DK
943
944 // Look up a relocation stub using KEY. Return NULL if there is none.
945 Reloc_stub*
946 find_reloc_stub(const Reloc_stub::Key& key) const
947 {
948 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
949 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
950 }
951
a2162063
ILT
952 // Look up an arm v4bx relocation stub using the register index.
953 // Return NULL if there is none.
954 Arm_v4bx_stub*
955 find_arm_v4bx_stub(const uint32_t reg) const
956 {
957 gold_assert(reg < 0xf);
958 return this->arm_v4bx_stubs_[reg];
959 }
960
56ee5e00
DK
961 // Relocate stubs in this stub table.
962 void
963 relocate_stubs(const Relocate_info<32, big_endian>*,
964 Target_arm<big_endian>*, Output_section*,
965 unsigned char*, Arm_address, section_size_type);
966
2fb7225c
DK
967 // Update data size and alignment at the end of a relaxation pass. Return
968 // true if either data size or alignment is different from that of the
969 // previous relaxation pass.
970 bool
971 update_data_size_and_addralign();
972
973 // Finalize stubs. Set the offsets of all stubs and mark input sections
974 // needing the Cortex-A8 workaround.
975 void
976 finalize_stubs();
2e702c99 977
2fb7225c
DK
978 // Apply Cortex-A8 workaround to an address range.
979 void
980 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
981 unsigned char*, Arm_address,
982 section_size_type);
983
56ee5e00
DK
984 protected:
985 // Write out section contents.
986 void
987 do_write(Output_file*);
2e702c99 988
56ee5e00
DK
989 // Return the required alignment.
990 uint64_t
991 do_addralign() const
2fb7225c 992 { return this->prev_addralign_; }
56ee5e00
DK
993
994 // Reset address and file offset.
995 void
2fb7225c
DK
996 do_reset_address_and_file_offset()
997 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 998
2fb7225c
DK
999 // Set final data size.
1000 void
1001 set_final_data_size()
1002 { this->set_data_size(this->current_data_size()); }
2e702c99 1003
56ee5e00 1004 private:
2fb7225c
DK
1005 // Relocate one stub.
1006 void
1007 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1008 Target_arm<big_endian>*, Output_section*,
1009 unsigned char*, Arm_address, section_size_type);
1010
1011 // Unordered map of relocation stubs.
56ee5e00
DK
1012 typedef
1013 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1014 Reloc_stub::Key::equal_to>
1015 Reloc_stub_map;
1016
2fb7225c
DK
1017 // List of Cortex-A8 stubs ordered by addresses of branches being
1018 // fixed up in output.
1019 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1020 // List of Arm V4BX relocation stubs ordered by associated registers.
1021 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1022
56ee5e00
DK
1023 // Owner of this stub table.
1024 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1025 // The relocation stubs.
1026 Reloc_stub_map reloc_stubs_;
d099120c
DK
1027 // Size of reloc stubs.
1028 off_t reloc_stubs_size_;
1029 // Maximum address alignment of reloc stubs.
1030 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1031 // The cortex_a8_stubs.
1032 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1033 // The Arm V4BX relocation stubs.
1034 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1035 // data size of this in the previous pass.
1036 off_t prev_data_size_;
1037 // address alignment of this in the previous pass.
1038 uint64_t prev_addralign_;
56ee5e00
DK
1039};
1040
af2cdeae
DK
1041// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1042// we add to the end of an EXIDX input section that goes into the output.
1043
1044class Arm_exidx_cantunwind : public Output_section_data
1045{
1046 public:
1047 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1048 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1049 { }
1050
1051 // Return the object containing the section pointed by this.
1052 Relobj*
1053 relobj() const
1054 { return this->relobj_; }
1055
1056 // Return the section index of the section pointed by this.
1057 unsigned int
1058 shndx() const
1059 { return this->shndx_; }
1060
1061 protected:
1062 void
1063 do_write(Output_file* of)
1064 {
1065 if (parameters->target().is_big_endian())
1066 this->do_fixed_endian_write<true>(of);
1067 else
1068 this->do_fixed_endian_write<false>(of);
1069 }
1070
aa98ff75
DK
1071 // Write to a map file.
1072 void
1073 do_print_to_mapfile(Mapfile* mapfile) const
1074 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1075
af2cdeae 1076 private:
7296d933 1077 // Implement do_write for a given endianness.
af2cdeae
DK
1078 template<bool big_endian>
1079 void inline
1080 do_fixed_endian_write(Output_file*);
2e702c99 1081
af2cdeae
DK
1082 // The object containing the section pointed by this.
1083 Relobj* relobj_;
1084 // The section index of the section pointed by this.
1085 unsigned int shndx_;
1086};
1087
1088// During EXIDX coverage fix-up, we compact an EXIDX section. The
1089// Offset map is used to map input section offset within the EXIDX section
2e702c99 1090// to the output offset from the start of this EXIDX section.
af2cdeae
DK
1091
1092typedef std::map<section_offset_type, section_offset_type>
1093 Arm_exidx_section_offset_map;
1094
1095// Arm_exidx_merged_section class. This represents an EXIDX input section
1096// with some of its entries merged.
1097
1098class Arm_exidx_merged_section : public Output_relaxed_input_section
1099{
1100 public:
1101 // Constructor for Arm_exidx_merged_section.
1102 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1103 // SECTION_OFFSET_MAP points to a section offset map describing how
1104 // parts of the input section are mapped to output. DELETED_BYTES is
1105 // the number of bytes deleted from the EXIDX input section.
1106 Arm_exidx_merged_section(
1107 const Arm_exidx_input_section& exidx_input_section,
1108 const Arm_exidx_section_offset_map& section_offset_map,
1109 uint32_t deleted_bytes);
1110
f625ae50
DK
1111 // Build output contents.
1112 void
1113 build_contents(const unsigned char*, section_size_type);
1114
af2cdeae
DK
1115 // Return the original EXIDX input section.
1116 const Arm_exidx_input_section&
1117 exidx_input_section() const
1118 { return this->exidx_input_section_; }
1119
1120 // Return the section offset map.
1121 const Arm_exidx_section_offset_map&
1122 section_offset_map() const
1123 { return this->section_offset_map_; }
1124
1125 protected:
1126 // Write merged section into file OF.
1127 void
1128 do_write(Output_file* of);
1129
1130 bool
1131 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1132 section_offset_type*) const;
1133
1134 private:
1135 // Original EXIDX input section.
1136 const Arm_exidx_input_section& exidx_input_section_;
1137 // Section offset map.
1138 const Arm_exidx_section_offset_map& section_offset_map_;
2e702c99 1139 // Merged section contents. We need to keep build the merged section
f625ae50
DK
1140 // and save it here to avoid accessing the original EXIDX section when
1141 // we cannot lock the sections' object.
1142 unsigned char* section_contents_;
af2cdeae
DK
1143};
1144
10ad9fe5
DK
1145// A class to wrap an ordinary input section containing executable code.
1146
1147template<bool big_endian>
1148class Arm_input_section : public Output_relaxed_input_section
1149{
1150 public:
2ea97941
ILT
1151 Arm_input_section(Relobj* relobj, unsigned int shndx)
1152 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1153 original_addralign_(1), original_size_(0), stub_table_(NULL),
1154 original_contents_(NULL)
10ad9fe5
DK
1155 { }
1156
1157 ~Arm_input_section()
f625ae50 1158 { delete[] this->original_contents_; }
10ad9fe5
DK
1159
1160 // Initialize.
1161 void
1162 init();
2e702c99 1163
10ad9fe5
DK
1164 // Whether this is a stub table owner.
1165 bool
1166 is_stub_table_owner() const
1167 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1168
1169 // Return the stub table.
1170 Stub_table<big_endian>*
1171 stub_table() const
1172 { return this->stub_table_; }
1173
1174 // Set the stub_table.
1175 void
2ea97941
ILT
1176 set_stub_table(Stub_table<big_endian>* stub_table)
1177 { this->stub_table_ = stub_table; }
10ad9fe5 1178
07f508a2
DK
1179 // Downcast a base pointer to an Arm_input_section pointer. This is
1180 // not type-safe but we only use Arm_input_section not the base class.
1181 static Arm_input_section<big_endian>*
1182 as_arm_input_section(Output_relaxed_input_section* poris)
1183 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1184
6625d24e
DK
1185 // Return the original size of the section.
1186 uint32_t
1187 original_size() const
1188 { return this->original_size_; }
1189
10ad9fe5
DK
1190 protected:
1191 // Write data to output file.
1192 void
1193 do_write(Output_file*);
1194
1195 // Return required alignment of this.
1196 uint64_t
1197 do_addralign() const
1198 {
1199 if (this->is_stub_table_owner())
1200 return std::max(this->stub_table_->addralign(),
6625d24e 1201 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1202 else
1203 return this->original_addralign_;
1204 }
1205
1206 // Finalize data size.
1207 void
1208 set_final_data_size();
1209
1210 // Reset address and file offset.
1211 void
1212 do_reset_address_and_file_offset();
1213
1214 // Output offset.
1215 bool
2ea97941
ILT
1216 do_output_offset(const Relobj* object, unsigned int shndx,
1217 section_offset_type offset,
2e702c99 1218 section_offset_type* poutput) const
10ad9fe5
DK
1219 {
1220 if ((object == this->relobj())
2ea97941
ILT
1221 && (shndx == this->shndx())
1222 && (offset >= 0)
0439c796
DK
1223 && (offset <=
1224 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1225 {
2ea97941 1226 *poutput = offset;
10ad9fe5
DK
1227 return true;
1228 }
1229 else
1230 return false;
1231 }
1232
1233 private:
1234 // Copying is not allowed.
1235 Arm_input_section(const Arm_input_section&);
1236 Arm_input_section& operator=(const Arm_input_section&);
1237
1238 // Address alignment of the original input section.
6625d24e 1239 uint32_t original_addralign_;
10ad9fe5 1240 // Section size of the original input section.
6625d24e 1241 uint32_t original_size_;
10ad9fe5
DK
1242 // Stub table.
1243 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1244 // Original section contents. We have to make a copy here since the file
1245 // containing the original section may not be locked when we need to access
1246 // the contents.
1247 unsigned char* original_contents_;
10ad9fe5
DK
1248};
1249
80d0d023
DK
1250// Arm_exidx_fixup class. This is used to define a number of methods
1251// and keep states for fixing up EXIDX coverage.
1252
1253class Arm_exidx_fixup
1254{
1255 public:
85fdf906
AH
1256 Arm_exidx_fixup(Output_section* exidx_output_section,
1257 bool merge_exidx_entries = true)
80d0d023
DK
1258 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1259 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1260 section_offset_map_(NULL), first_output_text_section_(NULL),
1261 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1262 { }
1263
1264 ~Arm_exidx_fixup()
1265 { delete this->section_offset_map_; }
1266
f625ae50
DK
1267 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1268 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1269 // number of bytes to be deleted in output. If parts of the input EXIDX
1270 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1271 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1272 // responsible for releasing it.
80d0d023
DK
1273 template<bool big_endian>
1274 uint32_t
1275 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1276 const unsigned char* section_contents,
1277 section_size_type section_size,
80d0d023 1278 Arm_exidx_section_offset_map** psection_offset_map);
2e702c99 1279
80d0d023
DK
1280 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1281 // input section, if there is not one already.
1282 void
1283 add_exidx_cantunwind_as_needed();
1284
546c7457
DK
1285 // Return the output section for the text section which is linked to the
1286 // first exidx input in output.
1287 Output_section*
1288 first_output_text_section() const
1289 { return this->first_output_text_section_; }
1290
80d0d023
DK
1291 private:
1292 // Copying is not allowed.
1293 Arm_exidx_fixup(const Arm_exidx_fixup&);
1294 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1295
1296 // Type of EXIDX unwind entry.
1297 enum Unwind_type
1298 {
1299 // No type.
1300 UT_NONE,
1301 // EXIDX_CANTUNWIND.
1302 UT_EXIDX_CANTUNWIND,
1303 // Inlined entry.
1304 UT_INLINED_ENTRY,
1305 // Normal entry.
1306 UT_NORMAL_ENTRY,
1307 };
1308
1309 // Process an EXIDX entry. We only care about the second word of the
1310 // entry. Return true if the entry can be deleted.
1311 bool
1312 process_exidx_entry(uint32_t second_word);
1313
1314 // Update the current section offset map during EXIDX section fix-up.
1315 // If there is no map, create one. INPUT_OFFSET is the offset of a
1316 // reference point, DELETED_BYTES is the number of deleted by in the
1317 // section so far. If DELETE_ENTRY is true, the reference point and
1318 // all offsets after the previous reference point are discarded.
1319 void
1320 update_offset_map(section_offset_type input_offset,
1321 section_size_type deleted_bytes, bool delete_entry);
1322
1323 // EXIDX output section.
1324 Output_section* exidx_output_section_;
1325 // Unwind type of the last EXIDX entry processed.
1326 Unwind_type last_unwind_type_;
1327 // Last seen inlined EXIDX entry.
1328 uint32_t last_inlined_entry_;
1329 // Last processed EXIDX input section.
2b328d4e 1330 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1331 // Section offset map created in process_exidx_section.
1332 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1333 // Output section for the text section which is linked to the first exidx
1334 // input in output.
1335 Output_section* first_output_text_section_;
85fdf906
AH
1336
1337 bool merge_exidx_entries_;
80d0d023
DK
1338};
1339
07f508a2
DK
1340// Arm output section class. This is defined mainly to add a number of
1341// stub generation methods.
1342
1343template<bool big_endian>
1344class Arm_output_section : public Output_section
1345{
1346 public:
2b328d4e
DK
1347 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1348
c87e4302 1349 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1350 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1351 elfcpp::Elf_Xword flags)
c87e4302
DK
1352 : Output_section(name, type,
1353 (type == elfcpp::SHT_ARM_EXIDX
1354 ? flags | elfcpp::SHF_LINK_ORDER
1355 : flags))
131687b4
DK
1356 {
1357 if (type == elfcpp::SHT_ARM_EXIDX)
1358 this->set_always_keeps_input_sections();
1359 }
07f508a2
DK
1360
1361 ~Arm_output_section()
1362 { }
2e702c99 1363
07f508a2
DK
1364 // Group input sections for stub generation.
1365 void
f625ae50 1366 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1367
1368 // Downcast a base pointer to an Arm_output_section pointer. This is
1369 // not type-safe but we only use Arm_output_section not the base class.
1370 static Arm_output_section<big_endian>*
1371 as_arm_output_section(Output_section* os)
1372 { return static_cast<Arm_output_section<big_endian>*>(os); }
1373
2b328d4e
DK
1374 // Append all input text sections in this into LIST.
1375 void
1376 append_text_sections_to_list(Text_section_list* list);
1377
1378 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1379 // is a list of text input sections sorted in ascending order of their
1380 // output addresses.
1381 void
4a54abbb
DK
1382 fix_exidx_coverage(Layout* layout,
1383 const Text_section_list& sorted_text_section,
85fdf906 1384 Symbol_table* symtab,
f625ae50
DK
1385 bool merge_exidx_entries,
1386 const Task* task);
2b328d4e 1387
131687b4
DK
1388 // Link an EXIDX section into its corresponding text section.
1389 void
1390 set_exidx_section_link();
1391
07f508a2
DK
1392 private:
1393 // For convenience.
1394 typedef Output_section::Input_section Input_section;
1395 typedef Output_section::Input_section_list Input_section_list;
1396
1397 // Create a stub group.
1398 void create_stub_group(Input_section_list::const_iterator,
1399 Input_section_list::const_iterator,
1400 Input_section_list::const_iterator,
1401 Target_arm<big_endian>*,
f625ae50
DK
1402 std::vector<Output_relaxed_input_section*>*,
1403 const Task* task);
07f508a2
DK
1404};
1405
993d07c1
DK
1406// Arm_exidx_input_section class. This represents an EXIDX input section.
1407
1408class Arm_exidx_input_section
1409{
1410 public:
1411 static const section_offset_type invalid_offset =
1412 static_cast<section_offset_type>(-1);
1413
1414 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1415 unsigned int link, uint32_t size,
1416 uint32_t addralign, uint32_t text_size)
993d07c1 1417 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1418 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1419 { }
1420
1421 ~Arm_exidx_input_section()
1422 { }
2e702c99 1423
993d07c1
DK
1424 // Accessors: This is a read-only class.
1425
1426 // Return the object containing this EXIDX input section.
1427 Relobj*
1428 relobj() const
1429 { return this->relobj_; }
1430
1431 // Return the section index of this EXIDX input section.
1432 unsigned int
1433 shndx() const
1434 { return this->shndx_; }
1435
1436 // Return the section index of linked text section in the same object.
1437 unsigned int
1438 link() const
1439 { return this->link_; }
1440
1441 // Return size of the EXIDX input section.
1442 uint32_t
1443 size() const
1444 { return this->size_; }
1445
f625ae50 1446 // Return address alignment of EXIDX input section.
993d07c1
DK
1447 uint32_t
1448 addralign() const
1449 { return this->addralign_; }
1450
f625ae50
DK
1451 // Return size of the associated text input section.
1452 uint32_t
1453 text_size() const
1454 { return this->text_size_; }
1455
131687b4
DK
1456 // Whether there are any errors in the EXIDX input section.
1457 bool
1458 has_errors() const
1459 { return this->has_errors_; }
1460
1461 // Set has-errors flag.
1462 void
1463 set_has_errors()
1464 { this->has_errors_ = true; }
1465
993d07c1
DK
1466 private:
1467 // Object containing this.
1468 Relobj* relobj_;
1469 // Section index of this.
1470 unsigned int shndx_;
1471 // text section linked to this in the same object.
1472 unsigned int link_;
1473 // Size of this. For ARM 32-bit is sufficient.
1474 uint32_t size_;
1475 // Address alignment of this. For ARM 32-bit is sufficient.
1476 uint32_t addralign_;
f625ae50
DK
1477 // Size of associated text section.
1478 uint32_t text_size_;
131687b4
DK
1479 // Whether this has any errors.
1480 bool has_errors_;
993d07c1
DK
1481};
1482
8ffa3667
DK
1483// Arm_relobj class.
1484
1485template<bool big_endian>
6fa2a40b 1486class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1487{
1488 public:
1489 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1490
2ea97941 1491 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
2e702c99 1492 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1493 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1494 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1495 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1496 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1497 output_local_symbol_count_needs_update_(false),
1498 merge_flags_and_attributes_(true)
8ffa3667
DK
1499 { }
1500
1501 ~Arm_relobj()
a0351a69 1502 { delete this->attributes_section_data_; }
2e702c99 1503
8ffa3667
DK
1504 // Return the stub table of the SHNDX-th section if there is one.
1505 Stub_table<big_endian>*
2ea97941 1506 stub_table(unsigned int shndx) const
8ffa3667 1507 {
2ea97941
ILT
1508 gold_assert(shndx < this->stub_tables_.size());
1509 return this->stub_tables_[shndx];
8ffa3667
DK
1510 }
1511
1512 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1513 void
2ea97941 1514 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1515 {
2ea97941
ILT
1516 gold_assert(shndx < this->stub_tables_.size());
1517 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1518 }
1519
1520 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1521 // index. This is only valid after do_count_local_symbol is called.
1522 bool
1523 local_symbol_is_thumb_function(unsigned int r_sym) const
1524 {
1525 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1526 return this->local_symbol_is_thumb_function_[r_sym];
1527 }
2e702c99 1528
8ffa3667
DK
1529 // Scan all relocation sections for stub generation.
1530 void
1531 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1532 const Layout*);
1533
1534 // Convert regular input section with index SHNDX to a relaxed section.
1535 void
2ea97941 1536 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1537 {
1538 // The stubs have relocations and we need to process them after writing
1539 // out the stubs. So relocation now must follow section write.
2b328d4e 1540 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1541 this->set_relocs_must_follow_section_writes();
1542 }
1543
1544 // Downcast a base pointer to an Arm_relobj pointer. This is
1545 // not type-safe but we only use Arm_relobj not the base class.
1546 static Arm_relobj<big_endian>*
2ea97941
ILT
1547 as_arm_relobj(Relobj* relobj)
1548 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1549
d5b40221
DK
1550 // Processor-specific flags in ELF file header. This is valid only after
1551 // reading symbols.
1552 elfcpp::Elf_Word
1553 processor_specific_flags() const
1554 { return this->processor_specific_flags_; }
1555
a0351a69
DK
1556 // Attribute section data This is the contents of the .ARM.attribute section
1557 // if there is one.
1558 const Attributes_section_data*
1559 attributes_section_data() const
1560 { return this->attributes_section_data_; }
1561
20138696
DK
1562 // Mapping symbol location.
1563 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1564
1565 // Functor for STL container.
1566 struct Mapping_symbol_position_less
1567 {
1568 bool
1569 operator()(const Mapping_symbol_position& p1,
1570 const Mapping_symbol_position& p2) const
1571 {
1572 return (p1.first < p2.first
1573 || (p1.first == p2.first && p1.second < p2.second));
1574 }
1575 };
2e702c99 1576
20138696
DK
1577 // We only care about the first character of a mapping symbol, so
1578 // we only store that instead of the whole symbol name.
1579 typedef std::map<Mapping_symbol_position, char,
1580 Mapping_symbol_position_less> Mapping_symbols_info;
1581
2fb7225c
DK
1582 // Whether a section contains any Cortex-A8 workaround.
1583 bool
1584 section_has_cortex_a8_workaround(unsigned int shndx) const
2e702c99 1585 {
2fb7225c
DK
1586 return (this->section_has_cortex_a8_workaround_ != NULL
1587 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1588 }
2e702c99 1589
2fb7225c
DK
1590 // Mark a section that has Cortex-A8 workaround.
1591 void
1592 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1593 {
1594 if (this->section_has_cortex_a8_workaround_ == NULL)
1595 this->section_has_cortex_a8_workaround_ =
1596 new std::vector<bool>(this->shnum(), false);
1597 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1598 }
1599
993d07c1
DK
1600 // Return the EXIDX section of an text section with index SHNDX or NULL
1601 // if the text section has no associated EXIDX section.
1602 const Arm_exidx_input_section*
1603 exidx_input_section_by_link(unsigned int shndx) const
1604 {
1605 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1606 return ((p != this->exidx_section_map_.end()
1607 && p->second->link() == shndx)
1608 ? p->second
1609 : NULL);
1610 }
1611
1612 // Return the EXIDX section with index SHNDX or NULL if there is none.
1613 const Arm_exidx_input_section*
1614 exidx_input_section_by_shndx(unsigned shndx) const
1615 {
1616 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1617 return ((p != this->exidx_section_map_.end()
1618 && p->second->shndx() == shndx)
1619 ? p->second
1620 : NULL);
1621 }
1622
e7eca48c
DK
1623 // Whether output local symbol count needs updating.
1624 bool
1625 output_local_symbol_count_needs_update() const
1626 { return this->output_local_symbol_count_needs_update_; }
1627
1628 // Set output_local_symbol_count_needs_update flag to be true.
1629 void
1630 set_output_local_symbol_count_needs_update()
1631 { this->output_local_symbol_count_needs_update_ = true; }
2e702c99 1632
e7eca48c
DK
1633 // Update output local symbol count at the end of relaxation.
1634 void
1635 update_output_local_symbol_count();
1636
7296d933
DK
1637 // Whether we want to merge processor-specific flags and attributes.
1638 bool
1639 merge_flags_and_attributes() const
1640 { return this->merge_flags_and_attributes_; }
2e702c99 1641
131687b4
DK
1642 // Export list of EXIDX section indices.
1643 void
1644 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1645 {
1646 list->clear();
1647 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1648 p != this->exidx_section_map_.end();
1649 ++p)
1650 {
1651 if (p->second->shndx() == p->first)
1652 list->push_back(p->first);
1653 }
2e702c99 1654 // Sort list to make result independent of implementation of map.
131687b4
DK
1655 std::sort(list->begin(), list->end());
1656 }
1657
8ffa3667
DK
1658 protected:
1659 // Post constructor setup.
1660 void
1661 do_setup()
1662 {
1663 // Call parent's setup method.
6fa2a40b 1664 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1665
1666 // Initialize look-up tables.
1667 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1668 this->stub_tables_.swap(empty_stub_table_list);
1669 }
1670
1671 // Count the local symbols.
1672 void
1673 do_count_local_symbols(Stringpool_template<char>*,
2e702c99 1674 Stringpool_template<char>*);
8ffa3667
DK
1675
1676 void
6fa2a40b
CC
1677 do_relocate_sections(
1678 const Symbol_table* symtab, const Layout* layout,
1679 const unsigned char* pshdrs, Output_file* of,
1680 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1681
d5b40221
DK
1682 // Read the symbol information.
1683 void
1684 do_read_symbols(Read_symbols_data* sd);
1685
99e5bff2
DK
1686 // Process relocs for garbage collection.
1687 void
1688 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1689
8ffa3667 1690 private:
44272192
DK
1691
1692 // Whether a section needs to be scanned for relocation stubs.
1693 bool
1694 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1695 const Relobj::Output_sections&,
ca09d69a 1696 const Symbol_table*, const unsigned char*);
44272192 1697
cf846138
DK
1698 // Whether a section is a scannable text section.
1699 bool
1700 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1701 const Output_section*, const Symbol_table*);
cf846138 1702
44272192
DK
1703 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1704 bool
1705 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1706 unsigned int, Output_section*,
ca09d69a 1707 const Symbol_table*);
44272192
DK
1708
1709 // Scan a section for the Cortex-A8 erratum.
1710 void
1711 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1712 unsigned int, Output_section*,
1713 Target_arm<big_endian>*);
1714
c8761b9a 1715 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1716 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1717 // headers of a relocation section and PSYMS points to the local symbols.
1718 // PSHNDX points to a location storing the text section index if found.
1719 // Return whether we can find the linked section.
1720 bool
1721 find_linked_text_section(const unsigned char* pshdr,
1722 const unsigned char* psyms, unsigned int* pshndx);
1723
1724 //
993d07c1 1725 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1726 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1727 // index of the linked text section.
993d07c1
DK
1728 void
1729 make_exidx_input_section(unsigned int shndx,
c8761b9a 1730 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1731 unsigned int text_shndx,
1732 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1733
cb1be87e
DK
1734 // Return the output address of either a plain input section or a
1735 // relaxed input section. SHNDX is the section index.
1736 Arm_address
1737 simple_input_section_output_address(unsigned int, Output_section*);
1738
8ffa3667 1739 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1740 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1741 Exidx_section_map;
1742
1743 // List of stub tables.
8ffa3667
DK
1744 Stub_table_list stub_tables_;
1745 // Bit vector to tell if a local symbol is a thumb function or not.
1746 // This is only valid after do_count_local_symbol is called.
1747 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1748 // processor-specific flags in ELF file header.
1749 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1750 // Object attributes if there is an .ARM.attributes section or NULL.
1751 Attributes_section_data* attributes_section_data_;
20138696
DK
1752 // Mapping symbols information.
1753 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1754 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1755 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1756 // Map a text section to its associated .ARM.exidx section, if there is one.
1757 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1758 // Whether output local symbol count needs updating.
1759 bool output_local_symbol_count_needs_update_;
7296d933
DK
1760 // Whether we merge processor flags and attributes of this object to
1761 // output.
1762 bool merge_flags_and_attributes_;
d5b40221
DK
1763};
1764
1765// Arm_dynobj class.
1766
1767template<bool big_endian>
1768class Arm_dynobj : public Sized_dynobj<32, big_endian>
1769{
1770 public:
2ea97941 1771 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1772 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1773 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1774 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221 1775 { }
2e702c99 1776
d5b40221 1777 ~Arm_dynobj()
a0351a69 1778 { delete this->attributes_section_data_; }
d5b40221
DK
1779
1780 // Downcast a base pointer to an Arm_relobj pointer. This is
1781 // not type-safe but we only use Arm_relobj not the base class.
1782 static Arm_dynobj<big_endian>*
1783 as_arm_dynobj(Dynobj* dynobj)
1784 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1785
1786 // Processor-specific flags in ELF file header. This is valid only after
1787 // reading symbols.
1788 elfcpp::Elf_Word
1789 processor_specific_flags() const
1790 { return this->processor_specific_flags_; }
1791
a0351a69
DK
1792 // Attributes section data.
1793 const Attributes_section_data*
1794 attributes_section_data() const
1795 { return this->attributes_section_data_; }
1796
d5b40221
DK
1797 protected:
1798 // Read the symbol information.
1799 void
1800 do_read_symbols(Read_symbols_data* sd);
1801
1802 private:
1803 // processor-specific flags in ELF file header.
1804 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1805 // Object attributes if there is an .ARM.attributes section or NULL.
1806 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1807};
1808
e9bbb538
DK
1809// Functor to read reloc addends during stub generation.
1810
1811template<int sh_type, bool big_endian>
1812struct Stub_addend_reader
1813{
1814 // Return the addend for a relocation of a particular type. Depending
1815 // on whether this is a REL or RELA relocation, read the addend from a
1816 // view or from a Reloc object.
1817 elfcpp::Elf_types<32>::Elf_Swxword
1818 operator()(
1819 unsigned int /* r_type */,
1820 const unsigned char* /* view */,
1821 const typename Reloc_types<sh_type,
ebd95253 1822 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1823};
1824
1825// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1826
1827template<bool big_endian>
1828struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1829{
1830 elfcpp::Elf_types<32>::Elf_Swxword
1831 operator()(
1832 unsigned int,
1833 const unsigned char*,
1834 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1835};
1836
1837// Specialized Stub_addend_reader for RELA type relocation sections.
1838// We currently do not handle RELA type relocation sections but it is trivial
1839// to implement the addend reader. This is provided for completeness and to
1840// make it easier to add support for RELA relocation sections in the future.
1841
1842template<bool big_endian>
1843struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1844{
1845 elfcpp::Elf_types<32>::Elf_Swxword
1846 operator()(
1847 unsigned int,
1848 const unsigned char*,
1849 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1850 big_endian>::Reloc& reloc) const
1851 { return reloc.get_r_addend(); }
e9bbb538
DK
1852};
1853
a120bc7f
DK
1854// Cortex_a8_reloc class. We keep record of relocation that may need
1855// the Cortex-A8 erratum workaround.
1856
1857class Cortex_a8_reloc
1858{
1859 public:
1860 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1861 Arm_address destination)
1862 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1863 { }
1864
1865 ~Cortex_a8_reloc()
1866 { }
1867
1868 // Accessors: This is a read-only class.
2e702c99 1869
a120bc7f
DK
1870 // Return the relocation stub associated with this relocation if there is
1871 // one.
1872 const Reloc_stub*
1873 reloc_stub() const
2e702c99
RM
1874 { return this->reloc_stub_; }
1875
a120bc7f
DK
1876 // Return the relocation type.
1877 unsigned int
1878 r_type() const
1879 { return this->r_type_; }
1880
1881 // Return the destination address of the relocation. LSB stores the THUMB
1882 // bit.
1883 Arm_address
1884 destination() const
1885 { return this->destination_; }
1886
1887 private:
1888 // Associated relocation stub if there is one, or NULL.
1889 const Reloc_stub* reloc_stub_;
1890 // Relocation type.
1891 unsigned int r_type_;
1892 // Destination address of this relocation. LSB is used to distinguish
1893 // ARM/THUMB mode.
1894 Arm_address destination_;
1895};
1896
4a54abbb
DK
1897// Arm_output_data_got class. We derive this from Output_data_got to add
1898// extra methods to handle TLS relocations in a static link.
1899
1900template<bool big_endian>
1901class Arm_output_data_got : public Output_data_got<32, big_endian>
1902{
1903 public:
1904 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1905 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1906 { }
1907
1908 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1909 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1910 // applied in a static link.
1911 void
1912 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1913 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1914
1915 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1916 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1917 // relocation that needs to be applied in a static link.
1918 void
1919 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1920 Sized_relobj_file<32, big_endian>* relobj,
1921 unsigned int index)
4a54abbb
DK
1922 {
1923 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1924 index));
1925 }
1926
1927 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1928 // The first one is initialized to be 1, which is the module index for
1929 // the main executable and the second one 0. A reloc of the type
1930 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1931 // be applied by gold. GSYM is a global symbol.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1934
1935 // Same as the above but for a local symbol in OBJECT with INDEX.
1936 void
1937 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1938 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1939 unsigned int index);
1940
1941 protected:
1942 // Write out the GOT table.
1943 void
1944 do_write(Output_file*);
1945
1946 private:
1947 // This class represent dynamic relocations that need to be applied by
1948 // gold because we are using TLS relocations in a static link.
1949 class Static_reloc
1950 {
1951 public:
1952 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1953 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1954 { this->u_.global.symbol = gsym; }
1955
1956 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1957 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1958 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1959 {
1960 this->u_.local.relobj = relobj;
1961 this->u_.local.index = index;
1962 }
1963
1964 // Return the GOT offset.
1965 unsigned int
1966 got_offset() const
1967 { return this->got_offset_; }
1968
1969 // Relocation type.
1970 unsigned int
1971 r_type() const
1972 { return this->r_type_; }
1973
1974 // Whether the symbol is global or not.
1975 bool
1976 symbol_is_global() const
1977 { return this->symbol_is_global_; }
1978
1979 // For a relocation against a global symbol, the global symbol.
1980 Symbol*
1981 symbol() const
1982 {
1983 gold_assert(this->symbol_is_global_);
1984 return this->u_.global.symbol;
1985 }
1986
1987 // For a relocation against a local symbol, the defining object.
6fa2a40b 1988 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1989 relobj() const
1990 {
1991 gold_assert(!this->symbol_is_global_);
1992 return this->u_.local.relobj;
1993 }
1994
1995 // For a relocation against a local symbol, the local symbol index.
1996 unsigned int
1997 index() const
1998 {
1999 gold_assert(!this->symbol_is_global_);
2000 return this->u_.local.index;
2001 }
2002
2003 private:
2004 // GOT offset of the entry to which this relocation is applied.
2005 unsigned int got_offset_;
2006 // Type of relocation.
2007 unsigned int r_type_;
2008 // Whether this relocation is against a global symbol.
2009 bool symbol_is_global_;
2010 // A global or local symbol.
2011 union
2012 {
2013 struct
2014 {
2015 // For a global symbol, the symbol itself.
2016 Symbol* symbol;
2017 } global;
2018 struct
2019 {
2020 // For a local symbol, the object defining object.
6fa2a40b 2021 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2022 // For a local symbol, the symbol index.
2023 unsigned int index;
2024 } local;
2025 } u_;
2026 };
2027
2028 // Symbol table of the output object.
2029 Symbol_table* symbol_table_;
2030 // Layout of the output object.
2031 Layout* layout_;
2032 // Static relocs to be applied to the GOT.
2033 std::vector<Static_reloc> static_relocs_;
2034};
2035
9b547ce6 2036// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2037// bits. The default handling of relocatable relocation cannot process these
2038// relocations. So we have to extend the default code.
2039
2040template<bool big_endian, int sh_type, typename Classify_reloc>
2041class Arm_scan_relocatable_relocs :
2042 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2043{
2044 public:
2045 // Return the strategy to use for a local symbol which is a section
2046 // symbol, given the relocation type.
2047 inline Relocatable_relocs::Reloc_strategy
2048 local_section_strategy(unsigned int r_type, Relobj*)
2049 {
2050 if (sh_type == elfcpp::SHT_RELA)
2051 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2052 else
2053 {
2054 if (r_type == elfcpp::R_ARM_TARGET1
2055 || r_type == elfcpp::R_ARM_TARGET2)
2056 {
2057 const Target_arm<big_endian>* arm_target =
2058 Target_arm<big_endian>::default_target();
2059 r_type = arm_target->get_real_reloc_type(r_type);
2060 }
2061
2062 switch(r_type)
2063 {
2064 // Relocations that write nothing. These exclude R_ARM_TARGET1
2065 // and R_ARM_TARGET2.
2066 case elfcpp::R_ARM_NONE:
2067 case elfcpp::R_ARM_V4BX:
2068 case elfcpp::R_ARM_TLS_GOTDESC:
2069 case elfcpp::R_ARM_TLS_CALL:
2070 case elfcpp::R_ARM_TLS_DESCSEQ:
2071 case elfcpp::R_ARM_THM_TLS_CALL:
2072 case elfcpp::R_ARM_GOTRELAX:
2073 case elfcpp::R_ARM_GNU_VTENTRY:
2074 case elfcpp::R_ARM_GNU_VTINHERIT:
2075 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2076 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2077 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2078 // These should have been converted to something else above.
2079 case elfcpp::R_ARM_TARGET1:
2080 case elfcpp::R_ARM_TARGET2:
2081 gold_unreachable();
2c339f71 2082 // Relocations that write full 32 bits and
2e702c99 2083 // have alignment of 1.
5c388529
DK
2084 case elfcpp::R_ARM_ABS32:
2085 case elfcpp::R_ARM_REL32:
2086 case elfcpp::R_ARM_SBREL32:
2087 case elfcpp::R_ARM_GOTOFF32:
2088 case elfcpp::R_ARM_BASE_PREL:
2089 case elfcpp::R_ARM_GOT_BREL:
2090 case elfcpp::R_ARM_BASE_ABS:
2091 case elfcpp::R_ARM_ABS32_NOI:
2092 case elfcpp::R_ARM_REL32_NOI:
2093 case elfcpp::R_ARM_PLT32_ABS:
2094 case elfcpp::R_ARM_GOT_ABS:
2095 case elfcpp::R_ARM_GOT_PREL:
2096 case elfcpp::R_ARM_TLS_GD32:
2097 case elfcpp::R_ARM_TLS_LDM32:
2098 case elfcpp::R_ARM_TLS_LDO32:
2099 case elfcpp::R_ARM_TLS_IE32:
2100 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2101 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2102 default:
2103 // For all other static relocations, return RELOC_SPECIAL.
2104 return Relocatable_relocs::RELOC_SPECIAL;
2105 }
2106 }
2107 }
2108};
2109
4a657b0d
DK
2110template<bool big_endian>
2111class Target_arm : public Sized_target<32, big_endian>
2112{
2113 public:
2114 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2115 Reloc_section;
2116
2daedcd6
DK
2117 // When were are relocating a stub, we pass this as the relocation number.
2118 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2119
2e702c99
RM
2120 Target_arm(const Target::Target_info* info = &arm_info)
2121 : Sized_target<32, big_endian>(info),
fa89cc82
HS
2122 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2123 rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
f96accdf
DK
2124 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2125 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2126 should_force_pic_veneer_(false),
f96accdf
DK
2127 arm_input_section_map_(), attributes_section_data_(NULL),
2128 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2129 { }
4a657b0d 2130
b569affa
DK
2131 // Whether we force PCI branch veneers.
2132 bool
2133 should_force_pic_veneer() const
2134 { return this->should_force_pic_veneer_; }
2135
2136 // Set PIC veneer flag.
2137 void
2138 set_should_force_pic_veneer(bool value)
2139 { this->should_force_pic_veneer_ = value; }
2e702c99 2140
b569affa
DK
2141 // Whether we use THUMB-2 instructions.
2142 bool
2143 using_thumb2() const
2144 {
a0351a69
DK
2145 Object_attribute* attr =
2146 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2147 int arch = attr->int_value();
2148 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2149 }
2150
2151 // Whether we use THUMB/THUMB-2 instructions only.
2152 bool
2153 using_thumb_only() const
2154 {
a0351a69
DK
2155 Object_attribute* attr =
2156 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2157
2158 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2159 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2160 return true;
a0351a69
DK
2161 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2162 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2163 return false;
2164 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2165 return attr->int_value() == 'M';
b569affa
DK
2166 }
2167
d204b6e9
DK
2168 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2169 bool
2170 may_use_arm_nop() const
2171 {
a0351a69
DK
2172 Object_attribute* attr =
2173 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2174 int arch = attr->int_value();
2175 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2176 || arch == elfcpp::TAG_CPU_ARCH_V6K
2177 || arch == elfcpp::TAG_CPU_ARCH_V7
2178 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2179 }
2180
51938283
DK
2181 // Whether we have THUMB-2 NOP.W instruction.
2182 bool
2183 may_use_thumb2_nop() const
2184 {
a0351a69
DK
2185 Object_attribute* attr =
2186 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2187 int arch = attr->int_value();
2188 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2189 || arch == elfcpp::TAG_CPU_ARCH_V7
2190 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2191 }
cd6eab1c
ILT
2192
2193 // Whether we have v4T interworking instructions available.
2194 bool
2195 may_use_v4t_interworking() const
2196 {
2197 Object_attribute* attr =
2198 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2199 int arch = attr->int_value();
2200 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2201 && arch != elfcpp::TAG_CPU_ARCH_V4);
2202 }
2e702c99 2203
cd6eab1c
ILT
2204 // Whether we have v5T interworking instructions available.
2205 bool
2206 may_use_v5t_interworking() const
2207 {
2208 Object_attribute* attr =
2209 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2210 int arch = attr->int_value();
a8e2273b
ILT
2211 if (parameters->options().fix_arm1176())
2212 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2213 || arch == elfcpp::TAG_CPU_ARCH_V7
2214 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2215 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2216 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2217 else
2218 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2219 && arch != elfcpp::TAG_CPU_ARCH_V4
2220 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2221 }
2e702c99
RM
2222
2223 // Process the relocations to determine unreferenced sections for
4a657b0d
DK
2224 // garbage collection.
2225 void
ad0f2072 2226 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2227 Layout* layout,
6fa2a40b 2228 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2229 unsigned int data_shndx,
2230 unsigned int sh_type,
2231 const unsigned char* prelocs,
2232 size_t reloc_count,
2233 Output_section* output_section,
2234 bool needs_special_offset_handling,
2235 size_t local_symbol_count,
2236 const unsigned char* plocal_symbols);
2237
2238 // Scan the relocations to look for symbol adjustments.
2239 void
ad0f2072 2240 scan_relocs(Symbol_table* symtab,
4a657b0d 2241 Layout* layout,
6fa2a40b 2242 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2243 unsigned int data_shndx,
2244 unsigned int sh_type,
2245 const unsigned char* prelocs,
2246 size_t reloc_count,
2247 Output_section* output_section,
2248 bool needs_special_offset_handling,
2249 size_t local_symbol_count,
2250 const unsigned char* plocal_symbols);
2251
2252 // Finalize the sections.
2253 void
f59f41f3 2254 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2255
94cdfcff 2256 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2257 // treatment.
2258 uint64_t
2259 do_dynsym_value(const Symbol*) const;
2260
fa89cc82
HS
2261 // Return the plt address for globals. Since we have irelative plt entries,
2262 // address calculation is not as straightforward as plt_address + plt_offset.
2263 uint64_t
2264 do_plt_address_for_global(const Symbol* gsym) const
2265 { return this->plt_section()->address_for_global(gsym); }
2266
2267 // Return the plt address for locals. Since we have irelative plt entries,
2268 // address calculation is not as straightforward as plt_address + plt_offset.
2269 uint64_t
2270 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2271 { return this->plt_section()->address_for_local(relobj, symndx); }
2272
4a657b0d
DK
2273 // Relocate a section.
2274 void
2275 relocate_section(const Relocate_info<32, big_endian>*,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 unsigned char* view,
ebabffbd 2282 Arm_address view_address,
364c7fa5
ILT
2283 section_size_type view_size,
2284 const Reloc_symbol_changes*);
4a657b0d
DK
2285
2286 // Scan the relocs during a relocatable link.
2287 void
ad0f2072 2288 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2289 Layout* layout,
6fa2a40b 2290 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2291 unsigned int data_shndx,
2292 unsigned int sh_type,
2293 const unsigned char* prelocs,
2294 size_t reloc_count,
2295 Output_section* output_section,
2296 bool needs_special_offset_handling,
2297 size_t local_symbol_count,
2298 const unsigned char* plocal_symbols,
2299 Relocatable_relocs*);
2300
7404fe1b 2301 // Emit relocations for a section.
4a657b0d 2302 void
7404fe1b
AM
2303 relocate_relocs(const Relocate_info<32, big_endian>*,
2304 unsigned int sh_type,
2305 const unsigned char* prelocs,
2306 size_t reloc_count,
2307 Output_section* output_section,
62fe925a
RM
2308 typename elfcpp::Elf_types<32>::Elf_Off
2309 offset_in_output_section,
7404fe1b
AM
2310 const Relocatable_relocs*,
2311 unsigned char* view,
2312 Arm_address view_address,
2313 section_size_type view_size,
2314 unsigned char* reloc_view,
2315 section_size_type reloc_view_size);
4a657b0d 2316
5c388529
DK
2317 // Perform target-specific processing in a relocatable link. This is
2318 // only used if we use the relocation strategy RELOC_SPECIAL.
2319 void
2320 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2321 unsigned int sh_type,
2322 const unsigned char* preloc_in,
2323 size_t relnum,
2324 Output_section* output_section,
62fe925a
RM
2325 typename elfcpp::Elf_types<32>::Elf_Off
2326 offset_in_output_section,
5c388529
DK
2327 unsigned char* view,
2328 typename elfcpp::Elf_types<32>::Elf_Addr
2329 view_address,
2330 section_size_type view_size,
2331 unsigned char* preloc_out);
2e702c99 2332
4a657b0d
DK
2333 // Return whether SYM is defined by the ABI.
2334 bool
2c54b4f4 2335 do_is_defined_by_abi(const Symbol* sym) const
4a657b0d
DK
2336 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2337
c8761b9a
DK
2338 // Return whether there is a GOT section.
2339 bool
2340 has_got_section() const
2341 { return this->got_ != NULL; }
2342
94cdfcff
DK
2343 // Return the size of the GOT section.
2344 section_size_type
0e70b911 2345 got_size() const
94cdfcff
DK
2346 {
2347 gold_assert(this->got_ != NULL);
2348 return this->got_->data_size();
2349 }
2350
0e70b911
CC
2351 // Return the number of entries in the GOT.
2352 unsigned int
2353 got_entry_count() const
2354 {
2355 if (!this->has_got_section())
2356 return 0;
2357 return this->got_size() / 4;
2358 }
2359
2360 // Return the number of entries in the PLT.
2361 unsigned int
2362 plt_entry_count() const;
2363
2364 // Return the offset of the first non-reserved PLT entry.
2365 unsigned int
2366 first_plt_entry_offset() const;
2367
2368 // Return the size of each PLT entry.
2369 unsigned int
2370 plt_entry_size() const;
2371
fa89cc82
HS
2372 // Get the section to use for IRELATIVE relocations, create it if necessary.
2373 Reloc_section*
2374 rel_irelative_section(Layout*);
2375
4a657b0d 2376 // Map platform-specific reloc types
a6d1ef57 2377 static unsigned int
ca09d69a 2378 get_real_reloc_type(unsigned int r_type);
4a657b0d 2379
55da9579
DK
2380 //
2381 // Methods to support stub-generations.
2382 //
2e702c99 2383
55da9579
DK
2384 // Return the stub factory
2385 const Stub_factory&
2386 stub_factory() const
2387 { return this->stub_factory_; }
2388
2389 // Make a new Arm_input_section object.
2390 Arm_input_section<big_endian>*
2391 new_arm_input_section(Relobj*, unsigned int);
2392
2393 // Find the Arm_input_section object corresponding to the SHNDX-th input
2394 // section of RELOBJ.
2395 Arm_input_section<big_endian>*
2ea97941 2396 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2397
2398 // Make a new Stub_table
2399 Stub_table<big_endian>*
2400 new_stub_table(Arm_input_section<big_endian>*);
2401
eb44217c
DK
2402 // Scan a section for stub generation.
2403 void
2404 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2405 const unsigned char*, size_t, Output_section*,
2406 bool, const unsigned char*, Arm_address,
2407 section_size_type);
2408
2e702c99 2409 // Relocate a stub.
43d12afe 2410 void
2fb7225c 2411 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2412 Output_section*, unsigned char*, Arm_address,
2413 section_size_type);
2e702c99 2414
b569affa 2415 // Get the default ARM target.
43d12afe 2416 static Target_arm<big_endian>*
b569affa
DK
2417 default_target()
2418 {
2419 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2420 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2421 return static_cast<Target_arm<big_endian>*>(
2422 parameters->sized_target<32, big_endian>());
b569affa
DK
2423 }
2424
20138696
DK
2425 // Whether NAME belongs to a mapping symbol.
2426 static bool
2427 is_mapping_symbol_name(const char* name)
2428 {
2429 return (name
2430 && name[0] == '$'
2431 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2432 && (name[2] == '\0' || name[2] == '.'));
2433 }
2434
a120bc7f
DK
2435 // Whether we work around the Cortex-A8 erratum.
2436 bool
2437 fix_cortex_a8() const
2438 { return this->fix_cortex_a8_; }
2439
85fdf906
AH
2440 // Whether we merge exidx entries in debuginfo.
2441 bool
2442 merge_exidx_entries() const
2443 { return parameters->options().merge_exidx_entries(); }
2444
a2162063
ILT
2445 // Whether we fix R_ARM_V4BX relocation.
2446 // 0 - do not fix
2447 // 1 - replace with MOV instruction (armv4 target)
2448 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2449 General_options::Fix_v4bx
a2162063 2450 fix_v4bx() const
9b2fd367 2451 { return parameters->options().fix_v4bx(); }
a2162063 2452
44272192
DK
2453 // Scan a span of THUMB code section for Cortex-A8 erratum.
2454 void
2455 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2456 section_size_type, section_size_type,
2457 const unsigned char*, Arm_address);
2458
41263c05
DK
2459 // Apply Cortex-A8 workaround to a branch.
2460 void
2461 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2462 unsigned char*, Arm_address);
2463
d5b40221 2464 protected:
2e702c99
RM
2465 // Make the PLT-generator object.
2466 Output_data_plt_arm<big_endian>*
fa89cc82
HS
2467 make_data_plt(Layout* layout,
2468 Arm_output_data_got<big_endian>* got,
2469 Output_data_space* got_plt,
2470 Output_data_space* got_irelative)
2471 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }
2e702c99 2472
eb44217c
DK
2473 // Make an ELF object.
