*** empty log message ***
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b3ce541e 3// Copyright 2009, 2010, 2011 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
9b547ce6 119// returning a static instance of Arm_reloc_property_table, it will be very
0d31c79d
DK
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
ca09d69a 129Arm_reloc_property_table* arm_reloc_property_table = NULL;
0d31c79d 130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
9b547ce6
RW
601 // If r_sym_ is an invalid index, this points to a global symbol.
602 // Otherwise, it points to a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
9b547ce6 604 // Arm_relobj, in order to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
9b547ce6
RW
898 // Add a STUB using KEY. The caller is responsible for avoiding addition
899 // if a STUB with the same key has already been added.
56ee5e00 900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
9b547ce6
RW
918 // The caller is responsible for avoiding addition if a STUB with the same
919 // address has already been added.
2fb7225c
DK
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
aa98ff75
DK
1067 // Write to a map file.
1068 void
1069 do_print_to_mapfile(Mapfile* mapfile) const
1070 { mapfile->print_output_data(this, _("** ARM cantunwind")); }
1071
af2cdeae 1072 private:
7296d933 1073 // Implement do_write for a given endianness.
af2cdeae
DK
1074 template<bool big_endian>
1075 void inline
1076 do_fixed_endian_write(Output_file*);
1077
1078 // The object containing the section pointed by this.
1079 Relobj* relobj_;
1080 // The section index of the section pointed by this.
1081 unsigned int shndx_;
1082};
1083
1084// During EXIDX coverage fix-up, we compact an EXIDX section. The
1085// Offset map is used to map input section offset within the EXIDX section
1086// to the output offset from the start of this EXIDX section.
1087
1088typedef std::map<section_offset_type, section_offset_type>
1089 Arm_exidx_section_offset_map;
1090
1091// Arm_exidx_merged_section class. This represents an EXIDX input section
1092// with some of its entries merged.
1093
1094class Arm_exidx_merged_section : public Output_relaxed_input_section
1095{
1096 public:
1097 // Constructor for Arm_exidx_merged_section.
1098 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1099 // SECTION_OFFSET_MAP points to a section offset map describing how
1100 // parts of the input section are mapped to output. DELETED_BYTES is
1101 // the number of bytes deleted from the EXIDX input section.
1102 Arm_exidx_merged_section(
1103 const Arm_exidx_input_section& exidx_input_section,
1104 const Arm_exidx_section_offset_map& section_offset_map,
1105 uint32_t deleted_bytes);
1106
f625ae50
DK
1107 // Build output contents.
1108 void
1109 build_contents(const unsigned char*, section_size_type);
1110
af2cdeae
DK
1111 // Return the original EXIDX input section.
1112 const Arm_exidx_input_section&
1113 exidx_input_section() const
1114 { return this->exidx_input_section_; }
1115
1116 // Return the section offset map.
1117 const Arm_exidx_section_offset_map&
1118 section_offset_map() const
1119 { return this->section_offset_map_; }
1120
1121 protected:
1122 // Write merged section into file OF.
1123 void
1124 do_write(Output_file* of);
1125
1126 bool
1127 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1128 section_offset_type*) const;
1129
1130 private:
1131 // Original EXIDX input section.
1132 const Arm_exidx_input_section& exidx_input_section_;
1133 // Section offset map.
1134 const Arm_exidx_section_offset_map& section_offset_map_;
f625ae50
DK
1135 // Merged section contents. We need to keep build the merged section
1136 // and save it here to avoid accessing the original EXIDX section when
1137 // we cannot lock the sections' object.
1138 unsigned char* section_contents_;
af2cdeae
DK
1139};
1140
10ad9fe5
DK
1141// A class to wrap an ordinary input section containing executable code.
1142
1143template<bool big_endian>
1144class Arm_input_section : public Output_relaxed_input_section
1145{
1146 public:
2ea97941
ILT
1147 Arm_input_section(Relobj* relobj, unsigned int shndx)
1148 : Output_relaxed_input_section(relobj, shndx, 1),
f625ae50
DK
1149 original_addralign_(1), original_size_(0), stub_table_(NULL),
1150 original_contents_(NULL)
10ad9fe5
DK
1151 { }
1152
1153 ~Arm_input_section()
f625ae50 1154 { delete[] this->original_contents_; }
10ad9fe5
DK
1155
1156 // Initialize.
1157 void
1158 init();
1159
1160 // Whether this is a stub table owner.
1161 bool
1162 is_stub_table_owner() const
1163 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1164
1165 // Return the stub table.
1166 Stub_table<big_endian>*
1167 stub_table() const
1168 { return this->stub_table_; }
1169
1170 // Set the stub_table.
1171 void
2ea97941
ILT
1172 set_stub_table(Stub_table<big_endian>* stub_table)
1173 { this->stub_table_ = stub_table; }
10ad9fe5 1174
07f508a2
DK
1175 // Downcast a base pointer to an Arm_input_section pointer. This is
1176 // not type-safe but we only use Arm_input_section not the base class.
1177 static Arm_input_section<big_endian>*
1178 as_arm_input_section(Output_relaxed_input_section* poris)
1179 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1180
6625d24e
DK
1181 // Return the original size of the section.
1182 uint32_t
1183 original_size() const
1184 { return this->original_size_; }
1185
10ad9fe5
DK
1186 protected:
1187 // Write data to output file.
1188 void
1189 do_write(Output_file*);
1190
1191 // Return required alignment of this.
1192 uint64_t
1193 do_addralign() const
1194 {
1195 if (this->is_stub_table_owner())
1196 return std::max(this->stub_table_->addralign(),
6625d24e 1197 static_cast<uint64_t>(this->original_addralign_));
10ad9fe5
DK
1198 else
1199 return this->original_addralign_;
1200 }
1201
1202 // Finalize data size.
1203 void
1204 set_final_data_size();
1205
1206 // Reset address and file offset.
1207 void
1208 do_reset_address_and_file_offset();
1209
1210 // Output offset.
1211 bool
2ea97941
ILT
1212 do_output_offset(const Relobj* object, unsigned int shndx,
1213 section_offset_type offset,
10ad9fe5
DK
1214 section_offset_type* poutput) const
1215 {
1216 if ((object == this->relobj())
2ea97941
ILT
1217 && (shndx == this->shndx())
1218 && (offset >= 0)
0439c796
DK
1219 && (offset <=
1220 convert_types<section_offset_type, uint32_t>(this->original_size_)))
10ad9fe5 1221 {
2ea97941 1222 *poutput = offset;
10ad9fe5
DK
1223 return true;
1224 }
1225 else
1226 return false;
1227 }
1228
1229 private:
1230 // Copying is not allowed.
1231 Arm_input_section(const Arm_input_section&);
1232 Arm_input_section& operator=(const Arm_input_section&);
1233
1234 // Address alignment of the original input section.
6625d24e 1235 uint32_t original_addralign_;
10ad9fe5 1236 // Section size of the original input section.
6625d24e 1237 uint32_t original_size_;
10ad9fe5
DK
1238 // Stub table.
1239 Stub_table<big_endian>* stub_table_;
f625ae50
DK
1240 // Original section contents. We have to make a copy here since the file
1241 // containing the original section may not be locked when we need to access
1242 // the contents.
1243 unsigned char* original_contents_;
10ad9fe5
DK
1244};
1245
80d0d023
DK
1246// Arm_exidx_fixup class. This is used to define a number of methods
1247// and keep states for fixing up EXIDX coverage.
1248
1249class Arm_exidx_fixup
1250{
1251 public:
85fdf906
AH
1252 Arm_exidx_fixup(Output_section* exidx_output_section,
1253 bool merge_exidx_entries = true)
80d0d023
DK
1254 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1255 last_inlined_entry_(0), last_input_section_(NULL),
85fdf906
AH
1256 section_offset_map_(NULL), first_output_text_section_(NULL),
1257 merge_exidx_entries_(merge_exidx_entries)
80d0d023
DK
1258 { }
1259
1260 ~Arm_exidx_fixup()
1261 { delete this->section_offset_map_; }
1262
f625ae50
DK
1263 // Process an EXIDX section for entry merging. SECTION_CONTENTS points
1264 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
1265 // number of bytes to be deleted in output. If parts of the input EXIDX
1266 // section are merged a heap allocated Arm_exidx_section_offset_map is store
1267 // in the located PSECTION_OFFSET_MAP. The caller owns the map and is
9b547ce6 1268 // responsible for releasing it.
80d0d023
DK
1269 template<bool big_endian>
1270 uint32_t
1271 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
1272 const unsigned char* section_contents,
1273 section_size_type section_size,
80d0d023
DK
1274 Arm_exidx_section_offset_map** psection_offset_map);
1275
1276 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1277 // input section, if there is not one already.
1278 void
1279 add_exidx_cantunwind_as_needed();
1280
546c7457
DK
1281 // Return the output section for the text section which is linked to the
1282 // first exidx input in output.
1283 Output_section*
1284 first_output_text_section() const
1285 { return this->first_output_text_section_; }
1286
80d0d023
DK
1287 private:
1288 // Copying is not allowed.
1289 Arm_exidx_fixup(const Arm_exidx_fixup&);
1290 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1291
1292 // Type of EXIDX unwind entry.
1293 enum Unwind_type
1294 {
1295 // No type.
1296 UT_NONE,
1297 // EXIDX_CANTUNWIND.
1298 UT_EXIDX_CANTUNWIND,
1299 // Inlined entry.
1300 UT_INLINED_ENTRY,
1301 // Normal entry.
1302 UT_NORMAL_ENTRY,
1303 };
1304
1305 // Process an EXIDX entry. We only care about the second word of the
1306 // entry. Return true if the entry can be deleted.
1307 bool
1308 process_exidx_entry(uint32_t second_word);
1309
1310 // Update the current section offset map during EXIDX section fix-up.
1311 // If there is no map, create one. INPUT_OFFSET is the offset of a
1312 // reference point, DELETED_BYTES is the number of deleted by in the
1313 // section so far. If DELETE_ENTRY is true, the reference point and
1314 // all offsets after the previous reference point are discarded.
1315 void
1316 update_offset_map(section_offset_type input_offset,
1317 section_size_type deleted_bytes, bool delete_entry);
1318
1319 // EXIDX output section.
1320 Output_section* exidx_output_section_;
1321 // Unwind type of the last EXIDX entry processed.
1322 Unwind_type last_unwind_type_;
1323 // Last seen inlined EXIDX entry.
1324 uint32_t last_inlined_entry_;
1325 // Last processed EXIDX input section.
2b328d4e 1326 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1327 // Section offset map created in process_exidx_section.
1328 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1329 // Output section for the text section which is linked to the first exidx
1330 // input in output.
1331 Output_section* first_output_text_section_;
85fdf906
AH
1332
1333 bool merge_exidx_entries_;
80d0d023
DK
1334};
1335
07f508a2
DK
1336// Arm output section class. This is defined mainly to add a number of
1337// stub generation methods.
1338
1339template<bool big_endian>
1340class Arm_output_section : public Output_section
1341{
1342 public:
2b328d4e
DK
1343 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1344
c87e4302 1345 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
2ea97941
ILT
1346 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1347 elfcpp::Elf_Xword flags)
c87e4302
DK
1348 : Output_section(name, type,
1349 (type == elfcpp::SHT_ARM_EXIDX
1350 ? flags | elfcpp::SHF_LINK_ORDER
1351 : flags))
131687b4
DK
1352 {
1353 if (type == elfcpp::SHT_ARM_EXIDX)
1354 this->set_always_keeps_input_sections();
1355 }
07f508a2
DK
1356
1357 ~Arm_output_section()
1358 { }
1359
1360 // Group input sections for stub generation.
1361 void
f625ae50 1362 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);
07f508a2
DK
1363
1364 // Downcast a base pointer to an Arm_output_section pointer. This is
1365 // not type-safe but we only use Arm_output_section not the base class.
1366 static Arm_output_section<big_endian>*
1367 as_arm_output_section(Output_section* os)
1368 { return static_cast<Arm_output_section<big_endian>*>(os); }
1369
2b328d4e
DK
1370 // Append all input text sections in this into LIST.
1371 void
1372 append_text_sections_to_list(Text_section_list* list);
1373
1374 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1375 // is a list of text input sections sorted in ascending order of their
1376 // output addresses.
1377 void
4a54abbb
DK
1378 fix_exidx_coverage(Layout* layout,
1379 const Text_section_list& sorted_text_section,
85fdf906 1380 Symbol_table* symtab,
f625ae50
DK
1381 bool merge_exidx_entries,
1382 const Task* task);
2b328d4e 1383
131687b4
DK
1384 // Link an EXIDX section into its corresponding text section.
1385 void
1386 set_exidx_section_link();
1387
07f508a2
DK
1388 private:
1389 // For convenience.
1390 typedef Output_section::Input_section Input_section;
1391 typedef Output_section::Input_section_list Input_section_list;
1392
1393 // Create a stub group.
1394 void create_stub_group(Input_section_list::const_iterator,
1395 Input_section_list::const_iterator,
1396 Input_section_list::const_iterator,
1397 Target_arm<big_endian>*,
f625ae50
DK
1398 std::vector<Output_relaxed_input_section*>*,
1399 const Task* task);
07f508a2
DK
1400};
1401
993d07c1
DK
1402// Arm_exidx_input_section class. This represents an EXIDX input section.
1403
1404class Arm_exidx_input_section
1405{
1406 public:
1407 static const section_offset_type invalid_offset =
1408 static_cast<section_offset_type>(-1);
1409
1410 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
f625ae50
DK
1411 unsigned int link, uint32_t size,
1412 uint32_t addralign, uint32_t text_size)
993d07c1 1413 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
f625ae50 1414 addralign_(addralign), text_size_(text_size), has_errors_(false)
993d07c1
DK
1415 { }
1416
1417 ~Arm_exidx_input_section()
1418 { }
1419
1420 // Accessors: This is a read-only class.
1421
1422 // Return the object containing this EXIDX input section.
1423 Relobj*
1424 relobj() const
1425 { return this->relobj_; }
1426
1427 // Return the section index of this EXIDX input section.
1428 unsigned int
1429 shndx() const
1430 { return this->shndx_; }
1431
1432 // Return the section index of linked text section in the same object.
1433 unsigned int
1434 link() const
1435 { return this->link_; }
1436
1437 // Return size of the EXIDX input section.
1438 uint32_t
1439 size() const
1440 { return this->size_; }
1441
f625ae50 1442 // Return address alignment of EXIDX input section.
993d07c1
DK
1443 uint32_t
1444 addralign() const
1445 { return this->addralign_; }
1446
f625ae50
DK
1447 // Return size of the associated text input section.
1448 uint32_t
1449 text_size() const
1450 { return this->text_size_; }
1451
131687b4
DK
1452 // Whether there are any errors in the EXIDX input section.
1453 bool
1454 has_errors() const
1455 { return this->has_errors_; }
1456
1457 // Set has-errors flag.
1458 void
1459 set_has_errors()
1460 { this->has_errors_ = true; }
1461
993d07c1
DK
1462 private:
1463 // Object containing this.
1464 Relobj* relobj_;
1465 // Section index of this.
1466 unsigned int shndx_;
1467 // text section linked to this in the same object.
1468 unsigned int link_;
1469 // Size of this. For ARM 32-bit is sufficient.
1470 uint32_t size_;
1471 // Address alignment of this. For ARM 32-bit is sufficient.
1472 uint32_t addralign_;
f625ae50
DK
1473 // Size of associated text section.
1474 uint32_t text_size_;
131687b4
DK
1475 // Whether this has any errors.
1476 bool has_errors_;
993d07c1
DK
1477};
1478
8ffa3667
DK
1479// Arm_relobj class.
1480
1481template<bool big_endian>
6fa2a40b 1482class Arm_relobj : public Sized_relobj_file<32, big_endian>
8ffa3667
DK
1483{
1484 public:
1485 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1486
2ea97941 1487 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1488 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
6fa2a40b 1489 : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1490 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1491 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1492 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1493 output_local_symbol_count_needs_update_(false),
1494 merge_flags_and_attributes_(true)
8ffa3667
DK
1495 { }
1496
1497 ~Arm_relobj()
a0351a69 1498 { delete this->attributes_section_data_; }
8ffa3667
DK
1499
1500 // Return the stub table of the SHNDX-th section if there is one.
1501 Stub_table<big_endian>*
2ea97941 1502 stub_table(unsigned int shndx) const
8ffa3667 1503 {
2ea97941
ILT
1504 gold_assert(shndx < this->stub_tables_.size());
1505 return this->stub_tables_[shndx];
8ffa3667
DK
1506 }
1507
1508 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1509 void
2ea97941 1510 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1511 {
2ea97941
ILT
1512 gold_assert(shndx < this->stub_tables_.size());
1513 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1514 }
1515
1516 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1517 // index. This is only valid after do_count_local_symbol is called.
1518 bool
1519 local_symbol_is_thumb_function(unsigned int r_sym) const
1520 {
1521 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1522 return this->local_symbol_is_thumb_function_[r_sym];
1523 }
1524
1525 // Scan all relocation sections for stub generation.
1526 void
1527 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1528 const Layout*);
1529
1530 // Convert regular input section with index SHNDX to a relaxed section.
1531 void
2ea97941 1532 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1533 {
1534 // The stubs have relocations and we need to process them after writing
1535 // out the stubs. So relocation now must follow section write.
2b328d4e 1536 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1537 this->set_relocs_must_follow_section_writes();
1538 }
1539
1540 // Downcast a base pointer to an Arm_relobj pointer. This is
1541 // not type-safe but we only use Arm_relobj not the base class.
1542 static Arm_relobj<big_endian>*
2ea97941
ILT
1543 as_arm_relobj(Relobj* relobj)
1544 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1545
d5b40221
DK
1546 // Processor-specific flags in ELF file header. This is valid only after
1547 // reading symbols.
1548 elfcpp::Elf_Word
1549 processor_specific_flags() const
1550 { return this->processor_specific_flags_; }
1551
a0351a69
DK
1552 // Attribute section data This is the contents of the .ARM.attribute section
1553 // if there is one.
1554 const Attributes_section_data*
1555 attributes_section_data() const
1556 { return this->attributes_section_data_; }
1557
20138696
DK
1558 // Mapping symbol location.
1559 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1560
1561 // Functor for STL container.
1562 struct Mapping_symbol_position_less
1563 {
1564 bool
1565 operator()(const Mapping_symbol_position& p1,
1566 const Mapping_symbol_position& p2) const
1567 {
1568 return (p1.first < p2.first
1569 || (p1.first == p2.first && p1.second < p2.second));
1570 }
1571 };
1572
1573 // We only care about the first character of a mapping symbol, so
1574 // we only store that instead of the whole symbol name.
1575 typedef std::map<Mapping_symbol_position, char,
1576 Mapping_symbol_position_less> Mapping_symbols_info;
1577
2fb7225c
DK
1578 // Whether a section contains any Cortex-A8 workaround.
1579 bool
1580 section_has_cortex_a8_workaround(unsigned int shndx) const
1581 {
1582 return (this->section_has_cortex_a8_workaround_ != NULL
1583 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1584 }
1585
1586 // Mark a section that has Cortex-A8 workaround.
1587 void
1588 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1589 {
1590 if (this->section_has_cortex_a8_workaround_ == NULL)
1591 this->section_has_cortex_a8_workaround_ =
1592 new std::vector<bool>(this->shnum(), false);
1593 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1594 }
1595
993d07c1
DK
1596 // Return the EXIDX section of an text section with index SHNDX or NULL
1597 // if the text section has no associated EXIDX section.
1598 const Arm_exidx_input_section*
1599 exidx_input_section_by_link(unsigned int shndx) const
1600 {
1601 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1602 return ((p != this->exidx_section_map_.end()
1603 && p->second->link() == shndx)
1604 ? p->second
1605 : NULL);
1606 }
1607
1608 // Return the EXIDX section with index SHNDX or NULL if there is none.
1609 const Arm_exidx_input_section*
1610 exidx_input_section_by_shndx(unsigned shndx) const
1611 {
1612 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1613 return ((p != this->exidx_section_map_.end()
1614 && p->second->shndx() == shndx)
1615 ? p->second
1616 : NULL);
1617 }
1618
e7eca48c
DK
1619 // Whether output local symbol count needs updating.
1620 bool
1621 output_local_symbol_count_needs_update() const
1622 { return this->output_local_symbol_count_needs_update_; }
1623
1624 // Set output_local_symbol_count_needs_update flag to be true.
1625 void
1626 set_output_local_symbol_count_needs_update()
1627 { this->output_local_symbol_count_needs_update_ = true; }
1628
1629 // Update output local symbol count at the end of relaxation.
1630 void
1631 update_output_local_symbol_count();
1632
7296d933
DK
1633 // Whether we want to merge processor-specific flags and attributes.
1634 bool
1635 merge_flags_and_attributes() const
1636 { return this->merge_flags_and_attributes_; }
1637
131687b4
DK
1638 // Export list of EXIDX section indices.
1639 void
1640 get_exidx_shndx_list(std::vector<unsigned int>* list) const
1641 {
1642 list->clear();
1643 for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
1644 p != this->exidx_section_map_.end();
1645 ++p)
1646 {
1647 if (p->second->shndx() == p->first)
1648 list->push_back(p->first);
1649 }
1650 // Sort list to make result independent of implementation of map.
1651 std::sort(list->begin(), list->end());
1652 }
1653
8ffa3667
DK
1654 protected:
1655 // Post constructor setup.
1656 void
1657 do_setup()
1658 {
1659 // Call parent's setup method.
6fa2a40b 1660 Sized_relobj_file<32, big_endian>::do_setup();
8ffa3667
DK
1661
1662 // Initialize look-up tables.
1663 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1664 this->stub_tables_.swap(empty_stub_table_list);
1665 }
1666
1667 // Count the local symbols.
1668 void
1669 do_count_local_symbols(Stringpool_template<char>*,
1670 Stringpool_template<char>*);
1671
1672 void
6fa2a40b
CC
1673 do_relocate_sections(
1674 const Symbol_table* symtab, const Layout* layout,
1675 const unsigned char* pshdrs, Output_file* of,
1676 typename Sized_relobj_file<32, big_endian>::Views* pivews);
8ffa3667 1677
d5b40221
DK
1678 // Read the symbol information.
1679 void
1680 do_read_symbols(Read_symbols_data* sd);
1681
99e5bff2
DK
1682 // Process relocs for garbage collection.
1683 void
1684 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1685
8ffa3667 1686 private:
44272192
DK
1687
1688 // Whether a section needs to be scanned for relocation stubs.
1689 bool
1690 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1691 const Relobj::Output_sections&,
ca09d69a 1692 const Symbol_table*, const unsigned char*);
44272192 1693
cf846138
DK
1694 // Whether a section is a scannable text section.
1695 bool
1696 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
ca09d69a 1697 const Output_section*, const Symbol_table*);
cf846138 1698
44272192
DK
1699 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1700 bool
1701 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1702 unsigned int, Output_section*,
ca09d69a 1703 const Symbol_table*);
44272192
DK
1704
1705 // Scan a section for the Cortex-A8 erratum.
1706 void
1707 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1708 unsigned int, Output_section*,
1709 Target_arm<big_endian>*);
1710
c8761b9a 1711 // Find the linked text section of an EXIDX section by looking at the
9b547ce6 1712 // first relocation of the EXIDX section. PSHDR points to the section
c8761b9a
DK
1713 // headers of a relocation section and PSYMS points to the local symbols.
1714 // PSHNDX points to a location storing the text section index if found.
1715 // Return whether we can find the linked section.
1716 bool
1717 find_linked_text_section(const unsigned char* pshdr,
1718 const unsigned char* psyms, unsigned int* pshndx);
1719
1720 //
993d07c1 1721 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1722 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1723 // index of the linked text section.
993d07c1
DK
1724 void
1725 make_exidx_input_section(unsigned int shndx,
c8761b9a 1726 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
1727 unsigned int text_shndx,
1728 const elfcpp::Shdr<32, big_endian>& text_shdr);
993d07c1 1729
cb1be87e
DK
1730 // Return the output address of either a plain input section or a
1731 // relaxed input section. SHNDX is the section index.
1732 Arm_address
1733 simple_input_section_output_address(unsigned int, Output_section*);
1734
8ffa3667 1735 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1736 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1737 Exidx_section_map;
1738
1739 // List of stub tables.
8ffa3667
DK
1740 Stub_table_list stub_tables_;
1741 // Bit vector to tell if a local symbol is a thumb function or not.
1742 // This is only valid after do_count_local_symbol is called.
1743 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1744 // processor-specific flags in ELF file header.
1745 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1746 // Object attributes if there is an .ARM.attributes section or NULL.
1747 Attributes_section_data* attributes_section_data_;
20138696
DK
1748 // Mapping symbols information.
1749 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1750 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1751 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1752 // Map a text section to its associated .ARM.exidx section, if there is one.
1753 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1754 // Whether output local symbol count needs updating.
1755 bool output_local_symbol_count_needs_update_;
7296d933
DK
1756 // Whether we merge processor flags and attributes of this object to
1757 // output.
1758 bool merge_flags_and_attributes_;
d5b40221
DK
1759};
1760
1761// Arm_dynobj class.
1762
1763template<bool big_endian>
1764class Arm_dynobj : public Sized_dynobj<32, big_endian>
1765{
1766 public:
2ea97941 1767 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1768 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1769 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1770 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1771 { }
1772
1773 ~Arm_dynobj()
a0351a69 1774 { delete this->attributes_section_data_; }
d5b40221
DK
1775
1776 // Downcast a base pointer to an Arm_relobj pointer. This is
1777 // not type-safe but we only use Arm_relobj not the base class.
1778 static Arm_dynobj<big_endian>*
1779 as_arm_dynobj(Dynobj* dynobj)
1780 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1781
1782 // Processor-specific flags in ELF file header. This is valid only after
1783 // reading symbols.
1784 elfcpp::Elf_Word
1785 processor_specific_flags() const
1786 { return this->processor_specific_flags_; }
1787
a0351a69
DK
1788 // Attributes section data.
1789 const Attributes_section_data*
1790 attributes_section_data() const
1791 { return this->attributes_section_data_; }
1792
d5b40221
DK
1793 protected:
1794 // Read the symbol information.
1795 void
1796 do_read_symbols(Read_symbols_data* sd);
1797
1798 private:
1799 // processor-specific flags in ELF file header.
1800 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1801 // Object attributes if there is an .ARM.attributes section or NULL.
1802 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1803};
1804
e9bbb538
DK
1805// Functor to read reloc addends during stub generation.
1806
1807template<int sh_type, bool big_endian>
1808struct Stub_addend_reader
1809{
1810 // Return the addend for a relocation of a particular type. Depending
1811 // on whether this is a REL or RELA relocation, read the addend from a
1812 // view or from a Reloc object.
1813 elfcpp::Elf_types<32>::Elf_Swxword
1814 operator()(
1815 unsigned int /* r_type */,
1816 const unsigned char* /* view */,
1817 const typename Reloc_types<sh_type,
ebd95253 1818 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1819};
1820
1821// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1822
1823template<bool big_endian>
1824struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1825{
1826 elfcpp::Elf_types<32>::Elf_Swxword
1827 operator()(
1828 unsigned int,
1829 const unsigned char*,
1830 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1831};
1832
1833// Specialized Stub_addend_reader for RELA type relocation sections.
1834// We currently do not handle RELA type relocation sections but it is trivial
1835// to implement the addend reader. This is provided for completeness and to
1836// make it easier to add support for RELA relocation sections in the future.
1837
1838template<bool big_endian>
1839struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1840{
1841 elfcpp::Elf_types<32>::Elf_Swxword
1842 operator()(
1843 unsigned int,
1844 const unsigned char*,
1845 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1846 big_endian>::Reloc& reloc) const
1847 { return reloc.get_r_addend(); }
e9bbb538
DK
1848};
1849
a120bc7f
DK
1850// Cortex_a8_reloc class. We keep record of relocation that may need
1851// the Cortex-A8 erratum workaround.
1852
1853class Cortex_a8_reloc
1854{
1855 public:
1856 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1857 Arm_address destination)
1858 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1859 { }
1860
1861 ~Cortex_a8_reloc()
1862 { }
1863
1864 // Accessors: This is a read-only class.
1865
1866 // Return the relocation stub associated with this relocation if there is
1867 // one.
1868 const Reloc_stub*
1869 reloc_stub() const
1870 { return this->reloc_stub_; }
1871
1872 // Return the relocation type.
1873 unsigned int
1874 r_type() const
1875 { return this->r_type_; }
1876
1877 // Return the destination address of the relocation. LSB stores the THUMB
1878 // bit.
1879 Arm_address
1880 destination() const
1881 { return this->destination_; }
1882
1883 private:
1884 // Associated relocation stub if there is one, or NULL.
1885 const Reloc_stub* reloc_stub_;
1886 // Relocation type.
1887 unsigned int r_type_;
1888 // Destination address of this relocation. LSB is used to distinguish
1889 // ARM/THUMB mode.
1890 Arm_address destination_;
1891};
1892
4a54abbb
DK
1893// Arm_output_data_got class. We derive this from Output_data_got to add
1894// extra methods to handle TLS relocations in a static link.
1895
1896template<bool big_endian>
1897class Arm_output_data_got : public Output_data_got<32, big_endian>
1898{
1899 public:
1900 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1901 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1902 { }
1903
1904 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1905 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1906 // applied in a static link.
1907 void
1908 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1909 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1910
1911 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1912 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1913 // relocation that needs to be applied in a static link.
1914 void
1915 add_static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b
CC
1916 Sized_relobj_file<32, big_endian>* relobj,
1917 unsigned int index)
4a54abbb
DK
1918 {
1919 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1920 index));
1921 }
1922
1923 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1924 // The first one is initialized to be 1, which is the module index for
1925 // the main executable and the second one 0. A reloc of the type
1926 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1927 // be applied by gold. GSYM is a global symbol.
1928 void
1929 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1930
1931 // Same as the above but for a local symbol in OBJECT with INDEX.
1932 void
1933 add_tls_gd32_with_static_reloc(unsigned int got_type,
6fa2a40b 1934 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
1935 unsigned int index);
1936
1937 protected:
1938 // Write out the GOT table.
1939 void
1940 do_write(Output_file*);
1941
1942 private:
1943 // This class represent dynamic relocations that need to be applied by
1944 // gold because we are using TLS relocations in a static link.
1945 class Static_reloc
1946 {
1947 public:
1948 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1949 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1950 { this->u_.global.symbol = gsym; }
1951
1952 Static_reloc(unsigned int got_offset, unsigned int r_type,
6fa2a40b 1953 Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
4a54abbb
DK
1954 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1955 {
1956 this->u_.local.relobj = relobj;
1957 this->u_.local.index = index;
1958 }
1959
1960 // Return the GOT offset.
1961 unsigned int
1962 got_offset() const
1963 { return this->got_offset_; }
1964
1965 // Relocation type.
1966 unsigned int
1967 r_type() const
1968 { return this->r_type_; }
1969
1970 // Whether the symbol is global or not.
1971 bool
1972 symbol_is_global() const
1973 { return this->symbol_is_global_; }
1974
1975 // For a relocation against a global symbol, the global symbol.
1976 Symbol*
1977 symbol() const
1978 {
1979 gold_assert(this->symbol_is_global_);
1980 return this->u_.global.symbol;
1981 }
1982
1983 // For a relocation against a local symbol, the defining object.
6fa2a40b 1984 Sized_relobj_file<32, big_endian>*
4a54abbb
DK
1985 relobj() const
1986 {
1987 gold_assert(!this->symbol_is_global_);
1988 return this->u_.local.relobj;
1989 }
1990
1991 // For a relocation against a local symbol, the local symbol index.
1992 unsigned int
1993 index() const
1994 {
1995 gold_assert(!this->symbol_is_global_);
1996 return this->u_.local.index;
1997 }
1998
1999 private:
2000 // GOT offset of the entry to which this relocation is applied.
2001 unsigned int got_offset_;
2002 // Type of relocation.
2003 unsigned int r_type_;
2004 // Whether this relocation is against a global symbol.
2005 bool symbol_is_global_;
2006 // A global or local symbol.
2007 union
2008 {
2009 struct
2010 {
2011 // For a global symbol, the symbol itself.
2012 Symbol* symbol;
2013 } global;
2014 struct
2015 {
2016 // For a local symbol, the object defining object.
6fa2a40b 2017 Sized_relobj_file<32, big_endian>* relobj;
4a54abbb
DK
2018 // For a local symbol, the symbol index.
2019 unsigned int index;
2020 } local;
2021 } u_;
2022 };
2023
2024 // Symbol table of the output object.
2025 Symbol_table* symbol_table_;
2026 // Layout of the output object.
2027 Layout* layout_;
2028 // Static relocs to be applied to the GOT.
2029 std::vector<Static_reloc> static_relocs_;
2030};
2031
9b547ce6 2032// The ARM target has many relocation types with odd-sizes or noncontiguous
5c388529
DK
2033// bits. The default handling of relocatable relocation cannot process these
2034// relocations. So we have to extend the default code.
2035
2036template<bool big_endian, int sh_type, typename Classify_reloc>
2037class Arm_scan_relocatable_relocs :
2038 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2039{
2040 public:
2041 // Return the strategy to use for a local symbol which is a section
2042 // symbol, given the relocation type.
2043 inline Relocatable_relocs::Reloc_strategy
2044 local_section_strategy(unsigned int r_type, Relobj*)
2045 {
2046 if (sh_type == elfcpp::SHT_RELA)
2047 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2048 else
2049 {
2050 if (r_type == elfcpp::R_ARM_TARGET1
2051 || r_type == elfcpp::R_ARM_TARGET2)
2052 {
2053 const Target_arm<big_endian>* arm_target =
2054 Target_arm<big_endian>::default_target();
2055 r_type = arm_target->get_real_reloc_type(r_type);
2056 }
2057
2058 switch(r_type)
2059 {
2060 // Relocations that write nothing. These exclude R_ARM_TARGET1
2061 // and R_ARM_TARGET2.
2062 case elfcpp::R_ARM_NONE:
2063 case elfcpp::R_ARM_V4BX:
2064 case elfcpp::R_ARM_TLS_GOTDESC:
2065 case elfcpp::R_ARM_TLS_CALL:
2066 case elfcpp::R_ARM_TLS_DESCSEQ:
2067 case elfcpp::R_ARM_THM_TLS_CALL:
2068 case elfcpp::R_ARM_GOTRELAX:
2069 case elfcpp::R_ARM_GNU_VTENTRY:
2070 case elfcpp::R_ARM_GNU_VTINHERIT:
2071 case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
2072 case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
2073 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
2074 // These should have been converted to something else above.
2075 case elfcpp::R_ARM_TARGET1:
2076 case elfcpp::R_ARM_TARGET2:
2077 gold_unreachable();
2078 // Relocations that write full 32 bits.
2079 case elfcpp::R_ARM_ABS32:
2080 case elfcpp::R_ARM_REL32:
2081 case elfcpp::R_ARM_SBREL32:
2082 case elfcpp::R_ARM_GOTOFF32:
2083 case elfcpp::R_ARM_BASE_PREL:
2084 case elfcpp::R_ARM_GOT_BREL:
2085 case elfcpp::R_ARM_BASE_ABS:
2086 case elfcpp::R_ARM_ABS32_NOI:
2087 case elfcpp::R_ARM_REL32_NOI:
2088 case elfcpp::R_ARM_PLT32_ABS:
2089 case elfcpp::R_ARM_GOT_ABS:
2090 case elfcpp::R_ARM_GOT_PREL:
2091 case elfcpp::R_ARM_TLS_GD32:
2092 case elfcpp::R_ARM_TLS_LDM32:
2093 case elfcpp::R_ARM_TLS_LDO32:
2094 case elfcpp::R_ARM_TLS_IE32:
2095 case elfcpp::R_ARM_TLS_LE32:
2096 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
2097 default:
2098 // For all other static relocations, return RELOC_SPECIAL.
2099 return Relocatable_relocs::RELOC_SPECIAL;
2100 }
2101 }
2102 }
2103};
2104
c121c671
DK
2105// Utilities for manipulating integers of up to 32-bits
2106
2107namespace utils
2108{
2109 // Sign extend an n-bit unsigned integer stored in an uint32_t into
2110 // an int32_t. NO_BITS must be between 1 to 32.
2111 template<int no_bits>
2112 static inline int32_t
2113 sign_extend(uint32_t bits)
2114 {
96d49306 2115 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2116 if (no_bits == 32)
2117 return static_cast<int32_t>(bits);
2118 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
2119 bits &= mask;
2120 uint32_t top_bit = 1U << (no_bits - 1);
2121 int32_t as_signed = static_cast<int32_t>(bits);
2122 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
2123 }
2124
2125 // Detects overflow of an NO_BITS integer stored in a uint32_t.
2126 template<int no_bits>
2127 static inline bool
2128 has_overflow(uint32_t bits)
2129 {
96d49306 2130 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
2131 if (no_bits == 32)
2132 return false;
2133 int32_t max = (1 << (no_bits - 1)) - 1;
2134 int32_t min = -(1 << (no_bits - 1));
2135 int32_t as_signed = static_cast<int32_t>(bits);
2136 return as_signed > max || as_signed < min;
2137 }
2138
5e445df6
ILT
2139 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
2140 // fits in the given number of bits as either a signed or unsigned value.
2141 // For example, has_signed_unsigned_overflow<8> would check
2142 // -128 <= bits <= 255
2143 template<int no_bits>
2144 static inline bool
2145 has_signed_unsigned_overflow(uint32_t bits)
2146 {
2147 gold_assert(no_bits >= 2 && no_bits <= 32);
2148 if (no_bits == 32)
2149 return false;
2150 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
2151 int32_t min = -(1 << (no_bits - 1));
2152 int32_t as_signed = static_cast<int32_t>(bits);
2153 return as_signed > max || as_signed < min;
2154 }
2155
c121c671
DK
2156 // Select bits from A and B using bits in MASK. For each n in [0..31],
2157 // the n-th bit in the result is chosen from the n-th bits of A and B.
2158 // A zero selects A and a one selects B.
2159 static inline uint32_t
2160 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2161 { return (a & ~mask) | (b & mask); }
2162};
2163
4a657b0d
DK
2164template<bool big_endian>
2165class Target_arm : public Sized_target<32, big_endian>
2166{
2167 public:
2168 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2169 Reloc_section;
2170
2daedcd6
DK
2171 // When were are relocating a stub, we pass this as the relocation number.
2172 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2173
a6d1ef57
DK
2174 Target_arm()
2175 : Sized_target<32, big_endian>(&arm_info),
2176 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2177 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2178 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2179 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
cd6eab1c 2180 should_force_pic_veneer_(false),
f96accdf
DK
2181 arm_input_section_map_(), attributes_section_data_(NULL),
2182 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2183 { }
4a657b0d 2184
b569affa
DK
2185 // Whether we force PCI branch veneers.
2186 bool
2187 should_force_pic_veneer() const
2188 { return this->should_force_pic_veneer_; }
2189
2190 // Set PIC veneer flag.
2191 void
2192 set_should_force_pic_veneer(bool value)
2193 { this->should_force_pic_veneer_ = value; }
2194
2195 // Whether we use THUMB-2 instructions.
2196 bool
2197 using_thumb2() const
2198 {
a0351a69
DK
2199 Object_attribute* attr =
2200 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2201 int arch = attr->int_value();
2202 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2203 }
2204
2205 // Whether we use THUMB/THUMB-2 instructions only.
2206 bool
2207 using_thumb_only() const
2208 {
a0351a69
DK
2209 Object_attribute* attr =
2210 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2211
2212 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2213 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2214 return true;
a0351a69
DK
2215 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2216 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2217 return false;
2218 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2219 return attr->int_value() == 'M';
b569affa
DK
2220 }
2221
d204b6e9
DK
2222 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2223 bool
2224 may_use_arm_nop() const
2225 {
a0351a69
DK
2226 Object_attribute* attr =
2227 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2228 int arch = attr->int_value();
2229 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2230 || arch == elfcpp::TAG_CPU_ARCH_V6K
2231 || arch == elfcpp::TAG_CPU_ARCH_V7
2232 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2233 }
2234
51938283
DK
2235 // Whether we have THUMB-2 NOP.W instruction.
2236 bool
2237 may_use_thumb2_nop() const
2238 {
a0351a69
DK
2239 Object_attribute* attr =
2240 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2241 int arch = attr->int_value();
2242 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2243 || arch == elfcpp::TAG_CPU_ARCH_V7
2244 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283 2245 }
cd6eab1c
ILT
2246
2247 // Whether we have v4T interworking instructions available.
2248 bool
2249 may_use_v4t_interworking() const
2250 {
2251 Object_attribute* attr =
2252 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2253 int arch = attr->int_value();
2254 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2255 && arch != elfcpp::TAG_CPU_ARCH_V4);
2256 }
2257
2258 // Whether we have v5T interworking instructions available.
2259 bool
2260 may_use_v5t_interworking() const
2261 {
2262 Object_attribute* attr =
2263 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2264 int arch = attr->int_value();
a8e2273b
ILT
2265 if (parameters->options().fix_arm1176())
2266 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2267 || arch == elfcpp::TAG_CPU_ARCH_V7
2268 || arch == elfcpp::TAG_CPU_ARCH_V6_M
2269 || arch == elfcpp::TAG_CPU_ARCH_V6S_M
2270 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
2271 else
2272 return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
2273 && arch != elfcpp::TAG_CPU_ARCH_V4
2274 && arch != elfcpp::TAG_CPU_ARCH_V4T);
cd6eab1c 2275 }
51938283 2276
4a657b0d
DK
2277 // Process the relocations to determine unreferenced sections for
2278 // garbage collection.
2279 void
ad0f2072 2280 gc_process_relocs(Symbol_table* symtab,
4a657b0d 2281 Layout* layout,
6fa2a40b 2282 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2283 unsigned int data_shndx,
2284 unsigned int sh_type,
2285 const unsigned char* prelocs,
2286 size_t reloc_count,
2287 Output_section* output_section,
2288 bool needs_special_offset_handling,
2289 size_t local_symbol_count,
2290 const unsigned char* plocal_symbols);
2291
2292 // Scan the relocations to look for symbol adjustments.
2293 void
ad0f2072 2294 scan_relocs(Symbol_table* symtab,
4a657b0d 2295 Layout* layout,
6fa2a40b 2296 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2297 unsigned int data_shndx,
2298 unsigned int sh_type,
2299 const unsigned char* prelocs,
2300 size_t reloc_count,
2301 Output_section* output_section,
2302 bool needs_special_offset_handling,
2303 size_t local_symbol_count,
2304 const unsigned char* plocal_symbols);
2305
2306 // Finalize the sections.
2307 void
f59f41f3 2308 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2309
94cdfcff 2310 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2311 // treatment.
2312 uint64_t
2313 do_dynsym_value(const Symbol*) const;
2314
2315 // Relocate a section.
2316 void
2317 relocate_section(const Relocate_info<32, big_endian>*,
2318 unsigned int sh_type,
2319 const unsigned char* prelocs,
2320 size_t reloc_count,
2321 Output_section* output_section,
2322 bool needs_special_offset_handling,
2323 unsigned char* view,
ebabffbd 2324 Arm_address view_address,
364c7fa5
ILT
2325 section_size_type view_size,
2326 const Reloc_symbol_changes*);
4a657b0d
DK
2327
2328 // Scan the relocs during a relocatable link.
2329 void
ad0f2072 2330 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d 2331 Layout* layout,
6fa2a40b 2332 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2333 unsigned int data_shndx,
2334 unsigned int sh_type,
2335 const unsigned char* prelocs,
2336 size_t reloc_count,
2337 Output_section* output_section,
2338 bool needs_special_offset_handling,
2339 size_t local_symbol_count,
2340 const unsigned char* plocal_symbols,
2341 Relocatable_relocs*);
2342
2343 // Relocate a section during a relocatable link.
2344 void
2345 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2346 unsigned int sh_type,
2347 const unsigned char* prelocs,
2348 size_t reloc_count,
2349 Output_section* output_section,
2350 off_t offset_in_output_section,
2351 const Relocatable_relocs*,
2352 unsigned char* view,
ebabffbd 2353 Arm_address view_address,
4a657b0d
DK
2354 section_size_type view_size,
2355 unsigned char* reloc_view,
2356 section_size_type reloc_view_size);
2357
5c388529
DK
2358 // Perform target-specific processing in a relocatable link. This is
2359 // only used if we use the relocation strategy RELOC_SPECIAL.
2360 void
2361 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
2362 unsigned int sh_type,
2363 const unsigned char* preloc_in,
2364 size_t relnum,
2365 Output_section* output_section,
2366 off_t offset_in_output_section,
2367 unsigned char* view,
2368 typename elfcpp::Elf_types<32>::Elf_Addr
2369 view_address,
2370 section_size_type view_size,
2371 unsigned char* preloc_out);
2372
4a657b0d
DK
2373 // Return whether SYM is defined by the ABI.
2374 bool
2375 do_is_defined_by_abi(Symbol* sym) const
2376 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2377
c8761b9a
DK
2378 // Return whether there is a GOT section.
2379 bool
2380 has_got_section() const
2381 { return this->got_ != NULL; }
2382
94cdfcff
DK
2383 // Return the size of the GOT section.
2384 section_size_type
0e70b911 2385 got_size() const
94cdfcff
DK
2386 {
2387 gold_assert(this->got_ != NULL);
2388 return this->got_->data_size();
2389 }
2390
0e70b911
CC
2391 // Return the number of entries in the GOT.
2392 unsigned int
2393 got_entry_count() const
2394 {
2395 if (!this->has_got_section())
2396 return 0;
2397 return this->got_size() / 4;
2398 }
2399
2400 // Return the number of entries in the PLT.
2401 unsigned int
2402 plt_entry_count() const;
2403
2404 // Return the offset of the first non-reserved PLT entry.
2405 unsigned int
2406 first_plt_entry_offset() const;
2407
2408 // Return the size of each PLT entry.
2409 unsigned int
2410 plt_entry_size() const;
2411
4a657b0d 2412 // Map platform-specific reloc types
a6d1ef57 2413 static unsigned int
ca09d69a 2414 get_real_reloc_type(unsigned int r_type);
4a657b0d 2415
55da9579
DK
2416 //
2417 // Methods to support stub-generations.
2418 //
2419
2420 // Return the stub factory
2421 const Stub_factory&
2422 stub_factory() const
2423 { return this->stub_factory_; }
2424
2425 // Make a new Arm_input_section object.
