gold/
[deliverable/binutils-gdb.git] / gold / dwarf_reader.cc
CommitLineData
5c2c6c95
ILT
1// dwarf_reader.cc -- parse dwarf2/3 debug information
2
c1027032 3// Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
5c2c6c95
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
04bf7072 25#include <algorithm>
e4e5049b 26#include <vector>
04bf7072 27
5c2c6c95
ILT
28#include "elfcpp_swap.h"
29#include "dwarf.h"
24badc65 30#include "object.h"
4c50553d 31#include "reloc.h"
5c2c6c95 32#include "dwarf_reader.h"
4f787271 33#include "int_encoding.h"
a2e47362 34#include "compressed_output.h"
5c2c6c95 35
62b01cb5 36namespace gold {
5c2c6c95 37
c1027032
CC
38// Class Sized_elf_reloc_mapper
39
40// Initialize the relocation tracker for section RELOC_SHNDX.
41
42template<int size, bool big_endian>
43bool
44Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
45 unsigned int reloc_shndx, unsigned int reloc_type)
46{
47 this->reloc_type_ = reloc_type;
48 return this->track_relocs_.initialize(this->object_, reloc_shndx,
49 reloc_type);
50}
51
52// Looks in the symtab to see what section a symbol is in.
53
54template<int size, bool big_endian>
55unsigned int
56Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
57 unsigned int symndx, Address* value, bool* is_ordinary)
58{
59 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
50ed5eb1 60 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
c1027032
CC
61 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
62 *value = elfsym.get_st_value();
63 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
64 is_ordinary);
65}
66
67// Return the section index and offset within the section of
68// the target of the relocation for RELOC_OFFSET.
69
70template<int size, bool big_endian>
71unsigned int
72Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
73 off_t reloc_offset, off_t* target_offset)
74{
75 this->track_relocs_.advance(reloc_offset);
76 if (reloc_offset != this->track_relocs_.next_offset())
77 return 0;
78 unsigned int symndx = this->track_relocs_.next_symndx();
79 typename elfcpp::Elf_types<size>::Elf_Addr value;
80 bool is_ordinary;
81 unsigned int target_shndx = this->symbol_section(symndx, &value,
82 &is_ordinary);
83 if (!is_ordinary)
84 return 0;
85 if (this->reloc_type_ == elfcpp::SHT_RELA)
86 value += this->track_relocs_.next_addend();
87 *target_offset = value;
88 return target_shndx;
89}
90
91static inline Elf_reloc_mapper*
9fc236f3 92make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
c1027032
CC
93 off_t symtab_size)
94{
9fc236f3 95 if (object->elfsize() == 32)
c1027032 96 {
9fc236f3
CC
97 if (object->is_big_endian())
98 {
c1027032 99#ifdef HAVE_TARGET_32_BIG
9fc236f3
CC
100 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
101 symtab_size);
102#else
103 gold_unreachable();
c1027032 104#endif
9fc236f3
CC
105 }
106 else
107 {
108#ifdef HAVE_TARGET_32_LITTLE
109 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
110 symtab_size);
111#else
112 gold_unreachable();
c1027032 113#endif
9fc236f3
CC
114 }
115 }
116 else if (object->elfsize() == 64)
117 {
118 if (object->is_big_endian())
119 {
c1027032 120#ifdef HAVE_TARGET_64_BIG
9fc236f3
CC
121 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
122 symtab_size);
123#else
124 gold_unreachable();
c1027032 125#endif
9fc236f3
CC
126 }
127 else
128 {
129#ifdef HAVE_TARGET_64_LITTLE
130 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
131 symtab_size);
132#else
133 gold_unreachable();
134#endif
135 }
c1027032 136 }
9fc236f3
CC
137 else
138 gold_unreachable();
c1027032
CC
139}
140
141// class Dwarf_abbrev_table
142
143void
144Dwarf_abbrev_table::clear_abbrev_codes()
145{
146 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
147 {
148 if (this->low_abbrev_codes_[code] != NULL)
149 {
150 delete this->low_abbrev_codes_[code];
151 this->low_abbrev_codes_[code] = NULL;
152 }
153 }
154 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
155 it != this->high_abbrev_codes_.end();
156 ++it)
157 {
158 if (it->second != NULL)
159 delete it->second;
160 }
161 this->high_abbrev_codes_.clear();
162}
163
164// Read the abbrev table from an object file.
165
166bool
167Dwarf_abbrev_table::do_read_abbrevs(
168 Relobj* object,
169 unsigned int abbrev_shndx,
170 off_t abbrev_offset)
171{
172 this->clear_abbrev_codes();
173
174 // If we don't have relocations, abbrev_shndx will be 0, and
175 // we'll have to hunt for the .debug_abbrev section.
176 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
177 abbrev_shndx = this->abbrev_shndx_;
178 else if (abbrev_shndx == 0)
179 {
180 for (unsigned int i = 1; i < object->shnum(); ++i)
181 {
182 std::string name = object->section_name(i);
183 if (name == ".debug_abbrev")
184 {
185 abbrev_shndx = i;
186 // Correct the offset. For incremental update links, we have a
187 // relocated offset that is relative to the output section, but
188 // here we need an offset relative to the input section.
189 abbrev_offset -= object->output_section_offset(i);
190 break;
191 }
192 }
193 if (abbrev_shndx == 0)
194 return false;
195 }
196
197 // Get the section contents and decompress if necessary.
198 if (abbrev_shndx != this->abbrev_shndx_)
199 {
200 if (this->owns_buffer_ && this->buffer_ != NULL)
201 {
202 delete[] this->buffer_;
203 this->owns_buffer_ = false;
204 }
205
206 section_size_type buffer_size;
207 this->buffer_ =
208 object->decompressed_section_contents(abbrev_shndx,
209 &buffer_size,
210 &this->owns_buffer_);
211 this->buffer_end_ = this->buffer_ + buffer_size;
212 this->abbrev_shndx_ = abbrev_shndx;
213 }
214
215 this->buffer_pos_ = this->buffer_ + abbrev_offset;
216 return true;
217}
218
219// Lookup the abbrev code entry for CODE. This function is called
220// only when the abbrev code is not in the direct lookup table.
221// It may be in the hash table, it may not have been read yet,
222// or it may not exist in the abbrev table.
223
224const Dwarf_abbrev_table::Abbrev_code*
225Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
226{
227 // See if the abbrev code is already in the hash table.
228 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
229 if (it != this->high_abbrev_codes_.end())
230 return it->second;
231
232 // Read and store abbrev code definitions until we find the
233 // one we're looking for.
234 for (;;)
235 {
236 // Read the abbrev code. A zero here indicates the end of the
237 // abbrev table.
238 size_t len;
239 if (this->buffer_pos_ >= this->buffer_end_)
240 return NULL;
241 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
242 if (nextcode == 0)
243 {
244 this->buffer_pos_ = this->buffer_end_;
245 return NULL;
246 }
247 this->buffer_pos_ += len;
248
249 // Read the tag.
250 if (this->buffer_pos_ >= this->buffer_end_)
251 return NULL;
252 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
253 this->buffer_pos_ += len;
254
255 // Read the has_children flag.
256 if (this->buffer_pos_ >= this->buffer_end_)
257 return NULL;
258 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
259 this->buffer_pos_ += 1;
260
261 // Read the list of (attribute, form) pairs.
262 Abbrev_code* entry = new Abbrev_code(tag, has_children);
263 for (;;)
264 {
265 // Read the attribute.
266 if (this->buffer_pos_ >= this->buffer_end_)
267 return NULL;
268 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
269 this->buffer_pos_ += len;
270
271 // Read the form.
272 if (this->buffer_pos_ >= this->buffer_end_)
273 return NULL;
274 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
275 this->buffer_pos_ += len;
276
277 // A (0,0) pair terminates the list.
278 if (attr == 0 && form == 0)
279 break;
280
281 if (attr == elfcpp::DW_AT_sibling)
282 entry->has_sibling_attribute = true;
283
284 entry->add_attribute(attr, form);
285 }
286
287 this->store_abbrev(nextcode, entry);
288 if (nextcode == code)
289 return entry;
290 }
291
292 return NULL;
293}
294
295// class Dwarf_ranges_table
296
297// Read the ranges table from an object file.
298
299bool
300Dwarf_ranges_table::read_ranges_table(
301 Relobj* object,
302 const unsigned char* symtab,
303 off_t symtab_size,
304 unsigned int ranges_shndx)
305{
306 // If we've already read this abbrev table, return immediately.
307 if (this->ranges_shndx_ > 0
308 && this->ranges_shndx_ == ranges_shndx)
309 return true;
310
311 // If we don't have relocations, ranges_shndx will be 0, and
312 // we'll have to hunt for the .debug_ranges section.
313 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
314 ranges_shndx = this->ranges_shndx_;
315 else if (ranges_shndx == 0)
316 {
317 for (unsigned int i = 1; i < object->shnum(); ++i)
318 {
319 std::string name = object->section_name(i);
320 if (name == ".debug_ranges")
321 {
322 ranges_shndx = i;
323 this->output_section_offset_ = object->output_section_offset(i);
324 break;
325 }
326 }
327 if (ranges_shndx == 0)
328 return false;
329 }
330
331 // Get the section contents and decompress if necessary.
332 if (ranges_shndx != this->ranges_shndx_)
333 {
334 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
335 {
336 delete[] this->ranges_buffer_;
337 this->owns_ranges_buffer_ = false;
338 }
339
340 section_size_type buffer_size;
341 this->ranges_buffer_ =
342 object->decompressed_section_contents(ranges_shndx,
343 &buffer_size,
344 &this->owns_ranges_buffer_);
345 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
346 this->ranges_shndx_ = ranges_shndx;
347 }
348
349 if (this->ranges_reloc_mapper_ != NULL)
350 {
351 delete this->ranges_reloc_mapper_;
352 this->ranges_reloc_mapper_ = NULL;
353 }
354
355 // For incremental objects, we have no relocations.
