daily update
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
bef2b434 3// Copyright 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
9b547ce6 119// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
ca09d69a 129Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
9b547ce6
RW
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 604 // Arm_relobj, in order to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
9b547ce6
RW
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
56ee5e00 900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
2fb7225c
DK
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
aa98ff75
DK
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
af2cdeae 1072 private:
7296d933 1073 // Implement do_write for a given endianness.
af2cdeae
DK
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082};
1083
1084// During EXIDX coverage fix-up, we compact an EXIDX section. The
1085// Offset map is used to map input section offset within the EXIDX section
1086// to the output offset from the start of this EXIDX section.
1087
1088typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091// Arm_exidx_merged_section class. This represents an EXIDX input section
1092// with some of its entries merged.
1093
1094class Arm_exidx_merged_section : public Output_relaxed_input_section
1095{
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
f625ae50
DK
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
af2cdeae
DK
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
f625ae50
DK
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
af2cdeae
DK
1139};
1140
10ad9fe5
DK
1141// A class to wrap an ordinary input section containing executable code.
1142
1143template<bool big_endian>
1144class Arm_input_section : public Output_relaxed_input_section
1145{
1146 public:
2ea97941
ILT
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
10ad9fe5
DK
1151 { }
1152
1153 ~Arm_input_section()
f625ae50 1154 { delete[] this->original_contents_; }
10ad9fe5
DK
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
2ea97941
ILT
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
10ad9fe5 1174
07f508a2
DK
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
6625d24e
DK
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
10ad9fe5
DK
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
6625d24e 1197 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
2ea97941
ILT
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
10ad9fe5
DK
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
2ea97941
ILT
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
0439c796
DK
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1221 {
2ea97941 1222 *poutput = offset;
10ad9fe5
DK
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
6625d24e 1235 uint32_t original_addralign_;
10ad9fe5 1236 // Section size of the original input section.
6625d24e 1237 uint32_t original_size_;
10ad9fe5
DK
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
10ad9fe5
DK
1244};
1245
80d0d023
DK
1246// Arm_exidx_fixup class. This is used to define a number of methods
1247// and keep states for fixing up EXIDX coverage.
1248
1249class Arm_exidx_fixup
1250{
1251 public:
85fdf906
AH
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
80d0d023
DK
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
f625ae50
DK
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1268 // responsible for releasing it.
80d0d023
DK
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
80d0d023
DK
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
546c7457
DK
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
80d0d023
DK
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
2b328d4e 1326 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
85fdf906
AH
1332
1333 bool merge_exidx_entries_;
80d0d023
DK
1334};
1335
07f508a2
DK
1336// Arm output section class. This is defined mainly to add a number of
1337// stub generation methods.
1338
1339template<bool big_endian>
1340class Arm_output_section : public Output_section
1341{
1342 public:
2b328d4e
DK
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
c87e4302 1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
c87e4302
DK
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
131687b4
DK
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
07f508a2
DK
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
f625ae50 1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
2b328d4e
DK
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
4a54abbb
DK
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
85fdf906 1380 Symbol_table* symtab,
f625ae50
DK
1381 bool merge_exidx_entries,
1382 const Task* task);
2b328d4e 1383
131687b4
DK
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
07f508a2
DK
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
f625ae50
DK
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
07f508a2
DK
1400};
1401
993d07c1
DK
1402// Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404class Arm_exidx_input_section
1405{
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
993d07c1 1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
f625ae50 1442 // Return address alignment of EXIDX input section.
993d07c1
DK
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
f625ae50
DK
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
131687b4
DK
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
993d07c1
DK
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
f625ae50
DK
1473 // Size of associated text section.
1474 uint32_t text_size_;
131687b4
DK
1475 // Whether this has any errors.
1476 bool has_errors_;
993d07c1
DK
1477};
1478
8ffa3667
DK
1479// Arm_relobj class.
1480
1481template<bool big_endian>
6fa2a40b 1482class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1483{
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
2ea97941 1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1490 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1491 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
8ffa3667
DK
1495 { }
1496
1497 ~Arm_relobj()
a0351a69 1498 { delete this->attributes_section_data_; }
8ffa3667
DK
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
2ea97941 1502 stub_table(unsigned int shndx) const
8ffa3667 1503 {
2ea97941
ILT
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
8ffa3667
DK
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
2ea97941 1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1511 {
2ea97941
ILT
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
2ea97941 1532 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
2b328d4e 1536 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
2ea97941
ILT
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1545
d5b40221
DK
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
a0351a69
DK
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
20138696
DK
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
2fb7225c
DK
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
993d07c1
DK
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
e7eca48c
DK
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
7296d933
DK
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
131687b4
DK
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
8ffa3667
DK
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
6fa2a40b 1660 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
6fa2a40b
CC
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1677
d5b40221
DK
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
99e5bff2
DK
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
8ffa3667 1686 private:
44272192
DK
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
ca09d69a 1692 const Symbol_table*, const unsigned char*);
44272192 1693
cf846138
DK
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1697 const Output_section*, const Symbol_table*);
cf846138 1698
44272192
DK
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
ca09d69a 1703 const Symbol_table*);
44272192
DK
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
c8761b9a 1711 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1712 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
993d07c1 1721 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
993d07c1
DK
1724 void
1725 make_exidx_input_section(unsigned int shndx,
c8761b9a 1726 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1729
cb1be87e
DK
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
8ffa3667 1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
8ffa3667
DK
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
20138696
DK
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
7296d933
DK
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
d5b40221
DK
1759};
1760
1761// Arm_dynobj class.
1762
1763template<bool big_endian>
1764class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765{
1766 public:
2ea97941 1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1771 { }
1772
1773 ~Arm_dynobj()
a0351a69 1774 { delete this->attributes_section_data_; }
d5b40221
DK
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
a0351a69
DK
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
d5b40221
DK
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1803};
1804
e9bbb538
DK
1805// Functor to read reloc addends during stub generation.
1806
1807template<int sh_type, bool big_endian>
1808struct Stub_addend_reader
1809{
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
ebd95253 1818 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1819};
1820
1821// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823template<bool big_endian>
1824struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825{
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831};
1832
1833// Specialized Stub_addend_reader for RELA type relocation sections.
1834// We currently do not handle RELA type relocation sections but it is trivial
1835// to implement the addend reader. This is provided for completeness and to
1836// make it easier to add support for RELA relocation sections in the future.
1837
1838template<bool big_endian>
1839struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840{
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
e9bbb538
DK
1848};
1849
a120bc7f
DK
1850// Cortex_a8_reloc class. We keep record of relocation that may need
1851// the Cortex-A8 erratum workaround.
1852
1853class Cortex_a8_reloc
1854{
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891};
1892
4a54abbb
DK
1893// Arm_output_data_got class. We derive this from Output_data_got to add
1894// extra methods to handle TLS relocations in a static link.
1895
1896template<bool big_endian>
1897class Arm_output_data_got : public Output_data_got<32, big_endian>
1898{
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
4a54abbb
DK
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1934 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
6fa2a40b 1984 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
6fa2a40b 2017 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030};
2031
9b547ce6 2032// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2033// bits. The default handling of relocatable relocation cannot process these
2034// relocations. So we have to extend the default code.
2035
2036template<bool big_endian, int sh_type, typename Classify_reloc>
2037class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039{
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2c339f71
DK
2078 // Relocations that write full 32 bits and
2079 // have alignment of 1.
5c388529
DK
2080 case elfcpp::R_ARM_ABS32:
2081 case elfcpp::R_ARM_REL32:
2082 case elfcpp::R_ARM_SBREL32:
2083 case elfcpp::R_ARM_GOTOFF32:
2084 case elfcpp::R_ARM_BASE_PREL:
2085 case elfcpp::R_ARM_GOT_BREL:
2086 case elfcpp::R_ARM_BASE_ABS:
2087 case elfcpp::R_ARM_ABS32_NOI:
2088 case elfcpp::R_ARM_REL32_NOI:
2089 case elfcpp::R_ARM_PLT32_ABS:
2090 case elfcpp::R_ARM_GOT_ABS:
2091 case elfcpp::R_ARM_GOT_PREL:
2092 case elfcpp::R_ARM_TLS_GD32:
2093 case elfcpp::R_ARM_TLS_LDM32:
2094 case elfcpp::R_ARM_TLS_LDO32:
2095 case elfcpp::R_ARM_TLS_IE32:
2096 case elfcpp::R_ARM_TLS_LE32:
2c339f71 2097 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
5c388529
DK
2098 default:
2099 // For all other static relocations, return RELOC_SPECIAL.
2100 return Relocatable_relocs::RELOC_SPECIAL;
2101 }
2102 }
2103 }
2104};
2105
4a657b0d
DK
2106template<bool big_endian>
2107class Target_arm : public Sized_target<32, big_endian>
2108{
2109 public:
2110 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2111 Reloc_section;
2112
2daedcd6
DK
2113 // When were are relocating a stub, we pass this as the relocation number.
2114 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2115
a6d1ef57
DK
2116 Target_arm()
2117 : Sized_target<32, big_endian>(&arm_info),
2118 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2119 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2120 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2121 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2122 should_force_pic_veneer_(false),
f96accdf
DK
2123 arm_input_section_map_(), attributes_section_data_(NULL),
2124 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2125 { }
4a657b0d 2126
b569affa
DK
2127 // Whether we force PCI branch veneers.
2128 bool
2129 should_force_pic_veneer() const
2130 { return this->should_force_pic_veneer_; }
2131
2132 // Set PIC veneer flag.
2133 void
2134 set_should_force_pic_veneer(bool value)
2135 { this->should_force_pic_veneer_ = value; }
2136
2137 // Whether we use THUMB-2 instructions.
2138 bool
2139 using_thumb2() const
2140 {
a0351a69
DK
2141 Object_attribute* attr =
2142 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2143 int arch = attr->int_value();
2144 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2145 }
2146
2147 // Whether we use THUMB/THUMB-2 instructions only.
2148 bool
2149 using_thumb_only() const
2150 {
a0351a69
DK
2151 Object_attribute* attr =
2152 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2153
2154 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2155 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2156 return true;
a0351a69
DK
2157 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2158 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2159 return false;
2160 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2161 return attr->int_value() == 'M';
b569affa
DK
2162 }
2163
d204b6e9
DK
2164 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2165 bool
2166 may_use_arm_nop() const
2167 {
a0351a69
DK
2168 Object_attribute* attr =
2169 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2170 int arch = attr->int_value();
2171 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2172 || arch == elfcpp::TAG_CPU_ARCH_V6K
2173 || arch == elfcpp::TAG_CPU_ARCH_V7
2174 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2175 }
2176
51938283
DK
2177 // Whether we have THUMB-2 NOP.W instruction.
2178 bool
2179 may_use_thumb2_nop() const
2180 {
a0351a69
DK
2181 Object_attribute* attr =
2182 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2183 int arch = attr->int_value();
2184 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2185 || arch == elfcpp::TAG_CPU_ARCH_V7
2186 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2187 }
cd6eab1c
ILT
2188
2189 // Whether we have v4T interworking instructions available.
2190 bool
2191 may_use_v4t_interworking() const
2192 {
2193 Object_attribute* attr =
2194 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2195 int arch = attr->int_value();
2196 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2197 && arch != elfcpp::TAG_CPU_ARCH_V4);
2198 }
2199
2200 // Whether we have v5T interworking instructions available.
2201 bool
2202 may_use_v5t_interworking() const
2203 {
2204 Object_attribute* attr =
2205 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2206 int arch = attr->int_value();
a8e2273b
ILT
2207 if (parameters->options().fix_arm1176())
2208 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2209 || arch == elfcpp::TAG_CPU_ARCH_V7
2210 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2211 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2212 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2213 else
2214 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2215 && arch != elfcpp::TAG_CPU_ARCH_V4
2216 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2217 }
51938283 2218
4a657b0d
DK
2219 // Process the relocations to determine unreferenced sections for
2220 // garbage collection.
2221 void
ad0f2072 2222 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2223 Layout* layout,
6fa2a40b 2224 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2225 unsigned int data_shndx,
2226 unsigned int sh_type,
2227 const unsigned char* prelocs,
2228 size_t reloc_count,
2229 Output_section* output_section,
2230 bool needs_special_offset_handling,
2231 size_t local_symbol_count,
2232 const unsigned char* plocal_symbols);
2233
2234 // Scan the relocations to look for symbol adjustments.
2235 void
ad0f2072 2236 scan_relocs(Symbol_table* symtab,
4a657b0d 2237 Layout* layout,
6fa2a40b 2238 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2239 unsigned int data_shndx,
2240 unsigned int sh_type,
2241 const unsigned char* prelocs,
2242 size_t reloc_count,
2243 Output_section* output_section,
2244 bool needs_special_offset_handling,
2245 size_t local_symbol_count,
2246 const unsigned char* plocal_symbols);
2247
2248 // Finalize the sections.
2249 void
f59f41f3 2250 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2251
94cdfcff 2252 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2253 // treatment.
2254 uint64_t
2255 do_dynsym_value(const Symbol*) const;
2256
2257 // Relocate a section.
2258 void
2259 relocate_section(const Relocate_info<32, big_endian>*,
2260 unsigned int sh_type,
2261 const unsigned char* prelocs,
2262 size_t reloc_count,
2263 Output_section* output_section,
2264 bool needs_special_offset_handling,
2265 unsigned char* view,
ebabffbd 2266 Arm_address view_address,
364c7fa5
ILT
2267 section_size_type view_size,
2268 const Reloc_symbol_changes*);
4a657b0d
DK
2269
2270 // Scan the relocs during a relocatable link.
2271 void
ad0f2072 2272 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2273 Layout* layout,
6fa2a40b 2274 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2275 unsigned int data_shndx,
2276 unsigned int sh_type,
2277 const unsigned char* prelocs,
2278 size_t reloc_count,
2279 Output_section* output_section,
2280 bool needs_special_offset_handling,
2281 size_t local_symbol_count,
2282 const unsigned char* plocal_symbols,
2283 Relocatable_relocs*);
2284
2285 // Relocate a section during a relocatable link.
2286 void
2287 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2288 unsigned int sh_type,
2289 const unsigned char* prelocs,
2290 size_t reloc_count,
2291 Output_section* output_section,
2292 off_t offset_in_output_section,
2293 const Relocatable_relocs*,
2294 unsigned char* view,
ebabffbd 2295 Arm_address view_address,
4a657b0d
DK
2296 section_size_type view_size,
2297 unsigned char* reloc_view,
2298 section_size_type reloc_view_size);
2299
5c388529
DK
2300 // Perform target-specific processing in a relocatable link. This is
2301 // only used if we use the relocation strategy RELOC_SPECIAL.
2302 void
2303 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2304 unsigned int sh_type,
2305 const unsigned char* preloc_in,
2306 size_t relnum,
2307 Output_section* output_section,
2308 off_t offset_in_output_section,
2309 unsigned char* view,
2310 typename elfcpp::Elf_types<32>::Elf_Addr
2311 view_address,
2312 section_size_type view_size,
2313 unsigned char* preloc_out);
2314
4a657b0d
DK
2315 // Return whether SYM is defined by the ABI.
2316 bool
2317 do_is_defined_by_abi(Symbol* sym) const
2318 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2319
c8761b9a
DK
2320 // Return whether there is a GOT section.
2321 bool
2322 has_got_section() const
2323 { return this->got_ != NULL; }
2324
94cdfcff
DK
2325 // Return the size of the GOT section.
2326 section_size_type
0e70b911 2327 got_size() const
94cdfcff
DK
2328 {
2329 gold_assert(this->got_ != NULL);
2330 return this->got_->data_size();
2331 }
2332
0e70b911
CC
2333 // Return the number of entries in the GOT.
2334 unsigned int
2335 got_entry_count() const
2336 {
2337 if (!this->has_got_section())
2338 return 0;
2339 return this->got_size() / 4;
2340 }
2341
2342 // Return the number of entries in the PLT.
2343 unsigned int
2344 plt_entry_count() const;
2345
2346 // Return the offset of the first non-reserved PLT entry.
2347 unsigned int
2348 first_plt_entry_offset() const;
2349
2350 // Return the size of each PLT entry.
2351 unsigned int
2352 plt_entry_size() const;
2353
4a657b0d 2354 // Map platform-specific reloc types
a6d1ef57 2355 static unsigned int
ca09d69a 2356 get_real_reloc_type(unsigned int r_type);
4a657b0d 2357
55da9579
DK
2358 //
2359 // Methods to support stub-generations.
2360 //
2361
2362 // Return the stub factory
2363 const Stub_factory&
2364 stub_factory() const
2365 { return this->stub_factory_; }
2366
2367 // Make a new Arm_input_section object.
2368 Arm_input_section<big_endian>*
2369 new_arm_input_section(Relobj*, unsigned int);
2370
2371 // Find the Arm_input_section object corresponding to the SHNDX-th input
2372 // section of RELOBJ.
2373 Arm_input_section<big_endian>*
2ea97941 2374 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2375
2376 // Make a new Stub_table
2377 Stub_table<big_endian>*
2378 new_stub_table(Arm_input_section<big_endian>*);
2379
eb44217c
DK
2380 // Scan a section for stub generation.
2381 void
2382 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2383 const unsigned char*, size_t, Output_section*,
2384 bool, const unsigned char*, Arm_address,
2385 section_size_type);
2386
43d12afe
DK
2387 // Relocate a stub.
2388 void
2fb7225c 2389 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2390 Output_section*, unsigned char*, Arm_address,
2391 section_size_type);
2392
b569affa 2393 // Get the default ARM target.
43d12afe 2394 static Target_arm<big_endian>*
b569affa
DK
2395 default_target()
2396 {
2397 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2398 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2399 return static_cast<Target_arm<big_endian>*>(
2400 parameters->sized_target<32, big_endian>());
b569affa
DK
2401 }
2402
20138696
DK
2403 // Whether NAME belongs to a mapping symbol.
2404 static bool
2405 is_mapping_symbol_name(const char* name)
2406 {
2407 return (name
2408 && name[0] == '$'
2409 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2410 && (name[2] == '\0' || name[2] == '.'));
2411 }
2412
a120bc7f
DK
2413 // Whether we work around the Cortex-A8 erratum.
2414 bool
2415 fix_cortex_a8() const
2416 { return this->fix_cortex_a8_; }
2417
85fdf906
AH
2418 // Whether we merge exidx entries in debuginfo.
2419 bool
2420 merge_exidx_entries() const
2421 { return parameters->options().merge_exidx_entries(); }
2422
a2162063
ILT
2423 // Whether we fix R_ARM_V4BX relocation.
2424 // 0 - do not fix
2425 // 1 - replace with MOV instruction (armv4 target)
2426 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2427 General_options::Fix_v4bx
a2162063 2428 fix_v4bx() const
9b2fd367 2429 { return parameters->options().fix_v4bx(); }
a2162063 2430
44272192
DK
2431 // Scan a span of THUMB code section for Cortex-A8 erratum.
2432 void
2433 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2434 section_size_type, section_size_type,
2435 const unsigned char*, Arm_address);
2436
41263c05
DK
2437 // Apply Cortex-A8 workaround to a branch.
2438 void
2439 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2440 unsigned char*, Arm_address);
2441
d5b40221 2442 protected:
eb44217c
DK
2443 // Make an ELF object.
2444 Object*
2445 do_make_elf_object(const std::string&, Input_file*, off_t,
2446 const elfcpp::Ehdr<32, big_endian>& ehdr);
2447
2448 Object*
2449 do_make_elf_object(const std::string&, Input_file*, off_t,
2450 const elfcpp::Ehdr<32, !big_endian>&)
2451 { gold_unreachable(); }
2452
2453 Object*
2454 do_make_elf_object(const std::string&, Input_file*, off_t,
2455 const elfcpp::Ehdr<64, false>&)
2456 { gold_unreachable(); }
2457
2458 Object*
2459 do_make_elf_object(const std::string&, Input_file*, off_t,
2460 const elfcpp::Ehdr<64, true>&)
2461 { gold_unreachable(); }
2462
2463 // Make an output section.
2464 Output_section*
2465 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2466 elfcpp::Elf_Xword flags)
2467 { return new Arm_output_section<big_endian>(name, type, flags); }
2468
d5b40221
DK
2469 void
2470 do_adjust_elf_header(unsigned char* view, int len) const;
2471
eb44217c
DK
2472 // We only need to generate stubs, and hence perform relaxation if we are
2473 // not doing relocatable linking.
2474 bool
2475 do_may_relax() const
2476 { return !parameters->options().relocatable(); }
2477
2478 bool
f625ae50 2479 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2480
a0351a69
DK
2481 // Determine whether an object attribute tag takes an integer, a
2482 // string or both.
2483 int
2484 do_attribute_arg_type(int tag) const;
2485
2486 // Reorder tags during output.
2487 int
2488 do_attributes_order(int num) const;
2489
0d31c79d
DK
2490 // This is called when the target is selected as the default.
2491 void
2492 do_select_as_default_target()
2493 {
2494 // No locking is required since there should only be one default target.
2495 // We cannot have both the big-endian and little-endian ARM targets
2496 // as the default.
2497 gold_assert(arm_reloc_property_table == NULL);
2498 arm_reloc_property_table = new Arm_reloc_property_table();
2499 }
2500
b3ce541e
ILT
2501 // Virtual function which is set to return true by a target if
2502 // it can use relocation types to determine if a function's
2503 // pointer is taken.
2504 virtual bool
2505 do_can_check_for_function_pointers() const
2506 { return true; }
2507
2508 // Whether a section called SECTION_NAME may have function pointers to
2509 // sections not eligible for safe ICF folding.
2510 virtual bool
2511 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2512 {
2513 return (!is_prefix_of(".ARM.exidx", section_name)
2514 && !is_prefix_of(".ARM.extab", section_name)
2515 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2516 }
2517
4a657b0d
DK
2518 private:
2519 // The class which scans relocations.
2520 class Scan
2521 {
2522 public:
2523 Scan()
bec53400 2524 : issued_non_pic_error_(false)
4a657b0d
DK
2525 { }
2526
95a2c8d6
RS
2527 static inline int
2528 get_reference_flags(unsigned int r_type);
2529
4a657b0d 2530 inline void
ad0f2072 2531 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2532 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2533 unsigned int data_shndx,
2534 Output_section* output_section,
2535 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2536 const elfcpp::Sym<32, big_endian>& lsym);
2537
2538 inline void
ad0f2072 2539 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2540 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2541 unsigned int data_shndx,
2542 Output_section* output_section,
2543 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2544 Symbol* gsym);
2545
21bb3914
ST
2546 inline bool
2547 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2548 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2549 unsigned int ,
2550 Output_section* ,
2551 const elfcpp::Rel<32, big_endian>& ,
2552 unsigned int ,
8a75a161 2553 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2554
2555 inline bool
2556 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2557 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2558 unsigned int ,
2559 Output_section* ,
2560 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2561 unsigned int , Symbol*);
21bb3914 2562
4a657b0d
DK
2563 private:
2564 static void
6fa2a40b 2565 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2566 unsigned int r_type);
2567
2568 static void
6fa2a40b 2569 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2570 unsigned int r_type, Symbol*);
bec53400
DK
2571
2572 void
2573 check_non_pic(Relobj*, unsigned int r_type);
2574
2575 // Almost identical to Symbol::needs_plt_entry except that it also
2576 // handles STT_ARM_TFUNC.
2577 static bool
2578 symbol_needs_plt_entry(const Symbol* sym)
2579 {
2580 // An undefined symbol from an executable does not need a PLT entry.
2581 if (sym->is_undefined() && !parameters->options().shared())
2582 return false;
2583
2584 return (!parameters->doing_static_link()
2585 && (sym->type() == elfcpp::STT_FUNC
2586 || sym->type() == elfcpp::STT_ARM_TFUNC)
2587 && (sym->is_from_dynobj()
2588 || sym->is_undefined()
2589 || sym->is_preemptible()));
2590 }
2591
8a75a161
DK
2592 inline bool
2593 possible_function_pointer_reloc(unsigned int r_type);
2594
bec53400
DK
2595 // Whether we have issued an error about a non-PIC compilation.
2596 bool issued_non_pic_error_;
4a657b0d
DK
2597 };
2598
2599 // The class which implements relocation.
2600 class Relocate
2601 {
2602 public:
2603 Relocate()
2604 { }
2605
2606 ~Relocate()
2607 { }
2608
bec53400
DK
2609 // Return whether the static relocation needs to be applied.
2610 inline bool
2611 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2612 unsigned int r_type,
bec53400
DK
2613 bool is_32bit,
2614 Output_section* output_section);
2615
4a657b0d
DK
2616 // Do a relocation. Return false if the caller should not issue
2617 // any warnings about this relocation.
2618 inline bool
2619 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2620 Output_section*, size_t relnum,
2621 const elfcpp::Rel<32, big_endian>&,
2622 unsigned int r_type, const Sized_symbol<32>*,
2623 const Symbol_value<32>*,
ebabffbd 2624 unsigned char*, Arm_address,
4a657b0d 2625 section_size_type);
c121c671
DK
2626
2627 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2628 // reloc. This means the relocation type accesses a symbol not via
2629 // GOT or PLT.
c121c671 2630 static inline bool
ca09d69a 2631 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2632 {
2633 switch (r_type)
2634 {
f4e5969c
DK
2635 // These relocation types reference GOT or PLT entries explicitly.
2636 case elfcpp::R_ARM_GOT_BREL:
2637 case elfcpp::R_ARM_GOT_ABS:
2638 case elfcpp::R_ARM_GOT_PREL:
2639 case elfcpp::R_ARM_GOT_BREL12:
2640 case elfcpp::R_ARM_PLT32_ABS:
2641 case elfcpp::R_ARM_TLS_GD32:
2642 case elfcpp::R_ARM_TLS_LDM32:
2643 case elfcpp::R_ARM_TLS_IE32:
2644 case elfcpp::R_ARM_TLS_IE12GP:
2645
2646 // These relocate types may use PLT entries.
c121c671 2647 case elfcpp::R_ARM_CALL:
f4e5969c 2648 case elfcpp::R_ARM_THM_CALL:
c121c671 2649 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2650 case elfcpp::R_ARM_THM_JUMP24:
2651 case elfcpp::R_ARM_THM_JUMP19:
2652 case elfcpp::R_ARM_PLT32:
2653 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2654 case elfcpp::R_ARM_PREL31:
2655 case elfcpp::R_ARM_SBREL31:
c121c671 2656 return false;
f4e5969c
DK
2657
2658 default:
2659 return true;
c121c671
DK
2660 }
2661 }
f96accdf
DK
2662
2663 private:
2664 // Do a TLS relocation.
2665 inline typename Arm_relocate_functions<big_endian>::Status
2666 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2667 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2668 const Sized_symbol<32>*, const Symbol_value<32>*,
2669 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2670 section_size_type);
2671
4a657b0d
DK
2672 };
2673
2674 // A class which returns the size required for a relocation type,
2675 // used while scanning relocs during a relocatable link.
2676 class Relocatable_size_for_reloc
2677 {
2678 public:
2679 unsigned int
2680 get_size_for_reloc(unsigned int, Relobj*);
2681 };
2682
f96accdf
DK
2683 // Adjust TLS relocation type based on the options and whether this
2684 // is a local symbol.
2685 static tls::Tls_optimization
2686 optimize_tls_reloc(bool is_final, int r_type);
2687
94cdfcff 2688 // Get the GOT section, creating it if necessary.
4a54abbb 2689 Arm_output_data_got<big_endian>*
94cdfcff
DK
2690 got_section(Symbol_table*, Layout*);
2691
2692 // Get the GOT PLT section.
2693 Output_data_space*
2694 got_plt_section() const
2695 {
2696 gold_assert(this->got_plt_ != NULL);
2697 return this->got_plt_;
2698 }
2699
2700 // Create a PLT entry for a global symbol.
2701 void
2702 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2703
f96accdf
DK
2704 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2705 void
2706 define_tls_base_symbol(Symbol_table*, Layout*);
2707
2708 // Create a GOT entry for the TLS module index.
2709 unsigned int
2710 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2711 Sized_relobj_file<32, big_endian>* object);
f96accdf 2712
94cdfcff
DK
2713 // Get the PLT section.
2714 const Output_data_plt_arm<big_endian>*
2715 plt_section() const
2716 {
2717 gold_assert(this->plt_ != NULL);
2718 return this->plt_;
2719 }
2720
2721 // Get the dynamic reloc section, creating it if necessary.
2722 Reloc_section*
2723 rel_dyn_section(Layout*);
2724
f96accdf
DK
2725 // Get the section to use for TLS_DESC relocations.
2726 Reloc_section*
2727 rel_tls_desc_section(Layout*) const;
2728
94cdfcff
DK
2729 // Return true if the symbol may need a COPY relocation.
2730 // References from an executable object to non-function symbols
2731 // defined in a dynamic object may need a COPY relocation.
2732 bool
2733 may_need_copy_reloc(Symbol* gsym)
2734 {
966d4097
DK
2735 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2736 && gsym->may_need_copy_reloc());
94cdfcff
DK
2737 }
2738
2739 // Add a potential copy relocation.
2740 void
2741 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2742 Sized_relobj_file<32, big_endian>* object,
2ea97941 2743 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2744 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2745 {
2746 this->copy_relocs_.copy_reloc(symtab, layout,
2747 symtab->get_sized_symbol<32>(sym),
2ea97941 2748 object, shndx, output_section, reloc,
94cdfcff
DK
2749 this->rel_dyn_section(layout));
2750 }
2751
d5b40221
DK
2752 // Whether two EABI versions are compatible.
2753 static bool
2754 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2755
2756 // Merge processor-specific flags from input object and those in the ELF
2757 // header of the output.
2758 void
2759 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2760
a0351a69
DK
2761 // Get the secondary compatible architecture.
2762 static int
2763 get_secondary_compatible_arch(const Attributes_section_data*);
2764
2765 // Set the secondary compatible architecture.
2766 static void
2767 set_secondary_compatible_arch(Attributes_section_data*, int);
2768
2769 static int
2770 tag_cpu_arch_combine(const char*, int, int*, int, int);
2771
2772 // Helper to print AEABI enum tag value.
2773 static std::string
2774 aeabi_enum_name(unsigned int);
2775
2776 // Return string value for TAG_CPU_name.
2777 static std::string
2778 tag_cpu_name_value(unsigned int);
2779
2780 // Merge object attributes from input object and those in the output.
2781 void
2782 merge_object_attributes(const char*, const Attributes_section_data*);
2783
2784 // Helper to get an AEABI object attribute
2785 Object_attribute*
2786 get_aeabi_object_attribute(int tag) const
2787 {
2788 Attributes_section_data* pasd = this->attributes_section_data_;
2789 gold_assert(pasd != NULL);
2790 Object_attribute* attr =
2791 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2792 gold_assert(attr != NULL);
2793 return attr;
2794 }
2795
eb44217c
DK
2796 //
2797 // Methods to support stub-generations.
2798 //
d5b40221 2799
eb44217c
DK
2800 // Group input sections for stub generation.
2801 void
f625ae50 2802 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2803
eb44217c
DK
2804 // Scan a relocation for stub generation.
2805 void
2806 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2807 const Sized_symbol<32>*, unsigned int,
2808 const Symbol_value<32>*,
2809 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2810
eb44217c
DK
2811 // Scan a relocation section for stub.
2812 template<int sh_type>
2813 void
2814 scan_reloc_section_for_stubs(
2815 const Relocate_info<32, big_endian>* relinfo,
2816 const unsigned char* prelocs,
2817 size_t reloc_count,
2818 Output_section* output_section,
2819 bool needs_special_offset_handling,
2820 const unsigned char* view,
2821 elfcpp::Elf_types<32>::Elf_Addr view_address,
2822 section_size_type);
d5b40221 2823
2b328d4e
DK
2824 // Fix .ARM.exidx section coverage.
2825 void
131687b4 2826 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2827 Arm_output_section<big_endian>*, Symbol_table*,
2828 const Task*);
2b328d4e
DK
2829
2830 // Functors for STL set.
2831 struct output_section_address_less_than
2832 {
2833 bool
2834 operator()(const Output_section* s1, const Output_section* s2) const
2835 { return s1->address() < s2->address(); }
2836 };
2837
4a657b0d
DK
2838 // Information about this specific target which we pass to the
2839 // general Target structure.
2840 static const Target::Target_info arm_info;
94cdfcff
DK
2841
2842 // The types of GOT entries needed for this platform.
0e70b911
CC
2843 // These values are exposed to the ABI in an incremental link.
2844 // Do not renumber existing values without changing the version
2845 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2846 enum Got_type
2847 {
f96accdf
DK
2848 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2849 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2850 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2851 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2852 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2853 };
2854
55da9579
DK
2855 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2856
2857 // Map input section to Arm_input_section.
5ac169d4 2858 typedef Unordered_map<Section_id,
55da9579 2859 Arm_input_section<big_endian>*,
5ac169d4 2860 Section_id_hash>
55da9579
DK
2861 Arm_input_section_map;
2862
a120bc7f
DK
2863 // Map output addresses to relocs for Cortex-A8 erratum.
2864 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2865 Cortex_a8_relocs_info;
2866
94cdfcff 2867 // The GOT section.
4a54abbb 2868 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2869 // The PLT section.
2870 Output_data_plt_arm<big_endian>* plt_;
2871 // The GOT PLT section.
2872 Output_data_space* got_plt_;
2873 // The dynamic reloc section.
2874 Reloc_section* rel_dyn_;
2875 // Relocs saved to avoid a COPY reloc.
2876 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2877 // Space for variables copied with a COPY reloc.
2878 Output_data_space* dynbss_;
f96accdf
DK
2879 // Offset of the GOT entry for the TLS module index.
2880 unsigned int got_mod_index_offset_;
2881 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2882 bool tls_base_symbol_defined_;
55da9579
DK
2883 // Vector of Stub_tables created.
2884 Stub_table_list stub_tables_;
2885 // Stub factory.
2886 const Stub_factory &stub_factory_;
b569affa
DK
2887 // Whether we force PIC branch veneers.
2888 bool should_force_pic_veneer_;
eb44217c
DK
2889 // Map for locating Arm_input_sections.
2890 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2891 // Attributes section data in output.
2892 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2893 // Whether we want to fix code for Cortex-A8 erratum.
2894 bool fix_cortex_a8_;
2895 // Map addresses to relocs for Cortex-A8 erratum.
2896 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2897};
2898
2899template<bool big_endian>
2900const Target::Target_info Target_arm<big_endian>::arm_info =
2901{
2902 32, // size
2903 big_endian, // is_big_endian
2904 elfcpp::EM_ARM, // machine_code
2905 false, // has_make_symbol
2906 false, // has_resolve
2907 false, // has_code_fill
2908 true, // is_default_stack_executable
b3ce541e 2909 false, // can_icf_inline_merge_sections
4a657b0d
DK
2910 '\0', // wrap_char
2911 "/usr/lib/libc.so.1", // dynamic_linker
2912 0x8000, // default_text_segment_address
2913 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2914 0x1000, // common_pagesize (overridable by -z common-page-size)
2915 elfcpp::SHN_UNDEF, // small_common_shndx
2916 elfcpp::SHN_UNDEF, // large_common_shndx
2917 0, // small_common_section_flags
05a352e6
DK
2918 0, // large_common_section_flags
2919 ".ARM.attributes", // attributes_section
2920 "aeabi" // attributes_vendor
4a657b0d
DK
2921};
2922
c121c671
DK
2923// Arm relocate functions class
2924//
2925
2926template<bool big_endian>
2927class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2928{
2929 public:
2930 typedef enum
2931 {
2932 STATUS_OKAY, // No error during relocation.
9b547ce6 2933 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2934 STATUS_BAD_RELOC // Relocation cannot be applied.
2935 } Status;
2936
2937 private:
2938 typedef Relocate_functions<32, big_endian> Base;
2939 typedef Arm_relocate_functions<big_endian> This;
2940
fd3c5f0b
ILT
2941 // Encoding of imm16 argument for movt and movw ARM instructions
2942 // from ARM ARM:
2943 //
2944 // imm16 := imm4 | imm12
2945 //
2946 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2947 // +-------+---------------+-------+-------+-----------------------+
2948 // | | |imm4 | |imm12 |
2949 // +-------+---------------+-------+-------+-----------------------+
2950
2951 // Extract the relocation addend from VAL based on the ARM
2952 // instruction encoding described above.
2953 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2954 extract_arm_movw_movt_addend(
2955 typename elfcpp::Swap<32, big_endian>::Valtype val)
2956 {
2957 // According to the Elf ABI for ARM Architecture the immediate
2958 // field is sign-extended to form the addend.
bef2b434 2959 return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
fd3c5f0b
ILT
2960 }
2961
2962 // Insert X into VAL based on the ARM instruction encoding described
2963 // above.
2964 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2965 insert_val_arm_movw_movt(
2966 typename elfcpp::Swap<32, big_endian>::Valtype val,
2967 typename elfcpp::Swap<32, big_endian>::Valtype x)
2968 {
2969 val &= 0xfff0f000;
2970 val |= x & 0x0fff;
2971 val |= (x & 0xf000) << 4;
2972 return val;
2973 }
2974
2975 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2976 // from ARM ARM:
2977 //
2978 // imm16 := imm4 | i | imm3 | imm8
2979 //
2980 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2981 // +---------+-+-----------+-------++-+-----+-------+---------------+
2982 // | |i| |imm4 || |imm3 | |imm8 |
2983 // +---------+-+-----------+-------++-+-----+-------+---------------+
2984
2985 // Extract the relocation addend from VAL based on the Thumb2
2986 // instruction encoding described above.
2987 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2988 extract_thumb_movw_movt_addend(
2989 typename elfcpp::Swap<32, big_endian>::Valtype val)
2990 {
2991 // According to the Elf ABI for ARM Architecture the immediate
2992 // field is sign-extended to form the addend.
bef2b434
ILT
2993 return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
2994 | ((val >> 15) & 0x0800)
2995 | ((val >> 4) & 0x0700)
2996 | (val & 0x00ff));
fd3c5f0b
ILT
2997 }
2998
2999 // Insert X into VAL based on the Thumb2 instruction encoding
3000 // described above.
3001 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3002 insert_val_thumb_movw_movt(
3003 typename elfcpp::Swap<32, big_endian>::Valtype val,
3004 typename elfcpp::Swap<32, big_endian>::Valtype x)
3005 {
3006 val &= 0xfbf08f00;
3007 val |= (x & 0xf000) << 4;
3008 val |= (x & 0x0800) << 15;
3009 val |= (x & 0x0700) << 4;
3010 val |= (x & 0x00ff);
3011 return val;
3012 }
3013
b10d2873
ILT
3014 // Calculate the smallest constant Kn for the specified residual.
3015 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3016 static uint32_t
3017 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3018 {
3019 int32_t msb;
3020
3021 if (residual == 0)
3022 return 0;
3023 // Determine the most significant bit in the residual and
3024 // align the resulting value to a 2-bit boundary.
3025 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3026 ;
3027 // The desired shift is now (msb - 6), or zero, whichever
3028 // is the greater.
3029 return (((msb - 6) < 0) ? 0 : (msb - 6));
3030 }
3031
3032 // Calculate the final residual for the specified group index.
3033 // If the passed group index is less than zero, the method will return
3034 // the value of the specified residual without any change.
3035 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3036 static typename elfcpp::Swap<32, big_endian>::Valtype
3037 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3038 const int group)
3039 {
3040 for (int n = 0; n <= group; n++)
3041 {
3042 // Calculate which part of the value to mask.
3043 uint32_t shift = calc_grp_kn(residual);
3044 // Calculate the residual for the next time around.
3045 residual &= ~(residual & (0xff << shift));
3046 }
3047
3048 return residual;
3049 }
3050
3051 // Calculate the value of Gn for the specified group index.
3052 // We return it in the form of an encoded constant-and-rotation.
3053 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3054 static typename elfcpp::Swap<32, big_endian>::Valtype
3055 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3056 const int group)
3057 {
3058 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3059 uint32_t shift = 0;
3060
3061 for (int n = 0; n <= group; n++)
3062 {
3063 // Calculate which part of the value to mask.
3064 shift = calc_grp_kn(residual);
3065 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3066 gn = residual & (0xff << shift);
3067 // Calculate the residual for the next time around.
3068 residual &= ~gn;
3069 }
3070 // Return Gn in the form of an encoded constant-and-rotation.
3071 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3072 }
3073
1521477a 3074 public:
d204b6e9
DK
3075 // Handle ARM long branches.
3076 static typename This::Status
3077 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3078 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3079 const Arm_relobj<big_endian>*, unsigned int,
3080 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3081
51938283
DK
3082 // Handle THUMB long branches.
3083 static typename This::Status
3084 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3085 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3086 const Arm_relobj<big_endian>*, unsigned int,
3087 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3088
5e445df6 3089
089d69dc
DK
3090 // Return the branch offset of a 32-bit THUMB branch.