2426 Arm_input_section<big_endian>*
2427 new_arm_input_section(Relobj*, unsigned int);
2428
2429 // Find the Arm_input_section object corresponding to the SHNDX-th input
2430 // section of RELOBJ.
2431 Arm_input_section<big_endian>*
2ea97941 2432 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2433
2434 // Make a new Stub_table
2435 Stub_table<big_endian>*
2436 new_stub_table(Arm_input_section<big_endian>*);
2437
eb44217c
DK
2438 // Scan a section for stub generation.
2439 void
2440 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2441 const unsigned char*, size_t, Output_section*,
2442 bool, const unsigned char*, Arm_address,
2443 section_size_type);
2444
43d12afe
DK
2445 // Relocate a stub.
2446 void
2fb7225c 2447 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2448 Output_section*, unsigned char*, Arm_address,
2449 section_size_type);
2450
b569affa 2451 // Get the default ARM target.
43d12afe 2452 static Target_arm<big_endian>*
b569affa
DK
2453 default_target()
2454 {
2455 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2456 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2457 return static_cast<Target_arm<big_endian>*>(
2458 parameters->sized_target<32, big_endian>());
b569affa
DK
2459 }
2460
20138696
DK
2461 // Whether NAME belongs to a mapping symbol.
2462 static bool
2463 is_mapping_symbol_name(const char* name)
2464 {
2465 return (name
2466 && name[0] == '$'
2467 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2468 && (name[2] == '\0' || name[2] == '.'));
2469 }
2470
a120bc7f
DK
2471 // Whether we work around the Cortex-A8 erratum.
2472 bool
2473 fix_cortex_a8() const
2474 { return this->fix_cortex_a8_; }
2475
85fdf906
AH
2476 // Whether we merge exidx entries in debuginfo.
2477 bool
2478 merge_exidx_entries() const
2479 { return parameters->options().merge_exidx_entries(); }
2480
a2162063
ILT
2481 // Whether we fix R_ARM_V4BX relocation.
2482 // 0 - do not fix
2483 // 1 - replace with MOV instruction (armv4 target)
2484 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2485 General_options::Fix_v4bx
a2162063 2486 fix_v4bx() const
9b2fd367 2487 { return parameters->options().fix_v4bx(); }
a2162063 2488
44272192
DK
2489 // Scan a span of THUMB code section for Cortex-A8 erratum.
2490 void
2491 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2492 section_size_type, section_size_type,
2493 const unsigned char*, Arm_address);
2494
41263c05
DK
2495 // Apply Cortex-A8 workaround to a branch.
2496 void
2497 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2498 unsigned char*, Arm_address);
2499
d5b40221 2500 protected:
eb44217c
DK
2501 // Make an ELF object.
2502 Object*
2503 do_make_elf_object(const std::string&, Input_file*, off_t,
2504 const elfcpp::Ehdr<32, big_endian>& ehdr);
2505
2506 Object*
2507 do_make_elf_object(const std::string&, Input_file*, off_t,
2508 const elfcpp::Ehdr<32, !big_endian>&)
2509 { gold_unreachable(); }
2510
2511 Object*
2512 do_make_elf_object(const std::string&, Input_file*, off_t,
2513 const elfcpp::Ehdr<64, false>&)
2514 { gold_unreachable(); }
2515
2516 Object*
2517 do_make_elf_object(const std::string&, Input_file*, off_t,
2518 const elfcpp::Ehdr<64, true>&)
2519 { gold_unreachable(); }
2520
2521 // Make an output section.
2522 Output_section*
2523 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2524 elfcpp::Elf_Xword flags)
2525 { return new Arm_output_section<big_endian>(name, type, flags); }
2526
d5b40221
DK
2527 void
2528 do_adjust_elf_header(unsigned char* view, int len) const;
2529
eb44217c
DK
2530 // We only need to generate stubs, and hence perform relaxation if we are
2531 // not doing relocatable linking.
2532 bool
2533 do_may_relax() const
2534 { return !parameters->options().relocatable(); }
2535
2536 bool
f625ae50 2537 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
eb44217c 2538
a0351a69
DK
2539 // Determine whether an object attribute tag takes an integer, a
2540 // string or both.
2541 int
2542 do_attribute_arg_type(int tag) const;
2543
2544 // Reorder tags during output.
2545 int
2546 do_attributes_order(int num) const;
2547
0d31c79d
DK
2548 // This is called when the target is selected as the default.
2549 void
2550 do_select_as_default_target()
2551 {
2552 // No locking is required since there should only be one default target.
2553 // We cannot have both the big-endian and little-endian ARM targets
2554 // as the default.
2555 gold_assert(arm_reloc_property_table == NULL);
2556 arm_reloc_property_table = new Arm_reloc_property_table();
2557 }
2558
b3ce541e
ILT
2559 // Virtual function which is set to return true by a target if
2560 // it can use relocation types to determine if a function's
2561 // pointer is taken.
2562 virtual bool
2563 do_can_check_for_function_pointers() const
2564 { return true; }
2565
2566 // Whether a section called SECTION_NAME may have function pointers to
2567 // sections not eligible for safe ICF folding.
2568 virtual bool
2569 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
2570 {
2571 return (!is_prefix_of(".ARM.exidx", section_name)
2572 && !is_prefix_of(".ARM.extab", section_name)
2573 && Target::do_section_may_have_icf_unsafe_pointers(section_name));
2574 }
2575
4a657b0d
DK
2576 private:
2577 // The class which scans relocations.
2578 class Scan
2579 {
2580 public:
2581 Scan()
bec53400 2582 : issued_non_pic_error_(false)
4a657b0d
DK
2583 { }
2584
95a2c8d6
RS
2585 static inline int
2586 get_reference_flags(unsigned int r_type);
2587
4a657b0d 2588 inline void
ad0f2072 2589 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2590 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2591 unsigned int data_shndx,
2592 Output_section* output_section,
2593 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2594 const elfcpp::Sym<32, big_endian>& lsym);
2595
2596 inline void
ad0f2072 2597 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
6fa2a40b 2598 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
2599 unsigned int data_shndx,
2600 Output_section* output_section,
2601 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2602 Symbol* gsym);
2603
21bb3914
ST
2604 inline bool
2605 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2606 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2607 unsigned int ,
2608 Output_section* ,
2609 const elfcpp::Rel<32, big_endian>& ,
2610 unsigned int ,
8a75a161 2611 const elfcpp::Sym<32, big_endian>&);
21bb3914
ST
2612
2613 inline bool
2614 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
6fa2a40b 2615 Sized_relobj_file<32, big_endian>* ,
21bb3914
ST
2616 unsigned int ,
2617 Output_section* ,
2618 const elfcpp::Rel<32, big_endian>& ,
8a75a161 2619 unsigned int , Symbol*);
21bb3914 2620
4a657b0d
DK
2621 private:
2622 static void
6fa2a40b 2623 unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
4a657b0d
DK
2624 unsigned int r_type);
2625
2626 static void
6fa2a40b 2627 unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
4a657b0d 2628 unsigned int r_type, Symbol*);
bec53400
DK
2629
2630 void
2631 check_non_pic(Relobj*, unsigned int r_type);
2632
2633 // Almost identical to Symbol::needs_plt_entry except that it also
2634 // handles STT_ARM_TFUNC.
2635 static bool
2636 symbol_needs_plt_entry(const Symbol* sym)
2637 {
2638 // An undefined symbol from an executable does not need a PLT entry.
2639 if (sym->is_undefined() && !parameters->options().shared())
2640 return false;
2641
2642 return (!parameters->doing_static_link()
2643 && (sym->type() == elfcpp::STT_FUNC
2644 || sym->type() == elfcpp::STT_ARM_TFUNC)
2645 && (sym->is_from_dynobj()
2646 || sym->is_undefined()
2647 || sym->is_preemptible()));
2648 }
2649
8a75a161
DK
2650 inline bool
2651 possible_function_pointer_reloc(unsigned int r_type);
2652
bec53400
DK
2653 // Whether we have issued an error about a non-PIC compilation.
2654 bool issued_non_pic_error_;
4a657b0d
DK
2655 };
2656
2657 // The class which implements relocation.
2658 class Relocate
2659 {
2660 public:
2661 Relocate()
2662 { }
2663
2664 ~Relocate()
2665 { }
2666
bec53400
DK
2667 // Return whether the static relocation needs to be applied.
2668 inline bool
2669 should_apply_static_reloc(const Sized_symbol<32>* gsym,
95a2c8d6 2670 unsigned int r_type,
bec53400
DK
2671 bool is_32bit,
2672 Output_section* output_section);
2673
4a657b0d
DK
2674 // Do a relocation. Return false if the caller should not issue
2675 // any warnings about this relocation.
2676 inline bool
2677 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2678 Output_section*, size_t relnum,
2679 const elfcpp::Rel<32, big_endian>&,
2680 unsigned int r_type, const Sized_symbol<32>*,
2681 const Symbol_value<32>*,
ebabffbd 2682 unsigned char*, Arm_address,
4a657b0d 2683 section_size_type);
c121c671
DK
2684
2685 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2686 // reloc. This means the relocation type accesses a symbol not via
2687 // GOT or PLT.
c121c671 2688 static inline bool
ca09d69a 2689 reloc_is_non_pic(unsigned int r_type)
c121c671
DK
2690 {
2691 switch (r_type)
2692 {
f4e5969c
DK
2693 // These relocation types reference GOT or PLT entries explicitly.
2694 case elfcpp::R_ARM_GOT_BREL:
2695 case elfcpp::R_ARM_GOT_ABS:
2696 case elfcpp::R_ARM_GOT_PREL:
2697 case elfcpp::R_ARM_GOT_BREL12:
2698 case elfcpp::R_ARM_PLT32_ABS:
2699 case elfcpp::R_ARM_TLS_GD32:
2700 case elfcpp::R_ARM_TLS_LDM32:
2701 case elfcpp::R_ARM_TLS_IE32:
2702 case elfcpp::R_ARM_TLS_IE12GP:
2703
2704 // These relocate types may use PLT entries.
c121c671 2705 case elfcpp::R_ARM_CALL:
f4e5969c 2706 case elfcpp::R_ARM_THM_CALL:
c121c671 2707 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2708 case elfcpp::R_ARM_THM_JUMP24:
2709 case elfcpp::R_ARM_THM_JUMP19:
2710 case elfcpp::R_ARM_PLT32:
2711 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2712 case elfcpp::R_ARM_PREL31:
2713 case elfcpp::R_ARM_SBREL31:
c121c671 2714 return false;
f4e5969c
DK
2715
2716 default:
2717 return true;
c121c671
DK
2718 }
2719 }
f96accdf
DK
2720
2721 private:
2722 // Do a TLS relocation.
2723 inline typename Arm_relocate_functions<big_endian>::Status
2724 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2725 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2726 const Sized_symbol<32>*, const Symbol_value<32>*,
2727 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2728 section_size_type);
2729
4a657b0d
DK
2730 };
2731
2732 // A class which returns the size required for a relocation type,
2733 // used while scanning relocs during a relocatable link.
2734 class Relocatable_size_for_reloc
2735 {
2736 public:
2737 unsigned int
2738 get_size_for_reloc(unsigned int, Relobj*);
2739 };
2740
f96accdf
DK
2741 // Adjust TLS relocation type based on the options and whether this
2742 // is a local symbol.
2743 static tls::Tls_optimization
2744 optimize_tls_reloc(bool is_final, int r_type);
2745
94cdfcff 2746 // Get the GOT section, creating it if necessary.
4a54abbb 2747 Arm_output_data_got<big_endian>*
94cdfcff
DK
2748 got_section(Symbol_table*, Layout*);
2749
2750 // Get the GOT PLT section.
2751 Output_data_space*
2752 got_plt_section() const
2753 {
2754 gold_assert(this->got_plt_ != NULL);
2755 return this->got_plt_;
2756 }
2757
2758 // Create a PLT entry for a global symbol.
2759 void
2760 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2761
f96accdf
DK
2762 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2763 void
2764 define_tls_base_symbol(Symbol_table*, Layout*);
2765
2766 // Create a GOT entry for the TLS module index.
2767 unsigned int
2768 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
6fa2a40b 2769 Sized_relobj_file<32, big_endian>* object);
f96accdf 2770
94cdfcff
DK
2771 // Get the PLT section.
2772 const Output_data_plt_arm<big_endian>*
2773 plt_section() const
2774 {
2775 gold_assert(this->plt_ != NULL);
2776 return this->plt_;
2777 }
2778
2779 // Get the dynamic reloc section, creating it if necessary.
2780 Reloc_section*
2781 rel_dyn_section(Layout*);
2782
f96accdf
DK
2783 // Get the section to use for TLS_DESC relocations.
2784 Reloc_section*
2785 rel_tls_desc_section(Layout*) const;
2786
94cdfcff
DK
2787 // Return true if the symbol may need a COPY relocation.
2788 // References from an executable object to non-function symbols
2789 // defined in a dynamic object may need a COPY relocation.
2790 bool
2791 may_need_copy_reloc(Symbol* gsym)
2792 {
966d4097
DK
2793 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2794 && gsym->may_need_copy_reloc());
94cdfcff
DK
2795 }
2796
2797 // Add a potential copy relocation.
2798 void
2799 copy_reloc(Symbol_table* symtab, Layout* layout,
6fa2a40b 2800 Sized_relobj_file<32, big_endian>* object,
2ea97941 2801 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2802 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2803 {
2804 this->copy_relocs_.copy_reloc(symtab, layout,
2805 symtab->get_sized_symbol<32>(sym),
2ea97941 2806 object, shndx, output_section, reloc,
94cdfcff
DK
2807 this->rel_dyn_section(layout));
2808 }
2809
d5b40221
DK
2810 // Whether two EABI versions are compatible.
2811 static bool
2812 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2813
2814 // Merge processor-specific flags from input object and those in the ELF
2815 // header of the output.
2816 void
2817 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2818
a0351a69
DK
2819 // Get the secondary compatible architecture.
2820 static int
2821 get_secondary_compatible_arch(const Attributes_section_data*);
2822
2823 // Set the secondary compatible architecture.
2824 static void
2825 set_secondary_compatible_arch(Attributes_section_data*, int);
2826
2827 static int
2828 tag_cpu_arch_combine(const char*, int, int*, int, int);
2829
2830 // Helper to print AEABI enum tag value.
2831 static std::string
2832 aeabi_enum_name(unsigned int);
2833
2834 // Return string value for TAG_CPU_name.
2835 static std::string
2836 tag_cpu_name_value(unsigned int);
2837
2838 // Merge object attributes from input object and those in the output.
2839 void
2840 merge_object_attributes(const char*, const Attributes_section_data*);
2841
2842 // Helper to get an AEABI object attribute
2843 Object_attribute*
2844 get_aeabi_object_attribute(int tag) const
2845 {
2846 Attributes_section_data* pasd = this->attributes_section_data_;
2847 gold_assert(pasd != NULL);
2848 Object_attribute* attr =
2849 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2850 gold_assert(attr != NULL);
2851 return attr;
2852 }
2853
eb44217c
DK
2854 //
2855 // Methods to support stub-generations.
2856 //
d5b40221 2857
eb44217c
DK
2858 // Group input sections for stub generation.
2859 void
f625ae50 2860 group_sections(Layout*, section_size_type, bool, const Task*);
d5b40221 2861
eb44217c
DK
2862 // Scan a relocation for stub generation.
2863 void
2864 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2865 const Sized_symbol<32>*, unsigned int,
2866 const Symbol_value<32>*,
2867 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2868
eb44217c
DK
2869 // Scan a relocation section for stub.
2870 template<int sh_type>
2871 void
2872 scan_reloc_section_for_stubs(
2873 const Relocate_info<32, big_endian>* relinfo,
2874 const unsigned char* prelocs,
2875 size_t reloc_count,
2876 Output_section* output_section,
2877 bool needs_special_offset_handling,
2878 const unsigned char* view,
2879 elfcpp::Elf_types<32>::Elf_Addr view_address,
2880 section_size_type);
d5b40221 2881
2b328d4e
DK
2882 // Fix .ARM.exidx section coverage.
2883 void
131687b4 2884 fix_exidx_coverage(Layout*, const Input_objects*,
f625ae50
DK
2885 Arm_output_section<big_endian>*, Symbol_table*,
2886 const Task*);
2b328d4e
DK
2887
2888 // Functors for STL set.
2889 struct output_section_address_less_than
2890 {
2891 bool
2892 operator()(const Output_section* s1, const Output_section* s2) const
2893 { return s1->address() < s2->address(); }
2894 };
2895
4a657b0d
DK
2896 // Information about this specific target which we pass to the
2897 // general Target structure.
2898 static const Target::Target_info arm_info;
94cdfcff
DK
2899
2900 // The types of GOT entries needed for this platform.
0e70b911
CC
2901 // These values are exposed to the ABI in an incremental link.
2902 // Do not renumber existing values without changing the version
2903 // number of the .gnu_incremental_inputs section.
94cdfcff
DK
2904 enum Got_type
2905 {
f96accdf
DK
2906 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2907 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2908 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2909 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2910 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2911 };
2912
55da9579
DK
2913 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2914
2915 // Map input section to Arm_input_section.
5ac169d4 2916 typedef Unordered_map<Section_id,
55da9579 2917 Arm_input_section<big_endian>*,
5ac169d4 2918 Section_id_hash>
55da9579
DK
2919 Arm_input_section_map;
2920
a120bc7f
DK
2921 // Map output addresses to relocs for Cortex-A8 erratum.
2922 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2923 Cortex_a8_relocs_info;
2924
94cdfcff 2925 // The GOT section.
4a54abbb 2926 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2927 // The PLT section.
2928 Output_data_plt_arm<big_endian>* plt_;
2929 // The GOT PLT section.
2930 Output_data_space* got_plt_;
2931 // The dynamic reloc section.
2932 Reloc_section* rel_dyn_;
2933 // Relocs saved to avoid a COPY reloc.
2934 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2935 // Space for variables copied with a COPY reloc.
2936 Output_data_space* dynbss_;
f96accdf
DK
2937 // Offset of the GOT entry for the TLS module index.
2938 unsigned int got_mod_index_offset_;
2939 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2940 bool tls_base_symbol_defined_;
55da9579
DK
2941 // Vector of Stub_tables created.
2942 Stub_table_list stub_tables_;
2943 // Stub factory.
2944 const Stub_factory &stub_factory_;
b569affa
DK
2945 // Whether we force PIC branch veneers.
2946 bool should_force_pic_veneer_;
eb44217c
DK
2947 // Map for locating Arm_input_sections.
2948 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2949 // Attributes section data in output.
2950 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2951 // Whether we want to fix code for Cortex-A8 erratum.
2952 bool fix_cortex_a8_;
2953 // Map addresses to relocs for Cortex-A8 erratum.
2954 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2955};
2956
2957template<bool big_endian>
2958const Target::Target_info Target_arm<big_endian>::arm_info =
2959{
2960 32, // size
2961 big_endian, // is_big_endian
2962 elfcpp::EM_ARM, // machine_code
2963 false, // has_make_symbol
2964 false, // has_resolve
2965 false, // has_code_fill
2966 true, // is_default_stack_executable
b3ce541e 2967 false, // can_icf_inline_merge_sections
4a657b0d
DK
2968 '\0', // wrap_char
2969 "/usr/lib/libc.so.1", // dynamic_linker
2970 0x8000, // default_text_segment_address
2971 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2972 0x1000, // common_pagesize (overridable by -z common-page-size)
2973 elfcpp::SHN_UNDEF, // small_common_shndx
2974 elfcpp::SHN_UNDEF, // large_common_shndx
2975 0, // small_common_section_flags
05a352e6
DK
2976 0, // large_common_section_flags
2977 ".ARM.attributes", // attributes_section
2978 "aeabi" // attributes_vendor
4a657b0d
DK
2979};
2980
c121c671
DK
2981// Arm relocate functions class
2982//
2983
2984template<bool big_endian>
2985class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2986{
2987 public:
2988 typedef enum
2989 {
2990 STATUS_OKAY, // No error during relocation.
9b547ce6 2991 STATUS_OVERFLOW, // Relocation overflow.
c121c671
DK
2992 STATUS_BAD_RELOC // Relocation cannot be applied.
2993 } Status;
2994
2995 private:
2996 typedef Relocate_functions<32, big_endian> Base;
2997 typedef Arm_relocate_functions<big_endian> This;
2998
fd3c5f0b
ILT
2999 // Encoding of imm16 argument for movt and movw ARM instructions
3000 // from ARM ARM:
3001 //
3002 // imm16 := imm4 | imm12
3003 //
3004 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3005 // +-------+---------------+-------+-------+-----------------------+
3006 // | | |imm4 | |imm12 |
3007 // +-------+---------------+-------+-------+-----------------------+
3008
3009 // Extract the relocation addend from VAL based on the ARM
3010 // instruction encoding described above.
3011 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3012 extract_arm_movw_movt_addend(
3013 typename elfcpp::Swap<32, big_endian>::Valtype val)
3014 {
3015 // According to the Elf ABI for ARM Architecture the immediate
3016 // field is sign-extended to form the addend.
3017 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
3018 }
3019
3020 // Insert X into VAL based on the ARM instruction encoding described
3021 // above.
3022 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3023 insert_val_arm_movw_movt(
3024 typename elfcpp::Swap<32, big_endian>::Valtype val,
3025 typename elfcpp::Swap<32, big_endian>::Valtype x)
3026 {
3027 val &= 0xfff0f000;
3028 val |= x & 0x0fff;
3029 val |= (x & 0xf000) << 4;
3030 return val;
3031 }
3032
3033 // Encoding of imm16 argument for movt and movw Thumb2 instructions
3034 // from ARM ARM:
3035 //
3036 // imm16 := imm4 | i | imm3 | imm8
3037 //
3038 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
3039 // +---------+-+-----------+-------++-+-----+-------+---------------+
3040 // | |i| |imm4 || |imm3 | |imm8 |
3041 // +---------+-+-----------+-------++-+-----+-------+---------------+
3042
3043 // Extract the relocation addend from VAL based on the Thumb2
3044 // instruction encoding described above.
3045 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3046 extract_thumb_movw_movt_addend(
3047 typename elfcpp::Swap<32, big_endian>::Valtype val)
3048 {
3049 // According to the Elf ABI for ARM Architecture the immediate
3050 // field is sign-extended to form the addend.
3051 return utils::sign_extend<16>(((val >> 4) & 0xf000)
3052 | ((val >> 15) & 0x0800)
3053 | ((val >> 4) & 0x0700)
3054 | (val & 0x00ff));
3055 }
3056
3057 // Insert X into VAL based on the Thumb2 instruction encoding
3058 // described above.
3059 static inline typename elfcpp::Swap<32, big_endian>::Valtype
3060 insert_val_thumb_movw_movt(
3061 typename elfcpp::Swap<32, big_endian>::Valtype val,
3062 typename elfcpp::Swap<32, big_endian>::Valtype x)
3063 {
3064 val &= 0xfbf08f00;
3065 val |= (x & 0xf000) << 4;
3066 val |= (x & 0x0800) << 15;
3067 val |= (x & 0x0700) << 4;
3068 val |= (x & 0x00ff);
3069 return val;
3070 }
3071
b10d2873
ILT
3072 // Calculate the smallest constant Kn for the specified residual.
3073 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3074 static uint32_t
3075 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
3076 {
3077 int32_t msb;
3078
3079 if (residual == 0)
3080 return 0;
3081 // Determine the most significant bit in the residual and
3082 // align the resulting value to a 2-bit boundary.
3083 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
3084 ;
3085 // The desired shift is now (msb - 6), or zero, whichever
3086 // is the greater.
3087 return (((msb - 6) < 0) ? 0 : (msb - 6));
3088 }
3089
3090 // Calculate the final residual for the specified group index.
3091 // If the passed group index is less than zero, the method will return
3092 // the value of the specified residual without any change.
3093 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3094 static typename elfcpp::Swap<32, big_endian>::Valtype
3095 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3096 const int group)
3097 {
3098 for (int n = 0; n <= group; n++)
3099 {
3100 // Calculate which part of the value to mask.
3101 uint32_t shift = calc_grp_kn(residual);
3102 // Calculate the residual for the next time around.
3103 residual &= ~(residual & (0xff << shift));
3104 }
3105
3106 return residual;
3107 }
3108
3109 // Calculate the value of Gn for the specified group index.
3110 // We return it in the form of an encoded constant-and-rotation.
3111 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
3112 static typename elfcpp::Swap<32, big_endian>::Valtype
3113 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
3114 const int group)
3115 {
3116 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
3117 uint32_t shift = 0;
3118
3119 for (int n = 0; n <= group; n++)
3120 {
3121 // Calculate which part of the value to mask.
3122 shift = calc_grp_kn(residual);
3123 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
3124 gn = residual & (0xff << shift);
3125 // Calculate the residual for the next time around.
3126 residual &= ~gn;
3127 }
3128 // Return Gn in the form of an encoded constant-and-rotation.
3129 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
3130 }
3131
1521477a 3132 public:
d204b6e9
DK
3133 // Handle ARM long branches.
3134 static typename This::Status
3135 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3136 unsigned char*, const Sized_symbol<32>*,
d204b6e9
DK
3137 const Arm_relobj<big_endian>*, unsigned int,
3138 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 3139
51938283
DK
3140 // Handle THUMB long branches.
3141 static typename This::Status
3142 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
ca09d69a 3143 unsigned char*, const Sized_symbol<32>*,
51938283
DK
3144 const Arm_relobj<big_endian>*, unsigned int,
3145 const Symbol_value<32>*, Arm_address, Arm_address, bool);
3146
5e445df6 3147
089d69dc
DK
3148 // Return the branch offset of a 32-bit THUMB branch.
3149 static inline int32_t
3150 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3151 {
3152 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
3153 // involving the J1 and J2 bits.
3154 uint32_t s = (upper_insn & (1U << 10)) >> 10;
3155 uint32_t upper = upper_insn & 0x3ffU;
3156 uint32_t lower = lower_insn & 0x7ffU;
3157 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
3158 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
3159 uint32_t i1 = j1 ^ s ? 0 : 1;
3160 uint32_t i2 = j2 ^ s ? 0 : 1;
3161
3162 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3163 | (upper << 12) | (lower << 1));
3164 }
3165
3166 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
3167 // UPPER_INSN is the original upper instruction of the branch. Caller is
3168 // responsible for overflow checking and BLX offset adjustment.
3169 static inline uint16_t
3170 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
3171 {
3172 uint32_t s = offset < 0 ? 1 : 0;
3173 uint32_t bits = static_cast<uint32_t>(offset);
3174 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
3175 }
3176
3177 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
3178 // LOWER_INSN is the original lower instruction of the branch. Caller is
3179 // responsible for overflow checking and BLX offset adjustment.
3180 static inline uint16_t
3181 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
3182 {
3183 uint32_t s = offset < 0 ? 1 : 0;
3184 uint32_t bits = static_cast<uint32_t>(offset);
3185 return ((lower_insn & ~0x2fffU)
3186 | ((((bits >> 23) & 1) ^ !s) << 13)
3187 | ((((bits >> 22) & 1) ^ !s) << 11)
3188 | ((bits >> 1) & 0x7ffU));
3189 }
3190
3191 // Return the branch offset of a 32-bit THUMB conditional branch.
3192 static inline int32_t
3193 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
3194 {
3195 uint32_t s = (upper_insn & 0x0400U) >> 10;
3196 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
3197 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
3198 uint32_t lower = (lower_insn & 0x07ffU);
3199 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
3200
3201 return utils::sign_extend<21>((upper << 12) | (lower << 1));
3202 }
3203
3204 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
3205 // instruction. UPPER_INSN is the original upper instruction of the branch.
3206 // Caller is responsible for overflow checking.
3207 static inline uint16_t
3208 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
3209 {
3210 uint32_t s = offset < 0 ? 1 : 0;
3211 uint32_t bits = static_cast<uint32_t>(offset);
3212 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
3213 }
3214
3215 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
3216 // instruction. LOWER_INSN is the original lower instruction of the branch.
9b547ce6 3217 // The caller is responsible for overflow checking.
089d69dc
DK
3218 static inline uint16_t
3219 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
3220 {
3221 uint32_t bits = static_cast<uint32_t>(offset);
3222 uint32_t j2 = (bits & 0x00080000U) >> 19;
3223 uint32_t j1 = (bits & 0x00040000U) >> 18;
3224 uint32_t lo = (bits & 0x00000ffeU) >> 1;
3225
3226 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
3227 }
3228
5e445df6
ILT
3229 // R_ARM_ABS8: S + A
3230 static inline typename This::Status
ca09d69a 3231 abs8(unsigned char* view,
6fa2a40b 3232 const Sized_relobj_file<32, big_endian>* object,
be8fcb75 3233 const Symbol_value<32>* psymval)
5e445df6
ILT
3234 {
3235 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
5e445df6
ILT
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
f6cccc2c
DK
3238 int32_t addend = utils::sign_extend<8>(val);
3239 Arm_address x = psymval->value(object, addend);
5e445df6
ILT
3240 val = utils::bit_select(val, x, 0xffU);
3241 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3242
3243 // R_ARM_ABS8 permits signed or unsigned results.
3244 int signed_x = static_cast<int32_t>(x);
3245 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3246 ? This::STATUS_OVERFLOW
3247 : This::STATUS_OKAY);
3248 }
3249
be8fcb75
ILT
3250 // R_ARM_THM_ABS5: S + A
3251 static inline typename This::Status
ca09d69a 3252 thm_abs5(unsigned char* view,
6fa2a40b 3253 const Sized_relobj_file<32, big_endian>* object,
be8fcb75
ILT
3254 const Symbol_value<32>* psymval)
3255 {
3256 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3257 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3260 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3261 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3262 val = utils::bit_select(val, x << 6, 0x7e0U);
3263 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3264
3265 // R_ARM_ABS16 permits signed or unsigned results.
3266 int signed_x = static_cast<int32_t>(x);
3267 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3268 ? This::STATUS_OVERFLOW
3269 : This::STATUS_OKAY);
3270 }
3271
3272 // R_ARM_ABS12: S + A
3273 static inline typename This::Status
ca09d69a 3274 abs12(unsigned char* view,
6fa2a40b 3275 const Sized_relobj_file<32, big_endian>* object,
51938283 3276 const Symbol_value<32>* psymval)
be8fcb75
ILT
3277 {
3278 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3279 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3280 Valtype* wv = reinterpret_cast<Valtype*>(view);
3281 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3282 Reltype addend = val & 0x0fffU;
2daedcd6 3283 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3284 val = utils::bit_select(val, x, 0x0fffU);
3285 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3286 return (utils::has_overflow<12>(x)
3287 ? This::STATUS_OVERFLOW
3288 : This::STATUS_OKAY);
3289 }
3290
3291 // R_ARM_ABS16: S + A
3292 static inline typename This::Status
ca09d69a 3293 abs16(unsigned char* view,
6fa2a40b 3294 const Sized_relobj_file<32, big_endian>* object,
51938283 3295 const Symbol_value<32>* psymval)
be8fcb75 3296 {
f6cccc2c 3297 typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
be8fcb75 3298 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
f6cccc2c
DK
3299 Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
3300 int32_t addend = utils::sign_extend<16>(val);
3301 Arm_address x = psymval->value(object, addend);
be8fcb75 3302 val = utils::bit_select(val, x, 0xffffU);
f6cccc2c
DK
3303 elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);
3304
3305 // R_ARM_ABS16 permits signed or unsigned results.
3306 int signed_x = static_cast<int32_t>(x);
3307 return ((signed_x < -32768 || signed_x > 65536)
be8fcb75
ILT
3308 ? This::STATUS_OVERFLOW
3309 : This::STATUS_OKAY);
3310 }
3311
c121c671
DK
3312 // R_ARM_ABS32: (S + A) | T
3313 static inline typename This::Status
ca09d69a 3314 abs32(unsigned char* view,
6fa2a40b 3315 const Sized_relobj_file<32, big_endian>* object,
c121c671 3316 const Symbol_value<32>* psymval,
2daedcd6 3317 Arm_address thumb_bit)
c121c671 3318 {
f6cccc2c
DK
3319 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3320 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3321 Valtype x = psymval->value(object, addend) | thumb_bit;
f6cccc2c 3322 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3323 return This::STATUS_OKAY;
3324 }
3325
3326 // R_ARM_REL32: (S + A) | T - P
3327 static inline typename This::Status
ca09d69a 3328 rel32(unsigned char* view,
6fa2a40b 3329 const Sized_relobj_file<32, big_endian>* object,
c121c671 3330 const Symbol_value<32>* psymval,
ebabffbd 3331 Arm_address address,
2daedcd6 3332 Arm_address thumb_bit)
c121c671 3333 {
f6cccc2c
DK
3334 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3335 Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
2daedcd6 3336 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
f6cccc2c 3337 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
c121c671
DK
3338 return This::STATUS_OKAY;
3339 }
3340
089d69dc
DK
3341 // R_ARM_THM_JUMP24: (S + A) | T - P
3342 static typename This::Status
ca09d69a 3343 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
089d69dc
DK
3344 const Symbol_value<32>* psymval, Arm_address address,
3345 Arm_address thumb_bit);
3346
800d0f56
ILT
3347 // R_ARM_THM_JUMP6: S + A – P
3348 static inline typename This::Status
ca09d69a 3349 thm_jump6(unsigned char* view,
6fa2a40b 3350 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3351 const Symbol_value<32>* psymval,
3352 Arm_address address)
3353 {
3354 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3355 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3356 Valtype* wv = reinterpret_cast<Valtype*>(view);
3357 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3358 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3359 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3360 Reltype x = (psymval->value(object, addend) - address);
3361 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3362 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3363 // CZB does only forward jumps.
3364 return ((x > 0x007e)
3365 ? This::STATUS_OVERFLOW
3366 : This::STATUS_OKAY);
3367 }
3368
3369 // R_ARM_THM_JUMP8: S + A – P
3370 static inline typename This::Status
ca09d69a 3371 thm_jump8(unsigned char* view,
6fa2a40b 3372 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3373 const Symbol_value<32>* psymval,
3374 Arm_address address)
3375 {
3376 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3377 Valtype* wv = reinterpret_cast<Valtype*>(view);
3378 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
57eb9b50
DK
3379 int32_t addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3380 int32_t x = (psymval->value(object, addend) - address);
3381 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
3382 | ((x & 0x01fe) >> 1)));
3383 // We do a 9-bit overflow check because x is right-shifted by 1 bit.
3384 return (utils::has_overflow<9>(x)
800d0f56
ILT
3385 ? This::STATUS_OVERFLOW
3386 : This::STATUS_OKAY);
3387 }
3388
3389 // R_ARM_THM_JUMP11: S + A – P
3390 static inline typename This::Status
ca09d69a 3391 thm_jump11(unsigned char* view,
6fa2a40b 3392 const Sized_relobj_file<32, big_endian>* object,
800d0f56
ILT
3393 const Symbol_value<32>* psymval,
3394 Arm_address address)
3395 {
3396 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
800d0f56
ILT
3397 Valtype* wv = reinterpret_cast<Valtype*>(view);
3398 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
57eb9b50
DK
3399 int32_t addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3400 int32_t x = (psymval->value(object, addend) - address);
3401 elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
3402 | ((x & 0x0ffe) >> 1)));
3403 // We do a 12-bit overflow check because x is right-shifted by 1 bit.
3404 return (utils::has_overflow<12>(x)
800d0f56
ILT
3405 ? This::STATUS_OVERFLOW
3406 : This::STATUS_OKAY);
3407 }
3408
c121c671
DK
3409 // R_ARM_BASE_PREL: B(S) + A - P
3410 static inline typename This::Status
3411 base_prel(unsigned char* view,
ebabffbd
DK
3412 Arm_address origin,
3413 Arm_address address)
c121c671
DK
3414 {
3415 Base::rel32(view, origin - address);
3416 return STATUS_OKAY;
3417 }
3418
be8fcb75
ILT
3419 // R_ARM_BASE_ABS: B(S) + A
3420 static inline typename This::Status
3421 base_abs(unsigned char* view,
f4e5969c 3422 Arm_address origin)
be8fcb75
ILT
3423 {
3424 Base::rel32(view, origin);
3425 return STATUS_OKAY;
3426 }
3427
c121c671
DK
3428 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3429 static inline typename This::Status
3430 got_brel(unsigned char* view,
3431 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3432 {
3433 Base::rel32(view, got_offset);
3434 return This::STATUS_OKAY;
3435 }
3436
f4e5969c 3437 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3438 static inline typename This::Status
ca09d69a 3439 got_prel(unsigned char* view,
f4e5969c 3440 Arm_address got_entry,
ebabffbd 3441 Arm_address address)
7f5309a5 3442 {
f4e5969c 3443 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3444 return This::STATUS_OKAY;
3445 }
3446
c121c671
DK
3447 // R_ARM_PREL: (S + A) | T - P
3448 static inline typename This::Status
ca09d69a 3449 prel31(unsigned char* view,
6fa2a40b 3450 const Sized_relobj_file<32, big_endian>* object,
c121c671 3451 const Symbol_value<32>* psymval,
ebabffbd 3452 Arm_address address,
2daedcd6 3453 Arm_address thumb_bit)
c121c671 3454 {
f6cccc2c
DK
3455 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
3456 Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
c121c671 3457 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 3458 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671 3459 val = utils::bit_select(val, x, 0x7fffffffU);
f6cccc2c 3460 elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
c121c671
DK
3461 return (utils::has_overflow<31>(x) ?
3462 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3463 }
fd3c5f0b 3464
5c57f1be 3465 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3466 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3467 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3468 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3469 static inline typename This::Status
5c57f1be 3470 movw(unsigned char* view,
6fa2a40b 3471 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3472 const Symbol_value<32>* psymval,
3473 Arm_address relative_address_base,
3474 Arm_address thumb_bit,
3475 bool check_overflow)
02961d7e
ILT
3476 {
3477 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3478 Valtype* wv = reinterpret_cast<Valtype*>(view);
3479 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3480 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3481 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3482 - relative_address_base);
02961d7e
ILT
3483 val = This::insert_val_arm_movw_movt(val, x);
3484 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be
DK
3485 return ((check_overflow && utils::has_overflow<16>(x))
3486 ? This::STATUS_OVERFLOW
3487 : This::STATUS_OKAY);
02961d7e
ILT
3488 }
3489
5c57f1be 3490 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3491 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3492 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3493 static inline typename This::Status
5c57f1be 3494 movt(unsigned char* view,
6fa2a40b 3495 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3496 const Symbol_value<32>* psymval,
3497 Arm_address relative_address_base)
c2a122b6
ILT
3498 {
3499 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3500 Valtype* wv = reinterpret_cast<Valtype*>(view);
3501 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3502 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3503 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3504 val = This::insert_val_arm_movw_movt(val, x);
3505 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3506 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3507 return This::STATUS_OKAY;
3508 }
3509
5c57f1be 3510 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3511 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3512 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3513 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3514 static inline typename This::Status
ca09d69a 3515 thm_movw(unsigned char* view,
6fa2a40b 3516 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3517 const Symbol_value<32>* psymval,
3518 Arm_address relative_address_base,
3519 Arm_address thumb_bit,
3520 bool check_overflow)
02961d7e
ILT
3521 {
3522 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3523 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3524 Valtype* wv = reinterpret_cast<Valtype*>(view);
3525 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3526 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3527 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3528 Reltype x =
3529 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3530 val = This::insert_val_thumb_movw_movt(val, x);
3531 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3532 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
5c57f1be
DK
3533 return ((check_overflow && utils::has_overflow<16>(x))
3534 ? This::STATUS_OVERFLOW
3535 : This::STATUS_OKAY);
02961d7e
ILT
3536 }
3537
5c57f1be 3538 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3539 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3540 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3541 static inline typename This::Status
5c57f1be 3542 thm_movt(unsigned char* view,
6fa2a40b 3543 const Sized_relobj_file<32, big_endian>* object,
5c57f1be
DK
3544 const Symbol_value<32>* psymval,
3545 Arm_address relative_address_base)
c2a122b6
ILT
3546 {
3547 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3548 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3549 Valtype* wv = reinterpret_cast<Valtype*>(view);
3550 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3551 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3552 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3553 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3554 val = This::insert_val_thumb_movw_movt(val, x);
3555 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3556 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3557 return This::STATUS_OKAY;
3558 }
a2162063 3559
11b861d5
DK
3560 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3561 static inline typename This::Status
3562 thm_alu11(unsigned char* view,
6fa2a40b 3563 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3564 const Symbol_value<32>* psymval,
3565 Arm_address address,
3566 Arm_address thumb_bit)
3567 {
3568 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3569 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3570 Valtype* wv = reinterpret_cast<Valtype*>(view);
3571 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3572 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3573
3574 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3575 // -----------------------------------------------------------------------
3576 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3577 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3578 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3579 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3580 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3581 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3582
3583 // Determine a sign for the addend.
3584 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3585 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3586 // Thumb2 addend encoding:
3587 // imm12 := i | imm3 | imm8
3588 int32_t addend = (insn & 0xff)
3589 | ((insn & 0x00007000) >> 4)
3590 | ((insn & 0x04000000) >> 15);
3591 // Apply a sign to the added.
3592 addend *= sign;
3593
3594 int32_t x = (psymval->value(object, addend) | thumb_bit)
3595 - (address & 0xfffffffc);
3596 Reltype val = abs(x);
3597 // Mask out the value and a distinct part of the ADD/SUB opcode
3598 // (bits 7:5 of opword).
3599 insn = (insn & 0xfb0f8f00)
3600 | (val & 0xff)
3601 | ((val & 0x700) << 4)
3602 | ((val & 0x800) << 15);
3603 // Set the opcode according to whether the value to go in the
3604 // place is negative.
3605 if (x < 0)
3606 insn |= 0x00a00000;
3607
3608 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3609 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3610 return ((val > 0xfff) ?
3611 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3612 }
3613
3614 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3615 static inline typename This::Status
3616 thm_pc8(unsigned char* view,
6fa2a40b 3617 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3618 const Symbol_value<32>* psymval,
3619 Arm_address address)
3620 {
3621 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3622 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3623 Valtype* wv = reinterpret_cast<Valtype*>(view);
3624 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3625 Reltype addend = ((insn & 0x00ff) << 2);
3626 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3627 Reltype val = abs(x);
3628 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3629
3630 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3631 return ((val > 0x03fc)
3632 ? This::STATUS_OVERFLOW
3633 : This::STATUS_OKAY);
3634 }
3635
3636 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3637 static inline typename This::Status
3638 thm_pc12(unsigned char* view,
6fa2a40b 3639 const Sized_relobj_file<32, big_endian>* object,
11b861d5
DK
3640 const Symbol_value<32>* psymval,
3641 Arm_address address)
3642 {
3643 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3644 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3645 Valtype* wv = reinterpret_cast<Valtype*>(view);
3646 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3647 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3648 // Determine a sign for the addend (positive if the U bit is 1).
3649 const int sign = (insn & 0x00800000) ? 1 : -1;
3650 int32_t addend = (insn & 0xfff);
3651 // Apply a sign to the added.
3652 addend *= sign;
3653
3654 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3655 Reltype val = abs(x);
3656 // Mask out and apply the value and the U bit.
3657 insn = (insn & 0xff7ff000) | (val & 0xfff);
3658 // Set the U bit according to whether the value to go in the
3659 // place is positive.
3660 if (x >= 0)
3661 insn |= 0x00800000;
3662
3663 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3664 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3665 return ((val > 0xfff) ?
3666 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3667 }
3668
a2162063
ILT
3669 // R_ARM_V4BX
3670 static inline typename This::Status
3671 v4bx(const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3672 unsigned char* view,
a2162063
ILT
3673 const Arm_relobj<big_endian>* object,
3674 const Arm_address address,
3675 const bool is_interworking)
3676 {
3677
3678 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3679 Valtype* wv = reinterpret_cast<Valtype*>(view);
3680 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3681
3682 // Ensure that we have a BX instruction.
3683 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3684 const uint32_t reg = (val & 0xf);
3685 if (is_interworking && reg != 0xf)
3686 {
3687 Stub_table<big_endian>* stub_table =
3688 object->stub_table(relinfo->data_shndx);
3689 gold_assert(stub_table != NULL);
3690
3691 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3692 gold_assert(stub != NULL);
3693
3694 int32_t veneer_address =
3695 stub_table->address() + stub->offset() - 8 - address;
3696 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3697 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3698 // Replace with a branch to veneer (B <addr>)
3699 val = (val & 0xf0000000) | 0x0a000000
3700 | ((veneer_address >> 2) & 0x00ffffff);
3701 }
3702 else
3703 {
3704 // Preserve Rm (lowest four bits) and the condition code
3705 // (highest four bits). Other bits encode MOV PC,Rm.
3706 val = (val & 0xf000000f) | 0x01a0f000;
3707 }
3708 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3709 return This::STATUS_OKAY;
3710 }
b10d2873
ILT
3711
3712 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3713 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3714 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3715 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3716 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3717 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3718 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3719 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3720 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3721 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3722 static inline typename This::Status
3723 arm_grp_alu(unsigned char* view,
6fa2a40b 3724 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3725 const Symbol_value<32>* psymval,
3726 const int group,
3727 Arm_address address,
3728 Arm_address thumb_bit,
3729 bool check_overflow)
3730 {
5c57f1be 3731 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3732 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3733 Valtype* wv = reinterpret_cast<Valtype*>(view);
3734 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3735
3736 // ALU group relocations are allowed only for the ADD/SUB instructions.
3737 // (0x00800000 - ADD, 0x00400000 - SUB)
3738 const Valtype opcode = insn & 0x01e00000;
3739 if (opcode != 0x00800000 && opcode != 0x00400000)
3740 return This::STATUS_BAD_RELOC;
3741
3742 // Determine a sign for the addend.
3743 const int sign = (opcode == 0x00800000) ? 1 : -1;
3744 // shifter = rotate_imm * 2
3745 const uint32_t shifter = (insn & 0xf00) >> 7;
3746 // Initial addend value.
3747 int32_t addend = insn & 0xff;
3748 // Rotate addend right by shifter.
3749 addend = (addend >> shifter) | (addend << (32 - shifter));
3750 // Apply a sign to the added.
3751 addend *= sign;
3752
3753 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3754 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3755 // Check for overflow if required
3756 if (check_overflow
3757 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3758 return This::STATUS_OVERFLOW;
3759
3760 // Mask out the value and the ADD/SUB part of the opcode; take care
3761 // not to destroy the S bit.
