PR binutils/13121
[deliverable/binutils-gdb.git] / gold / dwarf_reader.cc
CommitLineData
5c2c6c95
ILT
1// dwarf_reader.cc -- parse dwarf2/3 debug information
2
c1027032 3// Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
5c2c6c95
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
04bf7072 25#include <algorithm>
e4e5049b 26#include <vector>
04bf7072 27
5c2c6c95
ILT
28#include "elfcpp_swap.h"
29#include "dwarf.h"
24badc65 30#include "object.h"
a55ce7fe 31#include "parameters.h"
4c50553d 32#include "reloc.h"
5c2c6c95 33#include "dwarf_reader.h"
4f787271 34#include "int_encoding.h"
a2e47362 35#include "compressed_output.h"
5c2c6c95 36
62b01cb5 37namespace gold {
5c2c6c95 38
c1027032
CC
39// Class Sized_elf_reloc_mapper
40
41// Initialize the relocation tracker for section RELOC_SHNDX.
42
43template<int size, bool big_endian>
44bool
45Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
46 unsigned int reloc_shndx, unsigned int reloc_type)
47{
48 this->reloc_type_ = reloc_type;
49 return this->track_relocs_.initialize(this->object_, reloc_shndx,
50 reloc_type);
51}
52
53// Looks in the symtab to see what section a symbol is in.
54
55template<int size, bool big_endian>
56unsigned int
57Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
58 unsigned int symndx, Address* value, bool* is_ordinary)
59{
60 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
61 gold_assert((symndx + 1) * symsize <= this->symtab_size_);
62 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
63 *value = elfsym.get_st_value();
64 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
65 is_ordinary);
66}
67
68// Return the section index and offset within the section of
69// the target of the relocation for RELOC_OFFSET.
70
71template<int size, bool big_endian>
72unsigned int
73Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
74 off_t reloc_offset, off_t* target_offset)
75{
76 this->track_relocs_.advance(reloc_offset);
77 if (reloc_offset != this->track_relocs_.next_offset())
78 return 0;
79 unsigned int symndx = this->track_relocs_.next_symndx();
80 typename elfcpp::Elf_types<size>::Elf_Addr value;
81 bool is_ordinary;
82 unsigned int target_shndx = this->symbol_section(symndx, &value,
83 &is_ordinary);
84 if (!is_ordinary)
85 return 0;
86 if (this->reloc_type_ == elfcpp::SHT_RELA)
87 value += this->track_relocs_.next_addend();
88 *target_offset = value;
89 return target_shndx;
90}
91
92static inline Elf_reloc_mapper*
93make_elf_reloc_mapper(Object* object, const unsigned char* symtab,
94 off_t symtab_size)
95{
96 switch (parameters->size_and_endianness())
97 {
98#ifdef HAVE_TARGET_32_LITTLE
99 case Parameters::TARGET_32_LITTLE:
100 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
101 symtab_size);
102#endif
103#ifdef HAVE_TARGET_32_BIG
104 case Parameters::TARGET_32_BIG:
105 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
106 symtab_size);
107#endif
108#ifdef HAVE_TARGET_64_LITTLE
109 case Parameters::TARGET_64_LITTLE:
110 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
111 symtab_size);
112#endif
113#ifdef HAVE_TARGET_64_BIG
114 case Parameters::TARGET_64_BIG:
115 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
116 symtab_size);
117#endif
118 default:
119 gold_unreachable();
120 }
121}
122
123// class Dwarf_abbrev_table
124
125void
126Dwarf_abbrev_table::clear_abbrev_codes()
127{
128 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
129 {
130 if (this->low_abbrev_codes_[code] != NULL)
131 {
132 delete this->low_abbrev_codes_[code];
133 this->low_abbrev_codes_[code] = NULL;
134 }
135 }
136 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
137 it != this->high_abbrev_codes_.end();
138 ++it)
139 {
140 if (it->second != NULL)
141 delete it->second;
142 }
143 this->high_abbrev_codes_.clear();
144}
145
146// Read the abbrev table from an object file.
147
148bool
149Dwarf_abbrev_table::do_read_abbrevs(
150 Relobj* object,
151 unsigned int abbrev_shndx,
152 off_t abbrev_offset)
153{
154 this->clear_abbrev_codes();
155
156 // If we don't have relocations, abbrev_shndx will be 0, and
157 // we'll have to hunt for the .debug_abbrev section.
158 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
159 abbrev_shndx = this->abbrev_shndx_;
160 else if (abbrev_shndx == 0)
161 {
162 for (unsigned int i = 1; i < object->shnum(); ++i)
163 {
164 std::string name = object->section_name(i);
165 if (name == ".debug_abbrev")
166 {
167 abbrev_shndx = i;
168 // Correct the offset. For incremental update links, we have a
169 // relocated offset that is relative to the output section, but
170 // here we need an offset relative to the input section.
171 abbrev_offset -= object->output_section_offset(i);
172 break;
173 }
174 }
175 if (abbrev_shndx == 0)
176 return false;
177 }
178
179 // Get the section contents and decompress if necessary.
180 if (abbrev_shndx != this->abbrev_shndx_)
181 {
182 if (this->owns_buffer_ && this->buffer_ != NULL)
183 {
184 delete[] this->buffer_;
185 this->owns_buffer_ = false;
186 }
187
188 section_size_type buffer_size;
189 this->buffer_ =
190 object->decompressed_section_contents(abbrev_shndx,
191 &buffer_size,
192 &this->owns_buffer_);
193 this->buffer_end_ = this->buffer_ + buffer_size;
194 this->abbrev_shndx_ = abbrev_shndx;
195 }
196
197 this->buffer_pos_ = this->buffer_ + abbrev_offset;
198 return true;
199}
200
201// Lookup the abbrev code entry for CODE. This function is called
202// only when the abbrev code is not in the direct lookup table.
203// It may be in the hash table, it may not have been read yet,
204// or it may not exist in the abbrev table.
205
206const Dwarf_abbrev_table::Abbrev_code*
207Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
208{
209 // See if the abbrev code is already in the hash table.
210 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
211 if (it != this->high_abbrev_codes_.end())
212 return it->second;
213
214 // Read and store abbrev code definitions until we find the
215 // one we're looking for.
216 for (;;)
217 {
218 // Read the abbrev code. A zero here indicates the end of the
219 // abbrev table.
220 size_t len;
221 if (this->buffer_pos_ >= this->buffer_end_)
222 return NULL;
223 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
224 if (nextcode == 0)
225 {
226 this->buffer_pos_ = this->buffer_end_;
227 return NULL;
228 }
229 this->buffer_pos_ += len;
230
231 // Read the tag.
232 if (this->buffer_pos_ >= this->buffer_end_)
233 return NULL;
234 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
235 this->buffer_pos_ += len;
236
237 // Read the has_children flag.
238 if (this->buffer_pos_ >= this->buffer_end_)
239 return NULL;
240 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
241 this->buffer_pos_ += 1;
242
243 // Read the list of (attribute, form) pairs.
244 Abbrev_code* entry = new Abbrev_code(tag, has_children);
245 for (;;)
246 {
247 // Read the attribute.
248 if (this->buffer_pos_ >= this->buffer_end_)
249 return NULL;
250 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
251 this->buffer_pos_ += len;
252
253 // Read the form.
254 if (this->buffer_pos_ >= this->buffer_end_)
255 return NULL;
256 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
257 this->buffer_pos_ += len;
258
259 // A (0,0) pair terminates the list.
260 if (attr == 0 && form == 0)
261 break;
262
263 if (attr == elfcpp::DW_AT_sibling)
264 entry->has_sibling_attribute = true;
265
266 entry->add_attribute(attr, form);
267 }
268
269 this->store_abbrev(nextcode, entry);
270 if (nextcode == code)
271 return entry;
272 }
273
274 return NULL;
275}
276
277// class Dwarf_ranges_table
278
279// Read the ranges table from an object file.
280
281bool
282Dwarf_ranges_table::read_ranges_table(
283 Relobj* object,
284 const unsigned char* symtab,
285 off_t symtab_size,
286 unsigned int ranges_shndx)
287{
288 // If we've already read this abbrev table, return immediately.
289 if (this->ranges_shndx_ > 0
290 && this->ranges_shndx_ == ranges_shndx)
291 return true;
292
293 // If we don't have relocations, ranges_shndx will be 0, and
294 // we'll have to hunt for the .debug_ranges section.
295 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
296 ranges_shndx = this->ranges_shndx_;
297 else if (ranges_shndx == 0)
298 {
299 for (unsigned int i = 1; i < object->shnum(); ++i)
300 {
301 std::string name = object->section_name(i);
302 if (name == ".debug_ranges")
303 {
304 ranges_shndx = i;
305 this->output_section_offset_ = object->output_section_offset(i);
306 break;
307 }
308 }
309 if (ranges_shndx == 0)
310 return false;
311 }
312
313 // Get the section contents and decompress if necessary.
314 if (ranges_shndx != this->ranges_shndx_)
315 {
316 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
317 {
318 delete[] this->ranges_buffer_;
319 this->owns_ranges_buffer_ = false;
320 }
321
322 section_size_type buffer_size;
323 this->ranges_buffer_ =
324 object->decompressed_section_contents(ranges_shndx,
325 &buffer_size,
326 &this->owns_ranges_buffer_);
327 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
328 this->ranges_shndx_ = ranges_shndx;
329 }
330
331 if (this->ranges_reloc_mapper_ != NULL)
332 {
333 delete this->ranges_reloc_mapper_;
334 this->ranges_reloc_mapper_ = NULL;
335 }
336
337 // For incremental objects, we have no relocations.