2474 Object*
2475 do_make_elf_object(const std::string&, Input_file*, off_t,
2476 const elfcpp::Ehdr<32, big_endian>& ehdr);
2477
2478 Object*
2479 do_make_elf_object(const std::string&, Input_file*, off_t,
2480 const elfcpp::Ehdr<32, !big_endian>&)
2481 { gold_unreachable(); }
2482
2483 Object*
2484 do_make_elf_object(const std::string&, Input_file*, off_t,
2485 const elfcpp::Ehdr<64, false>&)
2486 { gold_unreachable(); }
2487
2488 Object*
2489 do_make_elf_object(const std::string&, Input_file*, off_t,
2490 const elfcpp::Ehdr<64, true>&)
2491 { gold_unreachable(); }
2492
2493 // Make an output section.
2494 Output_section*
2495 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2496 elfcpp::Elf_Xword flags)
2497 { return new Arm_output_section<big_endian>(name, type, flags); }
2498
d5b40221 2499 void
3bfcb652 2500 do_adjust_elf_header(unsigned char* view, int len);
d5b40221 2501
eb44217c
DK
2502 // We only need to generate stubs, and hence perform relaxation if we are
2503 // not doing relocatable linking.
2504 bool
2505 do_may_relax() const
2506 { return !parameters->options().relocatable(); }
2507
2508 bool
f625ae50 2509 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2510
a0351a69
DK
2511 // Determine whether an object attribute tag takes an integer, a
2512 // string or both.
2513 int
2514 do_attribute_arg_type(int tag) const;
2515
2516 // Reorder tags during output.
2517 int
2518 do_attributes_order(int num) const;
2519
0d31c79d
DK
2520 // This is called when the target is selected as the default.
2521 void
2522 do_select_as_default_target()
2523 {
2524 // No locking is required since there should only be one default target.
2525 // We cannot have both the big-endian and little-endian ARM targets
2526 // as the default.
2527 gold_assert(arm_reloc_property_table == NULL);
2528 arm_reloc_property_table = new Arm_reloc_property_table();
2529 }
2530
b3ce541e
ILT
2531 // Virtual function which is set to return true by a target if
2532 // it can use relocation types to determine if a function's
2533 // pointer is taken.
2534 virtual bool
2535 do_can_check_for_function_pointers() const
2536 { return true; }
2537
2538 // Whether a section called SECTION_NAME may have function pointers to
2539 // sections not eligible for safe ICF folding.
2540 virtual bool
2541 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2542 {
2543 return (!is_prefix_of(".ARM.exidx", section_name)
2544 && !is_prefix_of(".ARM.extab", section_name)
2545 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2546 }
2e702c99 2547
647f1574
DK
2548 virtual void
2549 do_define_standard_symbols(Symbol_table*, Layout*);
2550
2e702c99 2551 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
2552 do_make_data_plt(Layout* layout,
2553 Arm_output_data_got<big_endian>* got,
2554 Output_data_space* got_plt,
2555 Output_data_space* got_irelative)
2e702c99 2556 {
fa89cc82
HS
2557 gold_assert(got_plt != NULL && got_irelative != NULL);
2558 return new Output_data_plt_arm_standard<big_endian>(
2559 layout, got, got_plt, got_irelative);
2e702c99
RM
2560 }
2561
4a657b0d
DK
2562 private:
2563 // The class which scans relocations.
2564 class Scan
2565 {
2566 public:
2567 Scan()
bec53400 2568 : issued_non_pic_error_(false)
4a657b0d
DK
2569 { }
2570
95a2c8d6
RS
2571 static inline int
2572 get_reference_flags(unsigned int r_type);
2573
4a657b0d 2574 inline void
ad0f2072 2575 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2576 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2577 unsigned int data_shndx,
2578 Output_section* output_section,
2579 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
bfdfa4cd
AM
2580 const elfcpp::Sym<32, big_endian>& lsym,
2581 bool is_discarded);
4a657b0d
DK
2582
2583 inline void
ad0f2072 2584 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2585 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2586 unsigned int data_shndx,
2587 Output_section* output_section,
2588 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2589 Symbol* gsym);
2590
21bb3914
ST
2591 inline bool
2592 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2593 Sized_relobj_file<32, big_endian>* ,
2594 unsigned int ,
2595 Output_section* ,
2596 const elfcpp::Rel<32, big_endian>& ,
21bb3914 2597 unsigned int ,
2e702c99 2598 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2599
2600 inline bool
2601 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2e702c99
RM
2602 Sized_relobj_file<32, big_endian>* ,
2603 unsigned int ,
2604 Output_section* ,
2605 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2606 unsigned int , Symbol*);
21bb3914 2607
4a657b0d
DK
2608 private:
2609 static void
6fa2a40b 2610 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2611 unsigned int r_type);
2612
2613 static void
6fa2a40b 2614 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2615 unsigned int r_type, Symbol*);
bec53400
DK
2616
2617 void
2618 check_non_pic(Relobj*, unsigned int r_type);
2619
2620 // Almost identical to Symbol::needs_plt_entry except that it also
2621 // handles STT_ARM_TFUNC.
2622 static bool
2623 symbol_needs_plt_entry(const Symbol* sym)
2624 {
2625 // An undefined symbol from an executable does not need a PLT entry.
2626 if (sym->is_undefined() && !parameters->options().shared())
2627 return false;
2628
fa89cc82
HS
2629 if (sym->type() == elfcpp::STT_GNU_IFUNC)
2630 return true;
2631
bec53400
DK
2632 return (!parameters->doing_static_link()
2633 && (sym->type() == elfcpp::STT_FUNC
2634 || sym->type() == elfcpp::STT_ARM_TFUNC)
2635 && (sym->is_from_dynobj()
2636 || sym->is_undefined()
2637 || sym->is_preemptible()));
2638 }
2639
8a75a161
DK
2640 inline bool
2641 possible_function_pointer_reloc(unsigned int r_type);
2642
fa89cc82
HS
2643 // Whether a plt entry is needed for ifunc.
2644 bool
2645 reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
2646 unsigned int r_type);
2647
bec53400
DK
2648 // Whether we have issued an error about a non-PIC compilation.
2649 bool issued_non_pic_error_;
4a657b0d
DK
2650 };
2651
2652 // The class which implements relocation.
2653 class Relocate
2654 {
2655 public:
2656 Relocate()
2657 { }
2658
2659 ~Relocate()
2660 { }
2661
bec53400
DK
2662 // Return whether the static relocation needs to be applied.
2663 inline bool
2664 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2665 unsigned int r_type,
bec53400
DK
2666 bool is_32bit,
2667 Output_section* output_section);
2668
4a657b0d
DK
2669 // Do a relocation. Return false if the caller should not issue
2670 // any warnings about this relocation.
2671 inline bool
2672 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2673 Output_section*, size_t relnum,
2674 const elfcpp::Rel<32, big_endian>&,
2675 unsigned int r_type, const Sized_symbol<32>*,
2676 const Symbol_value<32>*,
ebabffbd 2677 unsigned char*, Arm_address,
4a657b0d 2678 section_size_type);
c121c671
DK
2679
2680 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2681 // reloc. This means the relocation type accesses a symbol not via
2682 // GOT or PLT.
c121c671 2683 static inline bool
ca09d69a 2684 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2685 {
2686 switch (r_type)
2687 {
f4e5969c
DK
2688 // These relocation types reference GOT or PLT entries explicitly.
2689 case elfcpp::R_ARM_GOT_BREL:
2690 case elfcpp::R_ARM_GOT_ABS:
2691 case elfcpp::R_ARM_GOT_PREL:
2692 case elfcpp::R_ARM_GOT_BREL12:
2693 case elfcpp::R_ARM_PLT32_ABS:
2694 case elfcpp::R_ARM_TLS_GD32:
2695 case elfcpp::R_ARM_TLS_LDM32:
2696 case elfcpp::R_ARM_TLS_IE32:
2697 case elfcpp::R_ARM_TLS_IE12GP:
2698
2699 // These relocate types may use PLT entries.
c121c671 2700 case elfcpp::R_ARM_CALL:
f4e5969c 2701 case elfcpp::R_ARM_THM_CALL:
c121c671 2702 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2703 case elfcpp::R_ARM_THM_JUMP24:
2704 case elfcpp::R_ARM_THM_JUMP19:
2705 case elfcpp::R_ARM_PLT32:
2706 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2707 case elfcpp::R_ARM_PREL31:
2708 case elfcpp::R_ARM_SBREL31:
c121c671 2709 return false;
f4e5969c
DK
2710
2711 default:
2712 return true;
c121c671
DK
2713 }
2714 }
f96accdf
DK
2715
2716 private:
2717 // Do a TLS relocation.
2718 inline typename Arm_relocate_functions<big_endian>::Status
2719 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2e702c99 2720 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
f96accdf
DK
2721 const Sized_symbol<32>*, const Symbol_value<32>*,
2722 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2723 section_size_type);
2724
4a657b0d
DK
2725 };
2726
2727 // A class which returns the size required for a relocation type,
2728 // used while scanning relocs during a relocatable link.
2729 class Relocatable_size_for_reloc
2730 {
2731 public:
2732 unsigned int
2733 get_size_for_reloc(unsigned int, Relobj*);
2734 };
2735
f96accdf
DK
2736 // Adjust TLS relocation type based on the options and whether this
2737 // is a local symbol.
2738 static tls::Tls_optimization
2739 optimize_tls_reloc(bool is_final, int r_type);
2740
94cdfcff 2741 // Get the GOT section, creating it if necessary.
4a54abbb 2742 Arm_output_data_got<big_endian>*
94cdfcff
DK
2743 got_section(Symbol_table*, Layout*);
2744
2745 // Get the GOT PLT section.
2746 Output_data_space*
2747 got_plt_section() const
2748 {
2749 gold_assert(this->got_plt_ != NULL);
2750 return this->got_plt_;
2751 }
2752
fa89cc82
HS
2753 // Create the PLT section.
2754 void
2755 make_plt_section(Symbol_table* symtab, Layout* layout);
2756
94cdfcff
DK
2757 // Create a PLT entry for a global symbol.
2758 void
2759 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2760
fa89cc82
HS
2761 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
2762 void
2763 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
2764 Sized_relobj_file<32, big_endian>* relobj,
2765 unsigned int local_sym_index);
2766
f96accdf
DK
2767 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2768 void
2769 define_tls_base_symbol(Symbol_table*, Layout*);
2770
2771 // Create a GOT entry for the TLS module index.
2772 unsigned int
2773 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2774 Sized_relobj_file<32, big_endian>* object);
f96accdf 2775
94cdfcff
DK
2776 // Get the PLT section.
2777 const Output_data_plt_arm<big_endian>*
2778 plt_section() const
2779 {
2780 gold_assert(this->plt_ != NULL);
2781 return this->plt_;
2782 }
2783
2784 // Get the dynamic reloc section, creating it if necessary.
2785 Reloc_section*
2786 rel_dyn_section(Layout*);
2787
f96accdf
DK
2788 // Get the section to use for TLS_DESC relocations.
2789 Reloc_section*
2790 rel_tls_desc_section(Layout*) const;
2791
94cdfcff
DK
2792 // Return true if the symbol may need a COPY relocation.
2793 // References from an executable object to non-function symbols
2794 // defined in a dynamic object may need a COPY relocation.
2795 bool
2796 may_need_copy_reloc(Symbol* gsym)
2797 {
966d4097
DK
2798 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2799 && gsym->may_need_copy_reloc());
94cdfcff
DK
2800 }
2801
2802 // Add a potential copy relocation.
2803 void
2804 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2805 Sized_relobj_file<32, big_endian>* object,
2ea97941 2806 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2807 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2808 {
2809 this->copy_relocs_.copy_reloc(symtab, layout,
2810 symtab->get_sized_symbol<32>(sym),
2ea97941 2811 object, shndx, output_section, reloc,
94cdfcff
DK
2812 this->rel_dyn_section(layout));
2813 }
2814
d5b40221
DK
2815 // Whether two EABI versions are compatible.
2816 static bool
2817 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2818
2819 // Merge processor-specific flags from input object and those in the ELF
2820 // header of the output.
2821 void
2822 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2823
a0351a69
DK
2824 // Get the secondary compatible architecture.
2825 static int
2826 get_secondary_compatible_arch(const Attributes_section_data*);
2827
2828 // Set the secondary compatible architecture.
2829 static void
2830 set_secondary_compatible_arch(Attributes_section_data*, int);
2831
2832 static int
2833 tag_cpu_arch_combine(const char*, int, int*, int, int);
2834
2835 // Helper to print AEABI enum tag value.
2836 static std::string
2837 aeabi_enum_name(unsigned int);
2838
2839 // Return string value for TAG_CPU_name.
2840 static std::string
2841 tag_cpu_name_value(unsigned int);
2842
679af368
ILT
2843 // Query attributes object to see if integer divide instructions may be
2844 // present in an object.
2845 static bool
2846 attributes_accept_div(int arch, int profile,
2847 const Object_attribute* div_attr);
2848
2849 // Query attributes object to see if integer divide instructions are
2850 // forbidden to be in the object. This is not the inverse of
2851 // attributes_accept_div.
2852 static bool
2853 attributes_forbid_div(const Object_attribute* div_attr);
2854
a0351a69
DK
2855 // Merge object attributes from input object and those in the output.
2856 void
2857 merge_object_attributes(const char*, const Attributes_section_data*);
2858
2859 // Helper to get an AEABI object attribute
2860 Object_attribute*
2861 get_aeabi_object_attribute(int tag) const
2862 {
2863 Attributes_section_data* pasd = this->attributes_section_data_;
2864 gold_assert(pasd != NULL);
2865 Object_attribute* attr =
2866 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2867 gold_assert(attr != NULL);
2868 return attr;
2869 }
2870
eb44217c
DK
2871 //
2872 // Methods to support stub-generations.
2873 //
d5b40221 2874
eb44217c
DK
2875 // Group input sections for stub generation.
2876 void
f625ae50 2877 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2878
eb44217c
DK
2879 // Scan a relocation for stub generation.
2880 void
2881 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2882 const Sized_symbol<32>*, unsigned int,
2883 const Symbol_value<32>*,
2884 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2885
eb44217c
DK
2886 // Scan a relocation section for stub.
2887 template<int sh_type>
2888 void
2889 scan_reloc_section_for_stubs(
2890 const Relocate_info<32, big_endian>* relinfo,
2891 const unsigned char* prelocs,
2892 size_t reloc_count,
2893 Output_section* output_section,
2894 bool needs_special_offset_handling,
2895 const unsigned char* view,
2896 elfcpp::Elf_types<32>::Elf_Addr view_address,
2897 section_size_type);
d5b40221 2898
2b328d4e
DK
2899 // Fix .ARM.exidx section coverage.
2900 void
131687b4 2901 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2902 Arm_output_section<big_endian>*, Symbol_table*,
2903 const Task*);
2b328d4e
DK
2904
2905 // Functors for STL set.
2906 struct output_section_address_less_than
2907 {
2908 bool
2909 operator()(const Output_section* s1, const Output_section* s2) const
2910 { return s1->address() < s2->address(); }
2911 };
2912
4a657b0d
DK
2913 // Information about this specific target which we pass to the
2914 // general Target structure.
2915 static const Target::Target_info arm_info;
94cdfcff
DK
2916
2917 // The types of GOT entries needed for this platform.
0e70b911
CC
2918 // These values are exposed to the ABI in an incremental link.
2919 // Do not renumber existing values without changing the version
2920 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2921 enum Got_type
2922 {
f96accdf
DK
2923 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2924 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2925 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2926 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2927 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2928 };
2929
55da9579
DK
2930 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2931
2932 // Map input section to Arm_input_section.
5ac169d4 2933 typedef Unordered_map<Section_id,
55da9579 2934 Arm_input_section<big_endian>*,
5ac169d4 2935 Section_id_hash>
55da9579 2936 Arm_input_section_map;
2e702c99 2937
a120bc7f
DK
2938 // Map output addresses to relocs for Cortex-A8 erratum.
2939 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2940 Cortex_a8_relocs_info;
2941
94cdfcff 2942 // The GOT section.
4a54abbb 2943 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2944 // The PLT section.
2945 Output_data_plt_arm<big_endian>* plt_;
2946 // The GOT PLT section.
2947 Output_data_space* got_plt_;
fa89cc82
HS
2948 // The GOT section for IRELATIVE relocations.
2949 Output_data_space* got_irelative_;
94cdfcff
DK
2950 // The dynamic reloc section.
2951 Reloc_section* rel_dyn_;
fa89cc82
HS
2952 // The section to use for IRELATIVE relocs.
2953 Reloc_section* rel_irelative_;
94cdfcff
DK
2954 // Relocs saved to avoid a COPY reloc.
2955 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
f96accdf
DK
2956 // Offset of the GOT entry for the TLS module index.
2957 unsigned int got_mod_index_offset_;
2958 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2959 bool tls_base_symbol_defined_;
55da9579
DK
2960 // Vector of Stub_tables created.
2961 Stub_table_list stub_tables_;
2962 // Stub factory.
2963 const Stub_factory &stub_factory_;
b569affa
DK
2964 // Whether we force PIC branch veneers.
2965 bool should_force_pic_veneer_;
eb44217c
DK
2966 // Map for locating Arm_input_sections.
2967 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2968 // Attributes section data in output.
2969 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2970 // Whether we want to fix code for Cortex-A8 erratum.
2971 bool fix_cortex_a8_;
2972 // Map addresses to relocs for Cortex-A8 erratum.
2973 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2974};
2975
2976template<bool big_endian>
2977const Target::Target_info Target_arm<big_endian>::arm_info =
2978{
2979 32, // size
2980 big_endian, // is_big_endian
2981 elfcpp::EM_ARM, // machine_code
2982 false, // has_make_symbol
2983 false, // has_resolve
2984 false, // has_code_fill
2985 true, // is_default_stack_executable
b3ce541e 2986 false, // can_icf_inline_merge_sections
4a657b0d
DK
2987 '\0', // wrap_char
2988 "/usr/lib/libc.so.1", // dynamic_linker
2989 0x8000, // default_text_segment_address
2990 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08 2991 0x1000, // common_pagesize (overridable by -z common-page-size)
2e702c99
RM
2992 false, // isolate_execinstr
2993 0, // rosegment_gap
8a5e3e08
ILT
2994 elfcpp::SHN_UNDEF, // small_common_shndx
2995 elfcpp::SHN_UNDEF, // large_common_shndx
2996 0, // small_common_section_flags
05a352e6
DK
2997 0, // large_common_section_flags
2998 ".ARM.attributes", // attributes_section
a67858e0 2999 "aeabi", // attributes_vendor
8d9743bd
MK
3000 "_start", // entry_symbol_name
3001 32, // hash_entry_size
4a657b0d
DK
3002};
3003
c121c671
DK
3004// Arm relocate functions class
3005//
3006
3007template<bool big_endian>
3008class Arm_relocate_functions : public Relocate_functions<32, big_endian>
3009{
3010 public:
3011 typedef enum
3012 {
3013 STATUS_OKAY, // No error during relocation.
9b547ce6 3014 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
3015 STATUS_BAD_RELOC // Relocation cannot be applied.
3016 } Status;
3017
3018 private:
3019 typedef Relocate_functions<32, big_endian> Base;
3020 typedef Arm_relocate_functions<big_endian> This;
3021
fd3c5f0b
ILT
3022 // Encoding of imm16 argument for movt and movw ARM instructions
3023 // from ARM ARM:
2e702c99 3024 //
fd3c5f0b
ILT
3025 // imm16 := imm4 | imm12
3026 //
2e702c99 3027 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3028 // +-------+---------------+-------+-------+-----------------------+
3029 // | | |imm4 | |imm12 |
3030 // +-------+---------------+-------+-------+-----------------------+
3031
3032 // Extract the relocation addend from VAL based on the ARM
3033 // instruction encoding described above.
3034 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3035 extract_arm_movw_movt_addend(
3036 typename elfcpp::Swap<32, big_endian>::Valtype val)
3037 {
3038 // According to the Elf ABI for ARM Architecture the immediate
3039 // field is sign-extended to form the addend.
bef2b434 3040 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
3041 }
3042
3043 // Insert X into VAL based on the ARM instruction encoding described
3044 // above.
3045 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3046 insert_val_arm_movw_movt(
3047 typename elfcpp::Swap<32, big_endian>::Valtype val,
3048 typename elfcpp::Swap<32, big_endian>::Valtype x)
3049 {
3050 val &= 0xfff0f000;
3051 val |= x & 0x0fff;
3052 val |= (x & 0xf000) << 4;
3053 return val;
3054 }
3055
3056 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3057 // from ARM ARM:
2e702c99 3058 //
fd3c5f0b
ILT
3059 // imm16 := imm4 | i | imm3 | imm8
3060 //
2e702c99 3061 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
fd3c5f0b
ILT
3062 // +---------+-+-----------+-------++-+-----+-------+---------------+
3063 // | |i| |imm4 || |imm3 | |imm8 |
3064 // +---------+-+-----------+-------++-+-----+-------+---------------+
3065
3066 // Extract the relocation addend from VAL based on the Thumb2
3067 // instruction encoding described above.
3068 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3069 extract_thumb_movw_movt_addend(
3070 typename elfcpp::Swap<32, big_endian>::Valtype val)
3071 {
3072 // According to the Elf ABI for ARM Architecture the immediate
3073 // field is sign-extended to form the addend.
bef2b434
ILT
3074 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
3075 | ((val >> 15) & 0x0800)
3076 | ((val >> 4) & 0x0700)
3077 | (val & 0x00ff));
fd3c5f0b
ILT
3078 }
3079
3080 // Insert X into VAL based on the Thumb2 instruction encoding
3081 // described above.
3082 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3083 insert_val_thumb_movw_movt(
3084 typename elfcpp::Swap<32, big_endian>::Valtype val,
3085 typename elfcpp::Swap<32, big_endian>::Valtype x)
3086 {
3087 val &= 0xfbf08f00;
3088 val |= (x & 0xf000) << 4;
3089 val |= (x & 0x0800) << 15;
3090 val |= (x & 0x0700) << 4;
3091 val |= (x & 0x00ff);
3092 return val;
3093 }
3094
b10d2873
ILT
3095 // Calculate the smallest constant Kn for the specified residual.
3096 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3097 static uint32_t
3098 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3099 {
3100 int32_t msb;
3101
3102 if (residual == 0)
3103 return 0;
3104 // Determine the most significant bit in the residual and
3105 // align the resulting value to a 2-bit boundary.
3106 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3107 ;
3108 // The desired shift is now (msb - 6), or zero, whichever
3109 // is the greater.
3110 return (((msb - 6) < 0) ? 0 : (msb - 6));
3111 }
3112
3113 // Calculate the final residual for the specified group index.
3114 // If the passed group index is less than zero, the method will return
3115 // the value of the specified residual without any change.
3116 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3117 static typename elfcpp::Swap<32, big_endian>::Valtype
3118 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3119 const int group)
3120 {
3121 for (int n = 0; n <= group; n++)
3122 {
3123 // Calculate which part of the value to mask.
3124 uint32_t shift = calc_grp_kn(residual);
3125 // Calculate the residual for the next time around.
3126 residual &= ~(residual & (0xff << shift));
3127 }
3128
3129 return residual;
3130 }
3131
3132 // Calculate the value of Gn for the specified group index.
3133 // We return it in the form of an encoded constant-and-rotation.
3134 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3135 static typename elfcpp::Swap<32, big_endian>::Valtype
3136 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3137 const int group)
3138 {
3139 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3140 uint32_t shift = 0;
3141
3142 for (int n = 0; n <= group; n++)
3143 {
3144 // Calculate which part of the value to mask.
3145 shift = calc_grp_kn(residual);
3146 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3147 gn = residual & (0xff << shift);
3148 // Calculate the residual for the next time around.
3149 residual &= ~gn;
3150 }
3151 // Return Gn in the form of an encoded constant-and-rotation.
3152 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3153 }
3154
1521477a 3155 public:
d204b6e9
DK
3156 // Handle ARM long branches.
3157 static typename This::Status
3158 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3159 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3160 const Arm_relobj<big_endian>*, unsigned int,
3161 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3162
51938283
DK
3163 // Handle THUMB long branches.
3164 static typename This::Status
3165 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3166 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3167 const Arm_relobj<big_endian>*, unsigned int,
3168 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3169
5e445df6 3170
089d69dc
DK
3171 // Return the branch offset of a 32-bit THUMB branch.
3172 static inline int32_t
3173 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3174 {
3175 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3176 // involving the J1 and J2 bits.
3177 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3178 uint32_t upper = upper_insn & 0x3ffU;
3179 uint32_t lower = lower_insn & 0x7ffU;
3180 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3181 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3182 uint32_t i1 = j1 ^ s ? 0 : 1;
3183 uint32_t i2 = j2 ^ s ? 0 : 1;
3184
bef2b434
ILT
3185 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3186 | (upper << 12) | (lower << 1));
089d69dc
DK
3187 }
3188
3189 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3190 // UPPER_INSN is the original upper instruction of the branch. Caller is
3191 // responsible for overflow checking and BLX offset adjustment.
3192 static inline uint16_t
3193 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3194 {
3195 uint32_t s = offset < 0 ? 1 : 0;
3196 uint32_t bits = static_cast<uint32_t>(offset);
3197 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3198 }
3199
3200 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3201 // LOWER_INSN is the original lower instruction of the branch. Caller is
3202 // responsible for overflow checking and BLX offset adjustment.
3203 static inline uint16_t
3204 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3205 {
3206 uint32_t s = offset < 0 ? 1 : 0;
3207 uint32_t bits = static_cast<uint32_t>(offset);
3208 return ((lower_insn & ~0x2fffU)
2e702c99
RM
3209 | ((((bits >> 23) & 1) ^ !s) << 13)
3210 | ((((bits >> 22) & 1) ^ !s) << 11)
3211 | ((bits >> 1) & 0x7ffU));
089d69dc
DK
3212 }
3213
3214 // Return the branch offset of a 32-bit THUMB conditional branch.
3215 static inline int32_t
3216 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3217 {
3218 uint32_t s = (upper_insn & 0x0400U) >> 10;
3219 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3220 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3221 uint32_t lower = (lower_insn & 0x07ffU);
3222 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3223
bef2b434 3224 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3225 }
3226
3227 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3228 // instruction. UPPER_INSN is the original upper instruction of the branch.
3229 // Caller is responsible for overflow checking.
3230 static inline uint16_t
3231 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3232 {
3233 uint32_t s = offset < 0 ? 1 : 0;
3234 uint32_t bits = static_cast<uint32_t>(offset);
3235 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3236 }
3237
3238 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3239 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3240 // The caller is responsible for overflow checking.
089d69dc
DK
3241 static inline uint16_t
3242 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3243 {
3244 uint32_t bits = static_cast<uint32_t>(offset);
3245 uint32_t j2 = (bits & 0x00080000U) >> 19;
3246 uint32_t j1 = (bits & 0x00040000U) >> 18;
3247 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3248
3249 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3250 }
3251
5e445df6
ILT
3252 // R_ARM_ABS8: S + A
3253 static inline typename This::Status
ca09d69a 3254 abs8(unsigned char* view,
6fa2a40b 3255 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3256 const Symbol_value<32>* psymval)
5e445df6
ILT
3257 {
3258 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3259 Valtype* wv = reinterpret_cast<Valtype*>(view);
3260 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3261 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3262 Arm_address x = psymval->value(object, addend);
bef2b434 3263 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3264 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3265
3266 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3267 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3268 ? This::STATUS_OVERFLOW
3269 : This::STATUS_OKAY);
3270 }
3271
be8fcb75
ILT
3272 // R_ARM_THM_ABS5: S + A
3273 static inline typename This::Status
ca09d69a 3274 thm_abs5(unsigned char* view,
6fa2a40b 3275 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3276 const Symbol_value<32>* psymval)
3277 {
3278 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3280 Valtype* wv = reinterpret_cast<Valtype*>(view);
3281 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3282 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3283 Reltype x = psymval->value(object, addend);
bef2b434 3284 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3285 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3286 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3287 ? This::STATUS_OVERFLOW
3288 : This::STATUS_OKAY);
3289 }
3290
3291 // R_ARM_ABS12: S + A
3292 static inline typename This::Status
ca09d69a 3293 abs12(unsigned char* view,
6fa2a40b 3294 const Sized_relobj_file<32, big_endian>* object,
51938283 3295 const Symbol_value<32>* psymval)
be8fcb75
ILT
3296 {
3297 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3298 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3299 Valtype* wv = reinterpret_cast<Valtype*>(view);
3300 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3301 Reltype addend = val & 0x0fffU;
2daedcd6 3302 Reltype x = psymval->value(object, addend);
bef2b434 3303 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3304 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3305 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3306 ? This::STATUS_OVERFLOW
3307 : This::STATUS_OKAY);
3308 }
3309
3310 // R_ARM_ABS16: S + A
3311 static inline typename This::Status
ca09d69a 3312 abs16(unsigned char* view,
6fa2a40b 3313 const Sized_relobj_file<32, big_endian>* object,
51938283 3314 const Symbol_value<32>* psymval)
be8fcb75 3315 {
f6cccc2c 3316 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
f6cccc2c 3317 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3318 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3319 Arm_address x = psymval->value(object, addend);
bef2b434 3320 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3321 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3322
3323 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3324 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3325 ? This::STATUS_OVERFLOW
3326 : This::STATUS_OKAY);
3327 }
3328
c121c671
DK
3329 // R_ARM_ABS32: (S + A) | T
3330 static inline typename This::Status
ca09d69a 3331 abs32(unsigned char* view,
6fa2a40b 3332 const Sized_relobj_file<32, big_endian>* object,
c121c671 3333 const Symbol_value<32>* psymval,
2daedcd6 3334 Arm_address thumb_bit)
c121c671 3335 {
f6cccc2c
DK
3336 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3337 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3338 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3339 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3340 return This::STATUS_OKAY;
3341 }
3342
3343 // R_ARM_REL32: (S + A) | T - P
3344 static inline typename This::Status
ca09d69a 3345 rel32(unsigned char* view,
6fa2a40b 3346 const Sized_relobj_file<32, big_endian>* object,
c121c671 3347 const Symbol_value<32>* psymval,
ebabffbd 3348 Arm_address address,
2daedcd6 3349 Arm_address thumb_bit)
c121c671 3350 {
f6cccc2c
DK
3351 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3352 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3353 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3354 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3355 return This::STATUS_OKAY;
3356 }
3357
089d69dc
DK
3358 // R_ARM_THM_JUMP24: (S + A) | T - P
3359 static typename This::Status
ca09d69a 3360 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3361 const Symbol_value<32>* psymval, Arm_address address,
3362 Arm_address thumb_bit);
3363
800d0f56
ILT
3364 // R_ARM_THM_JUMP6: S + A – P
3365 static inline typename This::Status
ca09d69a 3366 thm_jump6(unsigned char* view,
6fa2a40b 3367 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3368 const Symbol_value<32>* psymval,
3369 Arm_address address)
3370 {
3371 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3372 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3373 Valtype* wv = reinterpret_cast<Valtype*>(view);
3374 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3375 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3376 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3377 Reltype x = (psymval->value(object, addend) - address);
3378 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3379 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3380 // CZB does only forward jumps.
3381 return ((x > 0x007e)
3382 ? This::STATUS_OVERFLOW
3383 : This::STATUS_OKAY);
3384 }
3385
3386 // R_ARM_THM_JUMP8: S + A – P
3387 static inline typename This::Status
ca09d69a 3388 thm_jump8(unsigned char* view,
6fa2a40b 3389 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3390 const Symbol_value<32>* psymval,
3391 Arm_address address)
3392 {
3393 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3394 Valtype* wv = reinterpret_cast<Valtype*>(view);
3395 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3396 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3397 int32_t x = (psymval->value(object, addend) - address);
3398 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
2e702c99 3399 | ((x & 0x01fe) >> 1)));
57eb9b50 3400 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3401 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3402 ? This::STATUS_OVERFLOW
3403 : This::STATUS_OKAY);
3404 }
3405
3406 // R_ARM_THM_JUMP11: S + A – P
3407 static inline typename This::Status
ca09d69a 3408 thm_jump11(unsigned char* view,
6fa2a40b 3409 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3410 const Symbol_value<32>* psymval,
3411 Arm_address address)
3412 {
3413 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3414 Valtype* wv = reinterpret_cast<Valtype*>(view);
3415 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3416 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3417 int32_t x = (psymval->value(object, addend) - address);
3418 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
2e702c99 3419 | ((x & 0x0ffe) >> 1)));
57eb9b50 3420 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3421 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3422 ? This::STATUS_OVERFLOW
3423 : This::STATUS_OKAY);
3424 }
3425
c121c671
DK
3426 // R_ARM_BASE_PREL: B(S) + A - P
3427 static inline typename This::Status
3428 base_prel(unsigned char* view,
ebabffbd
DK
3429 Arm_address origin,
3430 Arm_address address)
c121c671
DK
3431 {
3432 Base::rel32(view, origin - address);
3433 return STATUS_OKAY;
3434 }
3435
be8fcb75
ILT
3436 // R_ARM_BASE_ABS: B(S) + A
3437 static inline typename This::Status
3438 base_abs(unsigned char* view,
f4e5969c 3439 Arm_address origin)
be8fcb75
ILT
3440 {
3441 Base::rel32(view, origin);
3442 return STATUS_OKAY;
3443 }
3444
c121c671
DK
3445 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3446 static inline typename This::Status
3447 got_brel(unsigned char* view,
3448 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3449 {
3450 Base::rel32(view, got_offset);
3451 return This::STATUS_OKAY;
3452 }
3453
f4e5969c 3454 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3455 static inline typename This::Status
ca09d69a 3456 got_prel(unsigned char* view,
f4e5969c 3457 Arm_address got_entry,
ebabffbd 3458 Arm_address address)
7f5309a5 3459 {
f4e5969c 3460 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3461 return This::STATUS_OKAY;
3462 }
3463
c121c671
DK
3464 // R_ARM_PREL: (S + A) | T - P
3465 static inline typename This::Status
ca09d69a 3466 prel31(unsigned char* view,
6fa2a40b 3467 const Sized_relobj_file<32, big_endian>* object,
c121c671 3468 const Symbol_value<32>* psymval,
ebabffbd 3469 Arm_address address,
2daedcd6 3470 Arm_address thumb_bit)
c121c671 3471 {
f6cccc2c
DK
3472 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3473 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3474 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3475 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3476 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3477 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3478 return (Bits<31>::has_overflow32(x)
3479 ? This::STATUS_OVERFLOW
3480 : This::STATUS_OKAY);
c121c671 3481 }
fd3c5f0b 3482
5c57f1be 3483 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3484 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3485 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3486 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3487 static inline typename This::Status
5c57f1be 3488 movw(unsigned char* view,
6fa2a40b 3489 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3490 const Symbol_value<32>* psymval,
3491 Arm_address relative_address_base,
3492 Arm_address thumb_bit,
3493 bool check_overflow)
02961d7e
ILT
3494 {
3495 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3496 Valtype* wv = reinterpret_cast<Valtype*>(view);
3497 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3498 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3499 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3500 - relative_address_base);
02961d7e
ILT
3501 val = This::insert_val_arm_movw_movt(val, x);
3502 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3503 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3504 ? This::STATUS_OVERFLOW
3505 : This::STATUS_OKAY);
02961d7e
ILT
3506 }
3507
5c57f1be 3508 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3509 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3510 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3511 static inline typename This::Status
5c57f1be 3512 movt(unsigned char* view,
6fa2a40b 3513 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3514 const Symbol_value<32>* psymval,
3515 Arm_address relative_address_base)
c2a122b6
ILT
3516 {
3517 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3518 Valtype* wv = reinterpret_cast<Valtype*>(view);
3519 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3520 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3521 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3522 val = This::insert_val_arm_movw_movt(val, x);
3523 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3524 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3525 return This::STATUS_OKAY;
3526 }
3527
5c57f1be 3528 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3529 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3530 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3531 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3532 static inline typename This::Status
ca09d69a 3533 thm_movw(unsigned char* view,
6fa2a40b 3534 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3535 const Symbol_value<32>* psymval,
3536 Arm_address relative_address_base,
3537 Arm_address thumb_bit,
3538 bool check_overflow)
02961d7e
ILT
3539 {
3540 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3541 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3542 Valtype* wv = reinterpret_cast<Valtype*>(view);
3543 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3544 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3545 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3546 Reltype x =
3547 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3548 val = This::insert_val_thumb_movw_movt(val, x);
3549 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3550 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3551 return ((check_overflow && Bits<16>::has_overflow32(x))
2e702c99 3552 ? This::STATUS_OVERFLOW
5c57f1be 3553 : This::STATUS_OKAY);
02961d7e
ILT
3554 }
3555
5c57f1be 3556 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3557 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3558 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3559 static inline typename This::Status
5c57f1be 3560 thm_movt(unsigned char* view,
6fa2a40b 3561 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3562 const Symbol_value<32>* psymval,
3563 Arm_address relative_address_base)
c2a122b6
ILT
3564 {
3565 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3566 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3567 Valtype* wv = reinterpret_cast<Valtype*>(view);
3568 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3569 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3570 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3571 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3572 val = This::insert_val_thumb_movw_movt(val, x);
3573 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3574 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3575 return This::STATUS_OKAY;
3576 }
a2162063 3577
11b861d5
DK
3578 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3579 static inline typename This::Status
3580 thm_alu11(unsigned char* view,
6fa2a40b 3581 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3582 const Symbol_value<32>* psymval,
3583 Arm_address address,
3584 Arm_address thumb_bit)
3585 {
3586 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3587 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3588 Valtype* wv = reinterpret_cast<Valtype*>(view);
3589 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3590 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3591
3592 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3593 // -----------------------------------------------------------------------
3594 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3595 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3596 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3597 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3598 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3599 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3600
3601 // Determine a sign for the addend.
3602 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3603 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3604 // Thumb2 addend encoding:
3605 // imm12 := i | imm3 | imm8
3606 int32_t addend = (insn & 0xff)
3607 | ((insn & 0x00007000) >> 4)
3608 | ((insn & 0x04000000) >> 15);
3609 // Apply a sign to the added.
3610 addend *= sign;
3611
3612 int32_t x = (psymval->value(object, addend) | thumb_bit)
3613 - (address & 0xfffffffc);
3614 Reltype val = abs(x);
3615 // Mask out the value and a distinct part of the ADD/SUB opcode
3616 // (bits 7:5 of opword).
3617 insn = (insn & 0xfb0f8f00)
3618 | (val & 0xff)
3619 | ((val & 0x700) << 4)
3620 | ((val & 0x800) << 15);
3621 // Set the opcode according to whether the value to go in the
3622 // place is negative.
3623 if (x < 0)
3624 insn |= 0x00a00000;
3625
3626 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3627 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3628 return ((val > 0xfff) ?
2e702c99 3629 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3630 }
3631
3632 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3633 static inline typename This::Status
3634 thm_pc8(unsigned char* view,
6fa2a40b 3635 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3636 const Symbol_value<32>* psymval,
3637 Arm_address address)
3638 {
3639 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3640 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3641 Valtype* wv = reinterpret_cast<Valtype*>(view);
3642 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3643 Reltype addend = ((insn & 0x00ff) << 2);
3644 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3645 Reltype val = abs(x);
3646 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3647
3648 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3649 return ((val > 0x03fc)
3650 ? This::STATUS_OVERFLOW
3651 : This::STATUS_OKAY);
3652 }
3653
3654 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3655 static inline typename This::Status
3656 thm_pc12(unsigned char* view,
6fa2a40b 3657 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3658 const Symbol_value<32>* psymval,
3659 Arm_address address)
3660 {
3661 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3662 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3663 Valtype* wv = reinterpret_cast<Valtype*>(view);
3664 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3665 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3666 // Determine a sign for the addend (positive if the U bit is 1).
3667 const int sign = (insn & 0x00800000) ? 1 : -1;
3668 int32_t addend = (insn & 0xfff);
3669 // Apply a sign to the added.
3670 addend *= sign;
3671
3672 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3673 Reltype val = abs(x);
3674 // Mask out and apply the value and the U bit.
3675 insn = (insn & 0xff7ff000) | (val & 0xfff);
3676 // Set the U bit according to whether the value to go in the
3677 // place is positive.
3678 if (x >= 0)
3679 insn |= 0x00800000;
3680
3681 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3682 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3683 return ((val > 0xfff) ?
2e702c99 3684 This::STATUS_OVERFLOW : This::STATUS_OKAY);
11b861d5
DK
3685 }
3686
a2162063
ILT
3687 // R_ARM_V4BX
3688 static inline typename This::Status
3689 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3690 unsigned char* view,
a2162063
ILT
3691 const Arm_relobj<big_endian>* object,
3692 const Arm_address address,
3693 const bool is_interworking)
3694 {
3695
3696 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3697 Valtype* wv = reinterpret_cast<Valtype*>(view);
3698 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3699
3700 // Ensure that we have a BX instruction.
3701 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3702 const uint32_t reg = (val & 0xf);
3703 if (is_interworking && reg != 0xf)
3704 {
3705 Stub_table<big_endian>* stub_table =
3706 object->stub_table(relinfo->data_shndx);
3707 gold_assert(stub_table != NULL);
3708
3709 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3710 gold_assert(stub != NULL);
3711
3712 int32_t veneer_address =
3713 stub_table->address() + stub->offset() - 8 - address;
3714 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3715 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3716 // Replace with a branch to veneer (B <addr>)
3717 val = (val & 0xf0000000) | 0x0a000000
3718 | ((veneer_address >> 2) & 0x00ffffff);
3719 }
3720 else
3721 {
3722 // Preserve Rm (lowest four bits) and the condition code
3723 // (highest four bits). Other bits encode MOV PC,Rm.
3724 val = (val & 0xf000000f) | 0x01a0f000;
3725 }
3726 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3727 return This::STATUS_OKAY;
3728 }
b10d2873
ILT
3729
3730 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3731 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3732 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3733 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3734 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3735 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3736 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3737 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3738 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3739 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3740 static inline typename This::Status
3741 arm_grp_alu(unsigned char* view,
6fa2a40b 3742 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3743 const Symbol_value<32>* psymval,
3744 const int group,
3745 Arm_address address,
3746 Arm_address thumb_bit,
3747 bool check_overflow)
3748 {
5c57f1be 3749 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3750 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3751 Valtype* wv = reinterpret_cast<Valtype*>(view);
3752 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3753
3754 // ALU group relocations are allowed only for the ADD/SUB instructions.
3755 // (0x00800000 - ADD, 0x00400000 - SUB)
3756 const Valtype opcode = insn & 0x01e00000;
3757 if (opcode != 0x00800000 && opcode != 0x00400000)
3758 return This::STATUS_BAD_RELOC;
3759
3760 // Determine a sign for the addend.
3761 const int sign = (opcode == 0x00800000) ? 1 : -1;
3762 // shifter = rotate_imm * 2
3763 const uint32_t shifter = (insn & 0xf00) >> 7;
3764 // Initial addend value.
3765 int32_t addend = insn & 0xff;
3766 // Rotate addend right by shifter.
3767 addend = (addend >> shifter) | (addend << (32 - shifter));
3768 // Apply a sign to the added.
3769 addend *= sign;
3770
3771 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3772 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3773 // Check for overflow if required
3774 if (check_overflow
3775 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3776 return This::STATUS_OVERFLOW;
3777
3778 // Mask out the value and the ADD/SUB part of the opcode; take care
3779 // not to destroy the S bit.
3780 insn &= 0xff1ff000;
3781 // Set the opcode according to whether the value to go in the
3782 // place is negative.
3783 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3784 // Encode the offset (encoded Gn).
3785 insn |= gn;
3786
3787 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3788 return This::STATUS_OKAY;
3789 }
3790
3791 // R_ARM_LDR_PC_G0: S + A - P
3792 // R_ARM_LDR_PC_G1: S + A - P
3793 // R_ARM_LDR_PC_G2: S + A - P
3794 // R_ARM_LDR_SB_G0: S + A - B(S)
3795 // R_ARM_LDR_SB_G1: S + A - B(S)
3796 // R_ARM_LDR_SB_G2: S + A - B(S)
3797 static inline typename This::Status
3798 arm_grp_ldr(unsigned char* view,
6fa2a40b 3799 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3800 const Symbol_value<32>* psymval,
3801 const int group,
3802 Arm_address address)
3803 {
5c57f1be 3804 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3805 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3806 Valtype* wv = reinterpret_cast<Valtype*>(view);
3807 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3808
3809 const int sign = (insn & 0x00800000) ? 1 : -1;
3810 int32_t addend = (insn & 0xfff) * sign;
3811 int32_t x = (psymval->value(object, addend) - address);
3812 // Calculate the relevant G(n-1) value to obtain this stage residual.
3813 Valtype residual =
3814 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3815 if (residual >= 0x1000)
3816 return This::STATUS_OVERFLOW;
3817
3818 // Mask out the value and U bit.
3819 insn &= 0xff7ff000;
3820 // Set the U bit for non-negative values.
3821 if (x >= 0)
3822 insn |= 0x00800000;
3823 insn |= residual;
3824
3825 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3826 return This::STATUS_OKAY;
3827 }
3828
3829 // R_ARM_LDRS_PC_G0: S + A - P
3830 // R_ARM_LDRS_PC_G1: S + A - P
3831 // R_ARM_LDRS_PC_G2: S + A - P
3832 // R_ARM_LDRS_SB_G0: S + A - B(S)
3833 // R_ARM_LDRS_SB_G1: S + A - B(S)
3834 // R_ARM_LDRS_SB_G2: S + A - B(S)
3835 static inline typename This::Status
3836 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3837 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3838 const Symbol_value<32>* psymval,
3839 const int group,
3840 Arm_address address)
3841 {
5c57f1be 3842 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3843 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3844 Valtype* wv = reinterpret_cast<Valtype*>(view);
3845 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3846
3847 const int sign = (insn & 0x00800000) ? 1 : -1;
3848 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3849 int32_t x = (psymval->value(object, addend) - address);
3850 // Calculate the relevant G(n-1) value to obtain this stage residual.
3851 Valtype residual =
3852 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3853 if (residual >= 0x100)
3854 return This::STATUS_OVERFLOW;
3855
3856 // Mask out the value and U bit.
3857 insn &= 0xff7ff0f0;
3858 // Set the U bit for non-negative values.
3859 if (x >= 0)
3860 insn |= 0x00800000;
3861 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3862
3863 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3864 return This::STATUS_OKAY;
3865 }
3866
3867 // R_ARM_LDC_PC_G0: S + A - P
3868 // R_ARM_LDC_PC_G1: S + A - P
3869 // R_ARM_LDC_PC_G2: S + A - P
3870 // R_ARM_LDC_SB_G0: S + A - B(S)
3871 // R_ARM_LDC_SB_G1: S + A - B(S)
3872 // R_ARM_LDC_SB_G2: S + A - B(S)
3873 static inline typename This::Status
3874 arm_grp_ldc(unsigned char* view,
6fa2a40b 3875 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3876 const Symbol_value<32>* psymval,
3877 const int group,
3878 Arm_address address)
3879 {
5c57f1be 3880 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3881 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3882 Valtype* wv = reinterpret_cast<Valtype*>(view);
3883 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3884
3885 const int sign = (insn & 0x00800000) ? 1 : -1;
3886 int32_t addend = ((insn & 0xff) << 2) * sign;
3887 int32_t x = (psymval->value(object, addend) - address);
3888 // Calculate the relevant G(n-1) value to obtain this stage residual.
3889 Valtype residual =
3890 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3891 if ((residual & 0x3) != 0 || residual >= 0x400)
3892 return This::STATUS_OVERFLOW;
3893
3894 // Mask out the value and U bit.
3895 insn &= 0xff7fff00;
3896 // Set the U bit for non-negative values.
3897 if (x >= 0)
3898 insn |= 0x00800000;
3899 insn |= (residual >> 2);
3900
3901 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3902 return This::STATUS_OKAY;
3903 }
c121c671
DK
3904};
3905
d204b6e9
DK
3906// Relocate ARM long branches. This handles relocation types
3907// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3908// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3909// undefined and we do not use PLT in this relocation. In such a case,
3910// the branch is converted into an NOP.
3911
3912template<bool big_endian>
3913typename Arm_relocate_functions<big_endian>::Status
3914Arm_relocate_functions<big_endian>::arm_branch_common(
3915 unsigned int r_type,
3916 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3917 unsigned char* view,
d204b6e9
DK
3918 const Sized_symbol<32>* gsym,
3919 const Arm_relobj<big_endian>* object,
3920 unsigned int r_sym,
3921 const Symbol_value<32>* psymval,
3922 Arm_address address,
3923 Arm_address thumb_bit,
3924 bool is_weakly_undefined_without_plt)
3925{
3926 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3927 Valtype* wv = reinterpret_cast<Valtype*>(view);
3928 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2e702c99 3929
d204b6e9 3930 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2e702c99 3931 && ((val & 0x0f000000UL) == 0x0a000000UL);
d204b6e9
DK
3932 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3933 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3934 && ((val & 0x0f000000UL) == 0x0b000000UL);
3935 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3936 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3937
3938 // Check that the instruction is valid.
3939 if (r_type == elfcpp::R_ARM_CALL)
3940 {
3941 if (!insn_is_uncond_bl && !insn_is_blx)
3942 return This::STATUS_BAD_RELOC;
3943 }
3944 else if (r_type == elfcpp::R_ARM_JUMP24)
3945 {
3946 if (!insn_is_b && !insn_is_cond_bl)
3947 return This::STATUS_BAD_RELOC;
3948 }
3949 else if (r_type == elfcpp::R_ARM_PLT32)
3950 {
3951 if (!insn_is_any_branch)
3952 return This::STATUS_BAD_RELOC;
3953 }
3954 else if (r_type == elfcpp::R_ARM_XPC25)
3955 {
3956 // FIXME: AAELF document IH0044C does not say much about it other
3957 // than it being obsolete.
