*** empty log message ***
[deliverable/binutils-gdb.git] / gold / dynobj.cc
CommitLineData
dbe717ef
ILT
1// dynobj.cc -- dynamic object support for gold
2
dde3f402 3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
dbe717ef
ILT
23#include "gold.h"
24
25#include <vector>
26#include <cstring>
27
a3ad94ed 28#include "elfcpp.h"
7e1edb90 29#include "parameters.h"
14144f39 30#include "script.h"
dbe717ef
ILT
31#include "symtab.h"
32#include "dynobj.h"
33
34namespace gold
35{
36
a3ad94ed
ILT
37// Class Dynobj.
38
a7a81c1d
ILT
39// Sets up the default soname_ to use, in the (rare) cases we never
40// see a DT_SONAME entry.
41
2ea97941
ILT
42Dynobj::Dynobj(const std::string& name, Input_file* input_file, off_t offset)
43 : Object(name, input_file, true, offset),
e2827e5f
ILT
44 needed_(),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET)
a7a81c1d
ILT
46{
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_ = this->input_file()->found_name();
53 if (this->offset() != 0)
54 {
55 std::string::size_type open_paren = this->name().find('(');
56 std::string::size_type close_paren = this->name().find(')');
57 if (open_paren != std::string::npos && close_paren != std::string::npos)
58 {
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_ = this->name().substr(open_paren + 1,
61 close_paren - (open_paren + 1));
62 }
63 }
64}
65
dbe717ef
ILT
66// Class Sized_dynobj.
67
68template<int size, bool big_endian>
69Sized_dynobj<size, big_endian>::Sized_dynobj(
2ea97941
ILT
70 const std::string& name,
71 Input_file* input_file,
72 off_t offset,
dbe717ef 73 const elfcpp::Ehdr<size, big_endian>& ehdr)
2ea97941 74 : Dynobj(name, input_file, offset),
d491d34e 75 elf_file_(this, ehdr),
92de84a6
ILT
76 dynsym_shndx_(-1U),
77 symbols_(NULL),
78 defined_count_(0)
dbe717ef
ILT
79{
80}
81
82// Set up the object.
83
84template<int size, bool big_endian>
85void
029ba973 86Sized_dynobj<size, big_endian>::setup()
dbe717ef 87{
2ea97941
ILT
88 const unsigned int shnum = this->elf_file_.shnum();
89 this->set_shnum(shnum);
dbe717ef
ILT
90}
91
92// Find the SHT_DYNSYM section and the various version sections, and
93// the dynamic section, given the section headers.
94
95template<int size, bool big_endian>
96void
97Sized_dynobj<size, big_endian>::find_dynsym_sections(
98 const unsigned char* pshdrs,
dbe717ef
ILT
99 unsigned int* pversym_shndx,
100 unsigned int* pverdef_shndx,
101 unsigned int* pverneed_shndx,
102 unsigned int* pdynamic_shndx)
103{
dbe717ef
ILT
104 *pversym_shndx = -1U;
105 *pverdef_shndx = -1U;
106 *pverneed_shndx = -1U;
107 *pdynamic_shndx = -1U;
108
abecea76 109 unsigned int symtab_shndx = 0;
d491d34e
ILT
110 unsigned int xindex_shndx = 0;
111 unsigned int xindex_link = 0;
2ea97941 112 const unsigned int shnum = this->shnum();
dbe717ef 113 const unsigned char* p = pshdrs;
2ea97941 114 for (unsigned int i = 0; i < shnum; ++i, p += This::shdr_size)
dbe717ef
ILT
115 {
116 typename This::Shdr shdr(p);
117
118 unsigned int* pi;
119 switch (shdr.get_sh_type())
120 {
121 case elfcpp::SHT_DYNSYM:
d491d34e
ILT
122 this->dynsym_shndx_ = i;
123 if (xindex_shndx > 0 && xindex_link == i)
124 {
125 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
126 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
127 pshdrs);
128 this->set_xindex(xindex);
129 }
130 pi = NULL;
dbe717ef 131 break;
abecea76
ILT
132 case elfcpp::SHT_SYMTAB:
133 symtab_shndx = i;
2703e3eb 134 pi = NULL;
abecea76 135 break;
dbe717ef
ILT
136 case elfcpp::SHT_GNU_versym:
137 pi = pversym_shndx;
138 break;
139 case elfcpp::SHT_GNU_verdef:
140 pi = pverdef_shndx;
141 break;
142 case elfcpp::SHT_GNU_verneed:
143 pi = pverneed_shndx;
144 break;
145 case elfcpp::SHT_DYNAMIC:
146 pi = pdynamic_shndx;
147 break;
d491d34e
ILT
148 case elfcpp::SHT_SYMTAB_SHNDX:
149 xindex_shndx = i;
150 xindex_link = this->adjust_shndx(shdr.get_sh_link());
151 if (xindex_link == this->dynsym_shndx_)
152 {
153 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
154 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
155 pshdrs);
156 this->set_xindex(xindex);
157 }
158 pi = NULL;
159 break;
dbe717ef
ILT
160 default:
161 pi = NULL;
162 break;
163 }
164
165 if (pi == NULL)
166 continue;
167
168 if (*pi != -1U)
75f2446e
ILT
169 this->error(_("unexpected duplicate type %u section: %u, %u"),
170 shdr.get_sh_type(), *pi, i);
dbe717ef
ILT
171
172 *pi = i;
173 }
abecea76
ILT
174
175 // If there is no dynamic symbol table, use the normal symbol table.
176 // On some SVR4 systems, a shared library is stored in an archive.
177 // The version stored in the archive only has a normal symbol table.
178 // It has an SONAME entry which points to another copy in the file
179 // system which has a dynamic symbol table as usual. This is way of
180 // addressing the issues which glibc addresses using GROUP with
181 // libc_nonshared.a.
182 if (this->dynsym_shndx_ == -1U && symtab_shndx != 0)
183 {
184 this->dynsym_shndx_ = symtab_shndx;
185 if (xindex_shndx > 0 && xindex_link == symtab_shndx)
186 {
187 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
188 xindex->read_symtab_xindex<size, big_endian>(this, xindex_shndx,
189 pshdrs);
190 this->set_xindex(xindex);
191 }
192 }
dbe717ef
ILT
193}
194
195// Read the contents of section SHNDX. PSHDRS points to the section
196// headers. TYPE is the expected section type. LINK is the expected
197// section link. Store the data in *VIEW and *VIEW_SIZE. The
198// section's sh_info field is stored in *VIEW_INFO.
199
200template<int size, bool big_endian>
201void
202Sized_dynobj<size, big_endian>::read_dynsym_section(
203 const unsigned char* pshdrs,
204 unsigned int shndx,
205 elfcpp::SHT type,
206 unsigned int link,
2ea97941 207 File_view** view,
8383303e 208 section_size_type* view_size,
dbe717ef
ILT
209 unsigned int* view_info)
210{
211 if (shndx == -1U)
212 {
2ea97941 213 *view = NULL;
dbe717ef
ILT
214 *view_size = 0;
215 *view_info = 0;
216 return;
217 }
218
219 typename This::Shdr shdr(pshdrs + shndx * This::shdr_size);
220
a3ad94ed 221 gold_assert(shdr.get_sh_type() == type);
dbe717ef 222
d491d34e 223 if (this->adjust_shndx(shdr.get_sh_link()) != link)
75f2446e 224 this->error(_("unexpected link in section %u header: %u != %u"),
d491d34e 225 shndx, this->adjust_shndx(shdr.get_sh_link()), link);
dbe717ef 226
2ea97941
ILT
227 *view = this->get_lasting_view(shdr.get_sh_offset(), shdr.get_sh_size(),
228 true, false);
8383303e 229 *view_size = convert_to_section_size_type(shdr.get_sh_size());
dbe717ef
ILT
230 *view_info = shdr.get_sh_info();
231}
232
e2827e5f
ILT
233// Read the dynamic tags. Set the soname field if this shared object
234// has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
235// the section headers. DYNAMIC_SHNDX is the section index of the
236// SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
237// section index and contents of a string table which may be the one
238// associated with the SHT_DYNAMIC section.
dbe717ef
ILT
239
240template<int size, bool big_endian>
241void
e2827e5f
ILT
242Sized_dynobj<size, big_endian>::read_dynamic(const unsigned char* pshdrs,
243 unsigned int dynamic_shndx,
244 unsigned int strtab_shndx,
245 const unsigned char* strtabu,
246 off_t strtab_size)
dbe717ef
ILT
247{
248 typename This::Shdr dynamicshdr(pshdrs + dynamic_shndx * This::shdr_size);
a3ad94ed 249 gold_assert(dynamicshdr.get_sh_type() == elfcpp::SHT_DYNAMIC);
dbe717ef
ILT
250
251 const off_t dynamic_size = dynamicshdr.get_sh_size();
252 const unsigned char* pdynamic = this->get_view(dynamicshdr.get_sh_offset(),
39d0cb0e 253 dynamic_size, true, false);
dbe717ef 254
d491d34e 255 const unsigned int link = this->adjust_shndx(dynamicshdr.get_sh_link());
dbe717ef
ILT
256 if (link != strtab_shndx)
257 {
258 if (link >= this->shnum())
259 {
75f2446e
ILT
260 this->error(_("DYNAMIC section %u link out of range: %u"),
261 dynamic_shndx, link);
262 return;
dbe717ef
ILT
263 }
264
265 typename This::Shdr strtabshdr(pshdrs + link * This::shdr_size);
266 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
267 {
75f2446e
ILT
268 this->error(_("DYNAMIC section %u link %u is not a strtab"),
269 dynamic_shndx, link);
270 return;
dbe717ef
ILT
271 }
272
273 strtab_size = strtabshdr.get_sh_size();
39d0cb0e
ILT
274 strtabu = this->get_view(strtabshdr.get_sh_offset(), strtab_size, false,
275 false);
dbe717ef
ILT
276 }
277
e2827e5f
ILT
278 const char* const strtab = reinterpret_cast<const char*>(strtabu);
279
dbe717ef
ILT
280 for (const unsigned char* p = pdynamic;
281 p < pdynamic + dynamic_size;
282 p += This::dyn_size)
283 {
284 typename This::Dyn dyn(p);
285
e2827e5f 286 switch (dyn.get_d_tag())
dbe717ef 287 {
e2827e5f
ILT
288 case elfcpp::DT_NULL:
289 // We should always see DT_NULL at the end of the dynamic
290 // tags.