338 if (object->is_incremental())
339 return true;
340
341 // Find the relocation section for ".debug_ranges".
342 unsigned int reloc_shndx = 0;
343 unsigned int reloc_type = 0;
344 for (unsigned int i = 0; i < object->shnum(); ++i)
345 {
346 reloc_type = object->section_type(i);
347 if ((reloc_type == elfcpp::SHT_REL
348 || reloc_type == elfcpp::SHT_RELA)
349 && object->section_info(i) == ranges_shndx)
350 {
351 reloc_shndx = i;
352 break;
353 }
354 }
355
356 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
357 symtab_size);
358 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
359
360 return true;
361}
362
363// Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
364
365Dwarf_range_list*
366Dwarf_ranges_table::read_range_list(
367 Relobj* object,
368 const unsigned char* symtab,
369 off_t symtab_size,
370 unsigned int addr_size,
371 unsigned int ranges_shndx,
372 off_t offset)
373{
374 Dwarf_range_list* ranges;
375
376 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
377 return NULL;
378
379 // Correct the offset. For incremental update links, we have a
380 // relocated offset that is relative to the output section, but
381 // here we need an offset relative to the input section.
382 offset -= this->output_section_offset_;
383
384 // Read the range list at OFFSET.
385 ranges = new Dwarf_range_list();
386 off_t base = 0;
387 for (;
388 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
389 offset += 2 * addr_size)
390 {
391 off_t start;
392 off_t end;
393
394 // Read the raw contents of the section.
395 if (addr_size == 4)
396 {
397 start = read_from_pointer<32>(this->ranges_buffer_ + offset);
398 end = read_from_pointer<32>(this->ranges_buffer_ + offset + 4);
399 }
400 else
401 {
402 start = read_from_pointer<64>(this->ranges_buffer_ + offset);
403 end = read_from_pointer<64>(this->ranges_buffer_ + offset + 8);
404 }
405
406 // Check for relocations and adjust the values.
407 unsigned int shndx1 = 0;
408 unsigned int shndx2 = 0;
409 if (this->ranges_reloc_mapper_ != NULL)
410 {
411 shndx1 =
412 this->ranges_reloc_mapper_->get_reloc_target(offset, &start);
413 shndx2 =
414 this->ranges_reloc_mapper_->get_reloc_target(offset + addr_size,
415 &end);
416 }
417
418 // End of list is marked by a pair of zeroes.
419 if (shndx1 == 0 && start == 0 && end == 0)
420 break;
421
422 // A "base address selection entry" is identified by
423 // 0xffffffff for the first value of the pair. The second
424 // value is used as a base for subsequent range list entries.
425 if (shndx1 == 0 && start == -1)
426 base = end;
427 else if (shndx1 == shndx2)
428 {
429 if (shndx1 == 0 || object->is_section_included(shndx1))
430 ranges->add(shndx1, base + start, base + end);
431 }
432 else
433 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
434 "range list entry are in different sections"),
435 object->name().c_str());
436 }
437
438 return ranges;
439}
440
441// class Dwarf_pubnames_table
442
443// Read the pubnames section SHNDX from the object file.
444
445bool
446Dwarf_pubnames_table::read_section(Relobj* object, unsigned int shndx)
447{
448 section_size_type buffer_size;
449
450 // If we don't have relocations, shndx will be 0, and
451 // we'll have to hunt for the .debug_pubnames/pubtypes section.
452 if (shndx == 0)
453 {
454 const char* name = (this->is_pubtypes_
455 ? ".debug_pubtypes"
456 : ".debug_pubnames");
457 for (unsigned int i = 1; i < object->shnum(); ++i)
458 {
459 if (object->section_name(i) == name)
460 {
461 shndx = i;
462 this->output_section_offset_ = object->output_section_offset(i);
463 break;
464 }
465 }
466 if (shndx == 0)
467 return false;
468 }
469
470 this->buffer_ = object->decompressed_section_contents(shndx,
471 &buffer_size,
472 &this->owns_buffer_);
473 if (this->buffer_ == NULL)
474 return false;
475 this->buffer_end_ = this->buffer_ + buffer_size;
476 return true;
477}
478
479// Read the header for the set at OFFSET.
480
481bool
482Dwarf_pubnames_table::read_header(off_t offset)
483{
484 // Correct the offset. For incremental update links, we have a
485 // relocated offset that is relative to the output section, but
486 // here we need an offset relative to the input section.
487 offset -= this->output_section_offset_;
488
489 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
490 return false;
491
492 const unsigned char* pinfo = this->buffer_ + offset;
493
494 // Read the unit_length field.
495 uint32_t unit_length = read_from_pointer<32>(pinfo);
496 pinfo += 4;
497 if (unit_length == 0xffffffff)
498 {
499 unit_length = read_from_pointer<64>(pinfo);
500 pinfo += 8;
501 this->offset_size_ = 8;
502 }
503 else
504 this->offset_size_ = 4;
505
506 // Check the version.
507 unsigned int version = read_from_pointer<16>(pinfo);
508 pinfo += 2;
509 if (version != 2)
510 return false;
511
512 // Skip the debug_info_offset and debug_info_size fields.
513 pinfo += 2 * this->offset_size_;
514
515 if (pinfo >= this->buffer_end_)
516 return false;
517
518 this->pinfo_ = pinfo;
519 return true;
520}
521
522// Read the next name from the set.
523
524const char*
525Dwarf_pubnames_table::next_name()
526{
527 const unsigned char* pinfo = this->pinfo_;
528
529 // Read the offset within the CU. If this is zero, we have reached
530 // the end of the list.
531 uint32_t offset;
532 if (this->offset_size_ == 4)
533 offset = read_from_pointer<32>(&pinfo);
534 else
535 offset = read_from_pointer<64>(&pinfo);
536 if (offset == 0)
537 return NULL;
538
539 // Return a pointer to the string at the current location,
540 // and advance the pointer to the next entry.
541 const char* ret = reinterpret_cast<const char*>(pinfo);
542 while (pinfo < this->buffer_end_ && *pinfo != '\0')
543 ++pinfo;
544 if (pinfo < this->buffer_end_)
545 ++pinfo;
546
547 this->pinfo_ = pinfo;
548 return ret;
549}
550
551// class Dwarf_die
552
553Dwarf_die::Dwarf_die(
554 Dwarf_info_reader* dwinfo,
555 off_t die_offset,
556 Dwarf_die* parent)
557 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
558 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
559 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
560 linkage_name_off_(-1), string_shndx_(0), specification_(0),
561 abstract_origin_(0)
562{
563 size_t len;
564 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
565 if (pdie == NULL)
566 return;
567 unsigned int code = read_unsigned_LEB_128(pdie, &len);
568 if (code == 0)
569 {
570 if (parent != NULL)
571 parent->set_sibling_offset(die_offset + len);
572 return;
573 }
574 this->attr_offset_ = len;
575
576 // Lookup the abbrev code in the abbrev table.
577 this->abbrev_code_ = dwinfo->get_abbrev(code);
578}
579
580// Read all the attributes of the DIE.
