* python/python.c (source_python_script): Use ensure_python_env
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
b10d2873 3// Copyright 2009, 2010 Free Software Foundation, Inc.
4a657b0d
DK
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
41263c05
DK
33#include <map>
34#include <utility>
2b328d4e 35#include <set>
4a657b0d
DK
36
37#include "elfcpp.h"
38#include "parameters.h"
39#include "reloc.h"
40#include "arm.h"
41#include "object.h"
42#include "symtab.h"
43#include "layout.h"
44#include "output.h"
45#include "copy-relocs.h"
46#include "target.h"
47#include "target-reloc.h"
48#include "target-select.h"
49#include "tls.h"
50#include "defstd.h"
f345227a 51#include "gc.h"
a0351a69 52#include "attributes.h"
0d31c79d 53#include "arm-reloc-property.h"
4a657b0d
DK
54
55namespace
56{
57
58using namespace gold;
59
94cdfcff
DK
60template<bool big_endian>
61class Output_data_plt_arm;
62
56ee5e00
DK
63template<bool big_endian>
64class Stub_table;
65
66template<bool big_endian>
67class Arm_input_section;
68
af2cdeae
DK
69class Arm_exidx_cantunwind;
70
71class Arm_exidx_merged_section;
72
80d0d023
DK
73class Arm_exidx_fixup;
74
07f508a2
DK
75template<bool big_endian>
76class Arm_output_section;
77
993d07c1
DK
78class Arm_exidx_input_section;
79
07f508a2
DK
80template<bool big_endian>
81class Arm_relobj;
82
f96accdf
DK
83template<bool big_endian>
84class Arm_relocate_functions;
85
4a54abbb
DK
86template<bool big_endian>
87class Arm_output_data_got;
88
b569affa
DK
89template<bool big_endian>
90class Target_arm;
91
92// For convenience.
93typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
94
95// Maximum branch offsets for ARM, THUMB and THUMB2.
96const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
97const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
98const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
99const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
100const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
101const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
102
4a54abbb
DK
103// Thread Control Block size.
104const size_t ARM_TCB_SIZE = 8;
105
4a657b0d
DK
106// The arm target class.
107//
108// This is a very simple port of gold for ARM-EABI. It is intended for
b10d2873 109// supporting Android only for the time being.
4a657b0d 110//
4a657b0d 111// TODOs:
0d31c79d 112// - Implement all static relocation types documented in arm-reloc.def.
94cdfcff
DK
113// - Make PLTs more flexible for different architecture features like
114// Thumb-2 and BE8.
11af873f 115// There are probably a lot more.
4a657b0d 116
0d31c79d
DK
117// Ideally we would like to avoid using global variables but this is used
118// very in many places and sometimes in loops. If we use a function
119// returning a static instance of Arm_reloc_property_table, it will very
120// slow in an threaded environment since the static instance needs to be
121// locked. The pointer is below initialized in the
122// Target::do_select_as_default_target() hook so that we do not spend time
123// building the table if we are not linking ARM objects.
124//
125// An alternative is to to process the information in arm-reloc.def in
126// compilation time and generate a representation of it in PODs only. That
127// way we can avoid initialization when the linker starts.
128
129Arm_reloc_property_table *arm_reloc_property_table = NULL;
130
b569affa
DK
131// Instruction template class. This class is similar to the insn_sequence
132// struct in bfd/elf32-arm.c.
133
134class Insn_template
135{
136 public:
137 // Types of instruction templates.
138 enum Type
139 {
140 THUMB16_TYPE = 1,
bb0d3eb0
DK
141 // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
142 // templates with class-specific semantics. Currently this is used
143 // only by the Cortex_a8_stub class for handling condition codes in
144 // conditional branches.
145 THUMB16_SPECIAL_TYPE,
b569affa
DK
146 THUMB32_TYPE,
147 ARM_TYPE,
148 DATA_TYPE
149 };
150
bb0d3eb0 151 // Factory methods to create instruction templates in different formats.
b569affa
DK
152
153 static const Insn_template
154 thumb16_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
156
bb0d3eb0
DK
157 // A Thumb conditional branch, in which the proper condition is inserted
158 // when we build the stub.
b569affa
DK
159 static const Insn_template
160 thumb16_bcond_insn(uint32_t data)
bb0d3eb0 161 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }
b569affa
DK
162
163 static const Insn_template
164 thumb32_insn(uint32_t data)
165 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
166
167 static const Insn_template
168 thumb32_b_insn(uint32_t data, int reloc_addend)
169 {
170 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
171 reloc_addend);
172 }
173
174 static const Insn_template
175 arm_insn(uint32_t data)
176 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
177
178 static const Insn_template
179 arm_rel_insn(unsigned data, int reloc_addend)
180 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
181
182 static const Insn_template
183 data_word(unsigned data, unsigned int r_type, int reloc_addend)
184 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
185
186 // Accessors. This class is used for read-only objects so no modifiers
187 // are provided.
188
189 uint32_t
190 data() const
191 { return this->data_; }
192
193 // Return the instruction sequence type of this.
194 Type
195 type() const
196 { return this->type_; }
197
198 // Return the ARM relocation type of this.
199 unsigned int
200 r_type() const
201 { return this->r_type_; }
202
203 int32_t
204 reloc_addend() const
205 { return this->reloc_addend_; }
206
bb0d3eb0 207 // Return size of instruction template in bytes.
b569affa
DK
208 size_t
209 size() const;
210
bb0d3eb0 211 // Return byte-alignment of instruction template.
b569affa
DK
212 unsigned
213 alignment() const;
214
215 private:
216 // We make the constructor private to ensure that only the factory
217 // methods are used.
218 inline
2ea97941
ILT
219 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
220 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
221 { }
222
223 // Instruction specific data. This is used to store information like
224 // some of the instruction bits.
225 uint32_t data_;
226 // Instruction template type.
227 Type type_;
228 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
229 unsigned int r_type_;
230 // Relocation addend.
231 int32_t reloc_addend_;
232};
233
234// Macro for generating code to stub types. One entry per long/short
235// branch stub
236
237#define DEF_STUBS \
238 DEF_STUB(long_branch_any_any) \
239 DEF_STUB(long_branch_v4t_arm_thumb) \
240 DEF_STUB(long_branch_thumb_only) \
241 DEF_STUB(long_branch_v4t_thumb_thumb) \
242 DEF_STUB(long_branch_v4t_thumb_arm) \
243 DEF_STUB(short_branch_v4t_thumb_arm) \
244 DEF_STUB(long_branch_any_arm_pic) \
245 DEF_STUB(long_branch_any_thumb_pic) \
246 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
247 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
248 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
249 DEF_STUB(long_branch_thumb_only_pic) \
250 DEF_STUB(a8_veneer_b_cond) \
251 DEF_STUB(a8_veneer_b) \
252 DEF_STUB(a8_veneer_bl) \
a2162063
ILT
253 DEF_STUB(a8_veneer_blx) \
254 DEF_STUB(v4_veneer_bx)
b569affa
DK
255
256// Stub types.
257
258#define DEF_STUB(x) arm_stub_##x,
259typedef enum
260 {
261 arm_stub_none,
262 DEF_STUBS
263
264 // First reloc stub type.
265 arm_stub_reloc_first = arm_stub_long_branch_any_any,
266 // Last reloc stub type.
267 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
268
269 // First Cortex-A8 stub type.
270 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
271 // Last Cortex-A8 stub type.
272 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
273
274 // Last stub type.
a2162063 275 arm_stub_type_last = arm_stub_v4_veneer_bx
b569affa
DK
276 } Stub_type;
277#undef DEF_STUB
278
279// Stub template class. Templates are meant to be read-only objects.
280// A stub template for a stub type contains all read-only attributes
281// common to all stubs of the same type.
282
283class Stub_template
284{
285 public:
286 Stub_template(Stub_type, const Insn_template*, size_t);
287
288 ~Stub_template()
289 { }
290
291 // Return stub type.
292 Stub_type
293 type() const
294 { return this->type_; }
295
296 // Return an array of instruction templates.
297 const Insn_template*
298 insns() const
299 { return this->insns_; }
300
301 // Return size of template in number of instructions.
302 size_t
303 insn_count() const
304 { return this->insn_count_; }
305
306 // Return size of template in bytes.
307 size_t
308 size() const
309 { return this->size_; }
310
311 // Return alignment of the stub template.
312 unsigned
313 alignment() const
314 { return this->alignment_; }
315
316 // Return whether entry point is in thumb mode.
317 bool
318 entry_in_thumb_mode() const
319 { return this->entry_in_thumb_mode_; }
320
321 // Return number of relocations in this template.
322 size_t
323 reloc_count() const
324 { return this->relocs_.size(); }
325
326 // Return index of the I-th instruction with relocation.
327 size_t
328 reloc_insn_index(size_t i) const
329 {
330 gold_assert(i < this->relocs_.size());
331 return this->relocs_[i].first;
332 }
333
334 // Return the offset of the I-th instruction with relocation from the
335 // beginning of the stub.
336 section_size_type
337 reloc_offset(size_t i) const
338 {
339 gold_assert(i < this->relocs_.size());
340 return this->relocs_[i].second;
341 }
342
343 private:
344 // This contains information about an instruction template with a relocation
345 // and its offset from start of stub.
346 typedef std::pair<size_t, section_size_type> Reloc;
347
348 // A Stub_template may not be copied. We want to share templates as much
349 // as possible.
350 Stub_template(const Stub_template&);
351 Stub_template& operator=(const Stub_template&);
352
353 // Stub type.
354 Stub_type type_;
355 // Points to an array of Insn_templates.
356 const Insn_template* insns_;
357 // Number of Insn_templates in insns_[].
358 size_t insn_count_;
359 // Size of templated instructions in bytes.
360 size_t size_;
361 // Alignment of templated instructions.
362 unsigned alignment_;
363 // Flag to indicate if entry is in thumb mode.
364 bool entry_in_thumb_mode_;
365 // A table of reloc instruction indices and offsets. We can find these by
366 // looking at the instruction templates but we pre-compute and then stash
367 // them here for speed.
368 std::vector<Reloc> relocs_;
369};
370
371//
372// A class for code stubs. This is a base class for different type of
373// stubs used in the ARM target.
374//
375
376class Stub
377{
378 private:
379 static const section_offset_type invalid_offset =
380 static_cast<section_offset_type>(-1);
381
382 public:
2ea97941
ILT
383 Stub(const Stub_template* stub_template)
384 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
385 { }
386
387 virtual
388 ~Stub()
389 { }
390
391 // Return the stub template.
392 const Stub_template*
393 stub_template() const
394 { return this->stub_template_; }
395
396 // Return offset of code stub from beginning of its containing stub table.
397 section_offset_type
398 offset() const
399 {
400 gold_assert(this->offset_ != invalid_offset);
401 return this->offset_;
402 }
403
404 // Set offset of code stub from beginning of its containing stub table.
405 void
2ea97941
ILT
406 set_offset(section_offset_type offset)
407 { this->offset_ = offset; }
b569affa
DK
408
409 // Return the relocation target address of the i-th relocation in the
410 // stub. This must be defined in a child class.
411 Arm_address
412 reloc_target(size_t i)
413 { return this->do_reloc_target(i); }
414
415 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
416 void
417 write(unsigned char* view, section_size_type view_size, bool big_endian)
418 { this->do_write(view, view_size, big_endian); }
419
bb0d3eb0
DK
420 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
421 // for the i-th instruction.
422 uint16_t
423 thumb16_special(size_t i)
424 { return this->do_thumb16_special(i); }
425
b569affa
DK
426 protected:
427 // This must be defined in the child class.
428 virtual Arm_address
429 do_reloc_target(size_t) = 0;
430
bb0d3eb0 431 // This may be overridden in the child class.
b569affa 432 virtual void
bb0d3eb0
DK
433 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
434 {
435 if (big_endian)
436 this->do_fixed_endian_write<true>(view, view_size);
437 else
438 this->do_fixed_endian_write<false>(view, view_size);
439 }
b569affa 440
bb0d3eb0
DK
441 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
442 // instruction template.
443 virtual uint16_t
444 do_thumb16_special(size_t)
445 { gold_unreachable(); }
446
b569affa 447 private:
bb0d3eb0
DK
448 // A template to implement do_write.
449 template<bool big_endian>
450 void inline
451 do_fixed_endian_write(unsigned char*, section_size_type);
452
b569affa
DK
453 // Its template.
454 const Stub_template* stub_template_;
455 // Offset within the section of containing this stub.
456 section_offset_type offset_;
457};
458
459// Reloc stub class. These are stubs we use to fix up relocation because
460// of limited branch ranges.
461
462class Reloc_stub : public Stub
463{
464 public:
465 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
466 // We assume we never jump to this address.
467 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
468
469 // Return destination address.
470 Arm_address
471 destination_address() const
472 {
473 gold_assert(this->destination_address_ != this->invalid_address);
474 return this->destination_address_;
475 }
476
477 // Set destination address.
478 void
479 set_destination_address(Arm_address address)
480 {
481 gold_assert(address != this->invalid_address);
482 this->destination_address_ = address;
483 }
484
485 // Reset destination address.
486 void
487 reset_destination_address()
488 { this->destination_address_ = this->invalid_address; }
489
490 // Determine stub type for a branch of a relocation of R_TYPE going
491 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
492 // the branch target is a thumb instruction. TARGET is used for look
493 // up ARM-specific linker settings.
494 static Stub_type
495 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
496 Arm_address branch_target, bool target_is_thumb);
497
498 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
499 // and an addend. Since we treat global and local symbol differently, we
500 // use a Symbol object for a global symbol and a object-index pair for
501 // a local symbol.
502 class Key
503 {
504 public:
505 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
506 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
507 // and R_SYM must not be invalid_index.
2ea97941
ILT
508 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
509 unsigned int r_sym, int32_t addend)
510 : stub_type_(stub_type), addend_(addend)
b569affa 511 {
2ea97941 512 if (symbol != NULL)
b569affa
DK
513 {
514 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 515 this->u_.symbol = symbol;
b569affa
DK
516 }
517 else
518 {
2ea97941
ILT
519 gold_assert(relobj != NULL && r_sym != invalid_index);
520 this->r_sym_ = r_sym;
521 this->u_.relobj = relobj;
b569affa
DK
522 }
523 }
524
525 ~Key()
526 { }
527
528 // Accessors: Keys are meant to be read-only object so no modifiers are
529 // provided.
530
531 // Return stub type.
532 Stub_type
533 stub_type() const
534 { return this->stub_type_; }
535
536 // Return the local symbol index or invalid_index.
537 unsigned int
538 r_sym() const
539 { return this->r_sym_; }
540
541 // Return the symbol if there is one.
542 const Symbol*
543 symbol() const
544 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
545
546 // Return the relobj if there is one.
547 const Relobj*
548 relobj() const
549 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
550
551 // Whether this equals to another key k.
552 bool
553 eq(const Key& k) const
554 {
555 return ((this->stub_type_ == k.stub_type_)
556 && (this->r_sym_ == k.r_sym_)
557 && ((this->r_sym_ != Reloc_stub::invalid_index)
558 ? (this->u_.relobj == k.u_.relobj)
559 : (this->u_.symbol == k.u_.symbol))
560 && (this->addend_ == k.addend_));
561 }
562
563 // Return a hash value.
564 size_t
565 hash_value() const
566 {
567 return (this->stub_type_
568 ^ this->r_sym_
569 ^ gold::string_hash<char>(
570 (this->r_sym_ != Reloc_stub::invalid_index)
571 ? this->u_.relobj->name().c_str()
572 : this->u_.symbol->name())
573 ^ this->addend_);
574 }
575
576 // Functors for STL associative containers.
577 struct hash
578 {
579 size_t
580 operator()(const Key& k) const
581 { return k.hash_value(); }
582 };
583
584 struct equal_to
585 {
586 bool
587 operator()(const Key& k1, const Key& k2) const
588 { return k1.eq(k2); }
589 };
590
591 // Name of key. This is mainly for debugging.
592 std::string
593 name() const;
594
595 private:
596 // Stub type.
597 Stub_type stub_type_;
598 // If this is a local symbol, this is the index in the defining object.
599 // Otherwise, it is invalid_index for a global symbol.
600 unsigned int r_sym_;
601 // If r_sym_ is invalid index. This points to a global symbol.
602 // Otherwise, this points a relobj. We used the unsized and target
eb44217c 603 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
b569affa 604 // Arm_relobj. This is done to avoid making the stub class a template
7296d933 605 // as most of the stub machinery is endianness-neutral. However, it
b569affa
DK
606 // may require a bit of casting done by users of this class.
607 union
608 {
609 const Symbol* symbol;
610 const Relobj* relobj;
611 } u_;
612 // Addend associated with a reloc.
613 int32_t addend_;
614 };
615
616 protected:
617 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
618 Reloc_stub(const Stub_template* stub_template)
619 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
620 { }
621
622 ~Reloc_stub()
623 { }
624
625 friend class Stub_factory;
626
b569affa
DK
627 // Return the relocation target address of the i-th relocation in the
628 // stub.
629 Arm_address
630 do_reloc_target(size_t i)
631 {
632 // All reloc stub have only one relocation.
633 gold_assert(i == 0);
634 return this->destination_address_;
635 }
636
bb0d3eb0
DK
637 private:
638 // Address of destination.
639 Arm_address destination_address_;
640};
b569affa 641
bb0d3eb0
DK
642// Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit
643// THUMB branch that meets the following conditions:
644//
645// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
646// branch address is 0xffe.
647// 2. The branch target address is in the same page as the first word of the
648// branch.
649// 3. The branch follows a 32-bit instruction which is not a branch.
650//
651// To do the fix up, we need to store the address of the branch instruction
652// and its target at least. We also need to store the original branch
653// instruction bits for the condition code in a conditional branch. The
654// condition code is used in a special instruction template. We also want
655// to identify input sections needing Cortex-A8 workaround quickly. We store
656// extra information about object and section index of the code section
657// containing a branch being fixed up. The information is used to mark
658// the code section when we finalize the Cortex-A8 stubs.
659//
b569affa 660
bb0d3eb0
DK
661class Cortex_a8_stub : public Stub
662{
663 public:
664 ~Cortex_a8_stub()
665 { }
666
667 // Return the object of the code section containing the branch being fixed
668 // up.
669 Relobj*
670 relobj() const
671 { return this->relobj_; }
672
673 // Return the section index of the code section containing the branch being
674 // fixed up.
675 unsigned int
676 shndx() const
677 { return this->shndx_; }
678
679 // Return the source address of stub. This is the address of the original
680 // branch instruction. LSB is 1 always set to indicate that it is a THUMB
681 // instruction.
682 Arm_address
683 source_address() const
684 { return this->source_address_; }
685
686 // Return the destination address of the stub. This is the branch taken
687 // address of the original branch instruction. LSB is 1 if it is a THUMB
688 // instruction address.
689 Arm_address
690 destination_address() const
691 { return this->destination_address_; }
692
693 // Return the instruction being fixed up.
694 uint32_t
695 original_insn() const
696 { return this->original_insn_; }
697
698 protected:
699 // Cortex_a8_stubs are created via a stub factory. So these are protected.
700 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
701 unsigned int shndx, Arm_address source_address,
702 Arm_address destination_address, uint32_t original_insn)
703 : Stub(stub_template), relobj_(relobj), shndx_(shndx),
704 source_address_(source_address | 1U),
705 destination_address_(destination_address),
706 original_insn_(original_insn)
707 { }
708
709 friend class Stub_factory;
710
711 // Return the relocation target address of the i-th relocation in the
712 // stub.
713 Arm_address
714 do_reloc_target(size_t i)
715 {
716 if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
717 {
718 // The conditional branch veneer has two relocations.
719 gold_assert(i < 2);
720 return i == 0 ? this->source_address_ + 4 : this->destination_address_;
721 }
722 else
723 {
724 // All other Cortex-A8 stubs have only one relocation.
725 gold_assert(i == 0);
726 return this->destination_address_;
727 }
728 }
729
730 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
731 uint16_t
732 do_thumb16_special(size_t);
733
734 private:
735 // Object of the code section containing the branch being fixed up.
736 Relobj* relobj_;
737 // Section index of the code section containing the branch begin fixed up.
738 unsigned int shndx_;
739 // Source address of original branch.
740 Arm_address source_address_;
741 // Destination address of the original branch.
b569affa 742 Arm_address destination_address_;
bb0d3eb0
DK
743 // Original branch instruction. This is needed for copying the condition
744 // code from a condition branch to its stub.
745 uint32_t original_insn_;
b569affa
DK
746};
747
a2162063
ILT
748// ARMv4 BX Rx branch relocation stub class.
749class Arm_v4bx_stub : public Stub
750{
751 public:
752 ~Arm_v4bx_stub()
753 { }
754
755 // Return the associated register.
756 uint32_t
757 reg() const
758 { return this->reg_; }
759
760 protected:
761 // Arm V4BX stubs are created via a stub factory. So these are protected.
762 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
763 : Stub(stub_template), reg_(reg)
764 { }
765
766 friend class Stub_factory;
767
768 // Return the relocation target address of the i-th relocation in the
769 // stub.
770 Arm_address
771 do_reloc_target(size_t)
772 { gold_unreachable(); }
773
774 // This may be overridden in the child class.
775 virtual void
776 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
777 {
778 if (big_endian)
779 this->do_fixed_endian_v4bx_write<true>(view, view_size);
780 else
781 this->do_fixed_endian_v4bx_write<false>(view, view_size);
782 }
783
784 private:
785 // A template to implement do_write.
786 template<bool big_endian>
787 void inline
788 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
789 {
790 const Insn_template* insns = this->stub_template()->insns();
791 elfcpp::Swap<32, big_endian>::writeval(view,
792 (insns[0].data()
793 + (this->reg_ << 16)));
794 view += insns[0].size();
795 elfcpp::Swap<32, big_endian>::writeval(view,
796 (insns[1].data() + this->reg_));
797 view += insns[1].size();
798 elfcpp::Swap<32, big_endian>::writeval(view,
799 (insns[2].data() + this->reg_));
800 }
801
802 // A register index (r0-r14), which is associated with the stub.
803 uint32_t reg_;
804};
805
b569affa
DK
806// Stub factory class.
807
808class Stub_factory
809{
810 public:
811 // Return the unique instance of this class.
812 static const Stub_factory&
813 get_instance()
814 {
815 static Stub_factory singleton;
816 return singleton;
817 }
818
819 // Make a relocation stub.
820 Reloc_stub*
821 make_reloc_stub(Stub_type stub_type) const
822 {
823 gold_assert(stub_type >= arm_stub_reloc_first
824 && stub_type <= arm_stub_reloc_last);
825 return new Reloc_stub(this->stub_templates_[stub_type]);
826 }
827
bb0d3eb0
DK
828 // Make a Cortex-A8 stub.
829 Cortex_a8_stub*
830 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
831 Arm_address source, Arm_address destination,
832 uint32_t original_insn) const
833 {
834 gold_assert(stub_type >= arm_stub_cortex_a8_first
835 && stub_type <= arm_stub_cortex_a8_last);
836 return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
837 source, destination, original_insn);
838 }
839
a2162063
ILT
840 // Make an ARM V4BX relocation stub.
841 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
842 Arm_v4bx_stub*
843 make_arm_v4bx_stub(uint32_t reg) const
844 {
845 gold_assert(reg < 0xf);
846 return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
847 reg);
848 }
849
b569affa
DK
850 private:
851 // Constructor and destructor are protected since we only return a single
852 // instance created in Stub_factory::get_instance().
853
854 Stub_factory();
855
856 // A Stub_factory may not be copied since it is a singleton.
857 Stub_factory(const Stub_factory&);
858 Stub_factory& operator=(Stub_factory&);
859
860 // Stub templates. These are initialized in the constructor.
861 const Stub_template* stub_templates_[arm_stub_type_last+1];
862};
863
56ee5e00
DK
864// A class to hold stubs for the ARM target.
865
866template<bool big_endian>
867class Stub_table : public Output_data
868{
869 public:
2ea97941 870 Stub_table(Arm_input_section<big_endian>* owner)
d099120c
DK
871 : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
872 reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
873 prev_data_size_(0), prev_addralign_(1)
56ee5e00
DK
874 { }
875
876 ~Stub_table()
877 { }
878
879 // Owner of this stub table.
880 Arm_input_section<big_endian>*
881 owner() const
882 { return this->owner_; }
883
884 // Whether this stub table is empty.
885 bool
886 empty() const
a2162063
ILT
887 {
888 return (this->reloc_stubs_.empty()
889 && this->cortex_a8_stubs_.empty()
890 && this->arm_v4bx_stubs_.empty());
891 }
56ee5e00
DK
892
893 // Return the current data size.
894 off_t
895 current_data_size() const
896 { return this->current_data_size_for_child(); }
897
898 // Add a STUB with using KEY. Caller is reponsible for avoid adding
899 // if already a STUB with the same key has been added.
900 void
2fb7225c
DK
901 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
902 {
903 const Stub_template* stub_template = stub->stub_template();
904 gold_assert(stub_template->type() == key.stub_type());
905 this->reloc_stubs_[key] = stub;
d099120c
DK
906
907 // Assign stub offset early. We can do this because we never remove
908 // reloc stubs and they are in the beginning of the stub table.
909 uint64_t align = stub_template->alignment();
910 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
911 stub->set_offset(this->reloc_stubs_size_);
912 this->reloc_stubs_size_ += stub_template->size();
913 this->reloc_stubs_addralign_ =
914 std::max(this->reloc_stubs_addralign_, align);
2fb7225c
DK
915 }
916
917 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
918 // Caller is reponsible for avoid adding if already a STUB with the same
919 // address has been added.
920 void
921 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
922 {
923 std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
924 this->cortex_a8_stubs_.insert(value);
925 }
926
a2162063
ILT
927 // Add an ARM V4BX relocation stub. A register index will be retrieved
928 // from the stub.
929 void
930 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
931 {
932 gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
933 this->arm_v4bx_stubs_[stub->reg()] = stub;
934 }
935
2fb7225c
DK
936 // Remove all Cortex-A8 stubs.
937 void
938 remove_all_cortex_a8_stubs();
56ee5e00
DK
939
940 // Look up a relocation stub using KEY. Return NULL if there is none.
941 Reloc_stub*
942 find_reloc_stub(const Reloc_stub::Key& key) const
943 {
944 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
945 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
946 }
947
a2162063
ILT
948 // Look up an arm v4bx relocation stub using the register index.
949 // Return NULL if there is none.
950 Arm_v4bx_stub*
951 find_arm_v4bx_stub(const uint32_t reg) const
952 {
953 gold_assert(reg < 0xf);
954 return this->arm_v4bx_stubs_[reg];
955 }
956
56ee5e00
DK
957 // Relocate stubs in this stub table.
958 void
959 relocate_stubs(const Relocate_info<32, big_endian>*,
960 Target_arm<big_endian>*, Output_section*,
961 unsigned char*, Arm_address, section_size_type);
962
2fb7225c
DK
963 // Update data size and alignment at the end of a relaxation pass. Return
964 // true if either data size or alignment is different from that of the
965 // previous relaxation pass.
966 bool
967 update_data_size_and_addralign();
968
969 // Finalize stubs. Set the offsets of all stubs and mark input sections
970 // needing the Cortex-A8 workaround.
971 void
972 finalize_stubs();
973
974 // Apply Cortex-A8 workaround to an address range.
975 void
976 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
977 unsigned char*, Arm_address,
978 section_size_type);
979
56ee5e00
DK
980 protected:
981 // Write out section contents.
982 void
983 do_write(Output_file*);
984
985 // Return the required alignment.
986 uint64_t
987 do_addralign() const
2fb7225c 988 { return this->prev_addralign_; }
56ee5e00
DK
989
990 // Reset address and file offset.
991 void
2fb7225c
DK
992 do_reset_address_and_file_offset()
993 { this->set_current_data_size_for_child(this->prev_data_size_); }
56ee5e00 994
2fb7225c
DK
995 // Set final data size.
996 void
997 set_final_data_size()
998 { this->set_data_size(this->current_data_size()); }
999
56ee5e00 1000 private:
2fb7225c
DK
1001 // Relocate one stub.
1002 void
1003 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
1004 Target_arm<big_endian>*, Output_section*,
1005 unsigned char*, Arm_address, section_size_type);
1006
1007 // Unordered map of relocation stubs.
56ee5e00
DK
1008 typedef
1009 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
1010 Reloc_stub::Key::equal_to>
1011 Reloc_stub_map;
1012
2fb7225c
DK
1013 // List of Cortex-A8 stubs ordered by addresses of branches being
1014 // fixed up in output.
1015 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
a2162063
ILT
1016 // List of Arm V4BX relocation stubs ordered by associated registers.
1017 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
2fb7225c 1018
56ee5e00
DK
1019 // Owner of this stub table.
1020 Arm_input_section<big_endian>* owner_;
56ee5e00
DK
1021 // The relocation stubs.
1022 Reloc_stub_map reloc_stubs_;
d099120c
DK
1023 // Size of reloc stubs.
1024 off_t reloc_stubs_size_;
1025 // Maximum address alignment of reloc stubs.
1026 uint64_t reloc_stubs_addralign_;
2fb7225c
DK
1027 // The cortex_a8_stubs.
1028 Cortex_a8_stub_list cortex_a8_stubs_;
a2162063
ILT
1029 // The Arm V4BX relocation stubs.
1030 Arm_v4bx_stub_list arm_v4bx_stubs_;
2fb7225c
DK
1031 // data size of this in the previous pass.
1032 off_t prev_data_size_;
1033 // address alignment of this in the previous pass.
1034 uint64_t prev_addralign_;
56ee5e00
DK
1035};
1036
af2cdeae
DK
1037// Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry
1038// we add to the end of an EXIDX input section that goes into the output.
1039
1040class Arm_exidx_cantunwind : public Output_section_data
1041{
1042 public:
1043 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
1044 : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
1045 { }
1046
1047 // Return the object containing the section pointed by this.
1048 Relobj*
1049 relobj() const
1050 { return this->relobj_; }
1051
1052 // Return the section index of the section pointed by this.
1053 unsigned int
1054 shndx() const
1055 { return this->shndx_; }
1056
1057 protected:
1058 void
1059 do_write(Output_file* of)
1060 {
1061 if (parameters->target().is_big_endian())
1062 this->do_fixed_endian_write<true>(of);
1063 else
1064 this->do_fixed_endian_write<false>(of);
1065 }
1066
1067 private:
7296d933 1068 // Implement do_write for a given endianness.
af2cdeae
DK
1069 template<bool big_endian>
1070 void inline
1071 do_fixed_endian_write(Output_file*);
1072
1073 // The object containing the section pointed by this.
1074 Relobj* relobj_;
1075 // The section index of the section pointed by this.
1076 unsigned int shndx_;
1077};
1078
1079// During EXIDX coverage fix-up, we compact an EXIDX section. The
1080// Offset map is used to map input section offset within the EXIDX section
1081// to the output offset from the start of this EXIDX section.
1082
1083typedef std::map<section_offset_type, section_offset_type>
1084 Arm_exidx_section_offset_map;
1085
1086// Arm_exidx_merged_section class. This represents an EXIDX input section
1087// with some of its entries merged.
1088
1089class Arm_exidx_merged_section : public Output_relaxed_input_section
1090{
1091 public:
1092 // Constructor for Arm_exidx_merged_section.
1093 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
1094 // SECTION_OFFSET_MAP points to a section offset map describing how
1095 // parts of the input section are mapped to output. DELETED_BYTES is
1096 // the number of bytes deleted from the EXIDX input section.
1097 Arm_exidx_merged_section(
1098 const Arm_exidx_input_section& exidx_input_section,
1099 const Arm_exidx_section_offset_map& section_offset_map,
1100 uint32_t deleted_bytes);
1101
1102 // Return the original EXIDX input section.
1103 const Arm_exidx_input_section&
1104 exidx_input_section() const
1105 { return this->exidx_input_section_; }
1106
1107 // Return the section offset map.
1108 const Arm_exidx_section_offset_map&
1109 section_offset_map() const
1110 { return this->section_offset_map_; }
1111
1112 protected:
1113 // Write merged section into file OF.
1114 void
1115 do_write(Output_file* of);
1116
1117 bool
1118 do_output_offset(const Relobj*, unsigned int, section_offset_type,
1119 section_offset_type*) const;
1120
1121 private:
1122 // Original EXIDX input section.
1123 const Arm_exidx_input_section& exidx_input_section_;
1124 // Section offset map.
1125 const Arm_exidx_section_offset_map& section_offset_map_;
1126};
1127
10ad9fe5
DK
1128// A class to wrap an ordinary input section containing executable code.
1129
1130template<bool big_endian>
1131class Arm_input_section : public Output_relaxed_input_section
1132{
1133 public:
2ea97941
ILT
1134 Arm_input_section(Relobj* relobj, unsigned int shndx)
1135 : Output_relaxed_input_section(relobj, shndx, 1),
10ad9fe5
DK
1136 original_addralign_(1), original_size_(0), stub_table_(NULL)
1137 { }
1138
1139 ~Arm_input_section()
1140 { }
1141
1142 // Initialize.
1143 void
1144 init();
1145
1146 // Whether this is a stub table owner.
1147 bool
1148 is_stub_table_owner() const
1149 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
1150
1151 // Return the stub table.
1152 Stub_table<big_endian>*
1153 stub_table() const
1154 { return this->stub_table_; }
1155
1156 // Set the stub_table.
1157 void
2ea97941
ILT
1158 set_stub_table(Stub_table<big_endian>* stub_table)
1159 { this->stub_table_ = stub_table; }
10ad9fe5 1160
07f508a2
DK
1161 // Downcast a base pointer to an Arm_input_section pointer. This is
1162 // not type-safe but we only use Arm_input_section not the base class.
1163 static Arm_input_section<big_endian>*
1164 as_arm_input_section(Output_relaxed_input_section* poris)
1165 { return static_cast<Arm_input_section<big_endian>*>(poris); }
1166
10ad9fe5
DK
1167 protected:
1168 // Write data to output file.
1169 void
1170 do_write(Output_file*);
1171
1172 // Return required alignment of this.
1173 uint64_t
1174 do_addralign() const
1175 {
1176 if (this->is_stub_table_owner())
1177 return std::max(this->stub_table_->addralign(),
1178 this->original_addralign_);
1179 else
1180 return this->original_addralign_;
1181 }
1182
1183 // Finalize data size.
1184 void
1185 set_final_data_size();
1186
1187 // Reset address and file offset.
1188 void
1189 do_reset_address_and_file_offset();
1190
1191 // Output offset.
1192 bool
2ea97941
ILT
1193 do_output_offset(const Relobj* object, unsigned int shndx,
1194 section_offset_type offset,
10ad9fe5
DK
1195 section_offset_type* poutput) const
1196 {
1197 if ((object == this->relobj())
2ea97941
ILT
1198 && (shndx == this->shndx())
1199 && (offset >= 0)
1200 && (convert_types<uint64_t, section_offset_type>(offset)
10ad9fe5
DK
1201 <= this->original_size_))
1202 {
2ea97941 1203 *poutput = offset;
10ad9fe5
DK
1204 return true;
1205 }
1206 else
1207 return false;
1208 }
1209
1210 private:
1211 // Copying is not allowed.
1212 Arm_input_section(const Arm_input_section&);
1213 Arm_input_section& operator=(const Arm_input_section&);
1214
1215 // Address alignment of the original input section.
1216 uint64_t original_addralign_;
1217 // Section size of the original input section.
1218 uint64_t original_size_;
1219 // Stub table.
1220 Stub_table<big_endian>* stub_table_;
1221};
1222
80d0d023
DK
1223// Arm_exidx_fixup class. This is used to define a number of methods
1224// and keep states for fixing up EXIDX coverage.
1225
1226class Arm_exidx_fixup
1227{
1228 public:
1229 Arm_exidx_fixup(Output_section* exidx_output_section)
1230 : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
1231 last_inlined_entry_(0), last_input_section_(NULL),
546c7457 1232 section_offset_map_(NULL), first_output_text_section_(NULL)
80d0d023
DK
1233 { }
1234
1235 ~Arm_exidx_fixup()
1236 { delete this->section_offset_map_; }
1237
1238 // Process an EXIDX section for entry merging. Return number of bytes to
1239 // be deleted in output. If parts of the input EXIDX section are merged
1240 // a heap allocated Arm_exidx_section_offset_map is store in the located
1241 // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for
1242 // releasing it.
1243 template<bool big_endian>
1244 uint32_t
1245 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
1246 Arm_exidx_section_offset_map** psection_offset_map);
1247
1248 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
1249 // input section, if there is not one already.
1250 void
1251 add_exidx_cantunwind_as_needed();
1252
546c7457
DK
1253 // Return the output section for the text section which is linked to the
1254 // first exidx input in output.
1255 Output_section*
1256 first_output_text_section() const
1257 { return this->first_output_text_section_; }
1258
80d0d023
DK
1259 private:
1260 // Copying is not allowed.
1261 Arm_exidx_fixup(const Arm_exidx_fixup&);
1262 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
1263
1264 // Type of EXIDX unwind entry.
1265 enum Unwind_type
1266 {
1267 // No type.
1268 UT_NONE,
1269 // EXIDX_CANTUNWIND.
1270 UT_EXIDX_CANTUNWIND,
1271 // Inlined entry.
1272 UT_INLINED_ENTRY,
1273 // Normal entry.
1274 UT_NORMAL_ENTRY,
1275 };
1276
1277 // Process an EXIDX entry. We only care about the second word of the
1278 // entry. Return true if the entry can be deleted.
1279 bool
1280 process_exidx_entry(uint32_t second_word);
1281
1282 // Update the current section offset map during EXIDX section fix-up.
1283 // If there is no map, create one. INPUT_OFFSET is the offset of a
1284 // reference point, DELETED_BYTES is the number of deleted by in the
1285 // section so far. If DELETE_ENTRY is true, the reference point and
1286 // all offsets after the previous reference point are discarded.
1287 void
1288 update_offset_map(section_offset_type input_offset,
1289 section_size_type deleted_bytes, bool delete_entry);
1290
1291 // EXIDX output section.
1292 Output_section* exidx_output_section_;
1293 // Unwind type of the last EXIDX entry processed.
1294 Unwind_type last_unwind_type_;
1295 // Last seen inlined EXIDX entry.
1296 uint32_t last_inlined_entry_;
1297 // Last processed EXIDX input section.
2b328d4e 1298 const Arm_exidx_input_section* last_input_section_;
80d0d023
DK
1299 // Section offset map created in process_exidx_section.
1300 Arm_exidx_section_offset_map* section_offset_map_;
546c7457
DK
1301 // Output section for the text section which is linked to the first exidx
1302 // input in output.
1303 Output_section* first_output_text_section_;
80d0d023
DK
1304};
1305
07f508a2
DK
1306// Arm output section class. This is defined mainly to add a number of
1307// stub generation methods.
1308
1309template<bool big_endian>
1310class Arm_output_section : public Output_section
1311{
1312 public:
2b328d4e
DK
1313 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
1314
2ea97941
ILT
1315 Arm_output_section(const char* name, elfcpp::Elf_Word type,
1316 elfcpp::Elf_Xword flags)
1317 : Output_section(name, type, flags)
07f508a2
DK
1318 { }
1319
1320 ~Arm_output_section()
1321 { }
1322
1323 // Group input sections for stub generation.
1324 void
1325 group_sections(section_size_type, bool, Target_arm<big_endian>*);
1326
1327 // Downcast a base pointer to an Arm_output_section pointer. This is
1328 // not type-safe but we only use Arm_output_section not the base class.
1329 static Arm_output_section<big_endian>*
1330 as_arm_output_section(Output_section* os)
1331 { return static_cast<Arm_output_section<big_endian>*>(os); }
1332
2b328d4e
DK
1333 // Append all input text sections in this into LIST.
1334 void
1335 append_text_sections_to_list(Text_section_list* list);
1336
1337 // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION
1338 // is a list of text input sections sorted in ascending order of their
1339 // output addresses.
1340 void
4a54abbb
DK
1341 fix_exidx_coverage(Layout* layout,
1342 const Text_section_list& sorted_text_section,
2b328d4e
DK
1343 Symbol_table* symtab);
1344
07f508a2
DK
1345 private:
1346 // For convenience.
1347 typedef Output_section::Input_section Input_section;
1348 typedef Output_section::Input_section_list Input_section_list;
1349
1350 // Create a stub group.
1351 void create_stub_group(Input_section_list::const_iterator,
1352 Input_section_list::const_iterator,
1353 Input_section_list::const_iterator,
1354 Target_arm<big_endian>*,
1355 std::vector<Output_relaxed_input_section*>*);
1356};
1357
993d07c1
DK
1358// Arm_exidx_input_section class. This represents an EXIDX input section.
1359
1360class Arm_exidx_input_section
1361{
1362 public:
1363 static const section_offset_type invalid_offset =
1364 static_cast<section_offset_type>(-1);
1365
1366 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
1367 unsigned int link, uint32_t size, uint32_t addralign)
1368 : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
1369 addralign_(addralign)
1370 { }
1371
1372 ~Arm_exidx_input_section()
1373 { }
1374
1375 // Accessors: This is a read-only class.
1376
1377 // Return the object containing this EXIDX input section.
1378 Relobj*
1379 relobj() const
1380 { return this->relobj_; }
1381
1382 // Return the section index of this EXIDX input section.
1383 unsigned int
1384 shndx() const
1385 { return this->shndx_; }
1386
1387 // Return the section index of linked text section in the same object.
1388 unsigned int
1389 link() const
1390 { return this->link_; }
1391
1392 // Return size of the EXIDX input section.
1393 uint32_t
1394 size() const
1395 { return this->size_; }
1396
1397 // Reutnr address alignment of EXIDX input section.
1398 uint32_t
1399 addralign() const
1400 { return this->addralign_; }
1401
1402 private:
1403 // Object containing this.
1404 Relobj* relobj_;
1405 // Section index of this.
1406 unsigned int shndx_;
1407 // text section linked to this in the same object.
1408 unsigned int link_;
1409 // Size of this. For ARM 32-bit is sufficient.
1410 uint32_t size_;
1411 // Address alignment of this. For ARM 32-bit is sufficient.
1412 uint32_t addralign_;
1413};
1414
8ffa3667
DK
1415// Arm_relobj class.
1416
1417template<bool big_endian>
1418class Arm_relobj : public Sized_relobj<32, big_endian>
1419{
1420 public:
1421 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
1422
2ea97941 1423 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 1424 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941 1425 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
a0351a69 1426 stub_tables_(), local_symbol_is_thumb_function_(),
20138696 1427 attributes_section_data_(NULL), mapping_symbols_info_(),
e7eca48c 1428 section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
7296d933
DK
1429 output_local_symbol_count_needs_update_(false),
1430 merge_flags_and_attributes_(true)
8ffa3667
DK
1431 { }
1432
1433 ~Arm_relobj()
a0351a69 1434 { delete this->attributes_section_data_; }
8ffa3667
DK
1435
1436 // Return the stub table of the SHNDX-th section if there is one.
1437 Stub_table<big_endian>*
2ea97941 1438 stub_table(unsigned int shndx) const
8ffa3667 1439 {
2ea97941
ILT
1440 gold_assert(shndx < this->stub_tables_.size());
1441 return this->stub_tables_[shndx];
8ffa3667
DK
1442 }
1443
1444 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1445 void
2ea97941 1446 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 1447 {
2ea97941
ILT
1448 gold_assert(shndx < this->stub_tables_.size());
1449 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
1450 }
1451
1452 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
1453 // index. This is only valid after do_count_local_symbol is called.
1454 bool
1455 local_symbol_is_thumb_function(unsigned int r_sym) const
1456 {
1457 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
1458 return this->local_symbol_is_thumb_function_[r_sym];
1459 }
1460
1461 // Scan all relocation sections for stub generation.
1462 void
1463 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
1464 const Layout*);
1465
1466 // Convert regular input section with index SHNDX to a relaxed section.
1467 void
2ea97941 1468 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
1469 {
1470 // The stubs have relocations and we need to process them after writing
1471 // out the stubs. So relocation now must follow section write.
2b328d4e 1472 this->set_section_offset(shndx, -1ULL);
8ffa3667
DK
1473 this->set_relocs_must_follow_section_writes();
1474 }
1475
1476 // Downcast a base pointer to an Arm_relobj pointer. This is
1477 // not type-safe but we only use Arm_relobj not the base class.
1478 static Arm_relobj<big_endian>*
2ea97941
ILT
1479 as_arm_relobj(Relobj* relobj)
1480 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 1481
d5b40221
DK
1482 // Processor-specific flags in ELF file header. This is valid only after
1483 // reading symbols.
1484 elfcpp::Elf_Word
1485 processor_specific_flags() const
1486 { return this->processor_specific_flags_; }
1487
a0351a69
DK
1488 // Attribute section data This is the contents of the .ARM.attribute section
1489 // if there is one.
1490 const Attributes_section_data*
1491 attributes_section_data() const
1492 { return this->attributes_section_data_; }
1493
20138696
DK
1494 // Mapping symbol location.
1495 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
1496
1497 // Functor for STL container.
1498 struct Mapping_symbol_position_less
1499 {
1500 bool
1501 operator()(const Mapping_symbol_position& p1,
1502 const Mapping_symbol_position& p2) const
1503 {
1504 return (p1.first < p2.first
1505 || (p1.first == p2.first && p1.second < p2.second));
1506 }
1507 };
1508
1509 // We only care about the first character of a mapping symbol, so
1510 // we only store that instead of the whole symbol name.
1511 typedef std::map<Mapping_symbol_position, char,
1512 Mapping_symbol_position_less> Mapping_symbols_info;
1513
2fb7225c
DK
1514 // Whether a section contains any Cortex-A8 workaround.
1515 bool
1516 section_has_cortex_a8_workaround(unsigned int shndx) const
1517 {
1518 return (this->section_has_cortex_a8_workaround_ != NULL
1519 && (*this->section_has_cortex_a8_workaround_)[shndx]);
1520 }
1521
1522 // Mark a section that has Cortex-A8 workaround.
1523 void
1524 mark_section_for_cortex_a8_workaround(unsigned int shndx)
1525 {
1526 if (this->section_has_cortex_a8_workaround_ == NULL)
1527 this->section_has_cortex_a8_workaround_ =
1528 new std::vector<bool>(this->shnum(), false);
1529 (*this->section_has_cortex_a8_workaround_)[shndx] = true;
1530 }
1531
993d07c1
DK
1532 // Return the EXIDX section of an text section with index SHNDX or NULL
1533 // if the text section has no associated EXIDX section.
