* object.cc (Relobj::is_section_name_included): Fix formatting.
[deliverable/binutils-gdb.git] / gold / arm.cc
CommitLineData
4a657b0d
DK
1// arm.cc -- arm target support for gold.
2
3// Copyright 2009 Free Software Foundation, Inc.
4// Written by Doug Kwan <dougkwan@google.com> based on the i386 code
5// by Ian Lance Taylor <iant@google.com>.
b569affa
DK
6// This file also contains borrowed and adapted code from
7// bfd/elf32-arm.c.
4a657b0d
DK
8
9// This file is part of gold.
10
11// This program is free software; you can redistribute it and/or modify
12// it under the terms of the GNU General Public License as published by
13// the Free Software Foundation; either version 3 of the License, or
14// (at your option) any later version.
15
16// This program is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU General Public License for more details.
20
21// You should have received a copy of the GNU General Public License
22// along with this program; if not, write to the Free Software
23// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24// MA 02110-1301, USA.
25
26#include "gold.h"
27
28#include <cstring>
29#include <limits>
30#include <cstdio>
31#include <string>
56ee5e00 32#include <algorithm>
4a657b0d
DK
33
34#include "elfcpp.h"
35#include "parameters.h"
36#include "reloc.h"
37#include "arm.h"
38#include "object.h"
39#include "symtab.h"
40#include "layout.h"
41#include "output.h"
42#include "copy-relocs.h"
43#include "target.h"
44#include "target-reloc.h"
45#include "target-select.h"
46#include "tls.h"
47#include "defstd.h"
f345227a 48#include "gc.h"
a0351a69 49#include "attributes.h"
4a657b0d
DK
50
51namespace
52{
53
54using namespace gold;
55
94cdfcff
DK
56template<bool big_endian>
57class Output_data_plt_arm;
58
56ee5e00
DK
59template<bool big_endian>
60class Stub_table;
61
62template<bool big_endian>
63class Arm_input_section;
64
07f508a2
DK
65template<bool big_endian>
66class Arm_output_section;
67
68template<bool big_endian>
69class Arm_relobj;
70
b569affa
DK
71template<bool big_endian>
72class Target_arm;
73
74// For convenience.
75typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;
76
77// Maximum branch offsets for ARM, THUMB and THUMB2.
78const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
79const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
80const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
81const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
82const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
83const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
84
4a657b0d
DK
85// The arm target class.
86//
87// This is a very simple port of gold for ARM-EABI. It is intended for
88// supporting Android only for the time being. Only these relocation types
89// are supported.
90//
91// R_ARM_NONE
92// R_ARM_ABS32
be8fcb75
ILT
93// R_ARM_ABS32_NOI
94// R_ARM_ABS16
95// R_ARM_ABS12
96// R_ARM_ABS8
97// R_ARM_THM_ABS5
98// R_ARM_BASE_ABS
4a657b0d
DK
99// R_ARM_REL32
100// R_ARM_THM_CALL
101// R_ARM_COPY
102// R_ARM_GLOB_DAT
103// R_ARM_BASE_PREL
104// R_ARM_JUMP_SLOT
105// R_ARM_RELATIVE
106// R_ARM_GOTOFF32
107// R_ARM_GOT_BREL
7f5309a5 108// R_ARM_GOT_PREL
4a657b0d
DK
109// R_ARM_PLT32
110// R_ARM_CALL
111// R_ARM_JUMP24
112// R_ARM_TARGET1
113// R_ARM_PREL31
7f5309a5 114// R_ARM_ABS8
fd3c5f0b
ILT
115// R_ARM_MOVW_ABS_NC
116// R_ARM_MOVT_ABS
117// R_ARM_THM_MOVW_ABS_NC
c2a122b6
ILT
118// R_ARM_THM_MOVT_ABS
119// R_ARM_MOVW_PREL_NC
120// R_ARM_MOVT_PREL
121// R_ARM_THM_MOVW_PREL_NC
122// R_ARM_THM_MOVT_PREL
4a657b0d 123//
4a657b0d 124// TODOs:
4a657b0d 125// - Support more relocation types as needed.
94cdfcff
DK
126// - Make PLTs more flexible for different architecture features like
127// Thumb-2 and BE8.
11af873f 128// There are probably a lot more.
4a657b0d 129
b569affa
DK
130// Instruction template class. This class is similar to the insn_sequence
131// struct in bfd/elf32-arm.c.
132
133class Insn_template
134{
135 public:
136 // Types of instruction templates.
137 enum Type
138 {
139 THUMB16_TYPE = 1,
140 THUMB32_TYPE,
141 ARM_TYPE,
142 DATA_TYPE
143 };
144
145 // Factory methods to create instrunction templates in different formats.
146
147 static const Insn_template
148 thumb16_insn(uint32_t data)
149 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }
150
151 // A bit of a hack. A Thumb conditional branch, in which the proper
152 // condition is inserted when we build the stub.
153 static const Insn_template
154 thumb16_bcond_insn(uint32_t data)
155 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 1); }
156
157 static const Insn_template
158 thumb32_insn(uint32_t data)
159 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }
160
161 static const Insn_template
162 thumb32_b_insn(uint32_t data, int reloc_addend)
163 {
164 return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
165 reloc_addend);
166 }
167
168 static const Insn_template
169 arm_insn(uint32_t data)
170 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }
171
172 static const Insn_template
173 arm_rel_insn(unsigned data, int reloc_addend)
174 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }
175
176 static const Insn_template
177 data_word(unsigned data, unsigned int r_type, int reloc_addend)
178 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }
179
180 // Accessors. This class is used for read-only objects so no modifiers
181 // are provided.
182
183 uint32_t
184 data() const
185 { return this->data_; }
186
187 // Return the instruction sequence type of this.
188 Type
189 type() const
190 { return this->type_; }
191
192 // Return the ARM relocation type of this.
193 unsigned int
194 r_type() const
195 { return this->r_type_; }
196
197 int32_t
198 reloc_addend() const
199 { return this->reloc_addend_; }
200
201 // Return size of instrunction template in bytes.
202 size_t
203 size() const;
204
205 // Return byte-alignment of instrunction template.
206 unsigned
207 alignment() const;
208
209 private:
210 // We make the constructor private to ensure that only the factory
211 // methods are used.
212 inline
2ea97941
ILT
213 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
214 : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
b569affa
DK
215 { }
216
217 // Instruction specific data. This is used to store information like
218 // some of the instruction bits.
219 uint32_t data_;
220 // Instruction template type.
221 Type type_;
222 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
223 unsigned int r_type_;
224 // Relocation addend.
225 int32_t reloc_addend_;
226};
227
228// Macro for generating code to stub types. One entry per long/short
229// branch stub
230
231#define DEF_STUBS \
232 DEF_STUB(long_branch_any_any) \
233 DEF_STUB(long_branch_v4t_arm_thumb) \
234 DEF_STUB(long_branch_thumb_only) \
235 DEF_STUB(long_branch_v4t_thumb_thumb) \
236 DEF_STUB(long_branch_v4t_thumb_arm) \
237 DEF_STUB(short_branch_v4t_thumb_arm) \
238 DEF_STUB(long_branch_any_arm_pic) \
239 DEF_STUB(long_branch_any_thumb_pic) \
240 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
241 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
242 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
243 DEF_STUB(long_branch_thumb_only_pic) \
244 DEF_STUB(a8_veneer_b_cond) \
245 DEF_STUB(a8_veneer_b) \
246 DEF_STUB(a8_veneer_bl) \
247 DEF_STUB(a8_veneer_blx)
248
249// Stub types.
250
251#define DEF_STUB(x) arm_stub_##x,
252typedef enum
253 {
254 arm_stub_none,
255 DEF_STUBS
256
257 // First reloc stub type.
258 arm_stub_reloc_first = arm_stub_long_branch_any_any,
259 // Last reloc stub type.
260 arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,
261
262 // First Cortex-A8 stub type.
263 arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
264 // Last Cortex-A8 stub type.
265 arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
266
267 // Last stub type.
268 arm_stub_type_last = arm_stub_a8_veneer_blx
269 } Stub_type;
270#undef DEF_STUB
271
272// Stub template class. Templates are meant to be read-only objects.
273// A stub template for a stub type contains all read-only attributes
274// common to all stubs of the same type.
275
276class Stub_template
277{
278 public:
279 Stub_template(Stub_type, const Insn_template*, size_t);
280
281 ~Stub_template()
282 { }
283
284 // Return stub type.
285 Stub_type
286 type() const
287 { return this->type_; }
288
289 // Return an array of instruction templates.
290 const Insn_template*
291 insns() const
292 { return this->insns_; }
293
294 // Return size of template in number of instructions.
295 size_t
296 insn_count() const
297 { return this->insn_count_; }
298
299 // Return size of template in bytes.
300 size_t
301 size() const
302 { return this->size_; }
303
304 // Return alignment of the stub template.
305 unsigned
306 alignment() const
307 { return this->alignment_; }
308
309 // Return whether entry point is in thumb mode.
310 bool
311 entry_in_thumb_mode() const
312 { return this->entry_in_thumb_mode_; }
313
314 // Return number of relocations in this template.
315 size_t
316 reloc_count() const
317 { return this->relocs_.size(); }
318
319 // Return index of the I-th instruction with relocation.
320 size_t
321 reloc_insn_index(size_t i) const
322 {
323 gold_assert(i < this->relocs_.size());
324 return this->relocs_[i].first;
325 }
326
327 // Return the offset of the I-th instruction with relocation from the
328 // beginning of the stub.
329 section_size_type
330 reloc_offset(size_t i) const
331 {
332 gold_assert(i < this->relocs_.size());
333 return this->relocs_[i].second;
334 }
335
336 private:
337 // This contains information about an instruction template with a relocation
338 // and its offset from start of stub.
339 typedef std::pair<size_t, section_size_type> Reloc;
340
341 // A Stub_template may not be copied. We want to share templates as much
342 // as possible.
343 Stub_template(const Stub_template&);
344 Stub_template& operator=(const Stub_template&);
345
346 // Stub type.
347 Stub_type type_;
348 // Points to an array of Insn_templates.
349 const Insn_template* insns_;
350 // Number of Insn_templates in insns_[].
351 size_t insn_count_;
352 // Size of templated instructions in bytes.
353 size_t size_;
354 // Alignment of templated instructions.
355 unsigned alignment_;
356 // Flag to indicate if entry is in thumb mode.
357 bool entry_in_thumb_mode_;
358 // A table of reloc instruction indices and offsets. We can find these by
359 // looking at the instruction templates but we pre-compute and then stash
360 // them here for speed.
361 std::vector<Reloc> relocs_;
362};
363
364//
365// A class for code stubs. This is a base class for different type of
366// stubs used in the ARM target.
367//
368
369class Stub
370{
371 private:
372 static const section_offset_type invalid_offset =
373 static_cast<section_offset_type>(-1);
374
375 public:
2ea97941
ILT
376 Stub(const Stub_template* stub_template)
377 : stub_template_(stub_template), offset_(invalid_offset)
b569affa
DK
378 { }
379
380 virtual
381 ~Stub()
382 { }
383
384 // Return the stub template.
385 const Stub_template*
386 stub_template() const
387 { return this->stub_template_; }
388
389 // Return offset of code stub from beginning of its containing stub table.
390 section_offset_type
391 offset() const
392 {
393 gold_assert(this->offset_ != invalid_offset);
394 return this->offset_;
395 }
396
397 // Set offset of code stub from beginning of its containing stub table.
398 void
2ea97941
ILT
399 set_offset(section_offset_type offset)
400 { this->offset_ = offset; }
b569affa
DK
401
402 // Return the relocation target address of the i-th relocation in the
403 // stub. This must be defined in a child class.
404 Arm_address
405 reloc_target(size_t i)
406 { return this->do_reloc_target(i); }
407
408 // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written.
409 void
410 write(unsigned char* view, section_size_type view_size, bool big_endian)
411 { this->do_write(view, view_size, big_endian); }
412
413 protected:
414 // This must be defined in the child class.
415 virtual Arm_address
416 do_reloc_target(size_t) = 0;
417
418 // This must be defined in the child class.
419 virtual void
420 do_write(unsigned char*, section_size_type, bool) = 0;
421
422 private:
423 // Its template.
424 const Stub_template* stub_template_;
425 // Offset within the section of containing this stub.
426 section_offset_type offset_;
427};
428
429// Reloc stub class. These are stubs we use to fix up relocation because
430// of limited branch ranges.
431
432class Reloc_stub : public Stub
433{
434 public:
435 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
436 // We assume we never jump to this address.
437 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
438
439 // Return destination address.
440 Arm_address
441 destination_address() const
442 {
443 gold_assert(this->destination_address_ != this->invalid_address);
444 return this->destination_address_;
445 }
446
447 // Set destination address.
448 void
449 set_destination_address(Arm_address address)
450 {
451 gold_assert(address != this->invalid_address);
452 this->destination_address_ = address;
453 }
454
455 // Reset destination address.
456 void
457 reset_destination_address()
458 { this->destination_address_ = this->invalid_address; }
459
460 // Determine stub type for a branch of a relocation of R_TYPE going
461 // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set,
462 // the branch target is a thumb instruction. TARGET is used for look
463 // up ARM-specific linker settings.
464 static Stub_type
465 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
466 Arm_address branch_target, bool target_is_thumb);
467
468 // Reloc_stub key. A key is logically a triplet of a stub type, a symbol
469 // and an addend. Since we treat global and local symbol differently, we
470 // use a Symbol object for a global symbol and a object-index pair for
471 // a local symbol.
472 class Key
473 {
474 public:
475 // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
476 // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL
477 // and R_SYM must not be invalid_index.
2ea97941
ILT
478 Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
479 unsigned int r_sym, int32_t addend)
480 : stub_type_(stub_type), addend_(addend)
b569affa 481 {
2ea97941 482 if (symbol != NULL)
b569affa
DK
483 {
484 this->r_sym_ = Reloc_stub::invalid_index;
2ea97941 485 this->u_.symbol = symbol;
b569affa
DK
486 }
487 else
488 {
2ea97941
ILT
489 gold_assert(relobj != NULL && r_sym != invalid_index);
490 this->r_sym_ = r_sym;
491 this->u_.relobj = relobj;
b569affa
DK
492 }
493 }
494
495 ~Key()
496 { }
497
498 // Accessors: Keys are meant to be read-only object so no modifiers are
499 // provided.
500
501 // Return stub type.
502 Stub_type
503 stub_type() const
504 { return this->stub_type_; }
505
506 // Return the local symbol index or invalid_index.
507 unsigned int
508 r_sym() const
509 { return this->r_sym_; }
510
511 // Return the symbol if there is one.
512 const Symbol*
513 symbol() const
514 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
515
516 // Return the relobj if there is one.
517 const Relobj*
518 relobj() const
519 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
520
521 // Whether this equals to another key k.
522 bool
523 eq(const Key& k) const
524 {
525 return ((this->stub_type_ == k.stub_type_)
526 && (this->r_sym_ == k.r_sym_)
527 && ((this->r_sym_ != Reloc_stub::invalid_index)
528 ? (this->u_.relobj == k.u_.relobj)
529 : (this->u_.symbol == k.u_.symbol))
530 && (this->addend_ == k.addend_));
531 }
532
533 // Return a hash value.
534 size_t
535 hash_value() const
536 {
537 return (this->stub_type_
538 ^ this->r_sym_
539 ^ gold::string_hash<char>(
540 (this->r_sym_ != Reloc_stub::invalid_index)
541 ? this->u_.relobj->name().c_str()
542 : this->u_.symbol->name())
543 ^ this->addend_);
544 }
545
546 // Functors for STL associative containers.
547 struct hash
548 {
549 size_t
550 operator()(const Key& k) const
551 { return k.hash_value(); }
552 };
553
554 struct equal_to
555 {
556 bool
557 operator()(const Key& k1, const Key& k2) const
558 { return k1.eq(k2); }
559 };
560
561 // Name of key. This is mainly for debugging.
562 std::string
563 name() const;
564
565 private:
566 // Stub type.
567 Stub_type stub_type_;
568 // If this is a local symbol, this is the index in the defining object.
569 // Otherwise, it is invalid_index for a global symbol.
570 unsigned int r_sym_;
571 // If r_sym_ is invalid index. This points to a global symbol.
572 // Otherwise, this points a relobj. We used the unsized and target
eb44217c 573 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
b569affa
DK
574 // Arm_relobj. This is done to avoid making the stub class a template
575 // as most of the stub machinery is endianity-neutral. However, it
576 // may require a bit of casting done by users of this class.
577 union
578 {
579 const Symbol* symbol;
580 const Relobj* relobj;
581 } u_;
582 // Addend associated with a reloc.
583 int32_t addend_;
584 };
585
586 protected:
587 // Reloc_stubs are created via a stub factory. So these are protected.
2ea97941
ILT
588 Reloc_stub(const Stub_template* stub_template)
589 : Stub(stub_template), destination_address_(invalid_address)
b569affa
DK
590 { }
591
592 ~Reloc_stub()
593 { }
594
595 friend class Stub_factory;
596
597 private:
598 // Return the relocation target address of the i-th relocation in the
599 // stub.
600 Arm_address
601 do_reloc_target(size_t i)
602 {
603 // All reloc stub have only one relocation.
604 gold_assert(i == 0);
605 return this->destination_address_;
606 }
607
608 // A template to implement do_write below.
609 template<bool big_endian>
610 void inline
611 do_fixed_endian_write(unsigned char*, section_size_type);
612
613 // Write a stub.
614 void
615 do_write(unsigned char* view, section_size_type view_size, bool big_endian);
616
617 // Address of destination.
618 Arm_address destination_address_;
619};
620
621// Stub factory class.
622
623class Stub_factory
624{
625 public:
626 // Return the unique instance of this class.
627 static const Stub_factory&
628 get_instance()
629 {
630 static Stub_factory singleton;
631 return singleton;
632 }
633
634 // Make a relocation stub.
635 Reloc_stub*
636 make_reloc_stub(Stub_type stub_type) const
637 {
638 gold_assert(stub_type >= arm_stub_reloc_first
639 && stub_type <= arm_stub_reloc_last);
640 return new Reloc_stub(this->stub_templates_[stub_type]);
641 }
642
643 private:
644 // Constructor and destructor are protected since we only return a single
645 // instance created in Stub_factory::get_instance().
646
647 Stub_factory();
648
649 // A Stub_factory may not be copied since it is a singleton.
650 Stub_factory(const Stub_factory&);
651 Stub_factory& operator=(Stub_factory&);
652
653 // Stub templates. These are initialized in the constructor.
654 const Stub_template* stub_templates_[arm_stub_type_last+1];
655};
656
56ee5e00
DK
657// A class to hold stubs for the ARM target.
658
659template<bool big_endian>
660class Stub_table : public Output_data
661{
662 public:
2ea97941
ILT
663 Stub_table(Arm_input_section<big_endian>* owner)
664 : Output_data(), addralign_(1), owner_(owner), has_been_changed_(false),
56ee5e00
DK
665 reloc_stubs_()
666 { }
667
668 ~Stub_table()
669 { }
670
671 // Owner of this stub table.
672 Arm_input_section<big_endian>*
673 owner() const
674 { return this->owner_; }
675
676 // Whether this stub table is empty.
677 bool
678 empty() const
679 { return this->reloc_stubs_.empty(); }
680
681 // Whether this has been changed.
682 bool
683 has_been_changed() const
684 { return this->has_been_changed_; }
685
686 // Set the has-been-changed flag.
687 void
688 set_has_been_changed(bool value)
689 { this->has_been_changed_ = value; }
690
691 // Return the current data size.
692 off_t
693 current_data_size() const
694 { return this->current_data_size_for_child(); }
695
696 // Add a STUB with using KEY. Caller is reponsible for avoid adding
697 // if already a STUB with the same key has been added.
698 void
699 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key);
700
701 // Look up a relocation stub using KEY. Return NULL if there is none.
702 Reloc_stub*
703 find_reloc_stub(const Reloc_stub::Key& key) const
704 {
705 typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
706 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
707 }
708
709 // Relocate stubs in this stub table.
710 void
711 relocate_stubs(const Relocate_info<32, big_endian>*,
712 Target_arm<big_endian>*, Output_section*,
713 unsigned char*, Arm_address, section_size_type);
714
715 protected:
716 // Write out section contents.
717 void
718 do_write(Output_file*);
719
720 // Return the required alignment.
721 uint64_t
722 do_addralign() const
723 { return this->addralign_; }
724
725 // Finalize data size.
726 void
727 set_final_data_size()
728 { this->set_data_size(this->current_data_size_for_child()); }
729
730 // Reset address and file offset.
731 void
732 do_reset_address_and_file_offset();
733
734 private:
735 // Unordered map of stubs.
736 typedef
737 Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
738 Reloc_stub::Key::equal_to>
739 Reloc_stub_map;
740
741 // Address alignment
742 uint64_t addralign_;
743 // Owner of this stub table.
744 Arm_input_section<big_endian>* owner_;
745 // This is set to true during relaxiong if the size of the stub table
746 // has been changed.
747 bool has_been_changed_;
748 // The relocation stubs.
749 Reloc_stub_map reloc_stubs_;
750};
751
10ad9fe5
DK
752// A class to wrap an ordinary input section containing executable code.
753
754template<bool big_endian>
755class Arm_input_section : public Output_relaxed_input_section
756{
757 public:
2ea97941
ILT
758 Arm_input_section(Relobj* relobj, unsigned int shndx)
759 : Output_relaxed_input_section(relobj, shndx, 1),
10ad9fe5
DK
760 original_addralign_(1), original_size_(0), stub_table_(NULL)
761 { }
762
763 ~Arm_input_section()
764 { }
765
766 // Initialize.
767 void
768 init();
769
770 // Whether this is a stub table owner.
771 bool
772 is_stub_table_owner() const
773 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
774
775 // Return the stub table.
776 Stub_table<big_endian>*
777 stub_table() const
778 { return this->stub_table_; }
779
780 // Set the stub_table.
781 void
2ea97941
ILT
782 set_stub_table(Stub_table<big_endian>* stub_table)
783 { this->stub_table_ = stub_table; }
10ad9fe5 784
07f508a2
DK
785 // Downcast a base pointer to an Arm_input_section pointer. This is
786 // not type-safe but we only use Arm_input_section not the base class.
787 static Arm_input_section<big_endian>*
788 as_arm_input_section(Output_relaxed_input_section* poris)
789 { return static_cast<Arm_input_section<big_endian>*>(poris); }
790
10ad9fe5
DK
791 protected:
792 // Write data to output file.
793 void
794 do_write(Output_file*);
795
796 // Return required alignment of this.
797 uint64_t
798 do_addralign() const
799 {
800 if (this->is_stub_table_owner())
801 return std::max(this->stub_table_->addralign(),
802 this->original_addralign_);
803 else
804 return this->original_addralign_;
805 }
806
807 // Finalize data size.
808 void
809 set_final_data_size();
810
811 // Reset address and file offset.
812 void
813 do_reset_address_and_file_offset();
814
815 // Output offset.
816 bool
2ea97941
ILT
817 do_output_offset(const Relobj* object, unsigned int shndx,
818 section_offset_type offset,
10ad9fe5
DK
819 section_offset_type* poutput) const
820 {
821 if ((object == this->relobj())
2ea97941
ILT
822 && (shndx == this->shndx())
823 && (offset >= 0)
824 && (convert_types<uint64_t, section_offset_type>(offset)
10ad9fe5
DK
825 <= this->original_size_))
826 {
2ea97941 827 *poutput = offset;
10ad9fe5
DK
828 return true;
829 }
830 else
831 return false;
832 }
833
834 private:
835 // Copying is not allowed.
836 Arm_input_section(const Arm_input_section&);
837 Arm_input_section& operator=(const Arm_input_section&);
838
839 // Address alignment of the original input section.
840 uint64_t original_addralign_;
841 // Section size of the original input section.
842 uint64_t original_size_;
843 // Stub table.
844 Stub_table<big_endian>* stub_table_;
845};
846
07f508a2
DK
847// Arm output section class. This is defined mainly to add a number of
848// stub generation methods.
849
850template<bool big_endian>
851class Arm_output_section : public Output_section
852{
853 public:
2ea97941
ILT
854 Arm_output_section(const char* name, elfcpp::Elf_Word type,
855 elfcpp::Elf_Xword flags)
856 : Output_section(name, type, flags)
07f508a2
DK
857 { }
858
859 ~Arm_output_section()
860 { }
861
862 // Group input sections for stub generation.
863 void
864 group_sections(section_size_type, bool, Target_arm<big_endian>*);
865
866 // Downcast a base pointer to an Arm_output_section pointer. This is
867 // not type-safe but we only use Arm_output_section not the base class.
868 static Arm_output_section<big_endian>*
869 as_arm_output_section(Output_section* os)
870 { return static_cast<Arm_output_section<big_endian>*>(os); }
871
872 private:
873 // For convenience.
874 typedef Output_section::Input_section Input_section;
875 typedef Output_section::Input_section_list Input_section_list;
876
877 // Create a stub group.
878 void create_stub_group(Input_section_list::const_iterator,
879 Input_section_list::const_iterator,
880 Input_section_list::const_iterator,
881 Target_arm<big_endian>*,
882 std::vector<Output_relaxed_input_section*>*);
883};
884
8ffa3667
DK
885// Arm_relobj class.
886
887template<bool big_endian>
888class Arm_relobj : public Sized_relobj<32, big_endian>
889{
890 public:
891 static const Arm_address invalid_address = static_cast<Arm_address>(-1);
892
2ea97941 893 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
8ffa3667 894 const typename elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941 895 : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
a0351a69
DK
896 stub_tables_(), local_symbol_is_thumb_function_(),
897 attributes_section_data_(NULL)
8ffa3667
DK
898 { }
899
900 ~Arm_relobj()
a0351a69 901 { delete this->attributes_section_data_; }
8ffa3667
DK
902
903 // Return the stub table of the SHNDX-th section if there is one.
904 Stub_table<big_endian>*
2ea97941 905 stub_table(unsigned int shndx) const
8ffa3667 906 {
2ea97941
ILT
907 gold_assert(shndx < this->stub_tables_.size());
908 return this->stub_tables_[shndx];
8ffa3667
DK
909 }
910
911 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
912 void
2ea97941 913 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
8ffa3667 914 {
2ea97941
ILT
915 gold_assert(shndx < this->stub_tables_.size());
916 this->stub_tables_[shndx] = stub_table;
8ffa3667
DK
917 }
918
919 // Whether a local symbol is a THUMB function. R_SYM is the symbol table
920 // index. This is only valid after do_count_local_symbol is called.
921 bool
922 local_symbol_is_thumb_function(unsigned int r_sym) const
923 {
924 gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
925 return this->local_symbol_is_thumb_function_[r_sym];
926 }
927
928 // Scan all relocation sections for stub generation.
929 void
930 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
931 const Layout*);
932
933 // Convert regular input section with index SHNDX to a relaxed section.
934 void
2ea97941 935 convert_input_section_to_relaxed_section(unsigned shndx)
8ffa3667
DK
936 {
937 // The stubs have relocations and we need to process them after writing
938 // out the stubs. So relocation now must follow section write.
2ea97941 939 this->invalidate_section_offset(shndx);
8ffa3667
DK
940 this->set_relocs_must_follow_section_writes();
941 }
942
943 // Downcast a base pointer to an Arm_relobj pointer. This is
944 // not type-safe but we only use Arm_relobj not the base class.
945 static Arm_relobj<big_endian>*
2ea97941
ILT
946 as_arm_relobj(Relobj* relobj)
947 { return static_cast<Arm_relobj<big_endian>*>(relobj); }
8ffa3667 948
d5b40221
DK
949 // Processor-specific flags in ELF file header. This is valid only after
950 // reading symbols.
951 elfcpp::Elf_Word
952 processor_specific_flags() const
953 { return this->processor_specific_flags_; }
954
a0351a69
DK
955 // Attribute section data This is the contents of the .ARM.attribute section
956 // if there is one.
957 const Attributes_section_data*
958 attributes_section_data() const
959 { return this->attributes_section_data_; }
960
8ffa3667
DK
961 protected:
962 // Post constructor setup.
963 void
964 do_setup()
965 {
966 // Call parent's setup method.
967 Sized_relobj<32, big_endian>::do_setup();
968
969 // Initialize look-up tables.
970 Stub_table_list empty_stub_table_list(this->shnum(), NULL);
971 this->stub_tables_.swap(empty_stub_table_list);
972 }
973
974 // Count the local symbols.
975 void
976 do_count_local_symbols(Stringpool_template<char>*,
977 Stringpool_template<char>*);
978
979 void
43d12afe 980 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
8ffa3667
DK
981 const unsigned char* pshdrs,
982 typename Sized_relobj<32, big_endian>::Views* pivews);
983
d5b40221
DK
984 // Read the symbol information.
985 void
986 do_read_symbols(Read_symbols_data* sd);
987
8ffa3667
DK
988 private:
989 // List of stub tables.
990 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
991 Stub_table_list stub_tables_;
992 // Bit vector to tell if a local symbol is a thumb function or not.
993 // This is only valid after do_count_local_symbol is called.
994 std::vector<bool> local_symbol_is_thumb_function_;
d5b40221
DK
995 // processor-specific flags in ELF file header.
996 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
997 // Object attributes if there is an .ARM.attributes section or NULL.
998 Attributes_section_data* attributes_section_data_;
d5b40221
DK
999};
1000
1001// Arm_dynobj class.
1002
1003template<bool big_endian>
1004class Arm_dynobj : public Sized_dynobj<32, big_endian>
1005{
1006 public:
2ea97941 1007 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
d5b40221 1008 const elfcpp::Ehdr<32, big_endian>& ehdr)
2ea97941
ILT
1009 : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
1010 processor_specific_flags_(0), attributes_section_data_(NULL)
d5b40221
DK
1011 { }
1012
1013 ~Arm_dynobj()
a0351a69 1014 { delete this->attributes_section_data_; }
d5b40221
DK
1015
1016 // Downcast a base pointer to an Arm_relobj pointer. This is
1017 // not type-safe but we only use Arm_relobj not the base class.
1018 static Arm_dynobj<big_endian>*
1019 as_arm_dynobj(Dynobj* dynobj)
1020 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }
1021
1022 // Processor-specific flags in ELF file header. This is valid only after
1023 // reading symbols.
1024 elfcpp::Elf_Word
1025 processor_specific_flags() const
1026 { return this->processor_specific_flags_; }
1027
a0351a69
DK
1028 // Attributes section data.
1029 const Attributes_section_data*
1030 attributes_section_data() const
1031 { return this->attributes_section_data_; }
1032
d5b40221
DK
1033 protected:
1034 // Read the symbol information.