3762 insn &= 0xff1ff000;
3763 // Set the opcode according to whether the value to go in the
3764 // place is negative.
3765 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3766 // Encode the offset (encoded Gn).
3767 insn |= gn;
3768
3769 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3770 return This::STATUS_OKAY;
3771 }
3772
3773 // R_ARM_LDR_PC_G0: S + A - P
3774 // R_ARM_LDR_PC_G1: S + A - P
3775 // R_ARM_LDR_PC_G2: S + A - P
3776 // R_ARM_LDR_SB_G0: S + A - B(S)
3777 // R_ARM_LDR_SB_G1: S + A - B(S)
3778 // R_ARM_LDR_SB_G2: S + A - B(S)
3779 static inline typename This::Status
3780 arm_grp_ldr(unsigned char* view,
6fa2a40b 3781 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3782 const Symbol_value<32>* psymval,
3783 const int group,
3784 Arm_address address)
3785 {
5c57f1be 3786 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3787 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3788 Valtype* wv = reinterpret_cast<Valtype*>(view);
3789 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3790
3791 const int sign = (insn & 0x00800000) ? 1 : -1;
3792 int32_t addend = (insn & 0xfff) * sign;
3793 int32_t x = (psymval->value(object, addend) - address);
3794 // Calculate the relevant G(n-1) value to obtain this stage residual.
3795 Valtype residual =
3796 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3797 if (residual >= 0x1000)
3798 return This::STATUS_OVERFLOW;
3799
3800 // Mask out the value and U bit.
3801 insn &= 0xff7ff000;
3802 // Set the U bit for non-negative values.
3803 if (x >= 0)
3804 insn |= 0x00800000;
3805 insn |= residual;
3806
3807 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3808 return This::STATUS_OKAY;
3809 }
3810
3811 // R_ARM_LDRS_PC_G0: S + A - P
3812 // R_ARM_LDRS_PC_G1: S + A - P
3813 // R_ARM_LDRS_PC_G2: S + A - P
3814 // R_ARM_LDRS_SB_G0: S + A - B(S)
3815 // R_ARM_LDRS_SB_G1: S + A - B(S)
3816 // R_ARM_LDRS_SB_G2: S + A - B(S)
3817 static inline typename This::Status
3818 arm_grp_ldrs(unsigned char* view,
6fa2a40b 3819 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3820 const Symbol_value<32>* psymval,
3821 const int group,
3822 Arm_address address)
3823 {
5c57f1be 3824 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3825 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3826 Valtype* wv = reinterpret_cast<Valtype*>(view);
3827 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3828
3829 const int sign = (insn & 0x00800000) ? 1 : -1;
3830 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3831 int32_t x = (psymval->value(object, addend) - address);
3832 // Calculate the relevant G(n-1) value to obtain this stage residual.
3833 Valtype residual =
3834 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3835 if (residual >= 0x100)
3836 return This::STATUS_OVERFLOW;
3837
3838 // Mask out the value and U bit.
3839 insn &= 0xff7ff0f0;
3840 // Set the U bit for non-negative values.
3841 if (x >= 0)
3842 insn |= 0x00800000;
3843 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3844
3845 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3846 return This::STATUS_OKAY;
3847 }
3848
3849 // R_ARM_LDC_PC_G0: S + A - P
3850 // R_ARM_LDC_PC_G1: S + A - P
3851 // R_ARM_LDC_PC_G2: S + A - P
3852 // R_ARM_LDC_SB_G0: S + A - B(S)
3853 // R_ARM_LDC_SB_G1: S + A - B(S)
3854 // R_ARM_LDC_SB_G2: S + A - B(S)
3855 static inline typename This::Status
3856 arm_grp_ldc(unsigned char* view,
6fa2a40b 3857 const Sized_relobj_file<32, big_endian>* object,
b10d2873
ILT
3858 const Symbol_value<32>* psymval,
3859 const int group,
3860 Arm_address address)
3861 {
5c57f1be 3862 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3863 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3864 Valtype* wv = reinterpret_cast<Valtype*>(view);
3865 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3866
3867 const int sign = (insn & 0x00800000) ? 1 : -1;
3868 int32_t addend = ((insn & 0xff) << 2) * sign;
3869 int32_t x = (psymval->value(object, addend) - address);
3870 // Calculate the relevant G(n-1) value to obtain this stage residual.
3871 Valtype residual =
3872 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3873 if ((residual & 0x3) != 0 || residual >= 0x400)
3874 return This::STATUS_OVERFLOW;
3875
3876 // Mask out the value and U bit.
3877 insn &= 0xff7fff00;
3878 // Set the U bit for non-negative values.
3879 if (x >= 0)
3880 insn |= 0x00800000;
3881 insn |= (residual >> 2);
3882
3883 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3884 return This::STATUS_OKAY;
3885 }
c121c671
DK
3886};
3887
d204b6e9
DK
3888// Relocate ARM long branches. This handles relocation types
3889// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3890// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3891// undefined and we do not use PLT in this relocation. In such a case,
3892// the branch is converted into an NOP.
3893
3894template<bool big_endian>
3895typename Arm_relocate_functions<big_endian>::Status
3896Arm_relocate_functions<big_endian>::arm_branch_common(
3897 unsigned int r_type,
3898 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 3899 unsigned char* view,
d204b6e9
DK
3900 const Sized_symbol<32>* gsym,
3901 const Arm_relobj<big_endian>* object,
3902 unsigned int r_sym,
3903 const Symbol_value<32>* psymval,
3904 Arm_address address,
3905 Arm_address thumb_bit,
3906 bool is_weakly_undefined_without_plt)
3907{
3908 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3909 Valtype* wv = reinterpret_cast<Valtype*>(view);
3910 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3911
3912 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3913 && ((val & 0x0f000000UL) == 0x0a000000UL);
3914 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3915 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3916 && ((val & 0x0f000000UL) == 0x0b000000UL);
3917 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3918 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3919
3920 // Check that the instruction is valid.
3921 if (r_type == elfcpp::R_ARM_CALL)
3922 {
3923 if (!insn_is_uncond_bl && !insn_is_blx)
3924 return This::STATUS_BAD_RELOC;
3925 }
3926 else if (r_type == elfcpp::R_ARM_JUMP24)
3927 {
3928 if (!insn_is_b && !insn_is_cond_bl)
3929 return This::STATUS_BAD_RELOC;
3930 }
3931 else if (r_type == elfcpp::R_ARM_PLT32)
3932 {
3933 if (!insn_is_any_branch)
3934 return This::STATUS_BAD_RELOC;
3935 }
3936 else if (r_type == elfcpp::R_ARM_XPC25)
3937 {
3938 // FIXME: AAELF document IH0044C does not say much about it other
3939 // than it being obsolete.
3940 if (!insn_is_any_branch)
3941 return This::STATUS_BAD_RELOC;
3942 }
3943 else
3944 gold_unreachable();
3945
3946 // A branch to an undefined weak symbol is turned into a jump to
3947 // the next instruction unless a PLT entry will be created.
3948 // Do the same for local undefined symbols.
3949 // The jump to the next instruction is optimized as a NOP depending
3950 // on the architecture.
3951 const Target_arm<big_endian>* arm_target =
3952 Target_arm<big_endian>::default_target();
3953 if (is_weakly_undefined_without_plt)
3954 {
5c388529 3955 gold_assert(!parameters->options().relocatable());
d204b6e9
DK
3956 Valtype cond = val & 0xf0000000U;
3957 if (arm_target->may_use_arm_nop())
3958 val = cond | 0x0320f000;
3959 else
3960 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3961 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3962 return This::STATUS_OKAY;
3963 }
3964
3965 Valtype addend = utils::sign_extend<26>(val << 2);
3966 Valtype branch_target = psymval->value(object, addend);
3967 int32_t branch_offset = branch_target - address;
3968
3969 // We need a stub if the branch offset is too large or if we need
3970 // to switch mode.
cd6eab1c 3971 bool may_use_blx = arm_target->may_use_v5t_interworking();
d204b6e9 3972 Reloc_stub* stub = NULL;
5c388529
DK
3973
3974 if (!parameters->options().relocatable()
3975 && (utils::has_overflow<26>(branch_offset)
3976 || ((thumb_bit != 0)
3977 && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
d204b6e9 3978 {
2a2b6d42
DK
3979 Valtype unadjusted_branch_target = psymval->value(object, 0);
3980
d204b6e9 3981 Stub_type stub_type =
2a2b6d42
DK
3982 Reloc_stub::stub_type_for_reloc(r_type, address,
3983 unadjusted_branch_target,
d204b6e9
DK
3984 (thumb_bit != 0));
3985 if (stub_type != arm_stub_none)
3986 {
2ea97941 3987 Stub_table<big_endian>* stub_table =
d204b6e9 3988 object->stub_table(relinfo->data_shndx);
2ea97941 3989 gold_assert(stub_table != NULL);
d204b6e9
DK
3990
3991 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3992 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3993 gold_assert(stub != NULL);
3994 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3995 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3996 branch_offset = branch_target - address;
2a2b6d42 3997 gold_assert(!utils::has_overflow<26>(branch_offset));
d204b6e9
DK
3998 }
3999 }
4000
4001 // At this point, if we still need to switch mode, the instruction
4002 // must either be a BLX or a BL that can be converted to a BLX.
4003 if (thumb_bit != 0)
4004 {
4005 // Turn BL to BLX.
4006 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
4007 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
4008 }
4009
4010 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
4011 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4012 return (utils::has_overflow<26>(branch_offset)
4013 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
4014}
4015
51938283
DK
4016// Relocate THUMB long branches. This handles relocation types
4017// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
4018// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4019// undefined and we do not use PLT in this relocation. In such a case,
4020// the branch is converted into an NOP.
4021
4022template<bool big_endian>
4023typename Arm_relocate_functions<big_endian>::Status
4024Arm_relocate_functions<big_endian>::thumb_branch_common(
4025 unsigned int r_type,
4026 const Relocate_info<32, big_endian>* relinfo,
ca09d69a 4027 unsigned char* view,
51938283
DK
4028 const Sized_symbol<32>* gsym,
4029 const Arm_relobj<big_endian>* object,
4030 unsigned int r_sym,
4031 const Symbol_value<32>* psymval,
4032 Arm_address address,
4033 Arm_address thumb_bit,
4034 bool is_weakly_undefined_without_plt)
4035{
4036 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4037 Valtype* wv = reinterpret_cast<Valtype*>(view);
4038 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4039 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4040
4041 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
4042 // into account.
4043 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
4044 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
4045
4046 // Check that the instruction is valid.
4047 if (r_type == elfcpp::R_ARM_THM_CALL)
4048 {
4049 if (!is_bl_insn && !is_blx_insn)
4050 return This::STATUS_BAD_RELOC;
4051 }
4052 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
4053 {
4054 // This cannot be a BLX.
4055 if (!is_bl_insn)
4056 return This::STATUS_BAD_RELOC;
4057 }
4058 else if (r_type == elfcpp::R_ARM_THM_XPC22)
4059 {
4060 // Check for Thumb to Thumb call.
4061 if (!is_blx_insn)
4062 return This::STATUS_BAD_RELOC;
4063 if (thumb_bit != 0)
4064 {
4065 gold_warning(_("%s: Thumb BLX instruction targets "
4066 "thumb function '%s'."),
4067 object->name().c_str(),
4068 (gsym ? gsym->name() : "(local)"));
4069 // Convert BLX to BL.
4070 lower_insn |= 0x1000U;
4071 }
4072 }
4073 else
4074 gold_unreachable();
4075
4076 // A branch to an undefined weak symbol is turned into a jump to
4077 // the next instruction unless a PLT entry will be created.
4078 // The jump to the next instruction is optimized as a NOP.W for
4079 // Thumb-2 enabled architectures.
4080 const Target_arm<big_endian>* arm_target =
4081 Target_arm<big_endian>::default_target();
4082 if (is_weakly_undefined_without_plt)
4083 {
5c388529 4084 gold_assert(!parameters->options().relocatable());
51938283
DK
4085 if (arm_target->may_use_thumb2_nop())
4086 {
4087 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
4088 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
4089 }
4090 else
4091 {
4092 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
4093 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
4094 }
4095 return This::STATUS_OKAY;
4096 }
4097
089d69dc 4098 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 4099 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
4100
4101 // For BLX, bit 1 of target address comes from bit 1 of base address.
cd6eab1c 4102 bool may_use_blx = arm_target->may_use_v5t_interworking();
a2c7281b
DK
4103 if (thumb_bit == 0 && may_use_blx)
4104 branch_target = utils::bit_select(branch_target, address, 0x2);
4105
51938283
DK
4106 int32_t branch_offset = branch_target - address;
4107
4108 // We need a stub if the branch offset is too large or if we need
4109 // to switch mode.
51938283 4110 bool thumb2 = arm_target->using_thumb2();
5c388529
DK
4111 if (!parameters->options().relocatable()
4112 && ((!thumb2 && utils::has_overflow<23>(branch_offset))
4113 || (thumb2 && utils::has_overflow<25>(branch_offset))
4114 || ((thumb_bit == 0)
4115 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4116 || r_type == elfcpp::R_ARM_THM_JUMP24))))
51938283 4117 {
2a2b6d42
DK
4118 Arm_address unadjusted_branch_target = psymval->value(object, 0);
4119
51938283 4120 Stub_type stub_type =
2a2b6d42
DK
4121 Reloc_stub::stub_type_for_reloc(r_type, address,
4122 unadjusted_branch_target,
51938283 4123 (thumb_bit != 0));
2a2b6d42 4124
51938283
DK
4125 if (stub_type != arm_stub_none)
4126 {
2ea97941 4127 Stub_table<big_endian>* stub_table =
51938283 4128 object->stub_table(relinfo->data_shndx);
2ea97941 4129 gold_assert(stub_table != NULL);
51938283
DK
4130
4131 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 4132 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
4133 gold_assert(stub != NULL);
4134 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 4135 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b
DK
4136 if (thumb_bit == 0 && may_use_blx)
4137 branch_target = utils::bit_select(branch_target, address, 0x2);
51938283
DK
4138 branch_offset = branch_target - address;
4139 }
4140 }
4141
4142 // At this point, if we still need to switch mode, the instruction
4143 // must either be a BLX or a BL that can be converted to a BLX.
4144 if (thumb_bit == 0)
4145 {
4146 gold_assert(may_use_blx
4147 && (r_type == elfcpp::R_ARM_THM_CALL
4148 || r_type == elfcpp::R_ARM_THM_XPC22));
4149 // Make sure this is a BLX.
4150 lower_insn &= ~0x1000U;
4151 }
4152 else
4153 {
4154 // Make sure this is a BL.
4155 lower_insn |= 0x1000U;
4156 }
4157
a2c7281b
DK
4158 // For a BLX instruction, make sure that the relocation is rounded up
4159 // to a word boundary. This follows the semantics of the instruction
4160 // which specifies that bit 1 of the target address will come from bit
4161 // 1 of the base address.
51938283 4162 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 4163 gold_assert((branch_offset & 3) == 0);
51938283
DK
4164
4165 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
4166 // We use the Thumb-2 encoding, which is safe even if dealing with
4167 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
4168 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
4169 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
4170
4171 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4172 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4173
a2c7281b
DK
4174 gold_assert(!utils::has_overflow<25>(branch_offset));
4175
51938283 4176 return ((thumb2
089d69dc
DK
4177 ? utils::has_overflow<25>(branch_offset)
4178 : utils::has_overflow<23>(branch_offset))
4179 ? This::STATUS_OVERFLOW
4180 : This::STATUS_OKAY);
4181}
4182
4183// Relocate THUMB-2 long conditional branches.
4184// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
4185// undefined and we do not use PLT in this relocation. In such a case,
4186// the branch is converted into an NOP.
4187
4188template<bool big_endian>
4189typename Arm_relocate_functions<big_endian>::Status
4190Arm_relocate_functions<big_endian>::thm_jump19(
ca09d69a 4191 unsigned char* view,
089d69dc
DK
4192 const Arm_relobj<big_endian>* object,
4193 const Symbol_value<32>* psymval,
4194 Arm_address address,
4195 Arm_address thumb_bit)
4196{
4197 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
4198 Valtype* wv = reinterpret_cast<Valtype*>(view);
4199 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
4200 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
4201 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
4202
4203 Arm_address branch_target = psymval->value(object, addend);
4204 int32_t branch_offset = branch_target - address;
4205
4206 // ??? Should handle interworking? GCC might someday try to
4207 // use this for tail calls.
4208 // FIXME: We do support thumb entry to PLT yet.
4209 if (thumb_bit == 0)
4210 {
4211 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
4212 return This::STATUS_BAD_RELOC;
4213 }
4214
4215 // Put RELOCATION back into the insn.
4216 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
4217 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
4218
4219 // Put the relocated value back in the object file:
4220 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
4221 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
4222
4223 return (utils::has_overflow<21>(branch_offset)
51938283
DK
4224 ? This::STATUS_OVERFLOW
4225 : This::STATUS_OKAY);
4226}
4227
94cdfcff
DK
4228// Get the GOT section, creating it if necessary.
4229
4230template<bool big_endian>
4a54abbb 4231Arm_output_data_got<big_endian>*
94cdfcff
DK
4232Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
4233{
4234 if (this->got_ == NULL)
4235 {
4236 gold_assert(symtab != NULL && layout != NULL);
4237
4a54abbb 4238 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff 4239
82742395 4240 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04
DK
4241 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
4242 this->got_, ORDER_DATA, false);
22f0da72 4243
94cdfcff
DK
4244 // The old GNU linker creates a .got.plt section. We just
4245 // create another set of data in the .got section. Note that we
4246 // always create a PLT if we create a GOT, although the PLT
4247 // might be empty.
4248 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
82742395 4249 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
0c91cf04 4250 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
22f0da72 4251 this->got_plt_, ORDER_DATA, false);
94cdfcff
DK
4252
4253 // The first three entries are reserved.
4254 this->got_plt_->set_current_data_size(3 * 4);
4255
4256 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4257 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4258 Symbol_table::PREDEFINED,
94cdfcff
DK
4259 this->got_plt_,
4260 0, 0, elfcpp::STT_OBJECT,
4261 elfcpp::STB_LOCAL,
4262 elfcpp::STV_HIDDEN, 0,
4263 false, false);
4264 }
4265 return this->got_;
4266}
4267
4268// Get the dynamic reloc section, creating it if necessary.
4269
4270template<bool big_endian>
4271typename Target_arm<big_endian>::Reloc_section*
4272Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4273{
4274 if (this->rel_dyn_ == NULL)
4275 {
4276 gold_assert(layout != NULL);
4277 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4278 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
22f0da72
ILT
4279 elfcpp::SHF_ALLOC, this->rel_dyn_,
4280 ORDER_DYNAMIC_RELOCS, false);
94cdfcff
DK
4281 }
4282 return this->rel_dyn_;
4283}
4284
b569affa
DK
4285// Insn_template methods.
4286
4287// Return byte size of an instruction template.
4288
4289size_t
4290Insn_template::size() const
4291{
4292 switch (this->type())
4293 {
4294 case THUMB16_TYPE:
2fb7225c 4295 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4296 return 2;
4297 case ARM_TYPE:
4298 case THUMB32_TYPE:
4299 case DATA_TYPE:
4300 return 4;
4301 default:
4302 gold_unreachable();
4303 }
4304}
4305
4306// Return alignment of an instruction template.
4307
4308unsigned
4309Insn_template::alignment() const
4310{
4311 switch (this->type())
4312 {
4313 case THUMB16_TYPE:
2fb7225c 4314 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4315 case THUMB32_TYPE:
4316 return 2;
4317 case ARM_TYPE:
4318 case DATA_TYPE:
4319 return 4;
4320 default:
4321 gold_unreachable();
4322 }
4323}
4324
4325// Stub_template methods.
4326
4327Stub_template::Stub_template(
2ea97941
ILT
4328 Stub_type type, const Insn_template* insns,
4329 size_t insn_count)
4330 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4331 entry_in_thumb_mode_(false), relocs_()
4332{
2ea97941 4333 off_t offset = 0;
b569affa
DK
4334
4335 // Compute byte size and alignment of stub template.
2ea97941 4336 for (size_t i = 0; i < insn_count; i++)
b569affa 4337 {
2ea97941
ILT
4338 unsigned insn_alignment = insns[i].alignment();
4339 size_t insn_size = insns[i].size();
4340 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4341 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4342 switch (insns[i].type())
b569affa
DK
4343 {
4344 case Insn_template::THUMB16_TYPE:
089d69dc 4345 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4346 if (i == 0)
4347 this->entry_in_thumb_mode_ = true;
4348 break;
4349
4350 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4351 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4352 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4353 if (i == 0)
4354 this->entry_in_thumb_mode_ = true;
4355 break;
4356
4357 case Insn_template::ARM_TYPE:
4358 // Handle cases where the target is encoded within the
4359 // instruction.
2ea97941
ILT
4360 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4361 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4362 break;
4363
4364 case Insn_template::DATA_TYPE:
4365 // Entry point cannot be data.
4366 gold_assert(i != 0);
2ea97941 4367 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4368 break;
4369
4370 default:
4371 gold_unreachable();
4372 }
2ea97941 4373 offset += insn_size;
b569affa 4374 }
2ea97941 4375 this->size_ = offset;
b569affa
DK
4376}
4377
bb0d3eb0
DK
4378// Stub methods.
4379
7296d933 4380// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4381
4382template<bool big_endian>
4383void inline
4384Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4385{
4386 const Stub_template* stub_template = this->stub_template();
4387 const Insn_template* insns = stub_template->insns();
4388
4389 // FIXME: We do not handle BE8 encoding yet.
4390 unsigned char* pov = view;
4391 for (size_t i = 0; i < stub_template->insn_count(); i++)
4392 {
4393 switch (insns[i].type())
4394 {
4395 case Insn_template::THUMB16_TYPE:
4396 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4397 break;
4398 case Insn_template::THUMB16_SPECIAL_TYPE:
4399 elfcpp::Swap<16, big_endian>::writeval(
4400 pov,
4401 this->thumb16_special(i));
4402 break;
4403 case Insn_template::THUMB32_TYPE:
4404 {
4405 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4406 uint32_t lo = insns[i].data() & 0xffff;
4407 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4408 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4409 }
4410 break;
4411 case Insn_template::ARM_TYPE:
4412 case Insn_template::DATA_TYPE:
4413 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4414 break;
4415 default:
4416 gold_unreachable();
4417 }
4418 pov += insns[i].size();
4419 }
4420 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4421}
4422
b569affa
DK
4423// Reloc_stub::Key methods.
4424
4425// Dump a Key as a string for debugging.
4426
4427std::string
4428Reloc_stub::Key::name() const
4429{
4430 if (this->r_sym_ == invalid_index)
4431 {
4432 // Global symbol key name
4433 // <stub-type>:<symbol name>:<addend>.
4434 const std::string sym_name = this->u_.symbol->name();
4435 // We need to print two hex number and two colons. So just add 100 bytes
4436 // to the symbol name size.
4437 size_t len = sym_name.size() + 100;
4438 char* buffer = new char[len];
4439 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4440 sym_name.c_str(), this->addend_);
4441 gold_assert(c > 0 && c < static_cast<int>(len));
4442 delete[] buffer;
4443 return std::string(buffer);
4444 }
4445 else
4446 {
4447 // local symbol key name
4448 // <stub-type>:<object>:<r_sym>:<addend>.
4449 const size_t len = 200;
4450 char buffer[len];
4451 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4452 this->u_.relobj, this->r_sym_, this->addend_);
4453 gold_assert(c > 0 && c < static_cast<int>(len));
4454 return std::string(buffer);
4455 }
4456}
4457
4458// Reloc_stub methods.
4459
4460// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4461// LOCATION to DESTINATION.
4462// This code is based on the arm_type_of_stub function in
9b547ce6 4463// bfd/elf32-arm.c. We have changed the interface a little to keep the Stub
b569affa
DK
4464// class simple.
4465
4466Stub_type
4467Reloc_stub::stub_type_for_reloc(
4468 unsigned int r_type,
4469 Arm_address location,
4470 Arm_address destination,
4471 bool target_is_thumb)
4472{
4473 Stub_type stub_type = arm_stub_none;
4474
4475 // This is a bit ugly but we want to avoid using a templated class for
4476 // big and little endianities.
4477 bool may_use_blx;
4478 bool should_force_pic_veneer;
4479 bool thumb2;
4480 bool thumb_only;
4481 if (parameters->target().is_big_endian())
4482 {
43d12afe 4483 const Target_arm<true>* big_endian_target =
b569affa 4484 Target_arm<true>::default_target();
cd6eab1c 4485 may_use_blx = big_endian_target->may_use_v5t_interworking();
43d12afe
DK
4486 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4487 thumb2 = big_endian_target->using_thumb2();
4488 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4489 }
4490 else
4491 {
43d12afe 4492 const Target_arm<false>* little_endian_target =
b569affa 4493 Target_arm<false>::default_target();
cd6eab1c 4494 may_use_blx = little_endian_target->may_use_v5t_interworking();
43d12afe
DK
4495 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4496 thumb2 = little_endian_target->using_thumb2();
4497 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4498 }
4499
a2c7281b 4500 int64_t branch_offset;
b569affa
DK
4501 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4502 {
a2c7281b
DK
4503 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4504 // base address (instruction address + 4).
4505 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4506 destination = utils::bit_select(destination, location, 0x2);
4507 branch_offset = static_cast<int64_t>(destination) - location;
4508
b569affa
DK
4509 // Handle cases where:
4510 // - this call goes too far (different Thumb/Thumb2 max
4511 // distance)
4512 // - it's a Thumb->Arm call and blx is not available, or it's a
4513 // Thumb->Arm branch (not bl). A stub is needed in this case.
4514 if ((!thumb2
4515 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4516 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4517 || (thumb2
4518 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4519 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4520 || ((!target_is_thumb)
4521 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4522 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4523 {
4524 if (target_is_thumb)
4525 {
4526 // Thumb to thumb.
4527 if (!thumb_only)
4528 {
51938283
DK
4529 stub_type = (parameters->options().shared()
4530 || should_force_pic_veneer)
b569affa
DK
4531 // PIC stubs.
4532 ? ((may_use_blx
4533 && (r_type == elfcpp::R_ARM_THM_CALL))
4534 // V5T and above. Stub starts with ARM code, so
4535 // we must be able to switch mode before
4536 // reaching it, which is only possible for 'bl'
4537 // (ie R_ARM_THM_CALL relocation).
4538 ? arm_stub_long_branch_any_thumb_pic
4539 // On V4T, use Thumb code only.
4540 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4541
4542 // non-PIC stubs.
4543 : ((may_use_blx
4544 && (r_type == elfcpp::R_ARM_THM_CALL))
4545 ? arm_stub_long_branch_any_any // V5T and above.
4546 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4547 }
4548 else
4549 {
51938283
DK
4550 stub_type = (parameters->options().shared()
4551 || should_force_pic_veneer)
b569affa
DK
4552 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4553 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4554 }
4555 }
4556 else
4557 {
4558 // Thumb to arm.
4559
4560 // FIXME: We should check that the input section is from an
4561 // object that has interwork enabled.
4562
4563 stub_type = (parameters->options().shared()
4564 || should_force_pic_veneer)
4565 // PIC stubs.
4566 ? ((may_use_blx
4567 && (r_type == elfcpp::R_ARM_THM_CALL))
4568 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4569 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4570
4571 // non-PIC stubs.
4572 : ((may_use_blx
4573 && (r_type == elfcpp::R_ARM_THM_CALL))
4574 ? arm_stub_long_branch_any_any // V5T and above.
4575 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4576
4577 // Handle v4t short branches.
4578 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4579 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4580 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4581 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4582 }
4583 }
4584 }
4585 else if (r_type == elfcpp::R_ARM_CALL
4586 || r_type == elfcpp::R_ARM_JUMP24
4587 || r_type == elfcpp::R_ARM_PLT32)
4588 {
a2c7281b 4589 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4590 if (target_is_thumb)
4591 {
4592 // Arm to thumb.
4593
4594 // FIXME: We should check that the input section is from an
4595 // object that has interwork enabled.
4596
4597 // We have an extra 2-bytes reach because of
4598 // the mode change (bit 24 (H) of BLX encoding).
4599 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4600 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4601 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4602 || (r_type == elfcpp::R_ARM_JUMP24)
4603 || (r_type == elfcpp::R_ARM_PLT32))
4604 {
4605 stub_type = (parameters->options().shared()
4606 || should_force_pic_veneer)
4607 // PIC stubs.
4608 ? (may_use_blx
4609 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4610 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4611
4612 // non-PIC stubs.
4613 : (may_use_blx
4614 ? arm_stub_long_branch_any_any // V5T and above.
4615 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4616 }
4617 }
4618 else
4619 {
4620 // Arm to arm.
4621 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4622 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4623 {
4624 stub_type = (parameters->options().shared()
4625 || should_force_pic_veneer)
4626 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4627 : arm_stub_long_branch_any_any; /// non-PIC.
4628 }
4629 }
4630 }
4631
4632 return stub_type;
4633}
4634
bb0d3eb0 4635// Cortex_a8_stub methods.
b569affa 4636
bb0d3eb0
DK
4637// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4638// I is the position of the instruction template in the stub template.
b569affa 4639
bb0d3eb0
DK
4640uint16_t
4641Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4642{
bb0d3eb0
DK
4643 // The only use of this is to copy condition code from a conditional
4644 // branch being worked around to the corresponding conditional branch in
4645 // to the stub.
4646 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4647 && i == 0);
4648 uint16_t data = this->stub_template()->insns()[i].data();
4649 gold_assert((data & 0xff00U) == 0xd000U);
4650 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4651 return data;
b569affa
DK
4652}
4653
4654// Stub_factory methods.
4655
4656Stub_factory::Stub_factory()
4657{
4658 // The instruction template sequences are declared as static
4659 // objects and initialized first time the constructor runs.
4660
4661 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4662 // to reach the stub if necessary.
4663 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4664 {
4665 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4666 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4667 // dcd R_ARM_ABS32(X)
4668 };
4669
4670 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4671 // available.
4672 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4673 {
4674 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4675 Insn_template::arm_insn(0xe12fff1c), // bx ip
4676 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4677 // dcd R_ARM_ABS32(X)
4678 };
4679
4680 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4681 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4682 {
4683 Insn_template::thumb16_insn(0xb401), // push {r0}
4684 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4685 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4686 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4687 Insn_template::thumb16_insn(0x4760), // bx ip
4688 Insn_template::thumb16_insn(0xbf00), // nop
4689 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4690 // dcd R_ARM_ABS32(X)
4691 };
4692
4693 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4694 // allowed.
4695 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4696 {
4697 Insn_template::thumb16_insn(0x4778), // bx pc
4698 Insn_template::thumb16_insn(0x46c0), // nop
4699 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4700 Insn_template::arm_insn(0xe12fff1c), // bx ip
4701 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4702 // dcd R_ARM_ABS32(X)
4703 };
4704
4705 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4706 // available.
4707 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4708 {
4709 Insn_template::thumb16_insn(0x4778), // bx pc
4710 Insn_template::thumb16_insn(0x46c0), // nop
4711 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4712 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4713 // dcd R_ARM_ABS32(X)
4714 };
4715
4716 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4717 // one, when the destination is close enough.
4718 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4719 {
4720 Insn_template::thumb16_insn(0x4778), // bx pc
4721 Insn_template::thumb16_insn(0x46c0), // nop
4722 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4723 };
4724
4725 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4726 // blx to reach the stub if necessary.
4727 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4728 {
4729 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4730 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4731 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4732 // dcd R_ARM_REL32(X-4)
4733 };
4734
4735 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4736 // blx to reach the stub if necessary. We can not add into pc;
4737 // it is not guaranteed to mode switch (different in ARMv6 and
4738 // ARMv7).
4739 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4740 {
4741 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4742 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4743 Insn_template::arm_insn(0xe12fff1c), // bx ip
4744 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4745 // dcd R_ARM_REL32(X)
4746 };
4747
4748 // V4T ARM -> ARM long branch stub, PIC.
4749 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4750 {
4751 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4752 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4753 Insn_template::arm_insn(0xe12fff1c), // bx ip
4754 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4755 // dcd R_ARM_REL32(X)
4756 };
4757
4758 // V4T Thumb -> ARM long branch stub, PIC.
4759 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4760 {
4761 Insn_template::thumb16_insn(0x4778), // bx pc
4762 Insn_template::thumb16_insn(0x46c0), // nop
4763 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4764 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4765 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4766 // dcd R_ARM_REL32(X)
4767 };
4768
4769 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4770 // architectures.
4771 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4772 {
4773 Insn_template::thumb16_insn(0xb401), // push {r0}
4774 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4775 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4776 Insn_template::thumb16_insn(0x4484), // add ip, r0
4777 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4778 Insn_template::thumb16_insn(0x4760), // bx ip
4779 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4780 // dcd R_ARM_REL32(X)
4781 };
4782
4783 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4784 // allowed.
4785 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4786 {
4787 Insn_template::thumb16_insn(0x4778), // bx pc
4788 Insn_template::thumb16_insn(0x46c0), // nop
4789 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4790 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4791 Insn_template::arm_insn(0xe12fff1c), // bx ip
4792 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4793 // dcd R_ARM_REL32(X)
4794 };
4795
4796 // Cortex-A8 erratum-workaround stubs.
4797
4798 // Stub used for conditional branches (which may be beyond +/-1MB away,
4799 // so we can't use a conditional branch to reach this stub).
4800
4801 // original code:
4802 //
4803 // b<cond> X
4804 // after:
4805 //
4806 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4807 {
4808 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4809 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4810 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4811 // b.w X
4812 };
4813
4814 // Stub used for b.w and bl.w instructions.
4815
4816 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4817 {
4818 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4819 };
4820
4821 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4822 {
4823 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4824 };
4825
4826 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4827 // instruction (which switches to ARM mode) to point to this stub. Jump to
4828 // the real destination using an ARM-mode branch.
bb0d3eb0 4829 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4830 {
4831 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4832 };
4833
a2162063
ILT
4834 // Stub used to provide an interworking for R_ARM_V4BX relocation
4835 // (bx r[n] instruction).
4836 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4837 {
4838 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4839 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4840 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4841 };
4842
b569affa
DK
4843 // Fill in the stub template look-up table. Stub templates are constructed
4844 // per instance of Stub_factory for fast look-up without locking
4845 // in a thread-enabled environment.
4846
4847 this->stub_templates_[arm_stub_none] =
4848 new Stub_template(arm_stub_none, NULL, 0);
4849
4850#define DEF_STUB(x) \
4851 do \
4852 { \
4853 size_t array_size \
4854 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4855 Stub_type type = arm_stub_##x; \
4856 this->stub_templates_[type] = \
4857 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4858 } \
4859 while (0);
4860
4861 DEF_STUBS
4862#undef DEF_STUB
4863}
4864
56ee5e00
DK
4865// Stub_table methods.
4866
9b547ce6 4867// Remove all Cortex-A8 stub.
56ee5e00
DK
4868
4869template<bool big_endian>
4870void
2fb7225c
DK
4871Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4872{
4873 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4874 p != this->cortex_a8_stubs_.end();
4875 ++p)
4876 delete p->second;
4877 this->cortex_a8_stubs_.clear();
4878}
4879
4880// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4881
4882template<bool big_endian>
4883void
4884Stub_table<big_endian>::relocate_stub(
4885 Stub* stub,
4886 const Relocate_info<32, big_endian>* relinfo,
4887 Target_arm<big_endian>* arm_target,
4888 Output_section* output_section,
4889 unsigned char* view,
4890 Arm_address address,
4891 section_size_type view_size)
56ee5e00 4892{
2ea97941 4893 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4894 if (stub_template->reloc_count() != 0)
4895 {
4896 // Adjust view to cover the stub only.
4897 section_size_type offset = stub->offset();
4898 section_size_type stub_size = stub_template->size();
4899 gold_assert(offset + stub_size <= view_size);
4900
4901 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4902 address + offset, stub_size);
4903 }
56ee5e00
DK
4904}
4905
2fb7225c
DK
4906// Relocate all stubs in this stub table.
4907
56ee5e00
DK
4908template<bool big_endian>
4909void
4910Stub_table<big_endian>::relocate_stubs(
4911 const Relocate_info<32, big_endian>* relinfo,
4912 Target_arm<big_endian>* arm_target,
2ea97941 4913 Output_section* output_section,
56ee5e00 4914 unsigned char* view,
2ea97941 4915 Arm_address address,
56ee5e00
DK
4916 section_size_type view_size)
4917{
4918 // If we are passed a view bigger than the stub table's. we need to
4919 // adjust the view.
2ea97941 4920 gold_assert(address == this->address()
56ee5e00
DK
4921 && (view_size
4922 == static_cast<section_size_type>(this->data_size())));
4923
2fb7225c
DK
4924 // Relocate all relocation stubs.
4925 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4926 p != this->reloc_stubs_.end();
4927 ++p)
4928 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4929 address, view_size);
4930
4931 // Relocate all Cortex-A8 stubs.
4932 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4933 p != this->cortex_a8_stubs_.end();
4934 ++p)
4935 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4936 address, view_size);
a2162063
ILT
4937
4938 // Relocate all ARM V4BX stubs.
4939 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4940 p != this->arm_v4bx_stubs_.end();
4941 ++p)
4942 {
4943 if (*p != NULL)
4944 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4945 address, view_size);
4946 }
2fb7225c
DK
4947}
4948
4949// Write out the stubs to file.
4950
4951template<bool big_endian>
4952void
4953Stub_table<big_endian>::do_write(Output_file* of)
4954{
4955 off_t offset = this->offset();
4956 const section_size_type oview_size =
4957 convert_to_section_size_type(this->data_size());
4958 unsigned char* const oview = of->get_output_view(offset, oview_size);
4959
4960 // Write relocation stubs.
56ee5e00
DK
4961 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4962 p != this->reloc_stubs_.end();
4963 ++p)
4964 {
4965 Reloc_stub* stub = p->second;
2fb7225c
DK
4966 Arm_address address = this->address() + stub->offset();
4967 gold_assert(address
4968 == align_address(address,
4969 stub->stub_template()->alignment()));
4970 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4971 big_endian);
56ee5e00 4972 }
2fb7225c
DK
4973
4974 // Write Cortex-A8 stubs.
4975 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4976 p != this->cortex_a8_stubs_.end();
4977 ++p)
4978 {
4979 Cortex_a8_stub* stub = p->second;
4980 Arm_address address = this->address() + stub->offset();
4981 gold_assert(address
4982 == align_address(address,
4983 stub->stub_template()->alignment()));
4984 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4985 big_endian);
4986 }
4987
a2162063
ILT
4988 // Write ARM V4BX relocation stubs.
4989 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4990 p != this->arm_v4bx_stubs_.end();
4991 ++p)
4992 {
4993 if (*p == NULL)
4994 continue;
4995
4996 Arm_address address = this->address() + (*p)->offset();
4997 gold_assert(address
4998 == align_address(address,
4999 (*p)->stub_template()->alignment()));
5000 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
5001 big_endian);
5002 }
5003
2fb7225c 5004 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
5005}
5006
2fb7225c
DK
5007// Update the data size and address alignment of the stub table at the end
5008// of a relaxation pass. Return true if either the data size or the
5009// alignment changed in this relaxation pass.
5010
5011template<bool big_endian>
5012bool
5013Stub_table<big_endian>::update_data_size_and_addralign()
5014{
2fb7225c 5015 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
5016 off_t size = this->reloc_stubs_size_;
5017 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
5018
5019 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5020 p != this->cortex_a8_stubs_.end();
5021 ++p)
5022 {
5023 const Stub_template* stub_template = p->second->stub_template();
5024 addralign = std::max(addralign, stub_template->alignment());
5025 size = (align_address(size, stub_template->alignment())
5026 + stub_template->size());
5027 }
5028
a2162063
ILT
5029 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5030 p != this->arm_v4bx_stubs_.end();
5031 ++p)
5032 {
5033 if (*p == NULL)
5034 continue;
5035
5036 const Stub_template* stub_template = (*p)->stub_template();
5037 addralign = std::max(addralign, stub_template->alignment());
5038 size = (align_address(size, stub_template->alignment())
5039 + stub_template->size());
5040 }
5041
2fb7225c
DK
5042 // Check if either data size or alignment changed in this pass.
5043 // Update prev_data_size_ and prev_addralign_. These will be used
5044 // as the current data size and address alignment for the next pass.
5045 bool changed = size != this->prev_data_size_;
5046 this->prev_data_size_ = size;
5047
5048 if (addralign != this->prev_addralign_)
5049 changed = true;
5050 this->prev_addralign_ = addralign;
5051
5052 return changed;
5053}
5054
5055// Finalize the stubs. This sets the offsets of the stubs within the stub
5056// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
5057
5058template<bool big_endian>
5059void
2fb7225c 5060Stub_table<big_endian>::finalize_stubs()
56ee5e00 5061{
d099120c 5062 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
5063 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
5064 p != this->cortex_a8_stubs_.end();
5065 ++p)
5066 {
5067 Cortex_a8_stub* stub = p->second;
5068 const Stub_template* stub_template = stub->stub_template();
5069 uint64_t stub_addralign = stub_template->alignment();
5070 off = align_address(off, stub_addralign);
5071 stub->set_offset(off);
5072 off += stub_template->size();
5073
5074 // Mark input section so that we can determine later if a code section
5075 // needs the Cortex-A8 workaround quickly.
5076 Arm_relobj<big_endian>* arm_relobj =
5077 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
5078 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
5079 }
5080
a2162063
ILT
5081 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
5082 p != this->arm_v4bx_stubs_.end();
5083 ++p)
5084 {
5085 if (*p == NULL)
5086 continue;
5087
5088 const Stub_template* stub_template = (*p)->stub_template();
5089 uint64_t stub_addralign = stub_template->alignment();
5090 off = align_address(off, stub_addralign);
5091 (*p)->set_offset(off);
5092 off += stub_template->size();
5093 }
5094
2fb7225c 5095 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
5096}
5097
2fb7225c
DK
5098// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
5099// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
5100// of the address range seen by the linker.
56ee5e00
DK
5101
5102template<bool big_endian>
5103void
2fb7225c
DK
5104Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
5105 Target_arm<big_endian>* arm_target,
5106 unsigned char* view,
5107 Arm_address view_address,
5108 section_size_type view_size)
56ee5e00 5109{
2fb7225c
DK
5110 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
5111 for (Cortex_a8_stub_list::const_iterator p =
5112 this->cortex_a8_stubs_.lower_bound(view_address);
5113 ((p != this->cortex_a8_stubs_.end())
5114 && (p->first < (view_address + view_size)));
5115 ++p)
56ee5e00 5116 {
2fb7225c
DK
5117 // We do not store the THUMB bit in the LSB of either the branch address
5118 // or the stub offset. There is no need to strip the LSB.
5119 Arm_address branch_address = p->first;
5120 const Cortex_a8_stub* stub = p->second;
5121 Arm_address stub_address = this->address() + stub->offset();
5122
5123 // Offset of the branch instruction relative to this view.
5124 section_size_type offset =
5125 convert_to_section_size_type(branch_address - view_address);
5126 gold_assert((offset + 4) <= view_size);
5127
5128 arm_target->apply_cortex_a8_workaround(stub, stub_address,
5129 view + offset, branch_address);
5130 }
56ee5e00
DK
5131}
5132
10ad9fe5
DK
5133// Arm_input_section methods.
5134
5135// Initialize an Arm_input_section.
5136
5137template<bool big_endian>
5138void
5139Arm_input_section<big_endian>::init()
5140{
2ea97941
ILT
5141 Relobj* relobj = this->relobj();
5142 unsigned int shndx = this->shndx();
10ad9fe5 5143
f625ae50
DK
5144 // We have to cache original size, alignment and contents to avoid locking
5145 // the original file.
6625d24e
DK
5146 this->original_addralign_ =
5147 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
f625ae50
DK
5148
5149 // This is not efficient but we expect only a small number of relaxed
5150 // input sections for stubs.
5151 section_size_type section_size;
5152 const unsigned char* section_contents =
5153 relobj->section_contents(shndx, &section_size, false);
6625d24e
DK
5154 this->original_size_ =
5155 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
10ad9fe5 5156
f625ae50
DK
5157 gold_assert(this->original_contents_ == NULL);
5158 this->original_contents_ = new unsigned char[section_size];
5159 memcpy(this->original_contents_, section_contents, section_size);
5160
10ad9fe5
DK
5161 // We want to make this look like the original input section after
5162 // output sections are finalized.
2ea97941
ILT
5163 Output_section* os = relobj->output_section(shndx);
5164 off_t offset = relobj->output_section_offset(shndx);
5165 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
5166 this->set_address(os->address() + offset);
5167 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
5168
5169 this->set_current_data_size(this->original_size_);
5170 this->finalize_data_size();
5171}
5172
5173template<bool big_endian>
5174void
5175Arm_input_section<big_endian>::do_write(Output_file* of)
5176{
5177 // We have to write out the original section content.
f625ae50
DK
5178 gold_assert(this->original_contents_ != NULL);
5179 of->write(this->offset(), this->original_contents_,
5180 this->original_size_);
10ad9fe5
DK
5181
5182 // If this owns a stub table and it is not empty, write it.
5183 if (this->is_stub_table_owner() && !this->stub_table_->empty())
5184 this->stub_table_->write(of);
5185}
5186
5187// Finalize data size.
5188
5189template<bool big_endian>
5190void
5191Arm_input_section<big_endian>::set_final_data_size()
5192{
153e7da4
DK
5193 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5194
10ad9fe5
DK
5195 if (this->is_stub_table_owner())
5196 {
6625d24e 5197 this->stub_table_->finalize_data_size();
153e7da4 5198 off = align_address(off, this->stub_table_->addralign());
153e7da4 5199 off += this->stub_table_->data_size();
10ad9fe5 5200 }
153e7da4 5201 this->set_data_size(off);
10ad9fe5
DK
5202}
5203
5204// Reset address and file offset.
5205
5206template<bool big_endian>
5207void
5208Arm_input_section<big_endian>::do_reset_address_and_file_offset()
5209{
5210 // Size of the original input section contents.
5211 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
5212
5213 // If this is a stub table owner, account for the stub table size.
5214 if (this->is_stub_table_owner())
5215 {
2ea97941 5216 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
5217
5218 // Reset the stub table's address and file offset. The
5219 // current data size for child will be updated after that.