1534 const Arm_exidx_input_section*
1535 exidx_input_section_by_link(unsigned int shndx) const
1536 {
1537 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1538 return ((p != this->exidx_section_map_.end()
1539 && p->second->link() == shndx)
1540 ? p->second
1541 : NULL);
1542 }
1543
1544 // Return the EXIDX section with index SHNDX or NULL if there is none.
1545 const Arm_exidx_input_section*
1546 exidx_input_section_by_shndx(unsigned shndx) const
1547 {
1548 Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
1549 return ((p != this->exidx_section_map_.end()
1550 && p->second->shndx() == shndx)
1551 ? p->second
1552 : NULL);
1553 }
1554
e7eca48c
DK
1555 // Whether output local symbol count needs updating.
1556 bool
1557 output_local_symbol_count_needs_update() const
1558 { return this->output_local_symbol_count_needs_update_; }
1559
1560 // Set output_local_symbol_count_needs_update flag to be true.
1561 void
1562 set_output_local_symbol_count_needs_update()
1563 { this->output_local_symbol_count_needs_update_ = true; }
1564
1565 // Update output local symbol count at the end of relaxation.
1566 void
1567 update_output_local_symbol_count();
1568
7296d933
DK
1569 // Whether we want to merge processor-specific flags and attributes.
1570 bool
1571 merge_flags_and_attributes() const
1572 { return this->merge_flags_and_attributes_; }
1573
8ffa3667
DK
1574 protected:
1575 // Post constructor setup.
1576 void
1577 do_setup()
1578 {
1579 // Call parent's setup method.
1580 Sized_relobj<32, big_endian>::do_setup();
1581
1582 // Initialize look-up tables.
1583 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
1584 this->stub_tables_.swap(empty_stub_table_list);
1585 }
1586
1587 // Count the local symbols.
1588 void
1589 do_count_local_symbols(Stringpool_template<char>*,
1590 Stringpool_template<char>*);
1591
1592 void
43d12afe 1593 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
8ffa3667
DK
1594 const unsigned char* pshdrs,
1595 typename Sized_relobj<32, big_endian>::Views* pivews);
1596
d5b40221
DK
1597 // Read the symbol information.
1598 void
1599 do_read_symbols(Read_symbols_data* sd);
1600
99e5bff2
DK
1601 // Process relocs for garbage collection.
1602 void
1603 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1604
8ffa3667 1605 private:
44272192
DK
1606
1607 // Whether a section needs to be scanned for relocation stubs.
1608 bool
1609 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1610 const Relobj::Output_sections&,
2b328d4e 1611 const Symbol_table *, const unsigned char*);
44272192 1612
cf846138
DK
1613 // Whether a section is a scannable text section.
1614 bool
1615 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
1616 const Output_section*, const Symbol_table *);
1617
44272192
DK
1618 // Whether a section needs to be scanned for the Cortex-A8 erratum.
1619 bool
1620 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
1621 unsigned int, Output_section*,
1622 const Symbol_table *);
1623
1624 // Scan a section for the Cortex-A8 erratum.
1625 void
1626 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
1627 unsigned int, Output_section*,
1628 Target_arm<big_endian>*);
1629
c8761b9a
DK
1630 // Find the linked text section of an EXIDX section by looking at the
1631 // first reloction of the EXIDX section. PSHDR points to the section
1632 // headers of a relocation section and PSYMS points to the local symbols.
1633 // PSHNDX points to a location storing the text section index if found.
1634 // Return whether we can find the linked section.
1635 bool
1636 find_linked_text_section(const unsigned char* pshdr,
1637 const unsigned char* psyms, unsigned int* pshndx);
1638
1639 //
993d07c1 1640 // Make a new Arm_exidx_input_section object for EXIDX section with
c8761b9a
DK
1641 // index SHNDX and section header SHDR. TEXT_SHNDX is the section
1642 // index of the linked text section.
993d07c1
DK
1643 void
1644 make_exidx_input_section(unsigned int shndx,
c8761b9a
DK
1645 const elfcpp::Shdr<32, big_endian>& shdr,
1646 unsigned int text_shndx);
993d07c1 1647
cb1be87e
DK
1648 // Return the output address of either a plain input section or a
1649 // relaxed input section. SHNDX is the section index.
1650 Arm_address
1651 simple_input_section_output_address(unsigned int, Output_section*);
1652
8ffa3667 1653 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
993d07c1
DK
1654 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
1655 Exidx_section_map;
1656
1657 // List of stub tables.
8ffa3667
DK
1658 Stub_table_list stub_tables_;
1659 // Bit vector to tell if a local symbol is a thumb function or not.
1660 // This is only valid after do_count_local_symbol is called.
1661 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
1662 // processor-specific flags in ELF file header.
1663 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1664 // Object attributes if there is an .ARM.attributes section or NULL.
1665 Attributes_section_data* attributes_section_data_;
20138696
DK
1666 // Mapping symbols information.
1667 Mapping_symbols_info mapping_symbols_info_;
2fb7225c
DK
1668 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
1669 std::vector<bool>* section_has_cortex_a8_workaround_;
993d07c1
DK
1670 // Map a text section to its associated .ARM.exidx section, if there is one.
1671 Exidx_section_map exidx_section_map_;
e7eca48c
DK
1672 // Whether output local symbol count needs updating.
1673 bool output_local_symbol_count_needs_update_;
7296d933
DK
1674 // Whether we merge processor flags and attributes of this object to
1675 // output.
1676 bool merge_flags_and_attributes_;
d5b40221
DK
1677};
1678
1679// Arm_dynobj class.
1680
1681template<bool big_endian>
1682class Arm_dynobj : public Sized_dynobj<32, big_endian>
1683{
1684 public:
2ea97941 1685 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1686 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1687 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1688 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1689 { }
1690
1691 ~Arm_dynobj()
a0351a69 1692 { delete this->attributes_section_data_; }
d5b40221
DK
1693
1694 // Downcast a base pointer to an Arm_relobj pointer. This is
1695 // not type-safe but we only use Arm_relobj not the base class.
1696 static Arm_dynobj<big_endian>*
1697 as_arm_dynobj(Dynobj* dynobj)
1698 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1699
1700 // Processor-specific flags in ELF file header. This is valid only after
1701 // reading symbols.
1702 elfcpp::Elf_Word
1703 processor_specific_flags() const
1704 { return this->processor_specific_flags_; }
1705
a0351a69
DK
1706 // Attributes section data.
1707 const Attributes_section_data*
1708 attributes_section_data() const
1709 { return this->attributes_section_data_; }
1710
d5b40221
DK
1711 protected:
1712 // Read the symbol information.
1713 void
1714 do_read_symbols(Read_symbols_data* sd);
1715
1716 private:
1717 // processor-specific flags in ELF file header.
1718 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1719 // Object attributes if there is an .ARM.attributes section or NULL.
1720 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1721};
1722
e9bbb538
DK
1723// Functor to read reloc addends during stub generation.
1724
1725template<int sh_type, bool big_endian>
1726struct Stub_addend_reader
1727{
1728 // Return the addend for a relocation of a particular type. Depending
1729 // on whether this is a REL or RELA relocation, read the addend from a
1730 // view or from a Reloc object.
1731 elfcpp::Elf_types<32>::Elf_Swxword
1732 operator()(
1733 unsigned int /* r_type */,
1734 const unsigned char* /* view */,
1735 const typename Reloc_types<sh_type,
ebd95253 1736 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1737};
1738
1739// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1740
1741template<bool big_endian>
1742struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1743{
1744 elfcpp::Elf_types<32>::Elf_Swxword
1745 operator()(
1746 unsigned int,
1747 const unsigned char*,
1748 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1749};
1750
1751// Specialized Stub_addend_reader for RELA type relocation sections.
1752// We currently do not handle RELA type relocation sections but it is trivial
1753// to implement the addend reader. This is provided for completeness and to
1754// make it easier to add support for RELA relocation sections in the future.
1755
1756template<bool big_endian>
1757struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1758{
1759 elfcpp::Elf_types<32>::Elf_Swxword
1760 operator()(
1761 unsigned int,
1762 const unsigned char*,
1763 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1764 big_endian>::Reloc& reloc) const
1765 { return reloc.get_r_addend(); }
e9bbb538
DK
1766};
1767
a120bc7f
DK
1768// Cortex_a8_reloc class. We keep record of relocation that may need
1769// the Cortex-A8 erratum workaround.
1770
1771class Cortex_a8_reloc
1772{
1773 public:
1774 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
1775 Arm_address destination)
1776 : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
1777 { }
1778
1779 ~Cortex_a8_reloc()
1780 { }
1781
1782 // Accessors: This is a read-only class.
1783
1784 // Return the relocation stub associated with this relocation if there is
1785 // one.
1786 const Reloc_stub*
1787 reloc_stub() const
1788 { return this->reloc_stub_; }
1789
1790 // Return the relocation type.
1791 unsigned int
1792 r_type() const
1793 { return this->r_type_; }
1794
1795 // Return the destination address of the relocation. LSB stores the THUMB
1796 // bit.
1797 Arm_address
1798 destination() const
1799 { return this->destination_; }
1800
1801 private:
1802 // Associated relocation stub if there is one, or NULL.
1803 const Reloc_stub* reloc_stub_;
1804 // Relocation type.
1805 unsigned int r_type_;
1806 // Destination address of this relocation. LSB is used to distinguish
1807 // ARM/THUMB mode.
1808 Arm_address destination_;
1809};
1810
4a54abbb
DK
1811// Arm_output_data_got class. We derive this from Output_data_got to add
1812// extra methods to handle TLS relocations in a static link.
1813
1814template<bool big_endian>
1815class Arm_output_data_got : public Output_data_got<32, big_endian>
1816{
1817 public:
1818 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
1819 : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
1820 { }
1821
1822 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1823 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1824 // applied in a static link.
1825 void
1826 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1827 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1828
1829 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1830 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1831 // relocation that needs to be applied in a static link.
1832 void
1833 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1834 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1835 {
1836 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1837 index));
1838 }
1839
1840 // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
1841 // The first one is initialized to be 1, which is the module index for
1842 // the main executable and the second one 0. A reloc of the type
1843 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
1844 // be applied by gold. GSYM is a global symbol.
1845 void
1846 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
1847
1848 // Same as the above but for a local symbol in OBJECT with INDEX.
1849 void
1850 add_tls_gd32_with_static_reloc(unsigned int got_type,
1851 Sized_relobj<32, big_endian>* object,
1852 unsigned int index);
1853
1854 protected:
1855 // Write out the GOT table.
1856 void
1857 do_write(Output_file*);
1858
1859 private:
1860 // This class represent dynamic relocations that need to be applied by
1861 // gold because we are using TLS relocations in a static link.
1862 class Static_reloc
1863 {
1864 public:
1865 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
1866 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
1867 { this->u_.global.symbol = gsym; }
1868
1869 Static_reloc(unsigned int got_offset, unsigned int r_type,
1870 Sized_relobj<32, big_endian>* relobj, unsigned int index)
1871 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
1872 {
1873 this->u_.local.relobj = relobj;
1874 this->u_.local.index = index;
1875 }
1876
1877 // Return the GOT offset.
1878 unsigned int
1879 got_offset() const
1880 { return this->got_offset_; }
1881
1882 // Relocation type.
1883 unsigned int
1884 r_type() const
1885 { return this->r_type_; }
1886
1887 // Whether the symbol is global or not.
1888 bool
1889 symbol_is_global() const
1890 { return this->symbol_is_global_; }
1891
1892 // For a relocation against a global symbol, the global symbol.
1893 Symbol*
1894 symbol() const
1895 {
1896 gold_assert(this->symbol_is_global_);
1897 return this->u_.global.symbol;
1898 }
1899
1900 // For a relocation against a local symbol, the defining object.
1901 Sized_relobj<32, big_endian>*
1902 relobj() const
1903 {
1904 gold_assert(!this->symbol_is_global_);
1905 return this->u_.local.relobj;
1906 }
1907
1908 // For a relocation against a local symbol, the local symbol index.
1909 unsigned int
1910 index() const
1911 {
1912 gold_assert(!this->symbol_is_global_);
1913 return this->u_.local.index;
1914 }
1915
1916 private:
1917 // GOT offset of the entry to which this relocation is applied.
1918 unsigned int got_offset_;
1919 // Type of relocation.
1920 unsigned int r_type_;
1921 // Whether this relocation is against a global symbol.
1922 bool symbol_is_global_;
1923 // A global or local symbol.
1924 union
1925 {
1926 struct
1927 {
1928 // For a global symbol, the symbol itself.
1929 Symbol* symbol;
1930 } global;
1931 struct
1932 {
1933 // For a local symbol, the object defining object.
1934 Sized_relobj<32, big_endian>* relobj;
1935 // For a local symbol, the symbol index.
1936 unsigned int index;
1937 } local;
1938 } u_;
1939 };
1940
1941 // Symbol table of the output object.
1942 Symbol_table* symbol_table_;
1943 // Layout of the output object.
1944 Layout* layout_;
1945 // Static relocs to be applied to the GOT.
1946 std::vector<Static_reloc> static_relocs_;
1947};
1948
c121c671
DK
1949// Utilities for manipulating integers of up to 32-bits
1950
1951namespace utils
1952{
1953 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1954 // an int32_t. NO_BITS must be between 1 to 32.
1955 template<int no_bits>
1956 static inline int32_t
1957 sign_extend(uint32_t bits)
1958 {
96d49306 1959 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1960 if (no_bits == 32)
1961 return static_cast<int32_t>(bits);
1962 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1963 bits &= mask;
1964 uint32_t top_bit = 1U << (no_bits - 1);
1965 int32_t as_signed = static_cast<int32_t>(bits);
1966 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1967 }
1968
1969 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1970 template<int no_bits>
1971 static inline bool
1972 has_overflow(uint32_t bits)
1973 {
96d49306 1974 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1975 if (no_bits == 32)
1976 return false;
1977 int32_t max = (1 << (no_bits - 1)) - 1;
1978 int32_t min = -(1 << (no_bits - 1));
1979 int32_t as_signed = static_cast<int32_t>(bits);
1980 return as_signed > max || as_signed < min;
1981 }
1982
5e445df6
ILT
1983 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1984 // fits in the given number of bits as either a signed or unsigned value.
1985 // For example, has_signed_unsigned_overflow<8> would check
1986 // -128 <= bits <= 255
1987 template<int no_bits>
1988 static inline bool
1989 has_signed_unsigned_overflow(uint32_t bits)
1990 {
1991 gold_assert(no_bits >= 2 && no_bits <= 32);
1992 if (no_bits == 32)
1993 return false;
1994 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1995 int32_t min = -(1 << (no_bits - 1));
1996 int32_t as_signed = static_cast<int32_t>(bits);
1997 return as_signed > max || as_signed < min;
1998 }
1999
c121c671
DK
2000 // Select bits from A and B using bits in MASK. For each n in [0..31],
2001 // the n-th bit in the result is chosen from the n-th bits of A and B.
2002 // A zero selects A and a one selects B.
2003 static inline uint32_t
2004 bit_select(uint32_t a, uint32_t b, uint32_t mask)
2005 { return (a & ~mask) | (b & mask); }
2006};
2007
4a657b0d
DK
2008template<bool big_endian>
2009class Target_arm : public Sized_target<32, big_endian>
2010{
2011 public:
2012 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
2013 Reloc_section;
2014
2daedcd6
DK
2015 // When were are relocating a stub, we pass this as the relocation number.
2016 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
2017
a6d1ef57
DK
2018 Target_arm()
2019 : Sized_target<32, big_endian>(&arm_info),
2020 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
f96accdf
DK
2021 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
2022 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
2023 stub_tables_(), stub_factory_(Stub_factory::get_instance()),
2024 may_use_blx_(false), should_force_pic_veneer_(false),
2025 arm_input_section_map_(), attributes_section_data_(NULL),
2026 fix_cortex_a8_(false), cortex_a8_relocs_info_()
a6d1ef57 2027 { }
4a657b0d 2028
b569affa
DK
2029 // Whether we can use BLX.
2030 bool
2031 may_use_blx() const
2032 { return this->may_use_blx_; }
2033
2034 // Set use-BLX flag.
2035 void
2036 set_may_use_blx(bool value)
2037 { this->may_use_blx_ = value; }
2038
2039 // Whether we force PCI branch veneers.
2040 bool
2041 should_force_pic_veneer() const
2042 { return this->should_force_pic_veneer_; }
2043
2044 // Set PIC veneer flag.
2045 void
2046 set_should_force_pic_veneer(bool value)
2047 { this->should_force_pic_veneer_ = value; }
2048
2049 // Whether we use THUMB-2 instructions.
2050 bool
2051 using_thumb2() const
2052 {
a0351a69
DK
2053 Object_attribute* attr =
2054 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2055 int arch = attr->int_value();
2056 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
2057 }
2058
2059 // Whether we use THUMB/THUMB-2 instructions only.
2060 bool
2061 using_thumb_only() const
2062 {
a0351a69
DK
2063 Object_attribute* attr =
2064 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
323c532f
DK
2065
2066 if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
2067 || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
2068 return true;
a0351a69
DK
2069 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
2070 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
2071 return false;
2072 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
2073 return attr->int_value() == 'M';
b569affa
DK
2074 }
2075
d204b6e9
DK
2076 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
2077 bool
2078 may_use_arm_nop() const
2079 {
a0351a69
DK
2080 Object_attribute* attr =
2081 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2082 int arch = attr->int_value();
2083 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2084 || arch == elfcpp::TAG_CPU_ARCH_V6K
2085 || arch == elfcpp::TAG_CPU_ARCH_V7
2086 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
2087 }
2088
51938283
DK
2089 // Whether we have THUMB-2 NOP.W instruction.
2090 bool
2091 may_use_thumb2_nop() const
2092 {
a0351a69
DK
2093 Object_attribute* attr =
2094 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
2095 int arch = attr->int_value();
2096 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
2097 || arch == elfcpp::TAG_CPU_ARCH_V7
2098 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
2099 }
2100
4a657b0d
DK
2101 // Process the relocations to determine unreferenced sections for
2102 // garbage collection.
2103 void
ad0f2072 2104 gc_process_relocs(Symbol_table* symtab,
4a657b0d
DK
2105 Layout* layout,
2106 Sized_relobj<32, big_endian>* object,
2107 unsigned int data_shndx,
2108 unsigned int sh_type,
2109 const unsigned char* prelocs,
2110 size_t reloc_count,
2111 Output_section* output_section,
2112 bool needs_special_offset_handling,
2113 size_t local_symbol_count,
2114 const unsigned char* plocal_symbols);
2115
2116 // Scan the relocations to look for symbol adjustments.
2117 void
ad0f2072 2118 scan_relocs(Symbol_table* symtab,
4a657b0d
DK
2119 Layout* layout,
2120 Sized_relobj<32, big_endian>* object,
2121 unsigned int data_shndx,
2122 unsigned int sh_type,
2123 const unsigned char* prelocs,
2124 size_t reloc_count,
2125 Output_section* output_section,
2126 bool needs_special_offset_handling,
2127 size_t local_symbol_count,
2128 const unsigned char* plocal_symbols);
2129
2130 // Finalize the sections.
2131 void
f59f41f3 2132 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 2133
94cdfcff 2134 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
2135 // treatment.
2136 uint64_t
2137 do_dynsym_value(const Symbol*) const;
2138
2139 // Relocate a section.
2140 void
2141 relocate_section(const Relocate_info<32, big_endian>*,
2142 unsigned int sh_type,
2143 const unsigned char* prelocs,
2144 size_t reloc_count,
2145 Output_section* output_section,
2146 bool needs_special_offset_handling,
2147 unsigned char* view,
ebabffbd 2148 Arm_address view_address,
364c7fa5
ILT
2149 section_size_type view_size,
2150 const Reloc_symbol_changes*);
4a657b0d
DK
2151
2152 // Scan the relocs during a relocatable link.
2153 void
ad0f2072 2154 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d
DK
2155 Layout* layout,
2156 Sized_relobj<32, big_endian>* object,
2157 unsigned int data_shndx,
2158 unsigned int sh_type,
2159 const unsigned char* prelocs,
2160 size_t reloc_count,
2161 Output_section* output_section,
2162 bool needs_special_offset_handling,
2163 size_t local_symbol_count,
2164 const unsigned char* plocal_symbols,
2165 Relocatable_relocs*);
2166
2167 // Relocate a section during a relocatable link.
2168 void
2169 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
2170 unsigned int sh_type,
2171 const unsigned char* prelocs,
2172 size_t reloc_count,
2173 Output_section* output_section,
2174 off_t offset_in_output_section,
2175 const Relocatable_relocs*,
2176 unsigned char* view,
ebabffbd 2177 Arm_address view_address,
4a657b0d
DK
2178 section_size_type view_size,
2179 unsigned char* reloc_view,
2180 section_size_type reloc_view_size);
2181
2182 // Return whether SYM is defined by the ABI.
2183 bool
2184 do_is_defined_by_abi(Symbol* sym) const
2185 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
2186
c8761b9a
DK
2187 // Return whether there is a GOT section.
2188 bool
2189 has_got_section() const
2190 { return this->got_ != NULL; }
2191
94cdfcff
DK
2192 // Return the size of the GOT section.
2193 section_size_type
2194 got_size()
2195 {
2196 gold_assert(this->got_ != NULL);
2197 return this->got_->data_size();
2198 }
2199
4a657b0d 2200 // Map platform-specific reloc types
a6d1ef57
DK
2201 static unsigned int
2202 get_real_reloc_type (unsigned int r_type);
4a657b0d 2203
55da9579
DK
2204 //
2205 // Methods to support stub-generations.
2206 //
2207
2208 // Return the stub factory
2209 const Stub_factory&
2210 stub_factory() const
2211 { return this->stub_factory_; }
2212
2213 // Make a new Arm_input_section object.
2214 Arm_input_section<big_endian>*
2215 new_arm_input_section(Relobj*, unsigned int);
2216
2217 // Find the Arm_input_section object corresponding to the SHNDX-th input
2218 // section of RELOBJ.
2219 Arm_input_section<big_endian>*
2ea97941 2220 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
2221
2222 // Make a new Stub_table
2223 Stub_table<big_endian>*
2224 new_stub_table(Arm_input_section<big_endian>*);
2225
eb44217c
DK
2226 // Scan a section for stub generation.
2227 void
2228 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
2229 const unsigned char*, size_t, Output_section*,
2230 bool, const unsigned char*, Arm_address,
2231 section_size_type);
2232
43d12afe
DK
2233 // Relocate a stub.
2234 void
2fb7225c 2235 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
43d12afe
DK
2236 Output_section*, unsigned char*, Arm_address,
2237 section_size_type);
2238
b569affa 2239 // Get the default ARM target.
43d12afe 2240 static Target_arm<big_endian>*
b569affa
DK
2241 default_target()
2242 {
2243 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
2244 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
2245 return static_cast<Target_arm<big_endian>*>(
2246 parameters->sized_target<32, big_endian>());
b569affa
DK
2247 }
2248
20138696
DK
2249 // Whether NAME belongs to a mapping symbol.
2250 static bool
2251 is_mapping_symbol_name(const char* name)
2252 {
2253 return (name
2254 && name[0] == '$'
2255 && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
2256 && (name[2] == '\0' || name[2] == '.'));
2257 }
2258
a120bc7f
DK
2259 // Whether we work around the Cortex-A8 erratum.
2260 bool
2261 fix_cortex_a8() const
2262 { return this->fix_cortex_a8_; }
2263
a2162063
ILT
2264 // Whether we fix R_ARM_V4BX relocation.
2265 // 0 - do not fix
2266 // 1 - replace with MOV instruction (armv4 target)
2267 // 2 - make interworking veneer (>= armv4t targets only)
9b2fd367 2268 General_options::Fix_v4bx
a2162063 2269 fix_v4bx() const
9b2fd367 2270 { return parameters->options().fix_v4bx(); }
a2162063 2271
44272192
DK
2272 // Scan a span of THUMB code section for Cortex-A8 erratum.
2273 void
2274 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
2275 section_size_type, section_size_type,
2276 const unsigned char*, Arm_address);
2277
41263c05
DK
2278 // Apply Cortex-A8 workaround to a branch.
2279 void
2280 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
2281 unsigned char*, Arm_address);
2282
d5b40221 2283 protected:
eb44217c
DK
2284 // Make an ELF object.
2285 Object*
2286 do_make_elf_object(const std::string&, Input_file*, off_t,
2287 const elfcpp::Ehdr<32, big_endian>& ehdr);
2288
2289 Object*
2290 do_make_elf_object(const std::string&, Input_file*, off_t,
2291 const elfcpp::Ehdr<32, !big_endian>&)
2292 { gold_unreachable(); }
2293
2294 Object*
2295 do_make_elf_object(const std::string&, Input_file*, off_t,
2296 const elfcpp::Ehdr<64, false>&)
2297 { gold_unreachable(); }
2298
2299 Object*
2300 do_make_elf_object(const std::string&, Input_file*, off_t,
2301 const elfcpp::Ehdr<64, true>&)
2302 { gold_unreachable(); }
2303
2304 // Make an output section.
2305 Output_section*
2306 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2307 elfcpp::Elf_Xword flags)
2308 { return new Arm_output_section<big_endian>(name, type, flags); }
2309
d5b40221
DK
2310 void
2311 do_adjust_elf_header(unsigned char* view, int len) const;
2312
eb44217c
DK
2313 // We only need to generate stubs, and hence perform relaxation if we are
2314 // not doing relocatable linking.
2315 bool
2316 do_may_relax() const
2317 { return !parameters->options().relocatable(); }
2318
2319 bool
2320 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
2321
a0351a69
DK
2322 // Determine whether an object attribute tag takes an integer, a
2323 // string or both.
2324 int
2325 do_attribute_arg_type(int tag) const;
2326
2327 // Reorder tags during output.
2328 int
2329 do_attributes_order(int num) const;
2330
0d31c79d
DK
2331 // This is called when the target is selected as the default.
2332 void
2333 do_select_as_default_target()
2334 {
2335 // No locking is required since there should only be one default target.
2336 // We cannot have both the big-endian and little-endian ARM targets
2337 // as the default.
2338 gold_assert(arm_reloc_property_table == NULL);
2339 arm_reloc_property_table = new Arm_reloc_property_table();
2340 }
2341
4a657b0d
DK
2342 private:
2343 // The class which scans relocations.
2344 class Scan
2345 {
2346 public:
2347 Scan()
bec53400 2348 : issued_non_pic_error_(false)
4a657b0d
DK
2349 { }
2350
2351 inline void
ad0f2072 2352 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2353 Sized_relobj<32, big_endian>* object,
2354 unsigned int data_shndx,
2355 Output_section* output_section,
2356 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2357 const elfcpp::Sym<32, big_endian>& lsym);
2358
2359 inline void
ad0f2072 2360 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
2361 Sized_relobj<32, big_endian>* object,
2362 unsigned int data_shndx,
2363 Output_section* output_section,
2364 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
2365 Symbol* gsym);
2366
21bb3914
ST
2367 inline bool
2368 local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2369 Sized_relobj<32, big_endian>* ,
2370 unsigned int ,
2371 Output_section* ,
2372 const elfcpp::Rel<32, big_endian>& ,
2373 unsigned int ,
2374 const elfcpp::Sym<32, big_endian>&)
2375 { return false; }
2376
2377 inline bool
2378 global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
2379 Sized_relobj<32, big_endian>* ,
2380 unsigned int ,
2381 Output_section* ,
2382 const elfcpp::Rel<32, big_endian>& ,
2383 unsigned int , Symbol*)
2384 { return false; }
2385
4a657b0d
DK
2386 private:
2387 static void
2388 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
2389 unsigned int r_type);
2390
2391 static void
2392 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
2393 unsigned int r_type, Symbol*);
bec53400
DK
2394
2395 void
2396 check_non_pic(Relobj*, unsigned int r_type);
2397
2398 // Almost identical to Symbol::needs_plt_entry except that it also
2399 // handles STT_ARM_TFUNC.
2400 static bool
2401 symbol_needs_plt_entry(const Symbol* sym)
2402 {
2403 // An undefined symbol from an executable does not need a PLT entry.
2404 if (sym->is_undefined() && !parameters->options().shared())
2405 return false;
2406
2407 return (!parameters->doing_static_link()
2408 && (sym->type() == elfcpp::STT_FUNC
2409 || sym->type() == elfcpp::STT_ARM_TFUNC)
2410 && (sym->is_from_dynobj()
2411 || sym->is_undefined()
2412 || sym->is_preemptible()));
2413 }
2414
2415 // Whether we have issued an error about a non-PIC compilation.
2416 bool issued_non_pic_error_;
4a657b0d
DK
2417 };
2418
2419 // The class which implements relocation.
2420 class Relocate
2421 {
2422 public:
2423 Relocate()
2424 { }
2425
2426 ~Relocate()
2427 { }
2428
bec53400
DK
2429 // Return whether the static relocation needs to be applied.
2430 inline bool
2431 should_apply_static_reloc(const Sized_symbol<32>* gsym,
2432 int ref_flags,
2433 bool is_32bit,
2434 Output_section* output_section);
2435
4a657b0d
DK
2436 // Do a relocation. Return false if the caller should not issue
2437 // any warnings about this relocation.
2438 inline bool
2439 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
2440 Output_section*, size_t relnum,
2441 const elfcpp::Rel<32, big_endian>&,
2442 unsigned int r_type, const Sized_symbol<32>*,
2443 const Symbol_value<32>*,
ebabffbd 2444 unsigned char*, Arm_address,
4a657b0d 2445 section_size_type);
c121c671
DK
2446
2447 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
2448 // reloc. This means the relocation type accesses a symbol not via
2449 // GOT or PLT.
c121c671
DK
2450 static inline bool
2451 reloc_is_non_pic (unsigned int r_type)
2452 {
2453 switch (r_type)
2454 {
f4e5969c
DK
2455 // These relocation types reference GOT or PLT entries explicitly.
2456 case elfcpp::R_ARM_GOT_BREL:
2457 case elfcpp::R_ARM_GOT_ABS:
2458 case elfcpp::R_ARM_GOT_PREL:
2459 case elfcpp::R_ARM_GOT_BREL12:
2460 case elfcpp::R_ARM_PLT32_ABS:
2461 case elfcpp::R_ARM_TLS_GD32:
2462 case elfcpp::R_ARM_TLS_LDM32:
2463 case elfcpp::R_ARM_TLS_IE32:
2464 case elfcpp::R_ARM_TLS_IE12GP:
2465
2466 // These relocate types may use PLT entries.
c121c671 2467 case elfcpp::R_ARM_CALL:
f4e5969c 2468 case elfcpp::R_ARM_THM_CALL:
c121c671 2469 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
2470 case elfcpp::R_ARM_THM_JUMP24:
2471 case elfcpp::R_ARM_THM_JUMP19:
2472 case elfcpp::R_ARM_PLT32:
2473 case elfcpp::R_ARM_THM_XPC22:
c3e4ae29
DK
2474 case elfcpp::R_ARM_PREL31:
2475 case elfcpp::R_ARM_SBREL31:
c121c671 2476 return false;
f4e5969c
DK
2477
2478 default:
2479 return true;
c121c671
DK
2480 }
2481 }
f96accdf
DK
2482
2483 private:
2484 // Do a TLS relocation.
2485 inline typename Arm_relocate_functions<big_endian>::Status
2486 relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
2487 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
2488 const Sized_symbol<32>*, const Symbol_value<32>*,
2489 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
2490 section_size_type);
2491
4a657b0d
DK
2492 };
2493
2494 // A class which returns the size required for a relocation type,
2495 // used while scanning relocs during a relocatable link.
2496 class Relocatable_size_for_reloc
2497 {
2498 public:
2499 unsigned int
2500 get_size_for_reloc(unsigned int, Relobj*);
2501 };
2502
f96accdf
DK
2503 // Adjust TLS relocation type based on the options and whether this
2504 // is a local symbol.
2505 static tls::Tls_optimization
2506 optimize_tls_reloc(bool is_final, int r_type);
2507
94cdfcff 2508 // Get the GOT section, creating it if necessary.
4a54abbb 2509 Arm_output_data_got<big_endian>*
94cdfcff
DK
2510 got_section(Symbol_table*, Layout*);
2511
2512 // Get the GOT PLT section.
2513 Output_data_space*
2514 got_plt_section() const
2515 {
2516 gold_assert(this->got_plt_ != NULL);
2517 return this->got_plt_;
2518 }
2519
2520 // Create a PLT entry for a global symbol.
2521 void
2522 make_plt_entry(Symbol_table*, Layout*, Symbol*);
2523
f96accdf
DK
2524 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
2525 void
2526 define_tls_base_symbol(Symbol_table*, Layout*);
2527
2528 // Create a GOT entry for the TLS module index.
2529 unsigned int
2530 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
2531 Sized_relobj<32, big_endian>* object);
2532
94cdfcff
DK
2533 // Get the PLT section.
2534 const Output_data_plt_arm<big_endian>*
2535 plt_section() const
2536 {
2537 gold_assert(this->plt_ != NULL);
2538 return this->plt_;
2539 }
2540
2541 // Get the dynamic reloc section, creating it if necessary.
2542 Reloc_section*
2543 rel_dyn_section(Layout*);
2544
f96accdf
DK
2545 // Get the section to use for TLS_DESC relocations.
2546 Reloc_section*
2547 rel_tls_desc_section(Layout*) const;
2548
94cdfcff
DK
2549 // Return true if the symbol may need a COPY relocation.
2550 // References from an executable object to non-function symbols
2551 // defined in a dynamic object may need a COPY relocation.
2552 bool
2553 may_need_copy_reloc(Symbol* gsym)
2554 {
966d4097
DK
2555 return (gsym->type() != elfcpp::STT_ARM_TFUNC
2556 && gsym->may_need_copy_reloc());
94cdfcff
DK
2557 }
2558
2559 // Add a potential copy relocation.
2560 void
2561 copy_reloc(Symbol_table* symtab, Layout* layout,
2562 Sized_relobj<32, big_endian>* object,
2ea97941 2563 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
2564 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
2565 {
2566 this->copy_relocs_.copy_reloc(symtab, layout,
2567 symtab->get_sized_symbol<32>(sym),
2ea97941 2568 object, shndx, output_section, reloc,
94cdfcff
DK
2569 this->rel_dyn_section(layout));
2570 }
2571
d5b40221
DK
2572 // Whether two EABI versions are compatible.
2573 static bool
2574 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
2575
2576 // Merge processor-specific flags from input object and those in the ELF
2577 // header of the output.
2578 void
2579 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
2580
a0351a69
DK
2581 // Get the secondary compatible architecture.
2582 static int
2583 get_secondary_compatible_arch(const Attributes_section_data*);
2584
2585 // Set the secondary compatible architecture.
2586 static void
2587 set_secondary_compatible_arch(Attributes_section_data*, int);
2588
2589 static int
2590 tag_cpu_arch_combine(const char*, int, int*, int, int);
2591
2592 // Helper to print AEABI enum tag value.
2593 static std::string
2594 aeabi_enum_name(unsigned int);
2595
2596 // Return string value for TAG_CPU_name.
2597 static std::string
2598 tag_cpu_name_value(unsigned int);
2599
2600 // Merge object attributes from input object and those in the output.
2601 void
2602 merge_object_attributes(const char*, const Attributes_section_data*);
2603
2604 // Helper to get an AEABI object attribute
2605 Object_attribute*
2606 get_aeabi_object_attribute(int tag) const
2607 {
2608 Attributes_section_data* pasd = this->attributes_section_data_;
2609 gold_assert(pasd != NULL);
2610 Object_attribute* attr =
2611 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
2612 gold_assert(attr != NULL);
2613 return attr;
2614 }
2615
eb44217c
DK
2616 //
2617 // Methods to support stub-generations.
2618 //
d5b40221 2619
eb44217c
DK
2620 // Group input sections for stub generation.
2621 void
2622 group_sections(Layout*, section_size_type, bool);
d5b40221 2623
eb44217c
DK
2624 // Scan a relocation for stub generation.
2625 void
2626 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
2627 const Sized_symbol<32>*, unsigned int,
2628 const Symbol_value<32>*,
2629 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 2630
eb44217c
DK
2631 // Scan a relocation section for stub.
2632 template<int sh_type>
2633 void
2634 scan_reloc_section_for_stubs(
2635 const Relocate_info<32, big_endian>* relinfo,
2636 const unsigned char* prelocs,
2637 size_t reloc_count,
2638 Output_section* output_section,
2639 bool needs_special_offset_handling,
2640 const unsigned char* view,
2641 elfcpp::Elf_types<32>::Elf_Addr view_address,
2642 section_size_type);
d5b40221 2643
2b328d4e
DK
2644 // Fix .ARM.exidx section coverage.
2645 void
2646 fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
2647
2648 // Functors for STL set.
2649 struct output_section_address_less_than
2650 {
2651 bool
2652 operator()(const Output_section* s1, const Output_section* s2) const
2653 { return s1->address() < s2->address(); }
2654 };
2655
4a657b0d
DK
2656 // Information about this specific target which we pass to the
2657 // general Target structure.
2658 static const Target::Target_info arm_info;
94cdfcff
DK
2659
2660 // The types of GOT entries needed for this platform.
2661 enum Got_type
2662 {
f96accdf
DK
2663 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
2664 GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset
2665 GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset
2666 GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair
2667 GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair
94cdfcff
DK
2668 };
2669
55da9579
DK
2670 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
2671
2672 // Map input section to Arm_input_section.
5ac169d4 2673 typedef Unordered_map<Section_id,
55da9579 2674 Arm_input_section<big_endian>*,
5ac169d4 2675 Section_id_hash>
55da9579
DK
2676 Arm_input_section_map;
2677
a120bc7f
DK
2678 // Map output addresses to relocs for Cortex-A8 erratum.
2679 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
2680 Cortex_a8_relocs_info;
2681
94cdfcff 2682 // The GOT section.
4a54abbb 2683 Arm_output_data_got<big_endian>* got_;
94cdfcff
DK
2684 // The PLT section.
2685 Output_data_plt_arm<big_endian>* plt_;
2686 // The GOT PLT section.
2687 Output_data_space* got_plt_;
2688 // The dynamic reloc section.
2689 Reloc_section* rel_dyn_;
2690 // Relocs saved to avoid a COPY reloc.
2691 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
2692 // Space for variables copied with a COPY reloc.
2693 Output_data_space* dynbss_;
f96accdf
DK
2694 // Offset of the GOT entry for the TLS module index.
2695 unsigned int got_mod_index_offset_;
2696 // True if the _TLS_MODULE_BASE_ symbol has been defined.
2697 bool tls_base_symbol_defined_;
55da9579
DK
2698 // Vector of Stub_tables created.
2699 Stub_table_list stub_tables_;
2700 // Stub factory.
2701 const Stub_factory &stub_factory_;
b569affa
DK
2702 // Whether we can use BLX.
2703 bool may_use_blx_;
2704 // Whether we force PIC branch veneers.
2705 bool should_force_pic_veneer_;
eb44217c
DK
2706 // Map for locating Arm_input_sections.
2707 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
2708 // Attributes section data in output.
2709 Attributes_section_data* attributes_section_data_;
a120bc7f
DK
2710 // Whether we want to fix code for Cortex-A8 erratum.
2711 bool fix_cortex_a8_;
2712 // Map addresses to relocs for Cortex-A8 erratum.
2713 Cortex_a8_relocs_info cortex_a8_relocs_info_;
4a657b0d
DK
2714};
2715
2716template<bool big_endian>
2717const Target::Target_info Target_arm<big_endian>::arm_info =
2718{
2719 32, // size
2720 big_endian, // is_big_endian
2721 elfcpp::EM_ARM, // machine_code
2722 false, // has_make_symbol
2723 false, // has_resolve
2724 false, // has_code_fill
2725 true, // is_default_stack_executable
2726 '\0', // wrap_char
2727 "/usr/lib/libc.so.1", // dynamic_linker
2728 0x8000, // default_text_segment_address
2729 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
2730 0x1000, // common_pagesize (overridable by -z common-page-size)
2731 elfcpp::SHN_UNDEF, // small_common_shndx
2732 elfcpp::SHN_UNDEF, // large_common_shndx
2733 0, // small_common_section_flags
05a352e6
DK
2734 0, // large_common_section_flags
2735 ".ARM.attributes", // attributes_section
2736 "aeabi" // attributes_vendor
4a657b0d
DK
2737};
2738
c121c671
DK
2739// Arm relocate functions class
2740//
2741
2742template<bool big_endian>
2743class Arm_relocate_functions : public Relocate_functions<32, big_endian>
2744{
2745 public:
2746 typedef enum
2747 {
2748 STATUS_OKAY, // No error during relocation.
2749 STATUS_OVERFLOW, // Relocation oveflow.
2750 STATUS_BAD_RELOC // Relocation cannot be applied.
2751 } Status;
2752
2753 private:
2754 typedef Relocate_functions<32, big_endian> Base;
2755 typedef Arm_relocate_functions<big_endian> This;
2756
fd3c5f0b
ILT
2757 // Encoding of imm16 argument for movt and movw ARM instructions
2758 // from ARM ARM:
2759 //
2760 // imm16 := imm4 | imm12
2761 //
2762 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2763 // +-------+---------------+-------+-------+-----------------------+
2764 // | | |imm4 | |imm12 |
2765 // +-------+---------------+-------+-------+-----------------------+
2766
2767 // Extract the relocation addend from VAL based on the ARM
2768 // instruction encoding described above.
2769 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2770 extract_arm_movw_movt_addend(
2771 typename elfcpp::Swap<32, big_endian>::Valtype val)
2772 {
2773 // According to the Elf ABI for ARM Architecture the immediate
2774 // field is sign-extended to form the addend.
2775 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
2776 }
2777
2778 // Insert X into VAL based on the ARM instruction encoding described
2779 // above.
2780 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2781 insert_val_arm_movw_movt(
2782 typename elfcpp::Swap<32, big_endian>::Valtype val,
2783 typename elfcpp::Swap<32, big_endian>::Valtype x)
2784 {
2785 val &= 0xfff0f000;
2786 val |= x & 0x0fff;
2787 val |= (x & 0xf000) << 4;
2788 return val;
2789 }
2790
2791 // Encoding of imm16 argument for movt and movw Thumb2 instructions
2792 // from ARM ARM:
2793 //
2794 // imm16 := imm4 | i | imm3 | imm8
2795 //
2796 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
2797 // +---------+-+-----------+-------++-+-----+-------+---------------+
2798 // | |i| |imm4 || |imm3 | |imm8 |
2799 // +---------+-+-----------+-------++-+-----+-------+---------------+
2800
2801 // Extract the relocation addend from VAL based on the Thumb2
2802 // instruction encoding described above.
2803 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2804 extract_thumb_movw_movt_addend(
2805 typename elfcpp::Swap<32, big_endian>::Valtype val)
2806 {
2807 // According to the Elf ABI for ARM Architecture the immediate
2808 // field is sign-extended to form the addend.
2809 return utils::sign_extend<16>(((val >> 4) & 0xf000)
2810 | ((val >> 15) & 0x0800)
2811 | ((val >> 4) & 0x0700)
2812 | (val & 0x00ff));
2813 }
2814
2815 // Insert X into VAL based on the Thumb2 instruction encoding
2816 // described above.
2817 static inline typename elfcpp::Swap<32, big_endian>::Valtype
2818 insert_val_thumb_movw_movt(
2819 typename elfcpp::Swap<32, big_endian>::Valtype val,
2820 typename elfcpp::Swap<32, big_endian>::Valtype x)
2821 {
2822 val &= 0xfbf08f00;
2823 val |= (x & 0xf000) << 4;
2824 val |= (x & 0x0800) << 15;
2825 val |= (x & 0x0700) << 4;
2826 val |= (x & 0x00ff);
2827 return val;
2828 }
2829
b10d2873
ILT
2830 // Calculate the smallest constant Kn for the specified residual.
2831 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2832 static uint32_t
2833 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
2834 {
2835 int32_t msb;
2836
2837 if (residual == 0)
2838 return 0;
2839 // Determine the most significant bit in the residual and
2840 // align the resulting value to a 2-bit boundary.
2841 for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
2842 ;
2843 // The desired shift is now (msb - 6), or zero, whichever
2844 // is the greater.
2845 return (((msb - 6) < 0) ? 0 : (msb - 6));
2846 }
2847
2848 // Calculate the final residual for the specified group index.
2849 // If the passed group index is less than zero, the method will return
2850 // the value of the specified residual without any change.
2851 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2852 static typename elfcpp::Swap<32, big_endian>::Valtype
2853 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2854 const int group)
2855 {
2856 for (int n = 0; n <= group; n++)
2857 {
2858 // Calculate which part of the value to mask.
2859 uint32_t shift = calc_grp_kn(residual);
2860 // Calculate the residual for the next time around.
2861 residual &= ~(residual & (0xff << shift));
2862 }
2863
2864 return residual;
2865 }
2866
2867 // Calculate the value of Gn for the specified group index.
2868 // We return it in the form of an encoded constant-and-rotation.
2869 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
2870 static typename elfcpp::Swap<32, big_endian>::Valtype
2871 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
2872 const int group)
2873 {
2874 typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
2875 uint32_t shift = 0;
2876
2877 for (int n = 0; n <= group; n++)
2878 {
2879 // Calculate which part of the value to mask.
2880 shift = calc_grp_kn(residual);
2881 // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
2882 gn = residual & (0xff << shift);
2883 // Calculate the residual for the next time around.
2884 residual &= ~gn;
2885 }
2886 // Return Gn in the form of an encoded constant-and-rotation.
2887 return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
2888 }
2889
1521477a 2890 public:
d204b6e9
DK
2891 // Handle ARM long branches.
2892 static typename This::Status
2893 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2894 unsigned char *, const Sized_symbol<32>*,
2895 const Arm_relobj<big_endian>*, unsigned int,
2896 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 2897
51938283
DK
2898 // Handle THUMB long branches.
2899 static typename This::Status
2900 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
2901 unsigned char *, const Sized_symbol<32>*,
2902 const Arm_relobj<big_endian>*, unsigned int,
2903 const Symbol_value<32>*, Arm_address, Arm_address, bool);
2904
5e445df6 2905
089d69dc
DK
2906 // Return the branch offset of a 32-bit THUMB branch.
2907 static inline int32_t
2908 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2909 {
2910 // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
2911 // involving the J1 and J2 bits.