1035 void
1036 do_read_symbols(Read_symbols_data* sd);
1037
1038 private:
1039 // processor-specific flags in ELF file header.
1040 elfcpp::Elf_Word processor_specific_flags_;
a0351a69
DK
1041 // Object attributes if there is an .ARM.attributes section or NULL.
1042 Attributes_section_data* attributes_section_data_;
8ffa3667
DK
1043};
1044
e9bbb538
DK
1045// Functor to read reloc addends during stub generation.
1046
1047template<int sh_type, bool big_endian>
1048struct Stub_addend_reader
1049{
1050 // Return the addend for a relocation of a particular type. Depending
1051 // on whether this is a REL or RELA relocation, read the addend from a
1052 // view or from a Reloc object.
1053 elfcpp::Elf_types<32>::Elf_Swxword
1054 operator()(
1055 unsigned int /* r_type */,
1056 const unsigned char* /* view */,
1057 const typename Reloc_types<sh_type,
ebd95253 1058 32, big_endian>::Reloc& /* reloc */) const;
e9bbb538
DK
1059};
1060
1061// Specialized Stub_addend_reader for SHT_REL type relocation sections.
1062
1063template<bool big_endian>
1064struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
1065{
1066 elfcpp::Elf_types<32>::Elf_Swxword
1067 operator()(
1068 unsigned int,
1069 const unsigned char*,
1070 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
1071};
1072
1073// Specialized Stub_addend_reader for RELA type relocation sections.
1074// We currently do not handle RELA type relocation sections but it is trivial
1075// to implement the addend reader. This is provided for completeness and to
1076// make it easier to add support for RELA relocation sections in the future.
1077
1078template<bool big_endian>
1079struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
1080{
1081 elfcpp::Elf_types<32>::Elf_Swxword
1082 operator()(
1083 unsigned int,
1084 const unsigned char*,
1085 const typename Reloc_types<elfcpp::SHT_RELA, 32,
ebd95253
DK
1086 big_endian>::Reloc& reloc) const
1087 { return reloc.get_r_addend(); }
e9bbb538
DK
1088};
1089
c121c671
DK
1090// Utilities for manipulating integers of up to 32-bits
1091
1092namespace utils
1093{
1094 // Sign extend an n-bit unsigned integer stored in an uint32_t into
1095 // an int32_t. NO_BITS must be between 1 to 32.
1096 template<int no_bits>
1097 static inline int32_t
1098 sign_extend(uint32_t bits)
1099 {
96d49306 1100 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1101 if (no_bits == 32)
1102 return static_cast<int32_t>(bits);
1103 uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits);
1104 bits &= mask;
1105 uint32_t top_bit = 1U << (no_bits - 1);
1106 int32_t as_signed = static_cast<int32_t>(bits);
1107 return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed;
1108 }
1109
1110 // Detects overflow of an NO_BITS integer stored in a uint32_t.
1111 template<int no_bits>
1112 static inline bool
1113 has_overflow(uint32_t bits)
1114 {
96d49306 1115 gold_assert(no_bits >= 0 && no_bits <= 32);
c121c671
DK
1116 if (no_bits == 32)
1117 return false;
1118 int32_t max = (1 << (no_bits - 1)) - 1;
1119 int32_t min = -(1 << (no_bits - 1));
1120 int32_t as_signed = static_cast<int32_t>(bits);
1121 return as_signed > max || as_signed < min;
1122 }
1123
5e445df6
ILT
1124 // Detects overflow of an NO_BITS integer stored in a uint32_t when it
1125 // fits in the given number of bits as either a signed or unsigned value.
1126 // For example, has_signed_unsigned_overflow<8> would check
1127 // -128 <= bits <= 255
1128 template<int no_bits>
1129 static inline bool
1130 has_signed_unsigned_overflow(uint32_t bits)
1131 {
1132 gold_assert(no_bits >= 2 && no_bits <= 32);
1133 if (no_bits == 32)
1134 return false;
1135 int32_t max = static_cast<int32_t>((1U << no_bits) - 1);
1136 int32_t min = -(1 << (no_bits - 1));
1137 int32_t as_signed = static_cast<int32_t>(bits);
1138 return as_signed > max || as_signed < min;
1139 }
1140
c121c671
DK
1141 // Select bits from A and B using bits in MASK. For each n in [0..31],
1142 // the n-th bit in the result is chosen from the n-th bits of A and B.
1143 // A zero selects A and a one selects B.
1144 static inline uint32_t
1145 bit_select(uint32_t a, uint32_t b, uint32_t mask)
1146 { return (a & ~mask) | (b & mask); }
1147};
1148
4a657b0d
DK
1149template<bool big_endian>
1150class Target_arm : public Sized_target<32, big_endian>
1151{
1152 public:
1153 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
1154 Reloc_section;
1155
2daedcd6
DK
1156 // When were are relocating a stub, we pass this as the relocation number.
1157 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
1158
a6d1ef57
DK
1159 Target_arm()
1160 : Sized_target<32, big_endian>(&arm_info),
1161 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
1162 copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), stub_tables_(),
a0351a69
DK
1163 stub_factory_(Stub_factory::get_instance()), may_use_blx_(false),
1164 should_force_pic_veneer_(false), arm_input_section_map_(),
1165 attributes_section_data_(NULL)
a6d1ef57 1166 { }
4a657b0d 1167
b569affa
DK
1168 // Whether we can use BLX.
1169 bool
1170 may_use_blx() const
1171 { return this->may_use_blx_; }
1172
1173 // Set use-BLX flag.
1174 void
1175 set_may_use_blx(bool value)
1176 { this->may_use_blx_ = value; }
1177
1178 // Whether we force PCI branch veneers.
1179 bool
1180 should_force_pic_veneer() const
1181 { return this->should_force_pic_veneer_; }
1182
1183 // Set PIC veneer flag.
1184 void
1185 set_should_force_pic_veneer(bool value)
1186 { this->should_force_pic_veneer_ = value; }
1187
1188 // Whether we use THUMB-2 instructions.
1189 bool
1190 using_thumb2() const
1191 {
a0351a69
DK
1192 Object_attribute* attr =
1193 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1194 int arch = attr->int_value();
1195 return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
b569affa
DK
1196 }
1197
1198 // Whether we use THUMB/THUMB-2 instructions only.
1199 bool
1200 using_thumb_only() const
1201 {
a0351a69
DK
1202 Object_attribute* attr =
1203 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1204 if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
1205 && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
1206 return false;
1207 attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
1208 return attr->int_value() == 'M';
b569affa
DK
1209 }
1210
d204b6e9
DK
1211 // Whether we have an NOP instruction. If not, use mov r0, r0 instead.
1212 bool
1213 may_use_arm_nop() const
1214 {
a0351a69
DK
1215 Object_attribute* attr =
1216 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1217 int arch = attr->int_value();
1218 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
1219 || arch == elfcpp::TAG_CPU_ARCH_V6K
1220 || arch == elfcpp::TAG_CPU_ARCH_V7
1221 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
d204b6e9
DK
1222 }
1223
51938283
DK
1224 // Whether we have THUMB-2 NOP.W instruction.
1225 bool
1226 may_use_thumb2_nop() const
1227 {
a0351a69
DK
1228 Object_attribute* attr =
1229 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
1230 int arch = attr->int_value();
1231 return (arch == elfcpp::TAG_CPU_ARCH_V6T2
1232 || arch == elfcpp::TAG_CPU_ARCH_V7
1233 || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
51938283
DK
1234 }
1235
4a657b0d
DK
1236 // Process the relocations to determine unreferenced sections for
1237 // garbage collection.
1238 void
ad0f2072 1239 gc_process_relocs(Symbol_table* symtab,
4a657b0d
DK
1240 Layout* layout,
1241 Sized_relobj<32, big_endian>* object,
1242 unsigned int data_shndx,
1243 unsigned int sh_type,
1244 const unsigned char* prelocs,
1245 size_t reloc_count,
1246 Output_section* output_section,
1247 bool needs_special_offset_handling,
1248 size_t local_symbol_count,
1249 const unsigned char* plocal_symbols);
1250
1251 // Scan the relocations to look for symbol adjustments.
1252 void
ad0f2072 1253 scan_relocs(Symbol_table* symtab,
4a657b0d
DK
1254 Layout* layout,
1255 Sized_relobj<32, big_endian>* object,
1256 unsigned int data_shndx,
1257 unsigned int sh_type,
1258 const unsigned char* prelocs,
1259 size_t reloc_count,
1260 Output_section* output_section,
1261 bool needs_special_offset_handling,
1262 size_t local_symbol_count,
1263 const unsigned char* plocal_symbols);
1264
1265 // Finalize the sections.
1266 void
f59f41f3 1267 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
4a657b0d 1268
94cdfcff 1269 // Return the value to use for a dynamic symbol which requires special
4a657b0d
DK
1270 // treatment.
1271 uint64_t
1272 do_dynsym_value(const Symbol*) const;
1273
1274 // Relocate a section.
1275 void
1276 relocate_section(const Relocate_info<32, big_endian>*,
1277 unsigned int sh_type,
1278 const unsigned char* prelocs,
1279 size_t reloc_count,
1280 Output_section* output_section,
1281 bool needs_special_offset_handling,
1282 unsigned char* view,
ebabffbd 1283 Arm_address view_address,
364c7fa5
ILT
1284 section_size_type view_size,
1285 const Reloc_symbol_changes*);
4a657b0d
DK
1286
1287 // Scan the relocs during a relocatable link.
1288 void
ad0f2072 1289 scan_relocatable_relocs(Symbol_table* symtab,
4a657b0d
DK
1290 Layout* layout,
1291 Sized_relobj<32, big_endian>* object,
1292 unsigned int data_shndx,
1293 unsigned int sh_type,
1294 const unsigned char* prelocs,
1295 size_t reloc_count,
1296 Output_section* output_section,
1297 bool needs_special_offset_handling,
1298 size_t local_symbol_count,
1299 const unsigned char* plocal_symbols,
1300 Relocatable_relocs*);
1301
1302 // Relocate a section during a relocatable link.
1303 void
1304 relocate_for_relocatable(const Relocate_info<32, big_endian>*,
1305 unsigned int sh_type,
1306 const unsigned char* prelocs,
1307 size_t reloc_count,
1308 Output_section* output_section,
1309 off_t offset_in_output_section,
1310 const Relocatable_relocs*,
1311 unsigned char* view,
ebabffbd 1312 Arm_address view_address,
4a657b0d
DK
1313 section_size_type view_size,
1314 unsigned char* reloc_view,
1315 section_size_type reloc_view_size);
1316
1317 // Return whether SYM is defined by the ABI.
1318 bool
1319 do_is_defined_by_abi(Symbol* sym) const
1320 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
1321
94cdfcff
DK
1322 // Return the size of the GOT section.
1323 section_size_type
1324 got_size()
1325 {
1326 gold_assert(this->got_ != NULL);
1327 return this->got_->data_size();
1328 }
1329
4a657b0d 1330 // Map platform-specific reloc types
a6d1ef57
DK
1331 static unsigned int
1332 get_real_reloc_type (unsigned int r_type);
4a657b0d 1333
55da9579
DK
1334 //
1335 // Methods to support stub-generations.
1336 //
1337
1338 // Return the stub factory
1339 const Stub_factory&
1340 stub_factory() const
1341 { return this->stub_factory_; }
1342
1343 // Make a new Arm_input_section object.
1344 Arm_input_section<big_endian>*
1345 new_arm_input_section(Relobj*, unsigned int);
1346
1347 // Find the Arm_input_section object corresponding to the SHNDX-th input
1348 // section of RELOBJ.
1349 Arm_input_section<big_endian>*
2ea97941 1350 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
55da9579
DK
1351
1352 // Make a new Stub_table
1353 Stub_table<big_endian>*
1354 new_stub_table(Arm_input_section<big_endian>*);
1355
eb44217c
DK
1356 // Scan a section for stub generation.
1357 void
1358 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
1359 const unsigned char*, size_t, Output_section*,
1360 bool, const unsigned char*, Arm_address,
1361 section_size_type);
1362
43d12afe
DK
1363 // Relocate a stub.
1364 void
1365 relocate_stub(Reloc_stub*, const Relocate_info<32, big_endian>*,
1366 Output_section*, unsigned char*, Arm_address,
1367 section_size_type);
1368
b569affa 1369 // Get the default ARM target.
43d12afe 1370 static Target_arm<big_endian>*
b569affa
DK
1371 default_target()
1372 {
1373 gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
1374 && parameters->target().is_big_endian() == big_endian);
43d12afe
DK
1375 return static_cast<Target_arm<big_endian>*>(
1376 parameters->sized_target<32, big_endian>());
b569affa
DK
1377 }
1378
55da9579
DK
1379 // Whether relocation type uses LSB to distinguish THUMB addresses.
1380 static bool
1381 reloc_uses_thumb_bit(unsigned int r_type);
1382
d5b40221 1383 protected:
eb44217c
DK
1384 // Make an ELF object.
1385 Object*
1386 do_make_elf_object(const std::string&, Input_file*, off_t,
1387 const elfcpp::Ehdr<32, big_endian>& ehdr);
1388
1389 Object*
1390 do_make_elf_object(const std::string&, Input_file*, off_t,
1391 const elfcpp::Ehdr<32, !big_endian>&)
1392 { gold_unreachable(); }
1393
1394 Object*
1395 do_make_elf_object(const std::string&, Input_file*, off_t,
1396 const elfcpp::Ehdr<64, false>&)
1397 { gold_unreachable(); }
1398
1399 Object*
1400 do_make_elf_object(const std::string&, Input_file*, off_t,
1401 const elfcpp::Ehdr<64, true>&)
1402 { gold_unreachable(); }
1403
1404 // Make an output section.
1405 Output_section*
1406 do_make_output_section(const char* name, elfcpp::Elf_Word type,
1407 elfcpp::Elf_Xword flags)
1408 { return new Arm_output_section<big_endian>(name, type, flags); }
1409
d5b40221
DK
1410 void
1411 do_adjust_elf_header(unsigned char* view, int len) const;
1412
eb44217c
DK
1413 // We only need to generate stubs, and hence perform relaxation if we are
1414 // not doing relocatable linking.
1415 bool
1416 do_may_relax() const
1417 { return !parameters->options().relocatable(); }
1418
1419 bool
1420 do_relax(int, const Input_objects*, Symbol_table*, Layout*);
1421
a0351a69
DK
1422 // Determine whether an object attribute tag takes an integer, a
1423 // string or both.
1424 int
1425 do_attribute_arg_type(int tag) const;
1426
1427 // Reorder tags during output.
1428 int
1429 do_attributes_order(int num) const;
1430
4a657b0d
DK
1431 private:
1432 // The class which scans relocations.
1433 class Scan
1434 {
1435 public:
1436 Scan()
bec53400 1437 : issued_non_pic_error_(false)
4a657b0d
DK
1438 { }
1439
1440 inline void
ad0f2072 1441 local(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
1442 Sized_relobj<32, big_endian>* object,
1443 unsigned int data_shndx,
1444 Output_section* output_section,
1445 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
1446 const elfcpp::Sym<32, big_endian>& lsym);
1447
1448 inline void
ad0f2072 1449 global(Symbol_table* symtab, Layout* layout, Target_arm* target,
4a657b0d
DK
1450 Sized_relobj<32, big_endian>* object,
1451 unsigned int data_shndx,
1452 Output_section* output_section,
1453 const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
1454 Symbol* gsym);
1455
1456 private:
1457 static void
1458 unsupported_reloc_local(Sized_relobj<32, big_endian>*,
1459 unsigned int r_type);
1460
1461 static void
1462 unsupported_reloc_global(Sized_relobj<32, big_endian>*,
1463 unsigned int r_type, Symbol*);
bec53400
DK
1464
1465 void
1466 check_non_pic(Relobj*, unsigned int r_type);
1467
1468 // Almost identical to Symbol::needs_plt_entry except that it also
1469 // handles STT_ARM_TFUNC.
1470 static bool
1471 symbol_needs_plt_entry(const Symbol* sym)
1472 {
1473 // An undefined symbol from an executable does not need a PLT entry.
1474 if (sym->is_undefined() && !parameters->options().shared())
1475 return false;
1476
1477 return (!parameters->doing_static_link()
1478 && (sym->type() == elfcpp::STT_FUNC
1479 || sym->type() == elfcpp::STT_ARM_TFUNC)
1480 && (sym->is_from_dynobj()
1481 || sym->is_undefined()
1482 || sym->is_preemptible()));
1483 }
1484
1485 // Whether we have issued an error about a non-PIC compilation.
1486 bool issued_non_pic_error_;
4a657b0d
DK
1487 };
1488
1489 // The class which implements relocation.
1490 class Relocate
1491 {
1492 public:
1493 Relocate()
1494 { }
1495
1496 ~Relocate()
1497 { }
1498
bec53400
DK
1499 // Return whether the static relocation needs to be applied.
1500 inline bool
1501 should_apply_static_reloc(const Sized_symbol<32>* gsym,
1502 int ref_flags,
1503 bool is_32bit,
1504 Output_section* output_section);
1505
4a657b0d
DK
1506 // Do a relocation. Return false if the caller should not issue
1507 // any warnings about this relocation.
1508 inline bool
1509 relocate(const Relocate_info<32, big_endian>*, Target_arm*,
1510 Output_section*, size_t relnum,
1511 const elfcpp::Rel<32, big_endian>&,
1512 unsigned int r_type, const Sized_symbol<32>*,
1513 const Symbol_value<32>*,
ebabffbd 1514 unsigned char*, Arm_address,
4a657b0d 1515 section_size_type);
c121c671
DK
1516
1517 // Return whether we want to pass flag NON_PIC_REF for this
f4e5969c
DK
1518 // reloc. This means the relocation type accesses a symbol not via
1519 // GOT or PLT.
c121c671
DK
1520 static inline bool
1521 reloc_is_non_pic (unsigned int r_type)
1522 {
1523 switch (r_type)
1524 {
f4e5969c
DK
1525 // These relocation types reference GOT or PLT entries explicitly.
1526 case elfcpp::R_ARM_GOT_BREL:
1527 case elfcpp::R_ARM_GOT_ABS:
1528 case elfcpp::R_ARM_GOT_PREL:
1529 case elfcpp::R_ARM_GOT_BREL12:
1530 case elfcpp::R_ARM_PLT32_ABS:
1531 case elfcpp::R_ARM_TLS_GD32:
1532 case elfcpp::R_ARM_TLS_LDM32:
1533 case elfcpp::R_ARM_TLS_IE32:
1534 case elfcpp::R_ARM_TLS_IE12GP:
1535
1536 // These relocate types may use PLT entries.
c121c671 1537 case elfcpp::R_ARM_CALL:
f4e5969c 1538 case elfcpp::R_ARM_THM_CALL:
c121c671 1539 case elfcpp::R_ARM_JUMP24:
f4e5969c
DK
1540 case elfcpp::R_ARM_THM_JUMP24:
1541 case elfcpp::R_ARM_THM_JUMP19:
1542 case elfcpp::R_ARM_PLT32:
1543 case elfcpp::R_ARM_THM_XPC22:
c121c671 1544 return false;
f4e5969c
DK
1545
1546 default:
1547 return true;
c121c671
DK
1548 }
1549 }
4a657b0d
DK
1550 };
1551
1552 // A class which returns the size required for a relocation type,
1553 // used while scanning relocs during a relocatable link.
1554 class Relocatable_size_for_reloc
1555 {
1556 public:
1557 unsigned int
1558 get_size_for_reloc(unsigned int, Relobj*);
1559 };
1560
94cdfcff
DK
1561 // Get the GOT section, creating it if necessary.
1562 Output_data_got<32, big_endian>*
1563 got_section(Symbol_table*, Layout*);
1564
1565 // Get the GOT PLT section.
1566 Output_data_space*
1567 got_plt_section() const
1568 {
1569 gold_assert(this->got_plt_ != NULL);
1570 return this->got_plt_;
1571 }
1572
1573 // Create a PLT entry for a global symbol.
1574 void
1575 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1576
1577 // Get the PLT section.
1578 const Output_data_plt_arm<big_endian>*
1579 plt_section() const
1580 {
1581 gold_assert(this->plt_ != NULL);
1582 return this->plt_;
1583 }
1584
1585 // Get the dynamic reloc section, creating it if necessary.
1586 Reloc_section*
1587 rel_dyn_section(Layout*);
1588
1589 // Return true if the symbol may need a COPY relocation.
1590 // References from an executable object to non-function symbols
1591 // defined in a dynamic object may need a COPY relocation.
1592 bool
1593 may_need_copy_reloc(Symbol* gsym)
1594 {
966d4097
DK
1595 return (gsym->type() != elfcpp::STT_ARM_TFUNC
1596 && gsym->may_need_copy_reloc());
94cdfcff
DK
1597 }
1598
1599 // Add a potential copy relocation.
1600 void
1601 copy_reloc(Symbol_table* symtab, Layout* layout,
1602 Sized_relobj<32, big_endian>* object,
2ea97941 1603 unsigned int shndx, Output_section* output_section,
94cdfcff
DK
1604 Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
1605 {
1606 this->copy_relocs_.copy_reloc(symtab, layout,
1607 symtab->get_sized_symbol<32>(sym),
2ea97941 1608 object, shndx, output_section, reloc,
94cdfcff
DK
1609 this->rel_dyn_section(layout));
1610 }
1611
d5b40221
DK
1612 // Whether two EABI versions are compatible.
1613 static bool
1614 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);
1615
1616 // Merge processor-specific flags from input object and those in the ELF
1617 // header of the output.
1618 void
1619 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
1620
a0351a69
DK
1621 // Get the secondary compatible architecture.
1622 static int
1623 get_secondary_compatible_arch(const Attributes_section_data*);
1624
1625 // Set the secondary compatible architecture.
1626 static void
1627 set_secondary_compatible_arch(Attributes_section_data*, int);
1628
1629 static int
1630 tag_cpu_arch_combine(const char*, int, int*, int, int);
1631
1632 // Helper to print AEABI enum tag value.
1633 static std::string
1634 aeabi_enum_name(unsigned int);
1635
1636 // Return string value for TAG_CPU_name.
1637 static std::string
1638 tag_cpu_name_value(unsigned int);
1639
1640 // Merge object attributes from input object and those in the output.
1641 void
1642 merge_object_attributes(const char*, const Attributes_section_data*);
1643
1644 // Helper to get an AEABI object attribute
1645 Object_attribute*
1646 get_aeabi_object_attribute(int tag) const
1647 {
1648 Attributes_section_data* pasd = this->attributes_section_data_;
1649 gold_assert(pasd != NULL);
1650 Object_attribute* attr =
1651 pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
1652 gold_assert(attr != NULL);
1653 return attr;
1654 }
1655
eb44217c
DK
1656 //
1657 // Methods to support stub-generations.
1658 //
d5b40221 1659
eb44217c
DK
1660 // Group input sections for stub generation.
1661 void
1662 group_sections(Layout*, section_size_type, bool);
d5b40221 1663
eb44217c
DK
1664 // Scan a relocation for stub generation.
1665 void
1666 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
1667 const Sized_symbol<32>*, unsigned int,
1668 const Symbol_value<32>*,
1669 elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
d5b40221 1670
eb44217c
DK
1671 // Scan a relocation section for stub.
1672 template<int sh_type>
1673 void
1674 scan_reloc_section_for_stubs(
1675 const Relocate_info<32, big_endian>* relinfo,
1676 const unsigned char* prelocs,
1677 size_t reloc_count,
1678 Output_section* output_section,
1679 bool needs_special_offset_handling,
1680 const unsigned char* view,
1681 elfcpp::Elf_types<32>::Elf_Addr view_address,
1682 section_size_type);
d5b40221 1683
4a657b0d
DK
1684 // Information about this specific target which we pass to the
1685 // general Target structure.
1686 static const Target::Target_info arm_info;
94cdfcff
DK
1687
1688 // The types of GOT entries needed for this platform.
1689 enum Got_type
1690 {
1691 GOT_TYPE_STANDARD = 0 // GOT entry for a regular symbol
1692 };
1693
55da9579
DK
1694 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
1695
1696 // Map input section to Arm_input_section.
1697 typedef Unordered_map<Input_section_specifier,
1698 Arm_input_section<big_endian>*,
1699 Input_section_specifier::hash,
1700 Input_section_specifier::equal_to>
1701 Arm_input_section_map;
1702
94cdfcff
DK
1703 // The GOT section.
1704 Output_data_got<32, big_endian>* got_;
1705 // The PLT section.
1706 Output_data_plt_arm<big_endian>* plt_;
1707 // The GOT PLT section.
1708 Output_data_space* got_plt_;
1709 // The dynamic reloc section.
1710 Reloc_section* rel_dyn_;
1711 // Relocs saved to avoid a COPY reloc.
1712 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
1713 // Space for variables copied with a COPY reloc.
1714 Output_data_space* dynbss_;
55da9579
DK
1715 // Vector of Stub_tables created.
1716 Stub_table_list stub_tables_;
1717 // Stub factory.
1718 const Stub_factory &stub_factory_;
b569affa
DK
1719 // Whether we can use BLX.
1720 bool may_use_blx_;
1721 // Whether we force PIC branch veneers.
1722 bool should_force_pic_veneer_;
eb44217c
DK
1723 // Map for locating Arm_input_sections.
1724 Arm_input_section_map arm_input_section_map_;
a0351a69
DK
1725 // Attributes section data in output.
1726 Attributes_section_data* attributes_section_data_;
4a657b0d
DK
1727};
1728
1729template<bool big_endian>
1730const Target::Target_info Target_arm<big_endian>::arm_info =
1731{
1732 32, // size
1733 big_endian, // is_big_endian
1734 elfcpp::EM_ARM, // machine_code
1735 false, // has_make_symbol
1736 false, // has_resolve
1737 false, // has_code_fill
1738 true, // is_default_stack_executable
1739 '\0', // wrap_char
1740 "/usr/lib/libc.so.1", // dynamic_linker
1741 0x8000, // default_text_segment_address
1742 0x1000, // abi_pagesize (overridable by -z max-page-size)
8a5e3e08
ILT
1743 0x1000, // common_pagesize (overridable by -z common-page-size)
1744 elfcpp::SHN_UNDEF, // small_common_shndx
1745 elfcpp::SHN_UNDEF, // large_common_shndx
1746 0, // small_common_section_flags
05a352e6
DK
1747 0, // large_common_section_flags
1748 ".ARM.attributes", // attributes_section
1749 "aeabi" // attributes_vendor
4a657b0d
DK
1750};
1751
c121c671
DK
1752// Arm relocate functions class
1753//
1754
1755template<bool big_endian>
1756class Arm_relocate_functions : public Relocate_functions<32, big_endian>
1757{
1758 public:
1759 typedef enum
1760 {
1761 STATUS_OKAY, // No error during relocation.
1762 STATUS_OVERFLOW, // Relocation oveflow.
1763 STATUS_BAD_RELOC // Relocation cannot be applied.
1764 } Status;
1765
1766 private:
1767 typedef Relocate_functions<32, big_endian> Base;
1768 typedef Arm_relocate_functions<big_endian> This;
1769
fd3c5f0b
ILT
1770 // Encoding of imm16 argument for movt and movw ARM instructions
1771 // from ARM ARM:
1772 //
1773 // imm16 := imm4 | imm12
1774 //
1775 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
1776 // +-------+---------------+-------+-------+-----------------------+
1777 // | | |imm4 | |imm12 |
1778 // +-------+---------------+-------+-------+-----------------------+
1779
1780 // Extract the relocation addend from VAL based on the ARM
1781 // instruction encoding described above.
1782 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1783 extract_arm_movw_movt_addend(
1784 typename elfcpp::Swap<32, big_endian>::Valtype val)
1785 {
1786 // According to the Elf ABI for ARM Architecture the immediate
1787 // field is sign-extended to form the addend.
1788 return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff));
1789 }
1790
1791 // Insert X into VAL based on the ARM instruction encoding described
1792 // above.
1793 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1794 insert_val_arm_movw_movt(
1795 typename elfcpp::Swap<32, big_endian>::Valtype val,
1796 typename elfcpp::Swap<32, big_endian>::Valtype x)
1797 {
1798 val &= 0xfff0f000;
1799 val |= x & 0x0fff;
1800 val |= (x & 0xf000) << 4;
1801 return val;
1802 }
1803
1804 // Encoding of imm16 argument for movt and movw Thumb2 instructions
1805 // from ARM ARM:
1806 //
1807 // imm16 := imm4 | i | imm3 | imm8
1808 //
1809 // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
1810 // +---------+-+-----------+-------++-+-----+-------+---------------+
1811 // | |i| |imm4 || |imm3 | |imm8 |
1812 // +---------+-+-----------+-------++-+-----+-------+---------------+
1813
1814 // Extract the relocation addend from VAL based on the Thumb2
1815 // instruction encoding described above.
1816 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1817 extract_thumb_movw_movt_addend(
1818 typename elfcpp::Swap<32, big_endian>::Valtype val)
1819 {
1820 // According to the Elf ABI for ARM Architecture the immediate
1821 // field is sign-extended to form the addend.
1822 return utils::sign_extend<16>(((val >> 4) & 0xf000)
1823 | ((val >> 15) & 0x0800)
1824 | ((val >> 4) & 0x0700)
1825 | (val & 0x00ff));
1826 }
1827
1828 // Insert X into VAL based on the Thumb2 instruction encoding
1829 // described above.
1830 static inline typename elfcpp::Swap<32, big_endian>::Valtype
1831 insert_val_thumb_movw_movt(
1832 typename elfcpp::Swap<32, big_endian>::Valtype val,
1833 typename elfcpp::Swap<32, big_endian>::Valtype x)
1834 {
1835 val &= 0xfbf08f00;
1836 val |= (x & 0xf000) << 4;
1837 val |= (x & 0x0800) << 15;
1838 val |= (x & 0x0700) << 4;
1839 val |= (x & 0x00ff);
1840 return val;
1841 }
1842
d204b6e9
DK
1843 // Handle ARM long branches.
1844 static typename This::Status
1845 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
1846 unsigned char *, const Sized_symbol<32>*,
1847 const Arm_relobj<big_endian>*, unsigned int,
1848 const Symbol_value<32>*, Arm_address, Arm_address, bool);
c121c671 1849
51938283
DK
1850 // Handle THUMB long branches.