356 if (object->is_incremental())
357 return true;
358
359 // Find the relocation section for ".debug_ranges".
360 unsigned int reloc_shndx = 0;
361 unsigned int reloc_type = 0;
362 for (unsigned int i = 0; i < object->shnum(); ++i)
363 {
364 reloc_type = object->section_type(i);
365 if ((reloc_type == elfcpp::SHT_REL
366 || reloc_type == elfcpp::SHT_RELA)
367 && object->section_info(i) == ranges_shndx)
368 {
369 reloc_shndx = i;
370 break;
371 }
372 }
373
374 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
375 symtab_size);
376 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
267257d2 377 this->reloc_type_ = reloc_type;
c1027032
CC
378
379 return true;
380}
381
382// Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
383
384Dwarf_range_list*
385Dwarf_ranges_table::read_range_list(
386 Relobj* object,
387 const unsigned char* symtab,
388 off_t symtab_size,
389 unsigned int addr_size,
390 unsigned int ranges_shndx,
391 off_t offset)
392{
393 Dwarf_range_list* ranges;
394
395 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
396 return NULL;
397
398 // Correct the offset. For incremental update links, we have a
399 // relocated offset that is relative to the output section, but
400 // here we need an offset relative to the input section.
401 offset -= this->output_section_offset_;
402
403 // Read the range list at OFFSET.
404 ranges = new Dwarf_range_list();
405 off_t base = 0;
406 for (;
407 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
408 offset += 2 * addr_size)
409 {
410 off_t start;
411 off_t end;
412
413 // Read the raw contents of the section.
414 if (addr_size == 4)
415 {
ed5d6712
CC
416 start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
417 + offset);
418 end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
419 + offset + 4);
c1027032
CC
420 }
421 else
422 {
ed5d6712
CC
423 start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
424 + offset);
425 end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
426 + offset + 8);
c1027032
CC
427 }
428
429 // Check for relocations and adjust the values.
430 unsigned int shndx1 = 0;
431 unsigned int shndx2 = 0;
432 if (this->ranges_reloc_mapper_ != NULL)
433 {
267257d2
CC
434 shndx1 = this->lookup_reloc(offset, &start);
435 shndx2 = this->lookup_reloc(offset + addr_size, &end);
c1027032
CC
436 }
437
438 // End of list is marked by a pair of zeroes.
439 if (shndx1 == 0 && start == 0 && end == 0)
440 break;
441
442 // A "base address selection entry" is identified by
443 // 0xffffffff for the first value of the pair. The second
444 // value is used as a base for subsequent range list entries.
445 if (shndx1 == 0 && start == -1)
446 base = end;
447 else if (shndx1 == shndx2)
448 {
449 if (shndx1 == 0 || object->is_section_included(shndx1))
450 ranges->add(shndx1, base + start, base + end);
451 }
452 else
453 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
454 "range list entry are in different sections"),
455 object->name().c_str());
456 }
457
458 return ranges;
459}
460
267257d2
CC
461// Look for a relocation at offset OFF in the range table,
462// and return the section index and offset of the target.
463
464unsigned int
465Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
466{
467 off_t value;
468 unsigned int shndx =
469 this->ranges_reloc_mapper_->get_reloc_target(off, &value);
470 if (shndx == 0)
471 return 0;
472 if (this->reloc_type_ == elfcpp::SHT_REL)
473 *target_off += value;
474 else
475 *target_off = value;
476 return shndx;
477}
478
c1027032
CC
479// class Dwarf_pubnames_table
480
234d4ab8 481// Read the pubnames section from the object file.
c1027032
CC
482
483bool
234d4ab8
SA
484Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
485 off_t symtab_size)
c1027032
CC
486{
487 section_size_type buffer_size;
234d4ab8 488 unsigned int shndx = 0;
c1027032 489
234d4ab8
SA
490 // Find the .debug_pubnames/pubtypes section.
491 const char* name = (this->is_pubtypes_
492 ? ".debug_pubtypes"
493 : ".debug_pubnames");
494 for (unsigned int i = 1; i < object->shnum(); ++i)
c1027032 495 {
234d4ab8
SA
496 if (object->section_name(i) == name)
497 {
498 shndx = i;
499 this->output_section_offset_ = object->output_section_offset(i);
500 break;
501 }
c1027032 502 }
234d4ab8
SA
503 if (shndx == 0)
504 return false;
505
c1027032
CC
506
507 this->buffer_ = object->decompressed_section_contents(shndx,
508 &buffer_size,
509 &this->owns_buffer_);
510 if (this->buffer_ == NULL)
511 return false;
512 this->buffer_end_ = this->buffer_ + buffer_size;
234d4ab8
SA
513
514 // For incremental objects, we have no relocations.
515 if (object->is_incremental())
516 return true;
517
518 // Find the relocation section
519 unsigned int reloc_shndx = 0;
520 unsigned int reloc_type = 0;
521 for (unsigned int i = 0; i < object->shnum(); ++i)
522 {
523 reloc_type = object->section_type(i);
524 if ((reloc_type == elfcpp::SHT_REL
525 || reloc_type == elfcpp::SHT_RELA)
526 && object->section_info(i) == shndx)
527 {
528 reloc_shndx = i;
529 break;
530 }
531 }
532
533 this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
534 this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
535 this->reloc_type_ = reloc_type;
536
c1027032
CC
537 return true;
538}
539
540// Read the header for the set at OFFSET.
541
542bool
543Dwarf_pubnames_table::read_header(off_t offset)
544{
234d4ab8
SA
545 // Make sure we have actually read the section.
546 gold_assert(this->buffer_ != NULL);
547
c1027032
CC
548 // Correct the offset. For incremental update links, we have a
549 // relocated offset that is relative to the output section, but
550 // here we need an offset relative to the input section.
551 offset -= this->output_section_offset_;
552
553 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
554 return false;
555
556 const unsigned char* pinfo = this->buffer_ + offset;
557
558 // Read the unit_length field.
234d4ab8 559 uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
c1027032
CC
560 pinfo += 4;
561 if (unit_length == 0xffffffff)
562 {
ed5d6712 563 unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
234d4ab8 564 this->unit_length_ = unit_length + 12;
c1027032
CC
565 pinfo += 8;
566 this->offset_size_ = 8;
567 }
568 else
234d4ab8
SA
569 {
570 this->unit_length_ = unit_length + 4;
571 this->offset_size_ = 4;
572 }
c1027032
CC
573
574 // Check the version.
ed5d6712 575 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
c1027032
CC
576 pinfo += 2;
577 if (version != 2)
578 return false;
50ed5eb1 579
234d4ab8
SA
580 this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
581 &this->cu_offset_);
582
c1027032
CC
583 // Skip the debug_info_offset and debug_info_size fields.
584 pinfo += 2 * this->offset_size_;
585
586 if (pinfo >= this->buffer_end_)
587 return false;
588
589 this->pinfo_ = pinfo;
590 return true;
591}
592
593// Read the next name from the set.
594
595const char*
596Dwarf_pubnames_table::next_name()
597{
598 const unsigned char* pinfo = this->pinfo_;
599
600 // Read the offset within the CU. If this is zero, we have reached
601 // the end of the list.
602 uint32_t offset;
603 if (this->offset_size_ == 4)
ed5d6712 604 offset = this->dwinfo_->read_from_pointer<32>(&pinfo);
c1027032 605 else
ed5d6712 606 offset = this->dwinfo_->read_from_pointer<64>(&pinfo);
c1027032
CC
607 if (offset == 0)
608 return NULL;
609
610 // Return a pointer to the string at the current location,
611 // and advance the pointer to the next entry.
612 const char* ret = reinterpret_cast<const char*>(pinfo);
613 while (pinfo < this->buffer_end_ && *pinfo != '\0')
614 ++pinfo;
615 if (pinfo < this->buffer_end_)
616 ++pinfo;
617
618 this->pinfo_ = pinfo;
619 return ret;
620}
621
622// class Dwarf_die
623
624Dwarf_die::Dwarf_die(
625 Dwarf_info_reader* dwinfo,
626 off_t die_offset,
627 Dwarf_die* parent)
628 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
629 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
630 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
631 linkage_name_off_(-1), string_shndx_(0), specification_(0),
632 abstract_origin_(0)
633{
634 size_t len;
635 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
636 if (pdie == NULL)
637 return;
638 unsigned int code = read_unsigned_LEB_128(pdie, &len);
639 if (code == 0)
640 {
641 if (parent != NULL)
642 parent->set_sibling_offset(die_offset + len);
643 return;
644 }
645 this->attr_offset_ = len;
646
647 // Lookup the abbrev code in the abbrev table.
648 this->abbrev_code_ = dwinfo->get_abbrev(code);
649}
650
651// Read all the attributes of the DIE.