3091 static inline int32_t
3092 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3093 {
3094 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3095 // involving the J1 and J2 bits.
3096 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3097 uint32_t upper = upper_insn & 0x3ffU;
3098 uint32_t lower = lower_insn & 0x7ffU;
3099 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3100 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3101 uint32_t i1 = j1 ^ s ? 0 : 1;
3102 uint32_t i2 = j2 ^ s ? 0 : 1;
3103
bef2b434
ILT
3104 return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
3105 | (upper << 12) | (lower << 1));
089d69dc
DK
3106 }
3107
3108 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3109 // UPPER_INSN is the original upper instruction of the branch. Caller is
3110 // responsible for overflow checking and BLX offset adjustment.
3111 static inline uint16_t
3112 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3113 {
3114 uint32_t s = offset < 0 ? 1 : 0;
3115 uint32_t bits = static_cast<uint32_t>(offset);
3116 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3117 }
3118
3119 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3120 // LOWER_INSN is the original lower instruction of the branch. Caller is
3121 // responsible for overflow checking and BLX offset adjustment.
3122 static inline uint16_t
3123 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3124 {
3125 uint32_t s = offset < 0 ? 1 : 0;
3126 uint32_t bits = static_cast<uint32_t>(offset);
3127 return ((lower_insn & ~0x2fffU)
3128 | ((((bits >> 23) & 1) ^ !s) << 13)
3129 | ((((bits >> 22) & 1) ^ !s) << 11)
3130 | ((bits >> 1) & 0x7ffU));
3131 }
3132
3133 // Return the branch offset of a 32-bit THUMB conditional branch.
3134 static inline int32_t
3135 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3136 {
3137 uint32_t s = (upper_insn & 0x0400U) >> 10;
3138 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3139 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3140 uint32_t lower = (lower_insn & 0x07ffU);
3141 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3142
bef2b434 3143 return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
089d69dc
DK
3144 }
3145
3146 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3147 // instruction. UPPER_INSN is the original upper instruction of the branch.
3148 // Caller is responsible for overflow checking.
3149 static inline uint16_t
3150 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3151 {
3152 uint32_t s = offset < 0 ? 1 : 0;
3153 uint32_t bits = static_cast<uint32_t>(offset);
3154 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3155 }
3156
3157 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3158 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3159 // The caller is responsible for overflow checking.
089d69dc
DK
3160 static inline uint16_t
3161 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3162 {
3163 uint32_t bits = static_cast<uint32_t>(offset);
3164 uint32_t j2 = (bits & 0x00080000U) >> 19;
3165 uint32_t j1 = (bits & 0x00040000U) >> 18;
3166 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3167
3168 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3169 }
3170
5e445df6
ILT
3171 // R_ARM_ABS8: S + A
3172 static inline typename This::Status
ca09d69a 3173 abs8(unsigned char* view,
6fa2a40b 3174 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3175 const Symbol_value<32>* psymval)
5e445df6
ILT
3176 {
3177 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3178 Valtype* wv = reinterpret_cast<Valtype*>(view);
3179 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
bef2b434 3180 int32_t addend = Bits<8>::sign_extend32(val);
f6cccc2c 3181 Arm_address x = psymval->value(object, addend);
bef2b434 3182 val = Bits<32>::bit_select32(val, x, 0xffU);
5e445df6 3183 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3184
3185 // R_ARM_ABS8 permits signed or unsigned results.
2c175ebc 3186 return (Bits<8>::has_signed_unsigned_overflow32(x)
5e445df6
ILT
3187 ? This::STATUS_OVERFLOW
3188 : This::STATUS_OKAY);
3189 }
3190
be8fcb75
ILT
3191 // R_ARM_THM_ABS5: S + A
3192 static inline typename This::Status
ca09d69a 3193 thm_abs5(unsigned char* view,
6fa2a40b 3194 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3195 const Symbol_value<32>* psymval)
3196 {
3197 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3198 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3199 Valtype* wv = reinterpret_cast<Valtype*>(view);
3200 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3201 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3202 Reltype x = psymval->value(object, addend);
bef2b434 3203 val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
be8fcb75 3204 elfcpp::Swap<16, big_endian>::writeval(wv, val);
2c175ebc 3205 return (Bits<5>::has_overflow32(x)
be8fcb75
ILT
3206 ? This::STATUS_OVERFLOW
3207 : This::STATUS_OKAY);
3208 }
3209
3210 // R_ARM_ABS12: S + A
3211 static inline typename This::Status
ca09d69a 3212 abs12(unsigned char* view,
6fa2a40b 3213 const Sized_relobj_file<32, big_endian>* object,
51938283 3214 const Symbol_value<32>* psymval)
be8fcb75
ILT
3215 {
3216 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3217 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3218 Valtype* wv = reinterpret_cast<Valtype*>(view);
3219 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3220 Reltype addend = val & 0x0fffU;
2daedcd6 3221 Reltype x = psymval->value(object, addend);
bef2b434 3222 val = Bits<32>::bit_select32(val, x, 0x0fffU);
be8fcb75 3223 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3224 return (Bits<12>::has_overflow32(x)
be8fcb75
ILT
3225 ? This::STATUS_OVERFLOW
3226 : This::STATUS_OKAY);
3227 }
3228
3229 // R_ARM_ABS16: S + A
3230 static inline typename This::Status
ca09d69a 3231 abs16(unsigned char* view,
6fa2a40b 3232 const Sized_relobj_file<32, big_endian>* object,
51938283 3233 const Symbol_value<32>* psymval)
be8fcb75 3234 {
f6cccc2c 3235 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
be8fcb75 3236 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
f6cccc2c 3237 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
bef2b434 3238 int32_t addend = Bits<16>::sign_extend32(val);
f6cccc2c 3239 Arm_address x = psymval->value(object, addend);
bef2b434 3240 val = Bits<32>::bit_select32(val, x, 0xffffU);
f6cccc2c
DK
3241 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3242
3243 // R_ARM_ABS16 permits signed or unsigned results.
2c175ebc 3244 return (Bits<16>::has_signed_unsigned_overflow32(x)
be8fcb75
ILT
3245 ? This::STATUS_OVERFLOW
3246 : This::STATUS_OKAY);
3247 }
3248
c121c671
DK
3249 // R_ARM_ABS32: (S + A) | T
3250 static inline typename This::Status
ca09d69a 3251 abs32(unsigned char* view,
6fa2a40b 3252 const Sized_relobj_file<32, big_endian>* object,
c121c671 3253 const Symbol_value<32>* psymval,
2daedcd6 3254 Arm_address thumb_bit)
c121c671 3255 {
f6cccc2c
DK
3256 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3257 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3258 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3259 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3260 return This::STATUS_OKAY;
3261 }
3262
3263 // R_ARM_REL32: (S + A) | T - P
3264 static inline typename This::Status
ca09d69a 3265 rel32(unsigned char* view,
6fa2a40b 3266 const Sized_relobj_file<32, big_endian>* object,
c121c671 3267 const Symbol_value<32>* psymval,
ebabffbd 3268 Arm_address address,
2daedcd6 3269 Arm_address thumb_bit)
c121c671 3270 {
f6cccc2c
DK
3271 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3272 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3273 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3274 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3275 return This::STATUS_OKAY;
3276 }
3277
089d69dc
DK
3278 // R_ARM_THM_JUMP24: (S + A) | T - P
3279 static typename This::Status
ca09d69a 3280 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3281 const Symbol_value<32>* psymval, Arm_address address,
3282 Arm_address thumb_bit);
3283
800d0f56
ILT
3284 // R_ARM_THM_JUMP6: S + A – P
3285 static inline typename This::Status
ca09d69a 3286 thm_jump6(unsigned char* view,
6fa2a40b 3287 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3288 const Symbol_value<32>* psymval,
3289 Arm_address address)
3290 {
3291 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3292 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3293 Valtype* wv = reinterpret_cast<Valtype*>(view);
3294 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3295 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3296 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3297 Reltype x = (psymval->value(object, addend) - address);
3298 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3299 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3300 // CZB does only forward jumps.
3301 return ((x > 0x007e)
3302 ? This::STATUS_OVERFLOW
3303 : This::STATUS_OKAY);
3304 }
3305
3306 // R_ARM_THM_JUMP8: S + A – P
3307 static inline typename This::Status
ca09d69a 3308 thm_jump8(unsigned char* view,
6fa2a40b 3309 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3310 const Symbol_value<32>* psymval,
3311 Arm_address address)
3312 {
3313 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3314 Valtype* wv = reinterpret_cast<Valtype*>(view);
3315 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3316 int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
57eb9b50
DK
3317 int32_t x = (psymval->value(object, addend) - address);
3318 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3319 | ((x & 0x01fe) >> 1)));
3320 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3321 return (Bits<9>::has_overflow32(x)
800d0f56
ILT
3322 ? This::STATUS_OVERFLOW
3323 : This::STATUS_OKAY);
3324 }
3325
3326 // R_ARM_THM_JUMP11: S + A – P
3327 static inline typename This::Status
ca09d69a 3328 thm_jump11(unsigned char* view,
6fa2a40b 3329 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3330 const Symbol_value<32>* psymval,
3331 Arm_address address)
3332 {
3333 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3334 Valtype* wv = reinterpret_cast<Valtype*>(view);
3335 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
bef2b434 3336 int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
57eb9b50
DK
3337 int32_t x = (psymval->value(object, addend) - address);
3338 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3339 | ((x & 0x0ffe) >> 1)));
3340 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
bef2b434 3341 return (Bits<12>::has_overflow32(x)
800d0f56
ILT
3342 ? This::STATUS_OVERFLOW
3343 : This::STATUS_OKAY);
3344 }
3345
c121c671
DK
3346 // R_ARM_BASE_PREL: B(S) + A - P
3347 static inline typename This::Status
3348 base_prel(unsigned char* view,
ebabffbd
DK
3349 Arm_address origin,
3350 Arm_address address)
c121c671
DK
3351 {
3352 Base::rel32(view, origin - address);
3353 return STATUS_OKAY;
3354 }
3355
be8fcb75
ILT
3356 // R_ARM_BASE_ABS: B(S) + A
3357 static inline typename This::Status
3358 base_abs(unsigned char* view,
f4e5969c 3359 Arm_address origin)
be8fcb75
ILT
3360 {
3361 Base::rel32(view, origin);
3362 return STATUS_OKAY;
3363 }
3364
c121c671
DK
3365 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3366 static inline typename This::Status
3367 got_brel(unsigned char* view,
3368 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3369 {
3370 Base::rel32(view, got_offset);
3371 return This::STATUS_OKAY;
3372 }
3373
f4e5969c 3374 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3375 static inline typename This::Status
ca09d69a 3376 got_prel(unsigned char* view,
f4e5969c 3377 Arm_address got_entry,
ebabffbd 3378 Arm_address address)
7f5309a5 3379 {
f4e5969c 3380 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3381 return This::STATUS_OKAY;
3382 }
3383
c121c671
DK
3384 // R_ARM_PREL: (S + A) | T - P
3385 static inline typename This::Status
ca09d69a 3386 prel31(unsigned char* view,
6fa2a40b 3387 const Sized_relobj_file<32, big_endian>* object,
c121c671 3388 const Symbol_value<32>* psymval,
ebabffbd 3389 Arm_address address,
2daedcd6 3390 Arm_address thumb_bit)
c121c671 3391 {
f6cccc2c
DK
3392 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3393 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
bef2b434 3394 Valtype addend = Bits<31>::sign_extend32(val);
2daedcd6 3395 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
bef2b434 3396 val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
f6cccc2c 3397 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
bef2b434
ILT
3398 return (Bits<31>::has_overflow32(x)
3399 ? This::STATUS_OVERFLOW
3400 : This::STATUS_OKAY);
c121c671 3401 }
fd3c5f0b 3402
5c57f1be 3403 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3404 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3405 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3406 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3407 static inline typename This::Status
5c57f1be 3408 movw(unsigned char* view,
6fa2a40b 3409 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3410 const Symbol_value<32>* psymval,
3411 Arm_address relative_address_base,
3412 Arm_address thumb_bit,
3413 bool check_overflow)
02961d7e
ILT
3414 {
3415 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3416 Valtype* wv = reinterpret_cast<Valtype*>(view);
3417 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3418 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3419 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3420 - relative_address_base);
02961d7e
ILT
3421 val = This::insert_val_arm_movw_movt(val, x);
3422 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434 3423 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3424 ? This::STATUS_OVERFLOW
3425 : This::STATUS_OKAY);
02961d7e
ILT
3426 }
3427
5c57f1be 3428 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3429 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3430 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3431 static inline typename This::Status
5c57f1be 3432 movt(unsigned char* view,
6fa2a40b 3433 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3434 const Symbol_value<32>* psymval,
3435 Arm_address relative_address_base)
c2a122b6
ILT
3436 {
3437 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3438 Valtype* wv = reinterpret_cast<Valtype*>(view);
3439 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3440 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3441 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3442 val = This::insert_val_arm_movw_movt(val, x);
3443 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3444 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3445 return This::STATUS_OKAY;
3446 }
3447
5c57f1be 3448 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3449 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3450 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3451 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3452 static inline typename This::Status
ca09d69a 3453 thm_movw(unsigned char* view,
6fa2a40b 3454 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3455 const Symbol_value<32>* psymval,
3456 Arm_address relative_address_base,
3457 Arm_address thumb_bit,
3458 bool check_overflow)
02961d7e
ILT
3459 {
3460 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3461 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3462 Valtype* wv = reinterpret_cast<Valtype*>(view);
3463 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3464 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3465 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3466 Reltype x =
3467 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3468 val = This::insert_val_thumb_movw_movt(val, x);
3469 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3470 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
bef2b434 3471 return ((check_overflow && Bits<16>::has_overflow32(x))
5c57f1be
DK
3472 ? This::STATUS_OVERFLOW
3473 : This::STATUS_OKAY);
02961d7e
ILT
3474 }
3475
5c57f1be 3476 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3477 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3478 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3479 static inline typename This::Status
5c57f1be 3480 thm_movt(unsigned char* view,
6fa2a40b 3481 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3482 const Symbol_value<32>* psymval,
3483 Arm_address relative_address_base)
c2a122b6
ILT
3484 {
3485 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3486 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3487 Valtype* wv = reinterpret_cast<Valtype*>(view);
3488 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3489 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3490 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3491 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3492 val = This::insert_val_thumb_movw_movt(val, x);
3493 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3494 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3495 return This::STATUS_OKAY;
3496 }
a2162063 3497
11b861d5
DK
3498 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3499 static inline typename This::Status
3500 thm_alu11(unsigned char* view,
6fa2a40b 3501 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3502 const Symbol_value<32>* psymval,
3503 Arm_address address,
3504 Arm_address thumb_bit)
3505 {
3506 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3507 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3508 Valtype* wv = reinterpret_cast<Valtype*>(view);
3509 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3510 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3511
3512 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3513 // -----------------------------------------------------------------------
3514 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3515 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3516 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3517 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3518 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3519 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3520
3521 // Determine a sign for the addend.
3522 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3523 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3524 // Thumb2 addend encoding:
3525 // imm12 := i | imm3 | imm8
3526 int32_t addend = (insn & 0xff)
3527 | ((insn & 0x00007000) >> 4)
3528 | ((insn & 0x04000000) >> 15);
3529 // Apply a sign to the added.
3530 addend *= sign;
3531
3532 int32_t x = (psymval->value(object, addend) | thumb_bit)
3533 - (address & 0xfffffffc);
3534 Reltype val = abs(x);
3535 // Mask out the value and a distinct part of the ADD/SUB opcode
3536 // (bits 7:5 of opword).
3537 insn = (insn & 0xfb0f8f00)
3538 | (val & 0xff)
3539 | ((val & 0x700) << 4)
3540 | ((val & 0x800) << 15);
3541 // Set the opcode according to whether the value to go in the
3542 // place is negative.
3543 if (x < 0)
3544 insn |= 0x00a00000;
3545
3546 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3547 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3548 return ((val > 0xfff) ?
3549 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3550 }
3551
3552 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3553 static inline typename This::Status
3554 thm_pc8(unsigned char* view,
6fa2a40b 3555 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3556 const Symbol_value<32>* psymval,
3557 Arm_address address)
3558 {
3559 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3560 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3561 Valtype* wv = reinterpret_cast<Valtype*>(view);
3562 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3563 Reltype addend = ((insn & 0x00ff) << 2);
3564 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3565 Reltype val = abs(x);
3566 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3567
3568 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3569 return ((val > 0x03fc)
3570 ? This::STATUS_OVERFLOW
3571 : This::STATUS_OKAY);
3572 }
3573
3574 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3575 static inline typename This::Status
3576 thm_pc12(unsigned char* view,
6fa2a40b 3577 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3578 const Symbol_value<32>* psymval,
3579 Arm_address address)
3580 {
3581 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3582 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3583 Valtype* wv = reinterpret_cast<Valtype*>(view);
3584 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3585 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3586 // Determine a sign for the addend (positive if the U bit is 1).
3587 const int sign = (insn & 0x00800000) ? 1 : -1;
3588 int32_t addend = (insn & 0xfff);
3589 // Apply a sign to the added.
3590 addend *= sign;
3591
3592 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3593 Reltype val = abs(x);
3594 // Mask out and apply the value and the U bit.
3595 insn = (insn & 0xff7ff000) | (val & 0xfff);
3596 // Set the U bit according to whether the value to go in the
3597 // place is positive.
3598 if (x >= 0)
3599 insn |= 0x00800000;
3600
3601 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3602 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3603 return ((val > 0xfff) ?
3604 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3605 }
3606
a2162063
ILT
3607 // R_ARM_V4BX
3608 static inline typename This::Status
3609 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3610 unsigned char* view,
a2162063
ILT
3611 const Arm_relobj<big_endian>* object,
3612 const Arm_address address,
3613 const bool is_interworking)
3614 {
3615
3616 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3617 Valtype* wv = reinterpret_cast<Valtype*>(view);
3618 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3619
3620 // Ensure that we have a BX instruction.
3621 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3622 const uint32_t reg = (val & 0xf);
3623 if (is_interworking && reg != 0xf)
3624 {
3625 Stub_table<big_endian>* stub_table =
3626 object->stub_table(relinfo->data_shndx);
3627 gold_assert(stub_table != NULL);
3628
3629 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3630 gold_assert(stub != NULL);
3631
3632 int32_t veneer_address =
3633 stub_table->address() + stub->offset() - 8 - address;
3634 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3635 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3636 // Replace with a branch to veneer (B <addr>)
3637 val = (val & 0xf0000000) | 0x0a000000
3638 | ((veneer_address >> 2) & 0x00ffffff);
3639 }
3640 else
3641 {
3642 // Preserve Rm (lowest four bits) and the condition code
3643 // (highest four bits). Other bits encode MOV PC,Rm.
3644 val = (val & 0xf000000f) | 0x01a0f000;
3645 }
3646 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3647 return This::STATUS_OKAY;
3648 }
b10d2873
ILT
3649
3650 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3651 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3652 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3653 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3654 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3655 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3656 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3657 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3658 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3659 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3660 static inline typename This::Status
3661 arm_grp_alu(unsigned char* view,
6fa2a40b 3662 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3663 const Symbol_value<32>* psymval,
3664 const int group,
3665 Arm_address address,
3666 Arm_address thumb_bit,
3667 bool check_overflow)
3668 {
5c57f1be 3669 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3670 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3671 Valtype* wv = reinterpret_cast<Valtype*>(view);
3672 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3673
3674 // ALU group relocations are allowed only for the ADD/SUB instructions.
3675 // (0x00800000 - ADD, 0x00400000 - SUB)
3676 const Valtype opcode = insn & 0x01e00000;
3677 if (opcode != 0x00800000 && opcode != 0x00400000)
3678 return This::STATUS_BAD_RELOC;
3679
3680 // Determine a sign for the addend.
3681 const int sign = (opcode == 0x00800000) ? 1 : -1;
3682 // shifter = rotate_imm * 2
3683 const uint32_t shifter = (insn & 0xf00) >> 7;
3684 // Initial addend value.
3685 int32_t addend = insn & 0xff;
3686 // Rotate addend right by shifter.
3687 addend = (addend >> shifter) | (addend << (32 - shifter));
3688 // Apply a sign to the added.
3689 addend *= sign;
3690
3691 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3692 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3693 // Check for overflow if required
3694 if (check_overflow
3695 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3696 return This::STATUS_OVERFLOW;
3697
3698 // Mask out the value and the ADD/SUB part of the opcode; take care
3699 // not to destroy the S bit.
3700 insn &= 0xff1ff000;
3701 // Set the opcode according to whether the value to go in the
3702 // place is negative.
3703 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3704 // Encode the offset (encoded Gn).
3705 insn |= gn;
3706
3707 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3708 return This::STATUS_OKAY;
3709 }
3710
3711 // R_ARM_LDR_PC_G0: S + A - P
3712 // R_ARM_LDR_PC_G1: S + A - P
3713 // R_ARM_LDR_PC_G2: S + A - P
3714 // R_ARM_LDR_SB_G0: S + A - B(S)
3715 // R_ARM_LDR_SB_G1: S + A - B(S)
3716 // R_ARM_LDR_SB_G2: S + A - B(S)
3717 static inline typename This::Status
3718 arm_grp_ldr(unsigned char* view,
6fa2a40b 3719 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3720 const Symbol_value<32>* psymval,
3721 const int group,
3722 Arm_address address)
3723 {
5c57f1be 3724 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3725 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3726 Valtype* wv = reinterpret_cast<Valtype*>(view);
3727 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3728
3729 const int sign = (insn & 0x00800000) ? 1 : -1;
3730 int32_t addend = (insn & 0xfff) * sign;
3731 int32_t x = (psymval->value(object, addend) - address);
3732 // Calculate the relevant G(n-1) value to obtain this stage residual.
3733 Valtype residual =
3734 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3735 if (residual >= 0x1000)
3736 return This::STATUS_OVERFLOW;
3737
3738 // Mask out the value and U bit.
3739 insn &= 0xff7ff000;
3740 // Set the U bit for non-negative values.
3741 if (x >= 0)
3742 insn |= 0x00800000;
3743 insn |= residual;
3744
3745 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3746 return This::STATUS_OKAY;
3747 }
3748
3749 // R_ARM_LDRS_PC_G0: S + A - P
3750 // R_ARM_LDRS_PC_G1: S + A - P
3751 // R_ARM_LDRS_PC_G2: S + A - P
3752 // R_ARM_LDRS_SB_G0: S + A - B(S)
3753 // R_ARM_LDRS_SB_G1: S + A - B(S)
3754 // R_ARM_LDRS_SB_G2: S + A - B(S)
3755 static inline typename This::Status
3756 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3757 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3758 const Symbol_value<32>* psymval,
3759 const int group,
3760 Arm_address address)
3761 {
5c57f1be 3762 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3763 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3764 Valtype* wv = reinterpret_cast<Valtype*>(view);
3765 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3766
3767 const int sign = (insn & 0x00800000) ? 1 : -1;
3768 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3769 int32_t x = (psymval->value(object, addend) - address);
3770 // Calculate the relevant G(n-1) value to obtain this stage residual.
3771 Valtype residual =
3772 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3773 if (residual >= 0x100)
3774 return This::STATUS_OVERFLOW;
3775
3776 // Mask out the value and U bit.
3777 insn &= 0xff7ff0f0;
3778 // Set the U bit for non-negative values.
3779 if (x >= 0)
3780 insn |= 0x00800000;
3781 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3782
3783 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3784 return This::STATUS_OKAY;
3785 }
3786
3787 // R_ARM_LDC_PC_G0: S + A - P
3788 // R_ARM_LDC_PC_G1: S + A - P
3789 // R_ARM_LDC_PC_G2: S + A - P
3790 // R_ARM_LDC_SB_G0: S + A - B(S)
3791 // R_ARM_LDC_SB_G1: S + A - B(S)
3792 // R_ARM_LDC_SB_G2: S + A - B(S)
3793 static inline typename This::Status
3794 arm_grp_ldc(unsigned char* view,
6fa2a40b 3795 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3796 const Symbol_value<32>* psymval,
3797 const int group,
3798 Arm_address address)
3799 {
5c57f1be 3800 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3801 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3802 Valtype* wv = reinterpret_cast<Valtype*>(view);
3803 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3804
3805 const int sign = (insn & 0x00800000) ? 1 : -1;
3806 int32_t addend = ((insn & 0xff) << 2) * sign;
3807 int32_t x = (psymval->value(object, addend) - address);
3808 // Calculate the relevant G(n-1) value to obtain this stage residual.
3809 Valtype residual =
3810 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3811 if ((residual & 0x3) != 0 || residual >= 0x400)
3812 return This::STATUS_OVERFLOW;
3813
3814 // Mask out the value and U bit.
3815 insn &= 0xff7fff00;
3816 // Set the U bit for non-negative values.
3817 if (x >= 0)
3818 insn |= 0x00800000;
3819 insn |= (residual >> 2);
3820
3821 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3822 return This::STATUS_OKAY;
3823 }
c121c671
DK
3824};
3825
d204b6e9
DK
3826// Relocate ARM long branches. This handles relocation types
3827// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3828// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3829// undefined and we do not use PLT in this relocation. In such a case,
3830// the branch is converted into an NOP.
3831
3832template<bool big_endian>
3833typename Arm_relocate_functions<big_endian>::Status
3834Arm_relocate_functions<big_endian>::arm_branch_common(
3835 unsigned int r_type,
3836 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3837 unsigned char* view,
d204b6e9
DK
3838 const Sized_symbol<32>* gsym,
3839 const Arm_relobj<big_endian>* object,
3840 unsigned int r_sym,
3841 const Symbol_value<32>* psymval,
3842 Arm_address address,
3843 Arm_address thumb_bit,
3844 bool is_weakly_undefined_without_plt)
3845{
3846 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3847 Valtype* wv = reinterpret_cast<Valtype*>(view);
3848 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3849
3850 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3851 && ((val & 0x0f000000UL) == 0x0a000000UL);
3852 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3853 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3854 && ((val & 0x0f000000UL) == 0x0b000000UL);
3855 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3856 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3857
3858 // Check that the instruction is valid.
3859 if (r_type == elfcpp::R_ARM_CALL)
3860 {
3861 if (!insn_is_uncond_bl && !insn_is_blx)
3862 return This::STATUS_BAD_RELOC;
3863 }
3864 else if (r_type == elfcpp::R_ARM_JUMP24)
3865 {
3866 if (!insn_is_b && !insn_is_cond_bl)
3867 return This::STATUS_BAD_RELOC;
3868 }
3869 else if (r_type == elfcpp::R_ARM_PLT32)
3870 {
3871 if (!insn_is_any_branch)
3872 return This::STATUS_BAD_RELOC;
3873 }
3874 else if (r_type == elfcpp::R_ARM_XPC25)
3875 {
3876 // FIXME: AAELF document IH0044C does not say much about it other
3877 // than it being obsolete.
3878 if (!insn_is_any_branch)
3879 return This::STATUS_BAD_RELOC;
3880 }
3881 else
3882 gold_unreachable();
3883
3884 // A branch to an undefined weak symbol is turned into a jump to
3885 // the next instruction unless a PLT entry will be created.
3886 // Do the same for local undefined symbols.
3887 // The jump to the next instruction is optimized as a NOP depending
3888 // on the architecture.
3889 const Target_arm<big_endian>* arm_target =
3890 Target_arm<big_endian>::default_target();
3891 if (is_weakly_undefined_without_plt)
3892 {
5c388529 3893 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3894 Valtype cond = val & 0xf0000000U;
3895 if (arm_target->may_use_arm_nop())
3896 val = cond | 0x0320f000;
3897 else
3898 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3899 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3900 return This::STATUS_OKAY;
3901 }
3902
bef2b434 3903 Valtype addend = Bits<26>::sign_extend32(val << 2);
d204b6e9
DK
3904 Valtype branch_target = psymval->value(object, addend);
3905 int32_t branch_offset = branch_target - address;
3906
3907 // We need a stub if the branch offset is too large or if we need
3908 // to switch mode.
cd6eab1c 3909 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3910 Reloc_stub* stub = NULL;
5c388529
DK
3911
3912 if (!parameters->options().relocatable()
bef2b434 3913 && (Bits<26>::has_overflow32(branch_offset)
5c388529
DK
3914 || ((thumb_bit != 0)
3915 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3916 {
2a2b6d42
DK
3917 Valtype unadjusted_branch_target = psymval->value(object, 0);
3918
d204b6e9 3919 Stub_type stub_type =
2a2b6d42
DK
3920 Reloc_stub::stub_type_for_reloc(r_type, address,
3921 unadjusted_branch_target,
d204b6e9
DK
3922 (thumb_bit != 0));
3923 if (stub_type != arm_stub_none)
3924 {
2ea97941 3925 Stub_table<big_endian>* stub_table =
d204b6e9 3926 object->stub_table(relinfo->data_shndx);
2ea97941 3927 gold_assert(stub_table != NULL);
d204b6e9
DK
3928
3929 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3930 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3931 gold_assert(stub != NULL);
3932 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3933 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3934 branch_offset = branch_target - address;
bef2b434 3935 gold_assert(!Bits<26>::has_overflow32(branch_offset));
d204b6e9
DK
3936 }
3937 }
3938
3939 // At this point, if we still need to switch mode, the instruction
3940 // must either be a BLX or a BL that can be converted to a BLX.
3941 if (thumb_bit != 0)
3942 {
3943 // Turn BL to BLX.
3944 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3945 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3946 }
3947
bef2b434 3948 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
d204b6e9 3949 elfcpp::Swap<32, big_endian>::writeval(wv, val);
bef2b434
ILT
3950 return (Bits<26>::has_overflow32(branch_offset)
3951 ? This::STATUS_OVERFLOW
3952 : This::STATUS_OKAY);
d204b6e9
DK
3953}
3954
51938283
DK
3955// Relocate THUMB long branches. This handles relocation types
3956// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3957// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3958// undefined and we do not use PLT in this relocation. In such a case,
3959// the branch is converted into an NOP.
3960
3961template<bool big_endian>
3962typename Arm_relocate_functions<big_endian>::Status
3963Arm_relocate_functions<big_endian>::thumb_branch_common(
3964 unsigned int r_type,
3965 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3966 unsigned char* view,
51938283
DK
3967 const Sized_symbol<32>* gsym,
3968 const Arm_relobj<big_endian>* object,
3969 unsigned int r_sym,
3970 const Symbol_value<32>* psymval,
3971 Arm_address address,
3972 Arm_address thumb_bit,
3973 bool is_weakly_undefined_without_plt)
3974{
3975 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3976 Valtype* wv = reinterpret_cast<Valtype*>(view);
3977 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3978 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3979
3980 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3981 // into account.
3982 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3983 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3984
3985 // Check that the instruction is valid.
3986 if (r_type == elfcpp::R_ARM_THM_CALL)
3987 {
3988 if (!is_bl_insn && !is_blx_insn)
3989 return This::STATUS_BAD_RELOC;
3990 }
3991 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3992 {
3993 // This cannot be a BLX.
3994 if (!is_bl_insn)
3995 return This::STATUS_BAD_RELOC;
3996 }
3997 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3998 {
3999 // Check for Thumb to Thumb call.
4000 if (!is_blx_insn)
4001 return This::STATUS_BAD_RELOC;
4002 if (thumb_bit != 0)
4003 {
4004 gold_warning(_("%s: Thumb BLX instruction targets "
4005 "thumb function '%s'."),
4006 object->name().c_str(),
4007 (gsym ? gsym->name() : "(local)"));
4008 // Convert BLX to BL.
4009 lower_insn |= 0x1000U;
4010 }
4011 }
4012 else
4013 gold_unreachable();
4014
4015 // A branch to an undefined weak symbol is turned into a jump to
4016 // the next instruction unless a PLT entry will be created.
4017 // The jump to the next instruction is optimized as a NOP.W for
4018 // Thumb-2 enabled architectures.
4019 const Target_arm<big_endian>* arm_target =
4020 Target_arm<big_endian>::default_target();
4021 if (is_weakly_undefined_without_plt)
4022 {
5c388529 4023 gold_assert(!parameters->options().relocatable());
51938283
DK
4024 if (arm_target->may_use_thumb2_nop())
4025 {
4026 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4027 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4028 }
4029 else
4030 {
4031 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4032 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4033 }
4034 return This::STATUS_OKAY;
4035 }
4036
089d69dc 4037 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4038 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4039
4040 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4041 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b 4042 if (thumb_bit == 0 && may_use_blx)
bef2b434 4043 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
a2c7281b 4044
51938283
DK
4045 int32_t branch_offset = branch_target - address;
4046
4047 // We need a stub if the branch offset is too large or if we need
4048 // to switch mode.
51938283 4049 bool thumb2 = arm_target->using_thumb2();
5c388529 4050 if (!parameters->options().relocatable()
bef2b434
ILT
4051 && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
4052 || (thumb2 && Bits<25>::has_overflow32(branch_offset))
5c388529
DK
4053 || ((thumb_bit == 0)
4054 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4055 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4056 {
2a2b6d42
DK
4057 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4058
51938283 4059 Stub_type stub_type =
2a2b6d42
DK
4060 Reloc_stub::stub_type_for_reloc(r_type, address,
4061 unadjusted_branch_target,
51938283 4062 (thumb_bit != 0));
2a2b6d42 4063
51938283
DK
4064 if (stub_type != arm_stub_none)
4065 {
2ea97941 4066 Stub_table<big_endian>* stub_table =
51938283 4067 object->stub_table(relinfo->data_shndx);
2ea97941 4068 gold_assert(stub_table != NULL);
51938283
DK
4069
4070 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4071 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4072 gold_assert(stub != NULL);
4073 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4074 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b 4075 if (thumb_bit == 0 && may_use_blx)
bef2b434 4076 branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
51938283
DK
4077 branch_offset = branch_target - address;
4078 }
4079 }
4080
4081 // At this point, if we still need to switch mode, the instruction
4082 // must either be a BLX or a BL that can be converted to a BLX.
4083 if (thumb_bit == 0)
4084 {
4085 gold_assert(may_use_blx
4086 && (r_type == elfcpp::R_ARM_THM_CALL
4087 || r_type == elfcpp::R_ARM_THM_XPC22));
4088 // Make sure this is a BLX.
4089 lower_insn &= ~0x1000U;
4090 }
4091 else
4092 {
4093 // Make sure this is a BL.
4094 lower_insn |= 0x1000U;
4095 }
4096
a2c7281b
DK
4097 // For a BLX instruction, make sure that the relocation is rounded up
4098 // to a word boundary. This follows the semantics of the instruction
4099 // which specifies that bit 1 of the target address will come from bit
4100 // 1 of the base address.
51938283 4101 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4102 gold_assert((branch_offset & 3) == 0);
51938283
DK
4103
4104 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4105 // We use the Thumb-2 encoding, which is safe even if dealing with
4106 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4107 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4108 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4109
4110 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4111 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4112
bef2b434 4113 gold_assert(!Bits<25>::has_overflow32(branch_offset));
a2c7281b 4114
51938283 4115 return ((thumb2
bef2b434
ILT
4116 ? Bits<25>::has_overflow32(branch_offset)
4117 : Bits<23>::has_overflow32(branch_offset))
089d69dc
DK
4118 ? This::STATUS_OVERFLOW
4119 : This::STATUS_OKAY);
4120}
4121
4122// Relocate THUMB-2 long conditional branches.
4123// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4124// undefined and we do not use PLT in this relocation. In such a case,
4125// the branch is converted into an NOP.
4126
4127template<bool big_endian>
4128typename Arm_relocate_functions<big_endian>::Status
4129Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4130 unsigned char* view,
089d69dc
DK
4131 const Arm_relobj<big_endian>* object,
4132 const Symbol_value<32>* psymval,
4133 Arm_address address,
4134 Arm_address thumb_bit)
4135{
4136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4137 Valtype* wv = reinterpret_cast<Valtype*>(view);
4138 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4139 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4140 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4141
4142 Arm_address branch_target = psymval->value(object, addend);
4143 int32_t branch_offset = branch_target - address;
4144
4145 // ??? Should handle interworking? GCC might someday try to
4146 // use this for tail calls.
4147 // FIXME: We do support thumb entry to PLT yet.
4148 if (thumb_bit == 0)
4149 {
4150 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4151 return This::STATUS_BAD_RELOC;
4152 }
4153
4154 // Put RELOCATION back into the insn.
4155 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4156 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4157
4158 // Put the relocated value back in the object file:
4159 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4160 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4161
bef2b434 4162 return (Bits<21>::has_overflow32(branch_offset)
51938283
DK
4163 ? This::STATUS_OVERFLOW
4164 : This::STATUS_OKAY);
4165}
4166
94cdfcff
DK
4167// Get the GOT section, creating it if necessary.
4168
4169template<bool big_endian>
4a54abbb 4170Arm_output_data_got<big_endian>*
94cdfcff
DK
4171Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4172{
4173 if (this->got_ == NULL)
4174 {
4175 gold_assert(symtab != NULL && layout != NULL);
4176
7b8957f8
DK
4177 // When using -z now, we can treat .got as a relro section.
4178 // Without -z now, it is modified after program startup by lazy
4179 // PLT relocations.
4180 bool is_got_relro = parameters->options().now();
4181 Output_section_order got_order = (is_got_relro
4182 ? ORDER_RELRO_LAST
4183 : ORDER_DATA);
4184
4185 // Unlike some targets (.e.g x86), ARM does not use separate .got and
4186 // .got.plt sections in output. The output .got section contains both
4187 // PLT and non-PLT GOT entries.
4a54abbb 4188 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4189
82742395 4190 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4191 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4192 this->got_, got_order, is_got_relro);
22f0da72 4193
94cdfcff
DK
4194 // The old GNU linker creates a .got.plt section. We just
4195 // create another set of data in the .got section. Note that we
4196 // always create a PLT if we create a GOT, although the PLT
4197 // might be empty.
4198 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4199 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4200 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7b8957f8 4201 this->got_plt_, got_order, is_got_relro);
94cdfcff
DK
4202
4203 // The first three entries are reserved.
4204 this->got_plt_->set_current_data_size(3 * 4);
4205
4206 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4207 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4208 Symbol_table::PREDEFINED,
94cdfcff
DK
4209 this->got_plt_,
4210 0, 0, elfcpp::STT_OBJECT,
4211 elfcpp::STB_LOCAL,
4212 elfcpp::STV_HIDDEN, 0,
4213 false, false);
4214 }
4215 return this->got_;
4216}
4217
4218// Get the dynamic reloc section, creating it if necessary.
4219
4220template<bool big_endian>
4221typename Target_arm<big_endian>::Reloc_section*
4222Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4223{
4224 if (this->rel_dyn_ == NULL)
4225 {
4226 gold_assert(layout != NULL);
4227 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4228 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4229 elfcpp::SHF_ALLOC, this->rel_dyn_,
4230 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4231 }
4232 return this->rel_dyn_;
4233}
4234
b569affa
DK
4235// Insn_template methods.
4236
4237// Return byte size of an instruction template.
4238
4239size_t
4240Insn_template::size() const
4241{
4242 switch (this->type())
4243 {
4244 case THUMB16_TYPE:
2fb7225c 4245 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4246 return 2;
4247 case ARM_TYPE:
4248 case THUMB32_TYPE:
4249 case DATA_TYPE:
4250 return 4;
4251 default:
4252 gold_unreachable();
4253 }
4254}
4255
4256// Return alignment of an instruction template.
4257
4258unsigned
4259Insn_template::alignment() const
4260{
4261 switch (this->type())
4262 {
4263 case THUMB16_TYPE:
2fb7225c 4264 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4265 case THUMB32_TYPE:
4266 return 2;
4267 case ARM_TYPE:
4268 case DATA_TYPE:
4269 return 4;
4270 default:
4271 gold_unreachable();
4272 }
4273}
4274
4275// Stub_template methods.
4276
4277Stub_template::Stub_template(
2ea97941
ILT
4278 Stub_type type, const Insn_template* insns,
4279 size_t insn_count)
4280 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4281 entry_in_thumb_mode_(false), relocs_()
4282{
2ea97941 4283 off_t offset = 0;
b569affa
DK
4284
4285 // Compute byte size and alignment of stub template.
2ea97941 4286 for (size_t i = 0; i < insn_count; i++)
b569affa 4287 {
2ea97941
ILT
4288 unsigned insn_alignment = insns[i].alignment();
4289 size_t insn_size = insns[i].size();
4290 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4291 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4292 switch (insns[i].type())
b569affa
DK
4293 {
4294 case Insn_template::THUMB16_TYPE:
089d69dc 4295 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4296 if (i == 0)
4297 this->entry_in_thumb_mode_ = true;
4298 break;
4299
4300 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4301 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4302 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4303 if (i == 0)
4304 this->entry_in_thumb_mode_ = true;
4305 break;
4306
4307 case Insn_template::ARM_TYPE:
4308 // Handle cases where the target is encoded within the
4309 // instruction.