291 return;
292
293 case elfcpp::DT_SONAME:
294 {
295 off_t val = dyn.get_d_val();
296 if (val >= strtab_size)
75f2446e 297 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
e2827e5f
ILT
298 static_cast<long long>(val),
299 static_cast<long long>(strtab_size));
300 else
301 this->set_soname_string(strtab + val);
302 }
303 break;
dbe717ef 304
e2827e5f
ILT
305 case elfcpp::DT_NEEDED:
306 {
307 off_t val = dyn.get_d_val();
308 if (val >= strtab_size)
309 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
310 static_cast<long long>(val),
311 static_cast<long long>(strtab_size));
312 else
313 this->add_needed(strtab + val);
314 }
315 break;
dbe717ef 316
e2827e5f
ILT
317 default:
318 break;
319 }
dbe717ef
ILT
320 }
321
75f2446e 322 this->error(_("missing DT_NULL in dynamic segment"));
dbe717ef
ILT
323}
324
325// Read the symbols and sections from a dynamic object. We read the
326// dynamic symbols, not the normal symbols.
327
328template<int size, bool big_endian>
329void
330Sized_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
331{
332 this->read_section_data(&this->elf_file_, sd);
333
334 const unsigned char* const pshdrs = sd->section_headers->data();
335
dbe717ef
ILT
336 unsigned int versym_shndx;
337 unsigned int verdef_shndx;
338 unsigned int verneed_shndx;
339 unsigned int dynamic_shndx;
d491d34e
ILT
340 this->find_dynsym_sections(pshdrs, &versym_shndx, &verdef_shndx,
341 &verneed_shndx, &dynamic_shndx);
dbe717ef
ILT
342
343 unsigned int strtab_shndx = -1U;
344
75f2446e
ILT
345 sd->symbols = NULL;
346 sd->symbols_size = 0;
730cdc88 347 sd->external_symbols_offset = 0;
75f2446e
ILT
348 sd->symbol_names = NULL;
349 sd->symbol_names_size = 0;
1276bc89
ILT
350 sd->versym = NULL;
351 sd->versym_size = 0;
352 sd->verdef = NULL;
353 sd->verdef_size = 0;
354 sd->verdef_info = 0;
355 sd->verneed = NULL;
356 sd->verneed_size = 0;
357 sd->verneed_info = 0;
75f2446e 358
d491d34e 359 if (this->dynsym_shndx_ != -1U)
dbe717ef
ILT
360 {
361 // Get the dynamic symbols.
d491d34e
ILT
362 typename This::Shdr dynsymshdr(pshdrs
363 + this->dynsym_shndx_ * This::shdr_size);
dbe717ef
ILT
364
365 sd->symbols = this->get_lasting_view(dynsymshdr.get_sh_offset(),
39d0cb0e
ILT
366 dynsymshdr.get_sh_size(), true,
367 false);
8383303e
ILT
368 sd->symbols_size =
369 convert_to_section_size_type(dynsymshdr.get_sh_size());
dbe717ef
ILT
370
371 // Get the symbol names.
d491d34e 372 strtab_shndx = this->adjust_shndx(dynsymshdr.get_sh_link());
dbe717ef
ILT
373 if (strtab_shndx >= this->shnum())
374 {
75f2446e
ILT
375 this->error(_("invalid dynamic symbol table name index: %u"),
376 strtab_shndx);
377 return;
dbe717ef
ILT
378 }
379 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
380 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
381 {
75f2446e
ILT
382 this->error(_("dynamic symbol table name section "
383 "has wrong type: %u"),
384 static_cast<unsigned int>(strtabshdr.get_sh_type()));
385 return;
dbe717ef
ILT
386 }
387
388 sd->symbol_names = this->get_lasting_view(strtabshdr.get_sh_offset(),
9eb9fa57 389 strtabshdr.get_sh_size(),
39d0cb0e 390 false, false);
8383303e
ILT
391 sd->symbol_names_size =
392 convert_to_section_size_type(strtabshdr.get_sh_size());
dbe717ef
ILT
393
394 // Get the version information.
395
396 unsigned int dummy;
397 this->read_dynsym_section(pshdrs, versym_shndx, elfcpp::SHT_GNU_versym,
d491d34e
ILT
398 this->dynsym_shndx_,
399 &sd->versym, &sd->versym_size, &dummy);
dbe717ef
ILT
400
401 // We require that the version definition and need section link
402 // to the same string table as the dynamic symbol table. This
403 // is not a technical requirement, but it always happens in
404 // practice. We could change this if necessary.
405
406 this->read_dynsym_section(pshdrs, verdef_shndx, elfcpp::SHT_GNU_verdef,
407 strtab_shndx, &sd->verdef, &sd->verdef_size,
408 &sd->verdef_info);
409
410 this->read_dynsym_section(pshdrs, verneed_shndx, elfcpp::SHT_GNU_verneed,
411 strtab_shndx, &sd->verneed, &sd->verneed_size,
412 &sd->verneed_info);
413 }
414
415 // Read the SHT_DYNAMIC section to find whether this shared object
e2827e5f
ILT
416 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
417 // doesn't really have anything to do with reading the symbols, but
418 // this is a convenient place to do it.
dbe717ef 419 if (dynamic_shndx != -1U)
e2827e5f
ILT
420 this->read_dynamic(pshdrs, dynamic_shndx, strtab_shndx,
421 (sd->symbol_names == NULL
422 ? NULL
423 : sd->symbol_names->data()),
424 sd->symbol_names_size);
dbe717ef
ILT
425}
426
d491d34e
ILT
427// Return the Xindex structure to use for object with lots of
428// sections.
429
430template<int size, bool big_endian>
431Xindex*
432Sized_dynobj<size, big_endian>::do_initialize_xindex()
433{
434 gold_assert(this->dynsym_shndx_ != -1U);
435 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
436 xindex->initialize_symtab_xindex<size, big_endian>(this, this->dynsym_shndx_);
437 return xindex;
438}
439
dbe717ef
ILT
440// Lay out the input sections for a dynamic object. We don't want to
441// include sections from a dynamic object, so all that we actually do
364c7fa5 442// here is check for .gnu.warning and .note.GNU-split-stack sections.
dbe717ef
ILT
443
444template<int size, bool big_endian>
445void
7e1edb90 446Sized_dynobj<size, big_endian>::do_layout(Symbol_table* symtab,
dbe717ef
ILT
447 Layout*,
448 Read_symbols_data* sd)
449{
2ea97941
ILT
450 const unsigned int shnum = this->shnum();
451 if (shnum == 0)
dbe717ef
ILT
452 return;
453
454 // Get the section headers.
455 const unsigned char* pshdrs = sd->section_headers->data();
456
457 // Get the section names.
458 const unsigned char* pnamesu = sd->section_names->data();
459 const char* pnames = reinterpret_cast<const char*>(pnamesu);
460
461 // Skip the first, dummy, section.
462 pshdrs += This::shdr_size;
2ea97941 463 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
dbe717ef
ILT
464 {
465 typename This::Shdr shdr(pshdrs);
466
467 if (shdr.get_sh_name() >= sd->section_names_size)
468 {
75f2446e
ILT
469 this->error(_("bad section name offset for section %u: %lu"),
470 i, static_cast<unsigned long>(shdr.get_sh_name()));
471 return;
dbe717ef
ILT
472 }
473
2ea97941 474 const char* name = pnames + shdr.get_sh_name();
dbe717ef 475
2ea97941
ILT
476 this->handle_gnu_warning_section(name, i, symtab);
477 this->handle_split_stack_section(name);
dbe717ef
ILT
478 }
479
480 delete sd->section_headers;
481 sd->section_headers = NULL;
482 delete sd->section_names;
483 sd->section_names = NULL;
484}
485
486// Add an entry to the vector mapping version numbers to version
487// strings.