652
653bool
654Dwarf_die::read_attributes()
655{
656 if (this->attributes_read_)
657 return true;
658
659 gold_assert(this->abbrev_code_ != NULL);
660
661 const unsigned char* pdie =
662 this->dwinfo_->buffer_at_offset(this->die_offset_);
663 if (pdie == NULL)
664 return false;
665 const unsigned char* pattr = pdie + this->attr_offset_;
666
667 unsigned int nattr = this->abbrev_code_->attributes.size();
668 this->attributes_.reserve(nattr);
669 for (unsigned int i = 0; i < nattr; ++i)
670 {
671 size_t len;
672 unsigned int attr = this->abbrev_code_->attributes[i].attr;
673 unsigned int form = this->abbrev_code_->attributes[i].form;
674 if (form == elfcpp::DW_FORM_indirect)
675 {
676 form = read_unsigned_LEB_128(pattr, &len);
677 pattr += len;
678 }
679 off_t attr_off = this->die_offset_ + (pattr - pdie);
680 bool ref_form = false;
681 Attribute_value attr_value;
682 attr_value.attr = attr;
683 attr_value.form = form;
684 attr_value.aux.shndx = 0;
685 switch(form)
686 {
c1027032
CC
687 case elfcpp::DW_FORM_flag_present:
688 attr_value.val.intval = 1;
689 break;
690 case elfcpp::DW_FORM_strp:
691 {
692 off_t str_off;
693 if (this->dwinfo_->offset_size() == 4)
ed5d6712 694 str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032 695 else
ed5d6712 696 str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
697 unsigned int shndx =
698 this->dwinfo_->lookup_reloc(attr_off, &str_off);
699 attr_value.aux.shndx = shndx;
700 attr_value.val.refval = str_off;
701 break;
702 }
703 case elfcpp::DW_FORM_sec_offset:
704 {
705 off_t sec_off;
706 if (this->dwinfo_->offset_size() == 4)
ed5d6712 707 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032 708 else
ed5d6712 709 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
710 unsigned int shndx =
711 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
712 attr_value.aux.shndx = shndx;
713 attr_value.val.refval = sec_off;
714 ref_form = true;
715 break;
716 }
717 case elfcpp::DW_FORM_addr:
718 case elfcpp::DW_FORM_ref_addr:
719 {
720 off_t sec_off;
721 if (this->dwinfo_->address_size() == 4)
ed5d6712 722 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032 723 else
ed5d6712 724 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
725 unsigned int shndx =
726 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
727 attr_value.aux.shndx = shndx;
728 attr_value.val.refval = sec_off;
729 ref_form = true;
730 break;
731 }
732 case elfcpp::DW_FORM_block1:
733 attr_value.aux.blocklen = *pattr++;
734 attr_value.val.blockval = pattr;
735 pattr += attr_value.aux.blocklen;
736 break;
737 case elfcpp::DW_FORM_block2:
ed5d6712
CC
738 attr_value.aux.blocklen =
739 this->dwinfo_->read_from_pointer<16>(&pattr);
c1027032
CC
740 attr_value.val.blockval = pattr;
741 pattr += attr_value.aux.blocklen;
742 break;
743 case elfcpp::DW_FORM_block4:
ed5d6712
CC
744 attr_value.aux.blocklen =
745 this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032
CC
746 attr_value.val.blockval = pattr;
747 pattr += attr_value.aux.blocklen;
748 break;
749 case elfcpp::DW_FORM_block:
750 case elfcpp::DW_FORM_exprloc:
751 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
752 attr_value.val.blockval = pattr + len;
753 pattr += len + attr_value.aux.blocklen;
754 break;
755 case elfcpp::DW_FORM_data1:
756 case elfcpp::DW_FORM_flag:
757 attr_value.val.intval = *pattr++;
758 break;
759 case elfcpp::DW_FORM_ref1:
760 attr_value.val.refval = *pattr++;
761 ref_form = true;
762 break;
763 case elfcpp::DW_FORM_data2:
ed5d6712
CC
764 attr_value.val.intval =
765 this->dwinfo_->read_from_pointer<16>(&pattr);
c1027032
CC
766 break;
767 case elfcpp::DW_FORM_ref2:
ed5d6712
CC
768 attr_value.val.refval =
769 this->dwinfo_->read_from_pointer<16>(&pattr);
c1027032
CC
770 ref_form = true;
771 break;
772 case elfcpp::DW_FORM_data4:
773 {
774 off_t sec_off;
ed5d6712 775 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032
CC
776 unsigned int shndx =
777 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
778 attr_value.aux.shndx = shndx;
779 attr_value.val.intval = sec_off;
780 break;
781 }
782 case elfcpp::DW_FORM_ref4:
783 {
784 off_t sec_off;
ed5d6712 785 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032
CC
786 unsigned int shndx =
787 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
788 attr_value.aux.shndx = shndx;
789 attr_value.val.refval = sec_off;
790 ref_form = true;
791 break;
792 }
793 case elfcpp::DW_FORM_data8:
794 {
795 off_t sec_off;
ed5d6712 796 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
797 unsigned int shndx =
798 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
799 attr_value.aux.shndx = shndx;
800 attr_value.val.intval = sec_off;
801 break;
802 }
803 case elfcpp::DW_FORM_ref_sig8:
ed5d6712
CC
804 attr_value.val.uintval =
805 this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
806 break;
807 case elfcpp::DW_FORM_ref8:
808 {
809 off_t sec_off;
ed5d6712 810 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
c1027032
CC
811 unsigned int shndx =
812 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
813 attr_value.aux.shndx = shndx;
814 attr_value.val.refval = sec_off;
815 ref_form = true;
816 break;
817 }
818 case elfcpp::DW_FORM_ref_udata:
819 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
820 ref_form = true;
821 pattr += len;
822 break;
823 case elfcpp::DW_FORM_udata:
d2d60eef
CC
824 case elfcpp::DW_FORM_GNU_addr_index:
825 case elfcpp::DW_FORM_GNU_str_index:
c1027032
CC
826 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
827 pattr += len;
828 break;
829 case elfcpp::DW_FORM_sdata:
830 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
831 pattr += len;
832 break;
833 case elfcpp::DW_FORM_string:
834 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
835 len = strlen(attr_value.val.stringval);
836 pattr += len + 1;
837 break;
838 default:
839 return false;
840 }
841
842 // Cache the most frequently-requested attributes.
843 switch (attr)
844 {
845 case elfcpp::DW_AT_name:
846 if (form == elfcpp::DW_FORM_string)
847 this->name_ = attr_value.val.stringval;
848 else if (form == elfcpp::DW_FORM_strp)
849 {
850 // All indirect strings should refer to the same
851 // string section, so we just save the last one seen.
852 this->string_shndx_ = attr_value.aux.shndx;
853 this->name_off_ = attr_value.val.refval;
854 }
855 break;
856 case elfcpp::DW_AT_linkage_name:
857 case elfcpp::DW_AT_MIPS_linkage_name:
858 if (form == elfcpp::DW_FORM_string)
859 this->linkage_name_ = attr_value.val.stringval;
860 else if (form == elfcpp::DW_FORM_strp)
861 {
862 // All indirect strings should refer to the same
863 // string section, so we just save the last one seen.
864 this->string_shndx_ = attr_value.aux.shndx;
865 this->linkage_name_off_ = attr_value.val.refval;
866 }
867 break;
868 case elfcpp::DW_AT_specification:
869 if (ref_form)
870 this->specification_ = attr_value.val.refval;
871 break;
872 case elfcpp::DW_AT_abstract_origin:
873 if (ref_form)
874 this->abstract_origin_ = attr_value.val.refval;
875 break;
876 case elfcpp::DW_AT_sibling:
877 if (ref_form && attr_value.aux.shndx == 0)
878 this->sibling_offset_ = attr_value.val.refval;
879 default:
880 break;
881 }
882
883 this->attributes_.push_back(attr_value);
884 }
885
886 // Now that we know where the next DIE begins, record the offset
887 // to avoid later recalculation.
888 if (this->has_children())
889 this->child_offset_ = this->die_offset_ + (pattr - pdie);
890 else
891 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
892
893 this->attributes_read_ = true;
894 return true;
895}
896
897// Skip all the attributes of the DIE and return the offset of the next DIE.
898
899off_t
900Dwarf_die::skip_attributes()
901{
c1027032
CC
902 gold_assert(this->abbrev_code_ != NULL);
903
904 const unsigned char* pdie =
905 this->dwinfo_->buffer_at_offset(this->die_offset_);
906 if (pdie == NULL)
907 return 0;
908 const unsigned char* pattr = pdie + this->attr_offset_;
909
910 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
911 {
912 size_t len;
913 unsigned int form = this->abbrev_code_->attributes[i].form;
914 if (form == elfcpp::DW_FORM_indirect)
915 {
916 form = read_unsigned_LEB_128(pattr, &len);
917 pattr += len;
918 }
919 switch(form)
920 {
c1027032
CC
921 case elfcpp::DW_FORM_flag_present:
922 break;
923 case elfcpp::DW_FORM_strp:
924 case elfcpp::DW_FORM_sec_offset:
925 pattr += this->dwinfo_->offset_size();
926 break;
927 case elfcpp::DW_FORM_addr:
928 case elfcpp::DW_FORM_ref_addr:
929 pattr += this->dwinfo_->address_size();
930 break;
931 case elfcpp::DW_FORM_block1:
932 pattr += 1 + *pattr;
933 break;
934 case elfcpp::DW_FORM_block2:
935 {
936 uint16_t block_size;
ed5d6712 937 block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
c1027032
CC
938 pattr += block_size;
939 break;
940 }
941 case elfcpp::DW_FORM_block4:
942 {
943 uint32_t block_size;
ed5d6712 944 block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
c1027032
CC
945 pattr += block_size;
946 break;
947 }
948 case elfcpp::DW_FORM_block:
949 case elfcpp::DW_FORM_exprloc:
950 {
951 uint64_t block_size;
952 block_size = read_unsigned_LEB_128(pattr, &len);
953 pattr += len + block_size;
954 break;
955 }
956 case elfcpp::DW_FORM_data1:
957 case elfcpp::DW_FORM_ref1:
958 case elfcpp::DW_FORM_flag:
959 pattr += 1;
960 break;
961 case elfcpp::DW_FORM_data2:
962 case elfcpp::DW_FORM_ref2:
963 pattr += 2;
964 break;
965 case elfcpp::DW_FORM_data4:
966 case elfcpp::DW_FORM_ref4:
967 pattr += 4;
968 break;
969 case elfcpp::DW_FORM_data8:
970 case elfcpp::DW_FORM_ref8:
971 case elfcpp::DW_FORM_ref_sig8:
972 pattr += 8;
973 break;
974 case elfcpp::DW_FORM_ref_udata:
975 case elfcpp::DW_FORM_udata:
d2d60eef
CC
976 case elfcpp::DW_FORM_GNU_addr_index:
977 case elfcpp::DW_FORM_GNU_str_index:
c1027032
CC
978 read_unsigned_LEB_128(pattr, &len);
979 pattr += len;
980 break;
981 case elfcpp::DW_FORM_sdata:
982 read_signed_LEB_128(pattr, &len);
983 pattr += len;
984 break;
985 case elfcpp::DW_FORM_string:
986 len = strlen(reinterpret_cast<const char*>(pattr));
987 pattr += len + 1;
988 break;
989 default:
990 return 0;
991 }
992 }
993
994 return this->die_offset_ + (pattr - pdie);
995}
996
997// Get the name of the DIE and cache it.