5220 stub_table_->reset_address_and_file_offset();
5221 off = align_address(off, stub_table_->addralign());
2ea97941 5222 off += stub_table->current_data_size();
10ad9fe5
DK
5223 }
5224
5225 this->set_current_data_size(off);
5226}
5227
af2cdeae
DK
5228// Arm_exidx_cantunwind methods.
5229
7296d933 5230// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
5231
5232template<bool big_endian>
5233void
5234Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
5235{
5236 off_t offset = this->offset();
5237 const section_size_type oview_size = 8;
5238 unsigned char* const oview = of->get_output_view(offset, oview_size);
5239
f6cccc2c 5240 typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
af2cdeae
DK
5241
5242 Output_section* os = this->relobj_->output_section(this->shndx_);
5243 gold_assert(os != NULL);
5244
5245 Arm_relobj<big_endian>* arm_relobj =
5246 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
5247 Arm_address output_offset =
5248 arm_relobj->get_output_section_offset(this->shndx_);
5249 Arm_address section_start;
f625ae50
DK
5250 section_size_type section_size;
5251
5252 // Find out the end of the text section referred by this.
7296d933 5253 if (output_offset != Arm_relobj<big_endian>::invalid_address)
f625ae50
DK
5254 {
5255 section_start = os->address() + output_offset;
5256 const Arm_exidx_input_section* exidx_input_section =
5257 arm_relobj->exidx_input_section_by_link(this->shndx_);
5258 gold_assert(exidx_input_section != NULL);
5259 section_size =
5260 convert_to_section_size_type(exidx_input_section->text_size());
5261 }
af2cdeae
DK
5262 else
5263 {
5264 // Currently this only happens for a relaxed section.
5265 const Output_relaxed_input_section* poris =
5266 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5267 gold_assert(poris != NULL);
5268 section_start = poris->address();
f625ae50 5269 section_size = convert_to_section_size_type(poris->data_size());
af2cdeae
DK
5270 }
5271
5272 // We always append this to the end of an EXIDX section.
f625ae50 5273 Arm_address output_address = section_start + section_size;
af2cdeae
DK
5274
5275 // Write out the entry. The first word either points to the beginning
5276 // or after the end of a text section. The second word is the special
5277 // EXIDX_CANTUNWIND value.
e7eca48c
DK
5278 uint32_t prel31_offset = output_address - this->address();
5279 if (utils::has_overflow<31>(offset))
5280 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
f6cccc2c
DK
5281 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
5282 prel31_offset & 0x7fffffffU);
5283 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
5284 elfcpp::EXIDX_CANTUNWIND);
af2cdeae
DK
5285
5286 of->write_output_view(this->offset(), oview_size, oview);
5287}
5288
5289// Arm_exidx_merged_section methods.
5290
5291// Constructor for Arm_exidx_merged_section.
5292// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5293// SECTION_OFFSET_MAP points to a section offset map describing how
5294// parts of the input section are mapped to output. DELETED_BYTES is
5295// the number of bytes deleted from the EXIDX input section.
5296
5297Arm_exidx_merged_section::Arm_exidx_merged_section(
5298 const Arm_exidx_input_section& exidx_input_section,
5299 const Arm_exidx_section_offset_map& section_offset_map,
5300 uint32_t deleted_bytes)
5301 : Output_relaxed_input_section(exidx_input_section.relobj(),
5302 exidx_input_section.shndx(),
5303 exidx_input_section.addralign()),
5304 exidx_input_section_(exidx_input_section),
5305 section_offset_map_(section_offset_map)
5306{
f625ae50
DK
5307 // If we retain or discard the whole EXIDX input section, we would
5308 // not be here.
5309 gold_assert(deleted_bytes != 0
5310 && deleted_bytes != this->exidx_input_section_.size());
5311
af2cdeae 5312 // Fix size here so that we do not need to implement set_final_data_size.
f625ae50
DK
5313 uint32_t size = exidx_input_section.size() - deleted_bytes;
5314 this->set_data_size(size);
af2cdeae 5315 this->fix_data_size();
f625ae50
DK
5316
5317 // Allocate buffer for section contents and build contents.
5318 this->section_contents_ = new unsigned char[size];
5319}
5320
5321// Build the contents of a merged EXIDX output section.
5322
5323void
5324Arm_exidx_merged_section::build_contents(
5325 const unsigned char* original_contents,
5326 section_size_type original_size)
5327{
5328 // Go over spans of input offsets and write only those that are not
5329 // discarded.
5330 section_offset_type in_start = 0;
5331 section_offset_type out_start = 0;
5332 section_offset_type in_max =
5333 convert_types<section_offset_type>(original_size);
5334 section_offset_type out_max =
5335 convert_types<section_offset_type>(this->data_size());
5336 for (Arm_exidx_section_offset_map::const_iterator p =
5337 this->section_offset_map_.begin();
5338 p != this->section_offset_map_.end();
5339 ++p)
5340 {
5341 section_offset_type in_end = p->first;
5342 gold_assert(in_end >= in_start);
5343 section_offset_type out_end = p->second;
5344 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5345 if (out_end != -1)
5346 {
5347 size_t out_chunk_size =
5348 convert_types<size_t>(out_end - out_start + 1);
5349
5350 gold_assert(out_chunk_size == in_chunk_size
5351 && in_end < in_max && out_end < out_max);
5352
5353 memcpy(this->section_contents_ + out_start,
5354 original_contents + in_start,
5355 out_chunk_size);
5356 out_start += out_chunk_size;
5357 }
5358 in_start += in_chunk_size;
5359 }
af2cdeae
DK
5360}
5361
5362// Given an input OBJECT, an input section index SHNDX within that
5363// object, and an OFFSET relative to the start of that input
5364// section, return whether or not the corresponding offset within
5365// the output section is known. If this function returns true, it
5366// sets *POUTPUT to the output offset. The value -1 indicates that
5367// this input offset is being discarded.
5368
5369bool
5370Arm_exidx_merged_section::do_output_offset(
5371 const Relobj* relobj,
5372 unsigned int shndx,
5373 section_offset_type offset,
5374 section_offset_type* poutput) const
5375{
5376 // We only handle offsets for the original EXIDX input section.
5377 if (relobj != this->exidx_input_section_.relobj()
5378 || shndx != this->exidx_input_section_.shndx())
5379 return false;
5380
c7f3c371
DK
5381 section_offset_type section_size =
5382 convert_types<section_offset_type>(this->exidx_input_section_.size());
5383 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5384 // Input offset is out of valid range.
5385 *poutput = -1;
5386 else
5387 {
5388 // We need to look up the section offset map to determine the output
5389 // offset. Find the reference point in map that is first offset
5390 // bigger than or equal to this offset.
5391 Arm_exidx_section_offset_map::const_iterator p =
5392 this->section_offset_map_.lower_bound(offset);
5393
5394 // The section offset maps are build such that this should not happen if
5395 // input offset is in the valid range.
5396 gold_assert(p != this->section_offset_map_.end());
5397
5398 // We need to check if this is dropped.
5399 section_offset_type ref = p->first;
5400 section_offset_type mapped_ref = p->second;
5401
5402 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5403 // Offset is present in output.
5404 *poutput = mapped_ref + (offset - ref);
5405 else
5406 // Offset is discarded owing to EXIDX entry merging.
5407 *poutput = -1;
5408 }
5409
5410 return true;
5411}
5412
5413// Write this to output file OF.
5414
5415void
5416Arm_exidx_merged_section::do_write(Output_file* of)
5417{
af2cdeae
DK
5418 off_t offset = this->offset();
5419 const section_size_type oview_size = this->data_size();
5420 unsigned char* const oview = of->get_output_view(offset, oview_size);
5421
5422 Output_section* os = this->relobj()->output_section(this->shndx());
5423 gold_assert(os != NULL);
5424
f625ae50 5425 memcpy(oview, this->section_contents_, oview_size);
af2cdeae
DK
5426 of->write_output_view(this->offset(), oview_size, oview);
5427}
5428
80d0d023
DK
5429// Arm_exidx_fixup methods.
5430
5431// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5432// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5433// points to the end of the last seen EXIDX section.
5434
5435void
5436Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5437{
5438 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5439 && this->last_input_section_ != NULL)
5440 {
5441 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5442 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5443 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5444 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5445 this->exidx_output_section_->add_output_section_data(cantunwind);
5446 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5447 }
5448}
5449
5450// Process an EXIDX section entry in input. Return whether this entry
5451// can be deleted in the output. SECOND_WORD in the second word of the
5452// EXIDX entry.
5453
5454bool
5455Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5456{
5457 bool delete_entry;
5458 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5459 {
5460 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5461 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5462 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5463 }
5464 else if ((second_word & 0x80000000) != 0)
5465 {
5466 // Inlined unwinding data. Merge if equal to previous.
85fdf906
AH
5467 delete_entry = (merge_exidx_entries_
5468 && this->last_unwind_type_ == UT_INLINED_ENTRY
80d0d023
DK
5469 && this->last_inlined_entry_ == second_word);
5470 this->last_unwind_type_ = UT_INLINED_ENTRY;
5471 this->last_inlined_entry_ = second_word;
5472 }
5473 else
5474 {
5475 // Normal table entry. In theory we could merge these too,
5476 // but duplicate entries are likely to be much less common.
5477 delete_entry = false;
5478 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5479 }
5480 return delete_entry;
5481}
5482
5483// Update the current section offset map during EXIDX section fix-up.
5484// If there is no map, create one. INPUT_OFFSET is the offset of a
5485// reference point, DELETED_BYTES is the number of deleted by in the
5486// section so far. If DELETE_ENTRY is true, the reference point and
5487// all offsets after the previous reference point are discarded.
5488
5489void
5490Arm_exidx_fixup::update_offset_map(
5491 section_offset_type input_offset,
5492 section_size_type deleted_bytes,
5493 bool delete_entry)
5494{
5495 if (this->section_offset_map_ == NULL)
5496 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5497 section_offset_type output_offset;
5498 if (delete_entry)
5499 output_offset = Arm_exidx_input_section::invalid_offset;
5500 else
5501 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5502 (*this->section_offset_map_)[input_offset] = output_offset;
5503}
5504
5505// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
f625ae50
DK
5506// bytes deleted. SECTION_CONTENTS points to the contents of the EXIDX
5507// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
5508// If some entries are merged, also store a pointer to a newly created
5509// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The caller
5510// owns the map and is responsible for releasing it after use.
80d0d023
DK
5511
5512template<bool big_endian>
5513uint32_t
5514Arm_exidx_fixup::process_exidx_section(
5515 const Arm_exidx_input_section* exidx_input_section,
f625ae50
DK
5516 const unsigned char* section_contents,
5517 section_size_type section_size,
80d0d023
DK
5518 Arm_exidx_section_offset_map** psection_offset_map)
5519{
5520 Relobj* relobj = exidx_input_section->relobj();
5521 unsigned shndx = exidx_input_section->shndx();
80d0d023
DK
5522
5523 if ((section_size % 8) != 0)
5524 {
5525 // Something is wrong with this section. Better not touch it.
5526 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5527 relobj->name().c_str(), shndx);
5528 this->last_input_section_ = exidx_input_section;
5529 this->last_unwind_type_ = UT_NONE;
5530 return 0;
5531 }
5532
5533 uint32_t deleted_bytes = 0;
5534 bool prev_delete_entry = false;
5535 gold_assert(this->section_offset_map_ == NULL);
5536
5537 for (section_size_type i = 0; i < section_size; i += 8)
5538 {
5539 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5540 const Valtype* wv =
5541 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5542 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5543
5544 bool delete_entry = this->process_exidx_entry(second_word);
5545
5546 // Entry deletion causes changes in output offsets. We use a std::map
5547 // to record these. And entry (x, y) means input offset x
5548 // is mapped to output offset y. If y is invalid_offset, then x is
5549 // dropped in the output. Because of the way std::map::lower_bound
5550 // works, we record the last offset in a region w.r.t to keeping or
5551 // dropping. If there is no entry (x0, y0) for an input offset x0,
5552 // the output offset y0 of it is determined by the output offset y1 of
5553 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
9b547ce6 5554 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Otherwise, y1
80d0d023
DK
5555 // y0 is also -1.
5556 if (delete_entry != prev_delete_entry && i != 0)
5557 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5558
5559 // Update total deleted bytes for this entry.
5560 if (delete_entry)
5561 deleted_bytes += 8;
5562
5563 prev_delete_entry = delete_entry;
5564 }
5565
5566 // If section offset map is not NULL, make an entry for the end of
5567 // section.
5568 if (this->section_offset_map_ != NULL)
5569 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5570
5571 *psection_offset_map = this->section_offset_map_;
5572 this->section_offset_map_ = NULL;
5573 this->last_input_section_ = exidx_input_section;
5574
546c7457
DK
5575 // Set the first output text section so that we can link the EXIDX output
5576 // section to it. Ignore any EXIDX input section that is completely merged.
5577 if (this->first_output_text_section_ == NULL
5578 && deleted_bytes != section_size)
5579 {
5580 unsigned int link = exidx_input_section->link();
5581 Output_section* os = relobj->output_section(link);
5582 gold_assert(os != NULL);
5583 this->first_output_text_section_ = os;
5584 }
5585
80d0d023
DK
5586 return deleted_bytes;
5587}
5588
07f508a2
DK
5589// Arm_output_section methods.
5590
5591// Create a stub group for input sections from BEGIN to END. OWNER
5592// points to the input section to be the owner a new stub table.
5593
5594template<bool big_endian>
5595void
5596Arm_output_section<big_endian>::create_stub_group(
5597 Input_section_list::const_iterator begin,
5598 Input_section_list::const_iterator end,
5599 Input_section_list::const_iterator owner,
5600 Target_arm<big_endian>* target,
f625ae50
DK
5601 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
5602 const Task* task)
07f508a2 5603{
2b328d4e
DK
5604 // We use a different kind of relaxed section in an EXIDX section.
5605 // The static casting from Output_relaxed_input_section to
5606 // Arm_input_section is invalid in an EXIDX section. We are okay
5607 // because we should not be calling this for an EXIDX section.
5608 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5609
07f508a2
DK
5610 // Currently we convert ordinary input sections into relaxed sections only
5611 // at this point but we may want to support creating relaxed input section
5612 // very early. So we check here to see if owner is already a relaxed
5613 // section.
5614
5615 Arm_input_section<big_endian>* arm_input_section;
5616 if (owner->is_relaxed_input_section())
5617 {
5618 arm_input_section =
5619 Arm_input_section<big_endian>::as_arm_input_section(
5620 owner->relaxed_input_section());
5621 }
5622 else
5623 {
5624 gold_assert(owner->is_input_section());
f625ae50
DK
5625 // Create a new relaxed input section. We need to lock the original
5626 // file.
5627 Task_lock_obj<Object> tl(task, owner->relobj());
07f508a2
DK
5628 arm_input_section =
5629 target->new_arm_input_section(owner->relobj(), owner->shndx());
5630 new_relaxed_sections->push_back(arm_input_section);
5631 }
5632
5633 // Create a stub table.
2ea97941 5634 Stub_table<big_endian>* stub_table =
07f508a2
DK
5635 target->new_stub_table(arm_input_section);
5636
2ea97941 5637 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5638
5639 Input_section_list::const_iterator p = begin;
5640 Input_section_list::const_iterator prev_p;
5641
5642 // Look for input sections or relaxed input sections in [begin ... end].
5643 do
5644 {
5645 if (p->is_input_section() || p->is_relaxed_input_section())
5646 {
5647 // The stub table information for input sections live
5648 // in their objects.
5649 Arm_relobj<big_endian>* arm_relobj =
5650 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5651 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5652 }
5653 prev_p = p++;
5654 }
5655 while (prev_p != end);
5656}
5657
5658// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5659// of stub groups. We grow a stub group by adding input section until the
5660// size is just below GROUP_SIZE. The last input section will be converted
5661// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5662// input section after the stub table, effectively double the group size.
5663//
5664// This is similar to the group_sections() function in elf32-arm.c but is
5665// implemented differently.
5666
5667template<bool big_endian>
5668void
5669Arm_output_section<big_endian>::group_sections(
5670 section_size_type group_size,
5671 bool stubs_always_after_branch,
f625ae50
DK
5672 Target_arm<big_endian>* target,
5673 const Task* task)
07f508a2
DK
5674{
5675 // We only care about sections containing code.
5676 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5677 return;
5678
5679 // States for grouping.
5680 typedef enum
5681 {
5682 // No group is being built.
5683 NO_GROUP,
5684 // A group is being built but the stub table is not found yet.
5685 // We keep group a stub group until the size is just under GROUP_SIZE.
5686 // The last input section in the group will be used as the stub table.
5687 FINDING_STUB_SECTION,
5688 // A group is being built and we have already found a stub table.
5689 // We enter this state to grow a stub group by adding input section
5690 // after the stub table. This effectively doubles the group size.
5691 HAS_STUB_SECTION
5692 } State;
5693
5694 // Any newly created relaxed sections are stored here.
5695 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5696
5697 State state = NO_GROUP;
5698 section_size_type off = 0;
5699 section_size_type group_begin_offset = 0;
5700 section_size_type group_end_offset = 0;
5701 section_size_type stub_table_end_offset = 0;
5702 Input_section_list::const_iterator group_begin =
5703 this->input_sections().end();
2ea97941 5704 Input_section_list::const_iterator stub_table =
07f508a2
DK
5705 this->input_sections().end();
5706 Input_section_list::const_iterator group_end = this->input_sections().end();
5707 for (Input_section_list::const_iterator p = this->input_sections().begin();
5708 p != this->input_sections().end();
5709 ++p)
5710 {
5711 section_size_type section_begin_offset =
5712 align_address(off, p->addralign());
5713 section_size_type section_end_offset =
5714 section_begin_offset + p->data_size();
5715
9b547ce6 5716 // Check to see if we should group the previously seen sections.
e9bbb538 5717 switch (state)
07f508a2
DK
5718 {
5719 case NO_GROUP:
5720 break;
5721
5722 case FINDING_STUB_SECTION:
5723 // Adding this section makes the group larger than GROUP_SIZE.
5724 if (section_end_offset - group_begin_offset >= group_size)
5725 {
5726 if (stubs_always_after_branch)
5727 {
5728 gold_assert(group_end != this->input_sections().end());
5729 this->create_stub_group(group_begin, group_end, group_end,
f625ae50
DK
5730 target, &new_relaxed_sections,
5731 task);
07f508a2
DK
5732 state = NO_GROUP;
5733 }
5734 else
5735 {
5736 // But wait, there's more! Input sections up to
5737 // stub_group_size bytes after the stub table can be
5738 // handled by it too.
5739 state = HAS_STUB_SECTION;
2ea97941 5740 stub_table = group_end;
07f508a2
DK
5741 stub_table_end_offset = group_end_offset;
5742 }
5743 }
5744 break;
5745
5746 case HAS_STUB_SECTION:
5747 // Adding this section makes the post stub-section group larger
5748 // than GROUP_SIZE.
5749 if (section_end_offset - stub_table_end_offset >= group_size)
5750 {
5751 gold_assert(group_end != this->input_sections().end());
2ea97941 5752 this->create_stub_group(group_begin, group_end, stub_table,
f625ae50 5753 target, &new_relaxed_sections, task);
07f508a2
DK
5754 state = NO_GROUP;
5755 }
5756 break;
5757
5758 default:
5759 gold_unreachable();
5760 }
5761
5762 // If we see an input section and currently there is no group, start
f625ae50
DK
5763 // a new one. Skip any empty sections. We look at the data size
5764 // instead of calling p->relobj()->section_size() to avoid locking.
07f508a2 5765 if ((p->is_input_section() || p->is_relaxed_input_section())
f625ae50 5766 && (p->data_size() != 0))
07f508a2
DK
5767 {
5768 if (state == NO_GROUP)
5769 {
5770 state = FINDING_STUB_SECTION;
5771 group_begin = p;
5772 group_begin_offset = section_begin_offset;
5773 }
5774
5775 // Keep track of the last input section seen.
5776 group_end = p;
5777 group_end_offset = section_end_offset;
5778 }
5779
5780 off = section_end_offset;
5781 }
5782
5783 // Create a stub group for any ungrouped sections.
5784 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5785 {
5786 gold_assert(group_end != this->input_sections().end());
5787 this->create_stub_group(group_begin, group_end,
5788 (state == FINDING_STUB_SECTION
5789 ? group_end
2ea97941 5790 : stub_table),
f625ae50 5791 target, &new_relaxed_sections, task);
07f508a2
DK
5792 }
5793
5794 // Convert input section into relaxed input section in a batch.
5795 if (!new_relaxed_sections.empty())
5796 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5797
5798 // Update the section offsets
5799 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5800 {
5801 Arm_relobj<big_endian>* arm_relobj =
5802 Arm_relobj<big_endian>::as_arm_relobj(
5803 new_relaxed_sections[i]->relobj());
2ea97941 5804 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5805 // Tell Arm_relobj that this input section is converted.
2ea97941 5806 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5807 }
5808}
5809
2b328d4e
DK
5810// Append non empty text sections in this to LIST in ascending
5811// order of their position in this.
5812
5813template<bool big_endian>
5814void
5815Arm_output_section<big_endian>::append_text_sections_to_list(
5816 Text_section_list* list)
5817{
2b328d4e
DK
5818 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5819
5820 for (Input_section_list::const_iterator p = this->input_sections().begin();
5821 p != this->input_sections().end();
5822 ++p)
5823 {
5824 // We only care about plain or relaxed input sections. We also
5825 // ignore any merged sections.
a60af0db 5826 if (p->is_input_section() || p->is_relaxed_input_section())
2b328d4e
DK
5827 list->push_back(Text_section_list::value_type(p->relobj(),
5828 p->shndx()));
5829 }
5830}
5831
5832template<bool big_endian>
5833void
5834Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5835 Layout* layout,
2b328d4e 5836 const Text_section_list& sorted_text_sections,
85fdf906 5837 Symbol_table* symtab,
f625ae50
DK
5838 bool merge_exidx_entries,
5839 const Task* task)
2b328d4e
DK
5840{
5841 // We should only do this for the EXIDX output section.
5842 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5843
5844 // We don't want the relaxation loop to undo these changes, so we discard
5845 // the current saved states and take another one after the fix-up.
5846 this->discard_states();
5847
5848 // Remove all input sections.
5849 uint64_t address = this->address();
6625d24e
DK
5850 typedef std::list<Output_section::Input_section> Input_section_list;
5851 Input_section_list input_sections;
2b328d4e
DK
5852 this->reset_address_and_file_offset();
5853 this->get_input_sections(address, std::string(""), &input_sections);
5854
5855 if (!this->input_sections().empty())
5856 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5857
5858 // Go through all the known input sections and record them.
5859 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
6625d24e
DK
5860 typedef Unordered_map<Section_id, const Output_section::Input_section*,
5861 Section_id_hash> Text_to_exidx_map;
5862 Text_to_exidx_map text_to_exidx_map;
5863 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5864 p != input_sections.end();
5865 ++p)
5866 {
5867 // This should never happen. At this point, we should only see
5868 // plain EXIDX input sections.
5869 gold_assert(!p->is_relaxed_input_section());
6625d24e 5870 text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
2b328d4e
DK
5871 }
5872
85fdf906 5873 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
2b328d4e
DK
5874
5875 // Go over the sorted text sections.
6625d24e 5876 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
2b328d4e
DK
5877 Section_id_set processed_input_sections;
5878 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5879 p != sorted_text_sections.end();
5880 ++p)
5881 {
5882 Relobj* relobj = p->first;
5883 unsigned int shndx = p->second;
5884
5885 Arm_relobj<big_endian>* arm_relobj =
5886 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5887 const Arm_exidx_input_section* exidx_input_section =
5888 arm_relobj->exidx_input_section_by_link(shndx);
5889
131687b4
DK
5890 // If this text section has no EXIDX section or if the EXIDX section
5891 // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
5892 // of the last seen EXIDX section.
5893 if (exidx_input_section == NULL || exidx_input_section->has_errors())
2b328d4e
DK
5894 {
5895 exidx_fixup.add_exidx_cantunwind_as_needed();
5896 continue;
5897 }
5898
5899 Relobj* exidx_relobj = exidx_input_section->relobj();
5900 unsigned int exidx_shndx = exidx_input_section->shndx();
5901 Section_id sid(exidx_relobj, exidx_shndx);
6625d24e
DK
5902 Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
5903 if (iter == text_to_exidx_map.end())
2b328d4e
DK
5904 {
5905 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5906 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5907 // issue a warning instead. We assume the user knows what he
5908 // or she is doing. Otherwise, this is an error.
5909 if (layout->script_options()->saw_sections_clause())
5910 gold_warning(_("unwinding may not work because EXIDX input section"
5911 " %u of %s is not in EXIDX output section"),
5912 exidx_shndx, exidx_relobj->name().c_str());
5913 else
5914 gold_error(_("unwinding may not work because EXIDX input section"
5915 " %u of %s is not in EXIDX output section"),
5916 exidx_shndx, exidx_relobj->name().c_str());
5917
2b328d4e
DK
5918 exidx_fixup.add_exidx_cantunwind_as_needed();
5919 continue;
5920 }
5921
f625ae50
DK
5922 // We need to access the contents of the EXIDX section, lock the
5923 // object here.
5924 Task_lock_obj<Object> tl(task, exidx_relobj);
5925 section_size_type exidx_size;
5926 const unsigned char* exidx_contents =
5927 exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);
5928
2b328d4e
DK
5929 // Fix up coverage and append input section to output data list.
5930 Arm_exidx_section_offset_map* section_offset_map = NULL;
5931 uint32_t deleted_bytes =
5932 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
f625ae50
DK
5933 exidx_contents,
5934 exidx_size,
2b328d4e
DK
5935 &section_offset_map);
5936
5937 if (deleted_bytes == exidx_input_section->size())
5938 {
5939 // The whole EXIDX section got merged. Remove it from output.
5940 gold_assert(section_offset_map == NULL);
5941 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5942
5943 // All local symbols defined in this input section will be dropped.
5944 // We need to adjust output local symbol count.
5945 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5946 }
5947 else if (deleted_bytes > 0)
5948 {
5949 // Some entries are merged. We need to convert this EXIDX input
5950 // section into a relaxed section.
5951 gold_assert(section_offset_map != NULL);
f625ae50 5952
2b328d4e
DK
5953 Arm_exidx_merged_section* merged_section =
5954 new Arm_exidx_merged_section(*exidx_input_section,
5955 *section_offset_map, deleted_bytes);
f625ae50
DK
5956 merged_section->build_contents(exidx_contents, exidx_size);
5957
d06fb4d1
DK
5958 const std::string secname = exidx_relobj->section_name(exidx_shndx);
5959 this->add_relaxed_input_section(layout, merged_section, secname);
2b328d4e 5960 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5961
5962 // All local symbols defined in discarded portions of this input
5963 // section will be dropped. We need to adjust output local symbol
5964 // count.
5965 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5966 }
5967 else
5968 {
5969 // Just add back the EXIDX input section.
5970 gold_assert(section_offset_map == NULL);
6625d24e
DK
5971 const Output_section::Input_section* pis = iter->second;
5972 gold_assert(pis->is_input_section());
5973 this->add_script_input_section(*pis);
2b328d4e
DK
5974 }
5975
5976 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5977 }
5978
5979 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5980 exidx_fixup.add_exidx_cantunwind_as_needed();
5981
5982 // Remove any known EXIDX input sections that are not processed.
6625d24e 5983 for (Input_section_list::const_iterator p = input_sections.begin();
2b328d4e
DK
5984 p != input_sections.end();
5985 ++p)
5986 {
5987 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5988 == processed_input_sections.end())
5989 {
131687b4
DK
5990 // We discard a known EXIDX section because its linked
5991 // text section has been folded by ICF. We also discard an
5992 // EXIDX section with error, the output does not matter in this
5993 // case. We do this to avoid triggering asserts.
2b328d4e
DK
5994 Arm_relobj<big_endian>* arm_relobj =
5995 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5996 const Arm_exidx_input_section* exidx_input_section =
5997 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5998 gold_assert(exidx_input_section != NULL);
131687b4
DK
5999 if (!exidx_input_section->has_errors())
6000 {
6001 unsigned int text_shndx = exidx_input_section->link();
6002 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
6003 }
2b328d4e 6004
04ceb17c
DK
6005 // Remove this from link. We also need to recount the
6006 // local symbols.
2b328d4e 6007 p->relobj()->set_output_section(p->shndx(), NULL);
04ceb17c 6008 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
6009 }
6010 }
6011
546c7457
DK
6012 // Link exidx output section to the first seen output section and
6013 // set correct entry size.
6014 this->set_link_section(exidx_fixup.first_output_text_section());
6015 this->set_entsize(8);
6016
2b328d4e
DK
6017 // Make changes permanent.
6018 this->save_states();
6019 this->set_section_offsets_need_adjustment();
6020}
6021
131687b4
DK
6022// Link EXIDX output sections to text output sections.
6023
6024template<bool big_endian>
6025void
6026Arm_output_section<big_endian>::set_exidx_section_link()
6027{
6028 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
6029 if (!this->input_sections().empty())
6030 {
6031 Input_section_list::const_iterator p = this->input_sections().begin();
6032 Arm_relobj<big_endian>* arm_relobj =
6033 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
6034 unsigned exidx_shndx = p->shndx();
6035 const Arm_exidx_input_section* exidx_input_section =
6036 arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
6037 gold_assert(exidx_input_section != NULL);
6038 unsigned int text_shndx = exidx_input_section->link();
6039 Output_section* os = arm_relobj->output_section(text_shndx);
6040 this->set_link_section(os);
6041 }
6042}
6043
8ffa3667
DK
6044// Arm_relobj methods.
6045
cf846138
DK
6046// Determine if an input section is scannable for stub processing. SHDR is
6047// the header of the section and SHNDX is the section index. OS is the output
6048// section for the input section and SYMTAB is the global symbol table used to
6049// look up ICF information.
6050
6051template<bool big_endian>
6052bool
6053Arm_relobj<big_endian>::section_is_scannable(
6054 const elfcpp::Shdr<32, big_endian>& shdr,
6055 unsigned int shndx,
6056 const Output_section* os,
ca09d69a 6057 const Symbol_table* symtab)
cf846138
DK
6058{
6059 // Skip any empty sections, unallocated sections or sections whose
6060 // type are not SHT_PROGBITS.
6061 if (shdr.get_sh_size() == 0
6062 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
6063 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
6064 return false;
6065
6066 // Skip any discarded or ICF'ed sections.
6067 if (os == NULL || symtab->is_section_folded(this, shndx))
6068 return false;
6069
6070 // If this requires special offset handling, check to see if it is
6071 // a relaxed section. If this is not, then it is a merged section that
6072 // we cannot handle.
6073 if (this->is_output_section_offset_invalid(shndx))
6074 {
6075 const Output_relaxed_input_section* poris =
6076 os->find_relaxed_input_section(this, shndx);
6077 if (poris == NULL)
6078 return false;
6079 }
6080
6081 return true;
6082}
6083
44272192
DK
6084// Determine if we want to scan the SHNDX-th section for relocation stubs.
6085// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6086
6087template<bool big_endian>
6088bool
6089Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
6090 const elfcpp::Shdr<32, big_endian>& shdr,
6091 const Relobj::Output_sections& out_sections,
ca09d69a 6092 const Symbol_table* symtab,
2b328d4e 6093 const unsigned char* pshdrs)
44272192
DK
6094{
6095 unsigned int sh_type = shdr.get_sh_type();
6096 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
6097 return false;
6098
6099 // Ignore empty section.
6100 off_t sh_size = shdr.get_sh_size();
6101 if (sh_size == 0)
6102 return false;
6103
44272192
DK
6104 // Ignore reloc section with unexpected symbol table. The
6105 // error will be reported in the final link.
6106 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
6107 return false;
6108
b521dfe4
DK
6109 unsigned int reloc_size;
6110 if (sh_type == elfcpp::SHT_REL)
6111 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6112 else
6113 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6114
6115 // Ignore reloc section with unexpected entsize or uneven size.
6116 // The error will be reported in the final link.
6117 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
6118 return false;
6119
cf846138
DK
6120 // Ignore reloc section with bad info. This error will be
6121 // reported in the final link.
6122 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6123 if (index >= this->shnum())
6124 return false;
6125
6126 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6127 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
6128 return this->section_is_scannable(text_shdr, index,
6129 out_sections[index], symtab);
44272192
DK
6130}
6131
cb1be87e
DK
6132// Return the output address of either a plain input section or a relaxed
6133// input section. SHNDX is the section index. We define and use this
6134// instead of calling Output_section::output_address because that is slow
6135// for large output.
6136
6137template<bool big_endian>
6138Arm_address
6139Arm_relobj<big_endian>::simple_input_section_output_address(
6140 unsigned int shndx,
6141 Output_section* os)
6142{
6143 if (this->is_output_section_offset_invalid(shndx))
6144 {
6145 const Output_relaxed_input_section* poris =
6146 os->find_relaxed_input_section(this, shndx);
6147 // We do not handle merged sections here.
6148 gold_assert(poris != NULL);
6149 return poris->address();
6150 }
6151 else
6152 return os->address() + this->get_output_section_offset(shndx);
6153}
6154
44272192
DK
6155// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
6156// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
6157
6158template<bool big_endian>
6159bool
6160Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
6161 const elfcpp::Shdr<32, big_endian>& shdr,
6162 unsigned int shndx,
6163 Output_section* os,
6164 const Symbol_table* symtab)
6165{
cf846138 6166 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
6167 return false;
6168
44272192
DK
6169 // If the section does not cross any 4K-boundaries, it does not need to
6170 // be scanned.
cb1be87e 6171 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
6172 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
6173 return false;
6174
6175 return true;
6176}
6177
6178// Scan a section for Cortex-A8 workaround.
6179
6180template<bool big_endian>
6181void
6182Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
6183 const elfcpp::Shdr<32, big_endian>& shdr,
6184 unsigned int shndx,
6185 Output_section* os,
6186 Target_arm<big_endian>* arm_target)
6187{
c8761b9a
DK
6188 // Look for the first mapping symbol in this section. It should be
6189 // at (shndx, 0).
6190 Mapping_symbol_position section_start(shndx, 0);
6191 typename Mapping_symbols_info::const_iterator p =
6192 this->mapping_symbols_info_.lower_bound(section_start);
6193
6194 // There are no mapping symbols for this section. Treat it as a data-only
24af6f92
DK
6195 // section. Issue a warning if section is marked as containing
6196 // instructions.
c8761b9a 6197 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
24af6f92
DK
6198 {
6199 if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
6200 gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
6201 "erratum because it has no mapping symbols."),
6202 shndx, this->name().c_str());
6203 return;
6204 }
c8761b9a 6205
cb1be87e
DK
6206 Arm_address output_address =
6207 this->simple_input_section_output_address(shndx, os);
44272192
DK
6208
6209 // Get the section contents.
6210 section_size_type input_view_size = 0;
6211 const unsigned char* input_view =
6212 this->section_contents(shndx, &input_view_size, false);
6213
6214 // We need to go through the mapping symbols to determine what to
6215 // scan. There are two reasons. First, we should look at THUMB code and
6216 // THUMB code only. Second, we only want to look at the 4K-page boundary
6217 // to speed up the scanning.
6218
44272192
DK
6219 while (p != this->mapping_symbols_info_.end()
6220 && p->first.first == shndx)
6221 {
6222 typename Mapping_symbols_info::const_iterator next =
6223 this->mapping_symbols_info_.upper_bound(p->first);
6224
6225 // Only scan part of a section with THUMB code.
6226 if (p->second == 't')
6227 {
6228 // Determine the end of this range.
6229 section_size_type span_start =
6230 convert_to_section_size_type(p->first.second);
6231 section_size_type span_end;
6232 if (next != this->mapping_symbols_info_.end()
6233 && next->first.first == shndx)
6234 span_end = convert_to_section_size_type(next->first.second);
6235 else
6236 span_end = convert_to_section_size_type(shdr.get_sh_size());
6237
6238 if (((span_start + output_address) & ~0xfffUL)
6239 != ((span_end + output_address - 1) & ~0xfffUL))
6240 {
6241 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
6242 span_start, span_end,
6243 input_view,
6244 output_address);
6245 }
6246 }
6247
6248 p = next;
6249 }
6250}
6251
8ffa3667
DK
6252// Scan relocations for stub generation.
6253
6254template<bool big_endian>
6255void
6256Arm_relobj<big_endian>::scan_sections_for_stubs(
6257 Target_arm<big_endian>* arm_target,
6258 const Symbol_table* symtab,
2ea97941 6259 const Layout* layout)
8ffa3667 6260{
2ea97941
ILT
6261 unsigned int shnum = this->shnum();
6262 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
6263
6264 // Read the section headers.
6265 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 6266 shnum * shdr_size,
8ffa3667
DK
6267 true, true);
6268
6269 // To speed up processing, we set up hash tables for fast lookup of
6270 // input offsets to output addresses.
6271 this->initialize_input_to_output_maps();
6272
6273 const Relobj::Output_sections& out_sections(this->output_sections());
6274
6275 Relocate_info<32, big_endian> relinfo;
8ffa3667 6276 relinfo.symtab = symtab;
2ea97941 6277 relinfo.layout = layout;
8ffa3667
DK
6278 relinfo.object = this;
6279
44272192 6280 // Do relocation stubs scanning.
2ea97941
ILT
6281 const unsigned char* p = pshdrs + shdr_size;
6282 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6283 {
44272192 6284 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
6285 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
6286 pshdrs))
8ffa3667 6287 {
44272192
DK
6288 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
6289 Arm_address output_offset = this->get_output_section_offset(index);
6290 Arm_address output_address;
7296d933 6291 if (output_offset != invalid_address)
44272192
DK
6292 output_address = out_sections[index]->address() + output_offset;
6293 else
6294 {
6295 // Currently this only happens for a relaxed section.
6296 const Output_relaxed_input_section* poris =
6297 out_sections[index]->find_relaxed_input_section(this, index);
6298 gold_assert(poris != NULL);
6299 output_address = poris->address();
6300 }
8ffa3667 6301
44272192
DK
6302 // Get the relocations.
6303 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
6304 shdr.get_sh_size(),
6305 true, false);
6306
6307 // Get the section contents. This does work for the case in which
6308 // we modify the contents of an input section. We need to pass the
6309 // output view under such circumstances.
6310 section_size_type input_view_size = 0;
6311 const unsigned char* input_view =
6312 this->section_contents(index, &input_view_size, false);
6313
6314 relinfo.reloc_shndx = i;
6315 relinfo.data_shndx = index;
6316 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
6317 unsigned int reloc_size;
6318 if (sh_type == elfcpp::SHT_REL)
6319 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6320 else
6321 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
6322
6323 Output_section* os = out_sections[index];
6324 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
6325 shdr.get_sh_size() / reloc_size,
6326 os,
6327 output_offset == invalid_address,
6328 input_view, output_address,
6329 input_view_size);
8ffa3667 6330 }
44272192 6331 }
8ffa3667 6332
44272192
DK
6333 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6334 // after its relocation section, if there is one, is processed for
6335 // relocation stubs. Merging this loop with the one above would have been
6336 // complicated since we would have had to make sure that relocation stub
6337 // scanning is done first.
6338 if (arm_target->fix_cortex_a8())
6339 {
6340 const unsigned char* p = pshdrs + shdr_size;
6341 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6342 {
44272192
DK
6343 const elfcpp::Shdr<32, big_endian> shdr(p);
6344 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6345 out_sections[i],
6346 symtab))
6347 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6348 arm_target);
8ffa3667 6349 }
8ffa3667
DK
6350 }
6351
6352 // After we've done the relocations, we release the hash tables,
6353 // since we no longer need them.
6354 this->free_input_to_output_maps();
6355}
6356
6357// Count the local symbols. The ARM backend needs to know if a symbol
6358// is a THUMB function or not. For global symbols, it is easy because
6359// the Symbol object keeps the ELF symbol type. For local symbol it is
6360// harder because we cannot access this information. So we override the
6361// do_count_local_symbol in parent and scan local symbols to mark
6362// THUMB functions. This is not the most efficient way but I do not want to
9b547ce6 6363// slow down other ports by calling a per symbol target hook inside
6fa2a40b 6364// Sized_relobj_file<size, big_endian>::do_count_local_symbols.
8ffa3667
DK
6365
6366template<bool big_endian>
6367void
6368Arm_relobj<big_endian>::do_count_local_symbols(
6369 Stringpool_template<char>* pool,
6370 Stringpool_template<char>* dynpool)
6371{
6372 // We need to fix-up the values of any local symbols whose type are
6373 // STT_ARM_TFUNC.
6374
6375 // Ask parent to count the local symbols.
6fa2a40b 6376 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
8ffa3667
DK
6377 const unsigned int loccount = this->local_symbol_count();
6378 if (loccount == 0)
6379 return;
6380
9b547ce6 6381 // Initialize the thumb function bit-vector.
8ffa3667
DK
6382 std::vector<bool> empty_vector(loccount, false);
6383 this->local_symbol_is_thumb_function_.swap(empty_vector);
6384
6385 // Read the symbol table section header.
2ea97941 6386 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6387 elfcpp::Shdr<32, big_endian>
2ea97941 6388 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6389 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6390
6391 // Read the local symbols.
2ea97941 6392 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6393 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6394 off_t locsize = loccount * sym_size;
8ffa3667
DK
6395 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6396 locsize, true, true);
6397
20138696
DK
6398 // For mapping symbol processing, we need to read the symbol names.
6399 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6400 if (strtab_shndx >= this->shnum())
6401 {
6402 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6403 return;
6404 }
6405
6406 elfcpp::Shdr<32, big_endian>
6407 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6408 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6409 {
6410 this->error(_("symbol table name section has wrong type: %u"),
6411 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6412 return;
6413 }
6414 const char* pnames =
6415 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6416 strtabshdr.get_sh_size(),
6417 false, false));
6418
8ffa3667
DK
6419 // Loop over the local symbols and mark any local symbols pointing
6420 // to THUMB functions.
6421
6422 // Skip the first dummy symbol.
2ea97941 6423 psyms += sym_size;
6fa2a40b 6424 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
8ffa3667 6425 this->local_values();
2ea97941 6426 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6427 {
6428 elfcpp::Sym<32, big_endian> sym(psyms);
6429 elfcpp::STT st_type = sym.get_st_type();
6430 Symbol_value<32>& lv((*plocal_values)[i]);
6431 Arm_address input_value = lv.input_value();
6432
20138696
DK
6433 // Check to see if this is a mapping symbol.
6434 const char* sym_name = pnames + sym.get_st_name();
6435 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6436 {
24af6f92
DK
6437 bool is_ordinary;
6438 unsigned int input_shndx =
6439 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
6440 gold_assert(is_ordinary);
20138696
DK
6441
6442 // Strip of LSB in case this is a THUMB symbol.
6443 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6444 this->mapping_symbols_info_[msp] = sym_name[1];
6445 }
6446
8ffa3667
DK
6447 if (st_type == elfcpp::STT_ARM_TFUNC
6448 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6449 {
6450 // This is a THUMB function. Mark this and canonicalize the
6451 // symbol value by setting LSB.
6452 this->local_symbol_is_thumb_function_[i] = true;
6453 if ((input_value & 1) == 0)
6454 lv.set_input_value(input_value | 1);
6455 }
6456 }
6457}
6458
6459// Relocate sections.
6460template<bool big_endian>
6461void
6462Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6463 const Symbol_table* symtab,
2ea97941 6464 const Layout* layout,
8ffa3667 6465 const unsigned char* pshdrs,
aa98ff75 6466 Output_file* of,
6fa2a40b 6467 typename Sized_relobj_file<32, big_endian>::Views* pviews)
8ffa3667
DK
6468{
6469 // Call parent to relocate sections.
6fa2a40b
CC
6470 Sized_relobj_file<32, big_endian>::do_relocate_sections(symtab, layout,
6471 pshdrs, of, pviews);
8ffa3667
DK
6472
6473 // We do not generate stubs if doing a relocatable link.
6474 if (parameters->options().relocatable())
6475 return;
6476
6477 // Relocate stub tables.
2ea97941 6478 unsigned int shnum = this->shnum();
8ffa3667
DK
6479
6480 Target_arm<big_endian>* arm_target =
6481 Target_arm<big_endian>::default_target();
6482
6483 Relocate_info<32, big_endian> relinfo;
8ffa3667 6484 relinfo.symtab = symtab;
2ea97941 6485 relinfo.layout = layout;
8ffa3667
DK
6486 relinfo.object = this;
6487
2ea97941 6488 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6489 {
6490 Arm_input_section<big_endian>* arm_input_section =
6491 arm_target->find_arm_input_section(this, i);
6492
41263c05
DK
6493 if (arm_input_section != NULL
6494 && arm_input_section->is_stub_table_owner()
6495 && !arm_input_section->stub_table()->empty())
6496 {
6497 // We cannot discard a section if it owns a stub table.
6498 Output_section* os = this->output_section(i);
6499 gold_assert(os != NULL);
6500
6501 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6502 relinfo.reloc_shdr = NULL;
6503 relinfo.data_shndx = i;
6504 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6505
6506 gold_assert((*pviews)[i].view != NULL);
6507
6508 // We are passed the output section view. Adjust it to cover the
6509 // stub table only.
6510 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6511 gold_assert((stub_table->address() >= (*pviews)[i].address)
6512 && ((stub_table->address() + stub_table->data_size())
6513 <= (*pviews)[i].address + (*pviews)[i].view_size));
6514
6515 off_t offset = stub_table->address() - (*pviews)[i].address;
6516 unsigned char* view = (*pviews)[i].view + offset;
6517 Arm_address address = stub_table->address();
6518 section_size_type view_size = stub_table->data_size();
8ffa3667 6519
41263c05
DK
6520 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6521 view_size);
6522 }
6523
6524 // Apply Cortex A8 workaround if applicable.
6525 if (this->section_has_cortex_a8_workaround(i))
6526 {
6527 unsigned char* view = (*pviews)[i].view;
6528 Arm_address view_address = (*pviews)[i].address;
6529 section_size_type view_size = (*pviews)[i].view_size;
6530 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6531
6532 // Adjust view to cover section.
6533 Output_section* os = this->output_section(i);
6534 gold_assert(os != NULL);
cb1be87e
DK
6535 Arm_address section_address =
6536 this->simple_input_section_output_address(i, os);
41263c05
DK
6537 uint64_t section_size = this->section_size(i);
6538
6539 gold_assert(section_address >= view_address
6540 && ((section_address + section_size)
6541 <= (view_address + view_size)));
6542
6543 unsigned char* section_view = view + (section_address - view_address);
6544
6545 // Apply the Cortex-A8 workaround to the output address range
6546 // corresponding to this input section.