488
489template<int size, bool big_endian>
490void
491Sized_dynobj<size, big_endian>::set_version_map(
492 Version_map* version_map,
493 unsigned int ndx,
2ea97941 494 const char* name) const
dbe717ef 495{
14b31740
ILT
496 if (ndx >= version_map->size())
497 version_map->resize(ndx + 1);
dbe717ef 498 if ((*version_map)[ndx] != NULL)
75f2446e 499 this->error(_("duplicate definition for version %u"), ndx);
2ea97941 500 (*version_map)[ndx] = name;
dbe717ef
ILT
501}
502
14b31740 503// Add mappings for the version definitions to VERSION_MAP.
dbe717ef
ILT
504
505template<int size, bool big_endian>
506void
14b31740 507Sized_dynobj<size, big_endian>::make_verdef_map(
dbe717ef
ILT
508 Read_symbols_data* sd,
509 Version_map* version_map) const
510{
14b31740 511 if (sd->verdef == NULL)
dbe717ef
ILT
512 return;
513
14b31740 514 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
8383303e 515 section_size_type names_size = sd->symbol_names_size;
dbe717ef 516
14b31740 517 const unsigned char* pverdef = sd->verdef->data();
8383303e 518 section_size_type verdef_size = sd->verdef_size;
14b31740
ILT
519 const unsigned int count = sd->verdef_info;
520
521 const unsigned char* p = pverdef;
522 for (unsigned int i = 0; i < count; ++i)
dbe717ef 523 {
14b31740 524 elfcpp::Verdef<size, big_endian> verdef(p);
dbe717ef 525
14b31740 526 if (verdef.get_vd_version() != elfcpp::VER_DEF_CURRENT)
dbe717ef 527 {
75f2446e
ILT
528 this->error(_("unexpected verdef version %u"),
529 verdef.get_vd_version());
530 return;
14b31740 531 }
dbe717ef 532
9bb53bf8 533 const section_size_type vd_ndx = verdef.get_vd_ndx();
dbe717ef 534
14b31740
ILT
535 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
536 // sure why.
dbe717ef 537
14b31740
ILT
538 // The first Verdaux holds the name of this version. Subsequent
539 // ones are versions that this one depends upon, which we don't
540 // care about here.
9bb53bf8 541 const section_size_type vd_cnt = verdef.get_vd_cnt();
14b31740
ILT
542 if (vd_cnt < 1)
543 {
9bb53bf8
ILT
544 this->error(_("verdef vd_cnt field too small: %u"),
545 static_cast<unsigned int>(vd_cnt));
75f2446e 546 return;
dbe717ef 547 }
dbe717ef 548
9bb53bf8 549 const section_size_type vd_aux = verdef.get_vd_aux();
14b31740 550 if ((p - pverdef) + vd_aux >= verdef_size)
dbe717ef 551 {
9bb53bf8
ILT
552 this->error(_("verdef vd_aux field out of range: %u"),
553 static_cast<unsigned int>(vd_aux));
75f2446e 554 return;
14b31740 555 }
dbe717ef 556
14b31740
ILT
557 const unsigned char* pvda = p + vd_aux;
558 elfcpp::Verdaux<size, big_endian> verdaux(pvda);
dbe717ef 559
9bb53bf8 560 const section_size_type vda_name = verdaux.get_vda_name();
14b31740
ILT
561 if (vda_name >= names_size)
562 {
9bb53bf8
ILT
563 this->error(_("verdaux vda_name field out of range: %u"),
564 static_cast<unsigned int>(vda_name));
75f2446e 565 return;
14b31740 566 }
dbe717ef 567
14b31740 568 this->set_version_map(version_map, vd_ndx, names + vda_name);
dbe717ef 569
9bb53bf8 570 const section_size_type vd_next = verdef.get_vd_next();
14b31740
ILT
571 if ((p - pverdef) + vd_next >= verdef_size)
572 {
9bb53bf8
ILT
573 this->error(_("verdef vd_next field out of range: %u"),
574 static_cast<unsigned int>(vd_next));
75f2446e 575 return;
dbe717ef 576 }
14b31740
ILT
577
578 p += vd_next;
dbe717ef 579 }
14b31740 580}
dbe717ef 581
14b31740 582// Add mappings for the required versions to VERSION_MAP.
dbe717ef 583
14b31740
ILT
584template<int size, bool big_endian>
585void
586Sized_dynobj<size, big_endian>::make_verneed_map(
587 Read_symbols_data* sd,
588 Version_map* version_map) const
589{
590 if (sd->verneed == NULL)
591 return;
dbe717ef
ILT
592
593 const char* names = reinterpret_cast<const char*>(sd->symbol_names->data());
8383303e 594 section_size_type names_size = sd->symbol_names_size;
dbe717ef 595
14b31740 596 const unsigned char* pverneed = sd->verneed->data();
8383303e 597 const section_size_type verneed_size = sd->verneed_size;
14b31740
ILT
598 const unsigned int count = sd->verneed_info;
599
600 const unsigned char* p = pverneed;
601 for (unsigned int i = 0; i < count; ++i)
dbe717ef 602 {
14b31740 603 elfcpp::Verneed<size, big_endian> verneed(p);
dbe717ef 604
14b31740 605 if (verneed.get_vn_version() != elfcpp::VER_NEED_CURRENT)
dbe717ef 606 {
75f2446e
ILT
607 this->error(_("unexpected verneed version %u"),
608 verneed.get_vn_version());
609 return;
14b31740 610 }
dbe717ef 611
9bb53bf8 612 const section_size_type vn_aux = verneed.get_vn_aux();
dbe717ef 613
14b31740
ILT
614 if ((p - pverneed) + vn_aux >= verneed_size)
615 {
9bb53bf8
ILT
616 this->error(_("verneed vn_aux field out of range: %u"),
617 static_cast<unsigned int>(vn_aux));
75f2446e 618 return;
14b31740 619 }
dbe717ef 620
14b31740
ILT
621 const unsigned int vn_cnt = verneed.get_vn_cnt();
622 const unsigned char* pvna = p + vn_aux;
623 for (unsigned int j = 0; j < vn_cnt; ++j)
624 {
625 elfcpp::Vernaux<size, big_endian> vernaux(pvna);
dbe717ef 626
14b31740
ILT
627 const unsigned int vna_name = vernaux.get_vna_name();
628 if (vna_name >= names_size)
dbe717ef 629 {
75f2446e 630 this->error(_("vernaux vna_name field out of range: %u"),
9bb53bf8 631 static_cast<unsigned int>(vna_name));
75f2446e 632 return;
dbe717ef
ILT
633 }
634
14b31740
ILT
635 this->set_version_map(version_map, vernaux.get_vna_other(),
636 names + vna_name);
dbe717ef 637
9bb53bf8 638 const section_size_type vna_next = vernaux.get_vna_next();
14b31740 639 if ((pvna - pverneed) + vna_next >= verneed_size)
dbe717ef 640 {
75f2446e 641 this->error(_("verneed vna_next field out of range: %u"),
9bb53bf8 642 static_cast<unsigned int>(vna_next));
75f2446e 643 return;
dbe717ef
ILT
644 }
645
14b31740
ILT
646 pvna += vna_next;
647 }
648
9bb53bf8 649 const section_size_type vn_next = verneed.get_vn_next();
14b31740
ILT
650 if ((p - pverneed) + vn_next >= verneed_size)
651 {
9bb53bf8
ILT
652 this->error(_("verneed vn_next field out of range: %u"),
653 static_cast<unsigned int>(vn_next));
75f2446e 654 return;
dbe717ef 655 }
14b31740
ILT
656
657 p += vn_next;
dbe717ef 658 }
14b31740 659}
dbe717ef 660
14b31740 661// Create a vector mapping version numbers to version strings.
dbe717ef 662
14b31740
ILT
663template<int size, bool big_endian>
664void
665Sized_dynobj<size, big_endian>::make_version_map(
666 Read_symbols_data* sd,
667 Version_map* version_map) const
668{
669 if (sd->verdef == NULL && sd->verneed == NULL)
670 return;
dbe717ef 671
14b31740
ILT
672 // A guess at the maximum version number we will see. If this is
673 // wrong we will be less efficient but still correct.
674 version_map->reserve(sd->verdef_info + sd->verneed_info * 10);
dbe717ef 675
14b31740
ILT
676 this->make_verdef_map(sd, version_map);
677 this->make_verneed_map(sd, version_map);
dbe717ef
ILT
678}
679
680// Add the dynamic symbols to the symbol table.
681
682template<int size, bool big_endian>
683void
684Sized_dynobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
f488e4b0
CC
685 Read_symbols_data* sd,
686 Layout*)
dbe717ef
ILT
687{
688 if (sd->symbols == NULL)
689 {
a3ad94ed
ILT
690 gold_assert(sd->symbol_names == NULL);
691 gold_assert(sd->versym == NULL && sd->verdef == NULL
692 && sd->verneed == NULL);
dbe717ef
ILT
693 return;
694 }
695
2ea97941
ILT
696 const int sym_size = This::sym_size;
697 const size_t symcount = sd->symbols_size / sym_size;
730cdc88 698 gold_assert(sd->external_symbols_offset == 0);
2ea97941 699 if (symcount * sym_size != sd->symbols_size)
dbe717ef 700 {
75f2446e
ILT
701 this->error(_("size of dynamic symbols is not multiple of symbol size"));
702 return;
dbe717ef
ILT
703 }
704
705 Version_map version_map;
706 this->make_version_map(sd, &version_map);
707
dde3f402
ILT
708 // If printing symbol counts or a cross reference table, we want to
709 // track symbols.