3958 if (!insn_is_any_branch)
3959 return This::STATUS_BAD_RELOC;
3960 }
3961 else
3962 gold_unreachable();
3963
3964 // A branch to an undefined weak symbol is turned into a jump to
3965 // the next instruction unless a PLT entry will be created.
3966 // Do the same for local undefined symbols.
3967 // The jump to the next instruction is optimized as a NOP depending
3968 // on the architecture.
3969 const Target_arm<big_endian>* arm_target =
3970 Target_arm<big_endian>::default_target();
3971 if (is_weakly_undefined_without_plt)
3972 {
5c388529 3973 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3974 Valtype cond = val & 0xf0000000U;
3975 if (arm_target->may_use_arm_nop())
3976 val = cond | 0x0320f000;
3977 else
3978 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3979 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3980 return This::STATUS_OKAY;
3981 }
2e702c99 3982
bef2b434 3983 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3984 Valtype branch_target = psymval->value(object, addend);
3985 int32_t branch_offset = branch_target - address;
3986
3987 // We need a stub if the branch offset is too large or if we need
3988 // to switch mode.
cd6eab1c 3989 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3990 Reloc_stub* stub = NULL;
5c388529
DK
3991
3992 if (!parameters->options().relocatable()
bef2b434 3993 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3994 || ((thumb_bit != 0)
3995 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3996 {
2a2b6d42
DK
3997 Valtype unadjusted_branch_target = psymval->value(object, 0);
3998
d204b6e9 3999 Stub_type stub_type =
2a2b6d42
DK
4000 Reloc_stub::stub_type_for_reloc(r_type, address,
4001 unadjusted_branch_target,
d204b6e9
DK
4002 (thumb_bit != 0));
4003 if (stub_type != arm_stub_none)
4004 {
2ea97941 4005 Stub_table<big_endian>* stub_table =
d204b6e9 4006 object->stub_table(relinfo->data_shndx);
2ea97941 4007 gold_assert(stub_table != NULL);
d204b6e9
DK
4008
4009 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4010 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
4011 gold_assert(stub != NULL);
4012 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4013 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 4014 branch_offset = branch_target - address;
bef2b434 4015 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
4016 }
4017 }
4018
4019 // At this point, if we still need to switch mode, the instruction
4020 // must either be a BLX or a BL that can be converted to a BLX.
4021 if (thumb_bit != 0)
4022 {
4023 // Turn BL to BLX.
4024 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4025 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4026 }
4027
bef2b434 4028 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 4029 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
4030 return (Bits<26>::has_overflow32(branch_offset)
4031 ? This::STATUS_OVERFLOW
4032 : This::STATUS_OKAY);
d204b6e9
DK
4033}
4034
51938283
DK
4035// Relocate THUMB long branches. This handles relocation types
4036// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4037// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4038// undefined and we do not use PLT in this relocation. In such a case,
4039// the branch is converted into an NOP.
4040
4041template<bool big_endian>
4042typename Arm_relocate_functions<big_endian>::Status
4043Arm_relocate_functions<big_endian>::thumb_branch_common(
4044 unsigned int r_type,
4045 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4046 unsigned char* view,
51938283
DK
4047 const Sized_symbol<32>* gsym,
4048 const Arm_relobj<big_endian>* object,
4049 unsigned int r_sym,
4050 const Symbol_value<32>* psymval,
4051 Arm_address address,
4052 Arm_address thumb_bit,
4053 bool is_weakly_undefined_without_plt)
4054{
4055 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4056 Valtype* wv = reinterpret_cast<Valtype*>(view);
4057 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4058 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4059
4060 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4061 // into account.
4062 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4063 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2e702c99 4064
51938283
DK
4065 // Check that the instruction is valid.
4066 if (r_type == elfcpp::R_ARM_THM_CALL)
4067 {
4068 if (!is_bl_insn && !is_blx_insn)
4069 return This::STATUS_BAD_RELOC;
4070 }
4071 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4072 {
4073 // This cannot be a BLX.
4074 if (!is_bl_insn)
4075 return This::STATUS_BAD_RELOC;
4076 }
4077 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4078 {
4079 // Check for Thumb to Thumb call.
4080 if (!is_blx_insn)
4081 return This::STATUS_BAD_RELOC;
4082 if (thumb_bit != 0)
4083 {
4084 gold_warning(_("%s: Thumb BLX instruction targets "
4085 "thumb function '%s'."),
4086 object->name().c_str(),
2e702c99 4087 (gsym ? gsym->name() : "(local)"));
51938283
DK
4088 // Convert BLX to BL.
4089 lower_insn |= 0x1000U;
4090 }
4091 }
4092 else
4093 gold_unreachable();
4094
4095 // A branch to an undefined weak symbol is turned into a jump to
4096 // the next instruction unless a PLT entry will be created.
4097 // The jump to the next instruction is optimized as a NOP.W for
4098 // Thumb-2 enabled architectures.
4099 const Target_arm<big_endian>* arm_target =
4100 Target_arm<big_endian>::default_target();
4101 if (is_weakly_undefined_without_plt)
4102 {
5c388529 4103 gold_assert(!parameters->options().relocatable());
51938283
DK
4104 if (arm_target->may_use_thumb2_nop())
4105 {
4106 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4107 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4108 }
4109 else
4110 {
4111 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4112 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4113 }
4114 return This::STATUS_OKAY;
4115 }
2e702c99 4116
089d69dc 4117 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4118 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4119
4120 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4121 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4122 if (thumb_bit == 0 && may_use_blx)
bef2b434 4123 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4124
51938283
DK
4125 int32_t branch_offset = branch_target - address;
4126
4127 // We need a stub if the branch offset is too large or if we need
4128 // to switch mode.
51938283 4129 bool thumb2 = arm_target->using_thumb2();
5c388529 4130 if (!parameters->options().relocatable()
bef2b434
ILT
4131 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4132 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4133 || ((thumb_bit == 0)
4134 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4135 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4136 {
2a2b6d42
DK
4137 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4138
51938283 4139 Stub_type stub_type =
2a2b6d42
DK
4140 Reloc_stub::stub_type_for_reloc(r_type, address,
4141 unadjusted_branch_target,
51938283 4142 (thumb_bit != 0));
2a2b6d42 4143
51938283
DK
4144 if (stub_type != arm_stub_none)
4145 {
2ea97941 4146 Stub_table<big_endian>* stub_table =
51938283 4147 object->stub_table(relinfo->data_shndx);
2ea97941 4148 gold_assert(stub_table != NULL);
51938283
DK
4149
4150 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4151 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4152 gold_assert(stub != NULL);
4153 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4154 branch_target = stub_table->address() + stub->offset() + addend;
2e702c99 4155 if (thumb_bit == 0 && may_use_blx)
bef2b434 4156 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4157 branch_offset = branch_target - address;
4158 }
4159 }
4160
4161 // At this point, if we still need to switch mode, the instruction
4162 // must either be a BLX or a BL that can be converted to a BLX.
4163 if (thumb_bit == 0)
4164 {
4165 gold_assert(may_use_blx
4166 && (r_type == elfcpp::R_ARM_THM_CALL
4167 || r_type == elfcpp::R_ARM_THM_XPC22));
4168 // Make sure this is a BLX.
4169 lower_insn &= ~0x1000U;
4170 }
4171 else
4172 {
4173 // Make sure this is a BL.
4174 lower_insn |= 0x1000U;
4175 }
4176
a2c7281b
DK
4177 // For a BLX instruction, make sure that the relocation is rounded up
4178 // to a word boundary. This follows the semantics of the instruction
4179 // which specifies that bit 1 of the target address will come from bit
4180 // 1 of the base address.
51938283 4181 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4182 gold_assert((branch_offset & 3) == 0);
51938283
DK
4183
4184 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4185 // We use the Thumb-2 encoding, which is safe even if dealing with
4186 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4187 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4188 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4189
4190 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4191 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4192
bef2b434 4193 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4194
51938283 4195 return ((thumb2
bef2b434
ILT
4196 ? Bits<25>::has_overflow32(branch_offset)
4197 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4198 ? This::STATUS_OVERFLOW
4199 : This::STATUS_OKAY);
4200}
4201
4202// Relocate THUMB-2 long conditional branches.
4203// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4204// undefined and we do not use PLT in this relocation. In such a case,
4205// the branch is converted into an NOP.
4206
4207template<bool big_endian>
4208typename Arm_relocate_functions<big_endian>::Status
4209Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4210 unsigned char* view,
089d69dc
DK
4211 const Arm_relobj<big_endian>* object,
4212 const Symbol_value<32>* psymval,
4213 Arm_address address,
4214 Arm_address thumb_bit)
4215{
4216 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4217 Valtype* wv = reinterpret_cast<Valtype*>(view);
4218 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4219 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4220 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4221
4222 Arm_address branch_target = psymval->value(object, addend);
4223 int32_t branch_offset = branch_target - address;
4224
4225 // ??? Should handle interworking? GCC might someday try to
4226 // use this for tail calls.
4227 // FIXME: We do support thumb entry to PLT yet.
4228 if (thumb_bit == 0)
4229 {
4230 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4231 return This::STATUS_BAD_RELOC;
4232 }
4233
4234 // Put RELOCATION back into the insn.
4235 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4236 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4237
4238 // Put the relocated value back in the object file:
4239 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4240 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4241
bef2b434 4242 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4243 ? This::STATUS_OVERFLOW
4244 : This::STATUS_OKAY);
4245}
4246
94cdfcff
DK
4247// Get the GOT section, creating it if necessary.
4248
4249template<bool big_endian>
4a54abbb 4250Arm_output_data_got<big_endian>*
94cdfcff
DK
4251Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4252{
4253 if (this->got_ == NULL)
4254 {
4255 gold_assert(symtab != NULL && layout != NULL);
4256
7b8957f8
DK
4257 // When using -z now, we can treat .got as a relro section.
4258 // Without -z now, it is modified after program startup by lazy
4259 // PLT relocations.
4260 bool is_got_relro = parameters->options().now();
4261 Output_section_order got_order = (is_got_relro
4262 ? ORDER_RELRO_LAST
4263 : ORDER_DATA);
4264
4265 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4266 // .got.plt sections in output. The output .got section contains both
4267 // PLT and non-PLT GOT entries.
4a54abbb 4268 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4269
82742395 4270 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4271 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4272 this->got_, got_order, is_got_relro);
22f0da72 4273
94cdfcff
DK
4274 // The old GNU linker creates a .got.plt section. We just
4275 // create another set of data in the .got section. Note that we
4276 // always create a PLT if we create a GOT, although the PLT
4277 // might be empty.
4278 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4279 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4280 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4281 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4282
4283 // The first three entries are reserved.
4284 this->got_plt_->set_current_data_size(3 * 4);
4285
4286 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4287 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4288 Symbol_table::PREDEFINED,
94cdfcff
DK
4289 this->got_plt_,
4290 0, 0, elfcpp::STT_OBJECT,
4291 elfcpp::STB_LOCAL,
4292 elfcpp::STV_HIDDEN, 0,
4293 false, false);
fa89cc82
HS
4294
4295 // If there are any IRELATIVE relocations, they get GOT entries
4296 // in .got.plt after the jump slot entries.
4297 this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
4298 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4299 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4300 this->got_irelative_,
4301 got_order, is_got_relro);
4302
94cdfcff
DK
4303 }
4304 return this->got_;
4305}
4306
4307// Get the dynamic reloc section, creating it if necessary.
4308
4309template<bool big_endian>
4310typename Target_arm<big_endian>::Reloc_section*
4311Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4312{
4313 if (this->rel_dyn_ == NULL)
4314 {
4315 gold_assert(layout != NULL);
fa89cc82
HS
4316 // Create both relocation sections in the same place, so as to ensure
4317 // their relative order in the output section.
94cdfcff 4318 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
fa89cc82 4319 this->rel_irelative_ = new Reloc_section(false);
94cdfcff 4320 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4321 elfcpp::SHF_ALLOC, this->rel_dyn_,
4322 ORDER_DYNAMIC_RELOCS, false);
fa89cc82
HS
4323 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
4324 elfcpp::SHF_ALLOC, this->rel_irelative_,
4325 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4326 }
4327 return this->rel_dyn_;
4328}
4329
fa89cc82
HS
4330
4331// Get the section to use for IRELATIVE relocs, creating it if necessary. These
4332// go in .rela.dyn, but only after all other dynamic relocations. They need to
4333// follow the other dynamic relocations so that they can refer to global
4334// variables initialized by those relocs.
4335
4336template<bool big_endian>
4337typename Target_arm<big_endian>::Reloc_section*
4338Target_arm<big_endian>::rel_irelative_section(Layout* layout)
4339{
4340 if (this->rel_irelative_ == NULL)
4341 {
4342 // Delegate the creation to rel_dyn_section so as to ensure their order in
4343 // the output section.
4344 this->rel_dyn_section(layout);
4345 gold_assert(this->rel_irelative_ != NULL
4346 && (this->rel_dyn_->output_section()
4347 == this->rel_irelative_->output_section()));
4348 }
4349 return this->rel_irelative_;
4350}
4351
4352
b569affa
DK
4353// Insn_template methods.
4354
4355// Return byte size of an instruction template.
4356
4357size_t
4358Insn_template::size() const
4359{
4360 switch (this->type())
4361 {
4362 case THUMB16_TYPE:
2fb7225c 4363 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4364 return 2;
4365 case ARM_TYPE:
4366 case THUMB32_TYPE:
4367 case DATA_TYPE:
4368 return 4;
4369 default:
4370 gold_unreachable();
4371 }
4372}
4373
4374// Return alignment of an instruction template.
4375
4376unsigned
4377Insn_template::alignment() const
4378{
4379 switch (this->type())
4380 {
4381 case THUMB16_TYPE:
2fb7225c 4382 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4383 case THUMB32_TYPE:
4384 return 2;
4385 case ARM_TYPE:
4386 case DATA_TYPE:
4387 return 4;
4388 default:
4389 gold_unreachable();
4390 }
4391}
4392
4393// Stub_template methods.
4394
4395Stub_template::Stub_template(
2ea97941
ILT
4396 Stub_type type, const Insn_template* insns,
4397 size_t insn_count)
4398 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4399 entry_in_thumb_mode_(false), relocs_()
4400{
2ea97941 4401 off_t offset = 0;
b569affa
DK
4402
4403 // Compute byte size and alignment of stub template.
2ea97941 4404 for (size_t i = 0; i < insn_count; i++)
b569affa 4405 {
2ea97941
ILT
4406 unsigned insn_alignment = insns[i].alignment();
4407 size_t insn_size = insns[i].size();
4408 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4409 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4410 switch (insns[i].type())
b569affa
DK
4411 {
4412 case Insn_template::THUMB16_TYPE:
089d69dc 4413 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4414 if (i == 0)
4415 this->entry_in_thumb_mode_ = true;
4416 break;
4417
4418 case Insn_template::THUMB32_TYPE:
2e702c99 4419 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2ea97941 4420 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4421 if (i == 0)
4422 this->entry_in_thumb_mode_ = true;
2e702c99 4423 break;
b569affa
DK
4424
4425 case Insn_template::ARM_TYPE:
4426 // Handle cases where the target is encoded within the
4427 // instruction.
2ea97941
ILT
4428 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4429 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4430 break;
4431
4432 case Insn_template::DATA_TYPE:
4433 // Entry point cannot be data.
4434 gold_assert(i != 0);
2ea97941 4435 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4436 break;
4437
4438 default:
4439 gold_unreachable();
4440 }
2e702c99 4441 offset += insn_size;
b569affa 4442 }
2ea97941 4443 this->size_ = offset;
b569affa
DK
4444}
4445
bb0d3eb0
DK
4446// Stub methods.
4447
7296d933 4448// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4449
4450template<bool big_endian>
4451void inline
4452Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4453{
4454 const Stub_template* stub_template = this->stub_template();
4455 const Insn_template* insns = stub_template->insns();
4456
4457 // FIXME: We do not handle BE8 encoding yet.
4458 unsigned char* pov = view;
4459 for (size_t i = 0; i < stub_template->insn_count(); i++)
4460 {
4461 switch (insns[i].type())
4462 {
4463 case Insn_template::THUMB16_TYPE:
4464 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4465 break;
4466 case Insn_template::THUMB16_SPECIAL_TYPE:
4467 elfcpp::Swap<16, big_endian>::writeval(
4468 pov,
4469 this->thumb16_special(i));
4470 break;
4471 case Insn_template::THUMB32_TYPE:
4472 {
4473 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4474 uint32_t lo = insns[i].data() & 0xffff;
4475 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4476 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4477 }
2e702c99 4478 break;
bb0d3eb0
DK
4479 case Insn_template::ARM_TYPE:
4480 case Insn_template::DATA_TYPE:
4481 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4482 break;
4483 default:
4484 gold_unreachable();
4485 }
4486 pov += insns[i].size();
4487 }
4488 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2e702c99 4489}
bb0d3eb0 4490
b569affa
DK
4491// Reloc_stub::Key methods.
4492
4493// Dump a Key as a string for debugging.
4494
4495std::string
4496Reloc_stub::Key::name() const
4497{
4498 if (this->r_sym_ == invalid_index)
4499 {
4500 // Global symbol key name
4501 // <stub-type>:<symbol name>:<addend>.
4502 const std::string sym_name = this->u_.symbol->name();
4503 // We need to print two hex number and two colons. So just add 100 bytes
4504 // to the symbol name size.
4505 size_t len = sym_name.size() + 100;
4506 char* buffer = new char[len];
4507 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4508 sym_name.c_str(), this->addend_);
4509 gold_assert(c > 0 && c < static_cast<int>(len));
4510 delete[] buffer;
4511 return std::string(buffer);
4512 }
4513 else
4514 {
4515 // local symbol key name
4516 // <stub-type>:<object>:<r_sym>:<addend>.
4517 const size_t len = 200;
4518 char buffer[len];
4519 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4520 this->u_.relobj, this->r_sym_, this->addend_);
4521 gold_assert(c > 0 && c < static_cast<int>(len));
4522 return std::string(buffer);
4523 }
4524}
4525
4526// Reloc_stub methods.
4527
4528// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4529// LOCATION to DESTINATION.
4530// This code is based on the arm_type_of_stub function in
9b547ce6 4531// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4532// class simple.
4533
4534Stub_type
4535Reloc_stub::stub_type_for_reloc(
4536 unsigned int r_type,
4537 Arm_address location,
4538 Arm_address destination,
4539 bool target_is_thumb)
4540{
4541 Stub_type stub_type = arm_stub_none;
4542
4543 // This is a bit ugly but we want to avoid using a templated class for
4544 // big and little endianities.
4545 bool may_use_blx;
cdb06167 4546 bool should_force_pic_veneer = parameters->options().pic_veneer();
b569affa
DK
4547 bool thumb2;
4548 bool thumb_only;
4549 if (parameters->target().is_big_endian())
4550 {
43d12afe 4551 const Target_arm<true>* big_endian_target =
b569affa 4552 Target_arm<true>::default_target();
cd6eab1c 4553 may_use_blx = big_endian_target->may_use_v5t_interworking();
cdb06167 4554 should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
43d12afe
DK
4555 thumb2 = big_endian_target->using_thumb2();
4556 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4557 }
4558 else
4559 {
43d12afe 4560 const Target_arm<false>* little_endian_target =
b569affa 4561 Target_arm<false>::default_target();
cd6eab1c 4562 may_use_blx = little_endian_target->may_use_v5t_interworking();
cdb06167
HS
4563 should_force_pic_veneer |=
4564 little_endian_target->should_force_pic_veneer();
43d12afe
DK
4565 thumb2 = little_endian_target->using_thumb2();
4566 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4567 }
4568
a2c7281b 4569 int64_t branch_offset;
90cff06f
DK
4570 bool output_is_position_independent =
4571 parameters->options().output_is_position_independent();
b569affa
DK
4572 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4573 {
a2c7281b
DK
4574 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4575 // base address (instruction address + 4).
4576 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4577 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b 4578 branch_offset = static_cast<int64_t>(destination) - location;
2e702c99 4579
b569affa
DK
4580 // Handle cases where:
4581 // - this call goes too far (different Thumb/Thumb2 max
4582 // distance)
4583 // - it's a Thumb->Arm call and blx is not available, or it's a
4584 // Thumb->Arm branch (not bl). A stub is needed in this case.
4585 if ((!thumb2
4586 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4587 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4588 || (thumb2
4589 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4590 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4591 || ((!target_is_thumb)
4592 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4593 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4594 {
4595 if (target_is_thumb)
4596 {
4597 // Thumb to thumb.
4598 if (!thumb_only)
4599 {
90cff06f 4600 stub_type = (output_is_position_independent
51938283 4601 || should_force_pic_veneer)
b569affa
DK
4602 // PIC stubs.
4603 ? ((may_use_blx
4604 && (r_type == elfcpp::R_ARM_THM_CALL))
4605 // V5T and above. Stub starts with ARM code, so
4606 // we must be able to switch mode before
4607 // reaching it, which is only possible for 'bl'
4608 // (ie R_ARM_THM_CALL relocation).
4609 ? arm_stub_long_branch_any_thumb_pic
4610 // On V4T, use Thumb code only.
4611 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4612
4613 // non-PIC stubs.
4614 : ((may_use_blx
4615 && (r_type == elfcpp::R_ARM_THM_CALL))
4616 ? arm_stub_long_branch_any_any // V5T and above.
4617 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4618 }
4619 else
4620 {
90cff06f 4621 stub_type = (output_is_position_independent
51938283 4622 || should_force_pic_veneer)
b569affa
DK
4623 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4624 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4625 }
4626 }
4627 else
4628 {
4629 // Thumb to arm.
2e702c99 4630
b569affa
DK
4631 // FIXME: We should check that the input section is from an
4632 // object that has interwork enabled.
4633
90cff06f 4634 stub_type = (output_is_position_independent
b569affa
DK
4635 || should_force_pic_veneer)
4636 // PIC stubs.
4637 ? ((may_use_blx
4638 && (r_type == elfcpp::R_ARM_THM_CALL))
4639 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4640 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4641
4642 // non-PIC stubs.
4643 : ((may_use_blx
4644 && (r_type == elfcpp::R_ARM_THM_CALL))
4645 ? arm_stub_long_branch_any_any // V5T and above.
4646 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4647
4648 // Handle v4t short branches.
4649 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4650 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4651 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4652 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4653 }
4654 }
4655 }
4656 else if (r_type == elfcpp::R_ARM_CALL
4657 || r_type == elfcpp::R_ARM_JUMP24
4658 || r_type == elfcpp::R_ARM_PLT32)
4659 {
a2c7281b 4660 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4661 if (target_is_thumb)
4662 {
4663 // Arm to thumb.
4664
4665 // FIXME: We should check that the input section is from an
4666 // object that has interwork enabled.
4667
4668 // We have an extra 2-bytes reach because of
4669 // the mode change (bit 24 (H) of BLX encoding).
4670 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4671 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4672 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4673 || (r_type == elfcpp::R_ARM_JUMP24)
4674 || (r_type == elfcpp::R_ARM_PLT32))
4675 {
90cff06f 4676 stub_type = (output_is_position_independent
b569affa
DK
4677 || should_force_pic_veneer)
4678 // PIC stubs.
4679 ? (may_use_blx
4680 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4681 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4682
4683 // non-PIC stubs.
4684 : (may_use_blx
4685 ? arm_stub_long_branch_any_any // V5T and above.
4686 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4687 }
4688 }
4689 else
4690 {
4691 // Arm to arm.
4692 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4693 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4694 {
90cff06f 4695 stub_type = (output_is_position_independent
b569affa
DK
4696 || should_force_pic_veneer)
4697 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4698 : arm_stub_long_branch_any_any; /// non-PIC.
4699 }
4700 }
4701 }
4702
4703 return stub_type;
4704}
4705
bb0d3eb0 4706// Cortex_a8_stub methods.
b569affa 4707
bb0d3eb0
DK
4708// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4709// I is the position of the instruction template in the stub template.
b569affa 4710
bb0d3eb0
DK
4711uint16_t
4712Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4713{
bb0d3eb0
DK
4714 // The only use of this is to copy condition code from a conditional
4715 // branch being worked around to the corresponding conditional branch in
4716 // to the stub.
4717 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4718 && i == 0);
4719 uint16_t data = this->stub_template()->insns()[i].data();
4720 gold_assert((data & 0xff00U) == 0xd000U);
4721 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4722 return data;
b569affa
DK
4723}
4724
4725// Stub_factory methods.
4726
4727Stub_factory::Stub_factory()
4728{
4729 // The instruction template sequences are declared as static
4730 // objects and initialized first time the constructor runs.
2e702c99 4731
b569affa
DK
4732 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4733 // to reach the stub if necessary.
4734 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4735 {
4736 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4737 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4738 // dcd R_ARM_ABS32(X)
b569affa 4739 };
2e702c99 4740
b569affa
DK
4741 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4742 // available.
4743 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4744 {
4745 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4746 Insn_template::arm_insn(0xe12fff1c), // bx ip
4747 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4748 // dcd R_ARM_ABS32(X)
b569affa 4749 };
2e702c99 4750
b569affa
DK
4751 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4752 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4753 {
4754 Insn_template::thumb16_insn(0xb401), // push {r0}
4755 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4756 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4757 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4758 Insn_template::thumb16_insn(0x4760), // bx ip
4759 Insn_template::thumb16_insn(0xbf00), // nop
4760 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4761 // dcd R_ARM_ABS32(X)
b569affa 4762 };
2e702c99 4763
b569affa
DK
4764 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4765 // allowed.
4766 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4767 {
4768 Insn_template::thumb16_insn(0x4778), // bx pc
4769 Insn_template::thumb16_insn(0x46c0), // nop
4770 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4771 Insn_template::arm_insn(0xe12fff1c), // bx ip
4772 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4773 // dcd R_ARM_ABS32(X)
b569affa 4774 };
2e702c99 4775
b569affa
DK
4776 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4777 // available.
4778 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4779 {
4780 Insn_template::thumb16_insn(0x4778), // bx pc
4781 Insn_template::thumb16_insn(0x46c0), // nop
4782 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4783 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
2e702c99 4784 // dcd R_ARM_ABS32(X)
b569affa 4785 };
2e702c99 4786
b569affa
DK
4787 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4788 // one, when the destination is close enough.
4789 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4790 {
4791 Insn_template::thumb16_insn(0x4778), // bx pc
4792 Insn_template::thumb16_insn(0x46c0), // nop
4793 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4794 };
2e702c99 4795
b569affa
DK
4796 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4797 // blx to reach the stub if necessary.
4798 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4799 {
4800 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4801 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4802 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4803 // dcd R_ARM_REL32(X-4)
b569affa 4804 };
2e702c99 4805
b569affa
DK
4806 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4807 // blx to reach the stub if necessary. We can not add into pc;
4808 // it is not guaranteed to mode switch (different in ARMv6 and
4809 // ARMv7).
4810 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4811 {
4812 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4813 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4814 Insn_template::arm_insn(0xe12fff1c), // bx ip
4815 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4816 // dcd R_ARM_REL32(X)
b569affa 4817 };
2e702c99 4818
b569affa
DK
4819 // V4T ARM -> ARM long branch stub, PIC.
4820 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4821 {
4822 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4823 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4824 Insn_template::arm_insn(0xe12fff1c), // bx ip
4825 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4826 // dcd R_ARM_REL32(X)
b569affa 4827 };
2e702c99 4828
b569affa
DK
4829 // V4T Thumb -> ARM long branch stub, PIC.
4830 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4831 {
4832 Insn_template::thumb16_insn(0x4778), // bx pc
4833 Insn_template::thumb16_insn(0x46c0), // nop
4834 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4835 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4836 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
2e702c99 4837 // dcd R_ARM_REL32(X)
b569affa 4838 };
2e702c99 4839
b569affa
DK
4840 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4841 // architectures.
4842 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4843 {
4844 Insn_template::thumb16_insn(0xb401), // push {r0}
4845 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4846 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4847 Insn_template::thumb16_insn(0x4484), // add ip, r0
4848 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4849 Insn_template::thumb16_insn(0x4760), // bx ip
4850 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
2e702c99 4851 // dcd R_ARM_REL32(X)
b569affa 4852 };
2e702c99 4853
b569affa
DK
4854 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4855 // allowed.
4856 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4857 {
4858 Insn_template::thumb16_insn(0x4778), // bx pc
4859 Insn_template::thumb16_insn(0x46c0), // nop
4860 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4861 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4862 Insn_template::arm_insn(0xe12fff1c), // bx ip
4863 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
2e702c99 4864 // dcd R_ARM_REL32(X)
b569affa 4865 };
2e702c99 4866
b569affa 4867 // Cortex-A8 erratum-workaround stubs.
2e702c99 4868
b569affa
DK
4869 // Stub used for conditional branches (which may be beyond +/-1MB away,
4870 // so we can't use a conditional branch to reach this stub).
2e702c99 4871
b569affa
DK
4872 // original code:
4873 //
4874 // b<cond> X
4875 // after:
4876 //
4877 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4878 {
4879 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4880 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4881 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
2e702c99 4882 // b.w X
b569affa 4883 };
2e702c99 4884
b569affa 4885 // Stub used for b.w and bl.w instructions.
2e702c99 4886
b569affa
DK
4887 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4888 {
4889 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4890 };
2e702c99 4891
b569affa
DK
4892 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4893 {
4894 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4895 };
2e702c99 4896
b569affa
DK
4897 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4898 // instruction (which switches to ARM mode) to point to this stub. Jump to
4899 // the real destination using an ARM-mode branch.
bb0d3eb0 4900 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4901 {
4902 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4903 };
4904
a2162063
ILT
4905 // Stub used to provide an interworking for R_ARM_V4BX relocation
4906 // (bx r[n] instruction).
4907 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4908 {
4909 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4910 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4911 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4912 };
4913
b569affa
DK
4914 // Fill in the stub template look-up table. Stub templates are constructed
4915 // per instance of Stub_factory for fast look-up without locking
4916 // in a thread-enabled environment.
4917
4918 this->stub_templates_[arm_stub_none] =
4919 new Stub_template(arm_stub_none, NULL, 0);
4920
4921#define DEF_STUB(x) \
4922 do \
4923 { \
4924 size_t array_size \
4925 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4926 Stub_type type = arm_stub_##x; \
4927 this->stub_templates_[type] = \
4928 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4929 } \
4930 while (0);
4931
4932 DEF_STUBS
4933#undef DEF_STUB
4934}
4935
56ee5e00
DK
4936// Stub_table methods.
4937
9b547ce6 4938// Remove all Cortex-A8 stub.
56ee5e00
DK
4939
4940template<bool big_endian>
4941void
2fb7225c
DK
4942Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4943{
4944 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4945 p != this->cortex_a8_stubs_.end();
4946 ++p)
4947 delete p->second;
4948 this->cortex_a8_stubs_.clear();
4949}
4950
4951// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4952
4953template<bool big_endian>
4954void
4955Stub_table<big_endian>::relocate_stub(
4956 Stub* stub,
4957 const Relocate_info<32, big_endian>* relinfo,
4958 Target_arm<big_endian>* arm_target,
4959 Output_section* output_section,
4960 unsigned char* view,
4961 Arm_address address,
4962 section_size_type view_size)
56ee5e00 4963{
2ea97941 4964 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4965 if (stub_template->reloc_count() != 0)
4966 {
4967 // Adjust view to cover the stub only.
4968 section_size_type offset = stub->offset();
4969 section_size_type stub_size = stub_template->size();
4970 gold_assert(offset + stub_size <= view_size);
4971
4972 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4973 address + offset, stub_size);
4974 }
56ee5e00
DK
4975}
4976
2fb7225c
DK
4977// Relocate all stubs in this stub table.
4978
56ee5e00
DK
4979template<bool big_endian>
4980void
4981Stub_table<big_endian>::relocate_stubs(
4982 const Relocate_info<32, big_endian>* relinfo,
4983 Target_arm<big_endian>* arm_target,
2ea97941 4984 Output_section* output_section,
56ee5e00 4985 unsigned char* view,
2ea97941 4986 Arm_address address,
56ee5e00
DK
4987 section_size_type view_size)
4988{
4989 // If we are passed a view bigger than the stub table's. we need to
4990 // adjust the view.
2ea97941 4991 gold_assert(address == this->address()
56ee5e00
DK
4992 && (view_size
4993 == static_cast<section_size_type>(this->data_size())));
4994
2fb7225c
DK
4995 // Relocate all relocation stubs.
4996 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4997 p != this->reloc_stubs_.end();
4998 ++p)
4999 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5000 address, view_size);
5001
5002 // Relocate all Cortex-A8 stubs.
5003 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
5004 p != this->cortex_a8_stubs_.end();
5005 ++p)
5006 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
5007 address, view_size);
a2162063
ILT
5008
5009 // Relocate all ARM V4BX stubs.
5010 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
5011 p != this->arm_v4bx_stubs_.end();
5012 ++p)
5013 {
5014 if (*p != NULL)
5015 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
5016 address, view_size);
5017 }
2fb7225c
DK
5018}
5019
5020// Write out the stubs to file.
5021
5022template<bool big_endian>
5023void
5024Stub_table<big_endian>::do_write(Output_file* of)
5025{
5026 off_t offset = this->offset();
5027 const section_size_type oview_size =
5028 convert_to_section_size_type(this->data_size());
5029 unsigned char* const oview = of->get_output_view(offset, oview_size);
5030
5031 // Write relocation stubs.
56ee5e00
DK
5032 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
5033 p != this->reloc_stubs_.end();
5034 ++p)
5035 {
5036 Reloc_stub* stub = p->second;
2fb7225c
DK
5037 Arm_address address = this->address() + stub->offset();
5038 gold_assert(address
5039 == align_address(address,
5040 stub->stub_template()->alignment()));
5041 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5042 big_endian);
56ee5e00 5043 }
2fb7225c
DK
5044
5045 // Write Cortex-A8 stubs.
5046 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5047 p != this->cortex_a8_stubs_.end();
5048 ++p)
5049 {
5050 Cortex_a8_stub* stub = p->second;
5051 Arm_address address = this->address() + stub->offset();
5052 gold_assert(address
5053 == align_address(address,
5054 stub->stub_template()->alignment()));
5055 stub->write(oview + stub->offset(), stub->stub_template()->size(),
5056 big_endian);
5057 }
5058
a2162063
ILT
5059 // Write ARM V4BX relocation stubs.
5060 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5061 p != this->arm_v4bx_stubs_.end();
5062 ++p)
5063 {
5064 if (*p == NULL)
5065 continue;
5066
5067 Arm_address address = this->address() + (*p)->offset();
5068 gold_assert(address
5069 == align_address(address,
5070 (*p)->stub_template()->alignment()));
5071 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5072 big_endian);
5073 }
5074
2fb7225c 5075 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5076}
5077
2fb7225c
DK
5078// Update the data size and address alignment of the stub table at the end
5079// of a relaxation pass. Return true if either the data size or the
5080// alignment changed in this relaxation pass.
5081
5082template<bool big_endian>
5083bool
5084Stub_table<big_endian>::update_data_size_and_addralign()
5085{
2fb7225c 5086 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5087 off_t size = this->reloc_stubs_size_;
5088 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5089
5090 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5091 p != this->cortex_a8_stubs_.end();
5092 ++p)
5093 {
5094 const Stub_template* stub_template = p->second->stub_template();
5095 addralign = std::max(addralign, stub_template->alignment());
5096 size = (align_address(size, stub_template->alignment())
5097 + stub_template->size());
5098 }
5099
a2162063
ILT
5100 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5101 p != this->arm_v4bx_stubs_.end();
5102 ++p)
5103 {
5104 if (*p == NULL)
5105 continue;
5106
5107 const Stub_template* stub_template = (*p)->stub_template();
5108 addralign = std::max(addralign, stub_template->alignment());
5109 size = (align_address(size, stub_template->alignment())
5110 + stub_template->size());
5111 }
5112
2fb7225c
DK
5113 // Check if either data size or alignment changed in this pass.
5114 // Update prev_data_size_ and prev_addralign_. These will be used
5115 // as the current data size and address alignment for the next pass.
5116 bool changed = size != this->prev_data_size_;
2e702c99 5117 this->prev_data_size_ = size;
2fb7225c
DK
5118
5119 if (addralign != this->prev_addralign_)
5120 changed = true;
5121 this->prev_addralign_ = addralign;
5122
5123 return changed;
5124}
5125
5126// Finalize the stubs. This sets the offsets of the stubs within the stub
5127// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5128
5129template<bool big_endian>
5130void
2fb7225c 5131Stub_table<big_endian>::finalize_stubs()
56ee5e00 5132{
d099120c 5133 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5134 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5135 p != this->cortex_a8_stubs_.end();
5136 ++p)
5137 {
5138 Cortex_a8_stub* stub = p->second;
5139 const Stub_template* stub_template = stub->stub_template();
5140 uint64_t stub_addralign = stub_template->alignment();
5141 off = align_address(off, stub_addralign);
5142 stub->set_offset(off);
5143 off += stub_template->size();
5144
5145 // Mark input section so that we can determine later if a code section
5146 // needs the Cortex-A8 workaround quickly.
5147 Arm_relobj<big_endian>* arm_relobj =
5148 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5149 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5150 }
5151
a2162063
ILT
5152 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5153 p != this->arm_v4bx_stubs_.end();
5154 ++p)
5155 {
5156 if (*p == NULL)
5157 continue;
5158
5159 const Stub_template* stub_template = (*p)->stub_template();
5160 uint64_t stub_addralign = stub_template->alignment();
5161 off = align_address(off, stub_addralign);
5162 (*p)->set_offset(off);
5163 off += stub_template->size();
5164 }
5165
2fb7225c 5166 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5167}
5168
2fb7225c
DK
5169// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5170// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5171// of the address range seen by the linker.
56ee5e00
DK
5172
5173template<bool big_endian>
5174void
2fb7225c
DK
5175Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5176 Target_arm<big_endian>* arm_target,
5177 unsigned char* view,
5178 Arm_address view_address,
5179 section_size_type view_size)
56ee5e00 5180{
2fb7225c
DK
5181 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5182 for (Cortex_a8_stub_list::const_iterator p =
5183 this->cortex_a8_stubs_.lower_bound(view_address);
5184 ((p != this->cortex_a8_stubs_.end())
5185 && (p->first < (view_address + view_size)));
5186 ++p)
56ee5e00 5187 {
2fb7225c
DK
5188 // We do not store the THUMB bit in the LSB of either the branch address
5189 // or the stub offset. There is no need to strip the LSB.
5190 Arm_address branch_address = p->first;
5191 const Cortex_a8_stub* stub = p->second;
5192 Arm_address stub_address = this->address() + stub->offset();
5193
5194 // Offset of the branch instruction relative to this view.
5195 section_size_type offset =
5196 convert_to_section_size_type(branch_address - view_address);
5197 gold_assert((offset + 4) <= view_size);
5198
5199 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5200 view + offset, branch_address);
5201 }
56ee5e00
DK
5202}
5203
10ad9fe5
DK
5204// Arm_input_section methods.
5205
5206// Initialize an Arm_input_section.
5207
5208template<bool big_endian>
5209void
5210Arm_input_section<big_endian>::init()
5211{
2ea97941
ILT
5212 Relobj* relobj = this->relobj();
5213 unsigned int shndx = this->shndx();
10ad9fe5 5214
f625ae50
DK
5215 // We have to cache original size, alignment and contents to avoid locking
5216 // the original file.
6625d24e
DK
5217 this->original_addralign_ =
5218 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5219
5220 // This is not efficient but we expect only a small number of relaxed
5221 // input sections for stubs.
5222 section_size_type section_size;
5223 const unsigned char* section_contents =
5224 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5225 this->original_size_ =
5226 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5227
f625ae50
DK
5228 gold_assert(this->original_contents_ == NULL);
5229 this->original_contents_ = new unsigned char[section_size];
5230 memcpy(this->original_contents_, section_contents, section_size);
5231
10ad9fe5
DK
5232 // We want to make this look like the original input section after
5233 // output sections are finalized.
2ea97941
ILT
5234 Output_section* os = relobj->output_section(shndx);
5235 off_t offset = relobj->output_section_offset(shndx);
5236 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5237 this->set_address(os->address() + offset);
5238 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5239
5240 this->set_current_data_size(this->original_size_);
5241 this->finalize_data_size();
5242}
5243
5244template<bool big_endian>
5245void
5246Arm_input_section<big_endian>::do_write(Output_file* of)
5247{
5248 // We have to write out the original section content.
f625ae50
DK
5249 gold_assert(this->original_contents_ != NULL);
5250 of->write(this->offset(), this->original_contents_,
2e702c99 5251 this->original_size_);
10ad9fe5
DK
5252
5253 // If this owns a stub table and it is not empty, write it.
5254 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5255 this->stub_table_->write(of);
5256}
5257
5258// Finalize data size.
5259
5260template<bool big_endian>
5261void
5262Arm_input_section<big_endian>::set_final_data_size()
5263{
153e7da4
DK
5264 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5265
10ad9fe5
DK
5266 if (this->is_stub_table_owner())
5267 {
6625d24e 5268 this->stub_table_->finalize_data_size();
153e7da4 5269 off = align_address(off, this->stub_table_->addralign());
153e7da4 5270 off += this->stub_table_->data_size();
10ad9fe5 5271 }
153e7da4 5272 this->set_data_size(off);
10ad9fe5
DK
5273}
5274
5275// Reset address and file offset.
5276
5277template<bool big_endian>
5278void
5279Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5280{
5281 // Size of the original input section contents.
5282 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5283
5284 // If this is a stub table owner, account for the stub table size.
5285 if (this->is_stub_table_owner())
5286 {
2ea97941 5287 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5288
5289 // Reset the stub table's address and file offset. The
5290 // current data size for child will be updated after that.
5291 stub_table_->reset_address_and_file_offset();
5292 off = align_address(off, stub_table_->addralign());
2ea97941 5293 off += stub_table->current_data_size();
10ad9fe5
DK
5294 }
5295
5296 this->set_current_data_size(off);
5297}
5298
af2cdeae
DK
5299// Arm_exidx_cantunwind methods.
5300
7296d933 5301// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5302
5303template<bool big_endian>
5304void
5305Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5306{
5307 off_t offset = this->offset();
5308 const section_size_type oview_size = 8;
5309 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5310
af2cdeae
DK
5311 Output_section* os = this->relobj_->output_section(this->shndx_);
5312 gold_assert(os != NULL);
5313
5314 Arm_relobj<big_endian>* arm_relobj =
5315 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5316 Arm_address output_offset =
5317 arm_relobj->get_output_section_offset(this->shndx_);
5318 Arm_address section_start;
f625ae50
DK
5319 section_size_type section_size;
5320
5321 // Find out the end of the text section referred by this.
7296d933 5322 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5323 {
5324 section_start = os->address() + output_offset;
5325 const Arm_exidx_input_section* exidx_input_section =
2e702c99 5326 arm_relobj->exidx_input_section_by_link(this->shndx_);
f625ae50
DK
5327 gold_assert(exidx_input_section != NULL);
5328 section_size =
5329 convert_to_section_size_type(exidx_input_section->text_size());
5330 }
af2cdeae
DK
5331 else
5332 {
5333 // Currently this only happens for a relaxed section.
5334 const Output_relaxed_input_section* poris =
5335 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5336 gold_assert(poris != NULL);
5337 section_start = poris->address();
f625ae50 5338 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5339 }
5340
5341 // We always append this to the end of an EXIDX section.
f625ae50 5342 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5343
5344 // Write out the entry. The first word either points to the beginning
5345 // or after the end of a text section. The second word is the special
5346 // EXIDX_CANTUNWIND value.
e7eca48c 5347 uint32_t prel31_offset = output_address - this->address();
bef2b434 5348 if (Bits<31>::has_overflow32(offset))
e7eca48c 5349 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5350 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5351 prel31_offset & 0x7fffffffU);
5352 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5353 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5354
5355 of->write_output_view(this->offset(), oview_size, oview);
5356}
5357
5358// Arm_exidx_merged_section methods.
5359
5360// Constructor for Arm_exidx_merged_section.
5361// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5362// SECTION_OFFSET_MAP points to a section offset map describing how
5363// parts of the input section are mapped to output. DELETED_BYTES is
5364// the number of bytes deleted from the EXIDX input section.
5365
5366Arm_exidx_merged_section::Arm_exidx_merged_section(
5367 const Arm_exidx_input_section& exidx_input_section,
5368 const Arm_exidx_section_offset_map& section_offset_map,
5369 uint32_t deleted_bytes)
5370 : Output_relaxed_input_section(exidx_input_section.relobj(),
5371 exidx_input_section.shndx(),
5372 exidx_input_section.addralign()),
5373 exidx_input_section_(exidx_input_section),
5374 section_offset_map_(section_offset_map)
5375{
f625ae50
DK
5376 // If we retain or discard the whole EXIDX input section, we would
5377 // not be here.
5378 gold_assert(deleted_bytes != 0
5379 && deleted_bytes != this->exidx_input_section_.size());
5380
af2cdeae 5381 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5382 uint32_t size = exidx_input_section.size() - deleted_bytes;
5383 this->set_data_size(size);
af2cdeae 5384 this->fix_data_size();
f625ae50
DK
5385
5386 // Allocate buffer for section contents and build contents.
5387 this->section_contents_ = new unsigned char[size];
5388}
5389
5390// Build the contents of a merged EXIDX output section.
5391
5392void
5393Arm_exidx_merged_section::build_contents(
5394 const unsigned char* original_contents,
5395 section_size_type original_size)
5396{
5397 // Go over spans of input offsets and write only those that are not
5398 // discarded.
5399 section_offset_type in_start = 0;
5400 section_offset_type out_start = 0;
5401 section_offset_type in_max =
5402 convert_types<section_offset_type>(original_size);
5403 section_offset_type out_max =
5404 convert_types<section_offset_type>(this->data_size());
5405 for (Arm_exidx_section_offset_map::const_iterator p =
2e702c99 5406 this->section_offset_map_.begin();
f625ae50
DK
5407 p != this->section_offset_map_.end();
5408 ++p)
5409 {
5410 section_offset_type in_end = p->first;
5411 gold_assert(in_end >= in_start);
5412 section_offset_type out_end = p->second;
5413 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5414 if (out_end != -1)
5415 {
5416 size_t out_chunk_size =
5417 convert_types<size_t>(out_end - out_start + 1);
5418
5419 gold_assert(out_chunk_size == in_chunk_size
5420 && in_end < in_max && out_end < out_max);
5421
5422 memcpy(this->section_contents_ + out_start,
5423 original_contents + in_start,
5424 out_chunk_size);
5425 out_start += out_chunk_size;
5426 }
5427 in_start += in_chunk_size;
5428 }
af2cdeae
DK
5429}
5430
5431// Given an input OBJECT, an input section index SHNDX within that
5432// object, and an OFFSET relative to the start of that input
5433// section, return whether or not the corresponding offset within
5434// the output section is known. If this function returns true, it
5435// sets *POUTPUT to the output offset. The value -1 indicates that
5436// this input offset is being discarded.
5437
5438bool
5439Arm_exidx_merged_section::do_output_offset(
5440 const Relobj* relobj,
5441 unsigned int shndx,
5442 section_offset_type offset,
5443 section_offset_type* poutput) const
5444{
5445 // We only handle offsets for the original EXIDX input section.
5446 if (relobj != this->exidx_input_section_.relobj()
5447 || shndx != this->exidx_input_section_.shndx())
5448 return false;
5449
c7f3c371
DK
5450 section_offset_type section_size =
5451 convert_types<section_offset_type>(this->exidx_input_section_.size());
5452 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5453 // Input offset is out of valid range.
5454 *poutput = -1;
5455 else
5456 {
5457 // We need to look up the section offset map to determine the output
5458 // offset. Find the reference point in map that is first offset
5459 // bigger than or equal to this offset.
5460 Arm_exidx_section_offset_map::const_iterator p =
5461 this->section_offset_map_.lower_bound(offset);
5462
5463 // The section offset maps are build such that this should not happen if
5464 // input offset is in the valid range.
5465 gold_assert(p != this->section_offset_map_.end());
5466
5467 // We need to check if this is dropped.
5468 section_offset_type ref = p->first;
5469 section_offset_type mapped_ref = p->second;
5470
5471 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5472 // Offset is present in output.
5473 *poutput = mapped_ref + (offset - ref);
5474 else
5475 // Offset is discarded owing to EXIDX entry merging.
5476 *poutput = -1;
5477 }
2e702c99 5478
af2cdeae
DK
5479 return true;
5480}
5481
5482// Write this to output file OF.
5483
5484void
5485Arm_exidx_merged_section::do_write(Output_file* of)
5486{
af2cdeae
DK
5487 off_t offset = this->offset();
5488 const section_size_type oview_size = this->data_size();
5489 unsigned char* const oview = of->get_output_view(offset, oview_size);
2e702c99 5490
af2cdeae
DK
5491 Output_section* os = this->relobj()->output_section(this->shndx());
5492 gold_assert(os != NULL);
5493
f625ae50 5494 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5495 of->write_output_view(this->offset(), oview_size, oview);
5496}
5497
80d0d023
DK
5498// Arm_exidx_fixup methods.
5499
5500// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5501// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5502// points to the end of the last seen EXIDX section.
5503
5504void
5505Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5506{
5507 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5508 && this->last_input_section_ != NULL)
5509 {
5510 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5511 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5512 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5513 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5514 this->exidx_output_section_->add_output_section_data(cantunwind);
5515 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5516 }
5517}
5518
5519// Process an EXIDX section entry in input. Return whether this entry
5520// can be deleted in the output. SECOND_WORD in the second word of the
5521// EXIDX entry.
5522
5523bool
5524Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5525{
5526 bool delete_entry;
5527 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5528 {
5529 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5530 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5531 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5532 }
5533 else if ((second_word & 0x80000000) != 0)
5534 {
5535 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5536 delete_entry = (merge_exidx_entries_
5537 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5538 && this->last_inlined_entry_ == second_word);
5539 this->last_unwind_type_ = UT_INLINED_ENTRY;
5540 this->last_inlined_entry_ = second_word;
5541 }
5542 else
5543 {
5544 // Normal table entry. In theory we could merge these too,
5545 // but duplicate entries are likely to be much less common.