998
999void
1000Dwarf_die::set_name()
1001{
1002 if (this->name_ != NULL || !this->read_attributes())
1003 return;
1004 if (this->name_off_ != -1)
1005 this->name_ = this->dwinfo_->get_string(this->name_off_,
1006 this->string_shndx_);
1007}
1008
1009// Get the linkage name of the DIE and cache it.
1010
1011void
1012Dwarf_die::set_linkage_name()
1013{
1014 if (this->linkage_name_ != NULL || !this->read_attributes())
1015 return;
1016 if (this->linkage_name_off_ != -1)
1017 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
1018 this->string_shndx_);
1019}
1020
1021// Return the value of attribute ATTR.
1022
1023const Dwarf_die::Attribute_value*
1024Dwarf_die::attribute(unsigned int attr)
1025{
1026 if (!this->read_attributes())
1027 return NULL;
1028 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
1029 {
1030 if (this->attributes_[i].attr == attr)
1031 return &this->attributes_[i];
1032 }
1033 return NULL;
1034}
1035
1036const char*
1037Dwarf_die::string_attribute(unsigned int attr)
1038{
1039 const Attribute_value* attr_val = this->attribute(attr);
1040 if (attr_val == NULL)
1041 return NULL;
1042 switch (attr_val->form)
1043 {
1044 case elfcpp::DW_FORM_string:
1045 return attr_val->val.stringval;
1046 case elfcpp::DW_FORM_strp:
1047 return this->dwinfo_->get_string(attr_val->val.refval,
1048 attr_val->aux.shndx);
1049 default:
1050 return NULL;
1051 }
1052}
1053
1054int64_t
1055Dwarf_die::int_attribute(unsigned int attr)
1056{
1057 const Attribute_value* attr_val = this->attribute(attr);
1058 if (attr_val == NULL)
1059 return 0;
1060 switch (attr_val->form)
1061 {
c1027032
CC
1062 case elfcpp::DW_FORM_flag_present:
1063 case elfcpp::DW_FORM_data1:
1064 case elfcpp::DW_FORM_flag:
1065 case elfcpp::DW_FORM_data2:
1066 case elfcpp::DW_FORM_data4:
1067 case elfcpp::DW_FORM_data8:
1068 case elfcpp::DW_FORM_sdata:
1069 return attr_val->val.intval;
1070 default:
1071 return 0;
1072 }
1073}
1074
1075uint64_t
1076Dwarf_die::uint_attribute(unsigned int attr)
1077{
1078 const Attribute_value* attr_val = this->attribute(attr);
1079 if (attr_val == NULL)
1080 return 0;
1081 switch (attr_val->form)
1082 {
c1027032
CC
1083 case elfcpp::DW_FORM_flag_present:
1084 case elfcpp::DW_FORM_data1:
1085 case elfcpp::DW_FORM_flag:
1086 case elfcpp::DW_FORM_data4:
1087 case elfcpp::DW_FORM_data8:
1088 case elfcpp::DW_FORM_ref_sig8:
1089 case elfcpp::DW_FORM_udata:
1090 return attr_val->val.uintval;
1091 default:
1092 return 0;
1093 }
1094}
1095
1096off_t
1097Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1098{
1099 const Attribute_value* attr_val = this->attribute(attr);
1100 if (attr_val == NULL)
1101 return -1;
1102 switch (attr_val->form)
1103 {
1104 case elfcpp::DW_FORM_sec_offset:
1105 case elfcpp::DW_FORM_addr:
1106 case elfcpp::DW_FORM_ref_addr:
1107 case elfcpp::DW_FORM_ref1:
1108 case elfcpp::DW_FORM_ref2:
1109 case elfcpp::DW_FORM_ref4:
1110 case elfcpp::DW_FORM_ref8:
1111 case elfcpp::DW_FORM_ref_udata:
1112 *shndx = attr_val->aux.shndx;
1113 return attr_val->val.refval;
1114 case elfcpp::DW_FORM_ref_sig8:
1115 *shndx = attr_val->aux.shndx;
1116 return attr_val->val.uintval;
1117 case elfcpp::DW_FORM_data4:
1118 case elfcpp::DW_FORM_data8:
1119 *shndx = attr_val->aux.shndx;
1120 return attr_val->val.intval;
1121 default:
1122 return -1;
1123 }
1124}
1125
57923f48
MW
1126off_t
1127Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1128{
1129 const Attribute_value* attr_val = this->attribute(attr);
1130 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1131 return -1;
1132
1133 *shndx = attr_val->aux.shndx;
1134 return attr_val->val.refval;
1135}
1136
c1027032
CC
1137// Return the offset of this DIE's first child.
1138
1139off_t
1140Dwarf_die::child_offset()
1141{
1142 gold_assert(this->abbrev_code_ != NULL);
1143 if (!this->has_children())
1144 return 0;
1145 if (this->child_offset_ == 0)
1146 this->child_offset_ = this->skip_attributes();
1147 return this->child_offset_;
1148}
1149
1150// Return the offset of this DIE's next sibling.
1151
1152off_t
1153Dwarf_die::sibling_offset()
1154{
1155 gold_assert(this->abbrev_code_ != NULL);
1156
1157 if (this->sibling_offset_ != 0)
1158 return this->sibling_offset_;
1159
1160 if (!this->has_children())
1161 {
1162 this->sibling_offset_ = this->skip_attributes();
1163 return this->sibling_offset_;
1164 }
1165
1166 if (this->has_sibling_attribute())
1167 {
1168 if (!this->read_attributes())
1169 return 0;
1170 if (this->sibling_offset_ != 0)
1171 return this->sibling_offset_;
1172 }
1173
1174 // Skip over the children.
1175 off_t child_offset = this->child_offset();
1176 while (child_offset > 0)
1177 {
1178 Dwarf_die die(this->dwinfo_, child_offset, this);
1179 // The Dwarf_die ctor will set this DIE's sibling offset
1180 // when it reads a zero abbrev code.
1181 if (die.tag() == 0)
1182 break;
1183 child_offset = die.sibling_offset();
1184 }
1185
1186 // This should be set by now. If not, there was a problem reading
1187 // the DWARF info, and we return 0.
1188 return this->sibling_offset_;
1189}
1190
1191// class Dwarf_info_reader
1192
c1027032
CC
1193// Begin parsing the debug info. This calls visit_compilation_unit()
1194// or visit_type_unit() for each compilation or type unit found in the
1195// section, and visit_die() for each top-level DIE.
1196
1197void
1198Dwarf_info_reader::parse()
1199{
9fc236f3 1200 if (this->object_->is_big_endian())
c1027032 1201 {
9fc236f3
CC
1202#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1203 this->do_parse<true>();
1204#else
1205 gold_unreachable();
c1027032 1206#endif
9fc236f3
CC
1207 }
1208 else
1209 {
1210#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1211 this->do_parse<false>();
1212#else
1213 gold_unreachable();
c1027032 1214#endif
c1027032
CC
1215 }
1216}
1217
1218template<bool big_endian>
1219void
1220Dwarf_info_reader::do_parse()
1221{
1222 // Get the section contents and decompress if necessary.
1223 section_size_type buffer_size;
1224 bool buffer_is_new;
1225 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1226 &buffer_size,
1227 &buffer_is_new);
1228 if (this->buffer_ == NULL || buffer_size == 0)
1229 return;
1230 this->buffer_end_ = this->buffer_ + buffer_size;
1231
1232 // The offset of this input section in the output section.
1233 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1234
1235 // Start tracking relocations for this section.
1236 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1237 this->symtab_size_);
1238 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1239
1240 // Loop over compilation units (or type units).
8787852d 1241 unsigned int abbrev_shndx = this->abbrev_shndx_;
c1027032
CC
1242 off_t abbrev_offset = 0;
1243 const unsigned char* pinfo = this->buffer_;
1244 while (pinfo < this->buffer_end_)
1245 {
1246 // Read the compilation (or type) unit header.
1247 const unsigned char* cu_start = pinfo;
1248 this->cu_offset_ = cu_start - this->buffer_;
1249 this->cu_length_ = this->buffer_end_ - cu_start;
1250
1251 // Read unit_length (4 or 12 bytes).