710 if (parameters->options().user_set_print_symbol_counts()
711 || parameters->options().cref())
92de84a6
ILT
712 {
713 this->symbols_ = new Symbols();
714 this->symbols_->resize(symcount);
715 }
716
dbe717ef
ILT
717 const char* sym_names =
718 reinterpret_cast<const char*>(sd->symbol_names->data());
719 symtab->add_from_dynobj(this, sd->symbols->data(), symcount,
720 sym_names, sd->symbol_names_size,
721 (sd->versym == NULL
722 ? NULL
723 : sd->versym->data()),
724 sd->versym_size,
92de84a6
ILT
725 &version_map,
726 this->symbols_,
727 &this->defined_count_);
dbe717ef
ILT
728
729 delete sd->symbols;
730 sd->symbols = NULL;
731 delete sd->symbol_names;
732 sd->symbol_names = NULL;
733 if (sd->versym != NULL)
734 {
735 delete sd->versym;
736 sd->versym = NULL;
737 }
738 if (sd->verdef != NULL)
739 {
740 delete sd->verdef;
741 sd->verdef = NULL;
742 }
743 if (sd->verneed != NULL)
744 {
745 delete sd->verneed;
746 sd->verneed = NULL;
747 }
cb295612
ILT
748
749 // This is normally the last time we will read any data from this
750 // file.
751 this->clear_view_cache_marks();
dbe717ef
ILT
752}
753
b0193076
RÁE
754template<int size, bool big_endian>
755Archive::Should_include
88a4108b
ILT
756Sized_dynobj<size, big_endian>::do_should_include_member(Symbol_table*,
757 Layout*,
758 Read_symbols_data*,
759 std::string*)
b0193076
RÁE
760{
761 return Archive::SHOULD_INCLUDE_YES;
762}
763
e0c52780
CC
764// Iterate over global symbols, calling a visitor class V for each.
765
766template<int size, bool big_endian>
767void
768Sized_dynobj<size, big_endian>::do_for_all_global_symbols(
769 Read_symbols_data* sd,
770 Library_base::Symbol_visitor_base* v)
771{
772 const char* sym_names =
773 reinterpret_cast<const char*>(sd->symbol_names->data());
774 const unsigned char* syms =
775 sd->symbols->data() + sd->external_symbols_offset;
776 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
777 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
778 / sym_size);
779 const unsigned char* p = syms;
780
781 for (size_t i = 0; i < symcount; ++i, p += sym_size)
782 {
783 elfcpp::Sym<size, big_endian> sym(p);
784 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
785 && sym.get_st_bind() != elfcpp::STB_LOCAL)
786 v->visit(sym_names + sym.get_st_name());
787 }
788}
789
92de84a6
ILT
790// Get symbol counts.
791
792template<int size, bool big_endian>
793void
794Sized_dynobj<size, big_endian>::do_get_global_symbol_counts(
795 const Symbol_table*,
796 size_t* defined,
797 size_t* used) const
798{
799 *defined = this->defined_count_;
800 size_t count = 0;
801 for (typename Symbols::const_iterator p = this->symbols_->begin();
802 p != this->symbols_->end();
803 ++p)
804 if (*p != NULL
805 && (*p)->source() == Symbol::FROM_OBJECT
806 && (*p)->object() == this
807 && (*p)->is_defined()
808 && (*p)->dynsym_index() != -1U)
809 ++count;
810 *used = count;
811}
812
a3ad94ed
ILT
813// Given a vector of hash codes, compute the number of hash buckets to
814// use.
815
816unsigned int
817Dynobj::compute_bucket_count(const std::vector<uint32_t>& hashcodes,
818 bool for_gnu_hash_table)
819{
820 // FIXME: Implement optional hash table optimization.
821
822 // Array used to determine the number of hash table buckets to use
823 // based on the number of symbols there are. If there are fewer
824 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
825 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
95317043 826 // use more than 262147 buckets. This is straight from the old GNU
a3ad94ed
ILT
827 // linker.
828 static const unsigned int buckets[] =
829 {
830 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
95317043 831 16411, 32771, 65537, 131101, 262147
a3ad94ed
ILT
832 };
833 const int buckets_count = sizeof buckets / sizeof buckets[0];
834
835 unsigned int symcount = hashcodes.size();
836 unsigned int ret = 1;
a8627968
ILT
837 const double full_fraction
838 = 1.0 - parameters->options().hash_bucket_empty_fraction();
a3ad94ed
ILT
839 for (int i = 0; i < buckets_count; ++i)
840 {
a8627968 841 if (symcount < buckets[i] * full_fraction)
a3ad94ed
ILT
842 break;
843 ret = buckets[i];
844 }
845
846 if (for_gnu_hash_table && ret < 2)
847 ret = 2;
848
849 return ret;
850}
851
852// The standard ELF hash function. This hash function must not
853// change, as the dynamic linker uses it also.
854
855uint32_t
856Dynobj::elf_hash(const char* name)
857{
858 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
859 uint32_t h = 0;
860 unsigned char c;
861 while ((c = *nameu++) != '\0')
862 {
863 h = (h << 4) + c;
864 uint32_t g = h & 0xf0000000;
865 if (g != 0)
866 {
867 h ^= g >> 24;
868 // The ELF ABI says h &= ~g, but using xor is equivalent in
869 // this case (since g was set from h) and may save one
870 // instruction.
871 h ^= g;
872 }
873 }
874 return h;
875}
876
877// Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
878// DYNSYMS is a vector with all the global dynamic symbols.
879// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
880// symbol table.
881
882void
9025d29d 883Dynobj::create_elf_hash_table(const std::vector<Symbol*>& dynsyms,
a3ad94ed
ILT
884 unsigned int local_dynsym_count,
885 unsigned char** pphash,
886 unsigned int* phashlen)
887{
888 unsigned int dynsym_count = dynsyms.size();
889
890 // Get the hash values for all the symbols.
891 std::vector<uint32_t> dynsym_hashvals(dynsym_count);
892 for (unsigned int i = 0; i < dynsym_count; ++i)
893 dynsym_hashvals[i] = Dynobj::elf_hash(dynsyms[i]->name());
894
895 const unsigned int bucketcount =
896 Dynobj::compute_bucket_count(dynsym_hashvals, false);
897
898 std::vector<uint32_t> bucket(bucketcount);
899 std::vector<uint32_t> chain(local_dynsym_count + dynsym_count);
900
901 for (unsigned int i = 0; i < dynsym_count; ++i)
902 {
903 unsigned int dynsym_index = dynsyms[i]->dynsym_index();
904 unsigned int bucketpos = dynsym_hashvals[i] % bucketcount;
905 chain[dynsym_index] = bucket[bucketpos];
906 bucket[bucketpos] = dynsym_index;
907 }
908
909 unsigned int hashlen = ((2
910 + bucketcount
911 + local_dynsym_count
912 + dynsym_count)
913 * 4);
914 unsigned char* phash = new unsigned char[hashlen];
915
8851ecca 916 if (parameters->target().is_big_endian())
9025d29d
ILT
917 {
918#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
919 Dynobj::sized_create_elf_hash_table<true>(bucket, chain, phash,
920 hashlen);
921#else
922 gold_unreachable();
923#endif
924 }
a3ad94ed 925 else
9025d29d
ILT
926 {
927#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
928 Dynobj::sized_create_elf_hash_table<false>(bucket, chain, phash,
929 hashlen);
930#else
931 gold_unreachable();
932#endif
933 }
a3ad94ed
ILT
934
935 *pphash = phash;
936 *phashlen = hashlen;
937}
938
939// Fill in an ELF hash table.
940
941template<bool big_endian>
942void
943Dynobj::sized_create_elf_hash_table(const std::vector<uint32_t>& bucket,
944 const std::vector<uint32_t>& chain,
945 unsigned char* phash,
946 unsigned int hashlen)
947{
948 unsigned char* p = phash;
949
950 const unsigned int bucketcount = bucket.size();
951 const unsigned int chaincount = chain.size();
952
953 elfcpp::Swap<32, big_endian>::writeval(p, bucketcount);
954 p += 4;
955 elfcpp::Swap<32, big_endian>::writeval(p, chaincount);
956 p += 4;
957
958 for (unsigned int i = 0; i < bucketcount; ++i)
959 {
960 elfcpp::Swap<32, big_endian>::writeval(p, bucket[i]);
961 p += 4;
962 }
963
964 for (unsigned int i = 0; i < chaincount; ++i)
965 {
966 elfcpp::Swap<32, big_endian>::writeval(p, chain[i]);
967 p += 4;
968 }
969
970 gold_assert(static_cast<unsigned int>(p - phash) == hashlen);
971}
972
973// The hash function used for the GNU hash table. This hash function
974// must not change, as the dynamic linker uses it also.