581
582bool
583Dwarf_die::read_attributes()
584{
585 if (this->attributes_read_)
586 return true;
587
588 gold_assert(this->abbrev_code_ != NULL);
589
590 const unsigned char* pdie =
591 this->dwinfo_->buffer_at_offset(this->die_offset_);
592 if (pdie == NULL)
593 return false;
594 const unsigned char* pattr = pdie + this->attr_offset_;
595
596 unsigned int nattr = this->abbrev_code_->attributes.size();
597 this->attributes_.reserve(nattr);
598 for (unsigned int i = 0; i < nattr; ++i)
599 {
600 size_t len;
601 unsigned int attr = this->abbrev_code_->attributes[i].attr;
602 unsigned int form = this->abbrev_code_->attributes[i].form;
603 if (form == elfcpp::DW_FORM_indirect)
604 {
605 form = read_unsigned_LEB_128(pattr, &len);
606 pattr += len;
607 }
608 off_t attr_off = this->die_offset_ + (pattr - pdie);
609 bool ref_form = false;
610 Attribute_value attr_value;
611 attr_value.attr = attr;
612 attr_value.form = form;
613 attr_value.aux.shndx = 0;
614 switch(form)
615 {
616 case elfcpp::DW_FORM_null:
617 attr_value.val.intval = 0;
618 break;
619 case elfcpp::DW_FORM_flag_present:
620 attr_value.val.intval = 1;
621 break;
622 case elfcpp::DW_FORM_strp:
623 {
624 off_t str_off;
625 if (this->dwinfo_->offset_size() == 4)
626 str_off = read_from_pointer<32>(&pattr);
627 else
628 str_off = read_from_pointer<64>(&pattr);
629 unsigned int shndx =
630 this->dwinfo_->lookup_reloc(attr_off, &str_off);
631 attr_value.aux.shndx = shndx;
632 attr_value.val.refval = str_off;
633 break;
634 }
635 case elfcpp::DW_FORM_sec_offset:
636 {
637 off_t sec_off;
638 if (this->dwinfo_->offset_size() == 4)
639 sec_off = read_from_pointer<32>(&pattr);
640 else
641 sec_off = read_from_pointer<64>(&pattr);
642 unsigned int shndx =
643 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
644 attr_value.aux.shndx = shndx;
645 attr_value.val.refval = sec_off;
646 ref_form = true;
647 break;
648 }
649 case elfcpp::DW_FORM_addr:
650 case elfcpp::DW_FORM_ref_addr:
651 {
652 off_t sec_off;
653 if (this->dwinfo_->address_size() == 4)
654 sec_off = read_from_pointer<32>(&pattr);
655 else
656 sec_off = read_from_pointer<64>(&pattr);
657 unsigned int shndx =
658 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
659 attr_value.aux.shndx = shndx;
660 attr_value.val.refval = sec_off;
661 ref_form = true;
662 break;
663 }
664 case elfcpp::DW_FORM_block1:
665 attr_value.aux.blocklen = *pattr++;
666 attr_value.val.blockval = pattr;
667 pattr += attr_value.aux.blocklen;
668 break;
669 case elfcpp::DW_FORM_block2:
670 attr_value.aux.blocklen = read_from_pointer<16>(&pattr);
671 attr_value.val.blockval = pattr;
672 pattr += attr_value.aux.blocklen;
673 break;
674 case elfcpp::DW_FORM_block4:
675 attr_value.aux.blocklen = read_from_pointer<32>(&pattr);
676 attr_value.val.blockval = pattr;
677 pattr += attr_value.aux.blocklen;
678 break;
679 case elfcpp::DW_FORM_block:
680 case elfcpp::DW_FORM_exprloc:
681 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
682 attr_value.val.blockval = pattr + len;
683 pattr += len + attr_value.aux.blocklen;
684 break;
685 case elfcpp::DW_FORM_data1:
686 case elfcpp::DW_FORM_flag:
687 attr_value.val.intval = *pattr++;
688 break;
689 case elfcpp::DW_FORM_ref1:
690 attr_value.val.refval = *pattr++;
691 ref_form = true;
692 break;
693 case elfcpp::DW_FORM_data2:
694 attr_value.val.intval = read_from_pointer<16>(&pattr);
695 break;
696 case elfcpp::DW_FORM_ref2:
697 attr_value.val.refval = read_from_pointer<16>(&pattr);
698 ref_form = true;
699 break;
700 case elfcpp::DW_FORM_data4:
701 {
702 off_t sec_off;
703 sec_off = read_from_pointer<32>(&pattr);
704 unsigned int shndx =
705 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
706 attr_value.aux.shndx = shndx;
707 attr_value.val.intval = sec_off;
708 break;
709 }
710 case elfcpp::DW_FORM_ref4:
711 {
712 off_t sec_off;
713 sec_off = read_from_pointer<32>(&pattr);
714 unsigned int shndx =
715 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
716 attr_value.aux.shndx = shndx;
717 attr_value.val.refval = sec_off;
718 ref_form = true;
719 break;
720 }
721 case elfcpp::DW_FORM_data8:
722 {
723 off_t sec_off;
724 sec_off = read_from_pointer<64>(&pattr);
725 unsigned int shndx =
726 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
727 attr_value.aux.shndx = shndx;
728 attr_value.val.intval = sec_off;
729 break;
730 }
731 case elfcpp::DW_FORM_ref_sig8:
732 attr_value.val.uintval = read_from_pointer<64>(&pattr);
733 break;
734 case elfcpp::DW_FORM_ref8:
735 {
736 off_t sec_off;
737 sec_off = read_from_pointer<64>(&pattr);
738 unsigned int shndx =
739 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
740 attr_value.aux.shndx = shndx;
741 attr_value.val.refval = sec_off;
742 ref_form = true;
743 break;
744 }
745 case elfcpp::DW_FORM_ref_udata:
746 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
747 ref_form = true;
748 pattr += len;
749 break;
750 case elfcpp::DW_FORM_udata:
751 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
752 pattr += len;
753 break;
754 case elfcpp::DW_FORM_sdata:
755 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
756 pattr += len;
757 break;
758 case elfcpp::DW_FORM_string:
759 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
760 len = strlen(attr_value.val.stringval);
761 pattr += len + 1;
762 break;
763 default:
764 return false;
765 }
766
767 // Cache the most frequently-requested attributes.
768 switch (attr)
769 {
770 case elfcpp::DW_AT_name:
771 if (form == elfcpp::DW_FORM_string)
772 this->name_ = attr_value.val.stringval;
773 else if (form == elfcpp::DW_FORM_strp)
774 {
775 // All indirect strings should refer to the same
776 // string section, so we just save the last one seen.
777 this->string_shndx_ = attr_value.aux.shndx;
778 this->name_off_ = attr_value.val.refval;
779 }
780 break;
781 case elfcpp::DW_AT_linkage_name:
782 case elfcpp::DW_AT_MIPS_linkage_name:
783 if (form == elfcpp::DW_FORM_string)
784 this->linkage_name_ = attr_value.val.stringval;
785 else if (form == elfcpp::DW_FORM_strp)
786 {
787 // All indirect strings should refer to the same
788 // string section, so we just save the last one seen.
789 this->string_shndx_ = attr_value.aux.shndx;
790 this->linkage_name_off_ = attr_value.val.refval;
791 }
792 break;
793 case elfcpp::DW_AT_specification:
794 if (ref_form)
795 this->specification_ = attr_value.val.refval;
796 break;
797 case elfcpp::DW_AT_abstract_origin:
798 if (ref_form)
799 this->abstract_origin_ = attr_value.val.refval;
800 break;
801 case elfcpp::DW_AT_sibling:
802 if (ref_form && attr_value.aux.shndx == 0)
803 this->sibling_offset_ = attr_value.val.refval;
804 default:
805 break;
806 }
807
808 this->attributes_.push_back(attr_value);
809 }
810
811 // Now that we know where the next DIE begins, record the offset
812 // to avoid later recalculation.
813 if (this->has_children())
814 this->child_offset_ = this->die_offset_ + (pattr - pdie);
815 else
816 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
817
818 this->attributes_read_ = true;
819 return true;
820}
821
822// Skip all the attributes of the DIE and return the offset of the next DIE.
823
824off_t
825Dwarf_die::skip_attributes()
826{
827 typedef Dwarf_abbrev_table::Attribute Attribute;
828
829 gold_assert(this->abbrev_code_ != NULL);
830
831 const unsigned char* pdie =
832 this->dwinfo_->buffer_at_offset(this->die_offset_);
833 if (pdie == NULL)
834 return 0;
835 const unsigned char* pattr = pdie + this->attr_offset_;
836
837 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
838 {
839 size_t len;
840 unsigned int form = this->abbrev_code_->attributes[i].form;
841 if (form == elfcpp::DW_FORM_indirect)
842 {
843 form = read_unsigned_LEB_128(pattr, &len);
844 pattr += len;
845 }
846 switch(form)
847 {
848 case elfcpp::DW_FORM_null:
849 case elfcpp::DW_FORM_flag_present:
850 break;
851 case elfcpp::DW_FORM_strp:
852 case elfcpp::DW_FORM_sec_offset:
853 pattr += this->dwinfo_->offset_size();
854 break;
855 case elfcpp::DW_FORM_addr:
856 case elfcpp::DW_FORM_ref_addr:
857 pattr += this->dwinfo_->address_size();
858 break;
859 case elfcpp::DW_FORM_block1:
860 pattr += 1 + *pattr;
861 break;
862 case elfcpp::DW_FORM_block2:
863 {
864 uint16_t block_size;
865 block_size = read_from_pointer<16>(&pattr);
866 pattr += block_size;
867 break;
868 }
869 case elfcpp::DW_FORM_block4:
870 {
871 uint32_t block_size;
872 block_size = read_from_pointer<32>(&pattr);
873 pattr += block_size;
874 break;
875 }
876 case elfcpp::DW_FORM_block:
877 case elfcpp::DW_FORM_exprloc:
878 {
879 uint64_t block_size;
880 block_size = read_unsigned_LEB_128(pattr, &len);
881 pattr += len + block_size;
882 break;
883 }
884 case elfcpp::DW_FORM_data1:
885 case elfcpp::DW_FORM_ref1:
886 case elfcpp::DW_FORM_flag:
887 pattr += 1;
888 break;
889 case elfcpp::DW_FORM_data2:
890 case elfcpp::DW_FORM_ref2:
891 pattr += 2;
892 break;
893 case elfcpp::DW_FORM_data4:
894 case elfcpp::DW_FORM_ref4:
895 pattr += 4;
896 break;
897 case elfcpp::DW_FORM_data8:
898 case elfcpp::DW_FORM_ref8:
899 case elfcpp::DW_FORM_ref_sig8:
900 pattr += 8;
901 break;
902 case elfcpp::DW_FORM_ref_udata:
903 case elfcpp::DW_FORM_udata:
904 read_unsigned_LEB_128(pattr, &len);
905 pattr += len;
906 break;
907 case elfcpp::DW_FORM_sdata:
908 read_signed_LEB_128(pattr, &len);
909 pattr += len;
910 break;
911 case elfcpp::DW_FORM_string:
912 len = strlen(reinterpret_cast<const char*>(pattr));
913 pattr += len + 1;
914 break;
915 default:
916 return 0;
917 }
918 }
919
920 return this->die_offset_ + (pattr - pdie);
921}
922
923// Get the name of the DIE and cache it.