2912 uint32_t s = (upper_insn & (1U << 10)) >> 10;
2913 uint32_t upper = upper_insn & 0x3ffU;
2914 uint32_t lower = lower_insn & 0x7ffU;
2915 uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
2916 uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
2917 uint32_t i1 = j1 ^ s ? 0 : 1;
2918 uint32_t i2 = j2 ^ s ? 0 : 1;
2919
2920 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
2921 | (upper << 12) | (lower << 1));
2922 }
2923
2924 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
2925 // UPPER_INSN is the original upper instruction of the branch. Caller is
2926 // responsible for overflow checking and BLX offset adjustment.
2927 static inline uint16_t
2928 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
2929 {
2930 uint32_t s = offset < 0 ? 1 : 0;
2931 uint32_t bits = static_cast<uint32_t>(offset);
2932 return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
2933 }
2934
2935 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
2936 // LOWER_INSN is the original lower instruction of the branch. Caller is
2937 // responsible for overflow checking and BLX offset adjustment.
2938 static inline uint16_t
2939 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
2940 {
2941 uint32_t s = offset < 0 ? 1 : 0;
2942 uint32_t bits = static_cast<uint32_t>(offset);
2943 return ((lower_insn & ~0x2fffU)
2944 | ((((bits >> 23) & 1) ^ !s) << 13)
2945 | ((((bits >> 22) & 1) ^ !s) << 11)
2946 | ((bits >> 1) & 0x7ffU));
2947 }
2948
2949 // Return the branch offset of a 32-bit THUMB conditional branch.
2950 static inline int32_t
2951 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
2952 {
2953 uint32_t s = (upper_insn & 0x0400U) >> 10;
2954 uint32_t j1 = (lower_insn & 0x2000U) >> 13;
2955 uint32_t j2 = (lower_insn & 0x0800U) >> 11;
2956 uint32_t lower = (lower_insn & 0x07ffU);
2957 uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
2958
2959 return utils::sign_extend<21>((upper << 12) | (lower << 1));
2960 }
2961
2962 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
2963 // instruction. UPPER_INSN is the original upper instruction of the branch.
2964 // Caller is responsible for overflow checking.
2965 static inline uint16_t
2966 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
2967 {
2968 uint32_t s = offset < 0 ? 1 : 0;
2969 uint32_t bits = static_cast<uint32_t>(offset);
2970 return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
2971 }
2972
2973 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
2974 // instruction. LOWER_INSN is the original lower instruction of the branch.
2975 // Caller is reponsible for overflow checking.
2976 static inline uint16_t
2977 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
2978 {
2979 uint32_t bits = static_cast<uint32_t>(offset);
2980 uint32_t j2 = (bits & 0x00080000U) >> 19;
2981 uint32_t j1 = (bits & 0x00040000U) >> 18;
2982 uint32_t lo = (bits & 0x00000ffeU) >> 1;
2983
2984 return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
2985 }
2986
5e445df6
ILT
2987 // R_ARM_ABS8: S + A
2988 static inline typename This::Status
2989 abs8(unsigned char *view,
2990 const Sized_relobj<32, big_endian>* object,
be8fcb75 2991 const Symbol_value<32>* psymval)
5e445df6
ILT
2992 {
2993 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
2994 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2995 Valtype* wv = reinterpret_cast<Valtype*>(view);
2996 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
2997 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 2998 Reltype x = psymval->value(object, addend);
5e445df6
ILT
2999 val = utils::bit_select(val, x, 0xffU);
3000 elfcpp::Swap<8, big_endian>::writeval(wv, val);
a2c7281b
DK
3001
3002 // R_ARM_ABS8 permits signed or unsigned results.
3003 int signed_x = static_cast<int32_t>(x);
3004 return ((signed_x < -128 || signed_x > 255)
5e445df6
ILT
3005 ? This::STATUS_OVERFLOW
3006 : This::STATUS_OKAY);
3007 }
3008
be8fcb75
ILT
3009 // R_ARM_THM_ABS5: S + A
3010 static inline typename This::Status
3011 thm_abs5(unsigned char *view,
3012 const Sized_relobj<32, big_endian>* object,
3013 const Symbol_value<32>* psymval)
3014 {
3015 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3016 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3017 Valtype* wv = reinterpret_cast<Valtype*>(view);
3018 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3019 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 3020 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3021 val = utils::bit_select(val, x << 6, 0x7e0U);
3022 elfcpp::Swap<16, big_endian>::writeval(wv, val);
a2c7281b
DK
3023
3024 // R_ARM_ABS16 permits signed or unsigned results.
3025 int signed_x = static_cast<int32_t>(x);
3026 return ((signed_x < -32768 || signed_x > 65535)
be8fcb75
ILT
3027 ? This::STATUS_OVERFLOW
3028 : This::STATUS_OKAY);
3029 }
3030
3031 // R_ARM_ABS12: S + A
3032 static inline typename This::Status
3033 abs12(unsigned char *view,
51938283
DK
3034 const Sized_relobj<32, big_endian>* object,
3035 const Symbol_value<32>* psymval)
be8fcb75
ILT
3036 {
3037 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3038 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3039 Valtype* wv = reinterpret_cast<Valtype*>(view);
3040 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3041 Reltype addend = val & 0x0fffU;
2daedcd6 3042 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3043 val = utils::bit_select(val, x, 0x0fffU);
3044 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3045 return (utils::has_overflow<12>(x)
3046 ? This::STATUS_OVERFLOW
3047 : This::STATUS_OKAY);
3048 }
3049
3050 // R_ARM_ABS16: S + A
3051 static inline typename This::Status
3052 abs16(unsigned char *view,
51938283
DK
3053 const Sized_relobj<32, big_endian>* object,
3054 const Symbol_value<32>* psymval)
be8fcb75
ILT
3055 {
3056 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3057 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3058 Valtype* wv = reinterpret_cast<Valtype*>(view);
3059 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3060 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 3061 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
3062 val = utils::bit_select(val, x, 0xffffU);
3063 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3064 return (utils::has_signed_unsigned_overflow<16>(x)
3065 ? This::STATUS_OVERFLOW
3066 : This::STATUS_OKAY);
3067 }
3068
c121c671
DK
3069 // R_ARM_ABS32: (S + A) | T
3070 static inline typename This::Status
3071 abs32(unsigned char *view,
3072 const Sized_relobj<32, big_endian>* object,
3073 const Symbol_value<32>* psymval,
2daedcd6 3074 Arm_address thumb_bit)
c121c671
DK
3075 {
3076 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3077 Valtype* wv = reinterpret_cast<Valtype*>(view);
3078 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3079 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
3080 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3081 return This::STATUS_OKAY;
3082 }
3083
3084 // R_ARM_REL32: (S + A) | T - P
3085 static inline typename This::Status
3086 rel32(unsigned char *view,
3087 const Sized_relobj<32, big_endian>* object,
3088 const Symbol_value<32>* psymval,
ebabffbd 3089 Arm_address address,
2daedcd6 3090 Arm_address thumb_bit)
c121c671
DK
3091 {
3092 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3093 Valtype* wv = reinterpret_cast<Valtype*>(view);
3094 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 3095 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3096 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3097 return This::STATUS_OKAY;
3098 }
3099
089d69dc
DK
3100 // R_ARM_THM_JUMP24: (S + A) | T - P
3101 static typename This::Status
3102 thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
3103 const Symbol_value<32>* psymval, Arm_address address,
3104 Arm_address thumb_bit);
3105
800d0f56
ILT
3106 // R_ARM_THM_JUMP6: S + A – P
3107 static inline typename This::Status
3108 thm_jump6(unsigned char *view,
3109 const Sized_relobj<32, big_endian>* object,
3110 const Symbol_value<32>* psymval,
3111 Arm_address address)
3112 {
3113 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3114 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3115 Valtype* wv = reinterpret_cast<Valtype*>(view);
3116 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3117 // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
3118 Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
3119 Reltype x = (psymval->value(object, addend) - address);
3120 val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2);
3121 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3122 // CZB does only forward jumps.
3123 return ((x > 0x007e)
3124 ? This::STATUS_OVERFLOW
3125 : This::STATUS_OKAY);
3126 }
3127
3128 // R_ARM_THM_JUMP8: S + A – P
3129 static inline typename This::Status
3130 thm_jump8(unsigned char *view,
3131 const Sized_relobj<32, big_endian>* object,
3132 const Symbol_value<32>* psymval,
3133 Arm_address address)
3134 {
3135 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3136 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3137 Valtype* wv = reinterpret_cast<Valtype*>(view);
3138 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3139 Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
3140 Reltype x = (psymval->value(object, addend) - address);
3141 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
3142 return (utils::has_overflow<8>(x)
3143 ? This::STATUS_OVERFLOW
3144 : This::STATUS_OKAY);
3145 }
3146
3147 // R_ARM_THM_JUMP11: S + A – P
3148 static inline typename This::Status
3149 thm_jump11(unsigned char *view,
3150 const Sized_relobj<32, big_endian>* object,
3151 const Symbol_value<32>* psymval,
3152 Arm_address address)
3153 {
3154 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3155 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3156 Valtype* wv = reinterpret_cast<Valtype*>(view);
3157 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
3158 Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
3159 Reltype x = (psymval->value(object, addend) - address);
3160 elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
3161 return (utils::has_overflow<11>(x)
3162 ? This::STATUS_OVERFLOW
3163 : This::STATUS_OKAY);
3164 }
3165
c121c671
DK
3166 // R_ARM_BASE_PREL: B(S) + A - P
3167 static inline typename This::Status
3168 base_prel(unsigned char* view,
ebabffbd
DK
3169 Arm_address origin,
3170 Arm_address address)
c121c671
DK
3171 {
3172 Base::rel32(view, origin - address);
3173 return STATUS_OKAY;
3174 }
3175
be8fcb75
ILT
3176 // R_ARM_BASE_ABS: B(S) + A
3177 static inline typename This::Status
3178 base_abs(unsigned char* view,
f4e5969c 3179 Arm_address origin)
be8fcb75
ILT
3180 {
3181 Base::rel32(view, origin);
3182 return STATUS_OKAY;
3183 }
3184
c121c671
DK
3185 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
3186 static inline typename This::Status
3187 got_brel(unsigned char* view,
3188 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
3189 {
3190 Base::rel32(view, got_offset);
3191 return This::STATUS_OKAY;
3192 }
3193
f4e5969c 3194 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 3195 static inline typename This::Status
f4e5969c
DK
3196 got_prel(unsigned char *view,
3197 Arm_address got_entry,
ebabffbd 3198 Arm_address address)
7f5309a5 3199 {
f4e5969c 3200 Base::rel32(view, got_entry - address);
7f5309a5
ILT
3201 return This::STATUS_OKAY;
3202 }
3203
c121c671
DK
3204 // R_ARM_PREL: (S + A) | T - P
3205 static inline typename This::Status
3206 prel31(unsigned char *view,
3207 const Sized_relobj<32, big_endian>* object,
3208 const Symbol_value<32>* psymval,
ebabffbd 3209 Arm_address address,
2daedcd6 3210 Arm_address thumb_bit)
c121c671
DK
3211 {
3212 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3213 Valtype* wv = reinterpret_cast<Valtype*>(view);
3214 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3215 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 3216 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
3217 val = utils::bit_select(val, x, 0x7fffffffU);
3218 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3219 return (utils::has_overflow<31>(x) ?
3220 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3221 }
fd3c5f0b 3222
5c57f1be 3223 // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is )
c2a122b6 3224 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3225 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3226 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3227 static inline typename This::Status
5c57f1be
DK
3228 movw(unsigned char* view,
3229 const Sized_relobj<32, big_endian>* object,
3230 const Symbol_value<32>* psymval,
3231 Arm_address relative_address_base,
3232 Arm_address thumb_bit,
3233 bool check_overflow)
02961d7e
ILT
3234 {
3235 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3236 Valtype* wv = reinterpret_cast<Valtype*>(view);
3237 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3238 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be
DK
3239 Valtype x = ((psymval->value(object, addend) | thumb_bit)
3240 - relative_address_base);
02961d7e
ILT
3241 val = This::insert_val_arm_movw_movt(val, x);
3242 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be
DK
3243 return ((check_overflow && utils::has_overflow<16>(x))
3244 ? This::STATUS_OVERFLOW
3245 : This::STATUS_OKAY);
02961d7e
ILT
3246 }
3247
5c57f1be 3248 // R_ARM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3249 // R_ARM_MOVT_PREL: S + A - P
5c57f1be 3250 // R_ARM_MOVT_BREL: S + A - B(S)
c2a122b6 3251 static inline typename This::Status
5c57f1be
DK
3252 movt(unsigned char* view,
3253 const Sized_relobj<32, big_endian>* object,
3254 const Symbol_value<32>* psymval,
3255 Arm_address relative_address_base)
c2a122b6
ILT
3256 {
3257 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3258 Valtype* wv = reinterpret_cast<Valtype*>(view);
3259 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3260 Valtype addend = This::extract_arm_movw_movt_addend(val);
5c57f1be 3261 Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3262 val = This::insert_val_arm_movw_movt(val, x);
3263 elfcpp::Swap<32, big_endian>::writeval(wv, val);
5c57f1be 3264 // FIXME: IHI0044D says that we should check for overflow.
c2a122b6
ILT
3265 return This::STATUS_OKAY;
3266 }
3267
5c57f1be 3268 // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0)
c2a122b6 3269 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
5c57f1be
DK
3270 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
3271 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
02961d7e 3272 static inline typename This::Status
5c57f1be
DK
3273 thm_movw(unsigned char *view,
3274 const Sized_relobj<32, big_endian>* object,
3275 const Symbol_value<32>* psymval,
3276 Arm_address relative_address_base,
3277 Arm_address thumb_bit,
3278 bool check_overflow)
02961d7e
ILT
3279 {
3280 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3281 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3282 Valtype* wv = reinterpret_cast<Valtype*>(view);
3283 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3284 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3285 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be
DK
3286 Reltype x =
3287 (psymval->value(object, addend) | thumb_bit) - relative_address_base;
02961d7e
ILT
3288 val = This::insert_val_thumb_movw_movt(val, x);
3289 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3290 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
5c57f1be
DK
3291 return ((check_overflow && utils::has_overflow<16>(x))
3292 ? This::STATUS_OVERFLOW
3293 : This::STATUS_OKAY);
02961d7e
ILT
3294 }
3295
5c57f1be 3296 // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0)
c2a122b6 3297 // R_ARM_THM_MOVT_PREL: S + A - P
5c57f1be 3298 // R_ARM_THM_MOVT_BREL: S + A - B(S)
c2a122b6 3299 static inline typename This::Status
5c57f1be
DK
3300 thm_movt(unsigned char* view,
3301 const Sized_relobj<32, big_endian>* object,
3302 const Symbol_value<32>* psymval,
3303 Arm_address relative_address_base)
c2a122b6
ILT
3304 {
3305 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3306 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3307 Valtype* wv = reinterpret_cast<Valtype*>(view);
3308 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3309 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3310 Reltype addend = This::extract_thumb_movw_movt_addend(val);
5c57f1be 3311 Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
c2a122b6
ILT
3312 val = This::insert_val_thumb_movw_movt(val, x);
3313 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
3314 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
3315 return This::STATUS_OKAY;
3316 }
a2162063 3317
11b861d5
DK
3318 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
3319 static inline typename This::Status
3320 thm_alu11(unsigned char* view,
3321 const Sized_relobj<32, big_endian>* object,
3322 const Symbol_value<32>* psymval,
3323 Arm_address address,
3324 Arm_address thumb_bit)
3325 {
3326 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3327 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3328 Valtype* wv = reinterpret_cast<Valtype*>(view);
3329 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3330 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3331
3332 // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
3333 // -----------------------------------------------------------------------
3334 // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8
3335 // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8
3336 // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8
3337 // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8
3338 // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8
3339 // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8
3340
3341 // Determine a sign for the addend.
3342 const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
3343 || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
3344 // Thumb2 addend encoding:
3345 // imm12 := i | imm3 | imm8
3346 int32_t addend = (insn & 0xff)
3347 | ((insn & 0x00007000) >> 4)
3348 | ((insn & 0x04000000) >> 15);
3349 // Apply a sign to the added.
3350 addend *= sign;
3351
3352 int32_t x = (psymval->value(object, addend) | thumb_bit)
3353 - (address & 0xfffffffc);
3354 Reltype val = abs(x);
3355 // Mask out the value and a distinct part of the ADD/SUB opcode
3356 // (bits 7:5 of opword).
3357 insn = (insn & 0xfb0f8f00)
3358 | (val & 0xff)
3359 | ((val & 0x700) << 4)
3360 | ((val & 0x800) << 15);
3361 // Set the opcode according to whether the value to go in the
3362 // place is negative.
3363 if (x < 0)
3364 insn |= 0x00a00000;
3365
3366 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3367 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3368 return ((val > 0xfff) ?
3369 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3370 }
3371
3372 // R_ARM_THM_PC8: S + A - Pa (Thumb)
3373 static inline typename This::Status
3374 thm_pc8(unsigned char* view,
3375 const Sized_relobj<32, big_endian>* object,
3376 const Symbol_value<32>* psymval,
3377 Arm_address address)
3378 {
3379 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3380 typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
3381 Valtype* wv = reinterpret_cast<Valtype*>(view);
3382 Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
3383 Reltype addend = ((insn & 0x00ff) << 2);
3384 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3385 Reltype val = abs(x);
3386 insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
3387
3388 elfcpp::Swap<16, big_endian>::writeval(wv, insn);
3389 return ((val > 0x03fc)
3390 ? This::STATUS_OVERFLOW
3391 : This::STATUS_OKAY);
3392 }
3393
3394 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
3395 static inline typename This::Status
3396 thm_pc12(unsigned char* view,
3397 const Sized_relobj<32, big_endian>* object,
3398 const Symbol_value<32>* psymval,
3399 Arm_address address)
3400 {
3401 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3402 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
3403 Valtype* wv = reinterpret_cast<Valtype*>(view);
3404 Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
3405 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
3406 // Determine a sign for the addend (positive if the U bit is 1).
3407 const int sign = (insn & 0x00800000) ? 1 : -1;
3408 int32_t addend = (insn & 0xfff);
3409 // Apply a sign to the added.
3410 addend *= sign;
3411
3412 int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
3413 Reltype val = abs(x);
3414 // Mask out and apply the value and the U bit.
3415 insn = (insn & 0xff7ff000) | (val & 0xfff);
3416 // Set the U bit according to whether the value to go in the
3417 // place is positive.
3418 if (x >= 0)
3419 insn |= 0x00800000;
3420
3421 elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
3422 elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
3423 return ((val > 0xfff) ?
3424 This::STATUS_OVERFLOW : This::STATUS_OKAY);
3425 }
3426
a2162063
ILT
3427 // R_ARM_V4BX
3428 static inline typename This::Status
3429 v4bx(const Relocate_info<32, big_endian>* relinfo,
3430 unsigned char *view,
3431 const Arm_relobj<big_endian>* object,
3432 const Arm_address address,
3433 const bool is_interworking)
3434 {
3435
3436 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3437 Valtype* wv = reinterpret_cast<Valtype*>(view);
3438 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3439
3440 // Ensure that we have a BX instruction.
3441 gold_assert((val & 0x0ffffff0) == 0x012fff10);
3442 const uint32_t reg = (val & 0xf);
3443 if (is_interworking && reg != 0xf)
3444 {
3445 Stub_table<big_endian>* stub_table =
3446 object->stub_table(relinfo->data_shndx);
3447 gold_assert(stub_table != NULL);
3448
3449 Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
3450 gold_assert(stub != NULL);
3451
3452 int32_t veneer_address =
3453 stub_table->address() + stub->offset() - 8 - address;
3454 gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
3455 && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
3456 // Replace with a branch to veneer (B <addr>)
3457 val = (val & 0xf0000000) | 0x0a000000
3458 | ((veneer_address >> 2) & 0x00ffffff);
3459 }
3460 else
3461 {
3462 // Preserve Rm (lowest four bits) and the condition code
3463 // (highest four bits). Other bits encode MOV PC,Rm.
3464 val = (val & 0xf000000f) | 0x01a0f000;
3465 }
3466 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3467 return This::STATUS_OKAY;
3468 }
b10d2873
ILT
3469
3470 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
3471 // R_ARM_ALU_PC_G0: ((S + A) | T) - P
3472 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
3473 // R_ARM_ALU_PC_G1: ((S + A) | T) - P
3474 // R_ARM_ALU_PC_G2: ((S + A) | T) - P
3475 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
3476 // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S)
3477 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
3478 // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S)
3479 // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S)
3480 static inline typename This::Status
3481 arm_grp_alu(unsigned char* view,
3482 const Sized_relobj<32, big_endian>* object,
3483 const Symbol_value<32>* psymval,
3484 const int group,
3485 Arm_address address,
3486 Arm_address thumb_bit,
3487 bool check_overflow)
3488 {
5c57f1be 3489 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3490 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3491 Valtype* wv = reinterpret_cast<Valtype*>(view);
3492 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3493
3494 // ALU group relocations are allowed only for the ADD/SUB instructions.
3495 // (0x00800000 - ADD, 0x00400000 - SUB)
3496 const Valtype opcode = insn & 0x01e00000;
3497 if (opcode != 0x00800000 && opcode != 0x00400000)
3498 return This::STATUS_BAD_RELOC;
3499
3500 // Determine a sign for the addend.
3501 const int sign = (opcode == 0x00800000) ? 1 : -1;
3502 // shifter = rotate_imm * 2
3503 const uint32_t shifter = (insn & 0xf00) >> 7;
3504 // Initial addend value.
3505 int32_t addend = insn & 0xff;
3506 // Rotate addend right by shifter.
3507 addend = (addend >> shifter) | (addend << (32 - shifter));
3508 // Apply a sign to the added.
3509 addend *= sign;
3510
3511 int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
3512 Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
3513 // Check for overflow if required
3514 if (check_overflow
3515 && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
3516 return This::STATUS_OVERFLOW;
3517
3518 // Mask out the value and the ADD/SUB part of the opcode; take care
3519 // not to destroy the S bit.
3520 insn &= 0xff1ff000;
3521 // Set the opcode according to whether the value to go in the
3522 // place is negative.
3523 insn |= ((x < 0) ? 0x00400000 : 0x00800000);
3524 // Encode the offset (encoded Gn).
3525 insn |= gn;
3526
3527 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3528 return This::STATUS_OKAY;
3529 }
3530
3531 // R_ARM_LDR_PC_G0: S + A - P
3532 // R_ARM_LDR_PC_G1: S + A - P
3533 // R_ARM_LDR_PC_G2: S + A - P
3534 // R_ARM_LDR_SB_G0: S + A - B(S)
3535 // R_ARM_LDR_SB_G1: S + A - B(S)
3536 // R_ARM_LDR_SB_G2: S + A - B(S)
3537 static inline typename This::Status
3538 arm_grp_ldr(unsigned char* view,
3539 const Sized_relobj<32, big_endian>* object,
3540 const Symbol_value<32>* psymval,
3541 const int group,
3542 Arm_address address)
3543 {
5c57f1be 3544 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3545 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3546 Valtype* wv = reinterpret_cast<Valtype*>(view);
3547 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3548
3549 const int sign = (insn & 0x00800000) ? 1 : -1;
3550 int32_t addend = (insn & 0xfff) * sign;
3551 int32_t x = (psymval->value(object, addend) - address);
3552 // Calculate the relevant G(n-1) value to obtain this stage residual.
3553 Valtype residual =
3554 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3555 if (residual >= 0x1000)
3556 return This::STATUS_OVERFLOW;
3557
3558 // Mask out the value and U bit.
3559 insn &= 0xff7ff000;
3560 // Set the U bit for non-negative values.
3561 if (x >= 0)
3562 insn |= 0x00800000;
3563 insn |= residual;
3564
3565 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3566 return This::STATUS_OKAY;
3567 }
3568
3569 // R_ARM_LDRS_PC_G0: S + A - P
3570 // R_ARM_LDRS_PC_G1: S + A - P
3571 // R_ARM_LDRS_PC_G2: S + A - P
3572 // R_ARM_LDRS_SB_G0: S + A - B(S)
3573 // R_ARM_LDRS_SB_G1: S + A - B(S)
3574 // R_ARM_LDRS_SB_G2: S + A - B(S)
3575 static inline typename This::Status
3576 arm_grp_ldrs(unsigned char* view,
3577 const Sized_relobj<32, big_endian>* object,
3578 const Symbol_value<32>* psymval,
3579 const int group,
3580 Arm_address address)
3581 {
5c57f1be 3582 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3583 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3584 Valtype* wv = reinterpret_cast<Valtype*>(view);
3585 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3586
3587 const int sign = (insn & 0x00800000) ? 1 : -1;
3588 int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
3589 int32_t x = (psymval->value(object, addend) - address);
3590 // Calculate the relevant G(n-1) value to obtain this stage residual.
3591 Valtype residual =
3592 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3593 if (residual >= 0x100)
3594 return This::STATUS_OVERFLOW;
3595
3596 // Mask out the value and U bit.
3597 insn &= 0xff7ff0f0;
3598 // Set the U bit for non-negative values.
3599 if (x >= 0)
3600 insn |= 0x00800000;
3601 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
3602
3603 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3604 return This::STATUS_OKAY;
3605 }
3606
3607 // R_ARM_LDC_PC_G0: S + A - P
3608 // R_ARM_LDC_PC_G1: S + A - P
3609 // R_ARM_LDC_PC_G2: S + A - P
3610 // R_ARM_LDC_SB_G0: S + A - B(S)
3611 // R_ARM_LDC_SB_G1: S + A - B(S)
3612 // R_ARM_LDC_SB_G2: S + A - B(S)
3613 static inline typename This::Status
3614 arm_grp_ldc(unsigned char* view,
3615 const Sized_relobj<32, big_endian>* object,
3616 const Symbol_value<32>* psymval,
3617 const int group,
3618 Arm_address address)
3619 {
5c57f1be 3620 gold_assert(group >= 0 && group < 3);
b10d2873
ILT
3621 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3622 Valtype* wv = reinterpret_cast<Valtype*>(view);
3623 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
3624
3625 const int sign = (insn & 0x00800000) ? 1 : -1;
3626 int32_t addend = ((insn & 0xff) << 2) * sign;
3627 int32_t x = (psymval->value(object, addend) - address);
3628 // Calculate the relevant G(n-1) value to obtain this stage residual.
3629 Valtype residual =
3630 Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
3631 if ((residual & 0x3) != 0 || residual >= 0x400)
3632 return This::STATUS_OVERFLOW;
3633
3634 // Mask out the value and U bit.
3635 insn &= 0xff7fff00;
3636 // Set the U bit for non-negative values.
3637 if (x >= 0)
3638 insn |= 0x00800000;
3639 insn |= (residual >> 2);
3640
3641 elfcpp::Swap<32, big_endian>::writeval(wv, insn);
3642 return This::STATUS_OKAY;
3643 }
c121c671
DK
3644};
3645
d204b6e9
DK
3646// Relocate ARM long branches. This handles relocation types
3647// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
3648// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3649// undefined and we do not use PLT in this relocation. In such a case,
3650// the branch is converted into an NOP.
3651
3652template<bool big_endian>
3653typename Arm_relocate_functions<big_endian>::Status
3654Arm_relocate_functions<big_endian>::arm_branch_common(
3655 unsigned int r_type,
3656 const Relocate_info<32, big_endian>* relinfo,
3657 unsigned char *view,
3658 const Sized_symbol<32>* gsym,
3659 const Arm_relobj<big_endian>* object,
3660 unsigned int r_sym,
3661 const Symbol_value<32>* psymval,
3662 Arm_address address,
3663 Arm_address thumb_bit,
3664 bool is_weakly_undefined_without_plt)
3665{
3666 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3667 Valtype* wv = reinterpret_cast<Valtype*>(view);
3668 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3669
3670 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
3671 && ((val & 0x0f000000UL) == 0x0a000000UL);
3672 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
3673 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
3674 && ((val & 0x0f000000UL) == 0x0b000000UL);
3675 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
3676 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
3677
3678 // Check that the instruction is valid.
3679 if (r_type == elfcpp::R_ARM_CALL)
3680 {
3681 if (!insn_is_uncond_bl && !insn_is_blx)
3682 return This::STATUS_BAD_RELOC;
3683 }
3684 else if (r_type == elfcpp::R_ARM_JUMP24)
3685 {
3686 if (!insn_is_b && !insn_is_cond_bl)
3687 return This::STATUS_BAD_RELOC;
3688 }
3689 else if (r_type == elfcpp::R_ARM_PLT32)
3690 {
3691 if (!insn_is_any_branch)
3692 return This::STATUS_BAD_RELOC;
3693 }
3694 else if (r_type == elfcpp::R_ARM_XPC25)
3695 {
3696 // FIXME: AAELF document IH0044C does not say much about it other
3697 // than it being obsolete.
3698 if (!insn_is_any_branch)
3699 return This::STATUS_BAD_RELOC;
3700 }
3701 else
3702 gold_unreachable();
3703
3704 // A branch to an undefined weak symbol is turned into a jump to
3705 // the next instruction unless a PLT entry will be created.
3706 // Do the same for local undefined symbols.
3707 // The jump to the next instruction is optimized as a NOP depending
3708 // on the architecture.
3709 const Target_arm<big_endian>* arm_target =
3710 Target_arm<big_endian>::default_target();
3711 if (is_weakly_undefined_without_plt)
3712 {
3713 Valtype cond = val & 0xf0000000U;
3714 if (arm_target->may_use_arm_nop())
3715 val = cond | 0x0320f000;
3716 else
3717 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
3718 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3719 return This::STATUS_OKAY;
3720 }
3721
3722 Valtype addend = utils::sign_extend<26>(val << 2);
3723 Valtype branch_target = psymval->value(object, addend);
3724 int32_t branch_offset = branch_target - address;
3725
3726 // We need a stub if the branch offset is too large or if we need
3727 // to switch mode.
3728 bool may_use_blx = arm_target->may_use_blx();
3729 Reloc_stub* stub = NULL;
2a2b6d42 3730 if (utils::has_overflow<26>(branch_offset)
d204b6e9
DK
3731 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
3732 {
2a2b6d42
DK
3733 Valtype unadjusted_branch_target = psymval->value(object, 0);
3734
d204b6e9 3735 Stub_type stub_type =
2a2b6d42
DK
3736 Reloc_stub::stub_type_for_reloc(r_type, address,
3737 unadjusted_branch_target,
d204b6e9
DK
3738 (thumb_bit != 0));
3739 if (stub_type != arm_stub_none)
3740 {
2ea97941 3741 Stub_table<big_endian>* stub_table =
d204b6e9 3742 object->stub_table(relinfo->data_shndx);
2ea97941 3743 gold_assert(stub_table != NULL);
d204b6e9
DK
3744
3745 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3746 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
3747 gold_assert(stub != NULL);
3748 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3749 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9 3750 branch_offset = branch_target - address;
2a2b6d42 3751 gold_assert(!utils::has_overflow<26>(branch_offset));
d204b6e9
DK
3752 }
3753 }
3754
3755 // At this point, if we still need to switch mode, the instruction
3756 // must either be a BLX or a BL that can be converted to a BLX.
3757 if (thumb_bit != 0)
3758 {
3759 // Turn BL to BLX.
3760 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
3761 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
3762 }
3763
3764 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
3765 elfcpp::Swap<32, big_endian>::writeval(wv, val);
3766 return (utils::has_overflow<26>(branch_offset)
3767 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
3768}
3769
51938283
DK
3770// Relocate THUMB long branches. This handles relocation types
3771// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
3772// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3773// undefined and we do not use PLT in this relocation. In such a case,
3774// the branch is converted into an NOP.
3775
3776template<bool big_endian>
3777typename Arm_relocate_functions<big_endian>::Status
3778Arm_relocate_functions<big_endian>::thumb_branch_common(
3779 unsigned int r_type,
3780 const Relocate_info<32, big_endian>* relinfo,
3781 unsigned char *view,
3782 const Sized_symbol<32>* gsym,
3783 const Arm_relobj<big_endian>* object,
3784 unsigned int r_sym,
3785 const Symbol_value<32>* psymval,
3786 Arm_address address,
3787 Arm_address thumb_bit,
3788 bool is_weakly_undefined_without_plt)
3789{
3790 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3791 Valtype* wv = reinterpret_cast<Valtype*>(view);
3792 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3793 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3794
3795 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
3796 // into account.
3797 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
3798 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
3799
3800 // Check that the instruction is valid.
3801 if (r_type == elfcpp::R_ARM_THM_CALL)
3802 {
3803 if (!is_bl_insn && !is_blx_insn)
3804 return This::STATUS_BAD_RELOC;
3805 }
3806 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
3807 {
3808 // This cannot be a BLX.
3809 if (!is_bl_insn)
3810 return This::STATUS_BAD_RELOC;
3811 }
3812 else if (r_type == elfcpp::R_ARM_THM_XPC22)
3813 {
3814 // Check for Thumb to Thumb call.
3815 if (!is_blx_insn)
3816 return This::STATUS_BAD_RELOC;
3817 if (thumb_bit != 0)
3818 {
3819 gold_warning(_("%s: Thumb BLX instruction targets "
3820 "thumb function '%s'."),
3821 object->name().c_str(),
3822 (gsym ? gsym->name() : "(local)"));
3823 // Convert BLX to BL.
3824 lower_insn |= 0x1000U;
3825 }
3826 }
3827 else
3828 gold_unreachable();
3829
3830 // A branch to an undefined weak symbol is turned into a jump to
3831 // the next instruction unless a PLT entry will be created.
3832 // The jump to the next instruction is optimized as a NOP.W for
3833 // Thumb-2 enabled architectures.
3834 const Target_arm<big_endian>* arm_target =
3835 Target_arm<big_endian>::default_target();
3836 if (is_weakly_undefined_without_plt)
3837 {
3838 if (arm_target->may_use_thumb2_nop())
3839 {
3840 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
3841 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
3842 }
3843 else
3844 {
3845 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
3846 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
3847 }
3848 return This::STATUS_OKAY;
3849 }
3850
089d69dc 3851 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
51938283 3852 Arm_address branch_target = psymval->value(object, addend);
a2c7281b
DK
3853
3854 // For BLX, bit 1 of target address comes from bit 1 of base address.
3855 bool may_use_blx = arm_target->may_use_blx();
3856 if (thumb_bit == 0 && may_use_blx)
3857 branch_target = utils::bit_select(branch_target, address, 0x2);
3858
51938283
DK
3859 int32_t branch_offset = branch_target - address;
3860
3861 // We need a stub if the branch offset is too large or if we need
3862 // to switch mode.
51938283 3863 bool thumb2 = arm_target->using_thumb2();
2a2b6d42
DK
3864 if ((!thumb2 && utils::has_overflow<23>(branch_offset))
3865 || (thumb2 && utils::has_overflow<25>(branch_offset))
51938283
DK
3866 || ((thumb_bit == 0)
3867 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
3868 || r_type == elfcpp::R_ARM_THM_JUMP24)))
3869 {
2a2b6d42
DK
3870 Arm_address unadjusted_branch_target = psymval->value(object, 0);
3871
51938283 3872 Stub_type stub_type =
2a2b6d42
DK
3873 Reloc_stub::stub_type_for_reloc(r_type, address,
3874 unadjusted_branch_target,
51938283 3875 (thumb_bit != 0));
2a2b6d42 3876
51938283
DK
3877 if (stub_type != arm_stub_none)
3878 {
2ea97941 3879 Stub_table<big_endian>* stub_table =
51938283 3880 object->stub_table(relinfo->data_shndx);
2ea97941 3881 gold_assert(stub_table != NULL);
51938283
DK
3882
3883 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 3884 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
3885 gold_assert(stub != NULL);
3886 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 3887 branch_target = stub_table->address() + stub->offset() + addend;
a2c7281b
DK
3888 if (thumb_bit == 0 && may_use_blx)
3889 branch_target = utils::bit_select(branch_target, address, 0x2);
51938283
DK
3890 branch_offset = branch_target - address;
3891 }
3892 }
3893
3894 // At this point, if we still need to switch mode, the instruction
3895 // must either be a BLX or a BL that can be converted to a BLX.
3896 if (thumb_bit == 0)
3897 {
3898 gold_assert(may_use_blx
3899 && (r_type == elfcpp::R_ARM_THM_CALL
3900 || r_type == elfcpp::R_ARM_THM_XPC22));
3901 // Make sure this is a BLX.
3902 lower_insn &= ~0x1000U;
3903 }
3904 else
3905 {
3906 // Make sure this is a BL.
3907 lower_insn |= 0x1000U;
3908 }
3909
a2c7281b
DK
3910 // For a BLX instruction, make sure that the relocation is rounded up
3911 // to a word boundary. This follows the semantics of the instruction
3912 // which specifies that bit 1 of the target address will come from bit
3913 // 1 of the base address.
51938283 3914 if ((lower_insn & 0x5000U) == 0x4000U)
a2c7281b 3915 gold_assert((branch_offset & 3) == 0);
51938283
DK
3916
3917 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
3918 // We use the Thumb-2 encoding, which is safe even if dealing with
3919 // a Thumb-1 instruction by virtue of our overflow check above. */
089d69dc
DK
3920 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
3921 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
51938283
DK
3922
3923 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3924 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3925
a2c7281b
DK
3926 gold_assert(!utils::has_overflow<25>(branch_offset));
3927
51938283 3928 return ((thumb2
089d69dc
DK
3929 ? utils::has_overflow<25>(branch_offset)
3930 : utils::has_overflow<23>(branch_offset))
3931 ? This::STATUS_OVERFLOW
3932 : This::STATUS_OKAY);
3933}
3934
3935// Relocate THUMB-2 long conditional branches.
3936// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
3937// undefined and we do not use PLT in this relocation. In such a case,
3938// the branch is converted into an NOP.
3939
3940template<bool big_endian>
3941typename Arm_relocate_functions<big_endian>::Status
3942Arm_relocate_functions<big_endian>::thm_jump19(
3943 unsigned char *view,
3944 const Arm_relobj<big_endian>* object,
3945 const Symbol_value<32>* psymval,
3946 Arm_address address,
3947 Arm_address thumb_bit)
3948{
3949 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3950 Valtype* wv = reinterpret_cast<Valtype*>(view);
3951 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3952 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3953 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
3954
3955 Arm_address branch_target = psymval->value(object, addend);
3956 int32_t branch_offset = branch_target - address;
3957
3958 // ??? Should handle interworking? GCC might someday try to
3959 // use this for tail calls.
3960 // FIXME: We do support thumb entry to PLT yet.
3961 if (thumb_bit == 0)
3962 {
3963 gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
3964 return This::STATUS_BAD_RELOC;
3965 }
3966
3967 // Put RELOCATION back into the insn.
3968 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
3969 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
3970
3971 // Put the relocated value back in the object file:
3972 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
3973 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
3974
3975 return (utils::has_overflow<21>(branch_offset)
51938283
DK
3976 ? This::STATUS_OVERFLOW
3977 : This::STATUS_OKAY);
3978}
3979
94cdfcff
DK
3980// Get the GOT section, creating it if necessary.
3981
3982template<bool big_endian>
4a54abbb 3983Arm_output_data_got<big_endian>*
94cdfcff
DK
3984Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
3985{
3986 if (this->got_ == NULL)
3987 {
3988 gold_assert(symtab != NULL && layout != NULL);
3989
4a54abbb 3990 this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
94cdfcff
DK
3991
3992 Output_section* os;
3993 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3994 (elfcpp::SHF_ALLOC
3995 | elfcpp::SHF_WRITE),
67ec7d0b
DK
3996 this->got_, false, false, false,
3997 true);
94cdfcff
DK
3998 // The old GNU linker creates a .got.plt section. We just
3999 // create another set of data in the .got section. Note that we
4000 // always create a PLT if we create a GOT, although the PLT
4001 // might be empty.
4002 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
4003 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
4004 (elfcpp::SHF_ALLOC
4005 | elfcpp::SHF_WRITE),
1a2dff53 4006 this->got_plt_, false, false,
67ec7d0b 4007 false, false);
94cdfcff
DK
4008
4009 // The first three entries are reserved.
4010 this->got_plt_->set_current_data_size(3 * 4);
4011
4012 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
4013 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
99fff23b 4014 Symbol_table::PREDEFINED,
94cdfcff
DK
4015 this->got_plt_,
4016 0, 0, elfcpp::STT_OBJECT,
4017 elfcpp::STB_LOCAL,
4018 elfcpp::STV_HIDDEN, 0,
4019 false, false);
4020 }
4021 return this->got_;
4022}
4023
4024// Get the dynamic reloc section, creating it if necessary.
4025
4026template<bool big_endian>
4027typename Target_arm<big_endian>::Reloc_section*
4028Target_arm<big_endian>::rel_dyn_section(Layout* layout)
4029{
4030 if (this->rel_dyn_ == NULL)
4031 {
4032 gold_assert(layout != NULL);
4033 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
4034 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
1a2dff53
ILT
4035 elfcpp::SHF_ALLOC, this->rel_dyn_, true,
4036 false, false, false);
94cdfcff
DK
4037 }
4038 return this->rel_dyn_;
4039}
4040
b569affa
DK
4041// Insn_template methods.
4042
4043// Return byte size of an instruction template.
4044
4045size_t
4046Insn_template::size() const
4047{
4048 switch (this->type())
4049 {
4050 case THUMB16_TYPE:
2fb7225c 4051 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4052 return 2;
4053 case ARM_TYPE:
4054 case THUMB32_TYPE:
4055 case DATA_TYPE:
4056 return 4;
4057 default:
4058 gold_unreachable();
4059 }
4060}
4061
4062// Return alignment of an instruction template.
4063
4064unsigned
4065Insn_template::alignment() const
4066{
4067 switch (this->type())
4068 {
4069 case THUMB16_TYPE:
2fb7225c 4070 case THUMB16_SPECIAL_TYPE:
b569affa
DK
4071 case THUMB32_TYPE:
4072 return 2;
4073 case ARM_TYPE:
4074 case DATA_TYPE:
4075 return 4;
4076 default:
4077 gold_unreachable();
4078 }
4079}
4080
4081// Stub_template methods.
4082
4083Stub_template::Stub_template(
2ea97941
ILT
4084 Stub_type type, const Insn_template* insns,
4085 size_t insn_count)
4086 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
4087 entry_in_thumb_mode_(false), relocs_()
4088{
2ea97941 4089 off_t offset = 0;
b569affa
DK
4090
4091 // Compute byte size and alignment of stub template.
2ea97941 4092 for (size_t i = 0; i < insn_count; i++)
b569affa 4093 {
2ea97941
ILT
4094 unsigned insn_alignment = insns[i].alignment();
4095 size_t insn_size = insns[i].size();
4096 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 4097 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 4098 switch (insns[i].type())
b569affa
DK
4099 {
4100 case Insn_template::THUMB16_TYPE:
089d69dc 4101 case Insn_template::THUMB16_SPECIAL_TYPE:
b569affa
DK
4102 if (i == 0)
4103 this->entry_in_thumb_mode_ = true;
4104 break;
4105
4106 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
4107 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
4108 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4109 if (i == 0)
4110 this->entry_in_thumb_mode_ = true;
4111 break;
4112
4113 case Insn_template::ARM_TYPE:
4114 // Handle cases where the target is encoded within the
4115 // instruction.
2ea97941
ILT
4116 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
4117 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4118 break;
4119
4120 case Insn_template::DATA_TYPE:
4121 // Entry point cannot be data.
4122 gold_assert(i != 0);
2ea97941 4123 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
4124 break;
4125
4126 default:
4127 gold_unreachable();
4128 }
2ea97941 4129 offset += insn_size;
b569affa 4130 }
2ea97941 4131 this->size_ = offset;
b569affa
DK
4132}
4133
bb0d3eb0
DK
4134// Stub methods.
4135
7296d933 4136// Template to implement do_write for a specific target endianness.
bb0d3eb0
DK
4137
4138template<bool big_endian>
4139void inline
4140Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
4141{
4142 const Stub_template* stub_template = this->stub_template();
4143 const Insn_template* insns = stub_template->insns();
4144
4145 // FIXME: We do not handle BE8 encoding yet.
4146 unsigned char* pov = view;
4147 for (size_t i = 0; i < stub_template->insn_count(); i++)
4148 {
4149 switch (insns[i].type())
4150 {
4151 case Insn_template::THUMB16_TYPE:
4152 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
4153 break;
4154 case Insn_template::THUMB16_SPECIAL_TYPE:
4155 elfcpp::Swap<16, big_endian>::writeval(
4156 pov,
4157 this->thumb16_special(i));
4158 break;
4159 case Insn_template::THUMB32_TYPE:
4160 {
4161 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
4162 uint32_t lo = insns[i].data() & 0xffff;
4163 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
4164 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
4165 }
4166 break;
4167 case Insn_template::ARM_TYPE:
4168 case Insn_template::DATA_TYPE:
4169 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
4170 break;
4171 default:
4172 gold_unreachable();
4173 }
4174 pov += insns[i].size();
4175 }
4176 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
4177}
4178
b569affa
DK
4179// Reloc_stub::Key methods.
4180
4181// Dump a Key as a string for debugging.
4182
4183std::string
4184Reloc_stub::Key::name() const
4185{
4186 if (this->r_sym_ == invalid_index)
4187 {
4188 // Global symbol key name
4189 // <stub-type>:<symbol name>:<addend>.
4190 const std::string sym_name = this->u_.symbol->name();
4191 // We need to print two hex number and two colons. So just add 100 bytes
4192 // to the symbol name size.
4193 size_t len = sym_name.size() + 100;
4194 char* buffer = new char[len];
4195 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
4196 sym_name.c_str(), this->addend_);
4197 gold_assert(c > 0 && c < static_cast<int>(len));
4198 delete[] buffer;
4199 return std::string(buffer);
4200 }
4201 else
4202 {
4203 // local symbol key name
4204 // <stub-type>:<object>:<r_sym>:<addend>.
4205 const size_t len = 200;
4206 char buffer[len];
4207 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
4208 this->u_.relobj, this->r_sym_, this->addend_);
4209 gold_assert(c > 0 && c < static_cast<int>(len));
4210 return std::string(buffer);
4211 }
4212}
4213
4214// Reloc_stub methods.
4215
4216// Determine the type of stub needed, if any, for a relocation of R_TYPE at
4217// LOCATION to DESTINATION.
4218// This code is based on the arm_type_of_stub function in
4219// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
4220// class simple.