5546 delete_entry = false;
5547 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5548 }
5549 return delete_entry;
5550}
5551
5552// Update the current section offset map during EXIDX section fix-up.
5553// If there is no map, create one. INPUT_OFFSET is the offset of a
5554// reference point, DELETED_BYTES is the number of deleted by in the
5555// section so far. If DELETE_ENTRY is true, the reference point and
5556// all offsets after the previous reference point are discarded.
5557
5558void
5559Arm_exidx_fixup::update_offset_map(
5560 section_offset_type input_offset,
5561 section_size_type deleted_bytes,
5562 bool delete_entry)
5563{
5564 if (this->section_offset_map_ == NULL)
5565 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5566 section_offset_type output_offset;
5567 if (delete_entry)
5568 output_offset = Arm_exidx_input_section::invalid_offset;
5569 else
5570 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5571 (*this->section_offset_map_)[input_offset] = output_offset;
5572}
5573
5574// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5575// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5576// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5577// If some entries are merged, also store a pointer to a newly created
5578// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5579// owns the map and is responsible for releasing it after use.
80d0d023
DK
5580
5581template<bool big_endian>
5582uint32_t
5583Arm_exidx_fixup::process_exidx_section(
5584 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5585 const unsigned char* section_contents,
5586 section_size_type section_size,
80d0d023
DK
5587 Arm_exidx_section_offset_map** psection_offset_map)
5588{
5589 Relobj* relobj = exidx_input_section->relobj();
5590 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5591
5592 if ((section_size % 8) != 0)
5593 {
5594 // Something is wrong with this section. Better not touch it.
5595 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5596 relobj->name().c_str(), shndx);
5597 this->last_input_section_ = exidx_input_section;
5598 this->last_unwind_type_ = UT_NONE;
5599 return 0;
5600 }
2e702c99 5601
80d0d023
DK
5602 uint32_t deleted_bytes = 0;
5603 bool prev_delete_entry = false;
5604 gold_assert(this->section_offset_map_ == NULL);
5605
5606 for (section_size_type i = 0; i < section_size; i += 8)
5607 {
5608 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5609 const Valtype* wv =
5610 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5611 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5612
5613 bool delete_entry = this->process_exidx_entry(second_word);
5614
5615 // Entry deletion causes changes in output offsets. We use a std::map
5616 // to record these. And entry (x, y) means input offset x
5617 // is mapped to output offset y. If y is invalid_offset, then x is
5618 // dropped in the output. Because of the way std::map::lower_bound
5619 // works, we record the last offset in a region w.r.t to keeping or
5620 // dropping. If there is no entry (x0, y0) for an input offset x0,
5621 // the output offset y0 of it is determined by the output offset y1 of
5622 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5623 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5624 // y0 is also -1.
5625 if (delete_entry != prev_delete_entry && i != 0)
5626 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5627
5628 // Update total deleted bytes for this entry.
5629 if (delete_entry)
5630 deleted_bytes += 8;
5631
5632 prev_delete_entry = delete_entry;
5633 }
2e702c99 5634
80d0d023
DK
5635 // If section offset map is not NULL, make an entry for the end of
5636 // section.
5637 if (this->section_offset_map_ != NULL)
5638 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5639
5640 *psection_offset_map = this->section_offset_map_;
5641 this->section_offset_map_ = NULL;
5642 this->last_input_section_ = exidx_input_section;
2e702c99 5643
546c7457
DK
5644 // Set the first output text section so that we can link the EXIDX output
5645 // section to it. Ignore any EXIDX input section that is completely merged.
5646 if (this->first_output_text_section_ == NULL
5647 && deleted_bytes != section_size)
5648 {
5649 unsigned int link = exidx_input_section->link();
5650 Output_section* os = relobj->output_section(link);
5651 gold_assert(os != NULL);
5652 this->first_output_text_section_ = os;
5653 }
5654
80d0d023
DK
5655 return deleted_bytes;
5656}
5657
07f508a2
DK
5658// Arm_output_section methods.
5659
5660// Create a stub group for input sections from BEGIN to END. OWNER
5661// points to the input section to be the owner a new stub table.
5662
5663template<bool big_endian>
5664void
5665Arm_output_section<big_endian>::create_stub_group(
5666 Input_section_list::const_iterator begin,
5667 Input_section_list::const_iterator end,
5668 Input_section_list::const_iterator owner,
5669 Target_arm<big_endian>* target,
f625ae50
DK
5670 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5671 const Task* task)
07f508a2 5672{
2b328d4e
DK
5673 // We use a different kind of relaxed section in an EXIDX section.
5674 // The static casting from Output_relaxed_input_section to
5675 // Arm_input_section is invalid in an EXIDX section. We are okay
2e702c99 5676 // because we should not be calling this for an EXIDX section.
2b328d4e
DK
5677 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5678
07f508a2
DK
5679 // Currently we convert ordinary input sections into relaxed sections only
5680 // at this point but we may want to support creating relaxed input section
5681 // very early. So we check here to see if owner is already a relaxed
5682 // section.
2e702c99 5683
07f508a2
DK
5684 Arm_input_section<big_endian>* arm_input_section;
5685 if (owner->is_relaxed_input_section())
5686 {
5687 arm_input_section =
5688 Arm_input_section<big_endian>::as_arm_input_section(
5689 owner->relaxed_input_section());
5690 }
5691 else
5692 {
5693 gold_assert(owner->is_input_section());
f625ae50
DK
5694 // Create a new relaxed input section. We need to lock the original
5695 // file.
5696 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5697 arm_input_section =
5698 target->new_arm_input_section(owner->relobj(), owner->shndx());
5699 new_relaxed_sections->push_back(arm_input_section);
5700 }
5701
5702 // Create a stub table.
2ea97941 5703 Stub_table<big_endian>* stub_table =
07f508a2
DK
5704 target->new_stub_table(arm_input_section);
5705
2ea97941 5706 arm_input_section->set_stub_table(stub_table);
2e702c99 5707
07f508a2
DK
5708 Input_section_list::const_iterator p = begin;
5709 Input_section_list::const_iterator prev_p;
5710
5711 // Look for input sections or relaxed input sections in [begin ... end].
5712 do
5713 {
5714 if (p->is_input_section() || p->is_relaxed_input_section())
5715 {
5716 // The stub table information for input sections live
5717 // in their objects.
5718 Arm_relobj<big_endian>* arm_relobj =
5719 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5720 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5721 }
5722 prev_p = p++;
5723 }
5724 while (prev_p != end);
5725}
5726
5727// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5728// of stub groups. We grow a stub group by adding input section until the
5729// size is just below GROUP_SIZE. The last input section will be converted
5730// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5731// input section after the stub table, effectively double the group size.
2e702c99 5732//
07f508a2
DK
5733// This is similar to the group_sections() function in elf32-arm.c but is
5734// implemented differently.
5735
5736template<bool big_endian>
5737void
5738Arm_output_section<big_endian>::group_sections(
5739 section_size_type group_size,
5740 bool stubs_always_after_branch,
f625ae50
DK
5741 Target_arm<big_endian>* target,
5742 const Task* task)
07f508a2 5743{
07f508a2
DK
5744 // States for grouping.
5745 typedef enum
5746 {
5747 // No group is being built.
5748 NO_GROUP,
5749 // A group is being built but the stub table is not found yet.
5750 // We keep group a stub group until the size is just under GROUP_SIZE.
5751 // The last input section in the group will be used as the stub table.
5752 FINDING_STUB_SECTION,
5753 // A group is being built and we have already found a stub table.
5754 // We enter this state to grow a stub group by adding input section
5755 // after the stub table. This effectively doubles the group size.
5756 HAS_STUB_SECTION
5757 } State;
5758
5759 // Any newly created relaxed sections are stored here.
5760 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5761
5762 State state = NO_GROUP;
5763 section_size_type off = 0;
5764 section_size_type group_begin_offset = 0;
5765 section_size_type group_end_offset = 0;
5766 section_size_type stub_table_end_offset = 0;
5767 Input_section_list::const_iterator group_begin =
5768 this->input_sections().end();
2ea97941 5769 Input_section_list::const_iterator stub_table =
07f508a2
DK
5770 this->input_sections().end();
5771 Input_section_list::const_iterator group_end = this->input_sections().end();
5772 for (Input_section_list::const_iterator p = this->input_sections().begin();
5773 p != this->input_sections().end();
5774 ++p)
5775 {
5776 section_size_type section_begin_offset =
5777 align_address(off, p->addralign());
5778 section_size_type section_end_offset =
2e702c99
RM
5779 section_begin_offset + p->data_size();
5780
9b547ce6 5781 // Check to see if we should group the previously seen sections.
e9bbb538 5782 switch (state)
07f508a2
DK
5783 {
5784 case NO_GROUP:
5785 break;
5786
5787 case FINDING_STUB_SECTION:
5788 // Adding this section makes the group larger than GROUP_SIZE.
5789 if (section_end_offset - group_begin_offset >= group_size)
5790 {
5791 if (stubs_always_after_branch)
2e702c99 5792 {
07f508a2
DK
5793 gold_assert(group_end != this->input_sections().end());
5794 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5795 target, &new_relaxed_sections,
5796 task);
07f508a2
DK
5797 state = NO_GROUP;
5798 }
5799 else
5800 {
5801 // But wait, there's more! Input sections up to
5802 // stub_group_size bytes after the stub table can be
5803 // handled by it too.
5804 state = HAS_STUB_SECTION;
2ea97941 5805 stub_table = group_end;
07f508a2
DK
5806 stub_table_end_offset = group_end_offset;
5807 }
5808 }
5809 break;
5810
5811 case HAS_STUB_SECTION:
5812 // Adding this section makes the post stub-section group larger
5813 // than GROUP_SIZE.
5814 if (section_end_offset - stub_table_end_offset >= group_size)
5815 {
5816 gold_assert(group_end != this->input_sections().end());
2ea97941 5817 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5818 target, &new_relaxed_sections, task);
07f508a2
DK
5819 state = NO_GROUP;
5820 }
5821 break;
5822
5823 default:
5824 gold_unreachable();
2e702c99 5825 }
07f508a2
DK
5826
5827 // If we see an input section and currently there is no group, start
f625ae50
DK
5828 // a new one. Skip any empty sections. We look at the data size
5829 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5830 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5831 && (p->data_size() != 0))
07f508a2
DK
5832 {
5833 if (state == NO_GROUP)
5834 {
5835 state = FINDING_STUB_SECTION;
5836 group_begin = p;
5837 group_begin_offset = section_begin_offset;
5838 }
5839
5840 // Keep track of the last input section seen.
5841 group_end = p;
5842 group_end_offset = section_end_offset;
5843 }
5844
5845 off = section_end_offset;
5846 }
5847
5848 // Create a stub group for any ungrouped sections.
5849 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5850 {
5851 gold_assert(group_end != this->input_sections().end());
5852 this->create_stub_group(group_begin, group_end,
5853 (state == FINDING_STUB_SECTION
5854 ? group_end
2ea97941 5855 : stub_table),
f625ae50 5856 target, &new_relaxed_sections, task);
07f508a2
DK
5857 }
5858
5859 // Convert input section into relaxed input section in a batch.
5860 if (!new_relaxed_sections.empty())
5861 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5862
5863 // Update the section offsets
5864 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5865 {
5866 Arm_relobj<big_endian>* arm_relobj =
5867 Arm_relobj<big_endian>::as_arm_relobj(
5868 new_relaxed_sections[i]->relobj());
2ea97941 5869 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5870 // Tell Arm_relobj that this input section is converted.
2ea97941 5871 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5872 }
5873}
5874
2b328d4e
DK
5875// Append non empty text sections in this to LIST in ascending
5876// order of their position in this.
5877
5878template<bool big_endian>
5879void
5880Arm_output_section<big_endian>::append_text_sections_to_list(
5881 Text_section_list* list)
5882{
2b328d4e
DK
5883 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5884
5885 for (Input_section_list::const_iterator p = this->input_sections().begin();
5886 p != this->input_sections().end();
5887 ++p)
5888 {
5889 // We only care about plain or relaxed input sections. We also
5890 // ignore any merged sections.
a60af0db 5891 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5892 list->push_back(Text_section_list::value_type(p->relobj(),
5893 p->shndx()));
5894 }
5895}
5896
5897template<bool big_endian>
5898void
5899Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5900 Layout* layout,
2b328d4e 5901 const Text_section_list& sorted_text_sections,
85fdf906 5902 Symbol_table* symtab,
f625ae50
DK
5903 bool merge_exidx_entries,
5904 const Task* task)
2b328d4e
DK
5905{
5906 // We should only do this for the EXIDX output section.
5907 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5908
5909 // We don't want the relaxation loop to undo these changes, so we discard
5910 // the current saved states and take another one after the fix-up.
5911 this->discard_states();
5912
5913 // Remove all input sections.
5914 uint64_t address = this->address();
6625d24e
DK
5915 typedef std::list<Output_section::Input_section> Input_section_list;
5916 Input_section_list input_sections;
2b328d4e
DK
5917 this->reset_address_and_file_offset();
5918 this->get_input_sections(address, std::string(""), &input_sections);
5919
5920 if (!this->input_sections().empty())
5921 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
2e702c99 5922
2b328d4e
DK
5923 // Go through all the known input sections and record them.
5924 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5925 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5926 Section_id_hash> Text_to_exidx_map;
5927 Text_to_exidx_map text_to_exidx_map;
5928 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5929 p != input_sections.end();
5930 ++p)
5931 {
5932 // This should never happen. At this point, we should only see
5933 // plain EXIDX input sections.
5934 gold_assert(!p->is_relaxed_input_section());
6625d24e 5935 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5936 }
5937
85fdf906 5938 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5939
5940 // Go over the sorted text sections.
6625d24e 5941 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5942 Section_id_set processed_input_sections;
5943 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5944 p != sorted_text_sections.end();
5945 ++p)
5946 {
5947 Relobj* relobj = p->first;
5948 unsigned int shndx = p->second;
5949
5950 Arm_relobj<big_endian>* arm_relobj =
5951 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5952 const Arm_exidx_input_section* exidx_input_section =
5953 arm_relobj->exidx_input_section_by_link(shndx);
5954
131687b4
DK
5955 // If this text section has no EXIDX section or if the EXIDX section
5956 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5957 // of the last seen EXIDX section.
5958 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5959 {
5960 exidx_fixup.add_exidx_cantunwind_as_needed();
5961 continue;
5962 }
5963
5964 Relobj* exidx_relobj = exidx_input_section->relobj();
5965 unsigned int exidx_shndx = exidx_input_section->shndx();
5966 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5967 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5968 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5969 {
5970 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5971 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5972 // issue a warning instead. We assume the user knows what he
5973 // or she is doing. Otherwise, this is an error.
5974 if (layout->script_options()->saw_sections_clause())
5975 gold_warning(_("unwinding may not work because EXIDX input section"
5976 " %u of %s is not in EXIDX output section"),
5977 exidx_shndx, exidx_relobj->name().c_str());
5978 else
5979 gold_error(_("unwinding may not work because EXIDX input section"
5980 " %u of %s is not in EXIDX output section"),
5981 exidx_shndx, exidx_relobj->name().c_str());
5982
2b328d4e
DK
5983 exidx_fixup.add_exidx_cantunwind_as_needed();
5984 continue;
5985 }
5986
f625ae50
DK
5987 // We need to access the contents of the EXIDX section, lock the
5988 // object here.
5989 Task_lock_obj<Object> tl(task, exidx_relobj);
5990 section_size_type exidx_size;
5991 const unsigned char* exidx_contents =
2e702c99 5992 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
f625ae50 5993
2b328d4e
DK
5994 // Fix up coverage and append input section to output data list.
5995 Arm_exidx_section_offset_map* section_offset_map = NULL;
5996 uint32_t deleted_bytes =
2e702c99 5997 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5998 exidx_contents,
5999 exidx_size,
2b328d4e
DK
6000 &section_offset_map);
6001
6002 if (deleted_bytes == exidx_input_section->size())
6003 {
6004 // The whole EXIDX section got merged. Remove it from output.
6005 gold_assert(section_offset_map == NULL);
6006 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
6007
6008 // All local symbols defined in this input section will be dropped.
6009 // We need to adjust output local symbol count.
6010 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6011 }
6012 else if (deleted_bytes > 0)
6013 {
6014 // Some entries are merged. We need to convert this EXIDX input
6015 // section into a relaxed section.
6016 gold_assert(section_offset_map != NULL);
f625ae50 6017
2b328d4e
DK
6018 Arm_exidx_merged_section* merged_section =
6019 new Arm_exidx_merged_section(*exidx_input_section,
6020 *section_offset_map, deleted_bytes);
f625ae50
DK
6021 merged_section->build_contents(exidx_contents, exidx_size);
6022
d06fb4d1
DK
6023 const std::string secname = exidx_relobj->section_name(exidx_shndx);
6024 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 6025 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
6026
6027 // All local symbols defined in discarded portions of this input
6028 // section will be dropped. We need to adjust output local symbol
6029 // count.
6030 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6031 }
6032 else
6033 {
6034 // Just add back the EXIDX input section.
6035 gold_assert(section_offset_map == NULL);
6625d24e
DK
6036 const Output_section::Input_section* pis = iter->second;
6037 gold_assert(pis->is_input_section());
6038 this->add_script_input_section(*pis);
2b328d4e
DK
6039 }
6040
2e702c99 6041 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
2b328d4e
DK
6042 }
6043
6044 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
6045 exidx_fixup.add_exidx_cantunwind_as_needed();
6046
6047 // Remove any known EXIDX input sections that are not processed.
6625d24e 6048 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
6049 p != input_sections.end();
6050 ++p)
6051 {
6052 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
6053 == processed_input_sections.end())
6054 {
131687b4
DK
6055 // We discard a known EXIDX section because its linked
6056 // text section has been folded by ICF. We also discard an
6057 // EXIDX section with error, the output does not matter in this
6058 // case. We do this to avoid triggering asserts.
2b328d4e
DK
6059 Arm_relobj<big_endian>* arm_relobj =
6060 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6061 const Arm_exidx_input_section* exidx_input_section =
6062 arm_relobj->exidx_input_section_by_shndx(p->shndx());
6063 gold_assert(exidx_input_section != NULL);
131687b4
DK
6064 if (!exidx_input_section->has_errors())
6065 {
6066 unsigned int text_shndx = exidx_input_section->link();
6067 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6068 }
2b328d4e 6069
04ceb17c
DK
6070 // Remove this from link. We also need to recount the
6071 // local symbols.
2b328d4e 6072 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6073 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6074 }
6075 }
2e702c99 6076
546c7457
DK
6077 // Link exidx output section to the first seen output section and
6078 // set correct entry size.
6079 this->set_link_section(exidx_fixup.first_output_text_section());
6080 this->set_entsize(8);
6081
2b328d4e
DK
6082 // Make changes permanent.
6083 this->save_states();
6084 this->set_section_offsets_need_adjustment();
6085}
6086
131687b4
DK
6087// Link EXIDX output sections to text output sections.
6088
6089template<bool big_endian>
6090void
6091Arm_output_section<big_endian>::set_exidx_section_link()
6092{
6093 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6094 if (!this->input_sections().empty())
6095 {
6096 Input_section_list::const_iterator p = this->input_sections().begin();
6097 Arm_relobj<big_endian>* arm_relobj =
6098 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6099 unsigned exidx_shndx = p->shndx();
6100 const Arm_exidx_input_section* exidx_input_section =
6101 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6102 gold_assert(exidx_input_section != NULL);
6103 unsigned int text_shndx = exidx_input_section->link();
6104 Output_section* os = arm_relobj->output_section(text_shndx);
6105 this->set_link_section(os);
6106 }
6107}
6108
8ffa3667
DK
6109// Arm_relobj methods.
6110
cf846138
DK
6111// Determine if an input section is scannable for stub processing. SHDR is
6112// the header of the section and SHNDX is the section index. OS is the output
6113// section for the input section and SYMTAB is the global symbol table used to
6114// look up ICF information.
6115
6116template<bool big_endian>
6117bool
6118Arm_relobj<big_endian>::section_is_scannable(
6119 const elfcpp::Shdr<32, big_endian>& shdr,
6120 unsigned int shndx,
6121 const Output_section* os,
ca09d69a 6122 const Symbol_table* symtab)
cf846138
DK
6123{
6124 // Skip any empty sections, unallocated sections or sections whose
6125 // type are not SHT_PROGBITS.
6126 if (shdr.get_sh_size() == 0
6127 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6128 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6129 return false;
6130
6131 // Skip any discarded or ICF'ed sections.
6132 if (os == NULL || symtab->is_section_folded(this, shndx))
6133 return false;
6134
6135 // If this requires special offset handling, check to see if it is
6136 // a relaxed section. If this is not, then it is a merged section that
6137 // we cannot handle.
6138 if (this->is_output_section_offset_invalid(shndx))
6139 {
6140 const Output_relaxed_input_section* poris =
6141 os->find_relaxed_input_section(this, shndx);
6142 if (poris == NULL)
6143 return false;
6144 }
6145
6146 return true;
6147}
6148
44272192
DK
6149// Determine if we want to scan the SHNDX-th section for relocation stubs.
6150// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6151
6152template<bool big_endian>
6153bool
6154Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6155 const elfcpp::Shdr<32, big_endian>& shdr,
6156 const Relobj::Output_sections& out_sections,
ca09d69a 6157 const Symbol_table* symtab,
2b328d4e 6158 const unsigned char* pshdrs)
44272192
DK
6159{
6160 unsigned int sh_type = shdr.get_sh_type();
6161 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6162 return false;
6163
6164 // Ignore empty section.
6165 off_t sh_size = shdr.get_sh_size();
6166 if (sh_size == 0)
6167 return false;
6168
44272192
DK
6169 // Ignore reloc section with unexpected symbol table. The
6170 // error will be reported in the final link.
6171 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6172 return false;
6173
b521dfe4
DK
6174 unsigned int reloc_size;
6175 if (sh_type == elfcpp::SHT_REL)
6176 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6177 else
6178 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6179
6180 // Ignore reloc section with unexpected entsize or uneven size.
6181 // The error will be reported in the final link.
6182 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6183 return false;
6184
cf846138
DK
6185 // Ignore reloc section with bad info. This error will be
6186 // reported in the final link.
6187 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6188 if (index >= this->shnum())
6189 return false;
6190
6191 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6192 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6193 return this->section_is_scannable(text_shdr, index,
6194 out_sections[index], symtab);
44272192
DK
6195}
6196
cb1be87e
DK
6197// Return the output address of either a plain input section or a relaxed
6198// input section. SHNDX is the section index. We define and use this
6199// instead of calling Output_section::output_address because that is slow
6200// for large output.
6201
6202template<bool big_endian>
6203Arm_address
6204Arm_relobj<big_endian>::simple_input_section_output_address(
6205 unsigned int shndx,
6206 Output_section* os)
6207{
6208 if (this->is_output_section_offset_invalid(shndx))
6209 {
6210 const Output_relaxed_input_section* poris =
6211 os->find_relaxed_input_section(this, shndx);
6212 // We do not handle merged sections here.
6213 gold_assert(poris != NULL);
6214 return poris->address();
6215 }
6216 else
6217 return os->address() + this->get_output_section_offset(shndx);
6218}
6219
44272192
DK
6220// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6221// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6222
6223template<bool big_endian>
6224bool
6225Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6226 const elfcpp::Shdr<32, big_endian>& shdr,
6227 unsigned int shndx,
6228 Output_section* os,
6229 const Symbol_table* symtab)
6230{
cf846138 6231 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6232 return false;
6233
44272192
DK
6234 // If the section does not cross any 4K-boundaries, it does not need to
6235 // be scanned.
cb1be87e 6236 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6237 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6238 return false;
6239
6240 return true;
6241}
6242
6243// Scan a section for Cortex-A8 workaround.
6244
6245template<bool big_endian>
6246void
6247Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6248 const elfcpp::Shdr<32, big_endian>& shdr,
6249 unsigned int shndx,
6250 Output_section* os,
6251 Target_arm<big_endian>* arm_target)
6252{
c8761b9a
DK
6253 // Look for the first mapping symbol in this section. It should be
6254 // at (shndx, 0).
6255 Mapping_symbol_position section_start(shndx, 0);
6256 typename Mapping_symbols_info::const_iterator p =
6257 this->mapping_symbols_info_.lower_bound(section_start);
6258
6259 // There are no mapping symbols for this section. Treat it as a data-only
61163dfa 6260 // section.
c8761b9a 6261 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
61163dfa 6262 return;
c8761b9a 6263
cb1be87e
DK
6264 Arm_address output_address =
6265 this->simple_input_section_output_address(shndx, os);
44272192
DK
6266
6267 // Get the section contents.
6268 section_size_type input_view_size = 0;
6269 const unsigned char* input_view =
6270 this->section_contents(shndx, &input_view_size, false);
6271
6272 // We need to go through the mapping symbols to determine what to
6273 // scan. There are two reasons. First, we should look at THUMB code and
6274 // THUMB code only. Second, we only want to look at the 4K-page boundary
6275 // to speed up the scanning.
2e702c99 6276
44272192
DK
6277 while (p != this->mapping_symbols_info_.end()
6278 && p->first.first == shndx)
6279 {
6280 typename Mapping_symbols_info::const_iterator next =
6281 this->mapping_symbols_info_.upper_bound(p->first);
6282
6283 // Only scan part of a section with THUMB code.
6284 if (p->second == 't')
6285 {
6286 // Determine the end of this range.
6287 section_size_type span_start =
6288 convert_to_section_size_type(p->first.second);
6289 section_size_type span_end;
6290 if (next != this->mapping_symbols_info_.end()
6291 && next->first.first == shndx)
6292 span_end = convert_to_section_size_type(next->first.second);
6293 else
6294 span_end = convert_to_section_size_type(shdr.get_sh_size());
2e702c99 6295
44272192
DK
6296 if (((span_start + output_address) & ~0xfffUL)
6297 != ((span_end + output_address - 1) & ~0xfffUL))
6298 {
6299 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6300 span_start, span_end,
6301 input_view,
6302 output_address);
6303 }
6304 }
6305
2e702c99 6306 p = next;
44272192
DK
6307 }
6308}
6309
8ffa3667
DK
6310// Scan relocations for stub generation.
6311
6312template<bool big_endian>
6313void
6314Arm_relobj<big_endian>::scan_sections_for_stubs(
6315 Target_arm<big_endian>* arm_target,
6316 const Symbol_table* symtab,
2ea97941 6317 const Layout* layout)
8ffa3667 6318{
2ea97941
ILT
6319 unsigned int shnum = this->shnum();
6320 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6321
6322 // Read the section headers.
6323 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6324 shnum * shdr_size,
8ffa3667
DK
6325 true, true);
6326
6327 // To speed up processing, we set up hash tables for fast lookup of
6328 // input offsets to output addresses.
6329 this->initialize_input_to_output_maps();
6330
6331 const Relobj::Output_sections& out_sections(this->output_sections());
6332
6333 Relocate_info<32, big_endian> relinfo;
8ffa3667 6334 relinfo.symtab = symtab;
2ea97941 6335 relinfo.layout = layout;
8ffa3667
DK
6336 relinfo.object = this;
6337
44272192 6338 // Do relocation stubs scanning.
2ea97941
ILT
6339 const unsigned char* p = pshdrs + shdr_size;
6340 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6341 {
44272192 6342 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6343 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6344 pshdrs))
8ffa3667 6345 {
44272192
DK
6346 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6347 Arm_address output_offset = this->get_output_section_offset(index);
6348 Arm_address output_address;
7296d933 6349 if (output_offset != invalid_address)
44272192
DK
6350 output_address = out_sections[index]->address() + output_offset;
6351 else
6352 {
6353 // Currently this only happens for a relaxed section.
6354 const Output_relaxed_input_section* poris =
6355 out_sections[index]->find_relaxed_input_section(this, index);
6356 gold_assert(poris != NULL);
6357 output_address = poris->address();
6358 }
8ffa3667 6359
44272192
DK
6360 // Get the relocations.
6361 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6362 shdr.get_sh_size(),
6363 true, false);
6364
6365 // Get the section contents. This does work for the case in which
6366 // we modify the contents of an input section. We need to pass the
6367 // output view under such circumstances.
6368 section_size_type input_view_size = 0;
6369 const unsigned char* input_view =
6370 this->section_contents(index, &input_view_size, false);
6371
6372 relinfo.reloc_shndx = i;
6373 relinfo.data_shndx = index;
6374 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6375 unsigned int reloc_size;
6376 if (sh_type == elfcpp::SHT_REL)
6377 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6378 else
6379 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6380
6381 Output_section* os = out_sections[index];
6382 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6383 shdr.get_sh_size() / reloc_size,
6384 os,
6385 output_offset == invalid_address,
6386 input_view, output_address,
6387 input_view_size);
8ffa3667 6388 }
44272192 6389 }
8ffa3667 6390
44272192
DK
6391 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6392 // after its relocation section, if there is one, is processed for
6393 // relocation stubs. Merging this loop with the one above would have been
6394 // complicated since we would have had to make sure that relocation stub
6395 // scanning is done first.
6396 if (arm_target->fix_cortex_a8())
6397 {
6398 const unsigned char* p = pshdrs + shdr_size;
6399 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6400 {
44272192
DK
6401 const elfcpp::Shdr<32, big_endian> shdr(p);
6402 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6403 out_sections[i],
6404 symtab))
6405 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6406 arm_target);
8ffa3667 6407 }
8ffa3667
DK
6408 }
6409
6410 // After we've done the relocations, we release the hash tables,
6411 // since we no longer need them.
6412 this->free_input_to_output_maps();
6413}
6414
6415// Count the local symbols. The ARM backend needs to know if a symbol
6416// is a THUMB function or not. For global symbols, it is easy because
6417// the Symbol object keeps the ELF symbol type. For local symbol it is
6418// harder because we cannot access this information. So we override the
6419// do_count_local_symbol in parent and scan local symbols to mark
6420// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6421// slow down other ports by calling a per symbol target hook inside
2e702c99 6422// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6423
6424template<bool big_endian>
6425void
6426Arm_relobj<big_endian>::do_count_local_symbols(
6427 Stringpool_template<char>* pool,
6428 Stringpool_template<char>* dynpool)
6429{
6430 // We need to fix-up the values of any local symbols whose type are
6431 // STT_ARM_TFUNC.
2e702c99 6432
8ffa3667 6433 // Ask parent to count the local symbols.
6fa2a40b 6434 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6435 const unsigned int loccount = this->local_symbol_count();
6436 if (loccount == 0)
6437 return;
6438
9b547ce6 6439 // Initialize the thumb function bit-vector.
8ffa3667
DK
6440 std::vector<bool> empty_vector(loccount, false);
6441 this->local_symbol_is_thumb_function_.swap(empty_vector);
6442
6443 // Read the symbol table section header.
2ea97941 6444 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6445 elfcpp::Shdr<32, big_endian>
2ea97941 6446 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6447 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6448
6449 // Read the local symbols.
2ea97941 6450 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6451 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6452 off_t locsize = loccount * sym_size;
8ffa3667
DK
6453 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6454 locsize, true, true);
6455
20138696
DK
6456 // For mapping symbol processing, we need to read the symbol names.
6457 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6458 if (strtab_shndx >= this->shnum())
6459 {
6460 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6461 return;
6462 }
6463
6464 elfcpp::Shdr<32, big_endian>
6465 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6466 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6467 {
6468 this->error(_("symbol table name section has wrong type: %u"),
2e702c99 6469 static_cast<unsigned int>(strtabshdr.get_sh_type()));
20138696
DK
6470 return;
6471 }
6472 const char* pnames =
6473 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6474 strtabshdr.get_sh_size(),
6475 false, false));
6476
8ffa3667
DK
6477 // Loop over the local symbols and mark any local symbols pointing
6478 // to THUMB functions.
6479
6480 // Skip the first dummy symbol.
2ea97941 6481 psyms += sym_size;
6fa2a40b 6482 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6483 this->local_values();
2ea97941 6484 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6485 {
6486 elfcpp::Sym<32, big_endian> sym(psyms);
6487 elfcpp::STT st_type = sym.get_st_type();
6488 Symbol_value<32>& lv((*plocal_values)[i]);
6489 Arm_address input_value = lv.input_value();
6490
20138696
DK
6491 // Check to see if this is a mapping symbol.
6492 const char* sym_name = pnames + sym.get_st_name();
6493 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6494 {
24af6f92
DK
6495 bool is_ordinary;
6496 unsigned int input_shndx =
6497 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6498 gold_assert(is_ordinary);
20138696
DK
6499
6500 // Strip of LSB in case this is a THUMB symbol.
6501 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6502 this->mapping_symbols_info_[msp] = sym_name[1];
6503 }
6504
8ffa3667
DK
6505 if (st_type == elfcpp::STT_ARM_TFUNC
6506 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6507 {
6508 // This is a THUMB function. Mark this and canonicalize the
6509 // symbol value by setting LSB.
6510 this->local_symbol_is_thumb_function_[i] = true;
6511 if ((input_value & 1) == 0)
6512 lv.set_input_value(input_value | 1);
6513 }
6514 }
6515}
6516
6517// Relocate sections.
6518template<bool big_endian>
6519void
6520Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6521 const Symbol_table* symtab,
2ea97941 6522 const Layout* layout,
8ffa3667 6523 const unsigned char* pshdrs,
aa98ff75 6524 Output_file* of,
6fa2a40b 6525 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6526{
6527 // Call parent to relocate sections.
6fa2a40b 6528 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
2e702c99 6529 pshdrs, of, pviews);
8ffa3667
DK
6530
6531 // We do not generate stubs if doing a relocatable link.
6532 if (parameters->options().relocatable())
6533 return;
6534
6535 // Relocate stub tables.
2ea97941 6536 unsigned int shnum = this->shnum();
8ffa3667
DK
6537
6538 Target_arm<big_endian>* arm_target =
6539 Target_arm<big_endian>::default_target();
6540
6541 Relocate_info<32, big_endian> relinfo;
8ffa3667 6542 relinfo.symtab = symtab;
2ea97941 6543 relinfo.layout = layout;
8ffa3667
DK
6544 relinfo.object = this;
6545
2ea97941 6546 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6547 {
6548 Arm_input_section<big_endian>* arm_input_section =
6549 arm_target->find_arm_input_section(this, i);
6550
41263c05
DK
6551 if (arm_input_section != NULL
6552 && arm_input_section->is_stub_table_owner()
6553 && !arm_input_section->stub_table()->empty())
6554 {
6555 // We cannot discard a section if it owns a stub table.
6556 Output_section* os = this->output_section(i);
6557 gold_assert(os != NULL);
6558
6559 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6560 relinfo.reloc_shdr = NULL;
6561 relinfo.data_shndx = i;
6562 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6563
6564 gold_assert((*pviews)[i].view != NULL);
6565
6566 // We are passed the output section view. Adjust it to cover the
6567 // stub table only.
6568 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6569 gold_assert((stub_table->address() >= (*pviews)[i].address)
6570 && ((stub_table->address() + stub_table->data_size())
6571 <= (*pviews)[i].address + (*pviews)[i].view_size));
6572
6573 off_t offset = stub_table->address() - (*pviews)[i].address;
6574 unsigned char* view = (*pviews)[i].view + offset;
6575 Arm_address address = stub_table->address();
6576 section_size_type view_size = stub_table->data_size();
2e702c99 6577
41263c05
DK
6578 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6579 view_size);
6580 }
6581
6582 // Apply Cortex A8 workaround if applicable.
6583 if (this->section_has_cortex_a8_workaround(i))
6584 {
6585 unsigned char* view = (*pviews)[i].view;
6586 Arm_address view_address = (*pviews)[i].address;
6587 section_size_type view_size = (*pviews)[i].view_size;
6588 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6589
6590 // Adjust view to cover section.
6591 Output_section* os = this->output_section(i);
6592 gold_assert(os != NULL);
cb1be87e
DK
6593 Arm_address section_address =
6594 this->simple_input_section_output_address(i, os);
41263c05
DK
6595 uint64_t section_size = this->section_size(i);
6596
6597 gold_assert(section_address >= view_address
6598 && ((section_address + section_size)
6599 <= (view_address + view_size)));
6600
6601 unsigned char* section_view = view + (section_address - view_address);
6602
6603 // Apply the Cortex-A8 workaround to the output address range
6604 // corresponding to this input section.
6605 stub_table->apply_cortex_a8_workaround_to_address_range(
6606 arm_target,
6607 section_view,
6608 section_address,
6609 section_size);
6610 }
8ffa3667
DK
6611 }
6612}
6613
9b547ce6 6614// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6615// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6616// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6617// its section header. However, some tools are broken and the link is not
6618// always set. LD just drops such an EXIDX section silently, causing the
6619// associated code not unwindabled. Here we try a little bit harder to
6620// discover the linked code section.
6621//
6622// PSHDR points to the section header of a relocation section of an EXIDX
6623// section. If we can find a linked text section, return true and
6624// store the text section index in the location PSHNDX. Otherwise
6625// return false.
a0351a69
DK
6626
6627template<bool big_endian>
c8761b9a
DK
6628bool
6629Arm_relobj<big_endian>::find_linked_text_section(
6630 const unsigned char* pshdr,
6631 const unsigned char* psyms,
6632 unsigned int* pshndx)
a0351a69 6633{
c8761b9a 6634 elfcpp::Shdr<32, big_endian> shdr(pshdr);
2e702c99 6635
c8761b9a
DK
6636 // If there is no relocation, we cannot find the linked text section.
6637 size_t reloc_size;
6638 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6639 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6640 else
6641 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6642 size_t reloc_count = shdr.get_sh_size() / reloc_size;
2e702c99 6643
c8761b9a
DK
6644 // Get the relocations.
6645 const unsigned char* prelocs =
2e702c99 6646 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6647
c8761b9a
DK
6648 // Find the REL31 relocation for the first word of the first EXIDX entry.
6649 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6650 {
c8761b9a
DK
6651 Arm_address r_offset;
6652 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6653 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6654 {
6655 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6656 r_info = reloc.get_r_info();
6657 r_offset = reloc.get_r_offset();
6658 }
6659 else
6660 {
6661 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6662 r_info = reloc.get_r_info();
6663 r_offset = reloc.get_r_offset();
6664 }
6665
6666 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6667 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6668 continue;
6669
6670 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6671 if (r_sym == 0
6672 || r_sym >= this->local_symbol_count()
6673 || r_offset != 0)
6674 continue;
6675
6676 // This is the relocation for the first word of the first EXIDX entry.
6677 // We expect to see a local section symbol.
6678 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6679 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6680 if (sym.get_st_type() == elfcpp::STT_SECTION)
6681 {
24af6f92
DK
6682 bool is_ordinary;
6683 *pshndx =
6684 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6685 gold_assert(is_ordinary);
c8761b9a
DK
6686 return true;
6687 }
6688 else
6689 return false;
993d07c1 6690 }
c8761b9a
DK
6691
6692 return false;
6693}
6694
6695// Make an EXIDX input section object for an EXIDX section whose index is
6696// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6697// is the section index of the linked text section.
6698
6699template<bool big_endian>
6700void
6701Arm_relobj<big_endian>::make_exidx_input_section(
6702 unsigned int shndx,
6703 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6704 unsigned int text_shndx,
6705 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6706{
993d07c1
DK
6707 // Create an Arm_exidx_input_section object for this EXIDX section.
6708 Arm_exidx_input_section* exidx_input_section =
6709 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6710 shdr.get_sh_addralign(),
6711 text_shdr.get_sh_size());
993d07c1 6712
993d07c1
DK
6713 gold_assert(this->exidx_section_map_[shndx] == NULL);
6714 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6715
6716 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6717 {
6718 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6719 this->section_name(shndx).c_str(), shndx, text_shndx,
6720 this->name().c_str());
6721 exidx_input_section->set_has_errors();
2e702c99 6722 }
131687b4
DK
6723 else if (this->exidx_section_map_[text_shndx] != NULL)
6724 {
6725 unsigned other_exidx_shndx =
6726 this->exidx_section_map_[text_shndx]->shndx();
6727 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6728 "%s(%u) in %s"),
6729 this->section_name(shndx).c_str(), shndx,
6730 this->section_name(other_exidx_shndx).c_str(),
6731 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6732 text_shndx, this->name().c_str());
6733 exidx_input_section->set_has_errors();
6734 }
6735 else
6736 this->exidx_section_map_[text_shndx] = exidx_input_section;
6737
6738 // Check section flags of text section.
6739 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6740 {
6741 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6742 " in %s"),
6743 this->section_name(shndx).c_str(), shndx,
6744 this->section_name(text_shndx).c_str(), text_shndx,
6745 this->name().c_str());
6746 exidx_input_section->set_has_errors();
6747 }
6748 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6749 // I would like to make this an error but currently ld just ignores
131687b4
DK
6750 // this.
6751 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6752 "%s(%u) in %s"),
6753 this->section_name(shndx).c_str(), shndx,
6754 this->section_name(text_shndx).c_str(), text_shndx,
6755 this->name().c_str());
a0351a69
DK
6756}
6757
d5b40221
DK
6758// Read the symbol information.
6759
6760template<bool big_endian>
6761void
6762Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6763{
6764 // Call parent class to read symbol information.
f35c4853 6765 this->base_read_symbols(sd);
d5b40221 6766
7296d933
DK
6767 // If this input file is a binary file, it has no processor
6768 // specific flags and attributes section.
6769 Input_file::Format format = this->input_file()->format();
6770 if (format != Input_file::FORMAT_ELF)
6771 {
6772 gold_assert(format == Input_file::FORMAT_BINARY);
6773 this->merge_flags_and_attributes_ = false;
6774 return;
6775 }
6776
d5b40221
DK
6777 // Read processor-specific flags in ELF file header.
6778 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6779 elfcpp::Elf_sizes<32>::ehdr_size,
6780 true, false);
6781 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6782 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6783
6784 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6785 // sections.
c8761b9a 6786 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6787 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6788 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6789 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6790 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6791 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6792 {
6793 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6794
6795 // Sometimes an object has no contents except the section name string
6796 // table and an empty symbol table with the undefined symbol. We
6797 // don't want to merge processor-specific flags from such an object.
6798 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6799 {
6800 // Symbol table is not empty.
6801 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6802 elfcpp::Elf_sizes<32>::sym_size;
6803 if (shdr.get_sh_size() > sym_size)
6804 must_merge_flags_and_attributes = true;
6805 }
6806 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6807 // If this is neither an empty symbol table nor a string table,
6808 // be conservative.
6809 must_merge_flags_and_attributes = true;
6810
993d07c1
DK
6811 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6812 {
2e702c99 6813 gold_assert(this->attributes_section_data_ == NULL);
993d07c1
DK
6814 section_offset_type section_offset = shdr.get_sh_offset();
6815 section_size_type section_size =
6816 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6817 const unsigned char* view =
6818 this->get_view(section_offset, section_size, true, false);
993d07c1 6819 this->attributes_section_data_ =
f625ae50 6820 new Attributes_section_data(view, section_size);
993d07c1
DK
6821 }
6822 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6823 {
6824 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6825 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6826 deferred_exidx_sections.push_back(i);
6827 else
131687b4
DK
6828 {
6829 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6830 + text_shndx * shdr_size);
6831 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6832 }
c9484ea5
DK
6833 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6834 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6835 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6836 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6837 }
6838 }
6839
7296d933
DK
6840 // This is rare.
6841 if (!must_merge_flags_and_attributes)
6842 {
131687b4 6843 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6844 this->merge_flags_and_attributes_ = false;
6845 return;
6846 }
6847
2e702c99 6848 // Some tools are broken and they do not set the link of EXIDX sections.
c8761b9a
DK
6849 // We look at the first relocation to figure out the linked sections.
6850 if (!deferred_exidx_sections.empty())
6851 {
6852 // We need to go over the section headers again to find the mapping
6853 // from sections being relocated to their relocation sections. This is
6854 // a bit inefficient as we could do that in the loop above. However,
6855 // we do not expect any deferred EXIDX sections normally. So we do not
6856 // want to slow down the most common path.
6857 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6858 Reloc_map reloc_map;
6859 ps = pshdrs + shdr_size;
6860 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6861 {
6862 elfcpp::Shdr<32, big_endian> shdr(ps);
6863 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6864 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6865 {
6866 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6867 if (info_shndx >= this->shnum())
6868 gold_error(_("relocation section %u has invalid info %u"),
6869 i, info_shndx);
6870 Reloc_map::value_type value(info_shndx, i);
6871 std::pair<Reloc_map::iterator, bool> result =
6872 reloc_map.insert(value);
6873 if (!result.second)
6874 gold_error(_("section %u has multiple relocation sections "
6875 "%u and %u"),
6876 info_shndx, i, reloc_map[info_shndx]);
6877 }
6878 }
6879
6880 // Read the symbol table section header.
6881 const unsigned int symtab_shndx = this->symtab_shndx();
6882 elfcpp::Shdr<32, big_endian>
6883 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6884 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6885
6886 // Read the local symbols.
6887 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6888 const unsigned int loccount = this->local_symbol_count();
6889 gold_assert(loccount == symtabshdr.get_sh_info());
6890 off_t locsize = loccount * sym_size;
6891 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6892 locsize, true, true);
6893
2e702c99 6894 // Process the deferred EXIDX sections.
f625ae50 6895 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6896 {
6897 unsigned int shndx = deferred_exidx_sections[i];
6898 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6899 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6900 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6901 if (it != reloc_map.end())
6902 find_linked_text_section(pshdrs + it->second * shdr_size,
6903 psyms, &text_shndx);
6904 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6905 + text_shndx * shdr_size);
6906 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6907 }
993d07c1 6908 }
d5b40221
DK
6909}
6910
99e5bff2 6911// Process relocations for garbage collection. The ARM target uses .ARM.exidx
2e702c99 6912// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6913// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6914// references, the .ARM.exidx sections and any .ARM.extab sections they use
6915// will be garbage-collected incorrectly. Hence we override the same function
6916// in the base class to handle these implicit references.
6917
6918template<bool big_endian>
6919void
6920Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6921 Layout* layout,
6922 Read_relocs_data* rd)
6923{
6924 // First, call base class method to process relocations in this object.
6fa2a40b 6925 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6926
4a54abbb
DK
6927 // If --gc-sections is not specified, there is nothing more to do.
6928 // This happens when --icf is used but --gc-sections is not.
6929 if (!parameters->options().gc_sections())
6930 return;
2e702c99 6931
99e5bff2
DK
6932 unsigned int shnum = this->shnum();
6933 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6934 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6935 shnum * shdr_size,
6936 true, true);
6937
6938 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6939 // to these from the linked text sections.
6940 const unsigned char* ps = pshdrs + shdr_size;
6941 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6942 {
6943 elfcpp::Shdr<32, big_endian> shdr(ps);
6944 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6945 {
6946 // Found an .ARM.exidx section, add it to the set of reachable
6947 // sections from its linked text section.
6948 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6949 symtab->gc()->add_reference(this, text_shndx, this, i);
6950 }
6951 }
6952}
6953
e7eca48c
DK
6954// Update output local symbol count. Owing to EXIDX entry merging, some local
6955// symbols will be removed in output. Adjust output local symbol count
6956// accordingly. We can only changed the static output local symbol count. It
6957// is too late to change the dynamic symbols.
6958
6959template<bool big_endian>
6960void
6961Arm_relobj<big_endian>::update_output_local_symbol_count()
6962{
6963 // Caller should check that this needs updating. We want caller checking
6964 // because output_local_symbol_count_needs_update() is most likely inlined.
6965 gold_assert(this->output_local_symbol_count_needs_update_);
6966
6967 gold_assert(this->symtab_shndx() != -1U);
6968 if (this->symtab_shndx() == 0)
6969 {
6970 // This object has no symbols. Weird but legal.
6971 return;
6972 }
6973
6974 // Read the symbol table section header.
6975 const unsigned int symtab_shndx = this->symtab_shndx();
6976 elfcpp::Shdr<32, big_endian>
6977 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6978 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6979
6980 // Read the local symbols.
6981 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6982 const unsigned int loccount = this->local_symbol_count();
6983 gold_assert(loccount == symtabshdr.get_sh_info());
6984 off_t locsize = loccount * sym_size;
6985 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6986 locsize, true, true);
6987
6988 // Loop over the local symbols.
6989
6fa2a40b 6990 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6991 Output_sections;
6992 const Output_sections& out_sections(this->output_sections());
6993 unsigned int shnum = this->shnum();
6994 unsigned int count = 0;
6995 // Skip the first, dummy, symbol.
6996 psyms += sym_size;
6997 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6998 {
6999 elfcpp::Sym<32, big_endian> sym(psyms);
7000
7001 Symbol_value<32>& lv((*this->local_values())[i]);
7002
7003 // This local symbol was already discarded by do_count_local_symbols.
9177756d 7004 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
7005 continue;
7006
7007 bool is_ordinary;
7008 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
7009 &is_ordinary);
7010
7011 if (shndx < shnum)
7012 {
7013 Output_section* os = out_sections[shndx];
7014
7015 // This local symbol no longer has an output section. Discard it.
7016 if (os == NULL)
7017 {
7018 lv.set_no_output_symtab_entry();
7019 continue;
7020 }
7021
7022 // Currently we only discard parts of EXIDX input sections.
7023 // We explicitly check for a merged EXIDX input section to avoid
7024 // calling Output_section_data::output_offset unless necessary.
7025 if ((this->get_output_section_offset(shndx) == invalid_address)
7026 && (this->exidx_input_section_by_shndx(shndx) != NULL))
7027 {
7028 section_offset_type output_offset =
7029 os->output_offset(this, shndx, lv.input_value());
7030 if (output_offset == -1)
7031 {
7032 // This symbol is defined in a part of an EXIDX input section
7033 // that is discarded due to entry merging.