1851 static typename This::Status
1852 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
1853 unsigned char *, const Sized_symbol<32>*,
1854 const Arm_relobj<big_endian>*, unsigned int,
1855 const Symbol_value<32>*, Arm_address, Arm_address, bool);
1856
c121c671 1857 public:
5e445df6
ILT
1858
1859 // R_ARM_ABS8: S + A
1860 static inline typename This::Status
1861 abs8(unsigned char *view,
1862 const Sized_relobj<32, big_endian>* object,
be8fcb75 1863 const Symbol_value<32>* psymval)
5e445df6
ILT
1864 {
1865 typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
1866 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1867 Valtype* wv = reinterpret_cast<Valtype*>(view);
1868 Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
1869 Reltype addend = utils::sign_extend<8>(val);
2daedcd6 1870 Reltype x = psymval->value(object, addend);
5e445df6
ILT
1871 val = utils::bit_select(val, x, 0xffU);
1872 elfcpp::Swap<8, big_endian>::writeval(wv, val);
1873 return (utils::has_signed_unsigned_overflow<8>(x)
1874 ? This::STATUS_OVERFLOW
1875 : This::STATUS_OKAY);
1876 }
1877
be8fcb75
ILT
1878 // R_ARM_THM_ABS5: S + A
1879 static inline typename This::Status
1880 thm_abs5(unsigned char *view,
1881 const Sized_relobj<32, big_endian>* object,
1882 const Symbol_value<32>* psymval)
1883 {
1884 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
1885 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1886 Valtype* wv = reinterpret_cast<Valtype*>(view);
1887 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
1888 Reltype addend = (val & 0x7e0U) >> 6;
2daedcd6 1889 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1890 val = utils::bit_select(val, x << 6, 0x7e0U);
1891 elfcpp::Swap<16, big_endian>::writeval(wv, val);
1892 return (utils::has_overflow<5>(x)
1893 ? This::STATUS_OVERFLOW
1894 : This::STATUS_OKAY);
1895 }
1896
1897 // R_ARM_ABS12: S + A
1898 static inline typename This::Status
1899 abs12(unsigned char *view,
51938283
DK
1900 const Sized_relobj<32, big_endian>* object,
1901 const Symbol_value<32>* psymval)
be8fcb75
ILT
1902 {
1903 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1904 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1905 Valtype* wv = reinterpret_cast<Valtype*>(view);
1906 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1907 Reltype addend = val & 0x0fffU;
2daedcd6 1908 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1909 val = utils::bit_select(val, x, 0x0fffU);
1910 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1911 return (utils::has_overflow<12>(x)
1912 ? This::STATUS_OVERFLOW
1913 : This::STATUS_OKAY);
1914 }
1915
1916 // R_ARM_ABS16: S + A
1917 static inline typename This::Status
1918 abs16(unsigned char *view,
51938283
DK
1919 const Sized_relobj<32, big_endian>* object,
1920 const Symbol_value<32>* psymval)
be8fcb75
ILT
1921 {
1922 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
1923 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
1924 Valtype* wv = reinterpret_cast<Valtype*>(view);
1925 Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
1926 Reltype addend = utils::sign_extend<16>(val);
2daedcd6 1927 Reltype x = psymval->value(object, addend);
be8fcb75
ILT
1928 val = utils::bit_select(val, x, 0xffffU);
1929 elfcpp::Swap<16, big_endian>::writeval(wv, val);
1930 return (utils::has_signed_unsigned_overflow<16>(x)
1931 ? This::STATUS_OVERFLOW
1932 : This::STATUS_OKAY);
1933 }
1934
c121c671
DK
1935 // R_ARM_ABS32: (S + A) | T
1936 static inline typename This::Status
1937 abs32(unsigned char *view,
1938 const Sized_relobj<32, big_endian>* object,
1939 const Symbol_value<32>* psymval,
2daedcd6 1940 Arm_address thumb_bit)
c121c671
DK
1941 {
1942 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1943 Valtype* wv = reinterpret_cast<Valtype*>(view);
1944 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 1945 Valtype x = psymval->value(object, addend) | thumb_bit;
c121c671
DK
1946 elfcpp::Swap<32, big_endian>::writeval(wv, x);
1947 return This::STATUS_OKAY;
1948 }
1949
1950 // R_ARM_REL32: (S + A) | T - P
1951 static inline typename This::Status
1952 rel32(unsigned char *view,
1953 const Sized_relobj<32, big_endian>* object,
1954 const Symbol_value<32>* psymval,
ebabffbd 1955 Arm_address address,
2daedcd6 1956 Arm_address thumb_bit)
c121c671
DK
1957 {
1958 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1959 Valtype* wv = reinterpret_cast<Valtype*>(view);
1960 Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
2daedcd6 1961 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
1962 elfcpp::Swap<32, big_endian>::writeval(wv, x);
1963 return This::STATUS_OKAY;
1964 }
1965
1966 // R_ARM_THM_CALL: (S + A) | T - P
1967 static inline typename This::Status
51938283
DK
1968 thm_call(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1969 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1970 unsigned int r_sym, const Symbol_value<32>* psymval,
1971 Arm_address address, Arm_address thumb_bit,
1972 bool is_weakly_undefined_without_plt)
c121c671 1973 {
51938283
DK
1974 return thumb_branch_common(elfcpp::R_ARM_THM_CALL, relinfo, view, gsym,
1975 object, r_sym, psymval, address, thumb_bit,
1976 is_weakly_undefined_without_plt);
1977 }
c121c671 1978
51938283
DK
1979 // R_ARM_THM_JUMP24: (S + A) | T - P
1980 static inline typename This::Status
1981 thm_jump24(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1982 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1983 unsigned int r_sym, const Symbol_value<32>* psymval,
1984 Arm_address address, Arm_address thumb_bit,
1985 bool is_weakly_undefined_without_plt)
1986 {
1987 return thumb_branch_common(elfcpp::R_ARM_THM_JUMP24, relinfo, view, gsym,
1988 object, r_sym, psymval, address, thumb_bit,
1989 is_weakly_undefined_without_plt);
1990 }
1991
1992 // R_ARM_THM_XPC22: (S + A) | T - P
1993 static inline typename This::Status
1994 thm_xpc22(const Relocate_info<32, big_endian>* relinfo, unsigned char *view,
1995 const Sized_symbol<32>* gsym, const Arm_relobj<big_endian>* object,
1996 unsigned int r_sym, const Symbol_value<32>* psymval,
1997 Arm_address address, Arm_address thumb_bit,
1998 bool is_weakly_undefined_without_plt)
1999 {
2000 return thumb_branch_common(elfcpp::R_ARM_THM_XPC22, relinfo, view, gsym,
2001 object, r_sym, psymval, address, thumb_bit,
2002 is_weakly_undefined_without_plt);
c121c671
DK
2003 }
2004
2005 // R_ARM_BASE_PREL: B(S) + A - P
2006 static inline typename This::Status
2007 base_prel(unsigned char* view,
ebabffbd
DK
2008 Arm_address origin,
2009 Arm_address address)
c121c671
DK
2010 {
2011 Base::rel32(view, origin - address);
2012 return STATUS_OKAY;
2013 }
2014
be8fcb75
ILT
2015 // R_ARM_BASE_ABS: B(S) + A
2016 static inline typename This::Status
2017 base_abs(unsigned char* view,
f4e5969c 2018 Arm_address origin)
be8fcb75
ILT
2019 {
2020 Base::rel32(view, origin);
2021 return STATUS_OKAY;
2022 }
2023
c121c671
DK
2024 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
2025 static inline typename This::Status
2026 got_brel(unsigned char* view,
2027 typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
2028 {
2029 Base::rel32(view, got_offset);
2030 return This::STATUS_OKAY;
2031 }
2032
f4e5969c 2033 // R_ARM_GOT_PREL: GOT(S) + A - P
7f5309a5 2034 static inline typename This::Status
f4e5969c
DK
2035 got_prel(unsigned char *view,
2036 Arm_address got_entry,
ebabffbd 2037 Arm_address address)
7f5309a5 2038 {
f4e5969c 2039 Base::rel32(view, got_entry - address);
7f5309a5
ILT
2040 return This::STATUS_OKAY;
2041 }
2042
c121c671
DK
2043 // R_ARM_PLT32: (S + A) | T - P
2044 static inline typename This::Status
d204b6e9
DK
2045 plt32(const Relocate_info<32, big_endian>* relinfo,
2046 unsigned char *view,
2047 const Sized_symbol<32>* gsym,
2048 const Arm_relobj<big_endian>* object,
2049 unsigned int r_sym,
c121c671 2050 const Symbol_value<32>* psymval,
ebabffbd 2051 Arm_address address,
d204b6e9
DK
2052 Arm_address thumb_bit,
2053 bool is_weakly_undefined_without_plt)
2054 {
2055 return arm_branch_common(elfcpp::R_ARM_PLT32, relinfo, view, gsym,
2056 object, r_sym, psymval, address, thumb_bit,
2057 is_weakly_undefined_without_plt);
2058 }
2059
2060 // R_ARM_XPC25: (S + A) | T - P
2061 static inline typename This::Status
2062 xpc25(const Relocate_info<32, big_endian>* relinfo,
2063 unsigned char *view,
2064 const Sized_symbol<32>* gsym,
2065 const Arm_relobj<big_endian>* object,
2066 unsigned int r_sym,
2067 const Symbol_value<32>* psymval,
2068 Arm_address address,
2069 Arm_address thumb_bit,
2070 bool is_weakly_undefined_without_plt)
c121c671 2071 {
d204b6e9
DK
2072 return arm_branch_common(elfcpp::R_ARM_XPC25, relinfo, view, gsym,
2073 object, r_sym, psymval, address, thumb_bit,
2074 is_weakly_undefined_without_plt);
c121c671
DK
2075 }
2076
2077 // R_ARM_CALL: (S + A) | T - P
2078 static inline typename This::Status
d204b6e9
DK
2079 call(const Relocate_info<32, big_endian>* relinfo,
2080 unsigned char *view,
2081 const Sized_symbol<32>* gsym,
2082 const Arm_relobj<big_endian>* object,
2083 unsigned int r_sym,
c121c671 2084 const Symbol_value<32>* psymval,
ebabffbd 2085 Arm_address address,
d204b6e9
DK
2086 Arm_address thumb_bit,
2087 bool is_weakly_undefined_without_plt)
c121c671 2088 {
d204b6e9
DK
2089 return arm_branch_common(elfcpp::R_ARM_CALL, relinfo, view, gsym,
2090 object, r_sym, psymval, address, thumb_bit,
2091 is_weakly_undefined_without_plt);
c121c671
DK
2092 }
2093
2094 // R_ARM_JUMP24: (S + A) | T - P
2095 static inline typename This::Status
d204b6e9
DK
2096 jump24(const Relocate_info<32, big_endian>* relinfo,
2097 unsigned char *view,
2098 const Sized_symbol<32>* gsym,
2099 const Arm_relobj<big_endian>* object,
2100 unsigned int r_sym,
c121c671 2101 const Symbol_value<32>* psymval,
ebabffbd 2102 Arm_address address,
d204b6e9
DK
2103 Arm_address thumb_bit,
2104 bool is_weakly_undefined_without_plt)
c121c671 2105 {
d204b6e9
DK
2106 return arm_branch_common(elfcpp::R_ARM_JUMP24, relinfo, view, gsym,
2107 object, r_sym, psymval, address, thumb_bit,
2108 is_weakly_undefined_without_plt);
c121c671
DK
2109 }
2110
2111 // R_ARM_PREL: (S + A) | T - P
2112 static inline typename This::Status
2113 prel31(unsigned char *view,
2114 const Sized_relobj<32, big_endian>* object,
2115 const Symbol_value<32>* psymval,
ebabffbd 2116 Arm_address address,
2daedcd6 2117 Arm_address thumb_bit)
c121c671
DK
2118 {
2119 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2120 Valtype* wv = reinterpret_cast<Valtype*>(view);
2121 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2122 Valtype addend = utils::sign_extend<31>(val);
2daedcd6 2123 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c121c671
DK
2124 val = utils::bit_select(val, x, 0x7fffffffU);
2125 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2126 return (utils::has_overflow<31>(x) ?
2127 This::STATUS_OVERFLOW : This::STATUS_OKAY);
2128 }
fd3c5f0b
ILT
2129
2130 // R_ARM_MOVW_ABS_NC: (S + A) | T
2131 static inline typename This::Status
2132 movw_abs_nc(unsigned char *view,
2133 const Sized_relobj<32, big_endian>* object,
2134 const Symbol_value<32>* psymval,
2daedcd6 2135 Arm_address thumb_bit)
fd3c5f0b
ILT
2136 {
2137 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2138 Valtype* wv = reinterpret_cast<Valtype*>(view);
2139 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2140 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2141 Valtype x = psymval->value(object, addend) | thumb_bit;
fd3c5f0b
ILT
2142 val = This::insert_val_arm_movw_movt(val, x);
2143 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2144 return This::STATUS_OKAY;
2145 }
2146
2147 // R_ARM_MOVT_ABS: S + A
2148 static inline typename This::Status
2149 movt_abs(unsigned char *view,
2150 const Sized_relobj<32, big_endian>* object,
2151 const Symbol_value<32>* psymval)
2152 {
2153 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2154 Valtype* wv = reinterpret_cast<Valtype*>(view);
2155 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2156 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2157 Valtype x = psymval->value(object, addend) >> 16;
fd3c5f0b
ILT
2158 val = This::insert_val_arm_movw_movt(val, x);
2159 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2160 return This::STATUS_OKAY;
2161 }
2162
2163 // R_ARM_THM_MOVW_ABS_NC: S + A | T
2164 static inline typename This::Status
2165 thm_movw_abs_nc(unsigned char *view,
2166 const Sized_relobj<32, big_endian>* object,
2167 const Symbol_value<32>* psymval,
2daedcd6 2168 Arm_address thumb_bit)
fd3c5f0b
ILT
2169 {
2170 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2171 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2172 Valtype* wv = reinterpret_cast<Valtype*>(view);
2173 Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2174 | elfcpp::Swap<16, big_endian>::readval(wv + 1));
2175 Reltype addend = extract_thumb_movw_movt_addend(val);
2daedcd6 2176 Reltype x = psymval->value(object, addend) | thumb_bit;
fd3c5f0b
ILT
2177 val = This::insert_val_thumb_movw_movt(val, x);
2178 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2179 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2180 return This::STATUS_OKAY;
2181 }
2182
2183 // R_ARM_THM_MOVT_ABS: S + A
2184 static inline typename This::Status
2185 thm_movt_abs(unsigned char *view,
2186 const Sized_relobj<32, big_endian>* object,
2187 const Symbol_value<32>* psymval)
2188 {
2189 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2190 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2191 Valtype* wv = reinterpret_cast<Valtype*>(view);
2192 Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2193 | elfcpp::Swap<16, big_endian>::readval(wv + 1));
2194 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2195 Reltype x = psymval->value(object, addend) >> 16;
fd3c5f0b
ILT
2196 val = This::insert_val_thumb_movw_movt(val, x);
2197 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2198 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2199 return This::STATUS_OKAY;
2200 }
2201
c2a122b6
ILT
2202 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
2203 static inline typename This::Status
2204 movw_prel_nc(unsigned char *view,
2205 const Sized_relobj<32, big_endian>* object,
2206 const Symbol_value<32>* psymval,
ebabffbd 2207 Arm_address address,
2daedcd6 2208 Arm_address thumb_bit)
c2a122b6
ILT
2209 {
2210 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2211 Valtype* wv = reinterpret_cast<Valtype*>(view);
2212 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2213 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2214 Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
c2a122b6
ILT
2215 val = This::insert_val_arm_movw_movt(val, x);
2216 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2217 return This::STATUS_OKAY;
2218 }
2219
2220 // R_ARM_MOVT_PREL: S + A - P
2221 static inline typename This::Status
2222 movt_prel(unsigned char *view,
2223 const Sized_relobj<32, big_endian>* object,
2224 const Symbol_value<32>* psymval,
ebabffbd 2225 Arm_address address)
c2a122b6
ILT
2226 {
2227 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2228 Valtype* wv = reinterpret_cast<Valtype*>(view);
2229 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2230 Valtype addend = This::extract_arm_movw_movt_addend(val);
2daedcd6 2231 Valtype x = (psymval->value(object, addend) - address) >> 16;
c2a122b6
ILT
2232 val = This::insert_val_arm_movw_movt(val, x);
2233 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2234 return This::STATUS_OKAY;
2235 }
2236
2237 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
2238 static inline typename This::Status
2239 thm_movw_prel_nc(unsigned char *view,
2240 const Sized_relobj<32, big_endian>* object,
2241 const Symbol_value<32>* psymval,
ebabffbd 2242 Arm_address address,
2daedcd6 2243 Arm_address thumb_bit)
c2a122b6
ILT
2244 {
2245 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2246 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2247 Valtype* wv = reinterpret_cast<Valtype*>(view);
2248 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2249 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
2250 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2251 Reltype x = (psymval->value(object, addend) | thumb_bit) - address;
c2a122b6
ILT
2252 val = This::insert_val_thumb_movw_movt(val, x);
2253 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2254 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2255 return This::STATUS_OKAY;
2256 }
2257
2258 // R_ARM_THM_MOVT_PREL: S + A - P
2259 static inline typename This::Status
2260 thm_movt_prel(unsigned char *view,
2261 const Sized_relobj<32, big_endian>* object,
2262 const Symbol_value<32>* psymval,
ebabffbd 2263 Arm_address address)
c2a122b6
ILT
2264 {
2265 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2266 typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
2267 Valtype* wv = reinterpret_cast<Valtype*>(view);
2268 Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
2269 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
2270 Reltype addend = This::extract_thumb_movw_movt_addend(val);
2daedcd6 2271 Reltype x = (psymval->value(object, addend) - address) >> 16;
c2a122b6
ILT
2272 val = This::insert_val_thumb_movw_movt(val, x);
2273 elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
2274 elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
2275 return This::STATUS_OKAY;
2276 }
c121c671
DK
2277};
2278
d204b6e9
DK
2279// Relocate ARM long branches. This handles relocation types
2280// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
2281// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
2282// undefined and we do not use PLT in this relocation. In such a case,
2283// the branch is converted into an NOP.
2284
2285template<bool big_endian>
2286typename Arm_relocate_functions<big_endian>::Status
2287Arm_relocate_functions<big_endian>::arm_branch_common(
2288 unsigned int r_type,
2289 const Relocate_info<32, big_endian>* relinfo,
2290 unsigned char *view,
2291 const Sized_symbol<32>* gsym,
2292 const Arm_relobj<big_endian>* object,
2293 unsigned int r_sym,
2294 const Symbol_value<32>* psymval,
2295 Arm_address address,
2296 Arm_address thumb_bit,
2297 bool is_weakly_undefined_without_plt)
2298{
2299 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2300 Valtype* wv = reinterpret_cast<Valtype*>(view);
2301 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2302
2303 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
2304 && ((val & 0x0f000000UL) == 0x0a000000UL);
2305 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
2306 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
2307 && ((val & 0x0f000000UL) == 0x0b000000UL);
2308 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
2309 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
2310
2311 // Check that the instruction is valid.
2312 if (r_type == elfcpp::R_ARM_CALL)
2313 {
2314 if (!insn_is_uncond_bl && !insn_is_blx)
2315 return This::STATUS_BAD_RELOC;
2316 }
2317 else if (r_type == elfcpp::R_ARM_JUMP24)
2318 {
2319 if (!insn_is_b && !insn_is_cond_bl)
2320 return This::STATUS_BAD_RELOC;
2321 }
2322 else if (r_type == elfcpp::R_ARM_PLT32)
2323 {
2324 if (!insn_is_any_branch)
2325 return This::STATUS_BAD_RELOC;
2326 }
2327 else if (r_type == elfcpp::R_ARM_XPC25)
2328 {
2329 // FIXME: AAELF document IH0044C does not say much about it other
2330 // than it being obsolete.
2331 if (!insn_is_any_branch)
2332 return This::STATUS_BAD_RELOC;
2333 }
2334 else
2335 gold_unreachable();
2336
2337 // A branch to an undefined weak symbol is turned into a jump to
2338 // the next instruction unless a PLT entry will be created.
2339 // Do the same for local undefined symbols.
2340 // The jump to the next instruction is optimized as a NOP depending
2341 // on the architecture.
2342 const Target_arm<big_endian>* arm_target =
2343 Target_arm<big_endian>::default_target();
2344 if (is_weakly_undefined_without_plt)
2345 {
2346 Valtype cond = val & 0xf0000000U;
2347 if (arm_target->may_use_arm_nop())
2348 val = cond | 0x0320f000;
2349 else
2350 val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0.
2351 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2352 return This::STATUS_OKAY;
2353 }
2354
2355 Valtype addend = utils::sign_extend<26>(val << 2);
2356 Valtype branch_target = psymval->value(object, addend);
2357 int32_t branch_offset = branch_target - address;
2358
2359 // We need a stub if the branch offset is too large or if we need
2360 // to switch mode.
2361 bool may_use_blx = arm_target->may_use_blx();
2362 Reloc_stub* stub = NULL;
2363 if ((branch_offset > ARM_MAX_FWD_BRANCH_OFFSET)
2364 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2365 || ((thumb_bit != 0) && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))
2366 {
2367 Stub_type stub_type =
2368 Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
2369 (thumb_bit != 0));
2370 if (stub_type != arm_stub_none)
2371 {
2ea97941 2372 Stub_table<big_endian>* stub_table =
d204b6e9 2373 object->stub_table(relinfo->data_shndx);
2ea97941 2374 gold_assert(stub_table != NULL);
d204b6e9
DK
2375
2376 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 2377 stub = stub_table->find_reloc_stub(stub_key);
d204b6e9
DK
2378 gold_assert(stub != NULL);
2379 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 2380 branch_target = stub_table->address() + stub->offset() + addend;
d204b6e9
DK
2381 branch_offset = branch_target - address;
2382 gold_assert((branch_offset <= ARM_MAX_FWD_BRANCH_OFFSET)
2383 && (branch_offset >= ARM_MAX_BWD_BRANCH_OFFSET));
2384 }
2385 }
2386
2387 // At this point, if we still need to switch mode, the instruction
2388 // must either be a BLX or a BL that can be converted to a BLX.
2389 if (thumb_bit != 0)
2390 {
2391 // Turn BL to BLX.
2392 gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
2393 val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
2394 }
2395
2396 val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
2397 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2398 return (utils::has_overflow<26>(branch_offset)
2399 ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
2400}
2401
51938283
DK
2402// Relocate THUMB long branches. This handles relocation types
2403// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
2404// If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly
2405// undefined and we do not use PLT in this relocation. In such a case,
2406// the branch is converted into an NOP.
2407
2408template<bool big_endian>
2409typename Arm_relocate_functions<big_endian>::Status
2410Arm_relocate_functions<big_endian>::thumb_branch_common(
2411 unsigned int r_type,
2412 const Relocate_info<32, big_endian>* relinfo,
2413 unsigned char *view,
2414 const Sized_symbol<32>* gsym,
2415 const Arm_relobj<big_endian>* object,
2416 unsigned int r_sym,
2417 const Symbol_value<32>* psymval,
2418 Arm_address address,
2419 Arm_address thumb_bit,
2420 bool is_weakly_undefined_without_plt)
2421{
2422 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
2423 Valtype* wv = reinterpret_cast<Valtype*>(view);
2424 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
2425 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
2426
2427 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
2428 // into account.
2429 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
2430 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
2431
2432 // Check that the instruction is valid.
2433 if (r_type == elfcpp::R_ARM_THM_CALL)
2434 {
2435 if (!is_bl_insn && !is_blx_insn)
2436 return This::STATUS_BAD_RELOC;
2437 }
2438 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
2439 {
2440 // This cannot be a BLX.
2441 if (!is_bl_insn)
2442 return This::STATUS_BAD_RELOC;
2443 }
2444 else if (r_type == elfcpp::R_ARM_THM_XPC22)
2445 {
2446 // Check for Thumb to Thumb call.
2447 if (!is_blx_insn)
2448 return This::STATUS_BAD_RELOC;
2449 if (thumb_bit != 0)
2450 {
2451 gold_warning(_("%s: Thumb BLX instruction targets "
2452 "thumb function '%s'."),
2453 object->name().c_str(),
2454 (gsym ? gsym->name() : "(local)"));
2455 // Convert BLX to BL.
2456 lower_insn |= 0x1000U;
2457 }
2458 }
2459 else
2460 gold_unreachable();
2461
2462 // A branch to an undefined weak symbol is turned into a jump to
2463 // the next instruction unless a PLT entry will be created.
2464 // The jump to the next instruction is optimized as a NOP.W for
2465 // Thumb-2 enabled architectures.
2466 const Target_arm<big_endian>* arm_target =
2467 Target_arm<big_endian>::default_target();
2468 if (is_weakly_undefined_without_plt)
2469 {
2470 if (arm_target->may_use_thumb2_nop())
2471 {
2472 elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
2473 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
2474 }
2475 else
2476 {
2477 elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
2478 elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
2479 }
2480 return This::STATUS_OKAY;
2481 }
2482
2483 // Fetch the addend. We use the Thumb-2 encoding (backwards compatible
2484 // with Thumb-1) involving the J1 and J2 bits.
2485 uint32_t s = (upper_insn & (1 << 10)) >> 10;
2486 uint32_t upper = upper_insn & 0x3ff;
2487 uint32_t lower = lower_insn & 0x7ff;
2488 uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
2489 uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
2490 uint32_t i1 = j1 ^ s ? 0 : 1;
2491 uint32_t i2 = j2 ^ s ? 0 : 1;
2492
2493 int32_t addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
2494 // Sign extend.
2495 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
2496
2497 Arm_address branch_target = psymval->value(object, addend);
2498 int32_t branch_offset = branch_target - address;
2499
2500 // We need a stub if the branch offset is too large or if we need
2501 // to switch mode.
2502 bool may_use_blx = arm_target->may_use_blx();
2503 bool thumb2 = arm_target->using_thumb2();
2504 if ((!thumb2
2505 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2506 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2507 || (thumb2
2508 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2509 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2510 || ((thumb_bit == 0)
2511 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
2512 || r_type == elfcpp::R_ARM_THM_JUMP24)))
2513 {
2514 Stub_type stub_type =
2515 Reloc_stub::stub_type_for_reloc(r_type, address, branch_target,
2516 (thumb_bit != 0));
2517 if (stub_type != arm_stub_none)
2518 {
2ea97941 2519 Stub_table<big_endian>* stub_table =
51938283 2520 object->stub_table(relinfo->data_shndx);
2ea97941 2521 gold_assert(stub_table != NULL);
51938283
DK
2522
2523 Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
2ea97941 2524 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
51938283
DK
2525 gold_assert(stub != NULL);
2526 thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
2ea97941 2527 branch_target = stub_table->address() + stub->offset() + addend;
51938283
DK
2528 branch_offset = branch_target - address;
2529 }
2530 }
2531
2532 // At this point, if we still need to switch mode, the instruction
2533 // must either be a BLX or a BL that can be converted to a BLX.
2534 if (thumb_bit == 0)
2535 {
2536 gold_assert(may_use_blx
2537 && (r_type == elfcpp::R_ARM_THM_CALL
2538 || r_type == elfcpp::R_ARM_THM_XPC22));
2539 // Make sure this is a BLX.
2540 lower_insn &= ~0x1000U;
2541 }
2542 else
2543 {
2544 // Make sure this is a BL.
2545 lower_insn |= 0x1000U;
2546 }
2547
2548 uint32_t reloc_sign = (branch_offset < 0) ? 1 : 0;
2549 uint32_t relocation = static_cast<uint32_t>(branch_offset);
2550
2551 if ((lower_insn & 0x5000U) == 0x4000U)
2552 // For a BLX instruction, make sure that the relocation is rounded up
2553 // to a word boundary. This follows the semantics of the instruction
2554 // which specifies that bit 1 of the target address will come from bit
2555 // 1 of the base address.
2556 relocation = (relocation + 2U) & ~3U;
2557
2558 // Put BRANCH_OFFSET back into the insn. Assumes two's complement.
2559 // We use the Thumb-2 encoding, which is safe even if dealing with
2560 // a Thumb-1 instruction by virtue of our overflow check above. */
2561 upper_insn = (upper_insn & ~0x7ffU)
2562 | ((relocation >> 12) & 0x3ffU)
2563 | (reloc_sign << 10);
2564 lower_insn = (lower_insn & ~0x2fffU)
2565 | (((!((relocation >> 23) & 1U)) ^ reloc_sign) << 13)
2566 | (((!((relocation >> 22) & 1U)) ^ reloc_sign) << 11)
2567 | ((relocation >> 1) & 0x7ffU);
2568
2569 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
2570 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
2571
2572 return ((thumb2
2573 ? utils::has_overflow<25>(relocation)
2574 : utils::has_overflow<23>(relocation))
2575 ? This::STATUS_OVERFLOW
2576 : This::STATUS_OKAY);
2577}
2578
94cdfcff
DK
2579// Get the GOT section, creating it if necessary.
2580
2581template<bool big_endian>
2582Output_data_got<32, big_endian>*
2583Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
2584{
2585 if (this->got_ == NULL)
2586 {
2587 gold_assert(symtab != NULL && layout != NULL);
2588
2589 this->got_ = new Output_data_got<32, big_endian>();
2590
2591 Output_section* os;
2592 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2593 (elfcpp::SHF_ALLOC
2594 | elfcpp::SHF_WRITE),
f5c870d2 2595 this->got_, false);
94cdfcff
DK
2596 os->set_is_relro();
2597
2598 // The old GNU linker creates a .got.plt section. We just
2599 // create another set of data in the .got section. Note that we
2600 // always create a PLT if we create a GOT, although the PLT
2601 // might be empty.
2602 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
2603 os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2604 (elfcpp::SHF_ALLOC
2605 | elfcpp::SHF_WRITE),
f5c870d2 2606 this->got_plt_, false);
94cdfcff
DK
2607 os->set_is_relro();
2608
2609 // The first three entries are reserved.
2610 this->got_plt_->set_current_data_size(3 * 4);
2611
2612 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
2613 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2614 this->got_plt_,
2615 0, 0, elfcpp::STT_OBJECT,
2616 elfcpp::STB_LOCAL,
2617 elfcpp::STV_HIDDEN, 0,
2618 false, false);
2619 }
2620 return this->got_;
2621}
2622
2623// Get the dynamic reloc section, creating it if necessary.
2624
2625template<bool big_endian>
2626typename Target_arm<big_endian>::Reloc_section*
2627Target_arm<big_endian>::rel_dyn_section(Layout* layout)
2628{
2629 if (this->rel_dyn_ == NULL)
2630 {
2631 gold_assert(layout != NULL);
2632 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
2633 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
f5c870d2 2634 elfcpp::SHF_ALLOC, this->rel_dyn_, true);
94cdfcff
DK
2635 }
2636 return this->rel_dyn_;
2637}
2638
b569affa
DK
2639// Insn_template methods.