4221
4222Stub_type
4223Reloc_stub::stub_type_for_reloc(
4224 unsigned int r_type,
4225 Arm_address location,
4226 Arm_address destination,
4227 bool target_is_thumb)
4228{
4229 Stub_type stub_type = arm_stub_none;
4230
4231 // This is a bit ugly but we want to avoid using a templated class for
4232 // big and little endianities.
4233 bool may_use_blx;
4234 bool should_force_pic_veneer;
4235 bool thumb2;
4236 bool thumb_only;
4237 if (parameters->target().is_big_endian())
4238 {
43d12afe 4239 const Target_arm<true>* big_endian_target =
b569affa 4240 Target_arm<true>::default_target();
43d12afe
DK
4241 may_use_blx = big_endian_target->may_use_blx();
4242 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
4243 thumb2 = big_endian_target->using_thumb2();
4244 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
4245 }
4246 else
4247 {
43d12afe 4248 const Target_arm<false>* little_endian_target =
b569affa 4249 Target_arm<false>::default_target();
43d12afe
DK
4250 may_use_blx = little_endian_target->may_use_blx();
4251 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
4252 thumb2 = little_endian_target->using_thumb2();
4253 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
4254 }
4255
a2c7281b 4256 int64_t branch_offset;
b569affa
DK
4257 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
4258 {
a2c7281b
DK
4259 // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
4260 // base address (instruction address + 4).
4261 if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
4262 destination = utils::bit_select(destination, location, 0x2);
4263 branch_offset = static_cast<int64_t>(destination) - location;
4264
b569affa
DK
4265 // Handle cases where:
4266 // - this call goes too far (different Thumb/Thumb2 max
4267 // distance)
4268 // - it's a Thumb->Arm call and blx is not available, or it's a
4269 // Thumb->Arm branch (not bl). A stub is needed in this case.
4270 if ((!thumb2
4271 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4272 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4273 || (thumb2
4274 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4275 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4276 || ((!target_is_thumb)
4277 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
4278 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
4279 {
4280 if (target_is_thumb)
4281 {
4282 // Thumb to thumb.
4283 if (!thumb_only)
4284 {
51938283
DK
4285 stub_type = (parameters->options().shared()
4286 || should_force_pic_veneer)
b569affa
DK
4287 // PIC stubs.
4288 ? ((may_use_blx
4289 && (r_type == elfcpp::R_ARM_THM_CALL))
4290 // V5T and above. Stub starts with ARM code, so
4291 // we must be able to switch mode before
4292 // reaching it, which is only possible for 'bl'
4293 // (ie R_ARM_THM_CALL relocation).
4294 ? arm_stub_long_branch_any_thumb_pic
4295 // On V4T, use Thumb code only.
4296 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4297
4298 // non-PIC stubs.
4299 : ((may_use_blx
4300 && (r_type == elfcpp::R_ARM_THM_CALL))
4301 ? arm_stub_long_branch_any_any // V5T and above.
4302 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
4303 }
4304 else
4305 {
51938283
DK
4306 stub_type = (parameters->options().shared()
4307 || should_force_pic_veneer)
b569affa
DK
4308 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
4309 : arm_stub_long_branch_thumb_only; // non-PIC stub.
4310 }
4311 }
4312 else
4313 {
4314 // Thumb to arm.
4315
4316 // FIXME: We should check that the input section is from an
4317 // object that has interwork enabled.
4318
4319 stub_type = (parameters->options().shared()
4320 || should_force_pic_veneer)
4321 // PIC stubs.
4322 ? ((may_use_blx
4323 && (r_type == elfcpp::R_ARM_THM_CALL))
4324 ? arm_stub_long_branch_any_arm_pic // V5T and above.
4325 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
4326
4327 // non-PIC stubs.
4328 : ((may_use_blx
4329 && (r_type == elfcpp::R_ARM_THM_CALL))
4330 ? arm_stub_long_branch_any_any // V5T and above.
4331 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
4332
4333 // Handle v4t short branches.
4334 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4335 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4336 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4337 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4338 }
4339 }
4340 }
4341 else if (r_type == elfcpp::R_ARM_CALL
4342 || r_type == elfcpp::R_ARM_JUMP24
4343 || r_type == elfcpp::R_ARM_PLT32)
4344 {
a2c7281b 4345 branch_offset = static_cast<int64_t>(destination) - location;
b569affa
DK
4346 if (target_is_thumb)
4347 {
4348 // Arm to thumb.
4349
4350 // FIXME: We should check that the input section is from an
4351 // object that has interwork enabled.
4352
4353 // We have an extra 2-bytes reach because of
4354 // the mode change (bit 24 (H) of BLX encoding).
4355 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4356 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4357 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
4358 || (r_type == elfcpp::R_ARM_JUMP24)
4359 || (r_type == elfcpp::R_ARM_PLT32))
4360 {
4361 stub_type = (parameters->options().shared()
4362 || should_force_pic_veneer)
4363 // PIC stubs.
4364 ? (may_use_blx
4365 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
4366 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
4367
4368 // non-PIC stubs.
4369 : (may_use_blx
4370 ? arm_stub_long_branch_any_any // V5T and above.
4371 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
4372 }
4373 }
4374 else
4375 {
4376 // Arm to arm.
4377 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4378 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4379 {
4380 stub_type = (parameters->options().shared()
4381 || should_force_pic_veneer)
4382 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
4383 : arm_stub_long_branch_any_any; /// non-PIC.
4384 }
4385 }
4386 }
4387
4388 return stub_type;
4389}
4390
bb0d3eb0 4391// Cortex_a8_stub methods.
b569affa 4392
bb0d3eb0
DK
4393// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
4394// I is the position of the instruction template in the stub template.
b569affa 4395
bb0d3eb0
DK
4396uint16_t
4397Cortex_a8_stub::do_thumb16_special(size_t i)
b569affa 4398{
bb0d3eb0
DK
4399 // The only use of this is to copy condition code from a conditional
4400 // branch being worked around to the corresponding conditional branch in
4401 // to the stub.
4402 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
4403 && i == 0);
4404 uint16_t data = this->stub_template()->insns()[i].data();
4405 gold_assert((data & 0xff00U) == 0xd000U);
4406 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
4407 return data;
b569affa
DK
4408}
4409
4410// Stub_factory methods.
4411
4412Stub_factory::Stub_factory()
4413{
4414 // The instruction template sequences are declared as static
4415 // objects and initialized first time the constructor runs.
4416
4417 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
4418 // to reach the stub if necessary.
4419 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
4420 {
4421 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4422 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4423 // dcd R_ARM_ABS32(X)
4424 };
4425
4426 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
4427 // available.
4428 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
4429 {
4430 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4431 Insn_template::arm_insn(0xe12fff1c), // bx ip
4432 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4433 // dcd R_ARM_ABS32(X)
4434 };
4435
4436 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
4437 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
4438 {
4439 Insn_template::thumb16_insn(0xb401), // push {r0}
4440 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4441 Insn_template::thumb16_insn(0x4684), // mov ip, r0
4442 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4443 Insn_template::thumb16_insn(0x4760), // bx ip
4444 Insn_template::thumb16_insn(0xbf00), // nop
4445 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4446 // dcd R_ARM_ABS32(X)
4447 };
4448
4449 // V4T Thumb -> Thumb long branch stub. Using the stack is not
4450 // allowed.
4451 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
4452 {
4453 Insn_template::thumb16_insn(0x4778), // bx pc
4454 Insn_template::thumb16_insn(0x46c0), // nop
4455 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4456 Insn_template::arm_insn(0xe12fff1c), // bx ip
4457 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4458 // dcd R_ARM_ABS32(X)
4459 };
4460
4461 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
4462 // available.
4463 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
4464 {
4465 Insn_template::thumb16_insn(0x4778), // bx pc
4466 Insn_template::thumb16_insn(0x46c0), // nop
4467 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
4468 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
4469 // dcd R_ARM_ABS32(X)
4470 };
4471
4472 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
4473 // one, when the destination is close enough.
4474 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
4475 {
4476 Insn_template::thumb16_insn(0x4778), // bx pc
4477 Insn_template::thumb16_insn(0x46c0), // nop
4478 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
4479 };
4480
4481 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
4482 // blx to reach the stub if necessary.
4483 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
4484 {
4485 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
4486 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
4487 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4488 // dcd R_ARM_REL32(X-4)
4489 };
4490
4491 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
4492 // blx to reach the stub if necessary. We can not add into pc;
4493 // it is not guaranteed to mode switch (different in ARMv6 and
4494 // ARMv7).
4495 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
4496 {
4497 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
4498 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4499 Insn_template::arm_insn(0xe12fff1c), // bx ip
4500 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4501 // dcd R_ARM_REL32(X)
4502 };
4503
4504 // V4T ARM -> ARM long branch stub, PIC.
4505 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
4506 {
4507 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4508 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4509 Insn_template::arm_insn(0xe12fff1c), // bx ip
4510 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4511 // dcd R_ARM_REL32(X)
4512 };
4513
4514 // V4T Thumb -> ARM long branch stub, PIC.
4515 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
4516 {
4517 Insn_template::thumb16_insn(0x4778), // bx pc
4518 Insn_template::thumb16_insn(0x46c0), // nop
4519 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
4520 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
4521 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
4522 // dcd R_ARM_REL32(X)
4523 };
4524
4525 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
4526 // architectures.
4527 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
4528 {
4529 Insn_template::thumb16_insn(0xb401), // push {r0}
4530 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
4531 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
4532 Insn_template::thumb16_insn(0x4484), // add ip, r0
4533 Insn_template::thumb16_insn(0xbc01), // pop {r0}
4534 Insn_template::thumb16_insn(0x4760), // bx ip
4535 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
4536 // dcd R_ARM_REL32(X)
4537 };
4538
4539 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
4540 // allowed.
4541 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
4542 {
4543 Insn_template::thumb16_insn(0x4778), // bx pc
4544 Insn_template::thumb16_insn(0x46c0), // nop
4545 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
4546 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
4547 Insn_template::arm_insn(0xe12fff1c), // bx ip
4548 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
4549 // dcd R_ARM_REL32(X)
4550 };
4551
4552 // Cortex-A8 erratum-workaround stubs.
4553
4554 // Stub used for conditional branches (which may be beyond +/-1MB away,
4555 // so we can't use a conditional branch to reach this stub).
4556
4557 // original code:
4558 //
4559 // b<cond> X
4560 // after:
4561 //
4562 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
4563 {
4564 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
4565 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
4566 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
4567 // b.w X
4568 };
4569
4570 // Stub used for b.w and bl.w instructions.
4571
4572 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
4573 {
4574 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4575 };
4576
4577 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
4578 {
4579 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
4580 };
4581
4582 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
4583 // instruction (which switches to ARM mode) to point to this stub. Jump to
4584 // the real destination using an ARM-mode branch.
bb0d3eb0 4585 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
b569affa
DK
4586 {
4587 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
4588 };
4589
a2162063
ILT
4590 // Stub used to provide an interworking for R_ARM_V4BX relocation
4591 // (bx r[n] instruction).
4592 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
4593 {
4594 Insn_template::arm_insn(0xe3100001), // tst r<n>, #1
4595 Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n>
4596 Insn_template::arm_insn(0xe12fff10) // bx r<n>
4597 };
4598
b569affa
DK
4599 // Fill in the stub template look-up table. Stub templates are constructed
4600 // per instance of Stub_factory for fast look-up without locking
4601 // in a thread-enabled environment.
4602
4603 this->stub_templates_[arm_stub_none] =
4604 new Stub_template(arm_stub_none, NULL, 0);
4605
4606#define DEF_STUB(x) \
4607 do \
4608 { \
4609 size_t array_size \
4610 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
4611 Stub_type type = arm_stub_##x; \
4612 this->stub_templates_[type] = \
4613 new Stub_template(type, elf32_arm_stub_##x, array_size); \
4614 } \
4615 while (0);
4616
4617 DEF_STUBS
4618#undef DEF_STUB
4619}
4620
56ee5e00
DK
4621// Stub_table methods.
4622
2fb7225c 4623// Removel all Cortex-A8 stub.
56ee5e00
DK
4624
4625template<bool big_endian>
4626void
2fb7225c
DK
4627Stub_table<big_endian>::remove_all_cortex_a8_stubs()
4628{
4629 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4630 p != this->cortex_a8_stubs_.end();
4631 ++p)
4632 delete p->second;
4633 this->cortex_a8_stubs_.clear();
4634}
4635
4636// Relocate one stub. This is a helper for Stub_table::relocate_stubs().
4637
4638template<bool big_endian>
4639void
4640Stub_table<big_endian>::relocate_stub(
4641 Stub* stub,
4642 const Relocate_info<32, big_endian>* relinfo,
4643 Target_arm<big_endian>* arm_target,
4644 Output_section* output_section,
4645 unsigned char* view,
4646 Arm_address address,
4647 section_size_type view_size)
56ee5e00 4648{
2ea97941 4649 const Stub_template* stub_template = stub->stub_template();
2fb7225c
DK
4650 if (stub_template->reloc_count() != 0)
4651 {
4652 // Adjust view to cover the stub only.
4653 section_size_type offset = stub->offset();
4654 section_size_type stub_size = stub_template->size();
4655 gold_assert(offset + stub_size <= view_size);
4656
4657 arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
4658 address + offset, stub_size);
4659 }
56ee5e00
DK
4660}
4661
2fb7225c
DK
4662// Relocate all stubs in this stub table.
4663
56ee5e00
DK
4664template<bool big_endian>
4665void
4666Stub_table<big_endian>::relocate_stubs(
4667 const Relocate_info<32, big_endian>* relinfo,
4668 Target_arm<big_endian>* arm_target,
2ea97941 4669 Output_section* output_section,
56ee5e00 4670 unsigned char* view,
2ea97941 4671 Arm_address address,
56ee5e00
DK
4672 section_size_type view_size)
4673{
4674 // If we are passed a view bigger than the stub table's. we need to
4675 // adjust the view.
2ea97941 4676 gold_assert(address == this->address()
56ee5e00
DK
4677 && (view_size
4678 == static_cast<section_size_type>(this->data_size())));
4679
2fb7225c
DK
4680 // Relocate all relocation stubs.
4681 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4682 p != this->reloc_stubs_.end();
4683 ++p)
4684 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4685 address, view_size);
4686
4687 // Relocate all Cortex-A8 stubs.
4688 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
4689 p != this->cortex_a8_stubs_.end();
4690 ++p)
4691 this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
4692 address, view_size);
a2162063
ILT
4693
4694 // Relocate all ARM V4BX stubs.
4695 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
4696 p != this->arm_v4bx_stubs_.end();
4697 ++p)
4698 {
4699 if (*p != NULL)
4700 this->relocate_stub(*p, relinfo, arm_target, output_section, view,
4701 address, view_size);
4702 }
2fb7225c
DK
4703}
4704
4705// Write out the stubs to file.
4706
4707template<bool big_endian>
4708void
4709Stub_table<big_endian>::do_write(Output_file* of)
4710{
4711 off_t offset = this->offset();
4712 const section_size_type oview_size =
4713 convert_to_section_size_type(this->data_size());
4714 unsigned char* const oview = of->get_output_view(offset, oview_size);
4715
4716 // Write relocation stubs.
56ee5e00
DK
4717 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
4718 p != this->reloc_stubs_.end();
4719 ++p)
4720 {
4721 Reloc_stub* stub = p->second;
2fb7225c
DK
4722 Arm_address address = this->address() + stub->offset();
4723 gold_assert(address
4724 == align_address(address,
4725 stub->stub_template()->alignment()));
4726 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4727 big_endian);
56ee5e00 4728 }
2fb7225c
DK
4729
4730 // Write Cortex-A8 stubs.
4731 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4732 p != this->cortex_a8_stubs_.end();
4733 ++p)
4734 {
4735 Cortex_a8_stub* stub = p->second;
4736 Arm_address address = this->address() + stub->offset();
4737 gold_assert(address
4738 == align_address(address,
4739 stub->stub_template()->alignment()));
4740 stub->write(oview + stub->offset(), stub->stub_template()->size(),
4741 big_endian);
4742 }
4743
a2162063
ILT
4744 // Write ARM V4BX relocation stubs.
4745 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4746 p != this->arm_v4bx_stubs_.end();
4747 ++p)
4748 {
4749 if (*p == NULL)
4750 continue;
4751
4752 Arm_address address = this->address() + (*p)->offset();
4753 gold_assert(address
4754 == align_address(address,
4755 (*p)->stub_template()->alignment()));
4756 (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
4757 big_endian);
4758 }
4759
2fb7225c 4760 of->write_output_view(this->offset(), oview_size, oview);
56ee5e00
DK
4761}
4762
2fb7225c
DK
4763// Update the data size and address alignment of the stub table at the end
4764// of a relaxation pass. Return true if either the data size or the
4765// alignment changed in this relaxation pass.
4766
4767template<bool big_endian>
4768bool
4769Stub_table<big_endian>::update_data_size_and_addralign()
4770{
2fb7225c 4771 // Go over all stubs in table to compute data size and address alignment.
d099120c
DK
4772 off_t size = this->reloc_stubs_size_;
4773 unsigned addralign = this->reloc_stubs_addralign_;
2fb7225c
DK
4774
4775 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4776 p != this->cortex_a8_stubs_.end();
4777 ++p)
4778 {
4779 const Stub_template* stub_template = p->second->stub_template();
4780 addralign = std::max(addralign, stub_template->alignment());
4781 size = (align_address(size, stub_template->alignment())
4782 + stub_template->size());
4783 }
4784
a2162063
ILT
4785 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4786 p != this->arm_v4bx_stubs_.end();
4787 ++p)
4788 {
4789 if (*p == NULL)
4790 continue;
4791
4792 const Stub_template* stub_template = (*p)->stub_template();
4793 addralign = std::max(addralign, stub_template->alignment());
4794 size = (align_address(size, stub_template->alignment())
4795 + stub_template->size());
4796 }
4797
2fb7225c
DK
4798 // Check if either data size or alignment changed in this pass.
4799 // Update prev_data_size_ and prev_addralign_. These will be used
4800 // as the current data size and address alignment for the next pass.
4801 bool changed = size != this->prev_data_size_;
4802 this->prev_data_size_ = size;
4803
4804 if (addralign != this->prev_addralign_)
4805 changed = true;
4806 this->prev_addralign_ = addralign;
4807
4808 return changed;
4809}
4810
4811// Finalize the stubs. This sets the offsets of the stubs within the stub
4812// table. It also marks all input sections needing Cortex-A8 workaround.
56ee5e00
DK
4813
4814template<bool big_endian>
4815void
2fb7225c 4816Stub_table<big_endian>::finalize_stubs()
56ee5e00 4817{
d099120c 4818 off_t off = this->reloc_stubs_size_;
2fb7225c
DK
4819 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
4820 p != this->cortex_a8_stubs_.end();
4821 ++p)
4822 {
4823 Cortex_a8_stub* stub = p->second;
4824 const Stub_template* stub_template = stub->stub_template();
4825 uint64_t stub_addralign = stub_template->alignment();
4826 off = align_address(off, stub_addralign);
4827 stub->set_offset(off);
4828 off += stub_template->size();
4829
4830 // Mark input section so that we can determine later if a code section
4831 // needs the Cortex-A8 workaround quickly.
4832 Arm_relobj<big_endian>* arm_relobj =
4833 Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
4834 arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
4835 }
4836
a2162063
ILT
4837 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
4838 p != this->arm_v4bx_stubs_.end();
4839 ++p)
4840 {
4841 if (*p == NULL)
4842 continue;
4843
4844 const Stub_template* stub_template = (*p)->stub_template();
4845 uint64_t stub_addralign = stub_template->alignment();
4846 off = align_address(off, stub_addralign);
4847 (*p)->set_offset(off);
4848 off += stub_template->size();
4849 }
4850
2fb7225c 4851 gold_assert(off <= this->prev_data_size_);
56ee5e00
DK
4852}
4853
2fb7225c
DK
4854// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
4855// and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address
4856// of the address range seen by the linker.
56ee5e00
DK
4857
4858template<bool big_endian>
4859void
2fb7225c
DK
4860Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
4861 Target_arm<big_endian>* arm_target,
4862 unsigned char* view,
4863 Arm_address view_address,
4864 section_size_type view_size)
56ee5e00 4865{
2fb7225c
DK
4866 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
4867 for (Cortex_a8_stub_list::const_iterator p =
4868 this->cortex_a8_stubs_.lower_bound(view_address);
4869 ((p != this->cortex_a8_stubs_.end())
4870 && (p->first < (view_address + view_size)));
4871 ++p)
56ee5e00 4872 {
2fb7225c
DK
4873 // We do not store the THUMB bit in the LSB of either the branch address
4874 // or the stub offset. There is no need to strip the LSB.
4875 Arm_address branch_address = p->first;
4876 const Cortex_a8_stub* stub = p->second;
4877 Arm_address stub_address = this->address() + stub->offset();
4878
4879 // Offset of the branch instruction relative to this view.
4880 section_size_type offset =
4881 convert_to_section_size_type(branch_address - view_address);
4882 gold_assert((offset + 4) <= view_size);
4883
4884 arm_target->apply_cortex_a8_workaround(stub, stub_address,
4885 view + offset, branch_address);
4886 }
56ee5e00
DK
4887}
4888
10ad9fe5
DK
4889// Arm_input_section methods.
4890
4891// Initialize an Arm_input_section.
4892
4893template<bool big_endian>
4894void
4895Arm_input_section<big_endian>::init()
4896{
2ea97941
ILT
4897 Relobj* relobj = this->relobj();
4898 unsigned int shndx = this->shndx();
10ad9fe5
DK
4899
4900 // Cache these to speed up size and alignment queries. It is too slow
4901 // to call section_addraglin and section_size every time.
2ea97941
ILT
4902 this->original_addralign_ = relobj->section_addralign(shndx);
4903 this->original_size_ = relobj->section_size(shndx);
10ad9fe5
DK
4904
4905 // We want to make this look like the original input section after
4906 // output sections are finalized.
2ea97941
ILT
4907 Output_section* os = relobj->output_section(shndx);
4908 off_t offset = relobj->output_section_offset(shndx);
4909 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
4910 this->set_address(os->address() + offset);
4911 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
4912
4913 this->set_current_data_size(this->original_size_);
4914 this->finalize_data_size();
4915}
4916
4917template<bool big_endian>
4918void
4919Arm_input_section<big_endian>::do_write(Output_file* of)
4920{
4921 // We have to write out the original section content.
4922 section_size_type section_size;
4923 const unsigned char* section_contents =
4924 this->relobj()->section_contents(this->shndx(), &section_size, false);
4925 of->write(this->offset(), section_contents, section_size);
4926
4927 // If this owns a stub table and it is not empty, write it.
4928 if (this->is_stub_table_owner() && !this->stub_table_->empty())
4929 this->stub_table_->write(of);
4930}
4931
4932// Finalize data size.
4933
4934template<bool big_endian>
4935void
4936Arm_input_section<big_endian>::set_final_data_size()
4937{
4938 // If this owns a stub table, finalize its data size as well.
4939 if (this->is_stub_table_owner())
4940 {
2ea97941 4941 uint64_t address = this->address();
10ad9fe5
DK
4942
4943 // The stub table comes after the original section contents.
2ea97941
ILT
4944 address += this->original_size_;
4945 address = align_address(address, this->stub_table_->addralign());
4946 off_t offset = this->offset() + (address - this->address());
4947 this->stub_table_->set_address_and_file_offset(address, offset);
4948 address += this->stub_table_->data_size();
4949 gold_assert(address == this->address() + this->current_data_size());
10ad9fe5
DK
4950 }
4951
4952 this->set_data_size(this->current_data_size());
4953}
4954
4955// Reset address and file offset.
4956
4957template<bool big_endian>
4958void
4959Arm_input_section<big_endian>::do_reset_address_and_file_offset()
4960{
4961 // Size of the original input section contents.
4962 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
4963
4964 // If this is a stub table owner, account for the stub table size.
4965 if (this->is_stub_table_owner())
4966 {
2ea97941 4967 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
4968
4969 // Reset the stub table's address and file offset. The
4970 // current data size for child will be updated after that.
4971 stub_table_->reset_address_and_file_offset();
4972 off = align_address(off, stub_table_->addralign());
2ea97941 4973 off += stub_table->current_data_size();
10ad9fe5
DK
4974 }
4975
4976 this->set_current_data_size(off);
4977}
4978
af2cdeae
DK
4979// Arm_exidx_cantunwind methods.
4980
7296d933 4981// Write this to Output file OF for a fixed endianness.
af2cdeae
DK
4982
4983template<bool big_endian>
4984void
4985Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
4986{
4987 off_t offset = this->offset();
4988 const section_size_type oview_size = 8;
4989 unsigned char* const oview = of->get_output_view(offset, oview_size);
4990
4991 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4992 Valtype* wv = reinterpret_cast<Valtype*>(oview);
4993
4994 Output_section* os = this->relobj_->output_section(this->shndx_);
4995 gold_assert(os != NULL);
4996
4997 Arm_relobj<big_endian>* arm_relobj =
4998 Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
4999 Arm_address output_offset =
5000 arm_relobj->get_output_section_offset(this->shndx_);
5001 Arm_address section_start;
7296d933 5002 if (output_offset != Arm_relobj<big_endian>::invalid_address)
af2cdeae
DK
5003 section_start = os->address() + output_offset;
5004 else
5005 {
5006 // Currently this only happens for a relaxed section.
5007 const Output_relaxed_input_section* poris =
5008 os->find_relaxed_input_section(this->relobj_, this->shndx_);
5009 gold_assert(poris != NULL);
5010 section_start = poris->address();
5011 }
5012
5013 // We always append this to the end of an EXIDX section.
5014 Arm_address output_address =
5015 section_start + this->relobj_->section_size(this->shndx_);
5016
5017 // Write out the entry. The first word either points to the beginning
5018 // or after the end of a text section. The second word is the special
5019 // EXIDX_CANTUNWIND value.
e7eca48c
DK
5020 uint32_t prel31_offset = output_address - this->address();
5021 if (utils::has_overflow<31>(offset))
5022 gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
5023 elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
af2cdeae
DK
5024 elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
5025
5026 of->write_output_view(this->offset(), oview_size, oview);
5027}
5028
5029// Arm_exidx_merged_section methods.
5030
5031// Constructor for Arm_exidx_merged_section.
5032// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
5033// SECTION_OFFSET_MAP points to a section offset map describing how
5034// parts of the input section are mapped to output. DELETED_BYTES is
5035// the number of bytes deleted from the EXIDX input section.
5036
5037Arm_exidx_merged_section::Arm_exidx_merged_section(
5038 const Arm_exidx_input_section& exidx_input_section,
5039 const Arm_exidx_section_offset_map& section_offset_map,
5040 uint32_t deleted_bytes)
5041 : Output_relaxed_input_section(exidx_input_section.relobj(),
5042 exidx_input_section.shndx(),
5043 exidx_input_section.addralign()),
5044 exidx_input_section_(exidx_input_section),
5045 section_offset_map_(section_offset_map)
5046{
5047 // Fix size here so that we do not need to implement set_final_data_size.
5048 this->set_data_size(exidx_input_section.size() - deleted_bytes);
5049 this->fix_data_size();
5050}
5051
5052// Given an input OBJECT, an input section index SHNDX within that
5053// object, and an OFFSET relative to the start of that input
5054// section, return whether or not the corresponding offset within
5055// the output section is known. If this function returns true, it
5056// sets *POUTPUT to the output offset. The value -1 indicates that
5057// this input offset is being discarded.
5058
5059bool
5060Arm_exidx_merged_section::do_output_offset(
5061 const Relobj* relobj,
5062 unsigned int shndx,
5063 section_offset_type offset,
5064 section_offset_type* poutput) const
5065{
5066 // We only handle offsets for the original EXIDX input section.
5067 if (relobj != this->exidx_input_section_.relobj()
5068 || shndx != this->exidx_input_section_.shndx())
5069 return false;
5070
c7f3c371
DK
5071 section_offset_type section_size =
5072 convert_types<section_offset_type>(this->exidx_input_section_.size());
5073 if (offset < 0 || offset >= section_size)
af2cdeae
DK
5074 // Input offset is out of valid range.
5075 *poutput = -1;
5076 else
5077 {
5078 // We need to look up the section offset map to determine the output
5079 // offset. Find the reference point in map that is first offset
5080 // bigger than or equal to this offset.
5081 Arm_exidx_section_offset_map::const_iterator p =
5082 this->section_offset_map_.lower_bound(offset);
5083
5084 // The section offset maps are build such that this should not happen if
5085 // input offset is in the valid range.
5086 gold_assert(p != this->section_offset_map_.end());
5087
5088 // We need to check if this is dropped.
5089 section_offset_type ref = p->first;
5090 section_offset_type mapped_ref = p->second;
5091
5092 if (mapped_ref != Arm_exidx_input_section::invalid_offset)
5093 // Offset is present in output.
5094 *poutput = mapped_ref + (offset - ref);
5095 else
5096 // Offset is discarded owing to EXIDX entry merging.
5097 *poutput = -1;
5098 }
5099
5100 return true;
5101}
5102
5103// Write this to output file OF.
5104
5105void
5106Arm_exidx_merged_section::do_write(Output_file* of)
5107{
5108 // If we retain or discard the whole EXIDX input section, we would
5109 // not be here.
5110 gold_assert(this->data_size() != this->exidx_input_section_.size()
5111 && this->data_size() != 0);
5112
5113 off_t offset = this->offset();
5114 const section_size_type oview_size = this->data_size();
5115 unsigned char* const oview = of->get_output_view(offset, oview_size);
5116
5117 Output_section* os = this->relobj()->output_section(this->shndx());
5118 gold_assert(os != NULL);
5119
5120 // Get contents of EXIDX input section.
5121 section_size_type section_size;
5122 const unsigned char* section_contents =
5123 this->relobj()->section_contents(this->shndx(), &section_size, false);
5124 gold_assert(section_size == this->exidx_input_section_.size());
5125
5126 // Go over spans of input offsets and write only those that are not
5127 // discarded.
5128 section_offset_type in_start = 0;
5129 section_offset_type out_start = 0;
5130 for(Arm_exidx_section_offset_map::const_iterator p =
5131 this->section_offset_map_.begin();
5132 p != this->section_offset_map_.end();
5133 ++p)
5134 {
5135 section_offset_type in_end = p->first;
5136 gold_assert(in_end >= in_start);
5137 section_offset_type out_end = p->second;
5138 size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
5139 if (out_end != -1)
5140 {
5141 size_t out_chunk_size =
5142 convert_types<size_t>(out_end - out_start + 1);
5143 gold_assert(out_chunk_size == in_chunk_size);
5144 memcpy(oview + out_start, section_contents + in_start,
5145 out_chunk_size);
5146 out_start += out_chunk_size;
5147 }
5148 in_start += in_chunk_size;
5149 }
5150
5151 gold_assert(convert_to_section_size_type(out_start) == oview_size);
5152 of->write_output_view(this->offset(), oview_size, oview);
5153}
5154
80d0d023
DK
5155// Arm_exidx_fixup methods.
5156
5157// Append an EXIDX_CANTUNWIND in the current output section if the last entry
5158// is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry
5159// points to the end of the last seen EXIDX section.
5160
5161void
5162Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
5163{
5164 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
5165 && this->last_input_section_ != NULL)
5166 {
5167 Relobj* relobj = this->last_input_section_->relobj();
2b328d4e 5168 unsigned int text_shndx = this->last_input_section_->link();
80d0d023 5169 Arm_exidx_cantunwind* cantunwind =
2b328d4e 5170 new Arm_exidx_cantunwind(relobj, text_shndx);
80d0d023
DK
5171 this->exidx_output_section_->add_output_section_data(cantunwind);
5172 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5173 }
5174}
5175
5176// Process an EXIDX section entry in input. Return whether this entry
5177// can be deleted in the output. SECOND_WORD in the second word of the
5178// EXIDX entry.
5179
5180bool
5181Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
5182{
5183 bool delete_entry;
5184 if (second_word == elfcpp::EXIDX_CANTUNWIND)
5185 {
5186 // Merge if previous entry is also an EXIDX_CANTUNWIND.
5187 delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
5188 this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
5189 }
5190 else if ((second_word & 0x80000000) != 0)
5191 {
5192 // Inlined unwinding data. Merge if equal to previous.
5193 delete_entry = (this->last_unwind_type_ == UT_INLINED_ENTRY
5194 && this->last_inlined_entry_ == second_word);
5195 this->last_unwind_type_ = UT_INLINED_ENTRY;
5196 this->last_inlined_entry_ = second_word;
5197 }
5198 else
5199 {
5200 // Normal table entry. In theory we could merge these too,
5201 // but duplicate entries are likely to be much less common.
5202 delete_entry = false;
5203 this->last_unwind_type_ = UT_NORMAL_ENTRY;
5204 }
5205 return delete_entry;
5206}
5207
5208// Update the current section offset map during EXIDX section fix-up.
5209// If there is no map, create one. INPUT_OFFSET is the offset of a
5210// reference point, DELETED_BYTES is the number of deleted by in the
5211// section so far. If DELETE_ENTRY is true, the reference point and
5212// all offsets after the previous reference point are discarded.
5213
5214void
5215Arm_exidx_fixup::update_offset_map(
5216 section_offset_type input_offset,
5217 section_size_type deleted_bytes,
5218 bool delete_entry)
5219{
5220 if (this->section_offset_map_ == NULL)
5221 this->section_offset_map_ = new Arm_exidx_section_offset_map();
4fcd97eb
DK
5222 section_offset_type output_offset;
5223 if (delete_entry)
5224 output_offset = Arm_exidx_input_section::invalid_offset;
5225 else
5226 output_offset = input_offset - deleted_bytes;
80d0d023
DK
5227 (*this->section_offset_map_)[input_offset] = output_offset;
5228}
5229
5230// Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of
5231// bytes deleted. If some entries are merged, also store a pointer to a newly
5232// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The
5233// caller owns the map and is responsible for releasing it after use.
5234
5235template<bool big_endian>
5236uint32_t
5237Arm_exidx_fixup::process_exidx_section(
5238 const Arm_exidx_input_section* exidx_input_section,
5239 Arm_exidx_section_offset_map** psection_offset_map)
5240{
5241 Relobj* relobj = exidx_input_section->relobj();
5242 unsigned shndx = exidx_input_section->shndx();
5243 section_size_type section_size;
5244 const unsigned char* section_contents =
5245 relobj->section_contents(shndx, &section_size, false);
5246
5247 if ((section_size % 8) != 0)
5248 {
5249 // Something is wrong with this section. Better not touch it.
5250 gold_error(_("uneven .ARM.exidx section size in %s section %u"),
5251 relobj->name().c_str(), shndx);
5252 this->last_input_section_ = exidx_input_section;
5253 this->last_unwind_type_ = UT_NONE;
5254 return 0;
5255 }
5256
5257 uint32_t deleted_bytes = 0;
5258 bool prev_delete_entry = false;
5259 gold_assert(this->section_offset_map_ == NULL);
5260
5261 for (section_size_type i = 0; i < section_size; i += 8)
5262 {
5263 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
5264 const Valtype* wv =
5265 reinterpret_cast<const Valtype*>(section_contents + i + 4);
5266 uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
5267
5268 bool delete_entry = this->process_exidx_entry(second_word);
5269
5270 // Entry deletion causes changes in output offsets. We use a std::map
5271 // to record these. And entry (x, y) means input offset x
5272 // is mapped to output offset y. If y is invalid_offset, then x is
5273 // dropped in the output. Because of the way std::map::lower_bound
5274 // works, we record the last offset in a region w.r.t to keeping or
5275 // dropping. If there is no entry (x0, y0) for an input offset x0,
5276 // the output offset y0 of it is determined by the output offset y1 of
5277 // the smallest input offset x1 > x0 that there is an (x1, y1) entry
5278 // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1
5279 // y0 is also -1.
5280 if (delete_entry != prev_delete_entry && i != 0)
5281 this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
5282
5283 // Update total deleted bytes for this entry.
5284 if (delete_entry)
5285 deleted_bytes += 8;
5286
5287 prev_delete_entry = delete_entry;
5288 }
5289
5290 // If section offset map is not NULL, make an entry for the end of
5291 // section.
5292 if (this->section_offset_map_ != NULL)
5293 update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
5294
5295 *psection_offset_map = this->section_offset_map_;
5296 this->section_offset_map_ = NULL;
5297 this->last_input_section_ = exidx_input_section;
5298
546c7457
DK
5299 // Set the first output text section so that we can link the EXIDX output
5300 // section to it. Ignore any EXIDX input section that is completely merged.
5301 if (this->first_output_text_section_ == NULL
5302 && deleted_bytes != section_size)
5303 {
5304 unsigned int link = exidx_input_section->link();
5305 Output_section* os = relobj->output_section(link);
5306 gold_assert(os != NULL);
5307 this->first_output_text_section_ = os;
5308 }
5309
80d0d023
DK
5310 return deleted_bytes;
5311}
5312
07f508a2
DK
5313// Arm_output_section methods.
5314
5315// Create a stub group for input sections from BEGIN to END. OWNER
5316// points to the input section to be the owner a new stub table.
5317
5318template<bool big_endian>
5319void
5320Arm_output_section<big_endian>::create_stub_group(
5321 Input_section_list::const_iterator begin,
5322 Input_section_list::const_iterator end,
5323 Input_section_list::const_iterator owner,
5324 Target_arm<big_endian>* target,
5325 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
5326{
2b328d4e
DK
5327 // We use a different kind of relaxed section in an EXIDX section.
5328 // The static casting from Output_relaxed_input_section to
5329 // Arm_input_section is invalid in an EXIDX section. We are okay
5330 // because we should not be calling this for an EXIDX section.
5331 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
5332
07f508a2
DK
5333 // Currently we convert ordinary input sections into relaxed sections only
5334 // at this point but we may want to support creating relaxed input section
5335 // very early. So we check here to see if owner is already a relaxed
5336 // section.
5337
5338 Arm_input_section<big_endian>* arm_input_section;
5339 if (owner->is_relaxed_input_section())
5340 {
5341 arm_input_section =
5342 Arm_input_section<big_endian>::as_arm_input_section(
5343 owner->relaxed_input_section());
5344 }
5345 else
5346 {
5347 gold_assert(owner->is_input_section());
5348 // Create a new relaxed input section.
5349 arm_input_section =
5350 target->new_arm_input_section(owner->relobj(), owner->shndx());
5351 new_relaxed_sections->push_back(arm_input_section);
5352 }
5353
5354 // Create a stub table.
2ea97941 5355 Stub_table<big_endian>* stub_table =
07f508a2
DK
5356 target->new_stub_table(arm_input_section);
5357
2ea97941 5358 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
5359
5360 Input_section_list::const_iterator p = begin;
5361 Input_section_list::const_iterator prev_p;
5362
5363 // Look for input sections or relaxed input sections in [begin ... end].
5364 do
5365 {
5366 if (p->is_input_section() || p->is_relaxed_input_section())
5367 {
5368 // The stub table information for input sections live
5369 // in their objects.
5370 Arm_relobj<big_endian>* arm_relobj =
5371 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 5372 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
5373 }
5374 prev_p = p++;
5375 }
5376 while (prev_p != end);
5377}
5378
5379// Group input sections for stub generation. GROUP_SIZE is roughly the limit
5380// of stub groups. We grow a stub group by adding input section until the
5381// size is just below GROUP_SIZE. The last input section will be converted
5382// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
5383// input section after the stub table, effectively double the group size.
5384//
5385// This is similar to the group_sections() function in elf32-arm.c but is
5386// implemented differently.
5387
5388template<bool big_endian>
5389void
5390Arm_output_section<big_endian>::group_sections(
5391 section_size_type group_size,
5392 bool stubs_always_after_branch,
5393 Target_arm<big_endian>* target)
5394{
5395 // We only care about sections containing code.
5396 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5397 return;
5398
5399 // States for grouping.
5400 typedef enum
5401 {
5402 // No group is being built.
5403 NO_GROUP,
5404 // A group is being built but the stub table is not found yet.
5405 // We keep group a stub group until the size is just under GROUP_SIZE.
5406 // The last input section in the group will be used as the stub table.
5407 FINDING_STUB_SECTION,
5408 // A group is being built and we have already found a stub table.
5409 // We enter this state to grow a stub group by adding input section
5410 // after the stub table. This effectively doubles the group size.
5411 HAS_STUB_SECTION
5412 } State;
5413
5414 // Any newly created relaxed sections are stored here.
5415 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
5416
5417 State state = NO_GROUP;
5418 section_size_type off = 0;
5419 section_size_type group_begin_offset = 0;
5420 section_size_type group_end_offset = 0;
5421 section_size_type stub_table_end_offset = 0;
5422 Input_section_list::const_iterator group_begin =
5423 this->input_sections().end();
2ea97941 5424 Input_section_list::const_iterator stub_table =
07f508a2
DK
5425 this->input_sections().end();
5426 Input_section_list::const_iterator group_end = this->input_sections().end();
5427 for (Input_section_list::const_iterator p = this->input_sections().begin();
5428 p != this->input_sections().end();
5429 ++p)
5430 {
5431 section_size_type section_begin_offset =
5432 align_address(off, p->addralign());
5433 section_size_type section_end_offset =
5434 section_begin_offset + p->data_size();
5435
5436 // Check to see if we should group the previously seens sections.
e9bbb538 5437 switch (state)
07f508a2
DK
5438 {
5439 case NO_GROUP:
5440 break;
5441
5442 case FINDING_STUB_SECTION:
5443 // Adding this section makes the group larger than GROUP_SIZE.
5444 if (section_end_offset - group_begin_offset >= group_size)
5445 {
5446 if (stubs_always_after_branch)
5447 {
5448 gold_assert(group_end != this->input_sections().end());
5449 this->create_stub_group(group_begin, group_end, group_end,
5450 target, &new_relaxed_sections);
5451 state = NO_GROUP;
5452 }
5453 else
5454 {
5455 // But wait, there's more! Input sections up to
5456 // stub_group_size bytes after the stub table can be
5457 // handled by it too.
5458 state = HAS_STUB_SECTION;
2ea97941 5459 stub_table = group_end;
07f508a2
DK
5460 stub_table_end_offset = group_end_offset;
5461 }
5462 }
5463 break;
5464
5465 case HAS_STUB_SECTION:
5466 // Adding this section makes the post stub-section group larger
5467 // than GROUP_SIZE.
5468 if (section_end_offset - stub_table_end_offset >= group_size)
5469 {
5470 gold_assert(group_end != this->input_sections().end());
2ea97941 5471 this->create_stub_group(group_begin, group_end, stub_table,
07f508a2
DK
5472 target, &new_relaxed_sections);
5473 state = NO_GROUP;
5474 }
5475 break;
5476
5477 default:
5478 gold_unreachable();
5479 }
5480
5481 // If we see an input section and currently there is no group, start
5482 // a new one. Skip any empty sections.
5483 if ((p->is_input_section() || p->is_relaxed_input_section())
5484 && (p->relobj()->section_size(p->shndx()) != 0))
5485 {
5486 if (state == NO_GROUP)
5487 {
5488 state = FINDING_STUB_SECTION;
5489 group_begin = p;
5490 group_begin_offset = section_begin_offset;
5491 }
5492
5493 // Keep track of the last input section seen.
5494 group_end = p;
5495 group_end_offset = section_end_offset;
5496 }
5497
5498 off = section_end_offset;
5499 }
5500
5501 // Create a stub group for any ungrouped sections.
5502 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
5503 {
5504 gold_assert(group_end != this->input_sections().end());
5505 this->create_stub_group(group_begin, group_end,
5506 (state == FINDING_STUB_SECTION
5507 ? group_end
2ea97941 5508 : stub_table),
07f508a2
DK
5509 target, &new_relaxed_sections);
5510 }
5511
5512 // Convert input section into relaxed input section in a batch.
5513 if (!new_relaxed_sections.empty())
5514 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
5515
5516 // Update the section offsets
5517 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
5518 {
5519 Arm_relobj<big_endian>* arm_relobj =
5520 Arm_relobj<big_endian>::as_arm_relobj(
5521 new_relaxed_sections[i]->relobj());
2ea97941 5522 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 5523 // Tell Arm_relobj that this input section is converted.
2ea97941 5524 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
5525 }
5526}
5527
2b328d4e
DK
5528// Append non empty text sections in this to LIST in ascending
5529// order of their position in this.
5530
5531template<bool big_endian>
5532void
5533Arm_output_section<big_endian>::append_text_sections_to_list(
5534 Text_section_list* list)
5535{
5536 // We only care about text sections.
5537 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
5538 return;
5539
5540 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
5541
5542 for (Input_section_list::const_iterator p = this->input_sections().begin();
5543 p != this->input_sections().end();
5544 ++p)
5545 {
5546 // We only care about plain or relaxed input sections. We also
5547 // ignore any merged sections.
5548 if ((p->is_input_section() || p->is_relaxed_input_section())
5549 && p->data_size() != 0)
5550 list->push_back(Text_section_list::value_type(p->relobj(),
5551 p->shndx()));
5552 }
5553}
5554
5555template<bool big_endian>
5556void
5557Arm_output_section<big_endian>::fix_exidx_coverage(
4a54abbb 5558 Layout* layout,
2b328d4e
DK
5559 const Text_section_list& sorted_text_sections,
5560 Symbol_table* symtab)
5561{
5562 // We should only do this for the EXIDX output section.
5563 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
5564
5565 // We don't want the relaxation loop to undo these changes, so we discard
5566 // the current saved states and take another one after the fix-up.
5567 this->discard_states();
5568
5569 // Remove all input sections.
5570 uint64_t address = this->address();
5571 typedef std::list<Simple_input_section> Simple_input_section_list;
5572 Simple_input_section_list input_sections;
5573 this->reset_address_and_file_offset();
5574 this->get_input_sections(address, std::string(""), &input_sections);
5575
5576 if (!this->input_sections().empty())
5577 gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
5578
5579 // Go through all the known input sections and record them.
5580 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
5581 Section_id_set known_input_sections;
5582 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5583 p != input_sections.end();
5584 ++p)
5585 {
5586 // This should never happen. At this point, we should only see
5587 // plain EXIDX input sections.
5588 gold_assert(!p->is_relaxed_input_section());
5589 known_input_sections.insert(Section_id(p->relobj(), p->shndx()));
5590 }
5591
5592 Arm_exidx_fixup exidx_fixup(this);
5593
5594 // Go over the sorted text sections.