1252 if (!this->check_buffer(pinfo + 4))
1253 break;
1254 uint32_t unit_length =
1255 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1256 pinfo += 4;
1257 if (unit_length == 0xffffffff)
1258 {
1259 if (!this->check_buffer(pinfo + 8))
1260 break;
1261 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1262 pinfo += 8;
1263 this->offset_size_ = 8;
1264 }
1265 else
1266 this->offset_size_ = 4;
1267 if (!this->check_buffer(pinfo + unit_length))
1268 break;
1269 const unsigned char* cu_end = pinfo + unit_length;
1270 this->cu_length_ = cu_end - cu_start;
1271 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1272 break;
1273
1274 // Read version (2 bytes).
1275 this->cu_version_ =
1276 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1277 pinfo += 2;
1278
1279 // Read debug_abbrev_offset (4 or 8 bytes).
1280 if (this->offset_size_ == 4)
1281 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1282 else
1283 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1284 if (this->reloc_shndx_ > 0)
1285 {
1286 off_t reloc_offset = pinfo - this->buffer_;
1287 off_t value;
1288 abbrev_shndx =
1289 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1290 if (abbrev_shndx == 0)
1291 return;
1292 if (this->reloc_type_ == elfcpp::SHT_REL)
1293 abbrev_offset += value;
1294 else
1295 abbrev_offset = value;
1296 }
1297 pinfo += this->offset_size_;
1298
1299 // Read address_size (1 byte).
1300 this->address_size_ = *pinfo++;
1301
1302 // For type units, read the two extra fields.
1303 uint64_t signature = 0;
1304 off_t type_offset = 0;
1305 if (this->is_type_unit_)
1306 {
1307 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1308 break;
1309
1310 // Read type_signature (8 bytes).
1311 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1312 pinfo += 8;
1313
1314 // Read type_offset (4 or 8 bytes).
1315 if (this->offset_size_ == 4)
1316 type_offset =
1317 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1318 else
1319 type_offset =
1320 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1321 pinfo += this->offset_size_;
1322 }
1323
1324 // Read the .debug_abbrev table.
1325 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1326 abbrev_offset);
1327
1328 // Visit the root DIE.
1329 Dwarf_die root_die(this,
1330 pinfo - (this->buffer_ + this->cu_offset_),
1331 NULL);
1332 if (root_die.tag() != 0)
1333 {
1334 // Visit the CU or TU.
1335 if (this->is_type_unit_)
1336 this->visit_type_unit(section_offset + this->cu_offset_,
e44c3715 1337 type_offset, signature, &root_die);
c1027032
CC
1338 else
1339 this->visit_compilation_unit(section_offset + this->cu_offset_,
1340 cu_end - cu_start, &root_die);
1341 }
1342
1343 // Advance to the next CU.
1344 pinfo = cu_end;
1345 }
1346
1347 if (buffer_is_new)
1348 {
1349 delete[] this->buffer_;
1350 this->buffer_ = NULL;
1351 }
1352}
1353
1354// Read the DWARF string table.
1355
1356bool
1357Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1358{
1359 Relobj* object = this->object_;
1360
1361 // If we don't have relocations, string_shndx will be 0, and
1362 // we'll have to hunt for the .debug_str section.
1363 if (string_shndx == 0)
1364 {
1365 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1366 {
1367 std::string name = object->section_name(i);
1368 if (name == ".debug_str")
1369 {
1370 string_shndx = i;
1371 this->string_output_section_offset_ =
1372 object->output_section_offset(i);
1373 break;
1374 }
1375 }
1376 if (string_shndx == 0)
1377 return false;
1378 }
1379
1380 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1381 {
1382 delete[] this->string_buffer_;
1383 this->owns_string_buffer_ = false;
1384 }
1385
1386 // Get the secton contents and decompress if necessary.
1387 section_size_type buffer_size;
1388 const unsigned char* buffer =
1389 object->decompressed_section_contents(string_shndx,
1390 &buffer_size,
1391 &this->owns_string_buffer_);
1392 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1393 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1394 this->string_shndx_ = string_shndx;
1395 return true;
1396}
1397
ed5d6712
CC
1398// Read a possibly unaligned integer of SIZE.
1399template <int valsize>
1400inline typename elfcpp::Valtype_base<valsize>::Valtype
1401Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1402{
1403 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1404 if (this->object_->is_big_endian())
1405 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1406 else
1407 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1408 return return_value;
1409}
1410
1411// Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1412template <int valsize>
1413inline typename elfcpp::Valtype_base<valsize>::Valtype
1414Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1415{
1416 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1417 if (this->object_->is_big_endian())
1418 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1419 else
1420 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1421 *source += valsize / 8;
1422 return return_value;
1423}
1424
c1027032
CC
1425// Look for a relocation at offset ATTR_OFF in the dwarf info,
1426// and return the section index and offset of the target.
1427
1428unsigned int
1429Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1430{
1431 off_t value;
1432 attr_off += this->cu_offset_;
1433 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1434 if (shndx == 0)
1435 return 0;
1436 if (this->reloc_type_ == elfcpp::SHT_REL)
1437 *target_off += value;
1438 else
1439 *target_off = value;
1440 return shndx;
1441}
1442
1443// Return a string from the DWARF string table.
1444
1445const char*
1446Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1447{
1448 if (!this->read_string_table(string_shndx))
1449 return NULL;
1450
1451 // Correct the offset. For incremental update links, we have a
1452 // relocated offset that is relative to the output section, but
1453 // here we need an offset relative to the input section.
1454 str_off -= this->string_output_section_offset_;
1455
1456 const char* p = this->string_buffer_ + str_off;
1457
1458 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1459 return NULL;
1460
1461 return p;
1462}
1463
1464// The following are default, do-nothing, implementations of the
1465// hook methods normally provided by a derived class. We provide
1466// default implementations rather than no implementation so that
1467// a derived class needs to implement only the hooks that it needs
1468// to use.
1469
1470// Process a compilation unit and parse its child DIE.
1471
1472void
1473Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1474{
1475}
1476
1477// Process a type unit and parse its child DIE.
1478
1479void
e44c3715 1480Dwarf_info_reader::visit_type_unit(off_t, off_t, uint64_t, Dwarf_die*)
c1027032
CC
1481{
1482}
1483
a68a081d
CC
1484// Print a warning about a corrupt debug section.
1485
1486void
1487Dwarf_info_reader::warn_corrupt_debug_section() const
1488{
1489 gold_warning(_("%s: corrupt debug info in %s"),
1490 this->object_->name().c_str(),
1491 this->object_->section_name(this->shndx_).c_str());
1492}
1493
c1027032
CC
1494// class Sized_dwarf_line_info
1495
5c2c6c95
ILT
1496struct LineStateMachine
1497{
1498 int file_num;
1499 uint64_t address;
1500 int line_num;
1501 int column_num;
1502 unsigned int shndx; // the section address refers to
1503 bool is_stmt; // stmt means statement.
1504 bool basic_block;
1505 bool end_sequence;
1506};
1507
1508static void
1509ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1510{
1511 lsm->file_num = 1;
1512 lsm->address = 0;
1513 lsm->line_num = 1;
1514 lsm->column_num = 0;
338f2eba 1515 lsm->shndx = -1U;
5c2c6c95
ILT
1516 lsm->is_stmt = default_is_stmt;
1517 lsm->basic_block = false;
1518 lsm->end_sequence = false;
1519}
1520
24badc65 1521template<int size, bool big_endian>
5dd8762a
CC
1522Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1523 Object* object,
1524 unsigned int read_shndx)
1525 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
c1027032
CC
1526 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1527 current_header_index_(-1)
24badc65
ILT
1528{
1529 unsigned int debug_shndx;
5dd8762a 1530
ab8056e0
CC
1531 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1532 {
1533 // FIXME: do this more efficiently: section_name() isn't super-fast
1534 std::string name = object->section_name(debug_shndx);
1535 if (name == ".debug_line" || name == ".zdebug_line")
1536 {
1537 section_size_type buffer_size;
5dd8762a
CC
1538 bool is_new = false;
1539 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1540 &buffer_size,
1541 &is_new);
1542 if (is_new)
1543 this->buffer_start_ = this->buffer_;
ab8056e0
CC
1544 this->buffer_end_ = this->buffer_ + buffer_size;
1545 break;
1546 }
1547 }
24badc65 1548 if (this->buffer_ == NULL)
c261a0be 1549 return;
24badc65
ILT
1550
1551 // Find the relocation section for ".debug_line".
af674d1d 1552 // We expect these for relobjs (.o's) but not dynobjs (.so's).
c1027032
CC
1553 unsigned int reloc_shndx = 0;
1554 for (unsigned int i = 0; i < object->shnum(); ++i)
24badc65 1555 {
c1027032 1556 unsigned int reloc_sh_type = object->section_type(i);
24badc65
ILT
1557 if ((reloc_sh_type == elfcpp::SHT_REL
1558 || reloc_sh_type == elfcpp::SHT_RELA)
c1027032 1559 && object->section_info(i) == debug_shndx)
24badc65 1560 {
c1027032 1561 reloc_shndx = i;
4dbfafcc 1562 this->track_relocs_type_ = reloc_sh_type;
24badc65
ILT
1563 break;
1564 }
1565 }
24badc65
ILT
1566
1567 // Finally, we need the symtab section to interpret the relocs.
c1027032 1568 if (reloc_shndx != 0)
af674d1d
ILT
1569 {
1570 unsigned int symtab_shndx;
1571 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1572 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1573 {
c1027032
CC
1574 this->symtab_buffer_ = object->section_contents(
1575 symtab_shndx, &this->symtab_buffer_size_, false);
af674d1d
ILT
1576 break;
1577 }
1578 if (this->symtab_buffer_ == NULL)
1579 return;
1580 }
24badc65 1581
c1027032
CC
1582 this->reloc_mapper_ =
1583 new Sized_elf_reloc_mapper<size, big_endian>(object,
1584 this->symtab_buffer_,
1585 this->symtab_buffer_size_);
1586 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1587 return;
1588
24badc65
ILT
1589 // Now that we have successfully read all the data, parse the debug
1590 // info.
c261a0be 1591 this->data_valid_ = true;
c1027032 1592 this->read_line_mappings(read_shndx);
24badc65
ILT
1593}
1594
5c2c6c95
ILT
1595// Read the DWARF header.