2640
2641// Return byte size of an instruction template.
2642
2643size_t
2644Insn_template::size() const
2645{
2646 switch (this->type())
2647 {
2648 case THUMB16_TYPE:
2649 return 2;
2650 case ARM_TYPE:
2651 case THUMB32_TYPE:
2652 case DATA_TYPE:
2653 return 4;
2654 default:
2655 gold_unreachable();
2656 }
2657}
2658
2659// Return alignment of an instruction template.
2660
2661unsigned
2662Insn_template::alignment() const
2663{
2664 switch (this->type())
2665 {
2666 case THUMB16_TYPE:
2667 case THUMB32_TYPE:
2668 return 2;
2669 case ARM_TYPE:
2670 case DATA_TYPE:
2671 return 4;
2672 default:
2673 gold_unreachable();
2674 }
2675}
2676
2677// Stub_template methods.
2678
2679Stub_template::Stub_template(
2ea97941
ILT
2680 Stub_type type, const Insn_template* insns,
2681 size_t insn_count)
2682 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
b569affa
DK
2683 entry_in_thumb_mode_(false), relocs_()
2684{
2ea97941 2685 off_t offset = 0;
b569affa
DK
2686
2687 // Compute byte size and alignment of stub template.
2ea97941 2688 for (size_t i = 0; i < insn_count; i++)
b569affa 2689 {
2ea97941
ILT
2690 unsigned insn_alignment = insns[i].alignment();
2691 size_t insn_size = insns[i].size();
2692 gold_assert((offset & (insn_alignment - 1)) == 0);
b569affa 2693 this->alignment_ = std::max(this->alignment_, insn_alignment);
2ea97941 2694 switch (insns[i].type())
b569affa
DK
2695 {
2696 case Insn_template::THUMB16_TYPE:
2697 if (i == 0)
2698 this->entry_in_thumb_mode_ = true;
2699 break;
2700
2701 case Insn_template::THUMB32_TYPE:
2ea97941
ILT
2702 if (insns[i].r_type() != elfcpp::R_ARM_NONE)
2703 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
2704 if (i == 0)
2705 this->entry_in_thumb_mode_ = true;
2706 break;
2707
2708 case Insn_template::ARM_TYPE:
2709 // Handle cases where the target is encoded within the
2710 // instruction.
2ea97941
ILT
2711 if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
2712 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
2713 break;
2714
2715 case Insn_template::DATA_TYPE:
2716 // Entry point cannot be data.
2717 gold_assert(i != 0);
2ea97941 2718 this->relocs_.push_back(Reloc(i, offset));
b569affa
DK
2719 break;
2720
2721 default:
2722 gold_unreachable();
2723 }
2ea97941 2724 offset += insn_size;
b569affa 2725 }
2ea97941 2726 this->size_ = offset;
b569affa
DK
2727}
2728
2729// Reloc_stub::Key methods.
2730
2731// Dump a Key as a string for debugging.
2732
2733std::string
2734Reloc_stub::Key::name() const
2735{
2736 if (this->r_sym_ == invalid_index)
2737 {
2738 // Global symbol key name
2739 // <stub-type>:<symbol name>:<addend>.
2740 const std::string sym_name = this->u_.symbol->name();
2741 // We need to print two hex number and two colons. So just add 100 bytes
2742 // to the symbol name size.
2743 size_t len = sym_name.size() + 100;
2744 char* buffer = new char[len];
2745 int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
2746 sym_name.c_str(), this->addend_);
2747 gold_assert(c > 0 && c < static_cast<int>(len));
2748 delete[] buffer;
2749 return std::string(buffer);
2750 }
2751 else
2752 {
2753 // local symbol key name
2754 // <stub-type>:<object>:<r_sym>:<addend>.
2755 const size_t len = 200;
2756 char buffer[len];
2757 int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
2758 this->u_.relobj, this->r_sym_, this->addend_);
2759 gold_assert(c > 0 && c < static_cast<int>(len));
2760 return std::string(buffer);
2761 }
2762}
2763
2764// Reloc_stub methods.
2765
2766// Determine the type of stub needed, if any, for a relocation of R_TYPE at
2767// LOCATION to DESTINATION.
2768// This code is based on the arm_type_of_stub function in
2769// bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub
2770// class simple.
2771
2772Stub_type
2773Reloc_stub::stub_type_for_reloc(
2774 unsigned int r_type,
2775 Arm_address location,
2776 Arm_address destination,
2777 bool target_is_thumb)
2778{
2779 Stub_type stub_type = arm_stub_none;
2780
2781 // This is a bit ugly but we want to avoid using a templated class for
2782 // big and little endianities.
2783 bool may_use_blx;
2784 bool should_force_pic_veneer;
2785 bool thumb2;
2786 bool thumb_only;
2787 if (parameters->target().is_big_endian())
2788 {
43d12afe 2789 const Target_arm<true>* big_endian_target =
b569affa 2790 Target_arm<true>::default_target();
43d12afe
DK
2791 may_use_blx = big_endian_target->may_use_blx();
2792 should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
2793 thumb2 = big_endian_target->using_thumb2();
2794 thumb_only = big_endian_target->using_thumb_only();
b569affa
DK
2795 }
2796 else
2797 {
43d12afe 2798 const Target_arm<false>* little_endian_target =
b569affa 2799 Target_arm<false>::default_target();
43d12afe
DK
2800 may_use_blx = little_endian_target->may_use_blx();
2801 should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
2802 thumb2 = little_endian_target->using_thumb2();
2803 thumb_only = little_endian_target->using_thumb_only();
b569affa
DK
2804 }
2805
2806 int64_t branch_offset = (int64_t)destination - location;
2807
2808 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
2809 {
2810 // Handle cases where:
2811 // - this call goes too far (different Thumb/Thumb2 max
2812 // distance)
2813 // - it's a Thumb->Arm call and blx is not available, or it's a
2814 // Thumb->Arm branch (not bl). A stub is needed in this case.
2815 if ((!thumb2
2816 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2817 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2818 || (thumb2
2819 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2820 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2821 || ((!target_is_thumb)
2822 && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
2823 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
2824 {
2825 if (target_is_thumb)
2826 {
2827 // Thumb to thumb.
2828 if (!thumb_only)
2829 {
51938283
DK
2830 stub_type = (parameters->options().shared()
2831 || should_force_pic_veneer)
b569affa
DK
2832 // PIC stubs.
2833 ? ((may_use_blx
2834 && (r_type == elfcpp::R_ARM_THM_CALL))
2835 // V5T and above. Stub starts with ARM code, so
2836 // we must be able to switch mode before
2837 // reaching it, which is only possible for 'bl'
2838 // (ie R_ARM_THM_CALL relocation).
2839 ? arm_stub_long_branch_any_thumb_pic
2840 // On V4T, use Thumb code only.
2841 : arm_stub_long_branch_v4t_thumb_thumb_pic)
2842
2843 // non-PIC stubs.
2844 : ((may_use_blx
2845 && (r_type == elfcpp::R_ARM_THM_CALL))
2846 ? arm_stub_long_branch_any_any // V5T and above.
2847 : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
2848 }
2849 else
2850 {
51938283
DK
2851 stub_type = (parameters->options().shared()
2852 || should_force_pic_veneer)
b569affa
DK
2853 ? arm_stub_long_branch_thumb_only_pic // PIC stub.
2854 : arm_stub_long_branch_thumb_only; // non-PIC stub.
2855 }
2856 }
2857 else
2858 {
2859 // Thumb to arm.
2860
2861 // FIXME: We should check that the input section is from an
2862 // object that has interwork enabled.
2863
2864 stub_type = (parameters->options().shared()
2865 || should_force_pic_veneer)
2866 // PIC stubs.
2867 ? ((may_use_blx
2868 && (r_type == elfcpp::R_ARM_THM_CALL))
2869 ? arm_stub_long_branch_any_arm_pic // V5T and above.
2870 : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T.
2871
2872 // non-PIC stubs.
2873 : ((may_use_blx
2874 && (r_type == elfcpp::R_ARM_THM_CALL))
2875 ? arm_stub_long_branch_any_any // V5T and above.
2876 : arm_stub_long_branch_v4t_thumb_arm); // V4T.
2877
2878 // Handle v4t short branches.
2879 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2880 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2881 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2882 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2883 }
2884 }
2885 }
2886 else if (r_type == elfcpp::R_ARM_CALL
2887 || r_type == elfcpp::R_ARM_JUMP24
2888 || r_type == elfcpp::R_ARM_PLT32)
2889 {
2890 if (target_is_thumb)
2891 {
2892 // Arm to thumb.
2893
2894 // FIXME: We should check that the input section is from an
2895 // object that has interwork enabled.
2896
2897 // We have an extra 2-bytes reach because of
2898 // the mode change (bit 24 (H) of BLX encoding).
2899 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2900 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2901 || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
2902 || (r_type == elfcpp::R_ARM_JUMP24)
2903 || (r_type == elfcpp::R_ARM_PLT32))
2904 {
2905 stub_type = (parameters->options().shared()
2906 || should_force_pic_veneer)
2907 // PIC stubs.
2908 ? (may_use_blx
2909 ? arm_stub_long_branch_any_thumb_pic// V5T and above.
2910 : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub.
2911
2912 // non-PIC stubs.
2913 : (may_use_blx
2914 ? arm_stub_long_branch_any_any // V5T and above.
2915 : arm_stub_long_branch_v4t_arm_thumb); // V4T.
2916 }
2917 }
2918 else
2919 {
2920 // Arm to arm.
2921 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2922 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2923 {
2924 stub_type = (parameters->options().shared()
2925 || should_force_pic_veneer)
2926 ? arm_stub_long_branch_any_arm_pic // PIC stubs.
2927 : arm_stub_long_branch_any_any; /// non-PIC.
2928 }
2929 }
2930 }
2931
2932 return stub_type;
2933}
2934
2935// Template to implement do_write for a specific target endianity.
2936
2937template<bool big_endian>
2938void inline
2939Reloc_stub::do_fixed_endian_write(unsigned char* view,
2940 section_size_type view_size)
2941{
2ea97941
ILT
2942 const Stub_template* stub_template = this->stub_template();
2943 const Insn_template* insns = stub_template->insns();
b569affa
DK
2944
2945 // FIXME: We do not handle BE8 encoding yet.
2946 unsigned char* pov = view;
2ea97941 2947 for (size_t i = 0; i < stub_template->insn_count(); i++)
b569affa
DK
2948 {
2949 switch (insns[i].type())
2950 {
2951 case Insn_template::THUMB16_TYPE:
2952 // Non-zero reloc addends are only used in Cortex-A8 stubs.
2953 gold_assert(insns[i].reloc_addend() == 0);
2954 elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
2955 break;
2956 case Insn_template::THUMB32_TYPE:
2957 {
2958 uint32_t hi = (insns[i].data() >> 16) & 0xffff;
2959 uint32_t lo = insns[i].data() & 0xffff;
2960 elfcpp::Swap<16, big_endian>::writeval(pov, hi);
2961 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
2962 }
2963 break;
2964 case Insn_template::ARM_TYPE:
2965 case Insn_template::DATA_TYPE:
2966 elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
2967 break;
2968 default:
2969 gold_unreachable();
2970 }
2971 pov += insns[i].size();
2972 }
2973 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
2974}
2975
2976// Write a reloc stub to VIEW with endianity specified by BIG_ENDIAN.
2977
2978void
2979Reloc_stub::do_write(unsigned char* view, section_size_type view_size,
2980 bool big_endian)
2981{
2982 if (big_endian)
2983 this->do_fixed_endian_write<true>(view, view_size);
2984 else
2985 this->do_fixed_endian_write<false>(view, view_size);
2986}
2987
2988// Stub_factory methods.
2989
2990Stub_factory::Stub_factory()
2991{
2992 // The instruction template sequences are declared as static
2993 // objects and initialized first time the constructor runs.
2994
2995 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2996 // to reach the stub if necessary.
2997 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
2998 {
2999 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
3000 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3001 // dcd R_ARM_ABS32(X)
3002 };
3003
3004 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
3005 // available.
3006 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
3007 {
3008 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3009 Insn_template::arm_insn(0xe12fff1c), // bx ip
3010 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3011 // dcd R_ARM_ABS32(X)
3012 };
3013
3014 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
3015 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
3016 {
3017 Insn_template::thumb16_insn(0xb401), // push {r0}
3018 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
3019 Insn_template::thumb16_insn(0x4684), // mov ip, r0
3020 Insn_template::thumb16_insn(0xbc01), // pop {r0}
3021 Insn_template::thumb16_insn(0x4760), // bx ip
3022 Insn_template::thumb16_insn(0xbf00), // nop
3023 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3024 // dcd R_ARM_ABS32(X)
3025 };
3026
3027 // V4T Thumb -> Thumb long branch stub. Using the stack is not
3028 // allowed.
3029 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
3030 {
3031 Insn_template::thumb16_insn(0x4778), // bx pc
3032 Insn_template::thumb16_insn(0x46c0), // nop
3033 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3034 Insn_template::arm_insn(0xe12fff1c), // bx ip
3035 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3036 // dcd R_ARM_ABS32(X)
3037 };
3038
3039 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
3040 // available.
3041 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
3042 {
3043 Insn_template::thumb16_insn(0x4778), // bx pc
3044 Insn_template::thumb16_insn(0x46c0), // nop
3045 Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4]
3046 Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
3047 // dcd R_ARM_ABS32(X)
3048 };
3049
3050 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
3051 // one, when the destination is close enough.
3052 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
3053 {
3054 Insn_template::thumb16_insn(0x4778), // bx pc
3055 Insn_template::thumb16_insn(0x46c0), // nop
3056 Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8)
3057 };
3058
3059 // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
3060 // blx to reach the stub if necessary.
3061 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
3062 {
3063 Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc]
3064 Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip
3065 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
3066 // dcd R_ARM_REL32(X-4)
3067 };
3068
3069 // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
3070 // blx to reach the stub if necessary. We can not add into pc;
3071 // it is not guaranteed to mode switch (different in ARMv6 and
3072 // ARMv7).
3073 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
3074 {
3075 Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4]
3076 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3077 Insn_template::arm_insn(0xe12fff1c), // bx ip
3078 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3079 // dcd R_ARM_REL32(X)
3080 };
3081
3082 // V4T ARM -> ARM long branch stub, PIC.
3083 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
3084 {
3085 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
3086 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3087 Insn_template::arm_insn(0xe12fff1c), // bx ip
3088 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3089 // dcd R_ARM_REL32(X)
3090 };
3091
3092 // V4T Thumb -> ARM long branch stub, PIC.
3093 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
3094 {
3095 Insn_template::thumb16_insn(0x4778), // bx pc
3096 Insn_template::thumb16_insn(0x46c0), // nop
3097 Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0]
3098 Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc
3099 Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
3100 // dcd R_ARM_REL32(X)
3101 };
3102
3103 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
3104 // architectures.
3105 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
3106 {
3107 Insn_template::thumb16_insn(0xb401), // push {r0}
3108 Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8]
3109 Insn_template::thumb16_insn(0x46fc), // mov ip, pc
3110 Insn_template::thumb16_insn(0x4484), // add ip, r0
3111 Insn_template::thumb16_insn(0xbc01), // pop {r0}
3112 Insn_template::thumb16_insn(0x4760), // bx ip
3113 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
3114 // dcd R_ARM_REL32(X)
3115 };
3116
3117 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
3118 // allowed.
3119 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
3120 {
3121 Insn_template::thumb16_insn(0x4778), // bx pc
3122 Insn_template::thumb16_insn(0x46c0), // nop
3123 Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4]
3124 Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip
3125 Insn_template::arm_insn(0xe12fff1c), // bx ip
3126 Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
3127 // dcd R_ARM_REL32(X)
3128 };
3129
3130 // Cortex-A8 erratum-workaround stubs.
3131
3132 // Stub used for conditional branches (which may be beyond +/-1MB away,
3133 // so we can't use a conditional branch to reach this stub).
3134
3135 // original code:
3136 //
3137 // b<cond> X
3138 // after:
3139 //
3140 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
3141 {
3142 Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true
3143 Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after
3144 Insn_template::thumb32_b_insn(0xf000b800, -4) // true:
3145 // b.w X
3146 };
3147
3148 // Stub used for b.w and bl.w instructions.
3149
3150 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
3151 {
3152 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
3153 };
3154
3155 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
3156 {
3157 Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest
3158 };
3159
3160 // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
3161 // instruction (which switches to ARM mode) to point to this stub. Jump to
3162 // the real destination using an ARM-mode branch.
3163 const Insn_template elf32_arm_stub_a8_veneer_blx[] =
3164 {
3165 Insn_template::arm_rel_insn(0xea000000, -8) // b dest
3166 };
3167
3168 // Fill in the stub template look-up table. Stub templates are constructed
3169 // per instance of Stub_factory for fast look-up without locking
3170 // in a thread-enabled environment.
3171
3172 this->stub_templates_[arm_stub_none] =
3173 new Stub_template(arm_stub_none, NULL, 0);
3174
3175#define DEF_STUB(x) \
3176 do \
3177 { \
3178 size_t array_size \
3179 = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
3180 Stub_type type = arm_stub_##x; \
3181 this->stub_templates_[type] = \
3182 new Stub_template(type, elf32_arm_stub_##x, array_size); \
3183 } \
3184 while (0);
3185
3186 DEF_STUBS
3187#undef DEF_STUB
3188}
3189
56ee5e00
DK
3190// Stub_table methods.
3191
3192// Add a STUB with using KEY. Caller is reponsible for avoid adding
3193// if already a STUB with the same key has been added.
3194
3195template<bool big_endian>
3196void
3197Stub_table<big_endian>::add_reloc_stub(
3198 Reloc_stub* stub,
3199 const Reloc_stub::Key& key)
3200{
2ea97941
ILT
3201 const Stub_template* stub_template = stub->stub_template();
3202 gold_assert(stub_template->type() == key.stub_type());
56ee5e00 3203 this->reloc_stubs_[key] = stub;
2ea97941
ILT
3204 if (this->addralign_ < stub_template->alignment())
3205 this->addralign_ = stub_template->alignment();
56ee5e00
DK
3206 this->has_been_changed_ = true;
3207}
3208
3209template<bool big_endian>
3210void
3211Stub_table<big_endian>::relocate_stubs(
3212 const Relocate_info<32, big_endian>* relinfo,
3213 Target_arm<big_endian>* arm_target,
2ea97941 3214 Output_section* output_section,
56ee5e00 3215 unsigned char* view,
2ea97941 3216 Arm_address address,
56ee5e00
DK
3217 section_size_type view_size)
3218{
3219 // If we are passed a view bigger than the stub table's. we need to
3220 // adjust the view.
2ea97941 3221 gold_assert(address == this->address()
56ee5e00
DK
3222 && (view_size
3223 == static_cast<section_size_type>(this->data_size())));
3224
3225 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3226 p != this->reloc_stubs_.end();
3227 ++p)
3228 {
3229 Reloc_stub* stub = p->second;
2ea97941
ILT
3230 const Stub_template* stub_template = stub->stub_template();
3231 if (stub_template->reloc_count() != 0)
56ee5e00
DK
3232 {
3233 // Adjust view to cover the stub only.
2ea97941
ILT
3234 section_size_type offset = stub->offset();
3235 section_size_type stub_size = stub_template->size();
3236 gold_assert(offset + stub_size <= view_size);
56ee5e00 3237
2ea97941
ILT
3238 arm_target->relocate_stub(stub, relinfo, output_section,
3239 view + offset, address + offset,
56ee5e00
DK
3240 stub_size);
3241 }
3242 }
3243}
3244
3245// Reset address and file offset.
3246
3247template<bool big_endian>
3248void
3249Stub_table<big_endian>::do_reset_address_and_file_offset()
3250{
3251 off_t off = 0;
3252 uint64_t max_addralign = 1;
3253 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3254 p != this->reloc_stubs_.end();
3255 ++p)
3256 {
3257 Reloc_stub* stub = p->second;
2ea97941
ILT
3258 const Stub_template* stub_template = stub->stub_template();
3259 uint64_t stub_addralign = stub_template->alignment();
56ee5e00
DK
3260 max_addralign = std::max(max_addralign, stub_addralign);
3261 off = align_address(off, stub_addralign);
3262 stub->set_offset(off);
3263 stub->reset_destination_address();
2ea97941 3264 off += stub_template->size();
56ee5e00
DK
3265 }
3266
3267 this->addralign_ = max_addralign;
3268 this->set_current_data_size_for_child(off);
3269}
3270
3271// Write out the stubs to file.
3272
3273template<bool big_endian>
3274void
3275Stub_table<big_endian>::do_write(Output_file* of)
3276{
2ea97941 3277 off_t offset = this->offset();
56ee5e00
DK
3278 const section_size_type oview_size =
3279 convert_to_section_size_type(this->data_size());
2ea97941 3280 unsigned char* const oview = of->get_output_view(offset, oview_size);
56ee5e00
DK
3281
3282 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
3283 p != this->reloc_stubs_.end();
3284 ++p)
3285 {
3286 Reloc_stub* stub = p->second;
2ea97941
ILT
3287 Arm_address address = this->address() + stub->offset();
3288 gold_assert(address
3289 == align_address(address,
56ee5e00
DK
3290 stub->stub_template()->alignment()));
3291 stub->write(oview + stub->offset(), stub->stub_template()->size(),
3292 big_endian);
3293 }
3294 of->write_output_view(this->offset(), oview_size, oview);
3295}
3296
10ad9fe5
DK
3297// Arm_input_section methods.
3298
3299// Initialize an Arm_input_section.
3300
3301template<bool big_endian>
3302void
3303Arm_input_section<big_endian>::init()
3304{
2ea97941
ILT
3305 Relobj* relobj = this->relobj();
3306 unsigned int shndx = this->shndx();
10ad9fe5
DK
3307
3308 // Cache these to speed up size and alignment queries. It is too slow
3309 // to call section_addraglin and section_size every time.
2ea97941
ILT
3310 this->original_addralign_ = relobj->section_addralign(shndx);
3311 this->original_size_ = relobj->section_size(shndx);
10ad9fe5
DK
3312
3313 // We want to make this look like the original input section after
3314 // output sections are finalized.
2ea97941
ILT
3315 Output_section* os = relobj->output_section(shndx);
3316 off_t offset = relobj->output_section_offset(shndx);
3317 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
3318 this->set_address(os->address() + offset);
3319 this->set_file_offset(os->offset() + offset);
10ad9fe5
DK
3320
3321 this->set_current_data_size(this->original_size_);
3322 this->finalize_data_size();
3323}
3324
3325template<bool big_endian>
3326void
3327Arm_input_section<big_endian>::do_write(Output_file* of)
3328{
3329 // We have to write out the original section content.
3330 section_size_type section_size;
3331 const unsigned char* section_contents =
3332 this->relobj()->section_contents(this->shndx(), &section_size, false);
3333 of->write(this->offset(), section_contents, section_size);
3334
3335 // If this owns a stub table and it is not empty, write it.
3336 if (this->is_stub_table_owner() && !this->stub_table_->empty())
3337 this->stub_table_->write(of);
3338}
3339
3340// Finalize data size.
3341
3342template<bool big_endian>
3343void
3344Arm_input_section<big_endian>::set_final_data_size()
3345{
3346 // If this owns a stub table, finalize its data size as well.
3347 if (this->is_stub_table_owner())
3348 {
2ea97941 3349 uint64_t address = this->address();
10ad9fe5
DK
3350
3351 // The stub table comes after the original section contents.
2ea97941
ILT
3352 address += this->original_size_;
3353 address = align_address(address, this->stub_table_->addralign());
3354 off_t offset = this->offset() + (address - this->address());
3355 this->stub_table_->set_address_and_file_offset(address, offset);
3356 address += this->stub_table_->data_size();
3357 gold_assert(address == this->address() + this->current_data_size());
10ad9fe5
DK
3358 }
3359
3360 this->set_data_size(this->current_data_size());
3361}
3362
3363// Reset address and file offset.
3364
3365template<bool big_endian>
3366void
3367Arm_input_section<big_endian>::do_reset_address_and_file_offset()
3368{
3369 // Size of the original input section contents.
3370 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
3371
3372 // If this is a stub table owner, account for the stub table size.
3373 if (this->is_stub_table_owner())
3374 {
2ea97941 3375 Stub_table<big_endian>* stub_table = this->stub_table_;
10ad9fe5
DK
3376
3377 // Reset the stub table's address and file offset. The
3378 // current data size for child will be updated after that.
3379 stub_table_->reset_address_and_file_offset();
3380 off = align_address(off, stub_table_->addralign());
2ea97941 3381 off += stub_table->current_data_size();
10ad9fe5
DK
3382 }
3383
3384 this->set_current_data_size(off);
3385}
3386
07f508a2
DK
3387// Arm_output_section methods.
3388
3389// Create a stub group for input sections from BEGIN to END. OWNER
3390// points to the input section to be the owner a new stub table.
3391
3392template<bool big_endian>
3393void
3394Arm_output_section<big_endian>::create_stub_group(
3395 Input_section_list::const_iterator begin,
3396 Input_section_list::const_iterator end,
3397 Input_section_list::const_iterator owner,
3398 Target_arm<big_endian>* target,
3399 std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
3400{
3401 // Currently we convert ordinary input sections into relaxed sections only
3402 // at this point but we may want to support creating relaxed input section
3403 // very early. So we check here to see if owner is already a relaxed
3404 // section.
3405
3406 Arm_input_section<big_endian>* arm_input_section;
3407 if (owner->is_relaxed_input_section())
3408 {
3409 arm_input_section =
3410 Arm_input_section<big_endian>::as_arm_input_section(
3411 owner->relaxed_input_section());
3412 }
3413 else
3414 {
3415 gold_assert(owner->is_input_section());
3416 // Create a new relaxed input section.
3417 arm_input_section =
3418 target->new_arm_input_section(owner->relobj(), owner->shndx());
3419 new_relaxed_sections->push_back(arm_input_section);
3420 }
3421
3422 // Create a stub table.
2ea97941 3423 Stub_table<big_endian>* stub_table =
07f508a2
DK
3424 target->new_stub_table(arm_input_section);
3425
2ea97941 3426 arm_input_section->set_stub_table(stub_table);
07f508a2
DK
3427
3428 Input_section_list::const_iterator p = begin;
3429 Input_section_list::const_iterator prev_p;
3430
3431 // Look for input sections or relaxed input sections in [begin ... end].
3432 do
3433 {
3434 if (p->is_input_section() || p->is_relaxed_input_section())
3435 {
3436 // The stub table information for input sections live
3437 // in their objects.
3438 Arm_relobj<big_endian>* arm_relobj =
3439 Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
2ea97941 3440 arm_relobj->set_stub_table(p->shndx(), stub_table);
07f508a2
DK
3441 }
3442 prev_p = p++;
3443 }
3444 while (prev_p != end);
3445}
3446
3447// Group input sections for stub generation. GROUP_SIZE is roughly the limit
3448// of stub groups. We grow a stub group by adding input section until the
3449// size is just below GROUP_SIZE. The last input section will be converted
3450// into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add
3451// input section after the stub table, effectively double the group size.
3452//
3453// This is similar to the group_sections() function in elf32-arm.c but is
3454// implemented differently.
3455
3456template<bool big_endian>
3457void
3458Arm_output_section<big_endian>::group_sections(
3459 section_size_type group_size,
3460 bool stubs_always_after_branch,
3461 Target_arm<big_endian>* target)
3462{
3463 // We only care about sections containing code.
3464 if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
3465 return;
3466
3467 // States for grouping.
3468 typedef enum
3469 {
3470 // No group is being built.
3471 NO_GROUP,
3472 // A group is being built but the stub table is not found yet.
3473 // We keep group a stub group until the size is just under GROUP_SIZE.
3474 // The last input section in the group will be used as the stub table.
3475 FINDING_STUB_SECTION,
3476 // A group is being built and we have already found a stub table.
3477 // We enter this state to grow a stub group by adding input section
3478 // after the stub table. This effectively doubles the group size.
3479 HAS_STUB_SECTION
3480 } State;
3481
3482 // Any newly created relaxed sections are stored here.
3483 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
3484
3485 State state = NO_GROUP;
3486 section_size_type off = 0;
3487 section_size_type group_begin_offset = 0;
3488 section_size_type group_end_offset = 0;
3489 section_size_type stub_table_end_offset = 0;
3490 Input_section_list::const_iterator group_begin =
3491 this->input_sections().end();
2ea97941 3492 Input_section_list::const_iterator stub_table =
07f508a2
DK
3493 this->input_sections().end();
3494 Input_section_list::const_iterator group_end = this->input_sections().end();
3495 for (Input_section_list::const_iterator p = this->input_sections().begin();
3496 p != this->input_sections().end();
3497 ++p)
3498 {
3499 section_size_type section_begin_offset =
3500 align_address(off, p->addralign());
3501 section_size_type section_end_offset =
3502 section_begin_offset + p->data_size();
3503
3504 // Check to see if we should group the previously seens sections.
e9bbb538 3505 switch (state)
07f508a2
DK
3506 {
3507 case NO_GROUP:
3508 break;
3509
3510 case FINDING_STUB_SECTION:
3511 // Adding this section makes the group larger than GROUP_SIZE.
3512 if (section_end_offset - group_begin_offset >= group_size)
3513 {
3514 if (stubs_always_after_branch)
3515 {
3516 gold_assert(group_end != this->input_sections().end());
3517 this->create_stub_group(group_begin, group_end, group_end,
3518 target, &new_relaxed_sections);
3519 state = NO_GROUP;
3520 }
3521 else
3522 {
3523 // But wait, there's more! Input sections up to
3524 // stub_group_size bytes after the stub table can be
3525 // handled by it too.
3526 state = HAS_STUB_SECTION;
2ea97941 3527 stub_table = group_end;
07f508a2
DK
3528 stub_table_end_offset = group_end_offset;
3529 }
3530 }
3531 break;
3532
3533 case HAS_STUB_SECTION:
3534 // Adding this section makes the post stub-section group larger
3535 // than GROUP_SIZE.
3536 if (section_end_offset - stub_table_end_offset >= group_size)
3537 {
3538 gold_assert(group_end != this->input_sections().end());
2ea97941 3539 this->create_stub_group(group_begin, group_end, stub_table,
07f508a2
DK
3540 target, &new_relaxed_sections);
3541 state = NO_GROUP;
3542 }
3543 break;
3544
3545 default:
3546 gold_unreachable();
3547 }
3548
3549 // If we see an input section and currently there is no group, start
3550 // a new one. Skip any empty sections.