5595 Section_id_set processed_input_sections;
5596 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
5597 p != sorted_text_sections.end();
5598 ++p)
5599 {
5600 Relobj* relobj = p->first;
5601 unsigned int shndx = p->second;
5602
5603 Arm_relobj<big_endian>* arm_relobj =
5604 Arm_relobj<big_endian>::as_arm_relobj(relobj);
5605 const Arm_exidx_input_section* exidx_input_section =
5606 arm_relobj->exidx_input_section_by_link(shndx);
5607
5608 // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
5609 // entry pointing to the end of the last seen EXIDX section.
5610 if (exidx_input_section == NULL)
5611 {
5612 exidx_fixup.add_exidx_cantunwind_as_needed();
5613 continue;
5614 }
5615
5616 Relobj* exidx_relobj = exidx_input_section->relobj();
5617 unsigned int exidx_shndx = exidx_input_section->shndx();
5618 Section_id sid(exidx_relobj, exidx_shndx);
5619 if (known_input_sections.find(sid) == known_input_sections.end())
5620 {
5621 // This is odd. We have not seen this EXIDX input section before.
4a54abbb
DK
5622 // We cannot do fix-up. If we saw a SECTIONS clause in a script,
5623 // issue a warning instead. We assume the user knows what he
5624 // or she is doing. Otherwise, this is an error.
5625 if (layout->script_options()->saw_sections_clause())
5626 gold_warning(_("unwinding may not work because EXIDX input section"
5627 " %u of %s is not in EXIDX output section"),
5628 exidx_shndx, exidx_relobj->name().c_str());
5629 else
5630 gold_error(_("unwinding may not work because EXIDX input section"
5631 " %u of %s is not in EXIDX output section"),
5632 exidx_shndx, exidx_relobj->name().c_str());
5633
2b328d4e
DK
5634 exidx_fixup.add_exidx_cantunwind_as_needed();
5635 continue;
5636 }
5637
5638 // Fix up coverage and append input section to output data list.
5639 Arm_exidx_section_offset_map* section_offset_map = NULL;
5640 uint32_t deleted_bytes =
5641 exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
5642 &section_offset_map);
5643
5644 if (deleted_bytes == exidx_input_section->size())
5645 {
5646 // The whole EXIDX section got merged. Remove it from output.
5647 gold_assert(section_offset_map == NULL);
5648 exidx_relobj->set_output_section(exidx_shndx, NULL);
e7eca48c
DK
5649
5650 // All local symbols defined in this input section will be dropped.
5651 // We need to adjust output local symbol count.
5652 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5653 }
5654 else if (deleted_bytes > 0)
5655 {
5656 // Some entries are merged. We need to convert this EXIDX input
5657 // section into a relaxed section.
5658 gold_assert(section_offset_map != NULL);
5659 Arm_exidx_merged_section* merged_section =
5660 new Arm_exidx_merged_section(*exidx_input_section,
5661 *section_offset_map, deleted_bytes);
5662 this->add_relaxed_input_section(merged_section);
5663 arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
e7eca48c
DK
5664
5665 // All local symbols defined in discarded portions of this input
5666 // section will be dropped. We need to adjust output local symbol
5667 // count.
5668 arm_relobj->set_output_local_symbol_count_needs_update();
2b328d4e
DK
5669 }
5670 else
5671 {
5672 // Just add back the EXIDX input section.
5673 gold_assert(section_offset_map == NULL);
5674 Output_section::Simple_input_section sis(exidx_relobj, exidx_shndx);
5675 this->add_simple_input_section(sis, exidx_input_section->size(),
5676 exidx_input_section->addralign());
5677 }
5678
5679 processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
5680 }
5681
5682 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
5683 exidx_fixup.add_exidx_cantunwind_as_needed();
5684
5685 // Remove any known EXIDX input sections that are not processed.
5686 for (Simple_input_section_list::const_iterator p = input_sections.begin();
5687 p != input_sections.end();
5688 ++p)
5689 {
5690 if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
5691 == processed_input_sections.end())
5692 {
5693 // We only discard a known EXIDX section because its linked
5694 // text section has been folded by ICF.
5695 Arm_relobj<big_endian>* arm_relobj =
5696 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
5697 const Arm_exidx_input_section* exidx_input_section =
5698 arm_relobj->exidx_input_section_by_shndx(p->shndx());
5699 gold_assert(exidx_input_section != NULL);
5700 unsigned int text_shndx = exidx_input_section->link();
5701 gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
5702
5703 // Remove this from link.
5704 p->relobj()->set_output_section(p->shndx(), NULL);
5705 }
5706 }
5707
546c7457
DK
5708 // Link exidx output section to the first seen output section and
5709 // set correct entry size.
5710 this->set_link_section(exidx_fixup.first_output_text_section());
5711 this->set_entsize(8);
5712
2b328d4e
DK
5713 // Make changes permanent.
5714 this->save_states();
5715 this->set_section_offsets_need_adjustment();
5716}
5717
8ffa3667
DK
5718// Arm_relobj methods.
5719
cf846138
DK
5720// Determine if an input section is scannable for stub processing. SHDR is
5721// the header of the section and SHNDX is the section index. OS is the output
5722// section for the input section and SYMTAB is the global symbol table used to
5723// look up ICF information.
5724
5725template<bool big_endian>
5726bool
5727Arm_relobj<big_endian>::section_is_scannable(
5728 const elfcpp::Shdr<32, big_endian>& shdr,
5729 unsigned int shndx,
5730 const Output_section* os,
5731 const Symbol_table *symtab)
5732{
5733 // Skip any empty sections, unallocated sections or sections whose
5734 // type are not SHT_PROGBITS.
5735 if (shdr.get_sh_size() == 0
5736 || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
5737 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
5738 return false;
5739
5740 // Skip any discarded or ICF'ed sections.
5741 if (os == NULL || symtab->is_section_folded(this, shndx))
5742 return false;
5743
5744 // If this requires special offset handling, check to see if it is
5745 // a relaxed section. If this is not, then it is a merged section that
5746 // we cannot handle.
5747 if (this->is_output_section_offset_invalid(shndx))
5748 {
5749 const Output_relaxed_input_section* poris =
5750 os->find_relaxed_input_section(this, shndx);
5751 if (poris == NULL)
5752 return false;
5753 }
5754
5755 return true;
5756}
5757
44272192
DK
5758// Determine if we want to scan the SHNDX-th section for relocation stubs.
5759// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5760
5761template<bool big_endian>
5762bool
5763Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
5764 const elfcpp::Shdr<32, big_endian>& shdr,
5765 const Relobj::Output_sections& out_sections,
2b328d4e
DK
5766 const Symbol_table *symtab,
5767 const unsigned char* pshdrs)
44272192
DK
5768{
5769 unsigned int sh_type = shdr.get_sh_type();
5770 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
5771 return false;
5772
5773 // Ignore empty section.
5774 off_t sh_size = shdr.get_sh_size();
5775 if (sh_size == 0)
5776 return false;
5777
44272192
DK
5778 // Ignore reloc section with unexpected symbol table. The
5779 // error will be reported in the final link.
5780 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
5781 return false;
5782
b521dfe4
DK
5783 unsigned int reloc_size;
5784 if (sh_type == elfcpp::SHT_REL)
5785 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5786 else
5787 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
5788
5789 // Ignore reloc section with unexpected entsize or uneven size.
5790 // The error will be reported in the final link.
5791 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
5792 return false;
5793
cf846138
DK
5794 // Ignore reloc section with bad info. This error will be
5795 // reported in the final link.
5796 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5797 if (index >= this->shnum())
5798 return false;
5799
5800 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
5801 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
5802 return this->section_is_scannable(text_shdr, index,
5803 out_sections[index], symtab);
44272192
DK
5804}
5805
cb1be87e
DK
5806// Return the output address of either a plain input section or a relaxed
5807// input section. SHNDX is the section index. We define and use this
5808// instead of calling Output_section::output_address because that is slow
5809// for large output.
5810
5811template<bool big_endian>
5812Arm_address
5813Arm_relobj<big_endian>::simple_input_section_output_address(
5814 unsigned int shndx,
5815 Output_section* os)
5816{
5817 if (this->is_output_section_offset_invalid(shndx))
5818 {
5819 const Output_relaxed_input_section* poris =
5820 os->find_relaxed_input_section(this, shndx);
5821 // We do not handle merged sections here.
5822 gold_assert(poris != NULL);
5823 return poris->address();
5824 }
5825 else
5826 return os->address() + this->get_output_section_offset(shndx);
5827}
5828
44272192
DK
5829// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
5830// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
5831
5832template<bool big_endian>
5833bool
5834Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
5835 const elfcpp::Shdr<32, big_endian>& shdr,
5836 unsigned int shndx,
5837 Output_section* os,
5838 const Symbol_table* symtab)
5839{
cf846138 5840 if (!this->section_is_scannable(shdr, shndx, os, symtab))
44272192
DK
5841 return false;
5842
44272192
DK
5843 // If the section does not cross any 4K-boundaries, it does not need to
5844 // be scanned.
cb1be87e 5845 Arm_address address = this->simple_input_section_output_address(shndx, os);
44272192
DK
5846 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
5847 return false;
5848
5849 return true;
5850}
5851
5852// Scan a section for Cortex-A8 workaround.
5853
5854template<bool big_endian>
5855void
5856Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
5857 const elfcpp::Shdr<32, big_endian>& shdr,
5858 unsigned int shndx,
5859 Output_section* os,
5860 Target_arm<big_endian>* arm_target)
5861{
c8761b9a
DK
5862 // Look for the first mapping symbol in this section. It should be
5863 // at (shndx, 0).
5864 Mapping_symbol_position section_start(shndx, 0);
5865 typename Mapping_symbols_info::const_iterator p =
5866 this->mapping_symbols_info_.lower_bound(section_start);
5867
5868 // There are no mapping symbols for this section. Treat it as a data-only
5869 // section.
5870 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
5871 return;
5872
cb1be87e
DK
5873 Arm_address output_address =
5874 this->simple_input_section_output_address(shndx, os);
44272192
DK
5875
5876 // Get the section contents.
5877 section_size_type input_view_size = 0;
5878 const unsigned char* input_view =
5879 this->section_contents(shndx, &input_view_size, false);
5880
5881 // We need to go through the mapping symbols to determine what to
5882 // scan. There are two reasons. First, we should look at THUMB code and
5883 // THUMB code only. Second, we only want to look at the 4K-page boundary
5884 // to speed up the scanning.
5885
44272192
DK
5886 while (p != this->mapping_symbols_info_.end()
5887 && p->first.first == shndx)
5888 {
5889 typename Mapping_symbols_info::const_iterator next =
5890 this->mapping_symbols_info_.upper_bound(p->first);
5891
5892 // Only scan part of a section with THUMB code.
5893 if (p->second == 't')
5894 {
5895 // Determine the end of this range.
5896 section_size_type span_start =
5897 convert_to_section_size_type(p->first.second);
5898 section_size_type span_end;
5899 if (next != this->mapping_symbols_info_.end()
5900 && next->first.first == shndx)
5901 span_end = convert_to_section_size_type(next->first.second);
5902 else
5903 span_end = convert_to_section_size_type(shdr.get_sh_size());
5904
5905 if (((span_start + output_address) & ~0xfffUL)
5906 != ((span_end + output_address - 1) & ~0xfffUL))
5907 {
5908 arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
5909 span_start, span_end,
5910 input_view,
5911 output_address);
5912 }
5913 }
5914
5915 p = next;
5916 }
5917}
5918
8ffa3667
DK
5919// Scan relocations for stub generation.
5920
5921template<bool big_endian>
5922void
5923Arm_relobj<big_endian>::scan_sections_for_stubs(
5924 Target_arm<big_endian>* arm_target,
5925 const Symbol_table* symtab,
2ea97941 5926 const Layout* layout)
8ffa3667 5927{
2ea97941
ILT
5928 unsigned int shnum = this->shnum();
5929 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
5930
5931 // Read the section headers.
5932 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 5933 shnum * shdr_size,
8ffa3667
DK
5934 true, true);
5935
5936 // To speed up processing, we set up hash tables for fast lookup of
5937 // input offsets to output addresses.
5938 this->initialize_input_to_output_maps();
5939
5940 const Relobj::Output_sections& out_sections(this->output_sections());
5941
5942 Relocate_info<32, big_endian> relinfo;
8ffa3667 5943 relinfo.symtab = symtab;
2ea97941 5944 relinfo.layout = layout;
8ffa3667
DK
5945 relinfo.object = this;
5946
44272192 5947 // Do relocation stubs scanning.
2ea97941
ILT
5948 const unsigned char* p = pshdrs + shdr_size;
5949 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 5950 {
44272192 5951 const elfcpp::Shdr<32, big_endian> shdr(p);
2b328d4e
DK
5952 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
5953 pshdrs))
8ffa3667 5954 {
44272192
DK
5955 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
5956 Arm_address output_offset = this->get_output_section_offset(index);
5957 Arm_address output_address;
7296d933 5958 if (output_offset != invalid_address)
44272192
DK
5959 output_address = out_sections[index]->address() + output_offset;
5960 else
5961 {
5962 // Currently this only happens for a relaxed section.
5963 const Output_relaxed_input_section* poris =
5964 out_sections[index]->find_relaxed_input_section(this, index);
5965 gold_assert(poris != NULL);
5966 output_address = poris->address();
5967 }
8ffa3667 5968
44272192
DK
5969 // Get the relocations.
5970 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
5971 shdr.get_sh_size(),
5972 true, false);
5973
5974 // Get the section contents. This does work for the case in which
5975 // we modify the contents of an input section. We need to pass the
5976 // output view under such circumstances.
5977 section_size_type input_view_size = 0;
5978 const unsigned char* input_view =
5979 this->section_contents(index, &input_view_size, false);
5980
5981 relinfo.reloc_shndx = i;
5982 relinfo.data_shndx = index;
5983 unsigned int sh_type = shdr.get_sh_type();
b521dfe4
DK
5984 unsigned int reloc_size;
5985 if (sh_type == elfcpp::SHT_REL)
5986 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
5987 else
5988 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
44272192
DK
5989
5990 Output_section* os = out_sections[index];
5991 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
5992 shdr.get_sh_size() / reloc_size,
5993 os,
5994 output_offset == invalid_address,
5995 input_view, output_address,
5996 input_view_size);
8ffa3667 5997 }
44272192 5998 }
8ffa3667 5999
44272192
DK
6000 // Do Cortex-A8 erratum stubs scanning. This has to be done for a section
6001 // after its relocation section, if there is one, is processed for
6002 // relocation stubs. Merging this loop with the one above would have been
6003 // complicated since we would have had to make sure that relocation stub
6004 // scanning is done first.
6005 if (arm_target->fix_cortex_a8())
6006 {
6007 const unsigned char* p = pshdrs + shdr_size;
6008 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667 6009 {
44272192
DK
6010 const elfcpp::Shdr<32, big_endian> shdr(p);
6011 if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
6012 out_sections[i],
6013 symtab))
6014 this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
6015 arm_target);
8ffa3667 6016 }
8ffa3667
DK
6017 }
6018
6019 // After we've done the relocations, we release the hash tables,
6020 // since we no longer need them.
6021 this->free_input_to_output_maps();
6022}
6023
6024// Count the local symbols. The ARM backend needs to know if a symbol
6025// is a THUMB function or not. For global symbols, it is easy because
6026// the Symbol object keeps the ELF symbol type. For local symbol it is
6027// harder because we cannot access this information. So we override the
6028// do_count_local_symbol in parent and scan local symbols to mark
6029// THUMB functions. This is not the most efficient way but I do not want to
6030// slow down other ports by calling a per symbol targer hook inside
6031// Sized_relobj<size, big_endian>::do_count_local_symbols.
6032
6033template<bool big_endian>
6034void
6035Arm_relobj<big_endian>::do_count_local_symbols(
6036 Stringpool_template<char>* pool,
6037 Stringpool_template<char>* dynpool)
6038{
6039 // We need to fix-up the values of any local symbols whose type are
6040 // STT_ARM_TFUNC.
6041
6042 // Ask parent to count the local symbols.
6043 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
6044 const unsigned int loccount = this->local_symbol_count();
6045 if (loccount == 0)
6046 return;
6047
6048 // Intialize the thumb function bit-vector.
6049 std::vector<bool> empty_vector(loccount, false);
6050 this->local_symbol_is_thumb_function_.swap(empty_vector);
6051
6052 // Read the symbol table section header.
2ea97941 6053 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 6054 elfcpp::Shdr<32, big_endian>
2ea97941 6055 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
6056 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6057
6058 // Read the local symbols.
2ea97941 6059 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 6060 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 6061 off_t locsize = loccount * sym_size;
8ffa3667
DK
6062 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6063 locsize, true, true);
6064
20138696
DK
6065 // For mapping symbol processing, we need to read the symbol names.
6066 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
6067 if (strtab_shndx >= this->shnum())
6068 {
6069 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
6070 return;
6071 }
6072
6073 elfcpp::Shdr<32, big_endian>
6074 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
6075 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
6076 {
6077 this->error(_("symbol table name section has wrong type: %u"),
6078 static_cast<unsigned int>(strtabshdr.get_sh_type()));
6079 return;
6080 }
6081 const char* pnames =
6082 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
6083 strtabshdr.get_sh_size(),
6084 false, false));
6085
8ffa3667
DK
6086 // Loop over the local symbols and mark any local symbols pointing
6087 // to THUMB functions.
6088
6089 // Skip the first dummy symbol.
2ea97941 6090 psyms += sym_size;
8ffa3667
DK
6091 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
6092 this->local_values();
2ea97941 6093 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
6094 {
6095 elfcpp::Sym<32, big_endian> sym(psyms);
6096 elfcpp::STT st_type = sym.get_st_type();
6097 Symbol_value<32>& lv((*plocal_values)[i]);
6098 Arm_address input_value = lv.input_value();
6099
20138696
DK
6100 // Check to see if this is a mapping symbol.
6101 const char* sym_name = pnames + sym.get_st_name();
6102 if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
6103 {
6104 unsigned int input_shndx = sym.get_st_shndx();
6105
6106 // Strip of LSB in case this is a THUMB symbol.
6107 Mapping_symbol_position msp(input_shndx, input_value & ~1U);
6108 this->mapping_symbols_info_[msp] = sym_name[1];
6109 }
6110
8ffa3667
DK
6111 if (st_type == elfcpp::STT_ARM_TFUNC
6112 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
6113 {
6114 // This is a THUMB function. Mark this and canonicalize the
6115 // symbol value by setting LSB.
6116 this->local_symbol_is_thumb_function_[i] = true;
6117 if ((input_value & 1) == 0)
6118 lv.set_input_value(input_value | 1);
6119 }
6120 }
6121}
6122
6123// Relocate sections.
6124template<bool big_endian>
6125void
6126Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 6127 const Symbol_table* symtab,
2ea97941 6128 const Layout* layout,
8ffa3667
DK
6129 const unsigned char* pshdrs,
6130 typename Sized_relobj<32, big_endian>::Views* pviews)
6131{
6132 // Call parent to relocate sections.
2ea97941 6133 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
43d12afe 6134 pviews);
8ffa3667
DK
6135
6136 // We do not generate stubs if doing a relocatable link.
6137 if (parameters->options().relocatable())
6138 return;
6139
6140 // Relocate stub tables.
2ea97941 6141 unsigned int shnum = this->shnum();
8ffa3667
DK
6142
6143 Target_arm<big_endian>* arm_target =
6144 Target_arm<big_endian>::default_target();
6145
6146 Relocate_info<32, big_endian> relinfo;
8ffa3667 6147 relinfo.symtab = symtab;
2ea97941 6148 relinfo.layout = layout;
8ffa3667
DK
6149 relinfo.object = this;
6150
2ea97941 6151 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
6152 {
6153 Arm_input_section<big_endian>* arm_input_section =
6154 arm_target->find_arm_input_section(this, i);
6155
41263c05
DK
6156 if (arm_input_section != NULL
6157 && arm_input_section->is_stub_table_owner()
6158 && !arm_input_section->stub_table()->empty())
6159 {
6160 // We cannot discard a section if it owns a stub table.
6161 Output_section* os = this->output_section(i);
6162 gold_assert(os != NULL);
6163
6164 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
6165 relinfo.reloc_shdr = NULL;
6166 relinfo.data_shndx = i;
6167 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
6168
6169 gold_assert((*pviews)[i].view != NULL);
6170
6171 // We are passed the output section view. Adjust it to cover the
6172 // stub table only.
6173 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
6174 gold_assert((stub_table->address() >= (*pviews)[i].address)
6175 && ((stub_table->address() + stub_table->data_size())
6176 <= (*pviews)[i].address + (*pviews)[i].view_size));
6177
6178 off_t offset = stub_table->address() - (*pviews)[i].address;
6179 unsigned char* view = (*pviews)[i].view + offset;
6180 Arm_address address = stub_table->address();
6181 section_size_type view_size = stub_table->data_size();
8ffa3667 6182
41263c05
DK
6183 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
6184 view_size);
6185 }
6186
6187 // Apply Cortex A8 workaround if applicable.
6188 if (this->section_has_cortex_a8_workaround(i))
6189 {
6190 unsigned char* view = (*pviews)[i].view;
6191 Arm_address view_address = (*pviews)[i].address;
6192 section_size_type view_size = (*pviews)[i].view_size;
6193 Stub_table<big_endian>* stub_table = this->stub_tables_[i];
6194
6195 // Adjust view to cover section.
6196 Output_section* os = this->output_section(i);
6197 gold_assert(os != NULL);
cb1be87e
DK
6198 Arm_address section_address =
6199 this->simple_input_section_output_address(i, os);
41263c05
DK
6200 uint64_t section_size = this->section_size(i);
6201
6202 gold_assert(section_address >= view_address
6203 && ((section_address + section_size)
6204 <= (view_address + view_size)));
6205
6206 unsigned char* section_view = view + (section_address - view_address);
6207
6208 // Apply the Cortex-A8 workaround to the output address range
6209 // corresponding to this input section.
6210 stub_table->apply_cortex_a8_workaround_to_address_range(
6211 arm_target,
6212 section_view,
6213 section_address,
6214 section_size);
6215 }
8ffa3667
DK
6216 }
6217}
6218
c8761b9a
DK
6219// Find the linked text section of an EXIDX section by looking the the first
6220// relocation. 4.4.1 of the EHABI specifications says that an EXIDX section
6221// must be linked to to its associated code section via the sh_link field of
6222// its section header. However, some tools are broken and the link is not
6223// always set. LD just drops such an EXIDX section silently, causing the
6224// associated code not unwindabled. Here we try a little bit harder to
6225// discover the linked code section.
6226//
6227// PSHDR points to the section header of a relocation section of an EXIDX
6228// section. If we can find a linked text section, return true and
6229// store the text section index in the location PSHNDX. Otherwise
6230// return false.
a0351a69
DK
6231
6232template<bool big_endian>
c8761b9a
DK
6233bool
6234Arm_relobj<big_endian>::find_linked_text_section(
6235 const unsigned char* pshdr,
6236 const unsigned char* psyms,
6237 unsigned int* pshndx)
a0351a69 6238{
c8761b9a
DK
6239 elfcpp::Shdr<32, big_endian> shdr(pshdr);
6240
6241 // If there is no relocation, we cannot find the linked text section.
6242 size_t reloc_size;
6243 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6244 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
6245 else
6246 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
6247 size_t reloc_count = shdr.get_sh_size() / reloc_size;
6248
6249 // Get the relocations.
6250 const unsigned char* prelocs =
6251 this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);
993d07c1 6252
c8761b9a
DK
6253 // Find the REL31 relocation for the first word of the first EXIDX entry.
6254 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
a0351a69 6255 {
c8761b9a
DK
6256 Arm_address r_offset;
6257 typename elfcpp::Elf_types<32>::Elf_WXword r_info;
6258 if (shdr.get_sh_type() == elfcpp::SHT_REL)
6259 {
6260 typename elfcpp::Rel<32, big_endian> reloc(prelocs);
6261 r_info = reloc.get_r_info();
6262 r_offset = reloc.get_r_offset();
6263 }
6264 else
6265 {
6266 typename elfcpp::Rela<32, big_endian> reloc(prelocs);
6267 r_info = reloc.get_r_info();
6268 r_offset = reloc.get_r_offset();
6269 }
6270
6271 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6272 if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
6273 continue;
6274
6275 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6276 if (r_sym == 0
6277 || r_sym >= this->local_symbol_count()
6278 || r_offset != 0)
6279 continue;
6280
6281 // This is the relocation for the first word of the first EXIDX entry.
6282 // We expect to see a local section symbol.
6283 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6284 elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
6285 if (sym.get_st_type() == elfcpp::STT_SECTION)
6286 {
6287 *pshndx = this->adjust_shndx(sym.get_st_shndx());
6288 return true;
6289 }
6290 else
6291 return false;
993d07c1 6292 }
c8761b9a
DK
6293
6294 return false;
6295}
6296
6297// Make an EXIDX input section object for an EXIDX section whose index is
6298// SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX
6299// is the section index of the linked text section.
6300
6301template<bool big_endian>
6302void
6303Arm_relobj<big_endian>::make_exidx_input_section(
6304 unsigned int shndx,
6305 const elfcpp::Shdr<32, big_endian>& shdr,
6306 unsigned int text_shndx)
6307{
993d07c1
DK
6308 // Issue an error and ignore this EXIDX section if it points to a text
6309 // section already has an EXIDX section.
6310 if (this->exidx_section_map_[text_shndx] != NULL)
6311 {
6312 gold_error(_("EXIDX sections %u and %u both link to text section %u "
6313 "in %s"),
6314 shndx, this->exidx_section_map_[text_shndx]->shndx(),
6315 text_shndx, this->name().c_str());
6316 return;
a0351a69 6317 }
993d07c1
DK
6318
6319 // Create an Arm_exidx_input_section object for this EXIDX section.
6320 Arm_exidx_input_section* exidx_input_section =
6321 new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
6322 shdr.get_sh_addralign());
6323 this->exidx_section_map_[text_shndx] = exidx_input_section;
6324
6325 // Also map the EXIDX section index to this.
6326 gold_assert(this->exidx_section_map_[shndx] == NULL);
6327 this->exidx_section_map_[shndx] = exidx_input_section;
a0351a69
DK
6328}
6329
d5b40221
DK
6330// Read the symbol information.
6331
6332template<bool big_endian>
6333void
6334Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6335{
6336 // Call parent class to read symbol information.
6337 Sized_relobj<32, big_endian>::do_read_symbols(sd);
6338
7296d933
DK
6339 // If this input file is a binary file, it has no processor
6340 // specific flags and attributes section.
6341 Input_file::Format format = this->input_file()->format();
6342 if (format != Input_file::FORMAT_ELF)
6343 {
6344 gold_assert(format == Input_file::FORMAT_BINARY);
6345 this->merge_flags_and_attributes_ = false;
6346 return;
6347 }
6348
d5b40221
DK
6349 // Read processor-specific flags in ELF file header.
6350 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6351 elfcpp::Elf_sizes<32>::ehdr_size,
6352 true, false);
6353 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6354 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6355
6356 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
6357 // sections.
c8761b9a 6358 std::vector<unsigned int> deferred_exidx_sections;
993d07c1 6359 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
c8761b9a
DK
6360 const unsigned char* pshdrs = sd->section_headers->data();
6361 const unsigned char *ps = pshdrs + shdr_size;
7296d933 6362 bool must_merge_flags_and_attributes = false;
993d07c1
DK
6363 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6364 {
6365 elfcpp::Shdr<32, big_endian> shdr(ps);
7296d933
DK
6366
6367 // Sometimes an object has no contents except the section name string
6368 // table and an empty symbol table with the undefined symbol. We
6369 // don't want to merge processor-specific flags from such an object.
6370 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
6371 {
6372 // Symbol table is not empty.
6373 const elfcpp::Elf_types<32>::Elf_WXword sym_size =
6374 elfcpp::Elf_sizes<32>::sym_size;
6375 if (shdr.get_sh_size() > sym_size)
6376 must_merge_flags_and_attributes = true;
6377 }
6378 else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
6379 // If this is neither an empty symbol table nor a string table,
6380 // be conservative.
6381 must_merge_flags_and_attributes = true;
6382
993d07c1
DK
6383 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6384 {
6385 gold_assert(this->attributes_section_data_ == NULL);
6386 section_offset_type section_offset = shdr.get_sh_offset();
6387 section_size_type section_size =
6388 convert_to_section_size_type(shdr.get_sh_size());
6389 File_view* view = this->get_lasting_view(section_offset,
6390 section_size, true, false);
6391 this->attributes_section_data_ =
6392 new Attributes_section_data(view->data(), section_size);
6393 }
6394 else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
c8761b9a
DK
6395 {
6396 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6397 if (text_shndx >= this->shnum())
6398 gold_error(_("EXIDX section %u linked to invalid section %u"),
6399 i, text_shndx);
6400 else if (text_shndx == elfcpp::SHN_UNDEF)
6401 deferred_exidx_sections.push_back(i);
6402 else
6403 this->make_exidx_input_section(i, shdr, text_shndx);
6404 }
6405 }
6406
7296d933
DK
6407 // This is rare.
6408 if (!must_merge_flags_and_attributes)
6409 {
6410 this->merge_flags_and_attributes_ = false;
6411 return;
6412 }
6413
c8761b9a
DK
6414 // Some tools are broken and they do not set the link of EXIDX sections.
6415 // We look at the first relocation to figure out the linked sections.
6416 if (!deferred_exidx_sections.empty())
6417 {
6418 // We need to go over the section headers again to find the mapping
6419 // from sections being relocated to their relocation sections. This is
6420 // a bit inefficient as we could do that in the loop above. However,
6421 // we do not expect any deferred EXIDX sections normally. So we do not
6422 // want to slow down the most common path.
6423 typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
6424 Reloc_map reloc_map;
6425 ps = pshdrs + shdr_size;
6426 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6427 {
6428 elfcpp::Shdr<32, big_endian> shdr(ps);
6429 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
6430 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
6431 {
6432 unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
6433 if (info_shndx >= this->shnum())
6434 gold_error(_("relocation section %u has invalid info %u"),
6435 i, info_shndx);
6436 Reloc_map::value_type value(info_shndx, i);
6437 std::pair<Reloc_map::iterator, bool> result =
6438 reloc_map.insert(value);
6439 if (!result.second)
6440 gold_error(_("section %u has multiple relocation sections "
6441 "%u and %u"),
6442 info_shndx, i, reloc_map[info_shndx]);
6443 }
6444 }
6445
6446 // Read the symbol table section header.
6447 const unsigned int symtab_shndx = this->symtab_shndx();
6448 elfcpp::Shdr<32, big_endian>
6449 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6450 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6451
6452 // Read the local symbols.
6453 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
6454 const unsigned int loccount = this->local_symbol_count();
6455 gold_assert(loccount == symtabshdr.get_sh_info());
6456 off_t locsize = loccount * sym_size;
6457 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6458 locsize, true, true);
6459
6460 // Process the deferred EXIDX sections.
6461 for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
6462 {
6463 unsigned int shndx = deferred_exidx_sections[i];
6464 elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
6465 unsigned int text_shndx;
6466 Reloc_map::const_iterator it = reloc_map.find(shndx);
6467 if (it != reloc_map.end()
6468 && find_linked_text_section(pshdrs + it->second * shdr_size,
6469 psyms, &text_shndx))
6470 this->make_exidx_input_section(shndx, shdr, text_shndx);
6471 else
6472 gold_error(_("EXIDX section %u has no linked text section."),
6473 shndx);
6474 }
993d07c1 6475 }
d5b40221
DK
6476}
6477
99e5bff2
DK
6478// Process relocations for garbage collection. The ARM target uses .ARM.exidx
6479// sections for unwinding. These sections are referenced implicitly by
6480// text sections linked in the section headers. If we ignore these implict
6481// references, the .ARM.exidx sections and any .ARM.extab sections they use
6482// will be garbage-collected incorrectly. Hence we override the same function
6483// in the base class to handle these implicit references.
6484
6485template<bool big_endian>
6486void
6487Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
6488 Layout* layout,
6489 Read_relocs_data* rd)
6490{
6491 // First, call base class method to process relocations in this object.
6492 Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
6493
4a54abbb
DK
6494 // If --gc-sections is not specified, there is nothing more to do.
6495 // This happens when --icf is used but --gc-sections is not.
6496 if (!parameters->options().gc_sections())
6497 return;
6498
99e5bff2
DK
6499 unsigned int shnum = this->shnum();
6500 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6501 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
6502 shnum * shdr_size,
6503 true, true);
6504
6505 // Scan section headers for sections of type SHT_ARM_EXIDX. Add references
6506 // to these from the linked text sections.
6507 const unsigned char* ps = pshdrs + shdr_size;
6508 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
6509 {
6510 elfcpp::Shdr<32, big_endian> shdr(ps);
6511 if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
6512 {
6513 // Found an .ARM.exidx section, add it to the set of reachable
6514 // sections from its linked text section.
6515 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
6516 symtab->gc()->add_reference(this, text_shndx, this, i);
6517 }
6518 }
6519}
6520
e7eca48c
DK
6521// Update output local symbol count. Owing to EXIDX entry merging, some local
6522// symbols will be removed in output. Adjust output local symbol count
6523// accordingly. We can only changed the static output local symbol count. It
6524// is too late to change the dynamic symbols.
6525
6526template<bool big_endian>
6527void
6528Arm_relobj<big_endian>::update_output_local_symbol_count()
6529{
6530 // Caller should check that this needs updating. We want caller checking
6531 // because output_local_symbol_count_needs_update() is most likely inlined.
6532 gold_assert(this->output_local_symbol_count_needs_update_);
6533
6534 gold_assert(this->symtab_shndx() != -1U);
6535 if (this->symtab_shndx() == 0)
6536 {
6537 // This object has no symbols. Weird but legal.
6538 return;
6539 }
6540
6541 // Read the symbol table section header.
6542 const unsigned int symtab_shndx = this->symtab_shndx();
6543 elfcpp::Shdr<32, big_endian>
6544 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6545 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6546
6547 // Read the local symbols.
6548 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
6549 const unsigned int loccount = this->local_symbol_count();
6550 gold_assert(loccount == symtabshdr.get_sh_info());
6551 off_t locsize = loccount * sym_size;
6552 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6553 locsize, true, true);
6554
6555 // Loop over the local symbols.
6556
6557 typedef typename Sized_relobj<32, big_endian>::Output_sections
6558 Output_sections;
6559 const Output_sections& out_sections(this->output_sections());
6560 unsigned int shnum = this->shnum();
6561 unsigned int count = 0;
6562 // Skip the first, dummy, symbol.
6563 psyms += sym_size;
6564 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6565 {
6566 elfcpp::Sym<32, big_endian> sym(psyms);
6567
6568 Symbol_value<32>& lv((*this->local_values())[i]);
6569
6570 // This local symbol was already discarded by do_count_local_symbols.
9177756d 6571 if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
e7eca48c
DK
6572 continue;
6573
6574 bool is_ordinary;
6575 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
6576 &is_ordinary);
6577
6578 if (shndx < shnum)
6579 {
6580 Output_section* os = out_sections[shndx];
6581
6582 // This local symbol no longer has an output section. Discard it.
6583 if (os == NULL)
6584 {
6585 lv.set_no_output_symtab_entry();
6586 continue;
6587 }
6588
6589 // Currently we only discard parts of EXIDX input sections.
6590 // We explicitly check for a merged EXIDX input section to avoid
6591 // calling Output_section_data::output_offset unless necessary.
6592 if ((this->get_output_section_offset(shndx) == invalid_address)
6593 && (this->exidx_input_section_by_shndx(shndx) != NULL))
6594 {
6595 section_offset_type output_offset =
6596 os->output_offset(this, shndx, lv.input_value());
6597 if (output_offset == -1)
6598 {
6599 // This symbol is defined in a part of an EXIDX input section
6600 // that is discarded due to entry merging.
6601 lv.set_no_output_symtab_entry();
6602 continue;
6603 }
6604 }
6605 }
6606
6607 ++count;
6608 }
6609
6610 this->set_output_local_symbol_count(count);
6611 this->output_local_symbol_count_needs_update_ = false;
6612}
6613
d5b40221
DK
6614// Arm_dynobj methods.
6615
6616// Read the symbol information.
6617
6618template<bool big_endian>
6619void
6620Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
6621{
6622 // Call parent class to read symbol information.
6623 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
6624
6625 // Read processor-specific flags in ELF file header.
6626 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6627 elfcpp::Elf_sizes<32>::ehdr_size,
6628 true, false);
6629 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
6630 this->processor_specific_flags_ = ehdr.get_e_flags();
993d07c1
DK
6631
6632 // Read the attributes section if there is one.
6633 // We read from the end because gas seems to put it near the end of
6634 // the section headers.
6635 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
6636 const unsigned char *ps =
6637 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
6638 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
6639 {
6640 elfcpp::Shdr<32, big_endian> shdr(ps);
6641 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
6642 {
6643 section_offset_type section_offset = shdr.get_sh_offset();
6644 section_size_type section_size =
6645 convert_to_section_size_type(shdr.get_sh_size());
6646 File_view* view = this->get_lasting_view(section_offset,
6647 section_size, true, false);
6648 this->attributes_section_data_ =
6649 new Attributes_section_data(view->data(), section_size);
6650 break;
6651 }
6652 }
d5b40221
DK
6653}
6654
e9bbb538
DK
6655// Stub_addend_reader methods.
6656
6657// Read the addend of a REL relocation of type R_TYPE at VIEW.
6658
6659template<bool big_endian>
6660elfcpp::Elf_types<32>::Elf_Swxword
6661Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
6662 unsigned int r_type,
6663 const unsigned char* view,
6664 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
6665{
089d69dc
DK
6666 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
6667
e9bbb538
DK
6668 switch (r_type)
6669 {
6670 case elfcpp::R_ARM_CALL:
6671 case elfcpp::R_ARM_JUMP24:
6672 case elfcpp::R_ARM_PLT32:
6673 {
6674 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6675 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6676 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
6677 return utils::sign_extend<26>(val << 2);
6678 }
6679
6680 case elfcpp::R_ARM_THM_CALL:
6681 case elfcpp::R_ARM_THM_JUMP24:
6682 case elfcpp::R_ARM_THM_XPC22:
6683 {
e9bbb538
DK
6684 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6685 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6686 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6687 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6688 return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6689 }
6690
6691 case elfcpp::R_ARM_THM_JUMP19:
6692 {
6693 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
6694 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
6695 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
6696 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
089d69dc 6697 return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
e9bbb538
DK
6698 }
6699
6700 default:
6701 gold_unreachable();
6702 }
6703}
6704
4a54abbb
DK
6705// Arm_output_data_got methods.
6706
6707// Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries.
6708// The first one is initialized to be 1, which is the module index for
6709// the main executable and the second one 0. A reloc of the type
6710// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
6711// be applied by gold. GSYM is a global symbol.
6712//
6713template<bool big_endian>
6714void
6715Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6716 unsigned int got_type,
6717 Symbol* gsym)
6718{
6719 if (gsym->has_got_offset(got_type))
6720 return;
6721
6722 // We are doing a static link. Just mark it as belong to module 1,
6723 // the executable.
6724 unsigned int got_offset = this->add_constant(1);
6725 gsym->set_got_offset(got_type, got_offset);
6726 got_offset = this->add_constant(0);
6727 this->static_relocs_.push_back(Static_reloc(got_offset,
6728 elfcpp::R_ARM_TLS_DTPOFF32,
6729 gsym));
6730}
6731
6732// Same as the above but for a local symbol.
6733
6734template<bool big_endian>
6735void
6736Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
6737 unsigned int got_type,
6738 Sized_relobj<32, big_endian>* object,
6739 unsigned int index)
6740{
6741 if (object->local_has_got_offset(index, got_type))
6742 return;
6743
6744 // We are doing a static link. Just mark it as belong to module 1,
6745 // the executable.
6746 unsigned int got_offset = this->add_constant(1);
6747 object->set_local_got_offset(index, got_type, got_offset);
6748 got_offset = this->add_constant(0);
6749 this->static_relocs_.push_back(Static_reloc(got_offset,
6750 elfcpp::R_ARM_TLS_DTPOFF32,
6751 object, index));
6752}
6753
6754template<bool big_endian>
6755void
6756Arm_output_data_got<big_endian>::do_write(Output_file* of)
6757{
6758 // Call parent to write out GOT.
6759 Output_data_got<32, big_endian>::do_write(of);
6760
6761 // We are done if there is no fix up.
6762 if (this->static_relocs_.empty())
6763 return;
6764
6765 gold_assert(parameters->doing_static_link());
6766
6767 const off_t offset = this->offset();
6768 const section_size_type oview_size =
6769 convert_to_section_size_type(this->data_size());
6770 unsigned char* const oview = of->get_output_view(offset, oview_size);
6771
6772 Output_segment* tls_segment = this->layout_->tls_segment();
6773 gold_assert(tls_segment != NULL);
6774
6775 // The thread pointer $tp points to the TCB, which is followed by the
6776 // TLS. So we need to adjust $tp relative addressing by this amount.
6777 Arm_address aligned_tcb_size =
6778 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
6779
6780 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6781 {
6782 Static_reloc& reloc(this->static_relocs_[i]);
6783
6784 Arm_address value;
6785 if (!reloc.symbol_is_global())
6786 {
6787 Sized_relobj<32, big_endian>* object = reloc.relobj();
6788 const Symbol_value<32>* psymval =
6789 reloc.relobj()->local_symbol(reloc.index());
6790
6791 // We are doing static linking. Issue an error and skip this
6792 // relocation if the symbol is undefined or in a discarded_section.
6793 bool is_ordinary;
6794 unsigned int shndx = psymval->input_shndx(&is_ordinary);
6795 if ((shndx == elfcpp::SHN_UNDEF)
6796 || (is_ordinary
6797 && shndx != elfcpp::SHN_UNDEF
6798 && !object->is_section_included(shndx)
6799 && !this->symbol_table_->is_section_folded(object, shndx)))
6800 {
6801 gold_error(_("undefined or discarded local symbol %u from "
6802 " object %s in GOT"),
6803 reloc.index(), reloc.relobj()->name().c_str());
6804 continue;
6805 }
6806
6807 value = psymval->value(object, 0);
6808 }
6809 else
6810 {
6811 const Symbol* gsym = reloc.symbol();
6812 gold_assert(gsym != NULL);
6813 if (gsym->is_forwarder())
6814 gsym = this->symbol_table_->resolve_forwards(gsym);
6815
6816 // We are doing static linking. Issue an error and skip this
6817 // relocation if the symbol is undefined or in a discarded_section
6818 // unless it is a weakly_undefined symbol.
6819 if ((gsym->is_defined_in_discarded_section()
6820 || gsym->is_undefined())
6821 && !gsym->is_weak_undefined())
6822 {
6823 gold_error(_("undefined or discarded symbol %s in GOT"),
6824 gsym->name());
6825 continue;
6826 }
6827
6828 if (!gsym->is_weak_undefined())
6829 {
6830 const Sized_symbol<32>* sym =
6831 static_cast<const Sized_symbol<32>*>(gsym);
6832 value = sym->value();
6833 }
6834 else
6835 value = 0;
6836 }
6837
6838 unsigned got_offset = reloc.got_offset();
6839 gold_assert(got_offset < oview_size);
6840
6841 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6842 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6843 Valtype x;
6844 switch (reloc.r_type())
6845 {
6846 case elfcpp::R_ARM_TLS_DTPOFF32:
6847 x = value;
6848 break;
6849 case elfcpp::R_ARM_TLS_TPOFF32:
6850 x = value + aligned_tcb_size;
6851 break;
6852 default:
6853 gold_unreachable();
6854 }
6855 elfcpp::Swap<32, big_endian>::writeval(wv, x);
6856 }
6857
6858 of->write_output_view(offset, oview_size, oview);
6859}
6860
94cdfcff
DK
6861// A class to handle the PLT data.
6862
6863template<bool big_endian>
6864class Output_data_plt_arm : public Output_section_data
6865{
6866 public:
6867 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
6868 Reloc_section;
6869
6870 Output_data_plt_arm(Layout*, Output_data_space*);
6871
6872 // Add an entry to the PLT.
6873 void
6874 add_entry(Symbol* gsym);
6875
6876 // Return the .rel.plt section data.
6877 const Reloc_section*
6878 rel_plt() const
6879 { return this->rel_; }
6880
6881 protected:
6882 void
6883 do_adjust_output_section(Output_section* os);
6884
6885 // Write to a map file.
6886 void
6887 do_print_to_mapfile(Mapfile* mapfile) const
6888 { mapfile->print_output_data(this, _("** PLT")); }
6889
6890 private:
6891 // Template for the first PLT entry.
6892 static const uint32_t first_plt_entry[5];
6893
6894 // Template for subsequent PLT entries.
6895 static const uint32_t plt_entry[3];
6896
6897 // Set the final size.
6898 void
6899 set_final_data_size()
6900 {
6901 this->set_data_size(sizeof(first_plt_entry)
6902 + this->count_ * sizeof(plt_entry));
6903 }
6904
6905 // Write out the PLT data.
6906 void
6907 do_write(Output_file*);
6908
6909 // The reloc section.
6910 Reloc_section* rel_;
6911 // The .got.plt section.
6912 Output_data_space* got_plt_;
6913 // The number of PLT entries.
6914 unsigned int count_;
6915};
6916
6917// Create the PLT section. The ordinary .got section is an argument,
6918// since we need to refer to the start. We also create our own .got
6919// section just for PLT entries.
6920
6921template<bool big_endian>
2ea97941 6922Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
6923 Output_data_space* got_plt)
6924 : Output_section_data(4), got_plt_(got_plt), count_(0)
6925{
6926 this->rel_ = new Reloc_section(false);
2ea97941 6927 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
1a2dff53
ILT
6928 elfcpp::SHF_ALLOC, this->rel_, true, false,
6929 false, false);
94cdfcff
DK
6930}
6931
6932template<bool big_endian>
6933void
6934Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
6935{
6936 os->set_entsize(0);
6937}
6938
6939// Add an entry to the PLT.
6940
6941template<bool big_endian>
6942void
6943Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
6944{
6945 gold_assert(!gsym->has_plt_offset());
6946
6947 // Note that when setting the PLT offset we skip the initial
6948 // reserved PLT entry.
6949 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
6950 + sizeof(first_plt_entry));
6951
6952 ++this->count_;
6953
6954 section_offset_type got_offset = this->got_plt_->current_data_size();
6955
6956 // Every PLT entry needs a GOT entry which points back to the PLT
6957 // entry (this will be changed by the dynamic linker, normally
6958 // lazily when the function is called).