924
925void
926Dwarf_die::set_name()
927{
928 if (this->name_ != NULL || !this->read_attributes())
929 return;
930 if (this->name_off_ != -1)
931 this->name_ = this->dwinfo_->get_string(this->name_off_,
932 this->string_shndx_);
933}
934
935// Get the linkage name of the DIE and cache it.
936
937void
938Dwarf_die::set_linkage_name()
939{
940 if (this->linkage_name_ != NULL || !this->read_attributes())
941 return;
942 if (this->linkage_name_off_ != -1)
943 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
944 this->string_shndx_);
945}
946
947// Return the value of attribute ATTR.
948
949const Dwarf_die::Attribute_value*
950Dwarf_die::attribute(unsigned int attr)
951{
952 if (!this->read_attributes())
953 return NULL;
954 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
955 {
956 if (this->attributes_[i].attr == attr)
957 return &this->attributes_[i];
958 }
959 return NULL;
960}
961
962const char*
963Dwarf_die::string_attribute(unsigned int attr)
964{
965 const Attribute_value* attr_val = this->attribute(attr);
966 if (attr_val == NULL)
967 return NULL;
968 switch (attr_val->form)
969 {
970 case elfcpp::DW_FORM_string:
971 return attr_val->val.stringval;
972 case elfcpp::DW_FORM_strp:
973 return this->dwinfo_->get_string(attr_val->val.refval,
974 attr_val->aux.shndx);
975 default:
976 return NULL;
977 }
978}
979
980int64_t
981Dwarf_die::int_attribute(unsigned int attr)
982{
983 const Attribute_value* attr_val = this->attribute(attr);
984 if (attr_val == NULL)
985 return 0;
986 switch (attr_val->form)
987 {
988 case elfcpp::DW_FORM_null:
989 case elfcpp::DW_FORM_flag_present:
990 case elfcpp::DW_FORM_data1:
991 case elfcpp::DW_FORM_flag:
992 case elfcpp::DW_FORM_data2:
993 case elfcpp::DW_FORM_data4:
994 case elfcpp::DW_FORM_data8:
995 case elfcpp::DW_FORM_sdata:
996 return attr_val->val.intval;
997 default:
998 return 0;
999 }
1000}
1001
1002uint64_t
1003Dwarf_die::uint_attribute(unsigned int attr)
1004{
1005 const Attribute_value* attr_val = this->attribute(attr);
1006 if (attr_val == NULL)
1007 return 0;
1008 switch (attr_val->form)
1009 {
1010 case elfcpp::DW_FORM_null:
1011 case elfcpp::DW_FORM_flag_present:
1012 case elfcpp::DW_FORM_data1:
1013 case elfcpp::DW_FORM_flag:
1014 case elfcpp::DW_FORM_data4:
1015 case elfcpp::DW_FORM_data8:
1016 case elfcpp::DW_FORM_ref_sig8:
1017 case elfcpp::DW_FORM_udata:
1018 return attr_val->val.uintval;
1019 default:
1020 return 0;
1021 }
1022}
1023
1024off_t
1025Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1026{
1027 const Attribute_value* attr_val = this->attribute(attr);
1028 if (attr_val == NULL)
1029 return -1;
1030 switch (attr_val->form)
1031 {
1032 case elfcpp::DW_FORM_sec_offset:
1033 case elfcpp::DW_FORM_addr:
1034 case elfcpp::DW_FORM_ref_addr:
1035 case elfcpp::DW_FORM_ref1:
1036 case elfcpp::DW_FORM_ref2:
1037 case elfcpp::DW_FORM_ref4:
1038 case elfcpp::DW_FORM_ref8:
1039 case elfcpp::DW_FORM_ref_udata:
1040 *shndx = attr_val->aux.shndx;
1041 return attr_val->val.refval;
1042 case elfcpp::DW_FORM_ref_sig8:
1043 *shndx = attr_val->aux.shndx;
1044 return attr_val->val.uintval;
1045 case elfcpp::DW_FORM_data4:
1046 case elfcpp::DW_FORM_data8:
1047 *shndx = attr_val->aux.shndx;
1048 return attr_val->val.intval;
1049 default:
1050 return -1;
1051 }
1052}
1053
1054// Return the offset of this DIE's first child.
1055
1056off_t
1057Dwarf_die::child_offset()
1058{
1059 gold_assert(this->abbrev_code_ != NULL);
1060 if (!this->has_children())
1061 return 0;
1062 if (this->child_offset_ == 0)
1063 this->child_offset_ = this->skip_attributes();
1064 return this->child_offset_;
1065}
1066
1067// Return the offset of this DIE's next sibling.
1068
1069off_t
1070Dwarf_die::sibling_offset()
1071{
1072 gold_assert(this->abbrev_code_ != NULL);
1073
1074 if (this->sibling_offset_ != 0)
1075 return this->sibling_offset_;
1076
1077 if (!this->has_children())
1078 {
1079 this->sibling_offset_ = this->skip_attributes();
1080 return this->sibling_offset_;
1081 }
1082
1083 if (this->has_sibling_attribute())
1084 {
1085 if (!this->read_attributes())
1086 return 0;
1087 if (this->sibling_offset_ != 0)
1088 return this->sibling_offset_;
1089 }
1090
1091 // Skip over the children.
1092 off_t child_offset = this->child_offset();
1093 while (child_offset > 0)
1094 {
1095 Dwarf_die die(this->dwinfo_, child_offset, this);
1096 // The Dwarf_die ctor will set this DIE's sibling offset
1097 // when it reads a zero abbrev code.
1098 if (die.tag() == 0)
1099 break;
1100 child_offset = die.sibling_offset();
1101 }
1102
1103 // This should be set by now. If not, there was a problem reading
1104 // the DWARF info, and we return 0.
1105 return this->sibling_offset_;
1106}
1107
1108// class Dwarf_info_reader
1109
1110// Check that the pointer P is within the current compilation unit.
1111
1112inline bool
1113Dwarf_info_reader::check_buffer(const unsigned char* p) const
1114{
1115 if (p > this->buffer_ + this->cu_offset_ + this->cu_length_)
1116 {
1117 gold_warning(_("%s: corrupt debug info in %s"),
1118 this->object_->name().c_str(),
1119 this->object_->section_name(this->shndx_).c_str());
1120 return false;
1121 }
1122 return true;
1123}
1124
1125// Begin parsing the debug info. This calls visit_compilation_unit()
1126// or visit_type_unit() for each compilation or type unit found in the
1127// section, and visit_die() for each top-level DIE.
1128
1129void
1130Dwarf_info_reader::parse()
1131{
1132 switch (parameters->size_and_endianness())
1133 {
1134#ifdef HAVE_TARGET_32_LITTLE
1135 case Parameters::TARGET_32_LITTLE:
1136 this->do_parse<false>();
1137 break;
1138#endif
1139#ifdef HAVE_TARGET_32_BIG
1140 case Parameters::TARGET_32_BIG:
1141 this->do_parse<true>();
1142 break;
1143#endif
1144#ifdef HAVE_TARGET_64_LITTLE
1145 case Parameters::TARGET_64_LITTLE:
1146 this->do_parse<false>();
1147 break;
1148#endif
1149#ifdef HAVE_TARGET_64_BIG
1150 case Parameters::TARGET_64_BIG:
1151 this->do_parse<true>();
1152 break;
1153#endif
1154 default:
1155 gold_unreachable();
1156 }
1157}
1158
1159template<bool big_endian>
1160void
1161Dwarf_info_reader::do_parse()
1162{
1163 // Get the section contents and decompress if necessary.
1164 section_size_type buffer_size;
1165 bool buffer_is_new;
1166 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1167 &buffer_size,
1168 &buffer_is_new);
1169 if (this->buffer_ == NULL || buffer_size == 0)
1170 return;
1171 this->buffer_end_ = this->buffer_ + buffer_size;
1172
1173 // The offset of this input section in the output section.
1174 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1175
1176 // Start tracking relocations for this section.
1177 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1178 this->symtab_size_);
1179 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1180
1181 // Loop over compilation units (or type units).
1182 unsigned int abbrev_shndx = 0;
1183 off_t abbrev_offset = 0;
1184 const unsigned char* pinfo = this->buffer_;
1185 while (pinfo < this->buffer_end_)
1186 {
1187 // Read the compilation (or type) unit header.
1188 const unsigned char* cu_start = pinfo;
1189 this->cu_offset_ = cu_start - this->buffer_;
1190 this->cu_length_ = this->buffer_end_ - cu_start;
1191
1192 // Read unit_length (4 or 12 bytes).
1193 if (!this->check_buffer(pinfo + 4))
1194 break;
1195 uint32_t unit_length =
1196 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1197 pinfo += 4;
1198 if (unit_length == 0xffffffff)
1199 {
1200 if (!this->check_buffer(pinfo + 8))
1201 break;
1202 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1203 pinfo += 8;
1204 this->offset_size_ = 8;
1205 }
1206 else
1207 this->offset_size_ = 4;
1208 if (!this->check_buffer(pinfo + unit_length))
1209 break;
1210 const unsigned char* cu_end = pinfo + unit_length;
1211 this->cu_length_ = cu_end - cu_start;
1212 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1213 break;
1214
1215 // Read version (2 bytes).