1596
1597template<int size, bool big_endian>
1598const unsigned char*
a55ce7fe 1599Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
e43872e9 1600 const unsigned char* lineptr)
5c2c6c95 1601{
deae2a14 1602 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
5c2c6c95
ILT
1603 lineptr += 4;
1604
1605 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1606 // size is 8 and we need to read the next 8 bytes for the real length.
1607 if (initial_length == 0xffffffff)
1608 {
1609 header_.offset_size = 8;
deae2a14 1610 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
5c2c6c95
ILT
1611 lineptr += 8;
1612 }
1613 else
1614 header_.offset_size = 4;
1615
1616 header_.total_length = initial_length;
1617
1618 gold_assert(lineptr + header_.total_length <= buffer_end_);
1619
deae2a14 1620 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
5c2c6c95
ILT
1621 lineptr += 2;
1622
1623 if (header_.offset_size == 4)
deae2a14 1624 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
5c2c6c95 1625 else
deae2a14 1626 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
5c2c6c95
ILT
1627 lineptr += header_.offset_size;
1628
1629 header_.min_insn_length = *lineptr;
1630 lineptr += 1;
1631
1632 header_.default_is_stmt = *lineptr;
1633 lineptr += 1;
1634
1635 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1636 lineptr += 1;
1637
1638 header_.line_range = *lineptr;
1639 lineptr += 1;
1640
1641 header_.opcode_base = *lineptr;
1642 lineptr += 1;
1643
a869183f 1644 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
5c2c6c95
ILT
1645 header_.std_opcode_lengths[0] = 0;
1646 for (int i = 1; i < header_.opcode_base; i++)
1647 {
1648 header_.std_opcode_lengths[i] = *lineptr;
1649 lineptr += 1;
1650 }
1651
1652 return lineptr;
1653}
1654
1655// The header for a debug_line section is mildly complicated, because
1656// the line info is very tightly encoded.
1657
e43872e9 1658template<int size, bool big_endian>
5c2c6c95 1659const unsigned char*
a55ce7fe 1660Sized_dwarf_line_info<size, big_endian>::read_header_tables(
e43872e9 1661 const unsigned char* lineptr)
5c2c6c95 1662{
af674d1d
ILT
1663 ++this->current_header_index_;
1664
1665 // Create a new directories_ entry and a new files_ entry for our new
1666 // header. We initialize each with a single empty element, because
1667 // dwarf indexes directory and filenames starting at 1.
1668 gold_assert(static_cast<int>(this->directories_.size())
1669 == this->current_header_index_);
1670 gold_assert(static_cast<int>(this->files_.size())
1671 == this->current_header_index_);
1672 this->directories_.push_back(std::vector<std::string>(1));
1673 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1674
5c2c6c95
ILT
1675 // It is legal for the directory entry table to be empty.
1676 if (*lineptr)
1677 {
1678 int dirindex = 1;
1679 while (*lineptr)
1680 {
af674d1d
ILT
1681 const char* dirname = reinterpret_cast<const char*>(lineptr);
1682 gold_assert(dirindex
1683 == static_cast<int>(this->directories_.back().size()));
1684 this->directories_.back().push_back(dirname);
1685 lineptr += this->directories_.back().back().size() + 1;
5c2c6c95
ILT
1686 dirindex++;
1687 }
1688 }
1689 lineptr++;
1690
1691 // It is also legal for the file entry table to be empty.
1692 if (*lineptr)
1693 {
1694 int fileindex = 1;
1695 size_t len;
1696 while (*lineptr)
1697 {
1698 const char* filename = reinterpret_cast<const char*>(lineptr);
1699 lineptr += strlen(filename) + 1;
1700
1701 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
5c2c6c95
ILT
1702 lineptr += len;
1703
af674d1d
ILT
1704 if (dirindex >= this->directories_.back().size())
1705 dirindex = 0;
1706 int dirindexi = static_cast<int>(dirindex);
1707
5c2c6c95
ILT
1708 read_unsigned_LEB_128(lineptr, &len); // mod_time
1709 lineptr += len;
1710
1711 read_unsigned_LEB_128(lineptr, &len); // filelength
1712 lineptr += len;
1713
af674d1d
ILT
1714 gold_assert(fileindex
1715 == static_cast<int>(this->files_.back().size()));
1716 this->files_.back().push_back(std::make_pair(dirindexi, filename));
5c2c6c95
ILT
1717 fileindex++;
1718 }
1719 }
1720 lineptr++;
1721
1722 return lineptr;
1723}
1724
1725// Process a single opcode in the .debug.line structure.
1726
e43872e9 1727template<int size, bool big_endian>
5c2c6c95 1728bool
a55ce7fe 1729Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
e43872e9 1730 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
5c2c6c95
ILT
1731{
1732 size_t oplen = 0;
1733 size_t templen;
1734 unsigned char opcode = *start;
1735 oplen++;
1736 start++;
1737
1738 // If the opcode is great than the opcode_base, it is a special
1739 // opcode. Most line programs consist mainly of special opcodes.
1740 if (opcode >= header_.opcode_base)
1741 {
1742 opcode -= header_.opcode_base;
1743 const int advance_address = ((opcode / header_.line_range)
1744 * header_.min_insn_length);
1745 lsm->address += advance_address;
1746
1747 const int advance_line = ((opcode % header_.line_range)
1748 + header_.line_base);
1749 lsm->line_num += advance_line;
1750 lsm->basic_block = true;
1751 *len = oplen;
1752 return true;
1753 }
1754
1755 // Otherwise, we have the regular opcodes
1756 switch (opcode)
1757 {
1758 case elfcpp::DW_LNS_copy:
1759 lsm->basic_block = false;
1760 *len = oplen;
1761 return true;
1762
1763 case elfcpp::DW_LNS_advance_pc:
1764 {
1765 const uint64_t advance_address
2ea97941 1766 = read_unsigned_LEB_128(start, &templen);
5c2c6c95
ILT
1767 oplen += templen;
1768 lsm->address += header_.min_insn_length * advance_address;
1769 }
1770 break;
1771
1772 case elfcpp::DW_LNS_advance_line:
1773 {
1774 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1775 oplen += templen;
1776 lsm->line_num += advance_line;
1777 }
1778 break;
1779
1780 case elfcpp::DW_LNS_set_file:
1781 {
1782 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1783 oplen += templen;
1784 lsm->file_num = fileno;
1785 }
1786 break;
1787
1788 case elfcpp::DW_LNS_set_column:
1789 {
1790 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1791 oplen += templen;
1792 lsm->column_num = colno;
1793 }
1794 break;
1795
1796 case elfcpp::DW_LNS_negate_stmt:
1797 lsm->is_stmt = !lsm->is_stmt;
1798 break;
1799
1800 case elfcpp::DW_LNS_set_basic_block:
1801 lsm->basic_block = true;
1802 break;
1803
1804 case elfcpp::DW_LNS_fixed_advance_pc:
1805 {
1806 int advance_address;
deae2a14 1807 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
5c2c6c95
ILT
1808 oplen += 2;
1809 lsm->address += advance_address;
1810 }
1811 break;
1812
1813 case elfcpp::DW_LNS_const_add_pc:
1814 {
1815 const int advance_address = (header_.min_insn_length
1816 * ((255 - header_.opcode_base)
1817 / header_.line_range));
1818 lsm->address += advance_address;
1819 }
1820 break;
1821
1822 case elfcpp::DW_LNS_extended_op:
1823 {
1824 const uint64_t extended_op_len
2ea97941 1825 = read_unsigned_LEB_128(start, &templen);
5c2c6c95
ILT
1826 start += templen;
1827 oplen += templen + extended_op_len;
1828
1829 const unsigned char extended_op = *start;
1830 start++;
1831
1832 switch (extended_op)
1833 {
1834 case elfcpp::DW_LNE_end_sequence:
124dfc89
ILT
1835 // This means that the current byte is the one immediately
1836 // after a set of instructions. Record the current line
1837 // for up to one less than the current address.
79e052ea 1838 lsm->line_num = -1;
5c2c6c95
ILT
1839 lsm->end_sequence = true;
1840 *len = oplen;
1841 return true;
1842
1843 case elfcpp::DW_LNE_set_address:
4c50553d 1844 {
4dbfafcc
ILT
1845 lsm->address =
1846 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
4c50553d 1847 typename Reloc_map::const_iterator it
4dbfafcc 1848 = this->reloc_map_.find(start - this->buffer_);
4c50553d
ILT
1849 if (it != reloc_map_.end())
1850 {
4dbfafcc
ILT
1851 // If this is a SHT_RELA section, then ignore the
1852 // section contents. This assumes that this is a
1853 // straight reloc which just uses the reloc addend.
1854 // The reloc addend has already been included in the
1855 // symbol value.
1856 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1857 lsm->address = 0;
1858 // Add in the symbol value.
1859 lsm->address += it->second.second;
4c50553d
ILT
1860 lsm->shndx = it->second.first;
1861 }
1862 else
1863 {
af674d1d
ILT
1864 // If we're a normal .o file, with relocs, every
1865 // set_address should have an associated relocation.