975
976uint32_t
977Dynobj::gnu_hash(const char* name)
978{
979 const unsigned char* nameu = reinterpret_cast<const unsigned char*>(name);
980 uint32_t h = 5381;
981 unsigned char c;
982 while ((c = *nameu++) != '\0')
983 h = (h << 5) + h + c;
984 return h;
985}
986
987// Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
988// tables are an extension to ELF which are recognized by the GNU
989// dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
990// TARGET is the target. DYNSYMS is a vector with all the global
991// symbols which will be going into the dynamic symbol table.
992// LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
993// symbol table.
994
995void
9025d29d 996Dynobj::create_gnu_hash_table(const std::vector<Symbol*>& dynsyms,
a3ad94ed
ILT
997 unsigned int local_dynsym_count,
998 unsigned char** pphash,
999 unsigned int* phashlen)
1000{
1001 const unsigned int count = dynsyms.size();
1002
1003 // Sort the dynamic symbols into two vectors. Symbols which we do
1004 // not want to put into the hash table we store into
1005 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
1006 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
1007 // and records the hash codes.
1008
1009 std::vector<Symbol*> unhashed_dynsyms;
1010 unhashed_dynsyms.reserve(count);
1011
1012 std::vector<Symbol*> hashed_dynsyms;
1013 hashed_dynsyms.reserve(count);
1014
1015 std::vector<uint32_t> dynsym_hashvals;
1016 dynsym_hashvals.reserve(count);
1017
1018 for (unsigned int i = 0; i < count; ++i)
1019 {
1020 Symbol* sym = dynsyms[i];
1021
176fe33f
ILT
1022 if (!sym->needs_dynsym_value()
1023 && (sym->is_undefined()
1024 || sym->is_from_dynobj()
1025 || sym->is_forced_local()))
a3ad94ed
ILT
1026 unhashed_dynsyms.push_back(sym);
1027 else
1028 {
1029 hashed_dynsyms.push_back(sym);
1030 dynsym_hashvals.push_back(Dynobj::gnu_hash(sym->name()));
1031 }
1032 }
1033
1034 // Put the unhashed symbols at the start of the global portion of
1035 // the dynamic symbol table.
1036 const unsigned int unhashed_count = unhashed_dynsyms.size();
1037 unsigned int unhashed_dynsym_index = local_dynsym_count;
1038 for (unsigned int i = 0; i < unhashed_count; ++i)
1039 {
1040 unhashed_dynsyms[i]->set_dynsym_index(unhashed_dynsym_index);
1041 ++unhashed_dynsym_index;
1042 }
1043
1044 // For the actual data generation we call out to a templatized
1045 // function.
8851ecca
ILT
1046 int size = parameters->target().get_size();
1047 bool big_endian = parameters->target().is_big_endian();
a3ad94ed
ILT
1048 if (size == 32)
1049 {
1050 if (big_endian)
9025d29d
ILT
1051 {
1052#ifdef HAVE_TARGET_32_BIG
1053 Dynobj::sized_create_gnu_hash_table<32, true>(hashed_dynsyms,
1054 dynsym_hashvals,
1055 unhashed_dynsym_index,
1056 pphash,
1057 phashlen);
1058#else
1059 gold_unreachable();
1060#endif
1061 }
a3ad94ed 1062 else
9025d29d
ILT
1063 {
1064#ifdef HAVE_TARGET_32_LITTLE
1065 Dynobj::sized_create_gnu_hash_table<32, false>(hashed_dynsyms,
1066 dynsym_hashvals,
1067 unhashed_dynsym_index,
1068 pphash,
1069 phashlen);
1070#else
1071 gold_unreachable();
1072#endif
1073 }
a3ad94ed
ILT
1074 }
1075 else if (size == 64)
1076 {
1077 if (big_endian)
9025d29d
ILT
1078 {
1079#ifdef HAVE_TARGET_64_BIG
1080 Dynobj::sized_create_gnu_hash_table<64, true>(hashed_dynsyms,
1081 dynsym_hashvals,
1082 unhashed_dynsym_index,
1083 pphash,
1084 phashlen);
1085#else
1086 gold_unreachable();
1087#endif
1088 }
a3ad94ed 1089 else
9025d29d
ILT
1090 {
1091#ifdef HAVE_TARGET_64_LITTLE
1092 Dynobj::sized_create_gnu_hash_table<64, false>(hashed_dynsyms,
1093 dynsym_hashvals,
1094 unhashed_dynsym_index,
1095 pphash,
1096 phashlen);
1097#else
1098 gold_unreachable();
1099#endif
1100 }
a3ad94ed
ILT
1101 }
1102 else
1103 gold_unreachable();
1104}
1105
1106// Create the actual data for a GNU hash table. This is just a copy
1107// of the code from the old GNU linker.
1108
1109template<int size, bool big_endian>
1110void
1111Dynobj::sized_create_gnu_hash_table(
1112 const std::vector<Symbol*>& hashed_dynsyms,
1113 const std::vector<uint32_t>& dynsym_hashvals,
1114 unsigned int unhashed_dynsym_count,
1115 unsigned char** pphash,
1116 unsigned int* phashlen)
1117{
1118 if (hashed_dynsyms.empty())
1119 {
1120 // Special case for the empty hash table.
1121 unsigned int hashlen = 5 * 4 + size / 8;
1122 unsigned char* phash = new unsigned char[hashlen];
1123 // One empty bucket.
1124 elfcpp::Swap<32, big_endian>::writeval(phash, 1);
1125 // Symbol index above unhashed symbols.
1126 elfcpp::Swap<32, big_endian>::writeval(phash + 4, unhashed_dynsym_count);
1127 // One word for bitmask.
1128 elfcpp::Swap<32, big_endian>::writeval(phash + 8, 1);
1129 // Only bloom filter.
1130 elfcpp::Swap<32, big_endian>::writeval(phash + 12, 0);
1131 // No valid hashes.
1132 elfcpp::Swap<size, big_endian>::writeval(phash + 16, 0);
1133 // No hashes in only bucket.
1134 elfcpp::Swap<32, big_endian>::writeval(phash + 16 + size / 8, 0);
1135
1136 *phashlen = hashlen;
1137 *pphash = phash;
1138
1139 return;
1140 }
1141
1142 const unsigned int bucketcount =
1143 Dynobj::compute_bucket_count(dynsym_hashvals, true);
1144
1145 const unsigned int nsyms = hashed_dynsyms.size();
1146
1147 uint32_t maskbitslog2 = 1;
1148 uint32_t x = nsyms >> 1;
1149 while (x != 0)
1150 {
1151 ++maskbitslog2;
1152 x >>= 1;
1153 }
1154 if (maskbitslog2 < 3)
1155 maskbitslog2 = 5;
1156 else if (((1U << (maskbitslog2 - 2)) & nsyms) != 0)
1157 maskbitslog2 += 3;
1158 else
1159 maskbitslog2 += 2;
1160
1161 uint32_t shift1;
1162 if (size == 32)
1163 shift1 = 5;
1164 else
1165 {
1166 if (maskbitslog2 == 5)
1167 maskbitslog2 = 6;
1168 shift1 = 6;
1169 }
1170 uint32_t mask = (1U << shift1) - 1U;
1171 uint32_t shift2 = maskbitslog2;
1172 uint32_t maskbits = 1U << maskbitslog2;
1173 uint32_t maskwords = 1U << (maskbitslog2 - shift1);
1174
1175 typedef typename elfcpp::Elf_types<size>::Elf_WXword Word;
1176 std::vector<Word> bitmask(maskwords);
1177 std::vector<uint32_t> counts(bucketcount);
1178 std::vector<uint32_t> indx(bucketcount);
1179 uint32_t symindx = unhashed_dynsym_count;
1180
1181 // Count the number of times each hash bucket is used.
1182 for (unsigned int i = 0; i < nsyms; ++i)
1183 ++counts[dynsym_hashvals[i] % bucketcount];
1184
1185 unsigned int cnt = symindx;
1186 for (unsigned int i = 0; i < bucketcount; ++i)
1187 {
1188 indx[i] = cnt;
1189 cnt += counts[i];
1190 }
1191
1192 unsigned int hashlen = (4 + bucketcount + nsyms) * 4;
1193 hashlen += maskbits / 8;
1194 unsigned char* phash = new unsigned char[hashlen];
1195
1196 elfcpp::Swap<32, big_endian>::writeval(phash, bucketcount);
1197 elfcpp::Swap<32, big_endian>::writeval(phash + 4, symindx);
1198 elfcpp::Swap<32, big_endian>::writeval(phash + 8, maskwords);
1199 elfcpp::Swap<32, big_endian>::writeval(phash + 12, shift2);
1200
1201 unsigned char* p = phash + 16 + maskbits / 8;
1202 for (unsigned int i = 0; i < bucketcount; ++i)
1203 {
1204 if (counts[i] == 0)
1205 elfcpp::Swap<32, big_endian>::writeval(p, 0);
1206 else
1207 elfcpp::Swap<32, big_endian>::writeval(p, indx[i]);
1208 p += 4;
1209 }
1210
1211 for (unsigned int i = 0; i < nsyms; ++i)
1212 {
1213 Symbol* sym = hashed_dynsyms[i];
1214 uint32_t hashval = dynsym_hashvals[i];
1215
1216 unsigned int bucket = hashval % bucketcount;
1217 unsigned int val = ((hashval >> shift1)
1218 & ((maskbits >> shift1) - 1));
1219 bitmask[val] |= (static_cast<Word>(1U)) << (hashval & mask);
1220 bitmask[val] |= (static_cast<Word>(1U)) << ((hashval >> shift2) & mask);
1221 val = hashval & ~ 1U;
1222 if (counts[bucket] == 1)
1223 {
1224 // Last element terminates the chain.