3551 if ((p->is_input_section() || p->is_relaxed_input_section())
3552 && (p->relobj()->section_size(p->shndx()) != 0))
3553 {
3554 if (state == NO_GROUP)
3555 {
3556 state = FINDING_STUB_SECTION;
3557 group_begin = p;
3558 group_begin_offset = section_begin_offset;
3559 }
3560
3561 // Keep track of the last input section seen.
3562 group_end = p;
3563 group_end_offset = section_end_offset;
3564 }
3565
3566 off = section_end_offset;
3567 }
3568
3569 // Create a stub group for any ungrouped sections.
3570 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
3571 {
3572 gold_assert(group_end != this->input_sections().end());
3573 this->create_stub_group(group_begin, group_end,
3574 (state == FINDING_STUB_SECTION
3575 ? group_end
2ea97941 3576 : stub_table),
07f508a2
DK
3577 target, &new_relaxed_sections);
3578 }
3579
3580 // Convert input section into relaxed input section in a batch.
3581 if (!new_relaxed_sections.empty())
3582 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
3583
3584 // Update the section offsets
3585 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
3586 {
3587 Arm_relobj<big_endian>* arm_relobj =
3588 Arm_relobj<big_endian>::as_arm_relobj(
3589 new_relaxed_sections[i]->relobj());
2ea97941 3590 unsigned int shndx = new_relaxed_sections[i]->shndx();
07f508a2 3591 // Tell Arm_relobj that this input section is converted.
2ea97941 3592 arm_relobj->convert_input_section_to_relaxed_section(shndx);
07f508a2
DK
3593 }
3594}
3595
8ffa3667
DK
3596// Arm_relobj methods.
3597
3598// Scan relocations for stub generation.
3599
3600template<bool big_endian>
3601void
3602Arm_relobj<big_endian>::scan_sections_for_stubs(
3603 Target_arm<big_endian>* arm_target,
3604 const Symbol_table* symtab,
2ea97941 3605 const Layout* layout)
8ffa3667 3606{
2ea97941
ILT
3607 unsigned int shnum = this->shnum();
3608 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
8ffa3667
DK
3609
3610 // Read the section headers.
3611 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2ea97941 3612 shnum * shdr_size,
8ffa3667
DK
3613 true, true);
3614
3615 // To speed up processing, we set up hash tables for fast lookup of
3616 // input offsets to output addresses.
3617 this->initialize_input_to_output_maps();
3618
3619 const Relobj::Output_sections& out_sections(this->output_sections());
3620
3621 Relocate_info<32, big_endian> relinfo;
8ffa3667 3622 relinfo.symtab = symtab;
2ea97941 3623 relinfo.layout = layout;
8ffa3667
DK
3624 relinfo.object = this;
3625
2ea97941
ILT
3626 const unsigned char* p = pshdrs + shdr_size;
3627 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
8ffa3667
DK
3628 {
3629 typename elfcpp::Shdr<32, big_endian> shdr(p);
3630
3631 unsigned int sh_type = shdr.get_sh_type();
3632 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
3633 continue;
3634
3635 off_t sh_size = shdr.get_sh_size();
3636 if (sh_size == 0)
3637 continue;
3638
3639 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
3640 if (index >= this->shnum())
3641 {
3642 // Ignore reloc section with bad info. This error will be
3643 // reported in the final link.
3644 continue;
3645 }
3646
3647 Output_section* os = out_sections[index];
d6344fb5
DK
3648 if (os == NULL
3649 || symtab->is_section_folded(this, index))
8ffa3667
DK
3650 {
3651 // This relocation section is against a section which we
d6344fb5
DK
3652 // discarded or if the section is folded into another
3653 // section due to ICF.
8ffa3667
DK
3654 continue;
3655 }
3656 Arm_address output_offset = this->get_output_section_offset(index);
3657
3658 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
3659 {
3660 // Ignore reloc section with unexpected symbol table. The
3661 // error will be reported in the final link.
3662 continue;
3663 }
3664
3665 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
3666 sh_size, true, false);
3667
3668 unsigned int reloc_size;
3669 if (sh_type == elfcpp::SHT_REL)
3670 reloc_size = elfcpp::Elf_sizes<32>::rel_size;
3671 else
3672 reloc_size = elfcpp::Elf_sizes<32>::rela_size;
3673
3674 if (reloc_size != shdr.get_sh_entsize())
3675 {
3676 // Ignore reloc section with unexpected entsize. The error
3677 // will be reported in the final link.
3678 continue;
3679 }
3680
3681 size_t reloc_count = sh_size / reloc_size;
3682 if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
3683 {
3684 // Ignore reloc section with uneven size. The error will be
3685 // reported in the final link.
3686 continue;
3687 }
3688
3689 gold_assert(output_offset != invalid_address
3690 || this->relocs_must_follow_section_writes());
3691
3692 // Get the section contents. This does work for the case in which
3693 // we modify the contents of an input section. We need to pass the
3694 // output view under such circumstances.
3695 section_size_type input_view_size = 0;
3696 const unsigned char* input_view =
3697 this->section_contents(index, &input_view_size, false);
3698
3699 relinfo.reloc_shndx = i;
3700 relinfo.data_shndx = index;
3701 arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
3702 reloc_count, os,
3703 output_offset == invalid_address,
3704 input_view,
3705 os->address(),
3706 input_view_size);
3707 }
3708
3709 // After we've done the relocations, we release the hash tables,
3710 // since we no longer need them.
3711 this->free_input_to_output_maps();
3712}
3713
3714// Count the local symbols. The ARM backend needs to know if a symbol
3715// is a THUMB function or not. For global symbols, it is easy because
3716// the Symbol object keeps the ELF symbol type. For local symbol it is
3717// harder because we cannot access this information. So we override the
3718// do_count_local_symbol in parent and scan local symbols to mark
3719// THUMB functions. This is not the most efficient way but I do not want to
3720// slow down other ports by calling a per symbol targer hook inside
3721// Sized_relobj<size, big_endian>::do_count_local_symbols.
3722
3723template<bool big_endian>
3724void
3725Arm_relobj<big_endian>::do_count_local_symbols(
3726 Stringpool_template<char>* pool,
3727 Stringpool_template<char>* dynpool)
3728{
3729 // We need to fix-up the values of any local symbols whose type are
3730 // STT_ARM_TFUNC.
3731
3732 // Ask parent to count the local symbols.
3733 Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool);
3734 const unsigned int loccount = this->local_symbol_count();
3735 if (loccount == 0)
3736 return;
3737
3738 // Intialize the thumb function bit-vector.
3739 std::vector<bool> empty_vector(loccount, false);
3740 this->local_symbol_is_thumb_function_.swap(empty_vector);
3741
3742 // Read the symbol table section header.
2ea97941 3743 const unsigned int symtab_shndx = this->symtab_shndx();
8ffa3667 3744 elfcpp::Shdr<32, big_endian>
2ea97941 3745 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
8ffa3667
DK
3746 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
3747
3748 // Read the local symbols.
2ea97941 3749 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
8ffa3667 3750 gold_assert(loccount == symtabshdr.get_sh_info());
2ea97941 3751 off_t locsize = loccount * sym_size;
8ffa3667
DK
3752 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
3753 locsize, true, true);
3754
3755 // Loop over the local symbols and mark any local symbols pointing
3756 // to THUMB functions.
3757
3758 // Skip the first dummy symbol.
2ea97941 3759 psyms += sym_size;
8ffa3667
DK
3760 typename Sized_relobj<32, big_endian>::Local_values* plocal_values =
3761 this->local_values();
2ea97941 3762 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
8ffa3667
DK
3763 {
3764 elfcpp::Sym<32, big_endian> sym(psyms);
3765 elfcpp::STT st_type = sym.get_st_type();
3766 Symbol_value<32>& lv((*plocal_values)[i]);
3767 Arm_address input_value = lv.input_value();
3768
3769 if (st_type == elfcpp::STT_ARM_TFUNC
3770 || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
3771 {
3772 // This is a THUMB function. Mark this and canonicalize the
3773 // symbol value by setting LSB.
3774 this->local_symbol_is_thumb_function_[i] = true;
3775 if ((input_value & 1) == 0)
3776 lv.set_input_value(input_value | 1);
3777 }
3778 }
3779}
3780
3781// Relocate sections.
3782template<bool big_endian>
3783void
3784Arm_relobj<big_endian>::do_relocate_sections(
8ffa3667 3785 const Symbol_table* symtab,
2ea97941 3786 const Layout* layout,
8ffa3667
DK
3787 const unsigned char* pshdrs,
3788 typename Sized_relobj<32, big_endian>::Views* pviews)
3789{
3790 // Call parent to relocate sections.
2ea97941 3791 Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
43d12afe 3792 pviews);
8ffa3667
DK
3793
3794 // We do not generate stubs if doing a relocatable link.
3795 if (parameters->options().relocatable())
3796 return;
3797
3798 // Relocate stub tables.
2ea97941 3799 unsigned int shnum = this->shnum();
8ffa3667
DK
3800
3801 Target_arm<big_endian>* arm_target =
3802 Target_arm<big_endian>::default_target();
3803
3804 Relocate_info<32, big_endian> relinfo;
8ffa3667 3805 relinfo.symtab = symtab;
2ea97941 3806 relinfo.layout = layout;
8ffa3667
DK
3807 relinfo.object = this;
3808
2ea97941 3809 for (unsigned int i = 1; i < shnum; ++i)
8ffa3667
DK
3810 {
3811 Arm_input_section<big_endian>* arm_input_section =
3812 arm_target->find_arm_input_section(this, i);
3813
3814 if (arm_input_section == NULL
3815 || !arm_input_section->is_stub_table_owner()
3816 || arm_input_section->stub_table()->empty())
3817 continue;
3818
3819 // We cannot discard a section if it owns a stub table.
3820 Output_section* os = this->output_section(i);
3821 gold_assert(os != NULL);
3822
3823 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
3824 relinfo.reloc_shdr = NULL;
3825 relinfo.data_shndx = i;
3826 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
3827
3828 gold_assert((*pviews)[i].view != NULL);
3829
3830 // We are passed the output section view. Adjust it to cover the
3831 // stub table only.
2ea97941
ILT
3832 Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
3833 gold_assert((stub_table->address() >= (*pviews)[i].address)
3834 && ((stub_table->address() + stub_table->data_size())
8ffa3667
DK
3835 <= (*pviews)[i].address + (*pviews)[i].view_size));
3836
2ea97941
ILT
3837 off_t offset = stub_table->address() - (*pviews)[i].address;
3838 unsigned char* view = (*pviews)[i].view + offset;
3839 Arm_address address = stub_table->address();
3840 section_size_type view_size = stub_table->data_size();
8ffa3667 3841
2ea97941
ILT
3842 stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
3843 view_size);
8ffa3667
DK
3844 }
3845}
3846
a0351a69
DK
3847// Helper functions for both Arm_relobj and Arm_dynobj to read ARM
3848// ABI information.
3849
3850template<bool big_endian>
3851Attributes_section_data*
3852read_arm_attributes_section(
3853 Object* object,
3854 Read_symbols_data *sd)
3855{
3856 // Read the attributes section if there is one.
3857 // We read from the end because gas seems to put it near the end of
3858 // the section headers.
3859 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
3860 const unsigned char *ps =
3861 sd->section_headers->data() + shdr_size * (object->shnum() - 1);
3862 for (unsigned int i = object->shnum(); i > 0; --i, ps -= shdr_size)
3863 {
3864 elfcpp::Shdr<32, big_endian> shdr(ps);
3865 if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
3866 {
3867 section_offset_type section_offset = shdr.get_sh_offset();
3868 section_size_type section_size =
3869 convert_to_section_size_type(shdr.get_sh_size());
3870 File_view* view = object->get_lasting_view(section_offset,
3871 section_size, true, false);
3872 return new Attributes_section_data(view->data(), section_size);
3873 }
3874 }
3875 return NULL;
3876}
3877
d5b40221
DK
3878// Read the symbol information.
3879
3880template<bool big_endian>
3881void
3882Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
3883{
3884 // Call parent class to read symbol information.
3885 Sized_relobj<32, big_endian>::do_read_symbols(sd);
3886
3887 // Read processor-specific flags in ELF file header.
3888 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
3889 elfcpp::Elf_sizes<32>::ehdr_size,
3890 true, false);
3891 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
3892 this->processor_specific_flags_ = ehdr.get_e_flags();
a0351a69
DK
3893 this->attributes_section_data_ =
3894 read_arm_attributes_section<big_endian>(this, sd);
d5b40221
DK
3895}
3896
3897// Arm_dynobj methods.
3898
3899// Read the symbol information.
3900
3901template<bool big_endian>
3902void
3903Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
3904{
3905 // Call parent class to read symbol information.
3906 Sized_dynobj<32, big_endian>::do_read_symbols(sd);
3907
3908 // Read processor-specific flags in ELF file header.
3909 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
3910 elfcpp::Elf_sizes<32>::ehdr_size,
3911 true, false);
3912 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
3913 this->processor_specific_flags_ = ehdr.get_e_flags();
a0351a69
DK
3914 this->attributes_section_data_ =
3915 read_arm_attributes_section<big_endian>(this, sd);
d5b40221
DK
3916}
3917
e9bbb538
DK
3918// Stub_addend_reader methods.
3919
3920// Read the addend of a REL relocation of type R_TYPE at VIEW.
3921
3922template<bool big_endian>
3923elfcpp::Elf_types<32>::Elf_Swxword
3924Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
3925 unsigned int r_type,
3926 const unsigned char* view,
3927 const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
3928{
3929 switch (r_type)
3930 {
3931 case elfcpp::R_ARM_CALL:
3932 case elfcpp::R_ARM_JUMP24:
3933 case elfcpp::R_ARM_PLT32:
3934 {
3935 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
3936 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3937 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
3938 return utils::sign_extend<26>(val << 2);
3939 }
3940
3941 case elfcpp::R_ARM_THM_CALL:
3942 case elfcpp::R_ARM_THM_JUMP24:
3943 case elfcpp::R_ARM_THM_XPC22:
3944 {
3945 // Fetch the addend. We use the Thumb-2 encoding (backwards
3946 // compatible with Thumb-1) involving the J1 and J2 bits.
3947 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3948 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3949 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3950 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3951
3952 uint32_t s = (upper_insn & (1 << 10)) >> 10;
3953 uint32_t upper = upper_insn & 0x3ff;
3954 uint32_t lower = lower_insn & 0x7ff;
3955 uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
3956 uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
3957 uint32_t i1 = j1 ^ s ? 0 : 1;
3958 uint32_t i2 = j2 ^ s ? 0 : 1;
3959
3960 return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
3961 | (upper << 12) | (lower << 1));
3962 }
3963
3964 case elfcpp::R_ARM_THM_JUMP19:
3965 {
3966 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
3967 const Valtype* wv = reinterpret_cast<const Valtype*>(view);
3968 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
3969 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
3970
3971 // Reconstruct the top three bits and squish the two 11 bit pieces
3972 // together.
3973 uint32_t S = (upper_insn & 0x0400) >> 10;
3974 uint32_t J1 = (lower_insn & 0x2000) >> 13;
3975 uint32_t J2 = (lower_insn & 0x0800) >> 11;
3976 uint32_t upper =
3977 (S << 8) | (J2 << 7) | (J1 << 6) | (upper_insn & 0x003f);
3978 uint32_t lower = (lower_insn & 0x07ff);
3979 return utils::sign_extend<23>((upper << 12) | (lower << 1));
3980 }
3981
3982 default:
3983 gold_unreachable();
3984 }
3985}
3986
94cdfcff
DK
3987// A class to handle the PLT data.
3988
3989template<bool big_endian>
3990class Output_data_plt_arm : public Output_section_data
3991{
3992 public:
3993 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
3994 Reloc_section;
3995
3996 Output_data_plt_arm(Layout*, Output_data_space*);
3997
3998 // Add an entry to the PLT.
3999 void
4000 add_entry(Symbol* gsym);
4001
4002 // Return the .rel.plt section data.
4003 const Reloc_section*
4004 rel_plt() const
4005 { return this->rel_; }
4006
4007 protected:
4008 void
4009 do_adjust_output_section(Output_section* os);
4010
4011 // Write to a map file.
4012 void
4013 do_print_to_mapfile(Mapfile* mapfile) const
4014 { mapfile->print_output_data(this, _("** PLT")); }
4015
4016 private:
4017 // Template for the first PLT entry.
4018 static const uint32_t first_plt_entry[5];
4019
4020 // Template for subsequent PLT entries.
4021 static const uint32_t plt_entry[3];
4022
4023 // Set the final size.
4024 void
4025 set_final_data_size()
4026 {
4027 this->set_data_size(sizeof(first_plt_entry)
4028 + this->count_ * sizeof(plt_entry));
4029 }
4030
4031 // Write out the PLT data.
4032 void
4033 do_write(Output_file*);
4034
4035 // The reloc section.
4036 Reloc_section* rel_;
4037 // The .got.plt section.
4038 Output_data_space* got_plt_;
4039 // The number of PLT entries.
4040 unsigned int count_;
4041};
4042
4043// Create the PLT section. The ordinary .got section is an argument,
4044// since we need to refer to the start. We also create our own .got
4045// section just for PLT entries.
4046
4047template<bool big_endian>
2ea97941 4048Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
94cdfcff
DK
4049 Output_data_space* got_plt)
4050 : Output_section_data(4), got_plt_(got_plt), count_(0)
4051{
4052 this->rel_ = new Reloc_section(false);
2ea97941
ILT
4053 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
4054 elfcpp::SHF_ALLOC, this->rel_, true);
94cdfcff
DK
4055}
4056
4057template<bool big_endian>
4058void
4059Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
4060{
4061 os->set_entsize(0);
4062}
4063
4064// Add an entry to the PLT.
4065
4066template<bool big_endian>
4067void
4068Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym)
4069{
4070 gold_assert(!gsym->has_plt_offset());
4071
4072 // Note that when setting the PLT offset we skip the initial
4073 // reserved PLT entry.
4074 gsym->set_plt_offset((this->count_) * sizeof(plt_entry)
4075 + sizeof(first_plt_entry));
4076
4077 ++this->count_;
4078
4079 section_offset_type got_offset = this->got_plt_->current_data_size();
4080
4081 // Every PLT entry needs a GOT entry which points back to the PLT
4082 // entry (this will be changed by the dynamic linker, normally
4083 // lazily when the function is called).
4084 this->got_plt_->set_current_data_size(got_offset + 4);
4085
4086 // Every PLT entry needs a reloc.
4087 gsym->set_needs_dynsym_entry();
4088 this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
4089 got_offset);
4090
4091 // Note that we don't need to save the symbol. The contents of the
4092 // PLT are independent of which symbols are used. The symbols only
4093 // appear in the relocations.
4094}
4095
4096// ARM PLTs.
4097// FIXME: This is not very flexible. Right now this has only been tested
4098// on armv5te. If we are to support additional architecture features like
4099// Thumb-2 or BE8, we need to make this more flexible like GNU ld.
4100
4101// The first entry in the PLT.
4102template<bool big_endian>
4103const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] =
4104{
4105 0xe52de004, // str lr, [sp, #-4]!
4106 0xe59fe004, // ldr lr, [pc, #4]
4107 0xe08fe00e, // add lr, pc, lr
4108 0xe5bef008, // ldr pc, [lr, #8]!
4109 0x00000000, // &GOT[0] - .
4110};
4111
4112// Subsequent entries in the PLT.
4113
4114template<bool big_endian>
4115const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] =
4116{
4117 0xe28fc600, // add ip, pc, #0xNN00000
4118 0xe28cca00, // add ip, ip, #0xNN000
4119 0xe5bcf000, // ldr pc, [ip, #0xNNN]!
4120};
4121
4122// Write out the PLT. This uses the hand-coded instructions above,
4123// and adjusts them as needed. This is all specified by the arm ELF
4124// Processor Supplement.
4125
4126template<bool big_endian>
4127void
4128Output_data_plt_arm<big_endian>::do_write(Output_file* of)
4129{
2ea97941 4130 const off_t offset = this->offset();
94cdfcff
DK
4131 const section_size_type oview_size =
4132 convert_to_section_size_type(this->data_size());
2ea97941 4133 unsigned char* const oview = of->get_output_view(offset, oview_size);
94cdfcff
DK
4134
4135 const off_t got_file_offset = this->got_plt_->offset();
4136 const section_size_type got_size =
4137 convert_to_section_size_type(this->got_plt_->data_size());
4138 unsigned char* const got_view = of->get_output_view(got_file_offset,
4139 got_size);
4140 unsigned char* pov = oview;
4141
ebabffbd
DK
4142 Arm_address plt_address = this->address();
4143 Arm_address got_address = this->got_plt_->address();
94cdfcff
DK
4144
4145 // Write first PLT entry. All but the last word are constants.
4146 const size_t num_first_plt_words = (sizeof(first_plt_entry)
4147 / sizeof(plt_entry[0]));
4148 for (size_t i = 0; i < num_first_plt_words - 1; i++)
4149 elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
4150 // Last word in first PLT entry is &GOT[0] - .
4151 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
4152 got_address - (plt_address + 16));
4153 pov += sizeof(first_plt_entry);
4154
4155 unsigned char* got_pov = got_view;
4156
4157 memset(got_pov, 0, 12);
4158 got_pov += 12;
4159
4160 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
4161 unsigned int plt_offset = sizeof(first_plt_entry);
4162 unsigned int plt_rel_offset = 0;
4163 unsigned int got_offset = 12;
4164 const unsigned int count = this->count_;
4165 for (unsigned int i = 0;
4166 i < count;
4167 ++i,
4168 pov += sizeof(plt_entry),
4169 got_pov += 4,
4170 plt_offset += sizeof(plt_entry),
4171 plt_rel_offset += rel_size,
4172 got_offset += 4)
4173 {
4174 // Set and adjust the PLT entry itself.
2ea97941
ILT
4175 int32_t offset = ((got_address + got_offset)
4176 - (plt_address + plt_offset + 8));
94cdfcff 4177
2ea97941
ILT
4178 gold_assert(offset >= 0 && offset < 0x0fffffff);
4179 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
94cdfcff 4180 elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
2ea97941 4181 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
94cdfcff 4182 elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
2ea97941 4183 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);
94cdfcff
DK
4184 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
4185
4186 // Set the entry in the GOT.
4187 elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address);
4188 }
4189
4190 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4191 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4192
2ea97941 4193 of->write_output_view(offset, oview_size, oview);
94cdfcff
DK
4194 of->write_output_view(got_file_offset, got_size, got_view);
4195}
4196
4197// Create a PLT entry for a global symbol.
4198
4199template<bool big_endian>
4200void
2ea97941 4201Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
94cdfcff
DK
4202 Symbol* gsym)
4203{
4204 if (gsym->has_plt_offset())
4205 return;
4206
4207 if (this->plt_ == NULL)
4208 {
4209 // Create the GOT sections first.
2ea97941 4210 this->got_section(symtab, layout);
94cdfcff 4211
2ea97941
ILT
4212 this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_);
4213 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
4214 (elfcpp::SHF_ALLOC
4215 | elfcpp::SHF_EXECINSTR),
4216 this->plt_, false);
94cdfcff
DK
4217 }
4218 this->plt_->add_entry(gsym);
4219}
4220
4a657b0d
DK
4221// Report an unsupported relocation against a local symbol.
4222
4223template<bool big_endian>
4224void
4225Target_arm<big_endian>::Scan::unsupported_reloc_local(
4226 Sized_relobj<32, big_endian>* object,
4227 unsigned int r_type)
4228{
4229 gold_error(_("%s: unsupported reloc %u against local symbol"),
4230 object->name().c_str(), r_type);
4231}
4232
bec53400
DK
4233// We are about to emit a dynamic relocation of type R_TYPE. If the
4234// dynamic linker does not support it, issue an error. The GNU linker
4235// only issues a non-PIC error for an allocated read-only section.
4236// Here we know the section is allocated, but we don't know that it is
4237// read-only. But we check for all the relocation types which the
4238// glibc dynamic linker supports, so it seems appropriate to issue an
4239// error even if the section is not read-only.
4240
4241template<bool big_endian>
4242void
4243Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
4244 unsigned int r_type)
4245{
4246 switch (r_type)
4247 {
4248 // These are the relocation types supported by glibc for ARM.
4249 case elfcpp::R_ARM_RELATIVE:
4250 case elfcpp::R_ARM_COPY:
4251 case elfcpp::R_ARM_GLOB_DAT:
4252 case elfcpp::R_ARM_JUMP_SLOT:
4253 case elfcpp::R_ARM_ABS32:
be8fcb75 4254 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4255 case elfcpp::R_ARM_PC24:
4256 // FIXME: The following 3 types are not supported by Android's dynamic
4257 // linker.
4258 case elfcpp::R_ARM_TLS_DTPMOD32:
4259 case elfcpp::R_ARM_TLS_DTPOFF32:
4260 case elfcpp::R_ARM_TLS_TPOFF32:
4261 return;
4262
4263 default:
4264 // This prevents us from issuing more than one error per reloc
4265 // section. But we can still wind up issuing more than one
4266 // error per object file.
4267 if (this->issued_non_pic_error_)
4268 return;
4269 object->error(_("requires unsupported dynamic reloc; "
4270 "recompile with -fPIC"));
4271 this->issued_non_pic_error_ = true;
4272 return;
4273
4274 case elfcpp::R_ARM_NONE:
4275 gold_unreachable();
4276 }
4277}
4278
4a657b0d 4279// Scan a relocation for a local symbol.
bec53400
DK
4280// FIXME: This only handles a subset of relocation types used by Android
4281// on ARM v5te devices.
4a657b0d
DK
4282
4283template<bool big_endian>
4284inline void
ad0f2072 4285Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
2ea97941 4286 Layout* layout,
bec53400 4287 Target_arm* target,
4a657b0d 4288 Sized_relobj<32, big_endian>* object,
bec53400
DK
4289 unsigned int data_shndx,
4290 Output_section* output_section,
4291 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
4292 unsigned int r_type,
4293 const elfcpp::Sym<32, big_endian>&)
4294{
a6d1ef57 4295 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
4296 switch (r_type)
4297 {
4298 case elfcpp::R_ARM_NONE:
4299 break;
4300
bec53400 4301 case elfcpp::R_ARM_ABS32:
be8fcb75 4302 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4303 // If building a shared library (or a position-independent
4304 // executable), we need to create a dynamic relocation for
4305 // this location. The relocation applied at link time will
4306 // apply the link-time value, so we flag the location with
4307 // an R_ARM_RELATIVE relocation so the dynamic loader can
4308 // relocate it easily.
4309 if (parameters->options().output_is_position_independent())
4310 {
2ea97941 4311 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
4312 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
4313 // If we are to add more other reloc types than R_ARM_ABS32,
4314 // we need to add check_non_pic(object, r_type) here.
4315 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
4316 output_section, data_shndx,
4317 reloc.get_r_offset());
4318 }
4319 break;
4320
4321 case elfcpp::R_ARM_REL32:
4322 case elfcpp::R_ARM_THM_CALL:
4323 case elfcpp::R_ARM_CALL:
4324 case elfcpp::R_ARM_PREL31:
4325 case elfcpp::R_ARM_JUMP24:
4326 case elfcpp::R_ARM_PLT32:
be8fcb75
ILT
4327 case elfcpp::R_ARM_THM_ABS5:
4328 case elfcpp::R_ARM_ABS8:
4329 case elfcpp::R_ARM_ABS12:
4330 case elfcpp::R_ARM_ABS16:
4331 case elfcpp::R_ARM_BASE_ABS:
fd3c5f0b
ILT
4332 case elfcpp::R_ARM_MOVW_ABS_NC:
4333 case elfcpp::R_ARM_MOVT_ABS:
4334 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
4335 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
4336 case elfcpp::R_ARM_MOVW_PREL_NC:
4337 case elfcpp::R_ARM_MOVT_PREL:
4338 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
4339 case elfcpp::R_ARM_THM_MOVT_PREL:
bec53400
DK
4340 break;
4341
4342 case elfcpp::R_ARM_GOTOFF32:
4343 // We need a GOT section:
2ea97941 4344 target->got_section(symtab, layout);
bec53400
DK
4345 break;
4346
4347 case elfcpp::R_ARM_BASE_PREL:
4348 // FIXME: What about this?
4349 break;
4350
4351 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4352 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
4353 {
4354 // The symbol requires a GOT entry.
4355 Output_data_got<32, big_endian>* got =
2ea97941 4356 target->got_section(symtab, layout);
bec53400
DK
4357 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
4358 if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
4359 {
4360 // If we are generating a shared object, we need to add a
4361 // dynamic RELATIVE relocation for this symbol's GOT entry.
4362 if (parameters->options().output_is_position_independent())
4363 {
2ea97941
ILT
4364 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
4365 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
bec53400 4366 rel_dyn->add_local_relative(
2ea97941
ILT
4367 object, r_sym, elfcpp::R_ARM_RELATIVE, got,
4368 object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
bec53400
DK
4369 }
4370 }
4371 }
4372 break;
4373
4374 case elfcpp::R_ARM_TARGET1:
4375 // This should have been mapped to another type already.
4376 // Fall through.
4377 case elfcpp::R_ARM_COPY:
4378 case elfcpp::R_ARM_GLOB_DAT:
4379 case elfcpp::R_ARM_JUMP_SLOT:
4380 case elfcpp::R_ARM_RELATIVE:
4381 // These are relocations which should only be seen by the
4382 // dynamic linker, and should never be seen here.
4383 gold_error(_("%s: unexpected reloc %u in object file"),
4384 object->name().c_str(), r_type);
4385 break;
4386
4a657b0d
DK
4387 default:
4388 unsupported_reloc_local(object, r_type);
4389 break;
4390 }
4391}
4392
4393// Report an unsupported relocation against a global symbol.
4394
4395template<bool big_endian>
4396void
4397Target_arm<big_endian>::Scan::unsupported_reloc_global(
4398 Sized_relobj<32, big_endian>* object,
4399 unsigned int r_type,
4400 Symbol* gsym)
4401{
4402 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4403 object->name().c_str(), r_type, gsym->demangled_name().c_str());
4404}
4405
4406// Scan a relocation for a global symbol.
bec53400
DK
4407// FIXME: This only handles a subset of relocation types used by Android
4408// on ARM v5te devices.
4a657b0d
DK
4409
4410template<bool big_endian>
4411inline void
ad0f2072 4412Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
2ea97941 4413 Layout* layout,
bec53400 4414 Target_arm* target,
4a657b0d 4415 Sized_relobj<32, big_endian>* object,
bec53400
DK
4416 unsigned int data_shndx,
4417 Output_section* output_section,
4418 const elfcpp::Rel<32, big_endian>& reloc,
4a657b0d
DK
4419 unsigned int r_type,
4420 Symbol* gsym)
4421{
a6d1ef57 4422 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
4423 switch (r_type)
4424 {
4425 case elfcpp::R_ARM_NONE:
4426 break;
4427
bec53400 4428 case elfcpp::R_ARM_ABS32:
be8fcb75 4429 case elfcpp::R_ARM_ABS32_NOI:
bec53400
DK
4430 {
4431 // Make a dynamic relocation if necessary.