6547 stub_table->apply_cortex_a8_workaround_to_address_range(
6548 arm_target,
6549 section_view,
6550 section_address,
6551 section_size);
6552 }
8ffa3667
DK
6553 }
6554}
6555
9b547ce6 6556// Find the linked text section of an EXIDX section by looking at the first
c8761b9a 6557// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
9b547ce6 6558// must be linked to its associated code section via the sh_link field of
c8761b9a
DK
6559// its section header. However, some tools are broken and the link is not
6560// always set. LD just drops such an EXIDX section silently, causing the
6561// associated code not unwindabled. Here we try a little bit harder to
6562// discover the linked code section.
6563//
6564// PSHDR points to the section header of a relocation section of an EXIDX
6565// section. If we can find a linked text section, return true and
6566// store the text section index in the location PSHNDX. Otherwise
6567// return false.
a0351a69
DK
6568
6569template<bool big_endian>
c8761b9a
DK
6570bool
6571Arm_relobj<big_endian>::find_linked_text_section(
6572 const unsigned char* pshdr,
6573 const unsigned char* psyms,
6574 unsigned int* pshndx)
a0351a69 6575{
c8761b9a
DK
6576 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6577
6578 // If there is no relocation, we cannot find the linked text section.
6579 size_t reloc_size;
6580 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6581 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6582 else
6583 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6584 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6585
6586 // Get the relocations.
6587 const unsigned char* prelocs =
6588 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6589
c8761b9a
DK
6590 // Find the REL31 relocation for the first word of the first EXIDX entry.
6591 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6592 {
c8761b9a
DK
6593 Arm_address r_offset;
6594 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6595 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6596 {
6597 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6598 r_info = reloc.get_r_info();
6599 r_offset = reloc.get_r_offset();
6600 }
6601 else
6602 {
6603 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6604 r_info = reloc.get_r_info();
6605 r_offset = reloc.get_r_offset();
6606 }
6607
6608 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6609 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6610 continue;
6611
6612 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6613 if (r_sym == 0
6614 || r_sym >= this->local_symbol_count()
6615 || r_offset != 0)
6616 continue;
6617
6618 // This is the relocation for the first word of the first EXIDX entry.
6619 // We expect to see a local section symbol.
6620 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6621 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6622 if (sym.get_st_type() == elfcpp::STT_SECTION)
6623 {
24af6f92
DK
6624 bool is_ordinary;
6625 *pshndx =
6626 this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
6627 gold_assert(is_ordinary);
c8761b9a
DK
6628 return true;
6629 }
6630 else
6631 return false;
993d07c1 6632 }
c8761b9a
DK
6633
6634 return false;
6635}
6636
6637// Make an EXIDX input section object for an EXIDX section whose index is
6638// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6639// is the section index of the linked text section.
6640
6641template<bool big_endian>
6642void
6643Arm_relobj<big_endian>::make_exidx_input_section(
6644 unsigned int shndx,
6645 const elfcpp::Shdr<32, big_endian>& shdr,
131687b4
DK
6646 unsigned int text_shndx,
6647 const elfcpp::Shdr<32, big_endian>& text_shdr)
c8761b9a 6648{
993d07c1
DK
6649 // Create an Arm_exidx_input_section object for this EXIDX section.
6650 Arm_exidx_input_section* exidx_input_section =
6651 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
f625ae50
DK
6652 shdr.get_sh_addralign(),
6653 text_shdr.get_sh_size());
993d07c1 6654
993d07c1
DK
6655 gold_assert(this->exidx_section_map_[shndx] == NULL);
6656 this->exidx_section_map_[shndx] = exidx_input_section;
131687b4
DK
6657
6658 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
6659 {
6660 gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
6661 this->section_name(shndx).c_str(), shndx, text_shndx,
6662 this->name().c_str());
6663 exidx_input_section->set_has_errors();
6664 }
6665 else if (this->exidx_section_map_[text_shndx] != NULL)
6666 {
6667 unsigned other_exidx_shndx =
6668 this->exidx_section_map_[text_shndx]->shndx();
6669 gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
6670 "%s(%u) in %s"),
6671 this->section_name(shndx).c_str(), shndx,
6672 this->section_name(other_exidx_shndx).c_str(),
6673 other_exidx_shndx, this->section_name(text_shndx).c_str(),
6674 text_shndx, this->name().c_str());
6675 exidx_input_section->set_has_errors();
6676 }
6677 else
6678 this->exidx_section_map_[text_shndx] = exidx_input_section;
6679
6680 // Check section flags of text section.
6681 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
6682 {
6683 gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
6684 " in %s"),
6685 this->section_name(shndx).c_str(), shndx,
6686 this->section_name(text_shndx).c_str(), text_shndx,
6687 this->name().c_str());
6688 exidx_input_section->set_has_errors();
6689 }
6690 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
9b547ce6 6691 // I would like to make this an error but currently ld just ignores
131687b4
DK
6692 // this.
6693 gold_warning(_("EXIDX section %s(%u) links to non-executable section "
6694 "%s(%u) in %s"),
6695 this->section_name(shndx).c_str(), shndx,
6696 this->section_name(text_shndx).c_str(), text_shndx,
6697 this->name().c_str());
a0351a69
DK
6698}
6699
d5b40221
DK
6700// Read the symbol information.
6701
6702template<bool big_endian>
6703void
6704Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6705{
6706 // Call parent class to read symbol information.
6fa2a40b 6707 Sized_relobj_file<32, big_endian>::do_read_symbols(sd);
d5b40221 6708
7296d933
DK
6709 // If this input file is a binary file, it has no processor
6710 // specific flags and attributes section.
6711 Input_file::Format format = this->input_file()->format();
6712 if (format != Input_file::FORMAT_ELF)
6713 {
6714 gold_assert(format == Input_file::FORMAT_BINARY);
6715 this->merge_flags_and_attributes_ = false;
6716 return;
6717 }
6718
d5b40221
DK
6719 // Read processor-specific flags in ELF file header.
6720 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6721 elfcpp::Elf_sizes<32>::ehdr_size,
6722 true, false);
6723 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6724 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6725
6726 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6727 // sections.
c8761b9a 6728 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6729 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a 6730 const unsigned char* pshdrs = sd->section_headers->data();
ca09d69a 6731 const unsigned char* ps = pshdrs + shdr_size;
7296d933 6732 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6733 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6734 {
6735 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6736
6737 // Sometimes an object has no contents except the section name string
6738 // table and an empty symbol table with the undefined symbol. We
6739 // don't want to merge processor-specific flags from such an object.
6740 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6741 {
6742 // Symbol table is not empty.
6743 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6744 elfcpp::Elf_sizes<32>::sym_size;
6745 if (shdr.get_sh_size() > sym_size)
6746 must_merge_flags_and_attributes = true;
6747 }
6748 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6749 // If this is neither an empty symbol table nor a string table,
6750 // be conservative.
6751 must_merge_flags_and_attributes = true;
6752
993d07c1
DK
6753 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6754 {
6755 gold_assert(this->attributes_section_data_ == NULL);
6756 section_offset_type section_offset = shdr.get_sh_offset();
6757 section_size_type section_size =
6758 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
6759 const unsigned char* view =
6760 this->get_view(section_offset, section_size, true, false);
993d07c1 6761 this->attributes_section_data_ =
f625ae50 6762 new Attributes_section_data(view, section_size);
993d07c1
DK
6763 }
6764 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6765 {
6766 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
131687b4 6767 if (text_shndx == elfcpp::SHN_UNDEF)
c8761b9a
DK
6768 deferred_exidx_sections.push_back(i);
6769 else
131687b4
DK
6770 {
6771 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6772 + text_shndx * shdr_size);
6773 this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
6774 }
c9484ea5
DK
6775 // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
6776 if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
6777 gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
6778 this->section_name(i).c_str(), this->name().c_str());
c8761b9a
DK
6779 }
6780 }
6781
7296d933
DK
6782 // This is rare.
6783 if (!must_merge_flags_and_attributes)
6784 {
131687b4 6785 gold_assert(deferred_exidx_sections.empty());
7296d933
DK
6786 this->merge_flags_and_attributes_ = false;
6787 return;
6788 }
6789
c8761b9a
DK
6790 // Some tools are broken and they do not set the link of EXIDX sections.
6791 // We look at the first relocation to figure out the linked sections.
6792 if (!deferred_exidx_sections.empty())
6793 {
6794 // We need to go over the section headers again to find the mapping
6795 // from sections being relocated to their relocation sections. This is
6796 // a bit inefficient as we could do that in the loop above. However,
6797 // we do not expect any deferred EXIDX sections normally. So we do not
6798 // want to slow down the most common path.
6799 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6800 Reloc_map reloc_map;
6801 ps = pshdrs + shdr_size;
6802 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6803 {
6804 elfcpp::Shdr<32, big_endian> shdr(ps);
6805 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6806 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6807 {
6808 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6809 if (info_shndx >= this->shnum())
6810 gold_error(_("relocation section %u has invalid info %u"),
6811 i, info_shndx);
6812 Reloc_map::value_type value(info_shndx, i);
6813 std::pair<Reloc_map::iterator, bool> result =
6814 reloc_map.insert(value);
6815 if (!result.second)
6816 gold_error(_("section %u has multiple relocation sections "
6817 "%u and %u"),
6818 info_shndx, i, reloc_map[info_shndx]);
6819 }
6820 }
6821
6822 // Read the symbol table section header.
6823 const unsigned int symtab_shndx = this->symtab_shndx();
6824 elfcpp::Shdr<32, big_endian>
6825 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6826 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6827
6828 // Read the local symbols.
6829 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6830 const unsigned int loccount = this->local_symbol_count();
6831 gold_assert(loccount == symtabshdr.get_sh_info());
6832 off_t locsize = loccount * sym_size;
6833 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6834 locsize, true, true);
6835
6836 // Process the deferred EXIDX sections.
f625ae50 6837 for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
c8761b9a
DK
6838 {
6839 unsigned int shndx = deferred_exidx_sections[i];
6840 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
131687b4 6841 unsigned int text_shndx = elfcpp::SHN_UNDEF;
c8761b9a 6842 Reloc_map::const_iterator it = reloc_map.find(shndx);
131687b4
DK
6843 if (it != reloc_map.end())
6844 find_linked_text_section(pshdrs + it->second * shdr_size,
6845 psyms, &text_shndx);
6846 elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
6847 + text_shndx * shdr_size);
6848 this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
c8761b9a 6849 }
993d07c1 6850 }
d5b40221
DK
6851}
6852
99e5bff2
DK
6853// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6854// sections for unwinding. These sections are referenced implicitly by
9b547ce6 6855// text sections linked in the section headers. If we ignore these implicit
99e5bff2
DK
6856// references, the .ARM.exidx sections and any .ARM.extab sections they use
6857// will be garbage-collected incorrectly. Hence we override the same function
6858// in the base class to handle these implicit references.
6859
6860template<bool big_endian>
6861void
6862Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6863 Layout* layout,
6864 Read_relocs_data* rd)
6865{
6866 // First, call base class method to process relocations in this object.
6fa2a40b 6867 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
99e5bff2 6868
4a54abbb
DK
6869 // If --gc-sections is not specified, there is nothing more to do.
6870 // This happens when --icf is used but --gc-sections is not.
6871 if (!parameters->options().gc_sections())
6872 return;
6873
99e5bff2
DK
6874 unsigned int shnum = this->shnum();
6875 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6876 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6877 shnum * shdr_size,
6878 true, true);
6879
6880 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6881 // to these from the linked text sections.
6882 const unsigned char* ps = pshdrs + shdr_size;
6883 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6884 {
6885 elfcpp::Shdr<32, big_endian> shdr(ps);
6886 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6887 {
6888 // Found an .ARM.exidx section, add it to the set of reachable
6889 // sections from its linked text section.
6890 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6891 symtab->gc()->add_reference(this, text_shndx, this, i);
6892 }
6893 }
6894}
6895
e7eca48c
DK
6896// Update output local symbol count. Owing to EXIDX entry merging, some local
6897// symbols will be removed in output. Adjust output local symbol count
6898// accordingly. We can only changed the static output local symbol count. It
6899// is too late to change the dynamic symbols.
6900
6901template<bool big_endian>
6902void
6903Arm_relobj<big_endian>::update_output_local_symbol_count()
6904{
6905 // Caller should check that this needs updating. We want caller checking
6906 // because output_local_symbol_count_needs_update() is most likely inlined.
6907 gold_assert(this->output_local_symbol_count_needs_update_);
6908
6909 gold_assert(this->symtab_shndx() != -1U);
6910 if (this->symtab_shndx() == 0)
6911 {
6912 // This object has no symbols. Weird but legal.
6913 return;
6914 }
6915
6916 // Read the symbol table section header.
6917 const unsigned int symtab_shndx = this->symtab_shndx();
6918 elfcpp::Shdr<32, big_endian>
6919 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6920 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6921
6922 // Read the local symbols.
6923 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6924 const unsigned int loccount = this->local_symbol_count();
6925 gold_assert(loccount == symtabshdr.get_sh_info());
6926 off_t locsize = loccount * sym_size;
6927 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6928 locsize, true, true);
6929
6930 // Loop over the local symbols.
6931
6fa2a40b 6932 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
e7eca48c
DK
6933 Output_sections;
6934 const Output_sections& out_sections(this->output_sections());
6935 unsigned int shnum = this->shnum();
6936 unsigned int count = 0;
6937 // Skip the first, dummy, symbol.
6938 psyms += sym_size;
6939 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6940 {
6941 elfcpp::Sym<32, big_endian> sym(psyms);
6942
6943 Symbol_value<32>& lv((*this->local_values())[i]);
6944
6945 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6946 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6947 continue;
6948
6949 bool is_ordinary;
6950 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6951 &is_ordinary);
6952
6953 if (shndx < shnum)
6954 {
6955 Output_section* os = out_sections[shndx];
6956
6957 // This local symbol no longer has an output section. Discard it.
6958 if (os == NULL)
6959 {
6960 lv.set_no_output_symtab_entry();
6961 continue;
6962 }
6963
6964 // Currently we only discard parts of EXIDX input sections.
6965 // We explicitly check for a merged EXIDX input section to avoid
6966 // calling Output_section_data::output_offset unless necessary.
6967 if ((this->get_output_section_offset(shndx) == invalid_address)
6968 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6969 {
6970 section_offset_type output_offset =
6971 os->output_offset(this, shndx, lv.input_value());
6972 if (output_offset == -1)
6973 {
6974 // This symbol is defined in a part of an EXIDX input section
6975 // that is discarded due to entry merging.
6976 lv.set_no_output_symtab_entry();
6977 continue;
6978 }
6979 }
6980 }
6981
6982 ++count;
6983 }
6984
6985 this->set_output_local_symbol_count(count);
6986 this->output_local_symbol_count_needs_update_ = false;
6987}
6988
d5b40221
DK
6989// Arm_dynobj methods.
6990
6991// Read the symbol information.
6992
6993template<bool big_endian>
6994void
6995Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6996{
6997 // Call parent class to read symbol information.
6998 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6999
7000 // Read processor-specific flags in ELF file header.
7001 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
7002 elfcpp::Elf_sizes<32>::ehdr_size,
7003 true, false);
7004 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
7005 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
7006
7007 // Read the attributes section if there is one.
7008 // We read from the end because gas seems to put it near the end of
7009 // the section headers.
7010 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
ca09d69a 7011 const unsigned char* ps =
993d07c1
DK
7012 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
7013 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
7014 {
7015 elfcpp::Shdr<32, big_endian> shdr(ps);
7016 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
7017 {
7018 section_offset_type section_offset = shdr.get_sh_offset();
7019 section_size_type section_size =
7020 convert_to_section_size_type(shdr.get_sh_size());
f625ae50
DK
7021 const unsigned char* view =
7022 this->get_view(section_offset, section_size, true, false);
993d07c1 7023 this->attributes_section_data_ =
f625ae50 7024 new Attributes_section_data(view, section_size);
993d07c1
DK
7025 break;
7026 }
7027 }
d5b40221
DK
7028}
7029
e9bbb538
DK
7030// Stub_addend_reader methods.
7031
7032// Read the addend of a REL relocation of type R_TYPE at VIEW.
7033
7034template<bool big_endian>
7035elfcpp::Elf_types<32>::Elf_Swxword
7036Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
7037 unsigned int r_type,
7038 const unsigned char* view,
7039 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
7040{
089d69dc
DK
7041 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
7042
e9bbb538
DK
7043 switch (r_type)
7044 {
7045 case elfcpp::R_ARM_CALL:
7046 case elfcpp::R_ARM_JUMP24:
7047 case elfcpp::R_ARM_PLT32:
7048 {
7049 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7050 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7051 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
7052 return utils::sign_extend<26>(val << 2);
7053 }
7054
7055 case elfcpp::R_ARM_THM_CALL:
7056 case elfcpp::R_ARM_THM_JUMP24:
7057 case elfcpp::R_ARM_THM_XPC22:
7058 {
e9bbb538
DK
7059 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7060 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7061 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7062 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7063 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7064 }
7065
7066 case elfcpp::R_ARM_THM_JUMP19:
7067 {
7068 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
7069 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
7070 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
7071 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 7072 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
7073 }
7074
7075 default:
7076 gold_unreachable();
7077 }
7078}
7079
4a54abbb
DK
7080// Arm_output_data_got methods.
7081
7082// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
7083// The first one is initialized to be 1, which is the module index for
7084// the main executable and the second one 0. A reloc of the type
7085// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
7086// be applied by gold. GSYM is a global symbol.
7087//
7088template<bool big_endian>
7089void
7090Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7091 unsigned int got_type,
7092 Symbol* gsym)
7093{
7094 if (gsym->has_got_offset(got_type))
7095 return;
7096
7097 // We are doing a static link. Just mark it as belong to module 1,
7098 // the executable.
7099 unsigned int got_offset = this->add_constant(1);
7100 gsym->set_got_offset(got_type, got_offset);
7101 got_offset = this->add_constant(0);
7102 this->static_relocs_.push_back(Static_reloc(got_offset,
7103 elfcpp::R_ARM_TLS_DTPOFF32,
7104 gsym));
7105}
7106
7107// Same as the above but for a local symbol.
7108
7109template<bool big_endian>
7110void
7111Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
7112 unsigned int got_type,
6fa2a40b 7113 Sized_relobj_file<32, big_endian>* object,
4a54abbb
DK
7114 unsigned int index)
7115{
7116 if (object->local_has_got_offset(index, got_type))
7117 return;
7118
7119 // We are doing a static link. Just mark it as belong to module 1,
7120 // the executable.
7121 unsigned int got_offset = this->add_constant(1);
7122 object->set_local_got_offset(index, got_type, got_offset);
7123 got_offset = this->add_constant(0);
7124 this->static_relocs_.push_back(Static_reloc(got_offset,
7125 elfcpp::R_ARM_TLS_DTPOFF32,
7126 object, index));
7127}
7128
7129template<bool big_endian>
7130void
7131Arm_output_data_got<big_endian>::do_write(Output_file* of)
7132{
7133 // Call parent to write out GOT.
7134 Output_data_got<32, big_endian>::do_write(of);
7135
7136 // We are done if there is no fix up.
7137 if (this->static_relocs_.empty())
7138 return;
7139
7140 gold_assert(parameters->doing_static_link());
7141
7142 const off_t offset = this->offset();
7143 const section_size_type oview_size =
7144 convert_to_section_size_type(this->data_size());
7145 unsigned char* const oview = of->get_output_view(offset, oview_size);
7146
7147 Output_segment* tls_segment = this->layout_->tls_segment();
7148 gold_assert(tls_segment != NULL);
7149
7150 // The thread pointer $tp points to the TCB, which is followed by the
7151 // TLS. So we need to adjust $tp relative addressing by this amount.
7152 Arm_address aligned_tcb_size =
7153 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
7154
7155 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
7156 {
7157 Static_reloc& reloc(this->static_relocs_[i]);
7158
7159 Arm_address value;
7160 if (!reloc.symbol_is_global())
7161 {
6fa2a40b 7162 Sized_relobj_file<32, big_endian>* object = reloc.relobj();
4a54abbb
DK
7163 const Symbol_value<32>* psymval =
7164 reloc.relobj()->local_symbol(reloc.index());
7165
7166 // We are doing static linking. Issue an error and skip this
7167 // relocation if the symbol is undefined or in a discarded_section.
7168 bool is_ordinary;
7169 unsigned int shndx = psymval->input_shndx(&is_ordinary);
7170 if ((shndx == elfcpp::SHN_UNDEF)
7171 || (is_ordinary
7172 && shndx != elfcpp::SHN_UNDEF
7173 && !object->is_section_included(shndx)
7174 && !this->symbol_table_->is_section_folded(object, shndx)))
7175 {
7176 gold_error(_("undefined or discarded local symbol %u from "
7177 " object %s in GOT"),
7178 reloc.index(), reloc.relobj()->name().c_str());
7179 continue;
7180 }
7181
7182 value = psymval->value(object, 0);
7183 }
7184 else
7185 {
7186 const Symbol* gsym = reloc.symbol();
7187 gold_assert(gsym != NULL);
7188 if (gsym->is_forwarder())
7189 gsym = this->symbol_table_->resolve_forwards(gsym);
7190
7191 // We are doing static linking. Issue an error and skip this
7192 // relocation if the symbol is undefined or in a discarded_section
7193 // unless it is a weakly_undefined symbol.
7194 if ((gsym->is_defined_in_discarded_section()
7195 || gsym->is_undefined())
7196 && !gsym->is_weak_undefined())
7197 {
7198 gold_error(_("undefined or discarded symbol %s in GOT"),
7199 gsym->name());
7200 continue;
7201 }
7202
7203 if (!gsym->is_weak_undefined())
7204 {
7205 const Sized_symbol<32>* sym =
7206 static_cast<const Sized_symbol<32>*>(gsym);
7207 value = sym->value();
7208 }
7209 else
7210 value = 0;
7211 }
7212
7213 unsigned got_offset = reloc.got_offset();
7214 gold_assert(got_offset < oview_size);
7215
7216 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7217 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
7218 Valtype x;
7219 switch (reloc.r_type())
7220 {
7221 case elfcpp::R_ARM_TLS_DTPOFF32:
7222 x = value;
7223 break;
7224 case elfcpp::R_ARM_TLS_TPOFF32:
7225 x = value + aligned_tcb_size;
7226 break;
7227 default:
7228 gold_unreachable();
7229 }
7230 elfcpp::Swap<32, big_endian>::writeval(wv, x);
7231 }
7232
7233 of->write_output_view(offset, oview_size, oview);
7234}
7235
94cdfcff
DK
7236// A class to handle the PLT data.
7237
7238template<bool big_endian>
7239class Output_data_plt_arm : public Output_section_data
7240{
7241 public:
7242 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
7243 Reloc_section;
7244
7245 Output_data_plt_arm(Layout*, Output_data_space*);
7246
7247 // Add an entry to the PLT.
7248 void
7249 add_entry(Symbol* gsym);
7250
7251 // Return the .rel.plt section data.
7252 const Reloc_section*
7253 rel_plt() const
7254 { return this->rel_; }
7255
0e70b911
CC
7256 // Return the number of PLT entries.
7257 unsigned int
7258 entry_count() const
7259 { return this->count_; }
7260
7261 // Return the offset of the first non-reserved PLT entry.
7262 static unsigned int
7263 first_plt_entry_offset()
7264 { return sizeof(first_plt_entry); }
7265
7266 // Return the size of a PLT entry.
7267 static unsigned int
7268 get_plt_entry_size()
7269 { return sizeof(plt_entry); }
7270
94cdfcff
DK
7271 protected:
7272 void
7273 do_adjust_output_section(Output_section* os);
7274
7275 // Write to a map file.
7276 void
7277 do_print_to_mapfile(Mapfile* mapfile) const
7278 { mapfile->print_output_data(this, _("** PLT")); }
7279
7280 private:
7281 // Template for the first PLT entry.
7282 static const uint32_t first_plt_entry[5];
7283
7284 // Template for subsequent PLT entries.
7285 static const uint32_t plt_entry[3];
7286
7287 // Set the final size.
7288 void
7289 set_final_data_size()
7290 {
7291 this->set_data_size(sizeof(first_plt_entry)
7292 + this->count_ * sizeof(plt_entry));
7293 }
7294
7295 // Write out the PLT data.
7296 void
7297 do_write(Output_file*);
7298
7299 // The reloc section.
7300 Reloc_section* rel_;
7301 // The .got.plt section.
7302 Output_data_space* got_plt_;
7303 // The number of PLT entries.
7304 unsigned int count_;
7305};
7306
7307// Create the PLT section. The ordinary .got section is an argument,
7308// since we need to refer to the start. We also create our own .got
7309// section just for PLT entries.
7310
7311template<bool big_endian>
2ea97941 7312Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
7313 Output_data_space* got_plt)
7314 : Output_section_data(4), got_plt_(got_plt), count_(0)
7315{
7316 this->rel_ = new Reloc_section(false);
2ea97941 7317 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
22f0da72
ILT
7318 elfcpp::SHF_ALLOC, this->rel_,
7319 ORDER_DYNAMIC_PLT_RELOCS, false);
94cdfcff
DK
7320}
7321
7322template<bool big_endian>
7323void
7324Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
7325{
7326 os->set_entsize(0);
7327}
7328
7329// Add an entry to the PLT.
7330
7331template<bool big_endian>
7332void
7333Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
7334{
7335 gold_assert(!gsym->has_plt_offset());
7336
7337 // Note that when setting the PLT offset we skip the initial
7338 // reserved PLT entry.
7339 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
7340 + sizeof(first_plt_entry));
7341
7342 ++this->count_;
7343
7344 section_offset_type got_offset = this->got_plt_->current_data_size();
7345
7346 // Every PLT entry needs a GOT entry which points back to the PLT
7347 // entry (this will be changed by the dynamic linker, normally
7348 // lazily when the function is called).
7349 this->got_plt_->set_current_data_size(got_offset + 4);
7350
7351 // Every PLT entry needs a reloc.
7352 gsym->set_needs_dynsym_entry();
7353 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
7354 got_offset);
7355
7356 // Note that we don't need to save the symbol. The contents of the
7357 // PLT are independent of which symbols are used. The symbols only
7358 // appear in the relocations.
7359}
7360
7361// ARM PLTs.
7362// FIXME: This is not very flexible. Right now this has only been tested
7363// on armv5te. If we are to support additional architecture features like
7364// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
7365
7366// The first entry in the PLT.
7367template<bool big_endian>
7368const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
7369{
7370 0xe52de004, // str lr, [sp, #-4]!
7371 0xe59fe004, // ldr lr, [pc, #4]
7372 0xe08fe00e, // add lr, pc, lr
7373 0xe5bef008, // ldr pc, [lr, #8]!
7374 0x00000000, // &GOT[0] - .
7375};
7376
7377// Subsequent entries in the PLT.
7378
7379template<bool big_endian>
7380const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
7381{
7382 0xe28fc600, // add ip, pc, #0xNN00000
7383 0xe28cca00, // add ip, ip, #0xNN000
7384 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
7385};
7386
7387// Write out the PLT. This uses the hand-coded instructions above,
7388// and adjusts them as needed. This is all specified by the arm ELF
7389// Processor Supplement.
7390
7391template<bool big_endian>
7392void
7393Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7394{
2ea97941 7395 const off_t offset = this->offset();
94cdfcff
DK
7396 const section_size_type oview_size =
7397 convert_to_section_size_type(this->data_size());
2ea97941 7398 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7399
7400 const off_t got_file_offset = this->got_plt_->offset();
7401 const section_size_type got_size =
7402 convert_to_section_size_type(this->got_plt_->data_size());
7403 unsigned char* const got_view = of->get_output_view(got_file_offset,
7404 got_size);
7405 unsigned char* pov = oview;
7406
ebabffbd
DK
7407 Arm_address plt_address = this->address();
7408 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7409
7410 // Write first PLT entry. All but the last word are constants.
7411 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7412 / sizeof(plt_entry[0]));
7413 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7414 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7415 // Last word in first PLT entry is &GOT[0] - .
7416 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7417 got_address - (plt_address + 16));
7418 pov += sizeof(first_plt_entry);
7419
7420 unsigned char* got_pov = got_view;
7421
7422 memset(got_pov, 0, 12);
7423 got_pov += 12;
7424
7425 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7426 unsigned int plt_offset = sizeof(first_plt_entry);
7427 unsigned int plt_rel_offset = 0;
7428 unsigned int got_offset = 12;
7429 const unsigned int count = this->count_;
7430 for (unsigned int i = 0;
7431 i < count;
7432 ++i,
7433 pov += sizeof(plt_entry),
7434 got_pov += 4,
7435 plt_offset += sizeof(plt_entry),
7436 plt_rel_offset += rel_size,
7437 got_offset += 4)
7438 {
7439 // Set and adjust the PLT entry itself.
2ea97941
ILT
7440 int32_t offset = ((got_address + got_offset)
7441 - (plt_address + plt_offset + 8));
94cdfcff 7442
2ea97941
ILT
7443 gold_assert(offset >= 0 && offset < 0x0fffffff);
7444 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7445 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7446 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7447 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7448 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7449 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7450
7451 // Set the entry in the GOT.
7452 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7453 }
7454
7455 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7456 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7457
2ea97941 7458 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7459 of->write_output_view(got_file_offset, got_size, got_view);
7460}
7461
7462// Create a PLT entry for a global symbol.
7463
7464template<bool big_endian>
7465void
2ea97941 7466Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7467 Symbol* gsym)
7468{
7469 if (gsym->has_plt_offset())
7470 return;
7471
7472 if (this->plt_ == NULL)
7473 {
7474 // Create the GOT sections first.
2ea97941 7475 this->got_section(symtab, layout);
94cdfcff 7476
2ea97941
ILT
7477 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7478 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7479 (elfcpp::SHF_ALLOC
7480 | elfcpp::SHF_EXECINSTR),
22f0da72 7481 this->plt_, ORDER_PLT, false);
94cdfcff
DK
7482 }
7483 this->plt_->add_entry(gsym);
7484}
7485
0e70b911
CC
7486// Return the number of entries in the PLT.
7487
7488template<bool big_endian>
7489unsigned int
7490Target_arm<big_endian>::plt_entry_count() const
7491{
7492 if (this->plt_ == NULL)
7493 return 0;
7494 return this->plt_->entry_count();
7495}
7496
7497// Return the offset of the first non-reserved PLT entry.
7498
7499template<bool big_endian>
7500unsigned int
7501Target_arm<big_endian>::first_plt_entry_offset() const
7502{
7503 return Output_data_plt_arm<big_endian>::first_plt_entry_offset();
7504}
7505
7506// Return the size of each PLT entry.
7507
7508template<bool big_endian>
7509unsigned int
7510Target_arm<big_endian>::plt_entry_size() const
7511{
7512 return Output_data_plt_arm<big_endian>::get_plt_entry_size();
7513}
7514
f96accdf
DK
7515// Get the section to use for TLS_DESC relocations.
7516
7517template<bool big_endian>
7518typename Target_arm<big_endian>::Reloc_section*
7519Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7520{
7521 return this->plt_section()->rel_tls_desc(layout);
7522}
7523
7524// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7525
7526template<bool big_endian>
7527void
7528Target_arm<big_endian>::define_tls_base_symbol(
7529 Symbol_table* symtab,
7530 Layout* layout)
7531{
7532 if (this->tls_base_symbol_defined_)
7533 return;
7534
7535 Output_segment* tls_segment = layout->tls_segment();
7536 if (tls_segment != NULL)
7537 {
7538 bool is_exec = parameters->options().output_is_executable();
7539 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7540 Symbol_table::PREDEFINED,
7541 tls_segment, 0, 0,
7542 elfcpp::STT_TLS,
7543 elfcpp::STB_LOCAL,
7544 elfcpp::STV_HIDDEN, 0,
7545 (is_exec
7546 ? Symbol::SEGMENT_END
7547 : Symbol::SEGMENT_START),
7548 true);
7549 }
7550 this->tls_base_symbol_defined_ = true;
7551}
7552
7553// Create a GOT entry for the TLS module index.
7554
7555template<bool big_endian>
7556unsigned int
7557Target_arm<big_endian>::got_mod_index_entry(
7558 Symbol_table* symtab,
7559 Layout* layout,
6fa2a40b 7560 Sized_relobj_file<32, big_endian>* object)
f96accdf
DK
7561{
7562 if (this->got_mod_index_offset_ == -1U)
7563 {
7564 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7565 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7566 unsigned int got_offset;
7567 if (!parameters->doing_static_link())
7568 {
7569 got_offset = got->add_constant(0);
7570 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7571 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7572 got_offset);
7573 }
7574 else
7575 {
7576 // We are doing a static link. Just mark it as belong to module 1,
7577 // the executable.
7578 got_offset = got->add_constant(1);
7579 }
7580
f96accdf
DK
7581 got->add_constant(0);
7582 this->got_mod_index_offset_ = got_offset;
7583 }
7584 return this->got_mod_index_offset_;
7585}
7586
7587// Optimize the TLS relocation type based on what we know about the
7588// symbol. IS_FINAL is true if the final address of this symbol is
7589// known at link time.
7590
7591template<bool big_endian>
7592tls::Tls_optimization
7593Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7594{
7595 // FIXME: Currently we do not do any TLS optimization.
7596 return tls::TLSOPT_NONE;
7597}
7598
95a2c8d6
RS
7599// Get the Reference_flags for a particular relocation.
7600
7601template<bool big_endian>
7602int
7603Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
7604{
7605 switch (r_type)
7606 {
7607 case elfcpp::R_ARM_NONE:
7608 case elfcpp::R_ARM_V4BX:
7609 case elfcpp::R_ARM_GNU_VTENTRY:
7610 case elfcpp::R_ARM_GNU_VTINHERIT:
7611 // No symbol reference.
7612 return 0;
7613
7614 case elfcpp::R_ARM_ABS32:
7615 case elfcpp::R_ARM_ABS16:
7616 case elfcpp::R_ARM_ABS12:
7617 case elfcpp::R_ARM_THM_ABS5:
7618 case elfcpp::R_ARM_ABS8:
7619 case elfcpp::R_ARM_BASE_ABS:
7620 case elfcpp::R_ARM_MOVW_ABS_NC:
7621 case elfcpp::R_ARM_MOVT_ABS:
7622 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7623 case elfcpp::R_ARM_THM_MOVT_ABS:
7624 case elfcpp::R_ARM_ABS32_NOI:
7625 return Symbol::ABSOLUTE_REF;
7626
7627 case elfcpp::R_ARM_REL32:
7628 case elfcpp::R_ARM_LDR_PC_G0:
7629 case elfcpp::R_ARM_SBREL32:
7630 case elfcpp::R_ARM_THM_PC8:
7631 case elfcpp::R_ARM_BASE_PREL:
7632 case elfcpp::R_ARM_MOVW_PREL_NC:
7633 case elfcpp::R_ARM_MOVT_PREL:
7634 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7635 case elfcpp::R_ARM_THM_MOVT_PREL:
7636 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
7637 case elfcpp::R_ARM_THM_PC12:
7638 case elfcpp::R_ARM_REL32_NOI:
7639 case elfcpp::R_ARM_ALU_PC_G0_NC:
7640 case elfcpp::R_ARM_ALU_PC_G0:
7641 case elfcpp::R_ARM_ALU_PC_G1_NC:
7642 case elfcpp::R_ARM_ALU_PC_G1:
7643 case elfcpp::R_ARM_ALU_PC_G2:
7644 case elfcpp::R_ARM_LDR_PC_G1:
7645 case elfcpp::R_ARM_LDR_PC_G2:
7646 case elfcpp::R_ARM_LDRS_PC_G0:
7647 case elfcpp::R_ARM_LDRS_PC_G1:
7648 case elfcpp::R_ARM_LDRS_PC_G2:
7649 case elfcpp::R_ARM_LDC_PC_G0:
7650 case elfcpp::R_ARM_LDC_PC_G1:
7651 case elfcpp::R_ARM_LDC_PC_G2:
7652 case elfcpp::R_ARM_ALU_SB_G0_NC:
7653 case elfcpp::R_ARM_ALU_SB_G0:
7654 case elfcpp::R_ARM_ALU_SB_G1_NC:
7655 case elfcpp::R_ARM_ALU_SB_G1:
7656 case elfcpp::R_ARM_ALU_SB_G2:
7657 case elfcpp::R_ARM_LDR_SB_G0:
7658 case elfcpp::R_ARM_LDR_SB_G1:
7659 case elfcpp::R_ARM_LDR_SB_G2:
7660 case elfcpp::R_ARM_LDRS_SB_G0:
7661 case elfcpp::R_ARM_LDRS_SB_G1:
7662 case elfcpp::R_ARM_LDRS_SB_G2:
7663 case elfcpp::R_ARM_LDC_SB_G0:
7664 case elfcpp::R_ARM_LDC_SB_G1:
7665 case elfcpp::R_ARM_LDC_SB_G2:
7666 case elfcpp::R_ARM_MOVW_BREL_NC:
7667 case elfcpp::R_ARM_MOVT_BREL:
7668 case elfcpp::R_ARM_MOVW_BREL:
7669 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7670 case elfcpp::R_ARM_THM_MOVT_BREL:
7671 case elfcpp::R_ARM_THM_MOVW_BREL:
7672 case elfcpp::R_ARM_GOTOFF32:
7673 case elfcpp::R_ARM_GOTOFF12:
95a2c8d6
RS
7674 case elfcpp::R_ARM_SBREL31:
7675 return Symbol::RELATIVE_REF;
7676
7677 case elfcpp::R_ARM_PLT32:
7678 case elfcpp::R_ARM_CALL:
7679 case elfcpp::R_ARM_JUMP24:
7680 case elfcpp::R_ARM_THM_CALL:
7681 case elfcpp::R_ARM_THM_JUMP24:
7682 case elfcpp::R_ARM_THM_JUMP19:
7683 case elfcpp::R_ARM_THM_JUMP6:
7684 case elfcpp::R_ARM_THM_JUMP11:
7685 case elfcpp::R_ARM_THM_JUMP8:
017257f8
DK
7686 // R_ARM_PREL31 is not used to relocate call/jump instructions but
7687 // in unwind tables. It may point to functions via PLTs.
7688 // So we treat it like call/jump relocations above.
7689 case elfcpp::R_ARM_PREL31:
95a2c8d6
RS
7690 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
7691
7692 case elfcpp::R_ARM_GOT_BREL:
7693 case elfcpp::R_ARM_GOT_ABS:
7694 case elfcpp::R_ARM_GOT_PREL:
7695 // Absolute in GOT.
7696 return Symbol::ABSOLUTE_REF;
7697
7698 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7699 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7700 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7701 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7702 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7703 return Symbol::TLS_REF;
7704
7705 case elfcpp::R_ARM_TARGET1:
7706 case elfcpp::R_ARM_TARGET2:
7707 case elfcpp::R_ARM_COPY:
7708 case elfcpp::R_ARM_GLOB_DAT:
7709 case elfcpp::R_ARM_JUMP_SLOT:
7710 case elfcpp::R_ARM_RELATIVE:
7711 case elfcpp::R_ARM_PC24:
7712 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7713 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7714 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7715 default:
7716 // Not expected. We will give an error later.
7717 return 0;
7718 }
7719}
7720
4a657b0d
DK
7721// Report an unsupported relocation against a local symbol.
7722
7723template<bool big_endian>
7724void
7725Target_arm<big_endian>::Scan::unsupported_reloc_local(
6fa2a40b 7726 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
7727 unsigned int r_type)
7728{
7729 gold_error(_("%s: unsupported reloc %u against local symbol"),
7730 object->name().c_str(), r_type);
7731}
7732
bec53400
DK
7733// We are about to emit a dynamic relocation of type R_TYPE. If the
7734// dynamic linker does not support it, issue an error. The GNU linker
7735// only issues a non-PIC error for an allocated read-only section.
7736// Here we know the section is allocated, but we don't know that it is
7737// read-only. But we check for all the relocation types which the
7738// glibc dynamic linker supports, so it seems appropriate to issue an
7739// error even if the section is not read-only.
7740
7741template<bool big_endian>
7742void
7743Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7744 unsigned int r_type)
7745{
7746 switch (r_type)
7747 {
7748 // These are the relocation types supported by glibc for ARM.
7749 case elfcpp::R_ARM_RELATIVE:
7750 case elfcpp::R_ARM_COPY:
7751 case elfcpp::R_ARM_GLOB_DAT:
7752 case elfcpp::R_ARM_JUMP_SLOT:
7753 case elfcpp::R_ARM_ABS32:
be8fcb75 7754 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7755 case elfcpp::R_ARM_PC24:
7756 // FIXME: The following 3 types are not supported by Android's dynamic
7757 // linker.
7758 case elfcpp::R_ARM_TLS_DTPMOD32:
7759 case elfcpp::R_ARM_TLS_DTPOFF32:
7760 case elfcpp::R_ARM_TLS_TPOFF32:
7761 return;
7762
7763 default:
c8761b9a
DK
7764 {
7765 // This prevents us from issuing more than one error per reloc
7766 // section. But we can still wind up issuing more than one
7767 // error per object file.
7768 if (this->issued_non_pic_error_)
7769 return;
7770 const Arm_reloc_property* reloc_property =
7771 arm_reloc_property_table->get_reloc_property(r_type);
7772 gold_assert(reloc_property != NULL);
7773 object->error(_("requires unsupported dynamic reloc %s; "
7774 "recompile with -fPIC"),
7775 reloc_property->name().c_str());
7776 this->issued_non_pic_error_ = true;
bec53400 7777 return;
c8761b9a 7778 }
bec53400
DK
7779
7780 case elfcpp::R_ARM_NONE:
7781 gold_unreachable();
7782 }
7783}
7784
4a657b0d 7785// Scan a relocation for a local symbol.
bec53400
DK
7786// FIXME: This only handles a subset of relocation types used by Android
7787// on ARM v5te devices.
4a657b0d
DK
7788
7789template<bool big_endian>
7790inline void
ad0f2072 7791Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7792 Layout* layout,
bec53400 7793 Target_arm* target,
6fa2a40b 7794 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
7795 unsigned int data_shndx,
7796 Output_section* output_section,
7797 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7798 unsigned int r_type,
e4782e83 7799 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7800{
a6d1ef57 7801 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7802 switch (r_type)
7803 {
7804 case elfcpp::R_ARM_NONE:
e4782e83
DK
7805 case elfcpp::R_ARM_V4BX:
7806 case elfcpp::R_ARM_GNU_VTENTRY:
7807 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7808 break;
7809
bec53400 7810 case elfcpp::R_ARM_ABS32:
be8fcb75 7811 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7812 // If building a shared library (or a position-independent
7813 // executable), we need to create a dynamic relocation for
7814 // this location. The relocation applied at link time will
7815 // apply the link-time value, so we flag the location with
7816 // an R_ARM_RELATIVE relocation so the dynamic loader can
7817 // relocate it easily.
7818 if (parameters->options().output_is_position_independent())
7819 {
2ea97941 7820 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7821 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7822 // If we are to add more other reloc types than R_ARM_ABS32,
7823 // we need to add check_non_pic(object, r_type) here.
7824 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7825 output_section, data_shndx,
7826 reloc.get_r_offset());
7827 }
7828 break;
7829
e4782e83
DK
7830 case elfcpp::R_ARM_ABS16:
7831 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7832 case elfcpp::R_ARM_THM_ABS5:
7833 case elfcpp::R_ARM_ABS8:
be8fcb75 7834 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7835 case elfcpp::R_ARM_MOVW_ABS_NC:
7836 case elfcpp::R_ARM_MOVT_ABS:
7837 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7838 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7839 // If building a shared library (or a position-independent
7840 // executable), we need to create a dynamic relocation for
7841 // this location. Because the addend needs to remain in the
7842 // data section, we need to be careful not to apply this
7843 // relocation statically.
7844 if (parameters->options().output_is_position_independent())
7845 {
7846 check_non_pic(object, r_type);
7847 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7848 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7849 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7850 rel_dyn->add_local(object, r_sym, r_type, output_section,
7851 data_shndx, reloc.get_r_offset());
7852 else
7853 {
7854 gold_assert(lsym.get_st_value() == 0);
7855 unsigned int shndx = lsym.get_st_shndx();
7856 bool is_ordinary;
7857 shndx = object->adjust_sym_shndx(r_sym, shndx,
7858 &is_ordinary);
7859 if (!is_ordinary)
7860 object->error(_("section symbol %u has bad shndx %u"),
7861 r_sym, shndx);
7862 else
7863 rel_dyn->add_local_section(object, shndx,
7864 r_type, output_section,
7865 data_shndx, reloc.get_r_offset());
7866 }
7867 }
7868 break;
7869
e4782e83
DK
7870 case elfcpp::R_ARM_REL32:
7871 case elfcpp::R_ARM_LDR_PC_G0:
7872 case elfcpp::R_ARM_SBREL32:
7873 case elfcpp::R_ARM_THM_CALL:
7874 case elfcpp::R_ARM_THM_PC8:
7875 case elfcpp::R_ARM_BASE_PREL:
7876 case elfcpp::R_ARM_PLT32:
7877 case elfcpp::R_ARM_CALL:
7878 case elfcpp::R_ARM_JUMP24:
7879 case elfcpp::R_ARM_THM_JUMP24:
e4782e83
DK
7880 case elfcpp::R_ARM_SBREL31:
7881 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7882 case elfcpp::R_ARM_MOVW_PREL_NC:
7883 case elfcpp::R_ARM_MOVT_PREL:
7884 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7885 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7886 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7887 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7888 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7889 case elfcpp::R_ARM_THM_PC12:
7890 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7891 case elfcpp::R_ARM_ALU_PC_G0_NC:
7892 case elfcpp::R_ARM_ALU_PC_G0:
7893 case elfcpp::R_ARM_ALU_PC_G1_NC:
7894 case elfcpp::R_ARM_ALU_PC_G1:
7895 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7896 case elfcpp::R_ARM_LDR_PC_G1:
7897 case elfcpp::R_ARM_LDR_PC_G2:
7898 case elfcpp::R_ARM_LDRS_PC_G0:
7899 case elfcpp::R_ARM_LDRS_PC_G1:
7900 case elfcpp::R_ARM_LDRS_PC_G2:
7901 case elfcpp::R_ARM_LDC_PC_G0:
7902 case elfcpp::R_ARM_LDC_PC_G1:
7903 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7904 case elfcpp::R_ARM_ALU_SB_G0_NC:
7905 case elfcpp::R_ARM_ALU_SB_G0:
7906 case elfcpp::R_ARM_ALU_SB_G1_NC:
7907 case elfcpp::R_ARM_ALU_SB_G1:
7908 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7909 case elfcpp::R_ARM_LDR_SB_G0:
7910 case elfcpp::R_ARM_LDR_SB_G1:
7911 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7912 case elfcpp::R_ARM_LDRS_SB_G0:
7913 case elfcpp::R_ARM_LDRS_SB_G1:
7914 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7915 case elfcpp::R_ARM_LDC_SB_G0:
7916 case elfcpp::R_ARM_LDC_SB_G1:
7917 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7918 case elfcpp::R_ARM_MOVW_BREL_NC:
7919 case elfcpp::R_ARM_MOVT_BREL:
7920 case elfcpp::R_ARM_MOVW_BREL:
7921 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7922 case elfcpp::R_ARM_THM_MOVT_BREL:
7923 case elfcpp::R_ARM_THM_MOVW_BREL:
7924 case elfcpp::R_ARM_THM_JUMP11:
7925 case elfcpp::R_ARM_THM_JUMP8:
7926 // We don't need to do anything for a relative addressing relocation
7927 // against a local symbol if it does not reference the GOT.
bec53400
DK
7928 break;
7929
7930 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7931 case elfcpp::R_ARM_GOTOFF12:
bec53400 7932 // We need a GOT section:
2ea97941 7933 target->got_section(symtab, layout);
bec53400
DK
7934 break;
7935
bec53400 7936 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7937 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7938 {
7939 // The symbol requires a GOT entry.