1225 val |= 1;
1226 }
1227 elfcpp::Swap<32, big_endian>::writeval(p + (indx[bucket] - symindx) * 4,
1228 val);
1229 --counts[bucket];
1230
1231 sym->set_dynsym_index(indx[bucket]);
1232 ++indx[bucket];
1233 }
1234
1235 p = phash + 16;
1236 for (unsigned int i = 0; i < maskwords; ++i)
1237 {
1238 elfcpp::Swap<size, big_endian>::writeval(p, bitmask[i]);
1239 p += size / 8;
1240 }
1241
1242 *phashlen = hashlen;
1243 *pphash = phash;
1244}
1245
14b31740
ILT
1246// Verdef methods.
1247
1248// Write this definition to a buffer for the output section.
1249
1250template<int size, bool big_endian>
1251unsigned char*
7d1a9ebb 1252Verdef::write(const Stringpool* dynpool, bool is_last, unsigned char* pb) const
14b31740
ILT
1253{
1254 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1255 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1256
1257 elfcpp::Verdef_write<size, big_endian> vd(pb);
1258 vd.set_vd_version(elfcpp::VER_DEF_CURRENT);
1259 vd.set_vd_flags((this->is_base_ ? elfcpp::VER_FLG_BASE : 0)
44ec90b9
RO
1260 | (this->is_weak_ ? elfcpp::VER_FLG_WEAK : 0)
1261 | (this->is_info_ ? elfcpp::VER_FLG_INFO : 0));
14b31740
ILT
1262 vd.set_vd_ndx(this->index());
1263 vd.set_vd_cnt(1 + this->deps_.size());
1264 vd.set_vd_hash(Dynobj::elf_hash(this->name()));
1265 vd.set_vd_aux(verdef_size);
1266 vd.set_vd_next(is_last
1267 ? 0
1268 : verdef_size + (1 + this->deps_.size()) * verdaux_size);
1269 pb += verdef_size;
1270
1271 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1272 vda.set_vda_name(dynpool->get_offset(this->name()));
1273 vda.set_vda_next(this->deps_.empty() ? 0 : verdaux_size);
1274 pb += verdaux_size;
1275
1276 Deps::const_iterator p;
1277 unsigned int i;
1278 for (p = this->deps_.begin(), i = 0;
1279 p != this->deps_.end();
1280 ++p, ++i)
1281 {
2ea97941
ILT
1282 elfcpp::Verdaux_write<size, big_endian> vda(pb);
1283 vda.set_vda_name(dynpool->get_offset(*p));
1284 vda.set_vda_next(i + 1 >= this->deps_.size() ? 0 : verdaux_size);
14b31740
ILT
1285 pb += verdaux_size;
1286 }
1287
1288 return pb;
1289}
1290
1291// Verneed methods.
1292
1293Verneed::~Verneed()
1294{
1295 for (Need_versions::iterator p = this->need_versions_.begin();
1296 p != this->need_versions_.end();
1297 ++p)
1298 delete *p;
1299}
1300
1301// Add a new version to this file reference.
1302
1303Verneed_version*
1304Verneed::add_name(const char* name)
1305{
1306 Verneed_version* vv = new Verneed_version(name);
1307 this->need_versions_.push_back(vv);
1308 return vv;
1309}
1310
1311// Set the version indexes starting at INDEX.
1312
1313unsigned int
1314Verneed::finalize(unsigned int index)
1315{
1316 for (Need_versions::iterator p = this->need_versions_.begin();
1317 p != this->need_versions_.end();
1318 ++p)
1319 {
1320 (*p)->set_index(index);
1321 ++index;
1322 }
1323 return index;
1324}
1325
1326// Write this list of referenced versions to a buffer for the output
1327// section.
1328
1329template<int size, bool big_endian>
1330unsigned char*
1331Verneed::write(const Stringpool* dynpool, bool is_last,
7d1a9ebb 1332 unsigned char* pb) const
14b31740
ILT
1333{
1334 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1335 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1336
1337 elfcpp::Verneed_write<size, big_endian> vn(pb);
1338 vn.set_vn_version(elfcpp::VER_NEED_CURRENT);
1339 vn.set_vn_cnt(this->need_versions_.size());
1340 vn.set_vn_file(dynpool->get_offset(this->filename()));
1341 vn.set_vn_aux(verneed_size);
1342 vn.set_vn_next(is_last
1343 ? 0
1344 : verneed_size + this->need_versions_.size() * vernaux_size);
1345 pb += verneed_size;
1346
1347 Need_versions::const_iterator p;
1348 unsigned int i;
1349 for (p = this->need_versions_.begin(), i = 0;
1350 p != this->need_versions_.end();
1351 ++p, ++i)
1352 {
1353 elfcpp::Vernaux_write<size, big_endian> vna(pb);
1354 vna.set_vna_hash(Dynobj::elf_hash((*p)->version()));
1355 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1356 vna.set_vna_flags(0);
1357 vna.set_vna_other((*p)->index());
1358 vna.set_vna_name(dynpool->get_offset((*p)->version()));
1359 vna.set_vna_next(i + 1 >= this->need_versions_.size()
1360 ? 0
1361 : vernaux_size);
1362 pb += vernaux_size;
1363 }
1364
1365 return pb;
1366}
1367
1368// Versions methods.
1369
2ea97941 1370Versions::Versions(const Version_script_info& version_script,
a5dc0706 1371 Stringpool* dynpool)
09124467 1372 : defs_(), needs_(), version_table_(),
2ea97941 1373 is_finalized_(false), version_script_(version_script),
c5617f2f 1374 needs_base_version_(parameters->options().shared())
09124467 1375{
09124467
ILT
1376 if (!this->version_script_.empty())
1377 {
1378 // Parse the version script, and insert each declared version into
1379 // defs_ and version_table_.
1380 std::vector<std::string> versions = this->version_script_.get_versions();
c5617f2f
DK
1381
1382 if (this->needs_base_version_ && !versions.empty())
1383 this->define_base_version(dynpool);
1384
09124467
ILT
1385 for (size_t k = 0; k < versions.size(); ++k)
1386 {
1387 Stringpool::Key version_key;
1388 const char* version = dynpool->add(versions[k].c_str(),
1389 true, &version_key);
1390 Verdef* const vd = new Verdef(
1391 version,
a5dc0706 1392 this->version_script_.get_dependencies(version),
44ec90b9 1393 false, false, false, false);
09124467
ILT
1394 this->defs_.push_back(vd);
1395 Key key(version_key, 0);
1396 this->version_table_.insert(std::make_pair(key, vd));
1397 }
1398 }
1399}
1400
14b31740
ILT
1401Versions::~Versions()
1402{
1403 for (Defs::iterator p = this->defs_.begin();
1404 p != this->defs_.end();
1405 ++p)
1406 delete *p;
1407
1408 for (Needs::iterator p = this->needs_.begin();
1409 p != this->needs_.end();
1410 ++p)
1411 delete *p;
1412}
1413
c5617f2f
DK
1414// Define the base version of a shared library. The base version definition
1415// must be the first entry in defs_. We insert it lazily so that defs_ is
1416// empty if no symbol versioning is used. Then layout can just drop the
1417// version sections.
1418
1419void
1420Versions::define_base_version(Stringpool* dynpool)
1421{
1422 // If we do any versioning at all, we always need a base version, so
1423 // define that first. Nothing explicitly declares itself as part of base,
1424 // so it doesn't need to be in version_table_.
1425 gold_assert(this->defs_.empty());
1426 const char* name = parameters->options().soname();
1427 if (name == NULL)
1428 name = parameters->options().output_file_name();
1429 name = dynpool->add(name, false, NULL);
1430 Verdef* vdbase = new Verdef(name, std::vector<std::string>(),
44ec90b9 1431 true, false, false, true);
c5617f2f
DK
1432 this->defs_.push_back(vdbase);
1433 this->needs_base_version_ = false;
1434}
1435
46fe1623
ILT
1436// Return the dynamic object which a symbol refers to.
1437
1438Dynobj*
1439Versions::get_dynobj_for_sym(const Symbol_table* symtab,
1440 const Symbol* sym) const
1441{
1442 if (sym->is_copied_from_dynobj())
1443 return symtab->get_copy_source(sym);
1444 else
1445 {
1446 Object* object = sym->object();
1447 gold_assert(object->is_dynamic());
1448 return static_cast<Dynobj*>(object);
1449 }
1450}
1451
14b31740
ILT
1452// Record version information for a symbol going into the dynamic
1453// symbol table.