2ea97941
ILT
4310 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4311 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4312 break;
4313
4314 case Insn_template::DATA_TYPE:
4315 // Entry point cannot be data.
4316 gold_assert(i != 0);
2ea97941 4317 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4318 break;
4319
4320 default:
4321 gold_unreachable();
4322 }
2ea97941 4323 offset += insn_size;
b569affa 4324 }
2ea97941 4325 this->size_ = offset;
b569affa
DK
4326}
4327
bb0d3eb0
DK
4328// Stub methods.
4329
7296d933 4330// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4331
4332template<bool big_endian>
4333void inline
4334Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4335{
4336 const Stub_template* stub_template = this->stub_template();
4337 const Insn_template* insns = stub_template->insns();
4338
4339 // FIXME: We do not handle BE8 encoding yet.
4340 unsigned char* pov = view;
4341 for (size_t i = 0; i < stub_template->insn_count(); i++)
4342 {
4343 switch (insns[i].type())
4344 {
4345 case Insn_template::THUMB16_TYPE:
4346 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4347 break;
4348 case Insn_template::THUMB16_SPECIAL_TYPE:
4349 elfcpp::Swap<16, big_endian>::writeval(
4350 pov,
4351 this->thumb16_special(i));
4352 break;
4353 case Insn_template::THUMB32_TYPE:
4354 {
4355 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4356 uint32_t lo = insns[i].data() & 0xffff;
4357 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4358 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4359 }
4360 break;
4361 case Insn_template::ARM_TYPE:
4362 case Insn_template::DATA_TYPE:
4363 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4364 break;
4365 default:
4366 gold_unreachable();
4367 }
4368 pov += insns[i].size();
4369 }
4370 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4371}
4372
b569affa
DK
4373// Reloc_stub::Key methods.
4374
4375// Dump a Key as a string for debugging.
4376
4377std::string
4378Reloc_stub::Key::name() const
4379{
4380 if (this->r_sym_ == invalid_index)
4381 {
4382 // Global symbol key name
4383 // <stub-type>:<symbol name>:<addend>.
4384 const std::string sym_name = this->u_.symbol->name();
4385 // We need to print two hex number and two colons. So just add 100 bytes
4386 // to the symbol name size.
4387 size_t len = sym_name.size() + 100;
4388 char* buffer = new char[len];
4389 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4390 sym_name.c_str(), this->addend_);
4391 gold_assert(c > 0 && c < static_cast<int>(len));
4392 delete[] buffer;
4393 return std::string(buffer);
4394 }
4395 else
4396 {
4397 // local symbol key name
4398 // <stub-type>:<object>:<r_sym>:<addend>.
4399 const size_t len = 200;
4400 char buffer[len];
4401 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4402 this->u_.relobj, this->r_sym_, this->addend_);
4403 gold_assert(c > 0 && c < static_cast<int>(len));
4404 return std::string(buffer);
4405 }
4406}
4407
4408// Reloc_stub methods.
4409
4410// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4411// LOCATION to DESTINATION.
4412// This code is based on the arm_type_of_stub function in
9b547ce6 4413// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4414// class simple.
4415
4416Stub_type
4417Reloc_stub::stub_type_for_reloc(
4418 unsigned int r_type,
4419 Arm_address location,
4420 Arm_address destination,
4421 bool target_is_thumb)
4422{
4423 Stub_type stub_type = arm_stub_none;
4424
4425 // This is a bit ugly but we want to avoid using a templated class for
4426 // big and little endianities.
4427 bool may_use_blx;
4428 bool should_force_pic_veneer;
4429 bool thumb2;
4430 bool thumb_only;
4431 if (parameters->target().is_big_endian())
4432 {
43d12afe 4433 const Target_arm<true>* big_endian_target =
b569affa 4434 Target_arm<true>::default_target();
cd6eab1c 4435 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4436 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4437 thumb2 = big_endian_target->using_thumb2();
4438 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4439 }
4440 else
4441 {
43d12afe 4442 const Target_arm<false>* little_endian_target =
b569affa 4443 Target_arm<false>::default_target();
cd6eab1c 4444 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4445 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4446 thumb2 = little_endian_target->using_thumb2();
4447 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4448 }
4449
a2c7281b 4450 int64_t branch_offset;
90cff06f
DK
4451 bool output_is_position_independent =
4452 parameters->options().output_is_position_independent();
b569affa
DK
4453 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4454 {
a2c7281b
DK
4455 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4456 // base address (instruction address + 4).
4457 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
bef2b434 4458 destination = Bits<32>::bit_select32(destination, location, 0x2);
a2c7281b
DK
4459 branch_offset = static_cast<int64_t>(destination) - location;
4460
b569affa
DK
4461 // Handle cases where:
4462 // - this call goes too far (different Thumb/Thumb2 max
4463 // distance)
4464 // - it's a Thumb->Arm call and blx is not available, or it's a
4465 // Thumb->Arm branch (not bl). A stub is needed in this case.
4466 if ((!thumb2
4467 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4468 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4469 || (thumb2
4470 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4471 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4472 || ((!target_is_thumb)
4473 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4474 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4475 {
4476 if (target_is_thumb)
4477 {
4478 // Thumb to thumb.
4479 if (!thumb_only)
4480 {
90cff06f 4481 stub_type = (output_is_position_independent
51938283 4482 || should_force_pic_veneer)
b569affa
DK
4483 // PIC stubs.
4484 ? ((may_use_blx
4485 && (r_type == elfcpp::R_ARM_THM_CALL))
4486 // V5T and above. Stub starts with ARM code, so
4487 // we must be able to switch mode before
4488 // reaching it, which is only possible for 'bl'
4489 // (ie R_ARM_THM_CALL relocation).
4490 ? arm_stub_long_branch_any_thumb_pic
4491 // On V4T, use Thumb code only.
4492 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4493
4494 // non-PIC stubs.
4495 : ((may_use_blx
4496 && (r_type == elfcpp::R_ARM_THM_CALL))
4497 ? arm_stub_long_branch_any_any // V5T and above.
4498 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4499 }
4500 else
4501 {
90cff06f 4502 stub_type = (output_is_position_independent
51938283 4503 || should_force_pic_veneer)
b569affa
DK
4504 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4505 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4506 }
4507 }
4508 else
4509 {
4510 // Thumb to arm.
4511
4512 // FIXME: We should check that the input section is from an
4513 // object that has interwork enabled.
4514
90cff06f 4515 stub_type = (output_is_position_independent
b569affa
DK
4516 || should_force_pic_veneer)
4517 // PIC stubs.
4518 ? ((may_use_blx
4519 && (r_type == elfcpp::R_ARM_THM_CALL))
4520 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4521 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4522
4523 // non-PIC stubs.
4524 : ((may_use_blx
4525 && (r_type == elfcpp::R_ARM_THM_CALL))
4526 ? arm_stub_long_branch_any_any // V5T and above.
4527 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4528
4529 // Handle v4t short branches.
4530 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4531 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4532 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4533 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4534 }
4535 }
4536 }
4537 else if (r_type == elfcpp::R_ARM_CALL
4538 || r_type == elfcpp::R_ARM_JUMP24
4539 || r_type == elfcpp::R_ARM_PLT32)
4540 {
a2c7281b 4541 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4542 if (target_is_thumb)
4543 {
4544 // Arm to thumb.
4545
4546 // FIXME: We should check that the input section is from an
4547 // object that has interwork enabled.
4548
4549 // We have an extra 2-bytes reach because of
4550 // the mode change (bit 24 (H) of BLX encoding).
4551 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4552 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4553 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4554 || (r_type == elfcpp::R_ARM_JUMP24)
4555 || (r_type == elfcpp::R_ARM_PLT32))
4556 {
90cff06f 4557 stub_type = (output_is_position_independent
b569affa
DK
4558 || should_force_pic_veneer)
4559 // PIC stubs.
4560 ? (may_use_blx
4561 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4562 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4563
4564 // non-PIC stubs.
4565 : (may_use_blx
4566 ? arm_stub_long_branch_any_any // V5T and above.
4567 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4568 }
4569 }
4570 else
4571 {
4572 // Arm to arm.
4573 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4574 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4575 {
90cff06f 4576 stub_type = (output_is_position_independent
b569affa
DK
4577 || should_force_pic_veneer)
4578 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4579 : arm_stub_long_branch_any_any; /// non-PIC.
4580 }
4581 }
4582 }
4583
4584 return stub_type;
4585}
4586
bb0d3eb0 4587// Cortex_a8_stub methods.
b569affa 4588
bb0d3eb0
DK
4589// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4590// I is the position of the instruction template in the stub template.
b569affa 4591
bb0d3eb0
DK
4592uint16_t
4593Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4594{
bb0d3eb0
DK
4595 // The only use of this is to copy condition code from a conditional
4596 // branch being worked around to the corresponding conditional branch in
4597 // to the stub.
4598 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4599 && i == 0);
4600 uint16_t data = this->stub_template()->insns()[i].data();
4601 gold_assert((data & 0xff00U) == 0xd000U);
4602 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4603 return data;
b569affa
DK
4604}
4605
4606// Stub_factory methods.
4607
4608Stub_factory::Stub_factory()
4609{
4610 // The instruction template sequences are declared as static
4611 // objects and initialized first time the constructor runs.
4612
4613 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4614 // to reach the stub if necessary.
4615 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4616 {
4617 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4618 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4619 // dcd R_ARM_ABS32(X)
4620 };
4621
4622 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4623 // available.
4624 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4625 {
4626 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4627 Insn_template::arm_insn(0xe12fff1c), // bx ip
4628 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4629 // dcd R_ARM_ABS32(X)
4630 };
4631
4632 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4633 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4634 {
4635 Insn_template::thumb16_insn(0xb401), // push {r0}
4636 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4637 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4638 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4639 Insn_template::thumb16_insn(0x4760), // bx ip
4640 Insn_template::thumb16_insn(0xbf00), // nop
4641 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4642 // dcd R_ARM_ABS32(X)
4643 };
4644
4645 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4646 // allowed.
4647 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4648 {
4649 Insn_template::thumb16_insn(0x4778), // bx pc
4650 Insn_template::thumb16_insn(0x46c0), // nop
4651 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4652 Insn_template::arm_insn(0xe12fff1c), // bx ip
4653 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4654 // dcd R_ARM_ABS32(X)
4655 };
4656
4657 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4658 // available.
4659 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4660 {
4661 Insn_template::thumb16_insn(0x4778), // bx pc
4662 Insn_template::thumb16_insn(0x46c0), // nop
4663 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4664 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4665 // dcd R_ARM_ABS32(X)
4666 };
4667
4668 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4669 // one, when the destination is close enough.
4670 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4671 {
4672 Insn_template::thumb16_insn(0x4778), // bx pc
4673 Insn_template::thumb16_insn(0x46c0), // nop
4674 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4675 };
4676
4677 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4678 // blx to reach the stub if necessary.
4679 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4680 {
4681 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4682 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4683 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4684 // dcd R_ARM_REL32(X-4)
4685 };
4686
4687 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4688 // blx to reach the stub if necessary. We can not add into pc;
4689 // it is not guaranteed to mode switch (different in ARMv6 and
4690 // ARMv7).
4691 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4692 {
4693 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4694 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4695 Insn_template::arm_insn(0xe12fff1c), // bx ip
4696 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4697 // dcd R_ARM_REL32(X)
4698 };
4699
4700 // V4T ARM -> ARM long branch stub, PIC.
4701 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4702 {
4703 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4704 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4705 Insn_template::arm_insn(0xe12fff1c), // bx ip
4706 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4707 // dcd R_ARM_REL32(X)
4708 };
4709
4710 // V4T Thumb -> ARM long branch stub, PIC.
4711 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4712 {
4713 Insn_template::thumb16_insn(0x4778), // bx pc
4714 Insn_template::thumb16_insn(0x46c0), // nop
4715 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4716 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4717 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4718 // dcd R_ARM_REL32(X)
4719 };
4720
4721 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4722 // architectures.
4723 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4724 {
4725 Insn_template::thumb16_insn(0xb401), // push {r0}
4726 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4727 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4728 Insn_template::thumb16_insn(0x4484), // add ip, r0
4729 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4730 Insn_template::thumb16_insn(0x4760), // bx ip
4731 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4732 // dcd R_ARM_REL32(X)
4733 };
4734
4735 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4736 // allowed.
4737 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4738 {
4739 Insn_template::thumb16_insn(0x4778), // bx pc
4740 Insn_template::thumb16_insn(0x46c0), // nop
4741 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4742 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4743 Insn_template::arm_insn(0xe12fff1c), // bx ip
4744 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4745 // dcd R_ARM_REL32(X)
4746 };
4747
4748 // Cortex-A8 erratum-workaround stubs.
4749
4750 // Stub used for conditional branches (which may be beyond +/-1MB away,
4751 // so we can't use a conditional branch to reach this stub).
4752
4753 // original code:
4754 //
4755 // b<cond> X
4756 // after:
4757 //
4758 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4759 {
4760 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4761 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4762 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4763 // b.w X
4764 };
4765
4766 // Stub used for b.w and bl.w instructions.
4767
4768 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4769 {
4770 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4771 };
4772
4773 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4774 {
4775 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4776 };
4777
4778 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4779 // instruction (which switches to ARM mode) to point to this stub. Jump to
4780 // the real destination using an ARM-mode branch.
bb0d3eb0 4781 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4782 {
4783 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4784 };
4785
a2162063
ILT
4786 // Stub used to provide an interworking for R_ARM_V4BX relocation
4787 // (bx r[n] instruction).
4788 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4789 {
4790 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4791 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4792 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4793 };
4794
b569affa
DK
4795 // Fill in the stub template look-up table. Stub templates are constructed
4796 // per instance of Stub_factory for fast look-up without locking
4797 // in a thread-enabled environment.
4798
4799 this->stub_templates_[arm_stub_none] =
4800 new Stub_template(arm_stub_none, NULL, 0);
4801
4802#define DEF_STUB(x) \
4803 do \
4804 { \
4805 size_t array_size \
4806 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4807 Stub_type type = arm_stub_##x; \
4808 this->stub_templates_[type] = \
4809 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4810 } \
4811 while (0);
4812
4813 DEF_STUBS
4814#undef DEF_STUB
4815}
4816
56ee5e00
DK
4817// Stub_table methods.
4818
9b547ce6 4819// Remove all Cortex-A8 stub.
56ee5e00
DK
4820
4821template<bool big_endian>
4822void
2fb7225c
DK
4823Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4824{
4825 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4826 p != this->cortex_a8_stubs_.end();
4827 ++p)
4828 delete p->second;
4829 this->cortex_a8_stubs_.clear();
4830}
4831
4832// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4833
4834template<bool big_endian>
4835void
4836Stub_table<big_endian>::relocate_stub(
4837 Stub* stub,
4838 const Relocate_info<32, big_endian>* relinfo,
4839 Target_arm<big_endian>* arm_target,
4840 Output_section* output_section,
4841 unsigned char* view,
4842 Arm_address address,
4843 section_size_type view_size)
56ee5e00 4844{
2ea97941 4845 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4846 if (stub_template->reloc_count() != 0)
4847 {
4848 // Adjust view to cover the stub only.
4849 section_size_type offset = stub->offset();
4850 section_size_type stub_size = stub_template->size();
4851 gold_assert(offset + stub_size <= view_size);
4852
4853 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4854 address + offset, stub_size);
4855 }
56ee5e00
DK
4856}
4857
2fb7225c
DK
4858// Relocate all stubs in this stub table.
4859
56ee5e00
DK
4860template<bool big_endian>
4861void
4862Stub_table<big_endian>::relocate_stubs(
4863 const Relocate_info<32, big_endian>* relinfo,
4864 Target_arm<big_endian>* arm_target,
2ea97941 4865 Output_section* output_section,
56ee5e00 4866 unsigned char* view,
2ea97941 4867 Arm_address address,
56ee5e00
DK
4868 section_size_type view_size)
4869{
4870 // If we are passed a view bigger than the stub table's. we need to
4871 // adjust the view.
2ea97941 4872 gold_assert(address == this->address()
56ee5e00
DK
4873 && (view_size
4874 == static_cast<section_size_type>(this->data_size())));
4875
2fb7225c
DK
4876 // Relocate all relocation stubs.
4877 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4878 p != this->reloc_stubs_.end();
4879 ++p)
4880 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4881 address, view_size);
4882
4883 // Relocate all Cortex-A8 stubs.
4884 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4885 p != this->cortex_a8_stubs_.end();
4886 ++p)
4887 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4888 address, view_size);
a2162063
ILT
4889
4890 // Relocate all ARM V4BX stubs.
4891 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4892 p != this->arm_v4bx_stubs_.end();
4893 ++p)
4894 {
4895 if (*p != NULL)
4896 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4897 address, view_size);
4898 }
2fb7225c
DK
4899}
4900
4901// Write out the stubs to file.
4902
4903template<bool big_endian>
4904void
4905Stub_table<big_endian>::do_write(Output_file* of)
4906{
4907 off_t offset = this->offset();
4908 const section_size_type oview_size =
4909 convert_to_section_size_type(this->data_size());
4910 unsigned char* const oview = of->get_output_view(offset, oview_size);
4911
4912 // Write relocation stubs.
56ee5e00
DK
4913 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4914 p != this->reloc_stubs_.end();
4915 ++p)
4916 {
4917 Reloc_stub* stub = p->second;
2fb7225c
DK
4918 Arm_address address = this->address() + stub->offset();
4919 gold_assert(address
4920 == align_address(address,
4921 stub->stub_template()->alignment()));
4922 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4923 big_endian);
56ee5e00 4924 }
2fb7225c
DK
4925
4926 // Write Cortex-A8 stubs.
4927 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4928 p != this->cortex_a8_stubs_.end();
4929 ++p)
4930 {
4931 Cortex_a8_stub* stub = p->second;
4932 Arm_address address = this->address() + stub->offset();
4933 gold_assert(address
4934 == align_address(address,
4935 stub->stub_template()->alignment()));
4936 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4937 big_endian);
4938 }
4939
a2162063
ILT
4940 // Write ARM V4BX relocation stubs.
4941 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4942 p != this->arm_v4bx_stubs_.end();
4943 ++p)
4944 {
4945 if (*p == NULL)
4946 continue;
4947
4948 Arm_address address = this->address() + (*p)->offset();
4949 gold_assert(address
4950 == align_address(address,
4951 (*p)->stub_template()->alignment()));
4952 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4953 big_endian);
4954 }
4955
2fb7225c 4956 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4957}
4958
2fb7225c
DK
4959// Update the data size and address alignment of the stub table at the end
4960// of a relaxation pass. Return true if either the data size or the
4961// alignment changed in this relaxation pass.
4962
4963template<bool big_endian>
4964bool
4965Stub_table<big_endian>::update_data_size_and_addralign()
4966{
2fb7225c 4967 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4968 off_t size = this->reloc_stubs_size_;
4969 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4970
4971 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4972 p != this->cortex_a8_stubs_.end();
4973 ++p)
4974 {
4975 const Stub_template* stub_template = p->second->stub_template();
4976 addralign = std::max(addralign, stub_template->alignment());
4977 size = (align_address(size, stub_template->alignment())
4978 + stub_template->size());
4979 }
4980
a2162063
ILT
4981 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4982 p != this->arm_v4bx_stubs_.end();
4983 ++p)
4984 {
4985 if (*p == NULL)
4986 continue;
4987
4988 const Stub_template* stub_template = (*p)->stub_template();
4989 addralign = std::max(addralign, stub_template->alignment());
4990 size = (align_address(size, stub_template->alignment())
4991 + stub_template->size());
4992 }
4993
2fb7225c
DK
4994 // Check if either data size or alignment changed in this pass.
4995 // Update prev_data_size_ and prev_addralign_. These will be used
4996 // as the current data size and address alignment for the next pass.
4997 bool changed = size != this->prev_data_size_;
4998 this->prev_data_size_ = size;
4999
5000 if (addralign != this->prev_addralign_)
5001 changed = true;
5002 this->prev_addralign_ = addralign;
5003
5004 return changed;
5005}
5006
5007// Finalize the stubs. This sets the offsets of the stubs within the stub
5008// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5009
5010template<bool big_endian>
5011void
2fb7225c 5012Stub_table<big_endian>::finalize_stubs()
56ee5e00 5013{
d099120c 5014 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5015 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5016 p != this->cortex_a8_stubs_.end();
5017 ++p)
5018 {
5019 Cortex_a8_stub* stub = p->second;
5020 const Stub_template* stub_template = stub->stub_template();
5021 uint64_t stub_addralign = stub_template->alignment();
5022 off = align_address(off, stub_addralign);
5023 stub->set_offset(off);
5024 off += stub_template->size();
5025
5026 // Mark input section so that we can determine later if a code section
5027 // needs the Cortex-A8 workaround quickly.
5028 Arm_relobj<big_endian>* arm_relobj =
5029 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5030 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5031 }
5032
a2162063
ILT
5033 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5034 p != this->arm_v4bx_stubs_.end();
5035 ++p)
5036 {
5037 if (*p == NULL)
5038 continue;
5039
5040 const Stub_template* stub_template = (*p)->stub_template();
5041 uint64_t stub_addralign = stub_template->alignment();
5042 off = align_address(off, stub_addralign);
5043 (*p)->set_offset(off);
5044 off += stub_template->size();
5045 }
5046
2fb7225c 5047 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5048}
5049
2fb7225c
DK
5050// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5051// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5052// of the address range seen by the linker.
56ee5e00
DK
5053
5054template<bool big_endian>
5055void
2fb7225c
DK
5056Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5057 Target_arm<big_endian>* arm_target,
5058 unsigned char* view,
5059 Arm_address view_address,
5060 section_size_type view_size)
56ee5e00 5061{
2fb7225c
DK
5062 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5063 for (Cortex_a8_stub_list::const_iterator p =
5064 this->cortex_a8_stubs_.lower_bound(view_address);
5065 ((p != this->cortex_a8_stubs_.end())
5066 && (p->first < (view_address + view_size)));
5067 ++p)
56ee5e00 5068 {
2fb7225c
DK
5069 // We do not store the THUMB bit in the LSB of either the branch address
5070 // or the stub offset. There is no need to strip the LSB.
5071 Arm_address branch_address = p->first;
5072 const Cortex_a8_stub* stub = p->second;
5073 Arm_address stub_address = this->address() + stub->offset();
5074
5075 // Offset of the branch instruction relative to this view.
5076 section_size_type offset =
5077 convert_to_section_size_type(branch_address - view_address);
5078 gold_assert((offset + 4) <= view_size);
5079
5080 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5081 view + offset, branch_address);
5082 }
56ee5e00
DK
5083}
5084
10ad9fe5
DK
5085// Arm_input_section methods.
5086
5087// Initialize an Arm_input_section.
5088
5089template<bool big_endian>
5090void
5091Arm_input_section<big_endian>::init()
5092{
2ea97941
ILT
5093 Relobj* relobj = this->relobj();
5094 unsigned int shndx = this->shndx();
10ad9fe5 5095
f625ae50
DK
5096 // We have to cache original size, alignment and contents to avoid locking
5097 // the original file.
6625d24e
DK
5098 this->original_addralign_ =
5099 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5100
5101 // This is not efficient but we expect only a small number of relaxed
5102 // input sections for stubs.
5103 section_size_type section_size;
5104 const unsigned char* section_contents =
5105 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5106 this->original_size_ =
5107 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5108
f625ae50
DK
5109 gold_assert(this->original_contents_ == NULL);
5110 this->original_contents_ = new unsigned char[section_size];
5111 memcpy(this->original_contents_, section_contents, section_size);
5112
10ad9fe5
DK
5113 // We want to make this look like the original input section after
5114 // output sections are finalized.
2ea97941
ILT
5115 Output_section* os = relobj->output_section(shndx);
5116 off_t offset = relobj->output_section_offset(shndx);
5117 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5118 this->set_address(os->address() + offset);
5119 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5120
5121 this->set_current_data_size(this->original_size_);
5122 this->finalize_data_size();
5123}
5124
5125template<bool big_endian>
5126void
5127Arm_input_section<big_endian>::do_write(Output_file* of)
5128{
5129 // We have to write out the original section content.
f625ae50
DK
5130 gold_assert(this->original_contents_ != NULL);
5131 of->write(this->offset(), this->original_contents_,
5132 this->original_size_);
10ad9fe5
DK
5133
5134 // If this owns a stub table and it is not empty, write it.
5135 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5136 this->stub_table_->write(of);
5137}
5138
5139// Finalize data size.
5140
5141template<bool big_endian>
5142void
5143Arm_input_section<big_endian>::set_final_data_size()
5144{
153e7da4
DK
5145 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5146
10ad9fe5
DK
5147 if (this->is_stub_table_owner())
5148 {
6625d24e 5149 this->stub_table_->finalize_data_size();
153e7da4 5150 off = align_address(off, this->stub_table_->addralign());
153e7da4 5151 off += this->stub_table_->data_size();
10ad9fe5 5152 }
153e7da4 5153 this->set_data_size(off);
10ad9fe5
DK
5154}
5155
5156// Reset address and file offset.
5157
5158template<bool big_endian>
5159void
5160Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5161{
5162 // Size of the original input section contents.
5163 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5164
5165 // If this is a stub table owner, account for the stub table size.
5166 if (this->is_stub_table_owner())
5167 {
2ea97941 5168 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5169
5170 // Reset the stub table's address and file offset. The
5171 // current data size for child will be updated after that.
5172 stub_table_->reset_address_and_file_offset();
5173 off = align_address(off, stub_table_->addralign());
2ea97941 5174 off += stub_table->current_data_size();
10ad9fe5
DK
5175 }
5176
5177 this->set_current_data_size(off);
5178}
5179
af2cdeae
DK
5180// Arm_exidx_cantunwind methods.
5181
7296d933 5182// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5183
5184template<bool big_endian>
5185void
5186Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5187{
5188 off_t offset = this->offset();
5189 const section_size_type oview_size = 8;
5190 unsigned char* const oview = of->get_output_view(offset, oview_size);
5191
f6cccc2c 5192 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
af2cdeae
DK
5193
5194 Output_section* os = this->relobj_->output_section(this->shndx_);
5195 gold_assert(os != NULL);
5196
5197 Arm_relobj<big_endian>* arm_relobj =
5198 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5199 Arm_address output_offset =
5200 arm_relobj->get_output_section_offset(this->shndx_);
5201 Arm_address section_start;
f625ae50
DK
5202 section_size_type section_size;
5203
5204 // Find out the end of the text section referred by this.
7296d933 5205 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5206 {
5207 section_start = os->address() + output_offset;
5208 const Arm_exidx_input_section* exidx_input_section =
5209 arm_relobj->exidx_input_section_by_link(this->shndx_);
5210 gold_assert(exidx_input_section != NULL);
5211 section_size =
5212 convert_to_section_size_type(exidx_input_section->text_size());
5213 }
af2cdeae
DK
5214 else
5215 {
5216 // Currently this only happens for a relaxed section.
5217 const Output_relaxed_input_section* poris =
5218 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5219 gold_assert(poris != NULL);
5220 section_start = poris->address();
f625ae50 5221 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5222 }
5223
5224 // We always append this to the end of an EXIDX section.
f625ae50 5225 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5226
5227 // Write out the entry. The first word either points to the beginning
5228 // or after the end of a text section. The second word is the special
5229 // EXIDX_CANTUNWIND value.
e7eca48c 5230 uint32_t prel31_offset = output_address - this->address();
bef2b434 5231 if (Bits<31>::has_overflow32(offset))
e7eca48c 5232 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5233 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5234 prel31_offset & 0x7fffffffU);
5235 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5236 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5237
5238 of->write_output_view(this->offset(), oview_size, oview);
5239}
5240
5241// Arm_exidx_merged_section methods.
5242
5243// Constructor for Arm_exidx_merged_section.
5244// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5245// SECTION_OFFSET_MAP points to a section offset map describing how
5246// parts of the input section are mapped to output. DELETED_BYTES is
5247// the number of bytes deleted from the EXIDX input section.
5248
5249Arm_exidx_merged_section::Arm_exidx_merged_section(
5250 const Arm_exidx_input_section& exidx_input_section,
5251 const Arm_exidx_section_offset_map& section_offset_map,
5252 uint32_t deleted_bytes)
5253 : Output_relaxed_input_section(exidx_input_section.relobj(),
5254 exidx_input_section.shndx(),
5255 exidx_input_section.addralign()),
5256 exidx_input_section_(exidx_input_section),
5257 section_offset_map_(section_offset_map)
5258{
f625ae50
DK
5259 // If we retain or discard the whole EXIDX input section, we would
5260 // not be here.
5261 gold_assert(deleted_bytes != 0
5262 && deleted_bytes != this->exidx_input_section_.size());
5263
af2cdeae 5264 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5265 uint32_t size = exidx_input_section.size() - deleted_bytes;
5266 this->set_data_size(size);
af2cdeae 5267 this->fix_data_size();
f625ae50
DK
5268
5269 // Allocate buffer for section contents and build contents.
5270 this->section_contents_ = new unsigned char[size];
5271}
5272
5273// Build the contents of a merged EXIDX output section.
5274
5275void
5276Arm_exidx_merged_section::build_contents(
5277 const unsigned char* original_contents,
5278 section_size_type original_size)
5279{
5280 // Go over spans of input offsets and write only those that are not
5281 // discarded.
5282 section_offset_type in_start = 0;
5283 section_offset_type out_start = 0;
5284 section_offset_type in_max =
5285 convert_types<section_offset_type>(original_size);
5286 section_offset_type out_max =
5287 convert_types<section_offset_type>(this->data_size());
5288 for (Arm_exidx_section_offset_map::const_iterator p =
5289 this->section_offset_map_.begin();
5290 p != this->section_offset_map_.end();
5291 ++p)
5292 {
5293 section_offset_type in_end = p->first;
5294 gold_assert(in_end >= in_start);
5295 section_offset_type out_end = p->second;
5296 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5297 if (out_end != -1)
5298 {
5299 size_t out_chunk_size =
5300 convert_types<size_t>(out_end - out_start + 1);
5301
5302 gold_assert(out_chunk_size == in_chunk_size
5303 && in_end < in_max && out_end < out_max);
5304
5305 memcpy(this->section_contents_ + out_start,
5306 original_contents + in_start,
5307 out_chunk_size);
5308 out_start += out_chunk_size;
5309 }
5310 in_start += in_chunk_size;
5311 }
af2cdeae
DK
5312}
5313
5314// Given an input OBJECT, an input section index SHNDX within that
5315// object, and an OFFSET relative to the start of that input
5316// section, return whether or not the corresponding offset within
5317// the output section is known. If this function returns true, it
5318// sets *POUTPUT to the output offset. The value -1 indicates that
5319// this input offset is being discarded.
5320
5321bool
5322Arm_exidx_merged_section::do_output_offset(
5323 const Relobj* relobj,
5324 unsigned int shndx,
5325 section_offset_type offset,
5326 section_offset_type* poutput) const
5327{
5328 // We only handle offsets for the original EXIDX input section.
5329 if (relobj != this->exidx_input_section_.relobj()
5330 || shndx != this->exidx_input_section_.shndx())
5331 return false;
5332
c7f3c371
DK
5333 section_offset_type section_size =
5334 convert_types<section_offset_type>(this->exidx_input_section_.size());
5335 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5336 // Input offset is out of valid range.
5337 *poutput = -1;
5338 else
5339 {
5340 // We need to look up the section offset map to determine the output
5341 // offset. Find the reference point in map that is first offset
5342 // bigger than or equal to this offset.
5343 Arm_exidx_section_offset_map::const_iterator p =
5344 this->section_offset_map_.lower_bound(offset);
5345
5346 // The section offset maps are build such that this should not happen if
5347 // input offset is in the valid range.
5348 gold_assert(p != this->section_offset_map_.end());
5349
5350 // We need to check if this is dropped.
5351 section_offset_type ref = p->first;
5352 section_offset_type mapped_ref = p->second;
5353
5354 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5355 // Offset is present in output.
5356 *poutput = mapped_ref + (offset - ref);
5357 else
5358 // Offset is discarded owing to EXIDX entry merging.
5359 *poutput = -1;
5360 }
5361
5362 return true;
5363}
5364
5365// Write this to output file OF.
5366
5367void
5368Arm_exidx_merged_section::do_write(Output_file* of)
5369{
af2cdeae
DK
5370 off_t offset = this->offset();
5371 const section_size_type oview_size = this->data_size();
5372 unsigned char* const oview = of->get_output_view(offset, oview_size);
5373
5374 Output_section* os = this->relobj()->output_section(this->shndx());
5375 gold_assert(os != NULL);
5376
f625ae50 5377 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5378 of->write_output_view(this->offset(), oview_size, oview);
5379}
5380
80d0d023
DK
5381// Arm_exidx_fixup methods.
5382
5383// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5384// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5385// points to the end of the last seen EXIDX section.
5386
5387void
5388Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5389{
5390 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5391 && this->last_input_section_ != NULL)
5392 {
5393 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5394 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5395 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5396 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5397 this->exidx_output_section_->add_output_section_data(cantunwind);
5398 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5399 }
5400}
5401
5402// Process an EXIDX section entry in input. Return whether this entry
5403// can be deleted in the output. SECOND_WORD in the second word of the
5404// EXIDX entry.
5405
5406bool
5407Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5408{
5409 bool delete_entry;
5410 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5411 {
5412 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5413 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5414 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5415 }
5416 else if ((second_word & 0x80000000) != 0)
5417 {
5418 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5419 delete_entry = (merge_exidx_entries_
5420 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5421 && this->last_inlined_entry_ == second_word);
5422 this->last_unwind_type_ = UT_INLINED_ENTRY;
5423 this->last_inlined_entry_ = second_word;
5424 }
5425 else
5426 {
5427 // Normal table entry. In theory we could merge these too,
5428 // but duplicate entries are likely to be much less common.
5429 delete_entry = false;
5430 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5431 }
5432 return delete_entry;
5433}
5434
5435// Update the current section offset map during EXIDX section fix-up.
5436// If there is no map, create one. INPUT_OFFSET is the offset of a
5437// reference point, DELETED_BYTES is the number of deleted by in the
5438// section so far. If DELETE_ENTRY is true, the reference point and
5439// all offsets after the previous reference point are discarded.
5440
5441void
5442Arm_exidx_fixup::update_offset_map(
5443 section_offset_type input_offset,
5444 section_size_type deleted_bytes,
5445 bool delete_entry)
5446{
5447 if (this->section_offset_map_ == NULL)
5448 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5449 section_offset_type output_offset;
5450 if (delete_entry)
5451 output_offset = Arm_exidx_input_section::invalid_offset;
5452 else
5453 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5454 (*this->section_offset_map_)[input_offset] = output_offset;
5455}
5456
5457// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5458// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5459// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5460// If some entries are merged, also store a pointer to a newly created
5461// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5462// owns the map and is responsible for releasing it after use.
80d0d023
DK
5463
5464template<bool big_endian>
5465uint32_t
5466Arm_exidx_fixup::process_exidx_section(
5467 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5468 const unsigned char* section_contents,
5469 section_size_type section_size,
80d0d023
DK
5470 Arm_exidx_section_offset_map** psection_offset_map)
5471{
5472 Relobj* relobj = exidx_input_section->relobj();
5473 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5474
5475 if ((section_size % 8) != 0)
5476 {
5477 // Something is wrong with this section. Better not touch it.
5478 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5479 relobj->name().c_str(), shndx);
5480 this->last_input_section_ = exidx_input_section;
5481 this->last_unwind_type_ = UT_NONE;
5482 return 0;
5483 }
5484
5485 uint32_t deleted_bytes = 0;
5486 bool prev_delete_entry = false;
5487 gold_assert(this->section_offset_map_ == NULL);
5488
5489 for (section_size_type i = 0; i < section_size; i += 8)
5490 {
5491 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5492 const Valtype* wv =
5493 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5494 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5495
5496 bool delete_entry = this->process_exidx_entry(second_word);
5497
5498 // Entry deletion causes changes in output offsets. We use a std::map
5499 // to record these. And entry (x, y) means input offset x
5500 // is mapped to output offset y. If y is invalid_offset, then x is
5501 // dropped in the output. Because of the way std::map::lower_bound
5502 // works, we record the last offset in a region w.r.t to keeping or
5503 // dropping. If there is no entry (x0, y0) for an input offset x0,
5504 // the output offset y0 of it is determined by the output offset y1 of
5505 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5506 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5507 // y0 is also -1.
5508 if (delete_entry != prev_delete_entry && i != 0)
5509 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5510
5511 // Update total deleted bytes for this entry.
5512 if (delete_entry)
5513 deleted_bytes += 8;
5514
5515 prev_delete_entry = delete_entry;
5516 }
5517
5518 // If section offset map is not NULL, make an entry for the end of
5519 // section.
5520 if (this->section_offset_map_ != NULL)
5521 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5522
5523 *psection_offset_map = this->section_offset_map_;
5524 this->section_offset_map_ = NULL;
5525 this->last_input_section_ = exidx_input_section;
5526
546c7457
DK
5527 // Set the first output text section so that we can link the EXIDX output
5528 // section to it. Ignore any EXIDX input section that is completely merged.
5529 if (this->first_output_text_section_ == NULL
5530 && deleted_bytes != section_size)
5531 {
5532 unsigned int link = exidx_input_section->link();
5533 Output_section* os = relobj->output_section(link);
5534 gold_assert(os != NULL);
5535 this->first_output_text_section_ = os;
5536 }
5537
80d0d023
DK
5538 return deleted_bytes;
5539}
5540
07f508a2
DK
5541// Arm_output_section methods.
5542
5543// Create a stub group for input sections from BEGIN to END. OWNER
5544// points to the input section to be the owner a new stub table.
5545
5546template<bool big_endian>
5547void
5548Arm_output_section<big_endian>::create_stub_group(
5549 Input_section_list::const_iterator begin,
5550 Input_section_list::const_iterator end,
5551 Input_section_list::const_iterator owner,
5552 Target_arm<big_endian>* target,
f625ae50
DK
5553 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5554 const Task* task)
07f508a2 5555{
2b328d4e
DK
5556 // We use a different kind of relaxed section in an EXIDX section.
5557 // The static casting from Output_relaxed_input_section to
5558 // Arm_input_section is invalid in an EXIDX section. We are okay
5559 // because we should not be calling this for an EXIDX section.
5560 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5561
07f508a2
DK
5562 // Currently we convert ordinary input sections into relaxed sections only
5563 // at this point but we may want to support creating relaxed input section
5564 // very early. So we check here to see if owner is already a relaxed
5565 // section.
5566
5567 Arm_input_section<big_endian>* arm_input_section;
5568 if (owner->is_relaxed_input_section())
5569 {
5570 arm_input_section =
5571 Arm_input_section<big_endian>::as_arm_input_section(
5572 owner->relaxed_input_section());
5573 }
5574 else
5575 {
5576 gold_assert(owner->is_input_section());
f625ae50
DK
5577 // Create a new relaxed input section. We need to lock the original
5578 // file.
5579 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5580 arm_input_section =
5581 target->new_arm_input_section(owner->relobj(), owner->shndx());
5582 new_relaxed_sections->push_back(arm_input_section);
5583 }
5584
5585 // Create a stub table.
2ea97941 5586 Stub_table<big_endian>* stub_table =
07f508a2
DK
5587 target->new_stub_table(arm_input_section);
5588
2ea97941 5589 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5590
5591 Input_section_list::const_iterator p = begin;
5592 Input_section_list::const_iterator prev_p;
5593
5594 // Look for input sections or relaxed input sections in [begin ... end].
5595 do
5596 {
5597 if (p->is_input_section() || p->is_relaxed_input_section())
5598 {
5599 // The stub table information for input sections live
5600 // in their objects.
5601 Arm_relobj<big_endian>* arm_relobj =
5602 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5603 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5604 }
5605 prev_p = p++;
5606 }
5607 while (prev_p != end);
5608}
5609
5610// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5611// of stub groups. We grow a stub group by adding input section until the
5612// size is just below GROUP_SIZE. The last input section will be converted
5613// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5614// input section after the stub table, effectively double the group size.
5615//
5616// This is similar to the group_sections() function in elf32-arm.c but is
5617// implemented differently.
5618
5619template<bool big_endian>
5620void
5621Arm_output_section<big_endian>::group_sections(
5622 section_size_type group_size,
5623 bool stubs_always_after_branch,
f625ae50
DK
5624 Target_arm<big_endian>* target,
5625 const Task* task)
07f508a2
DK
5626{
5627 // We only care about sections containing code.
5628 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5629 return;
5630
5631 // States for grouping.