6959 this->got_plt_->set_current_data_size(got_offset + 4);
6960
6961 // Every PLT entry needs a reloc.
6962 gsym->set_needs_dynsym_entry();
6963 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
6964 got_offset);
6965
6966 // Note that we don't need to save the symbol. The contents of the
6967 // PLT are independent of which symbols are used. The symbols only
6968 // appear in the relocations.
6969}
6970
6971// ARM PLTs.
6972// FIXME: This is not very flexible. Right now this has only been tested
6973// on armv5te. If we are to support additional architecture features like
6974// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
6975
6976// The first entry in the PLT.
6977template<bool big_endian>
6978const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
6979{
6980 0xe52de004, // str lr, [sp, #-4]!
6981 0xe59fe004, // ldr lr, [pc, #4]
6982 0xe08fe00e, // add lr, pc, lr
6983 0xe5bef008, // ldr pc, [lr, #8]!
6984 0x00000000, // &GOT[0] - .
6985};
6986
6987// Subsequent entries in the PLT.
6988
6989template<bool big_endian>
6990const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
6991{
6992 0xe28fc600, // add ip, pc, #0xNN00000
6993 0xe28cca00, // add ip, ip, #0xNN000
6994 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
6995};
6996
6997// Write out the PLT. This uses the hand-coded instructions above,
6998// and adjusts them as needed. This is all specified by the arm ELF
6999// Processor Supplement.
7000
7001template<bool big_endian>
7002void
7003Output_data_plt_arm<big_endian>::do_write(Output_file* of)
7004{
2ea97941 7005 const off_t offset = this->offset();
94cdfcff
DK
7006 const section_size_type oview_size =
7007 convert_to_section_size_type(this->data_size());
2ea97941 7008 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
7009
7010 const off_t got_file_offset = this->got_plt_->offset();
7011 const section_size_type got_size =
7012 convert_to_section_size_type(this->got_plt_->data_size());
7013 unsigned char* const got_view = of->get_output_view(got_file_offset,
7014 got_size);
7015 unsigned char* pov = oview;
7016
ebabffbd
DK
7017 Arm_address plt_address = this->address();
7018 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
7019
7020 // Write first PLT entry. All but the last word are constants.
7021 const size_t num_first_plt_words = (sizeof(first_plt_entry)
7022 / sizeof(plt_entry[0]));
7023 for (size_t i = 0; i < num_first_plt_words - 1; i++)
7024 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
7025 // Last word in first PLT entry is &GOT[0] - .
7026 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
7027 got_address - (plt_address + 16));
7028 pov += sizeof(first_plt_entry);
7029
7030 unsigned char* got_pov = got_view;
7031
7032 memset(got_pov, 0, 12);
7033 got_pov += 12;
7034
7035 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
7036 unsigned int plt_offset = sizeof(first_plt_entry);
7037 unsigned int plt_rel_offset = 0;
7038 unsigned int got_offset = 12;
7039 const unsigned int count = this->count_;
7040 for (unsigned int i = 0;
7041 i < count;
7042 ++i,
7043 pov += sizeof(plt_entry),
7044 got_pov += 4,
7045 plt_offset += sizeof(plt_entry),
7046 plt_rel_offset += rel_size,
7047 got_offset += 4)
7048 {
7049 // Set and adjust the PLT entry itself.
2ea97941
ILT
7050 int32_t offset = ((got_address + got_offset)
7051 - (plt_address + plt_offset + 8));
94cdfcff 7052
2ea97941
ILT
7053 gold_assert(offset >= 0 && offset < 0x0fffffff);
7054 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 7055 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 7056 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 7057 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 7058 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
7059 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
7060
7061 // Set the entry in the GOT.
7062 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
7063 }
7064
7065 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
7066 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
7067
2ea97941 7068 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
7069 of->write_output_view(got_file_offset, got_size, got_view);
7070}
7071
7072// Create a PLT entry for a global symbol.
7073
7074template<bool big_endian>
7075void
2ea97941 7076Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
7077 Symbol* gsym)
7078{
7079 if (gsym->has_plt_offset())
7080 return;
7081
7082 if (this->plt_ == NULL)
7083 {
7084 // Create the GOT sections first.
2ea97941 7085 this->got_section(symtab, layout);
94cdfcff 7086
2ea97941
ILT
7087 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
7088 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7089 (elfcpp::SHF_ALLOC
7090 | elfcpp::SHF_EXECINSTR),
1a2dff53 7091 this->plt_, false, false, false, false);
94cdfcff
DK
7092 }
7093 this->plt_->add_entry(gsym);
7094}
7095
f96accdf
DK
7096// Get the section to use for TLS_DESC relocations.
7097
7098template<bool big_endian>
7099typename Target_arm<big_endian>::Reloc_section*
7100Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
7101{
7102 return this->plt_section()->rel_tls_desc(layout);
7103}
7104
7105// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
7106
7107template<bool big_endian>
7108void
7109Target_arm<big_endian>::define_tls_base_symbol(
7110 Symbol_table* symtab,
7111 Layout* layout)
7112{
7113 if (this->tls_base_symbol_defined_)
7114 return;
7115
7116 Output_segment* tls_segment = layout->tls_segment();
7117 if (tls_segment != NULL)
7118 {
7119 bool is_exec = parameters->options().output_is_executable();
7120 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
7121 Symbol_table::PREDEFINED,
7122 tls_segment, 0, 0,
7123 elfcpp::STT_TLS,
7124 elfcpp::STB_LOCAL,
7125 elfcpp::STV_HIDDEN, 0,
7126 (is_exec
7127 ? Symbol::SEGMENT_END
7128 : Symbol::SEGMENT_START),
7129 true);
7130 }
7131 this->tls_base_symbol_defined_ = true;
7132}
7133
7134// Create a GOT entry for the TLS module index.
7135
7136template<bool big_endian>
7137unsigned int
7138Target_arm<big_endian>::got_mod_index_entry(
7139 Symbol_table* symtab,
7140 Layout* layout,
7141 Sized_relobj<32, big_endian>* object)
7142{
7143 if (this->got_mod_index_offset_ == -1U)
7144 {
7145 gold_assert(symtab != NULL && layout != NULL && object != NULL);
4a54abbb
DK
7146 Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
7147 unsigned int got_offset;
7148 if (!parameters->doing_static_link())
7149 {
7150 got_offset = got->add_constant(0);
7151 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
7152 rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
7153 got_offset);
7154 }
7155 else
7156 {
7157 // We are doing a static link. Just mark it as belong to module 1,
7158 // the executable.
7159 got_offset = got->add_constant(1);
7160 }
7161
f96accdf
DK
7162 got->add_constant(0);
7163 this->got_mod_index_offset_ = got_offset;
7164 }
7165 return this->got_mod_index_offset_;
7166}
7167
7168// Optimize the TLS relocation type based on what we know about the
7169// symbol. IS_FINAL is true if the final address of this symbol is
7170// known at link time.
7171
7172template<bool big_endian>
7173tls::Tls_optimization
7174Target_arm<big_endian>::optimize_tls_reloc(bool, int)
7175{
7176 // FIXME: Currently we do not do any TLS optimization.
7177 return tls::TLSOPT_NONE;
7178}
7179
4a657b0d
DK
7180// Report an unsupported relocation against a local symbol.
7181
7182template<bool big_endian>
7183void
7184Target_arm<big_endian>::Scan::unsupported_reloc_local(
7185 Sized_relobj<32, big_endian>* object,
7186 unsigned int r_type)
7187{
7188 gold_error(_("%s: unsupported reloc %u against local symbol"),
7189 object->name().c_str(), r_type);
7190}
7191
bec53400
DK
7192// We are about to emit a dynamic relocation of type R_TYPE. If the
7193// dynamic linker does not support it, issue an error. The GNU linker
7194// only issues a non-PIC error for an allocated read-only section.
7195// Here we know the section is allocated, but we don't know that it is
7196// read-only. But we check for all the relocation types which the
7197// glibc dynamic linker supports, so it seems appropriate to issue an
7198// error even if the section is not read-only.
7199
7200template<bool big_endian>
7201void
7202Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
7203 unsigned int r_type)
7204{
7205 switch (r_type)
7206 {
7207 // These are the relocation types supported by glibc for ARM.
7208 case elfcpp::R_ARM_RELATIVE:
7209 case elfcpp::R_ARM_COPY:
7210 case elfcpp::R_ARM_GLOB_DAT:
7211 case elfcpp::R_ARM_JUMP_SLOT:
7212 case elfcpp::R_ARM_ABS32:
be8fcb75 7213 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7214 case elfcpp::R_ARM_PC24:
7215 // FIXME: The following 3 types are not supported by Android's dynamic
7216 // linker.
7217 case elfcpp::R_ARM_TLS_DTPMOD32:
7218 case elfcpp::R_ARM_TLS_DTPOFF32:
7219 case elfcpp::R_ARM_TLS_TPOFF32:
7220 return;
7221
7222 default:
c8761b9a
DK
7223 {
7224 // This prevents us from issuing more than one error per reloc
7225 // section. But we can still wind up issuing more than one
7226 // error per object file.
7227 if (this->issued_non_pic_error_)
7228 return;
7229 const Arm_reloc_property* reloc_property =
7230 arm_reloc_property_table->get_reloc_property(r_type);
7231 gold_assert(reloc_property != NULL);
7232 object->error(_("requires unsupported dynamic reloc %s; "
7233 "recompile with -fPIC"),
7234 reloc_property->name().c_str());
7235 this->issued_non_pic_error_ = true;
bec53400 7236 return;
c8761b9a 7237 }
bec53400
DK
7238
7239 case elfcpp::R_ARM_NONE:
7240 gold_unreachable();
7241 }
7242}
7243
4a657b0d 7244// Scan a relocation for a local symbol.
bec53400
DK
7245// FIXME: This only handles a subset of relocation types used by Android
7246// on ARM v5te devices.
4a657b0d
DK
7247
7248template<bool big_endian>
7249inline void
ad0f2072 7250Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 7251 Layout* layout,
bec53400 7252 Target_arm* target,
4a657b0d 7253 Sized_relobj<32, big_endian>* object,
bec53400
DK
7254 unsigned int data_shndx,
7255 Output_section* output_section,
7256 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d 7257 unsigned int r_type,
e4782e83 7258 const elfcpp::Sym<32, big_endian>& lsym)
4a657b0d 7259{
a6d1ef57 7260 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7261 switch (r_type)
7262 {
7263 case elfcpp::R_ARM_NONE:
e4782e83
DK
7264 case elfcpp::R_ARM_V4BX:
7265 case elfcpp::R_ARM_GNU_VTENTRY:
7266 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7267 break;
7268
bec53400 7269 case elfcpp::R_ARM_ABS32:
be8fcb75 7270 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
7271 // If building a shared library (or a position-independent
7272 // executable), we need to create a dynamic relocation for
7273 // this location. The relocation applied at link time will
7274 // apply the link-time value, so we flag the location with
7275 // an R_ARM_RELATIVE relocation so the dynamic loader can
7276 // relocate it easily.
7277 if (parameters->options().output_is_position_independent())
7278 {
2ea97941 7279 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7280 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7281 // If we are to add more other reloc types than R_ARM_ABS32,
7282 // we need to add check_non_pic(object, r_type) here.
7283 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
7284 output_section, data_shndx,
7285 reloc.get_r_offset());
7286 }
7287 break;
7288
e4782e83
DK
7289 case elfcpp::R_ARM_ABS16:
7290 case elfcpp::R_ARM_ABS12:
be8fcb75
ILT
7291 case elfcpp::R_ARM_THM_ABS5:
7292 case elfcpp::R_ARM_ABS8:
be8fcb75 7293 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
7294 case elfcpp::R_ARM_MOVW_ABS_NC:
7295 case elfcpp::R_ARM_MOVT_ABS:
7296 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7297 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83
DK
7298 // If building a shared library (or a position-independent
7299 // executable), we need to create a dynamic relocation for
7300 // this location. Because the addend needs to remain in the
7301 // data section, we need to be careful not to apply this
7302 // relocation statically.
7303 if (parameters->options().output_is_position_independent())
7304 {
7305 check_non_pic(object, r_type);
7306 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7307 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7308 if (lsym.get_st_type() != elfcpp::STT_SECTION)
7309 rel_dyn->add_local(object, r_sym, r_type, output_section,
7310 data_shndx, reloc.get_r_offset());
7311 else
7312 {
7313 gold_assert(lsym.get_st_value() == 0);
7314 unsigned int shndx = lsym.get_st_shndx();
7315 bool is_ordinary;
7316 shndx = object->adjust_sym_shndx(r_sym, shndx,
7317 &is_ordinary);
7318 if (!is_ordinary)
7319 object->error(_("section symbol %u has bad shndx %u"),
7320 r_sym, shndx);
7321 else
7322 rel_dyn->add_local_section(object, shndx,
7323 r_type, output_section,
7324 data_shndx, reloc.get_r_offset());
7325 }
7326 }
7327 break;
7328
7329 case elfcpp::R_ARM_PC24:
7330 case elfcpp::R_ARM_REL32:
7331 case elfcpp::R_ARM_LDR_PC_G0:
7332 case elfcpp::R_ARM_SBREL32:
7333 case elfcpp::R_ARM_THM_CALL:
7334 case elfcpp::R_ARM_THM_PC8:
7335 case elfcpp::R_ARM_BASE_PREL:
7336 case elfcpp::R_ARM_PLT32:
7337 case elfcpp::R_ARM_CALL:
7338 case elfcpp::R_ARM_JUMP24:
7339 case elfcpp::R_ARM_THM_JUMP24:
7340 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7341 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7342 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
7343 case elfcpp::R_ARM_SBREL31:
7344 case elfcpp::R_ARM_PREL31:
c2a122b6
ILT
7345 case elfcpp::R_ARM_MOVW_PREL_NC:
7346 case elfcpp::R_ARM_MOVT_PREL:
7347 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7348 case elfcpp::R_ARM_THM_MOVT_PREL:
e4782e83 7349 case elfcpp::R_ARM_THM_JUMP19:
800d0f56 7350 case elfcpp::R_ARM_THM_JUMP6:
11b861d5 7351 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7352 case elfcpp::R_ARM_THM_PC12:
7353 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7354 case elfcpp::R_ARM_ALU_PC_G0_NC:
7355 case elfcpp::R_ARM_ALU_PC_G0:
7356 case elfcpp::R_ARM_ALU_PC_G1_NC:
7357 case elfcpp::R_ARM_ALU_PC_G1:
7358 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7359 case elfcpp::R_ARM_LDR_PC_G1:
7360 case elfcpp::R_ARM_LDR_PC_G2:
7361 case elfcpp::R_ARM_LDRS_PC_G0:
7362 case elfcpp::R_ARM_LDRS_PC_G1:
7363 case elfcpp::R_ARM_LDRS_PC_G2:
7364 case elfcpp::R_ARM_LDC_PC_G0:
7365 case elfcpp::R_ARM_LDC_PC_G1:
7366 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7367 case elfcpp::R_ARM_ALU_SB_G0_NC:
7368 case elfcpp::R_ARM_ALU_SB_G0:
7369 case elfcpp::R_ARM_ALU_SB_G1_NC:
7370 case elfcpp::R_ARM_ALU_SB_G1:
7371 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7372 case elfcpp::R_ARM_LDR_SB_G0:
7373 case elfcpp::R_ARM_LDR_SB_G1:
7374 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7375 case elfcpp::R_ARM_LDRS_SB_G0:
7376 case elfcpp::R_ARM_LDRS_SB_G1:
7377 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7378 case elfcpp::R_ARM_LDC_SB_G0:
7379 case elfcpp::R_ARM_LDC_SB_G1:
7380 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7381 case elfcpp::R_ARM_MOVW_BREL_NC:
7382 case elfcpp::R_ARM_MOVT_BREL:
7383 case elfcpp::R_ARM_MOVW_BREL:
7384 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7385 case elfcpp::R_ARM_THM_MOVT_BREL:
7386 case elfcpp::R_ARM_THM_MOVW_BREL:
7387 case elfcpp::R_ARM_THM_JUMP11:
7388 case elfcpp::R_ARM_THM_JUMP8:
7389 // We don't need to do anything for a relative addressing relocation
7390 // against a local symbol if it does not reference the GOT.
bec53400
DK
7391 break;
7392
7393 case elfcpp::R_ARM_GOTOFF32:
e4782e83 7394 case elfcpp::R_ARM_GOTOFF12:
bec53400 7395 // We need a GOT section:
2ea97941 7396 target->got_section(symtab, layout);
bec53400
DK
7397 break;
7398
bec53400 7399 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 7400 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7401 {
7402 // The symbol requires a GOT entry.
4a54abbb 7403 Arm_output_data_got<big_endian>* got =
2ea97941 7404 target->got_section(symtab, layout);
bec53400
DK
7405 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7406 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
7407 {
7408 // If we are generating a shared object, we need to add a
7409 // dynamic RELATIVE relocation for this symbol's GOT entry.
7410 if (parameters->options().output_is_position_independent())
7411 {
2ea97941
ILT
7412 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7413 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 7414 rel_dyn->add_local_relative(
2ea97941
ILT
7415 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
7416 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
7417 }
7418 }
7419 }
7420 break;
7421
7422 case elfcpp::R_ARM_TARGET1:
e4782e83 7423 case elfcpp::R_ARM_TARGET2:
bec53400
DK
7424 // This should have been mapped to another type already.
7425 // Fall through.
7426 case elfcpp::R_ARM_COPY:
7427 case elfcpp::R_ARM_GLOB_DAT:
7428 case elfcpp::R_ARM_JUMP_SLOT:
7429 case elfcpp::R_ARM_RELATIVE:
7430 // These are relocations which should only be seen by the
7431 // dynamic linker, and should never be seen here.
7432 gold_error(_("%s: unexpected reloc %u in object file"),
7433 object->name().c_str(), r_type);
7434 break;
7435
f96accdf
DK
7436
7437 // These are initial TLS relocs, which are expected when
7438 // linking.
7439 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7440 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7441 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7442 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7443 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7444 {
7445 bool output_is_shared = parameters->options().shared();
7446 const tls::Tls_optimization optimized_type
7447 = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
7448 r_type);
7449 switch (r_type)
7450 {
7451 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7452 if (optimized_type == tls::TLSOPT_NONE)
7453 {
7454 // Create a pair of GOT entries for the module index and
7455 // dtv-relative offset.
4a54abbb 7456 Arm_output_data_got<big_endian>* got
f96accdf
DK
7457 = target->got_section(symtab, layout);
7458 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7459 unsigned int shndx = lsym.get_st_shndx();
7460 bool is_ordinary;
7461 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7462 if (!is_ordinary)
4a54abbb
DK
7463 {
7464 object->error(_("local symbol %u has bad shndx %u"),
7465 r_sym, shndx);
7466 break;
7467 }
7468
7469 if (!parameters->doing_static_link())
f96accdf
DK
7470 got->add_local_pair_with_rel(object, r_sym, shndx,
7471 GOT_TYPE_TLS_PAIR,
7472 target->rel_dyn_section(layout),
7473 elfcpp::R_ARM_TLS_DTPMOD32, 0);
4a54abbb
DK
7474 else
7475 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
7476 object, r_sym);
f96accdf
DK
7477 }
7478 else
7479 // FIXME: TLS optimization not supported yet.
7480 gold_unreachable();
7481 break;
7482
7483 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7484 if (optimized_type == tls::TLSOPT_NONE)
7485 {
7486 // Create a GOT entry for the module index.
7487 target->got_mod_index_entry(symtab, layout, object);
7488 }
7489 else
7490 // FIXME: TLS optimization not supported yet.
7491 gold_unreachable();
7492 break;
7493
7494 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7495 break;
7496
7497 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7498 layout->set_has_static_tls();
7499 if (optimized_type == tls::TLSOPT_NONE)
7500 {
4a54abbb
DK
7501 // Create a GOT entry for the tp-relative offset.
7502 Arm_output_data_got<big_endian>* got
7503 = target->got_section(symtab, layout);
7504 unsigned int r_sym =
7505 elfcpp::elf_r_sym<32>(reloc.get_r_info());
7506 if (!parameters->doing_static_link())
7507 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
7508 target->rel_dyn_section(layout),
7509 elfcpp::R_ARM_TLS_TPOFF32);
7510 else if (!object->local_has_got_offset(r_sym,
7511 GOT_TYPE_TLS_OFFSET))
7512 {
7513 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
7514 unsigned int got_offset =
7515 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
7516 got->add_static_reloc(got_offset,
7517 elfcpp::R_ARM_TLS_TPOFF32, object,
7518 r_sym);
7519 }
f96accdf
DK
7520 }
7521 else
7522 // FIXME: TLS optimization not supported yet.
7523 gold_unreachable();
7524 break;
7525
7526 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7527 layout->set_has_static_tls();
7528 if (output_is_shared)
7529 {
7530 // We need to create a dynamic relocation.
7531 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
7532 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
7533 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7534 rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
7535 output_section, data_shndx,
7536 reloc.get_r_offset());
7537 }
7538 break;
7539
7540 default:
7541 gold_unreachable();
7542 }
7543 }
7544 break;
7545
4a657b0d
DK
7546 default:
7547 unsupported_reloc_local(object, r_type);
7548 break;
7549 }
7550}
7551
7552// Report an unsupported relocation against a global symbol.
7553
7554template<bool big_endian>
7555void
7556Target_arm<big_endian>::Scan::unsupported_reloc_global(
7557 Sized_relobj<32, big_endian>* object,
7558 unsigned int r_type,
7559 Symbol* gsym)
7560{
7561 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7562 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7563}
7564
7565// Scan a relocation for a global symbol.
7566
7567template<bool big_endian>
7568inline void
ad0f2072 7569Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 7570 Layout* layout,
bec53400 7571 Target_arm* target,
4a657b0d 7572 Sized_relobj<32, big_endian>* object,
bec53400
DK
7573 unsigned int data_shndx,
7574 Output_section* output_section,
7575 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
7576 unsigned int r_type,
7577 Symbol* gsym)
7578{
c8761b9a
DK
7579 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
7580 // section. We check here to avoid creating a dynamic reloc against
7581 // _GLOBAL_OFFSET_TABLE_.
7582 if (!target->has_got_section()
7583 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7584 target->got_section(symtab, layout);
7585
a6d1ef57 7586 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
7587 switch (r_type)
7588 {
7589 case elfcpp::R_ARM_NONE:
e4782e83
DK
7590 case elfcpp::R_ARM_V4BX:
7591 case elfcpp::R_ARM_GNU_VTENTRY:
7592 case elfcpp::R_ARM_GNU_VTINHERIT:
4a657b0d
DK
7593 break;
7594
bec53400 7595 case elfcpp::R_ARM_ABS32:
e4782e83
DK
7596 case elfcpp::R_ARM_ABS16:
7597 case elfcpp::R_ARM_ABS12:
7598 case elfcpp::R_ARM_THM_ABS5:
7599 case elfcpp::R_ARM_ABS8:
7600 case elfcpp::R_ARM_BASE_ABS:
7601 case elfcpp::R_ARM_MOVW_ABS_NC:
7602 case elfcpp::R_ARM_MOVT_ABS:
7603 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
7604 case elfcpp::R_ARM_THM_MOVT_ABS:
be8fcb75 7605 case elfcpp::R_ARM_ABS32_NOI:
e4782e83 7606 // Absolute addressing relocations.
bec53400 7607 {
e4782e83
DK
7608 // Make a PLT entry if necessary.
7609 if (this->symbol_needs_plt_entry(gsym))
7610 {
7611 target->make_plt_entry(symtab, layout, gsym);
7612 // Since this is not a PC-relative relocation, we may be
7613 // taking the address of a function. In that case we need to
7614 // set the entry in the dynamic symbol table to the address of
7615 // the PLT entry.
7616 if (gsym->is_from_dynobj() && !parameters->options().shared())
7617 gsym->set_needs_dynsym_value();
7618 }
7619 // Make a dynamic relocation if necessary.
7620 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
7621 {
7622 if (gsym->may_need_copy_reloc())
7623 {
7624 target->copy_reloc(symtab, layout, object,
7625 data_shndx, output_section, gsym, reloc);
7626 }
7627 else if ((r_type == elfcpp::R_ARM_ABS32
7628 || r_type == elfcpp::R_ARM_ABS32_NOI)
7629 && gsym->can_use_relative_reloc(false))
7630 {
7631 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7632 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
7633 output_section, object,
7634 data_shndx, reloc.get_r_offset());
7635 }
7636 else
7637 {
7638 check_non_pic(object, r_type);
7639 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7640 rel_dyn->add_global(gsym, r_type, output_section, object,
7641 data_shndx, reloc.get_r_offset());
7642 }
7643 }
bec53400
DK
7644 }
7645 break;
7646
e4782e83
DK
7647 case elfcpp::R_ARM_GOTOFF32:
7648 case elfcpp::R_ARM_GOTOFF12:
7649 // We need a GOT section.
7650 target->got_section(symtab, layout);
7651 break;
7652
7653 case elfcpp::R_ARM_REL32:
7654 case elfcpp::R_ARM_LDR_PC_G0:
7655 case elfcpp::R_ARM_SBREL32:
7656 case elfcpp::R_ARM_THM_PC8:
7657 case elfcpp::R_ARM_BASE_PREL:
7658 case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
7659 case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
7660 case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
c2a122b6
ILT
7661 case elfcpp::R_ARM_MOVW_PREL_NC:
7662 case elfcpp::R_ARM_MOVT_PREL:
7663 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
7664 case elfcpp::R_ARM_THM_MOVT_PREL:
11b861d5 7665 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
e4782e83
DK
7666 case elfcpp::R_ARM_THM_PC12:
7667 case elfcpp::R_ARM_REL32_NOI:
b10d2873
ILT
7668 case elfcpp::R_ARM_ALU_PC_G0_NC:
7669 case elfcpp::R_ARM_ALU_PC_G0:
7670 case elfcpp::R_ARM_ALU_PC_G1_NC:
7671 case elfcpp::R_ARM_ALU_PC_G1:
7672 case elfcpp::R_ARM_ALU_PC_G2:
e4782e83
DK
7673 case elfcpp::R_ARM_LDR_PC_G1:
7674 case elfcpp::R_ARM_LDR_PC_G2:
7675 case elfcpp::R_ARM_LDRS_PC_G0:
7676 case elfcpp::R_ARM_LDRS_PC_G1:
7677 case elfcpp::R_ARM_LDRS_PC_G2:
7678 case elfcpp::R_ARM_LDC_PC_G0:
7679 case elfcpp::R_ARM_LDC_PC_G1:
7680 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873
ILT
7681 case elfcpp::R_ARM_ALU_SB_G0_NC:
7682 case elfcpp::R_ARM_ALU_SB_G0:
7683 case elfcpp::R_ARM_ALU_SB_G1_NC:
7684 case elfcpp::R_ARM_ALU_SB_G1:
7685 case elfcpp::R_ARM_ALU_SB_G2:
b10d2873
ILT
7686 case elfcpp::R_ARM_LDR_SB_G0:
7687 case elfcpp::R_ARM_LDR_SB_G1:
7688 case elfcpp::R_ARM_LDR_SB_G2:
b10d2873
ILT
7689 case elfcpp::R_ARM_LDRS_SB_G0:
7690 case elfcpp::R_ARM_LDRS_SB_G1:
7691 case elfcpp::R_ARM_LDRS_SB_G2:
b10d2873
ILT
7692 case elfcpp::R_ARM_LDC_SB_G0:
7693 case elfcpp::R_ARM_LDC_SB_G1:
7694 case elfcpp::R_ARM_LDC_SB_G2:
e4782e83
DK
7695 case elfcpp::R_ARM_MOVW_BREL_NC:
7696 case elfcpp::R_ARM_MOVT_BREL:
7697 case elfcpp::R_ARM_MOVW_BREL:
7698 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
7699 case elfcpp::R_ARM_THM_MOVT_BREL:
7700 case elfcpp::R_ARM_THM_MOVW_BREL:
7701 // Relative addressing relocations.
bec53400
DK
7702 {
7703 // Make a dynamic relocation if necessary.
7704 int flags = Symbol::NON_PIC_REF;
7705 if (gsym->needs_dynamic_reloc(flags))
7706 {
7707 if (target->may_need_copy_reloc(gsym))
7708 {
2ea97941 7709 target->copy_reloc(symtab, layout, object,
bec53400
DK
7710 data_shndx, output_section, gsym, reloc);
7711 }
7712 else
7713 {
7714 check_non_pic(object, r_type);
2ea97941 7715 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7716 rel_dyn->add_global(gsym, r_type, output_section, object,
7717 data_shndx, reloc.get_r_offset());
7718 }
7719 }
7720 }
7721 break;
7722
e4782e83 7723 case elfcpp::R_ARM_PC24:
f4e5969c 7724 case elfcpp::R_ARM_THM_CALL:
bec53400 7725 case elfcpp::R_ARM_PLT32:
e4782e83
DK
7726 case elfcpp::R_ARM_CALL:
7727 case elfcpp::R_ARM_JUMP24:
7728 case elfcpp::R_ARM_THM_JUMP24:
7729 case elfcpp::R_ARM_SBREL31:
c9a2c125 7730 case elfcpp::R_ARM_PREL31:
e4782e83
DK
7731 case elfcpp::R_ARM_THM_JUMP19:
7732 case elfcpp::R_ARM_THM_JUMP6:
7733 case elfcpp::R_ARM_THM_JUMP11:
7734 case elfcpp::R_ARM_THM_JUMP8:
7735 // All the relocation above are branches except for the PREL31 ones.
7736 // A PREL31 relocation can point to a personality function in a shared
7737 // library. In that case we want to use a PLT because we want to
7738 // call the personality routine and the dyanmic linkers we care about
7739 // do not support dynamic PREL31 relocations. An REL31 relocation may
7740 // point to a function whose unwinding behaviour is being described but
7741 // we will not mistakenly generate a PLT for that because we should use
7742 // a local section symbol.
7743
bec53400
DK
7744 // If the symbol is fully resolved, this is just a relative
7745 // local reloc. Otherwise we need a PLT entry.
7746 if (gsym->final_value_is_known())
7747 break;
7748 // If building a shared library, we can also skip the PLT entry
7749 // if the symbol is defined in the output file and is protected
7750 // or hidden.
7751 if (gsym->is_defined()
7752 && !gsym->is_from_dynobj()
7753 && !gsym->is_preemptible())
7754 break;
2ea97941 7755 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
7756 break;
7757
bec53400 7758 case elfcpp::R_ARM_GOT_BREL:
e4782e83 7759 case elfcpp::R_ARM_GOT_ABS:
7f5309a5 7760 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
7761 {
7762 // The symbol requires a GOT entry.
4a54abbb 7763 Arm_output_data_got<big_endian>* got =
2ea97941 7764 target->got_section(symtab, layout);
bec53400
DK
7765 if (gsym->final_value_is_known())
7766 got->add_global(gsym, GOT_TYPE_STANDARD);
7767 else
7768 {
7769 // If this symbol is not fully resolved, we need to add a
7770 // GOT entry with a dynamic relocation.
2ea97941 7771 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
7772 if (gsym->is_from_dynobj()
7773 || gsym->is_undefined()
7774 || gsym->is_preemptible())
7775 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
7776 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
7777 else
7778 {
7779 if (got->add_global(gsym, GOT_TYPE_STANDARD))
7780 rel_dyn->add_global_relative(
7781 gsym, elfcpp::R_ARM_RELATIVE, got,
7782 gsym->got_offset(GOT_TYPE_STANDARD));
7783 }
7784 }
7785 }
7786 break;
7787
7788 case elfcpp::R_ARM_TARGET1:
e4782e83
DK
7789 case elfcpp::R_ARM_TARGET2:
7790 // These should have been mapped to other types already.
bec53400
DK
7791 // Fall through.
7792 case elfcpp::R_ARM_COPY:
7793 case elfcpp::R_ARM_GLOB_DAT:
7794 case elfcpp::R_ARM_JUMP_SLOT:
7795 case elfcpp::R_ARM_RELATIVE:
7796 // These are relocations which should only be seen by the
7797 // dynamic linker, and should never be seen here.
7798 gold_error(_("%s: unexpected reloc %u in object file"),
7799 object->name().c_str(), r_type);
7800 break;
7801
f96accdf
DK
7802 // These are initial tls relocs, which are expected when
7803 // linking.
7804 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7805 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7806 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7807 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7808 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7809 {
7810 const bool is_final = gsym->final_value_is_known();
7811 const tls::Tls_optimization optimized_type
7812 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
7813 switch (r_type)
7814 {
7815 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
7816 if (optimized_type == tls::TLSOPT_NONE)
7817 {
7818 // Create a pair of GOT entries for the module index and
7819 // dtv-relative offset.
4a54abbb 7820 Arm_output_data_got<big_endian>* got
f96accdf 7821 = target->got_section(symtab, layout);
4a54abbb
DK
7822 if (!parameters->doing_static_link())
7823 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
7824 target->rel_dyn_section(layout),
7825 elfcpp::R_ARM_TLS_DTPMOD32,
7826 elfcpp::R_ARM_TLS_DTPOFF32);
7827 else
7828 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
f96accdf
DK
7829 }
7830 else
7831 // FIXME: TLS optimization not supported yet.
7832 gold_unreachable();
7833 break;
7834
7835 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
7836 if (optimized_type == tls::TLSOPT_NONE)
7837 {
7838 // Create a GOT entry for the module index.
7839 target->got_mod_index_entry(symtab, layout, object);
7840 }
7841 else
7842 // FIXME: TLS optimization not supported yet.
7843 gold_unreachable();
7844 break;
7845
7846 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
7847 break;
7848
7849 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
7850 layout->set_has_static_tls();
7851 if (optimized_type == tls::TLSOPT_NONE)
7852 {
4a54abbb
DK
7853 // Create a GOT entry for the tp-relative offset.
7854 Arm_output_data_got<big_endian>* got
7855 = target->got_section(symtab, layout);
7856 if (!parameters->doing_static_link())
7857 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
7858 target->rel_dyn_section(layout),
7859 elfcpp::R_ARM_TLS_TPOFF32);
7860 else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
7861 {
7862 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
7863 unsigned int got_offset =
7864 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
7865 got->add_static_reloc(got_offset,
7866 elfcpp::R_ARM_TLS_TPOFF32, gsym);
7867 }
f96accdf
DK
7868 }
7869 else
7870 // FIXME: TLS optimization not supported yet.
7871 gold_unreachable();
7872 break;
7873
7874 case elfcpp::R_ARM_TLS_LE32: // Local-exec
7875 layout->set_has_static_tls();
7876 if (parameters->options().shared())
7877 {
7878 // We need to create a dynamic relocation.
7879 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
7880 rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
7881 output_section, object,
7882 data_shndx, reloc.get_r_offset());
7883 }
7884 break;
7885
7886 default:
7887 gold_unreachable();
7888 }
7889 }
7890 break;
7891
4a657b0d
DK
7892 default:
7893 unsupported_reloc_global(object, r_type, gsym);
7894 break;
7895 }
7896}
7897
7898// Process relocations for gc.
7899
7900template<bool big_endian>
7901void
ad0f2072 7902Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
2ea97941 7903 Layout* layout,
4a657b0d
DK
7904 Sized_relobj<32, big_endian>* object,
7905 unsigned int data_shndx,
7906 unsigned int,
7907 const unsigned char* prelocs,
7908 size_t reloc_count,
7909 Output_section* output_section,
7910 bool needs_special_offset_handling,
7911 size_t local_symbol_count,
7912 const unsigned char* plocal_symbols)
7913{
7914 typedef Target_arm<big_endian> Arm;
2ea97941 7915 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 7916
2ea97941 7917 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
4a657b0d 7918 symtab,
2ea97941 7919 layout,
4a657b0d
DK
7920 this,
7921 object,
7922 data_shndx,
7923 prelocs,
7924 reloc_count,
7925 output_section,
7926 needs_special_offset_handling,
7927 local_symbol_count,
7928 plocal_symbols);
7929}
7930
7931// Scan relocations for a section.
7932
7933template<bool big_endian>
7934void
ad0f2072 7935Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 7936 Layout* layout,
4a657b0d
DK
7937 Sized_relobj<32, big_endian>* object,
7938 unsigned int data_shndx,
7939 unsigned int sh_type,
7940 const unsigned char* prelocs,
7941 size_t reloc_count,
7942 Output_section* output_section,
7943 bool needs_special_offset_handling,
7944 size_t local_symbol_count,
7945 const unsigned char* plocal_symbols)
7946{
2ea97941 7947 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
7948 if (sh_type == elfcpp::SHT_RELA)
7949 {
7950 gold_error(_("%s: unsupported RELA reloc section"),
7951 object->name().c_str());
7952 return;
7953 }
7954
2ea97941 7955 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 7956 symtab,
2ea97941 7957 layout,
4a657b0d
DK
7958 this,
7959 object,
7960 data_shndx,
7961 prelocs,
7962 reloc_count,
7963 output_section,
7964 needs_special_offset_handling,
7965 local_symbol_count,
7966 plocal_symbols);
7967}
7968
7969// Finalize the sections.
7970
7971template<bool big_endian>
7972void
d5b40221 7973Target_arm<big_endian>::do_finalize_sections(
2ea97941 7974 Layout* layout,
f59f41f3
DK
7975 const Input_objects* input_objects,
7976 Symbol_table* symtab)
4a657b0d 7977{
ca419a6f
ILT
7978 // Create an empty uninitialized attribute section if we still don't have it
7979 // at this moment.
7980 if (this->attributes_section_data_ == NULL)
7981 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
7982
d5b40221
DK
7983 // Merge processor-specific flags.
7984 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7985 p != input_objects->relobj_end();
7986 ++p)
7987 {
7988 Arm_relobj<big_endian>* arm_relobj =
7989 Arm_relobj<big_endian>::as_arm_relobj(*p);
7296d933
DK
7990 if (arm_relobj->merge_flags_and_attributes())
7991 {
7992 this->merge_processor_specific_flags(
7993 arm_relobj->name(),
7994 arm_relobj->processor_specific_flags());
7995 this->merge_object_attributes(arm_relobj->name().c_str(),
7996 arm_relobj->attributes_section_data());
7997 }
d5b40221
DK
7998 }
7999
8000 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8001 p != input_objects->dynobj_end();
8002 ++p)
8003 {
8004 Arm_dynobj<big_endian>* arm_dynobj =
8005 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
8006 this->merge_processor_specific_flags(
8007 arm_dynobj->name(),
8008 arm_dynobj->processor_specific_flags());
a0351a69
DK
8009 this->merge_object_attributes(arm_dynobj->name().c_str(),
8010 arm_dynobj->attributes_section_data());
d5b40221
DK
8011 }
8012
a0351a69 8013 // Check BLX use.
41263c05 8014 const Object_attribute* cpu_arch_attr =
a0351a69 8015 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
41263c05 8016 if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
a0351a69
DK
8017 this->set_may_use_blx(true);
8018
41263c05
DK
8019 // Check if we need to use Cortex-A8 workaround.
8020 if (parameters->options().user_set_fix_cortex_a8())
8021 this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
8022 else
8023 {
8024 // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
8025 // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
8026 // profile.
8027 const Object_attribute* cpu_arch_profile_attr =
8028 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
8029 this->fix_cortex_a8_ =
8030 (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
8031 && (cpu_arch_profile_attr->int_value() == 'A'
8032 || cpu_arch_profile_attr->int_value() == 0));
8033 }
8034
a2162063
ILT
8035 // Check if we can use V4BX interworking.
8036 // The V4BX interworking stub contains BX instruction,
8037 // which is not specified for some profiles.
9b2fd367
DK
8038 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
8039 && !this->may_use_blx())
a2162063
ILT
8040 gold_error(_("unable to provide V4BX reloc interworking fix up; "
8041 "the target profile does not support BX instruction"));
8042
94cdfcff 8043 // Fill in some more dynamic tags.
ea715a34
ILT
8044 const Reloc_section* rel_plt = (this->plt_ == NULL
8045 ? NULL
8046 : this->plt_->rel_plt());
8047 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
612a8d3d 8048 this->rel_dyn_, true, false);
94cdfcff
DK
8049
8050 // Emit any relocs we saved in an attempt to avoid generating COPY
8051 // relocs.
8052 if (this->copy_relocs_.any_saved_relocs())
2ea97941 8053 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 8054
f59f41f3 8055 // Handle the .ARM.exidx section.
2ea97941 8056 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
f59f41f3
DK
8057 if (exidx_section != NULL
8058 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
11af873f
DK
8059 && !parameters->options().relocatable())
8060 {
f59f41f3 8061 // Create __exidx_start and __exdix_end symbols.
99fff23b
ILT
8062 symtab->define_in_output_data("__exidx_start", NULL,
8063 Symbol_table::PREDEFINED,
8064 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8065 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8066 false, true);
99fff23b
ILT
8067 symtab->define_in_output_data("__exidx_end", NULL,
8068 Symbol_table::PREDEFINED,
8069 exidx_section, 0, 0, elfcpp::STT_OBJECT,
a0351a69 8070 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
99e5bff2 8071 true, true);
11af873f 8072
f59f41f3
DK
8073 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
8074 // the .ARM.exidx section.
2ea97941 8075 if (!layout->script_options()->saw_phdrs_clause())
11af873f 8076 {
2ea97941 8077 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
11af873f
DK
8078 == NULL);
8079 Output_segment* exidx_segment =
2ea97941 8080 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
f5c870d2
ILT
8081 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
8082 false);
11af873f
DK
8083 }
8084 }
a0351a69 8085
7296d933
DK
8086 // Create an .ARM.attributes section unless we have no regular input
8087 // object. In that case the output will be empty.
8088 if (input_objects->number_of_relobjs() != 0)
8089 {
8090 Output_attributes_section_data* attributes_section =
8091 new Output_attributes_section_data(*this->attributes_section_data_);
8092 layout->add_output_section_data(".ARM.attributes",
8093 elfcpp::SHT_ARM_ATTRIBUTES, 0,
8094 attributes_section, false, false, false,
8095 false);
8096 }
4a657b0d
DK
8097}
8098
bec53400
DK
8099// Return whether a direct absolute static relocation needs to be applied.
8100// In cases where Scan::local() or Scan::global() has created
8101// a dynamic relocation other than R_ARM_RELATIVE, the addend
8102// of the relocation is carried in the data, and we must not
8103// apply the static relocation.
8104
8105template<bool big_endian>
8106inline bool
8107Target_arm<big_endian>::Relocate::should_apply_static_reloc(
8108 const Sized_symbol<32>* gsym,
8109 int ref_flags,
8110 bool is_32bit,
8111 Output_section* output_section)
8112{
8113 // If the output section is not allocated, then we didn't call
8114 // scan_relocs, we didn't create a dynamic reloc, and we must apply
8115 // the reloc here.
8116 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
8117 return true;
8118
8119 // For local symbols, we will have created a non-RELATIVE dynamic
8120 // relocation only if (a) the output is position independent,
8121 // (b) the relocation is absolute (not pc- or segment-relative), and
8122 // (c) the relocation is not 32 bits wide.
8123 if (gsym == NULL)
8124 return !(parameters->options().output_is_position_independent()
8125 && (ref_flags & Symbol::ABSOLUTE_REF)
8126 && !is_32bit);
8127
8128 // For global symbols, we use the same helper routines used in the
8129 // scan pass. If we did not create a dynamic relocation, or if we
8130 // created a RELATIVE dynamic relocation, we should apply the static
8131 // relocation.
8132 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
8133 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
8134 && gsym->can_use_relative_reloc(ref_flags
8135 & Symbol::FUNCTION_CALL);
8136 return !has_dyn || is_rel;
8137}
8138
4a657b0d
DK
8139// Perform a relocation.
8140
8141template<bool big_endian>
8142inline bool
8143Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
8144 const Relocate_info<32, big_endian>* relinfo,
8145 Target_arm* target,
8146 Output_section *output_section,
8147 size_t relnum,
8148 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 8149 unsigned int r_type,
c121c671
DK
8150 const Sized_symbol<32>* gsym,
8151 const Symbol_value<32>* psymval,
8152 unsigned char* view,
ebabffbd 8153 Arm_address address,
f96accdf 8154 section_size_type view_size)
4a657b0d 8155{
c121c671
DK
8156 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
8157
a6d1ef57 8158 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8159 const Arm_reloc_property* reloc_property =
8160 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8161 if (reloc_property == NULL)
8162 {
8163 std::string reloc_name =
8164 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8165 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8166 _("cannot relocate %s in object file"),
8167 reloc_name.c_str());
8168 return true;
8169 }
c121c671 8170
2daedcd6
DK
8171 const Arm_relobj<big_endian>* object =
8172 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 8173
2daedcd6
DK
8174 // If the final branch target of a relocation is THUMB instruction, this
8175 // is 1. Otherwise it is 0.
8176 Arm_address thumb_bit = 0;
c121c671 8177 Symbol_value<32> symval;
d204b6e9 8178 bool is_weakly_undefined_without_plt = false;
2daedcd6 8179 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 8180 {
2daedcd6
DK
8181 if (gsym != NULL)
8182 {
8183 // This is a global symbol. Determine if we use PLT and if the
8184 // final target is THUMB.
8185 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
8186 {
8187 // This uses a PLT, change the symbol value.
8188 symval.set_output_value(target->plt_section()->address()
8189 + gsym->plt_offset());
8190 psymval = &symval;
8191 }
d204b6e9
DK
8192 else if (gsym->is_weak_undefined())
8193 {
8194 // This is a weakly undefined symbol and we do not use PLT
8195 // for this relocation. A branch targeting this symbol will
8196 // be converted into an NOP.
8197 is_weakly_undefined_without_plt = true;
8198 }
2daedcd6
DK
8199 else
8200 {
8201 // Set thumb bit if symbol:
8202 // -Has type STT_ARM_TFUNC or
8203 // -Has type STT_FUNC, is defined and with LSB in value set.
8204 thumb_bit =
8205 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
8206 || (gsym->type() == elfcpp::STT_FUNC
8207 && !gsym->is_undefined()
8208 && ((psymval->value(object, 0) & 1) != 0)))
8209 ? 1
8210 : 0);
8211 }
8212 }
8213 else
8214 {
8215 // This is a local symbol. Determine if the final target is THUMB.
8216 // We saved this information when all the local symbols were read.
8217 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
8218 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8219 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
8220 }
8221 }
8222 else
8223 {
8224 // This is a fake relocation synthesized for a stub. It does not have
8225 // a real symbol. We just look at the LSB of the symbol value to
8226 // determine if the target is THUMB or not.