1454
1455void
35cdfc9a 1456Versions::record_version(const Symbol_table* symtab,
14b31740
ILT
1457 Stringpool* dynpool, const Symbol* sym)
1458{
1459 gold_assert(!this->is_finalized_);
1460 gold_assert(sym->version() != NULL);
8851ecca 1461
14b31740 1462 Stringpool::Key version_key;
cfd73a4e 1463 const char* version = dynpool->add(sym->version(), false, &version_key);
14b31740 1464
46fe1623 1465 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
92f0e169 1466 {
8851ecca 1467 if (parameters->options().shared())
35cdfc9a 1468 this->add_def(sym, version, version_key);
92f0e169 1469 }
14b31740
ILT
1470 else
1471 {
1472 // This is a version reference.
46fe1623 1473 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
14b31740
ILT
1474 this->add_need(dynpool, dynobj->soname(), version, version_key);
1475 }
1476}
1477
1478// We've found a symbol SYM defined in version VERSION.
1479
1480void
35cdfc9a
ILT
1481Versions::add_def(const Symbol* sym, const char* version,
1482 Stringpool::Key version_key)
14b31740
ILT
1483{
1484 Key k(version_key, 0);
1485 Version_base* const vbnull = NULL;
1486 std::pair<Version_table::iterator, bool> ins =
1487 this->version_table_.insert(std::make_pair(k, vbnull));
55a93433 1488
14b31740
ILT
1489 if (!ins.second)
1490 {
1491 // We already have an entry for this version.
1492 Version_base* vb = ins.first->second;
1493
1494 // We have now seen a symbol in this version, so it is not
1495 // weak.
99f8faca 1496 gold_assert(vb != NULL);
14b31740 1497 vb->clear_weak();
14b31740
ILT
1498 }
1499 else
1500 {
1501 // If we are creating a shared object, it is an error to
1502 // find a definition of a symbol with a version which is not
1503 // in the version script.
8851ecca 1504 if (parameters->options().shared())
c6e3f6ed
ILT
1505 gold_error(_("symbol %s has undefined version %s"),
1506 sym->demangled_name().c_str(), version);
c5617f2f
DK
1507 else
1508 // We only insert a base version for shared library.
1509 gold_assert(!this->needs_base_version_);
1510
14b31740
ILT
1511 // When creating a regular executable, automatically define
1512 // a new version.
09124467 1513 Verdef* vd = new Verdef(version, std::vector<std::string>(),
44ec90b9 1514 false, false, false, false);
14b31740
ILT
1515 this->defs_.push_back(vd);
1516 ins.first->second = vd;
1517 }
1518}
1519
1520// Add a reference to version NAME in file FILENAME.
1521
1522void
1523Versions::add_need(Stringpool* dynpool, const char* filename, const char* name,
1524 Stringpool::Key name_key)
1525{
1526 Stringpool::Key filename_key;
cfd73a4e 1527 filename = dynpool->add(filename, true, &filename_key);
14b31740
ILT
1528
1529 Key k(name_key, filename_key);
1530 Version_base* const vbnull = NULL;
1531 std::pair<Version_table::iterator, bool> ins =
1532 this->version_table_.insert(std::make_pair(k, vbnull));
1533
1534 if (!ins.second)
1535 {
1536 // We already have an entry for this filename/version.
1537 return;
1538 }
1539
1540 // See whether we already have this filename. We don't expect many
1541 // version references, so we just do a linear search. This could be
1542 // replaced by a hash table.
1543 Verneed* vn = NULL;
1544 for (Needs::iterator p = this->needs_.begin();
1545 p != this->needs_.end();
1546 ++p)
1547 {
1548 if ((*p)->filename() == filename)
1549 {
1550 vn = *p;
1551 break;
1552 }
1553 }
1554
1555 if (vn == NULL)
1556 {
c5617f2f
DK
1557 // Create base version definition lazily for shared library.
1558 if (this->needs_base_version_)
1559 this->define_base_version(dynpool);
1560
14b31740
ILT
1561 // We have a new filename.
1562 vn = new Verneed(filename);
1563 this->needs_.push_back(vn);
1564 }
1565
1566 ins.first->second = vn->add_name(name);
1567}
1568
1569// Set the version indexes. Create a new dynamic version symbol for
1570// each new version definition.
1571
1572unsigned int
9b07f471
ILT
1573Versions::finalize(Symbol_table* symtab, unsigned int dynsym_index,
1574 std::vector<Symbol*>* syms)
14b31740
ILT
1575{
1576 gold_assert(!this->is_finalized_);
1577
1578 unsigned int vi = 1;
1579
1580 for (Defs::iterator p = this->defs_.begin();
1581 p != this->defs_.end();
1582 ++p)
1583 {
1584 (*p)->set_index(vi);
1585 ++vi;
1586
1587 // Create a version symbol if necessary.
1588 if (!(*p)->is_symbol_created())
1589 {
9b07f471 1590 Symbol* vsym = symtab->define_as_constant((*p)->name(),
99fff23b
ILT
1591 (*p)->name(),
1592 Symbol_table::PREDEFINED,
1593 0, 0,
008db82e
ILT
1594 elfcpp::STT_OBJECT,
1595 elfcpp::STB_GLOBAL,
1596 elfcpp::STV_DEFAULT, 0,
caa9d5d9 1597 false, false);
14b31740 1598 vsym->set_needs_dynsym_entry();
92f0e169 1599 vsym->set_dynsym_index(dynsym_index);
98e090bd 1600 vsym->set_is_default();
14b31740
ILT
1601 ++dynsym_index;
1602 syms->push_back(vsym);
1603 // The name is already in the dynamic pool.
1604 }
1605 }
1606
1607 // Index 1 is used for global symbols.
1608 if (vi == 1)
1609 {
1610 gold_assert(this->defs_.empty());
1611 vi = 2;
1612 }
1613
1614 for (Needs::iterator p = this->needs_.begin();
1615 p != this->needs_.end();
1616 ++p)
1617 vi = (*p)->finalize(vi);
1618
1619 this->is_finalized_ = true;
1620
1621 return dynsym_index;
1622}
1623
1624// Return the version index to use for a symbol. This does two hash
1625// table lookups: one in DYNPOOL and one in this->version_table_.
1626// Another approach alternative would be store a pointer in SYM, which
1627// would increase the size of the symbol table. Or perhaps we could
1628// use a hash table from dynamic symbol pointer values to Version_base
1629// pointers.
1630
1631unsigned int
46fe1623
ILT
1632Versions::version_index(const Symbol_table* symtab, const Stringpool* dynpool,
1633 const Symbol* sym) const
14b31740
ILT
1634{
1635 Stringpool::Key version_key;
1636 const char* version = dynpool->find(sym->version(), &version_key);
1637 gold_assert(version != NULL);
1638
91da9340 1639 Key k;
46fe1623 1640 if (!sym->is_from_dynobj() && !sym->is_copied_from_dynobj())
31365f57 1641 {
8851ecca 1642 if (!parameters->options().shared())
31365f57
ILT
1643 return elfcpp::VER_NDX_GLOBAL;
1644 k = Key(version_key, 0);
1645 }
14b31740
ILT
1646 else
1647 {
46fe1623 1648 Dynobj* dynobj = this->get_dynobj_for_sym(symtab, sym);
14b31740
ILT
1649
1650 Stringpool::Key filename_key;
1651 const char* filename = dynpool->find(dynobj->soname(), &filename_key);
1652 gold_assert(filename != NULL);
1653
91da9340 1654 k = Key(version_key, filename_key);
14b31740
ILT
1655 }
1656
91da9340 1657 Version_table::const_iterator p = this->version_table_.find(k);
14b31740
ILT
1658 gold_assert(p != this->version_table_.end());
1659
1660 return p->second->index();
1661}
1662
1663// Return an allocated buffer holding the contents of the symbol
1664// version section.
1665
1666template<int size, bool big_endian>
1667void
46fe1623
ILT
1668Versions::symbol_section_contents(const Symbol_table* symtab,
1669 const Stringpool* dynpool,
14b31740
ILT
1670 unsigned int local_symcount,
1671 const std::vector<Symbol*>& syms,
1672 unsigned char** pp,
7d1a9ebb 1673 unsigned int* psize) const
14b31740
ILT
1674{
1675 gold_assert(this->is_finalized_);
1676
1677 unsigned int sz = (local_symcount + syms.size()) * 2;
1678 unsigned char* pbuf = new unsigned char[sz];
1679
1680 for (unsigned int i = 0; i < local_symcount; ++i)
1681 elfcpp::Swap<16, big_endian>::writeval(pbuf + i * 2,
1682 elfcpp::VER_NDX_LOCAL);
1683
1684 for (std::vector<Symbol*>::const_iterator p = syms.begin();
1685 p != syms.end();
1686 ++p)
1687 {
2ea97941 1688 unsigned int version_index;
14b31740 1689 const char* version = (*p)->version();
98e090bd 1690 if (version != NULL)
2ea97941 1691 version_index = this->version_index(symtab, dynpool, *p);
98e090bd
ILT
1692 else
1693 {
1694 if ((*p)->is_defined() && !(*p)->is_from_dynobj())
1695 version_index = elfcpp::VER_NDX_GLOBAL;
1696 else
1697 version_index = elfcpp::VER_NDX_LOCAL;
1698 }
09124467
ILT
1699 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1700 // the hidden bit.