5632 typedef enum
5633 {
5634 // No group is being built.
5635 NO_GROUP,
5636 // A group is being built but the stub table is not found yet.
5637 // We keep group a stub group until the size is just under GROUP_SIZE.
5638 // The last input section in the group will be used as the stub table.
5639 FINDING_STUB_SECTION,
5640 // A group is being built and we have already found a stub table.
5641 // We enter this state to grow a stub group by adding input section
5642 // after the stub table. This effectively doubles the group size.
5643 HAS_STUB_SECTION
5644 } State;
5645
5646 // Any newly created relaxed sections are stored here.
5647 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5648
5649 State state = NO_GROUP;
5650 section_size_type off = 0;
5651 section_size_type group_begin_offset = 0;
5652 section_size_type group_end_offset = 0;
5653 section_size_type stub_table_end_offset = 0;
5654 Input_section_list::const_iterator group_begin =
5655 this->input_sections().end();
2ea97941 5656 Input_section_list::const_iterator stub_table =
07f508a2
DK
5657 this->input_sections().end();
5658 Input_section_list::const_iterator group_end = this->input_sections().end();
5659 for (Input_section_list::const_iterator p = this->input_sections().begin();
5660 p != this->input_sections().end();
5661 ++p)
5662 {
5663 section_size_type section_begin_offset =
5664 align_address(off, p->addralign());
5665 section_size_type section_end_offset =
5666 section_begin_offset + p->data_size();
5667
9b547ce6 5668 // Check to see if we should group the previously seen sections.
e9bbb538 5669 switch (state)
07f508a2
DK
5670 {
5671 case NO_GROUP:
5672 break;
5673
5674 case FINDING_STUB_SECTION:
5675 // Adding this section makes the group larger than GROUP_SIZE.
5676 if (section_end_offset - group_begin_offset >= group_size)
5677 {
5678 if (stubs_always_after_branch)
5679 {
5680 gold_assert(group_end != this->input_sections().end());
5681 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5682 target, &new_relaxed_sections,
5683 task);
07f508a2
DK
5684 state = NO_GROUP;
5685 }
5686 else
5687 {
5688 // But wait, there's more! Input sections up to
5689 // stub_group_size bytes after the stub table can be
5690 // handled by it too.
5691 state = HAS_STUB_SECTION;
2ea97941 5692 stub_table = group_end;
07f508a2
DK
5693 stub_table_end_offset = group_end_offset;
5694 }
5695 }
5696 break;
5697
5698 case HAS_STUB_SECTION:
5699 // Adding this section makes the post stub-section group larger
5700 // than GROUP_SIZE.
5701 if (section_end_offset - stub_table_end_offset >= group_size)
5702 {
5703 gold_assert(group_end != this->input_sections().end());
2ea97941 5704 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5705 target, &new_relaxed_sections, task);
07f508a2
DK
5706 state = NO_GROUP;
5707 }
5708 break;
5709
5710 default:
5711 gold_unreachable();
5712 }
5713
5714 // If we see an input section and currently there is no group, start
f625ae50
DK
5715 // a new one. Skip any empty sections. We look at the data size
5716 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5717 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5718 && (p->data_size() != 0))
07f508a2
DK
5719 {
5720 if (state == NO_GROUP)
5721 {
5722 state = FINDING_STUB_SECTION;
5723 group_begin = p;
5724 group_begin_offset = section_begin_offset;
5725 }
5726
5727 // Keep track of the last input section seen.
5728 group_end = p;
5729 group_end_offset = section_end_offset;
5730 }
5731
5732 off = section_end_offset;
5733 }
5734
5735 // Create a stub group for any ungrouped sections.
5736 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5737 {
5738 gold_assert(group_end != this->input_sections().end());
5739 this->create_stub_group(group_begin, group_end,
5740 (state == FINDING_STUB_SECTION
5741 ? group_end
2ea97941 5742 : stub_table),
f625ae50 5743 target, &new_relaxed_sections, task);
07f508a2
DK
5744 }
5745
5746 // Convert input section into relaxed input section in a batch.
5747 if (!new_relaxed_sections.empty())
5748 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5749
5750 // Update the section offsets
5751 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5752 {
5753 Arm_relobj<big_endian>* arm_relobj =
5754 Arm_relobj<big_endian>::as_arm_relobj(
5755 new_relaxed_sections[i]->relobj());
2ea97941 5756 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5757 // Tell Arm_relobj that this input section is converted.
2ea97941 5758 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5759 }
5760}
5761
2b328d4e
DK
5762// Append non empty text sections in this to LIST in ascending
5763// order of their position in this.
5764
5765template<bool big_endian>
5766void
5767Arm_output_section<big_endian>::append_text_sections_to_list(
5768 Text_section_list* list)
5769{
2b328d4e
DK
5770 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5771
5772 for (Input_section_list::const_iterator p = this->input_sections().begin();
5773 p != this->input_sections().end();
5774 ++p)
5775 {
5776 // We only care about plain or relaxed input sections. We also
5777 // ignore any merged sections.
a60af0db 5778 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5779 list->push_back(Text_section_list::value_type(p->relobj(),
5780 p->shndx()));
5781 }
5782}
5783
5784template<bool big_endian>
5785void
5786Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5787 Layout* layout,
2b328d4e 5788 const Text_section_list& sorted_text_sections,
85fdf906 5789 Symbol_table* symtab,
f625ae50
DK
5790 bool merge_exidx_entries,
5791 const Task* task)
2b328d4e
DK
5792{
5793 // We should only do this for the EXIDX output section.
5794 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5795
5796 // We don't want the relaxation loop to undo these changes, so we discard
5797 // the current saved states and take another one after the fix-up.
5798 this->discard_states();
5799
5800 // Remove all input sections.
5801 uint64_t address = this->address();
6625d24e
DK
5802 typedef std::list<Output_section::Input_section> Input_section_list;
5803 Input_section_list input_sections;
2b328d4e
DK
5804 this->reset_address_and_file_offset();
5805 this->get_input_sections(address, std::string(""), &input_sections);
5806
5807 if (!this->input_sections().empty())
5808 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5809
5810 // Go through all the known input sections and record them.
5811 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5812 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5813 Section_id_hash> Text_to_exidx_map;
5814 Text_to_exidx_map text_to_exidx_map;
5815 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5816 p != input_sections.end();
5817 ++p)
5818 {
5819 // This should never happen. At this point, we should only see
5820 // plain EXIDX input sections.
5821 gold_assert(!p->is_relaxed_input_section());
6625d24e 5822 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5823 }
5824
85fdf906 5825 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5826
5827 // Go over the sorted text sections.
6625d24e 5828 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5829 Section_id_set processed_input_sections;
5830 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5831 p != sorted_text_sections.end();
5832 ++p)
5833 {
5834 Relobj* relobj = p->first;
5835 unsigned int shndx = p->second;
5836
5837 Arm_relobj<big_endian>* arm_relobj =
5838 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5839 const Arm_exidx_input_section* exidx_input_section =
5840 arm_relobj->exidx_input_section_by_link(shndx);
5841
131687b4
DK
5842 // If this text section has no EXIDX section or if the EXIDX section
5843 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5844 // of the last seen EXIDX section.
5845 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5846 {
5847 exidx_fixup.add_exidx_cantunwind_as_needed();
5848 continue;
5849 }
5850
5851 Relobj* exidx_relobj = exidx_input_section->relobj();
5852 unsigned int exidx_shndx = exidx_input_section->shndx();
5853 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5854 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5855 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5856 {
5857 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5858 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5859 // issue a warning instead. We assume the user knows what he
5860 // or she is doing. Otherwise, this is an error.
5861 if (layout->script_options()->saw_sections_clause())
5862 gold_warning(_("unwinding may not work because EXIDX input section"
5863 " %u of %s is not in EXIDX output section"),
5864 exidx_shndx, exidx_relobj->name().c_str());
5865 else
5866 gold_error(_("unwinding may not work because EXIDX input section"
5867 " %u of %s is not in EXIDX output section"),
5868 exidx_shndx, exidx_relobj->name().c_str());
5869
2b328d4e
DK
5870 exidx_fixup.add_exidx_cantunwind_as_needed();
5871 continue;
5872 }
5873
f625ae50
DK
5874 // We need to access the contents of the EXIDX section, lock the
5875 // object here.
5876 Task_lock_obj<Object> tl(task, exidx_relobj);
5877 section_size_type exidx_size;
5878 const unsigned char* exidx_contents =
5879 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5880
2b328d4e
DK
5881 // Fix up coverage and append input section to output data list.
5882 Arm_exidx_section_offset_map* section_offset_map = NULL;
5883 uint32_t deleted_bytes =
5884 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5885 exidx_contents,
5886 exidx_size,
2b328d4e
DK
5887 &section_offset_map);
5888
5889 if (deleted_bytes == exidx_input_section->size())
5890 {
5891 // The whole EXIDX section got merged. Remove it from output.
5892 gold_assert(section_offset_map == NULL);
5893 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5894
5895 // All local symbols defined in this input section will be dropped.
5896 // We need to adjust output local symbol count.
5897 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5898 }
5899 else if (deleted_bytes > 0)
5900 {
5901 // Some entries are merged. We need to convert this EXIDX input
5902 // section into a relaxed section.
5903 gold_assert(section_offset_map != NULL);
f625ae50 5904
2b328d4e
DK
5905 Arm_exidx_merged_section* merged_section =
5906 new Arm_exidx_merged_section(*exidx_input_section,
5907 *section_offset_map, deleted_bytes);
f625ae50
DK
5908 merged_section->build_contents(exidx_contents, exidx_size);
5909
d06fb4d1
DK
5910 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5911 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5912 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5913
5914 // All local symbols defined in discarded portions of this input
5915 // section will be dropped. We need to adjust output local symbol
5916 // count.
5917 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5918 }
5919 else
5920 {
5921 // Just add back the EXIDX input section.
5922 gold_assert(section_offset_map == NULL);
6625d24e
DK
5923 const Output_section::Input_section* pis = iter->second;
5924 gold_assert(pis->is_input_section());
5925 this->add_script_input_section(*pis);
2b328d4e
DK
5926 }
5927
5928 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5929 }
5930
5931 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5932 exidx_fixup.add_exidx_cantunwind_as_needed();
5933
5934 // Remove any known EXIDX input sections that are not processed.
6625d24e 5935 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5936 p != input_sections.end();
5937 ++p)
5938 {
5939 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5940 == processed_input_sections.end())
5941 {
131687b4
DK
5942 // We discard a known EXIDX section because its linked
5943 // text section has been folded by ICF. We also discard an
5944 // EXIDX section with error, the output does not matter in this
5945 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5946 Arm_relobj<big_endian>* arm_relobj =
5947 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5948 const Arm_exidx_input_section* exidx_input_section =
5949 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5950 gold_assert(exidx_input_section != NULL);
131687b4
DK
5951 if (!exidx_input_section->has_errors())
5952 {
5953 unsigned int text_shndx = exidx_input_section->link();
5954 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5955 }
2b328d4e 5956
04ceb17c
DK
5957 // Remove this from link. We also need to recount the
5958 // local symbols.
2b328d4e 5959 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 5960 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5961 }
5962 }
5963
546c7457
DK
5964 // Link exidx output section to the first seen output section and
5965 // set correct entry size.
5966 this->set_link_section(exidx_fixup.first_output_text_section());
5967 this->set_entsize(8);
5968
2b328d4e
DK
5969 // Make changes permanent.
5970 this->save_states();
5971 this->set_section_offsets_need_adjustment();
5972}
5973
131687b4
DK
5974// Link EXIDX output sections to text output sections.
5975
5976template<bool big_endian>
5977void
5978Arm_output_section<big_endian>::set_exidx_section_link()
5979{
5980 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5981 if (!this->input_sections().empty())
5982 {
5983 Input_section_list::const_iterator p = this->input_sections().begin();
5984 Arm_relobj<big_endian>* arm_relobj =
5985 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5986 unsigned exidx_shndx = p->shndx();
5987 const Arm_exidx_input_section* exidx_input_section =
5988 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
5989 gold_assert(exidx_input_section != NULL);
5990 unsigned int text_shndx = exidx_input_section->link();
5991 Output_section* os = arm_relobj->output_section(text_shndx);
5992 this->set_link_section(os);
5993 }
5994}
5995
8ffa3667
DK
5996// Arm_relobj methods.
5997
cf846138
DK
5998// Determine if an input section is scannable for stub processing. SHDR is
5999// the header of the section and SHNDX is the section index. OS is the output
6000// section for the input section and SYMTAB is the global symbol table used to
6001// look up ICF information.
6002
6003template<bool big_endian>
6004bool
6005Arm_relobj<big_endian>::section_is_scannable(
6006 const elfcpp::Shdr<32, big_endian>& shdr,
6007 unsigned int shndx,
6008 const Output_section* os,
ca09d69a 6009 const Symbol_table* symtab)
cf846138
DK
6010{
6011 // Skip any empty sections, unallocated sections or sections whose
6012 // type are not SHT_PROGBITS.
6013 if (shdr.get_sh_size() == 0
6014 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6015 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6016 return false;
6017
6018 // Skip any discarded or ICF'ed sections.
6019 if (os == NULL || symtab->is_section_folded(this, shndx))
6020 return false;
6021
6022 // If this requires special offset handling, check to see if it is
6023 // a relaxed section. If this is not, then it is a merged section that
6024 // we cannot handle.
6025 if (this->is_output_section_offset_invalid(shndx))
6026 {
6027 const Output_relaxed_input_section* poris =
6028 os->find_relaxed_input_section(this, shndx);
6029 if (poris == NULL)
6030 return false;
6031 }
6032
6033 return true;
6034}
6035
44272192
DK
6036// Determine if we want to scan the SHNDX-th section for relocation stubs.
6037// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6038
6039template<bool big_endian>
6040bool
6041Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6042 const elfcpp::Shdr<32, big_endian>& shdr,
6043 const Relobj::Output_sections& out_sections,
ca09d69a 6044 const Symbol_table* symtab,
2b328d4e 6045 const unsigned char* pshdrs)
44272192
DK
6046{
6047 unsigned int sh_type = shdr.get_sh_type();
6048 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6049 return false;
6050
6051 // Ignore empty section.
6052 off_t sh_size = shdr.get_sh_size();
6053 if (sh_size == 0)
6054 return false;
6055
44272192
DK
6056 // Ignore reloc section with unexpected symbol table. The
6057 // error will be reported in the final link.
6058 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6059 return false;
6060
b521dfe4
DK
6061 unsigned int reloc_size;
6062 if (sh_type == elfcpp::SHT_REL)
6063 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6064 else
6065 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6066
6067 // Ignore reloc section with unexpected entsize or uneven size.
6068 // The error will be reported in the final link.
6069 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6070 return false;
6071
cf846138
DK
6072 // Ignore reloc section with bad info. This error will be
6073 // reported in the final link.
6074 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6075 if (index >= this->shnum())
6076 return false;
6077
6078 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6079 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6080 return this->section_is_scannable(text_shdr, index,
6081 out_sections[index], symtab);
44272192
DK
6082}
6083
cb1be87e
DK
6084// Return the output address of either a plain input section or a relaxed
6085// input section. SHNDX is the section index. We define and use this
6086// instead of calling Output_section::output_address because that is slow
6087// for large output.
6088
6089template<bool big_endian>
6090Arm_address
6091Arm_relobj<big_endian>::simple_input_section_output_address(
6092 unsigned int shndx,
6093 Output_section* os)
6094{
6095 if (this->is_output_section_offset_invalid(shndx))
6096 {
6097 const Output_relaxed_input_section* poris =
6098 os->find_relaxed_input_section(this, shndx);
6099 // We do not handle merged sections here.
6100 gold_assert(poris != NULL);
6101 return poris->address();
6102 }
6103 else
6104 return os->address() + this->get_output_section_offset(shndx);
6105}
6106
44272192
DK
6107// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6108// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6109
6110template<bool big_endian>
6111bool
6112Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6113 const elfcpp::Shdr<32, big_endian>& shdr,
6114 unsigned int shndx,
6115 Output_section* os,
6116 const Symbol_table* symtab)
6117{
cf846138 6118 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6119 return false;
6120
44272192
DK
6121 // If the section does not cross any 4K-boundaries, it does not need to
6122 // be scanned.
cb1be87e 6123 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6124 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6125 return false;
6126
6127 return true;
6128}
6129
6130// Scan a section for Cortex-A8 workaround.
6131
6132template<bool big_endian>
6133void
6134Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6135 const elfcpp::Shdr<32, big_endian>& shdr,
6136 unsigned int shndx,
6137 Output_section* os,
6138 Target_arm<big_endian>* arm_target)
6139{
c8761b9a
DK
6140 // Look for the first mapping symbol in this section. It should be
6141 // at (shndx, 0).
6142 Mapping_symbol_position section_start(shndx, 0);
6143 typename Mapping_symbols_info::const_iterator p =
6144 this->mapping_symbols_info_.lower_bound(section_start);
6145
6146 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6147 // section. Issue a warning if section is marked as containing
6148 // instructions.
c8761b9a 6149 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6150 {
6151 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6152 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6153 "erratum because it has no mapping symbols."),
6154 shndx, this->name().c_str());
6155 return;
6156 }
c8761b9a 6157
cb1be87e
DK
6158 Arm_address output_address =
6159 this->simple_input_section_output_address(shndx, os);
44272192
DK
6160
6161 // Get the section contents.
6162 section_size_type input_view_size = 0;
6163 const unsigned char* input_view =
6164 this->section_contents(shndx, &input_view_size, false);
6165
6166 // We need to go through the mapping symbols to determine what to
6167 // scan. There are two reasons. First, we should look at THUMB code and
6168 // THUMB code only. Second, we only want to look at the 4K-page boundary
6169 // to speed up the scanning.
6170
44272192
DK
6171 while (p != this->mapping_symbols_info_.end()
6172 && p->first.first == shndx)
6173 {
6174 typename Mapping_symbols_info::const_iterator next =
6175 this->mapping_symbols_info_.upper_bound(p->first);
6176
6177 // Only scan part of a section with THUMB code.
6178 if (p->second == 't')
6179 {
6180 // Determine the end of this range.
6181 section_size_type span_start =
6182 convert_to_section_size_type(p->first.second);
6183 section_size_type span_end;
6184 if (next != this->mapping_symbols_info_.end()
6185 && next->first.first == shndx)
6186 span_end = convert_to_section_size_type(next->first.second);
6187 else
6188 span_end = convert_to_section_size_type(shdr.get_sh_size());
6189
6190 if (((span_start + output_address) & ~0xfffUL)
6191 != ((span_end + output_address - 1) & ~0xfffUL))
6192 {
6193 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6194 span_start, span_end,
6195 input_view,
6196 output_address);
6197 }
6198 }
6199
6200 p = next;
6201 }
6202}
6203
8ffa3667
DK
6204// Scan relocations for stub generation.
6205
6206template<bool big_endian>
6207void
6208Arm_relobj<big_endian>::scan_sections_for_stubs(
6209 Target_arm<big_endian>* arm_target,
6210 const Symbol_table* symtab,
2ea97941 6211 const Layout* layout)
8ffa3667 6212{
2ea97941
ILT
6213 unsigned int shnum = this->shnum();
6214 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6215
6216 // Read the section headers.
6217 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6218 shnum * shdr_size,
8ffa3667
DK
6219 true, true);
6220
6221 // To speed up processing, we set up hash tables for fast lookup of
6222 // input offsets to output addresses.
6223 this->initialize_input_to_output_maps();
6224
6225 const Relobj::Output_sections& out_sections(this->output_sections());
6226
6227 Relocate_info<32, big_endian> relinfo;
8ffa3667 6228 relinfo.symtab = symtab;
2ea97941 6229 relinfo.layout = layout;
8ffa3667
DK
6230 relinfo.object = this;
6231
44272192 6232 // Do relocation stubs scanning.
2ea97941
ILT
6233 const unsigned char* p = pshdrs + shdr_size;
6234 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6235 {
44272192 6236 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6237 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6238 pshdrs))
8ffa3667 6239 {
44272192
DK
6240 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6241 Arm_address output_offset = this->get_output_section_offset(index);
6242 Arm_address output_address;
7296d933 6243 if (output_offset != invalid_address)
44272192
DK
6244 output_address = out_sections[index]->address() + output_offset;
6245 else
6246 {
6247 // Currently this only happens for a relaxed section.
6248 const Output_relaxed_input_section* poris =
6249 out_sections[index]->find_relaxed_input_section(this, index);
6250 gold_assert(poris != NULL);
6251 output_address = poris->address();
6252 }
8ffa3667 6253
44272192
DK
6254 // Get the relocations.
6255 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6256 shdr.get_sh_size(),
6257 true, false);
6258
6259 // Get the section contents. This does work for the case in which
6260 // we modify the contents of an input section. We need to pass the
6261 // output view under such circumstances.
6262 section_size_type input_view_size = 0;
6263 const unsigned char* input_view =
6264 this->section_contents(index, &input_view_size, false);
6265
6266 relinfo.reloc_shndx = i;
6267 relinfo.data_shndx = index;
6268 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6269 unsigned int reloc_size;
6270 if (sh_type == elfcpp::SHT_REL)
6271 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6272 else
6273 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6274
6275 Output_section* os = out_sections[index];
6276 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6277 shdr.get_sh_size() / reloc_size,
6278 os,
6279 output_offset == invalid_address,
6280 input_view, output_address,
6281 input_view_size);
8ffa3667 6282 }
44272192 6283 }
8ffa3667 6284
44272192
DK
6285 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6286 // after its relocation section, if there is one, is processed for
6287 // relocation stubs. Merging this loop with the one above would have been
6288 // complicated since we would have had to make sure that relocation stub
6289 // scanning is done first.
6290 if (arm_target->fix_cortex_a8())
6291 {
6292 const unsigned char* p = pshdrs + shdr_size;
6293 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6294 {
44272192
DK
6295 const elfcpp::Shdr<32, big_endian> shdr(p);
6296 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6297 out_sections[i],
6298 symtab))
6299 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6300 arm_target);
8ffa3667 6301 }
8ffa3667
DK
6302 }
6303
6304 // After we've done the relocations, we release the hash tables,
6305 // since we no longer need them.
6306 this->free_input_to_output_maps();
6307}
6308
6309// Count the local symbols. The ARM backend needs to know if a symbol
6310// is a THUMB function or not. For global symbols, it is easy because
6311// the Symbol object keeps the ELF symbol type. For local symbol it is
6312// harder because we cannot access this information. So we override the
6313// do_count_local_symbol in parent and scan local symbols to mark
6314// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6315// slow down other ports by calling a per symbol target hook inside
6fa2a40b 6316// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6317
6318template<bool big_endian>
6319void
6320Arm_relobj<big_endian>::do_count_local_symbols(
6321 Stringpool_template<char>* pool,
6322 Stringpool_template<char>* dynpool)
6323{
6324 // We need to fix-up the values of any local symbols whose type are
6325 // STT_ARM_TFUNC.
6326
6327 // Ask parent to count the local symbols.
6fa2a40b 6328 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6329 const unsigned int loccount = this->local_symbol_count();
6330 if (loccount == 0)
6331 return;
6332
9b547ce6 6333 // Initialize the thumb function bit-vector.
8ffa3667
DK
6334 std::vector<bool> empty_vector(loccount, false);
6335 this->local_symbol_is_thumb_function_.swap(empty_vector);
6336
6337 // Read the symbol table section header.
2ea97941 6338 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6339 elfcpp::Shdr<32, big_endian>
2ea97941 6340 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6341 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6342
6343 // Read the local symbols.
2ea97941 6344 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6345 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6346 off_t locsize = loccount * sym_size;
8ffa3667
DK
6347 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6348 locsize, true, true);
6349
20138696
DK
6350 // For mapping symbol processing, we need to read the symbol names.
6351 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6352 if (strtab_shndx >= this->shnum())
6353 {
6354 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6355 return;
6356 }
6357
6358 elfcpp::Shdr<32, big_endian>
6359 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6360 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6361 {
6362 this->error(_("symbol table name section has wrong type: %u"),
6363 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6364 return;
6365 }
6366 const char* pnames =
6367 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6368 strtabshdr.get_sh_size(),
6369 false, false));
6370
8ffa3667
DK
6371 // Loop over the local symbols and mark any local symbols pointing
6372 // to THUMB functions.
6373
6374 // Skip the first dummy symbol.
2ea97941 6375 psyms += sym_size;
6fa2a40b 6376 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6377 this->local_values();
2ea97941 6378 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6379 {
6380 elfcpp::Sym<32, big_endian> sym(psyms);
6381 elfcpp::STT st_type = sym.get_st_type();
6382 Symbol_value<32>& lv((*plocal_values)[i]);
6383 Arm_address input_value = lv.input_value();
6384
20138696
DK
6385 // Check to see if this is a mapping symbol.
6386 const char* sym_name = pnames + sym.get_st_name();
6387 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6388 {
24af6f92
DK
6389 bool is_ordinary;
6390 unsigned int input_shndx =
6391 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6392 gold_assert(is_ordinary);
20138696
DK
6393
6394 // Strip of LSB in case this is a THUMB symbol.
6395 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6396 this->mapping_symbols_info_[msp] = sym_name[1];
6397 }
6398
8ffa3667
DK
6399 if (st_type == elfcpp::STT_ARM_TFUNC
6400 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6401 {
6402 // This is a THUMB function. Mark this and canonicalize the
6403 // symbol value by setting LSB.
6404 this->local_symbol_is_thumb_function_[i] = true;
6405 if ((input_value & 1) == 0)
6406 lv.set_input_value(input_value | 1);
6407 }
6408 }
6409}
6410
6411// Relocate sections.
6412template<bool big_endian>
6413void
6414Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6415 const Symbol_table* symtab,
2ea97941 6416 const Layout* layout,
8ffa3667 6417 const unsigned char* pshdrs,
aa98ff75 6418 Output_file* of,
6fa2a40b 6419 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6420{
6421 // Call parent to relocate sections.
6fa2a40b
CC
6422 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6423 pshdrs, of, pviews);
8ffa3667
DK
6424
6425 // We do not generate stubs if doing a relocatable link.
6426 if (parameters->options().relocatable())
6427 return;
6428
6429 // Relocate stub tables.
2ea97941 6430 unsigned int shnum = this->shnum();
8ffa3667
DK
6431
6432 Target_arm<big_endian>* arm_target =
6433 Target_arm<big_endian>::default_target();
6434
6435 Relocate_info<32, big_endian> relinfo;
8ffa3667 6436 relinfo.symtab = symtab;
2ea97941 6437 relinfo.layout = layout;
8ffa3667
DK
6438 relinfo.object = this;
6439
2ea97941 6440 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6441 {
6442 Arm_input_section<big_endian>* arm_input_section =
6443 arm_target->find_arm_input_section(this, i);
6444
41263c05
DK
6445 if (arm_input_section != NULL
6446 && arm_input_section->is_stub_table_owner()
6447 && !arm_input_section->stub_table()->empty())
6448 {
6449 // We cannot discard a section if it owns a stub table.
6450 Output_section* os = this->output_section(i);
6451 gold_assert(os != NULL);
6452
6453 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6454 relinfo.reloc_shdr = NULL;
6455 relinfo.data_shndx = i;
6456 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6457
6458 gold_assert((*pviews)[i].view != NULL);
6459
6460 // We are passed the output section view. Adjust it to cover the
6461 // stub table only.
6462 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6463 gold_assert((stub_table->address() >= (*pviews)[i].address)
6464 && ((stub_table->address() + stub_table->data_size())
6465 <= (*pviews)[i].address + (*pviews)[i].view_size));
6466
6467 off_t offset = stub_table->address() - (*pviews)[i].address;
6468 unsigned char* view = (*pviews)[i].view + offset;
6469 Arm_address address = stub_table->address();
6470 section_size_type view_size = stub_table->data_size();
8ffa3667 6471
41263c05
DK
6472 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6473 view_size);
6474 }
6475
6476 // Apply Cortex A8 workaround if applicable.
6477 if (this->section_has_cortex_a8_workaround(i))
6478 {
6479 unsigned char* view = (*pviews)[i].view;
6480 Arm_address view_address = (*pviews)[i].address;
6481 section_size_type view_size = (*pviews)[i].view_size;
6482 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6483
6484 // Adjust view to cover section.
6485 Output_section* os = this->output_section(i);
6486 gold_assert(os != NULL);
cb1be87e
DK
6487 Arm_address section_address =
6488 this->simple_input_section_output_address(i, os);
41263c05
DK
6489 uint64_t section_size = this->section_size(i);
6490
6491 gold_assert(section_address >= view_address
6492 && ((section_address + section_size)
6493 <= (view_address + view_size)));
6494
6495 unsigned char* section_view = view + (section_address - view_address);
6496
6497 // Apply the Cortex-A8 workaround to the output address range
6498 // corresponding to this input section.
6499 stub_table->apply_cortex_a8_workaround_to_address_range(
6500 arm_target,
6501 section_view,
6502 section_address,
6503 section_size);
6504 }
8ffa3667
DK
6505 }
6506}
6507
9b547ce6 6508// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6509// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6510// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6511// its section header. However, some tools are broken and the link is not
6512// always set. LD just drops such an EXIDX section silently, causing the
6513// associated code not unwindabled. Here we try a little bit harder to
6514// discover the linked code section.
6515//
6516// PSHDR points to the section header of a relocation section of an EXIDX
6517// section. If we can find a linked text section, return true and
6518// store the text section index in the location PSHNDX. Otherwise
6519// return false.
a0351a69
DK
6520
6521template<bool big_endian>
c8761b9a
DK
6522bool
6523Arm_relobj<big_endian>::find_linked_text_section(
6524 const unsigned char* pshdr,
6525 const unsigned char* psyms,
6526 unsigned int* pshndx)
a0351a69 6527{
c8761b9a
DK
6528 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6529
6530 // If there is no relocation, we cannot find the linked text section.
6531 size_t reloc_size;
6532 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6533 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6534 else
6535 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6536 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6537
6538 // Get the relocations.
6539 const unsigned char* prelocs =
6540 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6541
c8761b9a
DK
6542 // Find the REL31 relocation for the first word of the first EXIDX entry.
6543 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6544 {
c8761b9a
DK
6545 Arm_address r_offset;
6546 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6547 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6548 {
6549 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6550 r_info = reloc.get_r_info();
6551 r_offset = reloc.get_r_offset();
6552 }
6553 else
6554 {
6555 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6556 r_info = reloc.get_r_info();
6557 r_offset = reloc.get_r_offset();
6558 }
6559
6560 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6561 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6562 continue;
6563
6564 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6565 if (r_sym == 0
6566 || r_sym >= this->local_symbol_count()
6567 || r_offset != 0)
6568 continue;
6569
6570 // This is the relocation for the first word of the first EXIDX entry.
6571 // We expect to see a local section symbol.
6572 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6573 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6574 if (sym.get_st_type() == elfcpp::STT_SECTION)
6575 {
24af6f92
DK
6576 bool is_ordinary;
6577 *pshndx =
6578 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6579 gold_assert(is_ordinary);
c8761b9a
DK
6580 return true;
6581 }
6582 else
6583 return false;
993d07c1 6584 }
c8761b9a
DK
6585
6586 return false;
6587}
6588
6589// Make an EXIDX input section object for an EXIDX section whose index is
6590// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6591// is the section index of the linked text section.
6592
6593template<bool big_endian>
6594void
6595Arm_relobj<big_endian>::make_exidx_input_section(
6596 unsigned int shndx,
6597 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6598 unsigned int text_shndx,
6599 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6600{
993d07c1
DK
6601 // Create an Arm_exidx_input_section object for this EXIDX section.
6602 Arm_exidx_input_section* exidx_input_section =
6603 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6604 shdr.get_sh_addralign(),
6605 text_shdr.get_sh_size());
993d07c1 6606
993d07c1
DK
6607 gold_assert(this->exidx_section_map_[shndx] == NULL);
6608 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6609
6610 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6611 {
6612 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6613 this->section_name(shndx).c_str(), shndx, text_shndx,
6614 this->name().c_str());
6615 exidx_input_section->set_has_errors();
6616 }
6617 else if (this->exidx_section_map_[text_shndx] != NULL)
6618 {
6619 unsigned other_exidx_shndx =
6620 this->exidx_section_map_[text_shndx]->shndx();
6621 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6622 "%s(%u) in %s"),
6623 this->section_name(shndx).c_str(), shndx,
6624 this->section_name(other_exidx_shndx).c_str(),
6625 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6626 text_shndx, this->name().c_str());
6627 exidx_input_section->set_has_errors();
6628 }
6629 else
6630 this->exidx_section_map_[text_shndx] = exidx_input_section;
6631
6632 // Check section flags of text section.
6633 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6634 {
6635 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6636 " in %s"),
6637 this->section_name(shndx).c_str(), shndx,
6638 this->section_name(text_shndx).c_str(), text_shndx,
6639 this->name().c_str());
6640 exidx_input_section->set_has_errors();
6641 }
6642 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6643 // I would like to make this an error but currently ld just ignores
131687b4
DK
6644 // this.
6645 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6646 "%s(%u) in %s"),
6647 this->section_name(shndx).c_str(), shndx,
6648 this->section_name(text_shndx).c_str(), text_shndx,
6649 this->name().c_str());
a0351a69
DK
6650}
6651
d5b40221
DK
6652// Read the symbol information.
6653
6654template<bool big_endian>
6655void
6656Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6657{
6658 // Call parent class to read symbol information.
6fa2a40b 6659 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6660
7296d933
DK
6661 // If this input file is a binary file, it has no processor
6662 // specific flags and attributes section.
6663 Input_file::Format format = this->input_file()->format();
6664 if (format != Input_file::FORMAT_ELF)
6665 {
6666 gold_assert(format == Input_file::FORMAT_BINARY);
6667 this->merge_flags_and_attributes_ = false;
6668 return;
6669 }
6670
d5b40221
DK
6671 // Read processor-specific flags in ELF file header.
6672 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6673 elfcpp::Elf_sizes<32>::ehdr_size,
6674 true, false);
6675 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6676 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6677
6678 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6679 // sections.
c8761b9a 6680 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6681 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6682 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6683 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6684 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6685 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6686 {
6687 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6688
6689 // Sometimes an object has no contents except the section name string
6690 // table and an empty symbol table with the undefined symbol. We
6691 // don't want to merge processor-specific flags from such an object.
6692 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6693 {
6694 // Symbol table is not empty.
6695 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6696 elfcpp::Elf_sizes<32>::sym_size;
6697 if (shdr.get_sh_size() > sym_size)
6698 must_merge_flags_and_attributes = true;
6699 }
6700 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6701 // If this is neither an empty symbol table nor a string table,
6702 // be conservative.
6703 must_merge_flags_and_attributes = true;
6704
993d07c1
DK
6705 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6706 {
6707 gold_assert(this->attributes_section_data_ == NULL);
6708 section_offset_type section_offset = shdr.get_sh_offset();
6709 section_size_type section_size =
6710 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6711 const unsigned char* view =
6712 this->get_view(section_offset, section_size, true, false);
993d07c1 6713 this->attributes_section_data_ =
f625ae50 6714 new Attributes_section_data(view, section_size);
993d07c1
DK
6715 }
6716 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6717 {
6718 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6719 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6720 deferred_exidx_sections.push_back(i);
6721 else
131687b4
DK
6722 {
6723 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6724 + text_shndx * shdr_size);
6725 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6726 }
c9484ea5
DK
6727 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6728 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6729 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6730 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6731 }
6732 }
6733
7296d933
DK
6734 // This is rare.
6735 if (!must_merge_flags_and_attributes)
6736 {
131687b4 6737 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6738 this->merge_flags_and_attributes_ = false;
6739 return;
6740 }
6741
c8761b9a
DK
6742 // Some tools are broken and they do not set the link of EXIDX sections.
6743 // We look at the first relocation to figure out the linked sections.
6744 if (!deferred_exidx_sections.empty())
6745 {
6746 // We need to go over the section headers again to find the mapping
6747 // from sections being relocated to their relocation sections. This is
6748 // a bit inefficient as we could do that in the loop above. However,
6749 // we do not expect any deferred EXIDX sections normally. So we do not
6750 // want to slow down the most common path.
6751 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6752 Reloc_map reloc_map;
6753 ps = pshdrs + shdr_size;
6754 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6755 {
6756 elfcpp::Shdr<32, big_endian> shdr(ps);
6757 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6758 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6759 {
6760 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6761 if (info_shndx >= this->shnum())
6762 gold_error(_("relocation section %u has invalid info %u"),
6763 i, info_shndx);
6764 Reloc_map::value_type value(info_shndx, i);
6765 std::pair<Reloc_map::iterator, bool> result =
6766 reloc_map.insert(value);
6767 if (!result.second)
6768 gold_error(_("section %u has multiple relocation sections "
6769 "%u and %u"),
6770 info_shndx, i, reloc_map[info_shndx]);
6771 }
6772 }
6773
6774 // Read the symbol table section header.
6775 const unsigned int symtab_shndx = this->symtab_shndx();
6776 elfcpp::Shdr<32, big_endian>
6777 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6778 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6779
6780 // Read the local symbols.
6781 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6782 const unsigned int loccount = this->local_symbol_count();
6783 gold_assert(loccount == symtabshdr.get_sh_info());
6784 off_t locsize = loccount * sym_size;
6785 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6786 locsize, true, true);
6787
6788 // Process the deferred EXIDX sections.
f625ae50 6789 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6790 {
6791 unsigned int shndx = deferred_exidx_sections[i];
6792 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6793 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6794 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6795 if (it != reloc_map.end())
6796 find_linked_text_section(pshdrs + it->second * shdr_size,
6797 psyms, &text_shndx);
6798 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6799 + text_shndx * shdr_size);
6800 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6801 }
993d07c1 6802 }
d5b40221
DK
6803}
6804
99e5bff2
DK
6805// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6806// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6807// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6808// references, the .ARM.exidx sections and any .ARM.extab sections they use
6809// will be garbage-collected incorrectly. Hence we override the same function
6810// in the base class to handle these implicit references.
6811
6812template<bool big_endian>
6813void
6814Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6815 Layout* layout,
6816 Read_relocs_data* rd)
6817{
6818 // First, call base class method to process relocations in this object.
6fa2a40b 6819 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6820
4a54abbb
DK
6821 // If --gc-sections is not specified, there is nothing more to do.
6822 // This happens when --icf is used but --gc-sections is not.
6823 if (!parameters->options().gc_sections())
6824 return;
6825
99e5bff2
DK
6826 unsigned int shnum = this->shnum();
6827 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6828 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6829 shnum * shdr_size,
6830 true, true);
6831
6832 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6833 // to these from the linked text sections.
6834 const unsigned char* ps = pshdrs + shdr_size;
6835 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6836 {
6837 elfcpp::Shdr<32, big_endian> shdr(ps);
6838 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6839 {
6840 // Found an .ARM.exidx section, add it to the set of reachable
6841 // sections from its linked text section.
6842 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6843 symtab->gc()->add_reference(this, text_shndx, this, i);
6844 }
6845 }
6846}
6847
e7eca48c
DK
6848// Update output local symbol count. Owing to EXIDX entry merging, some local
6849// symbols will be removed in output. Adjust output local symbol count
6850// accordingly. We can only changed the static output local symbol count. It
6851// is too late to change the dynamic symbols.
6852
6853template<bool big_endian>
6854void
6855Arm_relobj<big_endian>::update_output_local_symbol_count()
6856{
6857 // Caller should check that this needs updating. We want caller checking
6858 // because output_local_symbol_count_needs_update() is most likely inlined.
6859 gold_assert(this->output_local_symbol_count_needs_update_);
6860
6861 gold_assert(this->symtab_shndx() != -1U);
6862 if (this->symtab_shndx() == 0)
6863 {
6864 // This object has no symbols. Weird but legal.
6865 return;
6866 }
6867
6868 // Read the symbol table section header.
6869 const unsigned int symtab_shndx = this->symtab_shndx();
6870 elfcpp::Shdr<32, big_endian>
6871 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6872 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6873
6874 // Read the local symbols.
6875 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6876 const unsigned int loccount = this->local_symbol_count();
6877 gold_assert(loccount == symtabshdr.get_sh_info());
6878 off_t locsize = loccount * sym_size;
6879 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6880 locsize, true, true);
6881
6882 // Loop over the local symbols.
6883
6fa2a40b 6884 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6885 Output_sections;
6886 const Output_sections& out_sections(this->output_sections());
6887 unsigned int shnum = this->shnum();
6888 unsigned int count = 0;
6889 // Skip the first, dummy, symbol.