7034 lv.set_no_output_symtab_entry();
7035 continue;
2e702c99 7036 }
e7eca48c
DK
7037 }
7038 }
7039
7040 ++count;
7041 }
7042
7043 this->set_output_local_symbol_count(count);
7044 this->output_local_symbol_count_needs_update_ = false;
7045}
7046
d5b40221
DK
7047// Arm_dynobj methods.
7048
7049// Read the symbol information.
7050
7051template<bool big_endian>
7052void
7053Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
7054{
7055 // Call parent class to read symbol information.
f35c4853 7056 this->base_read_symbols(sd);
d5b40221
DK
7057
7058 // Read processor-specific flags in ELF file header.
7059 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7060 elfcpp::Elf_sizes<32>::ehdr_size,
7061 true, false);
7062 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7063 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7064
7065 // Read the attributes section if there is one.
7066 // We read from the end because gas seems to put it near the end of
7067 // the section headers.
7068 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7069 const unsigned char* ps =
993d07c1
DK
7070 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7071 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7072 {
7073 elfcpp::Shdr<32, big_endian> shdr(ps);
7074 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7075 {
7076 section_offset_type section_offset = shdr.get_sh_offset();
7077 section_size_type section_size =
7078 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7079 const unsigned char* view =
7080 this->get_view(section_offset, section_size, true, false);
993d07c1 7081 this->attributes_section_data_ =
f625ae50 7082 new Attributes_section_data(view, section_size);
993d07c1
DK
7083 break;
7084 }
7085 }
d5b40221
DK
7086}
7087
e9bbb538
DK
7088// Stub_addend_reader methods.
7089
7090// Read the addend of a REL relocation of type R_TYPE at VIEW.
7091
7092template<bool big_endian>
7093elfcpp::Elf_types<32>::Elf_Swxword
7094Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7095 unsigned int r_type,
7096 const unsigned char* view,
7097 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7098{
2c54b4f4 7099 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
2e702c99 7100
e9bbb538
DK
7101 switch (r_type)
7102 {
7103 case elfcpp::R_ARM_CALL:
7104 case elfcpp::R_ARM_JUMP24:
7105 case elfcpp::R_ARM_PLT32:
7106 {
7107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7108 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7109 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7110 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7111 }
7112
7113 case elfcpp::R_ARM_THM_CALL:
7114 case elfcpp::R_ARM_THM_JUMP24:
7115 case elfcpp::R_ARM_THM_XPC22:
7116 {
e9bbb538
DK
7117 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7118 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7119 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7120 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7121 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7122 }
7123
7124 case elfcpp::R_ARM_THM_JUMP19:
7125 {
7126 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7127 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7128 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7129 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7130 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7131 }
7132
7133 default:
7134 gold_unreachable();
7135 }
7136}
7137
4a54abbb
DK
7138// Arm_output_data_got methods.
7139
7140// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7141// The first one is initialized to be 1, which is the module index for
7142// the main executable and the second one 0. A reloc of the type
7143// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7144// be applied by gold. GSYM is a global symbol.
7145//
7146template<bool big_endian>
7147void
7148Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7149 unsigned int got_type,
7150 Symbol* gsym)
7151{
7152 if (gsym->has_got_offset(got_type))
7153 return;
7154
7155 // We are doing a static link. Just mark it as belong to module 1,
7156 // the executable.
7157 unsigned int got_offset = this->add_constant(1);
2e702c99 7158 gsym->set_got_offset(got_type, got_offset);
4a54abbb
DK
7159 got_offset = this->add_constant(0);
7160 this->static_relocs_.push_back(Static_reloc(got_offset,
7161 elfcpp::R_ARM_TLS_DTPOFF32,
7162 gsym));
7163}
7164
7165// Same as the above but for a local symbol.
7166
7167template<bool big_endian>
7168void
7169Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7170 unsigned int got_type,
6fa2a40b 7171 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7172 unsigned int index)
7173{
7174 if (object->local_has_got_offset(index, got_type))
7175 return;
7176
7177 // We are doing a static link. Just mark it as belong to module 1,
7178 // the executable.
7179 unsigned int got_offset = this->add_constant(1);
7180 object->set_local_got_offset(index, got_type, got_offset);
7181 got_offset = this->add_constant(0);
2e702c99
RM
7182 this->static_relocs_.push_back(Static_reloc(got_offset,
7183 elfcpp::R_ARM_TLS_DTPOFF32,
4a54abbb
DK
7184 object, index));
7185}
7186
7187template<bool big_endian>
7188void
7189Arm_output_data_got<big_endian>::do_write(Output_file* of)
7190{
7191 // Call parent to write out GOT.
7192 Output_data_got<32, big_endian>::do_write(of);
7193
7194 // We are done if there is no fix up.
7195 if (this->static_relocs_.empty())
7196 return;
7197
7198 gold_assert(parameters->doing_static_link());
7199
7200 const off_t offset = this->offset();
7201 const section_size_type oview_size =
7202 convert_to_section_size_type(this->data_size());
7203 unsigned char* const oview = of->get_output_view(offset, oview_size);
7204
7205 Output_segment* tls_segment = this->layout_->tls_segment();
7206 gold_assert(tls_segment != NULL);
2e702c99 7207
4a54abbb
DK
7208 // The thread pointer $tp points to the TCB, which is followed by the
7209 // TLS. So we need to adjust $tp relative addressing by this amount.
7210 Arm_address aligned_tcb_size =
7211 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7212
7213 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7214 {
7215 Static_reloc& reloc(this->static_relocs_[i]);
2e702c99 7216
4a54abbb
DK
7217 Arm_address value;
7218 if (!reloc.symbol_is_global())
7219 {
6fa2a40b 7220 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7221 const Symbol_value<32>* psymval =
7222 reloc.relobj()->local_symbol(reloc.index());
7223
7224 // We are doing static linking. Issue an error and skip this
7225 // relocation if the symbol is undefined or in a discarded_section.
7226 bool is_ordinary;
7227 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7228 if ((shndx == elfcpp::SHN_UNDEF)
7229 || (is_ordinary
7230 && shndx != elfcpp::SHN_UNDEF
7231 && !object->is_section_included(shndx)
7232 && !this->symbol_table_->is_section_folded(object, shndx)))
7233 {
7234 gold_error(_("undefined or discarded local symbol %u from "
7235 " object %s in GOT"),
7236 reloc.index(), reloc.relobj()->name().c_str());
7237 continue;
7238 }
2e702c99 7239
4a54abbb
DK
7240 value = psymval->value(object, 0);
7241 }
7242 else
7243 {
7244 const Symbol* gsym = reloc.symbol();
7245 gold_assert(gsym != NULL);
7246 if (gsym->is_forwarder())
7247 gsym = this->symbol_table_->resolve_forwards(gsym);
7248
7249 // We are doing static linking. Issue an error and skip this
7250 // relocation if the symbol is undefined or in a discarded_section
7251 // unless it is a weakly_undefined symbol.
7252 if ((gsym->is_defined_in_discarded_section()
7253 || gsym->is_undefined())
7254 && !gsym->is_weak_undefined())
7255 {
7256 gold_error(_("undefined or discarded symbol %s in GOT"),
7257 gsym->name());
7258 continue;
7259 }
7260
7261 if (!gsym->is_weak_undefined())
7262 {
7263 const Sized_symbol<32>* sym =
7264 static_cast<const Sized_symbol<32>*>(gsym);
7265 value = sym->value();
7266 }
7267 else
7268 value = 0;
7269 }
7270
7271 unsigned got_offset = reloc.got_offset();
7272 gold_assert(got_offset < oview_size);
7273
7274 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7275 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7276 Valtype x;
7277 switch (reloc.r_type())
7278 {
7279 case elfcpp::R_ARM_TLS_DTPOFF32:
7280 x = value;
7281 break;
7282 case elfcpp::R_ARM_TLS_TPOFF32:
7283 x = value + aligned_tcb_size;
7284 break;
7285 default:
7286 gold_unreachable();
7287 }
7288 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7289 }
7290
7291 of->write_output_view(offset, oview_size, oview);
7292}
7293
94cdfcff 7294// A class to handle the PLT data.
2e702c99
RM
7295// This is an abstract base class that handles most of the linker details
7296// but does not know the actual contents of PLT entries. The derived
7297// classes below fill in those details.
94cdfcff
DK
7298
7299template<bool big_endian>
7300class Output_data_plt_arm : public Output_section_data
7301{
7302 public:
fa89cc82
HS
7303 // Unlike aarch64, which records symbol value in "addend" field of relocations
7304 // and could be done at the same time an IRelative reloc is created for the
7305 // symbol, arm puts the symbol value into "GOT" table, which, however, is
7306 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
7307 // to keep necessary symbol information for later use in do_write. We usually
7308 // have only a very limited number of ifuncs, so the extra data required here
7309 // is also limited.
7310
7311 struct IRelative_data
7312 {
7313 IRelative_data(Sized_symbol<32>* sized_symbol)
7314 : symbol_is_global_(true)
7315 {
7316 u_.global = sized_symbol;
7317 }
7318
7319 IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
7320 unsigned int index)
7321 : symbol_is_global_(false)
7322 {
7323 u_.local.relobj = relobj;
7324 u_.local.index = index;
7325 }
7326
7327 union
7328 {
7329 Sized_symbol<32>* global;
7330
7331 struct
7332 {
7333 Sized_relobj_file<32, big_endian>* relobj;
7334 unsigned int index;
7335 } local;
7336 } u_;
7337
7338 bool symbol_is_global_;
7339 };
7340
94cdfcff
DK
7341 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7342 Reloc_section;
7343
fa89cc82
HS
7344 Output_data_plt_arm(Layout* layout, uint64_t addralign,
7345 Arm_output_data_got<big_endian>* got,
7346 Output_data_space* got_plt,
7347 Output_data_space* got_irelative);
94cdfcff
DK
7348
7349 // Add an entry to the PLT.
7350 void
fa89cc82
HS
7351 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);
7352
7353 // Add the relocation for a plt entry.
7354 void
7355 add_relocation(Symbol_table* symtab, Layout* layout,
7356 Symbol* gsym, unsigned int got_offset);
7357
7358 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
7359 unsigned int
7360 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
7361 Sized_relobj_file<32, big_endian>* relobj,
7362 unsigned int local_sym_index);
94cdfcff
DK
7363
7364 // Return the .rel.plt section data.
7365 const Reloc_section*
7366 rel_plt() const
7367 { return this->rel_; }
7368
fa89cc82
HS
7369 // Return the PLT relocation container for IRELATIVE.
7370 Reloc_section*
7371 rel_irelative(Symbol_table*, Layout*);
7372
0e70b911
CC
7373 // Return the number of PLT entries.
7374 unsigned int
7375 entry_count() const
fa89cc82 7376 { return this->count_ + this->irelative_count_; }
0e70b911
CC
7377
7378 // Return the offset of the first non-reserved PLT entry.
2e702c99
RM
7379 unsigned int
7380 first_plt_entry_offset() const
7381 { return this->do_first_plt_entry_offset(); }
0e70b911
CC
7382
7383 // Return the size of a PLT entry.
2e702c99
RM
7384 unsigned int
7385 get_plt_entry_size() const
7386 { return this->do_get_plt_entry_size(); }
0e70b911 7387
fa89cc82
HS
7388 // Return the PLT address for globals.
7389 uint32_t
7390 address_for_global(const Symbol*) const;
7391
7392 // Return the PLT address for locals.
7393 uint32_t
7394 address_for_local(const Relobj*, unsigned int symndx) const;
7395
94cdfcff 7396 protected:
2e702c99
RM
7397 // Fill in the first PLT entry.
7398 void
7399 fill_first_plt_entry(unsigned char* pov,
7400 Arm_address got_address,
7401 Arm_address plt_address)
7402 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
7403
7404 void
7405 fill_plt_entry(unsigned char* pov,
7406 Arm_address got_address,
7407 Arm_address plt_address,
7408 unsigned int got_offset,
7409 unsigned int plt_offset)
7410 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }
7411
7412 virtual unsigned int
7413 do_first_plt_entry_offset() const = 0;
7414
7415 virtual unsigned int
7416 do_get_plt_entry_size() const = 0;
7417
7418 virtual void
7419 do_fill_first_plt_entry(unsigned char* pov,
7420 Arm_address got_address,
7421 Arm_address plt_address) = 0;
7422
7423 virtual void
7424 do_fill_plt_entry(unsigned char* pov,
7425 Arm_address got_address,
7426 Arm_address plt_address,
7427 unsigned int got_offset,
7428 unsigned int plt_offset) = 0;
7429
94cdfcff
DK
7430 void
7431 do_adjust_output_section(Output_section* os);
7432
7433 // Write to a map file.
7434 void
7435 do_print_to_mapfile(Mapfile* mapfile) const
7436 { mapfile->print_output_data(this, _("** PLT")); }
7437
7438 private:
94cdfcff
DK
7439 // Set the final size.
7440 void
7441 set_final_data_size()
7442 {
2e702c99 7443 this->set_data_size(this->first_plt_entry_offset()
fa89cc82
HS
7444 + ((this->count_ + this->irelative_count_)
7445 * this->get_plt_entry_size()));
94cdfcff
DK
7446 }
7447
7448 // Write out the PLT data.
7449 void
7450 do_write(Output_file*);
7451
fa89cc82
HS
7452 // Record irelative symbol data.
7453 void insert_irelative_data(const IRelative_data& idata)
7454 { irelative_data_vec_.push_back(idata); }
7455
94cdfcff
DK
7456 // The reloc section.
7457 Reloc_section* rel_;
fa89cc82
HS
7458 // The IRELATIVE relocs, if necessary. These must follow the
7459 // regular PLT relocations.
7460 Reloc_section* irelative_rel_;
7461 // The .got section.
7462 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
7463 // The .got.plt section.
7464 Output_data_space* got_plt_;
fa89cc82
HS
7465 // The part of the .got.plt section used for IRELATIVE relocs.
7466 Output_data_space* got_irelative_;
94cdfcff
DK
7467 // The number of PLT entries.
7468 unsigned int count_;
fa89cc82
HS
7469 // Number of PLT entries with R_ARM_IRELATIVE relocs. These
7470 // follow the regular PLT entries.
7471 unsigned int irelative_count_;
7472 // Vector for irelative data.
7473 typedef std::vector<IRelative_data> IRelative_data_vec;
7474 IRelative_data_vec irelative_data_vec_;
94cdfcff
DK
7475};
7476
7477// Create the PLT section. The ordinary .got section is an argument,
7478// since we need to refer to the start. We also create our own .got
7479// section just for PLT entries.
7480
7481template<bool big_endian>
fa89cc82
HS
7482Output_data_plt_arm<big_endian>::Output_data_plt_arm(
7483 Layout* layout, uint64_t addralign,
7484 Arm_output_data_got<big_endian>* got,
7485 Output_data_space* got_plt,
7486 Output_data_space* got_irelative)
7487 : Output_section_data(addralign), irelative_rel_(NULL),
7488 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
7489 count_(0), irelative_count_(0)
94cdfcff
DK
7490{
7491 this->rel_ = new Reloc_section(false);
2ea97941 7492 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7493 elfcpp::SHF_ALLOC, this->rel_,
7494 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7495}
7496
7497template<bool big_endian>
7498void
7499Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7500{
7501 os->set_entsize(0);
7502}
7503
7504// Add an entry to the PLT.
7505
7506template<bool big_endian>
7507void
fa89cc82
HS
7508Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
7509 Layout* layout,
7510 Symbol* gsym)
94cdfcff
DK
7511{
7512 gold_assert(!gsym->has_plt_offset());
7513
fa89cc82
HS
7514 unsigned int* entry_count;
7515 Output_section_data_build* got;
7516
7517 // We have 2 different types of plt entry here, normal and ifunc.
7518
7519 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
7520 // 1st entry offset would be 20, the second 32, third 44 ... etc.
7521
7522 // For ifunc plt, the offset begins with 0. So the first offset would 0,
7523 // second 12, third 24 ... etc.
7524
7525 // IFunc plt entries *always* come after *normal* plt entries.
7526
7527 // Notice, when computing the plt address of a certain symbol, "plt_address +
7528 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
7529 // target->plt_address_for_local() instead.
7530
7531 int begin_offset = 0;
7532 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7533 && gsym->can_use_relative_reloc(false))
7534 {
7535 entry_count = &this->irelative_count_;
7536 got = this->got_irelative_;
7537 // For irelative plt entries, offset is relative to the end of normal plt
7538 // entries, so it starts from 0.
7539 begin_offset = 0;
7540 // Record symbol information.
7541 this->insert_irelative_data(
7542 IRelative_data(symtab->get_sized_symbol<32>(gsym)));
7543 }
7544 else
7545 {
7546 entry_count = &this->count_;
7547 got = this->got_plt_;
7548 // Note that for normal plt entries, when setting the PLT offset we skip
7549 // the initial reserved PLT entry.
7550 begin_offset = this->first_plt_entry_offset();
7551 }
7552
7553 gsym->set_plt_offset(begin_offset
7554 + (*entry_count) * this->get_plt_entry_size());
94cdfcff 7555
fa89cc82 7556 ++(*entry_count);
94cdfcff 7557
fa89cc82 7558 section_offset_type got_offset = got->current_data_size();
94cdfcff
DK
7559
7560 // Every PLT entry needs a GOT entry which points back to the PLT
7561 // entry (this will be changed by the dynamic linker, normally
7562 // lazily when the function is called).
fa89cc82 7563 got->set_current_data_size(got_offset + 4);
94cdfcff
DK
7564
7565 // Every PLT entry needs a reloc.
fa89cc82 7566 this->add_relocation(symtab, layout, gsym, got_offset);
94cdfcff
DK
7567
7568 // Note that we don't need to save the symbol. The contents of the
7569 // PLT are independent of which symbols are used. The symbols only
7570 // appear in the relocations.
7571}
7572
fa89cc82
HS
7573// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
7574// the PLT offset.
7575
7576template<bool big_endian>
7577unsigned int
7578Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
7579 Symbol_table* symtab,
7580 Layout* layout,
7581 Sized_relobj_file<32, big_endian>* relobj,
7582 unsigned int local_sym_index)
7583{
7584 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));
7585
7586 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
7587 // no longer correct. Use target->plt_address_for_local() instead.
7588 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
7589 ++this->irelative_count_;
7590
7591 section_offset_type got_offset = this->got_irelative_->current_data_size();
7592
7593 // Every PLT entry needs a GOT entry which points back to the PLT
7594 // entry.
7595 this->got_irelative_->set_current_data_size(got_offset + 4);
7596
7597
7598 // Every PLT entry needs a reloc.
7599 Reloc_section* rel = this->rel_irelative(symtab, layout);
7600 rel->add_symbolless_local_addend(relobj, local_sym_index,
7601 elfcpp::R_ARM_IRELATIVE,
7602 this->got_irelative_, got_offset);
7603 return plt_offset;
7604}
7605
7606
7607// Add the relocation for a PLT entry.
7608
7609template<bool big_endian>
7610void
7611Output_data_plt_arm<big_endian>::add_relocation(
7612 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
7613{
7614 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7615 && gsym->can_use_relative_reloc(false))
7616 {
7617 Reloc_section* rel = this->rel_irelative(symtab, layout);
7618 rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
7619 this->got_irelative_, got_offset);
7620 }
7621 else
7622 {
7623 gsym->set_needs_dynsym_entry();
7624 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7625 got_offset);
7626 }
7627}
7628
7629
7630// Create the irelative relocation data.
7631
7632template<bool big_endian>
7633typename Output_data_plt_arm<big_endian>::Reloc_section*
7634Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
7635 Layout* layout)
7636{
7637 if (this->irelative_rel_ == NULL)
7638 {
7639 // Since irelative relocations goes into 'rel.dyn', we delegate the
7640 // creation of irelative_rel_ to where rel_dyn section gets created.
7641 Target_arm<big_endian>* arm_target =
7642 Target_arm<big_endian>::default_target();
7643 this->irelative_rel_ = arm_target->rel_irelative_section(layout);
7644
7645 // Make sure we have a place for the TLSDESC relocations, in
7646 // case we see any later on.
7647 // this->rel_tlsdesc(layout);
7648 if (parameters->doing_static_link())
7649 {
7650 // A statically linked executable will only have a .rel.plt section to
7651 // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols. The library
7652 // will use these symbols to locate the IRELATIVE relocs at program
7653 // startup time.
7654 symtab->define_in_output_data("__rel_iplt_start", NULL,
7655 Symbol_table::PREDEFINED,
7656 this->irelative_rel_, 0, 0,
7657 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7658 elfcpp::STV_HIDDEN, 0, false, true);
7659 symtab->define_in_output_data("__rel_iplt_end", NULL,
7660 Symbol_table::PREDEFINED,
7661 this->irelative_rel_, 0, 0,
7662 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7663 elfcpp::STV_HIDDEN, 0, true, true);
7664 }
7665 }
7666 return this->irelative_rel_;
7667}
7668
7669
7670// Return the PLT address for a global symbol.
7671
7672template<bool big_endian>
7673uint32_t
7674Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
7675{
7676 uint64_t begin_offset = 0;
7677 if (gsym->type() == elfcpp::STT_GNU_IFUNC
7678 && gsym->can_use_relative_reloc(false))
7679 {
7680 begin_offset = (this->first_plt_entry_offset() +
7681 this->count_ * this->get_plt_entry_size());
7682 }
7683 return this->address() + begin_offset + gsym->plt_offset();
7684}
7685
7686
7687// Return the PLT address for a local symbol. These are always
7688// IRELATIVE relocs.
7689
7690template<bool big_endian>
7691uint32_t
7692Output_data_plt_arm<big_endian>::address_for_local(
7693 const Relobj* object,
7694 unsigned int r_sym) const
7695{
7696 return (this->address()
7697 + this->first_plt_entry_offset()
7698 + this->count_ * this->get_plt_entry_size()
7699 + object->local_plt_offset(r_sym));
7700}
7701
7702
2e702c99
RM
7703template<bool big_endian>
7704class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
7705{
7706 public:
fa89cc82
HS
7707 Output_data_plt_arm_standard(Layout* layout,
7708 Arm_output_data_got<big_endian>* got,
7709 Output_data_space* got_plt,
7710 Output_data_space* got_irelative)
7711 : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
2e702c99
RM
7712 { }
7713
7714 protected:
7715 // Return the offset of the first non-reserved PLT entry.
7716 virtual unsigned int
7717 do_first_plt_entry_offset() const
7718 { return sizeof(first_plt_entry); }
7719
7720 // Return the size of a PLT entry.
7721 virtual unsigned int
7722 do_get_plt_entry_size() const
7723 { return sizeof(plt_entry); }
7724
7725 virtual void
7726 do_fill_first_plt_entry(unsigned char* pov,
7727 Arm_address got_address,
7728 Arm_address plt_address);
7729
7730 virtual void
7731 do_fill_plt_entry(unsigned char* pov,
7732 Arm_address got_address,
7733 Arm_address plt_address,
7734 unsigned int got_offset,
7735 unsigned int plt_offset);
7736
7737 private:
7738 // Template for the first PLT entry.
7739 static const uint32_t first_plt_entry[5];
7740
7741 // Template for subsequent PLT entries.
7742 static const uint32_t plt_entry[3];
7743};
7744
94cdfcff
DK
7745// ARM PLTs.
7746// FIXME: This is not very flexible. Right now this has only been tested
7747// on armv5te. If we are to support additional architecture features like
7748// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7749
7750// The first entry in the PLT.
7751template<bool big_endian>
2e702c99 7752const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
94cdfcff
DK
7753{
7754 0xe52de004, // str lr, [sp, #-4]!
7755 0xe59fe004, // ldr lr, [pc, #4]
2e702c99 7756 0xe08fe00e, // add lr, pc, lr
94cdfcff
DK
7757 0xe5bef008, // ldr pc, [lr, #8]!
7758 0x00000000, // &GOT[0] - .
7759};
7760
2e702c99
RM
7761template<bool big_endian>
7762void
7763Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
7764 unsigned char* pov,
7765 Arm_address got_address,
7766 Arm_address plt_address)
7767{
7768 // Write first PLT entry. All but the last word are constants.
7769 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7770 / sizeof(plt_entry[0]));
7771 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7772 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7773 // Last word in first PLT entry is &GOT[0] - .
7774 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7775 got_address - (plt_address + 16));
7776}
7777
94cdfcff
DK
7778// Subsequent entries in the PLT.
7779
7780template<bool big_endian>
2e702c99 7781const uint32_t Output_data_plt_arm_standard<big_endian>::plt_entry[3] =
94cdfcff
DK
7782{
7783 0xe28fc600, // add ip, pc, #0xNN00000
7784 0xe28cca00, // add ip, ip, #0xNN000
7785 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7786};
7787
2e702c99
RM
7788template<bool big_endian>
7789void
7790Output_data_plt_arm_standard<big_endian>::do_fill_plt_entry(
7791 unsigned char* pov,
7792 Arm_address got_address,
7793 Arm_address plt_address,
7794 unsigned int got_offset,
7795 unsigned int plt_offset)
7796{
7797 int32_t offset = ((got_address + got_offset)
7798 - (plt_address + plt_offset + 8));
7799
7800 gold_assert(offset >= 0 && offset < 0x0fffffff);
7801 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
7802 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
7803 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
7804 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
7805 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
7806 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7807}
7808
94cdfcff
DK
7809// Write out the PLT. This uses the hand-coded instructions above,
7810// and adjusts them as needed. This is all specified by the arm ELF
7811// Processor Supplement.
7812
7813template<bool big_endian>
7814void
7815Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7816{
2ea97941 7817 const off_t offset = this->offset();
94cdfcff
DK
7818 const section_size_type oview_size =
7819 convert_to_section_size_type(this->data_size());
2ea97941 7820 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7821
7822 const off_t got_file_offset = this->got_plt_->offset();
fa89cc82
HS
7823 gold_assert(got_file_offset + this->got_plt_->data_size()
7824 == this->got_irelative_->offset());
94cdfcff 7825 const section_size_type got_size =
fa89cc82
HS
7826 convert_to_section_size_type(this->got_plt_->data_size()
7827 + this->got_irelative_->data_size());
94cdfcff
DK
7828 unsigned char* const got_view = of->get_output_view(got_file_offset,
7829 got_size);
7830 unsigned char* pov = oview;
7831
ebabffbd
DK
7832 Arm_address plt_address = this->address();
7833 Arm_address got_address = this->got_plt_->address();
94cdfcff 7834
2e702c99
RM
7835 // Write first PLT entry.
7836 this->fill_first_plt_entry(pov, got_address, plt_address);
7837 pov += this->first_plt_entry_offset();
94cdfcff
DK
7838
7839 unsigned char* got_pov = got_view;
7840
7841 memset(got_pov, 0, 12);
7842 got_pov += 12;
7843
2e702c99 7844 unsigned int plt_offset = this->first_plt_entry_offset();
94cdfcff 7845 unsigned int got_offset = 12;
fa89cc82
HS
7846 const unsigned int count = this->count_ + this->irelative_count_;
7847 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
94cdfcff
DK
7848 for (unsigned int i = 0;
7849 i < count;
7850 ++i,
2e702c99 7851 pov += this->get_plt_entry_size(),
94cdfcff 7852 got_pov += 4,
2e702c99 7853 plt_offset += this->get_plt_entry_size(),
94cdfcff
DK
7854 got_offset += 4)
7855 {
7856 // Set and adjust the PLT entry itself.
2e702c99
RM
7857 this->fill_plt_entry(pov, got_address, plt_address,
7858 got_offset, plt_offset);
94cdfcff 7859
fa89cc82
HS
7860 Arm_address value;
7861 if (i < this->count_)
7862 {
7863 // For non-irelative got entries, the value is the beginning of plt.
7864 value = plt_address;
7865 }
7866 else
7867 {
7868 // For irelative got entries, the value is the (global/local) symbol
7869 // address.
7870 const IRelative_data& idata =
7871 this->irelative_data_vec_[i - this->count_];
7872 if (idata.symbol_is_global_)
7873 {
7874 // Set the entry in the GOT for irelative symbols. The content is
7875 // the address of the ifunc, not the address of plt start.
7876 const Sized_symbol<32>* sized_symbol = idata.u_.global;
7877 gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
7878 value = sized_symbol->value();
7879 }
7880 else
7881 {
7882 value = idata.u_.local.relobj->local_symbol_value(
7883 idata.u_.local.index, 0);
7884 }
7885 }
7886 elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
94cdfcff
DK
7887 }
7888
7889 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7890 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7891
2ea97941 7892 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7893 of->write_output_view(got_file_offset, got_size, got_view);
7894}
7895
fa89cc82 7896
94cdfcff
DK
7897// Create a PLT entry for a global symbol.
7898
7899template<bool big_endian>
7900void
2ea97941 7901Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7902 Symbol* gsym)
7903{
7904 if (gsym->has_plt_offset())
7905 return;
7906
fa89cc82
HS
7907 if (this->plt_ == NULL)
7908 this->make_plt_section(symtab, layout);
7909
7910 this->plt_->add_entry(symtab, layout, gsym);
7911}
7912
7913
7914// Create the PLT section.
7915template<bool big_endian>
7916void
7917Target_arm<big_endian>::make_plt_section(
7918 Symbol_table* symtab, Layout* layout)
7919{
94cdfcff
DK
7920 if (this->plt_ == NULL)
7921 {
fa89cc82 7922 // Create the GOT section first.
2ea97941 7923 this->got_section(symtab, layout);
94cdfcff 7924
fa89cc82
HS
7925 // GOT for irelatives is create along with got.plt.
7926 gold_assert(this->got_ != NULL
7927 && this->got_plt_ != NULL
7928 && this->got_irelative_ != NULL);
7929 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
7930 this->got_irelative_);
2e702c99 7931
2ea97941
ILT
7932 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7933 (elfcpp::SHF_ALLOC
7934 | elfcpp::SHF_EXECINSTR),
22f0da72 7935 this->plt_, ORDER_PLT, false);
07f107f3
WN
7936 symtab->define_in_output_data("$a", NULL,
7937 Symbol_table::PREDEFINED,
7938 this->plt_,
7939 0, 0, elfcpp::STT_NOTYPE,
7940 elfcpp::STB_LOCAL,
7941 elfcpp::STV_DEFAULT, 0,
7942 false, false);
94cdfcff 7943 }
94cdfcff
DK
7944}
7945
fa89cc82
HS
7946
7947// Make a PLT entry for a local STT_GNU_IFUNC symbol.
7948
7949template<bool big_endian>
7950void
7951Target_arm<big_endian>::make_local_ifunc_plt_entry(
7952 Symbol_table* symtab, Layout* layout,
7953 Sized_relobj_file<32, big_endian>* relobj,
7954 unsigned int local_sym_index)
7955{
7956 if (relobj->local_has_plt_offset(local_sym_index))
7957 return;
7958 if (this->plt_ == NULL)
7959 this->make_plt_section(symtab, layout);
7960 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
7961 relobj,
7962 local_sym_index);
7963 relobj->set_local_plt_offset(local_sym_index, plt_offset);
7964}
7965
7966
0e70b911
CC
7967// Return the number of entries in the PLT.
7968
7969template<bool big_endian>
7970unsigned int
7971Target_arm<big_endian>::plt_entry_count() const
7972{
7973 if (this->plt_ == NULL)
7974 return 0;
7975 return this->plt_->entry_count();
7976}
7977
7978// Return the offset of the first non-reserved PLT entry.
7979
7980template<bool big_endian>
7981unsigned int
7982Target_arm<big_endian>::first_plt_entry_offset() const
7983{
2e702c99 7984 return this->plt_->first_plt_entry_offset();
0e70b911
CC
7985}
7986
7987// Return the size of each PLT entry.
7988
7989template<bool big_endian>
7990unsigned int
7991Target_arm<big_endian>::plt_entry_size() const
7992{
2e702c99 7993 return this->plt_->get_plt_entry_size();
0e70b911
CC
7994}
7995
f96accdf
DK
7996// Get the section to use for TLS_DESC relocations.
7997
7998template<bool big_endian>
7999typename Target_arm<big_endian>::Reloc_section*
8000Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
8001{
8002 return this->plt_section()->rel_tls_desc(layout);
8003}
8004
8005// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
8006
8007template<bool big_endian>
8008void
8009Target_arm<big_endian>::define_tls_base_symbol(
8010 Symbol_table* symtab,
8011 Layout* layout)
8012{
8013 if (this->tls_base_symbol_defined_)
8014 return;
8015
8016 Output_segment* tls_segment = layout->tls_segment();
8017 if (tls_segment != NULL)
8018 {
8019 bool is_exec = parameters->options().output_is_executable();
8020 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
8021 Symbol_table::PREDEFINED,
8022 tls_segment, 0, 0,
8023 elfcpp::STT_TLS,
8024 elfcpp::STB_LOCAL,
8025 elfcpp::STV_HIDDEN, 0,
8026 (is_exec
8027 ? Symbol::SEGMENT_END
8028 : Symbol::SEGMENT_START),
8029 true);
8030 }
8031 this->tls_base_symbol_defined_ = true;
8032}
8033
8034// Create a GOT entry for the TLS module index.
8035
8036template<bool big_endian>
8037unsigned int
8038Target_arm<big_endian>::got_mod_index_entry(
8039 Symbol_table* symtab,
8040 Layout* layout,
6fa2a40b 8041 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
8042{
8043 if (this->got_mod_index_offset_ == -1U)
8044 {
8045 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
8046 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
8047 unsigned int got_offset;
8048 if (!parameters->doing_static_link())
8049 {
8050 got_offset = got->add_constant(0);
8051 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
8052 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
8053 got_offset);
8054 }
8055 else
8056 {
8057 // We are doing a static link. Just mark it as belong to module 1,
8058 // the executable.
8059 got_offset = got->add_constant(1);
8060 }
8061
f96accdf
DK
8062 got->add_constant(0);
8063 this->got_mod_index_offset_ = got_offset;
8064 }
8065 return this->got_mod_index_offset_;
8066}
8067
8068// Optimize the TLS relocation type based on what we know about the
8069// symbol. IS_FINAL is true if the final address of this symbol is
8070// known at link time.
8071
8072template<bool big_endian>
8073tls::Tls_optimization
8074Target_arm<big_endian>::optimize_tls_reloc(bool, int)
8075{
8076 // FIXME: Currently we do not do any TLS optimization.
8077 return tls::TLSOPT_NONE;
8078}
8079
95a2c8d6
RS
8080// Get the Reference_flags for a particular relocation.
8081
8082template<bool big_endian>
8083int
8084Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
8085{
8086 switch (r_type)
8087 {
8088 case elfcpp::R_ARM_NONE:
8089 case elfcpp::R_ARM_V4BX:
8090 case elfcpp::R_ARM_GNU_VTENTRY:
8091 case elfcpp::R_ARM_GNU_VTINHERIT:
8092 // No symbol reference.
8093 return 0;
8094
8095 case elfcpp::R_ARM_ABS32:
8096 case elfcpp::R_ARM_ABS16:
8097 case elfcpp::R_ARM_ABS12:
8098 case elfcpp::R_ARM_THM_ABS5:
8099 case elfcpp::R_ARM_ABS8:
8100 case elfcpp::R_ARM_BASE_ABS:
8101 case elfcpp::R_ARM_MOVW_ABS_NC:
8102 case elfcpp::R_ARM_MOVT_ABS:
8103 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8104 case elfcpp::R_ARM_THM_MOVT_ABS:
8105 case elfcpp::R_ARM_ABS32_NOI:
8106 return Symbol::ABSOLUTE_REF;
8107
8108 case elfcpp::R_ARM_REL32:
8109 case elfcpp::R_ARM_LDR_PC_G0:
8110 case elfcpp::R_ARM_SBREL32:
8111 case elfcpp::R_ARM_THM_PC8:
8112 case elfcpp::R_ARM_BASE_PREL:
8113 case elfcpp::R_ARM_MOVW_PREL_NC:
8114 case elfcpp::R_ARM_MOVT_PREL:
8115 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8116 case elfcpp::R_ARM_THM_MOVT_PREL:
8117 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8118 case elfcpp::R_ARM_THM_PC12:
8119 case elfcpp::R_ARM_REL32_NOI:
8120 case elfcpp::R_ARM_ALU_PC_G0_NC:
8121 case elfcpp::R_ARM_ALU_PC_G0:
8122 case elfcpp::R_ARM_ALU_PC_G1_NC:
8123 case elfcpp::R_ARM_ALU_PC_G1:
8124 case elfcpp::R_ARM_ALU_PC_G2:
8125 case elfcpp::R_ARM_LDR_PC_G1:
8126 case elfcpp::R_ARM_LDR_PC_G2:
8127 case elfcpp::R_ARM_LDRS_PC_G0:
8128 case elfcpp::R_ARM_LDRS_PC_G1:
8129 case elfcpp::R_ARM_LDRS_PC_G2:
8130 case elfcpp::R_ARM_LDC_PC_G0:
8131 case elfcpp::R_ARM_LDC_PC_G1:
8132 case elfcpp::R_ARM_LDC_PC_G2:
8133 case elfcpp::R_ARM_ALU_SB_G0_NC:
8134 case elfcpp::R_ARM_ALU_SB_G0:
8135 case elfcpp::R_ARM_ALU_SB_G1_NC:
8136 case elfcpp::R_ARM_ALU_SB_G1:
8137 case elfcpp::R_ARM_ALU_SB_G2:
8138 case elfcpp::R_ARM_LDR_SB_G0:
8139 case elfcpp::R_ARM_LDR_SB_G1:
8140 case elfcpp::R_ARM_LDR_SB_G2:
8141 case elfcpp::R_ARM_LDRS_SB_G0:
8142 case elfcpp::R_ARM_LDRS_SB_G1:
8143 case elfcpp::R_ARM_LDRS_SB_G2:
8144 case elfcpp::R_ARM_LDC_SB_G0:
8145 case elfcpp::R_ARM_LDC_SB_G1:
8146 case elfcpp::R_ARM_LDC_SB_G2:
8147 case elfcpp::R_ARM_MOVW_BREL_NC:
8148 case elfcpp::R_ARM_MOVT_BREL:
8149 case elfcpp::R_ARM_MOVW_BREL:
8150 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8151 case elfcpp::R_ARM_THM_MOVT_BREL:
8152 case elfcpp::R_ARM_THM_MOVW_BREL:
8153 case elfcpp::R_ARM_GOTOFF32:
8154 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
8155 case elfcpp::R_ARM_SBREL31:
8156 return Symbol::RELATIVE_REF;
8157
8158 case elfcpp::R_ARM_PLT32:
8159 case elfcpp::R_ARM_CALL:
8160 case elfcpp::R_ARM_JUMP24:
8161 case elfcpp::R_ARM_THM_CALL:
8162 case elfcpp::R_ARM_THM_JUMP24:
8163 case elfcpp::R_ARM_THM_JUMP19:
8164 case elfcpp::R_ARM_THM_JUMP6:
8165 case elfcpp::R_ARM_THM_JUMP11:
8166 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
8167 // R_ARM_PREL31 is not used to relocate call/jump instructions but
8168 // in unwind tables. It may point to functions via PLTs.
8169 // So we treat it like call/jump relocations above.
8170 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
8171 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
8172
8173 case elfcpp::R_ARM_GOT_BREL:
8174 case elfcpp::R_ARM_GOT_ABS:
8175 case elfcpp::R_ARM_GOT_PREL:
8176 // Absolute in GOT.
8177 return Symbol::ABSOLUTE_REF;
8178
8179 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8180 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8181 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8182 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8183 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8184 return Symbol::TLS_REF;
8185
8186 case elfcpp::R_ARM_TARGET1:
8187 case elfcpp::R_ARM_TARGET2:
8188 case elfcpp::R_ARM_COPY:
8189 case elfcpp::R_ARM_GLOB_DAT:
8190 case elfcpp::R_ARM_JUMP_SLOT:
8191 case elfcpp::R_ARM_RELATIVE:
8192 case elfcpp::R_ARM_PC24:
8193 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8194 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8195 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
8196 default:
8197 // Not expected. We will give an error later.
8198 return 0;
8199 }
8200}
8201
4a657b0d
DK
8202// Report an unsupported relocation against a local symbol.
8203
8204template<bool big_endian>
8205void
8206Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 8207 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8208 unsigned int r_type)
8209{
8210 gold_error(_("%s: unsupported reloc %u against local symbol"),
8211 object->name().c_str(), r_type);
8212}
8213
bec53400
DK
8214// We are about to emit a dynamic relocation of type R_TYPE. If the
8215// dynamic linker does not support it, issue an error. The GNU linker
8216// only issues a non-PIC error for an allocated read-only section.
8217// Here we know the section is allocated, but we don't know that it is
8218// read-only. But we check for all the relocation types which the
8219// glibc dynamic linker supports, so it seems appropriate to issue an
8220// error even if the section is not read-only.
8221
8222template<bool big_endian>
8223void
8224Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
8225 unsigned int r_type)
8226{
8227 switch (r_type)
8228 {
8229 // These are the relocation types supported by glibc for ARM.
8230 case elfcpp::R_ARM_RELATIVE:
8231 case elfcpp::R_ARM_COPY:
8232 case elfcpp::R_ARM_GLOB_DAT:
8233 case elfcpp::R_ARM_JUMP_SLOT:
8234 case elfcpp::R_ARM_ABS32:
be8fcb75 8235 case elfcpp::R_ARM_ABS32_NOI:
fa89cc82 8236 case elfcpp::R_ARM_IRELATIVE:
bec53400
DK
8237 case elfcpp::R_ARM_PC24:
8238 // FIXME: The following 3 types are not supported by Android's dynamic
8239 // linker.
8240 case elfcpp::R_ARM_TLS_DTPMOD32:
8241 case elfcpp::R_ARM_TLS_DTPOFF32:
8242 case elfcpp::R_ARM_TLS_TPOFF32:
8243 return;
8244
8245 default:
c8761b9a
DK
8246 {
8247 // This prevents us from issuing more than one error per reloc
8248 // section. But we can still wind up issuing more than one
8249 // error per object file.
8250 if (this->issued_non_pic_error_)
8251 return;
8252 const Arm_reloc_property* reloc_property =
8253 arm_reloc_property_table->get_reloc_property(r_type);
8254 gold_assert(reloc_property != NULL);
8255 object->error(_("requires unsupported dynamic reloc %s; "
8256 "recompile with -fPIC"),
8257 reloc_property->name().c_str());
8258 this->issued_non_pic_error_ = true;
bec53400 8259 return;
c8761b9a 8260 }
bec53400
DK
8261
8262 case elfcpp::R_ARM_NONE:
8263 gold_unreachable();
8264 }
8265}
8266
fa89cc82
HS
8267
8268// Return whether we need to make a PLT entry for a relocation of the
8269// given type against a STT_GNU_IFUNC symbol.
8270
8271template<bool big_endian>
8272bool
8273Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
8274 Sized_relobj_file<32, big_endian>* object,
8275 unsigned int r_type)
8276{
8277 int flags = Scan::get_reference_flags(r_type);
8278 if (flags & Symbol::TLS_REF)
8279 {
8280 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
8281 object->name().c_str(), r_type);
8282 return false;
8283 }
8284 return flags != 0;
8285}
8286
8287
4a657b0d 8288// Scan a relocation for a local symbol.
bec53400
DK
8289// FIXME: This only handles a subset of relocation types used by Android
8290// on ARM v5te devices.
4a657b0d
DK
8291
8292template<bool big_endian>
8293inline void
ad0f2072 8294Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 8295 Layout* layout,
bec53400 8296 Target_arm* target,
6fa2a40b 8297 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8298 unsigned int data_shndx,
8299 Output_section* output_section,
8300 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 8301 unsigned int r_type,
bfdfa4cd
AM
8302 const elfcpp::Sym<32, big_endian>& lsym,
8303 bool is_discarded)
4a657b0d 8304{
bfdfa4cd
AM
8305 if (is_discarded)
8306 return;
8307
a6d1ef57 8308 r_type = get_real_reloc_type(r_type);
fa89cc82
HS
8309
8310 // A local STT_GNU_IFUNC symbol may require a PLT entry.
8311 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
8312 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
8313 {
8314 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8315 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
8316 }
8317
4a657b0d
DK
8318 switch (r_type)
8319 {
8320 case elfcpp::R_ARM_NONE:
e4782e83
DK
8321 case elfcpp::R_ARM_V4BX:
8322 case elfcpp::R_ARM_GNU_VTENTRY:
8323 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8324 break;
8325
bec53400 8326 case elfcpp::R_ARM_ABS32:
be8fcb75 8327 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
8328 // If building a shared library (or a position-independent
8329 // executable), we need to create a dynamic relocation for
8330 // this location. The relocation applied at link time will
8331 // apply the link-time value, so we flag the location with
8332 // an R_ARM_RELATIVE relocation so the dynamic loader can
8333 // relocate it easily.
8334 if (parameters->options().output_is_position_independent())
8335 {
2ea97941 8336 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400 8337 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99
RM
8338 // If we are to add more other reloc types than R_ARM_ABS32,
8339 // we need to add check_non_pic(object, r_type) here.
bec53400
DK
8340 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
8341 output_section, data_shndx,
fa89cc82 8342 reloc.get_r_offset(), is_ifunc);
bec53400
DK
8343 }
8344 break;
8345
e4782e83
DK
8346 case elfcpp::R_ARM_ABS16:
8347 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
8348 case elfcpp::R_ARM_THM_ABS5:
8349 case elfcpp::R_ARM_ABS8:
be8fcb75 8350 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
8351 case elfcpp::R_ARM_MOVW_ABS_NC:
8352 case elfcpp::R_ARM_MOVT_ABS:
8353 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8354 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
8355 // If building a shared library (or a position-independent
8356 // executable), we need to create a dynamic relocation for
8357 // this location. Because the addend needs to remain in the
8358 // data section, we need to be careful not to apply this
8359 // relocation statically.
8360 if (parameters->options().output_is_position_independent())
2e702c99 8361 {
e4782e83 8362 check_non_pic(object, r_type);
2e702c99 8363 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
e4782e83 8364 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
2e702c99 8365 if (lsym.get_st_type() != elfcpp::STT_SECTION)
e4782e83
DK
8366 rel_dyn->add_local(object, r_sym, r_type, output_section,
8367 data_shndx, reloc.get_r_offset());
2e702c99
RM
8368 else
8369 {
8370 gold_assert(lsym.get_st_value() == 0);
e4782e83
DK
8371 unsigned int shndx = lsym.get_st_shndx();
8372 bool is_ordinary;
8373 shndx = object->adjust_sym_shndx(r_sym, shndx,
8374 &is_ordinary);
8375 if (!is_ordinary)
8376 object->error(_("section symbol %u has bad shndx %u"),
8377 r_sym, shndx);
8378 else
8379 rel_dyn->add_local_section(object, shndx,
8380 r_type, output_section,
8381 data_shndx, reloc.get_r_offset());
2e702c99
RM
8382 }
8383 }
e4782e83
DK
8384 break;
8385
e4782e83
DK
8386 case elfcpp::R_ARM_REL32:
8387 case elfcpp::R_ARM_LDR_PC_G0:
8388 case elfcpp::R_ARM_SBREL32:
8389 case elfcpp::R_ARM_THM_CALL:
8390 case elfcpp::R_ARM_THM_PC8:
8391 case elfcpp::R_ARM_BASE_PREL:
8392 case elfcpp::R_ARM_PLT32:
8393 case elfcpp::R_ARM_CALL:
8394 case elfcpp::R_ARM_JUMP24:
8395 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
8396 case elfcpp::R_ARM_SBREL31:
8397 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
8398 case elfcpp::R_ARM_MOVW_PREL_NC:
8399 case elfcpp::R_ARM_MOVT_PREL:
8400 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8401 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 8402 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 8403 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 8404 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8405 case elfcpp::R_ARM_THM_PC12:
8406 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8407 case elfcpp::R_ARM_ALU_PC_G0_NC:
8408 case elfcpp::R_ARM_ALU_PC_G0:
8409 case elfcpp::R_ARM_ALU_PC_G1_NC:
8410 case elfcpp::R_ARM_ALU_PC_G1:
8411 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8412 case elfcpp::R_ARM_LDR_PC_G1:
8413 case elfcpp::R_ARM_LDR_PC_G2:
8414 case elfcpp::R_ARM_LDRS_PC_G0:
8415 case elfcpp::R_ARM_LDRS_PC_G1:
8416 case elfcpp::R_ARM_LDRS_PC_G2:
8417 case elfcpp::R_ARM_LDC_PC_G0:
8418 case elfcpp::R_ARM_LDC_PC_G1:
8419 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8420 case elfcpp::R_ARM_ALU_SB_G0_NC:
8421 case elfcpp::R_ARM_ALU_SB_G0:
8422 case elfcpp::R_ARM_ALU_SB_G1_NC:
8423 case elfcpp::R_ARM_ALU_SB_G1:
8424 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8425 case elfcpp::R_ARM_LDR_SB_G0:
8426 case elfcpp::R_ARM_LDR_SB_G1:
8427 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8428 case elfcpp::R_ARM_LDRS_SB_G0:
8429 case elfcpp::R_ARM_LDRS_SB_G1:
8430 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8431 case elfcpp::R_ARM_LDC_SB_G0:
8432 case elfcpp::R_ARM_LDC_SB_G1:
8433 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8434 case elfcpp::R_ARM_MOVW_BREL_NC:
8435 case elfcpp::R_ARM_MOVT_BREL:
8436 case elfcpp::R_ARM_MOVW_BREL:
8437 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8438 case elfcpp::R_ARM_THM_MOVT_BREL:
8439 case elfcpp::R_ARM_THM_MOVW_BREL:
8440 case elfcpp::R_ARM_THM_JUMP11:
8441 case elfcpp::R_ARM_THM_JUMP8:
8442 // We don't need to do anything for a relative addressing relocation
8443 // against a local symbol if it does not reference the GOT.
bec53400
DK
8444 break;
8445
8446 case elfcpp::R_ARM_GOTOFF32:
e4782e83 8447 case elfcpp::R_ARM_GOTOFF12:
bec53400 8448 // We need a GOT section:
2ea97941 8449 target->got_section(symtab, layout);
bec53400
DK
8450 break;
8451
bec53400 8452 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8453 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8454 {
8455 // The symbol requires a GOT entry.