1701 if ((*p)->version() != NULL && !(*p)->is_default())
2ea97941 1702 version_index |= elfcpp::VERSYM_HIDDEN;
14b31740 1703 elfcpp::Swap<16, big_endian>::writeval(pbuf + (*p)->dynsym_index() * 2,
2ea97941 1704 version_index);
14b31740
ILT
1705 }
1706
1707 *pp = pbuf;
1708 *psize = sz;
1709}
1710
1711// Return an allocated buffer holding the contents of the version
1712// definition section.
1713
1714template<int size, bool big_endian>
1715void
1716Versions::def_section_contents(const Stringpool* dynpool,
1717 unsigned char** pp, unsigned int* psize,
7d1a9ebb 1718 unsigned int* pentries) const
14b31740
ILT
1719{
1720 gold_assert(this->is_finalized_);
1721 gold_assert(!this->defs_.empty());
1722
1723 const int verdef_size = elfcpp::Elf_sizes<size>::verdef_size;
1724 const int verdaux_size = elfcpp::Elf_sizes<size>::verdaux_size;
1725
1726 unsigned int sz = 0;
1727 for (Defs::const_iterator p = this->defs_.begin();
1728 p != this->defs_.end();
1729 ++p)
1730 {
1731 sz += verdef_size + verdaux_size;
1732 sz += (*p)->count_dependencies() * verdaux_size;
1733 }
1734
1735 unsigned char* pbuf = new unsigned char[sz];
1736
1737 unsigned char* pb = pbuf;
1738 Defs::const_iterator p;
1739 unsigned int i;
1740 for (p = this->defs_.begin(), i = 0;
1741 p != this->defs_.end();
1742 ++p, ++i)
7d1a9ebb
ILT
1743 pb = (*p)->write<size, big_endian>(dynpool,
1744 i + 1 >= this->defs_.size(),
1745 pb);
14b31740
ILT
1746
1747 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1748
1749 *pp = pbuf;
1750 *psize = sz;
1751 *pentries = this->defs_.size();
1752}
1753
1754// Return an allocated buffer holding the contents of the version
1755// reference section.
1756
1757template<int size, bool big_endian>
1758void
1759Versions::need_section_contents(const Stringpool* dynpool,
ca09d69a
NC
1760 unsigned char** pp, unsigned int* psize,
1761 unsigned int* pentries) const
14b31740
ILT
1762{
1763 gold_assert(this->is_finalized_);
1764 gold_assert(!this->needs_.empty());
1765
1766 const int verneed_size = elfcpp::Elf_sizes<size>::verneed_size;
1767 const int vernaux_size = elfcpp::Elf_sizes<size>::vernaux_size;
1768
1769 unsigned int sz = 0;
1770 for (Needs::const_iterator p = this->needs_.begin();
1771 p != this->needs_.end();
1772 ++p)
1773 {
1774 sz += verneed_size;
1775 sz += (*p)->count_versions() * vernaux_size;
1776 }
1777
1778 unsigned char* pbuf = new unsigned char[sz];
1779
1780 unsigned char* pb = pbuf;
1781 Needs::const_iterator p;
1782 unsigned int i;
1783 for (p = this->needs_.begin(), i = 0;
1784 p != this->needs_.end();
1785 ++p, ++i)
7d1a9ebb
ILT
1786 pb = (*p)->write<size, big_endian>(dynpool,
1787 i + 1 >= this->needs_.size(),
1788 pb);
14b31740
ILT
1789
1790 gold_assert(static_cast<unsigned int>(pb - pbuf) == sz);
1791
1792 *pp = pbuf;
1793 *psize = sz;
1794 *pentries = this->needs_.size();
1795}
1796
dbe717ef
ILT
1797// Instantiate the templates we need. We could use the configure
1798// script to restrict this to only the ones for implemented targets.
1799
193a53d9 1800#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
1801template
1802class Sized_dynobj<32, false>;
193a53d9 1803#endif
dbe717ef 1804
193a53d9 1805#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
1806template
1807class Sized_dynobj<32, true>;
193a53d9 1808#endif
dbe717ef 1809
193a53d9 1810#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
1811template
1812class Sized_dynobj<64, false>;
193a53d9 1813#endif
dbe717ef 1814
193a53d9 1815#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
1816template
1817class Sized_dynobj<64, true>;
193a53d9 1818#endif
dbe717ef 1819
193a53d9 1820#ifdef HAVE_TARGET_32_LITTLE
14b31740
ILT
1821template
1822void
91da9340 1823Versions::symbol_section_contents<32, false>(
46fe1623 1824 const Symbol_table*,
91da9340
ILT
1825 const Stringpool*,
1826 unsigned int,
1827 const std::vector<Symbol*>&,
1828 unsigned char**,
7d1a9ebb 1829 unsigned int*) const;
193a53d9 1830#endif
14b31740 1831
193a53d9 1832#ifdef HAVE_TARGET_32_BIG
14b31740
ILT
1833template
1834void
91da9340 1835Versions::symbol_section_contents<32, true>(
46fe1623 1836 const Symbol_table*,
91da9340
ILT
1837 const Stringpool*,
1838 unsigned int,
1839 const std::vector<Symbol*>&,
1840 unsigned char**,
7d1a9ebb 1841 unsigned int*) const;
193a53d9 1842#endif
14b31740 1843
193a53d9 1844#ifdef HAVE_TARGET_64_LITTLE
14b31740
ILT
1845template
1846void
91da9340 1847Versions::symbol_section_contents<64, false>(
46fe1623 1848 const Symbol_table*,
91da9340
ILT
1849 const Stringpool*,
1850 unsigned int,
1851 const std::vector<Symbol*>&,
1852 unsigned char**,
7d1a9ebb 1853 unsigned int*) const;
193a53d9 1854#endif
14b31740 1855
193a53d9 1856#ifdef HAVE_TARGET_64_BIG
14b31740
ILT
1857template
1858void
91da9340 1859Versions::symbol_section_contents<64, true>(
46fe1623 1860 const Symbol_table*,
91da9340
ILT
1861 const Stringpool*,
1862 unsigned int,
1863 const std::vector<Symbol*>&,
1864 unsigned char**,
7d1a9ebb 1865 unsigned int*) const;
193a53d9 1866#endif
14b31740 1867
193a53d9 1868#ifdef HAVE_TARGET_32_LITTLE
14b31740
ILT
1869template
1870void
91da9340
ILT
1871Versions::def_section_contents<32, false>(
1872 const Stringpool*,
1873 unsigned char**,
1874 unsigned int*,
7d1a9ebb 1875 unsigned int*) const;
193a53d9 1876#endif
14b31740 1877
193a53d9 1878#ifdef HAVE_TARGET_32_BIG
14b31740
ILT
1879template
1880void
91da9340
ILT
1881Versions::def_section_contents<32, true>(
1882 const Stringpool*,
1883 unsigned char**,
1884 unsigned int*,
7d1a9ebb 1885 unsigned int*) const;
193a53d9 1886#endif
14b31740 1887
193a53d9 1888#ifdef HAVE_TARGET_64_LITTLE
14b31740
ILT
1889template
1890void
91da9340
ILT
1891Versions::def_section_contents<64, false>(
1892 const Stringpool*,
1893 unsigned char**,
1894 unsigned int*,
7d1a9ebb 1895 unsigned int*) const;
193a53d9 1896#endif
14b31740 1897
193a53d9 1898#ifdef HAVE_TARGET_64_BIG
14b31740
ILT
1899template
1900void
91da9340
ILT
1901Versions::def_section_contents<64, true>(
1902 const Stringpool*,
1903 unsigned char**,
1904 unsigned int*,
7d1a9ebb 1905 unsigned int*) const;
193a53d9 1906#endif
14b31740 1907
193a53d9 1908#ifdef HAVE_TARGET_32_LITTLE
14b31740
ILT
1909template
1910void
91da9340
ILT
1911Versions::need_section_contents<32, false>(
1912 const Stringpool*,
1913 unsigned char**,
1914 unsigned int*,
7d1a9ebb 1915 unsigned int*) const;
193a53d9 1916#endif
14b31740 1917
193a53d9 1918#ifdef HAVE_TARGET_32_BIG
14b31740
ILT
1919template
1920void
91da9340
ILT
1921Versions::need_section_contents<32, true>(
1922 const Stringpool*,
1923 unsigned char**,
1924 unsigned int*,
7d1a9ebb 1925 unsigned int*) const;
193a53d9 1926#endif
14b31740 1927
193a53d9 1928#ifdef HAVE_TARGET_64_LITTLE
14b31740
ILT
1929template
1930void
91da9340
ILT
1931Versions::need_section_contents<64, false>(
1932 const Stringpool*,
1933 unsigned char**,
1934 unsigned int*,
7d1a9ebb 1935 unsigned int*) const;
193a53d9 1936#endif
14b31740 1937
193a53d9 1938#ifdef HAVE_TARGET_64_BIG
14b31740
ILT
1939template
1940void
91da9340
ILT
1941Versions::need_section_contents<64, true>(
1942 const Stringpool*,
1943 unsigned char**,
1944 unsigned int*,
7d1a9ebb 1945 unsigned int*) const;
193a53d9 1946#endif
14b31740 1947
dbe717ef 1948} // End namespace gold.
This page took 0.354019 seconds and 4 git commands to generate.