6890 psyms += sym_size;
6891 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6892 {
6893 elfcpp::Sym<32, big_endian> sym(psyms);
6894
6895 Symbol_value<32>& lv((*this->local_values())[i]);
6896
6897 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6898 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6899 continue;
6900
6901 bool is_ordinary;
6902 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6903 &is_ordinary);
6904
6905 if (shndx < shnum)
6906 {
6907 Output_section* os = out_sections[shndx];
6908
6909 // This local symbol no longer has an output section. Discard it.
6910 if (os == NULL)
6911 {
6912 lv.set_no_output_symtab_entry();
6913 continue;
6914 }
6915
6916 // Currently we only discard parts of EXIDX input sections.
6917 // We explicitly check for a merged EXIDX input section to avoid
6918 // calling Output_section_data::output_offset unless necessary.
6919 if ((this->get_output_section_offset(shndx) == invalid_address)
6920 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6921 {
6922 section_offset_type output_offset =
6923 os->output_offset(this, shndx, lv.input_value());
6924 if (output_offset == -1)
6925 {
6926 // This symbol is defined in a part of an EXIDX input section
6927 // that is discarded due to entry merging.
6928 lv.set_no_output_symtab_entry();
6929 continue;
6930 }
6931 }
6932 }
6933
6934 ++count;
6935 }
6936
6937 this->set_output_local_symbol_count(count);
6938 this->output_local_symbol_count_needs_update_ = false;
6939}
6940
d5b40221
DK
6941// Arm_dynobj methods.
6942
6943// Read the symbol information.
6944
6945template<bool big_endian>
6946void
6947Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6948{
6949 // Call parent class to read symbol information.
6950 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6951
6952 // Read processor-specific flags in ELF file header.
6953 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6954 elfcpp::Elf_sizes<32>::ehdr_size,
6955 true, false);
6956 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6957 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6958
6959 // Read the attributes section if there is one.
6960 // We read from the end because gas seems to put it near the end of
6961 // the section headers.
6962 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 6963 const unsigned char* ps =
993d07c1
DK
6964 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6965 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6966 {
6967 elfcpp::Shdr<32, big_endian> shdr(ps);
6968 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6969 {
6970 section_offset_type section_offset = shdr.get_sh_offset();
6971 section_size_type section_size =
6972 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6973 const unsigned char* view =
6974 this->get_view(section_offset, section_size, true, false);
993d07c1 6975 this->attributes_section_data_ =
f625ae50 6976 new Attributes_section_data(view, section_size);
993d07c1
DK
6977 break;
6978 }
6979 }
d5b40221
DK
6980}
6981
e9bbb538
DK
6982// Stub_addend_reader methods.
6983
6984// Read the addend of a REL relocation of type R_TYPE at VIEW.
6985
6986template<bool big_endian>
6987elfcpp::Elf_types<32>::Elf_Swxword
6988Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6989 unsigned int r_type,
6990 const unsigned char* view,
6991 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6992{
089d69dc
DK
6993 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6994
e9bbb538
DK
6995 switch (r_type)
6996 {
6997 case elfcpp::R_ARM_CALL:
6998 case elfcpp::R_ARM_JUMP24:
6999 case elfcpp::R_ARM_PLT32:
7000 {
7001 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7002 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7003 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
bef2b434 7004 return Bits<26>::sign_extend32(val << 2);
e9bbb538
DK
7005 }
7006
7007 case elfcpp::R_ARM_THM_CALL:
7008 case elfcpp::R_ARM_THM_JUMP24:
7009 case elfcpp::R_ARM_THM_XPC22:
7010 {
e9bbb538
DK
7011 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7012 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7013 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7014 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7015 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7016 }
7017
7018 case elfcpp::R_ARM_THM_JUMP19:
7019 {
7020 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7021 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7022 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7023 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7024 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7025 }
7026
7027 default:
7028 gold_unreachable();
7029 }
7030}
7031
4a54abbb
DK
7032// Arm_output_data_got methods.
7033
7034// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7035// The first one is initialized to be 1, which is the module index for
7036// the main executable and the second one 0. A reloc of the type
7037// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7038// be applied by gold. GSYM is a global symbol.
7039//
7040template<bool big_endian>
7041void
7042Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7043 unsigned int got_type,
7044 Symbol* gsym)
7045{
7046 if (gsym->has_got_offset(got_type))
7047 return;
7048
7049 // We are doing a static link. Just mark it as belong to module 1,
7050 // the executable.
7051 unsigned int got_offset = this->add_constant(1);
7052 gsym->set_got_offset(got_type, got_offset);
7053 got_offset = this->add_constant(0);
7054 this->static_relocs_.push_back(Static_reloc(got_offset,
7055 elfcpp::R_ARM_TLS_DTPOFF32,
7056 gsym));
7057}
7058
7059// Same as the above but for a local symbol.
7060
7061template<bool big_endian>
7062void
7063Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7064 unsigned int got_type,
6fa2a40b 7065 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7066 unsigned int index)
7067{
7068 if (object->local_has_got_offset(index, got_type))
7069 return;
7070
7071 // We are doing a static link. Just mark it as belong to module 1,
7072 // the executable.
7073 unsigned int got_offset = this->add_constant(1);
7074 object->set_local_got_offset(index, got_type, got_offset);
7075 got_offset = this->add_constant(0);
7076 this->static_relocs_.push_back(Static_reloc(got_offset,
7077 elfcpp::R_ARM_TLS_DTPOFF32,
7078 object, index));
7079}
7080
7081template<bool big_endian>
7082void
7083Arm_output_data_got<big_endian>::do_write(Output_file* of)
7084{
7085 // Call parent to write out GOT.
7086 Output_data_got<32, big_endian>::do_write(of);
7087
7088 // We are done if there is no fix up.
7089 if (this->static_relocs_.empty())
7090 return;
7091
7092 gold_assert(parameters->doing_static_link());
7093
7094 const off_t offset = this->offset();
7095 const section_size_type oview_size =
7096 convert_to_section_size_type(this->data_size());
7097 unsigned char* const oview = of->get_output_view(offset, oview_size);
7098
7099 Output_segment* tls_segment = this->layout_->tls_segment();
7100 gold_assert(tls_segment != NULL);
7101
7102 // The thread pointer $tp points to the TCB, which is followed by the
7103 // TLS. So we need to adjust $tp relative addressing by this amount.
7104 Arm_address aligned_tcb_size =
7105 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7106
7107 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7108 {
7109 Static_reloc& reloc(this->static_relocs_[i]);
7110
7111 Arm_address value;
7112 if (!reloc.symbol_is_global())
7113 {
6fa2a40b 7114 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7115 const Symbol_value<32>* psymval =
7116 reloc.relobj()->local_symbol(reloc.index());
7117
7118 // We are doing static linking. Issue an error and skip this
7119 // relocation if the symbol is undefined or in a discarded_section.
7120 bool is_ordinary;
7121 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7122 if ((shndx == elfcpp::SHN_UNDEF)
7123 || (is_ordinary
7124 && shndx != elfcpp::SHN_UNDEF
7125 && !object->is_section_included(shndx)
7126 && !this->symbol_table_->is_section_folded(object, shndx)))
7127 {
7128 gold_error(_("undefined or discarded local symbol %u from "
7129 " object %s in GOT"),
7130 reloc.index(), reloc.relobj()->name().c_str());
7131 continue;
7132 }
7133
7134 value = psymval->value(object, 0);
7135 }
7136 else
7137 {
7138 const Symbol* gsym = reloc.symbol();
7139 gold_assert(gsym != NULL);
7140 if (gsym->is_forwarder())
7141 gsym = this->symbol_table_->resolve_forwards(gsym);
7142
7143 // We are doing static linking. Issue an error and skip this
7144 // relocation if the symbol is undefined or in a discarded_section
7145 // unless it is a weakly_undefined symbol.
7146 if ((gsym->is_defined_in_discarded_section()
7147 || gsym->is_undefined())
7148 && !gsym->is_weak_undefined())
7149 {
7150 gold_error(_("undefined or discarded symbol %s in GOT"),
7151 gsym->name());
7152 continue;
7153 }
7154
7155 if (!gsym->is_weak_undefined())
7156 {
7157 const Sized_symbol<32>* sym =
7158 static_cast<const Sized_symbol<32>*>(gsym);
7159 value = sym->value();
7160 }
7161 else
7162 value = 0;
7163 }
7164
7165 unsigned got_offset = reloc.got_offset();
7166 gold_assert(got_offset < oview_size);
7167
7168 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7169 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7170 Valtype x;
7171 switch (reloc.r_type())
7172 {
7173 case elfcpp::R_ARM_TLS_DTPOFF32:
7174 x = value;
7175 break;
7176 case elfcpp::R_ARM_TLS_TPOFF32:
7177 x = value + aligned_tcb_size;
7178 break;
7179 default:
7180 gold_unreachable();
7181 }
7182 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7183 }
7184
7185 of->write_output_view(offset, oview_size, oview);
7186}
7187
94cdfcff
DK
7188// A class to handle the PLT data.
7189
7190template<bool big_endian>
7191class Output_data_plt_arm : public Output_section_data
7192{
7193 public:
7194 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7195 Reloc_section;
7196
7197 Output_data_plt_arm(Layout*, Output_data_space*);
7198
7199 // Add an entry to the PLT.
7200 void
7201 add_entry(Symbol* gsym);
7202
7203 // Return the .rel.plt section data.
7204 const Reloc_section*
7205 rel_plt() const
7206 { return this->rel_; }
7207
0e70b911
CC
7208 // Return the number of PLT entries.
7209 unsigned int
7210 entry_count() const
7211 { return this->count_; }
7212
7213 // Return the offset of the first non-reserved PLT entry.
7214 static unsigned int
7215 first_plt_entry_offset()
7216 { return sizeof(first_plt_entry); }
7217
7218 // Return the size of a PLT entry.
7219 static unsigned int
7220 get_plt_entry_size()
7221 { return sizeof(plt_entry); }
7222
94cdfcff
DK
7223 protected:
7224 void
7225 do_adjust_output_section(Output_section* os);
7226
7227 // Write to a map file.
7228 void
7229 do_print_to_mapfile(Mapfile* mapfile) const
7230 { mapfile->print_output_data(this, _("** PLT")); }
7231
7232 private:
7233 // Template for the first PLT entry.
7234 static const uint32_t first_plt_entry[5];
7235
7236 // Template for subsequent PLT entries.
7237 static const uint32_t plt_entry[3];
7238
7239 // Set the final size.
7240 void
7241 set_final_data_size()
7242 {
7243 this->set_data_size(sizeof(first_plt_entry)
7244 + this->count_ * sizeof(plt_entry));
7245 }
7246
7247 // Write out the PLT data.
7248 void
7249 do_write(Output_file*);
7250
7251 // The reloc section.
7252 Reloc_section* rel_;
7253 // The .got.plt section.
7254 Output_data_space* got_plt_;
7255 // The number of PLT entries.
7256 unsigned int count_;
7257};
7258
7259// Create the PLT section. The ordinary .got section is an argument,
7260// since we need to refer to the start. We also create our own .got
7261// section just for PLT entries.
7262
7263template<bool big_endian>
2ea97941 7264Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
7265 Output_data_space* got_plt)
7266 : Output_section_data(4), got_plt_(got_plt), count_(0)
7267{
7268 this->rel_ = new Reloc_section(false);
2ea97941 7269 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7270 elfcpp::SHF_ALLOC, this->rel_,
7271 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7272}
7273
7274template<bool big_endian>
7275void
7276Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7277{
7278 os->set_entsize(0);
7279}
7280
7281// Add an entry to the PLT.
7282
7283template<bool big_endian>
7284void
7285Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7286{
7287 gold_assert(!gsym->has_plt_offset());
7288
7289 // Note that when setting the PLT offset we skip the initial
7290 // reserved PLT entry.
7291 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7292 + sizeof(first_plt_entry));
7293
7294 ++this->count_;
7295
7296 section_offset_type got_offset = this->got_plt_->current_data_size();
7297
7298 // Every PLT entry needs a GOT entry which points back to the PLT
7299 // entry (this will be changed by the dynamic linker, normally
7300 // lazily when the function is called).
7301 this->got_plt_->set_current_data_size(got_offset + 4);
7302
7303 // Every PLT entry needs a reloc.
7304 gsym->set_needs_dynsym_entry();
7305 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7306 got_offset);
7307
7308 // Note that we don't need to save the symbol. The contents of the
7309 // PLT are independent of which symbols are used. The symbols only
7310 // appear in the relocations.
7311}
7312
7313// ARM PLTs.
7314// FIXME: This is not very flexible. Right now this has only been tested
7315// on armv5te. If we are to support additional architecture features like
7316// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7317
7318// The first entry in the PLT.
7319template<bool big_endian>
7320const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7321{
7322 0xe52de004, // str lr, [sp, #-4]!
7323 0xe59fe004, // ldr lr, [pc, #4]
7324 0xe08fe00e, // add lr, pc, lr
7325 0xe5bef008, // ldr pc, [lr, #8]!
7326 0x00000000, // &GOT[0] - .
7327};
7328
7329// Subsequent entries in the PLT.
7330
7331template<bool big_endian>
7332const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7333{
7334 0xe28fc600, // add ip, pc, #0xNN00000
7335 0xe28cca00, // add ip, ip, #0xNN000
7336 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7337};
7338
7339// Write out the PLT. This uses the hand-coded instructions above,
7340// and adjusts them as needed. This is all specified by the arm ELF
7341// Processor Supplement.
7342
7343template<bool big_endian>
7344void
7345Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7346{
2ea97941 7347 const off_t offset = this->offset();
94cdfcff
DK
7348 const section_size_type oview_size =
7349 convert_to_section_size_type(this->data_size());
2ea97941 7350 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7351
7352 const off_t got_file_offset = this->got_plt_->offset();
7353 const section_size_type got_size =
7354 convert_to_section_size_type(this->got_plt_->data_size());
7355 unsigned char* const got_view = of->get_output_view(got_file_offset,
7356 got_size);
7357 unsigned char* pov = oview;
7358
ebabffbd
DK
7359 Arm_address plt_address = this->address();
7360 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7361
7362 // Write first PLT entry. All but the last word are constants.
7363 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7364 / sizeof(plt_entry[0]));
7365 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7366 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7367 // Last word in first PLT entry is &GOT[0] - .
7368 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7369 got_address - (plt_address + 16));
7370 pov += sizeof(first_plt_entry);
7371
7372 unsigned char* got_pov = got_view;
7373
7374 memset(got_pov, 0, 12);
7375 got_pov += 12;
7376
7377 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7378 unsigned int plt_offset = sizeof(first_plt_entry);
7379 unsigned int plt_rel_offset = 0;
7380 unsigned int got_offset = 12;
7381 const unsigned int count = this->count_;
7382 for (unsigned int i = 0;
7383 i < count;
7384 ++i,
7385 pov += sizeof(plt_entry),
7386 got_pov += 4,
7387 plt_offset += sizeof(plt_entry),
7388 plt_rel_offset += rel_size,
7389 got_offset += 4)
7390 {
7391 // Set and adjust the PLT entry itself.
2ea97941
ILT
7392 int32_t offset = ((got_address + got_offset)
7393 - (plt_address + plt_offset + 8));
94cdfcff 7394
2ea97941
ILT
7395 gold_assert(offset >= 0 && offset < 0x0fffffff);
7396 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7397 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7398 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7399 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7400 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7401 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7402
7403 // Set the entry in the GOT.
7404 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7405 }
7406
7407 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7408 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7409
2ea97941 7410 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7411 of->write_output_view(got_file_offset, got_size, got_view);
7412}
7413
7414// Create a PLT entry for a global symbol.
7415
7416template<bool big_endian>
7417void
2ea97941 7418Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7419 Symbol* gsym)
7420{
7421 if (gsym->has_plt_offset())
7422 return;
7423
7424 if (this->plt_ == NULL)
7425 {
7426 // Create the GOT sections first.
2ea97941 7427 this->got_section(symtab, layout);
94cdfcff 7428
2ea97941
ILT
7429 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7430 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7431 (elfcpp::SHF_ALLOC
7432 | elfcpp::SHF_EXECINSTR),
22f0da72 7433 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7434 }
7435 this->plt_->add_entry(gsym);
7436}
7437
0e70b911
CC
7438// Return the number of entries in the PLT.
7439
7440template<bool big_endian>
7441unsigned int
7442Target_arm<big_endian>::plt_entry_count() const
7443{
7444 if (this->plt_ == NULL)
7445 return 0;
7446 return this->plt_->entry_count();
7447}
7448
7449// Return the offset of the first non-reserved PLT entry.
7450
7451template<bool big_endian>
7452unsigned int
7453Target_arm<big_endian>::first_plt_entry_offset() const
7454{
7455 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7456}
7457
7458// Return the size of each PLT entry.
7459
7460template<bool big_endian>
7461unsigned int
7462Target_arm<big_endian>::plt_entry_size() const
7463{
7464 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7465}
7466
f96accdf
DK
7467// Get the section to use for TLS_DESC relocations.
7468
7469template<bool big_endian>
7470typename Target_arm<big_endian>::Reloc_section*
7471Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7472{
7473 return this->plt_section()->rel_tls_desc(layout);
7474}
7475
7476// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7477
7478template<bool big_endian>
7479void
7480Target_arm<big_endian>::define_tls_base_symbol(
7481 Symbol_table* symtab,
7482 Layout* layout)
7483{
7484 if (this->tls_base_symbol_defined_)
7485 return;
7486
7487 Output_segment* tls_segment = layout->tls_segment();
7488 if (tls_segment != NULL)
7489 {
7490 bool is_exec = parameters->options().output_is_executable();
7491 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7492 Symbol_table::PREDEFINED,
7493 tls_segment, 0, 0,
7494 elfcpp::STT_TLS,
7495 elfcpp::STB_LOCAL,
7496 elfcpp::STV_HIDDEN, 0,
7497 (is_exec
7498 ? Symbol::SEGMENT_END
7499 : Symbol::SEGMENT_START),
7500 true);
7501 }
7502 this->tls_base_symbol_defined_ = true;
7503}
7504
7505// Create a GOT entry for the TLS module index.
7506
7507template<bool big_endian>
7508unsigned int
7509Target_arm<big_endian>::got_mod_index_entry(
7510 Symbol_table* symtab,
7511 Layout* layout,
6fa2a40b 7512 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7513{
7514 if (this->got_mod_index_offset_ == -1U)
7515 {
7516 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7517 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7518 unsigned int got_offset;
7519 if (!parameters->doing_static_link())
7520 {
7521 got_offset = got->add_constant(0);
7522 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7523 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7524 got_offset);
7525 }
7526 else
7527 {
7528 // We are doing a static link. Just mark it as belong to module 1,
7529 // the executable.
7530 got_offset = got->add_constant(1);
7531 }
7532
f96accdf
DK
7533 got->add_constant(0);
7534 this->got_mod_index_offset_ = got_offset;
7535 }
7536 return this->got_mod_index_offset_;
7537}
7538
7539// Optimize the TLS relocation type based on what we know about the
7540// symbol. IS_FINAL is true if the final address of this symbol is
7541// known at link time.
7542
7543template<bool big_endian>
7544tls::Tls_optimization
7545Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7546{
7547 // FIXME: Currently we do not do any TLS optimization.
7548 return tls::TLSOPT_NONE;
7549}
7550
95a2c8d6
RS
7551// Get the Reference_flags for a particular relocation.
7552
7553template<bool big_endian>
7554int
7555Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7556{
7557 switch (r_type)
7558 {
7559 case elfcpp::R_ARM_NONE:
7560 case elfcpp::R_ARM_V4BX:
7561 case elfcpp::R_ARM_GNU_VTENTRY:
7562 case elfcpp::R_ARM_GNU_VTINHERIT:
7563 // No symbol reference.
7564 return 0;
7565
7566 case elfcpp::R_ARM_ABS32:
7567 case elfcpp::R_ARM_ABS16:
7568 case elfcpp::R_ARM_ABS12:
7569 case elfcpp::R_ARM_THM_ABS5:
7570 case elfcpp::R_ARM_ABS8:
7571 case elfcpp::R_ARM_BASE_ABS:
7572 case elfcpp::R_ARM_MOVW_ABS_NC:
7573 case elfcpp::R_ARM_MOVT_ABS:
7574 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7575 case elfcpp::R_ARM_THM_MOVT_ABS:
7576 case elfcpp::R_ARM_ABS32_NOI:
7577 return Symbol::ABSOLUTE_REF;
7578
7579 case elfcpp::R_ARM_REL32:
7580 case elfcpp::R_ARM_LDR_PC_G0:
7581 case elfcpp::R_ARM_SBREL32:
7582 case elfcpp::R_ARM_THM_PC8:
7583 case elfcpp::R_ARM_BASE_PREL:
7584 case elfcpp::R_ARM_MOVW_PREL_NC:
7585 case elfcpp::R_ARM_MOVT_PREL:
7586 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7587 case elfcpp::R_ARM_THM_MOVT_PREL:
7588 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7589 case elfcpp::R_ARM_THM_PC12:
7590 case elfcpp::R_ARM_REL32_NOI:
7591 case elfcpp::R_ARM_ALU_PC_G0_NC:
7592 case elfcpp::R_ARM_ALU_PC_G0:
7593 case elfcpp::R_ARM_ALU_PC_G1_NC:
7594 case elfcpp::R_ARM_ALU_PC_G1:
7595 case elfcpp::R_ARM_ALU_PC_G2:
7596 case elfcpp::R_ARM_LDR_PC_G1:
7597 case elfcpp::R_ARM_LDR_PC_G2:
7598 case elfcpp::R_ARM_LDRS_PC_G0:
7599 case elfcpp::R_ARM_LDRS_PC_G1:
7600 case elfcpp::R_ARM_LDRS_PC_G2:
7601 case elfcpp::R_ARM_LDC_PC_G0:
7602 case elfcpp::R_ARM_LDC_PC_G1:
7603 case elfcpp::R_ARM_LDC_PC_G2:
7604 case elfcpp::R_ARM_ALU_SB_G0_NC:
7605 case elfcpp::R_ARM_ALU_SB_G0:
7606 case elfcpp::R_ARM_ALU_SB_G1_NC:
7607 case elfcpp::R_ARM_ALU_SB_G1:
7608 case elfcpp::R_ARM_ALU_SB_G2:
7609 case elfcpp::R_ARM_LDR_SB_G0:
7610 case elfcpp::R_ARM_LDR_SB_G1:
7611 case elfcpp::R_ARM_LDR_SB_G2:
7612 case elfcpp::R_ARM_LDRS_SB_G0:
7613 case elfcpp::R_ARM_LDRS_SB_G1:
7614 case elfcpp::R_ARM_LDRS_SB_G2:
7615 case elfcpp::R_ARM_LDC_SB_G0:
7616 case elfcpp::R_ARM_LDC_SB_G1:
7617 case elfcpp::R_ARM_LDC_SB_G2:
7618 case elfcpp::R_ARM_MOVW_BREL_NC:
7619 case elfcpp::R_ARM_MOVT_BREL:
7620 case elfcpp::R_ARM_MOVW_BREL:
7621 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7622 case elfcpp::R_ARM_THM_MOVT_BREL:
7623 case elfcpp::R_ARM_THM_MOVW_BREL:
7624 case elfcpp::R_ARM_GOTOFF32:
7625 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7626 case elfcpp::R_ARM_SBREL31:
7627 return Symbol::RELATIVE_REF;
7628
7629 case elfcpp::R_ARM_PLT32:
7630 case elfcpp::R_ARM_CALL:
7631 case elfcpp::R_ARM_JUMP24:
7632 case elfcpp::R_ARM_THM_CALL:
7633 case elfcpp::R_ARM_THM_JUMP24:
7634 case elfcpp::R_ARM_THM_JUMP19:
7635 case elfcpp::R_ARM_THM_JUMP6:
7636 case elfcpp::R_ARM_THM_JUMP11:
7637 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7638 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7639 // in unwind tables. It may point to functions via PLTs.
7640 // So we treat it like call/jump relocations above.
7641 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7642 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7643
7644 case elfcpp::R_ARM_GOT_BREL:
7645 case elfcpp::R_ARM_GOT_ABS:
7646 case elfcpp::R_ARM_GOT_PREL:
7647 // Absolute in GOT.
7648 return Symbol::ABSOLUTE_REF;
7649
7650 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7651 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7652 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7653 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7654 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7655 return Symbol::TLS_REF;
7656
7657 case elfcpp::R_ARM_TARGET1:
7658 case elfcpp::R_ARM_TARGET2:
7659 case elfcpp::R_ARM_COPY:
7660 case elfcpp::R_ARM_GLOB_DAT:
7661 case elfcpp::R_ARM_JUMP_SLOT:
7662 case elfcpp::R_ARM_RELATIVE:
7663 case elfcpp::R_ARM_PC24:
7664 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7665 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7666 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7667 default:
7668 // Not expected. We will give an error later.
7669 return 0;
7670 }
7671}
7672
4a657b0d
DK
7673// Report an unsupported relocation against a local symbol.
7674
7675template<bool big_endian>
7676void
7677Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7678 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7679 unsigned int r_type)
7680{
7681 gold_error(_("%s: unsupported reloc %u against local symbol"),
7682 object->name().c_str(), r_type);
7683}
7684
bec53400
DK
7685// We are about to emit a dynamic relocation of type R_TYPE. If the
7686// dynamic linker does not support it, issue an error. The GNU linker
7687// only issues a non-PIC error for an allocated read-only section.
7688// Here we know the section is allocated, but we don't know that it is
7689// read-only. But we check for all the relocation types which the
7690// glibc dynamic linker supports, so it seems appropriate to issue an
7691// error even if the section is not read-only.
7692
7693template<bool big_endian>
7694void
7695Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7696 unsigned int r_type)
7697{
7698 switch (r_type)
7699 {
7700 // These are the relocation types supported by glibc for ARM.
7701 case elfcpp::R_ARM_RELATIVE:
7702 case elfcpp::R_ARM_COPY:
7703 case elfcpp::R_ARM_GLOB_DAT:
7704 case elfcpp::R_ARM_JUMP_SLOT:
7705 case elfcpp::R_ARM_ABS32:
be8fcb75 7706 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7707 case elfcpp::R_ARM_PC24:
7708 // FIXME: The following 3 types are not supported by Android's dynamic
7709 // linker.
7710 case elfcpp::R_ARM_TLS_DTPMOD32:
7711 case elfcpp::R_ARM_TLS_DTPOFF32:
7712 case elfcpp::R_ARM_TLS_TPOFF32:
7713 return;
7714
7715 default:
c8761b9a
DK
7716 {
7717 // This prevents us from issuing more than one error per reloc
7718 // section. But we can still wind up issuing more than one
7719 // error per object file.
7720 if (this->issued_non_pic_error_)
7721 return;
7722 const Arm_reloc_property* reloc_property =
7723 arm_reloc_property_table->get_reloc_property(r_type);
7724 gold_assert(reloc_property != NULL);
7725 object->error(_("requires unsupported dynamic reloc %s; "
7726 "recompile with -fPIC"),
7727 reloc_property->name().c_str());
7728 this->issued_non_pic_error_ = true;
bec53400 7729 return;
c8761b9a 7730 }
bec53400
DK
7731
7732 case elfcpp::R_ARM_NONE:
7733 gold_unreachable();
7734 }
7735}
7736
4a657b0d 7737// Scan a relocation for a local symbol.
bec53400
DK
7738// FIXME: This only handles a subset of relocation types used by Android
7739// on ARM v5te devices.
4a657b0d
DK
7740
7741template<bool big_endian>
7742inline void
ad0f2072 7743Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7744 Layout* layout,
bec53400 7745 Target_arm* target,
6fa2a40b 7746 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7747 unsigned int data_shndx,
7748 Output_section* output_section,
7749 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7750 unsigned int r_type,
e4782e83 7751 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7752{
a6d1ef57 7753 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7754 switch (r_type)
7755 {
7756 case elfcpp::R_ARM_NONE:
e4782e83
DK
7757 case elfcpp::R_ARM_V4BX:
7758 case elfcpp::R_ARM_GNU_VTENTRY:
7759 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7760 break;
7761
bec53400 7762 case elfcpp::R_ARM_ABS32:
be8fcb75 7763 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7764 // If building a shared library (or a position-independent
7765 // executable), we need to create a dynamic relocation for
7766 // this location. The relocation applied at link time will
7767 // apply the link-time value, so we flag the location with
7768 // an R_ARM_RELATIVE relocation so the dynamic loader can
7769 // relocate it easily.
7770 if (parameters->options().output_is_position_independent())
7771 {
2ea97941 7772 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7773 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7774 // If we are to add more other reloc types than R_ARM_ABS32,
7775 // we need to add check_non_pic(object, r_type) here.
7776 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7777 output_section, data_shndx,
7778 reloc.get_r_offset());
7779 }
7780 break;
7781
e4782e83
DK
7782 case elfcpp::R_ARM_ABS16:
7783 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7784 case elfcpp::R_ARM_THM_ABS5:
7785 case elfcpp::R_ARM_ABS8:
be8fcb75 7786 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7787 case elfcpp::R_ARM_MOVW_ABS_NC:
7788 case elfcpp::R_ARM_MOVT_ABS:
7789 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7790 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7791 // If building a shared library (or a position-independent
7792 // executable), we need to create a dynamic relocation for
7793 // this location. Because the addend needs to remain in the
7794 // data section, we need to be careful not to apply this
7795 // relocation statically.
7796 if (parameters->options().output_is_position_independent())
7797 {
7798 check_non_pic(object, r_type);
7799 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7800 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7801 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7802 rel_dyn->add_local(object, r_sym, r_type, output_section,
7803 data_shndx, reloc.get_r_offset());
7804 else
7805 {
7806 gold_assert(lsym.get_st_value() == 0);
7807 unsigned int shndx = lsym.get_st_shndx();
7808 bool is_ordinary;
7809 shndx = object->adjust_sym_shndx(r_sym, shndx,
7810 &is_ordinary);
7811 if (!is_ordinary)
7812 object->error(_("section symbol %u has bad shndx %u"),
7813 r_sym, shndx);
7814 else
7815 rel_dyn->add_local_section(object, shndx,
7816 r_type, output_section,
7817 data_shndx, reloc.get_r_offset());
7818 }
7819 }
7820 break;
7821
e4782e83
DK
7822 case elfcpp::R_ARM_REL32:
7823 case elfcpp::R_ARM_LDR_PC_G0:
7824 case elfcpp::R_ARM_SBREL32:
7825 case elfcpp::R_ARM_THM_CALL:
7826 case elfcpp::R_ARM_THM_PC8:
7827 case elfcpp::R_ARM_BASE_PREL:
7828 case elfcpp::R_ARM_PLT32:
7829 case elfcpp::R_ARM_CALL:
7830 case elfcpp::R_ARM_JUMP24:
7831 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7832 case elfcpp::R_ARM_SBREL31:
7833 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7834 case elfcpp::R_ARM_MOVW_PREL_NC:
7835 case elfcpp::R_ARM_MOVT_PREL:
7836 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7837 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7838 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7839 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7840 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7841 case elfcpp::R_ARM_THM_PC12:
7842 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7843 case elfcpp::R_ARM_ALU_PC_G0_NC:
7844 case elfcpp::R_ARM_ALU_PC_G0:
7845 case elfcpp::R_ARM_ALU_PC_G1_NC:
7846 case elfcpp::R_ARM_ALU_PC_G1:
7847 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7848 case elfcpp::R_ARM_LDR_PC_G1:
7849 case elfcpp::R_ARM_LDR_PC_G2:
7850 case elfcpp::R_ARM_LDRS_PC_G0:
7851 case elfcpp::R_ARM_LDRS_PC_G1:
7852 case elfcpp::R_ARM_LDRS_PC_G2:
7853 case elfcpp::R_ARM_LDC_PC_G0:
7854 case elfcpp::R_ARM_LDC_PC_G1:
7855 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7856 case elfcpp::R_ARM_ALU_SB_G0_NC:
7857 case elfcpp::R_ARM_ALU_SB_G0:
7858 case elfcpp::R_ARM_ALU_SB_G1_NC:
7859 case elfcpp::R_ARM_ALU_SB_G1:
7860 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7861 case elfcpp::R_ARM_LDR_SB_G0:
7862 case elfcpp::R_ARM_LDR_SB_G1:
7863 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7864 case elfcpp::R_ARM_LDRS_SB_G0:
7865 case elfcpp::R_ARM_LDRS_SB_G1:
7866 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7867 case elfcpp::R_ARM_LDC_SB_G0:
7868 case elfcpp::R_ARM_LDC_SB_G1:
7869 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7870 case elfcpp::R_ARM_MOVW_BREL_NC:
7871 case elfcpp::R_ARM_MOVT_BREL:
7872 case elfcpp::R_ARM_MOVW_BREL:
7873 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7874 case elfcpp::R_ARM_THM_MOVT_BREL:
7875 case elfcpp::R_ARM_THM_MOVW_BREL:
7876 case elfcpp::R_ARM_THM_JUMP11:
7877 case elfcpp::R_ARM_THM_JUMP8:
7878 // We don't need to do anything for a relative addressing relocation
7879 // against a local symbol if it does not reference the GOT.
bec53400
DK
7880 break;
7881
7882 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7883 case elfcpp::R_ARM_GOTOFF12:
bec53400 7884 // We need a GOT section:
2ea97941 7885 target->got_section(symtab, layout);
bec53400
DK
7886 break;
7887
bec53400 7888 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7889 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7890 {
7891 // The symbol requires a GOT entry.
4a54abbb 7892 Arm_output_data_got<big_endian>* got =
2ea97941 7893 target->got_section(symtab, layout);
bec53400
DK
7894 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7895 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7896 {
7897 // If we are generating a shared object, we need to add a
7898 // dynamic RELATIVE relocation for this symbol's GOT entry.
7899 if (parameters->options().output_is_position_independent())
7900 {
2ea97941
ILT
7901 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7902 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7903 rel_dyn->add_local_relative(
2ea97941
ILT
7904 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7905 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7906 }
7907 }
7908 }
7909 break;
7910
7911 case elfcpp::R_ARM_TARGET1:
e4782e83 7912 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7913 // This should have been mapped to another type already.
7914 // Fall through.
7915 case elfcpp::R_ARM_COPY:
7916 case elfcpp::R_ARM_GLOB_DAT:
7917 case elfcpp::R_ARM_JUMP_SLOT:
7918 case elfcpp::R_ARM_RELATIVE:
7919 // These are relocations which should only be seen by the
7920 // dynamic linker, and should never be seen here.
7921 gold_error(_("%s: unexpected reloc %u in object file"),
7922 object->name().c_str(), r_type);
7923 break;
7924
f96accdf
DK
7925
7926 // These are initial TLS relocs, which are expected when
7927 // linking.
7928 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7929 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7930 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7931 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7932 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7933 {
7934 bool output_is_shared = parameters->options().shared();
7935 const tls::Tls_optimization optimized_type
7936 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7937 r_type);
7938 switch (r_type)
7939 {
7940 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7941 if (optimized_type == tls::TLSOPT_NONE)
7942 {
7943 // Create a pair of GOT entries for the module index and
7944 // dtv-relative offset.
4a54abbb 7945 Arm_output_data_got<big_endian>* got
f96accdf
DK
7946 = target->got_section(symtab, layout);
7947 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7948 unsigned int shndx = lsym.get_st_shndx();
7949 bool is_ordinary;
7950 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7951 if (!is_ordinary)
4a54abbb
DK
7952 {
7953 object->error(_("local symbol %u has bad shndx %u"),
7954 r_sym, shndx);
7955 break;
7956 }
7957
7958 if (!parameters->doing_static_link())
f96accdf
DK
7959 got->add_local_pair_with_rel(object, r_sym, shndx,
7960 GOT_TYPE_TLS_PAIR,
7961 target->rel_dyn_section(layout),
7962 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7963 else
7964 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7965 object, r_sym);
f96accdf
DK
7966 }
7967 else
7968 // FIXME: TLS optimization not supported yet.
7969 gold_unreachable();
7970 break;
7971
7972 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7973 if (optimized_type == tls::TLSOPT_NONE)
7974 {
7975 // Create a GOT entry for the module index.
7976 target->got_mod_index_entry(symtab, layout, object);
7977 }
7978 else
7979 // FIXME: TLS optimization not supported yet.
7980 gold_unreachable();
7981 break;
7982
7983 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7984 break;
7985
7986 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7987 layout->set_has_static_tls();
7988 if (optimized_type == tls::TLSOPT_NONE)
7989 {
4a54abbb
DK
7990 // Create a GOT entry for the tp-relative offset.
7991 Arm_output_data_got<big_endian>* got
7992 = target->got_section(symtab, layout);
7993 unsigned int r_sym =
7994 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7995 if (!parameters->doing_static_link())
7996 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7997 target->rel_dyn_section(layout),
7998 elfcpp::R_ARM_TLS_TPOFF32);
7999 else if (!object->local_has_got_offset(r_sym,
8000 GOT_TYPE_TLS_OFFSET))
8001 {
8002 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8003 unsigned int got_offset =
8004 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8005 got->add_static_reloc(got_offset,
8006 elfcpp::R_ARM_TLS_TPOFF32, object,
8007 r_sym);
8008 }
f96accdf
DK
8009 }
8010 else
8011 // FIXME: TLS optimization not supported yet.
8012 gold_unreachable();
8013 break;
8014
8015 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8016 layout->set_has_static_tls();
8017 if (output_is_shared)
8018 {
8019 // We need to create a dynamic relocation.
8020 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8021 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8022 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8023 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8024 output_section, data_shndx,
8025 reloc.get_r_offset());
8026 }
8027 break;
8028
8029 default:
8030 gold_unreachable();
8031 }
8032 }
8033 break;
8034
3cef7179
ILT
8035 case elfcpp::R_ARM_PC24:
8036 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8037 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8038 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8039 default:
8040 unsupported_reloc_local(object, r_type);
8041 break;
8042 }
8043}
8044
8045// Report an unsupported relocation against a global symbol.
8046
8047template<bool big_endian>
8048void
8049Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8050 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8051 unsigned int r_type,
8052 Symbol* gsym)
8053{
8054 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8055 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8056}
8057
8a75a161
DK
8058template<bool big_endian>
8059inline bool
8060Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8061 unsigned int r_type)
8062{
8063 switch (r_type)
8064 {
8065 case elfcpp::R_ARM_PC24:
8066 case elfcpp::R_ARM_THM_CALL:
8067 case elfcpp::R_ARM_PLT32:
8068 case elfcpp::R_ARM_CALL:
8069 case elfcpp::R_ARM_JUMP24:
8070 case elfcpp::R_ARM_THM_JUMP24:
8071 case elfcpp::R_ARM_SBREL31:
8072 case elfcpp::R_ARM_PREL31:
8073 case elfcpp::R_ARM_THM_JUMP19:
8074 case elfcpp::R_ARM_THM_JUMP6:
8075 case elfcpp::R_ARM_THM_JUMP11:
8076 case elfcpp::R_ARM_THM_JUMP8:
8077 // All the relocations above are branches except SBREL31 and PREL31.
8078 return false;
8079
8080 default:
8081 // Be conservative and assume this is a function pointer.
8082 return true;
8083 }
8084}
8085
8086template<bool big_endian>
8087inline bool
8088Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8089 Symbol_table*,
8090 Layout*,
8091 Target_arm<big_endian>* target,
6fa2a40b 8092 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8093 unsigned int,
8094 Output_section*,
8095 const elfcpp::Rel<32, big_endian>&,
8096 unsigned int r_type,
8097 const elfcpp::Sym<32, big_endian>&)
8098{
8099 r_type = target->get_real_reloc_type(r_type);
8100 return possible_function_pointer_reloc(r_type);
8101}
8102
8103template<bool big_endian>
8104inline bool
8105Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8106 Symbol_table*,
8107 Layout*,
8108 Target_arm<big_endian>* target,
6fa2a40b 8109 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8110 unsigned int,
8111 Output_section*,
8112 const elfcpp::Rel<32, big_endian>&,
8113 unsigned int r_type,
8114 Symbol* gsym)
8115{
8116 // GOT is not a function.
8117 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8118 return false;
8119
8120 r_type = target->get_real_reloc_type(r_type);
8121 return possible_function_pointer_reloc(r_type);
8122}
8123
4a657b0d
DK
8124// Scan a relocation for a global symbol.
8125
8126template<bool big_endian>
8127inline void
ad0f2072 8128Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8129 Layout* layout,
bec53400 8130 Target_arm* target,
6fa2a40b 8131 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8132 unsigned int data_shndx,
8133 Output_section* output_section,
8134 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8135 unsigned int r_type,
8136 Symbol* gsym)
8137{
c8761b9a
DK
8138 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8139 // section. We check here to avoid creating a dynamic reloc against
8140 // _GLOBAL_OFFSET_TABLE_.