4a54abbb 8456 Arm_output_data_got<big_endian>* got =
2ea97941 8457 target->got_section(symtab, layout);
bec53400
DK
8458 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8459 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
8460 {
8461 // If we are generating a shared object, we need to add a
8462 // dynamic RELATIVE relocation for this symbol's GOT entry.
8463 if (parameters->options().output_is_position_independent())
8464 {
2ea97941
ILT
8465 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8466 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 8467 rel_dyn->add_local_relative(
2ea97941
ILT
8468 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
8469 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
8470 }
8471 }
8472 }
8473 break;
8474
8475 case elfcpp::R_ARM_TARGET1:
e4782e83 8476 case elfcpp::R_ARM_TARGET2:
bec53400
DK
8477 // This should have been mapped to another type already.
8478 // Fall through.
8479 case elfcpp::R_ARM_COPY:
8480 case elfcpp::R_ARM_GLOB_DAT:
8481 case elfcpp::R_ARM_JUMP_SLOT:
8482 case elfcpp::R_ARM_RELATIVE:
8483 // These are relocations which should only be seen by the
8484 // dynamic linker, and should never be seen here.
8485 gold_error(_("%s: unexpected reloc %u in object file"),
8486 object->name().c_str(), r_type);
8487 break;
8488
f96accdf
DK
8489
8490 // These are initial TLS relocs, which are expected when
8491 // linking.
8492 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8493 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8494 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8495 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8496 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8497 {
8498 bool output_is_shared = parameters->options().shared();
8499 const tls::Tls_optimization optimized_type
2e702c99 8500 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
f96accdf
DK
8501 r_type);
8502 switch (r_type)
8503 {
8504 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8505 if (optimized_type == tls::TLSOPT_NONE)
8506 {
2e702c99
RM
8507 // Create a pair of GOT entries for the module index and
8508 // dtv-relative offset.
8509 Arm_output_data_got<big_endian>* got
8510 = target->got_section(symtab, layout);
8511 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8512 unsigned int shndx = lsym.get_st_shndx();
8513 bool is_ordinary;
8514 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8515 if (!is_ordinary)
4a54abbb
DK
8516 {
8517 object->error(_("local symbol %u has bad shndx %u"),
8518 r_sym, shndx);
8519 break;
8520 }
8521
8522 if (!parameters->doing_static_link())
f96accdf
DK
8523 got->add_local_pair_with_rel(object, r_sym, shndx,
8524 GOT_TYPE_TLS_PAIR,
8525 target->rel_dyn_section(layout),
bd73a62d 8526 elfcpp::R_ARM_TLS_DTPMOD32);
4a54abbb
DK
8527 else
8528 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8529 object, r_sym);
f96accdf
DK
8530 }
8531 else
8532 // FIXME: TLS optimization not supported yet.
8533 gold_unreachable();
8534 break;
8535
8536 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8537 if (optimized_type == tls::TLSOPT_NONE)
8538 {
2e702c99
RM
8539 // Create a GOT entry for the module index.
8540 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
8541 }
8542 else
8543 // FIXME: TLS optimization not supported yet.
8544 gold_unreachable();
8545 break;
8546
8547 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8548 break;
8549
8550 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8551 layout->set_has_static_tls();
8552 if (optimized_type == tls::TLSOPT_NONE)
8553 {
4a54abbb
DK
8554 // Create a GOT entry for the tp-relative offset.
8555 Arm_output_data_got<big_endian>* got
8556 = target->got_section(symtab, layout);
8557 unsigned int r_sym =
8558 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8559 if (!parameters->doing_static_link())
8560 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8561 target->rel_dyn_section(layout),
8562 elfcpp::R_ARM_TLS_TPOFF32);
8563 else if (!object->local_has_got_offset(r_sym,
8564 GOT_TYPE_TLS_OFFSET))
8565 {
8566 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8567 unsigned int got_offset =
8568 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8569 got->add_static_reloc(got_offset,
8570 elfcpp::R_ARM_TLS_TPOFF32, object,
8571 r_sym);
8572 }
f96accdf
DK
8573 }
8574 else
8575 // FIXME: TLS optimization not supported yet.
8576 gold_unreachable();
8577 break;
8578
8579 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8580 layout->set_has_static_tls();
8581 if (output_is_shared)
8582 {
2e702c99
RM
8583 // We need to create a dynamic relocation.
8584 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8585 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
f96accdf
DK
8586 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8587 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8588 output_section, data_shndx,
8589 reloc.get_r_offset());
8590 }
8591 break;
8592
8593 default:
8594 gold_unreachable();
8595 }
8596 }
8597 break;
8598
3cef7179
ILT
8599 case elfcpp::R_ARM_PC24:
8600 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8601 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8602 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8603 default:
8604 unsupported_reloc_local(object, r_type);
8605 break;
8606 }
8607}
8608
8609// Report an unsupported relocation against a global symbol.
8610
8611template<bool big_endian>
8612void
8613Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8614 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8615 unsigned int r_type,
8616 Symbol* gsym)
8617{
8618 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8619 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8620}
8621
8a75a161
DK
8622template<bool big_endian>
8623inline bool
8624Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8625 unsigned int r_type)
8626{
8627 switch (r_type)
8628 {
8629 case elfcpp::R_ARM_PC24:
8630 case elfcpp::R_ARM_THM_CALL:
8631 case elfcpp::R_ARM_PLT32:
8632 case elfcpp::R_ARM_CALL:
8633 case elfcpp::R_ARM_JUMP24:
8634 case elfcpp::R_ARM_THM_JUMP24:
8635 case elfcpp::R_ARM_SBREL31:
8636 case elfcpp::R_ARM_PREL31:
8637 case elfcpp::R_ARM_THM_JUMP19:
8638 case elfcpp::R_ARM_THM_JUMP6:
8639 case elfcpp::R_ARM_THM_JUMP11:
8640 case elfcpp::R_ARM_THM_JUMP8:
8641 // All the relocations above are branches except SBREL31 and PREL31.
8642 return false;
8643
8644 default:
8645 // Be conservative and assume this is a function pointer.
8646 return true;
8647 }
8648}
8649
8650template<bool big_endian>
8651inline bool
8652Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8653 Symbol_table*,
8654 Layout*,
8655 Target_arm<big_endian>* target,
6fa2a40b 8656 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8657 unsigned int,
8658 Output_section*,
8659 const elfcpp::Rel<32, big_endian>&,
8660 unsigned int r_type,
8661 const elfcpp::Sym<32, big_endian>&)
8662{
8663 r_type = target->get_real_reloc_type(r_type);
8664 return possible_function_pointer_reloc(r_type);
8665}
8666
8667template<bool big_endian>
8668inline bool
8669Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8670 Symbol_table*,
8671 Layout*,
8672 Target_arm<big_endian>* target,
6fa2a40b 8673 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8674 unsigned int,
8675 Output_section*,
8676 const elfcpp::Rel<32, big_endian>&,
8677 unsigned int r_type,
8678 Symbol* gsym)
8679{
8680 // GOT is not a function.
8681 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8682 return false;
8683
8684 r_type = target->get_real_reloc_type(r_type);
8685 return possible_function_pointer_reloc(r_type);
8686}
8687
4a657b0d
DK
8688// Scan a relocation for a global symbol.
8689
8690template<bool big_endian>
8691inline void
ad0f2072 8692Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8693 Layout* layout,
bec53400 8694 Target_arm* target,
6fa2a40b 8695 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8696 unsigned int data_shndx,
8697 Output_section* output_section,
8698 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8699 unsigned int r_type,
8700 Symbol* gsym)
8701{
c8761b9a
DK
8702 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8703 // section. We check here to avoid creating a dynamic reloc against
8704 // _GLOBAL_OFFSET_TABLE_.
8705 if (!target->has_got_section()
8706 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8707 target->got_section(symtab, layout);
8708
fa89cc82
HS
8709 // A STT_GNU_IFUNC symbol may require a PLT entry.
8710 if (gsym->type() == elfcpp::STT_GNU_IFUNC
8711 && this->reloc_needs_plt_for_ifunc(object, r_type))
8712 target->make_plt_entry(symtab, layout, gsym);
8713
a6d1ef57 8714 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8715 switch (r_type)
8716 {
8717 case elfcpp::R_ARM_NONE:
e4782e83
DK
8718 case elfcpp::R_ARM_V4BX:
8719 case elfcpp::R_ARM_GNU_VTENTRY:
8720 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8721 break;
8722
bec53400 8723 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8724 case elfcpp::R_ARM_ABS16:
8725 case elfcpp::R_ARM_ABS12:
8726 case elfcpp::R_ARM_THM_ABS5:
8727 case elfcpp::R_ARM_ABS8:
8728 case elfcpp::R_ARM_BASE_ABS:
8729 case elfcpp::R_ARM_MOVW_ABS_NC:
8730 case elfcpp::R_ARM_MOVT_ABS:
8731 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8732 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8733 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8734 // Absolute addressing relocations.
bec53400 8735 {
2e702c99
RM
8736 // Make a PLT entry if necessary.
8737 if (this->symbol_needs_plt_entry(gsym))
8738 {
8739 target->make_plt_entry(symtab, layout, gsym);
8740 // Since this is not a PC-relative relocation, we may be
8741 // taking the address of a function. In that case we need to
8742 // set the entry in the dynamic symbol table to the address of
8743 // the PLT entry.
8744 if (gsym->is_from_dynobj() && !parameters->options().shared())
8745 gsym->set_needs_dynsym_value();
8746 }
8747 // Make a dynamic relocation if necessary.
8748 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
8749 {
a82bef93
ST
8750 if (!parameters->options().output_is_position_independent()
8751 && gsym->may_need_copy_reloc())
2e702c99
RM
8752 {
8753 target->copy_reloc(symtab, layout, object,
8754 data_shndx, output_section, gsym, reloc);
8755 }
fa89cc82
HS
8756 else if ((r_type == elfcpp::R_ARM_ABS32
8757 || r_type == elfcpp::R_ARM_ABS32_NOI)
8758 && gsym->type() == elfcpp::STT_GNU_IFUNC
8759 && gsym->can_use_relative_reloc(false)
8760 && !gsym->is_from_dynobj()
8761 && !gsym->is_undefined()
8762 && !gsym->is_preemptible())
8763 {
8764 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
8765 // symbol. This makes a function address in a PIE executable
8766 // match the address in a shared library that it links against.
8767 Reloc_section* rel_irelative =
8768 target->rel_irelative_section(layout);
8769 unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
8770 rel_irelative->add_symbolless_global_addend(
8771 gsym, r_type, output_section, object,
8772 data_shndx, reloc.get_r_offset());
8773 }
2e702c99 8774 else if ((r_type == elfcpp::R_ARM_ABS32
e4782e83 8775 || r_type == elfcpp::R_ARM_ABS32_NOI)
2e702c99
RM
8776 && gsym->can_use_relative_reloc(false))
8777 {
8778 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8779 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8780 output_section, object,
8781 data_shndx, reloc.get_r_offset());
8782 }
8783 else
8784 {
e4782e83 8785 check_non_pic(object, r_type);
2e702c99
RM
8786 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8787 rel_dyn->add_global(gsym, r_type, output_section, object,
8788 data_shndx, reloc.get_r_offset());
8789 }
8790 }
bec53400
DK
8791 }
8792 break;
8793
e4782e83
DK
8794 case elfcpp::R_ARM_GOTOFF32:
8795 case elfcpp::R_ARM_GOTOFF12:
8796 // We need a GOT section.
8797 target->got_section(symtab, layout);
8798 break;
2e702c99 8799
e4782e83
DK
8800 case elfcpp::R_ARM_REL32:
8801 case elfcpp::R_ARM_LDR_PC_G0:
8802 case elfcpp::R_ARM_SBREL32:
8803 case elfcpp::R_ARM_THM_PC8:
8804 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8805 case elfcpp::R_ARM_MOVW_PREL_NC:
8806 case elfcpp::R_ARM_MOVT_PREL:
8807 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8808 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8809 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8810 case elfcpp::R_ARM_THM_PC12:
8811 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8812 case elfcpp::R_ARM_ALU_PC_G0_NC:
8813 case elfcpp::R_ARM_ALU_PC_G0:
8814 case elfcpp::R_ARM_ALU_PC_G1_NC:
8815 case elfcpp::R_ARM_ALU_PC_G1:
8816 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8817 case elfcpp::R_ARM_LDR_PC_G1:
8818 case elfcpp::R_ARM_LDR_PC_G2:
8819 case elfcpp::R_ARM_LDRS_PC_G0:
8820 case elfcpp::R_ARM_LDRS_PC_G1:
8821 case elfcpp::R_ARM_LDRS_PC_G2:
8822 case elfcpp::R_ARM_LDC_PC_G0:
8823 case elfcpp::R_ARM_LDC_PC_G1:
8824 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8825 case elfcpp::R_ARM_ALU_SB_G0_NC:
8826 case elfcpp::R_ARM_ALU_SB_G0:
8827 case elfcpp::R_ARM_ALU_SB_G1_NC:
8828 case elfcpp::R_ARM_ALU_SB_G1:
8829 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8830 case elfcpp::R_ARM_LDR_SB_G0:
8831 case elfcpp::R_ARM_LDR_SB_G1:
8832 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8833 case elfcpp::R_ARM_LDRS_SB_G0:
8834 case elfcpp::R_ARM_LDRS_SB_G1:
8835 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8836 case elfcpp::R_ARM_LDC_SB_G0:
8837 case elfcpp::R_ARM_LDC_SB_G1:
8838 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8839 case elfcpp::R_ARM_MOVW_BREL_NC:
8840 case elfcpp::R_ARM_MOVT_BREL:
8841 case elfcpp::R_ARM_MOVW_BREL:
8842 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8843 case elfcpp::R_ARM_THM_MOVT_BREL:
8844 case elfcpp::R_ARM_THM_MOVW_BREL:
8845 // Relative addressing relocations.
bec53400
DK
8846 {
8847 // Make a dynamic relocation if necessary.
95a2c8d6 8848 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400 8849 {
a82bef93
ST
8850 if (parameters->options().output_is_executable()
8851 && target->may_need_copy_reloc(gsym))
bec53400 8852 {
2ea97941 8853 target->copy_reloc(symtab, layout, object,
bec53400
DK
8854 data_shndx, output_section, gsym, reloc);
8855 }
8856 else
8857 {
8858 check_non_pic(object, r_type);
2ea97941 8859 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8860 rel_dyn->add_global(gsym, r_type, output_section, object,
8861 data_shndx, reloc.get_r_offset());
8862 }
8863 }
8864 }
8865 break;
8866
f4e5969c 8867 case elfcpp::R_ARM_THM_CALL:
bec53400 8868 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8869 case elfcpp::R_ARM_CALL:
8870 case elfcpp::R_ARM_JUMP24:
8871 case elfcpp::R_ARM_THM_JUMP24:
8872 case elfcpp::R_ARM_SBREL31:
c9a2c125 8873 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8874 case elfcpp::R_ARM_THM_JUMP19:
8875 case elfcpp::R_ARM_THM_JUMP6:
8876 case elfcpp::R_ARM_THM_JUMP11:
8877 case elfcpp::R_ARM_THM_JUMP8:
8878 // All the relocation above are branches except for the PREL31 ones.
8879 // A PREL31 relocation can point to a personality function in a shared
8880 // library. In that case we want to use a PLT because we want to
9b547ce6 8881 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8882 // do not support dynamic PREL31 relocations. An REL31 relocation may
8883 // point to a function whose unwinding behaviour is being described but
8884 // we will not mistakenly generate a PLT for that because we should use
8885 // a local section symbol.
8886
bec53400
DK
8887 // If the symbol is fully resolved, this is just a relative
8888 // local reloc. Otherwise we need a PLT entry.
8889 if (gsym->final_value_is_known())
8890 break;
8891 // If building a shared library, we can also skip the PLT entry
8892 // if the symbol is defined in the output file and is protected
8893 // or hidden.
8894 if (gsym->is_defined()
8895 && !gsym->is_from_dynobj()
8896 && !gsym->is_preemptible())
8897 break;
2ea97941 8898 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8899 break;
8900
bec53400 8901 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8902 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8903 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8904 {
8905 // The symbol requires a GOT entry.
4a54abbb 8906 Arm_output_data_got<big_endian>* got =
2ea97941 8907 target->got_section(symtab, layout);
bec53400 8908 if (gsym->final_value_is_known())
fa89cc82
HS
8909 {
8910 // For a STT_GNU_IFUNC symbol we want the PLT address.
8911 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
8912 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8913 else
8914 got->add_global(gsym, GOT_TYPE_STANDARD);
8915 }
bec53400
DK
8916 else
8917 {
8918 // If this symbol is not fully resolved, we need to add a
8919 // GOT entry with a dynamic relocation.
2ea97941 8920 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8921 if (gsym->is_from_dynobj()
8922 || gsym->is_undefined()
fa40b62a
DK
8923 || gsym->is_preemptible()
8924 || (gsym->visibility() == elfcpp::STV_PROTECTED
fa89cc82
HS
8925 && parameters->options().shared())
8926 || (gsym->type() == elfcpp::STT_GNU_IFUNC
8927 && parameters->options().output_is_position_independent()))
bec53400
DK
8928 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8929 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8930 else
8931 {
fa89cc82
HS
8932 // For a STT_GNU_IFUNC symbol we want to write the PLT
8933 // offset into the GOT, so that function pointer
8934 // comparisons work correctly.
8935 bool is_new;
8936 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
8937 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
8938 else
8939 {
8940 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
8941 // Tell the dynamic linker to use the PLT address
8942 // when resolving relocations.
8943 if (gsym->is_from_dynobj()
8944 && !parameters->options().shared())
8945 gsym->set_needs_dynsym_value();
8946 }
8947 if (is_new)
bec53400
DK
8948 rel_dyn->add_global_relative(
8949 gsym, elfcpp::R_ARM_RELATIVE, got,
8950 gsym->got_offset(GOT_TYPE_STANDARD));
8951 }
8952 }
8953 }
8954 break;
8955
8956 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8957 case elfcpp::R_ARM_TARGET2:
8958 // These should have been mapped to other types already.
bec53400
DK
8959 // Fall through.
8960 case elfcpp::R_ARM_COPY:
8961 case elfcpp::R_ARM_GLOB_DAT:
8962 case elfcpp::R_ARM_JUMP_SLOT:
8963 case elfcpp::R_ARM_RELATIVE:
8964 // These are relocations which should only be seen by the
8965 // dynamic linker, and should never be seen here.
8966 gold_error(_("%s: unexpected reloc %u in object file"),
8967 object->name().c_str(), r_type);
8968 break;
8969
f96accdf
DK
8970 // These are initial tls relocs, which are expected when
8971 // linking.
8972 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8973 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8974 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8975 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8976 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8977 {
8978 const bool is_final = gsym->final_value_is_known();
8979 const tls::Tls_optimization optimized_type
2e702c99 8980 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
f96accdf
DK
8981 switch (r_type)
8982 {
8983 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8984 if (optimized_type == tls::TLSOPT_NONE)
8985 {
2e702c99
RM
8986 // Create a pair of GOT entries for the module index and
8987 // dtv-relative offset.
8988 Arm_output_data_got<big_endian>* got
8989 = target->got_section(symtab, layout);
4a54abbb
DK
8990 if (!parameters->doing_static_link())
8991 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8992 target->rel_dyn_section(layout),
8993 elfcpp::R_ARM_TLS_DTPMOD32,
8994 elfcpp::R_ARM_TLS_DTPOFF32);
8995 else
8996 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8997 }
8998 else
8999 // FIXME: TLS optimization not supported yet.
9000 gold_unreachable();
9001 break;
9002
9003 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9004 if (optimized_type == tls::TLSOPT_NONE)
9005 {
2e702c99
RM
9006 // Create a GOT entry for the module index.
9007 target->got_mod_index_entry(symtab, layout, object);
f96accdf
DK
9008 }
9009 else
9010 // FIXME: TLS optimization not supported yet.
9011 gold_unreachable();
9012 break;
9013
9014 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9015 break;
9016
9017 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9018 layout->set_has_static_tls();
9019 if (optimized_type == tls::TLSOPT_NONE)
9020 {
4a54abbb
DK
9021 // Create a GOT entry for the tp-relative offset.
9022 Arm_output_data_got<big_endian>* got
9023 = target->got_section(symtab, layout);
9024 if (!parameters->doing_static_link())
9025 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
9026 target->rel_dyn_section(layout),
9027 elfcpp::R_ARM_TLS_TPOFF32);
9028 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
9029 {
9030 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
9031 unsigned int got_offset =
9032 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
9033 got->add_static_reloc(got_offset,
9034 elfcpp::R_ARM_TLS_TPOFF32, gsym);
9035 }
f96accdf
DK
9036 }
9037 else
9038 // FIXME: TLS optimization not supported yet.
9039 gold_unreachable();
9040 break;
9041
9042 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9043 layout->set_has_static_tls();
9044 if (parameters->options().shared())
9045 {
2e702c99
RM
9046 // We need to create a dynamic relocation.
9047 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
9048 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
f96accdf 9049 output_section, object,
2e702c99 9050 data_shndx, reloc.get_r_offset());
f96accdf
DK
9051 }
9052 break;
9053
9054 default:
9055 gold_unreachable();
9056 }
9057 }
9058 break;
9059
3cef7179
ILT
9060 case elfcpp::R_ARM_PC24:
9061 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9062 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9063 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
9064 default:
9065 unsupported_reloc_global(object, r_type, gsym);
9066 break;
9067 }
9068}
9069
9070// Process relocations for gc.
9071
9072template<bool big_endian>
9073void
6fa2a40b
CC
9074Target_arm<big_endian>::gc_process_relocs(
9075 Symbol_table* symtab,
9076 Layout* layout,
9077 Sized_relobj_file<32, big_endian>* object,
9078 unsigned int data_shndx,
9079 unsigned int,
9080 const unsigned char* prelocs,
9081 size_t reloc_count,
9082 Output_section* output_section,
9083 bool needs_special_offset_handling,
9084 size_t local_symbol_count,
9085 const unsigned char* plocal_symbols)
4a657b0d
DK
9086{
9087 typedef Target_arm<big_endian> Arm;
2ea97941 9088 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 9089
41cbeecc 9090 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 9091 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 9092 symtab,
2ea97941 9093 layout,
4a657b0d
DK
9094 this,
9095 object,
9096 data_shndx,
9097 prelocs,
9098 reloc_count,
9099 output_section,
9100 needs_special_offset_handling,
9101 local_symbol_count,
9102 plocal_symbols);
9103}
9104
9105// Scan relocations for a section.
9106
9107template<bool big_endian>
9108void
ad0f2072 9109Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 9110 Layout* layout,
6fa2a40b 9111 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9112 unsigned int data_shndx,
9113 unsigned int sh_type,
9114 const unsigned char* prelocs,
9115 size_t reloc_count,
9116 Output_section* output_section,
9117 bool needs_special_offset_handling,
9118 size_t local_symbol_count,
9119 const unsigned char* plocal_symbols)
9120{
2ea97941 9121 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
9122 if (sh_type == elfcpp::SHT_RELA)
9123 {
9124 gold_error(_("%s: unsupported RELA reloc section"),
9125 object->name().c_str());
9126 return;
9127 }
9128
2ea97941 9129 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 9130 symtab,
2ea97941 9131 layout,
4a657b0d
DK
9132 this,
9133 object,
9134 data_shndx,
9135 prelocs,
9136 reloc_count,
9137 output_section,
9138 needs_special_offset_handling,
9139 local_symbol_count,
9140 plocal_symbols);
9141}
9142
9143// Finalize the sections.
9144
9145template<bool big_endian>
9146void
d5b40221 9147Target_arm<big_endian>::do_finalize_sections(
2ea97941 9148 Layout* layout,
f59f41f3 9149 const Input_objects* input_objects,
647f1574 9150 Symbol_table*)
4a657b0d 9151{
3e235302 9152 bool merged_any_attributes = false;
d5b40221
DK
9153 // Merge processor-specific flags.
9154 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9155 p != input_objects->relobj_end();
9156 ++p)
9157 {
9158 Arm_relobj<big_endian>* arm_relobj =
9159 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
9160 if (arm_relobj->merge_flags_and_attributes())
9161 {
9162 this->merge_processor_specific_flags(
9163 arm_relobj->name(),
9164 arm_relobj->processor_specific_flags());
9165 this->merge_object_attributes(arm_relobj->name().c_str(),
9166 arm_relobj->attributes_section_data());
3e235302 9167 merged_any_attributes = true;
7296d933 9168 }
2e702c99 9169 }
d5b40221
DK
9170
9171 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
9172 p != input_objects->dynobj_end();
9173 ++p)
9174 {
9175 Arm_dynobj<big_endian>* arm_dynobj =
9176 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
9177 this->merge_processor_specific_flags(
9178 arm_dynobj->name(),
9179 arm_dynobj->processor_specific_flags());
a0351a69
DK
9180 this->merge_object_attributes(arm_dynobj->name().c_str(),
9181 arm_dynobj->attributes_section_data());
3e235302 9182 merged_any_attributes = true;
d5b40221
DK
9183 }
9184
da59ad79
DK
9185 // Create an empty uninitialized attribute section if we still don't have it
9186 // at this moment. This happens if there is no attributes sections in all
9187 // inputs.
9188 if (this->attributes_section_data_ == NULL)
9189 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
9190
41263c05 9191 const Object_attribute* cpu_arch_attr =
a0351a69 9192 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
9193 // Check if we need to use Cortex-A8 workaround.
9194 if (parameters->options().user_set_fix_cortex_a8())
9195 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
9196 else
9197 {
9198 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
9199 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
2e702c99 9200 // profile.
41263c05
DK
9201 const Object_attribute* cpu_arch_profile_attr =
9202 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
9203 this->fix_cortex_a8_ =
9204 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
2e702c99
RM
9205 && (cpu_arch_profile_attr->int_value() == 'A'
9206 || cpu_arch_profile_attr->int_value() == 0));
41263c05 9207 }
2e702c99 9208
a2162063
ILT
9209 // Check if we can use V4BX interworking.
9210 // The V4BX interworking stub contains BX instruction,
9211 // which is not specified for some profiles.
9b2fd367 9212 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 9213 && !this->may_use_v4t_interworking())
a2162063 9214 gold_error(_("unable to provide V4BX reloc interworking fix up; "
2e702c99 9215 "the target profile does not support BX instruction"));
a2162063 9216
94cdfcff 9217 // Fill in some more dynamic tags.
ea715a34
ILT
9218 const Reloc_section* rel_plt = (this->plt_ == NULL
9219 ? NULL
9220 : this->plt_->rel_plt());
9221 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 9222 this->rel_dyn_, true, false);
94cdfcff
DK
9223
9224 // Emit any relocs we saved in an attempt to avoid generating COPY
9225 // relocs.
9226 if (this->copy_relocs_.any_saved_relocs())
2ea97941 9227 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 9228
f59f41f3 9229 // Handle the .ARM.exidx section.
2ea97941 9230 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 9231
731ca54a
RÁE
9232 if (!parameters->options().relocatable())
9233 {
9234 if (exidx_section != NULL
2e702c99
RM
9235 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
9236 {
9237 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
9238 // the .ARM.exidx section.
9239 if (!layout->script_options()->saw_phdrs_clause())
9240 {
9241 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
9242 0)
9243 == NULL);
9244 Output_segment* exidx_segment =
9245 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
9246 exidx_segment->add_output_section_to_nonload(exidx_section,
9247 elfcpp::PF_R);
9248 }
9249 }
11af873f 9250 }
a0351a69 9251
3e235302
DK
9252 // Create an .ARM.attributes section if we have merged any attributes
9253 // from inputs.
9254 if (merged_any_attributes)
7296d933
DK
9255 {
9256 Output_attributes_section_data* attributes_section =
9257 new Output_attributes_section_data(*this->attributes_section_data_);
9258 layout->add_output_section_data(".ARM.attributes",
9259 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 9260 attributes_section, ORDER_INVALID,
7296d933
DK
9261 false);
9262 }
131687b4
DK
9263
9264 // Fix up links in section EXIDX headers.
9265 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
9266 p != layout->section_list().end();
9267 ++p)
9268 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
9269 {
9270 Arm_output_section<big_endian>* os =
9271 Arm_output_section<big_endian>::as_arm_output_section(*p);
9272 os->set_exidx_section_link();
9273 }
4a657b0d
DK
9274}
9275
bec53400
DK
9276// Return whether a direct absolute static relocation needs to be applied.
9277// In cases where Scan::local() or Scan::global() has created
9278// a dynamic relocation other than R_ARM_RELATIVE, the addend
9279// of the relocation is carried in the data, and we must not
9280// apply the static relocation.
9281
9282template<bool big_endian>
9283inline bool
9284Target_arm<big_endian>::Relocate::should_apply_static_reloc(
9285 const Sized_symbol<32>* gsym,
95a2c8d6 9286 unsigned int r_type,
bec53400
DK
9287 bool is_32bit,
9288 Output_section* output_section)
9289{
9290 // If the output section is not allocated, then we didn't call
9291 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9292 // the reloc here.
9293 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9294 return true;
9295
95a2c8d6
RS
9296 int ref_flags = Scan::get_reference_flags(r_type);
9297
bec53400
DK
9298 // For local symbols, we will have created a non-RELATIVE dynamic
9299 // relocation only if (a) the output is position independent,
9300 // (b) the relocation is absolute (not pc- or segment-relative), and
9301 // (c) the relocation is not 32 bits wide.
9302 if (gsym == NULL)
9303 return !(parameters->options().output_is_position_independent()
9304 && (ref_flags & Symbol::ABSOLUTE_REF)
9305 && !is_32bit);
9306
9307 // For global symbols, we use the same helper routines used in the
9308 // scan pass. If we did not create a dynamic relocation, or if we
9309 // created a RELATIVE dynamic relocation, we should apply the static
9310 // relocation.
9311 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
9312 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
9313 && gsym->can_use_relative_reloc(ref_flags
9314 & Symbol::FUNCTION_CALL);
9315 return !has_dyn || is_rel;
9316}
9317
4a657b0d
DK
9318// Perform a relocation.
9319
9320template<bool big_endian>
9321inline bool
9322Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
9323 const Relocate_info<32, big_endian>* relinfo,
9324 Target_arm* target,
ca09d69a 9325 Output_section* output_section,
c121c671
DK
9326 size_t relnum,
9327 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 9328 unsigned int r_type,
c121c671
DK
9329 const Sized_symbol<32>* gsym,
9330 const Symbol_value<32>* psymval,
9331 unsigned char* view,
ebabffbd 9332 Arm_address address,
f96accdf 9333 section_size_type view_size)
4a657b0d 9334{
0e804863
ILT
9335 if (view == NULL)
9336 return true;
9337
c121c671
DK
9338 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
9339
a6d1ef57 9340 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9341 const Arm_reloc_property* reloc_property =
9342 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9343 if (reloc_property == NULL)
9344 {
9345 std::string reloc_name =
9346 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9347 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9348 _("cannot relocate %s in object file"),
9349 reloc_name.c_str());
9350 return true;
9351 }
c121c671 9352
2daedcd6
DK
9353 const Arm_relobj<big_endian>* object =
9354 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 9355
2daedcd6
DK
9356 // If the final branch target of a relocation is THUMB instruction, this
9357 // is 1. Otherwise it is 0.
9358 Arm_address thumb_bit = 0;
c121c671 9359 Symbol_value<32> symval;
d204b6e9 9360 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
9361 bool have_got_offset = false;
9362 unsigned int got_offset = 0;
9363
9364 // If the relocation uses the GOT entry of a symbol instead of the symbol
9365 // itself, we don't care about whether the symbol is defined or what kind
9366 // of symbol it is.
9367 if (reloc_property->uses_got_entry())
9368 {
9369 // Get the GOT offset.
9370 // The GOT pointer points to the end of the GOT section.
9371 // We need to subtract the size of the GOT section to get
9372 // the actual offset to use in the relocation.
9373 // TODO: We should move GOT offset computing code in TLS relocations
9374 // to here.
9375 switch (r_type)
9376 {
9377 case elfcpp::R_ARM_GOT_BREL:
9378 case elfcpp::R_ARM_GOT_PREL:
9379 if (gsym != NULL)
9380 {
9381 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9382 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
9383 - target->got_size());
9384 }
9385 else
9386 {
9387 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9388 gold_assert(object->local_has_got_offset(r_sym,
9389 GOT_TYPE_STANDARD));
9390 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
9391 - target->got_size());
9392 }
9393 have_got_offset = true;
9394 break;
9395
9396 default:
9397 break;
9398 }
9399 }
9400 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 9401 {
2daedcd6
DK
9402 if (gsym != NULL)
9403 {
9404 // This is a global symbol. Determine if we use PLT and if the
9405 // final target is THUMB.
95a2c8d6 9406 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
9407 {
9408 // This uses a PLT, change the symbol value.
fa89cc82 9409 symval.set_output_value(target->plt_address_for_global(gsym));
2daedcd6
DK
9410 psymval = &symval;
9411 }
d204b6e9
DK
9412 else if (gsym->is_weak_undefined())
9413 {
9414 // This is a weakly undefined symbol and we do not use PLT
9415 // for this relocation. A branch targeting this symbol will
9416 // be converted into an NOP.
9417 is_weakly_undefined_without_plt = true;
9418 }
b2286c10
DK
9419 else if (gsym->is_undefined() && reloc_property->uses_symbol())
9420 {
9421 // This relocation uses the symbol value but the symbol is
9422 // undefined. Exit early and have the caller reporting an
9423 // error.
9424 return true;
9425 }
2daedcd6
DK
9426 else
9427 {
9428 // Set thumb bit if symbol:
9429 // -Has type STT_ARM_TFUNC or
9430 // -Has type STT_FUNC, is defined and with LSB in value set.
9431 thumb_bit =
9432 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
9433 || (gsym->type() == elfcpp::STT_FUNC
9434 && !gsym->is_undefined()
9435 && ((psymval->value(object, 0) & 1) != 0)))
9436 ? 1
9437 : 0);
9438 }
9439 }
9440 else
9441 {
2e702c99
RM
9442 // This is a local symbol. Determine if the final target is THUMB.
9443 // We saved this information when all the local symbols were read.
2daedcd6
DK
9444 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
9445 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9446 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
fa89cc82
HS
9447
9448 if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
9449 {
9450 symval.set_output_value(
9451 target->plt_address_for_local(object, r_sym));
9452 psymval = &symval;
9453 }
2daedcd6
DK
9454 }
9455 }
9456 else
9457 {
9458 // This is a fake relocation synthesized for a stub. It does not have
9459 // a real symbol. We just look at the LSB of the symbol value to
9460 // determine if the target is THUMB or not.
9461 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
9462 }
9463
2daedcd6
DK
9464 // Strip LSB if this points to a THUMB target.
9465 if (thumb_bit != 0
2e702c99 9466 && reloc_property->uses_thumb_bit()
2daedcd6
DK
9467 && ((psymval->value(object, 0) & 1) != 0))
9468 {
9469 Arm_address stripped_value =
9470 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9471 symval.set_output_value(stripped_value);
9472 psymval = &symval;
2e702c99 9473 }
2daedcd6 9474
d204b6e9
DK
9475 // To look up relocation stubs, we need to pass the symbol table index of
9476 // a local symbol.
9477 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9478
b10d2873
ILT
9479 // Get the addressing origin of the output segment defining the
9480 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
9481 Arm_address sym_origin = 0;
5c57f1be 9482 if (reloc_property->uses_symbol_base())
b10d2873
ILT
9483 {
9484 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
9485 // R_ARM_BASE_ABS with the NULL symbol will give the
9486 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
9487 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
9488 sym_origin = target->got_plt_section()->address();
9489 else if (gsym == NULL)
9490 sym_origin = 0;
9491 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
9492 sym_origin = gsym->output_segment()->vaddr();
9493 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
9494 sym_origin = gsym->output_data()->address();
9495
9496 // TODO: Assumes the segment base to be zero for the global symbols
9497 // till the proper support for the segment-base-relative addressing
9498 // will be implemented. This is consistent with GNU ld.
9499 }
9500
5c57f1be
DK
9501 // For relative addressing relocation, find out the relative address base.
9502 Arm_address relative_address_base = 0;
9503 switch(reloc_property->relative_address_base())
9504 {
9505 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
9506 // Relocations with relative address bases RAB_TLS and RAB_tp are
9507 // handled by relocate_tls. So we do not need to do anything here.
9508 case Arm_reloc_property::RAB_TLS:
9509 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
9510 break;
9511 case Arm_reloc_property::RAB_B_S:
9512 relative_address_base = sym_origin;
9513 break;
9514 case Arm_reloc_property::RAB_GOT_ORG:
9515 relative_address_base = target->got_plt_section()->address();
9516 break;
9517 case Arm_reloc_property::RAB_P:
9518 relative_address_base = address;
9519 break;
9520 case Arm_reloc_property::RAB_Pa:
9521 relative_address_base = address & 0xfffffffcU;
9522 break;
9523 default:
2e702c99 9524 gold_unreachable();
5c57f1be 9525 }
2e702c99 9526
c121c671
DK
9527 typename Arm_relocate_functions::Status reloc_status =
9528 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 9529 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
9530 switch (r_type)
9531 {
9532 case elfcpp::R_ARM_NONE:
9533 break;
9534
5e445df6 9535 case elfcpp::R_ARM_ABS8:
95a2c8d6 9536 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9537 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
9538 break;
9539
9540 case elfcpp::R_ARM_ABS12:
95a2c8d6 9541 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9542 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
9543 break;
9544
9545 case elfcpp::R_ARM_ABS16:
95a2c8d6 9546 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 9547 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
9548 break;
9549
c121c671 9550 case elfcpp::R_ARM_ABS32:
95a2c8d6 9551 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9552 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9553 thumb_bit);
c121c671
DK
9554 break;
9555
be8fcb75 9556 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9557 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9558 // No thumb bit for this relocation: (S + A)
9559 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9560 0);
be8fcb75
ILT
9561 break;
9562
fd3c5f0b 9563 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9564 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9565 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9566 0, thumb_bit,
9567 check_overflow);
fd3c5f0b
ILT
9568 break;
9569
9570 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9571 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9572 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9573 break;
9574
9575 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9576 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9577 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
2e702c99 9578 0, thumb_bit, false);
fd3c5f0b
ILT
9579 break;
9580
9581 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9582 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9583 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9584 psymval, 0);
fd3c5f0b
ILT
9585 break;
9586
c2a122b6 9587 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9588 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9589 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9590 reloc_status =
9591 Arm_relocate_functions::movw(view, object, psymval,
9592 relative_address_base, thumb_bit,
9593 check_overflow);
c2a122b6
ILT
9594 break;
9595
9596 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9597 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9598 reloc_status =
9599 Arm_relocate_functions::movt(view, object, psymval,
9600 relative_address_base);
c2a122b6
ILT
9601 break;
9602
9603 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9604 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9605 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9606 reloc_status =
9607 Arm_relocate_functions::thm_movw(view, object, psymval,
9608 relative_address_base,
9609 thumb_bit, check_overflow);
c2a122b6
ILT
9610 break;
9611
9612 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9613 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9614 reloc_status =
9615 Arm_relocate_functions::thm_movt(view, object, psymval,
9616 relative_address_base);
02961d7e 9617 break;
2e702c99 9618
c121c671
DK
9619 case elfcpp::R_ARM_REL32:
9620 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9621 address, thumb_bit);
c121c671
DK
9622 break;
9623
be8fcb75 9624 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9625 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9626 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9627 break;
9628
1521477a 9629 // Thumb long branches.
c121c671 9630 case elfcpp::R_ARM_THM_CALL:
51938283 9631 case elfcpp::R_ARM_THM_XPC22:
1521477a 9632 case elfcpp::R_ARM_THM_JUMP24:
51938283 9633 reloc_status =
1521477a
DK
9634 Arm_relocate_functions::thumb_branch_common(
9635 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9636 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9637 break;
9638
c121c671
DK
9639 case elfcpp::R_ARM_GOTOFF32:
9640 {
ebabffbd 9641 Arm_address got_origin;
c121c671
DK
9642 got_origin = target->got_plt_section()->address();
9643 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9644 got_origin, thumb_bit);
c121c671
DK
9645 }
9646 break;
9647
9648 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9649 gold_assert(gsym != NULL);
9650 reloc_status =
9651 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9652 break;
9653
be8fcb75 9654 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9655 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9656 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9657 break;
9658
c121c671
DK
9659 case elfcpp::R_ARM_GOT_BREL:
9660 gold_assert(have_got_offset);
9661 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9662 break;
9663
7f5309a5
ILT
9664 case elfcpp::R_ARM_GOT_PREL:
9665 gold_assert(have_got_offset);
9666 // Get the address origin for GOT PLT, which is allocated right
9667 // after the GOT section, to calculate an absolute address of
9668 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9669 Arm_address got_origin;
7f5309a5
ILT
9670 got_origin = target->got_plt_section()->address();
9671 reloc_status = Arm_relocate_functions::got_prel(view,
9672 got_origin + got_offset,
9673 address);
9674 break;
9675
c121c671 9676 case elfcpp::R_ARM_PLT32:
1521477a
DK
9677 case elfcpp::R_ARM_CALL:
9678 case elfcpp::R_ARM_JUMP24:
9679 case elfcpp::R_ARM_XPC25:
c121c671
DK
9680 gold_assert(gsym == NULL
9681 || gsym->has_plt_offset()
9682 || gsym->final_value_is_known()
9683 || (gsym->is_defined()
9684 && !gsym->is_from_dynobj()
9685 && !gsym->is_preemptible()));
d204b6e9 9686 reloc_status =
2e702c99 9687 Arm_relocate_functions::arm_branch_common(
1521477a
DK
9688 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9689 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9690 break;
9691
41263c05
DK
9692 case elfcpp::R_ARM_THM_JUMP19:
9693 reloc_status =
9694 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9695 thumb_bit);
9696 break;
9697
800d0f56
ILT
9698 case elfcpp::R_ARM_THM_JUMP6:
9699 reloc_status =
9700 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9701 break;
9702
9703 case elfcpp::R_ARM_THM_JUMP8:
9704 reloc_status =
9705 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9706 break;
9707
9708 case elfcpp::R_ARM_THM_JUMP11:
9709 reloc_status =
9710 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9711 break;
9712
c121c671
DK
9713 case elfcpp::R_ARM_PREL31:
9714 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9715 address, thumb_bit);
c121c671
DK
9716 break;
9717
a2162063 9718 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9719 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9720 {
9721 const bool is_v4bx_interworking =
9722 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9723 reloc_status =
9724 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9725 is_v4bx_interworking);
9726 }
a2162063
ILT
9727 break;
9728
11b861d5
DK
9729 case elfcpp::R_ARM_THM_PC8:
9730 reloc_status =
9731 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9732 break;
9733
9734 case elfcpp::R_ARM_THM_PC12:
9735 reloc_status =
9736 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9737 break;
9738
9739 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9740 reloc_status =
9741 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9742 thumb_bit);
9743 break;
9744
b10d2873 9745 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9746 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9747 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9748 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9749 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9750 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9751 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9752 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9753 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9754 case elfcpp::R_ARM_ALU_SB_G2:
9755 reloc_status =
5c57f1be
DK
9756 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9757 reloc_property->group_index(),
9758 relative_address_base,
9759 thumb_bit, check_overflow);
b10d2873
ILT
9760 break;
9761
9762 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9763 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9764 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9765 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9766 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9767 case elfcpp::R_ARM_LDR_SB_G2:
9768 reloc_status =
5c57f1be
DK
9769 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9770 reloc_property->group_index(),
9771 relative_address_base);
b10d2873
ILT
9772 break;
9773
9774 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9775 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9776 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9777 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9778 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9779 case elfcpp::R_ARM_LDRS_SB_G2:
9780 reloc_status =
5c57f1be
DK
9781 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9782 reloc_property->group_index(),
9783 relative_address_base);
b10d2873
ILT
9784 break;
9785
9786 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9787 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9788 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9789 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9790 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9791 case elfcpp::R_ARM_LDC_SB_G2:
9792 reloc_status =
5c57f1be
DK
9793 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9794 reloc_property->group_index(),
9795 relative_address_base);
c121c671
DK
9796 break;
9797
f96accdf
DK
9798 // These are initial tls relocs, which are expected when
9799 // linking.
9800 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9801 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9802 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9803 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9804 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9805 reloc_status =
9806 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9807 view, address, view_size);
9808 break;
9809
3cef7179
ILT
9810 // The known and unknown unsupported and/or deprecated relocations.
9811 case elfcpp::R_ARM_PC24:
9812 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9813 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9814 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9815 default:
3cef7179
ILT
9816 // Just silently leave the method. We should get an appropriate error
9817 // message in the scan methods.
9818 break;
c121c671
DK
9819 }
9820
9821 // Report any errors.
9822 switch (reloc_status)
9823 {
9824 case Arm_relocate_functions::STATUS_OKAY:
9825 break;
9826 case Arm_relocate_functions::STATUS_OVERFLOW:
9827 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9828 _("relocation overflow in %s"),
9829 reloc_property->name().c_str());
c121c671
DK
9830 break;
9831 case Arm_relocate_functions::STATUS_BAD_RELOC:
9832 gold_error_at_location(
9833 relinfo,
9834 relnum,
9835 rel.get_r_offset(),
a2c7281b
DK
9836 _("unexpected opcode while processing relocation %s"),
9837 reloc_property->name().c_str());
c121c671 9838 break;
4a657b0d
DK
9839 default:
9840 gold_unreachable();
9841 }
9842
9843 return true;
9844}
9845
f96accdf
DK
9846// Perform a TLS relocation.
9847
9848template<bool big_endian>
9849inline typename Arm_relocate_functions<big_endian>::Status
9850Target_arm<big_endian>::Relocate::relocate_tls(
9851 const Relocate_info<32, big_endian>* relinfo,
9852 Target_arm<big_endian>* target,
9853 size_t relnum,
9854 const elfcpp::Rel<32, big_endian>& rel,
9855 unsigned int r_type,
9856 const Sized_symbol<32>* gsym,
9857 const Symbol_value<32>* psymval,
9858 unsigned char* view,
4a54abbb 9859 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9860 section_size_type /*view_size*/ )
9861{
9862 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9863 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9864 Output_segment* tls_segment = relinfo->layout->tls_segment();
9865
6fa2a40b 9866 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9867
9868 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9869
9870 const bool is_final = (gsym == NULL
9871 ? !parameters->options().shared()
9872 : gsym->final_value_is_known());
9873 const tls::Tls_optimization optimized_type
9874 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9875 switch (r_type)
9876 {
9877 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
2e702c99
RM
9878 {
9879 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9880 unsigned int got_offset;
9881 if (gsym != NULL)
9882 {
9883 gold_assert(gsym->has_got_offset(got_type));
9884 got_offset = gsym->got_offset(got_type) - target->got_size();
9885 }
9886 else
9887 {
9888 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9889 gold_assert(object->local_has_got_offset(r_sym, got_type));
9890 got_offset = (object->local_got_offset(r_sym, got_type)
f96accdf 9891 - target->got_size());
2e702c99
RM
9892 }
9893 if (optimized_type == tls::TLSOPT_NONE)
9894 {
4a54abbb
DK
9895 Arm_address got_entry =
9896 target->got_plt_section()->address() + got_offset;
2e702c99
RM
9897
9898 // Relocate the field with the PC relative offset of the pair of
9899 // GOT entries.
29ab395d 9900 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
2e702c99
RM
9901 return ArmRelocFuncs::STATUS_OKAY;
9902 }
9903 }
f96accdf
DK
9904 break;
9905
9906 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9907 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9908 {
9909 // Relocate the field with the offset of the GOT entry for
9910 // the module index.
9911 unsigned int got_offset;
9912 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
f96accdf 9913 - target->got_size());
4a54abbb
DK
9914 Arm_address got_entry =
9915 target->got_plt_section()->address() + got_offset;
9916
2e702c99
RM
9917 // Relocate the field with the PC relative offset of the pair of
9918 // GOT entries.
9919 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9920 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9921 }
f96accdf
DK
9922 break;
9923
9924 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9925 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9926 return ArmRelocFuncs::STATUS_OKAY;
9927
9928 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9929 if (optimized_type == tls::TLSOPT_NONE)
2e702c99
RM
9930 {
9931 // Relocate the field with the offset of the GOT entry for
9932 // the tp-relative offset of the symbol.
f96accdf 9933 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
2e702c99
RM
9934 unsigned int got_offset;
9935 if (gsym != NULL)
9936 {
9937 gold_assert(gsym->has_got_offset(got_type));
9938 got_offset = gsym->got_offset(got_type);
9939 }
9940 else
9941 {
9942 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9943 gold_assert(object->local_has_got_offset(r_sym, got_type));
9944 got_offset = object->local_got_offset(r_sym, got_type);
9945 }
9946
9947 // All GOT offsets are relative to the end of the GOT.
9948 got_offset -= target->got_size();
4a54abbb
DK
9949
9950 Arm_address got_entry =
9951 target->got_plt_section()->address() + got_offset;
9952
2e702c99 9953 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9954 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf 9955 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9956 }
f96accdf
DK
9957 break;
9958
9959 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9960 // If we're creating a shared library, a dynamic relocation will
9961 // have been created for this location, so do not apply it now.
9962 if (!parameters->options().shared())
2e702c99
RM
9963 {
9964 gold_assert(tls_segment != NULL);
4a54abbb
DK
9965
9966 // $tp points to the TCB, which is followed by the TLS, so we
9967 // need to add TCB size to the offset.