4a54abbb 7940 Arm_output_data_got<big_endian>* got =
2ea97941 7941 target->got_section(symtab, layout);
bec53400
DK
7942 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7943 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7944 {
7945 // If we are generating a shared object, we need to add a
7946 // dynamic RELATIVE relocation for this symbol's GOT entry.
7947 if (parameters->options().output_is_position_independent())
7948 {
2ea97941
ILT
7949 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7950 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7951 rel_dyn->add_local_relative(
2ea97941
ILT
7952 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7953 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7954 }
7955 }
7956 }
7957 break;
7958
7959 case elfcpp::R_ARM_TARGET1:
e4782e83 7960 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7961 // This should have been mapped to another type already.
7962 // Fall through.
7963 case elfcpp::R_ARM_COPY:
7964 case elfcpp::R_ARM_GLOB_DAT:
7965 case elfcpp::R_ARM_JUMP_SLOT:
7966 case elfcpp::R_ARM_RELATIVE:
7967 // These are relocations which should only be seen by the
7968 // dynamic linker, and should never be seen here.
7969 gold_error(_("%s: unexpected reloc %u in object file"),
7970 object->name().c_str(), r_type);
7971 break;
7972
f96accdf
DK
7973
7974 // These are initial TLS relocs, which are expected when
7975 // linking.
7976 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7977 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7978 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7979 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7980 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7981 {
7982 bool output_is_shared = parameters->options().shared();
7983 const tls::Tls_optimization optimized_type
7984 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7985 r_type);
7986 switch (r_type)
7987 {
7988 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7989 if (optimized_type == tls::TLSOPT_NONE)
7990 {
7991 // Create a pair of GOT entries for the module index and
7992 // dtv-relative offset.
4a54abbb 7993 Arm_output_data_got<big_endian>* got
f96accdf
DK
7994 = target->got_section(symtab, layout);
7995 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7996 unsigned int shndx = lsym.get_st_shndx();
7997 bool is_ordinary;
7998 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7999 if (!is_ordinary)
4a54abbb
DK
8000 {
8001 object->error(_("local symbol %u has bad shndx %u"),
8002 r_sym, shndx);
8003 break;
8004 }
8005
8006 if (!parameters->doing_static_link())
f96accdf
DK
8007 got->add_local_pair_with_rel(object, r_sym, shndx,
8008 GOT_TYPE_TLS_PAIR,
8009 target->rel_dyn_section(layout),
8010 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
8011 else
8012 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
8013 object, r_sym);
f96accdf
DK
8014 }
8015 else
8016 // FIXME: TLS optimization not supported yet.
8017 gold_unreachable();
8018 break;
8019
8020 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8021 if (optimized_type == tls::TLSOPT_NONE)
8022 {
8023 // Create a GOT entry for the module index.
8024 target->got_mod_index_entry(symtab, layout, object);
8025 }
8026 else
8027 // FIXME: TLS optimization not supported yet.
8028 gold_unreachable();
8029 break;
8030
8031 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8032 break;
8033
8034 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8035 layout->set_has_static_tls();
8036 if (optimized_type == tls::TLSOPT_NONE)
8037 {
4a54abbb
DK
8038 // Create a GOT entry for the tp-relative offset.
8039 Arm_output_data_got<big_endian>* got
8040 = target->got_section(symtab, layout);
8041 unsigned int r_sym =
8042 elfcpp::elf_r_sym<32>(reloc.get_r_info());
8043 if (!parameters->doing_static_link())
8044 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
8045 target->rel_dyn_section(layout),
8046 elfcpp::R_ARM_TLS_TPOFF32);
8047 else if (!object->local_has_got_offset(r_sym,
8048 GOT_TYPE_TLS_OFFSET))
8049 {
8050 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
8051 unsigned int got_offset =
8052 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
8053 got->add_static_reloc(got_offset,
8054 elfcpp::R_ARM_TLS_TPOFF32, object,
8055 r_sym);
8056 }
f96accdf
DK
8057 }
8058 else
8059 // FIXME: TLS optimization not supported yet.
8060 gold_unreachable();
8061 break;
8062
8063 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8064 layout->set_has_static_tls();
8065 if (output_is_shared)
8066 {
8067 // We need to create a dynamic relocation.
8068 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
8069 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
8070 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8071 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
8072 output_section, data_shndx,
8073 reloc.get_r_offset());
8074 }
8075 break;
8076
8077 default:
8078 gold_unreachable();
8079 }
8080 }
8081 break;
8082
3cef7179
ILT
8083 case elfcpp::R_ARM_PC24:
8084 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8085 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8086 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8087 default:
8088 unsupported_reloc_local(object, r_type);
8089 break;
8090 }
8091}
8092
8093// Report an unsupported relocation against a global symbol.
8094
8095template<bool big_endian>
8096void
8097Target_arm<big_endian>::Scan::unsupported_reloc_global(
6fa2a40b 8098 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8099 unsigned int r_type,
8100 Symbol* gsym)
8101{
8102 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
8103 object->name().c_str(), r_type, gsym->demangled_name().c_str());
8104}
8105
8a75a161
DK
8106template<bool big_endian>
8107inline bool
8108Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
8109 unsigned int r_type)
8110{
8111 switch (r_type)
8112 {
8113 case elfcpp::R_ARM_PC24:
8114 case elfcpp::R_ARM_THM_CALL:
8115 case elfcpp::R_ARM_PLT32:
8116 case elfcpp::R_ARM_CALL:
8117 case elfcpp::R_ARM_JUMP24:
8118 case elfcpp::R_ARM_THM_JUMP24:
8119 case elfcpp::R_ARM_SBREL31:
8120 case elfcpp::R_ARM_PREL31:
8121 case elfcpp::R_ARM_THM_JUMP19:
8122 case elfcpp::R_ARM_THM_JUMP6:
8123 case elfcpp::R_ARM_THM_JUMP11:
8124 case elfcpp::R_ARM_THM_JUMP8:
8125 // All the relocations above are branches except SBREL31 and PREL31.
8126 return false;
8127
8128 default:
8129 // Be conservative and assume this is a function pointer.
8130 return true;
8131 }
8132}
8133
8134template<bool big_endian>
8135inline bool
8136Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
8137 Symbol_table*,
8138 Layout*,
8139 Target_arm<big_endian>* target,
6fa2a40b 8140 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8141 unsigned int,
8142 Output_section*,
8143 const elfcpp::Rel<32, big_endian>&,
8144 unsigned int r_type,
8145 const elfcpp::Sym<32, big_endian>&)
8146{
8147 r_type = target->get_real_reloc_type(r_type);
8148 return possible_function_pointer_reloc(r_type);
8149}
8150
8151template<bool big_endian>
8152inline bool
8153Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
8154 Symbol_table*,
8155 Layout*,
8156 Target_arm<big_endian>* target,
6fa2a40b 8157 Sized_relobj_file<32, big_endian>*,
8a75a161
DK
8158 unsigned int,
8159 Output_section*,
8160 const elfcpp::Rel<32, big_endian>&,
8161 unsigned int r_type,
8162 Symbol* gsym)
8163{
8164 // GOT is not a function.
8165 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8166 return false;
8167
8168 r_type = target->get_real_reloc_type(r_type);
8169 return possible_function_pointer_reloc(r_type);
8170}
8171
4a657b0d
DK
8172// Scan a relocation for a global symbol.
8173
8174template<bool big_endian>
8175inline void
ad0f2072 8176Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 8177 Layout* layout,
bec53400 8178 Target_arm* target,
6fa2a40b 8179 Sized_relobj_file<32, big_endian>* object,
bec53400
DK
8180 unsigned int data_shndx,
8181 Output_section* output_section,
8182 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
8183 unsigned int r_type,
8184 Symbol* gsym)
8185{
c8761b9a
DK
8186 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
8187 // section. We check here to avoid creating a dynamic reloc against
8188 // _GLOBAL_OFFSET_TABLE_.
8189 if (!target->has_got_section()
8190 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
8191 target->got_section(symtab, layout);
8192
a6d1ef57 8193 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
8194 switch (r_type)
8195 {
8196 case elfcpp::R_ARM_NONE:
e4782e83
DK
8197 case elfcpp::R_ARM_V4BX:
8198 case elfcpp::R_ARM_GNU_VTENTRY:
8199 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
8200 break;
8201
bec53400 8202 case elfcpp::R_ARM_ABS32:
e4782e83
DK
8203 case elfcpp::R_ARM_ABS16:
8204 case elfcpp::R_ARM_ABS12:
8205 case elfcpp::R_ARM_THM_ABS5:
8206 case elfcpp::R_ARM_ABS8:
8207 case elfcpp::R_ARM_BASE_ABS:
8208 case elfcpp::R_ARM_MOVW_ABS_NC:
8209 case elfcpp::R_ARM_MOVT_ABS:
8210 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
8211 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 8212 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 8213 // Absolute addressing relocations.
bec53400 8214 {
e4782e83
DK
8215 // Make a PLT entry if necessary.
8216 if (this->symbol_needs_plt_entry(gsym))
8217 {
8218 target->make_plt_entry(symtab, layout, gsym);
8219 // Since this is not a PC-relative relocation, we may be
8220 // taking the address of a function. In that case we need to
8221 // set the entry in the dynamic symbol table to the address of
8222 // the PLT entry.
8223 if (gsym->is_from_dynobj() && !parameters->options().shared())
8224 gsym->set_needs_dynsym_value();
8225 }
8226 // Make a dynamic relocation if necessary.
95a2c8d6 8227 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
e4782e83
DK
8228 {
8229 if (gsym->may_need_copy_reloc())
8230 {
8231 target->copy_reloc(symtab, layout, object,
8232 data_shndx, output_section, gsym, reloc);
8233 }
8234 else if ((r_type == elfcpp::R_ARM_ABS32
8235 || r_type == elfcpp::R_ARM_ABS32_NOI)
8236 && gsym->can_use_relative_reloc(false))
8237 {
8238 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8239 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
8240 output_section, object,
8241 data_shndx, reloc.get_r_offset());
8242 }
8243 else
8244 {
8245 check_non_pic(object, r_type);
8246 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8247 rel_dyn->add_global(gsym, r_type, output_section, object,
8248 data_shndx, reloc.get_r_offset());
8249 }
8250 }
bec53400
DK
8251 }
8252 break;
8253
e4782e83
DK
8254 case elfcpp::R_ARM_GOTOFF32:
8255 case elfcpp::R_ARM_GOTOFF12:
8256 // We need a GOT section.
8257 target->got_section(symtab, layout);
8258 break;
8259
8260 case elfcpp::R_ARM_REL32:
8261 case elfcpp::R_ARM_LDR_PC_G0:
8262 case elfcpp::R_ARM_SBREL32:
8263 case elfcpp::R_ARM_THM_PC8:
8264 case elfcpp::R_ARM_BASE_PREL:
c2a122b6
ILT
8265 case elfcpp::R_ARM_MOVW_PREL_NC:
8266 case elfcpp::R_ARM_MOVT_PREL:
8267 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
8268 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 8269 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
8270 case elfcpp::R_ARM_THM_PC12:
8271 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
8272 case elfcpp::R_ARM_ALU_PC_G0_NC:
8273 case elfcpp::R_ARM_ALU_PC_G0:
8274 case elfcpp::R_ARM_ALU_PC_G1_NC:
8275 case elfcpp::R_ARM_ALU_PC_G1:
8276 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
8277 case elfcpp::R_ARM_LDR_PC_G1:
8278 case elfcpp::R_ARM_LDR_PC_G2:
8279 case elfcpp::R_ARM_LDRS_PC_G0:
8280 case elfcpp::R_ARM_LDRS_PC_G1:
8281 case elfcpp::R_ARM_LDRS_PC_G2:
8282 case elfcpp::R_ARM_LDC_PC_G0:
8283 case elfcpp::R_ARM_LDC_PC_G1:
8284 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
8285 case elfcpp::R_ARM_ALU_SB_G0_NC:
8286 case elfcpp::R_ARM_ALU_SB_G0:
8287 case elfcpp::R_ARM_ALU_SB_G1_NC:
8288 case elfcpp::R_ARM_ALU_SB_G1:
8289 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
8290 case elfcpp::R_ARM_LDR_SB_G0:
8291 case elfcpp::R_ARM_LDR_SB_G1:
8292 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
8293 case elfcpp::R_ARM_LDRS_SB_G0:
8294 case elfcpp::R_ARM_LDRS_SB_G1:
8295 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
8296 case elfcpp::R_ARM_LDC_SB_G0:
8297 case elfcpp::R_ARM_LDC_SB_G1:
8298 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
8299 case elfcpp::R_ARM_MOVW_BREL_NC:
8300 case elfcpp::R_ARM_MOVT_BREL:
8301 case elfcpp::R_ARM_MOVW_BREL:
8302 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
8303 case elfcpp::R_ARM_THM_MOVT_BREL:
8304 case elfcpp::R_ARM_THM_MOVW_BREL:
8305 // Relative addressing relocations.
bec53400
DK
8306 {
8307 // Make a dynamic relocation if necessary.
95a2c8d6 8308 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
bec53400
DK
8309 {
8310 if (target->may_need_copy_reloc(gsym))
8311 {
2ea97941 8312 target->copy_reloc(symtab, layout, object,
bec53400
DK
8313 data_shndx, output_section, gsym, reloc);
8314 }
8315 else
8316 {
8317 check_non_pic(object, r_type);
2ea97941 8318 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8319 rel_dyn->add_global(gsym, r_type, output_section, object,
8320 data_shndx, reloc.get_r_offset());
8321 }
8322 }
8323 }
8324 break;
8325
f4e5969c 8326 case elfcpp::R_ARM_THM_CALL:
bec53400 8327 case elfcpp::R_ARM_PLT32:
e4782e83
DK
8328 case elfcpp::R_ARM_CALL:
8329 case elfcpp::R_ARM_JUMP24:
8330 case elfcpp::R_ARM_THM_JUMP24:
8331 case elfcpp::R_ARM_SBREL31:
c9a2c125 8332 case elfcpp::R_ARM_PREL31:
e4782e83
DK
8333 case elfcpp::R_ARM_THM_JUMP19:
8334 case elfcpp::R_ARM_THM_JUMP6:
8335 case elfcpp::R_ARM_THM_JUMP11:
8336 case elfcpp::R_ARM_THM_JUMP8:
8337 // All the relocation above are branches except for the PREL31 ones.
8338 // A PREL31 relocation can point to a personality function in a shared
8339 // library. In that case we want to use a PLT because we want to
9b547ce6 8340 // call the personality routine and the dynamic linkers we care about
e4782e83
DK
8341 // do not support dynamic PREL31 relocations. An REL31 relocation may
8342 // point to a function whose unwinding behaviour is being described but
8343 // we will not mistakenly generate a PLT for that because we should use
8344 // a local section symbol.
8345
bec53400
DK
8346 // If the symbol is fully resolved, this is just a relative
8347 // local reloc. Otherwise we need a PLT entry.
8348 if (gsym->final_value_is_known())
8349 break;
8350 // If building a shared library, we can also skip the PLT entry
8351 // if the symbol is defined in the output file and is protected
8352 // or hidden.
8353 if (gsym->is_defined()
8354 && !gsym->is_from_dynobj()
8355 && !gsym->is_preemptible())
8356 break;
2ea97941 8357 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
8358 break;
8359
bec53400 8360 case elfcpp::R_ARM_GOT_BREL:
e4782e83 8361 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 8362 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
8363 {
8364 // The symbol requires a GOT entry.
4a54abbb 8365 Arm_output_data_got<big_endian>* got =
2ea97941 8366 target->got_section(symtab, layout);
bec53400
DK
8367 if (gsym->final_value_is_known())
8368 got->add_global(gsym, GOT_TYPE_STANDARD);
8369 else
8370 {
8371 // If this symbol is not fully resolved, we need to add a
8372 // GOT entry with a dynamic relocation.
2ea97941 8373 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
8374 if (gsym->is_from_dynobj()
8375 || gsym->is_undefined()
8376 || gsym->is_preemptible())
8377 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
8378 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
8379 else
8380 {
8381 if (got->add_global(gsym, GOT_TYPE_STANDARD))
8382 rel_dyn->add_global_relative(
8383 gsym, elfcpp::R_ARM_RELATIVE, got,
8384 gsym->got_offset(GOT_TYPE_STANDARD));
8385 }
8386 }
8387 }
8388 break;
8389
8390 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
8391 case elfcpp::R_ARM_TARGET2:
8392 // These should have been mapped to other types already.
bec53400
DK
8393 // Fall through.
8394 case elfcpp::R_ARM_COPY:
8395 case elfcpp::R_ARM_GLOB_DAT:
8396 case elfcpp::R_ARM_JUMP_SLOT:
8397 case elfcpp::R_ARM_RELATIVE:
8398 // These are relocations which should only be seen by the
8399 // dynamic linker, and should never be seen here.
8400 gold_error(_("%s: unexpected reloc %u in object file"),
8401 object->name().c_str(), r_type);
8402 break;
8403
f96accdf
DK
8404 // These are initial tls relocs, which are expected when
8405 // linking.
8406 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8407 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8408 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8409 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8410 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8411 {
8412 const bool is_final = gsym->final_value_is_known();
8413 const tls::Tls_optimization optimized_type
8414 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8415 switch (r_type)
8416 {
8417 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8418 if (optimized_type == tls::TLSOPT_NONE)
8419 {
8420 // Create a pair of GOT entries for the module index and
8421 // dtv-relative offset.
4a54abbb 8422 Arm_output_data_got<big_endian>* got
f96accdf 8423 = target->got_section(symtab, layout);
4a54abbb
DK
8424 if (!parameters->doing_static_link())
8425 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
8426 target->rel_dyn_section(layout),
8427 elfcpp::R_ARM_TLS_DTPMOD32,
8428 elfcpp::R_ARM_TLS_DTPOFF32);
8429 else
8430 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
8431 }
8432 else
8433 // FIXME: TLS optimization not supported yet.
8434 gold_unreachable();
8435 break;
8436
8437 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8438 if (optimized_type == tls::TLSOPT_NONE)
8439 {
8440 // Create a GOT entry for the module index.
8441 target->got_mod_index_entry(symtab, layout, object);
8442 }
8443 else
8444 // FIXME: TLS optimization not supported yet.
8445 gold_unreachable();
8446 break;
8447
8448 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8449 break;
8450
8451 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8452 layout->set_has_static_tls();
8453 if (optimized_type == tls::TLSOPT_NONE)
8454 {
4a54abbb
DK
8455 // Create a GOT entry for the tp-relative offset.
8456 Arm_output_data_got<big_endian>* got
8457 = target->got_section(symtab, layout);
8458 if (!parameters->doing_static_link())
8459 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
8460 target->rel_dyn_section(layout),
8461 elfcpp::R_ARM_TLS_TPOFF32);
8462 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
8463 {
8464 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
8465 unsigned int got_offset =
8466 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
8467 got->add_static_reloc(got_offset,
8468 elfcpp::R_ARM_TLS_TPOFF32, gsym);
8469 }
f96accdf
DK
8470 }
8471 else
8472 // FIXME: TLS optimization not supported yet.
8473 gold_unreachable();
8474 break;
8475
8476 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8477 layout->set_has_static_tls();
8478 if (parameters->options().shared())
8479 {
8480 // We need to create a dynamic relocation.
8481 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8482 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
8483 output_section, object,
8484 data_shndx, reloc.get_r_offset());
8485 }
8486 break;
8487
8488 default:
8489 gold_unreachable();
8490 }
8491 }
8492 break;
8493
3cef7179
ILT
8494 case elfcpp::R_ARM_PC24:
8495 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
8496 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
8497 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
4a657b0d
DK
8498 default:
8499 unsupported_reloc_global(object, r_type, gsym);
8500 break;
8501 }
8502}
8503
8504// Process relocations for gc.
8505
8506template<bool big_endian>
8507void
6fa2a40b
CC
8508Target_arm<big_endian>::gc_process_relocs(
8509 Symbol_table* symtab,
8510 Layout* layout,
8511 Sized_relobj_file<32, big_endian>* object,
8512 unsigned int data_shndx,
8513 unsigned int,
8514 const unsigned char* prelocs,
8515 size_t reloc_count,
8516 Output_section* output_section,
8517 bool needs_special_offset_handling,
8518 size_t local_symbol_count,
8519 const unsigned char* plocal_symbols)
4a657b0d
DK
8520{
8521 typedef Target_arm<big_endian> Arm;
2ea97941 8522 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 8523
41cbeecc 8524 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan,
3ff2ccb0 8525 typename Target_arm::Relocatable_size_for_reloc>(
4a657b0d 8526 symtab,
2ea97941 8527 layout,
4a657b0d
DK
8528 this,
8529 object,
8530 data_shndx,
8531 prelocs,
8532 reloc_count,
8533 output_section,
8534 needs_special_offset_handling,
8535 local_symbol_count,
8536 plocal_symbols);
8537}
8538
8539// Scan relocations for a section.
8540
8541template<bool big_endian>
8542void
ad0f2072 8543Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 8544 Layout* layout,
6fa2a40b 8545 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
8546 unsigned int data_shndx,
8547 unsigned int sh_type,
8548 const unsigned char* prelocs,
8549 size_t reloc_count,
8550 Output_section* output_section,
8551 bool needs_special_offset_handling,
8552 size_t local_symbol_count,
8553 const unsigned char* plocal_symbols)
8554{
2ea97941 8555 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
8556 if (sh_type == elfcpp::SHT_RELA)
8557 {
8558 gold_error(_("%s: unsupported RELA reloc section"),
8559 object->name().c_str());
8560 return;
8561 }
8562
2ea97941 8563 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 8564 symtab,
2ea97941 8565 layout,
4a657b0d
DK
8566 this,
8567 object,
8568 data_shndx,
8569 prelocs,
8570 reloc_count,
8571 output_section,
8572 needs_special_offset_handling,
8573 local_symbol_count,
8574 plocal_symbols);
8575}
8576
8577// Finalize the sections.
8578
8579template<bool big_endian>
8580void
d5b40221 8581Target_arm<big_endian>::do_finalize_sections(
2ea97941 8582 Layout* layout,
f59f41f3
DK
8583 const Input_objects* input_objects,
8584 Symbol_table* symtab)
4a657b0d 8585{
3e235302 8586 bool merged_any_attributes = false;
d5b40221
DK
8587 // Merge processor-specific flags.
8588 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8589 p != input_objects->relobj_end();
8590 ++p)
8591 {
8592 Arm_relobj<big_endian>* arm_relobj =
8593 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
8594 if (arm_relobj->merge_flags_and_attributes())
8595 {
8596 this->merge_processor_specific_flags(
8597 arm_relobj->name(),
8598 arm_relobj->processor_specific_flags());
8599 this->merge_object_attributes(arm_relobj->name().c_str(),
8600 arm_relobj->attributes_section_data());
3e235302 8601 merged_any_attributes = true;
7296d933 8602 }
d5b40221
DK
8603 }
8604
8605 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8606 p != input_objects->dynobj_end();
8607 ++p)
8608 {
8609 Arm_dynobj<big_endian>* arm_dynobj =
8610 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8611 this->merge_processor_specific_flags(
8612 arm_dynobj->name(),
8613 arm_dynobj->processor_specific_flags());
a0351a69
DK
8614 this->merge_object_attributes(arm_dynobj->name().c_str(),
8615 arm_dynobj->attributes_section_data());
3e235302 8616 merged_any_attributes = true;
d5b40221
DK
8617 }
8618
da59ad79
DK
8619 // Create an empty uninitialized attribute section if we still don't have it
8620 // at this moment. This happens if there is no attributes sections in all
8621 // inputs.
8622 if (this->attributes_section_data_ == NULL)
8623 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8624
41263c05 8625 const Object_attribute* cpu_arch_attr =
a0351a69 8626 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05
DK
8627 // Check if we need to use Cortex-A8 workaround.
8628 if (parameters->options().user_set_fix_cortex_a8())
8629 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8630 else
8631 {
8632 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8633 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8634 // profile.
8635 const Object_attribute* cpu_arch_profile_attr =
8636 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8637 this->fix_cortex_a8_ =
8638 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8639 && (cpu_arch_profile_attr->int_value() == 'A'
8640 || cpu_arch_profile_attr->int_value() == 0));
8641 }
8642
a2162063
ILT
8643 // Check if we can use V4BX interworking.
8644 // The V4BX interworking stub contains BX instruction,
8645 // which is not specified for some profiles.
9b2fd367 8646 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
cd6eab1c 8647 && !this->may_use_v4t_interworking())
a2162063
ILT
8648 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8649 "the target profile does not support BX instruction"));
8650
94cdfcff 8651 // Fill in some more dynamic tags.
ea715a34
ILT
8652 const Reloc_section* rel_plt = (this->plt_ == NULL
8653 ? NULL
8654 : this->plt_->rel_plt());
8655 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8656 this->rel_dyn_, true, false);
94cdfcff
DK
8657
8658 // Emit any relocs we saved in an attempt to avoid generating COPY
8659 // relocs.
8660 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8661 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8662
f59f41f3 8663 // Handle the .ARM.exidx section.
2ea97941 8664 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
11af873f 8665
731ca54a
RÁE
8666 if (!parameters->options().relocatable())
8667 {
8668 if (exidx_section != NULL
8669 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
8670 {
9b547ce6 8671 // Create __exidx_start and __exidx_end symbols.
731ca54a
RÁE
8672 symtab->define_in_output_data("__exidx_start", NULL,
8673 Symbol_table::PREDEFINED,
8674 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8675 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8676 0, false, true);
8677 symtab->define_in_output_data("__exidx_end", NULL,
8678 Symbol_table::PREDEFINED,
8679 exidx_section, 0, 0, elfcpp::STT_OBJECT,
8680 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN,
8681 0, true, true);
8682
8683 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8684 // the .ARM.exidx section.
8685 if (!layout->script_options()->saw_phdrs_clause())
8686 {
8687 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
8688 0)
8689 == NULL);
8690 Output_segment* exidx_segment =
8691 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
8692 exidx_segment->add_output_section_to_nonload(exidx_section,
8693 elfcpp::PF_R);
8694 }
8695 }
8696 else
8697 {
8698 symtab->define_as_constant("__exidx_start", NULL,
8699 Symbol_table::PREDEFINED,
8700 0, 0, elfcpp::STT_OBJECT,
8701 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8702 true, false);
8703 symtab->define_as_constant("__exidx_end", NULL,
8704 Symbol_table::PREDEFINED,
8705 0, 0, elfcpp::STT_OBJECT,
8706 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
8707 true, false);
8708 }
11af873f 8709 }
a0351a69 8710
3e235302
DK
8711 // Create an .ARM.attributes section if we have merged any attributes
8712 // from inputs.
8713 if (merged_any_attributes)
7296d933
DK
8714 {
8715 Output_attributes_section_data* attributes_section =
8716 new Output_attributes_section_data(*this->attributes_section_data_);
8717 layout->add_output_section_data(".ARM.attributes",
8718 elfcpp::SHT_ARM_ATTRIBUTES, 0,
22f0da72 8719 attributes_section, ORDER_INVALID,
7296d933
DK
8720 false);
8721 }
131687b4
DK
8722
8723 // Fix up links in section EXIDX headers.
8724 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8725 p != layout->section_list().end();
8726 ++p)
8727 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
8728 {
8729 Arm_output_section<big_endian>* os =
8730 Arm_output_section<big_endian>::as_arm_output_section(*p);
8731 os->set_exidx_section_link();
8732 }
4a657b0d
DK
8733}
8734
bec53400
DK
8735// Return whether a direct absolute static relocation needs to be applied.
8736// In cases where Scan::local() or Scan::global() has created
8737// a dynamic relocation other than R_ARM_RELATIVE, the addend
8738// of the relocation is carried in the data, and we must not
8739// apply the static relocation.
8740
8741template<bool big_endian>
8742inline bool
8743Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8744 const Sized_symbol<32>* gsym,
95a2c8d6 8745 unsigned int r_type,
bec53400
DK
8746 bool is_32bit,
8747 Output_section* output_section)
8748{
8749 // If the output section is not allocated, then we didn't call
8750 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8751 // the reloc here.
8752 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8753 return true;
8754
95a2c8d6
RS
8755 int ref_flags = Scan::get_reference_flags(r_type);
8756
bec53400
DK
8757 // For local symbols, we will have created a non-RELATIVE dynamic
8758 // relocation only if (a) the output is position independent,
8759 // (b) the relocation is absolute (not pc- or segment-relative), and
8760 // (c) the relocation is not 32 bits wide.
8761 if (gsym == NULL)
8762 return !(parameters->options().output_is_position_independent()
8763 && (ref_flags & Symbol::ABSOLUTE_REF)
8764 && !is_32bit);
8765
8766 // For global symbols, we use the same helper routines used in the
8767 // scan pass. If we did not create a dynamic relocation, or if we
8768 // created a RELATIVE dynamic relocation, we should apply the static
8769 // relocation.
8770 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8771 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8772 && gsym->can_use_relative_reloc(ref_flags
8773 & Symbol::FUNCTION_CALL);
8774 return !has_dyn || is_rel;
8775}
8776
4a657b0d
DK
8777// Perform a relocation.
8778
8779template<bool big_endian>
8780inline bool
8781Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8782 const Relocate_info<32, big_endian>* relinfo,
8783 Target_arm* target,
ca09d69a 8784 Output_section* output_section,
c121c671
DK
8785 size_t relnum,
8786 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8787 unsigned int r_type,
c121c671
DK
8788 const Sized_symbol<32>* gsym,
8789 const Symbol_value<32>* psymval,
8790 unsigned char* view,
ebabffbd 8791 Arm_address address,
f96accdf 8792 section_size_type view_size)
4a657b0d 8793{
c121c671
DK
8794 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8795
a6d1ef57 8796 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8797 const Arm_reloc_property* reloc_property =
8798 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8799 if (reloc_property == NULL)
8800 {
8801 std::string reloc_name =
8802 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8803 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8804 _("cannot relocate %s in object file"),
8805 reloc_name.c_str());
8806 return true;
8807 }
c121c671 8808
2daedcd6
DK
8809 const Arm_relobj<big_endian>* object =
8810 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8811
2daedcd6
DK
8812 // If the final branch target of a relocation is THUMB instruction, this
8813 // is 1. Otherwise it is 0.
8814 Arm_address thumb_bit = 0;
c121c671 8815 Symbol_value<32> symval;
d204b6e9 8816 bool is_weakly_undefined_without_plt = false;
bca7fb63
DK
8817 bool have_got_offset = false;
8818 unsigned int got_offset = 0;
8819
8820 // If the relocation uses the GOT entry of a symbol instead of the symbol
8821 // itself, we don't care about whether the symbol is defined or what kind
8822 // of symbol it is.
8823 if (reloc_property->uses_got_entry())
8824 {
8825 // Get the GOT offset.
8826 // The GOT pointer points to the end of the GOT section.
8827 // We need to subtract the size of the GOT section to get
8828 // the actual offset to use in the relocation.
8829 // TODO: We should move GOT offset computing code in TLS relocations
8830 // to here.
8831 switch (r_type)
8832 {
8833 case elfcpp::R_ARM_GOT_BREL:
8834 case elfcpp::R_ARM_GOT_PREL:
8835 if (gsym != NULL)
8836 {
8837 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8838 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8839 - target->got_size());
8840 }
8841 else
8842 {
8843 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8844 gold_assert(object->local_has_got_offset(r_sym,
8845 GOT_TYPE_STANDARD));
8846 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8847 - target->got_size());
8848 }
8849 have_got_offset = true;
8850 break;
8851
8852 default:
8853 break;
8854 }
8855 }
8856 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8857 {
2daedcd6
DK
8858 if (gsym != NULL)
8859 {
8860 // This is a global symbol. Determine if we use PLT and if the
8861 // final target is THUMB.
95a2c8d6 8862 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
2daedcd6
DK
8863 {
8864 // This uses a PLT, change the symbol value.
8865 symval.set_output_value(target->plt_section()->address()
8866 + gsym->plt_offset());
8867 psymval = &symval;
8868 }
d204b6e9
DK
8869 else if (gsym->is_weak_undefined())
8870 {
8871 // This is a weakly undefined symbol and we do not use PLT
8872 // for this relocation. A branch targeting this symbol will
8873 // be converted into an NOP.
8874 is_weakly_undefined_without_plt = true;
8875 }
b2286c10
DK
8876 else if (gsym->is_undefined() && reloc_property->uses_symbol())
8877 {
8878 // This relocation uses the symbol value but the symbol is
8879 // undefined. Exit early and have the caller reporting an
8880 // error.
8881 return true;
8882 }
2daedcd6
DK
8883 else
8884 {
8885 // Set thumb bit if symbol:
8886 // -Has type STT_ARM_TFUNC or
8887 // -Has type STT_FUNC, is defined and with LSB in value set.
8888 thumb_bit =
8889 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8890 || (gsym->type() == elfcpp::STT_FUNC
8891 && !gsym->is_undefined()
8892 && ((psymval->value(object, 0) & 1) != 0)))
8893 ? 1
8894 : 0);
8895 }
8896 }
8897 else
8898 {
8899 // This is a local symbol. Determine if the final target is THUMB.
8900 // We saved this information when all the local symbols were read.
8901 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8902 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8903 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8904 }
8905 }
8906 else
8907 {
8908 // This is a fake relocation synthesized for a stub. It does not have
8909 // a real symbol. We just look at the LSB of the symbol value to
8910 // determine if the target is THUMB or not.
8911 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8912 }
8913
2daedcd6
DK
8914 // Strip LSB if this points to a THUMB target.
8915 if (thumb_bit != 0
5c57f1be 8916 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8917 && ((psymval->value(object, 0) & 1) != 0))
8918 {
8919 Arm_address stripped_value =
8920 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8921 symval.set_output_value(stripped_value);
8922 psymval = &symval;
8923 }
8924
d204b6e9
DK
8925 // To look up relocation stubs, we need to pass the symbol table index of
8926 // a local symbol.
8927 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8928
b10d2873
ILT
8929 // Get the addressing origin of the output segment defining the
8930 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8931 Arm_address sym_origin = 0;
5c57f1be 8932 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8933 {
8934 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8935 // R_ARM_BASE_ABS with the NULL symbol will give the
8936 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8937 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8938 sym_origin = target->got_plt_section()->address();
8939 else if (gsym == NULL)
8940 sym_origin = 0;
8941 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8942 sym_origin = gsym->output_segment()->vaddr();
8943 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8944 sym_origin = gsym->output_data()->address();
8945
8946 // TODO: Assumes the segment base to be zero for the global symbols
8947 // till the proper support for the segment-base-relative addressing
8948 // will be implemented. This is consistent with GNU ld.
8949 }
8950
5c57f1be
DK
8951 // For relative addressing relocation, find out the relative address base.
8952 Arm_address relative_address_base = 0;
8953 switch(reloc_property->relative_address_base())
8954 {
8955 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8956 // Relocations with relative address bases RAB_TLS and RAB_tp are
8957 // handled by relocate_tls. So we do not need to do anything here.
8958 case Arm_reloc_property::RAB_TLS:
8959 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8960 break;
8961 case Arm_reloc_property::RAB_B_S:
8962 relative_address_base = sym_origin;
8963 break;
8964 case Arm_reloc_property::RAB_GOT_ORG:
8965 relative_address_base = target->got_plt_section()->address();
8966 break;
8967 case Arm_reloc_property::RAB_P:
8968 relative_address_base = address;
8969 break;
8970 case Arm_reloc_property::RAB_Pa:
8971 relative_address_base = address & 0xfffffffcU;
8972 break;
8973 default:
8974 gold_unreachable();
8975 }
8976
c121c671
DK
8977 typename Arm_relocate_functions::Status reloc_status =
8978 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8979 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8980 switch (r_type)
8981 {
8982 case elfcpp::R_ARM_NONE:
8983 break;
8984
5e445df6 8985 case elfcpp::R_ARM_ABS8:
95a2c8d6 8986 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8987 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8988 break;
8989
8990 case elfcpp::R_ARM_ABS12:
95a2c8d6 8991 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
8992 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8993 break;
8994
8995 case elfcpp::R_ARM_ABS16:
95a2c8d6 8996 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75 8997 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8998 break;
8999
c121c671 9000 case elfcpp::R_ARM_ABS32:
95a2c8d6 9001 if (should_apply_static_reloc(gsym, r_type, true, output_section))
c121c671 9002 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 9003 thumb_bit);
c121c671
DK
9004 break;
9005
be8fcb75 9006 case elfcpp::R_ARM_ABS32_NOI:
95a2c8d6 9007 if (should_apply_static_reloc(gsym, r_type, true, output_section))
be8fcb75
ILT
9008 // No thumb bit for this relocation: (S + A)
9009 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 9010 0);
be8fcb75
ILT
9011 break;
9012
fd3c5f0b 9013 case elfcpp::R_ARM_MOVW_ABS_NC:
95a2c8d6 9014 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9015 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
9016 0, thumb_bit,
9017 check_overflow);
fd3c5f0b
ILT
9018 break;
9019
9020 case elfcpp::R_ARM_MOVT_ABS:
95a2c8d6 9021 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be 9022 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
9023 break;
9024
9025 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
95a2c8d6 9026 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9027 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
9028 0, thumb_bit, false);
fd3c5f0b
ILT
9029 break;
9030
9031 case elfcpp::R_ARM_THM_MOVT_ABS:
95a2c8d6 9032 if (should_apply_static_reloc(gsym, r_type, false, output_section))
5c57f1be
DK
9033 reloc_status = Arm_relocate_functions::thm_movt(view, object,
9034 psymval, 0);
fd3c5f0b
ILT
9035 break;
9036
c2a122b6 9037 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 9038 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 9039 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
9040 reloc_status =
9041 Arm_relocate_functions::movw(view, object, psymval,
9042 relative_address_base, thumb_bit,
9043 check_overflow);
c2a122b6
ILT
9044 break;
9045
9046 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 9047 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
9048 reloc_status =
9049 Arm_relocate_functions::movt(view, object, psymval,
9050 relative_address_base);
c2a122b6
ILT
9051 break;
9052
9053 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 9054 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 9055 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
9056 reloc_status =
9057 Arm_relocate_functions::thm_movw(view, object, psymval,
9058 relative_address_base,
9059 thumb_bit, check_overflow);
c2a122b6
ILT
9060 break;
9061
9062 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 9063 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
9064 reloc_status =
9065 Arm_relocate_functions::thm_movt(view, object, psymval,
9066 relative_address_base);
02961d7e 9067 break;
5c57f1be 9068
c121c671
DK
9069 case elfcpp::R_ARM_REL32:
9070 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9071 address, thumb_bit);
c121c671
DK
9072 break;
9073
be8fcb75 9074 case elfcpp::R_ARM_THM_ABS5:
95a2c8d6 9075 if (should_apply_static_reloc(gsym, r_type, false, output_section))
be8fcb75
ILT
9076 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
9077 break;
9078
1521477a 9079 // Thumb long branches.
c121c671 9080 case elfcpp::R_ARM_THM_CALL:
51938283 9081 case elfcpp::R_ARM_THM_XPC22:
1521477a 9082 case elfcpp::R_ARM_THM_JUMP24:
51938283 9083 reloc_status =
1521477a
DK
9084 Arm_relocate_functions::thumb_branch_common(
9085 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9086 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9087 break;
9088
c121c671
DK
9089 case elfcpp::R_ARM_GOTOFF32:
9090 {
ebabffbd 9091 Arm_address got_origin;
c121c671
DK
9092 got_origin = target->got_plt_section()->address();
9093 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 9094 got_origin, thumb_bit);
c121c671
DK
9095 }
9096 break;
9097
9098 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
9099 gold_assert(gsym != NULL);
9100 reloc_status =
9101 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
9102 break;
9103
be8fcb75 9104 case elfcpp::R_ARM_BASE_ABS:
95a2c8d6 9105 if (should_apply_static_reloc(gsym, r_type, false, output_section))
b10d2873 9106 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
9107 break;
9108
c121c671
DK
9109 case elfcpp::R_ARM_GOT_BREL:
9110 gold_assert(have_got_offset);
9111 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
9112 break;
9113
7f5309a5
ILT
9114 case elfcpp::R_ARM_GOT_PREL:
9115 gold_assert(have_got_offset);
9116 // Get the address origin for GOT PLT, which is allocated right
9117 // after the GOT section, to calculate an absolute address of
9118 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 9119 Arm_address got_origin;
7f5309a5
ILT
9120 got_origin = target->got_plt_section()->address();
9121 reloc_status = Arm_relocate_functions::got_prel(view,
9122 got_origin + got_offset,
9123 address);
9124 break;
9125
c121c671 9126 case elfcpp::R_ARM_PLT32:
1521477a
DK
9127 case elfcpp::R_ARM_CALL:
9128 case elfcpp::R_ARM_JUMP24:
9129 case elfcpp::R_ARM_XPC25:
c121c671
DK
9130 gold_assert(gsym == NULL
9131 || gsym->has_plt_offset()
9132 || gsym->final_value_is_known()
9133 || (gsym->is_defined()
9134 && !gsym->is_from_dynobj()
9135 && !gsym->is_preemptible()));
d204b6e9 9136 reloc_status =
1521477a
DK
9137 Arm_relocate_functions::arm_branch_common(
9138 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
9139 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
9140 break;
9141
41263c05
DK
9142 case elfcpp::R_ARM_THM_JUMP19:
9143 reloc_status =
9144 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
9145 thumb_bit);
9146 break;
9147
800d0f56
ILT
9148 case elfcpp::R_ARM_THM_JUMP6:
9149 reloc_status =
9150 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
9151 break;
9152
9153 case elfcpp::R_ARM_THM_JUMP8:
9154 reloc_status =
9155 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
9156 break;
9157
9158 case elfcpp::R_ARM_THM_JUMP11:
9159 reloc_status =
9160 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
9161 break;
9162
c121c671
DK
9163 case elfcpp::R_ARM_PREL31:
9164 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 9165 address, thumb_bit);
c121c671
DK
9166 break;
9167
a2162063 9168 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
9169 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
9170 {
9171 const bool is_v4bx_interworking =
9172 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
9173 reloc_status =
9174 Arm_relocate_functions::v4bx(relinfo, view, object, address,
9175 is_v4bx_interworking);
9176 }
a2162063
ILT
9177 break;
9178
11b861d5
DK
9179 case elfcpp::R_ARM_THM_PC8:
9180 reloc_status =
9181 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
9182 break;
9183
9184 case elfcpp::R_ARM_THM_PC12:
9185 reloc_status =
9186 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
9187 break;
9188
9189 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9190 reloc_status =
9191 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
9192 thumb_bit);
9193 break;
9194
b10d2873 9195 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 9196 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 9197 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 9198 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 9199 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 9200 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 9201 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 9202 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 9203 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
9204 case elfcpp::R_ARM_ALU_SB_G2:
9205 reloc_status =
5c57f1be
DK
9206 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
9207 reloc_property->group_index(),
9208 relative_address_base,
9209 thumb_bit, check_overflow);
b10d2873
ILT
9210 break;
9211
9212 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 9213 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 9214 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 9215 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 9216 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
9217 case elfcpp::R_ARM_LDR_SB_G2:
9218 reloc_status =
5c57f1be
DK
9219 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
9220 reloc_property->group_index(),
9221 relative_address_base);
b10d2873
ILT
9222 break;
9223
9224 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 9225 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 9226 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 9227 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 9228 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
9229 case elfcpp::R_ARM_LDRS_SB_G2:
9230 reloc_status =
5c57f1be
DK
9231 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
9232 reloc_property->group_index(),
9233 relative_address_base);
b10d2873
ILT
9234 break;
9235
9236 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 9237 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 9238 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 9239 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 9240 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
9241 case elfcpp::R_ARM_LDC_SB_G2:
9242 reloc_status =
5c57f1be
DK
9243 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
9244 reloc_property->group_index(),
9245 relative_address_base);
c121c671
DK
9246 break;
9247
f96accdf
DK
9248 // These are initial tls relocs, which are expected when
9249 // linking.
9250 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9251 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9252 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
9253 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9254 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9255 reloc_status =
9256 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
9257 view, address, view_size);
9258 break;
9259
3cef7179
ILT
9260 // The known and unknown unsupported and/or deprecated relocations.
9261 case elfcpp::R_ARM_PC24:
9262 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
9263 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
9264 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c121c671 9265 default:
3cef7179
ILT
9266 // Just silently leave the method. We should get an appropriate error
9267 // message in the scan methods.
9268 break;
c121c671
DK
9269 }
9270
9271 // Report any errors.