8141 if (!target->has_got_section()
8142 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8143 target->got_section(symtab, layout);
8144
a6d1ef57 8145 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8146 switch (r_type)
8147 {
8148 case elfcpp::R_ARM_NONE:
e4782e83
DK
8149 case elfcpp::R_ARM_V4BX:
8150 case elfcpp::R_ARM_GNU_VTENTRY:
8151 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8152 break;
8153
bec53400 8154 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8155 case elfcpp::R_ARM_ABS16:
8156 case elfcpp::R_ARM_ABS12:
8157 case elfcpp::R_ARM_THM_ABS5:
8158 case elfcpp::R_ARM_ABS8:
8159 case elfcpp::R_ARM_BASE_ABS:
8160 case elfcpp::R_ARM_MOVW_ABS_NC:
8161 case elfcpp::R_ARM_MOVT_ABS:
8162 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8163 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8164 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8165 // Absolute addressing relocations.
bec53400 8166 {
e4782e83
DK
8167 // Make a PLT entry if necessary.
8168 if (this->symbol_needs_plt_entry(gsym))
8169 {
8170 target->make_plt_entry(symtab, layout, gsym);
8171 // Since this is not a PC-relative relocation, we may be
8172 // taking the address of a function. In that case we need to
8173 // set the entry in the dynamic symbol table to the address of
8174 // the PLT entry.
8175 if (gsym->is_from_dynobj() && !parameters->options().shared())
8176 gsym->set_needs_dynsym_value();
8177 }
8178 // Make a dynamic relocation if necessary.
95a2c8d6 8179 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
e4782e83
DK
8180 {
8181 if (gsym->may_need_copy_reloc())
8182 {
8183 target->copy_reloc(symtab, layout, object,
8184 data_shndx, output_section, gsym, reloc);
8185 }
8186 else if ((r_type == elfcpp::R_ARM_ABS32
8187 || r_type == elfcpp::R_ARM_ABS32_NOI)
8188 && gsym->can_use_relative_reloc(false))
8189 {
8190 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8191 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8192 output_section, object,
8193 data_shndx, reloc.get_r_offset());
8194 }
8195 else
8196 {
8197 check_non_pic(object, r_type);
8198 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8199 rel_dyn->add_global(gsym, r_type, output_section, object,
8200 data_shndx, reloc.get_r_offset());
8201 }
8202 }
bec53400
DK
8203 }
8204 break;
8205
e4782e83
DK
8206 case elfcpp::R_ARM_GOTOFF32:
8207 case elfcpp::R_ARM_GOTOFF12:
8208 // We need a GOT section.
8209 target->got_section(symtab, layout);
8210 break;
8211
8212 case elfcpp::R_ARM_REL32:
8213 case elfcpp::R_ARM_LDR_PC_G0:
8214 case elfcpp::R_ARM_SBREL32:
8215 case elfcpp::R_ARM_THM_PC8:
8216 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8217 case elfcpp::R_ARM_MOVW_PREL_NC:
8218 case elfcpp::R_ARM_MOVT_PREL:
8219 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8220 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8221 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8222 case elfcpp::R_ARM_THM_PC12:
8223 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8224 case elfcpp::R_ARM_ALU_PC_G0_NC:
8225 case elfcpp::R_ARM_ALU_PC_G0:
8226 case elfcpp::R_ARM_ALU_PC_G1_NC:
8227 case elfcpp::R_ARM_ALU_PC_G1:
8228 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8229 case elfcpp::R_ARM_LDR_PC_G1:
8230 case elfcpp::R_ARM_LDR_PC_G2:
8231 case elfcpp::R_ARM_LDRS_PC_G0:
8232 case elfcpp::R_ARM_LDRS_PC_G1:
8233 case elfcpp::R_ARM_LDRS_PC_G2:
8234 case elfcpp::R_ARM_LDC_PC_G0:
8235 case elfcpp::R_ARM_LDC_PC_G1:
8236 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8237 case elfcpp::R_ARM_ALU_SB_G0_NC:
8238 case elfcpp::R_ARM_ALU_SB_G0:
8239 case elfcpp::R_ARM_ALU_SB_G1_NC:
8240 case elfcpp::R_ARM_ALU_SB_G1:
8241 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8242 case elfcpp::R_ARM_LDR_SB_G0:
8243 case elfcpp::R_ARM_LDR_SB_G1:
8244 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8245 case elfcpp::R_ARM_LDRS_SB_G0:
8246 case elfcpp::R_ARM_LDRS_SB_G1:
8247 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8248 case elfcpp::R_ARM_LDC_SB_G0:
8249 case elfcpp::R_ARM_LDC_SB_G1:
8250 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8251 case elfcpp::R_ARM_MOVW_BREL_NC:
8252 case elfcpp::R_ARM_MOVT_BREL:
8253 case elfcpp::R_ARM_MOVW_BREL:
8254 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8255 case elfcpp::R_ARM_THM_MOVT_BREL:
8256 case elfcpp::R_ARM_THM_MOVW_BREL:
8257 // Relative addressing relocations.
bec53400
DK
8258 {
8259 // Make a dynamic relocation if necessary.
95a2c8d6 8260 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8261 {
8262 if (target->may_need_copy_reloc(gsym))
8263 {
2ea97941 8264 target->copy_reloc(symtab, layout, object,
bec53400
DK
8265 data_shndx, output_section, gsym, reloc);
8266 }
8267 else
8268 {
8269 check_non_pic(object, r_type);
2ea97941 8270 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8271 rel_dyn->add_global(gsym, r_type, output_section, object,
8272 data_shndx, reloc.get_r_offset());
8273 }
8274 }
8275 }
8276 break;
8277
f4e5969c 8278 case elfcpp::R_ARM_THM_CALL:
bec53400 8279 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8280 case elfcpp::R_ARM_CALL:
8281 case elfcpp::R_ARM_JUMP24:
8282 case elfcpp::R_ARM_THM_JUMP24:
8283 case elfcpp::R_ARM_SBREL31:
c9a2c125 8284 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8285 case elfcpp::R_ARM_THM_JUMP19:
8286 case elfcpp::R_ARM_THM_JUMP6:
8287 case elfcpp::R_ARM_THM_JUMP11:
8288 case elfcpp::R_ARM_THM_JUMP8:
8289 // All the relocation above are branches except for the PREL31 ones.
8290 // A PREL31 relocation can point to a personality function in a shared
8291 // library. In that case we want to use a PLT because we want to
9b547ce6 8292 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8293 // do not support dynamic PREL31 relocations. An REL31 relocation may
8294 // point to a function whose unwinding behaviour is being described but
8295 // we will not mistakenly generate a PLT for that because we should use
8296 // a local section symbol.
8297
bec53400
DK
8298 // If the symbol is fully resolved, this is just a relative
8299 // local reloc. Otherwise we need a PLT entry.
8300 if (gsym->final_value_is_known())
8301 break;
8302 // If building a shared library, we can also skip the PLT entry
8303 // if the symbol is defined in the output file and is protected
8304 // or hidden.
8305 if (gsym->is_defined()
8306 && !gsym->is_from_dynobj()
8307 && !gsym->is_preemptible())
8308 break;
2ea97941 8309 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8310 break;
8311
bec53400 8312 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8313 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8314 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8315 {
8316 // The symbol requires a GOT entry.
4a54abbb 8317 Arm_output_data_got<big_endian>* got =
2ea97941 8318 target->got_section(symtab, layout);
bec53400
DK
8319 if (gsym->final_value_is_known())
8320 got->add_global(gsym, GOT_TYPE_STANDARD);
8321 else
8322 {
8323 // If this symbol is not fully resolved, we need to add a
8324 // GOT entry with a dynamic relocation.
2ea97941 8325 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8326 if (gsym->is_from_dynobj()
8327 || gsym->is_undefined()
fa40b62a
DK
8328 || gsym->is_preemptible()
8329 || (gsym->visibility() == elfcpp::STV_PROTECTED
8330 && parameters->options().shared()))
bec53400
DK
8331 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8332 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8333 else
8334 {
8335 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8336 rel_dyn->add_global_relative(
8337 gsym, elfcpp::R_ARM_RELATIVE, got,
8338 gsym->got_offset(GOT_TYPE_STANDARD));
8339 }
8340 }
8341 }
8342 break;
8343
8344 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8345 case elfcpp::R_ARM_TARGET2:
8346 // These should have been mapped to other types already.
bec53400
DK
8347 // Fall through.
8348 case elfcpp::R_ARM_COPY:
8349 case elfcpp::R_ARM_GLOB_DAT:
8350 case elfcpp::R_ARM_JUMP_SLOT:
8351 case elfcpp::R_ARM_RELATIVE:
8352 // These are relocations which should only be seen by the
8353 // dynamic linker, and should never be seen here.
8354 gold_error(_("%s: unexpected reloc %u in object file"),
8355 object->name().c_str(), r_type);
8356 break;
8357
f96accdf
DK
8358 // These are initial tls relocs, which are expected when
8359 // linking.
8360 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8361 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8362 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8363 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8364 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8365 {
8366 const bool is_final = gsym->final_value_is_known();
8367 const tls::Tls_optimization optimized_type
8368 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8369 switch (r_type)
8370 {
8371 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8372 if (optimized_type == tls::TLSOPT_NONE)
8373 {
8374 // Create a pair of GOT entries for the module index and
8375 // dtv-relative offset.
4a54abbb 8376 Arm_output_data_got<big_endian>* got
f96accdf 8377 = target->got_section(symtab, layout);
4a54abbb
DK
8378 if (!parameters->doing_static_link())
8379 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8380 target->rel_dyn_section(layout),
8381 elfcpp::R_ARM_TLS_DTPMOD32,
8382 elfcpp::R_ARM_TLS_DTPOFF32);
8383 else
8384 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8385 }
8386 else
8387 // FIXME: TLS optimization not supported yet.
8388 gold_unreachable();
8389 break;
8390
8391 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8392 if (optimized_type == tls::TLSOPT_NONE)
8393 {
8394 // Create a GOT entry for the module index.
8395 target->got_mod_index_entry(symtab, layout, object);
8396 }
8397 else
8398 // FIXME: TLS optimization not supported yet.
8399 gold_unreachable();
8400 break;
8401
8402 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8403 break;
8404
8405 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8406 layout->set_has_static_tls();
8407 if (optimized_type == tls::TLSOPT_NONE)
8408 {
4a54abbb
DK
8409 // Create a GOT entry for the tp-relative offset.
8410 Arm_output_data_got<big_endian>* got
8411 = target->got_section(symtab, layout);
8412 if (!parameters->doing_static_link())
8413 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8414 target->rel_dyn_section(layout),
8415 elfcpp::R_ARM_TLS_TPOFF32);
8416 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8417 {
8418 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8419 unsigned int got_offset =
8420 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8421 got->add_static_reloc(got_offset,
8422 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8423 }
f96accdf
DK
8424 }
8425 else
8426 // FIXME: TLS optimization not supported yet.
8427 gold_unreachable();
8428 break;
8429
8430 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8431 layout->set_has_static_tls();
8432 if (parameters->options().shared())
8433 {
8434 // We need to create a dynamic relocation.
8435 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8436 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8437 output_section, object,
8438 data_shndx, reloc.get_r_offset());
8439 }
8440 break;
8441
8442 default:
8443 gold_unreachable();
8444 }
8445 }
8446 break;
8447
3cef7179
ILT
8448 case elfcpp::R_ARM_PC24:
8449 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8450 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8451 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8452 default:
8453 unsupported_reloc_global(object, r_type, gsym);
8454 break;
8455 }
8456}
8457
8458// Process relocations for gc.
8459
8460template<bool big_endian>
8461void
6fa2a40b
CC
8462Target_arm<big_endian>::gc_process_relocs(
8463 Symbol_table* symtab,
8464 Layout* layout,
8465 Sized_relobj_file<32, big_endian>* object,
8466 unsigned int data_shndx,
8467 unsigned int,
8468 const unsigned char* prelocs,
8469 size_t reloc_count,
8470 Output_section* output_section,
8471 bool needs_special_offset_handling,
8472 size_t local_symbol_count,
8473 const unsigned char* plocal_symbols)
4a657b0d
DK
8474{
8475 typedef Target_arm<big_endian> Arm;
2ea97941 8476 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8477
41cbeecc 8478 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8479 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8480 symtab,
2ea97941 8481 layout,
4a657b0d
DK
8482 this,
8483 object,
8484 data_shndx,
8485 prelocs,
8486 reloc_count,
8487 output_section,
8488 needs_special_offset_handling,
8489 local_symbol_count,
8490 plocal_symbols);
8491}
8492
8493// Scan relocations for a section.
8494
8495template<bool big_endian>
8496void
ad0f2072 8497Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8498 Layout* layout,
6fa2a40b 8499 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8500 unsigned int data_shndx,
8501 unsigned int sh_type,
8502 const unsigned char* prelocs,
8503 size_t reloc_count,
8504 Output_section* output_section,
8505 bool needs_special_offset_handling,
8506 size_t local_symbol_count,
8507 const unsigned char* plocal_symbols)
8508{
2ea97941 8509 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8510 if (sh_type == elfcpp::SHT_RELA)
8511 {
8512 gold_error(_("%s: unsupported RELA reloc section"),
8513 object->name().c_str());
8514 return;
8515 }
8516
2ea97941 8517 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8518 symtab,
2ea97941 8519 layout,
4a657b0d
DK
8520 this,
8521 object,
8522 data_shndx,
8523 prelocs,
8524 reloc_count,
8525 output_section,
8526 needs_special_offset_handling,
8527 local_symbol_count,
8528 plocal_symbols);
8529}
8530
8531// Finalize the sections.
8532
8533template<bool big_endian>
8534void
d5b40221 8535Target_arm<big_endian>::do_finalize_sections(
2ea97941 8536 Layout* layout,
f59f41f3
DK
8537 const Input_objects* input_objects,
8538 Symbol_table* symtab)
4a657b0d 8539{
3e235302 8540 bool merged_any_attributes = false;
d5b40221
DK
8541 // Merge processor-specific flags.
8542 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8543 p != input_objects->relobj_end();
8544 ++p)
8545 {
8546 Arm_relobj<big_endian>* arm_relobj =
8547 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8548 if (arm_relobj->merge_flags_and_attributes())
8549 {
8550 this->merge_processor_specific_flags(
8551 arm_relobj->name(),
8552 arm_relobj->processor_specific_flags());
8553 this->merge_object_attributes(arm_relobj->name().c_str(),
8554 arm_relobj->attributes_section_data());
3e235302 8555 merged_any_attributes = true;
7296d933 8556 }
d5b40221
DK
8557 }
8558
8559 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8560 p != input_objects->dynobj_end();
8561 ++p)
8562 {
8563 Arm_dynobj<big_endian>* arm_dynobj =
8564 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8565 this->merge_processor_specific_flags(
8566 arm_dynobj->name(),
8567 arm_dynobj->processor_specific_flags());
a0351a69
DK
8568 this->merge_object_attributes(arm_dynobj->name().c_str(),
8569 arm_dynobj->attributes_section_data());
3e235302 8570 merged_any_attributes = true;
d5b40221
DK
8571 }
8572
da59ad79
DK
8573 // Create an empty uninitialized attribute section if we still don't have it
8574 // at this moment. This happens if there is no attributes sections in all
8575 // inputs.
8576 if (this->attributes_section_data_ == NULL)
8577 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8578
41263c05 8579 const Object_attribute* cpu_arch_attr =
a0351a69 8580 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8581 // Check if we need to use Cortex-A8 workaround.
8582 if (parameters->options().user_set_fix_cortex_a8())
8583 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8584 else
8585 {
8586 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8587 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8588 // profile.
8589 const Object_attribute* cpu_arch_profile_attr =
8590 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8591 this->fix_cortex_a8_ =
8592 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8593 && (cpu_arch_profile_attr->int_value() == 'A'
8594 || cpu_arch_profile_attr->int_value() == 0));
8595 }
8596
a2162063
ILT
8597 // Check if we can use V4BX interworking.
8598 // The V4BX interworking stub contains BX instruction,
8599 // which is not specified for some profiles.
9b2fd367 8600 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8601 && !this->may_use_v4t_interworking())
a2162063
ILT
8602 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8603 "the target profile does not support BX instruction"));
8604
94cdfcff 8605 // Fill in some more dynamic tags.
ea715a34
ILT
8606 const Reloc_section* rel_plt = (this->plt_ == NULL
8607 ? NULL
8608 : this->plt_->rel_plt());
8609 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8610 this->rel_dyn_, true, false);
94cdfcff
DK
8611
8612 // Emit any relocs we saved in an attempt to avoid generating COPY
8613 // relocs.
8614 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8615 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8616
f59f41f3 8617 // Handle the .ARM.exidx section.
2ea97941 8618 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8619
731ca54a
RÁE
8620 if (!parameters->options().relocatable())
8621 {
8622 if (exidx_section != NULL
8623 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8624 {
9b547ce6 8625 // Create __exidx_start and __exidx_end symbols.
731ca54a
RÁE
8626 symtab->define_in_output_data("__exidx_start", NULL,
8627 Symbol_table::PREDEFINED,
8628 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8629 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8630 0, false, true);
8631 symtab->define_in_output_data("__exidx_end", NULL,
8632 Symbol_table::PREDEFINED,
8633 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8634 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8635 0, true, true);
8636
8637 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8638 // the .ARM.exidx section.
8639 if (!layout->script_options()->saw_phdrs_clause())
8640 {
8641 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8642 0)
8643 == NULL);
8644 Output_segment* exidx_segment =
8645 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8646 exidx_segment->add_output_section_to_nonload(exidx_section,
8647 elfcpp::PF_R);
8648 }
8649 }
8650 else
8651 {
8652 symtab->define_as_constant("__exidx_start", NULL,
8653 Symbol_table::PREDEFINED,
8654 0, 0, elfcpp::STT_OBJECT,
8655 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8656 true, false);
8657 symtab->define_as_constant("__exidx_end", NULL,
8658 Symbol_table::PREDEFINED,
8659 0, 0, elfcpp::STT_OBJECT,
8660 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8661 true, false);
8662 }
11af873f 8663 }
a0351a69 8664
3e235302
DK
8665 // Create an .ARM.attributes section if we have merged any attributes
8666 // from inputs.
8667 if (merged_any_attributes)
7296d933
DK
8668 {
8669 Output_attributes_section_data* attributes_section =
8670 new Output_attributes_section_data(*this->attributes_section_data_);
8671 layout->add_output_section_data(".ARM.attributes",
8672 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8673 attributes_section, ORDER_INVALID,
7296d933
DK
8674 false);
8675 }
131687b4
DK
8676
8677 // Fix up links in section EXIDX headers.
8678 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8679 p != layout->section_list().end();
8680 ++p)
8681 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8682 {
8683 Arm_output_section<big_endian>* os =
8684 Arm_output_section<big_endian>::as_arm_output_section(*p);
8685 os->set_exidx_section_link();
8686 }
4a657b0d
DK
8687}
8688
bec53400
DK
8689// Return whether a direct absolute static relocation needs to be applied.
8690// In cases where Scan::local() or Scan::global() has created
8691// a dynamic relocation other than R_ARM_RELATIVE, the addend
8692// of the relocation is carried in the data, and we must not
8693// apply the static relocation.
8694
8695template<bool big_endian>
8696inline bool
8697Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8698 const Sized_symbol<32>* gsym,
95a2c8d6 8699 unsigned int r_type,
bec53400
DK
8700 bool is_32bit,
8701 Output_section* output_section)
8702{
8703 // If the output section is not allocated, then we didn't call
8704 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8705 // the reloc here.
8706 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8707 return true;
8708
95a2c8d6
RS
8709 int ref_flags = Scan::get_reference_flags(r_type);
8710
bec53400
DK
8711 // For local symbols, we will have created a non-RELATIVE dynamic
8712 // relocation only if (a) the output is position independent,
8713 // (b) the relocation is absolute (not pc- or segment-relative), and
8714 // (c) the relocation is not 32 bits wide.
8715 if (gsym == NULL)
8716 return !(parameters->options().output_is_position_independent()
8717 && (ref_flags & Symbol::ABSOLUTE_REF)
8718 && !is_32bit);
8719
8720 // For global symbols, we use the same helper routines used in the
8721 // scan pass. If we did not create a dynamic relocation, or if we
8722 // created a RELATIVE dynamic relocation, we should apply the static
8723 // relocation.
8724 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8725 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8726 && gsym->can_use_relative_reloc(ref_flags
8727 & Symbol::FUNCTION_CALL);
8728 return !has_dyn || is_rel;
8729}
8730
4a657b0d
DK
8731// Perform a relocation.
8732
8733template<bool big_endian>
8734inline bool
8735Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8736 const Relocate_info<32, big_endian>* relinfo,
8737 Target_arm* target,
ca09d69a 8738 Output_section* output_section,
c121c671
DK
8739 size_t relnum,
8740 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8741 unsigned int r_type,
c121c671
DK
8742 const Sized_symbol<32>* gsym,
8743 const Symbol_value<32>* psymval,
8744 unsigned char* view,
ebabffbd 8745 Arm_address address,
f96accdf 8746 section_size_type view_size)
4a657b0d 8747{
c121c671
DK
8748 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8749
a6d1ef57 8750 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8751 const Arm_reloc_property* reloc_property =
8752 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8753 if (reloc_property == NULL)
8754 {
8755 std::string reloc_name =
8756 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8757 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8758 _("cannot relocate %s in object file"),
8759 reloc_name.c_str());
8760 return true;
8761 }
c121c671 8762
2daedcd6
DK
8763 const Arm_relobj<big_endian>* object =
8764 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8765
2daedcd6
DK
8766 // If the final branch target of a relocation is THUMB instruction, this
8767 // is 1. Otherwise it is 0.
8768 Arm_address thumb_bit = 0;
c121c671 8769 Symbol_value<32> symval;
d204b6e9 8770 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8771 bool have_got_offset = false;
8772 unsigned int got_offset = 0;
8773
8774 // If the relocation uses the GOT entry of a symbol instead of the symbol
8775 // itself, we don't care about whether the symbol is defined or what kind
8776 // of symbol it is.
8777 if (reloc_property->uses_got_entry())
8778 {
8779 // Get the GOT offset.
8780 // The GOT pointer points to the end of the GOT section.
8781 // We need to subtract the size of the GOT section to get
8782 // the actual offset to use in the relocation.
8783 // TODO: We should move GOT offset computing code in TLS relocations
8784 // to here.
8785 switch (r_type)
8786 {
8787 case elfcpp::R_ARM_GOT_BREL:
8788 case elfcpp::R_ARM_GOT_PREL:
8789 if (gsym != NULL)
8790 {
8791 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8792 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8793 - target->got_size());
8794 }
8795 else
8796 {
8797 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8798 gold_assert(object->local_has_got_offset(r_sym,
8799 GOT_TYPE_STANDARD));
8800 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8801 - target->got_size());
8802 }
8803 have_got_offset = true;
8804 break;
8805
8806 default:
8807 break;
8808 }
8809 }
8810 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8811 {
2daedcd6
DK
8812 if (gsym != NULL)
8813 {
8814 // This is a global symbol. Determine if we use PLT and if the
8815 // final target is THUMB.
95a2c8d6 8816 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8817 {
8818 // This uses a PLT, change the symbol value.
8819 symval.set_output_value(target->plt_section()->address()
8820 + gsym->plt_offset());
8821 psymval = &symval;
8822 }
d204b6e9
DK
8823 else if (gsym->is_weak_undefined())
8824 {
8825 // This is a weakly undefined symbol and we do not use PLT
8826 // for this relocation. A branch targeting this symbol will
8827 // be converted into an NOP.
8828 is_weakly_undefined_without_plt = true;
8829 }
b2286c10
DK
8830 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8831 {
8832 // This relocation uses the symbol value but the symbol is
8833 // undefined. Exit early and have the caller reporting an
8834 // error.
8835 return true;
8836 }
2daedcd6
DK
8837 else
8838 {
8839 // Set thumb bit if symbol:
8840 // -Has type STT_ARM_TFUNC or
8841 // -Has type STT_FUNC, is defined and with LSB in value set.
8842 thumb_bit =
8843 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8844 || (gsym->type() == elfcpp::STT_FUNC
8845 && !gsym->is_undefined()
8846 && ((psymval->value(object, 0) & 1) != 0)))
8847 ? 1
8848 : 0);
8849 }
8850 }
8851 else
8852 {
8853 // This is a local symbol. Determine if the final target is THUMB.
8854 // We saved this information when all the local symbols were read.
8855 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8856 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8857 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8858 }
8859 }
8860 else
8861 {
8862 // This is a fake relocation synthesized for a stub. It does not have
8863 // a real symbol. We just look at the LSB of the symbol value to
8864 // determine if the target is THUMB or not.
8865 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8866 }
8867
2daedcd6
DK
8868 // Strip LSB if this points to a THUMB target.
8869 if (thumb_bit != 0
5c57f1be 8870 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8871 && ((psymval->value(object, 0) & 1) != 0))
8872 {
8873 Arm_address stripped_value =
8874 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8875 symval.set_output_value(stripped_value);
8876 psymval = &symval;
8877 }
8878
d204b6e9
DK
8879 // To look up relocation stubs, we need to pass the symbol table index of
8880 // a local symbol.
8881 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8882
b10d2873
ILT
8883 // Get the addressing origin of the output segment defining the
8884 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8885 Arm_address sym_origin = 0;
5c57f1be 8886 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8887 {
8888 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8889 // R_ARM_BASE_ABS with the NULL symbol will give the
8890 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8891 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8892 sym_origin = target->got_plt_section()->address();
8893 else if (gsym == NULL)
8894 sym_origin = 0;
8895 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8896 sym_origin = gsym->output_segment()->vaddr();
8897 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8898 sym_origin = gsym->output_data()->address();
8899
8900 // TODO: Assumes the segment base to be zero for the global symbols
8901 // till the proper support for the segment-base-relative addressing
8902 // will be implemented. This is consistent with GNU ld.
8903 }
8904
5c57f1be
DK
8905 // For relative addressing relocation, find out the relative address base.
8906 Arm_address relative_address_base = 0;
8907 switch(reloc_property->relative_address_base())
8908 {
8909 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8910 // Relocations with relative address bases RAB_TLS and RAB_tp are
8911 // handled by relocate_tls. So we do not need to do anything here.
8912 case Arm_reloc_property::RAB_TLS:
8913 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8914 break;
8915 case Arm_reloc_property::RAB_B_S:
8916 relative_address_base = sym_origin;
8917 break;
8918 case Arm_reloc_property::RAB_GOT_ORG:
8919 relative_address_base = target->got_plt_section()->address();
8920 break;
8921 case Arm_reloc_property::RAB_P:
8922 relative_address_base = address;
8923 break;
8924 case Arm_reloc_property::RAB_Pa:
8925 relative_address_base = address & 0xfffffffcU;
8926 break;
8927 default:
8928 gold_unreachable();
8929 }
8930
c121c671
DK
8931 typename Arm_relocate_functions::Status reloc_status =
8932 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8933 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8934 switch (r_type)
8935 {
8936 case elfcpp::R_ARM_NONE:
8937 break;
8938
5e445df6 8939 case elfcpp::R_ARM_ABS8:
95a2c8d6 8940 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8941 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8942 break;
8943
8944 case elfcpp::R_ARM_ABS12:
95a2c8d6 8945 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8946 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8947 break;
8948
8949 case elfcpp::R_ARM_ABS16:
95a2c8d6 8950 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 8951 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8952 break;
8953
c121c671 8954 case elfcpp::R_ARM_ABS32:
95a2c8d6 8955 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 8956 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8957 thumb_bit);
c121c671
DK
8958 break;
8959
be8fcb75 8960 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 8961 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
8962 // No thumb bit for this relocation: (S + A)
8963 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8964 0);
be8fcb75
ILT
8965 break;
8966
fd3c5f0b 8967 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 8968 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8969 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8970 0, thumb_bit,
8971 check_overflow);
fd3c5f0b
ILT
8972 break;
8973
8974 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 8975 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 8976 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
8977 break;
8978
8979 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 8980 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8981 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8982 0, thumb_bit, false);
fd3c5f0b
ILT
8983 break;
8984
8985 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 8986 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
8987 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8988 psymval, 0);
fd3c5f0b
ILT
8989 break;
8990
c2a122b6 8991 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 8992 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 8993 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
8994 reloc_status =
8995 Arm_relocate_functions::movw(view, object, psymval,
8996 relative_address_base, thumb_bit,
8997 check_overflow);
c2a122b6
ILT
8998 break;
8999
9000 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9001 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9002 reloc_status =
9003 Arm_relocate_functions::movt(view, object, psymval,
9004 relative_address_base);
c2a122b6
ILT
9005 break;
9006
9007 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9008 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9009 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9010 reloc_status =
9011 Arm_relocate_functions::thm_movw(view, object, psymval,
9012 relative_address_base,
9013 thumb_bit, check_overflow);
c2a122b6
ILT
9014 break;
9015
9016 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9017 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9018 reloc_status =
9019 Arm_relocate_functions::thm_movt(view, object, psymval,
9020 relative_address_base);
02961d7e 9021 break;
5c57f1be 9022
c121c671
DK
9023 case elfcpp::R_ARM_REL32:
9024 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9025 address, thumb_bit);
c121c671
DK
9026 break;
9027
be8fcb75 9028 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9029 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9030 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9031 break;
9032
1521477a 9033 // Thumb long branches.
c121c671 9034 case elfcpp::R_ARM_THM_CALL:
51938283 9035 case elfcpp::R_ARM_THM_XPC22:
1521477a 9036 case elfcpp::R_ARM_THM_JUMP24:
51938283 9037 reloc_status =
1521477a
DK
9038 Arm_relocate_functions::thumb_branch_common(
9039 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9040 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9041 break;
9042
c121c671
DK
9043 case elfcpp::R_ARM_GOTOFF32:
9044 {
ebabffbd 9045 Arm_address got_origin;
c121c671
DK
9046 got_origin = target->got_plt_section()->address();
9047 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9048 got_origin, thumb_bit);
c121c671
DK
9049 }
9050 break;
9051
9052 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9053 gold_assert(gsym != NULL);
9054 reloc_status =
9055 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9056 break;
9057
be8fcb75 9058 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9059 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9060 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9061 break;
9062
c121c671
DK
9063 case elfcpp::R_ARM_GOT_BREL:
9064 gold_assert(have_got_offset);
9065 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9066 break;
9067
7f5309a5
ILT
9068 case elfcpp::R_ARM_GOT_PREL:
9069 gold_assert(have_got_offset);
9070 // Get the address origin for GOT PLT, which is allocated right
9071 // after the GOT section, to calculate an absolute address of
9072 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9073 Arm_address got_origin;
7f5309a5
ILT
9074 got_origin = target->got_plt_section()->address();
9075 reloc_status = Arm_relocate_functions::got_prel(view,
9076 got_origin + got_offset,
9077 address);
9078 break;
9079
c121c671 9080 case elfcpp::R_ARM_PLT32:
1521477a
DK
9081 case elfcpp::R_ARM_CALL:
9082 case elfcpp::R_ARM_JUMP24:
9083 case elfcpp::R_ARM_XPC25:
c121c671
DK
9084 gold_assert(gsym == NULL
9085 || gsym->has_plt_offset()
9086 || gsym->final_value_is_known()
9087 || (gsym->is_defined()
9088 && !gsym->is_from_dynobj()
9089 && !gsym->is_preemptible()));
d204b6e9 9090 reloc_status =
1521477a
DK
9091 Arm_relocate_functions::arm_branch_common(
9092 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9093 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9094 break;
9095
41263c05
DK
9096 case elfcpp::R_ARM_THM_JUMP19:
9097 reloc_status =
9098 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9099 thumb_bit);
9100 break;
9101
800d0f56
ILT
9102 case elfcpp::R_ARM_THM_JUMP6:
9103 reloc_status =
9104 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9105 break;
9106
9107 case elfcpp::R_ARM_THM_JUMP8:
9108 reloc_status =
9109 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9110 break;
9111
9112 case elfcpp::R_ARM_THM_JUMP11:
9113 reloc_status =
9114 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9115 break;
9116
c121c671
DK
9117 case elfcpp::R_ARM_PREL31:
9118 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9119 address, thumb_bit);
c121c671
DK
9120 break;
9121
a2162063 9122 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9123 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9124 {
9125 const bool is_v4bx_interworking =
9126 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9127 reloc_status =
9128 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9129 is_v4bx_interworking);
9130 }
a2162063
ILT
9131 break;
9132
11b861d5
DK
9133 case elfcpp::R_ARM_THM_PC8:
9134 reloc_status =
9135 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9136 break;
9137
9138 case elfcpp::R_ARM_THM_PC12:
9139 reloc_status =
9140 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9141 break;
9142
9143 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9144 reloc_status =
9145 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9146 thumb_bit);
9147 break;
9148
b10d2873 9149 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9150 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9151 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9152 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9153 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9154 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9155 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9156 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9157 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9158 case elfcpp::R_ARM_ALU_SB_G2:
9159 reloc_status =
5c57f1be
DK
9160 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9161 reloc_property->group_index(),
9162 relative_address_base,
9163 thumb_bit, check_overflow);
b10d2873
ILT
9164 break;
9165
9166 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9167 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9168 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9169 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9170 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9171 case elfcpp::R_ARM_LDR_SB_G2:
9172 reloc_status =
5c57f1be
DK
9173 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9174 reloc_property->group_index(),
9175 relative_address_base);
b10d2873
ILT
9176 break;
9177
9178 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9179 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9180 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9181 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9182 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9183 case elfcpp::R_ARM_LDRS_SB_G2:
9184 reloc_status =
5c57f1be
DK
9185 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9186 reloc_property->group_index(),
9187 relative_address_base);
b10d2873
ILT
9188 break;
9189
9190 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9191 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9192 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9193 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9194 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9195 case elfcpp::R_ARM_LDC_SB_G2:
9196 reloc_status =
5c57f1be
DK
9197 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9198 reloc_property->group_index(),
9199 relative_address_base);
c121c671
DK
9200 break;
9201
f96accdf
DK
9202 // These are initial tls relocs, which are expected when
9203 // linking.
9204 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9205 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9206 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9207 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9208 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9209 reloc_status =
9210 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9211 view, address, view_size);
9212 break;
9213
3cef7179
ILT
9214 // The known and unknown unsupported and/or deprecated relocations.
9215 case elfcpp::R_ARM_PC24:
9216 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9217 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9218 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9219 default:
3cef7179
ILT
9220 // Just silently leave the method. We should get an appropriate error
9221 // message in the scan methods.
9222 break;
c121c671
DK
9223 }
9224
9225 // Report any errors.
9226 switch (reloc_status)
9227 {
9228 case Arm_relocate_functions::STATUS_OKAY:
9229 break;
9230 case Arm_relocate_functions::STATUS_OVERFLOW:
9231 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9232 _("relocation overflow in %s"),
9233 reloc_property->name().c_str());
c121c671
DK
9234 break;
9235 case Arm_relocate_functions::STATUS_BAD_RELOC:
9236 gold_error_at_location(
9237 relinfo,
9238 relnum,
9239 rel.get_r_offset(),
a2c7281b
DK
9240 _("unexpected opcode while processing relocation %s"),
9241 reloc_property->name().c_str());
c121c671 9242 break;
4a657b0d
DK
9243 default:
9244 gold_unreachable();
9245 }
9246
9247 return true;
9248}
9249
f96accdf
DK
9250// Perform a TLS relocation.
9251
9252template<bool big_endian>
9253inline typename Arm_relocate_functions<big_endian>::Status
9254Target_arm<big_endian>::Relocate::relocate_tls(
9255 const Relocate_info<32, big_endian>* relinfo,
9256 Target_arm<big_endian>* target,
9257 size_t relnum,
9258 const elfcpp::Rel<32, big_endian>& rel,
9259 unsigned int r_type,
9260 const Sized_symbol<32>* gsym,
9261 const Symbol_value<32>* psymval,
9262 unsigned char* view,
4a54abbb 9263 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9264 section_size_type /*view_size*/ )
9265{
9266 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9267 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9268 Output_segment* tls_segment = relinfo->layout->tls_segment();
9269
6fa2a40b 9270 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9271
9272 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9273
9274 const bool is_final = (gsym == NULL
9275 ? !parameters->options().shared()
9276 : gsym->final_value_is_known());
9277 const tls::Tls_optimization optimized_type
9278 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9279 switch (r_type)
9280 {
9281 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9282 {
9283 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9284 unsigned int got_offset;
9285 if (gsym != NULL)
9286 {
9287 gold_assert(gsym->has_got_offset(got_type));
9288 got_offset = gsym->got_offset(got_type) - target->got_size();
9289 }
9290 else
9291 {
9292 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9293 gold_assert(object->local_has_got_offset(r_sym, got_type));
9294 got_offset = (object->local_got_offset(r_sym, got_type)
9295 - target->got_size());
9296 }
9297 if (optimized_type == tls::TLSOPT_NONE)
9298 {
4a54abbb
DK
9299 Arm_address got_entry =
9300 target->got_plt_section()->address() + got_offset;
9301
9302 // Relocate the field with the PC relative offset of the pair of
9303 // GOT entries.
29ab395d 9304 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9305 return ArmRelocFuncs::STATUS_OKAY;
9306 }
9307 }
9308 break;
9309
9310 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9311 if (optimized_type == tls::TLSOPT_NONE)
9312 {
9313 // Relocate the field with the offset of the GOT entry for
9314 // the module index.
9315 unsigned int got_offset;
9316 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9317 - target->got_size());
4a54abbb
DK
9318 Arm_address got_entry =
9319 target->got_plt_section()->address() + got_offset;
9320
9321 // Relocate the field with the PC relative offset of the pair of
9322 // GOT entries.
29ab395d 9323 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9324 return ArmRelocFuncs::STATUS_OKAY;
9325 }
9326 break;
9327
9328 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
29ab395d 9329 RelocFuncs::rel32_unaligned(view, value);
f96accdf
DK
9330 return ArmRelocFuncs::STATUS_OKAY;
9331
9332 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9333 if (optimized_type == tls::TLSOPT_NONE)
9334 {
9335 // Relocate the field with the offset of the GOT entry for
9336 // the tp-relative offset of the symbol.
9337 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9338 unsigned int got_offset;
9339 if (gsym != NULL)
9340 {
9341 gold_assert(gsym->has_got_offset(got_type));
9342 got_offset = gsym->got_offset(got_type);
9343 }
9344 else
9345 {
9346 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9347 gold_assert(object->local_has_got_offset(r_sym, got_type));
9348 got_offset = object->local_got_offset(r_sym, got_type);
9349 }
4a54abbb 9350
f96accdf
DK
9351 // All GOT offsets are relative to the end of the GOT.
9352 got_offset -= target->got_size();
4a54abbb
DK
9353
9354 Arm_address got_entry =
9355 target->got_plt_section()->address() + got_offset;
9356
9357 // Relocate the field with the PC relative offset of the GOT entry.
29ab395d 9358 RelocFuncs::pcrel32_unaligned(view, got_entry, address);
f96accdf
DK
9359 return ArmRelocFuncs::STATUS_OKAY;
9360 }
9361 break;
9362
9363 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9364 // If we're creating a shared library, a dynamic relocation will
9365 // have been created for this location, so do not apply it now.
9366 if (!parameters->options().shared())
9367 {
9368 gold_assert(tls_segment != NULL);
4a54abbb
DK
9369
9370 // $tp points to the TCB, which is followed by the TLS, so we
9371 // need to add TCB size to the offset.
9372 Arm_address aligned_tcb_size =
9373 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
29ab395d 9374 RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);
4a54abbb 9375
f96accdf
DK
9376 }
9377 return ArmRelocFuncs::STATUS_OKAY;
9378
9379 default:
9380 gold_unreachable();
9381 }
9382
9383 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9384 _("unsupported reloc %u"),
9385 r_type);
9386 return ArmRelocFuncs::STATUS_BAD_RELOC;
9387}
9388
4a657b0d
DK
9389// Relocate section data.
9390
9391template<bool big_endian>
9392void
9393Target_arm<big_endian>::relocate_section(
9394 const Relocate_info<32, big_endian>* relinfo,
9395 unsigned int sh_type,
9396 const unsigned char* prelocs,
9397 size_t reloc_count,
9398 Output_section* output_section,
9399 bool needs_special_offset_handling,
9400 unsigned char* view,
ebabffbd 9401 Arm_address address,
364c7fa5
ILT
9402 section_size_type view_size,
9403 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9404{
9405 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9406 gold_assert(sh_type == elfcpp::SHT_REL);
9407
218c5831
DK
9408 // See if we are relocating a relaxed input section. If so, the view
9409 // covers the whole output section and we need to adjust accordingly.