1216 this->cu_version_ =
1217 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1218 pinfo += 2;
1219
1220 // Read debug_abbrev_offset (4 or 8 bytes).
1221 if (this->offset_size_ == 4)
1222 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1223 else
1224 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1225 if (this->reloc_shndx_ > 0)
1226 {
1227 off_t reloc_offset = pinfo - this->buffer_;
1228 off_t value;
1229 abbrev_shndx =
1230 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1231 if (abbrev_shndx == 0)
1232 return;
1233 if (this->reloc_type_ == elfcpp::SHT_REL)
1234 abbrev_offset += value;
1235 else
1236 abbrev_offset = value;
1237 }
1238 pinfo += this->offset_size_;
1239
1240 // Read address_size (1 byte).
1241 this->address_size_ = *pinfo++;
1242
1243 // For type units, read the two extra fields.
1244 uint64_t signature = 0;
1245 off_t type_offset = 0;
1246 if (this->is_type_unit_)
1247 {
1248 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1249 break;
1250
1251 // Read type_signature (8 bytes).
1252 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1253 pinfo += 8;
1254
1255 // Read type_offset (4 or 8 bytes).
1256 if (this->offset_size_ == 4)
1257 type_offset =
1258 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1259 else
1260 type_offset =
1261 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1262 pinfo += this->offset_size_;
1263 }
1264
1265 // Read the .debug_abbrev table.
1266 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1267 abbrev_offset);
1268
1269 // Visit the root DIE.
1270 Dwarf_die root_die(this,
1271 pinfo - (this->buffer_ + this->cu_offset_),
1272 NULL);
1273 if (root_die.tag() != 0)
1274 {
1275 // Visit the CU or TU.
1276 if (this->is_type_unit_)
1277 this->visit_type_unit(section_offset + this->cu_offset_,
1278 type_offset, signature, &root_die);
1279 else
1280 this->visit_compilation_unit(section_offset + this->cu_offset_,
1281 cu_end - cu_start, &root_die);
1282 }
1283
1284 // Advance to the next CU.
1285 pinfo = cu_end;
1286 }
1287
1288 if (buffer_is_new)
1289 {
1290 delete[] this->buffer_;
1291 this->buffer_ = NULL;
1292 }
1293}
1294
1295// Read the DWARF string table.
1296
1297bool
1298Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1299{
1300 Relobj* object = this->object_;
1301
1302 // If we don't have relocations, string_shndx will be 0, and
1303 // we'll have to hunt for the .debug_str section.
1304 if (string_shndx == 0)
1305 {
1306 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1307 {
1308 std::string name = object->section_name(i);
1309 if (name == ".debug_str")
1310 {
1311 string_shndx = i;
1312 this->string_output_section_offset_ =
1313 object->output_section_offset(i);
1314 break;
1315 }
1316 }
1317 if (string_shndx == 0)
1318 return false;
1319 }
1320
1321 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1322 {
1323 delete[] this->string_buffer_;
1324 this->owns_string_buffer_ = false;
1325 }
1326
1327 // Get the secton contents and decompress if necessary.
1328 section_size_type buffer_size;
1329 const unsigned char* buffer =
1330 object->decompressed_section_contents(string_shndx,
1331 &buffer_size,
1332 &this->owns_string_buffer_);
1333 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1334 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1335 this->string_shndx_ = string_shndx;
1336 return true;
1337}
1338
1339// Look for a relocation at offset ATTR_OFF in the dwarf info,
1340// and return the section index and offset of the target.
1341
1342unsigned int
1343Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1344{
1345 off_t value;
1346 attr_off += this->cu_offset_;
1347 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1348 if (shndx == 0)
1349 return 0;
1350 if (this->reloc_type_ == elfcpp::SHT_REL)
1351 *target_off += value;
1352 else
1353 *target_off = value;
1354 return shndx;
1355}
1356
1357// Return a string from the DWARF string table.
1358
1359const char*
1360Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1361{
1362 if (!this->read_string_table(string_shndx))
1363 return NULL;
1364
1365 // Correct the offset. For incremental update links, we have a
1366 // relocated offset that is relative to the output section, but
1367 // here we need an offset relative to the input section.
1368 str_off -= this->string_output_section_offset_;
1369
1370 const char* p = this->string_buffer_ + str_off;
1371
1372 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1373 return NULL;
1374
1375 return p;
1376}
1377
1378// The following are default, do-nothing, implementations of the
1379// hook methods normally provided by a derived class. We provide
1380// default implementations rather than no implementation so that
1381// a derived class needs to implement only the hooks that it needs
1382// to use.
1383
1384// Process a compilation unit and parse its child DIE.
1385
1386void
1387Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1388{
1389}
1390
1391// Process a type unit and parse its child DIE.
1392
1393void
1394Dwarf_info_reader::visit_type_unit(off_t, off_t, uint64_t, Dwarf_die*)
1395{
1396}
1397
1398// class Sized_dwarf_line_info
1399
5c2c6c95
ILT
1400struct LineStateMachine
1401{
1402 int file_num;
1403 uint64_t address;
1404 int line_num;
1405 int column_num;
1406 unsigned int shndx; // the section address refers to
1407 bool is_stmt; // stmt means statement.
1408 bool basic_block;
1409 bool end_sequence;
1410};
1411
1412static void
1413ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1414{
1415 lsm->file_num = 1;
1416 lsm->address = 0;
1417 lsm->line_num = 1;
1418 lsm->column_num = 0;
338f2eba 1419 lsm->shndx = -1U;
5c2c6c95
ILT
1420 lsm->is_stmt = default_is_stmt;
1421 lsm->basic_block = false;
1422 lsm->end_sequence = false;
1423}
1424
24badc65 1425template<int size, bool big_endian>
5dd8762a
CC
1426Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1427 Object* object,
1428 unsigned int read_shndx)
1429 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
c1027032
CC
1430 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1431 current_header_index_(-1)
24badc65
ILT
1432{
1433 unsigned int debug_shndx;
5dd8762a 1434
ab8056e0
CC
1435 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1436 {
1437 // FIXME: do this more efficiently: section_name() isn't super-fast
1438 std::string name = object->section_name(debug_shndx);
1439 if (name == ".debug_line" || name == ".zdebug_line")
1440 {
1441 section_size_type buffer_size;
5dd8762a
CC
1442 bool is_new = false;
1443 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1444 &buffer_size,
1445 &is_new);
1446 if (is_new)
1447 this->buffer_start_ = this->buffer_;
ab8056e0
CC
1448 this->buffer_end_ = this->buffer_ + buffer_size;
1449 break;
1450 }
1451 }
24badc65 1452 if (this->buffer_ == NULL)
c261a0be 1453 return;
24badc65
ILT
1454
1455 // Find the relocation section for ".debug_line".
af674d1d 1456 // We expect these for relobjs (.o's) but not dynobjs (.so's).
c1027032
CC
1457 unsigned int reloc_shndx = 0;
1458 for (unsigned int i = 0; i < object->shnum(); ++i)
24badc65 1459 {
c1027032 1460 unsigned int reloc_sh_type = object->section_type(i);
24badc65
ILT
1461 if ((reloc_sh_type == elfcpp::SHT_REL
1462 || reloc_sh_type == elfcpp::SHT_RELA)
c1027032 1463 && object->section_info(i) == debug_shndx)
24badc65 1464 {
c1027032 1465 reloc_shndx = i;
4dbfafcc 1466 this->track_relocs_type_ = reloc_sh_type;
24badc65
ILT
1467 break;
1468 }
1469 }
24badc65
ILT
1470
1471 // Finally, we need the symtab section to interpret the relocs.
c1027032 1472 if (reloc_shndx != 0)
af674d1d
ILT
1473 {
1474 unsigned int symtab_shndx;
1475 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1476 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1477 {
c1027032
CC
1478 this->symtab_buffer_ = object->section_contents(
1479 symtab_shndx, &this->symtab_buffer_size_, false);
af674d1d
ILT
1480 break;
1481 }
1482 if (this->symtab_buffer_ == NULL)
1483 return;
1484 }
24badc65 1485
c1027032
CC
1486 this->reloc_mapper_ =
1487 new Sized_elf_reloc_mapper<size, big_endian>(object,
1488 this->symtab_buffer_,
1489 this->symtab_buffer_size_);
1490 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1491 return;
1492
24badc65
ILT
1493 // Now that we have successfully read all the data, parse the debug
1494 // info.
c261a0be 1495 this->data_valid_ = true;
c1027032 1496 this->read_line_mappings(read_shndx);
24badc65
ILT
1497}
1498
5c2c6c95
ILT
1499// Read the DWARF header.
1500
1501template<int size, bool big_endian>
1502const unsigned char*
a55ce7fe 1503Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
e43872e9 1504 const unsigned char* lineptr)
5c2c6c95 1505{
deae2a14 1506 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
5c2c6c95
ILT
1507 lineptr += 4;
1508
1509 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1510 // size is 8 and we need to read the next 8 bytes for the real length.