4432 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
4433 {
4434 if (target->may_need_copy_reloc(gsym))
4435 {
2ea97941 4436 target->copy_reloc(symtab, layout, object,
bec53400
DK
4437 data_shndx, output_section, gsym, reloc);
4438 }
4439 else if (gsym->can_use_relative_reloc(false))
4440 {
4441 // If we are to add more other reloc types than R_ARM_ABS32,
4442 // we need to add check_non_pic(object, r_type) here.
2ea97941 4443 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
4444 rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
4445 output_section, object,
4446 data_shndx, reloc.get_r_offset());
4447 }
4448 else
4449 {
4450 // If we are to add more other reloc types than R_ARM_ABS32,
4451 // we need to add check_non_pic(object, r_type) here.
2ea97941 4452 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
4453 rel_dyn->add_global(gsym, r_type, output_section, object,
4454 data_shndx, reloc.get_r_offset());
4455 }
4456 }
4457 }
4458 break;
4459
fd3c5f0b
ILT
4460 case elfcpp::R_ARM_MOVW_ABS_NC:
4461 case elfcpp::R_ARM_MOVT_ABS:
4462 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
4463 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
4464 case elfcpp::R_ARM_MOVW_PREL_NC:
4465 case elfcpp::R_ARM_MOVT_PREL:
4466 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
4467 case elfcpp::R_ARM_THM_MOVT_PREL:
fd3c5f0b
ILT
4468 break;
4469
be8fcb75
ILT
4470 case elfcpp::R_ARM_THM_ABS5:
4471 case elfcpp::R_ARM_ABS8:
4472 case elfcpp::R_ARM_ABS12:
4473 case elfcpp::R_ARM_ABS16:
4474 case elfcpp::R_ARM_BASE_ABS:
4475 {
4476 // No dynamic relocs of this kinds.
4477 // Report the error in case of PIC.
4478 int flags = Symbol::NON_PIC_REF;
4479 if (gsym->type() == elfcpp::STT_FUNC
4480 || gsym->type() == elfcpp::STT_ARM_TFUNC)
4481 flags |= Symbol::FUNCTION_CALL;
4482 if (gsym->needs_dynamic_reloc(flags))
4483 check_non_pic(object, r_type);
4484 }
4485 break;
4486
bec53400
DK
4487 case elfcpp::R_ARM_REL32:
4488 case elfcpp::R_ARM_PREL31:
4489 {
4490 // Make a dynamic relocation if necessary.
4491 int flags = Symbol::NON_PIC_REF;
4492 if (gsym->needs_dynamic_reloc(flags))
4493 {
4494 if (target->may_need_copy_reloc(gsym))
4495 {
2ea97941 4496 target->copy_reloc(symtab, layout, object,
bec53400
DK
4497 data_shndx, output_section, gsym, reloc);
4498 }
4499 else
4500 {
4501 check_non_pic(object, r_type);
2ea97941 4502 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
4503 rel_dyn->add_global(gsym, r_type, output_section, object,
4504 data_shndx, reloc.get_r_offset());
4505 }
4506 }
4507 }
4508 break;
4509
4510 case elfcpp::R_ARM_JUMP24:
f4e5969c 4511 case elfcpp::R_ARM_THM_JUMP24:
bec53400 4512 case elfcpp::R_ARM_CALL:
f4e5969c
DK
4513 case elfcpp::R_ARM_THM_CALL:
4514
4515 if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
2ea97941 4516 target->make_plt_entry(symtab, layout, gsym);
f4e5969c
DK
4517 else
4518 {
4519 // Check to see if this is a function that would need a PLT
4520 // but does not get one because the function symbol is untyped.
4521 // This happens in assembly code missing a proper .type directive.
4522 if ((!gsym->is_undefined() || parameters->options().shared())
4523 && !parameters->doing_static_link()
4524 && gsym->type() == elfcpp::STT_NOTYPE
4525 && (gsym->is_from_dynobj()
4526 || gsym->is_undefined()
4527 || gsym->is_preemptible()))
4528 gold_error(_("%s is not a function."),
4529 gsym->demangled_name().c_str());
4530 }
bec53400
DK
4531 break;
4532
4533 case elfcpp::R_ARM_PLT32:
4534 // If the symbol is fully resolved, this is just a relative
4535 // local reloc. Otherwise we need a PLT entry.
4536 if (gsym->final_value_is_known())
4537 break;
4538 // If building a shared library, we can also skip the PLT entry
4539 // if the symbol is defined in the output file and is protected
4540 // or hidden.
4541 if (gsym->is_defined()
4542 && !gsym->is_from_dynobj()
4543 && !gsym->is_preemptible())
4544 break;
2ea97941 4545 target->make_plt_entry(symtab, layout, gsym);
bec53400
DK
4546 break;
4547
4548 case elfcpp::R_ARM_GOTOFF32:
4549 // We need a GOT section.
2ea97941 4550 target->got_section(symtab, layout);
bec53400
DK
4551 break;
4552
4553 case elfcpp::R_ARM_BASE_PREL:
4554 // FIXME: What about this?
4555 break;
4556
4557 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4558 case elfcpp::R_ARM_GOT_PREL:
bec53400
DK
4559 {
4560 // The symbol requires a GOT entry.
4561 Output_data_got<32, big_endian>* got =
2ea97941 4562 target->got_section(symtab, layout);
bec53400
DK
4563 if (gsym->final_value_is_known())
4564 got->add_global(gsym, GOT_TYPE_STANDARD);
4565 else
4566 {
4567 // If this symbol is not fully resolved, we need to add a
4568 // GOT entry with a dynamic relocation.
2ea97941 4569 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
bec53400
DK
4570 if (gsym->is_from_dynobj()
4571 || gsym->is_undefined()
4572 || gsym->is_preemptible())
4573 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
4574 rel_dyn, elfcpp::R_ARM_GLOB_DAT);
4575 else
4576 {
4577 if (got->add_global(gsym, GOT_TYPE_STANDARD))
4578 rel_dyn->add_global_relative(
4579 gsym, elfcpp::R_ARM_RELATIVE, got,
4580 gsym->got_offset(GOT_TYPE_STANDARD));
4581 }
4582 }
4583 }
4584 break;
4585
4586 case elfcpp::R_ARM_TARGET1:
4587 // This should have been mapped to another type already.
4588 // Fall through.
4589 case elfcpp::R_ARM_COPY:
4590 case elfcpp::R_ARM_GLOB_DAT:
4591 case elfcpp::R_ARM_JUMP_SLOT:
4592 case elfcpp::R_ARM_RELATIVE:
4593 // These are relocations which should only be seen by the
4594 // dynamic linker, and should never be seen here.
4595 gold_error(_("%s: unexpected reloc %u in object file"),
4596 object->name().c_str(), r_type);
4597 break;
4598
4a657b0d
DK
4599 default:
4600 unsupported_reloc_global(object, r_type, gsym);
4601 break;
4602 }
4603}
4604
4605// Process relocations for gc.
4606
4607template<bool big_endian>
4608void
ad0f2072 4609Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab,
2ea97941 4610 Layout* layout,
4a657b0d
DK
4611 Sized_relobj<32, big_endian>* object,
4612 unsigned int data_shndx,
4613 unsigned int,
4614 const unsigned char* prelocs,
4615 size_t reloc_count,
4616 Output_section* output_section,
4617 bool needs_special_offset_handling,
4618 size_t local_symbol_count,
4619 const unsigned char* plocal_symbols)
4620{
4621 typedef Target_arm<big_endian> Arm;
2ea97941 4622 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d 4623
2ea97941 4624 gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan>(
4a657b0d 4625 symtab,
2ea97941 4626 layout,
4a657b0d
DK
4627 this,
4628 object,
4629 data_shndx,
4630 prelocs,
4631 reloc_count,
4632 output_section,
4633 needs_special_offset_handling,
4634 local_symbol_count,
4635 plocal_symbols);
4636}
4637
4638// Scan relocations for a section.
4639
4640template<bool big_endian>
4641void
ad0f2072 4642Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
2ea97941 4643 Layout* layout,
4a657b0d
DK
4644 Sized_relobj<32, big_endian>* object,
4645 unsigned int data_shndx,
4646 unsigned int sh_type,
4647 const unsigned char* prelocs,
4648 size_t reloc_count,
4649 Output_section* output_section,
4650 bool needs_special_offset_handling,
4651 size_t local_symbol_count,
4652 const unsigned char* plocal_symbols)
4653{
2ea97941 4654 typedef typename Target_arm<big_endian>::Scan Scan;
4a657b0d
DK
4655 if (sh_type == elfcpp::SHT_RELA)
4656 {
4657 gold_error(_("%s: unsupported RELA reloc section"),
4658 object->name().c_str());
4659 return;
4660 }
4661
2ea97941 4662 gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>(
4a657b0d 4663 symtab,
2ea97941 4664 layout,
4a657b0d
DK
4665 this,
4666 object,
4667 data_shndx,
4668 prelocs,
4669 reloc_count,
4670 output_section,
4671 needs_special_offset_handling,
4672 local_symbol_count,
4673 plocal_symbols);
4674}
4675
4676// Finalize the sections.
4677
4678template<bool big_endian>
4679void
d5b40221 4680Target_arm<big_endian>::do_finalize_sections(
2ea97941 4681 Layout* layout,
f59f41f3
DK
4682 const Input_objects* input_objects,
4683 Symbol_table* symtab)
4a657b0d 4684{
d5b40221
DK
4685 // Merge processor-specific flags.
4686 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4687 p != input_objects->relobj_end();
4688 ++p)
4689 {
4690 Arm_relobj<big_endian>* arm_relobj =
4691 Arm_relobj<big_endian>::as_arm_relobj(*p);
4692 this->merge_processor_specific_flags(
4693 arm_relobj->name(),
4694 arm_relobj->processor_specific_flags());
a0351a69
DK
4695 this->merge_object_attributes(arm_relobj->name().c_str(),
4696 arm_relobj->attributes_section_data());
4697
d5b40221
DK
4698 }
4699
4700 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4701 p != input_objects->dynobj_end();
4702 ++p)
4703 {
4704 Arm_dynobj<big_endian>* arm_dynobj =
4705 Arm_dynobj<big_endian>::as_arm_dynobj(*p);
4706 this->merge_processor_specific_flags(
4707 arm_dynobj->name(),
4708 arm_dynobj->processor_specific_flags());
a0351a69
DK
4709 this->merge_object_attributes(arm_dynobj->name().c_str(),
4710 arm_dynobj->attributes_section_data());
d5b40221
DK
4711 }
4712
a0351a69
DK
4713 // Check BLX use.
4714 Object_attribute* attr =
4715 this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
4716 if (attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
4717 this->set_may_use_blx(true);
4718
94cdfcff 4719 // Fill in some more dynamic tags.
2ea97941 4720 Output_data_dynamic* const odyn = layout->dynamic_data();
94cdfcff
DK
4721 if (odyn != NULL)
4722 {
22b127cc
ILT
4723 if (this->got_plt_ != NULL
4724 && this->got_plt_->output_section() != NULL)
94cdfcff
DK
4725 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
4726
22b127cc
ILT
4727 if (this->plt_ != NULL
4728 && this->plt_->output_section() != NULL)
94cdfcff
DK
4729 {
4730 const Output_data* od = this->plt_->rel_plt();
4731 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
4732 odyn->add_section_address(elfcpp::DT_JMPREL, od);
4733 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
4734 }
4735
22b127cc
ILT
4736 if (this->rel_dyn_ != NULL
4737 && this->rel_dyn_->output_section() != NULL)
94cdfcff
DK
4738 {
4739 const Output_data* od = this->rel_dyn_;
4740 odyn->add_section_address(elfcpp::DT_REL, od);
4741 odyn->add_section_size(elfcpp::DT_RELSZ, od);
4742 odyn->add_constant(elfcpp::DT_RELENT,
4743 elfcpp::Elf_sizes<32>::rel_size);
4744 }
4745
4746 if (!parameters->options().shared())
4747 {
4748 // The value of the DT_DEBUG tag is filled in by the dynamic
4749 // linker at run time, and used by the debugger.
4750 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4751 }
4752 }
4753
4754 // Emit any relocs we saved in an attempt to avoid generating COPY
4755 // relocs.
4756 if (this->copy_relocs_.any_saved_relocs())
2ea97941 4757 this->copy_relocs_.emit(this->rel_dyn_section(layout));
11af873f 4758
f59f41f3 4759 // Handle the .ARM.exidx section.
2ea97941 4760 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
f59f41f3
DK
4761 if (exidx_section != NULL
4762 && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
11af873f
DK
4763 && !parameters->options().relocatable())
4764 {
f59f41f3
DK
4765 // Create __exidx_start and __exdix_end symbols.
4766 symtab->define_in_output_data("__exidx_start", NULL, exidx_section,
4767 0, 0, elfcpp::STT_OBJECT,
a0351a69 4768 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
f59f41f3
DK
4769 false, false);
4770 symtab->define_in_output_data("__exidx_end", NULL, exidx_section,
4771 0, 0, elfcpp::STT_OBJECT,
a0351a69 4772 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
f59f41f3 4773 true, false);
11af873f 4774
f59f41f3
DK
4775 // For the ARM target, we need to add a PT_ARM_EXIDX segment for
4776 // the .ARM.exidx section.
2ea97941 4777 if (!layout->script_options()->saw_phdrs_clause())
11af873f 4778 {
2ea97941 4779 gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
11af873f
DK
4780 == NULL);
4781 Output_segment* exidx_segment =
2ea97941 4782 layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
f5c870d2
ILT
4783 exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
4784 false);
11af873f
DK
4785 }
4786 }
a0351a69
DK
4787
4788 // Create an .ARM.attributes section if there is not one already.
2ea97941 4789 Output_attributes_section_data* attributes_section =
a0351a69 4790 new Output_attributes_section_data(*this->attributes_section_data_);
2ea97941
ILT
4791 layout->add_output_section_data(".ARM.attributes",
4792 elfcpp::SHT_ARM_ATTRIBUTES, 0,
4793 attributes_section, false);
4a657b0d
DK
4794}
4795
bec53400
DK
4796// Return whether a direct absolute static relocation needs to be applied.
4797// In cases where Scan::local() or Scan::global() has created
4798// a dynamic relocation other than R_ARM_RELATIVE, the addend
4799// of the relocation is carried in the data, and we must not
4800// apply the static relocation.
4801
4802template<bool big_endian>
4803inline bool
4804Target_arm<big_endian>::Relocate::should_apply_static_reloc(
4805 const Sized_symbol<32>* gsym,
4806 int ref_flags,
4807 bool is_32bit,
4808 Output_section* output_section)
4809{
4810 // If the output section is not allocated, then we didn't call
4811 // scan_relocs, we didn't create a dynamic reloc, and we must apply
4812 // the reloc here.
4813 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
4814 return true;
4815
4816 // For local symbols, we will have created a non-RELATIVE dynamic
4817 // relocation only if (a) the output is position independent,
4818 // (b) the relocation is absolute (not pc- or segment-relative), and
4819 // (c) the relocation is not 32 bits wide.
4820 if (gsym == NULL)
4821 return !(parameters->options().output_is_position_independent()
4822 && (ref_flags & Symbol::ABSOLUTE_REF)
4823 && !is_32bit);
4824
4825 // For global symbols, we use the same helper routines used in the
4826 // scan pass. If we did not create a dynamic relocation, or if we
4827 // created a RELATIVE dynamic relocation, we should apply the static
4828 // relocation.
4829 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
4830 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
4831 && gsym->can_use_relative_reloc(ref_flags
4832 & Symbol::FUNCTION_CALL);
4833 return !has_dyn || is_rel;
4834}
4835
4a657b0d
DK
4836// Perform a relocation.
4837
4838template<bool big_endian>
4839inline bool
4840Target_arm<big_endian>::Relocate::relocate(
c121c671
DK
4841 const Relocate_info<32, big_endian>* relinfo,
4842 Target_arm* target,
4843 Output_section *output_section,
4844 size_t relnum,
4845 const elfcpp::Rel<32, big_endian>& rel,
4a657b0d 4846 unsigned int r_type,
c121c671
DK
4847 const Sized_symbol<32>* gsym,
4848 const Symbol_value<32>* psymval,
4849 unsigned char* view,
ebabffbd 4850 Arm_address address,
4a657b0d
DK
4851 section_size_type /* view_size */ )
4852{
c121c671
DK
4853 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
4854
a6d1ef57 4855 r_type = get_real_reloc_type(r_type);
c121c671 4856
2daedcd6
DK
4857 const Arm_relobj<big_endian>* object =
4858 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
c121c671 4859
2daedcd6
DK
4860 // If the final branch target of a relocation is THUMB instruction, this
4861 // is 1. Otherwise it is 0.
4862 Arm_address thumb_bit = 0;
c121c671 4863 Symbol_value<32> symval;
d204b6e9 4864 bool is_weakly_undefined_without_plt = false;
2daedcd6 4865 if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
c121c671 4866 {
2daedcd6
DK
4867 if (gsym != NULL)
4868 {
4869 // This is a global symbol. Determine if we use PLT and if the
4870 // final target is THUMB.
4871 if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
4872 {
4873 // This uses a PLT, change the symbol value.
4874 symval.set_output_value(target->plt_section()->address()
4875 + gsym->plt_offset());
4876 psymval = &symval;
4877 }
d204b6e9
DK
4878 else if (gsym->is_weak_undefined())
4879 {
4880 // This is a weakly undefined symbol and we do not use PLT
4881 // for this relocation. A branch targeting this symbol will
4882 // be converted into an NOP.
4883 is_weakly_undefined_without_plt = true;
4884 }
2daedcd6
DK
4885 else
4886 {
4887 // Set thumb bit if symbol:
4888 // -Has type STT_ARM_TFUNC or
4889 // -Has type STT_FUNC, is defined and with LSB in value set.
4890 thumb_bit =
4891 (((gsym->type() == elfcpp::STT_ARM_TFUNC)
4892 || (gsym->type() == elfcpp::STT_FUNC
4893 && !gsym->is_undefined()
4894 && ((psymval->value(object, 0) & 1) != 0)))
4895 ? 1
4896 : 0);
4897 }
4898 }
4899 else
4900 {
4901 // This is a local symbol. Determine if the final target is THUMB.
4902 // We saved this information when all the local symbols were read.
4903 elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
4904 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
4905 thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
4906 }
4907 }
4908 else
4909 {
4910 // This is a fake relocation synthesized for a stub. It does not have
4911 // a real symbol. We just look at the LSB of the symbol value to
4912 // determine if the target is THUMB or not.
4913 thumb_bit = ((psymval->value(object, 0) & 1) != 0);
c121c671
DK
4914 }
4915
2daedcd6
DK
4916 // Strip LSB if this points to a THUMB target.
4917 if (thumb_bit != 0
4918 && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
4919 && ((psymval->value(object, 0) & 1) != 0))
4920 {
4921 Arm_address stripped_value =
4922 psymval->value(object, 0) & ~static_cast<Arm_address>(1);
4923 symval.set_output_value(stripped_value);
4924 psymval = &symval;
4925 }
4926
c121c671
DK
4927 // Get the GOT offset if needed.
4928 // The GOT pointer points to the end of the GOT section.
4929 // We need to subtract the size of the GOT section to get
4930 // the actual offset to use in the relocation.
4931 bool have_got_offset = false;
4932 unsigned int got_offset = 0;
4933 switch (r_type)
4934 {
4935 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 4936 case elfcpp::R_ARM_GOT_PREL:
c121c671
DK
4937 if (gsym != NULL)
4938 {
4939 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
4940 got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
4941 - target->got_size());
4942 }
4943 else
4944 {
4945 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
4946 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
4947 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
4948 - target->got_size());
4949 }
4950 have_got_offset = true;
4951 break;
4952
4953 default:
4954 break;
4955 }
4956
d204b6e9
DK
4957 // To look up relocation stubs, we need to pass the symbol table index of
4958 // a local symbol.
4959 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
4960
c121c671
DK
4961 typename Arm_relocate_functions::Status reloc_status =
4962 Arm_relocate_functions::STATUS_OKAY;
4a657b0d
DK
4963 switch (r_type)
4964 {
4965 case elfcpp::R_ARM_NONE:
4966 break;
4967
5e445df6
ILT
4968 case elfcpp::R_ARM_ABS8:
4969 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4970 output_section))
be8fcb75
ILT
4971 reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
4972 break;
4973
4974 case elfcpp::R_ARM_ABS12:
4975 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4976 output_section))
4977 reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
4978 break;
4979
4980 case elfcpp::R_ARM_ABS16:
4981 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
4982 output_section))
4983 reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
5e445df6
ILT
4984 break;
4985
c121c671
DK
4986 case elfcpp::R_ARM_ABS32:
4987 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
4988 output_section))
4989 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
2daedcd6 4990 thumb_bit);
c121c671
DK
4991 break;
4992
be8fcb75
ILT
4993 case elfcpp::R_ARM_ABS32_NOI:
4994 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
4995 output_section))
4996 // No thumb bit for this relocation: (S + A)
4997 reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
f4e5969c 4998 0);
be8fcb75
ILT
4999 break;
5000
fd3c5f0b
ILT
5001 case elfcpp::R_ARM_MOVW_ABS_NC:
5002 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5003 output_section))
5004 reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
5005 psymval,
2daedcd6 5006 thumb_bit);
fd3c5f0b
ILT
5007 else
5008 gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
5009 "a shared object; recompile with -fPIC"));
5010 break;
5011
5012 case elfcpp::R_ARM_MOVT_ABS:
5013 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5014 output_section))
5015 reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
5016 else
5017 gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
5018 "a shared object; recompile with -fPIC"));
5019 break;
5020
5021 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
5022 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5023 output_section))
5024 reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
5025 psymval,
2daedcd6 5026 thumb_bit);
fd3c5f0b
ILT
5027 else
5028 gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
5029 "making a shared object; recompile with -fPIC"));
5030 break;
5031
5032 case elfcpp::R_ARM_THM_MOVT_ABS:
5033 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5034 output_section))
5035 reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
5036 psymval);
5037 else
5038 gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
5039 "making a shared object; recompile with -fPIC"));
5040 break;
5041
c2a122b6
ILT
5042 case elfcpp::R_ARM_MOVW_PREL_NC:
5043 reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
5044 psymval, address,
2daedcd6 5045 thumb_bit);
c2a122b6
ILT
5046 break;
5047
5048 case elfcpp::R_ARM_MOVT_PREL:
5049 reloc_status = Arm_relocate_functions::movt_prel(view, object,
5050 psymval, address);
5051 break;
5052
5053 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
5054 reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
5055 psymval, address,
2daedcd6 5056 thumb_bit);
c2a122b6
ILT
5057 break;
5058
5059 case elfcpp::R_ARM_THM_MOVT_PREL:
5060 reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
5061 psymval, address);
5062 break;
5063
c121c671
DK
5064 case elfcpp::R_ARM_REL32:
5065 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 5066 address, thumb_bit);
c121c671
DK
5067 break;
5068
be8fcb75
ILT
5069 case elfcpp::R_ARM_THM_ABS5:
5070 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
5071 output_section))
5072 reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
5073 break;
5074
c121c671 5075 case elfcpp::R_ARM_THM_CALL:
51938283
DK
5076 reloc_status =
5077 Arm_relocate_functions::thm_call(relinfo, view, gsym, object, r_sym,
5078 psymval, address, thumb_bit,
5079 is_weakly_undefined_without_plt);
c121c671
DK
5080 break;
5081
d204b6e9
DK
5082 case elfcpp::R_ARM_XPC25:
5083 reloc_status =
5084 Arm_relocate_functions::xpc25(relinfo, view, gsym, object, r_sym,
5085 psymval, address, thumb_bit,
5086 is_weakly_undefined_without_plt);
5087 break;
5088
51938283
DK
5089 case elfcpp::R_ARM_THM_XPC22:
5090 reloc_status =
5091 Arm_relocate_functions::thm_xpc22(relinfo, view, gsym, object, r_sym,
5092 psymval, address, thumb_bit,
5093 is_weakly_undefined_without_plt);
5094 break;
5095
c121c671
DK
5096 case elfcpp::R_ARM_GOTOFF32:
5097 {
ebabffbd 5098 Arm_address got_origin;
c121c671
DK
5099 got_origin = target->got_plt_section()->address();
5100 reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
2daedcd6 5101 got_origin, thumb_bit);
c121c671
DK
5102 }
5103 break;
5104
5105 case elfcpp::R_ARM_BASE_PREL:
5106 {
5107 uint32_t origin;
5108 // Get the addressing origin of the output segment defining the
5109 // symbol gsym (AAELF 4.6.1.2 Relocation types)
5110 gold_assert(gsym != NULL);
5111 if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
5112 origin = gsym->output_segment()->vaddr();
5113 else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
5114 origin = gsym->output_data()->address();
5115 else
5116 {
5117 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5118 _("cannot find origin of R_ARM_BASE_PREL"));
5119 return true;
5120 }
5121 reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
5122 }
5123 break;
5124
be8fcb75
ILT
5125 case elfcpp::R_ARM_BASE_ABS:
5126 {
5127 if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
5128 output_section))
5129 break;
5130
5131 uint32_t origin;
5132 // Get the addressing origin of the output segment defining
5133 // the symbol gsym (AAELF 4.6.1.2 Relocation types).
5134 if (gsym == NULL)
5135 // R_ARM_BASE_ABS with the NULL symbol will give the
5136 // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
5137 // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
5138 origin = target->got_plt_section()->address();
5139 else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
5140 origin = gsym->output_segment()->vaddr();
5141 else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
5142 origin = gsym->output_data()->address();
5143 else
5144 {
5145 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5146 _("cannot find origin of R_ARM_BASE_ABS"));
5147 return true;
5148 }
5149
5150 reloc_status = Arm_relocate_functions::base_abs(view, origin);
5151 }
5152 break;
5153
c121c671
DK
5154 case elfcpp::R_ARM_GOT_BREL:
5155 gold_assert(have_got_offset);
5156 reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
5157 break;
5158
7f5309a5
ILT
5159 case elfcpp::R_ARM_GOT_PREL:
5160 gold_assert(have_got_offset);
5161 // Get the address origin for GOT PLT, which is allocated right
5162 // after the GOT section, to calculate an absolute address of
5163 // the symbol GOT entry (got_origin + got_offset).
ebabffbd 5164 Arm_address got_origin;
7f5309a5
ILT
5165 got_origin = target->got_plt_section()->address();
5166 reloc_status = Arm_relocate_functions::got_prel(view,
5167 got_origin + got_offset,
5168 address);
5169 break;
5170
c121c671
DK
5171 case elfcpp::R_ARM_PLT32:
5172 gold_assert(gsym == NULL
5173 || gsym->has_plt_offset()
5174 || gsym->final_value_is_known()
5175 || (gsym->is_defined()
5176 && !gsym->is_from_dynobj()
5177 && !gsym->is_preemptible()));
d204b6e9
DK
5178 reloc_status =
5179 Arm_relocate_functions::plt32(relinfo, view, gsym, object, r_sym,
5180 psymval, address, thumb_bit,
5181 is_weakly_undefined_without_plt);
c121c671
DK
5182 break;
5183
5184 case elfcpp::R_ARM_CALL:
d204b6e9
DK
5185 reloc_status =
5186 Arm_relocate_functions::call(relinfo, view, gsym, object, r_sym,
5187 psymval, address, thumb_bit,
5188 is_weakly_undefined_without_plt);
c121c671
DK
5189 break;
5190
5191 case elfcpp::R_ARM_JUMP24:
d204b6e9
DK
5192 reloc_status =
5193 Arm_relocate_functions::jump24(relinfo, view, gsym, object, r_sym,
5194 psymval, address, thumb_bit,
5195 is_weakly_undefined_without_plt);
c121c671
DK
5196 break;
5197
51938283
DK
5198 case elfcpp::R_ARM_THM_JUMP24:
5199 reloc_status =
5200 Arm_relocate_functions::thm_jump24(relinfo, view, gsym, object, r_sym,
5201 psymval, address, thumb_bit,
5202 is_weakly_undefined_without_plt);
5203 break;
5204
c121c671
DK
5205 case elfcpp::R_ARM_PREL31:
5206 reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
2daedcd6 5207 address, thumb_bit);
c121c671
DK
5208 break;
5209
5210 case elfcpp::R_ARM_TARGET1:
5211 // This should have been mapped to another type already.
5212 // Fall through.
5213 case elfcpp::R_ARM_COPY:
5214 case elfcpp::R_ARM_GLOB_DAT:
5215 case elfcpp::R_ARM_JUMP_SLOT:
5216 case elfcpp::R_ARM_RELATIVE:
5217 // These are relocations which should only be seen by the
5218 // dynamic linker, and should never be seen here.
5219 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5220 _("unexpected reloc %u in object file"),
5221 r_type);
5222 break;
5223
5224 default:
5225 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5226 _("unsupported reloc %u"),
5227 r_type);
5228 break;
5229 }
5230
5231 // Report any errors.
5232 switch (reloc_status)
5233 {
5234 case Arm_relocate_functions::STATUS_OKAY:
5235 break;
5236 case Arm_relocate_functions::STATUS_OVERFLOW:
5237 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
5238 _("relocation overflow in relocation %u"),
5239 r_type);
5240 break;
5241 case Arm_relocate_functions::STATUS_BAD_RELOC:
5242 gold_error_at_location(
5243 relinfo,
5244 relnum,
5245 rel.get_r_offset(),
5246 _("unexpected opcode while processing relocation %u"),
5247 r_type);
5248 break;
4a657b0d
DK
5249 default:
5250 gold_unreachable();
5251 }
5252
5253 return true;
5254}
5255
5256// Relocate section data.
5257
5258template<bool big_endian>
5259void
5260Target_arm<big_endian>::relocate_section(
5261 const Relocate_info<32, big_endian>* relinfo,
5262 unsigned int sh_type,
5263 const unsigned char* prelocs,
5264 size_t reloc_count,
5265 Output_section* output_section,
5266 bool needs_special_offset_handling,
5267 unsigned char* view,
ebabffbd 5268 Arm_address address,
364c7fa5
ILT
5269 section_size_type view_size,
5270 const Reloc_symbol_changes* reloc_symbol_changes)
4a657b0d
DK
5271{
5272 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
5273 gold_assert(sh_type == elfcpp::SHT_REL);
5274
43d12afe
DK
5275 Arm_input_section<big_endian>* arm_input_section =
5276 this->find_arm_input_section(relinfo->object, relinfo->data_shndx);
5277
5278 // This is an ARM input section and the view covers the whole output
5279 // section.