9968 Arm_address aligned_tcb_size =
9969 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
2e702c99 9970 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9971
2e702c99 9972 }
f96accdf 9973 return ArmRelocFuncs::STATUS_OKAY;
2e702c99 9974
f96accdf
DK
9975 default:
9976 gold_unreachable();
9977 }
9978
9979 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9980 _("unsupported reloc %u"),
9981 r_type);
9982 return ArmRelocFuncs::STATUS_BAD_RELOC;
9983}
9984
4a657b0d
DK
9985// Relocate section data.
9986
9987template<bool big_endian>
9988void
9989Target_arm<big_endian>::relocate_section(
9990 const Relocate_info<32, big_endian>* relinfo,
9991 unsigned int sh_type,
9992 const unsigned char* prelocs,
9993 size_t reloc_count,
9994 Output_section* output_section,
9995 bool needs_special_offset_handling,
9996 unsigned char* view,
ebabffbd 9997 Arm_address address,
364c7fa5
ILT
9998 section_size_type view_size,
9999 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
10000{
10001 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
10002 gold_assert(sh_type == elfcpp::SHT_REL);
10003
218c5831
DK
10004 // See if we are relocating a relaxed input section. If so, the view
10005 // covers the whole output section and we need to adjust accordingly.
10006 if (needs_special_offset_handling)
43d12afe 10007 {
218c5831
DK
10008 const Output_relaxed_input_section* poris =
10009 output_section->find_relaxed_input_section(relinfo->object,
10010 relinfo->data_shndx);
10011 if (poris != NULL)
10012 {
10013 Arm_address section_address = poris->address();
10014 section_size_type section_size = poris->data_size();
10015
10016 gold_assert((section_address >= address)
10017 && ((section_address + section_size)
10018 <= (address + view_size)));
10019
10020 off_t offset = section_address - address;
10021 view += offset;
10022 address += offset;
10023 view_size = section_size;
10024 }
43d12afe
DK
10025 }
10026
4a657b0d 10027 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
168a4726 10028 Arm_relocate, gold::Default_comdat_behavior>(
4a657b0d
DK
10029 relinfo,
10030 this,
10031 prelocs,
10032 reloc_count,
10033 output_section,
10034 needs_special_offset_handling,
10035 view,
10036 address,
364c7fa5
ILT
10037 view_size,
10038 reloc_symbol_changes);
4a657b0d
DK
10039}
10040
10041// Return the size of a relocation while scanning during a relocatable
10042// link.
10043
10044template<bool big_endian>
10045unsigned int
10046Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
10047 unsigned int r_type,
10048 Relobj* object)
10049{
a6d1ef57 10050 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
10051 const Arm_reloc_property* arp =
10052 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10053 if (arp != NULL)
10054 return arp->size();
10055 else
4a657b0d 10056 {
5c57f1be
DK
10057 std::string reloc_name =
10058 arm_reloc_property_table->reloc_name_in_error_message(r_type);
10059 gold_error(_("%s: unexpected %s in object file"),
10060 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
10061 return 0;
10062 }
10063}
10064
10065// Scan the relocs during a relocatable link.
10066
10067template<bool big_endian>
10068void
10069Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 10070 Symbol_table* symtab,
2ea97941 10071 Layout* layout,
6fa2a40b 10072 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
10073 unsigned int data_shndx,
10074 unsigned int sh_type,
10075 const unsigned char* prelocs,
10076 size_t reloc_count,
10077 Output_section* output_section,
10078 bool needs_special_offset_handling,
10079 size_t local_symbol_count,
10080 const unsigned char* plocal_symbols,
10081 Relocatable_relocs* rr)
10082{
10083 gold_assert(sh_type == elfcpp::SHT_REL);
10084
5c388529 10085 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
10086 Relocatable_size_for_reloc> Scan_relocatable_relocs;
10087
10088 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
10089 Scan_relocatable_relocs>(
4a657b0d 10090 symtab,
2ea97941 10091 layout,
4a657b0d
DK
10092 object,
10093 data_shndx,
10094 prelocs,
10095 reloc_count,
10096 output_section,
10097 needs_special_offset_handling,
10098 local_symbol_count,
10099 plocal_symbols,
10100 rr);
10101}
10102
7404fe1b 10103// Emit relocations for a section.
4a657b0d
DK
10104
10105template<bool big_endian>
10106void
7404fe1b 10107Target_arm<big_endian>::relocate_relocs(
4a657b0d
DK
10108 const Relocate_info<32, big_endian>* relinfo,
10109 unsigned int sh_type,
10110 const unsigned char* prelocs,
10111 size_t reloc_count,
10112 Output_section* output_section,
62fe925a 10113 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
4a657b0d
DK
10114 const Relocatable_relocs* rr,
10115 unsigned char* view,
ebabffbd 10116 Arm_address view_address,
4a657b0d
DK
10117 section_size_type view_size,
10118 unsigned char* reloc_view,
10119 section_size_type reloc_view_size)
10120{
10121 gold_assert(sh_type == elfcpp::SHT_REL);
10122
7404fe1b 10123 gold::relocate_relocs<32, big_endian, elfcpp::SHT_REL>(
4a657b0d
DK
10124 relinfo,
10125 prelocs,
10126 reloc_count,
10127 output_section,
10128 offset_in_output_section,
10129 rr,
10130 view,
10131 view_address,
10132 view_size,
10133 reloc_view,
10134 reloc_view_size);
10135}
10136
5c388529
DK
10137// Perform target-specific processing in a relocatable link. This is
10138// only used if we use the relocation strategy RELOC_SPECIAL.
10139
10140template<bool big_endian>
10141void
10142Target_arm<big_endian>::relocate_special_relocatable(
10143 const Relocate_info<32, big_endian>* relinfo,
10144 unsigned int sh_type,
10145 const unsigned char* preloc_in,
10146 size_t relnum,
10147 Output_section* output_section,
62fe925a 10148 typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
5c388529
DK
10149 unsigned char* view,
10150 elfcpp::Elf_types<32>::Elf_Addr view_address,
10151 section_size_type,
10152 unsigned char* preloc_out)
10153{
10154 // We can only handle REL type relocation sections.
10155 gold_assert(sh_type == elfcpp::SHT_REL);
10156
10157 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
10158 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
10159 Reltype_write;
10160 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
10161
10162 const Arm_relobj<big_endian>* object =
10163 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10164 const unsigned int local_count = object->local_symbol_count();
10165
10166 Reltype reloc(preloc_in);
10167 Reltype_write reloc_write(preloc_out);
10168
10169 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10170 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10171 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10172
10173 const Arm_reloc_property* arp =
10174 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10175 gold_assert(arp != NULL);
10176
10177 // Get the new symbol index.
10178 // We only use RELOC_SPECIAL strategy in local relocations.
10179 gold_assert(r_sym < local_count);
10180
10181 // We are adjusting a section symbol. We need to find
10182 // the symbol table index of the section symbol for
10183 // the output section corresponding to input section
10184 // in which this symbol is defined.
10185 bool is_ordinary;
10186 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10187 gold_assert(is_ordinary);
10188 Output_section* os = object->output_section(shndx);
10189 gold_assert(os != NULL);
10190 gold_assert(os->needs_symtab_index());
10191 unsigned int new_symndx = os->symtab_index();
10192
10193 // Get the new offset--the location in the output section where
10194 // this relocation should be applied.
10195
10196 Arm_address offset = reloc.get_r_offset();
10197 Arm_address new_offset;
10198 if (offset_in_output_section != invalid_address)
10199 new_offset = offset + offset_in_output_section;
10200 else
10201 {
10202 section_offset_type sot_offset =
2e702c99 10203 convert_types<section_offset_type, Arm_address>(offset);
5c388529 10204 section_offset_type new_sot_offset =
2e702c99
RM
10205 output_section->output_offset(object, relinfo->data_shndx,
10206 sot_offset);
5c388529
DK
10207 gold_assert(new_sot_offset != -1);
10208 new_offset = new_sot_offset;
10209 }
10210
10211 // In an object file, r_offset is an offset within the section.
10212 // In an executable or dynamic object, generated by
10213 // --emit-relocs, r_offset is an absolute address.
10214 if (!parameters->options().relocatable())
10215 {
10216 new_offset += view_address;
10217 if (offset_in_output_section != invalid_address)
2e702c99 10218 new_offset -= offset_in_output_section;
5c388529
DK
10219 }
10220
10221 reloc_write.put_r_offset(new_offset);
10222 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10223
10224 // Handle the reloc addend.
10225 // The relocation uses a section symbol in the input file.
10226 // We are adjusting it to use a section symbol in the output
10227 // file. The input section symbol refers to some address in
10228 // the input section. We need the relocation in the output
10229 // file to refer to that same address. This adjustment to
10230 // the addend is the same calculation we use for a simple
10231 // absolute relocation for the input section symbol.
10232
10233 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
10234
10235 // Handle THUMB bit.
10236 Symbol_value<32> symval;
10237 Arm_address thumb_bit =
10238 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
10239 if (thumb_bit != 0
2e702c99 10240 && arp->uses_thumb_bit()
5c388529
DK
10241 && ((psymval->value(object, 0) & 1) != 0))
10242 {
10243 Arm_address stripped_value =
10244 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
10245 symval.set_output_value(stripped_value);
10246 psymval = &symval;
2e702c99 10247 }
5c388529
DK
10248
10249 unsigned char* paddend = view + offset;
10250 typename Arm_relocate_functions<big_endian>::Status reloc_status =
10251 Arm_relocate_functions<big_endian>::STATUS_OKAY;
10252 switch (r_type)
10253 {
10254 case elfcpp::R_ARM_ABS8:
10255 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
10256 psymval);
10257 break;
10258
10259 case elfcpp::R_ARM_ABS12:
10260 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
10261 psymval);
10262 break;
10263
10264 case elfcpp::R_ARM_ABS16:
10265 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
10266 psymval);
10267 break;
10268
10269 case elfcpp::R_ARM_THM_ABS5:
10270 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
10271 object,
10272 psymval);
10273 break;
10274
10275 case elfcpp::R_ARM_MOVW_ABS_NC:
10276 case elfcpp::R_ARM_MOVW_PREL_NC:
10277 case elfcpp::R_ARM_MOVW_BREL_NC:
10278 case elfcpp::R_ARM_MOVW_BREL:
10279 reloc_status = Arm_relocate_functions<big_endian>::movw(
10280 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10281 break;
10282
10283 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
10284 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
10285 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
10286 case elfcpp::R_ARM_THM_MOVW_BREL:
10287 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
10288 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
10289 break;
10290
10291 case elfcpp::R_ARM_THM_CALL:
10292 case elfcpp::R_ARM_THM_XPC22:
10293 case elfcpp::R_ARM_THM_JUMP24:
10294 reloc_status =
10295 Arm_relocate_functions<big_endian>::thumb_branch_common(
10296 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10297 false);
10298 break;
10299
10300 case elfcpp::R_ARM_PLT32:
10301 case elfcpp::R_ARM_CALL:
10302 case elfcpp::R_ARM_JUMP24:
10303 case elfcpp::R_ARM_XPC25:
10304 reloc_status =
2e702c99 10305 Arm_relocate_functions<big_endian>::arm_branch_common(
5c388529
DK
10306 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
10307 false);
10308 break;
10309
10310 case elfcpp::R_ARM_THM_JUMP19:
10311 reloc_status =
10312 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
10313 psymval, 0, thumb_bit);
10314 break;
10315
10316 case elfcpp::R_ARM_THM_JUMP6:
10317 reloc_status =
10318 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
10319 0);
10320 break;
10321
10322 case elfcpp::R_ARM_THM_JUMP8:
10323 reloc_status =
10324 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
10325 0);
10326 break;
10327
10328 case elfcpp::R_ARM_THM_JUMP11:
10329 reloc_status =
10330 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
10331 0);
10332 break;
10333
10334 case elfcpp::R_ARM_PREL31:
10335 reloc_status =
10336 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
10337 thumb_bit);
10338 break;
10339
10340 case elfcpp::R_ARM_THM_PC8:
10341 reloc_status =
10342 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
10343 0);
10344 break;
10345
10346 case elfcpp::R_ARM_THM_PC12:
10347 reloc_status =
10348 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
10349 0);
10350 break;
10351
10352 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
10353 reloc_status =
10354 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
10355 0, thumb_bit);
10356 break;
10357
10358 // These relocation truncate relocation results so we cannot handle them
10359 // in a relocatable link.
10360 case elfcpp::R_ARM_MOVT_ABS:
10361 case elfcpp::R_ARM_THM_MOVT_ABS:
10362 case elfcpp::R_ARM_MOVT_PREL:
10363 case elfcpp::R_ARM_MOVT_BREL:
10364 case elfcpp::R_ARM_THM_MOVT_PREL:
10365 case elfcpp::R_ARM_THM_MOVT_BREL:
10366 case elfcpp::R_ARM_ALU_PC_G0_NC:
10367 case elfcpp::R_ARM_ALU_PC_G0:
10368 case elfcpp::R_ARM_ALU_PC_G1_NC:
10369 case elfcpp::R_ARM_ALU_PC_G1:
10370 case elfcpp::R_ARM_ALU_PC_G2:
10371 case elfcpp::R_ARM_ALU_SB_G0_NC:
10372 case elfcpp::R_ARM_ALU_SB_G0:
10373 case elfcpp::R_ARM_ALU_SB_G1_NC:
10374 case elfcpp::R_ARM_ALU_SB_G1:
10375 case elfcpp::R_ARM_ALU_SB_G2:
10376 case elfcpp::R_ARM_LDR_PC_G0:
10377 case elfcpp::R_ARM_LDR_PC_G1:
10378 case elfcpp::R_ARM_LDR_PC_G2:
10379 case elfcpp::R_ARM_LDR_SB_G0:
10380 case elfcpp::R_ARM_LDR_SB_G1:
10381 case elfcpp::R_ARM_LDR_SB_G2:
10382 case elfcpp::R_ARM_LDRS_PC_G0:
10383 case elfcpp::R_ARM_LDRS_PC_G1:
10384 case elfcpp::R_ARM_LDRS_PC_G2:
10385 case elfcpp::R_ARM_LDRS_SB_G0:
10386 case elfcpp::R_ARM_LDRS_SB_G1:
10387 case elfcpp::R_ARM_LDRS_SB_G2:
10388 case elfcpp::R_ARM_LDC_PC_G0:
10389 case elfcpp::R_ARM_LDC_PC_G1:
10390 case elfcpp::R_ARM_LDC_PC_G2:
10391 case elfcpp::R_ARM_LDC_SB_G0:
10392 case elfcpp::R_ARM_LDC_SB_G1:
10393 case elfcpp::R_ARM_LDC_SB_G2:
10394 gold_error(_("cannot handle %s in a relocatable link"),
10395 arp->name().c_str());
10396 break;
10397
10398 default:
10399 gold_unreachable();
10400 }
10401
10402 // Report any errors.
10403 switch (reloc_status)
10404 {
10405 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
10406 break;
10407 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
10408 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10409 _("relocation overflow in %s"),
10410 arp->name().c_str());
10411 break;
10412 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
10413 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10414 _("unexpected opcode while processing relocation %s"),
10415 arp->name().c_str());
10416 break;
10417 default:
10418 gold_unreachable();
10419 }
10420}
10421
94cdfcff
DK
10422// Return the value to use for a dynamic symbol which requires special
10423// treatment. This is how we support equality comparisons of function
10424// pointers across shared library boundaries, as described in the
10425// processor specific ABI supplement.
10426
4a657b0d
DK
10427template<bool big_endian>
10428uint64_t
94cdfcff 10429Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 10430{
94cdfcff 10431 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
fa89cc82 10432 return this->plt_address_for_global(gsym);
4a657b0d
DK
10433}
10434
10435// Map platform-specific relocs to real relocs
10436//
10437template<bool big_endian>
10438unsigned int
ca09d69a 10439Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
10440{
10441 switch (r_type)
10442 {
10443 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
10444 // This is either R_ARM_ABS32 or R_ARM_REL32;
10445 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
10446
10447 case elfcpp::R_ARM_TARGET2:
9b547ce6 10448 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 10449 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
10450
10451 default:
10452 return r_type;
10453 }
10454}
10455
d5b40221
DK
10456// Whether if two EABI versions V1 and V2 are compatible.
10457
10458template<bool big_endian>
10459bool
10460Target_arm<big_endian>::are_eabi_versions_compatible(
10461 elfcpp::Elf_Word v1,
10462 elfcpp::Elf_Word v2)
10463{
10464 // v4 and v5 are the same spec before and after it was released,
10465 // so allow mixing them.
106e8a6c
DK
10466 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
10467 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
10468 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
10469 return true;
10470
10471 return v1 == v2;
10472}
10473
10474// Combine FLAGS from an input object called NAME and the processor-specific
10475// flags in the ELF header of the output. Much of this is adapted from the
10476// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
10477// in bfd/elf32-arm.c.
10478
10479template<bool big_endian>
10480void
10481Target_arm<big_endian>::merge_processor_specific_flags(
10482 const std::string& name,
10483 elfcpp::Elf_Word flags)
10484{
10485 if (this->are_processor_specific_flags_set())
10486 {
10487 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
10488
10489 // Nothing to merge if flags equal to those in output.
10490 if (flags == out_flags)
10491 return;
10492
10493 // Complain about various flag mismatches.
10494 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
10495 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
10496 if (!this->are_eabi_versions_compatible(version1, version2)
10497 && parameters->options().warn_mismatch())
d5b40221
DK
10498 gold_error(_("Source object %s has EABI version %d but output has "
10499 "EABI version %d."),
10500 name.c_str(),
10501 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
10502 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
10503 }
10504 else
10505 {
10506 // If the input is the default architecture and had the default
10507 // flags then do not bother setting the flags for the output
10508 // architecture, instead allow future merges to do this. If no
10509 // future merges ever set these flags then they will retain their
10510 // uninitialised values, which surprise surprise, correspond
10511 // to the default values.
10512 if (flags == 0)
10513 return;
10514
10515 // This is the first time, just copy the flags.
10516 // We only copy the EABI version for now.
10517 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
10518 }
10519}
10520
10521// Adjust ELF file header.
10522template<bool big_endian>
10523void
10524Target_arm<big_endian>::do_adjust_elf_header(
10525 unsigned char* view,
3bfcb652 10526 int len)
d5b40221
DK
10527{
10528 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
10529
10530 elfcpp::Ehdr<32, big_endian> ehdr(view);
3bfcb652 10531 elfcpp::Elf_Word flags = this->processor_specific_flags();
d5b40221
DK
10532 unsigned char e_ident[elfcpp::EI_NIDENT];
10533 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
10534
3bfcb652 10535 if (elfcpp::arm_eabi_version(flags)
d5b40221
DK
10536 == elfcpp::EF_ARM_EABI_UNKNOWN)
10537 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
10538 else
10539 e_ident[elfcpp::EI_OSABI] = 0;
10540 e_ident[elfcpp::EI_ABIVERSION] = 0;
10541
10542 // FIXME: Do EF_ARM_BE8 adjustment.
10543
3bfcb652
NC
10544 // If we're working in EABI_VER5, set the hard/soft float ABI flags
10545 // as appropriate.
10546 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
10547 {
10548 elfcpp::Elf_Half type = ehdr.get_e_type();
10549 if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
10550 {
10551 Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
f12d1e8a 10552 if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
3bfcb652
NC
10553 flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
10554 else
10555 flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
10556 this->set_processor_specific_flags(flags);
10557 }
10558 }
d5b40221
DK
10559 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
10560 oehdr.put_e_ident(e_ident);
2bca0377 10561 oehdr.put_e_flags(this->processor_specific_flags());
d5b40221
DK
10562}
10563
10564// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
10565// We need to use a target-specific sub-class of
10566// Sized_relobj_file<32, big_endian> to store ARM specific information.
10567// Hence we need to have our own ELF object creation.
d5b40221
DK
10568
10569template<bool big_endian>
10570Object*
10571Target_arm<big_endian>::do_make_elf_object(
10572 const std::string& name,
10573 Input_file* input_file,
2ea97941 10574 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10575{
10576 int et = ehdr.get_e_type();
f4a8b6d7
DK
10577 // ET_EXEC files are valid input for --just-symbols/-R,
10578 // and we treat them as relocatable objects.
10579 if (et == elfcpp::ET_REL
10580 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
10581 {
10582 Arm_relobj<big_endian>* obj =
2e702c99 10583 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10584 obj->setup();
10585 return obj;
10586 }
10587 else if (et == elfcpp::ET_DYN)
10588 {
10589 Sized_dynobj<32, big_endian>* obj =
2e702c99 10590 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10591 obj->setup();
10592 return obj;
10593 }
10594 else
10595 {
10596 gold_error(_("%s: unsupported ELF file type %d"),
2e702c99 10597 name.c_str(), et);
d5b40221
DK
10598 return NULL;
10599 }
10600}
10601
a0351a69
DK
10602// Read the architecture from the Tag_also_compatible_with attribute, if any.
10603// Returns -1 if no architecture could be read.
10604// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10605
10606template<bool big_endian>
10607int
10608Target_arm<big_endian>::get_secondary_compatible_arch(
10609 const Attributes_section_data* pasd)
10610{
ca09d69a 10611 const Object_attribute* known_attributes =
a0351a69
DK
10612 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10613
10614 // Note: the tag and its argument below are uleb128 values, though
10615 // currently-defined values fit in one byte for each.
10616 const std::string& sv =
10617 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10618 if (sv.size() == 2
10619 && sv.data()[0] == elfcpp::Tag_CPU_arch
10620 && (sv.data()[1] & 128) != 128)
10621 return sv.data()[1];
10622
10623 // This tag is "safely ignorable", so don't complain if it looks funny.
10624 return -1;
10625}
10626
10627// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10628// The tag is removed if ARCH is -1.
10629// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10630
10631template<bool big_endian>
10632void
10633Target_arm<big_endian>::set_secondary_compatible_arch(
10634 Attributes_section_data* pasd,
10635 int arch)
10636{
ca09d69a 10637 Object_attribute* known_attributes =
a0351a69
DK
10638 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10639
10640 if (arch == -1)
10641 {
10642 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10643 return;
10644 }
10645
10646 // Note: the tag and its argument below are uleb128 values, though
10647 // currently-defined values fit in one byte for each.
10648 char sv[3];
10649 sv[0] = elfcpp::Tag_CPU_arch;
10650 gold_assert(arch != 0);
10651 sv[1] = arch;
10652 sv[2] = '\0';
10653
10654 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10655}
10656
10657// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10658// into account.
10659// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10660
10661template<bool big_endian>
10662int
10663Target_arm<big_endian>::tag_cpu_arch_combine(
10664 const char* name,
10665 int oldtag,
10666 int* secondary_compat_out,
10667 int newtag,
10668 int secondary_compat)
10669{
10670#define T(X) elfcpp::TAG_CPU_ARCH_##X
10671 static const int v6t2[] =
10672 {
10673 T(V6T2), // PRE_V4.
10674 T(V6T2), // V4.
10675 T(V6T2), // V4T.
10676 T(V6T2), // V5T.
10677 T(V6T2), // V5TE.
10678 T(V6T2), // V5TEJ.
10679 T(V6T2), // V6.
10680 T(V7), // V6KZ.
10681 T(V6T2) // V6T2.
10682 };
10683 static const int v6k[] =
10684 {
10685 T(V6K), // PRE_V4.
10686 T(V6K), // V4.
10687 T(V6K), // V4T.
10688 T(V6K), // V5T.
10689 T(V6K), // V5TE.
10690 T(V6K), // V5TEJ.
10691 T(V6K), // V6.
10692 T(V6KZ), // V6KZ.
10693 T(V7), // V6T2.
10694 T(V6K) // V6K.
10695 };
10696 static const int v7[] =
10697 {
10698 T(V7), // PRE_V4.
10699 T(V7), // V4.
10700 T(V7), // V4T.
10701 T(V7), // V5T.
10702 T(V7), // V5TE.
10703 T(V7), // V5TEJ.
10704 T(V7), // V6.
10705 T(V7), // V6KZ.
10706 T(V7), // V6T2.
10707 T(V7), // V6K.
10708 T(V7) // V7.
10709 };
10710 static const int v6_m[] =
10711 {
10712 -1, // PRE_V4.
10713 -1, // V4.
10714 T(V6K), // V4T.
10715 T(V6K), // V5T.
10716 T(V6K), // V5TE.
10717 T(V6K), // V5TEJ.
10718 T(V6K), // V6.
10719 T(V6KZ), // V6KZ.
10720 T(V7), // V6T2.
10721 T(V6K), // V6K.
10722 T(V7), // V7.
10723 T(V6_M) // V6_M.
10724 };
10725 static const int v6s_m[] =
10726 {
10727 -1, // PRE_V4.
10728 -1, // V4.
10729 T(V6K), // V4T.
10730 T(V6K), // V5T.
10731 T(V6K), // V5TE.
10732 T(V6K), // V5TEJ.
10733 T(V6K), // V6.
10734 T(V6KZ), // V6KZ.
10735 T(V7), // V6T2.
10736 T(V6K), // V6K.
10737 T(V7), // V7.
10738 T(V6S_M), // V6_M.
10739 T(V6S_M) // V6S_M.
10740 };
10741 static const int v7e_m[] =
10742 {
10743 -1, // PRE_V4.
10744 -1, // V4.
10745 T(V7E_M), // V4T.
10746 T(V7E_M), // V5T.
10747 T(V7E_M), // V5TE.
10748 T(V7E_M), // V5TEJ.
10749 T(V7E_M), // V6.
10750 T(V7E_M), // V6KZ.
10751 T(V7E_M), // V6T2.
10752 T(V7E_M), // V6K.
10753 T(V7E_M), // V7.
10754 T(V7E_M), // V6_M.
10755 T(V7E_M), // V6S_M.
10756 T(V7E_M) // V7E_M.
10757 };
24491327
HS
10758 static const int v8[] =
10759 {
10760 T(V8), // PRE_V4.
10761 T(V8), // V4.
10762 T(V8), // V4T.
10763 T(V8), // V5T.
10764 T(V8), // V5TE.
10765 T(V8), // V5TEJ.
10766 T(V8), // V6.
10767 T(V8), // V6KZ.
10768 T(V8), // V6T2.
10769 T(V8), // V6K.
10770 T(V8), // V7.
10771 T(V8), // V6_M.
10772 T(V8), // V6S_M.
10773 T(V8), // V7E_M.
10774 T(V8) // V8.
10775 };
a0351a69
DK
10776 static const int v4t_plus_v6_m[] =
10777 {
10778 -1, // PRE_V4.
10779 -1, // V4.
10780 T(V4T), // V4T.
10781 T(V5T), // V5T.
10782 T(V5TE), // V5TE.
10783 T(V5TEJ), // V5TEJ.
10784 T(V6), // V6.
10785 T(V6KZ), // V6KZ.
10786 T(V6T2), // V6T2.
10787 T(V6K), // V6K.
10788 T(V7), // V7.
10789 T(V6_M), // V6_M.
10790 T(V6S_M), // V6S_M.
10791 T(V7E_M), // V7E_M.
24491327 10792 T(V8), // V8.
a0351a69
DK
10793 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10794 };
ca09d69a 10795 static const int* comb[] =
a0351a69
DK
10796 {
10797 v6t2,
10798 v6k,
10799 v7,
10800 v6_m,
10801 v6s_m,
10802 v7e_m,
24491327 10803 v8,
a0351a69
DK
10804 // Pseudo-architecture.
10805 v4t_plus_v6_m
10806 };
10807
10808 // Check we've not got a higher architecture than we know about.
10809
f62a3ca7 10810 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10811 {
10812 gold_error(_("%s: unknown CPU architecture"), name);
10813 return -1;
10814 }
10815
10816 // Override old tag if we have a Tag_also_compatible_with on the output.
10817
10818 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10819 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10820 oldtag = T(V4T_PLUS_V6_M);
10821
10822 // And override the new tag if we have a Tag_also_compatible_with on the
10823 // input.
10824
10825 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10826 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10827 newtag = T(V4T_PLUS_V6_M);
10828
10829 // Architectures before V6KZ add features monotonically.
10830 int tagh = std::max(oldtag, newtag);
10831 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10832 return tagh;
10833
10834 int tagl = std::min(oldtag, newtag);
10835 int result = comb[tagh - T(V6T2)][tagl];
10836
10837 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10838 // as the canonical version.
10839 if (result == T(V4T_PLUS_V6_M))
10840 {
10841 result = T(V4T);
10842 *secondary_compat_out = T(V6_M);
10843 }
10844 else
10845 *secondary_compat_out = -1;
10846
10847 if (result == -1)
10848 {
10849 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10850 name, oldtag, newtag);
10851 return -1;
10852 }
10853
10854 return result;
10855#undef T
10856}
10857
10858// Helper to print AEABI enum tag value.
10859
10860template<bool big_endian>
10861std::string
10862Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10863{
ca09d69a 10864 static const char* aeabi_enum_names[] =
a0351a69
DK
10865 { "", "variable-size", "32-bit", "" };
10866 const size_t aeabi_enum_names_size =
10867 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10868
10869 if (value < aeabi_enum_names_size)
10870 return std::string(aeabi_enum_names[value]);
10871 else
10872 {
10873 char buffer[100];
10874 sprintf(buffer, "<unknown value %u>", value);
10875 return std::string(buffer);
10876 }
10877}
10878
10879// Return the string value to store in TAG_CPU_name.
10880
10881template<bool big_endian>
10882std::string
10883Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10884{
ca09d69a 10885 static const char* name_table[] = {
a0351a69
DK
10886 // These aren't real CPU names, but we can't guess
10887 // that from the architecture version alone.
10888 "Pre v4",
10889 "ARM v4",
10890 "ARM v4T",
10891 "ARM v5T",
10892 "ARM v5TE",
10893 "ARM v5TEJ",
10894 "ARM v6",
10895 "ARM v6KZ",
10896 "ARM v6T2",
10897 "ARM v6K",
10898 "ARM v7",
10899 "ARM v6-M",
10900 "ARM v6S-M",
24491327
HS
10901 "ARM v7E-M",
10902 "ARM v8"
a0351a69
DK
10903 };
10904 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10905
10906 if (value < name_table_size)
10907 return std::string(name_table[value]);
10908 else
10909 {
10910 char buffer[100];
10911 sprintf(buffer, "<unknown CPU value %u>", value);
10912 return std::string(buffer);
2e702c99 10913 }
a0351a69
DK
10914}
10915
679af368
ILT
10916// Query attributes object to see if integer divide instructions may be
10917// present in an object.
10918
10919template<bool big_endian>
10920bool
10921Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
10922 const Object_attribute* div_attr)
10923{
10924 switch (div_attr->int_value())
10925 {
10926 case 0:
10927 // Integer divide allowed if instruction contained in
10928 // archetecture.
10929 if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
10930 return true;
10931 else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
10932 return true;
10933 else
10934 return false;
10935
10936 case 1:
10937 // Integer divide explicitly prohibited.
10938 return false;
10939
10940 default:
10941 // Unrecognised case - treat as allowing divide everywhere.
10942 case 2:
10943 // Integer divide allowed in ARM state.
10944 return true;
10945 }
10946}
10947
10948// Query attributes object to see if integer divide instructions are
10949// forbidden to be in the object. This is not the inverse of
10950// attributes_accept_div.
10951
10952template<bool big_endian>
10953bool
10954Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
10955{
10956 return div_attr->int_value() == 1;
10957}
10958
a0351a69
DK
10959// Merge object attributes from input file called NAME with those of the
10960// output. The input object attributes are in the object pointed by PASD.
10961
10962template<bool big_endian>
10963void
10964Target_arm<big_endian>::merge_object_attributes(
10965 const char* name,
10966 const Attributes_section_data* pasd)
10967{
10968 // Return if there is no attributes section data.
10969 if (pasd == NULL)
10970 return;
10971
10972 // If output has no object attributes, just copy.
da59ad79 10973 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10974 if (this->attributes_section_data_ == NULL)
10975 {
10976 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10977 Object_attribute* out_attr =
10978 this->attributes_section_data_->known_attributes(vendor);
10979
10980 // We do not output objects with Tag_MPextension_use_legacy - we move
10981 // the attribute's value to Tag_MPextension_use. */
10982 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10983 {
10984 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10985 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
2e702c99 10986 != out_attr[elfcpp::Tag_MPextension_use].int_value())
da59ad79
DK
10987 {
10988 gold_error(_("%s has both the current and legacy "
10989 "Tag_MPextension_use attributes"),
10990 name);
10991 }
10992
10993 out_attr[elfcpp::Tag_MPextension_use] =
10994 out_attr[elfcpp::Tag_MPextension_use_legacy];
10995 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10996 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10997 }
10998
a0351a69
DK
10999 return;
11000 }
11001
a0351a69
DK
11002 const Object_attribute* in_attr = pasd->known_attributes(vendor);
11003 Object_attribute* out_attr =
11004 this->attributes_section_data_->known_attributes(vendor);
11005
11006 // This needs to happen before Tag_ABI_FP_number_model is merged. */
11007 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
11008 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
11009 {
11010 // Ignore mismatches if the object doesn't use floating point. */
5c294fee 11011 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11012 == elfcpp::AEABI_FP_number_model_none
5c294fee 11013 || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11014 != elfcpp::AEABI_FP_number_model_none
5c294fee 11015 && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11016 == elfcpp::AEABI_VFP_args_compatible))
a0351a69
DK
11017 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
11018 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5c294fee 11019 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
f12d1e8a 11020 != elfcpp::AEABI_FP_number_model_none
5c294fee 11021 && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
f12d1e8a 11022 != elfcpp::AEABI_VFP_args_compatible
7296d933 11023 && parameters->options().warn_mismatch())
2e702c99 11024 gold_error(_("%s uses VFP register arguments, output does not"),
a0351a69
DK
11025 name);
11026 }
11027
11028 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
11029 {
11030 // Merge this attribute with existing attributes.
11031 switch (i)
11032 {
11033 case elfcpp::Tag_CPU_raw_name:
11034 case elfcpp::Tag_CPU_name:
11035 // These are merged after Tag_CPU_arch.
11036 break;
11037
11038 case elfcpp::Tag_ABI_optimization_goals:
11039 case elfcpp::Tag_ABI_FP_optimization_goals:
11040 // Use the first value seen.
11041 break;
11042
11043 case elfcpp::Tag_CPU_arch:
11044 {
11045 unsigned int saved_out_attr = out_attr->int_value();
11046 // Merge Tag_CPU_arch and Tag_also_compatible_with.
11047 int secondary_compat =
11048 this->get_secondary_compatible_arch(pasd);
11049 int secondary_compat_out =
11050 this->get_secondary_compatible_arch(
11051 this->attributes_section_data_);
11052 out_attr[i].set_int_value(
11053 tag_cpu_arch_combine(name, out_attr[i].int_value(),
11054 &secondary_compat_out,
11055 in_attr[i].int_value(),
11056 secondary_compat));
11057 this->set_secondary_compatible_arch(this->attributes_section_data_,
11058 secondary_compat_out);
11059
11060 // Merge Tag_CPU_name and Tag_CPU_raw_name.
11061 if (out_attr[i].int_value() == saved_out_attr)
11062 ; // Leave the names alone.
11063 else if (out_attr[i].int_value() == in_attr[i].int_value())
11064 {
11065 // The output architecture has been changed to match the
11066 // input architecture. Use the input names.
11067 out_attr[elfcpp::Tag_CPU_name].set_string_value(
11068 in_attr[elfcpp::Tag_CPU_name].string_value());
11069 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
11070 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
11071 }
11072 else
11073 {
11074 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
11075 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
11076 }
11077
11078 // If we still don't have a value for Tag_CPU_name,
11079 // make one up now. Tag_CPU_raw_name remains blank.
11080 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
11081 {
11082 const std::string cpu_name =
11083 this->tag_cpu_name_value(out_attr[i].int_value());
11084 // FIXME: If we see an unknown CPU, this will be set
11085 // to "<unknown CPU n>", where n is the attribute value.
11086 // This is different from BFD, which leaves the name alone.
11087 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
11088 }
11089 }
11090 break;
11091
11092 case elfcpp::Tag_ARM_ISA_use:
11093 case elfcpp::Tag_THUMB_ISA_use:
11094 case elfcpp::Tag_WMMX_arch:
11095 case elfcpp::Tag_Advanced_SIMD_arch:
11096 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
11097 case elfcpp::Tag_ABI_FP_rounding:
11098 case elfcpp::Tag_ABI_FP_exceptions:
11099 case elfcpp::Tag_ABI_FP_user_exceptions:
11100 case elfcpp::Tag_ABI_FP_number_model:
11101 case elfcpp::Tag_VFP_HP_extension:
11102 case elfcpp::Tag_CPU_unaligned_access:
11103 case elfcpp::Tag_T2EE_use:
11104 case elfcpp::Tag_Virtualization_use:
11105 case elfcpp::Tag_MPextension_use:
11106 // Use the largest value specified.
11107 if (in_attr[i].int_value() > out_attr[i].int_value())
11108 out_attr[i].set_int_value(in_attr[i].int_value());
11109 break;
11110
11111 case elfcpp::Tag_ABI_align8_preserved:
11112 case elfcpp::Tag_ABI_PCS_RO_data:
11113 // Use the smallest value specified.
11114 if (in_attr[i].int_value() < out_attr[i].int_value())
11115 out_attr[i].set_int_value(in_attr[i].int_value());
11116 break;
11117
11118 case elfcpp::Tag_ABI_align8_needed:
11119 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
11120 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
11121 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
11122 == 0)))
11123 {
9b547ce6 11124 // This error message should be enabled once all non-conforming
a0351a69
DK
11125 // binaries in the toolchain have had the attributes set
11126 // properly.
11127 // gold_error(_("output 8-byte data alignment conflicts with %s"),
11128 // name);
11129 }
11130 // Fall through.
11131 case elfcpp::Tag_ABI_FP_denormal:
11132 case elfcpp::Tag_ABI_PCS_GOT_use:
11133 {
11134 // These tags have 0 = don't care, 1 = strong requirement,
11135 // 2 = weak requirement.
11136 static const int order_021[3] = {0, 2, 1};
11137
11138 // Use the "greatest" from the sequence 0, 2, 1, or the largest
11139 // value if greater than 2 (for future-proofing).
11140 if ((in_attr[i].int_value() > 2
11141 && in_attr[i].int_value() > out_attr[i].int_value())
11142 || (in_attr[i].int_value() <= 2
11143 && out_attr[i].int_value() <= 2
11144 && (order_021[in_attr[i].int_value()]
11145 > order_021[out_attr[i].int_value()])))
11146 out_attr[i].set_int_value(in_attr[i].int_value());
11147 }
11148 break;
11149
11150 case elfcpp::Tag_CPU_arch_profile:
11151 if (out_attr[i].int_value() != in_attr[i].int_value())
11152 {
11153 // 0 will merge with anything.
11154 // 'A' and 'S' merge to 'A'.
11155 // 'R' and 'S' merge to 'R'.
11156 // 'M' and 'A|R|S' is an error.
11157 if (out_attr[i].int_value() == 0
11158 || (out_attr[i].int_value() == 'S'
11159 && (in_attr[i].int_value() == 'A'
11160 || in_attr[i].int_value() == 'R')))
11161 out_attr[i].set_int_value(in_attr[i].int_value());
11162 else if (in_attr[i].int_value() == 0
11163 || (in_attr[i].int_value() == 'S'
11164 && (out_attr[i].int_value() == 'A'
11165 || out_attr[i].int_value() == 'R')))
11166 ; // Do nothing.
7296d933 11167 else if (parameters->options().warn_mismatch())
a0351a69
DK
11168 {
11169 gold_error
11170 (_("conflicting architecture profiles %c/%c"),
11171 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
11172 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
11173 }
11174 }
11175 break;
11176 case elfcpp::Tag_VFP_arch:
11177 {
11178 static const struct
11179 {
11180 int ver;
11181 int regs;
11182 } vfp_versions[7] =
11183 {
11184 {0, 0},
11185 {1, 16},
11186 {2, 16},
11187 {3, 32},
11188 {3, 16},
11189 {4, 32},
11190 {4, 16}
11191 };
11192
11193 // Values greater than 6 aren't defined, so just pick the
11194 // biggest.
11195 if (in_attr[i].int_value() > 6
11196 && in_attr[i].int_value() > out_attr[i].int_value())
11197 {
11198 *out_attr = *in_attr;
11199 break;
11200 }
11201 // The output uses the superset of input features
11202 // (ISA version) and registers.
11203 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
11204 vfp_versions[out_attr[i].int_value()].ver);
11205 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
11206 vfp_versions[out_attr[i].int_value()].regs);
11207 // This assumes all possible supersets are also a valid
11208 // options.
11209 int newval;
11210 for (newval = 6; newval > 0; newval--)
11211 {
11212 if (regs == vfp_versions[newval].regs
11213 && ver == vfp_versions[newval].ver)
11214 break;
11215 }
11216 out_attr[i].set_int_value(newval);
11217 }
11218 break;
11219 case elfcpp::Tag_PCS_config:
11220 if (out_attr[i].int_value() == 0)
11221 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
11222 else if (in_attr[i].int_value() != 0
11223 && out_attr[i].int_value() != 0
11224 && parameters->options().warn_mismatch())
a0351a69
DK
11225 {
11226 // It's sometimes ok to mix different configs, so this is only
11227 // a warning.
11228 gold_warning(_("%s: conflicting platform configuration"), name);
11229 }
11230 break;
11231 case elfcpp::Tag_ABI_PCS_R9_use:
11232 if (in_attr[i].int_value() != out_attr[i].int_value()
11233 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
11234 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
11235 && parameters->options().warn_mismatch())
a0351a69
DK
11236 {
11237 gold_error(_("%s: conflicting use of R9"), name);
11238 }
11239 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
11240 out_attr[i].set_int_value(in_attr[i].int_value());
11241 break;
11242 case elfcpp::Tag_ABI_PCS_RW_data:
11243 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
11244 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
11245 != elfcpp::AEABI_R9_SB)
11246 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
11247 != elfcpp::AEABI_R9_unused)
11248 && parameters->options().warn_mismatch())
a0351a69
DK
11249 {
11250 gold_error(_("%s: SB relative addressing conflicts with use "
11251 "of R9"),
7296d933 11252 name);
a0351a69
DK
11253 }
11254 // Use the smallest value specified.
11255 if (in_attr[i].int_value() < out_attr[i].int_value())
11256 out_attr[i].set_int_value(in_attr[i].int_value());
11257 break;
11258 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
11259 if (out_attr[i].int_value()
11260 && in_attr[i].int_value()
7296d933 11261 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11262 && parameters->options().warn_mismatch()
11263 && parameters->options().wchar_size_warning())
a0351a69
DK
11264 {
11265 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
11266 "use %u-byte wchar_t; use of wchar_t values "
11267 "across objects may fail"),
11268 name, in_attr[i].int_value(),
11269 out_attr[i].int_value());
11270 }
11271 else if (in_attr[i].int_value() && !out_attr[i].int_value())
11272 out_attr[i].set_int_value(in_attr[i].int_value());
11273 break;
11274 case elfcpp::Tag_ABI_enum_size:
11275 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
11276 {
11277 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
11278 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
11279 {
11280 // The existing object is compatible with anything.
11281 // Use whatever requirements the new object has.
11282 out_attr[i].set_int_value(in_attr[i].int_value());
11283 }
a0351a69 11284 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 11285 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
11286 && parameters->options().warn_mismatch()
11287 && parameters->options().enum_size_warning())
a0351a69
DK
11288 {
11289 unsigned int in_value = in_attr[i].int_value();
11290 unsigned int out_value = out_attr[i].int_value();
11291 gold_warning(_("%s uses %s enums yet the output is to use "
11292 "%s enums; use of enum values across objects "
11293 "may fail"),
11294 name,
11295 this->aeabi_enum_name(in_value).c_str(),
11296 this->aeabi_enum_name(out_value).c_str());
11297 }
11298 }
11299 break;
11300 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 11301 // Already done.
a0351a69
DK
11302 break;
11303 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
11304 if (in_attr[i].int_value() != out_attr[i].int_value()
11305 && parameters->options().warn_mismatch())
a0351a69
DK
11306 {
11307 gold_error(_("%s uses iWMMXt register arguments, output does "
11308 "not"),
11309 name);
11310 }
11311 break;
11312 case Object_attribute::Tag_compatibility:
11313 // Merged in target-independent code.
11314 break;
11315 case elfcpp::Tag_ABI_HardFP_use:
11316 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
11317 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
11318 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
11319 out_attr[i].set_int_value(3);
11320 else if (in_attr[i].int_value() > out_attr[i].int_value())
11321 out_attr[i].set_int_value(in_attr[i].int_value());
11322 break;
11323 case elfcpp::Tag_ABI_FP_16bit_format:
11324 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
11325 {
7296d933
DK
11326 if (in_attr[i].int_value() != out_attr[i].int_value()
11327 && parameters->options().warn_mismatch())
a0351a69
DK
11328 gold_error(_("fp16 format mismatch between %s and output"),
11329 name);
11330 }
11331 if (in_attr[i].int_value() != 0)
11332 out_attr[i].set_int_value(in_attr[i].int_value());
11333 break;
11334
da59ad79 11335 case elfcpp::Tag_DIV_use:
679af368
ILT
11336 {
11337 // A value of zero on input means that the divide
11338 // instruction may be used if available in the base
11339 // architecture as specified via Tag_CPU_arch and
11340 // Tag_CPU_arch_profile. A value of 1 means that the user
11341 // did not want divide instructions. A value of 2
11342 // explicitly means that divide instructions were allowed
11343 // in ARM and Thumb state.
11344 int arch = this->
11345 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
11346 int_value();
11347 int profile = this->
11348 get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
11349 int_value();
11350 if (in_attr[i].int_value() == out_attr[i].int_value())
11351 {
11352 // Do nothing.
11353 }
11354 else if (attributes_forbid_div(&in_attr[i])
43819297 11355 && !attributes_accept_div(arch, profile, &out_attr[i]))
679af368
ILT
11356 out_attr[i].set_int_value(1);
11357 else if (attributes_forbid_div(&out_attr[i])
11358 && attributes_accept_div(arch, profile, &in_attr[i]))
11359 out_attr[i].set_int_value(in_attr[i].int_value());
11360 else if (in_attr[i].int_value() == 2)
11361 out_attr[i].set_int_value(in_attr[i].int_value());
11362 }
da59ad79
DK
11363 break;
11364
11365 case elfcpp::Tag_MPextension_use_legacy:
11366 // We don't output objects with Tag_MPextension_use_legacy - we
11367 // move the value to Tag_MPextension_use.
11368 if (in_attr[i].int_value() != 0
11369 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
11370 {
11371 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
11372 != in_attr[i].int_value())
11373 {
11374 gold_error(_("%s has has both the current and legacy "
2e702c99 11375 "Tag_MPextension_use attributes"),
da59ad79
DK
11376 name);
11377 }
11378 }
11379
11380 if (in_attr[i].int_value()
11381 > out_attr[elfcpp::Tag_MPextension_use].int_value())
11382 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
11383
11384 break;
11385
a0351a69
DK
11386 case elfcpp::Tag_nodefaults:
11387 // This tag is set if it exists, but the value is unused (and is
11388 // typically zero). We don't actually need to do anything here -
11389 // the merge happens automatically when the type flags are merged
11390 // below.
11391 break;
11392 case elfcpp::Tag_also_compatible_with:
11393 // Already done in Tag_CPU_arch.
11394 break;
11395 case elfcpp::Tag_conformance:
11396 // Keep the attribute if it matches. Throw it away otherwise.
11397 // No attribute means no claim to conform.
11398 if (in_attr[i].string_value() != out_attr[i].string_value())
11399 out_attr[i].set_string_value("");
11400 break;
11401
11402 default:
11403 {
11404 const char* err_object = NULL;
11405
11406 // The "known_obj_attributes" table does contain some undefined
11407 // attributes. Ensure that there are unused.
11408 if (out_attr[i].int_value() != 0
11409 || out_attr[i].string_value() != "")
11410 err_object = "output";
11411 else if (in_attr[i].int_value() != 0
11412 || in_attr[i].string_value() != "")
11413 err_object = name;
11414
7296d933
DK
11415 if (err_object != NULL
11416 && parameters->options().warn_mismatch())
a0351a69
DK
11417 {
11418 // Attribute numbers >=64 (mod 128) can be safely ignored.
11419 if ((i & 127) < 64)
11420 gold_error(_("%s: unknown mandatory EABI object attribute "
11421 "%d"),
11422 err_object, i);
11423 else
11424 gold_warning(_("%s: unknown EABI object attribute %d"),
11425 err_object, i);
11426 }
11427
11428 // Only pass on attributes that match in both inputs.
11429 if (!in_attr[i].matches(out_attr[i]))
11430 {
11431 out_attr[i].set_int_value(0);
11432 out_attr[i].set_string_value("");
11433 }
11434 }
11435 }
11436
11437 // If out_attr was copied from in_attr then it won't have a type yet.
11438 if (in_attr[i].type() && !out_attr[i].type())
11439 out_attr[i].set_type(in_attr[i].type());
11440 }
11441
11442 // Merge Tag_compatibility attributes and any common GNU ones.
11443 this->attributes_section_data_->merge(name, pasd);
11444
11445 // Check for any attributes not known on ARM.
11446 typedef Vendor_object_attributes::Other_attributes Other_attributes;
11447 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
11448 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
11449 Other_attributes* out_other_attributes =
11450 this->attributes_section_data_->other_attributes(vendor);
11451 Other_attributes::iterator out_iter = out_other_attributes->begin();
11452
11453 while (in_iter != in_other_attributes->end()
11454 || out_iter != out_other_attributes->end())
11455 {
11456 const char* err_object = NULL;
11457 int err_tag = 0;
11458
11459 // The tags for each list are in numerical order.
11460 // If the tags are equal, then merge.
11461 if (out_iter != out_other_attributes->end()
11462 && (in_iter == in_other_attributes->end()
11463 || in_iter->first > out_iter->first))
11464 {
11465 // This attribute only exists in output. We can't merge, and we
11466 // don't know what the tag means, so delete it.