1511 if (initial_length == 0xffffffff)
1512 {
1513 header_.offset_size = 8;
deae2a14 1514 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
5c2c6c95
ILT
1515 lineptr += 8;
1516 }
1517 else
1518 header_.offset_size = 4;
1519
1520 header_.total_length = initial_length;
1521
1522 gold_assert(lineptr + header_.total_length <= buffer_end_);
1523
deae2a14 1524 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
5c2c6c95
ILT
1525 lineptr += 2;
1526
1527 if (header_.offset_size == 4)
deae2a14 1528 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
5c2c6c95 1529 else
deae2a14 1530 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
5c2c6c95
ILT
1531 lineptr += header_.offset_size;
1532
1533 header_.min_insn_length = *lineptr;
1534 lineptr += 1;
1535
1536 header_.default_is_stmt = *lineptr;
1537 lineptr += 1;
1538
1539 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1540 lineptr += 1;
1541
1542 header_.line_range = *lineptr;
1543 lineptr += 1;
1544
1545 header_.opcode_base = *lineptr;
1546 lineptr += 1;
1547
a869183f 1548 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
5c2c6c95
ILT
1549 header_.std_opcode_lengths[0] = 0;
1550 for (int i = 1; i < header_.opcode_base; i++)
1551 {
1552 header_.std_opcode_lengths[i] = *lineptr;
1553 lineptr += 1;
1554 }
1555
1556 return lineptr;
1557}
1558
1559// The header for a debug_line section is mildly complicated, because
1560// the line info is very tightly encoded.
1561
e43872e9 1562template<int size, bool big_endian>
5c2c6c95 1563const unsigned char*
a55ce7fe 1564Sized_dwarf_line_info<size, big_endian>::read_header_tables(
e43872e9 1565 const unsigned char* lineptr)
5c2c6c95 1566{
af674d1d
ILT
1567 ++this->current_header_index_;
1568
1569 // Create a new directories_ entry and a new files_ entry for our new
1570 // header. We initialize each with a single empty element, because
1571 // dwarf indexes directory and filenames starting at 1.
1572 gold_assert(static_cast<int>(this->directories_.size())
1573 == this->current_header_index_);
1574 gold_assert(static_cast<int>(this->files_.size())
1575 == this->current_header_index_);
1576 this->directories_.push_back(std::vector<std::string>(1));
1577 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1578
5c2c6c95
ILT
1579 // It is legal for the directory entry table to be empty.
1580 if (*lineptr)
1581 {
1582 int dirindex = 1;
1583 while (*lineptr)
1584 {
af674d1d
ILT
1585 const char* dirname = reinterpret_cast<const char*>(lineptr);
1586 gold_assert(dirindex
1587 == static_cast<int>(this->directories_.back().size()));
1588 this->directories_.back().push_back(dirname);
1589 lineptr += this->directories_.back().back().size() + 1;
5c2c6c95
ILT
1590 dirindex++;
1591 }
1592 }
1593 lineptr++;
1594
1595 // It is also legal for the file entry table to be empty.
1596 if (*lineptr)
1597 {
1598 int fileindex = 1;
1599 size_t len;
1600 while (*lineptr)
1601 {
1602 const char* filename = reinterpret_cast<const char*>(lineptr);
1603 lineptr += strlen(filename) + 1;
1604
1605 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
5c2c6c95
ILT
1606 lineptr += len;
1607
af674d1d
ILT
1608 if (dirindex >= this->directories_.back().size())
1609 dirindex = 0;
1610 int dirindexi = static_cast<int>(dirindex);
1611
5c2c6c95
ILT
1612 read_unsigned_LEB_128(lineptr, &len); // mod_time
1613 lineptr += len;
1614
1615 read_unsigned_LEB_128(lineptr, &len); // filelength
1616 lineptr += len;
1617
af674d1d
ILT
1618 gold_assert(fileindex
1619 == static_cast<int>(this->files_.back().size()));
1620 this->files_.back().push_back(std::make_pair(dirindexi, filename));
5c2c6c95
ILT
1621 fileindex++;
1622 }
1623 }
1624 lineptr++;
1625
1626 return lineptr;
1627}
1628
1629// Process a single opcode in the .debug.line structure.
1630
e43872e9 1631template<int size, bool big_endian>
5c2c6c95 1632bool
a55ce7fe 1633Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
e43872e9 1634 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
5c2c6c95
ILT
1635{
1636 size_t oplen = 0;
1637 size_t templen;
1638 unsigned char opcode = *start;
1639 oplen++;
1640 start++;
1641
1642 // If the opcode is great than the opcode_base, it is a special
1643 // opcode. Most line programs consist mainly of special opcodes.
1644 if (opcode >= header_.opcode_base)
1645 {
1646 opcode -= header_.opcode_base;
1647 const int advance_address = ((opcode / header_.line_range)
1648 * header_.min_insn_length);
1649 lsm->address += advance_address;
1650
1651 const int advance_line = ((opcode % header_.line_range)
1652 + header_.line_base);
1653 lsm->line_num += advance_line;
1654 lsm->basic_block = true;
1655 *len = oplen;
1656 return true;
1657 }
1658
1659 // Otherwise, we have the regular opcodes
1660 switch (opcode)
1661 {
1662 case elfcpp::DW_LNS_copy:
1663 lsm->basic_block = false;
1664 *len = oplen;
1665 return true;
1666
1667 case elfcpp::DW_LNS_advance_pc:
1668 {
1669 const uint64_t advance_address
2ea97941 1670 = read_unsigned_LEB_128(start, &templen);
5c2c6c95
ILT
1671 oplen += templen;
1672 lsm->address += header_.min_insn_length * advance_address;
1673 }
1674 break;
1675
1676 case elfcpp::DW_LNS_advance_line:
1677 {
1678 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1679 oplen += templen;
1680 lsm->line_num += advance_line;
1681 }
1682 break;
1683
1684 case elfcpp::DW_LNS_set_file:
1685 {
1686 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1687 oplen += templen;
1688 lsm->file_num = fileno;
1689 }
1690 break;
1691
1692 case elfcpp::DW_LNS_set_column:
1693 {
1694 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1695 oplen += templen;
1696 lsm->column_num = colno;
1697 }
1698 break;
1699
1700 case elfcpp::DW_LNS_negate_stmt:
1701 lsm->is_stmt = !lsm->is_stmt;
1702 break;
1703
1704 case elfcpp::DW_LNS_set_basic_block:
1705 lsm->basic_block = true;
1706 break;
1707
1708 case elfcpp::DW_LNS_fixed_advance_pc:
1709 {
1710 int advance_address;
deae2a14 1711 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
5c2c6c95
ILT
1712 oplen += 2;
1713 lsm->address += advance_address;
1714 }
1715 break;
1716
1717 case elfcpp::DW_LNS_const_add_pc:
1718 {
1719 const int advance_address = (header_.min_insn_length
1720 * ((255 - header_.opcode_base)
1721 / header_.line_range));
1722 lsm->address += advance_address;
1723 }
1724 break;
1725
1726 case elfcpp::DW_LNS_extended_op:
1727 {
1728 const uint64_t extended_op_len
2ea97941 1729 = read_unsigned_LEB_128(start, &templen);
5c2c6c95
ILT
1730 start += templen;
1731 oplen += templen + extended_op_len;
1732
1733 const unsigned char extended_op = *start;
1734 start++;
1735
1736 switch (extended_op)
1737 {
1738 case elfcpp::DW_LNE_end_sequence:
124dfc89
ILT
1739 // This means that the current byte is the one immediately
1740 // after a set of instructions. Record the current line
1741 // for up to one less than the current address.
79e052ea 1742 lsm->line_num = -1;
5c2c6c95
ILT
1743 lsm->end_sequence = true;
1744 *len = oplen;
1745 return true;
1746
1747 case elfcpp::DW_LNE_set_address:
4c50553d 1748 {
4dbfafcc
ILT
1749 lsm->address =
1750 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
4c50553d 1751 typename Reloc_map::const_iterator it
4dbfafcc 1752 = this->reloc_map_.find(start - this->buffer_);
4c50553d
ILT
1753 if (it != reloc_map_.end())
1754 {
4dbfafcc
ILT
1755 // If this is a SHT_RELA section, then ignore the
1756 // section contents. This assumes that this is a
1757 // straight reloc which just uses the reloc addend.
1758 // The reloc addend has already been included in the
1759 // symbol value.
1760 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1761 lsm->address = 0;
1762 // Add in the symbol value.
1763 lsm->address += it->second.second;
4c50553d
ILT
1764 lsm->shndx = it->second.first;
1765 }
1766 else
1767 {
af674d1d
ILT
1768 // If we're a normal .o file, with relocs, every
1769 // set_address should have an associated relocation.
1770 if (this->input_is_relobj())
1771 this->data_valid_ = false;
4c50553d
ILT
1772 }
1773 break;
24badc65 1774 }
5c2c6c95
ILT
1775 case elfcpp::DW_LNE_define_file:
1776 {
1777 const char* filename = reinterpret_cast<const char*>(start);
1778 templen = strlen(filename) + 1;
1779 start += templen;
1780
1781 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
5c2c6c95 1782
af674d1d
ILT
1783 if (dirindex >= this->directories_.back().size())
1784 dirindex = 0;
1785 int dirindexi = static_cast<int>(dirindex);
1786
e8dd54e1
CC
1787 // This opcode takes two additional ULEB128 parameters
1788 // (mod_time and filelength), but we don't use those
1789 // values. Because OPLEN already tells us how far to
1790 // skip to the next opcode, we don't need to read
1791 // them at all.