5280 if (arm_input_section != NULL)
5281 {
5282 gold_assert(needs_special_offset_handling);
5283 Arm_address section_address = arm_input_section->address();
5284 section_size_type section_size = arm_input_section->data_size();
5285
5286 gold_assert((arm_input_section->address() >= address)
5287 && ((arm_input_section->address()
5288 + arm_input_section->data_size())
5289 <= (address + view_size)));
5290
2ea97941
ILT
5291 off_t offset = section_address - address;
5292 view += offset;
5293 address += offset;
43d12afe
DK
5294 view_size = section_size;
5295 }
5296
4a657b0d
DK
5297 gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
5298 Arm_relocate>(
5299 relinfo,
5300 this,
5301 prelocs,
5302 reloc_count,
5303 output_section,
5304 needs_special_offset_handling,
5305 view,
5306 address,
364c7fa5
ILT
5307 view_size,
5308 reloc_symbol_changes);
4a657b0d
DK
5309}
5310
5311// Return the size of a relocation while scanning during a relocatable
5312// link.
5313
5314template<bool big_endian>
5315unsigned int
5316Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
5317 unsigned int r_type,
5318 Relobj* object)
5319{
a6d1ef57 5320 r_type = get_real_reloc_type(r_type);
4a657b0d
DK
5321 switch (r_type)
5322 {
5323 case elfcpp::R_ARM_NONE:
5324 return 0;
5325
5e445df6
ILT
5326 case elfcpp::R_ARM_ABS8:
5327 return 1;
5328
be8fcb75
ILT
5329 case elfcpp::R_ARM_ABS16:
5330 case elfcpp::R_ARM_THM_ABS5:
5331 return 2;
5332
4a657b0d 5333 case elfcpp::R_ARM_ABS32:
be8fcb75
ILT
5334 case elfcpp::R_ARM_ABS32_NOI:
5335 case elfcpp::R_ARM_ABS12:
5336 case elfcpp::R_ARM_BASE_ABS:
4a657b0d
DK
5337 case elfcpp::R_ARM_REL32:
5338 case elfcpp::R_ARM_THM_CALL:
5339 case elfcpp::R_ARM_GOTOFF32:
5340 case elfcpp::R_ARM_BASE_PREL:
5341 case elfcpp::R_ARM_GOT_BREL:
7f5309a5 5342 case elfcpp::R_ARM_GOT_PREL:
4a657b0d
DK
5343 case elfcpp::R_ARM_PLT32:
5344 case elfcpp::R_ARM_CALL:
5345 case elfcpp::R_ARM_JUMP24:
5346 case elfcpp::R_ARM_PREL31:
fd3c5f0b
ILT
5347 case elfcpp::R_ARM_MOVW_ABS_NC:
5348 case elfcpp::R_ARM_MOVT_ABS:
5349 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
5350 case elfcpp::R_ARM_THM_MOVT_ABS:
c2a122b6
ILT
5351 case elfcpp::R_ARM_MOVW_PREL_NC:
5352 case elfcpp::R_ARM_MOVT_PREL:
5353 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
5354 case elfcpp::R_ARM_THM_MOVT_PREL:
4a657b0d
DK
5355 return 4;
5356
5357 case elfcpp::R_ARM_TARGET1:
5358 // This should have been mapped to another type already.
5359 // Fall through.
5360 case elfcpp::R_ARM_COPY:
5361 case elfcpp::R_ARM_GLOB_DAT:
5362 case elfcpp::R_ARM_JUMP_SLOT:
5363 case elfcpp::R_ARM_RELATIVE:
5364 // These are relocations which should only be seen by the
5365 // dynamic linker, and should never be seen here.
5366 gold_error(_("%s: unexpected reloc %u in object file"),
5367 object->name().c_str(), r_type);
5368 return 0;
5369
5370 default:
5371 object->error(_("unsupported reloc %u in object file"), r_type);
5372 return 0;
5373 }
5374}
5375
5376// Scan the relocs during a relocatable link.
5377
5378template<bool big_endian>
5379void
5380Target_arm<big_endian>::scan_relocatable_relocs(
4a657b0d 5381 Symbol_table* symtab,
2ea97941 5382 Layout* layout,
4a657b0d
DK
5383 Sized_relobj<32, big_endian>* object,
5384 unsigned int data_shndx,
5385 unsigned int sh_type,
5386 const unsigned char* prelocs,
5387 size_t reloc_count,
5388 Output_section* output_section,
5389 bool needs_special_offset_handling,
5390 size_t local_symbol_count,
5391 const unsigned char* plocal_symbols,
5392 Relocatable_relocs* rr)
5393{
5394 gold_assert(sh_type == elfcpp::SHT_REL);
5395
5396 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
5397 Relocatable_size_for_reloc> Scan_relocatable_relocs;
5398
5399 gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
5400 Scan_relocatable_relocs>(
4a657b0d 5401 symtab,
2ea97941 5402 layout,
4a657b0d
DK
5403 object,
5404 data_shndx,
5405 prelocs,
5406 reloc_count,
5407 output_section,
5408 needs_special_offset_handling,
5409 local_symbol_count,
5410 plocal_symbols,
5411 rr);
5412}
5413
5414// Relocate a section during a relocatable link.
5415
5416template<bool big_endian>
5417void
5418Target_arm<big_endian>::relocate_for_relocatable(
5419 const Relocate_info<32, big_endian>* relinfo,
5420 unsigned int sh_type,
5421 const unsigned char* prelocs,
5422 size_t reloc_count,
5423 Output_section* output_section,
5424 off_t offset_in_output_section,
5425 const Relocatable_relocs* rr,
5426 unsigned char* view,
ebabffbd 5427 Arm_address view_address,
4a657b0d
DK
5428 section_size_type view_size,
5429 unsigned char* reloc_view,
5430 section_size_type reloc_view_size)
5431{
5432 gold_assert(sh_type == elfcpp::SHT_REL);
5433
5434 gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>(
5435 relinfo,
5436 prelocs,
5437 reloc_count,
5438 output_section,
5439 offset_in_output_section,
5440 rr,
5441 view,
5442 view_address,
5443 view_size,
5444 reloc_view,
5445 reloc_view_size);
5446}
5447
94cdfcff
DK
5448// Return the value to use for a dynamic symbol which requires special
5449// treatment. This is how we support equality comparisons of function
5450// pointers across shared library boundaries, as described in the
5451// processor specific ABI supplement.
5452
4a657b0d
DK
5453template<bool big_endian>
5454uint64_t
94cdfcff 5455Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
4a657b0d 5456{
94cdfcff
DK
5457 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
5458 return this->plt_section()->address() + gsym->plt_offset();
4a657b0d
DK
5459}
5460
5461// Map platform-specific relocs to real relocs
5462//
5463template<bool big_endian>
5464unsigned int
a6d1ef57 5465Target_arm<big_endian>::get_real_reloc_type (unsigned int r_type)
4a657b0d
DK
5466{
5467 switch (r_type)
5468 {
5469 case elfcpp::R_ARM_TARGET1:
a6d1ef57
DK
5470 // This is either R_ARM_ABS32 or R_ARM_REL32;
5471 return elfcpp::R_ARM_ABS32;
4a657b0d
DK
5472
5473 case elfcpp::R_ARM_TARGET2:
a6d1ef57
DK
5474 // This can be any reloc type but ususally is R_ARM_GOT_PREL
5475 return elfcpp::R_ARM_GOT_PREL;
4a657b0d
DK
5476
5477 default:
5478 return r_type;
5479 }
5480}
5481
d5b40221
DK
5482// Whether if two EABI versions V1 and V2 are compatible.
5483
5484template<bool big_endian>
5485bool
5486Target_arm<big_endian>::are_eabi_versions_compatible(
5487 elfcpp::Elf_Word v1,
5488 elfcpp::Elf_Word v2)
5489{
5490 // v4 and v5 are the same spec before and after it was released,
5491 // so allow mixing them.
5492 if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
5493 || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
5494 return true;
5495
5496 return v1 == v2;
5497}
5498
5499// Combine FLAGS from an input object called NAME and the processor-specific
5500// flags in the ELF header of the output. Much of this is adapted from the
5501// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
5502// in bfd/elf32-arm.c.
5503
5504template<bool big_endian>
5505void
5506Target_arm<big_endian>::merge_processor_specific_flags(
5507 const std::string& name,
5508 elfcpp::Elf_Word flags)
5509{
5510 if (this->are_processor_specific_flags_set())
5511 {
5512 elfcpp::Elf_Word out_flags = this->processor_specific_flags();
5513
5514 // Nothing to merge if flags equal to those in output.
5515 if (flags == out_flags)
5516 return;
5517
5518 // Complain about various flag mismatches.
5519 elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
5520 elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
5521 if (!this->are_eabi_versions_compatible(version1, version2))
5522 gold_error(_("Source object %s has EABI version %d but output has "
5523 "EABI version %d."),
5524 name.c_str(),
5525 (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
5526 (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
5527 }
5528 else
5529 {
5530 // If the input is the default architecture and had the default
5531 // flags then do not bother setting the flags for the output
5532 // architecture, instead allow future merges to do this. If no
5533 // future merges ever set these flags then they will retain their
5534 // uninitialised values, which surprise surprise, correspond
5535 // to the default values.
5536 if (flags == 0)
5537 return;
5538
5539 // This is the first time, just copy the flags.
5540 // We only copy the EABI version for now.
5541 this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
5542 }
5543}
5544
5545// Adjust ELF file header.
5546template<bool big_endian>
5547void
5548Target_arm<big_endian>::do_adjust_elf_header(
5549 unsigned char* view,
5550 int len) const
5551{
5552 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);
5553
5554 elfcpp::Ehdr<32, big_endian> ehdr(view);
5555 unsigned char e_ident[elfcpp::EI_NIDENT];
5556 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
5557
5558 if (elfcpp::arm_eabi_version(this->processor_specific_flags())
5559 == elfcpp::EF_ARM_EABI_UNKNOWN)
5560 e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
5561 else
5562 e_ident[elfcpp::EI_OSABI] = 0;
5563 e_ident[elfcpp::EI_ABIVERSION] = 0;
5564
5565 // FIXME: Do EF_ARM_BE8 adjustment.
5566
5567 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
5568 oehdr.put_e_ident(e_ident);
5569}
5570
5571// do_make_elf_object to override the same function in the base class.
5572// We need to use a target-specific sub-class of Sized_relobj<32, big_endian>
5573// to store ARM specific information. Hence we need to have our own
5574// ELF object creation.
5575
5576template<bool big_endian>
5577Object*
5578Target_arm<big_endian>::do_make_elf_object(
5579 const std::string& name,
5580 Input_file* input_file,
2ea97941 5581 off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
d5b40221
DK
5582{
5583 int et = ehdr.get_e_type();
5584 if (et == elfcpp::ET_REL)
5585 {
5586 Arm_relobj<big_endian>* obj =
2ea97941 5587 new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
5588 obj->setup();
5589 return obj;
5590 }
5591 else if (et == elfcpp::ET_DYN)
5592 {
5593 Sized_dynobj<32, big_endian>* obj =
2ea97941 5594 new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
d5b40221
DK
5595 obj->setup();
5596 return obj;
5597 }
5598 else
5599 {
5600 gold_error(_("%s: unsupported ELF file type %d"),
5601 name.c_str(), et);
5602 return NULL;
5603 }
5604}
5605
a0351a69
DK
5606// Read the architecture from the Tag_also_compatible_with attribute, if any.
5607// Returns -1 if no architecture could be read.
5608// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
5609
5610template<bool big_endian>
5611int
5612Target_arm<big_endian>::get_secondary_compatible_arch(
5613 const Attributes_section_data* pasd)
5614{
5615 const Object_attribute *known_attributes =
5616 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
5617
5618 // Note: the tag and its argument below are uleb128 values, though
5619 // currently-defined values fit in one byte for each.
5620 const std::string& sv =
5621 known_attributes[elfcpp::Tag_also_compatible_with].string_value();
5622 if (sv.size() == 2
5623 && sv.data()[0] == elfcpp::Tag_CPU_arch
5624 && (sv.data()[1] & 128) != 128)
5625 return sv.data()[1];
5626
5627 // This tag is "safely ignorable", so don't complain if it looks funny.
5628 return -1;
5629}
5630
5631// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
5632// The tag is removed if ARCH is -1.
5633// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
5634
5635template<bool big_endian>
5636void
5637Target_arm<big_endian>::set_secondary_compatible_arch(
5638 Attributes_section_data* pasd,
5639 int arch)
5640{
5641 Object_attribute *known_attributes =
5642 pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
5643
5644 if (arch == -1)
5645 {
5646 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
5647 return;
5648 }
5649
5650 // Note: the tag and its argument below are uleb128 values, though
5651 // currently-defined values fit in one byte for each.
5652 char sv[3];
5653 sv[0] = elfcpp::Tag_CPU_arch;
5654 gold_assert(arch != 0);
5655 sv[1] = arch;
5656 sv[2] = '\0';
5657
5658 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
5659}
5660
5661// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
5662// into account.
5663// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
5664
5665template<bool big_endian>
5666int
5667Target_arm<big_endian>::tag_cpu_arch_combine(
5668 const char* name,
5669 int oldtag,
5670 int* secondary_compat_out,
5671 int newtag,
5672 int secondary_compat)
5673{
5674#define T(X) elfcpp::TAG_CPU_ARCH_##X
5675 static const int v6t2[] =
5676 {
5677 T(V6T2), // PRE_V4.
5678 T(V6T2), // V4.
5679 T(V6T2), // V4T.
5680 T(V6T2), // V5T.
5681 T(V6T2), // V5TE.
5682 T(V6T2), // V5TEJ.
5683 T(V6T2), // V6.
5684 T(V7), // V6KZ.
5685 T(V6T2) // V6T2.
5686 };
5687 static const int v6k[] =
5688 {
5689 T(V6K), // PRE_V4.
5690 T(V6K), // V4.
5691 T(V6K), // V4T.
5692 T(V6K), // V5T.
5693 T(V6K), // V5TE.
5694 T(V6K), // V5TEJ.
5695 T(V6K), // V6.
5696 T(V6KZ), // V6KZ.
5697 T(V7), // V6T2.
5698 T(V6K) // V6K.
5699 };
5700 static const int v7[] =
5701 {
5702 T(V7), // PRE_V4.
5703 T(V7), // V4.
5704 T(V7), // V4T.
5705 T(V7), // V5T.
5706 T(V7), // V5TE.
5707 T(V7), // V5TEJ.
5708 T(V7), // V6.
5709 T(V7), // V6KZ.
5710 T(V7), // V6T2.
5711 T(V7), // V6K.
5712 T(V7) // V7.
5713 };
5714 static const int v6_m[] =
5715 {
5716 -1, // PRE_V4.
5717 -1, // V4.
5718 T(V6K), // V4T.
5719 T(V6K), // V5T.
5720 T(V6K), // V5TE.
5721 T(V6K), // V5TEJ.
5722 T(V6K), // V6.
5723 T(V6KZ), // V6KZ.
5724 T(V7), // V6T2.
5725 T(V6K), // V6K.
5726 T(V7), // V7.
5727 T(V6_M) // V6_M.
5728 };
5729 static const int v6s_m[] =
5730 {
5731 -1, // PRE_V4.
5732 -1, // V4.
5733 T(V6K), // V4T.
5734 T(V6K), // V5T.
5735 T(V6K), // V5TE.
5736 T(V6K), // V5TEJ.
5737 T(V6K), // V6.
5738 T(V6KZ), // V6KZ.
5739 T(V7), // V6T2.
5740 T(V6K), // V6K.
5741 T(V7), // V7.
5742 T(V6S_M), // V6_M.
5743 T(V6S_M) // V6S_M.
5744 };
5745 static const int v7e_m[] =
5746 {
5747 -1, // PRE_V4.
5748 -1, // V4.
5749 T(V7E_M), // V4T.
5750 T(V7E_M), // V5T.
5751 T(V7E_M), // V5TE.
5752 T(V7E_M), // V5TEJ.
5753 T(V7E_M), // V6.
5754 T(V7E_M), // V6KZ.
5755 T(V7E_M), // V6T2.
5756 T(V7E_M), // V6K.
5757 T(V7E_M), // V7.
5758 T(V7E_M), // V6_M.
5759 T(V7E_M), // V6S_M.
5760 T(V7E_M) // V7E_M.
5761 };
5762 static const int v4t_plus_v6_m[] =
5763 {
5764 -1, // PRE_V4.
5765 -1, // V4.
5766 T(V4T), // V4T.
5767 T(V5T), // V5T.
5768 T(V5TE), // V5TE.
5769 T(V5TEJ), // V5TEJ.
5770 T(V6), // V6.
5771 T(V6KZ), // V6KZ.
5772 T(V6T2), // V6T2.
5773 T(V6K), // V6K.
5774 T(V7), // V7.
5775 T(V6_M), // V6_M.
5776 T(V6S_M), // V6S_M.
5777 T(V7E_M), // V7E_M.
5778 T(V4T_PLUS_V6_M) // V4T plus V6_M.
5779 };
5780 static const int *comb[] =
5781 {
5782 v6t2,
5783 v6k,
5784 v7,
5785 v6_m,
5786 v6s_m,
5787 v7e_m,
5788 // Pseudo-architecture.
5789 v4t_plus_v6_m
5790 };
5791
5792 // Check we've not got a higher architecture than we know about.
5793
5794 if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
5795 {
5796 gold_error(_("%s: unknown CPU architecture"), name);
5797 return -1;
5798 }
5799
5800 // Override old tag if we have a Tag_also_compatible_with on the output.
5801
5802 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
5803 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
5804 oldtag = T(V4T_PLUS_V6_M);
5805
5806 // And override the new tag if we have a Tag_also_compatible_with on the
5807 // input.
5808
5809 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
5810 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
5811 newtag = T(V4T_PLUS_V6_M);
5812
5813 // Architectures before V6KZ add features monotonically.
5814 int tagh = std::max(oldtag, newtag);
5815 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
5816 return tagh;
5817
5818 int tagl = std::min(oldtag, newtag);
5819 int result = comb[tagh - T(V6T2)][tagl];
5820
5821 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
5822 // as the canonical version.
5823 if (result == T(V4T_PLUS_V6_M))
5824 {
5825 result = T(V4T);
5826 *secondary_compat_out = T(V6_M);
5827 }
5828 else
5829 *secondary_compat_out = -1;
5830
5831 if (result == -1)
5832 {
5833 gold_error(_("%s: conflicting CPU architectures %d/%d"),
5834 name, oldtag, newtag);
5835 return -1;
5836 }
5837
5838 return result;
5839#undef T
5840}
5841
5842// Helper to print AEABI enum tag value.
5843
5844template<bool big_endian>
5845std::string
5846Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
5847{
5848 static const char *aeabi_enum_names[] =
5849 { "", "variable-size", "32-bit", "" };
5850 const size_t aeabi_enum_names_size =
5851 sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
5852
5853 if (value < aeabi_enum_names_size)
5854 return std::string(aeabi_enum_names[value]);
5855 else
5856 {
5857 char buffer[100];
5858 sprintf(buffer, "<unknown value %u>", value);
5859 return std::string(buffer);
5860 }
5861}
5862
5863// Return the string value to store in TAG_CPU_name.
5864
5865template<bool big_endian>
5866std::string
5867Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
5868{
5869 static const char *name_table[] = {
5870 // These aren't real CPU names, but we can't guess
5871 // that from the architecture version alone.
5872 "Pre v4",
5873 "ARM v4",
5874 "ARM v4T",
5875 "ARM v5T",
5876 "ARM v5TE",
5877 "ARM v5TEJ",
5878 "ARM v6",
5879 "ARM v6KZ",
5880 "ARM v6T2",
5881 "ARM v6K",
5882 "ARM v7",
5883 "ARM v6-M",
5884 "ARM v6S-M",
5885 "ARM v7E-M"
5886 };
5887 const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
5888
5889 if (value < name_table_size)
5890 return std::string(name_table[value]);
5891 else
5892 {
5893 char buffer[100];
5894 sprintf(buffer, "<unknown CPU value %u>", value);
5895 return std::string(buffer);
5896 }
5897}
5898
5899// Merge object attributes from input file called NAME with those of the
5900// output. The input object attributes are in the object pointed by PASD.
5901
5902template<bool big_endian>
5903void
5904Target_arm<big_endian>::merge_object_attributes(
5905 const char* name,
5906 const Attributes_section_data* pasd)
5907{
5908 // Return if there is no attributes section data.
5909 if (pasd == NULL)
5910 return;
5911
5912 // If output has no object attributes, just copy.
5913 if (this->attributes_section_data_ == NULL)
5914 {
5915 this->attributes_section_data_ = new Attributes_section_data(*pasd);
5916 return;
5917 }
5918
5919 const int vendor = Object_attribute::OBJ_ATTR_PROC;
5920 const Object_attribute* in_attr = pasd->known_attributes(vendor);
5921 Object_attribute* out_attr =
5922 this->attributes_section_data_->known_attributes(vendor);
5923
5924 // This needs to happen before Tag_ABI_FP_number_model is merged. */
5925 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
5926 != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
5927 {
5928 // Ignore mismatches if the object doesn't use floating point. */
5929 if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
5930 out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
5931 in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
5932 else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0)
5933 gold_error(_("%s uses VFP register arguments, output does not"),
5934 name);
5935 }
5936
5937 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
5938 {
5939 // Merge this attribute with existing attributes.
5940 switch (i)
5941 {
5942 case elfcpp::Tag_CPU_raw_name:
5943 case elfcpp::Tag_CPU_name:
5944 // These are merged after Tag_CPU_arch.
5945 break;
5946
5947 case elfcpp::Tag_ABI_optimization_goals:
5948 case elfcpp::Tag_ABI_FP_optimization_goals:
5949 // Use the first value seen.
5950 break;
5951
5952 case elfcpp::Tag_CPU_arch:
5953 {
5954 unsigned int saved_out_attr = out_attr->int_value();
5955 // Merge Tag_CPU_arch and Tag_also_compatible_with.
5956 int secondary_compat =
5957 this->get_secondary_compatible_arch(pasd);
5958 int secondary_compat_out =
5959 this->get_secondary_compatible_arch(
5960 this->attributes_section_data_);
5961 out_attr[i].set_int_value(
5962 tag_cpu_arch_combine(name, out_attr[i].int_value(),
5963 &secondary_compat_out,
5964 in_attr[i].int_value(),
5965 secondary_compat));
5966 this->set_secondary_compatible_arch(this->attributes_section_data_,
5967 secondary_compat_out);
5968
5969 // Merge Tag_CPU_name and Tag_CPU_raw_name.
5970 if (out_attr[i].int_value() == saved_out_attr)
5971 ; // Leave the names alone.
5972 else if (out_attr[i].int_value() == in_attr[i].int_value())
5973 {
5974 // The output architecture has been changed to match the
5975 // input architecture. Use the input names.
5976 out_attr[elfcpp::Tag_CPU_name].set_string_value(
5977 in_attr[elfcpp::Tag_CPU_name].string_value());
5978 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
5979 in_attr[elfcpp::Tag_CPU_raw_name].string_value());
5980 }
5981 else
5982 {
5983 out_attr[elfcpp::Tag_CPU_name].set_string_value("");
5984 out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
5985 }
5986
5987 // If we still don't have a value for Tag_CPU_name,
5988 // make one up now. Tag_CPU_raw_name remains blank.
5989 if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
5990 {
5991 const std::string cpu_name =
5992 this->tag_cpu_name_value(out_attr[i].int_value());
5993 // FIXME: If we see an unknown CPU, this will be set
5994 // to "<unknown CPU n>", where n is the attribute value.
5995 // This is different from BFD, which leaves the name alone.
5996 out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
5997 }
5998 }
5999 break;
6000
6001 case elfcpp::Tag_ARM_ISA_use:
6002 case elfcpp::Tag_THUMB_ISA_use:
6003 case elfcpp::Tag_WMMX_arch:
6004 case elfcpp::Tag_Advanced_SIMD_arch:
6005 // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
6006 case elfcpp::Tag_ABI_FP_rounding:
6007 case elfcpp::Tag_ABI_FP_exceptions:
6008 case elfcpp::Tag_ABI_FP_user_exceptions:
6009 case elfcpp::Tag_ABI_FP_number_model:
6010 case elfcpp::Tag_VFP_HP_extension:
6011 case elfcpp::Tag_CPU_unaligned_access:
6012 case elfcpp::Tag_T2EE_use:
6013 case elfcpp::Tag_Virtualization_use:
6014 case elfcpp::Tag_MPextension_use:
6015 // Use the largest value specified.
6016 if (in_attr[i].int_value() > out_attr[i].int_value())
6017 out_attr[i].set_int_value(in_attr[i].int_value());
6018 break;
6019
6020 case elfcpp::Tag_ABI_align8_preserved:
6021 case elfcpp::Tag_ABI_PCS_RO_data:
6022 // Use the smallest value specified.
6023 if (in_attr[i].int_value() < out_attr[i].int_value())
6024 out_attr[i].set_int_value(in_attr[i].int_value());
6025 break;
6026
6027 case elfcpp::Tag_ABI_align8_needed:
6028 if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
6029 && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
6030 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
6031 == 0)))
6032 {
6033 // This error message should be enabled once all non-conformant
6034 // binaries in the toolchain have had the attributes set
6035 // properly.
6036 // gold_error(_("output 8-byte data alignment conflicts with %s"),
6037 // name);
6038 }
6039 // Fall through.
6040 case elfcpp::Tag_ABI_FP_denormal:
6041 case elfcpp::Tag_ABI_PCS_GOT_use:
6042 {
6043 // These tags have 0 = don't care, 1 = strong requirement,
6044 // 2 = weak requirement.
6045 static const int order_021[3] = {0, 2, 1};
6046
6047 // Use the "greatest" from the sequence 0, 2, 1, or the largest
6048 // value if greater than 2 (for future-proofing).
6049 if ((in_attr[i].int_value() > 2
6050 && in_attr[i].int_value() > out_attr[i].int_value())
6051 || (in_attr[i].int_value() <= 2
6052 && out_attr[i].int_value() <= 2
6053 && (order_021[in_attr[i].int_value()]
6054 > order_021[out_attr[i].int_value()])))
6055 out_attr[i].set_int_value(in_attr[i].int_value());
6056 }
6057 break;
6058
6059 case elfcpp::Tag_CPU_arch_profile:
6060 if (out_attr[i].int_value() != in_attr[i].int_value())
6061 {
6062 // 0 will merge with anything.
6063 // 'A' and 'S' merge to 'A'.
6064 // 'R' and 'S' merge to 'R'.
6065 // 'M' and 'A|R|S' is an error.
6066 if (out_attr[i].int_value() == 0
6067 || (out_attr[i].int_value() == 'S'
6068 && (in_attr[i].int_value() == 'A'
6069 || in_attr[i].int_value() == 'R')))
6070 out_attr[i].set_int_value(in_attr[i].int_value());
6071 else if (in_attr[i].int_value() == 0
6072 || (in_attr[i].int_value() == 'S'
6073 && (out_attr[i].int_value() == 'A'
6074 || out_attr[i].int_value() == 'R')))
6075 ; // Do nothing.
6076 else
6077 {
6078 gold_error
6079 (_("conflicting architecture profiles %c/%c"),
6080 in_attr[i].int_value() ? in_attr[i].int_value() : '0',
6081 out_attr[i].int_value() ? out_attr[i].int_value() : '0');
6082 }
6083 }
6084 break;
6085 case elfcpp::Tag_VFP_arch:
6086 {
6087 static const struct
6088 {
6089 int ver;
6090 int regs;
6091 } vfp_versions[7] =
6092 {
6093 {0, 0},
6094 {1, 16},
6095 {2, 16},
6096 {3, 32},
6097 {3, 16},
6098 {4, 32},
6099 {4, 16}
6100 };
6101
6102 // Values greater than 6 aren't defined, so just pick the
6103 // biggest.
6104 if (in_attr[i].int_value() > 6
6105 && in_attr[i].int_value() > out_attr[i].int_value())
6106 {
6107 *out_attr = *in_attr;
6108 break;
6109 }
6110 // The output uses the superset of input features
6111 // (ISA version) and registers.
6112 int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
6113 vfp_versions[out_attr[i].int_value()].ver);
6114 int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
6115 vfp_versions[out_attr[i].int_value()].regs);
6116 // This assumes all possible supersets are also a valid
6117 // options.
6118 int newval;
6119 for (newval = 6; newval > 0; newval--)
6120 {
6121 if (regs == vfp_versions[newval].regs
6122 && ver == vfp_versions[newval].ver)
6123 break;
6124 }
6125 out_attr[i].set_int_value(newval);
6126 }
6127 break;
6128 case elfcpp::Tag_PCS_config:
6129 if (out_attr[i].int_value() == 0)
6130 out_attr[i].set_int_value(in_attr[i].int_value());
6131 else if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
6132 {
6133 // It's sometimes ok to mix different configs, so this is only
6134 // a warning.
6135 gold_warning(_("%s: conflicting platform configuration"), name);
6136 }
6137 break;
6138 case elfcpp::Tag_ABI_PCS_R9_use:
6139 if (in_attr[i].int_value() != out_attr[i].int_value()
6140 && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
6141 && in_attr[i].int_value() != elfcpp::AEABI_R9_unused)
6142 {
6143 gold_error(_("%s: conflicting use of R9"), name);
6144 }
6145 if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
6146 out_attr[i].set_int_value(in_attr[i].int_value());
6147 break;
6148 case elfcpp::Tag_ABI_PCS_RW_data:
6149 if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
6150 && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
6151 != elfcpp::AEABI_R9_SB)
6152 && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
6153 != elfcpp::AEABI_R9_unused))
6154 {
6155 gold_error(_("%s: SB relative addressing conflicts with use "
6156 "of R9"),
6157 name);
6158 }
6159 // Use the smallest value specified.
6160 if (in_attr[i].int_value() < out_attr[i].int_value())
6161 out_attr[i].set_int_value(in_attr[i].int_value());
6162 break;
6163 case elfcpp::Tag_ABI_PCS_wchar_t:
6164 // FIXME: Make it possible to turn off this warning.