9272 switch (reloc_status)
9273 {
9274 case Arm_relocate_functions::STATUS_OKAY:
9275 break;
9276 case Arm_relocate_functions::STATUS_OVERFLOW:
9277 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
9278 _("relocation overflow in %s"),
9279 reloc_property->name().c_str());
c121c671
DK
9280 break;
9281 case Arm_relocate_functions::STATUS_BAD_RELOC:
9282 gold_error_at_location(
9283 relinfo,
9284 relnum,
9285 rel.get_r_offset(),
a2c7281b
DK
9286 _("unexpected opcode while processing relocation %s"),
9287 reloc_property->name().c_str());
c121c671 9288 break;
4a657b0d
DK
9289 default:
9290 gold_unreachable();
9291 }
9292
9293 return true;
9294}
9295
f96accdf
DK
9296// Perform a TLS relocation.
9297
9298template<bool big_endian>
9299inline typename Arm_relocate_functions<big_endian>::Status
9300Target_arm<big_endian>::Relocate::relocate_tls(
9301 const Relocate_info<32, big_endian>* relinfo,
9302 Target_arm<big_endian>* target,
9303 size_t relnum,
9304 const elfcpp::Rel<32, big_endian>& rel,
9305 unsigned int r_type,
9306 const Sized_symbol<32>* gsym,
9307 const Symbol_value<32>* psymval,
9308 unsigned char* view,
4a54abbb 9309 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
9310 section_size_type /*view_size*/ )
9311{
9312 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 9313 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
9314 Output_segment* tls_segment = relinfo->layout->tls_segment();
9315
6fa2a40b 9316 const Sized_relobj_file<32, big_endian>* object = relinfo->object;
f96accdf
DK
9317
9318 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
9319
9320 const bool is_final = (gsym == NULL
9321 ? !parameters->options().shared()
9322 : gsym->final_value_is_known());
9323 const tls::Tls_optimization optimized_type
9324 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
9325 switch (r_type)
9326 {
9327 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
9328 {
9329 unsigned int got_type = GOT_TYPE_TLS_PAIR;
9330 unsigned int got_offset;
9331 if (gsym != NULL)
9332 {
9333 gold_assert(gsym->has_got_offset(got_type));
9334 got_offset = gsym->got_offset(got_type) - target->got_size();
9335 }
9336 else
9337 {
9338 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9339 gold_assert(object->local_has_got_offset(r_sym, got_type));
9340 got_offset = (object->local_got_offset(r_sym, got_type)
9341 - target->got_size());
9342 }
9343 if (optimized_type == tls::TLSOPT_NONE)
9344 {
4a54abbb
DK
9345 Arm_address got_entry =
9346 target->got_plt_section()->address() + got_offset;
9347
9348 // Relocate the field with the PC relative offset of the pair of
9349 // GOT entries.
9350 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9351 return ArmRelocFuncs::STATUS_OKAY;
9352 }
9353 }
9354 break;
9355
9356 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
9357 if (optimized_type == tls::TLSOPT_NONE)
9358 {
9359 // Relocate the field with the offset of the GOT entry for
9360 // the module index.
9361 unsigned int got_offset;
9362 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
9363 - target->got_size());
4a54abbb
DK
9364 Arm_address got_entry =
9365 target->got_plt_section()->address() + got_offset;
9366
9367 // Relocate the field with the PC relative offset of the pair of
9368 // GOT entries.
9369 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9370 return ArmRelocFuncs::STATUS_OKAY;
9371 }
9372 break;
9373
9374 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
4a54abbb 9375 RelocFuncs::rel32(view, value);
f96accdf
DK
9376 return ArmRelocFuncs::STATUS_OKAY;
9377
9378 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
9379 if (optimized_type == tls::TLSOPT_NONE)
9380 {
9381 // Relocate the field with the offset of the GOT entry for
9382 // the tp-relative offset of the symbol.
9383 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
9384 unsigned int got_offset;
9385 if (gsym != NULL)
9386 {
9387 gold_assert(gsym->has_got_offset(got_type));
9388 got_offset = gsym->got_offset(got_type);
9389 }
9390 else
9391 {
9392 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
9393 gold_assert(object->local_has_got_offset(r_sym, got_type));
9394 got_offset = object->local_got_offset(r_sym, got_type);
9395 }
4a54abbb 9396
f96accdf
DK
9397 // All GOT offsets are relative to the end of the GOT.
9398 got_offset -= target->got_size();
4a54abbb
DK
9399
9400 Arm_address got_entry =
9401 target->got_plt_section()->address() + got_offset;
9402
9403 // Relocate the field with the PC relative offset of the GOT entry.
9404 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
9405 return ArmRelocFuncs::STATUS_OKAY;
9406 }
9407 break;
9408
9409 case elfcpp::R_ARM_TLS_LE32: // Local-exec
9410 // If we're creating a shared library, a dynamic relocation will
9411 // have been created for this location, so do not apply it now.
9412 if (!parameters->options().shared())
9413 {
9414 gold_assert(tls_segment != NULL);
4a54abbb
DK
9415
9416 // $tp points to the TCB, which is followed by the TLS, so we
9417 // need to add TCB size to the offset.
9418 Arm_address aligned_tcb_size =
9419 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
9420 RelocFuncs::rel32(view, value + aligned_tcb_size);
9421
f96accdf
DK
9422 }
9423 return ArmRelocFuncs::STATUS_OKAY;
9424
9425 default:
9426 gold_unreachable();
9427 }
9428
9429 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
9430 _("unsupported reloc %u"),
9431 r_type);
9432 return ArmRelocFuncs::STATUS_BAD_RELOC;
9433}
9434
4a657b0d
DK
9435// Relocate section data.
9436
9437template<bool big_endian>
9438void
9439Target_arm<big_endian>::relocate_section(
9440 const Relocate_info<32, big_endian>* relinfo,
9441 unsigned int sh_type,
9442 const unsigned char* prelocs,
9443 size_t reloc_count,
9444 Output_section* output_section,
9445 bool needs_special_offset_handling,
9446 unsigned char* view,
ebabffbd 9447 Arm_address address,
364c7fa5
ILT
9448 section_size_type view_size,
9449 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
9450{
9451 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
9452 gold_assert(sh_type == elfcpp::SHT_REL);
9453
218c5831
DK
9454 // See if we are relocating a relaxed input section. If so, the view
9455 // covers the whole output section and we need to adjust accordingly.
9456 if (needs_special_offset_handling)
43d12afe 9457 {
218c5831
DK
9458 const Output_relaxed_input_section* poris =
9459 output_section->find_relaxed_input_section(relinfo->object,
9460 relinfo->data_shndx);
9461 if (poris != NULL)
9462 {
9463 Arm_address section_address = poris->address();
9464 section_size_type section_size = poris->data_size();
9465
9466 gold_assert((section_address >= address)
9467 && ((section_address + section_size)
9468 <= (address + view_size)));
9469
9470 off_t offset = section_address - address;
9471 view += offset;
9472 address += offset;
9473 view_size = section_size;
9474 }
43d12afe
DK
9475 }
9476
4a657b0d
DK
9477 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
9478 Arm_relocate>(
9479 relinfo,
9480 this,
9481 prelocs,
9482 reloc_count,
9483 output_section,
9484 needs_special_offset_handling,
9485 view,
9486 address,
364c7fa5
ILT
9487 view_size,
9488 reloc_symbol_changes);
4a657b0d
DK
9489}
9490
9491// Return the size of a relocation while scanning during a relocatable
9492// link.
9493
9494template<bool big_endian>
9495unsigned int
9496Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
9497 unsigned int r_type,
9498 Relobj* object)
9499{
a6d1ef57 9500 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
9501 const Arm_reloc_property* arp =
9502 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9503 if (arp != NULL)
9504 return arp->size();
9505 else
4a657b0d 9506 {
5c57f1be
DK
9507 std::string reloc_name =
9508 arm_reloc_property_table->reloc_name_in_error_message(r_type);
9509 gold_error(_("%s: unexpected %s in object file"),
9510 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
9511 return 0;
9512 }
9513}
9514
9515// Scan the relocs during a relocatable link.
9516
9517template<bool big_endian>
9518void
9519Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 9520 Symbol_table* symtab,
2ea97941 9521 Layout* layout,
6fa2a40b 9522 Sized_relobj_file<32, big_endian>* object,
4a657b0d
DK
9523 unsigned int data_shndx,
9524 unsigned int sh_type,
9525 const unsigned char* prelocs,
9526 size_t reloc_count,
9527 Output_section* output_section,
9528 bool needs_special_offset_handling,
9529 size_t local_symbol_count,
9530 const unsigned char* plocal_symbols,
9531 Relocatable_relocs* rr)
9532{
9533 gold_assert(sh_type == elfcpp::SHT_REL);
9534
5c388529 9535 typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
4a657b0d
DK
9536 Relocatable_size_for_reloc> Scan_relocatable_relocs;
9537
9538 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
9539 Scan_relocatable_relocs>(
4a657b0d 9540 symtab,
2ea97941 9541 layout,
4a657b0d
DK
9542 object,
9543 data_shndx,
9544 prelocs,
9545 reloc_count,
9546 output_section,
9547 needs_special_offset_handling,
9548 local_symbol_count,
9549 plocal_symbols,
9550 rr);
9551}
9552
9553// Relocate a section during a relocatable link.
9554
9555template<bool big_endian>
9556void
9557Target_arm<big_endian>::relocate_for_relocatable(
9558 const Relocate_info<32, big_endian>* relinfo,
9559 unsigned int sh_type,
9560 const unsigned char* prelocs,
9561 size_t reloc_count,
9562 Output_section* output_section,
9563 off_t offset_in_output_section,
9564 const Relocatable_relocs* rr,
9565 unsigned char* view,
ebabffbd 9566 Arm_address view_address,
4a657b0d
DK
9567 section_size_type view_size,
9568 unsigned char* reloc_view,
9569 section_size_type reloc_view_size)
9570{
9571 gold_assert(sh_type == elfcpp::SHT_REL);
9572
9573 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
9574 relinfo,
9575 prelocs,
9576 reloc_count,
9577 output_section,
9578 offset_in_output_section,
9579 rr,
9580 view,
9581 view_address,
9582 view_size,
9583 reloc_view,
9584 reloc_view_size);
9585}
9586
5c388529
DK
9587// Perform target-specific processing in a relocatable link. This is
9588// only used if we use the relocation strategy RELOC_SPECIAL.
9589
9590template<bool big_endian>
9591void
9592Target_arm<big_endian>::relocate_special_relocatable(
9593 const Relocate_info<32, big_endian>* relinfo,
9594 unsigned int sh_type,
9595 const unsigned char* preloc_in,
9596 size_t relnum,
9597 Output_section* output_section,
9598 off_t offset_in_output_section,
9599 unsigned char* view,
9600 elfcpp::Elf_types<32>::Elf_Addr view_address,
9601 section_size_type,
9602 unsigned char* preloc_out)
9603{
9604 // We can only handle REL type relocation sections.
9605 gold_assert(sh_type == elfcpp::SHT_REL);
9606
9607 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
9608 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
9609 Reltype_write;
9610 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
9611
9612 const Arm_relobj<big_endian>* object =
9613 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9614 const unsigned int local_count = object->local_symbol_count();
9615
9616 Reltype reloc(preloc_in);
9617 Reltype_write reloc_write(preloc_out);
9618
9619 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
9620 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
9621 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
9622
9623 const Arm_reloc_property* arp =
9624 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9625 gold_assert(arp != NULL);
9626
9627 // Get the new symbol index.
9628 // We only use RELOC_SPECIAL strategy in local relocations.
9629 gold_assert(r_sym < local_count);
9630
9631 // We are adjusting a section symbol. We need to find
9632 // the symbol table index of the section symbol for
9633 // the output section corresponding to input section
9634 // in which this symbol is defined.
9635 bool is_ordinary;
9636 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
9637 gold_assert(is_ordinary);
9638 Output_section* os = object->output_section(shndx);
9639 gold_assert(os != NULL);
9640 gold_assert(os->needs_symtab_index());
9641 unsigned int new_symndx = os->symtab_index();
9642
9643 // Get the new offset--the location in the output section where
9644 // this relocation should be applied.
9645
9646 Arm_address offset = reloc.get_r_offset();
9647 Arm_address new_offset;
9648 if (offset_in_output_section != invalid_address)
9649 new_offset = offset + offset_in_output_section;
9650 else
9651 {
9652 section_offset_type sot_offset =
9653 convert_types<section_offset_type, Arm_address>(offset);
9654 section_offset_type new_sot_offset =
9655 output_section->output_offset(object, relinfo->data_shndx,
9656 sot_offset);
9657 gold_assert(new_sot_offset != -1);
9658 new_offset = new_sot_offset;
9659 }
9660
9661 // In an object file, r_offset is an offset within the section.
9662 // In an executable or dynamic object, generated by
9663 // --emit-relocs, r_offset is an absolute address.
9664 if (!parameters->options().relocatable())
9665 {
9666 new_offset += view_address;
9667 if (offset_in_output_section != invalid_address)
9668 new_offset -= offset_in_output_section;
9669 }
9670
9671 reloc_write.put_r_offset(new_offset);
9672 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
9673
9674 // Handle the reloc addend.
9675 // The relocation uses a section symbol in the input file.
9676 // We are adjusting it to use a section symbol in the output
9677 // file. The input section symbol refers to some address in
9678 // the input section. We need the relocation in the output
9679 // file to refer to that same address. This adjustment to
9680 // the addend is the same calculation we use for a simple
9681 // absolute relocation for the input section symbol.
9682
9683 const Symbol_value<32>* psymval = object->local_symbol(r_sym);
9684
9685 // Handle THUMB bit.
9686 Symbol_value<32> symval;
9687 Arm_address thumb_bit =
9688 object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
9689 if (thumb_bit != 0
9690 && arp->uses_thumb_bit()
9691 && ((psymval->value(object, 0) & 1) != 0))
9692 {
9693 Arm_address stripped_value =
9694 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
9695 symval.set_output_value(stripped_value);
9696 psymval = &symval;
9697 }
9698
9699 unsigned char* paddend = view + offset;
9700 typename Arm_relocate_functions<big_endian>::Status reloc_status =
9701 Arm_relocate_functions<big_endian>::STATUS_OKAY;
9702 switch (r_type)
9703 {
9704 case elfcpp::R_ARM_ABS8:
9705 reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
9706 psymval);
9707 break;
9708
9709 case elfcpp::R_ARM_ABS12:
9710 reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
9711 psymval);
9712 break;
9713
9714 case elfcpp::R_ARM_ABS16:
9715 reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
9716 psymval);
9717 break;
9718
9719 case elfcpp::R_ARM_THM_ABS5:
9720 reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
9721 object,
9722 psymval);
9723 break;
9724
9725 case elfcpp::R_ARM_MOVW_ABS_NC:
9726 case elfcpp::R_ARM_MOVW_PREL_NC:
9727 case elfcpp::R_ARM_MOVW_BREL_NC:
9728 case elfcpp::R_ARM_MOVW_BREL:
9729 reloc_status = Arm_relocate_functions<big_endian>::movw(
9730 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9731 break;
9732
9733 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
9734 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
9735 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
9736 case elfcpp::R_ARM_THM_MOVW_BREL:
9737 reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
9738 paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
9739 break;
9740
9741 case elfcpp::R_ARM_THM_CALL:
9742 case elfcpp::R_ARM_THM_XPC22:
9743 case elfcpp::R_ARM_THM_JUMP24:
9744 reloc_status =
9745 Arm_relocate_functions<big_endian>::thumb_branch_common(
9746 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9747 false);
9748 break;
9749
9750 case elfcpp::R_ARM_PLT32:
9751 case elfcpp::R_ARM_CALL:
9752 case elfcpp::R_ARM_JUMP24:
9753 case elfcpp::R_ARM_XPC25:
9754 reloc_status =
9755 Arm_relocate_functions<big_endian>::arm_branch_common(
9756 r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
9757 false);
9758 break;
9759
9760 case elfcpp::R_ARM_THM_JUMP19:
9761 reloc_status =
9762 Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
9763 psymval, 0, thumb_bit);
9764 break;
9765
9766 case elfcpp::R_ARM_THM_JUMP6:
9767 reloc_status =
9768 Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
9769 0);
9770 break;
9771
9772 case elfcpp::R_ARM_THM_JUMP8:
9773 reloc_status =
9774 Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
9775 0);
9776 break;
9777
9778 case elfcpp::R_ARM_THM_JUMP11:
9779 reloc_status =
9780 Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
9781 0);
9782 break;
9783
9784 case elfcpp::R_ARM_PREL31:
9785 reloc_status =
9786 Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
9787 thumb_bit);
9788 break;
9789
9790 case elfcpp::R_ARM_THM_PC8:
9791 reloc_status =
9792 Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
9793 0);
9794 break;
9795
9796 case elfcpp::R_ARM_THM_PC12:
9797 reloc_status =
9798 Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
9799 0);
9800 break;
9801
9802 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
9803 reloc_status =
9804 Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
9805 0, thumb_bit);
9806 break;
9807
9808 // These relocation truncate relocation results so we cannot handle them
9809 // in a relocatable link.
9810 case elfcpp::R_ARM_MOVT_ABS:
9811 case elfcpp::R_ARM_THM_MOVT_ABS:
9812 case elfcpp::R_ARM_MOVT_PREL:
9813 case elfcpp::R_ARM_MOVT_BREL:
9814 case elfcpp::R_ARM_THM_MOVT_PREL:
9815 case elfcpp::R_ARM_THM_MOVT_BREL:
9816 case elfcpp::R_ARM_ALU_PC_G0_NC:
9817 case elfcpp::R_ARM_ALU_PC_G0:
9818 case elfcpp::R_ARM_ALU_PC_G1_NC:
9819 case elfcpp::R_ARM_ALU_PC_G1:
9820 case elfcpp::R_ARM_ALU_PC_G2:
9821 case elfcpp::R_ARM_ALU_SB_G0_NC:
9822 case elfcpp::R_ARM_ALU_SB_G0:
9823 case elfcpp::R_ARM_ALU_SB_G1_NC:
9824 case elfcpp::R_ARM_ALU_SB_G1:
9825 case elfcpp::R_ARM_ALU_SB_G2:
9826 case elfcpp::R_ARM_LDR_PC_G0:
9827 case elfcpp::R_ARM_LDR_PC_G1:
9828 case elfcpp::R_ARM_LDR_PC_G2:
9829 case elfcpp::R_ARM_LDR_SB_G0:
9830 case elfcpp::R_ARM_LDR_SB_G1:
9831 case elfcpp::R_ARM_LDR_SB_G2:
9832 case elfcpp::R_ARM_LDRS_PC_G0:
9833 case elfcpp::R_ARM_LDRS_PC_G1:
9834 case elfcpp::R_ARM_LDRS_PC_G2:
9835 case elfcpp::R_ARM_LDRS_SB_G0:
9836 case elfcpp::R_ARM_LDRS_SB_G1:
9837 case elfcpp::R_ARM_LDRS_SB_G2:
9838 case elfcpp::R_ARM_LDC_PC_G0:
9839 case elfcpp::R_ARM_LDC_PC_G1:
9840 case elfcpp::R_ARM_LDC_PC_G2:
9841 case elfcpp::R_ARM_LDC_SB_G0:
9842 case elfcpp::R_ARM_LDC_SB_G1:
9843 case elfcpp::R_ARM_LDC_SB_G2:
9844 gold_error(_("cannot handle %s in a relocatable link"),
9845 arp->name().c_str());
9846 break;
9847
9848 default:
9849 gold_unreachable();
9850 }
9851
9852 // Report any errors.
9853 switch (reloc_status)
9854 {
9855 case Arm_relocate_functions<big_endian>::STATUS_OKAY:
9856 break;
9857 case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
9858 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9859 _("relocation overflow in %s"),
9860 arp->name().c_str());
9861 break;
9862 case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
9863 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
9864 _("unexpected opcode while processing relocation %s"),
9865 arp->name().c_str());
9866 break;
9867 default:
9868 gold_unreachable();
9869 }
9870}
9871
94cdfcff
DK
9872// Return the value to use for a dynamic symbol which requires special
9873// treatment. This is how we support equality comparisons of function
9874// pointers across shared library boundaries, as described in the
9875// processor specific ABI supplement.
9876
4a657b0d
DK
9877template<bool big_endian>
9878uint64_t
94cdfcff 9879Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 9880{
94cdfcff
DK
9881 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9882 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
9883}
9884
9885// Map platform-specific relocs to real relocs
9886//
9887template<bool big_endian>
9888unsigned int
ca09d69a 9889Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type)
4a657b0d
DK
9890{
9891 switch (r_type)
9892 {
9893 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
9894 // This is either R_ARM_ABS32 or R_ARM_REL32;
9895 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
9896
9897 case elfcpp::R_ARM_TARGET2:
9b547ce6 9898 // This can be any reloc type but usually is R_ARM_GOT_PREL
a6d1ef57 9899 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
9900
9901 default:
9902 return r_type;
9903 }
9904}
9905
d5b40221
DK
9906// Whether if two EABI versions V1 and V2 are compatible.
9907
9908template<bool big_endian>
9909bool
9910Target_arm<big_endian>::are_eabi_versions_compatible(
9911 elfcpp::Elf_Word v1,
9912 elfcpp::Elf_Word v2)
9913{
9914 // v4 and v5 are the same spec before and after it was released,
9915 // so allow mixing them.
106e8a6c
DK
9916 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
9917 || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
d5b40221
DK
9918 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
9919 return true;
9920
9921 return v1 == v2;
9922}
9923
9924// Combine FLAGS from an input object called NAME and the processor-specific
9925// flags in the ELF header of the output. Much of this is adapted from the
9926// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
9927// in bfd/elf32-arm.c.
9928
9929template<bool big_endian>
9930void
9931Target_arm<big_endian>::merge_processor_specific_flags(
9932 const std::string& name,
9933 elfcpp::Elf_Word flags)
9934{
9935 if (this->are_processor_specific_flags_set())
9936 {
9937 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9938
9939 // Nothing to merge if flags equal to those in output.
9940 if (flags == out_flags)
9941 return;
9942
9943 // Complain about various flag mismatches.
9944 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9945 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9946 if (!this->are_eabi_versions_compatible(version1, version2)
9947 && parameters->options().warn_mismatch())
d5b40221
DK
9948 gold_error(_("Source object %s has EABI version %d but output has "
9949 "EABI version %d."),
9950 name.c_str(),
9951 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9952 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9953 }
9954 else
9955 {
9956 // If the input is the default architecture and had the default
9957 // flags then do not bother setting the flags for the output
9958 // architecture, instead allow future merges to do this. If no
9959 // future merges ever set these flags then they will retain their
9960 // uninitialised values, which surprise surprise, correspond
9961 // to the default values.
9962 if (flags == 0)
9963 return;
9964
9965 // This is the first time, just copy the flags.
9966 // We only copy the EABI version for now.
9967 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9968 }
9969}
9970
9971// Adjust ELF file header.
9972template<bool big_endian>
9973void
9974Target_arm<big_endian>::do_adjust_elf_header(
9975 unsigned char* view,
9976 int len) const
9977{
9978 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9979
9980 elfcpp::Ehdr<32, big_endian> ehdr(view);
9981 unsigned char e_ident[elfcpp::EI_NIDENT];
9982 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9983
9984 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9985 == elfcpp::EF_ARM_EABI_UNKNOWN)
9986 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9987 else
9988 e_ident[elfcpp::EI_OSABI] = 0;
9989 e_ident[elfcpp::EI_ABIVERSION] = 0;
9990
9991 // FIXME: Do EF_ARM_BE8 adjustment.
9992
9993 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9994 oehdr.put_e_ident(e_ident);
9995}
9996
9997// do_make_elf_object to override the same function in the base class.
6fa2a40b
CC
9998// We need to use a target-specific sub-class of
9999// Sized_relobj_file<32, big_endian> to store ARM specific information.
10000// Hence we need to have our own ELF object creation.
d5b40221
DK
10001
10002template<bool big_endian>
10003Object*
10004Target_arm<big_endian>::do_make_elf_object(
10005 const std::string& name,
10006 Input_file* input_file,
2ea97941 10007 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
10008{
10009 int et = ehdr.get_e_type();
10010 if (et == elfcpp::ET_REL)
10011 {
10012 Arm_relobj<big_endian>* obj =
2ea97941 10013 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10014 obj->setup();
10015 return obj;
10016 }
10017 else if (et == elfcpp::ET_DYN)
10018 {
10019 Sized_dynobj<32, big_endian>* obj =
2ea97941 10020 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
10021 obj->setup();
10022 return obj;
10023 }
10024 else
10025 {
10026 gold_error(_("%s: unsupported ELF file type %d"),
10027 name.c_str(), et);
10028 return NULL;
10029 }
10030}
10031
a0351a69
DK
10032// Read the architecture from the Tag_also_compatible_with attribute, if any.
10033// Returns -1 if no architecture could be read.
10034// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
10035
10036template<bool big_endian>
10037int
10038Target_arm<big_endian>::get_secondary_compatible_arch(
10039 const Attributes_section_data* pasd)
10040{
ca09d69a 10041 const Object_attribute* known_attributes =
a0351a69
DK
10042 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10043
10044 // Note: the tag and its argument below are uleb128 values, though
10045 // currently-defined values fit in one byte for each.
10046 const std::string& sv =
10047 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
10048 if (sv.size() == 2
10049 && sv.data()[0] == elfcpp::Tag_CPU_arch
10050 && (sv.data()[1] & 128) != 128)
10051 return sv.data()[1];
10052
10053 // This tag is "safely ignorable", so don't complain if it looks funny.
10054 return -1;
10055}
10056
10057// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10058// The tag is removed if ARCH is -1.
10059// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
10060
10061template<bool big_endian>
10062void
10063Target_arm<big_endian>::set_secondary_compatible_arch(
10064 Attributes_section_data* pasd,
10065 int arch)
10066{
ca09d69a 10067 Object_attribute* known_attributes =
a0351a69
DK
10068 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
10069
10070 if (arch == -1)
10071 {
10072 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
10073 return;
10074 }
10075
10076 // Note: the tag and its argument below are uleb128 values, though
10077 // currently-defined values fit in one byte for each.
10078 char sv[3];
10079 sv[0] = elfcpp::Tag_CPU_arch;
10080 gold_assert(arch != 0);
10081 sv[1] = arch;
10082 sv[2] = '\0';
10083
10084 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
10085}
10086
10087// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10088// into account.
10089// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
10090
10091template<bool big_endian>
10092int
10093Target_arm<big_endian>::tag_cpu_arch_combine(
10094 const char* name,
10095 int oldtag,
10096 int* secondary_compat_out,
10097 int newtag,
10098 int secondary_compat)
10099{
10100#define T(X) elfcpp::TAG_CPU_ARCH_##X
10101 static const int v6t2[] =
10102 {
10103 T(V6T2), // PRE_V4.
10104 T(V6T2), // V4.
10105 T(V6T2), // V4T.
10106 T(V6T2), // V5T.
10107 T(V6T2), // V5TE.
10108 T(V6T2), // V5TEJ.
10109 T(V6T2), // V6.
10110 T(V7), // V6KZ.
10111 T(V6T2) // V6T2.
10112 };
10113 static const int v6k[] =
10114 {
10115 T(V6K), // PRE_V4.
10116 T(V6K), // V4.
10117 T(V6K), // V4T.
10118 T(V6K), // V5T.
10119 T(V6K), // V5TE.
10120 T(V6K), // V5TEJ.
10121 T(V6K), // V6.
10122 T(V6KZ), // V6KZ.
10123 T(V7), // V6T2.
10124 T(V6K) // V6K.
10125 };
10126 static const int v7[] =
10127 {
10128 T(V7), // PRE_V4.
10129 T(V7), // V4.
10130 T(V7), // V4T.
10131 T(V7), // V5T.
10132 T(V7), // V5TE.
10133 T(V7), // V5TEJ.
10134 T(V7), // V6.
10135 T(V7), // V6KZ.
10136 T(V7), // V6T2.
10137 T(V7), // V6K.
10138 T(V7) // V7.
10139 };
10140 static const int v6_m[] =
10141 {
10142 -1, // PRE_V4.
10143 -1, // V4.
10144 T(V6K), // V4T.
10145 T(V6K), // V5T.
10146 T(V6K), // V5TE.
10147 T(V6K), // V5TEJ.
10148 T(V6K), // V6.
10149 T(V6KZ), // V6KZ.
10150 T(V7), // V6T2.
10151 T(V6K), // V6K.
10152 T(V7), // V7.
10153 T(V6_M) // V6_M.
10154 };
10155 static const int v6s_m[] =
10156 {
10157 -1, // PRE_V4.
10158 -1, // V4.
10159 T(V6K), // V4T.
10160 T(V6K), // V5T.
10161 T(V6K), // V5TE.
10162 T(V6K), // V5TEJ.
10163 T(V6K), // V6.
10164 T(V6KZ), // V6KZ.
10165 T(V7), // V6T2.
10166 T(V6K), // V6K.
10167 T(V7), // V7.
10168 T(V6S_M), // V6_M.
10169 T(V6S_M) // V6S_M.
10170 };
10171 static const int v7e_m[] =
10172 {
10173 -1, // PRE_V4.
10174 -1, // V4.
10175 T(V7E_M), // V4T.
10176 T(V7E_M), // V5T.
10177 T(V7E_M), // V5TE.
10178 T(V7E_M), // V5TEJ.
10179 T(V7E_M), // V6.
10180 T(V7E_M), // V6KZ.
10181 T(V7E_M), // V6T2.
10182 T(V7E_M), // V6K.
10183 T(V7E_M), // V7.
10184 T(V7E_M), // V6_M.
10185 T(V7E_M), // V6S_M.
10186 T(V7E_M) // V7E_M.
10187 };
10188 static const int v4t_plus_v6_m[] =
10189 {
10190 -1, // PRE_V4.
10191 -1, // V4.
10192 T(V4T), // V4T.
10193 T(V5T), // V5T.
10194 T(V5TE), // V5TE.
10195 T(V5TEJ), // V5TEJ.
10196 T(V6), // V6.
10197 T(V6KZ), // V6KZ.
10198 T(V6T2), // V6T2.
10199 T(V6K), // V6K.
10200 T(V7), // V7.
10201 T(V6_M), // V6_M.
10202 T(V6S_M), // V6S_M.
10203 T(V7E_M), // V7E_M.
10204 T(V4T_PLUS_V6_M) // V4T plus V6_M.
10205 };
ca09d69a 10206 static const int* comb[] =
a0351a69
DK
10207 {
10208 v6t2,
10209 v6k,
10210 v7,
10211 v6_m,
10212 v6s_m,
10213 v7e_m,
10214 // Pseudo-architecture.
10215 v4t_plus_v6_m
10216 };
10217
10218 // Check we've not got a higher architecture than we know about.
10219
f62a3ca7 10220 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
a0351a69
DK
10221 {
10222 gold_error(_("%s: unknown CPU architecture"), name);
10223 return -1;
10224 }
10225
10226 // Override old tag if we have a Tag_also_compatible_with on the output.
10227
10228 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
10229 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
10230 oldtag = T(V4T_PLUS_V6_M);
10231
10232 // And override the new tag if we have a Tag_also_compatible_with on the
10233 // input.
10234
10235 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
10236 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
10237 newtag = T(V4T_PLUS_V6_M);
10238
10239 // Architectures before V6KZ add features monotonically.
10240 int tagh = std::max(oldtag, newtag);
10241 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
10242 return tagh;
10243
10244 int tagl = std::min(oldtag, newtag);
10245 int result = comb[tagh - T(V6T2)][tagl];
10246
10247 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
10248 // as the canonical version.
10249 if (result == T(V4T_PLUS_V6_M))
10250 {
10251 result = T(V4T);
10252 *secondary_compat_out = T(V6_M);
10253 }
10254 else
10255 *secondary_compat_out = -1;
10256
10257 if (result == -1)
10258 {
10259 gold_error(_("%s: conflicting CPU architectures %d/%d"),
10260 name, oldtag, newtag);
10261 return -1;
10262 }
10263
10264 return result;
10265#undef T
10266}
10267
10268// Helper to print AEABI enum tag value.
10269
10270template<bool big_endian>
10271std::string
10272Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
10273{
ca09d69a 10274 static const char* aeabi_enum_names[] =
a0351a69
DK
10275 { "", "variable-size", "32-bit", "" };
10276 const size_t aeabi_enum_names_size =
10277 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
10278
10279 if (value < aeabi_enum_names_size)
10280 return std::string(aeabi_enum_names[value]);
10281 else
10282 {
10283 char buffer[100];
10284 sprintf(buffer, "<unknown value %u>", value);
10285 return std::string(buffer);
10286 }
10287}
10288
10289// Return the string value to store in TAG_CPU_name.
10290
10291template<bool big_endian>
10292std::string
10293Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
10294{
ca09d69a 10295 static const char* name_table[] = {
a0351a69
DK
10296 // These aren't real CPU names, but we can't guess
10297 // that from the architecture version alone.
10298 "Pre v4",
10299 "ARM v4",
10300 "ARM v4T",
10301 "ARM v5T",
10302 "ARM v5TE",
10303 "ARM v5TEJ",
10304 "ARM v6",
10305 "ARM v6KZ",
10306 "ARM v6T2",
10307 "ARM v6K",
10308 "ARM v7",
10309 "ARM v6-M",
10310 "ARM v6S-M",
10311 "ARM v7E-M"
10312 };
10313 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
10314
10315 if (value < name_table_size)
10316 return std::string(name_table[value]);
10317 else
10318 {
10319 char buffer[100];
10320 sprintf(buffer, "<unknown CPU value %u>", value);
10321 return std::string(buffer);
10322 }
10323}
10324
10325// Merge object attributes from input file called NAME with those of the
10326// output. The input object attributes are in the object pointed by PASD.
10327
10328template<bool big_endian>
10329void
10330Target_arm<big_endian>::merge_object_attributes(
10331 const char* name,
10332 const Attributes_section_data* pasd)
10333{
10334 // Return if there is no attributes section data.
10335 if (pasd == NULL)
10336 return;
10337
10338 // If output has no object attributes, just copy.
da59ad79 10339 const int vendor = Object_attribute::OBJ_ATTR_PROC;
a0351a69
DK
10340 if (this->attributes_section_data_ == NULL)
10341 {
10342 this->attributes_section_data_ = new Attributes_section_data(*pasd);
da59ad79
DK
10343 Object_attribute* out_attr =
10344 this->attributes_section_data_->known_attributes(vendor);
10345
10346 // We do not output objects with Tag_MPextension_use_legacy - we move
10347 // the attribute's value to Tag_MPextension_use. */
10348 if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
10349 {
10350 if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
10351 && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
10352 != out_attr[elfcpp::Tag_MPextension_use].int_value())
10353 {
10354 gold_error(_("%s has both the current and legacy "
10355 "Tag_MPextension_use attributes"),
10356 name);
10357 }
10358
10359 out_attr[elfcpp::Tag_MPextension_use] =
10360 out_attr[elfcpp::Tag_MPextension_use_legacy];
10361 out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
10362 out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
10363 }
10364
a0351a69
DK
10365 return;
10366 }
10367
a0351a69
DK
10368 const Object_attribute* in_attr = pasd->known_attributes(vendor);
10369 Object_attribute* out_attr =
10370 this->attributes_section_data_->known_attributes(vendor);
10371
10372 // This needs to happen before Tag_ABI_FP_number_model is merged. */
10373 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
10374 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
10375 {
10376 // Ignore mismatches if the object doesn't use floating point. */
10377 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
10378 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
10379 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
10380 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
10381 && parameters->options().warn_mismatch())
a0351a69
DK
10382 gold_error(_("%s uses VFP register arguments, output does not"),
10383 name);
10384 }
10385
10386 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
10387 {
10388 // Merge this attribute with existing attributes.
10389 switch (i)
10390 {
10391 case elfcpp::Tag_CPU_raw_name:
10392 case elfcpp::Tag_CPU_name:
10393 // These are merged after Tag_CPU_arch.
10394 break;
10395
10396 case elfcpp::Tag_ABI_optimization_goals:
10397 case elfcpp::Tag_ABI_FP_optimization_goals:
10398 // Use the first value seen.
10399 break;
10400
10401 case elfcpp::Tag_CPU_arch:
10402 {
10403 unsigned int saved_out_attr = out_attr->int_value();
10404 // Merge Tag_CPU_arch and Tag_also_compatible_with.
10405 int secondary_compat =
10406 this->get_secondary_compatible_arch(pasd);
10407 int secondary_compat_out =
10408 this->get_secondary_compatible_arch(
10409 this->attributes_section_data_);
10410 out_attr[i].set_int_value(
10411 tag_cpu_arch_combine(name, out_attr[i].int_value(),
10412 &secondary_compat_out,
10413 in_attr[i].int_value(),
10414 secondary_compat));
10415 this->set_secondary_compatible_arch(this->attributes_section_data_,
10416 secondary_compat_out);
10417
10418 // Merge Tag_CPU_name and Tag_CPU_raw_name.
10419 if (out_attr[i].int_value() == saved_out_attr)
10420 ; // Leave the names alone.
10421 else if (out_attr[i].int_value() == in_attr[i].int_value())
10422 {
10423 // The output architecture has been changed to match the
10424 // input architecture. Use the input names.
10425 out_attr[elfcpp::Tag_CPU_name].set_string_value(
10426 in_attr[elfcpp::Tag_CPU_name].string_value());
10427 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
10428 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
10429 }
10430 else
10431 {
10432 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
10433 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
10434 }
10435
10436 // If we still don't have a value for Tag_CPU_name,
10437 // make one up now. Tag_CPU_raw_name remains blank.
10438 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
10439 {
10440 const std::string cpu_name =
10441 this->tag_cpu_name_value(out_attr[i].int_value());
10442 // FIXME: If we see an unknown CPU, this will be set
10443 // to "<unknown CPU n>", where n is the attribute value.
10444 // This is different from BFD, which leaves the name alone.
10445 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
10446 }
10447 }
10448 break;
10449
10450 case elfcpp::Tag_ARM_ISA_use:
10451 case elfcpp::Tag_THUMB_ISA_use:
10452 case elfcpp::Tag_WMMX_arch:
10453 case elfcpp::Tag_Advanced_SIMD_arch:
10454 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
10455 case elfcpp::Tag_ABI_FP_rounding:
10456 case elfcpp::Tag_ABI_FP_exceptions:
10457 case elfcpp::Tag_ABI_FP_user_exceptions:
10458 case elfcpp::Tag_ABI_FP_number_model:
10459 case elfcpp::Tag_VFP_HP_extension:
10460 case elfcpp::Tag_CPU_unaligned_access:
10461 case elfcpp::Tag_T2EE_use:
10462 case elfcpp::Tag_Virtualization_use:
10463 case elfcpp::Tag_MPextension_use:
10464 // Use the largest value specified.
10465 if (in_attr[i].int_value() > out_attr[i].int_value())
10466 out_attr[i].set_int_value(in_attr[i].int_value());
10467 break;
10468
10469 case elfcpp::Tag_ABI_align8_preserved:
10470 case elfcpp::Tag_ABI_PCS_RO_data:
10471 // Use the smallest value specified.
10472 if (in_attr[i].int_value() < out_attr[i].int_value())
10473 out_attr[i].set_int_value(in_attr[i].int_value());
10474 break;
10475
10476 case elfcpp::Tag_ABI_align8_needed:
10477 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
10478 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
10479 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
10480 == 0)))
10481 {
9b547ce6 10482 // This error message should be enabled once all non-conforming
a0351a69
DK
10483 // binaries in the toolchain have had the attributes set
10484 // properly.
10485 // gold_error(_("output 8-byte data alignment conflicts with %s"),
10486 // name);
10487 }
10488 // Fall through.
10489 case elfcpp::Tag_ABI_FP_denormal:
10490 case elfcpp::Tag_ABI_PCS_GOT_use:
10491 {
10492 // These tags have 0 = don't care, 1 = strong requirement,
10493 // 2 = weak requirement.
10494 static const int order_021[3] = {0, 2, 1};
10495
10496 // Use the "greatest" from the sequence 0, 2, 1, or the largest
10497 // value if greater than 2 (for future-proofing).
10498 if ((in_attr[i].int_value() > 2
10499 && in_attr[i].int_value() > out_attr[i].int_value())
10500 || (in_attr[i].int_value() <= 2
10501 && out_attr[i].int_value() <= 2
10502 && (order_021[in_attr[i].int_value()]
10503 > order_021[out_attr[i].int_value()])))
10504 out_attr[i].set_int_value(in_attr[i].int_value());
10505 }
10506 break;
10507
10508 case elfcpp::Tag_CPU_arch_profile:
10509 if (out_attr[i].int_value() != in_attr[i].int_value())
10510 {
10511 // 0 will merge with anything.
10512 // 'A' and 'S' merge to 'A'.
10513 // 'R' and 'S' merge to 'R'.
10514 // 'M' and 'A|R|S' is an error.
10515 if (out_attr[i].int_value() == 0
10516 || (out_attr[i].int_value() == 'S'
10517 && (in_attr[i].int_value() == 'A'
10518 || in_attr[i].int_value() == 'R')))
10519 out_attr[i].set_int_value(in_attr[i].int_value());
10520 else if (in_attr[i].int_value() == 0
10521 || (in_attr[i].int_value() == 'S'
10522 && (out_attr[i].int_value() == 'A'
10523 || out_attr[i].int_value() == 'R')))
10524 ; // Do nothing.
7296d933 10525 else if (parameters->options().warn_mismatch())
a0351a69
DK
10526 {
10527 gold_error
10528 (_("conflicting architecture profiles %c/%c"),
10529 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
10530 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
10531 }
10532 }
10533 break;
10534 case elfcpp::Tag_VFP_arch:
10535 {
10536 static const struct
10537 {
10538 int ver;
10539 int regs;
10540 } vfp_versions[7] =
10541 {
10542 {0, 0},
10543 {1, 16},
10544 {2, 16},
10545 {3, 32},
10546 {3, 16},
10547 {4, 32},
10548 {4, 16}
10549 };
10550
10551 // Values greater than 6 aren't defined, so just pick the
10552 // biggest.
10553 if (in_attr[i].int_value() > 6
10554 && in_attr[i].int_value() > out_attr[i].int_value())
10555 {
10556 *out_attr = *in_attr;
10557 break;
10558 }
10559 // The output uses the superset of input features
10560 // (ISA version) and registers.
10561 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
10562 vfp_versions[out_attr[i].int_value()].ver);
10563 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
10564 vfp_versions[out_attr[i].int_value()].regs);
10565 // This assumes all possible supersets are also a valid
10566 // options.
10567 int newval;
10568 for (newval = 6; newval > 0; newval--)
10569 {
10570 if (regs == vfp_versions[newval].regs
10571 && ver == vfp_versions[newval].ver)
10572 break;
10573 }
10574 out_attr[i].set_int_value(newval);
10575 }
10576 break;
10577 case elfcpp::Tag_PCS_config:
10578 if (out_attr[i].int_value() == 0)
10579 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
10580 else if (in_attr[i].int_value() != 0
10581 && out_attr[i].int_value() != 0
10582 && parameters->options().warn_mismatch())
a0351a69
DK
10583 {
10584 // It's sometimes ok to mix different configs, so this is only
10585 // a warning.
10586 gold_warning(_("%s: conflicting platform configuration"), name);
10587 }
10588 break;
10589 case elfcpp::Tag_ABI_PCS_R9_use:
10590 if (in_attr[i].int_value() != out_attr[i].int_value()
10591 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
10592 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
10593 && parameters->options().warn_mismatch())
a0351a69
DK
10594 {
10595 gold_error(_("%s: conflicting use of R9"), name);
10596 }
10597 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
10598 out_attr[i].set_int_value(in_attr[i].int_value());
10599 break;
10600 case elfcpp::Tag_ABI_PCS_RW_data:
10601 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
10602 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
10603 != elfcpp::AEABI_R9_SB)
10604 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
10605 != elfcpp::AEABI_R9_unused)
10606 && parameters->options().warn_mismatch())
a0351a69
DK
10607 {
10608 gold_error(_("%s: SB relative addressing conflicts with use "
10609 "of R9"),
7296d933 10610 name);
a0351a69
DK
10611 }
10612 // Use the smallest value specified.
10613 if (in_attr[i].int_value() < out_attr[i].int_value())
10614 out_attr[i].set_int_value(in_attr[i].int_value());
10615 break;
10616 case elfcpp::Tag_ABI_PCS_wchar_t:
a0351a69
DK
10617 if (out_attr[i].int_value()
10618 && in_attr[i].int_value()
7296d933 10619 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10620 && parameters->options().warn_mismatch()
10621 && parameters->options().wchar_size_warning())
a0351a69
DK
10622 {
10623 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
10624 "use %u-byte wchar_t; use of wchar_t values "
10625 "across objects may fail"),
10626 name, in_attr[i].int_value(),
10627 out_attr[i].int_value());
10628 }
10629 else if (in_attr[i].int_value() && !out_attr[i].int_value())
10630 out_attr[i].set_int_value(in_attr[i].int_value());
10631 break;
10632 case elfcpp::Tag_ABI_enum_size:
10633 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
10634 {
10635 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
10636 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
10637 {
10638 // The existing object is compatible with anything.
10639 // Use whatever requirements the new object has.
10640 out_attr[i].set_int_value(in_attr[i].int_value());
10641 }
a0351a69 10642 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933 10643 && out_attr[i].int_value() != in_attr[i].int_value()
ce0d1972
DK
10644 && parameters->options().warn_mismatch()
10645 && parameters->options().enum_size_warning())
a0351a69
DK
10646 {
10647 unsigned int in_value = in_attr[i].int_value();
10648 unsigned int out_value = out_attr[i].int_value();
10649 gold_warning(_("%s uses %s enums yet the output is to use "
10650 "%s enums; use of enum values across objects "
10651 "may fail"),
10652 name,
10653 this->aeabi_enum_name(in_value).c_str(),
10654 this->aeabi_enum_name(out_value).c_str());
10655 }
10656 }
10657 break;
10658 case elfcpp::Tag_ABI_VFP_args:
9b547ce6 10659 // Already done.
a0351a69
DK
10660 break;
10661 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
10662 if (in_attr[i].int_value() != out_attr[i].int_value()
10663 && parameters->options().warn_mismatch())
a0351a69
DK
10664 {
10665 gold_error(_("%s uses iWMMXt register arguments, output does "
10666 "not"),
10667 name);
10668 }
10669 break;
10670 case Object_attribute::Tag_compatibility:
10671 // Merged in target-independent code.