5c2c6c95 1792
af674d1d 1793 this->files_.back().push_back(std::make_pair(dirindexi,
5c2c6c95
ILT
1794 filename));
1795 }
1796 break;
1797 }
1798 }
1799 break;
1800
1801 default:
1802 {
2ea97941 1803 // Ignore unknown opcode silently
5c2c6c95
ILT
1804 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1805 {
2ea97941 1806 size_t templen;
5c2c6c95
ILT
1807 read_unsigned_LEB_128(start, &templen);
1808 start += templen;
1809 oplen += templen;
1810 }
1811 }
1812 break;
2ea97941 1813 }
5c2c6c95
ILT
1814 *len = oplen;
1815 return false;
1816}
1817
1818// Read the debug information at LINEPTR and store it in the line
1819// number map.
1820
e43872e9 1821template<int size, bool big_endian>
5c2c6c95 1822unsigned const char*
9430daf8 1823Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
75aea3d0 1824 unsigned int shndx)
5c2c6c95
ILT
1825{
1826 struct LineStateMachine lsm;
1827
1828 // LENGTHSTART is the place the length field is based on. It is the
1829 // point in the header after the initial length field.
1830 const unsigned char* lengthstart = buffer_;
1831
1832 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1833 // 0xffffffff at the start.
1834 if (header_.offset_size == 8)
1835 lengthstart += 12;
1836 else
1837 lengthstart += 4;
1838
1839 while (lineptr < lengthstart + header_.total_length)
1840 {
1841 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1842 while (!lsm.end_sequence)
1843 {
1844 size_t oplength;
e43872e9 1845 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
9430daf8
ILT
1846 if (add_line
1847 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
5c2c6c95
ILT
1848 {
1849 Offset_to_lineno_entry entry
76677ad0
CC
1850 = { static_cast<off_t>(lsm.address),
1851 this->current_header_index_,
1852 static_cast<unsigned int>(lsm.file_num),
1853 true, lsm.line_num };
7500420b
ILT
1854 std::vector<Offset_to_lineno_entry>&
1855 map(this->line_number_map_[lsm.shndx]);
1856 // If we see two consecutive entries with the same
71ff8986
ILT
1857 // offset and a real line number, then mark the first
1858 // one as non-canonical.
7500420b
ILT
1859 if (!map.empty()
1860 && (map.back().offset == static_cast<off_t>(lsm.address))
1861 && lsm.line_num != -1
1862 && map.back().line_num != -1)
71ff8986
ILT
1863 map.back().last_line_for_offset = false;
1864 map.push_back(entry);
5c2c6c95
ILT
1865 }
1866 lineptr += oplength;
1867 }
1868 }
1869
1870 return lengthstart + header_.total_length;
1871}
1872
4c50553d
ILT
1873// Read the relocations into a Reloc_map.
1874
1875template<int size, bool big_endian>
1876void
c1027032 1877Sized_dwarf_line_info<size, big_endian>::read_relocs()
4c50553d
ILT
1878{
1879 if (this->symtab_buffer_ == NULL)
1880 return;
1881
c1027032 1882 off_t value;
4c50553d 1883 off_t reloc_offset;
c1027032 1884 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
4c50553d 1885 {
c1027032
CC
1886 const unsigned int shndx =
1887 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
d491d34e
ILT
1888
1889 // There is no reason to record non-ordinary section indexes, or
1890 // SHN_UNDEF, because they will never match the real section.
c1027032
CC
1891 if (shndx != 0)
1892 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
d491d34e 1893
c1027032 1894 this->reloc_mapper_->advance(reloc_offset + 1);
4c50553d
ILT
1895 }
1896}
1897
1898// Read the line number info.
1899
e43872e9 1900template<int size, bool big_endian>
5c2c6c95 1901void
c1027032 1902Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
5c2c6c95 1903{
c261a0be 1904 gold_assert(this->data_valid_ == true);
24badc65 1905
c1027032 1906 this->read_relocs();
4c50553d 1907 while (this->buffer_ < this->buffer_end_)
e43872e9 1908 {
4c50553d 1909 const unsigned char* lineptr = this->buffer_;
e43872e9
ILT
1910 lineptr = this->read_header_prolog(lineptr);
1911 lineptr = this->read_header_tables(lineptr);
9430daf8 1912 lineptr = this->read_lines(lineptr, shndx);
4c50553d 1913 this->buffer_ = lineptr;
e43872e9
ILT
1914 }
1915
1916 // Sort the lines numbers, so addr2line can use binary search.
1917 for (typename Lineno_map::iterator it = line_number_map_.begin();
5c2c6c95
ILT
1918 it != line_number_map_.end();
1919 ++it)
1920 // Each vector needs to be sorted by offset.
4c50553d 1921 std::sort(it->second.begin(), it->second.end());
5c2c6c95
ILT
1922}
1923
af674d1d
ILT
1924// Some processing depends on whether the input is a .o file or not.
1925// For instance, .o files have relocs, and have .debug_lines
1926// information on a per section basis. .so files, on the other hand,
1927// lack relocs, and offsets are unique, so we can ignore the section
1928// information.
1929
1930template<int size, bool big_endian>
1931bool
a55ce7fe 1932Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
af674d1d
ILT
1933{
1934 // Only .o files have relocs and the symtab buffer that goes with them.
1935 return this->symtab_buffer_ != NULL;
1936}
1937
79e052ea
ILT
1938// Given an Offset_to_lineno_entry vector, and an offset, figure out
1939// if the offset points into a function according to the vector (see
1940// comments below for the algorithm). If it does, return an iterator
1941// into the vector that points to the line-number that contains that
1942// offset. If not, it returns vector::end().
1943
1944static std::vector<Offset_to_lineno_entry>::const_iterator
1945offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
1946 off_t offset)
1947{
71ff8986 1948 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
79e052ea
ILT
1949
1950 // lower_bound() returns the smallest offset which is >= lookup_key.
1951 // If no offset in offsets is >= lookup_key, returns end().
1952 std::vector<Offset_to_lineno_entry>::const_iterator it
1953 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
1954
1955 // This code is easiest to understand with a concrete example.
1956 // Here's a possible offsets array:
71ff8986
ILT
1957 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
1958 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
1959 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
1960 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
1961 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
1962 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
1963 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
1964 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
1965 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
1966 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
1967 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
1968 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
1969 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
1970 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
1971 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
1972 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
1973 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
1974 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
1975 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
1976 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
1977 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
79e052ea
ILT
1978 // The entries with line_num == -1 mark the end of a function: the
1979 // associated offset is one past the last instruction in the
1980 // function. This can correspond to the beginning of the next
1981 // function (as is true for offset 3232); alternately, there can be
1982 // a gap between the end of one function and the start of the next
ef04e392 1983 // (as is true for some others, most obviously from 3236->5764).
79e052ea
ILT
1984 //
1985 // Case 1: lookup_key has offset == 10. lower_bound returns
1986 // offsets[0]. Since it's not an exact match and we're
ef04e392 1987 // at the beginning of offsets, we return end() (invalid).
79e052ea 1988 // Case 2: lookup_key has offset 10000. lower_bound returns
71ff8986 1989 // offset[21] (end()). We return end() (invalid).
79e052ea
ILT
1990 // Case 3: lookup_key has offset == 3211. lower_bound matches
1991 // offsets[0] exactly, and that's the entry we return.
1992 // Case 4: lookup_key has offset == 3232. lower_bound returns
1993 // offsets[4]. That's an exact match, but indicates
1994 // end-of-function. We check if offsets[5] is also an
1995 // exact match but not end-of-function. It is, so we
1996 // return offsets[5].
1997 // Case 5: lookup_key has offset == 3214. lower_bound returns
1998 // offsets[1]. Since it's not an exact match, we back
1999 // up to the offset that's < lookup_key, offsets[0].
2000 // We note offsets[0] is a valid entry (not end-of-function),
2001 // so that's the entry we return.
2002 // Case 6: lookup_key has offset == 4000. lower_bound returns
2003 // offsets[8]. Since it's not an exact match, we back
2004 // up to offsets[7]. Since offsets[7] indicates
2005 // end-of-function, we know lookup_key is between
ef04e392 2006 // functions, so we return end() (not a valid offset).
79e052ea 2007 // Case 7: lookup_key has offset == 5794. lower_bound returns
71ff8986
ILT
2008 // offsets[19]. Since it's not an exact match, we back
2009 // up to offsets[16]. Note we back up to the *first*
2010 // entry with offset 5793, not just offsets[19-1].
2011 // We note offsets[16] is a valid entry, so we return it.
2012 // If offsets[16] had had line_num == -1, we would have
2013 // checked offsets[17]. The reason for this is that
2014 // 16 and 17 can be in an arbitrary order, since we sort
2015 // only by offset and last_line_for_offset. (Note it
2016 // doesn't help to use line_number as a tertiary sort key,
2017 // since sometimes we want the -1 to be first and sometimes
2018 // we want it to be last.)
79e052ea
ILT
2019
2020 // This deals with cases (1) and (2).
2021 if ((it == offsets->begin() && offset < it->offset)
2022 || it == offsets->end())
2023 return offsets->end();
2024
2025 // This deals with cases (3) and (4).