8227 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
8228 }
8229
2daedcd6
DK
8230 // Strip LSB if this points to a THUMB target.
8231 if (thumb_bit != 0
5c57f1be 8232 && reloc_property->uses_thumb_bit()
2daedcd6
DK
8233 && ((psymval->value(object, 0) & 1) != 0))
8234 {
8235 Arm_address stripped_value =
8236 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
8237 symval.set_output_value(stripped_value);
8238 psymval = &symval;
8239 }
8240
c121c671
DK
8241 // Get the GOT offset if needed.
8242 // The GOT pointer points to the end of the GOT section.
8243 // We need to subtract the size of the GOT section to get
8244 // the actual offset to use in the relocation.
8245 bool have_got_offset = false;
8246 unsigned int got_offset = 0;
8247 switch (r_type)
8248 {
8249 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 8250 case elfcpp::R_ARM_GOT_PREL:
c121c671
DK
8251 if (gsym != NULL)
8252 {
8253 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8254 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
8255 - target->got_size());
8256 }
8257 else
8258 {
8259 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8260 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8261 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
8262 - target->got_size());
8263 }
8264 have_got_offset = true;
8265 break;
8266
8267 default:
8268 break;
8269 }
8270
d204b6e9
DK
8271 // To look up relocation stubs, we need to pass the symbol table index of
8272 // a local symbol.
8273 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8274
b10d2873
ILT
8275 // Get the addressing origin of the output segment defining the
8276 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
8277 Arm_address sym_origin = 0;
5c57f1be 8278 if (reloc_property->uses_symbol_base())
b10d2873
ILT
8279 {
8280 if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
8281 // R_ARM_BASE_ABS with the NULL symbol will give the
8282 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
8283 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
8284 sym_origin = target->got_plt_section()->address();
8285 else if (gsym == NULL)
8286 sym_origin = 0;
8287 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
8288 sym_origin = gsym->output_segment()->vaddr();
8289 else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
8290 sym_origin = gsym->output_data()->address();
8291
8292 // TODO: Assumes the segment base to be zero for the global symbols
8293 // till the proper support for the segment-base-relative addressing
8294 // will be implemented. This is consistent with GNU ld.
8295 }
8296
5c57f1be
DK
8297 // For relative addressing relocation, find out the relative address base.
8298 Arm_address relative_address_base = 0;
8299 switch(reloc_property->relative_address_base())
8300 {
8301 case Arm_reloc_property::RAB_NONE:
f96accdf
DK
8302 // Relocations with relative address bases RAB_TLS and RAB_tp are
8303 // handled by relocate_tls. So we do not need to do anything here.
8304 case Arm_reloc_property::RAB_TLS:
8305 case Arm_reloc_property::RAB_tp:
5c57f1be
DK
8306 break;
8307 case Arm_reloc_property::RAB_B_S:
8308 relative_address_base = sym_origin;
8309 break;
8310 case Arm_reloc_property::RAB_GOT_ORG:
8311 relative_address_base = target->got_plt_section()->address();
8312 break;
8313 case Arm_reloc_property::RAB_P:
8314 relative_address_base = address;
8315 break;
8316 case Arm_reloc_property::RAB_Pa:
8317 relative_address_base = address & 0xfffffffcU;
8318 break;
8319 default:
8320 gold_unreachable();
8321 }
8322
c121c671
DK
8323 typename Arm_relocate_functions::Status reloc_status =
8324 Arm_relocate_functions::STATUS_OKAY;
5c57f1be 8325 bool check_overflow = reloc_property->checks_overflow();
4a657b0d
DK
8326 switch (r_type)
8327 {
8328 case elfcpp::R_ARM_NONE:
8329 break;
8330
5e445df6
ILT
8331 case elfcpp::R_ARM_ABS8:
8332 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8333 output_section))
be8fcb75
ILT
8334 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
8335 break;
8336
8337 case elfcpp::R_ARM_ABS12:
8338 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8339 output_section))
8340 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
8341 break;
8342
8343 case elfcpp::R_ARM_ABS16:
8344 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8345 output_section))
8346 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
8347 break;
8348
c121c671
DK
8349 case elfcpp::R_ARM_ABS32:
8350 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8351 output_section))
8352 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 8353 thumb_bit);
c121c671
DK
8354 break;
8355
be8fcb75
ILT
8356 case elfcpp::R_ARM_ABS32_NOI:
8357 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
8358 output_section))
8359 // No thumb bit for this relocation: (S + A)
8360 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 8361 0);
be8fcb75
ILT
8362 break;
8363
fd3c5f0b 8364 case elfcpp::R_ARM_MOVW_ABS_NC:
e4782e83 8365 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8366 output_section))
5c57f1be
DK
8367 reloc_status = Arm_relocate_functions::movw(view, object, psymval,
8368 0, thumb_bit,
8369 check_overflow);
fd3c5f0b
ILT
8370 break;
8371
8372 case elfcpp::R_ARM_MOVT_ABS:
e4782e83 8373 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8374 output_section))
5c57f1be 8375 reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
fd3c5f0b
ILT
8376 break;
8377
8378 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
e4782e83 8379 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8380 output_section))
5c57f1be
DK
8381 reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
8382 0, thumb_bit, false);
fd3c5f0b
ILT
8383 break;
8384
8385 case elfcpp::R_ARM_THM_MOVT_ABS:
e4782e83 8386 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
fd3c5f0b 8387 output_section))
5c57f1be
DK
8388 reloc_status = Arm_relocate_functions::thm_movt(view, object,
8389 psymval, 0);
fd3c5f0b
ILT
8390 break;
8391
c2a122b6 8392 case elfcpp::R_ARM_MOVW_PREL_NC:
02961d7e 8393 case elfcpp::R_ARM_MOVW_BREL_NC:
02961d7e 8394 case elfcpp::R_ARM_MOVW_BREL:
5c57f1be
DK
8395 reloc_status =
8396 Arm_relocate_functions::movw(view, object, psymval,
8397 relative_address_base, thumb_bit,
8398 check_overflow);
c2a122b6
ILT
8399 break;
8400
8401 case elfcpp::R_ARM_MOVT_PREL:
02961d7e 8402 case elfcpp::R_ARM_MOVT_BREL:
5c57f1be
DK
8403 reloc_status =
8404 Arm_relocate_functions::movt(view, object, psymval,
8405 relative_address_base);
c2a122b6
ILT
8406 break;
8407
8408 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
02961d7e 8409 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
02961d7e 8410 case elfcpp::R_ARM_THM_MOVW_BREL:
5c57f1be
DK
8411 reloc_status =
8412 Arm_relocate_functions::thm_movw(view, object, psymval,
8413 relative_address_base,
8414 thumb_bit, check_overflow);
c2a122b6
ILT
8415 break;
8416
8417 case elfcpp::R_ARM_THM_MOVT_PREL:
02961d7e 8418 case elfcpp::R_ARM_THM_MOVT_BREL:
5c57f1be
DK
8419 reloc_status =
8420 Arm_relocate_functions::thm_movt(view, object, psymval,
8421 relative_address_base);
02961d7e 8422 break;
5c57f1be 8423
c121c671
DK
8424 case elfcpp::R_ARM_REL32:
8425 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8426 address, thumb_bit);
c121c671
DK
8427 break;
8428
be8fcb75
ILT
8429 case elfcpp::R_ARM_THM_ABS5:
8430 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
8431 output_section))
8432 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
8433 break;
8434
1521477a 8435 // Thumb long branches.
c121c671 8436 case elfcpp::R_ARM_THM_CALL:
51938283 8437 case elfcpp::R_ARM_THM_XPC22:
1521477a 8438 case elfcpp::R_ARM_THM_JUMP24:
51938283 8439 reloc_status =
1521477a
DK
8440 Arm_relocate_functions::thumb_branch_common(
8441 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8442 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8443 break;
8444
c121c671
DK
8445 case elfcpp::R_ARM_GOTOFF32:
8446 {
ebabffbd 8447 Arm_address got_origin;
c121c671
DK
8448 got_origin = target->got_plt_section()->address();
8449 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 8450 got_origin, thumb_bit);
c121c671
DK
8451 }
8452 break;
8453
8454 case elfcpp::R_ARM_BASE_PREL:
b10d2873
ILT
8455 gold_assert(gsym != NULL);
8456 reloc_status =
8457 Arm_relocate_functions::base_prel(view, sym_origin, address);
c121c671
DK
8458 break;
8459
be8fcb75
ILT
8460 case elfcpp::R_ARM_BASE_ABS:
8461 {
e4782e83 8462 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
be8fcb75
ILT
8463 output_section))
8464 break;
8465
b10d2873 8466 reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
be8fcb75
ILT
8467 }
8468 break;
8469
c121c671
DK
8470 case elfcpp::R_ARM_GOT_BREL:
8471 gold_assert(have_got_offset);
8472 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
8473 break;
8474
7f5309a5
ILT
8475 case elfcpp::R_ARM_GOT_PREL:
8476 gold_assert(have_got_offset);
8477 // Get the address origin for GOT PLT, which is allocated right
8478 // after the GOT section, to calculate an absolute address of
8479 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 8480 Arm_address got_origin;
7f5309a5
ILT
8481 got_origin = target->got_plt_section()->address();
8482 reloc_status = Arm_relocate_functions::got_prel(view,
8483 got_origin + got_offset,
8484 address);
8485 break;
8486
c121c671 8487 case elfcpp::R_ARM_PLT32:
1521477a
DK
8488 case elfcpp::R_ARM_CALL:
8489 case elfcpp::R_ARM_JUMP24:
8490 case elfcpp::R_ARM_XPC25:
c121c671
DK
8491 gold_assert(gsym == NULL
8492 || gsym->has_plt_offset()
8493 || gsym->final_value_is_known()
8494 || (gsym->is_defined()
8495 && !gsym->is_from_dynobj()
8496 && !gsym->is_preemptible()));
d204b6e9 8497 reloc_status =
1521477a
DK
8498 Arm_relocate_functions::arm_branch_common(
8499 r_type, relinfo, view, gsym, object, r_sym, psymval, address,
8500 thumb_bit, is_weakly_undefined_without_plt);
51938283
DK
8501 break;
8502
41263c05
DK
8503 case elfcpp::R_ARM_THM_JUMP19:
8504 reloc_status =
8505 Arm_relocate_functions::thm_jump19(view, object, psymval, address,
8506 thumb_bit);
8507 break;
8508
800d0f56
ILT
8509 case elfcpp::R_ARM_THM_JUMP6:
8510 reloc_status =
8511 Arm_relocate_functions::thm_jump6(view, object, psymval, address);
8512 break;
8513
8514 case elfcpp::R_ARM_THM_JUMP8:
8515 reloc_status =
8516 Arm_relocate_functions::thm_jump8(view, object, psymval, address);
8517 break;
8518
8519 case elfcpp::R_ARM_THM_JUMP11:
8520 reloc_status =
8521 Arm_relocate_functions::thm_jump11(view, object, psymval, address);
8522 break;
8523
c121c671
DK
8524 case elfcpp::R_ARM_PREL31:
8525 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 8526 address, thumb_bit);
c121c671
DK
8527 break;
8528
a2162063 8529 case elfcpp::R_ARM_V4BX:
9b2fd367
DK
8530 if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
8531 {
8532 const bool is_v4bx_interworking =
8533 (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
8534 reloc_status =
8535 Arm_relocate_functions::v4bx(relinfo, view, object, address,
8536 is_v4bx_interworking);
8537 }
a2162063
ILT
8538 break;
8539
11b861d5
DK
8540 case elfcpp::R_ARM_THM_PC8:
8541 reloc_status =
8542 Arm_relocate_functions::thm_pc8(view, object, psymval, address);
8543 break;
8544
8545 case elfcpp::R_ARM_THM_PC12:
8546 reloc_status =
8547 Arm_relocate_functions::thm_pc12(view, object, psymval, address);
8548 break;
8549
8550 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
8551 reloc_status =
8552 Arm_relocate_functions::thm_alu11(view, object, psymval, address,
8553 thumb_bit);
8554 break;
8555
b10d2873 8556 case elfcpp::R_ARM_ALU_PC_G0_NC:
b10d2873 8557 case elfcpp::R_ARM_ALU_PC_G0:
b10d2873 8558 case elfcpp::R_ARM_ALU_PC_G1_NC:
b10d2873 8559 case elfcpp::R_ARM_ALU_PC_G1:
b10d2873 8560 case elfcpp::R_ARM_ALU_PC_G2:
b10d2873 8561 case elfcpp::R_ARM_ALU_SB_G0_NC:
b10d2873 8562 case elfcpp::R_ARM_ALU_SB_G0:
b10d2873 8563 case elfcpp::R_ARM_ALU_SB_G1_NC:
b10d2873 8564 case elfcpp::R_ARM_ALU_SB_G1:
b10d2873
ILT
8565 case elfcpp::R_ARM_ALU_SB_G2:
8566 reloc_status =
5c57f1be
DK
8567 Arm_relocate_functions::arm_grp_alu(view, object, psymval,
8568 reloc_property->group_index(),
8569 relative_address_base,
8570 thumb_bit, check_overflow);
b10d2873
ILT
8571 break;
8572
8573 case elfcpp::R_ARM_LDR_PC_G0:
b10d2873 8574 case elfcpp::R_ARM_LDR_PC_G1:
b10d2873 8575 case elfcpp::R_ARM_LDR_PC_G2:
b10d2873 8576 case elfcpp::R_ARM_LDR_SB_G0:
b10d2873 8577 case elfcpp::R_ARM_LDR_SB_G1:
b10d2873
ILT
8578 case elfcpp::R_ARM_LDR_SB_G2:
8579 reloc_status =
5c57f1be
DK
8580 Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
8581 reloc_property->group_index(),
8582 relative_address_base);
b10d2873
ILT
8583 break;
8584
8585 case elfcpp::R_ARM_LDRS_PC_G0:
b10d2873 8586 case elfcpp::R_ARM_LDRS_PC_G1:
b10d2873 8587 case elfcpp::R_ARM_LDRS_PC_G2:
b10d2873 8588 case elfcpp::R_ARM_LDRS_SB_G0:
b10d2873 8589 case elfcpp::R_ARM_LDRS_SB_G1:
b10d2873
ILT
8590 case elfcpp::R_ARM_LDRS_SB_G2:
8591 reloc_status =
5c57f1be
DK
8592 Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
8593 reloc_property->group_index(),
8594 relative_address_base);
b10d2873
ILT
8595 break;
8596
8597 case elfcpp::R_ARM_LDC_PC_G0:
b10d2873 8598 case elfcpp::R_ARM_LDC_PC_G1:
b10d2873 8599 case elfcpp::R_ARM_LDC_PC_G2:
b10d2873 8600 case elfcpp::R_ARM_LDC_SB_G0:
b10d2873 8601 case elfcpp::R_ARM_LDC_SB_G1:
b10d2873
ILT
8602 case elfcpp::R_ARM_LDC_SB_G2:
8603 reloc_status =
5c57f1be
DK
8604 Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
8605 reloc_property->group_index(),
8606 relative_address_base);
c121c671
DK
8607 break;
8608
f96accdf
DK
8609 // These are initial tls relocs, which are expected when
8610 // linking.
8611 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8612 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8613 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
8614 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8615 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8616 reloc_status =
8617 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
8618 view, address, view_size);
8619 break;
8620
c121c671 8621 default:
5c57f1be 8622 gold_unreachable();
c121c671
DK
8623 }
8624
8625 // Report any errors.
8626 switch (reloc_status)
8627 {
8628 case Arm_relocate_functions::STATUS_OKAY:
8629 break;
8630 case Arm_relocate_functions::STATUS_OVERFLOW:
8631 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
a2c7281b
DK
8632 _("relocation overflow in %s"),
8633 reloc_property->name().c_str());
c121c671
DK
8634 break;
8635 case Arm_relocate_functions::STATUS_BAD_RELOC:
8636 gold_error_at_location(
8637 relinfo,
8638 relnum,
8639 rel.get_r_offset(),
a2c7281b
DK
8640 _("unexpected opcode while processing relocation %s"),
8641 reloc_property->name().c_str());
c121c671 8642 break;
4a657b0d
DK
8643 default:
8644 gold_unreachable();
8645 }
8646
8647 return true;
8648}
8649
f96accdf
DK
8650// Perform a TLS relocation.
8651
8652template<bool big_endian>
8653inline typename Arm_relocate_functions<big_endian>::Status
8654Target_arm<big_endian>::Relocate::relocate_tls(
8655 const Relocate_info<32, big_endian>* relinfo,
8656 Target_arm<big_endian>* target,
8657 size_t relnum,
8658 const elfcpp::Rel<32, big_endian>& rel,
8659 unsigned int r_type,
8660 const Sized_symbol<32>* gsym,
8661 const Symbol_value<32>* psymval,
8662 unsigned char* view,
4a54abbb 8663 elfcpp::Elf_types<32>::Elf_Addr address,
f96accdf
DK
8664 section_size_type /*view_size*/ )
8665{
8666 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
4a54abbb 8667 typedef Relocate_functions<32, big_endian> RelocFuncs;
f96accdf
DK
8668 Output_segment* tls_segment = relinfo->layout->tls_segment();
8669
8670 const Sized_relobj<32, big_endian>* object = relinfo->object;
8671
8672 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
8673
8674 const bool is_final = (gsym == NULL
8675 ? !parameters->options().shared()
8676 : gsym->final_value_is_known());
8677 const tls::Tls_optimization optimized_type
8678 = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
8679 switch (r_type)
8680 {
8681 case elfcpp::R_ARM_TLS_GD32: // Global-dynamic
8682 {
8683 unsigned int got_type = GOT_TYPE_TLS_PAIR;
8684 unsigned int got_offset;
8685 if (gsym != NULL)
8686 {
8687 gold_assert(gsym->has_got_offset(got_type));
8688 got_offset = gsym->got_offset(got_type) - target->got_size();
8689 }
8690 else
8691 {
8692 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8693 gold_assert(object->local_has_got_offset(r_sym, got_type));
8694 got_offset = (object->local_got_offset(r_sym, got_type)
8695 - target->got_size());
8696 }
8697 if (optimized_type == tls::TLSOPT_NONE)
8698 {
4a54abbb
DK
8699 Arm_address got_entry =
8700 target->got_plt_section()->address() + got_offset;
8701
8702 // Relocate the field with the PC relative offset of the pair of
8703 // GOT entries.
8704 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8705 return ArmRelocFuncs::STATUS_OKAY;
8706 }
8707 }
8708 break;
8709
8710 case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic
8711 if (optimized_type == tls::TLSOPT_NONE)
8712 {
8713 // Relocate the field with the offset of the GOT entry for
8714 // the module index.
8715 unsigned int got_offset;
8716 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
8717 - target->got_size());
4a54abbb
DK
8718 Arm_address got_entry =
8719 target->got_plt_section()->address() + got_offset;
8720
8721 // Relocate the field with the PC relative offset of the pair of
8722 // GOT entries.
8723 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8724 return ArmRelocFuncs::STATUS_OKAY;
8725 }
8726 break;
8727
8728 case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic
4a54abbb 8729 RelocFuncs::rel32(view, value);
f96accdf
DK
8730 return ArmRelocFuncs::STATUS_OKAY;
8731
8732 case elfcpp::R_ARM_TLS_IE32: // Initial-exec
8733 if (optimized_type == tls::TLSOPT_NONE)
8734 {
8735 // Relocate the field with the offset of the GOT entry for
8736 // the tp-relative offset of the symbol.
8737 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
8738 unsigned int got_offset;
8739 if (gsym != NULL)
8740 {
8741 gold_assert(gsym->has_got_offset(got_type));
8742 got_offset = gsym->got_offset(got_type);
8743 }
8744 else
8745 {
8746 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
8747 gold_assert(object->local_has_got_offset(r_sym, got_type));
8748 got_offset = object->local_got_offset(r_sym, got_type);
8749 }
4a54abbb 8750
f96accdf
DK
8751 // All GOT offsets are relative to the end of the GOT.
8752 got_offset -= target->got_size();
4a54abbb
DK
8753
8754 Arm_address got_entry =
8755 target->got_plt_section()->address() + got_offset;
8756
8757 // Relocate the field with the PC relative offset of the GOT entry.
8758 RelocFuncs::pcrel32(view, got_entry, address);
f96accdf
DK
8759 return ArmRelocFuncs::STATUS_OKAY;
8760 }
8761 break;
8762
8763 case elfcpp::R_ARM_TLS_LE32: // Local-exec
8764 // If we're creating a shared library, a dynamic relocation will
8765 // have been created for this location, so do not apply it now.
8766 if (!parameters->options().shared())
8767 {
8768 gold_assert(tls_segment != NULL);
4a54abbb
DK
8769
8770 // $tp points to the TCB, which is followed by the TLS, so we
8771 // need to add TCB size to the offset.
8772 Arm_address aligned_tcb_size =
8773 align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
8774 RelocFuncs::rel32(view, value + aligned_tcb_size);
8775
f96accdf
DK
8776 }
8777 return ArmRelocFuncs::STATUS_OKAY;
8778
8779 default:
8780 gold_unreachable();
8781 }
8782
8783 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
8784 _("unsupported reloc %u"),
8785 r_type);
8786 return ArmRelocFuncs::STATUS_BAD_RELOC;
8787}
8788
4a657b0d
DK
8789// Relocate section data.
8790
8791template<bool big_endian>
8792void
8793Target_arm<big_endian>::relocate_section(
8794 const Relocate_info<32, big_endian>* relinfo,
8795 unsigned int sh_type,
8796 const unsigned char* prelocs,
8797 size_t reloc_count,
8798 Output_section* output_section,
8799 bool needs_special_offset_handling,
8800 unsigned char* view,
ebabffbd 8801 Arm_address address,
364c7fa5
ILT
8802 section_size_type view_size,
8803 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
8804{
8805 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
8806 gold_assert(sh_type == elfcpp::SHT_REL);
8807
218c5831
DK
8808 // See if we are relocating a relaxed input section. If so, the view
8809 // covers the whole output section and we need to adjust accordingly.
8810 if (needs_special_offset_handling)
43d12afe 8811 {
218c5831
DK
8812 const Output_relaxed_input_section* poris =
8813 output_section->find_relaxed_input_section(relinfo->object,
8814 relinfo->data_shndx);
8815 if (poris != NULL)
8816 {
8817 Arm_address section_address = poris->address();
8818 section_size_type section_size = poris->data_size();
8819
8820 gold_assert((section_address >= address)
8821 && ((section_address + section_size)
8822 <= (address + view_size)));
8823
8824 off_t offset = section_address - address;
8825 view += offset;
8826 address += offset;
8827 view_size = section_size;
8828 }
43d12afe
DK
8829 }
8830
4a657b0d
DK
8831 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
8832 Arm_relocate>(
8833 relinfo,
8834 this,
8835 prelocs,
8836 reloc_count,
8837 output_section,
8838 needs_special_offset_handling,
8839 view,
8840 address,
364c7fa5
ILT
8841 view_size,
8842 reloc_symbol_changes);
4a657b0d
DK
8843}
8844
8845// Return the size of a relocation while scanning during a relocatable
8846// link.
8847
8848template<bool big_endian>
8849unsigned int
8850Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8851 unsigned int r_type,
8852 Relobj* object)
8853{
a6d1ef57 8854 r_type = get_real_reloc_type(r_type);
5c57f1be
DK
8855 const Arm_reloc_property* arp =
8856 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
8857 if (arp != NULL)
8858 return arp->size();
8859 else
4a657b0d 8860 {
5c57f1be
DK
8861 std::string reloc_name =
8862 arm_reloc_property_table->reloc_name_in_error_message(r_type);
8863 gold_error(_("%s: unexpected %s in object file"),
8864 object->name().c_str(), reloc_name.c_str());
4a657b0d
DK
8865 return 0;
8866 }
8867}
8868
8869// Scan the relocs during a relocatable link.
8870
8871template<bool big_endian>
8872void
8873Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 8874 Symbol_table* symtab,
2ea97941 8875 Layout* layout,
4a657b0d
DK
8876 Sized_relobj<32, big_endian>* object,
8877 unsigned int data_shndx,
8878 unsigned int sh_type,
8879 const unsigned char* prelocs,
8880 size_t reloc_count,
8881 Output_section* output_section,
8882 bool needs_special_offset_handling,
8883 size_t local_symbol_count,
8884 const unsigned char* plocal_symbols,
8885 Relocatable_relocs* rr)
8886{
8887 gold_assert(sh_type == elfcpp::SHT_REL);
8888
8889 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
8890 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8891
8892 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
8893 Scan_relocatable_relocs>(
4a657b0d 8894 symtab,
2ea97941 8895 layout,
4a657b0d
DK
8896 object,
8897 data_shndx,
8898 prelocs,
8899 reloc_count,
8900 output_section,
8901 needs_special_offset_handling,
8902 local_symbol_count,
8903 plocal_symbols,
8904 rr);
8905}
8906
8907// Relocate a section during a relocatable link.
8908
8909template<bool big_endian>
8910void
8911Target_arm<big_endian>::relocate_for_relocatable(
8912 const Relocate_info<32, big_endian>* relinfo,
8913 unsigned int sh_type,
8914 const unsigned char* prelocs,
8915 size_t reloc_count,
8916 Output_section* output_section,
8917 off_t offset_in_output_section,
8918 const Relocatable_relocs* rr,
8919 unsigned char* view,
ebabffbd 8920 Arm_address view_address,
4a657b0d
DK
8921 section_size_type view_size,
8922 unsigned char* reloc_view,
8923 section_size_type reloc_view_size)
8924{
8925 gold_assert(sh_type == elfcpp::SHT_REL);
8926
8927 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
8928 relinfo,
8929 prelocs,
8930 reloc_count,
8931 output_section,
8932 offset_in_output_section,
8933 rr,
8934 view,
8935 view_address,
8936 view_size,
8937 reloc_view,
8938 reloc_view_size);
8939}
8940
94cdfcff
DK
8941// Return the value to use for a dynamic symbol which requires special
8942// treatment. This is how we support equality comparisons of function
8943// pointers across shared library boundaries, as described in the
8944// processor specific ABI supplement.
8945
4a657b0d
DK
8946template<bool big_endian>
8947uint64_t
94cdfcff 8948Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 8949{
94cdfcff
DK
8950 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8951 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
8952}
8953
8954// Map platform-specific relocs to real relocs
8955//
8956template<bool big_endian>
8957unsigned int
a6d1ef57 8958Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
4a657b0d
DK
8959{
8960 switch (r_type)
8961 {
8962 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
8963 // This is either R_ARM_ABS32 or R_ARM_REL32;
8964 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
8965
8966 case elfcpp::R_ARM_TARGET2:
a6d1ef57
DK
8967 // This can be any reloc type but ususally is R_ARM_GOT_PREL
8968 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
8969
8970 default:
8971 return r_type;
8972 }
8973}
8974
d5b40221
DK
8975// Whether if two EABI versions V1 and V2 are compatible.
8976
8977template<bool big_endian>
8978bool
8979Target_arm<big_endian>::are_eabi_versions_compatible(
8980 elfcpp::Elf_Word v1,
8981 elfcpp::Elf_Word v2)
8982{
8983 // v4 and v5 are the same spec before and after it was released,
8984 // so allow mixing them.
8985 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
8986 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
8987 return true;
8988
8989 return v1 == v2;
8990}
8991
8992// Combine FLAGS from an input object called NAME and the processor-specific
8993// flags in the ELF header of the output. Much of this is adapted from the
8994// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
8995// in bfd/elf32-arm.c.
8996
8997template<bool big_endian>
8998void
8999Target_arm<big_endian>::merge_processor_specific_flags(
9000 const std::string& name,
9001 elfcpp::Elf_Word flags)
9002{
9003 if (this->are_processor_specific_flags_set())
9004 {
9005 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
9006
9007 // Nothing to merge if flags equal to those in output.
9008 if (flags == out_flags)
9009 return;
9010
9011 // Complain about various flag mismatches.
9012 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
9013 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
7296d933
DK
9014 if (!this->are_eabi_versions_compatible(version1, version2)
9015 && parameters->options().warn_mismatch())
d5b40221
DK
9016 gold_error(_("Source object %s has EABI version %d but output has "
9017 "EABI version %d."),
9018 name.c_str(),
9019 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
9020 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
9021 }
9022 else
9023 {
9024 // If the input is the default architecture and had the default
9025 // flags then do not bother setting the flags for the output
9026 // architecture, instead allow future merges to do this. If no
9027 // future merges ever set these flags then they will retain their
9028 // uninitialised values, which surprise surprise, correspond
9029 // to the default values.
9030 if (flags == 0)
9031 return;
9032
9033 // This is the first time, just copy the flags.
9034 // We only copy the EABI version for now.
9035 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
9036 }
9037}
9038
9039// Adjust ELF file header.
9040template<bool big_endian>
9041void
9042Target_arm<big_endian>::do_adjust_elf_header(
9043 unsigned char* view,
9044 int len) const
9045{
9046 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
9047
9048 elfcpp::Ehdr<32, big_endian> ehdr(view);
9049 unsigned char e_ident[elfcpp::EI_NIDENT];
9050 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9051
9052 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
9053 == elfcpp::EF_ARM_EABI_UNKNOWN)
9054 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
9055 else
9056 e_ident[elfcpp::EI_OSABI] = 0;
9057 e_ident[elfcpp::EI_ABIVERSION] = 0;
9058
9059 // FIXME: Do EF_ARM_BE8 adjustment.
9060
9061 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
9062 oehdr.put_e_ident(e_ident);
9063}
9064
9065// do_make_elf_object to override the same function in the base class.
9066// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
9067// to store ARM specific information. Hence we need to have our own
9068// ELF object creation.
9069
9070template<bool big_endian>
9071Object*
9072Target_arm<big_endian>::do_make_elf_object(
9073 const std::string& name,
9074 Input_file* input_file,
2ea97941 9075 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
9076{
9077 int et = ehdr.get_e_type();
9078 if (et == elfcpp::ET_REL)
9079 {
9080 Arm_relobj<big_endian>* obj =
2ea97941 9081 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9082 obj->setup();
9083 return obj;
9084 }
9085 else if (et == elfcpp::ET_DYN)
9086 {
9087 Sized_dynobj<32, big_endian>* obj =
2ea97941 9088 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
9089 obj->setup();
9090 return obj;
9091 }
9092 else
9093 {
9094 gold_error(_("%s: unsupported ELF file type %d"),
9095 name.c_str(), et);
9096 return NULL;
9097 }
9098}
9099
a0351a69
DK
9100// Read the architecture from the Tag_also_compatible_with attribute, if any.
9101// Returns -1 if no architecture could be read.
9102// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
9103
9104template<bool big_endian>
9105int
9106Target_arm<big_endian>::get_secondary_compatible_arch(
9107 const Attributes_section_data* pasd)
9108{
9109 const Object_attribute *known_attributes =
9110 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9111
9112 // Note: the tag and its argument below are uleb128 values, though
9113 // currently-defined values fit in one byte for each.
9114 const std::string& sv =
9115 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
9116 if (sv.size() == 2
9117 && sv.data()[0] == elfcpp::Tag_CPU_arch
9118 && (sv.data()[1] & 128) != 128)
9119 return sv.data()[1];
9120
9121 // This tag is "safely ignorable", so don't complain if it looks funny.
9122 return -1;
9123}
9124
9125// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9126// The tag is removed if ARCH is -1.
9127// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
9128
9129template<bool big_endian>
9130void
9131Target_arm<big_endian>::set_secondary_compatible_arch(
9132 Attributes_section_data* pasd,
9133 int arch)
9134{
9135 Object_attribute *known_attributes =
9136 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
9137
9138 if (arch == -1)
9139 {
9140 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
9141 return;
9142 }
9143
9144 // Note: the tag and its argument below are uleb128 values, though
9145 // currently-defined values fit in one byte for each.
9146 char sv[3];
9147 sv[0] = elfcpp::Tag_CPU_arch;
9148 gold_assert(arch != 0);
9149 sv[1] = arch;
9150 sv[2] = '\0';
9151
9152 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
9153}
9154
9155// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9156// into account.
9157// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
9158
9159template<bool big_endian>
9160int
9161Target_arm<big_endian>::tag_cpu_arch_combine(
9162 const char* name,
9163 int oldtag,
9164 int* secondary_compat_out,
9165 int newtag,
9166 int secondary_compat)
9167{
9168#define T(X) elfcpp::TAG_CPU_ARCH_##X
9169 static const int v6t2[] =
9170 {
9171 T(V6T2), // PRE_V4.
9172 T(V6T2), // V4.
9173 T(V6T2), // V4T.
9174 T(V6T2), // V5T.
9175 T(V6T2), // V5TE.
9176 T(V6T2), // V5TEJ.
9177 T(V6T2), // V6.
9178 T(V7), // V6KZ.
9179 T(V6T2) // V6T2.
9180 };
9181 static const int v6k[] =
9182 {
9183 T(V6K), // PRE_V4.
9184 T(V6K), // V4.
9185 T(V6K), // V4T.
9186 T(V6K), // V5T.
9187 T(V6K), // V5TE.
9188 T(V6K), // V5TEJ.
9189 T(V6K), // V6.
9190 T(V6KZ), // V6KZ.
9191 T(V7), // V6T2.
9192 T(V6K) // V6K.
9193 };
9194 static const int v7[] =
9195 {
9196 T(V7), // PRE_V4.
9197 T(V7), // V4.
9198 T(V7), // V4T.
9199 T(V7), // V5T.
9200 T(V7), // V5TE.
9201 T(V7), // V5TEJ.
9202 T(V7), // V6.
9203 T(V7), // V6KZ.
9204 T(V7), // V6T2.
9205 T(V7), // V6K.
9206 T(V7) // V7.
9207 };
9208 static const int v6_m[] =
9209 {
9210 -1, // PRE_V4.
9211 -1, // V4.
9212 T(V6K), // V4T.
9213 T(V6K), // V5T.
9214 T(V6K), // V5TE.
9215 T(V6K), // V5TEJ.
9216 T(V6K), // V6.
9217 T(V6KZ), // V6KZ.
9218 T(V7), // V6T2.
9219 T(V6K), // V6K.
9220 T(V7), // V7.
9221 T(V6_M) // V6_M.
9222 };
9223 static const int v6s_m[] =
9224 {
9225 -1, // PRE_V4.
9226 -1, // V4.
9227 T(V6K), // V4T.
9228 T(V6K), // V5T.
9229 T(V6K), // V5TE.
9230 T(V6K), // V5TEJ.
9231 T(V6K), // V6.
9232 T(V6KZ), // V6KZ.
9233 T(V7), // V6T2.
9234 T(V6K), // V6K.
9235 T(V7), // V7.
9236 T(V6S_M), // V6_M.
9237 T(V6S_M) // V6S_M.
9238 };
9239 static const int v7e_m[] =
9240 {
9241 -1, // PRE_V4.
9242 -1, // V4.
9243 T(V7E_M), // V4T.
9244 T(V7E_M), // V5T.
9245 T(V7E_M), // V5TE.
9246 T(V7E_M), // V5TEJ.
9247 T(V7E_M), // V6.
9248 T(V7E_M), // V6KZ.
9249 T(V7E_M), // V6T2.
9250 T(V7E_M), // V6K.
9251 T(V7E_M), // V7.
9252 T(V7E_M), // V6_M.
9253 T(V7E_M), // V6S_M.
9254 T(V7E_M) // V7E_M.
9255 };
9256 static const int v4t_plus_v6_m[] =
9257 {
9258 -1, // PRE_V4.
9259 -1, // V4.
9260 T(V4T), // V4T.
9261 T(V5T), // V5T.
9262 T(V5TE), // V5TE.
9263 T(V5TEJ), // V5TEJ.
9264 T(V6), // V6.
9265 T(V6KZ), // V6KZ.
9266 T(V6T2), // V6T2.
9267 T(V6K), // V6K.
9268 T(V7), // V7.
9269 T(V6_M), // V6_M.
9270 T(V6S_M), // V6S_M.
9271 T(V7E_M), // V7E_M.
9272 T(V4T_PLUS_V6_M) // V4T plus V6_M.
9273 };
9274 static const int *comb[] =
9275 {
9276 v6t2,
9277 v6k,
9278 v7,
9279 v6_m,
9280 v6s_m,
9281 v7e_m,
9282 // Pseudo-architecture.
9283 v4t_plus_v6_m
9284 };
9285
9286 // Check we've not got a higher architecture than we know about.
9287
9288 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
9289 {
9290 gold_error(_("%s: unknown CPU architecture"), name);
9291 return -1;
9292 }
9293
9294 // Override old tag if we have a Tag_also_compatible_with on the output.
9295
9296 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9297 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9298 oldtag = T(V4T_PLUS_V6_M);
9299
9300 // And override the new tag if we have a Tag_also_compatible_with on the
9301 // input.
9302
9303 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9304 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9305 newtag = T(V4T_PLUS_V6_M);
9306
9307 // Architectures before V6KZ add features monotonically.
9308 int tagh = std::max(oldtag, newtag);
9309 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
9310 return tagh;
9311
9312 int tagl = std::min(oldtag, newtag);
9313 int result = comb[tagh - T(V6T2)][tagl];
9314
9315 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9316 // as the canonical version.
9317 if (result == T(V4T_PLUS_V6_M))
9318 {
9319 result = T(V4T);
9320 *secondary_compat_out = T(V6_M);
9321 }
9322 else
9323 *secondary_compat_out = -1;
9324
9325 if (result == -1)
9326 {
9327 gold_error(_("%s: conflicting CPU architectures %d/%d"),
9328 name, oldtag, newtag);
9329 return -1;
9330 }
9331
9332 return result;
9333#undef T
9334}
9335
9336// Helper to print AEABI enum tag value.
9337
9338template<bool big_endian>
9339std::string
9340Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
9341{
9342 static const char *aeabi_enum_names[] =
9343 { "", "variable-size", "32-bit", "" };
9344 const size_t aeabi_enum_names_size =
9345 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
9346
9347 if (value < aeabi_enum_names_size)
9348 return std::string(aeabi_enum_names[value]);
9349 else
9350 {
9351 char buffer[100];
9352 sprintf(buffer, "<unknown value %u>", value);
9353 return std::string(buffer);
9354 }
9355}
9356
9357// Return the string value to store in TAG_CPU_name.
9358
9359template<bool big_endian>
9360std::string
9361Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
9362{
9363 static const char *name_table[] = {
9364 // These aren't real CPU names, but we can't guess
9365 // that from the architecture version alone.
9366 "Pre v4",
9367 "ARM v4",
9368 "ARM v4T",
9369 "ARM v5T",
9370 "ARM v5TE",
9371 "ARM v5TEJ",
9372 "ARM v6",
9373 "ARM v6KZ",
9374 "ARM v6T2",
9375 "ARM v6K",
9376 "ARM v7",
9377 "ARM v6-M",
9378 "ARM v6S-M",
9379 "ARM v7E-M"
9380 };
9381 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
9382
9383 if (value < name_table_size)
9384 return std::string(name_table[value]);
9385 else
9386 {
9387 char buffer[100];
9388 sprintf(buffer, "<unknown CPU value %u>", value);
9389 return std::string(buffer);
9390 }
9391}
9392
9393// Merge object attributes from input file called NAME with those of the
9394// output. The input object attributes are in the object pointed by PASD.
9395
9396template<bool big_endian>
9397void
9398Target_arm<big_endian>::merge_object_attributes(
9399 const char* name,
9400 const Attributes_section_data* pasd)
9401{
9402 // Return if there is no attributes section data.
9403 if (pasd == NULL)
9404 return;
9405
9406 // If output has no object attributes, just copy.
9407 if (this->attributes_section_data_ == NULL)
9408 {
9409 this->attributes_section_data_ = new Attributes_section_data(*pasd);
9410 return;
9411 }
9412
9413 const int vendor = Object_attribute::OBJ_ATTR_PROC;
9414 const Object_attribute* in_attr = pasd->known_attributes(vendor);
9415 Object_attribute* out_attr =
9416 this->attributes_section_data_->known_attributes(vendor);
9417
9418 // This needs to happen before Tag_ABI_FP_number_model is merged. */
9419 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
9420 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
9421 {
9422 // Ignore mismatches if the object doesn't use floating point. */
9423 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
9424 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
9425 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
7296d933
DK
9426 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
9427 && parameters->options().warn_mismatch())
a0351a69
DK
9428 gold_error(_("%s uses VFP register arguments, output does not"),
9429 name);
9430 }
9431
9432 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
9433 {
9434 // Merge this attribute with existing attributes.
9435 switch (i)
9436 {
9437 case elfcpp::Tag_CPU_raw_name:
9438 case elfcpp::Tag_CPU_name:
9439 // These are merged after Tag_CPU_arch.
9440 break;
9441
9442 case elfcpp::Tag_ABI_optimization_goals:
9443 case elfcpp::Tag_ABI_FP_optimization_goals:
9444 // Use the first value seen.
9445 break;
9446
9447 case elfcpp::Tag_CPU_arch:
9448 {
9449 unsigned int saved_out_attr = out_attr->int_value();
9450 // Merge Tag_CPU_arch and Tag_also_compatible_with.
9451 int secondary_compat =
9452 this->get_secondary_compatible_arch(pasd);
9453 int secondary_compat_out =
9454 this->get_secondary_compatible_arch(
9455 this->attributes_section_data_);
9456 out_attr[i].set_int_value(
9457 tag_cpu_arch_combine(name, out_attr[i].int_value(),
9458 &secondary_compat_out,
9459 in_attr[i].int_value(),
9460 secondary_compat));
9461 this->set_secondary_compatible_arch(this->attributes_section_data_,
9462 secondary_compat_out);
9463
9464 // Merge Tag_CPU_name and Tag_CPU_raw_name.
9465 if (out_attr[i].int_value() == saved_out_attr)
9466 ; // Leave the names alone.
9467 else if (out_attr[i].int_value() == in_attr[i].int_value())
9468 {
9469 // The output architecture has been changed to match the
9470 // input architecture. Use the input names.
9471 out_attr[elfcpp::Tag_CPU_name].set_string_value(
9472 in_attr[elfcpp::Tag_CPU_name].string_value());
9473 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
9474 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
9475 }
9476 else
9477 {
9478 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
9479 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
9480 }
9481
9482 // If we still don't have a value for Tag_CPU_name,
9483 // make one up now. Tag_CPU_raw_name remains blank.
9484 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
9485 {
9486 const std::string cpu_name =
9487 this->tag_cpu_name_value(out_attr[i].int_value());
9488 // FIXME: If we see an unknown CPU, this will be set
9489 // to "<unknown CPU n>", where n is the attribute value.
9490 // This is different from BFD, which leaves the name alone.
9491 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
9492 }
9493 }
9494 break;
9495
9496 case elfcpp::Tag_ARM_ISA_use:
9497 case elfcpp::Tag_THUMB_ISA_use:
9498 case elfcpp::Tag_WMMX_arch:
9499 case elfcpp::Tag_Advanced_SIMD_arch:
9500 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
9501 case elfcpp::Tag_ABI_FP_rounding:
9502 case elfcpp::Tag_ABI_FP_exceptions:
9503 case elfcpp::Tag_ABI_FP_user_exceptions:
9504 case elfcpp::Tag_ABI_FP_number_model:
9505 case elfcpp::Tag_VFP_HP_extension:
9506 case elfcpp::Tag_CPU_unaligned_access:
9507 case elfcpp::Tag_T2EE_use:
9508 case elfcpp::Tag_Virtualization_use:
9509 case elfcpp::Tag_MPextension_use:
9510 // Use the largest value specified.
9511 if (in_attr[i].int_value() > out_attr[i].int_value())
9512 out_attr[i].set_int_value(in_attr[i].int_value());
9513 break;
9514
9515 case elfcpp::Tag_ABI_align8_preserved:
9516 case elfcpp::Tag_ABI_PCS_RO_data:
9517 // Use the smallest value specified.
9518 if (in_attr[i].int_value() < out_attr[i].int_value())
9519 out_attr[i].set_int_value(in_attr[i].int_value());
9520 break;
9521
9522 case elfcpp::Tag_ABI_align8_needed:
9523 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
9524 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
9525 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
9526 == 0)))
9527 {
9528 // This error message should be enabled once all non-conformant
9529 // binaries in the toolchain have had the attributes set
9530 // properly.
9531 // gold_error(_("output 8-byte data alignment conflicts with %s"),
9532 // name);
9533 }
9534 // Fall through.
9535 case elfcpp::Tag_ABI_FP_denormal:
9536 case elfcpp::Tag_ABI_PCS_GOT_use:
9537 {
9538 // These tags have 0 = don't care, 1 = strong requirement,
9539 // 2 = weak requirement.
9540 static const int order_021[3] = {0, 2, 1};
9541
9542 // Use the "greatest" from the sequence 0, 2, 1, or the largest
9543 // value if greater than 2 (for future-proofing).
9544 if ((in_attr[i].int_value() > 2
9545 && in_attr[i].int_value() > out_attr[i].int_value())
9546 || (in_attr[i].int_value() <= 2
9547 && out_attr[i].int_value() <= 2
9548 && (order_021[in_attr[i].int_value()]
9549 > order_021[out_attr[i].int_value()])))
9550 out_attr[i].set_int_value(in_attr[i].int_value());
9551 }
9552 break;
9553
9554 case elfcpp::Tag_CPU_arch_profile:
9555 if (out_attr[i].int_value() != in_attr[i].int_value())
9556 {
9557 // 0 will merge with anything.
9558 // 'A' and 'S' merge to 'A'.
9559 // 'R' and 'S' merge to 'R'.
9560 // 'M' and 'A|R|S' is an error.
9561 if (out_attr[i].int_value() == 0
9562 || (out_attr[i].int_value() == 'S'
9563 && (in_attr[i].int_value() == 'A'
9564 || in_attr[i].int_value() == 'R')))
9565 out_attr[i].set_int_value(in_attr[i].int_value());
9566 else if (in_attr[i].int_value() == 0
9567 || (in_attr[i].int_value() == 'S'
9568 && (out_attr[i].int_value() == 'A'
9569 || out_attr[i].int_value() == 'R')))
9570 ; // Do nothing.