11467 err_object = "output";
11468 err_tag = out_iter->first;
11469 int saved_tag = out_iter->first;
11470 delete out_iter->second;
2e702c99 11471 out_other_attributes->erase(out_iter);
a0351a69
DK
11472 out_iter = out_other_attributes->upper_bound(saved_tag);
11473 }
11474 else if (in_iter != in_other_attributes->end()
11475 && (out_iter != out_other_attributes->end()
11476 || in_iter->first < out_iter->first))
11477 {
11478 // This attribute only exists in input. We can't merge, and we
11479 // don't know what the tag means, so ignore it.
11480 err_object = name;
11481 err_tag = in_iter->first;
11482 ++in_iter;
11483 }
11484 else // The tags are equal.
11485 {
11486 // As present, all attributes in the list are unknown, and
11487 // therefore can't be merged meaningfully.
11488 err_object = "output";
11489 err_tag = out_iter->first;
11490
11491 // Only pass on attributes that match in both inputs.
11492 if (!in_iter->second->matches(*(out_iter->second)))
11493 {
11494 // No match. Delete the attribute.
11495 int saved_tag = out_iter->first;
11496 delete out_iter->second;
11497 out_other_attributes->erase(out_iter);
11498 out_iter = out_other_attributes->upper_bound(saved_tag);
11499 }
11500 else
11501 {
11502 // Matched. Keep the attribute and move to the next.
11503 ++out_iter;
11504 ++in_iter;
11505 }
11506 }
11507
7296d933 11508 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
11509 {
11510 // Attribute numbers >=64 (mod 128) can be safely ignored. */
11511 if ((err_tag & 127) < 64)
11512 {
11513 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
11514 err_object, err_tag);
11515 }
11516 else
11517 {
11518 gold_warning(_("%s: unknown EABI object attribute %d"),
11519 err_object, err_tag);
11520 }
11521 }
11522 }
11523}
11524
55da9579
DK
11525// Stub-generation methods for Target_arm.
11526
11527// Make a new Arm_input_section object.
11528
11529template<bool big_endian>
11530Arm_input_section<big_endian>*
11531Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
11532 Relobj* relobj,
11533 unsigned int shndx)
55da9579 11534{
5ac169d4 11535 Section_id sid(relobj, shndx);
55da9579
DK
11536
11537 Arm_input_section<big_endian>* arm_input_section =
2ea97941 11538 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
11539 arm_input_section->init();
11540
11541 // Register new Arm_input_section in map for look-up.
11542 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 11543 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
11544
11545 // Make sure that it we have not created another Arm_input_section
11546 // for this input section already.
11547 gold_assert(ins.second);
11548
2e702c99 11549 return arm_input_section;
55da9579
DK
11550}
11551
11552// Find the Arm_input_section object corresponding to the SHNDX-th input
11553// section of RELOBJ.
11554
11555template<bool big_endian>
11556Arm_input_section<big_endian>*
11557Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
11558 Relobj* relobj,
11559 unsigned int shndx) const
55da9579 11560{
5ac169d4 11561 Section_id sid(relobj, shndx);
55da9579 11562 typename Arm_input_section_map::const_iterator p =
5ac169d4 11563 this->arm_input_section_map_.find(sid);
55da9579
DK
11564 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
11565}
11566
11567// Make a new stub table.
11568
11569template<bool big_endian>
11570Stub_table<big_endian>*
11571Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
11572{
2ea97941 11573 Stub_table<big_endian>* stub_table =
55da9579 11574 new Stub_table<big_endian>(owner);
2ea97941 11575 this->stub_tables_.push_back(stub_table);
55da9579 11576
2ea97941
ILT
11577 stub_table->set_address(owner->address() + owner->data_size());
11578 stub_table->set_file_offset(owner->offset() + owner->data_size());
11579 stub_table->finalize_data_size();
55da9579 11580
2ea97941 11581 return stub_table;
55da9579
DK
11582}
11583
eb44217c
DK
11584// Scan a relocation for stub generation.
11585
11586template<bool big_endian>
11587void
11588Target_arm<big_endian>::scan_reloc_for_stub(
11589 const Relocate_info<32, big_endian>* relinfo,
11590 unsigned int r_type,
11591 const Sized_symbol<32>* gsym,
11592 unsigned int r_sym,
11593 const Symbol_value<32>* psymval,
11594 elfcpp::Elf_types<32>::Elf_Swxword addend,
11595 Arm_address address)
11596{
eb44217c
DK
11597 const Arm_relobj<big_endian>* arm_relobj =
11598 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11599
11600 bool target_is_thumb;
11601 Symbol_value<32> symval;
11602 if (gsym != NULL)
11603 {
11604 // This is a global symbol. Determine if we use PLT and if the
11605 // final target is THUMB.
95a2c8d6 11606 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
11607 {
11608 // This uses a PLT, change the symbol value.
fa89cc82 11609 symval.set_output_value(this->plt_address_for_global(gsym));
eb44217c
DK
11610 psymval = &symval;
11611 target_is_thumb = false;
11612 }
11613 else if (gsym->is_undefined())
11614 // There is no need to generate a stub symbol is undefined.
11615 return;
11616 else
11617 {
11618 target_is_thumb =
11619 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
11620 || (gsym->type() == elfcpp::STT_FUNC
11621 && !gsym->is_undefined()
11622 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
11623 }
11624 }
11625 else
11626 {
11627 // This is a local symbol. Determine if the final target is THUMB.
11628 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
11629 }
11630
11631 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
11632 const Arm_reloc_property* reloc_property =
11633 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
11634 gold_assert(reloc_property != NULL);
eb44217c 11635 if (target_is_thumb
5c57f1be 11636 && reloc_property->uses_thumb_bit()
eb44217c
DK
11637 && ((psymval->value(arm_relobj, 0) & 1) != 0))
11638 {
11639 Arm_address stripped_value =
11640 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
11641 symval.set_output_value(stripped_value);
11642 psymval = &symval;
2e702c99 11643 }
eb44217c
DK
11644
11645 // Get the symbol value.
11646 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11647
11648 // Owing to pipelining, the PC relative branches below actually skip
11649 // two instructions when the branch offset is 0.
11650 Arm_address destination;
11651 switch (r_type)
11652 {
11653 case elfcpp::R_ARM_CALL:
11654 case elfcpp::R_ARM_JUMP24:
11655 case elfcpp::R_ARM_PLT32:
11656 // ARM branches.
11657 destination = value + addend + 8;
11658 break;
11659 case elfcpp::R_ARM_THM_CALL:
11660 case elfcpp::R_ARM_THM_XPC22:
11661 case elfcpp::R_ARM_THM_JUMP24:
11662 case elfcpp::R_ARM_THM_JUMP19:
11663 // THUMB branches.
11664 destination = value + addend + 4;
11665 break;
11666 default:
11667 gold_unreachable();
11668 }
11669
a120bc7f 11670 Reloc_stub* stub = NULL;
eb44217c
DK
11671 Stub_type stub_type =
11672 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11673 target_is_thumb);
a120bc7f
DK
11674 if (stub_type != arm_stub_none)
11675 {
11676 // Try looking up an existing stub from a stub table.
2e702c99 11677 Stub_table<big_endian>* stub_table =
a120bc7f
DK
11678 arm_relobj->stub_table(relinfo->data_shndx);
11679 gold_assert(stub_table != NULL);
2e702c99 11680
a120bc7f
DK
11681 // Locate stub by destination.
11682 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11683
a120bc7f
DK
11684 // Create a stub if there is not one already
11685 stub = stub_table->find_reloc_stub(stub_key);
11686 if (stub == NULL)
11687 {
11688 // create a new stub and add it to stub table.
11689 stub = this->stub_factory().make_reloc_stub(stub_type);
11690 stub_table->add_reloc_stub(stub, stub_key);
11691 }
11692
11693 // Record the destination address.
11694 stub->set_destination_address(destination
11695 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11696 }
11697
a120bc7f
DK
11698 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11699 if (this->fix_cortex_a8_
11700 && (r_type == elfcpp::R_ARM_THM_JUMP24
11701 || r_type == elfcpp::R_ARM_THM_JUMP19
11702 || r_type == elfcpp::R_ARM_THM_CALL
11703 || r_type == elfcpp::R_ARM_THM_XPC22)
11704 && (address & 0xfffU) == 0xffeU)
11705 {
11706 // Found a candidate. Note we haven't checked the destination is
11707 // within 4K here: if we do so (and don't create a record) we can't
11708 // tell that a branch should have been relocated when scanning later.
11709 this->cortex_a8_relocs_info_[address] =
11710 new Cortex_a8_reloc(stub, r_type,
11711 destination | (target_is_thumb ? 1 : 0));
11712 }
eb44217c
DK
11713}
11714
11715// This function scans a relocation sections for stub generation.
11716// The template parameter Relocate must be a class type which provides
11717// a single function, relocate(), which implements the machine
11718// specific part of a relocation.
11719
11720// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11721// SHT_REL or SHT_RELA.
11722
11723// PRELOCS points to the relocation data. RELOC_COUNT is the number
11724// of relocs. OUTPUT_SECTION is the output section.
11725// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11726// mapped to output offsets.
11727
11728// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11729// VIEW_SIZE is the size. These refer to the input section, unless
11730// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11731// the output section.
11732
11733template<bool big_endian>
11734template<int sh_type>
11735void inline
11736Target_arm<big_endian>::scan_reloc_section_for_stubs(
11737 const Relocate_info<32, big_endian>* relinfo,
11738 const unsigned char* prelocs,
11739 size_t reloc_count,
11740 Output_section* output_section,
11741 bool needs_special_offset_handling,
11742 const unsigned char* view,
11743 elfcpp::Elf_types<32>::Elf_Addr view_address,
11744 section_size_type)
11745{
11746 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11747 const int reloc_size =
11748 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11749
11750 Arm_relobj<big_endian>* arm_object =
11751 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11752 unsigned int local_count = arm_object->local_symbol_count();
11753
168a4726 11754 gold::Default_comdat_behavior default_comdat_behavior;
eb44217c
DK
11755 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11756
11757 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11758 {
11759 Reltype reloc(prelocs);
11760
11761 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11762 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11763 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11764
11765 r_type = this->get_real_reloc_type(r_type);
11766
11767 // Only a few relocation types need stubs.
11768 if ((r_type != elfcpp::R_ARM_CALL)
2e702c99
RM
11769 && (r_type != elfcpp::R_ARM_JUMP24)
11770 && (r_type != elfcpp::R_ARM_PLT32)
11771 && (r_type != elfcpp::R_ARM_THM_CALL)
11772 && (r_type != elfcpp::R_ARM_THM_XPC22)
11773 && (r_type != elfcpp::R_ARM_THM_JUMP24)
11774 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11775 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11776 continue;
11777
2ea97941 11778 section_offset_type offset =
eb44217c
DK
11779 convert_to_section_size_type(reloc.get_r_offset());
11780
11781 if (needs_special_offset_handling)
11782 {
2ea97941
ILT
11783 offset = output_section->output_offset(relinfo->object,
11784 relinfo->data_shndx,
11785 offset);
11786 if (offset == -1)
eb44217c
DK
11787 continue;
11788 }
11789
2fd9ae7a 11790 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11791 if (r_type == elfcpp::R_ARM_V4BX)
11792 {
2fd9ae7a
DK
11793 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11794 {
11795 // Get the BX instruction.
11796 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11797 const Valtype* wv =
11798 reinterpret_cast<const Valtype*>(view + offset);
11799 elfcpp::Elf_types<32>::Elf_Swxword insn =
11800 elfcpp::Swap<32, big_endian>::readval(wv);
11801 const uint32_t reg = (insn & 0xf);
11802
11803 if (reg < 0xf)
11804 {
11805 // Try looking up an existing stub from a stub table.
11806 Stub_table<big_endian>* stub_table =
11807 arm_object->stub_table(relinfo->data_shndx);
11808 gold_assert(stub_table != NULL);
11809
11810 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11811 {
11812 // create a new stub and add it to stub table.
11813 Arm_v4bx_stub* stub =
2e702c99 11814 this->stub_factory().make_arm_v4bx_stub(reg);
2fd9ae7a
DK
11815 gold_assert(stub != NULL);
11816 stub_table->add_arm_v4bx_stub(stub);
11817 }
11818 }
11819 }
a2162063
ILT
11820 continue;
11821 }
11822
eb44217c
DK
11823 // Get the addend.
11824 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11825 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11826 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11827
11828 const Sized_symbol<32>* sym;
11829
11830 Symbol_value<32> symval;
11831 const Symbol_value<32> *psymval;
aa98ff75
DK
11832 bool is_defined_in_discarded_section;
11833 unsigned int shndx;
eb44217c
DK
11834 if (r_sym < local_count)
11835 {
11836 sym = NULL;
11837 psymval = arm_object->local_symbol(r_sym);
11838
2e702c99
RM
11839 // If the local symbol belongs to a section we are discarding,
11840 // and that section is a debug section, try to find the
11841 // corresponding kept section and map this symbol to its
11842 // counterpart in the kept section. The symbol must not
11843 // correspond to a section we are folding.
eb44217c 11844 bool is_ordinary;
aa98ff75
DK
11845 shndx = psymval->input_shndx(&is_ordinary);
11846 is_defined_in_discarded_section =
11847 (is_ordinary
11848 && shndx != elfcpp::SHN_UNDEF
11849 && !arm_object->is_section_included(shndx)
11850 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11851
11852 // We need to compute the would-be final value of this local
11853 // symbol.
11854 if (!is_defined_in_discarded_section)
eb44217c 11855 {
6fa2a40b 11856 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11857 typename ObjType::Compute_final_local_value_status status =
11858 arm_object->compute_final_local_value(r_sym, psymval, &symval,
2e702c99 11859 relinfo->symtab);
aa98ff75
DK
11860 if (status == ObjType::CFLV_OK)
11861 {
11862 // Currently we cannot handle a branch to a target in
11863 // a merged section. If this is the case, issue an error
11864 // and also free the merge symbol value.
11865 if (!symval.has_output_value())
11866 {
11867 const std::string& section_name =
11868 arm_object->section_name(shndx);
11869 arm_object->error(_("cannot handle branch to local %u "
11870 "in a merged section %s"),
11871 r_sym, section_name.c_str());
11872 }
11873 psymval = &symval;
11874 }
eb44217c 11875 else
aa98ff75
DK
11876 {
11877 // We cannot determine the final value.
2e702c99 11878 continue;
aa98ff75 11879 }
eb44217c
DK
11880 }
11881 }
11882 else
11883 {
aa98ff75
DK
11884 const Symbol* gsym;
11885 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11886 gold_assert(gsym != NULL);
11887 if (gsym->is_forwarder())
11888 gsym = relinfo->symtab->resolve_forwards(gsym);
11889
11890 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11891 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11892 symval.set_output_symtab_index(sym->symtab_index());
11893 else
11894 symval.set_no_output_symtab_entry();
11895
11896 // We need to compute the would-be final value of this global
11897 // symbol.
11898 const Symbol_table* symtab = relinfo->symtab;
11899 const Sized_symbol<32>* sized_symbol =
11900 symtab->get_sized_symbol<32>(gsym);
11901 Symbol_table::Compute_final_value_status status;
11902 Arm_address value =
11903 symtab->compute_final_value<32>(sized_symbol, &status);
11904
11905 // Skip this if the symbol has not output section.
11906 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11907 continue;
eb44217c 11908 symval.set_output_value(value);
aa98ff75
DK
11909
11910 if (gsym->type() == elfcpp::STT_TLS)
11911 symval.set_is_tls_symbol();
11912 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11913 symval.set_is_ifunc_symbol();
eb44217c 11914 psymval = &symval;
aa98ff75
DK
11915
11916 is_defined_in_discarded_section =
11917 (gsym->is_defined_in_discarded_section()
11918 && gsym->is_undefined());
11919 shndx = 0;
11920 }
11921
11922 Symbol_value<32> symval2;
11923 if (is_defined_in_discarded_section)
11924 {
11925 if (comdat_behavior == CB_UNDETERMINED)
11926 {
11927 std::string name = arm_object->section_name(relinfo->data_shndx);
168a4726 11928 comdat_behavior = default_comdat_behavior.get(name.c_str());
aa98ff75
DK
11929 }
11930 if (comdat_behavior == CB_PRETEND)
11931 {
11932 // FIXME: This case does not work for global symbols.
11933 // We have no place to store the original section index.
11934 // Fortunately this does not matter for comdat sections,
11935 // only for sections explicitly discarded by a linker
11936 // script.
11937 bool found;
11938 typename elfcpp::Elf_types<32>::Elf_Addr value =
11939 arm_object->map_to_kept_section(shndx, &found);
11940 if (found)
11941 symval2.set_output_value(value + psymval->input_value());
11942 else
11943 symval2.set_output_value(0);
11944 }
11945 else
11946 {
11947 if (comdat_behavior == CB_WARNING)
11948 gold_warning_at_location(relinfo, i, offset,
11949 _("relocation refers to discarded "
11950 "section"));
11951 symval2.set_output_value(0);
11952 }
11953 symval2.set_no_output_symtab_entry();
11954 psymval = &symval2;
eb44217c
DK
11955 }
11956
11957 // If symbol is a section symbol, we don't know the actual type of
11958 // destination. Give up.
11959 if (psymval->is_section_symbol())
11960 continue;
11961
11962 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11963 addend, view_address + offset);
eb44217c
DK
11964 }
11965}
11966
11967// Scan an input section for stub generation.
11968
11969template<bool big_endian>
11970void
11971Target_arm<big_endian>::scan_section_for_stubs(
11972 const Relocate_info<32, big_endian>* relinfo,
11973 unsigned int sh_type,
11974 const unsigned char* prelocs,
11975 size_t reloc_count,
11976 Output_section* output_section,
11977 bool needs_special_offset_handling,
11978 const unsigned char* view,
11979 Arm_address view_address,
11980 section_size_type view_size)
11981{
11982 if (sh_type == elfcpp::SHT_REL)
11983 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11984 relinfo,
11985 prelocs,
11986 reloc_count,
11987 output_section,
11988 needs_special_offset_handling,
11989 view,
11990 view_address,
11991 view_size);
11992 else if (sh_type == elfcpp::SHT_RELA)
11993 // We do not support RELA type relocations yet. This is provided for
11994 // completeness.
11995 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11996 relinfo,
11997 prelocs,
11998 reloc_count,
11999 output_section,
12000 needs_special_offset_handling,
12001 view,
12002 view_address,
12003 view_size);
12004 else
12005 gold_unreachable();
12006}
12007
12008// Group input sections for stub generation.
12009//
9b547ce6 12010// We group input sections in an output section so that the total size,
eb44217c
DK
12011// including any padding space due to alignment is smaller than GROUP_SIZE
12012// unless the only input section in group is bigger than GROUP_SIZE already.
12013// Then an ARM stub table is created to follow the last input section
12014// in group. For each group an ARM stub table is created an is placed
9b547ce6 12015// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
12016// extend the group after the stub table.
12017
12018template<bool big_endian>
12019void
12020Target_arm<big_endian>::group_sections(
2ea97941 12021 Layout* layout,
eb44217c 12022 section_size_type group_size,
f625ae50
DK
12023 bool stubs_always_after_branch,
12024 const Task* task)
eb44217c
DK
12025{
12026 // Group input sections and insert stub table
12027 Layout::Section_list section_list;
ec661b9d 12028 layout->get_executable_sections(&section_list);
eb44217c
DK
12029 for (Layout::Section_list::const_iterator p = section_list.begin();
12030 p != section_list.end();
12031 ++p)
12032 {
12033 Arm_output_section<big_endian>* output_section =
12034 Arm_output_section<big_endian>::as_arm_output_section(*p);
12035 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 12036 this, task);
eb44217c
DK
12037 }
12038}
12039
12040// Relaxation hook. This is where we do stub generation.
12041
12042template<bool big_endian>
12043bool
12044Target_arm<big_endian>::do_relax(
12045 int pass,
12046 const Input_objects* input_objects,
12047 Symbol_table* symtab,
f625ae50
DK
12048 Layout* layout,
12049 const Task* task)
eb44217c
DK
12050{
12051 // No need to generate stubs if this is a relocatable link.
12052 gold_assert(!parameters->options().relocatable());
12053
12054 // If this is the first pass, we need to group input sections into
12055 // stub groups.
2b328d4e 12056 bool done_exidx_fixup = false;
6625d24e 12057 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
12058 if (pass == 1)
12059 {
12060 // Determine the stub group size. The group size is the absolute
12061 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 12062 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
12063 // the stubbed branches.
12064 int32_t stub_group_size_param =
12065 parameters->options().stub_group_size();
12066 bool stubs_always_after_branch = stub_group_size_param < 0;
12067 section_size_type stub_group_size = abs(stub_group_size_param);
12068
12069 if (stub_group_size == 1)
12070 {
12071 // Default value.
12072 // Thumb branch range is +-4MB has to be used as the default
12073 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
12074 // code, so the worst case has to be taken into account). If we are
12075 // fixing cortex-a8 errata, the branch range has to be even smaller,
12076 // since wide conditional branch has a range of +-1MB only.
eb44217c 12077 //
25bbe950 12078 // This value is 48K less than that, which allows for 4096
eb44217c
DK
12079 // 12-byte stubs. If we exceed that, then we will fail to link.
12080 // The user will have to relink with an explicit group size
12081 // option.
25bbe950
DK
12082 stub_group_size = 4145152;
12083 }
12084
12085 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
12086 // page as the first half of a 32-bit branch straddling two 4K pages.
12087 // This is a crude way of enforcing that. In addition, long conditional
12088 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
12089 // erratum, limit the group size to (1M - 12k) to avoid unreachable
12090 // cortex-A8 stubs from long conditional branches.
12091 if (this->fix_cortex_a8_)
12092 {
12093 stubs_always_after_branch = true;
12094 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
12095 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
12096 }
12097
f625ae50 12098 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2e702c99 12099
2b328d4e 12100 // Also fix .ARM.exidx section coverage.
131687b4
DK
12101 Arm_output_section<big_endian>* exidx_output_section = NULL;
12102 for (Layout::Section_list::const_iterator p =
12103 layout->section_list().begin();
12104 p != layout->section_list().end();
12105 ++p)
12106 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
12107 {
12108 if (exidx_output_section == NULL)
12109 exidx_output_section =
12110 Arm_output_section<big_endian>::as_arm_output_section(*p);
12111 else
12112 // We cannot handle this now.
12113 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
12114 "non-relocatable link"),
12115 exidx_output_section->name(),
12116 (*p)->name());
12117 }
12118
12119 if (exidx_output_section != NULL)
2b328d4e 12120 {
131687b4 12121 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 12122 symtab, task);
2b328d4e
DK
12123 done_exidx_fixup = true;
12124 }
eb44217c 12125 }
6625d24e
DK
12126 else
12127 {
12128 // If this is not the first pass, addresses and file offsets have
12129 // been reset at this point, set them here.
12130 for (Stub_table_iterator sp = this->stub_tables_.begin();
12131 sp != this->stub_tables_.end();
12132 ++sp)
12133 {
12134 Arm_input_section<big_endian>* owner = (*sp)->owner();
12135 off_t off = align_address(owner->original_size(),
12136 (*sp)->addralign());
12137 (*sp)->set_address_and_file_offset(owner->address() + off,
12138 owner->offset() + off);
12139 }
12140 }
eb44217c 12141
44272192
DK
12142 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
12143 // beginning of each relaxation pass, just blow away all the stubs.
12144 // Alternatively, we could selectively remove only the stubs and reloc
12145 // information for code sections that have moved since the last pass.
12146 // That would require more book-keeping.
a120bc7f
DK
12147 if (this->fix_cortex_a8_)
12148 {
12149 // Clear all Cortex-A8 reloc information.
12150 for (typename Cortex_a8_relocs_info::const_iterator p =
12151 this->cortex_a8_relocs_info_.begin();
12152 p != this->cortex_a8_relocs_info_.end();
12153 ++p)
12154 delete p->second;
12155 this->cortex_a8_relocs_info_.clear();
44272192
DK
12156
12157 // Remove all Cortex-A8 stubs.
12158 for (Stub_table_iterator sp = this->stub_tables_.begin();
12159 sp != this->stub_tables_.end();
12160 ++sp)
12161 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f 12162 }
2e702c99 12163
44272192 12164 // Scan relocs for relocation stubs
eb44217c
DK
12165 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12166 op != input_objects->relobj_end();
12167 ++op)
12168 {
12169 Arm_relobj<big_endian>* arm_relobj =
12170 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
12171 // Lock the object so we can read from it. This is only called
12172 // single-threaded from Layout::finalize, so it is OK to lock.
12173 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 12174 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
12175 }
12176
2fb7225c
DK
12177 // Check all stub tables to see if any of them have their data sizes
12178 // or addresses alignments changed. These are the only things that
12179 // matter.
eb44217c 12180 bool any_stub_table_changed = false;
8923b24c 12181 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
12182 for (Stub_table_iterator sp = this->stub_tables_.begin();
12183 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12184 ++sp)
12185 {
2fb7225c 12186 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
12187 {
12188 // Update data size of stub table owner.
12189 Arm_input_section<big_endian>* owner = (*sp)->owner();
12190 uint64_t address = owner->address();
12191 off_t offset = owner->offset();
12192 owner->reset_address_and_file_offset();
12193 owner->set_address_and_file_offset(address, offset);
12194
12195 sections_needing_adjustment.insert(owner->output_section());
12196 any_stub_table_changed = true;
12197 }
12198 }
12199
12200 // Output_section_data::output_section() returns a const pointer but we
12201 // need to update output sections, so we record all output sections needing
12202 // update above and scan the sections here to find out what sections need
12203 // to be updated.
f625ae50 12204 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
12205 p != layout->section_list().end();
12206 ++p)
12207 {
12208 if (sections_needing_adjustment.find(*p)
12209 != sections_needing_adjustment.end())
12210 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
12211 }
12212
2b328d4e
DK
12213 // Stop relaxation if no EXIDX fix-up and no stub table change.
12214 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
12215
2fb7225c 12216 // Finalize the stubs in the last relaxation pass.
2b328d4e 12217 if (!continue_relaxation)
e7eca48c
DK
12218 {
12219 for (Stub_table_iterator sp = this->stub_tables_.begin();
12220 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
12221 ++sp)
12222 (*sp)->finalize_stubs();
12223
12224 // Update output local symbol counts of objects if necessary.
12225 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
12226 op != input_objects->relobj_end();
12227 ++op)
12228 {
12229 Arm_relobj<big_endian>* arm_relobj =
12230 Arm_relobj<big_endian>::as_arm_relobj(*op);
12231
12232 // Update output local symbol counts. We need to discard local
12233 // symbols defined in parts of input sections that are discarded by
12234 // relaxation.
12235 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
12236 {
12237 // We need to lock the object's file to update it.
12238 Task_lock_obj<Object> tl(task, arm_relobj);
12239 arm_relobj->update_output_local_symbol_count();
12240 }
e7eca48c
DK
12241 }
12242 }
2fb7225c 12243
2b328d4e 12244 return continue_relaxation;
eb44217c
DK
12245}
12246
43d12afe
DK
12247// Relocate a stub.
12248
12249template<bool big_endian>
12250void
12251Target_arm<big_endian>::relocate_stub(
2fb7225c 12252 Stub* stub,
43d12afe
DK
12253 const Relocate_info<32, big_endian>* relinfo,
12254 Output_section* output_section,
12255 unsigned char* view,
12256 Arm_address address,
12257 section_size_type view_size)
12258{
12259 Relocate relocate;
2ea97941
ILT
12260 const Stub_template* stub_template = stub->stub_template();
12261 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 12262 {
2ea97941
ILT
12263 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
12264 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
12265
12266 unsigned int r_type = insn->r_type();
2ea97941 12267 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
12268 section_size_type reloc_size = insn->size();
12269 gold_assert(reloc_offset + reloc_size <= view_size);
12270
12271 // This is the address of the stub destination.
41263c05 12272 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
12273 Symbol_value<32> symval;
12274 symval.set_output_value(target);
12275
12276 // Synthesize a fake reloc just in case. We don't have a symbol so
12277 // we use 0.
12278 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
12279 memset(reloc_buffer, 0, sizeof(reloc_buffer));
12280 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
12281 reloc_write.put_r_offset(reloc_offset);
12282 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
12283 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
12284
12285 relocate.relocate(relinfo, this, output_section,
12286 this->fake_relnum_for_stubs, rel, r_type,
12287 NULL, &symval, view + reloc_offset,
12288 address + reloc_offset, reloc_size);
12289 }
12290}
12291
a0351a69
DK
12292// Determine whether an object attribute tag takes an integer, a
12293// string or both.
12294
12295template<bool big_endian>
12296int
12297Target_arm<big_endian>::do_attribute_arg_type(int tag) const
12298{
12299 if (tag == Object_attribute::Tag_compatibility)
12300 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12301 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
12302 else if (tag == elfcpp::Tag_nodefaults)
12303 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
12304 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
12305 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
12306 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
12307 else if (tag < 32)
12308 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
12309 else
12310 return ((tag & 1) != 0
12311 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
12312 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
12313}
12314
12315// Reorder attributes.
12316//
12317// The ABI defines that Tag_conformance should be emitted first, and that
12318// Tag_nodefaults should be second (if either is defined). This sets those
12319// two positions, and bumps up the position of all the remaining tags to
12320// compensate.
12321
12322template<bool big_endian>
12323int
12324Target_arm<big_endian>::do_attributes_order(int num) const
12325{
12326 // Reorder the known object attributes in output. We want to move
12327 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 12328 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
12329 if (num == 4)
12330 return elfcpp::Tag_conformance;
12331 if (num == 5)
12332 return elfcpp::Tag_nodefaults;
12333 if ((num - 2) < elfcpp::Tag_nodefaults)
12334 return num - 2;
12335 if ((num - 1) < elfcpp::Tag_conformance)
12336 return num - 1;
12337 return num;
12338}
4a657b0d 12339
44272192
DK
12340// Scan a span of THUMB code for Cortex-A8 erratum.
12341
12342template<bool big_endian>
12343void
12344Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
12345 Arm_relobj<big_endian>* arm_relobj,
12346 unsigned int shndx,
12347 section_size_type span_start,
12348 section_size_type span_end,
12349 const unsigned char* view,
12350 Arm_address address)
12351{
12352 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
12353 //
12354 // The opcode is BLX.W, BL.W, B.W, Bcc.W
12355 // The branch target is in the same 4KB region as the
12356 // first half of the branch.
12357 // The instruction before the branch is a 32-bit
12358 // length non-branch instruction.
12359 section_size_type i = span_start;
12360 bool last_was_32bit = false;
12361 bool last_was_branch = false;
12362 while (i < span_end)
12363 {
12364 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12365 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
12366 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
12367 bool is_blx = false, is_b = false;
12368 bool is_bl = false, is_bcc = false;
12369
12370 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
12371 if (insn_32bit)
12372 {
12373 // Load the rest of the insn (in manual-friendly order).
12374 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
12375
12376 // Encoding T4: B<c>.W.
12377 is_b = (insn & 0xf800d000U) == 0xf0009000U;
12378 // Encoding T1: BL<c>.W.
2e702c99
RM
12379 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
12380 // Encoding T2: BLX<c>.W.
12381 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
44272192
DK
12382 // Encoding T3: B<c>.W (not permitted in IT block).
12383 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
12384 && (insn & 0x07f00000U) != 0x03800000U);
12385 }
12386
12387 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
2e702c99 12388
44272192
DK
12389 // If this instruction is a 32-bit THUMB branch that crosses a 4K
12390 // page boundary and it follows 32-bit non-branch instruction,
12391 // we need to work around.
12392 if (is_32bit_branch
12393 && ((address + i) & 0xfffU) == 0xffeU
12394 && last_was_32bit
12395 && !last_was_branch)
12396 {
12397 // Check to see if there is a relocation stub for this branch.
12398 bool force_target_arm = false;
12399 bool force_target_thumb = false;
12400 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
12401 Cortex_a8_relocs_info::const_iterator p =
12402 this->cortex_a8_relocs_info_.find(address + i);
12403
12404 if (p != this->cortex_a8_relocs_info_.end())
12405 {
12406 cortex_a8_reloc = p->second;
12407 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
12408
12409 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12410 && !target_is_thumb)
12411 force_target_arm = true;
12412 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
12413 && target_is_thumb)
12414 force_target_thumb = true;
12415 }
12416
12417 off_t offset;
12418 Stub_type stub_type = arm_stub_none;
12419
12420 // Check if we have an offending branch instruction.
12421 uint16_t upper_insn = (insn >> 16) & 0xffffU;
12422 uint16_t lower_insn = insn & 0xffffU;
2c54b4f4 12423 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
44272192
DK
12424
12425 if (cortex_a8_reloc != NULL
12426 && cortex_a8_reloc->reloc_stub() != NULL)
12427 // We've already made a stub for this instruction, e.g.
12428 // it's a long branch or a Thumb->ARM stub. Assume that
12429 // stub will suffice to work around the A8 erratum (see
12430 // setting of always_after_branch above).
12431 ;
12432 else if (is_bcc)
12433 {
12434 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
12435 lower_insn);
12436 stub_type = arm_stub_a8_veneer_b_cond;
12437 }
12438 else if (is_b || is_bl || is_blx)
12439 {
12440 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
12441 lower_insn);
12442 if (is_blx)
2e702c99 12443 offset &= ~3;
44272192
DK
12444
12445 stub_type = (is_blx
12446 ? arm_stub_a8_veneer_blx
12447 : (is_bl
12448 ? arm_stub_a8_veneer_bl
12449 : arm_stub_a8_veneer_b));
12450 }
12451
12452 if (stub_type != arm_stub_none)
12453 {
12454 Arm_address pc_for_insn = address + i + 4;
12455
12456 // The original instruction is a BL, but the target is
12457 // an ARM instruction. If we were not making a stub,
12458 // the BL would have been converted to a BLX. Use the
12459 // BLX stub instead in that case.
cd6eab1c 12460 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
12461 && stub_type == arm_stub_a8_veneer_bl)
12462 {
12463 stub_type = arm_stub_a8_veneer_blx;
12464 is_blx = true;
12465 is_bl = false;
12466 }
12467 // Conversely, if the original instruction was
12468 // BLX but the target is Thumb mode, use the BL stub.
12469 else if (force_target_thumb
12470 && stub_type == arm_stub_a8_veneer_blx)
12471 {
12472 stub_type = arm_stub_a8_veneer_bl;
12473 is_blx = false;
12474 is_bl = true;
12475 }
12476
12477 if (is_blx)
12478 pc_for_insn &= ~3;
12479
2e702c99 12480 // If we found a relocation, use the proper destination,
44272192
DK
12481 // not the offset in the (unrelocated) instruction.
12482 // Note this is always done if we switched the stub type above.
2e702c99
RM
12483 if (cortex_a8_reloc != NULL)
12484 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
44272192 12485
2e702c99 12486 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
44272192
DK
12487
12488 // Add a new stub if destination address in in the same page.
2e702c99
RM
12489 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
12490 {
44272192
DK
12491 Cortex_a8_stub* stub =
12492 this->stub_factory_.make_cortex_a8_stub(stub_type,
12493 arm_relobj, shndx,
12494 address + i,
12495 target, insn);
12496 Stub_table<big_endian>* stub_table =
12497 arm_relobj->stub_table(shndx);
12498 gold_assert(stub_table != NULL);
12499 stub_table->add_cortex_a8_stub(address + i, stub);
2e702c99
RM
12500 }
12501 }
12502 }
44272192
DK
12503
12504 i += insn_32bit ? 4 : 2;
12505 last_was_32bit = insn_32bit;
12506 last_was_branch = is_32bit_branch;
12507 }
12508}
12509
41263c05
DK
12510// Apply the Cortex-A8 workaround.
12511
12512template<bool big_endian>
12513void
12514Target_arm<big_endian>::apply_cortex_a8_workaround(
12515 const Cortex_a8_stub* stub,
12516 Arm_address stub_address,
12517 unsigned char* insn_view,
12518 Arm_address insn_address)
12519{
12520 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
12521 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
12522 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
12523 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
12524 off_t branch_offset = stub_address - (insn_address + 4);
12525
2c54b4f4 12526 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
41263c05
DK
12527 switch (stub->stub_template()->type())
12528 {
12529 case arm_stub_a8_veneer_b_cond:
9b547ce6 12530 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
12531 // branch to the stub. We use the THUMB-2 encoding here.
12532 upper_insn = 0xf000U;
12533 lower_insn = 0xb800U;
12534 // Fall through
41263c05
DK
12535 case arm_stub_a8_veneer_b:
12536 case arm_stub_a8_veneer_bl:
12537 case arm_stub_a8_veneer_blx:
12538 if ((lower_insn & 0x5000U) == 0x4000U)
12539 // For a BLX instruction, make sure that the relocation is
12540 // rounded up to a word boundary. This follows the semantics of
12541 // the instruction which specifies that bit 1 of the target
12542 // address will come from bit 1 of the base address.
12543 branch_offset = (branch_offset + 2) & ~3;
12544
12545 // Put BRANCH_OFFSET back into the insn.
bef2b434 12546 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
12547 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
12548 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
12549 break;
12550
12551 default:
12552 gold_unreachable();
12553 }
12554
12555 // Put the relocated value back in the object file:
12556 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
12557 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
12558}
12559
2e702c99
RM
12560// Target selector for ARM. Note this is never instantiated directly.
12561// It's only used in Target_selector_arm_nacl, below.
12562
4a657b0d
DK
12563template<bool big_endian>
12564class Target_selector_arm : public Target_selector
12565{
12566 public:
12567 Target_selector_arm()
12568 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
12569 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
12570 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
12571 { }
12572
12573 Target*
12574 do_instantiate_target()
12575 { return new Target_arm<big_endian>(); }
12576};
12577
2b328d4e
DK
12578// Fix .ARM.exidx section coverage.
12579
12580template<bool big_endian>
12581void
12582Target_arm<big_endian>::fix_exidx_coverage(
12583 Layout* layout,
131687b4 12584 const Input_objects* input_objects,
2b328d4e 12585 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
12586 Symbol_table* symtab,
12587 const Task* task)
2b328d4e
DK
12588{
12589 // We need to look at all the input sections in output in ascending
12590 // order of of output address. We do that by building a sorted list
12591 // of output sections by addresses. Then we looks at the output sections
12592 // in order. The input sections in an output section are already sorted
12593 // by addresses within the output section.
12594
12595 typedef std::set<Output_section*, output_section_address_less_than>
12596 Sorted_output_section_list;
12597 Sorted_output_section_list sorted_output_sections;
131687b4
DK
12598
12599 // Find out all the output sections of input sections pointed by
12600 // EXIDX input sections.
12601 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
12602 p != input_objects->relobj_end();
2b328d4e
DK
12603 ++p)
12604 {
131687b4
DK
12605 Arm_relobj<big_endian>* arm_relobj =
12606 Arm_relobj<big_endian>::as_arm_relobj(*p);
12607 std::vector<unsigned int> shndx_list;
12608 arm_relobj->get_exidx_shndx_list(&shndx_list);
12609 for (size_t i = 0; i < shndx_list.size(); ++i)
12610 {
12611 const Arm_exidx_input_section* exidx_input_section =
12612 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
12613 gold_assert(exidx_input_section != NULL);
12614 if (!exidx_input_section->has_errors())
12615 {
12616 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 12617 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
12618 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
12619 sorted_output_sections.insert(os);
12620 }
12621 }
2b328d4e
DK
12622 }
12623
12624 // Go over the output sections in ascending order of output addresses.
12625 typedef typename Arm_output_section<big_endian>::Text_section_list
12626 Text_section_list;
12627 Text_section_list sorted_text_sections;
f625ae50 12628 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
12629 sorted_output_sections.begin();
12630 p != sorted_output_sections.end();
12631 ++p)
12632 {
12633 Arm_output_section<big_endian>* arm_output_section =
12634 Arm_output_section<big_endian>::as_arm_output_section(*p);
12635 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
2e702c99 12636 }
2b328d4e 12637
85fdf906 12638 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 12639 merge_exidx_entries(), task);
2b328d4e
DK
12640}
12641
647f1574
DK
12642template<bool big_endian>
12643void
12644Target_arm<big_endian>::do_define_standard_symbols(
12645 Symbol_table* symtab,
12646 Layout* layout)
12647{
12648 // Handle the .ARM.exidx section.
12649 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
12650
12651 if (exidx_section != NULL)
12652 {
12653 // Create __exidx_start and __exidx_end symbols.
12654 symtab->define_in_output_data("__exidx_start",
12655 NULL, // version
12656 Symbol_table::PREDEFINED,
12657 exidx_section,
12658 0, // value
12659 0, // symsize
12660 elfcpp::STT_NOTYPE,
12661 elfcpp::STB_GLOBAL,
12662 elfcpp::STV_HIDDEN,
12663 0, // nonvis
12664 false, // offset_is_from_end
12665 true); // only_if_ref
12666
12667 symtab->define_in_output_data("__exidx_end",
12668 NULL, // version
12669 Symbol_table::PREDEFINED,
12670 exidx_section,
2e702c99 12671 0, // value
647f1574
DK
12672 0, // symsize
12673 elfcpp::STT_NOTYPE,
12674 elfcpp::STB_GLOBAL,
12675 elfcpp::STV_HIDDEN,
12676 0, // nonvis
12677 true, // offset_is_from_end
12678 true); // only_if_ref
12679 }
12680 else
12681 {
12682 // Define __exidx_start and __exidx_end even when .ARM.exidx
12683 // section is missing to match ld's behaviour.
12684 symtab->define_as_constant("__exidx_start", NULL,
2e702c99
RM
12685 Symbol_table::PREDEFINED,
12686 0, 0, elfcpp::STT_OBJECT,
12687 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12688 true, false);
647f1574 12689 symtab->define_as_constant("__exidx_end", NULL,
2e702c99
RM
12690 Symbol_table::PREDEFINED,
12691 0, 0, elfcpp::STT_OBJECT,
12692 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
12693 true, false);
647f1574
DK
12694 }
12695}
12696
2e702c99
RM
12697// NaCl variant. It uses different PLT contents.
12698
12699template<bool big_endian>
12700class Output_data_plt_arm_nacl;
12701
12702template<bool big_endian>
12703class Target_arm_nacl : public Target_arm<big_endian>
12704{
12705 public:
12706 Target_arm_nacl()
12707 : Target_arm<big_endian>(&arm_nacl_info)
12708 { }
12709
12710 protected:
12711 virtual Output_data_plt_arm<big_endian>*
fa89cc82
HS
12712 do_make_data_plt(
12713 Layout* layout,
12714 Arm_output_data_got<big_endian>* got,
12715 Output_data_space* got_plt,
12716 Output_data_space* got_irelative)
12717 { return new Output_data_plt_arm_nacl<big_endian>(
12718 layout, got, got_plt, got_irelative); }
2e702c99
RM
12719
12720 private:
12721 static const Target::Target_info arm_nacl_info;
12722};
12723
12724template<bool big_endian>
12725const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
12726{
12727 32, // size
12728 big_endian, // is_big_endian
12729 elfcpp::EM_ARM, // machine_code
12730 false, // has_make_symbol
12731 false, // has_resolve
12732 false, // has_code_fill
12733 true, // is_default_stack_executable
12734 false, // can_icf_inline_merge_sections
12735 '\0', // wrap_char
12736 "/lib/ld-nacl-arm.so.1", // dynamic_linker
12737 0x20000, // default_text_segment_address
12738 0x10000, // abi_pagesize (overridable by -z max-page-size)
12739 0x10000, // common_pagesize (overridable by -z common-page-size)
12740 true, // isolate_execinstr
12741 0x10000000, // rosegment_gap
12742 elfcpp::SHN_UNDEF, // small_common_shndx
12743 elfcpp::SHN_UNDEF, // large_common_shndx
12744 0, // small_common_section_flags
12745 0, // large_common_section_flags
12746 ".ARM.attributes", // attributes_section
a67858e0 12747 "aeabi", // attributes_vendor
8d9743bd
MK
12748 "_start", // entry_symbol_name
12749 32, // hash_entry_size
2e702c99
RM
12750};
12751
12752template<bool big_endian>
12753class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
12754{
12755 public:
fa89cc82
HS
12756 Output_data_plt_arm_nacl(
12757 Layout* layout,
12758 Arm_output_data_got<big_endian>* got,
12759 Output_data_space* got_plt,
12760 Output_data_space* got_irelative)
12761 : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
2e702c99
RM
12762 { }
12763
12764 protected:
12765 // Return the offset of the first non-reserved PLT entry.
12766 virtual unsigned int
12767 do_first_plt_entry_offset() const
12768 { return sizeof(first_plt_entry); }
12769
12770 // Return the size of a PLT entry.
12771 virtual unsigned int
12772 do_get_plt_entry_size() const
12773 { return sizeof(plt_entry); }
12774
12775 virtual void
12776 do_fill_first_plt_entry(unsigned char* pov,
12777 Arm_address got_address,
12778 Arm_address plt_address);
12779
12780 virtual void
12781 do_fill_plt_entry(unsigned char* pov,
12782 Arm_address got_address,
12783 Arm_address plt_address,
12784 unsigned int got_offset,
12785 unsigned int plt_offset);
12786
12787 private:
12788 inline uint32_t arm_movw_immediate(uint32_t value)
12789 {
12790 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
12791 }
12792
12793 inline uint32_t arm_movt_immediate(uint32_t value)
12794 {
12795 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
12796 }
12797
12798 // Template for the first PLT entry.
12799 static const uint32_t first_plt_entry[16];
12800
12801 // Template for subsequent PLT entries.
12802 static const uint32_t plt_entry[4];
12803};
12804
12805// The first entry in the PLT.
12806template<bool big_endian>
12807const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
12808{
12809 // First bundle:
12810 0xe300c000, // movw ip, #:lower16:&GOT[2]-.+8
12811 0xe340c000, // movt ip, #:upper16:&GOT[2]-.+8
12812 0xe08cc00f, // add ip, ip, pc
12813 0xe52dc008, // str ip, [sp, #-8]!
12814 // Second bundle:
edccdf7c 12815 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12816 0xe59cc000, // ldr ip, [ip]
12817 0xe3ccc13f, // bic ip, ip, #0xc000000f
12818 0xe12fff1c, // bx ip
12819 // Third bundle:
12820 0xe320f000, // nop
12821 0xe320f000, // nop
12822 0xe320f000, // nop
12823 // .Lplt_tail:
12824 0xe50dc004, // str ip, [sp, #-4]
12825 // Fourth bundle:
edccdf7c 12826 0xe3ccc103, // bic ip, ip, #0xc0000000
2e702c99
RM
12827 0xe59cc000, // ldr ip, [ip]
12828 0xe3ccc13f, // bic ip, ip, #0xc000000f
12829 0xe12fff1c, // bx ip
12830};
12831
12832template<bool big_endian>
12833void
12834Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
12835 unsigned char* pov,
12836 Arm_address got_address,
12837 Arm_address plt_address)
12838{
12839 // Write first PLT entry. All but first two words are constants.
12840 const size_t num_first_plt_words = (sizeof(first_plt_entry)
12841 / sizeof(first_plt_entry[0]));
12842
12843 int32_t got_displacement = got_address + 8 - (plt_address + 16);
12844
12845 elfcpp::Swap<32, big_endian>::writeval
12846 (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
12847 elfcpp::Swap<32, big_endian>::writeval
12848 (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));
12849
12850 for (size_t i = 2; i < num_first_plt_words; ++i)
12851 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
12852}
12853
12854// Subsequent entries in the PLT.
12855
12856template<bool big_endian>
12857const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
12858{
12859 0xe300c000, // movw ip, #:lower16:&GOT[n]-.+8
12860 0xe340c000, // movt ip, #:upper16:&GOT[n]-.+8
12861 0xe08cc00f, // add ip, ip, pc
12862 0xea000000, // b .Lplt_tail
12863};
12864
12865template<bool big_endian>
12866void
12867Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
12868 unsigned char* pov,
12869 Arm_address got_address,
12870 Arm_address plt_address,
12871 unsigned int got_offset,
12872 unsigned int plt_offset)
12873{
12874 // Calculate the displacement between the PLT slot and the
12875 // common tail that's part of the special initial PLT slot.
12876 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
12877 - (plt_address + plt_offset
12878 + sizeof(plt_entry) + sizeof(uint32_t)));
12879 gold_assert((tail_displacement & 3) == 0);
12880 tail_displacement >>= 2;
12881
12882 gold_assert ((tail_displacement & 0xff000000) == 0
12883 || (-tail_displacement & 0xff000000) == 0);
12884
12885 // Calculate the displacement between the PLT slot and the entry
12886 // in the GOT. The offset accounts for the value produced by
12887 // adding to pc in the penultimate instruction of the PLT stub.
12888 const int32_t got_displacement = (got_address + got_offset
12889 - (plt_address + sizeof(plt_entry)));
12890
12891 elfcpp::Swap<32, big_endian>::writeval
12892 (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
12893 elfcpp::Swap<32, big_endian>::writeval
12894 (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
12895 elfcpp::Swap<32, big_endian>::writeval
12896 (pov + 8, plt_entry[2]);
12897 elfcpp::Swap<32, big_endian>::writeval
12898 (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
12899}
12900
12901// Target selectors.
12902
12903template<bool big_endian>
12904class Target_selector_arm_nacl
12905 : public Target_selector_nacl<Target_selector_arm<big_endian>,
12906 Target_arm_nacl<big_endian> >
12907{
12908 public:
12909 Target_selector_arm_nacl()
12910 : Target_selector_nacl<Target_selector_arm<big_endian>,
12911 Target_arm_nacl<big_endian> >(
12912 "arm",
12913 big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
12914 big_endian ? "armelfb_nacl" : "armelf_nacl")
12915 { }
12916};
12917
12918Target_selector_arm_nacl<false> target_selector_arm;
12919Target_selector_arm_nacl<true> target_selector_armbe;
4a657b0d
DK
12920
12921} // End anonymous namespace.
This page took 1.078771 seconds and 4 git commands to generate.