2026 if (offset == it->offset)
2027 {
2028 while (it != offsets->end()
2029 && it->offset == offset
2030 && it->line_num == -1)
2031 ++it;
2032 if (it == offsets->end() || it->offset != offset)
2033 return offsets->end();
2034 else
2035 return it;
2036 }
2037
2038 // This handles the first part of case (7) -- we back up to the
2039 // *first* entry that has the offset that's behind us.
2040 gold_assert(it != offsets->begin());
2041 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2042 --it;
2043 const off_t range_value = it->offset;
2044 while (it != offsets->begin() && (it-1)->offset == range_value)
2045 --it;
2046
2047 // This handles cases (5), (6), and (7): if any entry in the
2048 // equal_range [it, range_end) has a line_num != -1, it's a valid
71ff8986
ILT
2049 // match. If not, we're not in a function. The line number we saw
2050 // last for an offset will be sorted first, so it'll get returned if
2051 // it's present.
79e052ea
ILT
2052 for (; it != range_end; ++it)
2053 if (it->line_num != -1)
2054 return it;
2055 return offsets->end();
2056}
af674d1d 2057
71ff8986
ILT
2058// Returns the canonical filename:lineno for the address passed in.
2059// If other_lines is not NULL, appends the non-canonical lines
2060// assigned to the same address.
5c2c6c95 2061
e43872e9 2062template<int size, bool big_endian>
5c2c6c95 2063std::string
71ff8986
ILT
2064Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2065 unsigned int shndx,
2066 off_t offset,
2067 std::vector<std::string>* other_lines)
5c2c6c95 2068{
4c50553d
ILT
2069 if (this->data_valid_ == false)
2070 return "";
2071
af674d1d
ILT
2072 const std::vector<Offset_to_lineno_entry>* offsets;
2073 // If we do not have reloc information, then our input is a .so or
2074 // some similar data structure where all the information is held in
2075 // the offset. In that case, we ignore the input shndx.
2076 if (this->input_is_relobj())
2077 offsets = &this->line_number_map_[shndx];
2078 else
2079 offsets = &this->line_number_map_[-1U];
2080 if (offsets->empty())
4c50553d
ILT
2081 return "";
2082
e43872e9 2083 typename std::vector<Offset_to_lineno_entry>::const_iterator it
79e052ea
ILT
2084 = offset_to_iterator(offsets, offset);
2085 if (it == offsets->end())
2086 return "";
5c2c6c95 2087
71ff8986
ILT
2088 std::string result = this->format_file_lineno(*it);
2089 if (other_lines != NULL)
2090 for (++it; it != offsets->end() && it->offset == offset; ++it)
2091 {
2092 if (it->line_num == -1)
2093 continue; // The end of a previous function.
2094 other_lines->push_back(this->format_file_lineno(*it));
2095 }
2096 return result;
2097}
2098
2099// Convert the file_num + line_num into a string.
2100
2101template<int size, bool big_endian>
2102std::string
2103Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2104 const Offset_to_lineno_entry& loc) const
2105{
5c2c6c95 2106 std::string ret;
af674d1d 2107
71ff8986
ILT
2108 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2109 gold_assert(loc.file_num
c1027032 2110 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
af674d1d 2111 const std::pair<int, std::string>& filename_pair
71ff8986 2112 = this->files_[loc.header_num][loc.file_num];
5c2c6c95 2113 const std::string& filename = filename_pair.second;
af674d1d 2114
71ff8986 2115 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
af674d1d 2116 gold_assert(filename_pair.first
71ff8986 2117 < static_cast<int>(this->directories_[loc.header_num].size()));
af674d1d 2118 const std::string& dirname
71ff8986 2119 = this->directories_[loc.header_num][filename_pair.first];
af674d1d 2120
5c2c6c95
ILT
2121 if (!dirname.empty())
2122 {
2123 ret += dirname;
2124 ret += "/";
2125 }
2126 ret += filename;
2127 if (ret.empty())
2128 ret = "(unknown)";
2129
2130 char buffer[64]; // enough to hold a line number
71ff8986 2131 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
5c2c6c95
ILT
2132 ret += ":";
2133 ret += buffer;
2134
2135 return ret;
2136}
2137
a55ce7fe
ILT
2138// Dwarf_line_info routines.
2139
e4e5049b
CS
2140static unsigned int next_generation_count = 0;
2141
2142struct Addr2line_cache_entry
2143{
2144 Object* object;
2145 unsigned int shndx;
2146 Dwarf_line_info* dwarf_line_info;
2147 unsigned int generation_count;
2148 unsigned int access_count;
2149
2150 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2151 : object(o), shndx(s), dwarf_line_info(d),
2152 generation_count(next_generation_count), access_count(0)
2153 {
2154 if (next_generation_count < (1U << 31))
2155 ++next_generation_count;
2156 }
2157};
2158// We expect this cache to be small, so don't bother with a hashtable
2159// or priority queue or anything: just use a simple vector.
2160static std::vector<Addr2line_cache_entry> addr2line_cache;
2161
a55ce7fe
ILT
2162std::string
2163Dwarf_line_info::one_addr2line(Object* object,
e4e5049b 2164 unsigned int shndx, off_t offset,
71ff8986
ILT
2165 size_t cache_size,
2166 std::vector<std::string>* other_lines)
a55ce7fe 2167{
e4e5049b
CS
2168 Dwarf_line_info* lineinfo = NULL;
2169 std::vector<Addr2line_cache_entry>::iterator it;
2170
2171 // First, check the cache. If we hit, update the counts.
2172 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
8851ecca 2173 {
e4e5049b
CS
2174 if (it->object == object && it->shndx == shndx)
2175 {
2176 lineinfo = it->dwarf_line_info;
2177 it->generation_count = next_generation_count;
2178 // We cap generation_count at 2^31 -1 to avoid overflow.
2179 if (next_generation_count < (1U << 31))
2180 ++next_generation_count;
2181 // We cap access_count at 31 so 2^access_count doesn't overflow
2182 if (it->access_count < 31)
2183 ++it->access_count;
2184 break;
2185 }
2186 }
2187
2188 // If we don't hit the cache, create a new object and insert into the
2189 // cache.
2190 if (lineinfo == NULL)
2191 {
2192 switch (parameters->size_and_endianness())
2193 {
a55ce7fe 2194#ifdef HAVE_TARGET_32_LITTLE
e4e5049b
CS
2195 case Parameters::TARGET_32_LITTLE:
2196 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
a55ce7fe 2197#endif
a55ce7fe 2198#ifdef HAVE_TARGET_32_BIG
e4e5049b
CS
2199 case Parameters::TARGET_32_BIG:
2200 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
a55ce7fe 2201#endif
a55ce7fe 2202#ifdef HAVE_TARGET_64_LITTLE
e4e5049b
CS
2203 case Parameters::TARGET_64_LITTLE:
2204 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
a55ce7fe 2205#endif
8851ecca 2206#ifdef HAVE_TARGET_64_BIG
e4e5049b
CS
2207 case Parameters::TARGET_64_BIG:
2208 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
a55ce7fe 2209#endif
e4e5049b
CS
2210 default:
2211 gold_unreachable();
2212 }
2213 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2214 }
2215
2216 // Now that we have our object, figure out the answer
71ff8986 2217 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
e4e5049b
CS
2218
2219 // Finally, if our cache has grown too big, delete old objects. We
2220 // assume the common (probably only) case is deleting only one object.
2221 // We use a pretty simple scheme to evict: function of LRU and MFU.
2222 while (addr2line_cache.size() > cache_size)
2223 {
2224 unsigned int lowest_score = ~0U;
2225 std::vector<Addr2line_cache_entry>::iterator lowest
2226 = addr2line_cache.end();
2227 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2228 {
2229 const unsigned int score = (it->generation_count
2230 + (1U << it->access_count));
2231 if (score < lowest_score)
2232 {
2233 lowest_score = score;
2234 lowest = it;
2235 }
2236 }
2237 if (lowest != addr2line_cache.end())
2238 {
2239 delete lowest->dwarf_line_info;
2240 addr2line_cache.erase(lowest);
2241 }
8851ecca 2242 }
e4e5049b
CS
2243
2244 return retval;
2245}
2246
2247void
2248Dwarf_line_info::clear_addr2line_cache()
2249{
2250 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2251 it != addr2line_cache.end();
2252 ++it)
2253 delete it->dwarf_line_info;
2254 addr2line_cache.clear();
a55ce7fe
ILT
2255}
2256
5c2c6c95
ILT
2257#ifdef HAVE_TARGET_32_LITTLE
2258template
a55ce7fe 2259class Sized_dwarf_line_info<32, false>;
5c2c6c95
ILT
2260#endif
2261
2262#ifdef HAVE_TARGET_32_BIG
2263template
a55ce7fe 2264class Sized_dwarf_line_info<32, true>;
5c2c6c95
ILT
2265#endif
2266
2267#ifdef HAVE_TARGET_64_LITTLE
2268template
a55ce7fe 2269class Sized_dwarf_line_info<64, false>;
5c2c6c95
ILT
2270#endif
2271
2272#ifdef HAVE_TARGET_64_BIG
2273template
a55ce7fe 2274class Sized_dwarf_line_info<64, true>;
5c2c6c95
ILT
2275#endif
2276
2277} // End namespace gold.
This page took 0.293673 seconds and 4 git commands to generate.