7296d933 9571 else if (parameters->options().warn_mismatch())
a0351a69
DK
9572 {
9573 gold_error
9574 (_("conflicting architecture profiles %c/%c"),
9575 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
9576 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
9577 }
9578 }
9579 break;
9580 case elfcpp::Tag_VFP_arch:
9581 {
9582 static const struct
9583 {
9584 int ver;
9585 int regs;
9586 } vfp_versions[7] =
9587 {
9588 {0, 0},
9589 {1, 16},
9590 {2, 16},
9591 {3, 32},
9592 {3, 16},
9593 {4, 32},
9594 {4, 16}
9595 };
9596
9597 // Values greater than 6 aren't defined, so just pick the
9598 // biggest.
9599 if (in_attr[i].int_value() > 6
9600 && in_attr[i].int_value() > out_attr[i].int_value())
9601 {
9602 *out_attr = *in_attr;
9603 break;
9604 }
9605 // The output uses the superset of input features
9606 // (ISA version) and registers.
9607 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
9608 vfp_versions[out_attr[i].int_value()].ver);
9609 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
9610 vfp_versions[out_attr[i].int_value()].regs);
9611 // This assumes all possible supersets are also a valid
9612 // options.
9613 int newval;
9614 for (newval = 6; newval > 0; newval--)
9615 {
9616 if (regs == vfp_versions[newval].regs
9617 && ver == vfp_versions[newval].ver)
9618 break;
9619 }
9620 out_attr[i].set_int_value(newval);
9621 }
9622 break;
9623 case elfcpp::Tag_PCS_config:
9624 if (out_attr[i].int_value() == 0)
9625 out_attr[i].set_int_value(in_attr[i].int_value());
7296d933
DK
9626 else if (in_attr[i].int_value() != 0
9627 && out_attr[i].int_value() != 0
9628 && parameters->options().warn_mismatch())
a0351a69
DK
9629 {
9630 // It's sometimes ok to mix different configs, so this is only
9631 // a warning.
9632 gold_warning(_("%s: conflicting platform configuration"), name);
9633 }
9634 break;
9635 case elfcpp::Tag_ABI_PCS_R9_use:
9636 if (in_attr[i].int_value() != out_attr[i].int_value()
9637 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
7296d933
DK
9638 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
9639 && parameters->options().warn_mismatch())
a0351a69
DK
9640 {
9641 gold_error(_("%s: conflicting use of R9"), name);
9642 }
9643 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
9644 out_attr[i].set_int_value(in_attr[i].int_value());
9645 break;
9646 case elfcpp::Tag_ABI_PCS_RW_data:
9647 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
9648 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
9649 != elfcpp::AEABI_R9_SB)
9650 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
7296d933
DK
9651 != elfcpp::AEABI_R9_unused)
9652 && parameters->options().warn_mismatch())
a0351a69
DK
9653 {
9654 gold_error(_("%s: SB relative addressing conflicts with use "
9655 "of R9"),
7296d933 9656 name);
a0351a69
DK
9657 }
9658 // Use the smallest value specified.
9659 if (in_attr[i].int_value() < out_attr[i].int_value())
9660 out_attr[i].set_int_value(in_attr[i].int_value());
9661 break;
9662 case elfcpp::Tag_ABI_PCS_wchar_t:
9663 // FIXME: Make it possible to turn off this warning.
9664 if (out_attr[i].int_value()
9665 && in_attr[i].int_value()
7296d933
DK
9666 && out_attr[i].int_value() != in_attr[i].int_value()
9667 && parameters->options().warn_mismatch())
a0351a69
DK
9668 {
9669 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
9670 "use %u-byte wchar_t; use of wchar_t values "
9671 "across objects may fail"),
9672 name, in_attr[i].int_value(),
9673 out_attr[i].int_value());
9674 }
9675 else if (in_attr[i].int_value() && !out_attr[i].int_value())
9676 out_attr[i].set_int_value(in_attr[i].int_value());
9677 break;
9678 case elfcpp::Tag_ABI_enum_size:
9679 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
9680 {
9681 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
9682 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
9683 {
9684 // The existing object is compatible with anything.
9685 // Use whatever requirements the new object has.
9686 out_attr[i].set_int_value(in_attr[i].int_value());
9687 }
9688 // FIXME: Make it possible to turn off this warning.
9689 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
7296d933
DK
9690 && out_attr[i].int_value() != in_attr[i].int_value()
9691 && parameters->options().warn_mismatch())
a0351a69
DK
9692 {
9693 unsigned int in_value = in_attr[i].int_value();
9694 unsigned int out_value = out_attr[i].int_value();
9695 gold_warning(_("%s uses %s enums yet the output is to use "
9696 "%s enums; use of enum values across objects "
9697 "may fail"),
9698 name,
9699 this->aeabi_enum_name(in_value).c_str(),
9700 this->aeabi_enum_name(out_value).c_str());
9701 }
9702 }
9703 break;
9704 case elfcpp::Tag_ABI_VFP_args:
9705 // Aready done.
9706 break;
9707 case elfcpp::Tag_ABI_WMMX_args:
7296d933
DK
9708 if (in_attr[i].int_value() != out_attr[i].int_value()
9709 && parameters->options().warn_mismatch())
a0351a69
DK
9710 {
9711 gold_error(_("%s uses iWMMXt register arguments, output does "
9712 "not"),
9713 name);
9714 }
9715 break;
9716 case Object_attribute::Tag_compatibility:
9717 // Merged in target-independent code.
9718 break;
9719 case elfcpp::Tag_ABI_HardFP_use:
9720 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
9721 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
9722 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
9723 out_attr[i].set_int_value(3);
9724 else if (in_attr[i].int_value() > out_attr[i].int_value())
9725 out_attr[i].set_int_value(in_attr[i].int_value());
9726 break;
9727 case elfcpp::Tag_ABI_FP_16bit_format:
9728 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
9729 {
7296d933
DK
9730 if (in_attr[i].int_value() != out_attr[i].int_value()
9731 && parameters->options().warn_mismatch())
a0351a69
DK
9732 gold_error(_("fp16 format mismatch between %s and output"),
9733 name);
9734 }
9735 if (in_attr[i].int_value() != 0)
9736 out_attr[i].set_int_value(in_attr[i].int_value());
9737 break;
9738
9739 case elfcpp::Tag_nodefaults:
9740 // This tag is set if it exists, but the value is unused (and is
9741 // typically zero). We don't actually need to do anything here -
9742 // the merge happens automatically when the type flags are merged
9743 // below.
9744 break;
9745 case elfcpp::Tag_also_compatible_with:
9746 // Already done in Tag_CPU_arch.
9747 break;
9748 case elfcpp::Tag_conformance:
9749 // Keep the attribute if it matches. Throw it away otherwise.
9750 // No attribute means no claim to conform.
9751 if (in_attr[i].string_value() != out_attr[i].string_value())
9752 out_attr[i].set_string_value("");
9753 break;
9754
9755 default:
9756 {
9757 const char* err_object = NULL;
9758
9759 // The "known_obj_attributes" table does contain some undefined
9760 // attributes. Ensure that there are unused.
9761 if (out_attr[i].int_value() != 0
9762 || out_attr[i].string_value() != "")
9763 err_object = "output";
9764 else if (in_attr[i].int_value() != 0
9765 || in_attr[i].string_value() != "")
9766 err_object = name;
9767
7296d933
DK
9768 if (err_object != NULL
9769 && parameters->options().warn_mismatch())
a0351a69
DK
9770 {
9771 // Attribute numbers >=64 (mod 128) can be safely ignored.
9772 if ((i & 127) < 64)
9773 gold_error(_("%s: unknown mandatory EABI object attribute "
9774 "%d"),
9775 err_object, i);
9776 else
9777 gold_warning(_("%s: unknown EABI object attribute %d"),
9778 err_object, i);
9779 }
9780
9781 // Only pass on attributes that match in both inputs.
9782 if (!in_attr[i].matches(out_attr[i]))
9783 {
9784 out_attr[i].set_int_value(0);
9785 out_attr[i].set_string_value("");
9786 }
9787 }
9788 }
9789
9790 // If out_attr was copied from in_attr then it won't have a type yet.
9791 if (in_attr[i].type() && !out_attr[i].type())
9792 out_attr[i].set_type(in_attr[i].type());
9793 }
9794
9795 // Merge Tag_compatibility attributes and any common GNU ones.
9796 this->attributes_section_data_->merge(name, pasd);
9797
9798 // Check for any attributes not known on ARM.
9799 typedef Vendor_object_attributes::Other_attributes Other_attributes;
9800 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
9801 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
9802 Other_attributes* out_other_attributes =
9803 this->attributes_section_data_->other_attributes(vendor);
9804 Other_attributes::iterator out_iter = out_other_attributes->begin();
9805
9806 while (in_iter != in_other_attributes->end()
9807 || out_iter != out_other_attributes->end())
9808 {
9809 const char* err_object = NULL;
9810 int err_tag = 0;
9811
9812 // The tags for each list are in numerical order.
9813 // If the tags are equal, then merge.
9814 if (out_iter != out_other_attributes->end()
9815 && (in_iter == in_other_attributes->end()
9816 || in_iter->first > out_iter->first))
9817 {
9818 // This attribute only exists in output. We can't merge, and we
9819 // don't know what the tag means, so delete it.
9820 err_object = "output";
9821 err_tag = out_iter->first;
9822 int saved_tag = out_iter->first;
9823 delete out_iter->second;
9824 out_other_attributes->erase(out_iter);
9825 out_iter = out_other_attributes->upper_bound(saved_tag);
9826 }
9827 else if (in_iter != in_other_attributes->end()
9828 && (out_iter != out_other_attributes->end()
9829 || in_iter->first < out_iter->first))
9830 {
9831 // This attribute only exists in input. We can't merge, and we
9832 // don't know what the tag means, so ignore it.
9833 err_object = name;
9834 err_tag = in_iter->first;
9835 ++in_iter;
9836 }
9837 else // The tags are equal.
9838 {
9839 // As present, all attributes in the list are unknown, and
9840 // therefore can't be merged meaningfully.
9841 err_object = "output";
9842 err_tag = out_iter->first;
9843
9844 // Only pass on attributes that match in both inputs.
9845 if (!in_iter->second->matches(*(out_iter->second)))
9846 {
9847 // No match. Delete the attribute.
9848 int saved_tag = out_iter->first;
9849 delete out_iter->second;
9850 out_other_attributes->erase(out_iter);
9851 out_iter = out_other_attributes->upper_bound(saved_tag);
9852 }
9853 else
9854 {
9855 // Matched. Keep the attribute and move to the next.
9856 ++out_iter;
9857 ++in_iter;
9858 }
9859 }
9860
7296d933 9861 if (err_object && parameters->options().warn_mismatch())
a0351a69
DK
9862 {
9863 // Attribute numbers >=64 (mod 128) can be safely ignored. */
9864 if ((err_tag & 127) < 64)
9865 {
9866 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
9867 err_object, err_tag);
9868 }
9869 else
9870 {
9871 gold_warning(_("%s: unknown EABI object attribute %d"),
9872 err_object, err_tag);
9873 }
9874 }
9875 }
9876}
9877
55da9579
DK
9878// Stub-generation methods for Target_arm.
9879
9880// Make a new Arm_input_section object.
9881
9882template<bool big_endian>
9883Arm_input_section<big_endian>*
9884Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
9885 Relobj* relobj,
9886 unsigned int shndx)
55da9579 9887{
5ac169d4 9888 Section_id sid(relobj, shndx);
55da9579
DK
9889
9890 Arm_input_section<big_endian>* arm_input_section =
2ea97941 9891 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
9892 arm_input_section->init();
9893
9894 // Register new Arm_input_section in map for look-up.
9895 std::pair<typename Arm_input_section_map::iterator, bool> ins =
5ac169d4 9896 this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
55da9579
DK
9897
9898 // Make sure that it we have not created another Arm_input_section
9899 // for this input section already.
9900 gold_assert(ins.second);
9901
9902 return arm_input_section;
9903}
9904
9905// Find the Arm_input_section object corresponding to the SHNDX-th input
9906// section of RELOBJ.
9907
9908template<bool big_endian>
9909Arm_input_section<big_endian>*
9910Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
9911 Relobj* relobj,
9912 unsigned int shndx) const
55da9579 9913{
5ac169d4 9914 Section_id sid(relobj, shndx);
55da9579 9915 typename Arm_input_section_map::const_iterator p =
5ac169d4 9916 this->arm_input_section_map_.find(sid);
55da9579
DK
9917 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
9918}
9919
9920// Make a new stub table.
9921
9922template<bool big_endian>
9923Stub_table<big_endian>*
9924Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
9925{
2ea97941 9926 Stub_table<big_endian>* stub_table =
55da9579 9927 new Stub_table<big_endian>(owner);
2ea97941 9928 this->stub_tables_.push_back(stub_table);
55da9579 9929
2ea97941
ILT
9930 stub_table->set_address(owner->address() + owner->data_size());
9931 stub_table->set_file_offset(owner->offset() + owner->data_size());
9932 stub_table->finalize_data_size();
55da9579 9933
2ea97941 9934 return stub_table;
55da9579
DK
9935}
9936
eb44217c
DK
9937// Scan a relocation for stub generation.
9938
9939template<bool big_endian>
9940void
9941Target_arm<big_endian>::scan_reloc_for_stub(
9942 const Relocate_info<32, big_endian>* relinfo,
9943 unsigned int r_type,
9944 const Sized_symbol<32>* gsym,
9945 unsigned int r_sym,
9946 const Symbol_value<32>* psymval,
9947 elfcpp::Elf_types<32>::Elf_Swxword addend,
9948 Arm_address address)
9949{
2ea97941 9950 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
9951
9952 const Arm_relobj<big_endian>* arm_relobj =
9953 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
9954
9955 bool target_is_thumb;
9956 Symbol_value<32> symval;
9957 if (gsym != NULL)
9958 {
9959 // This is a global symbol. Determine if we use PLT and if the
9960 // final target is THUMB.
2ea97941 9961 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
eb44217c
DK
9962 {
9963 // This uses a PLT, change the symbol value.
9964 symval.set_output_value(this->plt_section()->address()
9965 + gsym->plt_offset());
9966 psymval = &symval;
9967 target_is_thumb = false;
9968 }
9969 else if (gsym->is_undefined())
9970 // There is no need to generate a stub symbol is undefined.
9971 return;
9972 else
9973 {
9974 target_is_thumb =
9975 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
9976 || (gsym->type() == elfcpp::STT_FUNC
9977 && !gsym->is_undefined()
9978 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
9979 }
9980 }
9981 else
9982 {
9983 // This is a local symbol. Determine if the final target is THUMB.
9984 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
9985 }
9986
9987 // Strip LSB if this points to a THUMB target.
5c57f1be
DK
9988 const Arm_reloc_property* reloc_property =
9989 arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
9990 gold_assert(reloc_property != NULL);
eb44217c 9991 if (target_is_thumb
5c57f1be 9992 && reloc_property->uses_thumb_bit()
eb44217c
DK
9993 && ((psymval->value(arm_relobj, 0) & 1) != 0))
9994 {
9995 Arm_address stripped_value =
9996 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
9997 symval.set_output_value(stripped_value);
9998 psymval = &symval;
9999 }
10000
10001 // Get the symbol value.
10002 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
10003
10004 // Owing to pipelining, the PC relative branches below actually skip
10005 // two instructions when the branch offset is 0.
10006 Arm_address destination;
10007 switch (r_type)
10008 {
10009 case elfcpp::R_ARM_CALL:
10010 case elfcpp::R_ARM_JUMP24:
10011 case elfcpp::R_ARM_PLT32:
10012 // ARM branches.
10013 destination = value + addend + 8;
10014 break;
10015 case elfcpp::R_ARM_THM_CALL:
10016 case elfcpp::R_ARM_THM_XPC22:
10017 case elfcpp::R_ARM_THM_JUMP24:
10018 case elfcpp::R_ARM_THM_JUMP19:
10019 // THUMB branches.
10020 destination = value + addend + 4;
10021 break;
10022 default:
10023 gold_unreachable();
10024 }
10025
a120bc7f 10026 Reloc_stub* stub = NULL;
eb44217c
DK
10027 Stub_type stub_type =
10028 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
10029 target_is_thumb);
a120bc7f
DK
10030 if (stub_type != arm_stub_none)
10031 {
10032 // Try looking up an existing stub from a stub table.
10033 Stub_table<big_endian>* stub_table =
10034 arm_relobj->stub_table(relinfo->data_shndx);
10035 gold_assert(stub_table != NULL);
eb44217c 10036
a120bc7f
DK
10037 // Locate stub by destination.
10038 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
eb44217c 10039
a120bc7f
DK
10040 // Create a stub if there is not one already
10041 stub = stub_table->find_reloc_stub(stub_key);
10042 if (stub == NULL)
10043 {
10044 // create a new stub and add it to stub table.
10045 stub = this->stub_factory().make_reloc_stub(stub_type);
10046 stub_table->add_reloc_stub(stub, stub_key);
10047 }
10048
10049 // Record the destination address.
10050 stub->set_destination_address(destination
10051 | (target_is_thumb ? 1 : 0));
eb44217c
DK
10052 }
10053
a120bc7f
DK
10054 // For Cortex-A8, we need to record a relocation at 4K page boundary.
10055 if (this->fix_cortex_a8_
10056 && (r_type == elfcpp::R_ARM_THM_JUMP24
10057 || r_type == elfcpp::R_ARM_THM_JUMP19
10058 || r_type == elfcpp::R_ARM_THM_CALL
10059 || r_type == elfcpp::R_ARM_THM_XPC22)
10060 && (address & 0xfffU) == 0xffeU)
10061 {
10062 // Found a candidate. Note we haven't checked the destination is
10063 // within 4K here: if we do so (and don't create a record) we can't
10064 // tell that a branch should have been relocated when scanning later.
10065 this->cortex_a8_relocs_info_[address] =
10066 new Cortex_a8_reloc(stub, r_type,
10067 destination | (target_is_thumb ? 1 : 0));
10068 }
eb44217c
DK
10069}
10070
10071// This function scans a relocation sections for stub generation.
10072// The template parameter Relocate must be a class type which provides
10073// a single function, relocate(), which implements the machine
10074// specific part of a relocation.
10075
10076// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
10077// SHT_REL or SHT_RELA.
10078
10079// PRELOCS points to the relocation data. RELOC_COUNT is the number
10080// of relocs. OUTPUT_SECTION is the output section.
10081// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
10082// mapped to output offsets.
10083
10084// VIEW is the section data, VIEW_ADDRESS is its memory address, and
10085// VIEW_SIZE is the size. These refer to the input section, unless
10086// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
10087// the output section.
10088
10089template<bool big_endian>
10090template<int sh_type>
10091void inline
10092Target_arm<big_endian>::scan_reloc_section_for_stubs(
10093 const Relocate_info<32, big_endian>* relinfo,
10094 const unsigned char* prelocs,
10095 size_t reloc_count,
10096 Output_section* output_section,
10097 bool needs_special_offset_handling,
10098 const unsigned char* view,
10099 elfcpp::Elf_types<32>::Elf_Addr view_address,
10100 section_size_type)
10101{
10102 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
10103 const int reloc_size =
10104 Reloc_types<sh_type, 32, big_endian>::reloc_size;
10105
10106 Arm_relobj<big_endian>* arm_object =
10107 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
10108 unsigned int local_count = arm_object->local_symbol_count();
10109
10110 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
10111
10112 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10113 {
10114 Reltype reloc(prelocs);
10115
10116 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10117 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
10118 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
10119
10120 r_type = this->get_real_reloc_type(r_type);
10121
10122 // Only a few relocation types need stubs.
10123 if ((r_type != elfcpp::R_ARM_CALL)
10124 && (r_type != elfcpp::R_ARM_JUMP24)
10125 && (r_type != elfcpp::R_ARM_PLT32)
10126 && (r_type != elfcpp::R_ARM_THM_CALL)
10127 && (r_type != elfcpp::R_ARM_THM_XPC22)
10128 && (r_type != elfcpp::R_ARM_THM_JUMP24)
a2162063
ILT
10129 && (r_type != elfcpp::R_ARM_THM_JUMP19)
10130 && (r_type != elfcpp::R_ARM_V4BX))
eb44217c
DK
10131 continue;
10132
2ea97941 10133 section_offset_type offset =
eb44217c
DK
10134 convert_to_section_size_type(reloc.get_r_offset());
10135
10136 if (needs_special_offset_handling)
10137 {
2ea97941
ILT
10138 offset = output_section->output_offset(relinfo->object,
10139 relinfo->data_shndx,
10140 offset);
10141 if (offset == -1)
eb44217c
DK
10142 continue;
10143 }
10144
2fd9ae7a 10145 // Create a v4bx stub if --fix-v4bx-interworking is used.
a2162063
ILT
10146 if (r_type == elfcpp::R_ARM_V4BX)
10147 {
2fd9ae7a
DK
10148 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
10149 {
10150 // Get the BX instruction.
10151 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
10152 const Valtype* wv =
10153 reinterpret_cast<const Valtype*>(view + offset);
10154 elfcpp::Elf_types<32>::Elf_Swxword insn =
10155 elfcpp::Swap<32, big_endian>::readval(wv);
10156 const uint32_t reg = (insn & 0xf);
10157
10158 if (reg < 0xf)
10159 {
10160 // Try looking up an existing stub from a stub table.
10161 Stub_table<big_endian>* stub_table =
10162 arm_object->stub_table(relinfo->data_shndx);
10163 gold_assert(stub_table != NULL);
10164
10165 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
10166 {
10167 // create a new stub and add it to stub table.
10168 Arm_v4bx_stub* stub =
10169 this->stub_factory().make_arm_v4bx_stub(reg);
10170 gold_assert(stub != NULL);
10171 stub_table->add_arm_v4bx_stub(stub);
10172 }
10173 }
10174 }
a2162063
ILT
10175 continue;
10176 }
10177
eb44217c
DK
10178 // Get the addend.
10179 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
10180 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 10181 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
10182
10183 const Sized_symbol<32>* sym;
10184
10185 Symbol_value<32> symval;
10186 const Symbol_value<32> *psymval;
10187 if (r_sym < local_count)
10188 {
10189 sym = NULL;
10190 psymval = arm_object->local_symbol(r_sym);
10191
10192 // If the local symbol belongs to a section we are discarding,
10193 // and that section is a debug section, try to find the
10194 // corresponding kept section and map this symbol to its
10195 // counterpart in the kept section. The symbol must not
10196 // correspond to a section we are folding.
10197 bool is_ordinary;
2ea97941 10198 unsigned int shndx = psymval->input_shndx(&is_ordinary);
eb44217c 10199 if (is_ordinary
2ea97941
ILT
10200 && shndx != elfcpp::SHN_UNDEF
10201 && !arm_object->is_section_included(shndx)
10202 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
eb44217c
DK
10203 {
10204 if (comdat_behavior == CB_UNDETERMINED)
10205 {
10206 std::string name =
10207 arm_object->section_name(relinfo->data_shndx);
10208 comdat_behavior = get_comdat_behavior(name.c_str());
10209 }
10210 if (comdat_behavior == CB_PRETEND)
10211 {
10212 bool found;
10213 typename elfcpp::Elf_types<32>::Elf_Addr value =
2ea97941 10214 arm_object->map_to_kept_section(shndx, &found);
eb44217c
DK
10215 if (found)
10216 symval.set_output_value(value + psymval->input_value());
10217 else
10218 symval.set_output_value(0);
10219 }
10220 else
10221 {
10222 symval.set_output_value(0);
10223 }
10224 symval.set_no_output_symtab_entry();
10225 psymval = &symval;
10226 }
10227 }
10228 else
10229 {
10230 const Symbol* gsym = arm_object->global_symbol(r_sym);
10231 gold_assert(gsym != NULL);
10232 if (gsym->is_forwarder())
10233 gsym = relinfo->symtab->resolve_forwards(gsym);
10234
10235 sym = static_cast<const Sized_symbol<32>*>(gsym);
10236 if (sym->has_symtab_index())
10237 symval.set_output_symtab_index(sym->symtab_index());
10238 else
10239 symval.set_no_output_symtab_entry();
10240
10241 // We need to compute the would-be final value of this global
10242 // symbol.
10243 const Symbol_table* symtab = relinfo->symtab;
10244 const Sized_symbol<32>* sized_symbol =
10245 symtab->get_sized_symbol<32>(gsym);
10246 Symbol_table::Compute_final_value_status status;
10247 Arm_address value =
10248 symtab->compute_final_value<32>(sized_symbol, &status);
10249
10250 // Skip this if the symbol has not output section.
10251 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
10252 continue;
10253
10254 symval.set_output_value(value);
10255 psymval = &symval;
10256 }
10257
10258 // If symbol is a section symbol, we don't know the actual type of
10259 // destination. Give up.
10260 if (psymval->is_section_symbol())
10261 continue;
10262
10263 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 10264 addend, view_address + offset);
eb44217c
DK
10265 }
10266}
10267
10268// Scan an input section for stub generation.
10269
10270template<bool big_endian>
10271void
10272Target_arm<big_endian>::scan_section_for_stubs(
10273 const Relocate_info<32, big_endian>* relinfo,
10274 unsigned int sh_type,
10275 const unsigned char* prelocs,
10276 size_t reloc_count,
10277 Output_section* output_section,
10278 bool needs_special_offset_handling,
10279 const unsigned char* view,
10280 Arm_address view_address,
10281 section_size_type view_size)
10282{
10283 if (sh_type == elfcpp::SHT_REL)
10284 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
10285 relinfo,
10286 prelocs,
10287 reloc_count,
10288 output_section,
10289 needs_special_offset_handling,
10290 view,
10291 view_address,
10292 view_size);
10293 else if (sh_type == elfcpp::SHT_RELA)
10294 // We do not support RELA type relocations yet. This is provided for
10295 // completeness.
10296 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
10297 relinfo,
10298 prelocs,
10299 reloc_count,
10300 output_section,
10301 needs_special_offset_handling,
10302 view,
10303 view_address,
10304 view_size);
10305 else
10306 gold_unreachable();
10307}
10308
10309// Group input sections for stub generation.
10310//
10311// We goup input sections in an output sections so that the total size,
10312// including any padding space due to alignment is smaller than GROUP_SIZE
10313// unless the only input section in group is bigger than GROUP_SIZE already.
10314// Then an ARM stub table is created to follow the last input section
10315// in group. For each group an ARM stub table is created an is placed
10316// after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
10317// extend the group after the stub table.
10318
10319template<bool big_endian>
10320void
10321Target_arm<big_endian>::group_sections(
2ea97941 10322 Layout* layout,
eb44217c
DK
10323 section_size_type group_size,
10324 bool stubs_always_after_branch)
10325{
10326 // Group input sections and insert stub table
10327 Layout::Section_list section_list;
2ea97941 10328 layout->get_allocated_sections(&section_list);
eb44217c
DK
10329 for (Layout::Section_list::const_iterator p = section_list.begin();
10330 p != section_list.end();
10331 ++p)
10332 {
10333 Arm_output_section<big_endian>* output_section =
10334 Arm_output_section<big_endian>::as_arm_output_section(*p);
10335 output_section->group_sections(group_size, stubs_always_after_branch,
10336 this);
10337 }
10338}
10339
10340// Relaxation hook. This is where we do stub generation.
10341
10342template<bool big_endian>
10343bool
10344Target_arm<big_endian>::do_relax(
10345 int pass,
10346 const Input_objects* input_objects,
10347 Symbol_table* symtab,
2ea97941 10348 Layout* layout)
eb44217c
DK
10349{
10350 // No need to generate stubs if this is a relocatable link.
10351 gold_assert(!parameters->options().relocatable());
10352
10353 // If this is the first pass, we need to group input sections into
10354 // stub groups.
2b328d4e 10355 bool done_exidx_fixup = false;
eb44217c
DK
10356 if (pass == 1)
10357 {
10358 // Determine the stub group size. The group size is the absolute
10359 // value of the parameter --stub-group-size. If --stub-group-size
10360 // is passed a negative value, we restict stubs to be always after
10361 // the stubbed branches.
10362 int32_t stub_group_size_param =
10363 parameters->options().stub_group_size();
10364 bool stubs_always_after_branch = stub_group_size_param < 0;
10365 section_size_type stub_group_size = abs(stub_group_size_param);
10366
44272192
DK
10367 // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
10368 // page as the first half of a 32-bit branch straddling two 4K pages.
10369 // This is a crude way of enforcing that.
10370 if (this->fix_cortex_a8_)
10371 stubs_always_after_branch = true;
10372
eb44217c
DK
10373 if (stub_group_size == 1)
10374 {
10375 // Default value.
10376 // Thumb branch range is +-4MB has to be used as the default
10377 // maximum size (a given section can contain both ARM and Thumb
a2c7281b
DK
10378 // code, so the worst case has to be taken into account). If we are
10379 // fixing cortex-a8 errata, the branch range has to be even smaller,
10380 // since wide conditional branch has a range of +-1MB only.
eb44217c
DK
10381 //
10382 // This value is 24K less than that, which allows for 2025
10383 // 12-byte stubs. If we exceed that, then we will fail to link.
10384 // The user will have to relink with an explicit group size
10385 // option.
a2c7281b
DK
10386 if (this->fix_cortex_a8_)
10387 stub_group_size = 1024276;
10388 else
10389 stub_group_size = 4170000;
eb44217c
DK
10390 }
10391
2ea97941 10392 group_sections(layout, stub_group_size, stubs_always_after_branch);
2b328d4e
DK
10393
10394 // Also fix .ARM.exidx section coverage.
10395 Output_section* os = layout->find_output_section(".ARM.exidx");
10396 if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
10397 {
10398 Arm_output_section<big_endian>* exidx_output_section =
10399 Arm_output_section<big_endian>::as_arm_output_section(os);
10400 this->fix_exidx_coverage(layout, exidx_output_section, symtab);
10401 done_exidx_fixup = true;
10402 }
eb44217c
DK
10403 }
10404
44272192
DK
10405 // The Cortex-A8 stubs are sensitive to layout of code sections. At the
10406 // beginning of each relaxation pass, just blow away all the stubs.
10407 // Alternatively, we could selectively remove only the stubs and reloc
10408 // information for code sections that have moved since the last pass.
10409 // That would require more book-keeping.
eb44217c 10410 typedef typename Stub_table_list::iterator Stub_table_iterator;
a120bc7f
DK
10411 if (this->fix_cortex_a8_)
10412 {
10413 // Clear all Cortex-A8 reloc information.
10414 for (typename Cortex_a8_relocs_info::const_iterator p =
10415 this->cortex_a8_relocs_info_.begin();
10416 p != this->cortex_a8_relocs_info_.end();
10417 ++p)
10418 delete p->second;
10419 this->cortex_a8_relocs_info_.clear();
44272192
DK
10420
10421 // Remove all Cortex-A8 stubs.
10422 for (Stub_table_iterator sp = this->stub_tables_.begin();
10423 sp != this->stub_tables_.end();
10424 ++sp)
10425 (*sp)->remove_all_cortex_a8_stubs();
a120bc7f
DK
10426 }
10427
44272192 10428 // Scan relocs for relocation stubs
eb44217c
DK
10429 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10430 op != input_objects->relobj_end();
10431 ++op)
10432 {
10433 Arm_relobj<big_endian>* arm_relobj =
10434 Arm_relobj<big_endian>::as_arm_relobj(*op);
2ea97941 10435 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
10436 }
10437
2fb7225c
DK
10438 // Check all stub tables to see if any of them have their data sizes
10439 // or addresses alignments changed. These are the only things that
10440 // matter.
eb44217c 10441 bool any_stub_table_changed = false;
8923b24c 10442 Unordered_set<const Output_section*> sections_needing_adjustment;
eb44217c
DK
10443 for (Stub_table_iterator sp = this->stub_tables_.begin();
10444 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10445 ++sp)
10446 {
2fb7225c 10447 if ((*sp)->update_data_size_and_addralign())
8923b24c
DK
10448 {
10449 // Update data size of stub table owner.
10450 Arm_input_section<big_endian>* owner = (*sp)->owner();
10451 uint64_t address = owner->address();
10452 off_t offset = owner->offset();
10453 owner->reset_address_and_file_offset();
10454 owner->set_address_and_file_offset(address, offset);
10455
10456 sections_needing_adjustment.insert(owner->output_section());
10457 any_stub_table_changed = true;
10458 }
10459 }
10460
10461 // Output_section_data::output_section() returns a const pointer but we
10462 // need to update output sections, so we record all output sections needing
10463 // update above and scan the sections here to find out what sections need
10464 // to be updated.
10465 for(Layout::Section_list::const_iterator p = layout->section_list().begin();
10466 p != layout->section_list().end();
10467 ++p)
10468 {
10469 if (sections_needing_adjustment.find(*p)
10470 != sections_needing_adjustment.end())
10471 (*p)->set_section_offsets_need_adjustment();
eb44217c
DK
10472 }
10473
2b328d4e
DK
10474 // Stop relaxation if no EXIDX fix-up and no stub table change.
10475 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
10476
2fb7225c 10477 // Finalize the stubs in the last relaxation pass.
2b328d4e 10478 if (!continue_relaxation)
e7eca48c
DK
10479 {
10480 for (Stub_table_iterator sp = this->stub_tables_.begin();
10481 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
10482 ++sp)
10483 (*sp)->finalize_stubs();
10484
10485 // Update output local symbol counts of objects if necessary.
10486 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
10487 op != input_objects->relobj_end();
10488 ++op)
10489 {
10490 Arm_relobj<big_endian>* arm_relobj =
10491 Arm_relobj<big_endian>::as_arm_relobj(*op);
10492
10493 // Update output local symbol counts. We need to discard local
10494 // symbols defined in parts of input sections that are discarded by
10495 // relaxation.
10496 if (arm_relobj->output_local_symbol_count_needs_update())
10497 arm_relobj->update_output_local_symbol_count();
10498 }
10499 }
2fb7225c 10500
2b328d4e 10501 return continue_relaxation;
eb44217c
DK
10502}
10503
43d12afe
DK
10504// Relocate a stub.
10505
10506template<bool big_endian>
10507void
10508Target_arm<big_endian>::relocate_stub(
2fb7225c 10509 Stub* stub,
43d12afe
DK
10510 const Relocate_info<32, big_endian>* relinfo,
10511 Output_section* output_section,
10512 unsigned char* view,
10513 Arm_address address,
10514 section_size_type view_size)
10515{
10516 Relocate relocate;
2ea97941
ILT
10517 const Stub_template* stub_template = stub->stub_template();
10518 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 10519 {
2ea97941
ILT
10520 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
10521 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
10522
10523 unsigned int r_type = insn->r_type();
2ea97941 10524 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
10525 section_size_type reloc_size = insn->size();
10526 gold_assert(reloc_offset + reloc_size <= view_size);
10527
10528 // This is the address of the stub destination.
41263c05 10529 Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
43d12afe
DK
10530 Symbol_value<32> symval;
10531 symval.set_output_value(target);
10532
10533 // Synthesize a fake reloc just in case. We don't have a symbol so
10534 // we use 0.
10535 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
10536 memset(reloc_buffer, 0, sizeof(reloc_buffer));
10537 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
10538 reloc_write.put_r_offset(reloc_offset);
10539 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
10540 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
10541
10542 relocate.relocate(relinfo, this, output_section,
10543 this->fake_relnum_for_stubs, rel, r_type,
10544 NULL, &symval, view + reloc_offset,
10545 address + reloc_offset, reloc_size);
10546 }
10547}
10548
a0351a69
DK
10549// Determine whether an object attribute tag takes an integer, a
10550// string or both.
10551
10552template<bool big_endian>
10553int
10554Target_arm<big_endian>::do_attribute_arg_type(int tag) const
10555{
10556 if (tag == Object_attribute::Tag_compatibility)
10557 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10558 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
10559 else if (tag == elfcpp::Tag_nodefaults)
10560 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
10561 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
10562 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
10563 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
10564 else if (tag < 32)
10565 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
10566 else
10567 return ((tag & 1) != 0
10568 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
10569 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
10570}
10571
10572// Reorder attributes.
10573//
10574// The ABI defines that Tag_conformance should be emitted first, and that
10575// Tag_nodefaults should be second (if either is defined). This sets those
10576// two positions, and bumps up the position of all the remaining tags to
10577// compensate.
10578
10579template<bool big_endian>
10580int
10581Target_arm<big_endian>::do_attributes_order(int num) const
10582{
10583 // Reorder the known object attributes in output. We want to move
10584 // Tag_conformance to position 4 and Tag_conformance to position 5
10585 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
10586 if (num == 4)
10587 return elfcpp::Tag_conformance;
10588 if (num == 5)
10589 return elfcpp::Tag_nodefaults;
10590 if ((num - 2) < elfcpp::Tag_nodefaults)
10591 return num - 2;
10592 if ((num - 1) < elfcpp::Tag_conformance)
10593 return num - 1;
10594 return num;
10595}
4a657b0d 10596
44272192
DK
10597// Scan a span of THUMB code for Cortex-A8 erratum.
10598
10599template<bool big_endian>
10600void
10601Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
10602 Arm_relobj<big_endian>* arm_relobj,
10603 unsigned int shndx,
10604 section_size_type span_start,
10605 section_size_type span_end,
10606 const unsigned char* view,
10607 Arm_address address)
10608{
10609 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
10610 //
10611 // The opcode is BLX.W, BL.W, B.W, Bcc.W
10612 // The branch target is in the same 4KB region as the
10613 // first half of the branch.
10614 // The instruction before the branch is a 32-bit
10615 // length non-branch instruction.
10616 section_size_type i = span_start;
10617 bool last_was_32bit = false;
10618 bool last_was_branch = false;
10619 while (i < span_end)
10620 {
10621 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10622 const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
10623 uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
10624 bool is_blx = false, is_b = false;
10625 bool is_bl = false, is_bcc = false;
10626
10627 bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
10628 if (insn_32bit)
10629 {
10630 // Load the rest of the insn (in manual-friendly order).
10631 insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
10632
10633 // Encoding T4: B<c>.W.
10634 is_b = (insn & 0xf800d000U) == 0xf0009000U;
10635 // Encoding T1: BL<c>.W.
10636 is_bl = (insn & 0xf800d000U) == 0xf000d000U;
10637 // Encoding T2: BLX<c>.W.
10638 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
10639 // Encoding T3: B<c>.W (not permitted in IT block).
10640 is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
10641 && (insn & 0x07f00000U) != 0x03800000U);
10642 }
10643
10644 bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
10645
10646 // If this instruction is a 32-bit THUMB branch that crosses a 4K
10647 // page boundary and it follows 32-bit non-branch instruction,
10648 // we need to work around.
10649 if (is_32bit_branch
10650 && ((address + i) & 0xfffU) == 0xffeU
10651 && last_was_32bit
10652 && !last_was_branch)
10653 {
10654 // Check to see if there is a relocation stub for this branch.
10655 bool force_target_arm = false;
10656 bool force_target_thumb = false;
10657 const Cortex_a8_reloc* cortex_a8_reloc = NULL;
10658 Cortex_a8_relocs_info::const_iterator p =
10659 this->cortex_a8_relocs_info_.find(address + i);
10660
10661 if (p != this->cortex_a8_relocs_info_.end())
10662 {
10663 cortex_a8_reloc = p->second;
10664 bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
10665
10666 if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10667 && !target_is_thumb)
10668 force_target_arm = true;
10669 else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
10670 && target_is_thumb)
10671 force_target_thumb = true;
10672 }
10673
10674 off_t offset;
10675 Stub_type stub_type = arm_stub_none;
10676
10677 // Check if we have an offending branch instruction.
10678 uint16_t upper_insn = (insn >> 16) & 0xffffU;
10679 uint16_t lower_insn = insn & 0xffffU;
10680 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10681
10682 if (cortex_a8_reloc != NULL
10683 && cortex_a8_reloc->reloc_stub() != NULL)
10684 // We've already made a stub for this instruction, e.g.
10685 // it's a long branch or a Thumb->ARM stub. Assume that
10686 // stub will suffice to work around the A8 erratum (see
10687 // setting of always_after_branch above).
10688 ;
10689 else if (is_bcc)
10690 {
10691 offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
10692 lower_insn);
10693 stub_type = arm_stub_a8_veneer_b_cond;
10694 }
10695 else if (is_b || is_bl || is_blx)
10696 {
10697 offset = RelocFuncs::thumb32_branch_offset(upper_insn,
10698 lower_insn);
10699 if (is_blx)
10700 offset &= ~3;
10701
10702 stub_type = (is_blx
10703 ? arm_stub_a8_veneer_blx
10704 : (is_bl
10705 ? arm_stub_a8_veneer_bl
10706 : arm_stub_a8_veneer_b));
10707 }
10708
10709 if (stub_type != arm_stub_none)
10710 {
10711 Arm_address pc_for_insn = address + i + 4;
10712
10713 // The original instruction is a BL, but the target is
10714 // an ARM instruction. If we were not making a stub,
10715 // the BL would have been converted to a BLX. Use the
10716 // BLX stub instead in that case.
10717 if (this->may_use_blx() && force_target_arm
10718 && stub_type == arm_stub_a8_veneer_bl)
10719 {
10720 stub_type = arm_stub_a8_veneer_blx;
10721 is_blx = true;
10722 is_bl = false;
10723 }
10724 // Conversely, if the original instruction was
10725 // BLX but the target is Thumb mode, use the BL stub.
10726 else if (force_target_thumb
10727 && stub_type == arm_stub_a8_veneer_blx)
10728 {
10729 stub_type = arm_stub_a8_veneer_bl;
10730 is_blx = false;
10731 is_bl = true;
10732 }
10733
10734 if (is_blx)
10735 pc_for_insn &= ~3;
10736
10737 // If we found a relocation, use the proper destination,
10738 // not the offset in the (unrelocated) instruction.
10739 // Note this is always done if we switched the stub type above.
10740 if (cortex_a8_reloc != NULL)
10741 offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
10742
10743 Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
10744
10745 // Add a new stub if destination address in in the same page.
10746 if (((address + i) & ~0xfffU) == (target & ~0xfffU))
10747 {
10748 Cortex_a8_stub* stub =
10749 this->stub_factory_.make_cortex_a8_stub(stub_type,
10750 arm_relobj, shndx,
10751 address + i,
10752 target, insn);
10753 Stub_table<big_endian>* stub_table =
10754 arm_relobj->stub_table(shndx);
10755 gold_assert(stub_table != NULL);
10756 stub_table->add_cortex_a8_stub(address + i, stub);
10757 }
10758 }
10759 }
10760
10761 i += insn_32bit ? 4 : 2;
10762 last_was_32bit = insn_32bit;
10763 last_was_branch = is_32bit_branch;
10764 }
10765}
10766
41263c05
DK
10767// Apply the Cortex-A8 workaround.
10768
10769template<bool big_endian>
10770void
10771Target_arm<big_endian>::apply_cortex_a8_workaround(
10772 const Cortex_a8_stub* stub,
10773 Arm_address stub_address,
10774 unsigned char* insn_view,
10775 Arm_address insn_address)
10776{
10777 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
10778 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
10779 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
10780 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
10781 off_t branch_offset = stub_address - (insn_address + 4);
10782
10783 typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
10784 switch (stub->stub_template()->type())
10785 {
10786 case arm_stub_a8_veneer_b_cond:
10787 gold_assert(!utils::has_overflow<21>(branch_offset));
10788 upper_insn = RelocFuncs::thumb32_cond_branch_upper(upper_insn,
10789 branch_offset);
10790 lower_insn = RelocFuncs::thumb32_cond_branch_lower(lower_insn,
10791 branch_offset);
10792 break;
10793
10794 case arm_stub_a8_veneer_b:
10795 case arm_stub_a8_veneer_bl:
10796 case arm_stub_a8_veneer_blx:
10797 if ((lower_insn & 0x5000U) == 0x4000U)
10798 // For a BLX instruction, make sure that the relocation is
10799 // rounded up to a word boundary. This follows the semantics of
10800 // the instruction which specifies that bit 1 of the target
10801 // address will come from bit 1 of the base address.
10802 branch_offset = (branch_offset + 2) & ~3;
10803
10804 // Put BRANCH_OFFSET back into the insn.
10805 gold_assert(!utils::has_overflow<25>(branch_offset));
10806 upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
10807 lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
10808 break;
10809
10810 default:
10811 gold_unreachable();
10812 }
10813
10814 // Put the relocated value back in the object file:
10815 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
10816 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
10817}
10818
4a657b0d
DK
10819template<bool big_endian>
10820class Target_selector_arm : public Target_selector
10821{
10822 public:
10823 Target_selector_arm()
10824 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
10825 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
10826 { }
10827
10828 Target*
10829 do_instantiate_target()
10830 { return new Target_arm<big_endian>(); }
10831};
10832
2b328d4e
DK
10833// Fix .ARM.exidx section coverage.
10834
10835template<bool big_endian>
10836void
10837Target_arm<big_endian>::fix_exidx_coverage(
10838 Layout* layout,
10839 Arm_output_section<big_endian>* exidx_section,
10840 Symbol_table* symtab)
10841{
10842 // We need to look at all the input sections in output in ascending
10843 // order of of output address. We do that by building a sorted list
10844 // of output sections by addresses. Then we looks at the output sections
10845 // in order. The input sections in an output section are already sorted
10846 // by addresses within the output section.
10847
10848 typedef std::set<Output_section*, output_section_address_less_than>
10849 Sorted_output_section_list;
10850 Sorted_output_section_list sorted_output_sections;
10851 Layout::Section_list section_list;
10852 layout->get_allocated_sections(&section_list);
10853 for (Layout::Section_list::const_iterator p = section_list.begin();
10854 p != section_list.end();
10855 ++p)
10856 {
10857 // We only care about output sections that contain executable code.
10858 if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
10859 sorted_output_sections.insert(*p);
10860 }
10861
10862 // Go over the output sections in ascending order of output addresses.
10863 typedef typename Arm_output_section<big_endian>::Text_section_list
10864 Text_section_list;
10865 Text_section_list sorted_text_sections;
10866 for(typename Sorted_output_section_list::iterator p =
10867 sorted_output_sections.begin();
10868 p != sorted_output_sections.end();
10869 ++p)
10870 {
10871 Arm_output_section<big_endian>* arm_output_section =
10872 Arm_output_section<big_endian>::as_arm_output_section(*p);
10873 arm_output_section->append_text_sections_to_list(&sorted_text_sections);
10874 }
10875
4a54abbb 10876 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab);
2b328d4e
DK
10877}
10878
4a657b0d
DK
10879Target_selector_arm<false> target_selector_arm;
10880Target_selector_arm<true> target_selector_armbe;
10881
10882} // End anonymous namespace.
This page took 0.680449 seconds and 4 git commands to generate.