10672 break;
10673 case elfcpp::Tag_ABI_HardFP_use:
10674 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
10675 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
10676 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
10677 out_attr[i].set_int_value(3);
10678 else if (in_attr[i].int_value() > out_attr[i].int_value())
10679 out_attr[i].set_int_value(in_attr[i].int_value());
10680 break;
10681 case elfcpp::Tag_ABI_FP_16bit_format:
10682 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
10683 {
7296d933
DK
10684 if (in_attr[i].int_value() != out_attr[i].int_value()
10685 && parameters->options().warn_mismatch())
a0351a69
DK
10686 gold_error(_("fp16 format mismatch between %s and output"),
10687 name);
10688 }
10689 if (in_attr[i].int_value() != 0)
10690 out_attr[i].set_int_value(in_attr[i].int_value());
10691 break;
10692
da59ad79
DK
10693 case elfcpp::Tag_DIV_use:
10694 // This tag is set to zero if we can use UDIV and SDIV in Thumb
10695 // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
10696 // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
10697 // CPU. We will merge as follows: If the input attribute's value
10698 // is one then the output attribute's value remains unchanged. If
10699 // the input attribute's value is zero or two then if the output
10700 // attribute's value is one the output value is set to the input
10701 // value, otherwise the output value must be the same as the
10702 // inputs. */
10703 if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1)
10704 {
10705 if (in_attr[i].int_value() != out_attr[i].int_value())
10706 {
10707 gold_error(_("DIV usage mismatch between %s and output"),
10708 name);
10709 }
10710 }
10711
10712 if (in_attr[i].int_value() != 1)
10713 out_attr[i].set_int_value(in_attr[i].int_value());
10714
10715 break;
10716
10717 case elfcpp::Tag_MPextension_use_legacy:
10718 // We don't output objects with Tag_MPextension_use_legacy - we
10719 // move the value to Tag_MPextension_use.
10720 if (in_attr[i].int_value() != 0
10721 && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
10722 {
10723 if (in_attr[elfcpp::Tag_MPextension_use].int_value()
10724 != in_attr[i].int_value())
10725 {
10726 gold_error(_("%s has has both the current and legacy "
10727 "Tag_MPextension_use attributes"),
10728 name);
10729 }
10730 }
10731
10732 if (in_attr[i].int_value()
10733 > out_attr[elfcpp::Tag_MPextension_use].int_value())
10734 out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
10735
10736 break;
10737
a0351a69
DK
10738 case elfcpp::Tag_nodefaults:
10739 // This tag is set if it exists, but the value is unused (and is
10740 // typically zero). We don't actually need to do anything here -
10741 // the merge happens automatically when the type flags are merged
10742 // below.
10743 break;
10744 case elfcpp::Tag_also_compatible_with:
10745 // Already done in Tag_CPU_arch.
10746 break;
10747 case elfcpp::Tag_conformance:
10748 // Keep the attribute if it matches. Throw it away otherwise.
10749 // No attribute means no claim to conform.
10750 if (in_attr[i].string_value() != out_attr[i].string_value())
10751 out_attr[i].set_string_value("");
10752 break;
10753
10754 default:
10755 {
10756 const char* err_object = NULL;
10757
10758 // The "known_obj_attributes" table does contain some undefined
10759 // attributes. Ensure that there are unused.
10760 if (out_attr[i].int_value() != 0
10761 || out_attr[i].string_value() != "")
10762 err_object = "output";
10763 else if (in_attr[i].int_value() != 0
10764 || in_attr[i].string_value() != "")
10765 err_object = name;
10766
7296d933
DK
10767 if (err_object != NULL
10768 && parameters->options().warn_mismatch())
a0351a69
DK
10769 {
10770 // Attribute numbers >=64 (mod 128) can be safely ignored.
10771 if ((i & 127) < 64)
10772 gold_error(_("%s: unknown mandatory EABI object attribute "
10773 "%d"),
10774 err_object, i);
10775 else
10776 gold_warning(_("%s: unknown EABI object attribute %d"),
10777 err_object, i);
10778 }
10779
10780 // Only pass on attributes that match in both inputs.
10781 if (!in_attr[i].matches(out_attr[i]))
10782 {
10783 out_attr[i].set_int_value(0);
10784 out_attr[i].set_string_value("");
10785 }
10786 }
10787 }
10788
10789 // If out_attr was copied from in_attr then it won't have a type yet.
10790 if (in_attr[i].type() && !out_attr[i].type())
10791 out_attr[i].set_type(in_attr[i].type());
10792 }
10793
10794 // Merge Tag_compatibility attributes and any common GNU ones.
10795 this->attributes_section_data_->merge(name, pasd);
10796
10797 // Check for any attributes not known on ARM.
10798 typedef Vendor_object_attributes::Other_attributes Other_attributes;
10799 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
10800 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
10801 Other_attributes* out_other_attributes =
10802 this->attributes_section_data_->other_attributes(vendor);
10803 Other_attributes::iterator out_iter = out_other_attributes->begin();
10804
10805 while (in_iter != in_other_attributes->end()
10806 || out_iter != out_other_attributes->end())
10807 {
10808 const char* err_object = NULL;
10809 int err_tag = 0;
10810
10811 // The tags for each list are in numerical order.
10812 // If the tags are equal, then merge.
10813 if (out_iter != out_other_attributes->end()
10814 && (in_iter == in_other_attributes->end()
10815 || in_iter->first > out_iter->first))
10816 {
10817 // This attribute only exists in output. We can't merge, and we
10818 // don't know what the tag means, so delete it.
10819 err_object = "output";
10820 err_tag = out_iter->first;
10821 int saved_tag = out_iter->first;
10822 delete out_iter->second;
10823 out_other_attributes->erase(out_iter);
10824 out_iter = out_other_attributes->upper_bound(saved_tag);
10825 }
10826 else if (in_iter != in_other_attributes->end()
10827 && (out_iter != out_other_attributes->end()
10828 || in_iter->first < out_iter->first))
10829 {
10830 // This attribute only exists in input. We can't merge, and we
10831 // don't know what the tag means, so ignore it.
10832 err_object = name;
10833 err_tag = in_iter->first;
10834 ++in_iter;
10835 }
10836 else // The tags are equal.
10837 {
10838 // As present, all attributes in the list are unknown, and
10839 // therefore can't be merged meaningfully.
10840 err_object = "output";
10841 err_tag = out_iter->first;
10842
10843 // Only pass on attributes that match in both inputs.
10844 if (!in_iter->second->matches(*(out_iter->second)))
10845 {
10846 // No match. Delete the attribute.
10847 int saved_tag = out_iter->first;
10848 delete out_iter->second;
10849 out_other_attributes->erase(out_iter);
10850 out_iter = out_other_attributes->upper_bound(saved_tag);
10851 }
10852 else
10853 {
10854 // Matched. Keep the attribute and move to the next.
10855 ++out_iter;
10856 ++in_iter;
10857 }
10858 }
10859
7296d933 10860 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
10861 {
10862 // Attribute numbers >=64 (mod 128) can be safely ignored. */
10863 if ((err_tag & 127) < 64)
10864 {
10865 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
10866 err_object, err_tag);
10867 }
10868 else
10869 {
10870 gold_warning(_("%s: unknown EABI object attribute %d"),
10871 err_object, err_tag);
10872 }
10873 }
10874 }
10875}
10876
55da9579
DK
10877// Stub-generation methods for Target_arm.
10878
10879// Make a new Arm_input_section object.
10880
10881template<bool big_endian>
10882Arm_input_section<big_endian>*
10883Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
10884 Relobj* relobj,
10885 unsigned int shndx)
55da9579 10886{
5ac169d4 10887 Section_id sid(relobj, shndx);
55da9579
DK
10888
10889 Arm_input_section<big_endian>* arm_input_section =
2ea97941 10890 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
10891 arm_input_section->init();
10892
10893 // Register new Arm_input_section in map for look-up.
10894 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 10895 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
10896
10897 // Make sure that it we have not created another Arm_input_section
10898 // for this input section already.
10899 gold_assert(ins.second);
10900
10901 return arm_input_section;
10902}
10903
10904// Find the Arm_input_section object corresponding to the SHNDX-th input
10905// section of RELOBJ.
10906
10907template<bool big_endian>
10908Arm_input_section<big_endian>*
10909Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
10910 Relobj* relobj,
10911 unsigned int shndx) const
55da9579 10912{
5ac169d4 10913 Section_id sid(relobj, shndx);
55da9579 10914 typename Arm_input_section_map::const_iterator p =
5ac169d4 10915 this->arm_input_section_map_.find(sid);
55da9579
DK
10916 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
10917}
10918
10919// Make a new stub table.
10920
10921template<bool big_endian>
10922Stub_table<big_endian>*
10923Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
10924{
2ea97941 10925 Stub_table<big_endian>* stub_table =
55da9579 10926 new Stub_table<big_endian>(owner);
2ea97941 10927 this->stub_tables_.push_back(stub_table);
55da9579 10928
2ea97941
ILT
10929 stub_table->set_address(owner->address() + owner->data_size());
10930 stub_table->set_file_offset(owner->offset() + owner->data_size());
10931 stub_table->finalize_data_size();
55da9579 10932
2ea97941 10933 return stub_table;
55da9579
DK
10934}
10935
eb44217c
DK
10936// Scan a relocation for stub generation.
10937
10938template<bool big_endian>
10939void
10940Target_arm<big_endian>::scan_reloc_for_stub(
10941 const Relocate_info<32, big_endian>* relinfo,
10942 unsigned int r_type,
10943 const Sized_symbol<32>* gsym,
10944 unsigned int r_sym,
10945 const Symbol_value<32>* psymval,
10946 elfcpp::Elf_types<32>::Elf_Swxword addend,
10947 Arm_address address)
10948{
2ea97941 10949 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
10950
10951 const Arm_relobj<big_endian>* arm_relobj =
10952 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10953
10954 bool target_is_thumb;
10955 Symbol_value<32> symval;
10956 if (gsym != NULL)
10957 {
10958 // This is a global symbol. Determine if we use PLT and if the
10959 // final target is THUMB.
95a2c8d6 10960 if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
eb44217c
DK
10961 {
10962 // This uses a PLT, change the symbol value.
10963 symval.set_output_value(this->plt_section()->address()
10964 + gsym->plt_offset());
10965 psymval = &symval;
10966 target_is_thumb = false;
10967 }
10968 else if (gsym->is_undefined())
10969 // There is no need to generate a stub symbol is undefined.
10970 return;
10971 else
10972 {
10973 target_is_thumb =
10974 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
10975 || (gsym->type() == elfcpp::STT_FUNC
10976 && !gsym->is_undefined()
10977 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
10978 }
10979 }
10980 else
10981 {
10982 // This is a local symbol. Determine if the final target is THUMB.
10983 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
10984 }
10985
10986 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
10987 const Arm_reloc_property* reloc_property =
10988 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
10989 gold_assert(reloc_property != NULL);
eb44217c 10990 if (target_is_thumb
5c57f1be 10991 && reloc_property->uses_thumb_bit()
eb44217c
DK
10992 && ((psymval->value(arm_relobj, 0) & 1) != 0))
10993 {
10994 Arm_address stripped_value =
10995 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
10996 symval.set_output_value(stripped_value);
10997 psymval = &symval;
10998 }
10999
11000 // Get the symbol value.
11001 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
11002
11003 // Owing to pipelining, the PC relative branches below actually skip
11004 // two instructions when the branch offset is 0.
11005 Arm_address destination;
11006 switch (r_type)
11007 {
11008 case elfcpp::R_ARM_CALL:
11009 case elfcpp::R_ARM_JUMP24:
11010 case elfcpp::R_ARM_PLT32:
11011 // ARM branches.
11012 destination = value + addend + 8;
11013 break;
11014 case elfcpp::R_ARM_THM_CALL:
11015 case elfcpp::R_ARM_THM_XPC22:
11016 case elfcpp::R_ARM_THM_JUMP24:
11017 case elfcpp::R_ARM_THM_JUMP19:
11018 // THUMB branches.
11019 destination = value + addend + 4;
11020 break;
11021 default:
11022 gold_unreachable();
11023 }
11024
a120bc7f 11025 Reloc_stub* stub = NULL;
eb44217c
DK
11026 Stub_type stub_type =
11027 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
11028 target_is_thumb);
a120bc7f
DK
11029 if (stub_type != arm_stub_none)
11030 {
11031 // Try looking up an existing stub from a stub table.
11032 Stub_table<big_endian>* stub_table =
11033 arm_relobj->stub_table(relinfo->data_shndx);
11034 gold_assert(stub_table != NULL);
eb44217c 11035
a120bc7f
DK
11036 // Locate stub by destination.
11037 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 11038
a120bc7f
DK
11039 // Create a stub if there is not one already
11040 stub = stub_table->find_reloc_stub(stub_key);
11041 if (stub == NULL)
11042 {
11043 // create a new stub and add it to stub table.
11044 stub = this->stub_factory().make_reloc_stub(stub_type);
11045 stub_table->add_reloc_stub(stub, stub_key);
11046 }
11047
11048 // Record the destination address.
11049 stub->set_destination_address(destination
11050 | (target_is_thumb ? 1 : 0));
eb44217c
DK
11051 }
11052
a120bc7f
DK
11053 // For Cortex-A8, we need to record a relocation at 4K page boundary.
11054 if (this->fix_cortex_a8_
11055 && (r_type == elfcpp::R_ARM_THM_JUMP24
11056 || r_type == elfcpp::R_ARM_THM_JUMP19
11057 || r_type == elfcpp::R_ARM_THM_CALL
11058 || r_type == elfcpp::R_ARM_THM_XPC22)
11059 && (address & 0xfffU) == 0xffeU)
11060 {
11061 // Found a candidate. Note we haven't checked the destination is
11062 // within 4K here: if we do so (and don't create a record) we can't
11063 // tell that a branch should have been relocated when scanning later.
11064 this->cortex_a8_relocs_info_[address] =
11065 new Cortex_a8_reloc(stub, r_type,
11066 destination | (target_is_thumb ? 1 : 0));
11067 }
eb44217c
DK
11068}
11069
11070// This function scans a relocation sections for stub generation.
11071// The template parameter Relocate must be a class type which provides
11072// a single function, relocate(), which implements the machine
11073// specific part of a relocation.
11074
11075// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
11076// SHT_REL or SHT_RELA.
11077
11078// PRELOCS points to the relocation data. RELOC_COUNT is the number
11079// of relocs. OUTPUT_SECTION is the output section.
11080// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
11081// mapped to output offsets.
11082
11083// VIEW is the section data, VIEW_ADDRESS is its memory address, and
11084// VIEW_SIZE is the size. These refer to the input section, unless
11085// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
11086// the output section.
11087
11088template<bool big_endian>
11089template<int sh_type>
11090void inline
11091Target_arm<big_endian>::scan_reloc_section_for_stubs(
11092 const Relocate_info<32, big_endian>* relinfo,
11093 const unsigned char* prelocs,
11094 size_t reloc_count,
11095 Output_section* output_section,
11096 bool needs_special_offset_handling,
11097 const unsigned char* view,
11098 elfcpp::Elf_types<32>::Elf_Addr view_address,
11099 section_size_type)
11100{
11101 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
11102 const int reloc_size =
11103 Reloc_types<sh_type, 32, big_endian>::reloc_size;
11104
11105 Arm_relobj<big_endian>* arm_object =
11106 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
11107 unsigned int local_count = arm_object->local_symbol_count();
11108
11109 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
11110
11111 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
11112 {
11113 Reltype reloc(prelocs);
11114
11115 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
11116 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
11117 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
11118
11119 r_type = this->get_real_reloc_type(r_type);
11120
11121 // Only a few relocation types need stubs.
11122 if ((r_type != elfcpp::R_ARM_CALL)
11123 && (r_type != elfcpp::R_ARM_JUMP24)
11124 && (r_type != elfcpp::R_ARM_PLT32)
11125 && (r_type != elfcpp::R_ARM_THM_CALL)
11126 && (r_type != elfcpp::R_ARM_THM_XPC22)
11127 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
11128 && (r_type != elfcpp::R_ARM_THM_JUMP19)
11129 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
11130 continue;
11131
2ea97941 11132 section_offset_type offset =
eb44217c
DK
11133 convert_to_section_size_type(reloc.get_r_offset());
11134
11135 if (needs_special_offset_handling)
11136 {
2ea97941
ILT
11137 offset = output_section->output_offset(relinfo->object,
11138 relinfo->data_shndx,
11139 offset);
11140 if (offset == -1)
eb44217c
DK
11141 continue;
11142 }
11143
2fd9ae7a 11144 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
11145 if (r_type == elfcpp::R_ARM_V4BX)
11146 {
2fd9ae7a
DK
11147 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
11148 {
11149 // Get the BX instruction.
11150 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
11151 const Valtype* wv =
11152 reinterpret_cast<const Valtype*>(view + offset);
11153 elfcpp::Elf_types<32>::Elf_Swxword insn =
11154 elfcpp::Swap<32, big_endian>::readval(wv);
11155 const uint32_t reg = (insn & 0xf);
11156
11157 if (reg < 0xf)
11158 {
11159 // Try looking up an existing stub from a stub table.
11160 Stub_table<big_endian>* stub_table =
11161 arm_object->stub_table(relinfo->data_shndx);
11162 gold_assert(stub_table != NULL);
11163
11164 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
11165 {
11166 // create a new stub and add it to stub table.
11167 Arm_v4bx_stub* stub =
11168 this->stub_factory().make_arm_v4bx_stub(reg);
11169 gold_assert(stub != NULL);
11170 stub_table->add_arm_v4bx_stub(stub);
11171 }
11172 }
11173 }
a2162063
ILT
11174 continue;
11175 }
11176
eb44217c
DK
11177 // Get the addend.
11178 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
11179 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 11180 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
11181
11182 const Sized_symbol<32>* sym;
11183
11184 Symbol_value<32> symval;
11185 const Symbol_value<32> *psymval;
aa98ff75
DK
11186 bool is_defined_in_discarded_section;
11187 unsigned int shndx;
eb44217c
DK
11188 if (r_sym < local_count)
11189 {
11190 sym = NULL;
11191 psymval = arm_object->local_symbol(r_sym);
11192
11193 // If the local symbol belongs to a section we are discarding,
11194 // and that section is a debug section, try to find the
11195 // corresponding kept section and map this symbol to its
11196 // counterpart in the kept section. The symbol must not
11197 // correspond to a section we are folding.
11198 bool is_ordinary;
aa98ff75
DK
11199 shndx = psymval->input_shndx(&is_ordinary);
11200 is_defined_in_discarded_section =
11201 (is_ordinary
11202 && shndx != elfcpp::SHN_UNDEF
11203 && !arm_object->is_section_included(shndx)
11204 && !relinfo->symtab->is_section_folded(arm_object, shndx));
11205
11206 // We need to compute the would-be final value of this local
11207 // symbol.
11208 if (!is_defined_in_discarded_section)
eb44217c 11209 {
6fa2a40b 11210 typedef Sized_relobj_file<32, big_endian> ObjType;
aa98ff75
DK
11211 typename ObjType::Compute_final_local_value_status status =
11212 arm_object->compute_final_local_value(r_sym, psymval, &symval,
11213 relinfo->symtab);
11214 if (status == ObjType::CFLV_OK)
11215 {
11216 // Currently we cannot handle a branch to a target in
11217 // a merged section. If this is the case, issue an error
11218 // and also free the merge symbol value.
11219 if (!symval.has_output_value())
11220 {
11221 const std::string& section_name =
11222 arm_object->section_name(shndx);
11223 arm_object->error(_("cannot handle branch to local %u "
11224 "in a merged section %s"),
11225 r_sym, section_name.c_str());
11226 }
11227 psymval = &symval;
11228 }
eb44217c 11229 else
aa98ff75
DK
11230 {
11231 // We cannot determine the final value.
11232 continue;
11233 }
eb44217c
DK
11234 }
11235 }
11236 else
11237 {
aa98ff75
DK
11238 const Symbol* gsym;
11239 gsym = arm_object->global_symbol(r_sym);
eb44217c
DK
11240 gold_assert(gsym != NULL);
11241 if (gsym->is_forwarder())
11242 gsym = relinfo->symtab->resolve_forwards(gsym);
11243
11244 sym = static_cast<const Sized_symbol<32>*>(gsym);
aa98ff75 11245 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
eb44217c
DK
11246 symval.set_output_symtab_index(sym->symtab_index());
11247 else
11248 symval.set_no_output_symtab_entry();
11249
11250 // We need to compute the would-be final value of this global
11251 // symbol.
11252 const Symbol_table* symtab = relinfo->symtab;
11253 const Sized_symbol<32>* sized_symbol =
11254 symtab->get_sized_symbol<32>(gsym);
11255 Symbol_table::Compute_final_value_status status;
11256 Arm_address value =
11257 symtab->compute_final_value<32>(sized_symbol, &status);
11258
11259 // Skip this if the symbol has not output section.
11260 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
11261 continue;
eb44217c 11262 symval.set_output_value(value);
aa98ff75
DK
11263
11264 if (gsym->type() == elfcpp::STT_TLS)
11265 symval.set_is_tls_symbol();
11266 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
11267 symval.set_is_ifunc_symbol();
eb44217c 11268 psymval = &symval;
aa98ff75
DK
11269
11270 is_defined_in_discarded_section =
11271 (gsym->is_defined_in_discarded_section()
11272 && gsym->is_undefined());
11273 shndx = 0;
11274 }
11275
11276 Symbol_value<32> symval2;
11277 if (is_defined_in_discarded_section)
11278 {
11279 if (comdat_behavior == CB_UNDETERMINED)
11280 {
11281 std::string name = arm_object->section_name(relinfo->data_shndx);
11282 comdat_behavior = get_comdat_behavior(name.c_str());
11283 }
11284 if (comdat_behavior == CB_PRETEND)
11285 {
11286 // FIXME: This case does not work for global symbols.
11287 // We have no place to store the original section index.
11288 // Fortunately this does not matter for comdat sections,
11289 // only for sections explicitly discarded by a linker
11290 // script.
11291 bool found;
11292 typename elfcpp::Elf_types<32>::Elf_Addr value =
11293 arm_object->map_to_kept_section(shndx, &found);
11294 if (found)
11295 symval2.set_output_value(value + psymval->input_value());
11296 else
11297 symval2.set_output_value(0);
11298 }
11299 else
11300 {
11301 if (comdat_behavior == CB_WARNING)
11302 gold_warning_at_location(relinfo, i, offset,
11303 _("relocation refers to discarded "
11304 "section"));
11305 symval2.set_output_value(0);
11306 }
11307 symval2.set_no_output_symtab_entry();
11308 psymval = &symval2;
eb44217c
DK
11309 }
11310
11311 // If symbol is a section symbol, we don't know the actual type of
11312 // destination. Give up.
11313 if (psymval->is_section_symbol())
11314 continue;
11315
11316 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 11317 addend, view_address + offset);
eb44217c
DK
11318 }
11319}
11320
11321// Scan an input section for stub generation.
11322
11323template<bool big_endian>
11324void
11325Target_arm<big_endian>::scan_section_for_stubs(
11326 const Relocate_info<32, big_endian>* relinfo,
11327 unsigned int sh_type,
11328 const unsigned char* prelocs,
11329 size_t reloc_count,
11330 Output_section* output_section,
11331 bool needs_special_offset_handling,
11332 const unsigned char* view,
11333 Arm_address view_address,
11334 section_size_type view_size)
11335{
11336 if (sh_type == elfcpp::SHT_REL)
11337 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
11338 relinfo,
11339 prelocs,
11340 reloc_count,
11341 output_section,
11342 needs_special_offset_handling,
11343 view,
11344 view_address,
11345 view_size);
11346 else if (sh_type == elfcpp::SHT_RELA)
11347 // We do not support RELA type relocations yet. This is provided for
11348 // completeness.
11349 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
11350 relinfo,
11351 prelocs,
11352 reloc_count,
11353 output_section,
11354 needs_special_offset_handling,
11355 view,
11356 view_address,
11357 view_size);
11358 else
11359 gold_unreachable();
11360}
11361
11362// Group input sections for stub generation.
11363//
9b547ce6 11364// We group input sections in an output section so that the total size,
eb44217c
DK
11365// including any padding space due to alignment is smaller than GROUP_SIZE
11366// unless the only input section in group is bigger than GROUP_SIZE already.
11367// Then an ARM stub table is created to follow the last input section
11368// in group. For each group an ARM stub table is created an is placed
9b547ce6 11369// after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
eb44217c
DK
11370// extend the group after the stub table.
11371
11372template<bool big_endian>
11373void
11374Target_arm<big_endian>::group_sections(
2ea97941 11375 Layout* layout,
eb44217c 11376 section_size_type group_size,
f625ae50
DK
11377 bool stubs_always_after_branch,
11378 const Task* task)
eb44217c
DK
11379{
11380 // Group input sections and insert stub table
11381 Layout::Section_list section_list;
2ea97941 11382 layout->get_allocated_sections(&section_list);
eb44217c
DK
11383 for (Layout::Section_list::const_iterator p = section_list.begin();
11384 p != section_list.end();
11385 ++p)
11386 {
11387 Arm_output_section<big_endian>* output_section =
11388 Arm_output_section<big_endian>::as_arm_output_section(*p);
11389 output_section->group_sections(group_size, stubs_always_after_branch,
f625ae50 11390 this, task);
eb44217c
DK
11391 }
11392}
11393
11394// Relaxation hook. This is where we do stub generation.
11395
11396template<bool big_endian>
11397bool
11398Target_arm<big_endian>::do_relax(
11399 int pass,
11400 const Input_objects* input_objects,
11401 Symbol_table* symtab,
f625ae50
DK
11402 Layout* layout,
11403 const Task* task)
eb44217c
DK
11404{
11405 // No need to generate stubs if this is a relocatable link.
11406 gold_assert(!parameters->options().relocatable());
11407
11408 // If this is the first pass, we need to group input sections into
11409 // stub groups.
2b328d4e 11410 bool done_exidx_fixup = false;
6625d24e 11411 typedef typename Stub_table_list::iterator Stub_table_iterator;
eb44217c
DK
11412 if (pass == 1)
11413 {
11414 // Determine the stub group size. The group size is the absolute
11415 // value of the parameter --stub-group-size. If --stub-group-size
9b547ce6 11416 // is passed a negative value, we restrict stubs to be always after
eb44217c
DK
11417 // the stubbed branches.
11418 int32_t stub_group_size_param =
11419 parameters->options().stub_group_size();
11420 bool stubs_always_after_branch = stub_group_size_param < 0;
11421 section_size_type stub_group_size = abs(stub_group_size_param);
11422
11423 if (stub_group_size == 1)
11424 {
11425 // Default value.
11426 // Thumb branch range is +-4MB has to be used as the default
11427 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
11428 // code, so the worst case has to be taken into account). If we are
11429 // fixing cortex-a8 errata, the branch range has to be even smaller,
11430 // since wide conditional branch has a range of +-1MB only.
eb44217c 11431 //
25bbe950 11432 // This value is 48K less than that, which allows for 4096
eb44217c
DK
11433 // 12-byte stubs. If we exceed that, then we will fail to link.
11434 // The user will have to relink with an explicit group size
11435 // option.
25bbe950
DK
11436 stub_group_size = 4145152;
11437 }
11438
11439 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
11440 // page as the first half of a 32-bit branch straddling two 4K pages.
11441 // This is a crude way of enforcing that. In addition, long conditional
11442 // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8
11443 // erratum, limit the group size to (1M - 12k) to avoid unreachable
11444 // cortex-A8 stubs from long conditional branches.
11445 if (this->fix_cortex_a8_)
11446 {
11447 stubs_always_after_branch = true;
11448 const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
11449 stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
eb44217c
DK
11450 }
11451
f625ae50 11452 group_sections(layout, stub_group_size, stubs_always_after_branch, task);
2b328d4e
DK
11453
11454 // Also fix .ARM.exidx section coverage.
131687b4
DK
11455 Arm_output_section<big_endian>* exidx_output_section = NULL;
11456 for (Layout::Section_list::const_iterator p =
11457 layout->section_list().begin();
11458 p != layout->section_list().end();
11459 ++p)
11460 if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
11461 {
11462 if (exidx_output_section == NULL)
11463 exidx_output_section =
11464 Arm_output_section<big_endian>::as_arm_output_section(*p);
11465 else
11466 // We cannot handle this now.
11467 gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
11468 "non-relocatable link"),
11469 exidx_output_section->name(),
11470 (*p)->name());
11471 }
11472
11473 if (exidx_output_section != NULL)
2b328d4e 11474 {
131687b4 11475 this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
f625ae50 11476 symtab, task);
2b328d4e
DK
11477 done_exidx_fixup = true;
11478 }
eb44217c 11479 }
6625d24e
DK
11480 else
11481 {
11482 // If this is not the first pass, addresses and file offsets have
11483 // been reset at this point, set them here.
11484 for (Stub_table_iterator sp = this->stub_tables_.begin();
11485 sp != this->stub_tables_.end();
11486 ++sp)
11487 {
11488 Arm_input_section<big_endian>* owner = (*sp)->owner();
11489 off_t off = align_address(owner->original_size(),
11490 (*sp)->addralign());
11491 (*sp)->set_address_and_file_offset(owner->address() + off,
11492 owner->offset() + off);
11493 }
11494 }
eb44217c 11495
44272192
DK
11496 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
11497 // beginning of each relaxation pass, just blow away all the stubs.
11498 // Alternatively, we could selectively remove only the stubs and reloc
11499 // information for code sections that have moved since the last pass.
11500 // That would require more book-keeping.
a120bc7f
DK
11501 if (this->fix_cortex_a8_)
11502 {
11503 // Clear all Cortex-A8 reloc information.
11504 for (typename Cortex_a8_relocs_info::const_iterator p =
11505 this->cortex_a8_relocs_info_.begin();
11506 p != this->cortex_a8_relocs_info_.end();
11507 ++p)
11508 delete p->second;
11509 this->cortex_a8_relocs_info_.clear();
44272192
DK
11510
11511 // Remove all Cortex-A8 stubs.
11512 for (Stub_table_iterator sp = this->stub_tables_.begin();
11513 sp != this->stub_tables_.end();
11514 ++sp)
11515 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
11516 }
11517
44272192 11518 // Scan relocs for relocation stubs
eb44217c
DK
11519 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11520 op != input_objects->relobj_end();
11521 ++op)
11522 {
11523 Arm_relobj<big_endian>* arm_relobj =
11524 Arm_relobj<big_endian>::as_arm_relobj(*op);
f625ae50
DK
11525 // Lock the object so we can read from it. This is only called
11526 // single-threaded from Layout::finalize, so it is OK to lock.
11527 Task_lock_obj<Object> tl(task, arm_relobj);
2ea97941 11528 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
11529 }
11530
2fb7225c
DK
11531 // Check all stub tables to see if any of them have their data sizes
11532 // or addresses alignments changed. These are the only things that
11533 // matter.
eb44217c 11534 bool any_stub_table_changed = false;
8923b24c 11535 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
11536 for (Stub_table_iterator sp = this->stub_tables_.begin();
11537 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11538 ++sp)
11539 {
2fb7225c 11540 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
11541 {
11542 // Update data size of stub table owner.
11543 Arm_input_section<big_endian>* owner = (*sp)->owner();
11544 uint64_t address = owner->address();
11545 off_t offset = owner->offset();
11546 owner->reset_address_and_file_offset();
11547 owner->set_address_and_file_offset(address, offset);
11548
11549 sections_needing_adjustment.insert(owner->output_section());
11550 any_stub_table_changed = true;
11551 }
11552 }
11553
11554 // Output_section_data::output_section() returns a const pointer but we
11555 // need to update output sections, so we record all output sections needing
11556 // update above and scan the sections here to find out what sections need
11557 // to be updated.
f625ae50 11558 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8923b24c
DK
11559 p != layout->section_list().end();
11560 ++p)
11561 {
11562 if (sections_needing_adjustment.find(*p)
11563 != sections_needing_adjustment.end())
11564 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
11565 }
11566
2b328d4e
DK
11567 // Stop relaxation if no EXIDX fix-up and no stub table change.
11568 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
11569
2fb7225c 11570 // Finalize the stubs in the last relaxation pass.
2b328d4e 11571 if (!continue_relaxation)
e7eca48c
DK
11572 {
11573 for (Stub_table_iterator sp = this->stub_tables_.begin();
11574 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
11575 ++sp)
11576 (*sp)->finalize_stubs();
11577
11578 // Update output local symbol counts of objects if necessary.
11579 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
11580 op != input_objects->relobj_end();
11581 ++op)
11582 {
11583 Arm_relobj<big_endian>* arm_relobj =
11584 Arm_relobj<big_endian>::as_arm_relobj(*op);
11585
11586 // Update output local symbol counts. We need to discard local
11587 // symbols defined in parts of input sections that are discarded by
11588 // relaxation.
11589 if (arm_relobj->output_local_symbol_count_needs_update())
f625ae50
DK
11590 {
11591 // We need to lock the object's file to update it.
11592 Task_lock_obj<Object> tl(task, arm_relobj);
11593 arm_relobj->update_output_local_symbol_count();
11594 }
e7eca48c
DK
11595 }
11596 }
2fb7225c 11597
2b328d4e 11598 return continue_relaxation;
eb44217c
DK
11599}
11600
43d12afe
DK
11601// Relocate a stub.
11602
11603template<bool big_endian>
11604void
11605Target_arm<big_endian>::relocate_stub(
2fb7225c 11606 Stub* stub,
43d12afe
DK
11607 const Relocate_info<32, big_endian>* relinfo,
11608 Output_section* output_section,
11609 unsigned char* view,
11610 Arm_address address,
11611 section_size_type view_size)
11612{
11613 Relocate relocate;
2ea97941
ILT
11614 const Stub_template* stub_template = stub->stub_template();
11615 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 11616 {
2ea97941
ILT
11617 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
11618 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
11619
11620 unsigned int r_type = insn->r_type();
2ea97941 11621 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
11622 section_size_type reloc_size = insn->size();
11623 gold_assert(reloc_offset + reloc_size <= view_size);
11624
11625 // This is the address of the stub destination.
41263c05 11626 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
11627 Symbol_value<32> symval;
11628 symval.set_output_value(target);
11629
11630 // Synthesize a fake reloc just in case. We don't have a symbol so
11631 // we use 0.
11632 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
11633 memset(reloc_buffer, 0, sizeof(reloc_buffer));
11634 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
11635 reloc_write.put_r_offset(reloc_offset);
11636 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
11637 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
11638
11639 relocate.relocate(relinfo, this, output_section,
11640 this->fake_relnum_for_stubs, rel, r_type,
11641 NULL, &symval, view + reloc_offset,
11642 address + reloc_offset, reloc_size);
11643 }
11644}
11645
a0351a69
DK
11646// Determine whether an object attribute tag takes an integer, a
11647// string or both.
11648
11649template<bool big_endian>
11650int
11651Target_arm<big_endian>::do_attribute_arg_type(int tag) const
11652{
11653 if (tag == Object_attribute::Tag_compatibility)
11654 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11655 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
11656 else if (tag == elfcpp::Tag_nodefaults)
11657 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
11658 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
11659 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
11660 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
11661 else if (tag < 32)
11662 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
11663 else
11664 return ((tag & 1) != 0
11665 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
11666 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
11667}
11668
11669// Reorder attributes.
11670//
11671// The ABI defines that Tag_conformance should be emitted first, and that
11672// Tag_nodefaults should be second (if either is defined). This sets those
11673// two positions, and bumps up the position of all the remaining tags to
11674// compensate.
11675
11676template<bool big_endian>
11677int
11678Target_arm<big_endian>::do_attributes_order(int num) const
11679{
11680 // Reorder the known object attributes in output. We want to move
11681 // Tag_conformance to position 4 and Tag_conformance to position 5
9b547ce6 11682 // and shift everything between 4 .. Tag_conformance - 1 to make room.
a0351a69
DK
11683 if (num == 4)
11684 return elfcpp::Tag_conformance;
11685 if (num == 5)
11686 return elfcpp::Tag_nodefaults;
11687 if ((num - 2) < elfcpp::Tag_nodefaults)
11688 return num - 2;
11689 if ((num - 1) < elfcpp::Tag_conformance)
11690 return num - 1;
11691 return num;
11692}
4a657b0d 11693
44272192
DK
11694// Scan a span of THUMB code for Cortex-A8 erratum.
11695
11696template<bool big_endian>
11697void
11698Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
11699 Arm_relobj<big_endian>* arm_relobj,
11700 unsigned int shndx,
11701 section_size_type span_start,
11702 section_size_type span_end,
11703 const unsigned char* view,
11704 Arm_address address)
11705{
11706 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
11707 //
11708 // The opcode is BLX.W, BL.W, B.W, Bcc.W
11709 // The branch target is in the same 4KB region as the
11710 // first half of the branch.
11711 // The instruction before the branch is a 32-bit
11712 // length non-branch instruction.
11713 section_size_type i = span_start;
11714 bool last_was_32bit = false;
11715 bool last_was_branch = false;
11716 while (i < span_end)
11717 {
11718 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11719 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
11720 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
11721 bool is_blx = false, is_b = false;
11722 bool is_bl = false, is_bcc = false;
11723
11724 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
11725 if (insn_32bit)
11726 {
11727 // Load the rest of the insn (in manual-friendly order).
11728 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
11729
11730 // Encoding T4: B<c>.W.
11731 is_b = (insn & 0xf800d000U) == 0xf0009000U;
11732 // Encoding T1: BL<c>.W.
11733 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
11734 // Encoding T2: BLX<c>.W.
11735 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
11736 // Encoding T3: B<c>.W (not permitted in IT block).
11737 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
11738 && (insn & 0x07f00000U) != 0x03800000U);
11739 }
11740
11741 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
11742
11743 // If this instruction is a 32-bit THUMB branch that crosses a 4K
11744 // page boundary and it follows 32-bit non-branch instruction,
11745 // we need to work around.
11746 if (is_32bit_branch
11747 && ((address + i) & 0xfffU) == 0xffeU
11748 && last_was_32bit
11749 && !last_was_branch)
11750 {
11751 // Check to see if there is a relocation stub for this branch.
11752 bool force_target_arm = false;
11753 bool force_target_thumb = false;
11754 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
11755 Cortex_a8_relocs_info::const_iterator p =
11756 this->cortex_a8_relocs_info_.find(address + i);
11757
11758 if (p != this->cortex_a8_relocs_info_.end())
11759 {
11760 cortex_a8_reloc = p->second;
11761 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
11762
11763 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11764 && !target_is_thumb)
11765 force_target_arm = true;
11766 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
11767 && target_is_thumb)
11768 force_target_thumb = true;
11769 }
11770
11771 off_t offset;
11772 Stub_type stub_type = arm_stub_none;
11773
11774 // Check if we have an offending branch instruction.
11775 uint16_t upper_insn = (insn >> 16) & 0xffffU;
11776 uint16_t lower_insn = insn & 0xffffU;
11777 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11778
11779 if (cortex_a8_reloc != NULL
11780 && cortex_a8_reloc->reloc_stub() != NULL)
11781 // We've already made a stub for this instruction, e.g.
11782 // it's a long branch or a Thumb->ARM stub. Assume that
11783 // stub will suffice to work around the A8 erratum (see
11784 // setting of always_after_branch above).
11785 ;
11786 else if (is_bcc)
11787 {
11788 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
11789 lower_insn);
11790 stub_type = arm_stub_a8_veneer_b_cond;
11791 }
11792 else if (is_b || is_bl || is_blx)
11793 {
11794 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
11795 lower_insn);
11796 if (is_blx)
11797 offset &= ~3;
11798
11799 stub_type = (is_blx
11800 ? arm_stub_a8_veneer_blx
11801 : (is_bl
11802 ? arm_stub_a8_veneer_bl
11803 : arm_stub_a8_veneer_b));
11804 }
11805
11806 if (stub_type != arm_stub_none)
11807 {
11808 Arm_address pc_for_insn = address + i + 4;
11809
11810 // The original instruction is a BL, but the target is
11811 // an ARM instruction. If we were not making a stub,
11812 // the BL would have been converted to a BLX. Use the
11813 // BLX stub instead in that case.
cd6eab1c 11814 if (this->may_use_v5t_interworking() && force_target_arm
44272192
DK
11815 && stub_type == arm_stub_a8_veneer_bl)
11816 {
11817 stub_type = arm_stub_a8_veneer_blx;
11818 is_blx = true;
11819 is_bl = false;
11820 }
11821 // Conversely, if the original instruction was
11822 // BLX but the target is Thumb mode, use the BL stub.
11823 else if (force_target_thumb
11824 && stub_type == arm_stub_a8_veneer_blx)
11825 {
11826 stub_type = arm_stub_a8_veneer_bl;
11827 is_blx = false;
11828 is_bl = true;
11829 }
11830
11831 if (is_blx)
11832 pc_for_insn &= ~3;
11833
11834 // If we found a relocation, use the proper destination,
11835 // not the offset in the (unrelocated) instruction.
11836 // Note this is always done if we switched the stub type above.
11837 if (cortex_a8_reloc != NULL)
11838 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
11839
11840 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
11841
11842 // Add a new stub if destination address in in the same page.
11843 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
11844 {
11845 Cortex_a8_stub* stub =
11846 this->stub_factory_.make_cortex_a8_stub(stub_type,
11847 arm_relobj, shndx,
11848 address + i,
11849 target, insn);
11850 Stub_table<big_endian>* stub_table =
11851 arm_relobj->stub_table(shndx);
11852 gold_assert(stub_table != NULL);
11853 stub_table->add_cortex_a8_stub(address + i, stub);
11854 }
11855 }
11856 }
11857
11858 i += insn_32bit ? 4 : 2;
11859 last_was_32bit = insn_32bit;
11860 last_was_branch = is_32bit_branch;
11861 }
11862}
11863
41263c05
DK
11864// Apply the Cortex-A8 workaround.
11865
11866template<bool big_endian>
11867void
11868Target_arm<big_endian>::apply_cortex_a8_workaround(
11869 const Cortex_a8_stub* stub,
11870 Arm_address stub_address,
11871 unsigned char* insn_view,
11872 Arm_address insn_address)
11873{
11874 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
11875 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
11876 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
11877 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
11878 off_t branch_offset = stub_address - (insn_address + 4);
11879
11880 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
11881 switch (stub->stub_template()->type())
11882 {
11883 case arm_stub_a8_veneer_b_cond:
9b547ce6 11884 // For a conditional branch, we re-write it to be an unconditional
0439c796
DK
11885 // branch to the stub. We use the THUMB-2 encoding here.
11886 upper_insn = 0xf000U;
11887 lower_insn = 0xb800U;
11888 // Fall through
41263c05
DK
11889 case arm_stub_a8_veneer_b:
11890 case arm_stub_a8_veneer_bl:
11891 case arm_stub_a8_veneer_blx:
11892 if ((lower_insn & 0x5000U) == 0x4000U)
11893 // For a BLX instruction, make sure that the relocation is
11894 // rounded up to a word boundary. This follows the semantics of
11895 // the instruction which specifies that bit 1 of the target
11896 // address will come from bit 1 of the base address.
11897 branch_offset = (branch_offset + 2) & ~3;
11898
11899 // Put BRANCH_OFFSET back into the insn.
11900 gold_assert(!utils::has_overflow<25>(branch_offset));
11901 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
11902 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
11903 break;
11904
11905 default:
11906 gold_unreachable();
11907 }
11908
11909 // Put the relocated value back in the object file:
11910 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
11911 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
11912}
11913
4a657b0d
DK
11914template<bool big_endian>
11915class Target_selector_arm : public Target_selector
11916{
11917 public:
11918 Target_selector_arm()
11919 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
03ef7571
ILT
11920 (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
11921 (big_endian ? "armelfb" : "armelf"))
4a657b0d
DK
11922 { }
11923
11924 Target*
11925 do_instantiate_target()
11926 { return new Target_arm<big_endian>(); }
11927};
11928
2b328d4e
DK
11929// Fix .ARM.exidx section coverage.
11930
11931template<bool big_endian>
11932void
11933Target_arm<big_endian>::fix_exidx_coverage(
11934 Layout* layout,
131687b4 11935 const Input_objects* input_objects,
2b328d4e 11936 Arm_output_section<big_endian>* exidx_section,
f625ae50
DK
11937 Symbol_table* symtab,
11938 const Task* task)
2b328d4e
DK
11939{
11940 // We need to look at all the input sections in output in ascending
11941 // order of of output address. We do that by building a sorted list
11942 // of output sections by addresses. Then we looks at the output sections
11943 // in order. The input sections in an output section are already sorted
11944 // by addresses within the output section.
11945
11946 typedef std::set<Output_section*, output_section_address_less_than>
11947 Sorted_output_section_list;
11948 Sorted_output_section_list sorted_output_sections;
131687b4
DK
11949
11950 // Find out all the output sections of input sections pointed by
11951 // EXIDX input sections.
11952 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
11953 p != input_objects->relobj_end();
2b328d4e
DK
11954 ++p)
11955 {
131687b4
DK
11956 Arm_relobj<big_endian>* arm_relobj =
11957 Arm_relobj<big_endian>::as_arm_relobj(*p);
11958 std::vector<unsigned int> shndx_list;
11959 arm_relobj->get_exidx_shndx_list(&shndx_list);
11960 for (size_t i = 0; i < shndx_list.size(); ++i)
11961 {
11962 const Arm_exidx_input_section* exidx_input_section =
11963 arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
11964 gold_assert(exidx_input_section != NULL);
11965 if (!exidx_input_section->has_errors())
11966 {
11967 unsigned int text_shndx = exidx_input_section->link();
ca09d69a 11968 Output_section* os = arm_relobj->output_section(text_shndx);
131687b4
DK
11969 if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
11970 sorted_output_sections.insert(os);
11971 }
11972 }
2b328d4e
DK
11973 }
11974
11975 // Go over the output sections in ascending order of output addresses.
11976 typedef typename Arm_output_section<big_endian>::Text_section_list
11977 Text_section_list;
11978 Text_section_list sorted_text_sections;
f625ae50 11979 for (typename Sorted_output_section_list::iterator p =
2b328d4e
DK
11980 sorted_output_sections.begin();
11981 p != sorted_output_sections.end();
11982 ++p)
11983 {
11984 Arm_output_section<big_endian>* arm_output_section =
11985 Arm_output_section<big_endian>::as_arm_output_section(*p);
11986 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
11987 }
11988
85fdf906 11989 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
f625ae50 11990 merge_exidx_entries(), task);
2b328d4e
DK
11991}
11992
4a657b0d
DK
11993Target_selector_arm<false> target_selector_arm;
11994Target_selector_arm<true> target_selector_armbe;
11995
11996} // End anonymous namespace.
This page took 0.878642 seconds and 4 git commands to generate.