9410 if (needs_special_offset_handling)
43d12afe 9411 {
218c5831
DK
9412 const Output_relaxed_input_section* poris =
9413 output_section->find_relaxed_input_section(relinfo->object,
9414 relinfo->data_shndx);
9415 if (poris != NULL)
9416 {
9417 Arm_address section_address = poris->address();
9418 section_size_type section_size = poris->data_size();
9419
9420 gold_assert((section_address >= address)
9421 && ((section_address + section_size)
9422 <= (address + view_size)));
9423
9424 off_t offset = section_address - address;
9425 view += offset;
9426 address += offset;
9427 view_size = section_size;
9428 }
43d12afe
DK
9429 }
9430
4a657b0d
DK
9431 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9432 Arm_relocate>(
9433 relinfo,
9434 this,
9435 prelocs,
9436 reloc_count,
9437 output_section,
9438 needs_special_offset_handling,
9439 view,
9440 address,
364c7fa5
ILT
9441 view_size,
9442 reloc_symbol_changes);
4a657b0d
DK
9443}
9444
9445// Return the size of a relocation while scanning during a relocatable
9446// link.
9447
9448template<bool big_endian>
9449unsigned int
9450Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9451 unsigned int r_type,
9452 Relobj* object)
9453{
a6d1ef57 9454 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9455 const Arm_reloc_property* arp =
9456 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9457 if (arp != NULL)
9458 return arp->size();
9459 else
4a657b0d 9460 {
5c57f1be
DK
9461 std::string reloc_name =
9462 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9463 gold_error(_("%s: unexpected %s in object file"),
9464 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9465 return 0;
9466 }
9467}
9468
9469// Scan the relocs during a relocatable link.
9470
9471template<bool big_endian>
9472void
9473Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9474 Symbol_table* symtab,
2ea97941 9475 Layout* layout,
6fa2a40b 9476 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9477 unsigned int data_shndx,
9478 unsigned int sh_type,
9479 const unsigned char* prelocs,
9480 size_t reloc_count,
9481 Output_section* output_section,
9482 bool needs_special_offset_handling,
9483 size_t local_symbol_count,
9484 const unsigned char* plocal_symbols,
9485 Relocatable_relocs* rr)
9486{
9487 gold_assert(sh_type == elfcpp::SHT_REL);
9488
5c388529 9489 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9490 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9491
9492 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9493 Scan_relocatable_relocs>(
4a657b0d 9494 symtab,
2ea97941 9495 layout,
4a657b0d
DK
9496 object,
9497 data_shndx,
9498 prelocs,
9499 reloc_count,
9500 output_section,
9501 needs_special_offset_handling,
9502 local_symbol_count,
9503 plocal_symbols,
9504 rr);
9505}
9506
9507// Relocate a section during a relocatable link.
9508
9509template<bool big_endian>
9510void
9511Target_arm<big_endian>::relocate_for_relocatable(
9512 const Relocate_info<32, big_endian>* relinfo,
9513 unsigned int sh_type,
9514 const unsigned char* prelocs,
9515 size_t reloc_count,
9516 Output_section* output_section,
9517 off_t offset_in_output_section,
9518 const Relocatable_relocs* rr,
9519 unsigned char* view,
ebabffbd 9520 Arm_address view_address,
4a657b0d
DK
9521 section_size_type view_size,
9522 unsigned char* reloc_view,
9523 section_size_type reloc_view_size)
9524{
9525 gold_assert(sh_type == elfcpp::SHT_REL);
9526
9527 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9528 relinfo,
9529 prelocs,
9530 reloc_count,
9531 output_section,
9532 offset_in_output_section,
9533 rr,
9534 view,
9535 view_address,
9536 view_size,
9537 reloc_view,
9538 reloc_view_size);
9539}
9540
5c388529
DK
9541// Perform target-specific processing in a relocatable link. This is
9542// only used if we use the relocation strategy RELOC_SPECIAL.
9543
9544template<bool big_endian>
9545void
9546Target_arm<big_endian>::relocate_special_relocatable(
9547 const Relocate_info<32, big_endian>* relinfo,
9548 unsigned int sh_type,
9549 const unsigned char* preloc_in,
9550 size_t relnum,
9551 Output_section* output_section,
9552 off_t offset_in_output_section,
9553 unsigned char* view,
9554 elfcpp::Elf_types<32>::Elf_Addr view_address,
9555 section_size_type,
9556 unsigned char* preloc_out)
9557{
9558 // We can only handle REL type relocation sections.
9559 gold_assert(sh_type == elfcpp::SHT_REL);
9560
9561 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9562 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9563 Reltype_write;
9564 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9565
9566 const Arm_relobj<big_endian>* object =
9567 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9568 const unsigned int local_count = object->local_symbol_count();
9569
9570 Reltype reloc(preloc_in);
9571 Reltype_write reloc_write(preloc_out);
9572
9573 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9574 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9575 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9576
9577 const Arm_reloc_property* arp =
9578 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9579 gold_assert(arp != NULL);
9580
9581 // Get the new symbol index.
9582 // We only use RELOC_SPECIAL strategy in local relocations.
9583 gold_assert(r_sym < local_count);
9584
9585 // We are adjusting a section symbol. We need to find
9586 // the symbol table index of the section symbol for
9587 // the output section corresponding to input section
9588 // in which this symbol is defined.
9589 bool is_ordinary;
9590 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9591 gold_assert(is_ordinary);
9592 Output_section* os = object->output_section(shndx);
9593 gold_assert(os != NULL);
9594 gold_assert(os->needs_symtab_index());
9595 unsigned int new_symndx = os->symtab_index();
9596
9597 // Get the new offset--the location in the output section where
9598 // this relocation should be applied.
9599
9600 Arm_address offset = reloc.get_r_offset();
9601 Arm_address new_offset;
9602 if (offset_in_output_section != invalid_address)
9603 new_offset = offset + offset_in_output_section;
9604 else
9605 {
9606 section_offset_type sot_offset =
9607 convert_types<section_offset_type, Arm_address>(offset);
9608 section_offset_type new_sot_offset =
9609 output_section->output_offset(object, relinfo->data_shndx,
9610 sot_offset);
9611 gold_assert(new_sot_offset != -1);
9612 new_offset = new_sot_offset;
9613 }
9614
9615 // In an object file, r_offset is an offset within the section.
9616 // In an executable or dynamic object, generated by
9617 // --emit-relocs, r_offset is an absolute address.
9618 if (!parameters->options().relocatable())
9619 {
9620 new_offset += view_address;
9621 if (offset_in_output_section != invalid_address)
9622 new_offset -= offset_in_output_section;
9623 }
9624
9625 reloc_write.put_r_offset(new_offset);
9626 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9627
9628 // Handle the reloc addend.
9629 // The relocation uses a section symbol in the input file.
9630 // We are adjusting it to use a section symbol in the output
9631 // file. The input section symbol refers to some address in
9632 // the input section. We need the relocation in the output
9633 // file to refer to that same address. This adjustment to
9634 // the addend is the same calculation we use for a simple
9635 // absolute relocation for the input section symbol.
9636
9637 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9638
9639 // Handle THUMB bit.
9640 Symbol_value<32> symval;
9641 Arm_address thumb_bit =
9642 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9643 if (thumb_bit != 0
9644 && arp->uses_thumb_bit()
9645 && ((psymval->value(object, 0) & 1) != 0))
9646 {
9647 Arm_address stripped_value =
9648 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9649 symval.set_output_value(stripped_value);
9650 psymval = &symval;
9651 }
9652
9653 unsigned char* paddend = view + offset;
9654 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9655 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9656 switch (r_type)
9657 {
9658 case elfcpp::R_ARM_ABS8:
9659 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9660 psymval);
9661 break;
9662
9663 case elfcpp::R_ARM_ABS12:
9664 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9665 psymval);
9666 break;
9667
9668 case elfcpp::R_ARM_ABS16:
9669 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9670 psymval);
9671 break;
9672
9673 case elfcpp::R_ARM_THM_ABS5:
9674 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9675 object,
9676 psymval);
9677 break;
9678
9679 case elfcpp::R_ARM_MOVW_ABS_NC:
9680 case elfcpp::R_ARM_MOVW_PREL_NC:
9681 case elfcpp::R_ARM_MOVW_BREL_NC:
9682 case elfcpp::R_ARM_MOVW_BREL:
9683 reloc_status = Arm_relocate_functions<big_endian>::movw(
9684 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9685 break;
9686
9687 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9688 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9689 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9690 case elfcpp::R_ARM_THM_MOVW_BREL:
9691 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9692 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9693 break;
9694
9695 case elfcpp::R_ARM_THM_CALL:
9696 case elfcpp::R_ARM_THM_XPC22:
9697 case elfcpp::R_ARM_THM_JUMP24:
9698 reloc_status =
9699 Arm_relocate_functions<big_endian>::thumb_branch_common(
9700 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9701 false);
9702 break;
9703
9704 case elfcpp::R_ARM_PLT32:
9705 case elfcpp::R_ARM_CALL:
9706 case elfcpp::R_ARM_JUMP24:
9707 case elfcpp::R_ARM_XPC25:
9708 reloc_status =
9709 Arm_relocate_functions<big_endian>::arm_branch_common(
9710 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9711 false);
9712 break;
9713
9714 case elfcpp::R_ARM_THM_JUMP19:
9715 reloc_status =
9716 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9717 psymval, 0, thumb_bit);
9718 break;
9719
9720 case elfcpp::R_ARM_THM_JUMP6:
9721 reloc_status =
9722 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9723 0);
9724 break;
9725
9726 case elfcpp::R_ARM_THM_JUMP8:
9727 reloc_status =
9728 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9729 0);
9730 break;
9731
9732 case elfcpp::R_ARM_THM_JUMP11:
9733 reloc_status =
9734 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9735 0);
9736 break;
9737
9738 case elfcpp::R_ARM_PREL31:
9739 reloc_status =
9740 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9741 thumb_bit);
9742 break;
9743
9744 case elfcpp::R_ARM_THM_PC8:
9745 reloc_status =
9746 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9747 0);
9748 break;
9749
9750 case elfcpp::R_ARM_THM_PC12:
9751 reloc_status =
9752 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9753 0);
9754 break;
9755
9756 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9757 reloc_status =
9758 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9759 0, thumb_bit);
9760 break;
9761
9762 // These relocation truncate relocation results so we cannot handle them
9763 // in a relocatable link.
9764 case elfcpp::R_ARM_MOVT_ABS:
9765 case elfcpp::R_ARM_THM_MOVT_ABS:
9766 case elfcpp::R_ARM_MOVT_PREL:
9767 case elfcpp::R_ARM_MOVT_BREL:
9768 case elfcpp::R_ARM_THM_MOVT_PREL:
9769 case elfcpp::R_ARM_THM_MOVT_BREL:
9770 case elfcpp::R_ARM_ALU_PC_G0_NC:
9771 case elfcpp::R_ARM_ALU_PC_G0:
9772 case elfcpp::R_ARM_ALU_PC_G1_NC:
9773 case elfcpp::R_ARM_ALU_PC_G1:
9774 case elfcpp::R_ARM_ALU_PC_G2:
9775 case elfcpp::R_ARM_ALU_SB_G0_NC:
9776 case elfcpp::R_ARM_ALU_SB_G0:
9777 case elfcpp::R_ARM_ALU_SB_G1_NC:
9778 case elfcpp::R_ARM_ALU_SB_G1:
9779 case elfcpp::R_ARM_ALU_SB_G2:
9780 case elfcpp::R_ARM_LDR_PC_G0:
9781 case elfcpp::R_ARM_LDR_PC_G1:
9782 case elfcpp::R_ARM_LDR_PC_G2:
9783 case elfcpp::R_ARM_LDR_SB_G0:
9784 case elfcpp::R_ARM_LDR_SB_G1:
9785 case elfcpp::R_ARM_LDR_SB_G2:
9786 case elfcpp::R_ARM_LDRS_PC_G0:
9787 case elfcpp::R_ARM_LDRS_PC_G1:
9788 case elfcpp::R_ARM_LDRS_PC_G2:
9789 case elfcpp::R_ARM_LDRS_SB_G0:
9790 case elfcpp::R_ARM_LDRS_SB_G1:
9791 case elfcpp::R_ARM_LDRS_SB_G2:
9792 case elfcpp::R_ARM_LDC_PC_G0:
9793 case elfcpp::R_ARM_LDC_PC_G1:
9794 case elfcpp::R_ARM_LDC_PC_G2:
9795 case elfcpp::R_ARM_LDC_SB_G0:
9796 case elfcpp::R_ARM_LDC_SB_G1:
9797 case elfcpp::R_ARM_LDC_SB_G2:
9798 gold_error(_("cannot handle %s in a relocatable link"),
9799 arp->name().c_str());
9800 break;
9801
9802 default:
9803 gold_unreachable();
9804 }
9805
9806 // Report any errors.
9807 switch (reloc_status)
9808 {
9809 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9810 break;
9811 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9812 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9813 _("relocation overflow in %s"),
9814 arp->name().c_str());
9815 break;
9816 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9817 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9818 _("unexpected opcode while processing relocation %s"),
9819 arp->name().c_str());
9820 break;
9821 default:
9822 gold_unreachable();
9823 }
9824}
9825
94cdfcff
DK
9826// Return the value to use for a dynamic symbol which requires special
9827// treatment. This is how we support equality comparisons of function
9828// pointers across shared library boundaries, as described in the
9829// processor specific ABI supplement.
9830
4a657b0d
DK
9831template<bool big_endian>
9832uint64_t
94cdfcff 9833Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9834{
94cdfcff
DK
9835 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9836 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9837}
9838
9839// Map platform-specific relocs to real relocs
9840//
9841template<bool big_endian>
9842unsigned int
ca09d69a 9843Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9844{
9845 switch (r_type)
9846 {
9847 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9848 // This is either R_ARM_ABS32 or R_ARM_REL32;
9849 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9850
9851 case elfcpp::R_ARM_TARGET2:
9b547ce6 9852 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9853 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9854
9855 default:
9856 return r_type;
9857 }
9858}
9859
d5b40221
DK
9860// Whether if two EABI versions V1 and V2 are compatible.
9861
9862template<bool big_endian>
9863bool
9864Target_arm<big_endian>::are_eabi_versions_compatible(
9865 elfcpp::Elf_Word v1,
9866 elfcpp::Elf_Word v2)
9867{
9868 // v4 and v5 are the same spec before and after it was released,
9869 // so allow mixing them.
106e8a6c
DK
9870 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9871 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9872 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9873 return true;
9874
9875 return v1 == v2;
9876}
9877
9878// Combine FLAGS from an input object called NAME and the processor-specific
9879// flags in the ELF header of the output. Much of this is adapted from the
9880// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9881// in bfd/elf32-arm.c.
9882
9883template<bool big_endian>
9884void
9885Target_arm<big_endian>::merge_processor_specific_flags(
9886 const std::string& name,
9887 elfcpp::Elf_Word flags)
9888{
9889 if (this->are_processor_specific_flags_set())
9890 {
9891 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9892
9893 // Nothing to merge if flags equal to those in output.
9894 if (flags == out_flags)
9895 return;
9896
9897 // Complain about various flag mismatches.
9898 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9899 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9900 if (!this->are_eabi_versions_compatible(version1, version2)
9901 && parameters->options().warn_mismatch())
d5b40221
DK
9902 gold_error(_("Source object %s has EABI version %d but output has "
9903 "EABI version %d."),
9904 name.c_str(),
9905 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9906 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9907 }
9908 else
9909 {
9910 // If the input is the default architecture and had the default
9911 // flags then do not bother setting the flags for the output
9912 // architecture, instead allow future merges to do this. If no
9913 // future merges ever set these flags then they will retain their
9914 // uninitialised values, which surprise surprise, correspond
9915 // to the default values.
9916 if (flags == 0)
9917 return;
9918
9919 // This is the first time, just copy the flags.
9920 // We only copy the EABI version for now.
9921 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9922 }
9923}
9924
9925// Adjust ELF file header.
9926template<bool big_endian>
9927void
9928Target_arm<big_endian>::do_adjust_elf_header(
9929 unsigned char* view,
9930 int len) const
9931{
9932 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9933
9934 elfcpp::Ehdr<32, big_endian> ehdr(view);
9935 unsigned char e_ident[elfcpp::EI_NIDENT];
9936 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9937
9938 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9939 == elfcpp::EF_ARM_EABI_UNKNOWN)
9940 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9941 else
9942 e_ident[elfcpp::EI_OSABI] = 0;
9943 e_ident[elfcpp::EI_ABIVERSION] = 0;
9944
9945 // FIXME: Do EF_ARM_BE8 adjustment.
9946
9947 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9948 oehdr.put_e_ident(e_ident);
9949}
9950
9951// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
9952// We need to use a target-specific sub-class of
9953// Sized_relobj_file<32, big_endian> to store ARM specific information.
9954// Hence we need to have our own ELF object creation.
d5b40221
DK
9955
9956template<bool big_endian>
9957Object*
9958Target_arm<big_endian>::do_make_elf_object(
9959 const std::string& name,
9960 Input_file* input_file,
2ea97941 9961 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9962{
9963 int et = ehdr.get_e_type();
f4a8b6d7
DK
9964 // ET_EXEC files are valid input for --just-symbols/-R,
9965 // and we treat them as relocatable objects.
9966 if (et == elfcpp::ET_REL
9967 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
d5b40221
DK
9968 {
9969 Arm_relobj<big_endian>* obj =
2ea97941 9970 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9971 obj->setup();
9972 return obj;
9973 }
9974 else if (et == elfcpp::ET_DYN)
9975 {
9976 Sized_dynobj<32, big_endian>* obj =
2ea97941 9977 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9978 obj->setup();
9979 return obj;
9980 }
9981 else
9982 {
9983 gold_error(_("%s: unsupported ELF file type %d"),
9984 name.c_str(), et);
9985 return NULL;
9986 }
9987}
9988
a0351a69
DK
9989// Read the architecture from the Tag_also_compatible_with attribute, if any.
9990// Returns -1 if no architecture could be read.
9991// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9992
9993template<bool big_endian>
9994int
9995Target_arm<big_endian>::get_secondary_compatible_arch(
9996 const Attributes_section_data* pasd)
9997{
ca09d69a 9998 const Object_attribute* known_attributes =
a0351a69
DK
9999 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10000
10001 // Note: the tag and its argument below are uleb128 values, though
10002 // currently-defined values fit in one byte for each.
10003 const std::string& sv =
10004 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10005 if (sv.size() == 2
10006 && sv.data()[0] == elfcpp::Tag_CPU_arch
10007 && (sv.data()[1] & 128) != 128)
10008 return sv.data()[1];
10009
10010 // This tag is "safely ignorable", so don't complain if it looks funny.
10011 return -1;
10012}
10013
10014// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10015// The tag is removed if ARCH is -1.
10016// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10017
10018template<bool big_endian>
10019void
10020Target_arm<big_endian>::set_secondary_compatible_arch(
10021 Attributes_section_data* pasd,
10022 int arch)
10023{
ca09d69a 10024 Object_attribute* known_attributes =
a0351a69
DK
10025 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10026
10027 if (arch == -1)
10028 {
10029 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10030 return;
10031 }
10032
10033 // Note: the tag and its argument below are uleb128 values, though
10034 // currently-defined values fit in one byte for each.
10035 char sv[3];
10036 sv[0] = elfcpp::Tag_CPU_arch;
10037 gold_assert(arch != 0);
10038 sv[1] = arch;
10039 sv[2] = '\0';
10040
10041 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10042}
10043
10044// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10045// into account.
10046// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10047
10048template<bool big_endian>
10049int
10050Target_arm<big_endian>::tag_cpu_arch_combine(
10051 const char* name,
10052 int oldtag,
10053 int* secondary_compat_out,
10054 int newtag,
10055 int secondary_compat)
10056{
10057#define T(X) elfcpp::TAG_CPU_ARCH_##X
10058 static const int v6t2[] =
10059 {
10060 T(V6T2), // PRE_V4.
10061 T(V6T2), // V4.
10062 T(V6T2), // V4T.
10063 T(V6T2), // V5T.
10064 T(V6T2), // V5TE.
10065 T(V6T2), // V5TEJ.
10066 T(V6T2), // V6.
10067 T(V7), // V6KZ.
10068 T(V6T2) // V6T2.
10069 };
10070 static const int v6k[] =
10071 {
10072 T(V6K), // PRE_V4.
10073 T(V6K), // V4.
10074 T(V6K), // V4T.
10075 T(V6K), // V5T.
10076 T(V6K), // V5TE.
10077 T(V6K), // V5TEJ.
10078 T(V6K), // V6.
10079 T(V6KZ), // V6KZ.
10080 T(V7), // V6T2.
10081 T(V6K) // V6K.
10082 };
10083 static const int v7[] =
10084 {
10085 T(V7), // PRE_V4.
10086 T(V7), // V4.
10087 T(V7), // V4T.
10088 T(V7), // V5T.
10089 T(V7), // V5TE.
10090 T(V7), // V5TEJ.
10091 T(V7), // V6.
10092 T(V7), // V6KZ.
10093 T(V7), // V6T2.
10094 T(V7), // V6K.
10095 T(V7) // V7.
10096 };
10097 static const int v6_m[] =
10098 {
10099 -1, // PRE_V4.
10100 -1, // V4.
10101 T(V6K), // V4T.
10102 T(V6K), // V5T.
10103 T(V6K), // V5TE.
10104 T(V6K), // V5TEJ.
10105 T(V6K), // V6.
10106 T(V6KZ), // V6KZ.
10107 T(V7), // V6T2.
10108 T(V6K), // V6K.
10109 T(V7), // V7.
10110 T(V6_M) // V6_M.
10111 };
10112 static const int v6s_m[] =
10113 {
10114 -1, // PRE_V4.
10115 -1, // V4.
10116 T(V6K), // V4T.
10117 T(V6K), // V5T.
10118 T(V6K), // V5TE.
10119 T(V6K), // V5TEJ.
10120 T(V6K), // V6.
10121 T(V6KZ), // V6KZ.
10122 T(V7), // V6T2.
10123 T(V6K), // V6K.
10124 T(V7), // V7.
10125 T(V6S_M), // V6_M.
10126 T(V6S_M) // V6S_M.
10127 };
10128 static const int v7e_m[] =
10129 {
10130 -1, // PRE_V4.
10131 -1, // V4.
10132 T(V7E_M), // V4T.
10133 T(V7E_M), // V5T.
10134 T(V7E_M), // V5TE.
10135 T(V7E_M), // V5TEJ.
10136 T(V7E_M), // V6.
10137 T(V7E_M), // V6KZ.
10138 T(V7E_M), // V6T2.
10139 T(V7E_M), // V6K.
10140 T(V7E_M), // V7.
10141 T(V7E_M), // V6_M.
10142 T(V7E_M), // V6S_M.
10143 T(V7E_M) // V7E_M.
10144 };
10145 static const int v4t_plus_v6_m[] =
10146 {
10147 -1, // PRE_V4.
10148 -1, // V4.
10149 T(V4T), // V4T.
10150 T(V5T), // V5T.
10151 T(V5TE), // V5TE.
10152 T(V5TEJ), // V5TEJ.
10153 T(V6), // V6.
10154 T(V6KZ), // V6KZ.
10155 T(V6T2), // V6T2.
10156 T(V6K), // V6K.
10157 T(V7), // V7.
10158 T(V6_M), // V6_M.
10159 T(V6S_M), // V6S_M.
10160 T(V7E_M), // V7E_M.
10161 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10162 };
ca09d69a 10163 static const int* comb[] =
a0351a69
DK
10164 {
10165 v6t2,
10166 v6k,
10167 v7,
10168 v6_m,
10169 v6s_m,
10170 v7e_m,
10171 // Pseudo-architecture.
10172 v4t_plus_v6_m
10173 };
10174
10175 // Check we've not got a higher architecture than we know about.
10176
f62a3ca7 10177 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10178 {
10179 gold_error(_("%s: unknown CPU architecture"), name);
10180 return -1;
10181 }
10182
10183 // Override old tag if we have a Tag_also_compatible_with on the output.
10184
10185 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10186 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10187 oldtag = T(V4T_PLUS_V6_M);
10188
10189 // And override the new tag if we have a Tag_also_compatible_with on the
10190 // input.
10191
10192 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10193 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10194 newtag = T(V4T_PLUS_V6_M);
10195
10196 // Architectures before V6KZ add features monotonically.
10197 int tagh = std::max(oldtag, newtag);
10198 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10199 return tagh;
10200
10201 int tagl = std::min(oldtag, newtag);
10202 int result = comb[tagh - T(V6T2)][tagl];
10203
10204 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10205 // as the canonical version.
10206 if (result == T(V4T_PLUS_V6_M))
10207 {
10208 result = T(V4T);
10209 *secondary_compat_out = T(V6_M);
10210 }
10211 else
10212 *secondary_compat_out = -1;
10213
10214 if (result == -1)
10215 {
10216 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10217 name, oldtag, newtag);
10218 return -1;
10219 }
10220
10221 return result;
10222#undef T
10223}
10224
10225// Helper to print AEABI enum tag value.
10226
10227template<bool big_endian>
10228std::string
10229Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10230{
ca09d69a 10231 static const char* aeabi_enum_names[] =
a0351a69
DK
10232 { "", "variable-size", "32-bit", "" };
10233 const size_t aeabi_enum_names_size =
10234 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10235
10236 if (value < aeabi_enum_names_size)
10237 return std::string(aeabi_enum_names[value]);
10238 else
10239 {
10240 char buffer[100];
10241 sprintf(buffer, "<unknown value %u>", value);
10242 return std::string(buffer);
10243 }
10244}
10245
10246// Return the string value to store in TAG_CPU_name.
10247
10248template<bool big_endian>
10249std::string
10250Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10251{
ca09d69a 10252 static const char* name_table[] = {
a0351a69
DK
10253 // These aren't real CPU names, but we can't guess
10254 // that from the architecture version alone.
10255 "Pre v4",
10256 "ARM v4",
10257 "ARM v4T",
10258 "ARM v5T",
10259 "ARM v5TE",
10260 "ARM v5TEJ",
10261 "ARM v6",
10262 "ARM v6KZ",
10263 "ARM v6T2",
10264 "ARM v6K",
10265 "ARM v7",
10266 "ARM v6-M",
10267 "ARM v6S-M",
10268 "ARM v7E-M"
10269 };
10270 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10271
10272 if (value < name_table_size)
10273 return std::string(name_table[value]);
10274 else
10275 {
10276 char buffer[100];
10277 sprintf(buffer, "<unknown CPU value %u>", value);
10278 return std::string(buffer);
10279 }
10280}
10281
10282// Merge object attributes from input file called NAME with those of the
10283// output. The input object attributes are in the object pointed by PASD.
10284
10285template<bool big_endian>
10286void
10287Target_arm<big_endian>::merge_object_attributes(
10288 const char* name,
10289 const Attributes_section_data* pasd)
10290{
10291 // Return if there is no attributes section data.
10292 if (pasd == NULL)
10293 return;
10294
10295 // If output has no object attributes, just copy.
da59ad79 10296 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10297 if (this->attributes_section_data_ == NULL)
10298 {
10299 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10300 Object_attribute* out_attr =
10301 this->attributes_section_data_->known_attributes(vendor);
10302
10303 // We do not output objects with Tag_MPextension_use_legacy - we move
10304 // the attribute's value to Tag_MPextension_use. */
10305 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10306 {
10307 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10308 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10309 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10310 {
10311 gold_error(_("%s has both the current and legacy "
10312 "Tag_MPextension_use attributes"),
10313 name);
10314 }
10315
10316 out_attr[elfcpp::Tag_MPextension_use] =
10317 out_attr[elfcpp::Tag_MPextension_use_legacy];
10318 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10319 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10320 }
10321
a0351a69
DK
10322 return;
10323 }
10324
a0351a69
DK
10325 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10326 Object_attribute* out_attr =
10327 this->attributes_section_data_->known_attributes(vendor);
10328
10329 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10330 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10331 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10332 {
10333 // Ignore mismatches if the object doesn't use floating point. */
10334 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10335 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10336 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10337 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10338 && parameters->options().warn_mismatch())
a0351a69
DK
10339 gold_error(_("%s uses VFP register arguments, output does not"),
10340 name);
10341 }
10342
10343 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10344 {
10345 // Merge this attribute with existing attributes.
10346 switch (i)
10347 {
10348 case elfcpp::Tag_CPU_raw_name:
10349 case elfcpp::Tag_CPU_name:
10350 // These are merged after Tag_CPU_arch.
10351 break;
10352
10353 case elfcpp::Tag_ABI_optimization_goals:
10354 case elfcpp::Tag_ABI_FP_optimization_goals:
10355 // Use the first value seen.
10356 break;
10357
10358 case elfcpp::Tag_CPU_arch:
10359 {
10360 unsigned int saved_out_attr = out_attr->int_value();
10361 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10362 int secondary_compat =
10363 this->get_secondary_compatible_arch(pasd);
10364 int secondary_compat_out =
10365 this->get_secondary_compatible_arch(
10366 this->attributes_section_data_);
10367 out_attr[i].set_int_value(
10368 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10369 &secondary_compat_out,
10370 in_attr[i].int_value(),
10371 secondary_compat));
10372 this->set_secondary_compatible_arch(this->attributes_section_data_,
10373 secondary_compat_out);
10374
10375 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10376 if (out_attr[i].int_value() == saved_out_attr)
10377 ; // Leave the names alone.
10378 else if (out_attr[i].int_value() == in_attr[i].int_value())
10379 {
10380 // The output architecture has been changed to match the
10381 // input architecture. Use the input names.
10382 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10383 in_attr[elfcpp::Tag_CPU_name].string_value());
10384 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10385 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10386 }
10387 else
10388 {
10389 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10390 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10391 }
10392
10393 // If we still don't have a value for Tag_CPU_name,
10394 // make one up now. Tag_CPU_raw_name remains blank.
10395 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10396 {
10397 const std::string cpu_name =
10398 this->tag_cpu_name_value(out_attr[i].int_value());
10399 // FIXME: If we see an unknown CPU, this will be set
10400 // to "<unknown CPU n>", where n is the attribute value.
10401 // This is different from BFD, which leaves the name alone.
10402 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10403 }
10404 }
10405 break;
10406
10407 case elfcpp::Tag_ARM_ISA_use:
10408 case elfcpp::Tag_THUMB_ISA_use:
10409 case elfcpp::Tag_WMMX_arch:
10410 case elfcpp::Tag_Advanced_SIMD_arch:
10411 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10412 case elfcpp::Tag_ABI_FP_rounding:
10413 case elfcpp::Tag_ABI_FP_exceptions:
10414 case elfcpp::Tag_ABI_FP_user_exceptions:
10415 case elfcpp::Tag_ABI_FP_number_model:
10416 case elfcpp::Tag_VFP_HP_extension:
10417 case elfcpp::Tag_CPU_unaligned_access:
10418 case elfcpp::Tag_T2EE_use:
10419 case elfcpp::Tag_Virtualization_use:
10420 case elfcpp::Tag_MPextension_use:
10421 // Use the largest value specified.
10422 if (in_attr[i].int_value() > out_attr[i].int_value())
10423 out_attr[i].set_int_value(in_attr[i].int_value());
10424 break;
10425
10426 case elfcpp::Tag_ABI_align8_preserved:
10427 case elfcpp::Tag_ABI_PCS_RO_data:
10428 // Use the smallest value specified.
10429 if (in_attr[i].int_value() < out_attr[i].int_value())
10430 out_attr[i].set_int_value(in_attr[i].int_value());
10431 break;
10432
10433 case elfcpp::Tag_ABI_align8_needed:
10434 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10435 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10436 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10437 == 0)))
10438 {
9b547ce6 10439 // This error message should be enabled once all non-conforming
a0351a69
DK
10440 // binaries in the toolchain have had the attributes set
10441 // properly.
10442 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10443 // name);
10444 }
10445 // Fall through.
10446 case elfcpp::Tag_ABI_FP_denormal:
10447 case elfcpp::Tag_ABI_PCS_GOT_use:
10448 {
10449 // These tags have 0 = don't care, 1 = strong requirement,
10450 // 2 = weak requirement.
10451 static const int order_021[3] = {0, 2, 1};
10452
10453 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10454 // value if greater than 2 (for future-proofing).
10455 if ((in_attr[i].int_value() > 2
10456 && in_attr[i].int_value() > out_attr[i].int_value())
10457 || (in_attr[i].int_value() <= 2
10458 && out_attr[i].int_value() <= 2
10459 && (order_021[in_attr[i].int_value()]
10460 > order_021[out_attr[i].int_value()])))
10461 out_attr[i].set_int_value(in_attr[i].int_value());
10462 }
10463 break;
10464
10465 case elfcpp::Tag_CPU_arch_profile:
10466 if (out_attr[i].int_value() != in_attr[i].int_value())
10467 {
10468 // 0 will merge with anything.
10469 // 'A' and 'S' merge to 'A'.
10470 // 'R' and 'S' merge to 'R'.
10471 // 'M' and 'A|R|S' is an error.
10472 if (out_attr[i].int_value() == 0
10473 || (out_attr[i].int_value() == 'S'
10474 && (in_attr[i].int_value() == 'A'
10475 || in_attr[i].int_value() == 'R')))
10476 out_attr[i].set_int_value(in_attr[i].int_value());
10477 else if (in_attr[i].int_value() == 0
10478 || (in_attr[i].int_value() == 'S'
10479 && (out_attr[i].int_value() == 'A'
10480 || out_attr[i].int_value() == 'R')))
10481 ; // Do nothing.
7296d933 10482 else if (parameters->options().warn_mismatch())
a0351a69
DK
10483 {
10484 gold_error
10485 (_("conflicting architecture profiles %c/%c"),
10486 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10487 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10488 }
10489 }
10490 break;
10491 case elfcpp::Tag_VFP_arch:
10492 {
10493 static const struct
10494 {
10495 int ver;
10496 int regs;
10497 } vfp_versions[7] =
10498 {
10499 {0, 0},
10500 {1, 16},
10501 {2, 16},
10502 {3, 32},
10503 {3, 16},
10504 {4, 32},
10505 {4, 16}
10506 };
10507
10508 // Values greater than 6 aren't defined, so just pick the
10509 // biggest.
10510 if (in_attr[i].int_value() > 6
10511 && in_attr[i].int_value() > out_attr[i].int_value())
10512 {
10513 *out_attr = *in_attr;
10514 break;
10515 }
10516 // The output uses the superset of input features
10517 // (ISA version) and registers.
10518 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10519 vfp_versions[out_attr[i].int_value()].ver);
10520 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10521 vfp_versions[out_attr[i].int_value()].regs);
10522 // This assumes all possible supersets are also a valid
10523 // options.
10524 int newval;
10525 for (newval = 6; newval > 0; newval--)
10526 {
10527 if (regs == vfp_versions[newval].regs
10528 && ver == vfp_versions[newval].ver)
10529 break;
10530 }
10531 out_attr[i].set_int_value(newval);
10532 }
10533 break;
10534 case elfcpp::Tag_PCS_config:
10535 if (out_attr[i].int_value() == 0)
10536 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10537 else if (in_attr[i].int_value() != 0
10538 && out_attr[i].int_value() != 0
10539 && parameters->options().warn_mismatch())
a0351a69
DK
10540 {
10541 // It's sometimes ok to mix different configs, so this is only
10542 // a warning.
10543 gold_warning(_("%s: conflicting platform configuration"), name);
10544 }
10545 break;
10546 case elfcpp::Tag_ABI_PCS_R9_use:
10547 if (in_attr[i].int_value() != out_attr[i].int_value()
10548 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10549 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10550 && parameters->options().warn_mismatch())
a0351a69
DK
10551 {
10552 gold_error(_("%s: conflicting use of R9"), name);
10553 }
10554 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10555 out_attr[i].set_int_value(in_attr[i].int_value());
10556 break;
10557 case elfcpp::Tag_ABI_PCS_RW_data:
10558 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10559 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10560 != elfcpp::AEABI_R9_SB)
10561 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10562 != elfcpp::AEABI_R9_unused)
10563 && parameters->options().warn_mismatch())
a0351a69
DK
10564 {
10565 gold_error(_("%s: SB relative addressing conflicts with use "
10566 "of R9"),
7296d933 10567 name);
a0351a69
DK
10568 }
10569 // Use the smallest value specified.
10570 if (in_attr[i].int_value() < out_attr[i].int_value())
10571 out_attr[i].set_int_value(in_attr[i].int_value());
10572 break;
10573 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10574 if (out_attr[i].int_value()
10575 && in_attr[i].int_value()
7296d933 10576 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10577 && parameters->options().warn_mismatch()
10578 && parameters->options().wchar_size_warning())
a0351a69
DK
10579 {
10580 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10581 "use %u-byte wchar_t; use of wchar_t values "
10582 "across objects may fail"),
10583 name, in_attr[i].int_value(),
10584 out_attr[i].int_value());
10585 }
10586 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10587 out_attr[i].set_int_value(in_attr[i].int_value());
10588 break;
10589 case elfcpp::Tag_ABI_enum_size:
10590 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10591 {
10592 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10593 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10594 {
10595 // The existing object is compatible with anything.
10596 // Use whatever requirements the new object has.
10597 out_attr[i].set_int_value(in_attr[i].int_value());
10598 }
a0351a69 10599 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10600 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10601 && parameters->options().warn_mismatch()
10602 && parameters->options().enum_size_warning())
a0351a69
DK
10603 {
10604 unsigned int in_value = in_attr[i].int_value();
10605 unsigned int out_value = out_attr[i].int_value();
10606 gold_warning(_("%s uses %s enums yet the output is to use "
10607 "%s enums; use of enum values across objects "
10608 "may fail"),
10609 name,
10610 this->aeabi_enum_name(in_value).c_str(),
10611 this->aeabi_enum_name(out_value).c_str());
10612 }
10613 }
10614 break;
10615 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10616 // Already done.
a0351a69
DK
10617 break;
10618 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10619 if (in_attr[i].int_value() != out_attr[i].int_value()
10620 && parameters->options().warn_mismatch())
a0351a69
DK
10621 {
10622 gold_error(_("%s uses iWMMXt register arguments, output does "
10623 "not"),
10624 name);
10625 }
10626 break;
10627 case Object_attribute::Tag_compatibility:
10628 // Merged in target-independent code.
10629 break;
10630 case elfcpp::Tag_ABI_HardFP_use:
10631 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10632 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10633 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10634 out_attr[i].set_int_value(3);
10635 else if (in_attr[i].int_value() > out_attr[i].int_value())
10636 out_attr[i].set_int_value(in_attr[i].int_value());
10637 break;
10638 case elfcpp::Tag_ABI_FP_16bit_format:
10639 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10640 {
7296d933
DK
10641 if (in_attr[i].int_value() != out_attr[i].int_value()
10642 && parameters->options().warn_mismatch())
a0351a69
DK
10643 gold_error(_("fp16 format mismatch between %s and output"),
10644 name);
10645 }
10646 if (in_attr[i].int_value() != 0)
10647 out_attr[i].set_int_value(in_attr[i].int_value());
10648 break;
10649
da59ad79
DK
10650 case elfcpp::Tag_DIV_use:
10651 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10652 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10653 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10654 // CPU. We will merge as follows: If the input attribute's value
10655 // is one then the output attribute's value remains unchanged. If
10656 // the input attribute's value is zero or two then if the output
10657 // attribute's value is one the output value is set to the input
10658 // value, otherwise the output value must be the same as the
10659 // inputs. */
10660 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10661 {
10662 if (in_attr[i].int_value() != out_attr[i].int_value())
10663 {
10664 gold_error(_("DIV usage mismatch between %s and output"),
10665 name);
10666 }
10667 }
10668
10669 if (in_attr[i].int_value() != 1)
10670 out_attr[i].set_int_value(in_attr[i].int_value());
10671
10672 break;
10673
10674 case elfcpp::Tag_MPextension_use_legacy:
10675 // We don't output objects with Tag_MPextension_use_legacy - we
10676 // move the value to Tag_MPextension_use.
10677 if (in_attr[i].int_value() != 0
10678 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10679 {
10680 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10681 != in_attr[i].int_value())
10682 {
10683 gold_error(_("%s has has both the current and legacy "
10684 "Tag_MPextension_use attributes"),
10685 name);
10686 }
10687 }
10688
10689 if (in_attr[i].int_value()
10690 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10691 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10692
10693 break;
10694
a0351a69
DK
10695 case elfcpp::Tag_nodefaults:
10696 // This tag is set if it exists, but the value is unused (and is
10697 // typically zero). We don't actually need to do anything here -
10698 // the merge happens automatically when the type flags are merged
10699 // below.
10700 break;
10701 case elfcpp::Tag_also_compatible_with:
10702 // Already done in Tag_CPU_arch.
10703 break;
10704 case elfcpp::Tag_conformance:
10705 // Keep the attribute if it matches. Throw it away otherwise.
10706 // No attribute means no claim to conform.