1866 if (this->input_is_relobj())
1867 this->data_valid_ = false;
4c50553d
ILT
1868 }
1869 break;
24badc65 1870 }
5c2c6c95
ILT
1871 case elfcpp::DW_LNE_define_file:
1872 {
1873 const char* filename = reinterpret_cast<const char*>(start);
1874 templen = strlen(filename) + 1;
1875 start += templen;
1876
1877 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
5c2c6c95 1878
af674d1d
ILT
1879 if (dirindex >= this->directories_.back().size())
1880 dirindex = 0;
1881 int dirindexi = static_cast<int>(dirindex);
1882
e8dd54e1
CC
1883 // This opcode takes two additional ULEB128 parameters
1884 // (mod_time and filelength), but we don't use those
1885 // values. Because OPLEN already tells us how far to
1886 // skip to the next opcode, we don't need to read
1887 // them at all.
5c2c6c95 1888
af674d1d 1889 this->files_.back().push_back(std::make_pair(dirindexi,
5c2c6c95
ILT
1890 filename));
1891 }
1892 break;
1893 }
1894 }
1895 break;
1896
1897 default:
1898 {
2ea97941 1899 // Ignore unknown opcode silently
5c2c6c95
ILT
1900 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1901 {
2ea97941 1902 size_t templen;
5c2c6c95
ILT
1903 read_unsigned_LEB_128(start, &templen);
1904 start += templen;
1905 oplen += templen;
1906 }
1907 }
1908 break;
2ea97941 1909 }
5c2c6c95
ILT
1910 *len = oplen;
1911 return false;
1912}
1913
1914// Read the debug information at LINEPTR and store it in the line
1915// number map.
1916
e43872e9 1917template<int size, bool big_endian>
5c2c6c95 1918unsigned const char*
9430daf8 1919Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
75aea3d0 1920 unsigned int shndx)
5c2c6c95
ILT
1921{
1922 struct LineStateMachine lsm;
1923
1924 // LENGTHSTART is the place the length field is based on. It is the
1925 // point in the header after the initial length field.
1926 const unsigned char* lengthstart = buffer_;
1927
1928 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1929 // 0xffffffff at the start.
1930 if (header_.offset_size == 8)
1931 lengthstart += 12;
1932 else
1933 lengthstart += 4;
1934
1935 while (lineptr < lengthstart + header_.total_length)
1936 {
1937 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1938 while (!lsm.end_sequence)
1939 {
1940 size_t oplength;
e43872e9 1941 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
9430daf8
ILT
1942 if (add_line
1943 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
5c2c6c95
ILT
1944 {
1945 Offset_to_lineno_entry entry
76677ad0
CC
1946 = { static_cast<off_t>(lsm.address),
1947 this->current_header_index_,
1948 static_cast<unsigned int>(lsm.file_num),
1949 true, lsm.line_num };
7500420b
ILT
1950 std::vector<Offset_to_lineno_entry>&
1951 map(this->line_number_map_[lsm.shndx]);
1952 // If we see two consecutive entries with the same
71ff8986
ILT
1953 // offset and a real line number, then mark the first
1954 // one as non-canonical.
7500420b
ILT
1955 if (!map.empty()
1956 && (map.back().offset == static_cast<off_t>(lsm.address))
1957 && lsm.line_num != -1
1958 && map.back().line_num != -1)
71ff8986
ILT
1959 map.back().last_line_for_offset = false;
1960 map.push_back(entry);
5c2c6c95
ILT
1961 }
1962 lineptr += oplength;
1963 }
1964 }
1965
1966 return lengthstart + header_.total_length;
1967}
1968
4c50553d
ILT
1969// Read the relocations into a Reloc_map.
1970
1971template<int size, bool big_endian>
1972void
c1027032 1973Sized_dwarf_line_info<size, big_endian>::read_relocs()
4c50553d
ILT
1974{
1975 if (this->symtab_buffer_ == NULL)
1976 return;
1977
c1027032 1978 off_t value;
4c50553d 1979 off_t reloc_offset;
c1027032 1980 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
4c50553d 1981 {
c1027032
CC
1982 const unsigned int shndx =
1983 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
d491d34e
ILT
1984
1985 // There is no reason to record non-ordinary section indexes, or
1986 // SHN_UNDEF, because they will never match the real section.
c1027032
CC
1987 if (shndx != 0)
1988 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
d491d34e 1989
c1027032 1990 this->reloc_mapper_->advance(reloc_offset + 1);
4c50553d
ILT
1991 }
1992}
1993
1994// Read the line number info.
1995
e43872e9 1996template<int size, bool big_endian>
5c2c6c95 1997void
c1027032 1998Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
5c2c6c95 1999{
c261a0be 2000 gold_assert(this->data_valid_ == true);
24badc65 2001
c1027032 2002 this->read_relocs();
4c50553d 2003 while (this->buffer_ < this->buffer_end_)
e43872e9 2004 {
4c50553d 2005 const unsigned char* lineptr = this->buffer_;
e43872e9
ILT
2006 lineptr = this->read_header_prolog(lineptr);
2007 lineptr = this->read_header_tables(lineptr);
9430daf8 2008 lineptr = this->read_lines(lineptr, shndx);
4c50553d 2009 this->buffer_ = lineptr;
e43872e9
ILT
2010 }
2011
2012 // Sort the lines numbers, so addr2line can use binary search.
2013 for (typename Lineno_map::iterator it = line_number_map_.begin();
5c2c6c95
ILT
2014 it != line_number_map_.end();
2015 ++it)
2016 // Each vector needs to be sorted by offset.
4c50553d 2017 std::sort(it->second.begin(), it->second.end());
5c2c6c95
ILT
2018}
2019
af674d1d
ILT
2020// Some processing depends on whether the input is a .o file or not.
2021// For instance, .o files have relocs, and have .debug_lines
2022// information on a per section basis. .so files, on the other hand,
2023// lack relocs, and offsets are unique, so we can ignore the section
2024// information.
2025
2026template<int size, bool big_endian>
2027bool
a55ce7fe 2028Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
af674d1d
ILT
2029{
2030 // Only .o files have relocs and the symtab buffer that goes with them.
2031 return this->symtab_buffer_ != NULL;
2032}
2033
79e052ea
ILT
2034// Given an Offset_to_lineno_entry vector, and an offset, figure out
2035// if the offset points into a function according to the vector (see
2036// comments below for the algorithm). If it does, return an iterator
2037// into the vector that points to the line-number that contains that
2038// offset. If not, it returns vector::end().
2039
2040static std::vector<Offset_to_lineno_entry>::const_iterator
2041offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
2042 off_t offset)
2043{
71ff8986 2044 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
79e052ea
ILT
2045
2046 // lower_bound() returns the smallest offset which is >= lookup_key.
2047 // If no offset in offsets is >= lookup_key, returns end().
2048 std::vector<Offset_to_lineno_entry>::const_iterator it
2049 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2050
2051 // This code is easiest to understand with a concrete example.
2052 // Here's a possible offsets array:
71ff8986
ILT
2053 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2054 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2055 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2056 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2057 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2058 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2059 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2060 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2061 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2062 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2063 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2064 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2065 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2066 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2067 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2068 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2069 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2070 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2071 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2072 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2073 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
79e052ea
ILT
2074 // The entries with line_num == -1 mark the end of a function: the
2075 // associated offset is one past the last instruction in the
2076 // function. This can correspond to the beginning of the next
2077 // function (as is true for offset 3232); alternately, there can be
2078 // a gap between the end of one function and the start of the next
ef04e392 2079 // (as is true for some others, most obviously from 3236->5764).
79e052ea
ILT
2080 //
2081 // Case 1: lookup_key has offset == 10. lower_bound returns
2082 // offsets[0]. Since it's not an exact match and we're
ef04e392 2083 // at the beginning of offsets, we return end() (invalid).
79e052ea 2084 // Case 2: lookup_key has offset 10000. lower_bound returns
71ff8986 2085 // offset[21] (end()). We return end() (invalid).
79e052ea
ILT
2086 // Case 3: lookup_key has offset == 3211. lower_bound matches
2087 // offsets[0] exactly, and that's the entry we return.
2088 // Case 4: lookup_key has offset == 3232. lower_bound returns
2089 // offsets[4]. That's an exact match, but indicates
2090 // end-of-function. We check if offsets[5] is also an
2091 // exact match but not end-of-function. It is, so we
2092 // return offsets[5].
2093 // Case 5: lookup_key has offset == 3214. lower_bound returns
2094 // offsets[1]. Since it's not an exact match, we back
2095 // up to the offset that's < lookup_key, offsets[0].
2096 // We note offsets[0] is a valid entry (not end-of-function),
2097 // so that's the entry we return.
2098 // Case 6: lookup_key has offset == 4000. lower_bound returns
2099 // offsets[8]. Since it's not an exact match, we back
2100 // up to offsets[7]. Since offsets[7] indicates
2101 // end-of-function, we know lookup_key is between
ef04e392 2102 // functions, so we return end() (not a valid offset).
79e052ea 2103 // Case 7: lookup_key has offset == 5794. lower_bound returns
71ff8986
ILT
2104 // offsets[19]. Since it's not an exact match, we back
2105 // up to offsets[16]. Note we back up to the *first*
2106 // entry with offset 5793, not just offsets[19-1].
2107 // We note offsets[16] is a valid entry, so we return it.
2108 // If offsets[16] had had line_num == -1, we would have
2109 // checked offsets[17]. The reason for this is that
2110 // 16 and 17 can be in an arbitrary order, since we sort
2111 // only by offset and last_line_for_offset. (Note it
2112 // doesn't help to use line_number as a tertiary sort key,
2113 // since sometimes we want the -1 to be first and sometimes
2114 // we want it to be last.)