6165 if (out_attr[i].int_value()
6166 && in_attr[i].int_value()
6167 && out_attr[i].int_value() != in_attr[i].int_value())
6168 {
6169 gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
6170 "use %u-byte wchar_t; use of wchar_t values "
6171 "across objects may fail"),
6172 name, in_attr[i].int_value(),
6173 out_attr[i].int_value());
6174 }
6175 else if (in_attr[i].int_value() && !out_attr[i].int_value())
6176 out_attr[i].set_int_value(in_attr[i].int_value());
6177 break;
6178 case elfcpp::Tag_ABI_enum_size:
6179 if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
6180 {
6181 if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
6182 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
6183 {
6184 // The existing object is compatible with anything.
6185 // Use whatever requirements the new object has.
6186 out_attr[i].set_int_value(in_attr[i].int_value());
6187 }
6188 // FIXME: Make it possible to turn off this warning.
6189 else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
6190 && out_attr[i].int_value() != in_attr[i].int_value())
6191 {
6192 unsigned int in_value = in_attr[i].int_value();
6193 unsigned int out_value = out_attr[i].int_value();
6194 gold_warning(_("%s uses %s enums yet the output is to use "
6195 "%s enums; use of enum values across objects "
6196 "may fail"),
6197 name,
6198 this->aeabi_enum_name(in_value).c_str(),
6199 this->aeabi_enum_name(out_value).c_str());
6200 }
6201 }
6202 break;
6203 case elfcpp::Tag_ABI_VFP_args:
6204 // Aready done.
6205 break;
6206 case elfcpp::Tag_ABI_WMMX_args:
6207 if (in_attr[i].int_value() != out_attr[i].int_value())
6208 {
6209 gold_error(_("%s uses iWMMXt register arguments, output does "
6210 "not"),
6211 name);
6212 }
6213 break;
6214 case Object_attribute::Tag_compatibility:
6215 // Merged in target-independent code.
6216 break;
6217 case elfcpp::Tag_ABI_HardFP_use:
6218 // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
6219 if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
6220 || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
6221 out_attr[i].set_int_value(3);
6222 else if (in_attr[i].int_value() > out_attr[i].int_value())
6223 out_attr[i].set_int_value(in_attr[i].int_value());
6224 break;
6225 case elfcpp::Tag_ABI_FP_16bit_format:
6226 if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
6227 {
6228 if (in_attr[i].int_value() != out_attr[i].int_value())
6229 gold_error(_("fp16 format mismatch between %s and output"),
6230 name);
6231 }
6232 if (in_attr[i].int_value() != 0)
6233 out_attr[i].set_int_value(in_attr[i].int_value());
6234 break;
6235
6236 case elfcpp::Tag_nodefaults:
6237 // This tag is set if it exists, but the value is unused (and is
6238 // typically zero). We don't actually need to do anything here -
6239 // the merge happens automatically when the type flags are merged
6240 // below.
6241 break;
6242 case elfcpp::Tag_also_compatible_with:
6243 // Already done in Tag_CPU_arch.
6244 break;
6245 case elfcpp::Tag_conformance:
6246 // Keep the attribute if it matches. Throw it away otherwise.
6247 // No attribute means no claim to conform.
6248 if (in_attr[i].string_value() != out_attr[i].string_value())
6249 out_attr[i].set_string_value("");
6250 break;
6251
6252 default:
6253 {
6254 const char* err_object = NULL;
6255
6256 // The "known_obj_attributes" table does contain some undefined
6257 // attributes. Ensure that there are unused.
6258 if (out_attr[i].int_value() != 0
6259 || out_attr[i].string_value() != "")
6260 err_object = "output";
6261 else if (in_attr[i].int_value() != 0
6262 || in_attr[i].string_value() != "")
6263 err_object = name;
6264
6265 if (err_object != NULL)
6266 {
6267 // Attribute numbers >=64 (mod 128) can be safely ignored.
6268 if ((i & 127) < 64)
6269 gold_error(_("%s: unknown mandatory EABI object attribute "
6270 "%d"),
6271 err_object, i);
6272 else
6273 gold_warning(_("%s: unknown EABI object attribute %d"),
6274 err_object, i);
6275 }
6276
6277 // Only pass on attributes that match in both inputs.
6278 if (!in_attr[i].matches(out_attr[i]))
6279 {
6280 out_attr[i].set_int_value(0);
6281 out_attr[i].set_string_value("");
6282 }
6283 }
6284 }
6285
6286 // If out_attr was copied from in_attr then it won't have a type yet.
6287 if (in_attr[i].type() && !out_attr[i].type())
6288 out_attr[i].set_type(in_attr[i].type());
6289 }
6290
6291 // Merge Tag_compatibility attributes and any common GNU ones.
6292 this->attributes_section_data_->merge(name, pasd);
6293
6294 // Check for any attributes not known on ARM.
6295 typedef Vendor_object_attributes::Other_attributes Other_attributes;
6296 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
6297 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
6298 Other_attributes* out_other_attributes =
6299 this->attributes_section_data_->other_attributes(vendor);
6300 Other_attributes::iterator out_iter = out_other_attributes->begin();
6301
6302 while (in_iter != in_other_attributes->end()
6303 || out_iter != out_other_attributes->end())
6304 {
6305 const char* err_object = NULL;
6306 int err_tag = 0;
6307
6308 // The tags for each list are in numerical order.
6309 // If the tags are equal, then merge.
6310 if (out_iter != out_other_attributes->end()
6311 && (in_iter == in_other_attributes->end()
6312 || in_iter->first > out_iter->first))
6313 {
6314 // This attribute only exists in output. We can't merge, and we
6315 // don't know what the tag means, so delete it.
6316 err_object = "output";
6317 err_tag = out_iter->first;
6318 int saved_tag = out_iter->first;
6319 delete out_iter->second;
6320 out_other_attributes->erase(out_iter);
6321 out_iter = out_other_attributes->upper_bound(saved_tag);
6322 }
6323 else if (in_iter != in_other_attributes->end()
6324 && (out_iter != out_other_attributes->end()
6325 || in_iter->first < out_iter->first))
6326 {
6327 // This attribute only exists in input. We can't merge, and we
6328 // don't know what the tag means, so ignore it.
6329 err_object = name;
6330 err_tag = in_iter->first;
6331 ++in_iter;
6332 }
6333 else // The tags are equal.
6334 {
6335 // As present, all attributes in the list are unknown, and
6336 // therefore can't be merged meaningfully.
6337 err_object = "output";
6338 err_tag = out_iter->first;
6339
6340 // Only pass on attributes that match in both inputs.
6341 if (!in_iter->second->matches(*(out_iter->second)))
6342 {
6343 // No match. Delete the attribute.
6344 int saved_tag = out_iter->first;
6345 delete out_iter->second;
6346 out_other_attributes->erase(out_iter);
6347 out_iter = out_other_attributes->upper_bound(saved_tag);
6348 }
6349 else
6350 {
6351 // Matched. Keep the attribute and move to the next.
6352 ++out_iter;
6353 ++in_iter;
6354 }
6355 }
6356
6357 if (err_object)
6358 {
6359 // Attribute numbers >=64 (mod 128) can be safely ignored. */
6360 if ((err_tag & 127) < 64)
6361 {
6362 gold_error(_("%s: unknown mandatory EABI object attribute %d"),
6363 err_object, err_tag);
6364 }
6365 else
6366 {
6367 gold_warning(_("%s: unknown EABI object attribute %d"),
6368 err_object, err_tag);
6369 }
6370 }
6371 }
6372}
6373
55da9579
DK
6374// Return whether a relocation type used the LSB to distinguish THUMB
6375// addresses.
6376template<bool big_endian>
6377bool
6378Target_arm<big_endian>::reloc_uses_thumb_bit(unsigned int r_type)
6379{
6380 switch (r_type)
6381 {
6382 case elfcpp::R_ARM_PC24:
6383 case elfcpp::R_ARM_ABS32:
6384 case elfcpp::R_ARM_REL32:
6385 case elfcpp::R_ARM_SBREL32:
6386 case elfcpp::R_ARM_THM_CALL:
6387 case elfcpp::R_ARM_GLOB_DAT:
6388 case elfcpp::R_ARM_JUMP_SLOT:
6389 case elfcpp::R_ARM_GOTOFF32:
6390 case elfcpp::R_ARM_PLT32:
6391 case elfcpp::R_ARM_CALL:
6392 case elfcpp::R_ARM_JUMP24:
6393 case elfcpp::R_ARM_THM_JUMP24:
6394 case elfcpp::R_ARM_SBREL31:
6395 case elfcpp::R_ARM_PREL31:
6396 case elfcpp::R_ARM_MOVW_ABS_NC:
6397 case elfcpp::R_ARM_MOVW_PREL_NC:
6398 case elfcpp::R_ARM_THM_MOVW_ABS_NC:
6399 case elfcpp::R_ARM_THM_MOVW_PREL_NC:
6400 case elfcpp::R_ARM_THM_JUMP19:
6401 case elfcpp::R_ARM_THM_ALU_PREL_11_0:
6402 case elfcpp::R_ARM_ALU_PC_G0_NC:
6403 case elfcpp::R_ARM_ALU_PC_G0:
6404 case elfcpp::R_ARM_ALU_PC_G1_NC:
6405 case elfcpp::R_ARM_ALU_PC_G1:
6406 case elfcpp::R_ARM_ALU_PC_G2:
6407 case elfcpp::R_ARM_ALU_SB_G0_NC:
6408 case elfcpp::R_ARM_ALU_SB_G0:
6409 case elfcpp::R_ARM_ALU_SB_G1_NC:
6410 case elfcpp::R_ARM_ALU_SB_G1:
6411 case elfcpp::R_ARM_ALU_SB_G2:
6412 case elfcpp::R_ARM_MOVW_BREL_NC:
6413 case elfcpp::R_ARM_MOVW_BREL:
6414 case elfcpp::R_ARM_THM_MOVW_BREL_NC:
6415 case elfcpp::R_ARM_THM_MOVW_BREL:
6416 return true;
6417 default:
6418 return false;
6419 }
6420}
6421
6422// Stub-generation methods for Target_arm.
6423
6424// Make a new Arm_input_section object.
6425
6426template<bool big_endian>
6427Arm_input_section<big_endian>*
6428Target_arm<big_endian>::new_arm_input_section(
2ea97941
ILT
6429 Relobj* relobj,
6430 unsigned int shndx)
55da9579 6431{
2ea97941 6432 Input_section_specifier iss(relobj, shndx);
55da9579
DK
6433
6434 Arm_input_section<big_endian>* arm_input_section =
2ea97941 6435 new Arm_input_section<big_endian>(relobj, shndx);
55da9579
DK
6436 arm_input_section->init();
6437
6438 // Register new Arm_input_section in map for look-up.
6439 std::pair<typename Arm_input_section_map::iterator, bool> ins =
6440 this->arm_input_section_map_.insert(std::make_pair(iss, arm_input_section));
6441
6442 // Make sure that it we have not created another Arm_input_section
6443 // for this input section already.
6444 gold_assert(ins.second);
6445
6446 return arm_input_section;
6447}
6448
6449// Find the Arm_input_section object corresponding to the SHNDX-th input
6450// section of RELOBJ.
6451
6452template<bool big_endian>
6453Arm_input_section<big_endian>*
6454Target_arm<big_endian>::find_arm_input_section(
2ea97941
ILT
6455 Relobj* relobj,
6456 unsigned int shndx) const
55da9579 6457{
2ea97941 6458 Input_section_specifier iss(relobj, shndx);
55da9579
DK
6459 typename Arm_input_section_map::const_iterator p =
6460 this->arm_input_section_map_.find(iss);
6461 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
6462}
6463
6464// Make a new stub table.
6465
6466template<bool big_endian>
6467Stub_table<big_endian>*
6468Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
6469{
2ea97941 6470 Stub_table<big_endian>* stub_table =
55da9579 6471 new Stub_table<big_endian>(owner);
2ea97941 6472 this->stub_tables_.push_back(stub_table);
55da9579 6473
2ea97941
ILT
6474 stub_table->set_address(owner->address() + owner->data_size());
6475 stub_table->set_file_offset(owner->offset() + owner->data_size());
6476 stub_table->finalize_data_size();
55da9579 6477
2ea97941 6478 return stub_table;
55da9579
DK
6479}
6480
eb44217c
DK
6481// Scan a relocation for stub generation.
6482
6483template<bool big_endian>
6484void
6485Target_arm<big_endian>::scan_reloc_for_stub(
6486 const Relocate_info<32, big_endian>* relinfo,
6487 unsigned int r_type,
6488 const Sized_symbol<32>* gsym,
6489 unsigned int r_sym,
6490 const Symbol_value<32>* psymval,
6491 elfcpp::Elf_types<32>::Elf_Swxword addend,
6492 Arm_address address)
6493{
2ea97941 6494 typedef typename Target_arm<big_endian>::Relocate Relocate;
eb44217c
DK
6495
6496 const Arm_relobj<big_endian>* arm_relobj =
6497 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
6498
6499 bool target_is_thumb;
6500 Symbol_value<32> symval;
6501 if (gsym != NULL)
6502 {
6503 // This is a global symbol. Determine if we use PLT and if the
6504 // final target is THUMB.
2ea97941 6505 if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
eb44217c
DK
6506 {
6507 // This uses a PLT, change the symbol value.
6508 symval.set_output_value(this->plt_section()->address()
6509 + gsym->plt_offset());
6510 psymval = &symval;
6511 target_is_thumb = false;
6512 }
6513 else if (gsym->is_undefined())
6514 // There is no need to generate a stub symbol is undefined.
6515 return;
6516 else
6517 {
6518 target_is_thumb =
6519 ((gsym->type() == elfcpp::STT_ARM_TFUNC)
6520 || (gsym->type() == elfcpp::STT_FUNC
6521 && !gsym->is_undefined()
6522 && ((psymval->value(arm_relobj, 0) & 1) != 0)));
6523 }
6524 }
6525 else
6526 {
6527 // This is a local symbol. Determine if the final target is THUMB.
6528 target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
6529 }
6530
6531 // Strip LSB if this points to a THUMB target.
6532 if (target_is_thumb
6533 && Target_arm<big_endian>::reloc_uses_thumb_bit(r_type)
6534 && ((psymval->value(arm_relobj, 0) & 1) != 0))
6535 {
6536 Arm_address stripped_value =
6537 psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
6538 symval.set_output_value(stripped_value);
6539 psymval = &symval;
6540 }
6541
6542 // Get the symbol value.
6543 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
6544
6545 // Owing to pipelining, the PC relative branches below actually skip
6546 // two instructions when the branch offset is 0.
6547 Arm_address destination;
6548 switch (r_type)
6549 {
6550 case elfcpp::R_ARM_CALL:
6551 case elfcpp::R_ARM_JUMP24:
6552 case elfcpp::R_ARM_PLT32:
6553 // ARM branches.
6554 destination = value + addend + 8;
6555 break;
6556 case elfcpp::R_ARM_THM_CALL:
6557 case elfcpp::R_ARM_THM_XPC22:
6558 case elfcpp::R_ARM_THM_JUMP24:
6559 case elfcpp::R_ARM_THM_JUMP19:
6560 // THUMB branches.
6561 destination = value + addend + 4;
6562 break;
6563 default:
6564 gold_unreachable();
6565 }
6566
6567 Stub_type stub_type =
6568 Reloc_stub::stub_type_for_reloc(r_type, address, destination,
6569 target_is_thumb);
6570
6571 // This reloc does not need a stub.
6572 if (stub_type == arm_stub_none)
6573 return;
6574
6575 // Try looking up an existing stub from a stub table.
2ea97941 6576 Stub_table<big_endian>* stub_table =
eb44217c 6577 arm_relobj->stub_table(relinfo->data_shndx);
2ea97941 6578 gold_assert(stub_table != NULL);
eb44217c
DK
6579
6580 // Locate stub by destination.
6581 Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
6582
6583 // Create a stub if there is not one already
2ea97941 6584 Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
eb44217c
DK
6585 if (stub == NULL)
6586 {
6587 // create a new stub and add it to stub table.
6588 stub = this->stub_factory().make_reloc_stub(stub_type);
2ea97941 6589 stub_table->add_reloc_stub(stub, stub_key);
eb44217c
DK
6590 }
6591
6592 // Record the destination address.
6593 stub->set_destination_address(destination
6594 | (target_is_thumb ? 1 : 0));
6595}
6596
6597// This function scans a relocation sections for stub generation.
6598// The template parameter Relocate must be a class type which provides
6599// a single function, relocate(), which implements the machine
6600// specific part of a relocation.
6601
6602// BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
6603// SHT_REL or SHT_RELA.
6604
6605// PRELOCS points to the relocation data. RELOC_COUNT is the number
6606// of relocs. OUTPUT_SECTION is the output section.
6607// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
6608// mapped to output offsets.
6609
6610// VIEW is the section data, VIEW_ADDRESS is its memory address, and
6611// VIEW_SIZE is the size. These refer to the input section, unless
6612// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
6613// the output section.
6614
6615template<bool big_endian>
6616template<int sh_type>
6617void inline
6618Target_arm<big_endian>::scan_reloc_section_for_stubs(
6619 const Relocate_info<32, big_endian>* relinfo,
6620 const unsigned char* prelocs,
6621 size_t reloc_count,
6622 Output_section* output_section,
6623 bool needs_special_offset_handling,
6624 const unsigned char* view,
6625 elfcpp::Elf_types<32>::Elf_Addr view_address,
6626 section_size_type)
6627{
6628 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
6629 const int reloc_size =
6630 Reloc_types<sh_type, 32, big_endian>::reloc_size;
6631
6632 Arm_relobj<big_endian>* arm_object =
6633 Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
6634 unsigned int local_count = arm_object->local_symbol_count();
6635
6636 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
6637
6638 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
6639 {
6640 Reltype reloc(prelocs);
6641
6642 typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
6643 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
6644 unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
6645
6646 r_type = this->get_real_reloc_type(r_type);
6647
6648 // Only a few relocation types need stubs.
6649 if ((r_type != elfcpp::R_ARM_CALL)
6650 && (r_type != elfcpp::R_ARM_JUMP24)
6651 && (r_type != elfcpp::R_ARM_PLT32)
6652 && (r_type != elfcpp::R_ARM_THM_CALL)
6653 && (r_type != elfcpp::R_ARM_THM_XPC22)
6654 && (r_type != elfcpp::R_ARM_THM_JUMP24)
6655 && (r_type != elfcpp::R_ARM_THM_JUMP19))
6656 continue;
6657
2ea97941 6658 section_offset_type offset =
eb44217c
DK
6659 convert_to_section_size_type(reloc.get_r_offset());
6660
6661 if (needs_special_offset_handling)
6662 {
2ea97941
ILT
6663 offset = output_section->output_offset(relinfo->object,
6664 relinfo->data_shndx,
6665 offset);
6666 if (offset == -1)
eb44217c
DK
6667 continue;
6668 }
6669
6670 // Get the addend.
6671 Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
6672 elfcpp::Elf_types<32>::Elf_Swxword addend =
2ea97941 6673 stub_addend_reader(r_type, view + offset, reloc);
eb44217c
DK
6674
6675 const Sized_symbol<32>* sym;
6676
6677 Symbol_value<32> symval;
6678 const Symbol_value<32> *psymval;
6679 if (r_sym < local_count)
6680 {
6681 sym = NULL;
6682 psymval = arm_object->local_symbol(r_sym);
6683
6684 // If the local symbol belongs to a section we are discarding,
6685 // and that section is a debug section, try to find the
6686 // corresponding kept section and map this symbol to its
6687 // counterpart in the kept section. The symbol must not
6688 // correspond to a section we are folding.
6689 bool is_ordinary;
2ea97941 6690 unsigned int shndx = psymval->input_shndx(&is_ordinary);
eb44217c 6691 if (is_ordinary
2ea97941
ILT
6692 && shndx != elfcpp::SHN_UNDEF
6693 && !arm_object->is_section_included(shndx)
6694 && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
eb44217c
DK
6695 {
6696 if (comdat_behavior == CB_UNDETERMINED)
6697 {
6698 std::string name =
6699 arm_object->section_name(relinfo->data_shndx);
6700 comdat_behavior = get_comdat_behavior(name.c_str());
6701 }
6702 if (comdat_behavior == CB_PRETEND)
6703 {
6704 bool found;
6705 typename elfcpp::Elf_types<32>::Elf_Addr value =
2ea97941 6706 arm_object->map_to_kept_section(shndx, &found);
eb44217c
DK
6707 if (found)
6708 symval.set_output_value(value + psymval->input_value());
6709 else
6710 symval.set_output_value(0);
6711 }
6712 else
6713 {
6714 symval.set_output_value(0);
6715 }
6716 symval.set_no_output_symtab_entry();
6717 psymval = &symval;
6718 }
6719 }
6720 else
6721 {
6722 const Symbol* gsym = arm_object->global_symbol(r_sym);
6723 gold_assert(gsym != NULL);
6724 if (gsym->is_forwarder())
6725 gsym = relinfo->symtab->resolve_forwards(gsym);
6726
6727 sym = static_cast<const Sized_symbol<32>*>(gsym);
6728 if (sym->has_symtab_index())
6729 symval.set_output_symtab_index(sym->symtab_index());
6730 else
6731 symval.set_no_output_symtab_entry();
6732
6733 // We need to compute the would-be final value of this global
6734 // symbol.
6735 const Symbol_table* symtab = relinfo->symtab;
6736 const Sized_symbol<32>* sized_symbol =
6737 symtab->get_sized_symbol<32>(gsym);
6738 Symbol_table::Compute_final_value_status status;
6739 Arm_address value =
6740 symtab->compute_final_value<32>(sized_symbol, &status);
6741
6742 // Skip this if the symbol has not output section.
6743 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
6744 continue;
6745
6746 symval.set_output_value(value);
6747 psymval = &symval;
6748 }
6749
6750 // If symbol is a section symbol, we don't know the actual type of
6751 // destination. Give up.
6752 if (psymval->is_section_symbol())
6753 continue;
6754
6755 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
2ea97941 6756 addend, view_address + offset);
eb44217c
DK
6757 }
6758}
6759
6760// Scan an input section for stub generation.
6761
6762template<bool big_endian>
6763void
6764Target_arm<big_endian>::scan_section_for_stubs(
6765 const Relocate_info<32, big_endian>* relinfo,
6766 unsigned int sh_type,
6767 const unsigned char* prelocs,
6768 size_t reloc_count,
6769 Output_section* output_section,
6770 bool needs_special_offset_handling,
6771 const unsigned char* view,
6772 Arm_address view_address,
6773 section_size_type view_size)
6774{
6775 if (sh_type == elfcpp::SHT_REL)
6776 this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
6777 relinfo,
6778 prelocs,
6779 reloc_count,
6780 output_section,
6781 needs_special_offset_handling,
6782 view,
6783 view_address,
6784 view_size);
6785 else if (sh_type == elfcpp::SHT_RELA)
6786 // We do not support RELA type relocations yet. This is provided for
6787 // completeness.
6788 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
6789 relinfo,
6790 prelocs,
6791 reloc_count,
6792 output_section,
6793 needs_special_offset_handling,
6794 view,
6795 view_address,
6796 view_size);
6797 else
6798 gold_unreachable();
6799}
6800
6801// Group input sections for stub generation.
6802//
6803// We goup input sections in an output sections so that the total size,
6804// including any padding space due to alignment is smaller than GROUP_SIZE
6805// unless the only input section in group is bigger than GROUP_SIZE already.
6806// Then an ARM stub table is created to follow the last input section
6807// in group. For each group an ARM stub table is created an is placed
6808// after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further
6809// extend the group after the stub table.
6810
6811template<bool big_endian>
6812void
6813Target_arm<big_endian>::group_sections(
2ea97941 6814 Layout* layout,
eb44217c
DK
6815 section_size_type group_size,
6816 bool stubs_always_after_branch)
6817{
6818 // Group input sections and insert stub table
6819 Layout::Section_list section_list;
2ea97941 6820 layout->get_allocated_sections(&section_list);
eb44217c
DK
6821 for (Layout::Section_list::const_iterator p = section_list.begin();
6822 p != section_list.end();
6823 ++p)
6824 {
6825 Arm_output_section<big_endian>* output_section =
6826 Arm_output_section<big_endian>::as_arm_output_section(*p);
6827 output_section->group_sections(group_size, stubs_always_after_branch,
6828 this);
6829 }
6830}
6831
6832// Relaxation hook. This is where we do stub generation.
6833
6834template<bool big_endian>
6835bool
6836Target_arm<big_endian>::do_relax(
6837 int pass,
6838 const Input_objects* input_objects,
6839 Symbol_table* symtab,
2ea97941 6840 Layout* layout)
eb44217c
DK
6841{
6842 // No need to generate stubs if this is a relocatable link.
6843 gold_assert(!parameters->options().relocatable());
6844
6845 // If this is the first pass, we need to group input sections into
6846 // stub groups.
6847 if (pass == 1)
6848 {
6849 // Determine the stub group size. The group size is the absolute
6850 // value of the parameter --stub-group-size. If --stub-group-size
6851 // is passed a negative value, we restict stubs to be always after
6852 // the stubbed branches.
6853 int32_t stub_group_size_param =
6854 parameters->options().stub_group_size();
6855 bool stubs_always_after_branch = stub_group_size_param < 0;
6856 section_size_type stub_group_size = abs(stub_group_size_param);
6857
6858 if (stub_group_size == 1)
6859 {
6860 // Default value.
6861 // Thumb branch range is +-4MB has to be used as the default
6862 // maximum size (a given section can contain both ARM and Thumb
6863 // code, so the worst case has to be taken into account).
6864 //
6865 // This value is 24K less than that, which allows for 2025
6866 // 12-byte stubs. If we exceed that, then we will fail to link.
6867 // The user will have to relink with an explicit group size
6868 // option.
6869 stub_group_size = 4170000;
6870 }
6871
2ea97941 6872 group_sections(layout, stub_group_size, stubs_always_after_branch);
eb44217c
DK
6873 }
6874
6875 // clear changed flags for all stub_tables
6876 typedef typename Stub_table_list::iterator Stub_table_iterator;
6877 for (Stub_table_iterator sp = this->stub_tables_.begin();
6878 sp != this->stub_tables_.end();
6879 ++sp)
6880 (*sp)->set_has_been_changed(false);
6881
6882 // scan relocs for stubs
6883 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
6884 op != input_objects->relobj_end();
6885 ++op)
6886 {
6887 Arm_relobj<big_endian>* arm_relobj =
6888 Arm_relobj<big_endian>::as_arm_relobj(*op);
2ea97941 6889 arm_relobj->scan_sections_for_stubs(this, symtab, layout);
eb44217c
DK
6890 }
6891
6892 bool any_stub_table_changed = false;
6893 for (Stub_table_iterator sp = this->stub_tables_.begin();
6894 (sp != this->stub_tables_.end()) && !any_stub_table_changed;
6895 ++sp)
6896 {
6897 if ((*sp)->has_been_changed())
6898 any_stub_table_changed = true;
6899 }
6900
6901 return any_stub_table_changed;
6902}
6903
43d12afe
DK
6904// Relocate a stub.
6905
6906template<bool big_endian>
6907void
6908Target_arm<big_endian>::relocate_stub(
6909 Reloc_stub* stub,
6910 const Relocate_info<32, big_endian>* relinfo,
6911 Output_section* output_section,
6912 unsigned char* view,
6913 Arm_address address,
6914 section_size_type view_size)
6915{
6916 Relocate relocate;
2ea97941
ILT
6917 const Stub_template* stub_template = stub->stub_template();
6918 for (size_t i = 0; i < stub_template->reloc_count(); i++)
43d12afe 6919 {
2ea97941
ILT
6920 size_t reloc_insn_index = stub_template->reloc_insn_index(i);
6921 const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
43d12afe
DK
6922
6923 unsigned int r_type = insn->r_type();
2ea97941 6924 section_size_type reloc_offset = stub_template->reloc_offset(i);
43d12afe
DK
6925 section_size_type reloc_size = insn->size();
6926 gold_assert(reloc_offset + reloc_size <= view_size);
6927
6928 // This is the address of the stub destination.
6929 Arm_address target = stub->reloc_target(i);
6930 Symbol_value<32> symval;
6931 symval.set_output_value(target);
6932
6933 // Synthesize a fake reloc just in case. We don't have a symbol so
6934 // we use 0.
6935 unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
6936 memset(reloc_buffer, 0, sizeof(reloc_buffer));
6937 elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
6938 reloc_write.put_r_offset(reloc_offset);
6939 reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
6940 elfcpp::Rel<32, big_endian> rel(reloc_buffer);
6941
6942 relocate.relocate(relinfo, this, output_section,
6943 this->fake_relnum_for_stubs, rel, r_type,
6944 NULL, &symval, view + reloc_offset,
6945 address + reloc_offset, reloc_size);
6946 }
6947}
6948
a0351a69
DK
6949// Determine whether an object attribute tag takes an integer, a
6950// string or both.
6951
6952template<bool big_endian>
6953int
6954Target_arm<big_endian>::do_attribute_arg_type(int tag) const
6955{
6956 if (tag == Object_attribute::Tag_compatibility)
6957 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
6958 | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
6959 else if (tag == elfcpp::Tag_nodefaults)
6960 return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
6961 | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
6962 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
6963 return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
6964 else if (tag < 32)
6965 return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
6966 else
6967 return ((tag & 1) != 0
6968 ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
6969 : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
6970}
6971
6972// Reorder attributes.
6973//
6974// The ABI defines that Tag_conformance should be emitted first, and that
6975// Tag_nodefaults should be second (if either is defined). This sets those
6976// two positions, and bumps up the position of all the remaining tags to
6977// compensate.
6978
6979template<bool big_endian>
6980int
6981Target_arm<big_endian>::do_attributes_order(int num) const
6982{
6983 // Reorder the known object attributes in output. We want to move
6984 // Tag_conformance to position 4 and Tag_conformance to position 5
6985 // and shift eveything between 4 .. Tag_conformance - 1 to make room.
6986 if (num == 4)
6987 return elfcpp::Tag_conformance;
6988 if (num == 5)
6989 return elfcpp::Tag_nodefaults;
6990 if ((num - 2) < elfcpp::Tag_nodefaults)
6991 return num - 2;
6992 if ((num - 1) < elfcpp::Tag_conformance)
6993 return num - 1;
6994 return num;
6995}
4a657b0d
DK
6996
6997template<bool big_endian>
6998class Target_selector_arm : public Target_selector
6999{
7000 public:
7001 Target_selector_arm()
7002 : Target_selector(elfcpp::EM_ARM, 32, big_endian,
7003 (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
7004 { }
7005
7006 Target*
7007 do_instantiate_target()
7008 { return new Target_arm<big_endian>(); }
7009};
7010
7011Target_selector_arm<false> target_selector_arm;
7012Target_selector_arm<true> target_selector_armbe;
7013
7014} // End anonymous namespace.
This page took 0.454331 seconds and 4 git commands to generate.