10707 if (in_attr[i].string_value() != out_attr[i].string_value())
10708 out_attr[i].set_string_value("");
10709 break;
10710
10711 default:
10712 {
10713 const char* err_object = NULL;
10714
10715 // The "known_obj_attributes" table does contain some undefined
10716 // attributes. Ensure that there are unused.
10717 if (out_attr[i].int_value() != 0
10718 || out_attr[i].string_value() != "")
10719 err_object = "output";
10720 else if (in_attr[i].int_value() != 0
10721 || in_attr[i].string_value() != "")
10722 err_object = name;
10723
7296d933
DK
10724 if (err_object != NULL
10725 && parameters->options().warn_mismatch())
a0351a69
DK
10726 {
10727 // Attribute numbers >=64 (mod 128) can be safely ignored.
10728 if ((i & 127) < 64)
10729 gold_error(_("%s: unknown mandatory EABI object attribute "
10730 "%d"),
10731 err_object, i);
10732 else
10733 gold_warning(_("%s: unknown EABI object attribute %d"),
10734 err_object, i);
10735 }
10736
10737 // Only pass on attributes that match in both inputs.
10738 if (!in_attr[i].matches(out_attr[i]))
10739 {
10740 out_attr[i].set_int_value(0);
10741 out_attr[i].set_string_value("");
10742 }
10743 }
10744 }
10745
10746 // If out_attr was copied from in_attr then it won't have a type yet.
10747 if (in_attr[i].type() && !out_attr[i].type())
10748 out_attr[i].set_type(in_attr[i].type());
10749 }
10750
10751 // Merge Tag_compatibility attributes and any common GNU ones.
10752 this->attributes_section_data_->merge(name, pasd);
10753
10754 // Check for any attributes not known on ARM.
10755 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10756 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10757 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10758 Other_attributes* out_other_attributes =
10759 this->attributes_section_data_->other_attributes(vendor);
10760 Other_attributes::iterator out_iter = out_other_attributes->begin();
10761
10762 while (in_iter != in_other_attributes->end()
10763 || out_iter != out_other_attributes->end())
10764 {
10765 const char* err_object = NULL;
10766 int err_tag = 0;
10767
10768 // The tags for each list are in numerical order.
10769 // If the tags are equal, then merge.
10770 if (out_iter != out_other_attributes->end()
10771 && (in_iter == in_other_attributes->end()
10772 || in_iter->first > out_iter->first))
10773 {
10774 // This attribute only exists in output. We can't merge, and we
10775 // don't know what the tag means, so delete it.
10776 err_object = "output";
10777 err_tag = out_iter->first;
10778 int saved_tag = out_iter->first;
10779 delete out_iter->second;
10780 out_other_attributes->erase(out_iter);
10781 out_iter = out_other_attributes->upper_bound(saved_tag);
10782 }
10783 else if (in_iter != in_other_attributes->end()
10784 && (out_iter != out_other_attributes->end()
10785 || in_iter->first < out_iter->first))
10786 {
10787 // This attribute only exists in input. We can't merge, and we
10788 // don't know what the tag means, so ignore it.
10789 err_object = name;
10790 err_tag = in_iter->first;
10791 ++in_iter;
10792 }
10793 else // The tags are equal.
10794 {
10795 // As present, all attributes in the list are unknown, and
10796 // therefore can't be merged meaningfully.
10797 err_object = "output";
10798 err_tag = out_iter->first;
10799
10800 // Only pass on attributes that match in both inputs.
10801 if (!in_iter->second->matches(*(out_iter->second)))
10802 {
10803 // No match. Delete the attribute.
10804 int saved_tag = out_iter->first;
10805 delete out_iter->second;
10806 out_other_attributes->erase(out_iter);
10807 out_iter = out_other_attributes->upper_bound(saved_tag);
10808 }
10809 else
10810 {
10811 // Matched. Keep the attribute and move to the next.
10812 ++out_iter;
10813 ++in_iter;
10814 }
10815 }
10816
7296d933 10817 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10818 {
10819 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10820 if ((err_tag & 127) < 64)
10821 {
10822 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10823 err_object, err_tag);
10824 }
10825 else
10826 {
10827 gold_warning(_("%s: unknown EABI object attribute %d"),
10828 err_object, err_tag);
10829 }
10830 }
10831 }
10832}
10833
55da9579
DK
10834// Stub-generation methods for Target_arm.
10835
10836// Make a new Arm_input_section object.
10837
10838template<bool big_endian>
10839Arm_input_section<big_endian>*
10840Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
10841 Relobj* relobj,
10842 unsigned int shndx)
55da9579 10843{
5ac169d4 10844 Section_id sid(relobj, shndx);
55da9579
DK
10845
10846 Arm_input_section<big_endian>* arm_input_section =
2ea97941 10847 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
10848 arm_input_section->init();
10849
10850 // Register new Arm_input_section in map for look-up.
10851 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 10852 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
10853
10854 // Make sure that it we have not created another Arm_input_section
10855 // for this input section already.
10856 gold_assert(ins.second);
10857
10858 return arm_input_section;
10859}
10860
10861// Find the Arm_input_section object corresponding to the SHNDX-th input
10862// section of RELOBJ.
10863
10864template<bool big_endian>
10865Arm_input_section<big_endian>*
10866Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
10867 Relobj* relobj,
10868 unsigned int shndx) const
55da9579 10869{
5ac169d4 10870 Section_id sid(relobj, shndx);
55da9579 10871 typename Arm_input_section_map::const_iterator p =
5ac169d4 10872 this->arm_input_section_map_.find(sid);
55da9579
DK
10873 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10874}
10875
10876// Make a new stub table.
10877
10878template<bool big_endian>
10879Stub_table<big_endian>*
10880Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10881{
2ea97941 10882 Stub_table<big_endian>* stub_table =
55da9579 10883 new Stub_table<big_endian>(owner);
2ea97941 10884 this->stub_tables_.push_back(stub_table);
55da9579 10885
2ea97941
ILT
10886 stub_table->set_address(owner->address() + owner->data_size());
10887 stub_table->set_file_offset(owner->offset() + owner->data_size());
10888 stub_table->finalize_data_size();
55da9579 10889
2ea97941 10890 return stub_table;
55da9579
DK
10891}
10892
eb44217c
DK
10893// Scan a relocation for stub generation.
10894
10895template<bool big_endian>
10896void
10897Target_arm<big_endian>::scan_reloc_for_stub(
10898 const Relocate_info<32, big_endian>* relinfo,
10899 unsigned int r_type,
10900 const Sized_symbol<32>* gsym,
10901 unsigned int r_sym,
10902 const Symbol_value<32>* psymval,
10903 elfcpp::Elf_types<32>::Elf_Swxword addend,
10904 Arm_address address)
10905{
2ea97941 10906 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
10907
10908 const Arm_relobj<big_endian>* arm_relobj =
10909 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10910
10911 bool target_is_thumb;
10912 Symbol_value<32> symval;
10913 if (gsym != NULL)
10914 {
10915 // This is a global symbol. Determine if we use PLT and if the
10916 // final target is THUMB.
95a2c8d6 10917 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
10918 {
10919 // This uses a PLT, change the symbol value.
10920 symval.set_output_value(this->plt_section()->address()
10921 + gsym->plt_offset());
10922 psymval = &symval;
10923 target_is_thumb = false;
10924 }
10925 else if (gsym->is_undefined())
10926 // There is no need to generate a stub symbol is undefined.
10927 return;
10928 else
10929 {
10930 target_is_thumb =
10931 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10932 || (gsym->type() == elfcpp::STT_FUNC
10933 && !gsym->is_undefined()
10934 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10935 }
10936 }
10937 else
10938 {
10939 // This is a local symbol. Determine if the final target is THUMB.
10940 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10941 }
10942
10943 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10944 const Arm_reloc_property* reloc_property =
10945 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10946 gold_assert(reloc_property != NULL);
eb44217c 10947 if (target_is_thumb
5c57f1be 10948 && reloc_property->uses_thumb_bit()
eb44217c
DK
10949 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10950 {
10951 Arm_address stripped_value =
10952 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10953 symval.set_output_value(stripped_value);
10954 psymval = &symval;
10955 }
10956
10957 // Get the symbol value.
10958 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10959
10960 // Owing to pipelining, the PC relative branches below actually skip
10961 // two instructions when the branch offset is 0.
10962 Arm_address destination;
10963 switch (r_type)
10964 {
10965 case elfcpp::R_ARM_CALL:
10966 case elfcpp::R_ARM_JUMP24:
10967 case elfcpp::R_ARM_PLT32:
10968 // ARM branches.
10969 destination = value + addend + 8;
10970 break;
10971 case elfcpp::R_ARM_THM_CALL:
10972 case elfcpp::R_ARM_THM_XPC22:
10973 case elfcpp::R_ARM_THM_JUMP24:
10974 case elfcpp::R_ARM_THM_JUMP19:
10975 // THUMB branches.
10976 destination = value + addend + 4;
10977 break;
10978 default:
10979 gold_unreachable();
10980 }
10981
a120bc7f 10982 Reloc_stub* stub = NULL;
eb44217c
DK
10983 Stub_type stub_type =
10984 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10985 target_is_thumb);
a120bc7f
DK
10986 if (stub_type != arm_stub_none)
10987 {
10988 // Try looking up an existing stub from a stub table.
10989 Stub_table<big_endian>* stub_table =
10990 arm_relobj->stub_table(relinfo->data_shndx);
10991 gold_assert(stub_table != NULL);
eb44217c 10992
a120bc7f
DK
10993 // Locate stub by destination.
10994 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 10995
a120bc7f
DK
10996 // Create a stub if there is not one already
10997 stub = stub_table->find_reloc_stub(stub_key);
10998 if (stub == NULL)
10999 {
11000 // create a new stub and add it to stub table.
11001 stub = this->stub_factory().make_reloc_stub(stub_type);
11002 stub_table->add_reloc_stub(stub, stub_key);
11003 }
11004
11005 // Record the destination address.
11006 stub->set_destination_address(destination
11007 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11008 }
11009
a120bc7f
DK
11010 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11011 if (this->fix_cortex_a8_
11012 && (r_type == elfcpp::R_ARM_THM_JUMP24
11013 || r_type == elfcpp::R_ARM_THM_JUMP19
11014 || r_type == elfcpp::R_ARM_THM_CALL
11015 || r_type == elfcpp::R_ARM_THM_XPC22)
11016 && (address & 0xfffU) == 0xffeU)
11017 {
11018 // Found a candidate. Note we haven't checked the destination is
11019 // within 4K here: if we do so (and don't create a record) we can't
11020 // tell that a branch should have been relocated when scanning later.
11021 this->cortex_a8_relocs_info_[address] =
11022 new Cortex_a8_reloc(stub, r_type,
11023 destination | (target_is_thumb ? 1 : 0));
11024 }
eb44217c
DK
11025}
11026
11027// This function scans a relocation sections for stub generation.
11028// The template parameter Relocate must be a class type which provides
11029// a single function, relocate(), which implements the machine
11030// specific part of a relocation.
11031
11032// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11033// SHT_REL or SHT_RELA.
11034
11035// PRELOCS points to the relocation data. RELOC_COUNT is the number
11036// of relocs. OUTPUT_SECTION is the output section.
11037// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11038// mapped to output offsets.
11039
11040// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11041// VIEW_SIZE is the size. These refer to the input section, unless
11042// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11043// the output section.
11044
11045template<bool big_endian>
11046template<int sh_type>
11047void inline
11048Target_arm<big_endian>::scan_reloc_section_for_stubs(
11049 const Relocate_info<32, big_endian>* relinfo,
11050 const unsigned char* prelocs,
11051 size_t reloc_count,
11052 Output_section* output_section,
11053 bool needs_special_offset_handling,
11054 const unsigned char* view,
11055 elfcpp::Elf_types<32>::Elf_Addr view_address,
11056 section_size_type)
11057{
11058 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11059 const int reloc_size =
11060 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11061
11062 Arm_relobj<big_endian>* arm_object =
11063 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11064 unsigned int local_count = arm_object->local_symbol_count();
11065
11066 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11067
11068 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11069 {
11070 Reltype reloc(prelocs);
11071
11072 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11073 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11074 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11075
11076 r_type = this->get_real_reloc_type(r_type);
11077
11078 // Only a few relocation types need stubs.
11079 if ((r_type != elfcpp::R_ARM_CALL)
11080 && (r_type != elfcpp::R_ARM_JUMP24)
11081 && (r_type != elfcpp::R_ARM_PLT32)
11082 && (r_type != elfcpp::R_ARM_THM_CALL)
11083 && (r_type != elfcpp::R_ARM_THM_XPC22)
11084 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
11085 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11086 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11087 continue;
11088
2ea97941 11089 section_offset_type offset =
eb44217c
DK
11090 convert_to_section_size_type(reloc.get_r_offset());
11091
11092 if (needs_special_offset_handling)
11093 {
2ea97941
ILT
11094 offset = output_section->output_offset(relinfo->object,
11095 relinfo->data_shndx,
11096 offset);
11097 if (offset == -1)
eb44217c
DK
11098 continue;
11099 }
11100
2fd9ae7a 11101 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11102 if (r_type == elfcpp::R_ARM_V4BX)
11103 {
2fd9ae7a
DK
11104 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11105 {
11106 // Get the BX instruction.
11107 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11108 const Valtype* wv =
11109 reinterpret_cast<const Valtype*>(view + offset);
11110 elfcpp::Elf_types<32>::Elf_Swxword insn =
11111 elfcpp::Swap<32, big_endian>::readval(wv);
11112 const uint32_t reg = (insn & 0xf);
11113
11114 if (reg < 0xf)
11115 {
11116 // Try looking up an existing stub from a stub table.
11117 Stub_table<big_endian>* stub_table =
11118 arm_object->stub_table(relinfo->data_shndx);
11119 gold_assert(stub_table != NULL);
11120
11121 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11122 {
11123 // create a new stub and add it to stub table.
11124 Arm_v4bx_stub* stub =
11125 this->stub_factory().make_arm_v4bx_stub(reg);
11126 gold_assert(stub != NULL);
11127 stub_table->add_arm_v4bx_stub(stub);
11128 }
11129 }
11130 }
a2162063
ILT
11131 continue;
11132 }
11133
eb44217c
DK
11134 // Get the addend.
11135 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11136 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11137 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11138
11139 const Sized_symbol<32>* sym;
11140
11141 Symbol_value<32> symval;
11142 const Symbol_value<32> *psymval;
aa98ff75
DK
11143 bool is_defined_in_discarded_section;
11144 unsigned int shndx;
eb44217c
DK
11145 if (r_sym < local_count)
11146 {
11147 sym = NULL;
11148 psymval = arm_object->local_symbol(r_sym);
11149
11150 // If the local symbol belongs to a section we are discarding,
11151 // and that section is a debug section, try to find the
11152 // corresponding kept section and map this symbol to its
11153 // counterpart in the kept section. The symbol must not
11154 // correspond to a section we are folding.
11155 bool is_ordinary;
aa98ff75
DK
11156 shndx = psymval->input_shndx(&is_ordinary);
11157 is_defined_in_discarded_section =
11158 (is_ordinary
11159 && shndx != elfcpp::SHN_UNDEF
11160 && !arm_object->is_section_included(shndx)
11161 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11162
11163 // We need to compute the would-be final value of this local
11164 // symbol.
11165 if (!is_defined_in_discarded_section)
eb44217c 11166 {
6fa2a40b 11167 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11168 typename ObjType::Compute_final_local_value_status status =
11169 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11170 relinfo->symtab);
11171 if (status == ObjType::CFLV_OK)
11172 {
11173 // Currently we cannot handle a branch to a target in
11174 // a merged section. If this is the case, issue an error
11175 // and also free the merge symbol value.
11176 if (!symval.has_output_value())
11177 {
11178 const std::string& section_name =
11179 arm_object->section_name(shndx);
11180 arm_object->error(_("cannot handle branch to local %u "
11181 "in a merged section %s"),
11182 r_sym, section_name.c_str());
11183 }
11184 psymval = &symval;
11185 }
eb44217c 11186 else
aa98ff75
DK
11187 {
11188 // We cannot determine the final value.
11189 continue;
11190 }
eb44217c
DK
11191 }
11192 }
11193 else
11194 {
aa98ff75
DK
11195 const Symbol* gsym;
11196 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11197 gold_assert(gsym != NULL);
11198 if (gsym->is_forwarder())
11199 gsym = relinfo->symtab->resolve_forwards(gsym);
11200
11201 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11202 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11203 symval.set_output_symtab_index(sym->symtab_index());
11204 else
11205 symval.set_no_output_symtab_entry();
11206
11207 // We need to compute the would-be final value of this global
11208 // symbol.
11209 const Symbol_table* symtab = relinfo->symtab;
11210 const Sized_symbol<32>* sized_symbol =
11211 symtab->get_sized_symbol<32>(gsym);
11212 Symbol_table::Compute_final_value_status status;
11213 Arm_address value =
11214 symtab->compute_final_value<32>(sized_symbol, &status);
11215
11216 // Skip this if the symbol has not output section.
11217 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11218 continue;
eb44217c 11219 symval.set_output_value(value);
aa98ff75
DK
11220
11221 if (gsym->type() == elfcpp::STT_TLS)
11222 symval.set_is_tls_symbol();
11223 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11224 symval.set_is_ifunc_symbol();
eb44217c 11225 psymval = &symval;
aa98ff75
DK
11226
11227 is_defined_in_discarded_section =
11228 (gsym->is_defined_in_discarded_section()
11229 && gsym->is_undefined());
11230 shndx = 0;
11231 }
11232
11233 Symbol_value<32> symval2;
11234 if (is_defined_in_discarded_section)
11235 {
11236 if (comdat_behavior == CB_UNDETERMINED)
11237 {
11238 std::string name = arm_object->section_name(relinfo->data_shndx);
11239 comdat_behavior = get_comdat_behavior(name.c_str());
11240 }
11241 if (comdat_behavior == CB_PRETEND)
11242 {
11243 // FIXME: This case does not work for global symbols.
11244 // We have no place to store the original section index.
11245 // Fortunately this does not matter for comdat sections,
11246 // only for sections explicitly discarded by a linker
11247 // script.
11248 bool found;
11249 typename elfcpp::Elf_types<32>::Elf_Addr value =
11250 arm_object->map_to_kept_section(shndx, &found);
11251 if (found)
11252 symval2.set_output_value(value + psymval->input_value());
11253 else
11254 symval2.set_output_value(0);
11255 }
11256 else
11257 {
11258 if (comdat_behavior == CB_WARNING)
11259 gold_warning_at_location(relinfo, i, offset,
11260 _("relocation refers to discarded "
11261 "section"));
11262 symval2.set_output_value(0);
11263 }
11264 symval2.set_no_output_symtab_entry();
11265 psymval = &symval2;
eb44217c
DK
11266 }
11267
11268 // If symbol is a section symbol, we don't know the actual type of
11269 // destination. Give up.
11270 if (psymval->is_section_symbol())
11271 continue;
11272
11273 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11274 addend, view_address + offset);
eb44217c
DK
11275 }
11276}
11277
11278// Scan an input section for stub generation.
11279
11280template<bool big_endian>
11281void
11282Target_arm<big_endian>::scan_section_for_stubs(
11283 const Relocate_info<32, big_endian>* relinfo,
11284 unsigned int sh_type,
11285 const unsigned char* prelocs,
11286 size_t reloc_count,
11287 Output_section* output_section,
11288 bool needs_special_offset_handling,
11289 const unsigned char* view,
11290 Arm_address view_address,
11291 section_size_type view_size)
11292{
11293 if (sh_type == elfcpp::SHT_REL)
11294 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11295 relinfo,
11296 prelocs,
11297 reloc_count,
11298 output_section,
11299 needs_special_offset_handling,
11300 view,
11301 view_address,
11302 view_size);
11303 else if (sh_type == elfcpp::SHT_RELA)
11304 // We do not support RELA type relocations yet. This is provided for
11305 // completeness.
11306 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11307 relinfo,
11308 prelocs,
11309 reloc_count,
11310 output_section,
11311 needs_special_offset_handling,
11312 view,
11313 view_address,
11314 view_size);
11315 else
11316 gold_unreachable();
11317}
11318
11319// Group input sections for stub generation.
11320//
9b547ce6 11321// We group input sections in an output section so that the total size,
eb44217c
DK
11322// including any padding space due to alignment is smaller than GROUP_SIZE
11323// unless the only input section in group is bigger than GROUP_SIZE already.
11324// Then an ARM stub table is created to follow the last input section
11325// in group. For each group an ARM stub table is created an is placed
9b547ce6 11326// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11327// extend the group after the stub table.
11328
11329template<bool big_endian>
11330void
11331Target_arm<big_endian>::group_sections(
2ea97941 11332 Layout* layout,
eb44217c 11333 section_size_type group_size,
f625ae50
DK
11334 bool stubs_always_after_branch,
11335 const Task* task)
eb44217c
DK
11336{
11337 // Group input sections and insert stub table
11338 Layout::Section_list section_list;
2ea97941 11339 layout->get_allocated_sections(&section_list);
eb44217c
DK
11340 for (Layout::Section_list::const_iterator p = section_list.begin();
11341 p != section_list.end();
11342 ++p)
11343 {
11344 Arm_output_section<big_endian>* output_section =
11345 Arm_output_section<big_endian>::as_arm_output_section(*p);
11346 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11347 this, task);
eb44217c
DK
11348 }
11349}
11350
11351// Relaxation hook. This is where we do stub generation.
11352
11353template<bool big_endian>
11354bool
11355Target_arm<big_endian>::do_relax(
11356 int pass,
11357 const Input_objects* input_objects,
11358 Symbol_table* symtab,
f625ae50
DK
11359 Layout* layout,
11360 const Task* task)
eb44217c
DK
11361{
11362 // No need to generate stubs if this is a relocatable link.
11363 gold_assert(!parameters->options().relocatable());
11364
11365 // If this is the first pass, we need to group input sections into
11366 // stub groups.
2b328d4e 11367 bool done_exidx_fixup = false;
6625d24e 11368 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11369 if (pass == 1)
11370 {
11371 // Determine the stub group size. The group size is the absolute
11372 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11373 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11374 // the stubbed branches.
11375 int32_t stub_group_size_param =
11376 parameters->options().stub_group_size();
11377 bool stubs_always_after_branch = stub_group_size_param < 0;
11378 section_size_type stub_group_size = abs(stub_group_size_param);
11379
11380 if (stub_group_size == 1)
11381 {
11382 // Default value.
11383 // Thumb branch range is +-4MB has to be used as the default
11384 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11385 // code, so the worst case has to be taken into account). If we are
11386 // fixing cortex-a8 errata, the branch range has to be even smaller,
11387 // since wide conditional branch has a range of +-1MB only.
eb44217c 11388 //
25bbe950 11389 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11390 // 12-byte stubs. If we exceed that, then we will fail to link.
11391 // The user will have to relink with an explicit group size
11392 // option.
25bbe950
DK
11393 stub_group_size = 4145152;
11394 }
11395
11396 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11397 // page as the first half of a 32-bit branch straddling two 4K pages.
11398 // This is a crude way of enforcing that. In addition, long conditional
11399 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11400 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11401 // cortex-A8 stubs from long conditional branches.
11402 if (this->fix_cortex_a8_)
11403 {
11404 stubs_always_after_branch = true;
11405 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11406 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11407 }
11408
f625ae50 11409 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2b328d4e
DK
11410
11411 // Also fix .ARM.exidx section coverage.
131687b4
DK
11412 Arm_output_section<big_endian>* exidx_output_section = NULL;
11413 for (Layout::Section_list::const_iterator p =
11414 layout->section_list().begin();
11415 p != layout->section_list().end();
11416 ++p)
11417 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11418 {
11419 if (exidx_output_section == NULL)
11420 exidx_output_section =
11421 Arm_output_section<big_endian>::as_arm_output_section(*p);
11422 else
11423 // We cannot handle this now.
11424 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11425 "non-relocatable link"),
11426 exidx_output_section->name(),
11427 (*p)->name());
11428 }
11429
11430 if (exidx_output_section != NULL)
2b328d4e 11431 {
131687b4 11432 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11433 symtab, task);
2b328d4e
DK
11434 done_exidx_fixup = true;
11435 }
eb44217c 11436 }
6625d24e
DK
11437 else
11438 {
11439 // If this is not the first pass, addresses and file offsets have
11440 // been reset at this point, set them here.
11441 for (Stub_table_iterator sp = this->stub_tables_.begin();
11442 sp != this->stub_tables_.end();
11443 ++sp)
11444 {
11445 Arm_input_section<big_endian>* owner = (*sp)->owner();
11446 off_t off = align_address(owner->original_size(),
11447 (*sp)->addralign());
11448 (*sp)->set_address_and_file_offset(owner->address() + off,
11449 owner->offset() + off);
11450 }
11451 }
eb44217c 11452
44272192
DK
11453 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11454 // beginning of each relaxation pass, just blow away all the stubs.
11455 // Alternatively, we could selectively remove only the stubs and reloc
11456 // information for code sections that have moved since the last pass.
11457 // That would require more book-keeping.
a120bc7f
DK
11458 if (this->fix_cortex_a8_)
11459 {
11460 // Clear all Cortex-A8 reloc information.
11461 for (typename Cortex_a8_relocs_info::const_iterator p =
11462 this->cortex_a8_relocs_info_.begin();
11463 p != this->cortex_a8_relocs_info_.end();
11464 ++p)
11465 delete p->second;
11466 this->cortex_a8_relocs_info_.clear();
44272192
DK
11467
11468 // Remove all Cortex-A8 stubs.
11469 for (Stub_table_iterator sp = this->stub_tables_.begin();
11470 sp != this->stub_tables_.end();
11471 ++sp)
11472 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
11473 }
11474
44272192 11475 // Scan relocs for relocation stubs
eb44217c
DK
11476 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11477 op != input_objects->relobj_end();
11478 ++op)
11479 {
11480 Arm_relobj<big_endian>* arm_relobj =
11481 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11482 // Lock the object so we can read from it. This is only called
11483 // single-threaded from Layout::finalize, so it is OK to lock.
11484 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11485 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11486 }
11487
2fb7225c
DK
11488 // Check all stub tables to see if any of them have their data sizes
11489 // or addresses alignments changed. These are the only things that
11490 // matter.
eb44217c 11491 bool any_stub_table_changed = false;
8923b24c 11492 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11493 for (Stub_table_iterator sp = this->stub_tables_.begin();
11494 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11495 ++sp)
11496 {
2fb7225c 11497 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11498 {
11499 // Update data size of stub table owner.
11500 Arm_input_section<big_endian>* owner = (*sp)->owner();
11501 uint64_t address = owner->address();
11502 off_t offset = owner->offset();
11503 owner->reset_address_and_file_offset();
11504 owner->set_address_and_file_offset(address, offset);
11505
11506 sections_needing_adjustment.insert(owner->output_section());
11507 any_stub_table_changed = true;
11508 }
11509 }
11510
11511 // Output_section_data::output_section() returns a const pointer but we
11512 // need to update output sections, so we record all output sections needing
11513 // update above and scan the sections here to find out what sections need
11514 // to be updated.
f625ae50 11515 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11516 p != layout->section_list().end();
11517 ++p)
11518 {
11519 if (sections_needing_adjustment.find(*p)
11520 != sections_needing_adjustment.end())
11521 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11522 }
11523
2b328d4e
DK
11524 // Stop relaxation if no EXIDX fix-up and no stub table change.
11525 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11526
2fb7225c 11527 // Finalize the stubs in the last relaxation pass.
2b328d4e 11528 if (!continue_relaxation)
e7eca48c
DK
11529 {
11530 for (Stub_table_iterator sp = this->stub_tables_.begin();
11531 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11532 ++sp)
11533 (*sp)->finalize_stubs();
11534
11535 // Update output local symbol counts of objects if necessary.
11536 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11537 op != input_objects->relobj_end();
11538 ++op)
11539 {
11540 Arm_relobj<big_endian>* arm_relobj =
11541 Arm_relobj<big_endian>::as_arm_relobj(*op);
11542
11543 // Update output local symbol counts. We need to discard local
11544 // symbols defined in parts of input sections that are discarded by
11545 // relaxation.
11546 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11547 {
11548 // We need to lock the object's file to update it.
11549 Task_lock_obj<Object> tl(task, arm_relobj);
11550 arm_relobj->update_output_local_symbol_count();
11551 }
e7eca48c
DK
11552 }
11553 }
2fb7225c 11554
2b328d4e 11555 return continue_relaxation;
eb44217c
DK
11556}
11557
43d12afe
DK
11558// Relocate a stub.
11559
11560template<bool big_endian>
11561void
11562Target_arm<big_endian>::relocate_stub(
2fb7225c 11563 Stub* stub,
43d12afe
DK
11564 const Relocate_info<32, big_endian>* relinfo,
11565 Output_section* output_section,
11566 unsigned char* view,
11567 Arm_address address,
11568 section_size_type view_size)
11569{
11570 Relocate relocate;
2ea97941
ILT
11571 const Stub_template* stub_template = stub->stub_template();
11572 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11573 {
2ea97941
ILT
11574 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11575 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11576
11577 unsigned int r_type = insn->r_type();
2ea97941 11578 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11579 section_size_type reloc_size = insn->size();
11580 gold_assert(reloc_offset + reloc_size <= view_size);
11581
11582 // This is the address of the stub destination.
41263c05 11583 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11584 Symbol_value<32> symval;
11585 symval.set_output_value(target);
11586
11587 // Synthesize a fake reloc just in case. We don't have a symbol so
11588 // we use 0.
11589 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11590 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11591 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11592 reloc_write.put_r_offset(reloc_offset);
11593 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11594 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11595
11596 relocate.relocate(relinfo, this, output_section,
11597 this->fake_relnum_for_stubs, rel, r_type,
11598 NULL, &symval, view + reloc_offset,
11599 address + reloc_offset, reloc_size);
11600 }
11601}
11602
a0351a69
DK
11603// Determine whether an object attribute tag takes an integer, a
11604// string or both.
11605
11606template<bool big_endian>
11607int
11608Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11609{
11610 if (tag == Object_attribute::Tag_compatibility)
11611 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11612 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11613 else if (tag == elfcpp::Tag_nodefaults)
11614 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11615 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11616 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11617 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11618 else if (tag < 32)
11619 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11620 else
11621 return ((tag & 1) != 0
11622 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11623 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11624}
11625
11626// Reorder attributes.
11627//
11628// The ABI defines that Tag_conformance should be emitted first, and that
11629// Tag_nodefaults should be second (if either is defined). This sets those
11630// two positions, and bumps up the position of all the remaining tags to
11631// compensate.
11632
11633template<bool big_endian>
11634int
11635Target_arm<big_endian>::do_attributes_order(int num) const
11636{
11637 // Reorder the known object attributes in output. We want to move
11638 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11639 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11640 if (num == 4)
11641 return elfcpp::Tag_conformance;
11642 if (num == 5)
11643 return elfcpp::Tag_nodefaults;
11644 if ((num - 2) < elfcpp::Tag_nodefaults)
11645 return num - 2;
11646 if ((num - 1) < elfcpp::Tag_conformance)
11647 return num - 1;
11648 return num;
11649}
4a657b0d 11650
44272192
DK
11651// Scan a span of THUMB code for Cortex-A8 erratum.
11652
11653template<bool big_endian>
11654void
11655Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11656 Arm_relobj<big_endian>* arm_relobj,
11657 unsigned int shndx,
11658 section_size_type span_start,
11659 section_size_type span_end,
11660 const unsigned char* view,
11661 Arm_address address)
11662{
11663 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11664 //
11665 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11666 // The branch target is in the same 4KB region as the
11667 // first half of the branch.
11668 // The instruction before the branch is a 32-bit
11669 // length non-branch instruction.
11670 section_size_type i = span_start;
11671 bool last_was_32bit = false;
11672 bool last_was_branch = false;
11673 while (i < span_end)
11674 {
11675 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11676 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11677 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11678 bool is_blx = false, is_b = false;
11679 bool is_bl = false, is_bcc = false;
11680
11681 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11682 if (insn_32bit)
11683 {
11684 // Load the rest of the insn (in manual-friendly order).
11685 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11686
11687 // Encoding T4: B<c>.W.
11688 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11689 // Encoding T1: BL<c>.W.
11690 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11691 // Encoding T2: BLX<c>.W.
11692 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11693 // Encoding T3: B<c>.W (not permitted in IT block).
11694 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11695 && (insn & 0x07f00000U) != 0x03800000U);
11696 }
11697
11698 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11699
11700 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11701 // page boundary and it follows 32-bit non-branch instruction,
11702 // we need to work around.
11703 if (is_32bit_branch
11704 && ((address + i) & 0xfffU) == 0xffeU
11705 && last_was_32bit
11706 && !last_was_branch)
11707 {
11708 // Check to see if there is a relocation stub for this branch.
11709 bool force_target_arm = false;
11710 bool force_target_thumb = false;
11711 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11712 Cortex_a8_relocs_info::const_iterator p =
11713 this->cortex_a8_relocs_info_.find(address + i);
11714
11715 if (p != this->cortex_a8_relocs_info_.end())
11716 {
11717 cortex_a8_reloc = p->second;
11718 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11719
11720 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11721 && !target_is_thumb)
11722 force_target_arm = true;
11723 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11724 && target_is_thumb)
11725 force_target_thumb = true;
11726 }
11727
11728 off_t offset;
11729 Stub_type stub_type = arm_stub_none;
11730
11731 // Check if we have an offending branch instruction.
11732 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11733 uint16_t lower_insn = insn & 0xffffU;
11734 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11735
11736 if (cortex_a8_reloc != NULL
11737 && cortex_a8_reloc->reloc_stub() != NULL)
11738 // We've already made a stub for this instruction, e.g.
11739 // it's a long branch or a Thumb->ARM stub. Assume that
11740 // stub will suffice to work around the A8 erratum (see
11741 // setting of always_after_branch above).
11742 ;
11743 else if (is_bcc)
11744 {
11745 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11746 lower_insn);
11747 stub_type = arm_stub_a8_veneer_b_cond;
11748 }
11749 else if (is_b || is_bl || is_blx)
11750 {
11751 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11752 lower_insn);
11753 if (is_blx)
11754 offset &= ~3;
11755
11756 stub_type = (is_blx
11757 ? arm_stub_a8_veneer_blx
11758 : (is_bl
11759 ? arm_stub_a8_veneer_bl
11760 : arm_stub_a8_veneer_b));
11761 }
11762
11763 if (stub_type != arm_stub_none)
11764 {
11765 Arm_address pc_for_insn = address + i + 4;
11766
11767 // The original instruction is a BL, but the target is
11768 // an ARM instruction. If we were not making a stub,
11769 // the BL would have been converted to a BLX. Use the
11770 // BLX stub instead in that case.
cd6eab1c 11771 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11772 && stub_type == arm_stub_a8_veneer_bl)
11773 {
11774 stub_type = arm_stub_a8_veneer_blx;
11775 is_blx = true;
11776 is_bl = false;
11777 }
11778 // Conversely, if the original instruction was
11779 // BLX but the target is Thumb mode, use the BL stub.
11780 else if (force_target_thumb
11781 && stub_type == arm_stub_a8_veneer_blx)
11782 {
11783 stub_type = arm_stub_a8_veneer_bl;
11784 is_blx = false;
11785 is_bl = true;
11786 }
11787
11788 if (is_blx)
11789 pc_for_insn &= ~3;
11790
11791 // If we found a relocation, use the proper destination,
11792 // not the offset in the (unrelocated) instruction.
11793 // Note this is always done if we switched the stub type above.
11794 if (cortex_a8_reloc != NULL)
11795 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11796
11797 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11798
11799 // Add a new stub if destination address in in the same page.
11800 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11801 {
11802 Cortex_a8_stub* stub =
11803 this->stub_factory_.make_cortex_a8_stub(stub_type,
11804 arm_relobj, shndx,
11805 address + i,
11806 target, insn);
11807 Stub_table<big_endian>* stub_table =
11808 arm_relobj->stub_table(shndx);
11809 gold_assert(stub_table != NULL);
11810 stub_table->add_cortex_a8_stub(address + i, stub);
11811 }
11812 }
11813 }
11814
11815 i += insn_32bit ? 4 : 2;
11816 last_was_32bit = insn_32bit;
11817 last_was_branch = is_32bit_branch;
11818 }
11819}
11820
41263c05
DK
11821// Apply the Cortex-A8 workaround.
11822
11823template<bool big_endian>
11824void
11825Target_arm<big_endian>::apply_cortex_a8_workaround(
11826 const Cortex_a8_stub* stub,
11827 Arm_address stub_address,
11828 unsigned char* insn_view,
11829 Arm_address insn_address)
11830{
11831 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11832 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11833 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11834 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11835 off_t branch_offset = stub_address - (insn_address + 4);
11836
11837 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11838 switch (stub->stub_template()->type())
11839 {
11840 case arm_stub_a8_veneer_b_cond:
9b547ce6 11841 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
11842 // branch to the stub. We use the THUMB-2 encoding here.
11843 upper_insn = 0xf000U;
11844 lower_insn = 0xb800U;
11845 // Fall through
41263c05
DK
11846 case arm_stub_a8_veneer_b:
11847 case arm_stub_a8_veneer_bl:
11848 case arm_stub_a8_veneer_blx:
11849 if ((lower_insn & 0x5000U) == 0x4000U)
11850 // For a BLX instruction, make sure that the relocation is
11851 // rounded up to a word boundary. This follows the semantics of
11852 // the instruction which specifies that bit 1 of the target
11853 // address will come from bit 1 of the base address.
11854 branch_offset = (branch_offset + 2) & ~3;
11855
11856 // Put BRANCH_OFFSET back into the insn.
bef2b434 11857 gold_assert(!Bits<25>::has_overflow32(branch_offset));
41263c05
DK
11858 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11859 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11860 break;
11861
11862 default:
11863 gold_unreachable();
11864 }
11865
11866 // Put the relocated value back in the object file:
11867 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11868 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11869}
11870
4a657b0d
DK
11871template<bool big_endian>
11872class Target_selector_arm : public Target_selector
11873{
11874 public:
11875 Target_selector_arm()
11876 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
11877 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11878 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
11879 { }
11880
11881 Target*
11882 do_instantiate_target()
11883 { return new Target_arm<big_endian>(); }
11884};
11885
2b328d4e
DK
11886// Fix .ARM.exidx section coverage.
11887
11888template<bool big_endian>
11889void
11890Target_arm<big_endian>::fix_exidx_coverage(
11891 Layout* layout,
131687b4 11892 const Input_objects* input_objects,
2b328d4e 11893 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
11894 Symbol_table* symtab,
11895 const Task* task)
2b328d4e
DK
11896{
11897 // We need to look at all the input sections in output in ascending
11898 // order of of output address. We do that by building a sorted list
11899 // of output sections by addresses. Then we looks at the output sections
11900 // in order. The input sections in an output section are already sorted
11901 // by addresses within the output section.
11902
11903 typedef std::set<Output_section*, output_section_address_less_than>
11904 Sorted_output_section_list;
11905 Sorted_output_section_list sorted_output_sections;
131687b4
DK
11906
11907 // Find out all the output sections of input sections pointed by
11908 // EXIDX input sections.
11909 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11910 p != input_objects->relobj_end();
2b328d4e
DK
11911 ++p)
11912 {
131687b4
DK
11913 Arm_relobj<big_endian>* arm_relobj =
11914 Arm_relobj<big_endian>::as_arm_relobj(*p);
11915 std::vector<unsigned int> shndx_list;
11916 arm_relobj->get_exidx_shndx_list(&shndx_list);
11917 for (size_t i = 0; i < shndx_list.size(); ++i)
11918 {
11919 const Arm_exidx_input_section* exidx_input_section =
11920 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11921 gold_assert(exidx_input_section != NULL);
11922 if (!exidx_input_section->has_errors())
11923 {
11924 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 11925 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
11926 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11927 sorted_output_sections.insert(os);
11928 }
11929 }
2b328d4e
DK
11930 }
11931
11932 // Go over the output sections in ascending order of output addresses.
11933 typedef typename Arm_output_section<big_endian>::Text_section_list
11934 Text_section_list;
11935 Text_section_list sorted_text_sections;
f625ae50 11936 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
11937 sorted_output_sections.begin();
11938 p != sorted_output_sections.end();
11939 ++p)
11940 {
11941 Arm_output_section<big_endian>* arm_output_section =
11942 Arm_output_section<big_endian>::as_arm_output_section(*p);
11943 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11944 }
11945
85fdf906 11946 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 11947 merge_exidx_entries(), task);
2b328d4e
DK
11948}
11949
4a657b0d
DK
11950Target_selector_arm<false> target_selector_arm;
11951Target_selector_arm<true> target_selector_armbe;
11952
11953} // End anonymous namespace.
This page took 0.861208 seconds and 4 git commands to generate.