79e052ea
ILT
2115
2116 // This deals with cases (1) and (2).
2117 if ((it == offsets->begin() && offset < it->offset)
2118 || it == offsets->end())
2119 return offsets->end();
2120
2121 // This deals with cases (3) and (4).
2122 if (offset == it->offset)
2123 {
2124 while (it != offsets->end()
2125 && it->offset == offset
2126 && it->line_num == -1)
2127 ++it;
2128 if (it == offsets->end() || it->offset != offset)
2129 return offsets->end();
2130 else
2131 return it;
2132 }
2133
2134 // This handles the first part of case (7) -- we back up to the
2135 // *first* entry that has the offset that's behind us.
2136 gold_assert(it != offsets->begin());
2137 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2138 --it;
2139 const off_t range_value = it->offset;
2140 while (it != offsets->begin() && (it-1)->offset == range_value)
2141 --it;
2142
2143 // This handles cases (5), (6), and (7): if any entry in the
2144 // equal_range [it, range_end) has a line_num != -1, it's a valid
71ff8986
ILT
2145 // match. If not, we're not in a function. The line number we saw
2146 // last for an offset will be sorted first, so it'll get returned if
2147 // it's present.
79e052ea
ILT
2148 for (; it != range_end; ++it)
2149 if (it->line_num != -1)
2150 return it;
2151 return offsets->end();
2152}
af674d1d 2153
71ff8986
ILT
2154// Returns the canonical filename:lineno for the address passed in.
2155// If other_lines is not NULL, appends the non-canonical lines
2156// assigned to the same address.
5c2c6c95 2157
e43872e9 2158template<int size, bool big_endian>
5c2c6c95 2159std::string
71ff8986
ILT
2160Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2161 unsigned int shndx,
2162 off_t offset,
2163 std::vector<std::string>* other_lines)
5c2c6c95 2164{
4c50553d
ILT
2165 if (this->data_valid_ == false)
2166 return "";
2167
af674d1d
ILT
2168 const std::vector<Offset_to_lineno_entry>* offsets;
2169 // If we do not have reloc information, then our input is a .so or
2170 // some similar data structure where all the information is held in
2171 // the offset. In that case, we ignore the input shndx.
2172 if (this->input_is_relobj())
2173 offsets = &this->line_number_map_[shndx];
2174 else
2175 offsets = &this->line_number_map_[-1U];
2176 if (offsets->empty())
4c50553d
ILT
2177 return "";
2178
e43872e9 2179 typename std::vector<Offset_to_lineno_entry>::const_iterator it
79e052ea
ILT
2180 = offset_to_iterator(offsets, offset);
2181 if (it == offsets->end())
2182 return "";
5c2c6c95 2183
71ff8986
ILT
2184 std::string result = this->format_file_lineno(*it);
2185 if (other_lines != NULL)
2186 for (++it; it != offsets->end() && it->offset == offset; ++it)
2187 {
2188 if (it->line_num == -1)
2189 continue; // The end of a previous function.
2190 other_lines->push_back(this->format_file_lineno(*it));
2191 }
2192 return result;
2193}
2194
2195// Convert the file_num + line_num into a string.
2196
2197template<int size, bool big_endian>
2198std::string
2199Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2200 const Offset_to_lineno_entry& loc) const
2201{
5c2c6c95 2202 std::string ret;
af674d1d 2203
71ff8986
ILT
2204 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2205 gold_assert(loc.file_num
c1027032 2206 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
af674d1d 2207 const std::pair<int, std::string>& filename_pair
71ff8986 2208 = this->files_[loc.header_num][loc.file_num];
5c2c6c95 2209 const std::string& filename = filename_pair.second;
af674d1d 2210
71ff8986 2211 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
af674d1d 2212 gold_assert(filename_pair.first
71ff8986 2213 < static_cast<int>(this->directories_[loc.header_num].size()));
af674d1d 2214 const std::string& dirname
71ff8986 2215 = this->directories_[loc.header_num][filename_pair.first];
af674d1d 2216
5c2c6c95
ILT
2217 if (!dirname.empty())
2218 {
2219 ret += dirname;
2220 ret += "/";
2221 }
2222 ret += filename;
2223 if (ret.empty())
2224 ret = "(unknown)";
2225
2226 char buffer[64]; // enough to hold a line number
71ff8986 2227 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
5c2c6c95
ILT
2228 ret += ":";
2229 ret += buffer;
2230
2231 return ret;
2232}
2233
a55ce7fe
ILT
2234// Dwarf_line_info routines.
2235
e4e5049b
CS
2236static unsigned int next_generation_count = 0;
2237
2238struct Addr2line_cache_entry
2239{
2240 Object* object;
2241 unsigned int shndx;
2242 Dwarf_line_info* dwarf_line_info;
2243 unsigned int generation_count;
2244 unsigned int access_count;
2245
2246 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2247 : object(o), shndx(s), dwarf_line_info(d),
2248 generation_count(next_generation_count), access_count(0)
2249 {
2250 if (next_generation_count < (1U << 31))
2251 ++next_generation_count;
2252 }
2253};
2254// We expect this cache to be small, so don't bother with a hashtable
2255// or priority queue or anything: just use a simple vector.
2256static std::vector<Addr2line_cache_entry> addr2line_cache;
2257
a55ce7fe
ILT
2258std::string
2259Dwarf_line_info::one_addr2line(Object* object,
e4e5049b 2260 unsigned int shndx, off_t offset,
71ff8986
ILT
2261 size_t cache_size,
2262 std::vector<std::string>* other_lines)
a55ce7fe 2263{
e4e5049b
CS
2264 Dwarf_line_info* lineinfo = NULL;
2265 std::vector<Addr2line_cache_entry>::iterator it;
2266
2267 // First, check the cache. If we hit, update the counts.
2268 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
8851ecca 2269 {
e4e5049b
CS
2270 if (it->object == object && it->shndx == shndx)
2271 {
2272 lineinfo = it->dwarf_line_info;
2273 it->generation_count = next_generation_count;
2274 // We cap generation_count at 2^31 -1 to avoid overflow.
2275 if (next_generation_count < (1U << 31))
2276 ++next_generation_count;
2277 // We cap access_count at 31 so 2^access_count doesn't overflow
2278 if (it->access_count < 31)
2279 ++it->access_count;
2280 break;
2281 }
2282 }
2283
2284 // If we don't hit the cache, create a new object and insert into the
2285 // cache.
2286 if (lineinfo == NULL)
2287 {
2288 switch (parameters->size_and_endianness())
2289 {
a55ce7fe 2290#ifdef HAVE_TARGET_32_LITTLE
e4e5049b
CS
2291 case Parameters::TARGET_32_LITTLE:
2292 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
a55ce7fe 2293#endif
a55ce7fe 2294#ifdef HAVE_TARGET_32_BIG
e4e5049b
CS
2295 case Parameters::TARGET_32_BIG:
2296 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
a55ce7fe 2297#endif
a55ce7fe 2298#ifdef HAVE_TARGET_64_LITTLE
e4e5049b
CS
2299 case Parameters::TARGET_64_LITTLE:
2300 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
a55ce7fe 2301#endif
8851ecca 2302#ifdef HAVE_TARGET_64_BIG
e4e5049b
CS
2303 case Parameters::TARGET_64_BIG:
2304 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
a55ce7fe 2305#endif
e4e5049b
CS
2306 default:
2307 gold_unreachable();
2308 }
2309 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2310 }
2311
2312 // Now that we have our object, figure out the answer
71ff8986 2313 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
e4e5049b
CS
2314
2315 // Finally, if our cache has grown too big, delete old objects. We
2316 // assume the common (probably only) case is deleting only one object.
2317 // We use a pretty simple scheme to evict: function of LRU and MFU.
2318 while (addr2line_cache.size() > cache_size)
2319 {
2320 unsigned int lowest_score = ~0U;
2321 std::vector<Addr2line_cache_entry>::iterator lowest
2322 = addr2line_cache.end();
2323 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2324 {
2325 const unsigned int score = (it->generation_count
2326 + (1U << it->access_count));
2327 if (score < lowest_score)
2328 {
2329 lowest_score = score;
2330 lowest = it;
2331 }
2332 }
2333 if (lowest != addr2line_cache.end())
2334 {
2335 delete lowest->dwarf_line_info;
2336 addr2line_cache.erase(lowest);
2337 }
8851ecca 2338 }
e4e5049b
CS
2339
2340 return retval;
2341}
2342
2343void
2344Dwarf_line_info::clear_addr2line_cache()
2345{
2346 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2347 it != addr2line_cache.end();
2348 ++it)
2349 delete it->dwarf_line_info;
2350 addr2line_cache.clear();
a55ce7fe
ILT
2351}
2352
5c2c6c95
ILT
2353#ifdef HAVE_TARGET_32_LITTLE
2354template
a55ce7fe 2355class Sized_dwarf_line_info<32, false>;
5c2c6c95
ILT
2356#endif
2357
2358#ifdef HAVE_TARGET_32_BIG
2359template
a55ce7fe 2360class Sized_dwarf_line_info<32, true>;
5c2c6c95
ILT
2361#endif
2362
2363#ifdef HAVE_TARGET_64_LITTLE
2364template
a55ce7fe 2365class Sized_dwarf_line_info<64, false>;
5c2c6c95
ILT
2366#endif
2367
2368#ifdef HAVE_TARGET_64_BIG
2369template
a55ce7fe 2370class Sized_dwarf_line_info<64, true>;
5c2c6c95
ILT
2371#endif
2372
2373} // End namespace gold.
This page took 0.398437 seconds and 4 git commands to generate.