Fix info-shared.exp testcase to expect the leading `.' found on ppc64's symbols.
[deliverable/binutils-gdb.git] / gold / gdb-index.cc
CommitLineData
c1027032
CC
1// gdb-index.cc -- generate .gdb_index section for fast debug lookup
2
3// Copyright 2012 Free Software Foundation, Inc.
4// Written by Cary Coutant <ccoutant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include "gdb-index.h"
26#include "dwarf_reader.h"
27#include "dwarf.h"
28#include "object.h"
29#include "output.h"
30#include "demangle.h"
31
32namespace gold
33{
34
35const int gdb_index_version = 5;
36
37// Sizes of various records in the .gdb_index section.
38const int gdb_index_offset_size = 4;
39const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
40const int gdb_index_cu_size = 16;
41const int gdb_index_tu_size = 24;
42const int gdb_index_addr_size = 16 + gdb_index_offset_size;
43const int gdb_index_sym_size = 2 * gdb_index_offset_size;
44
45// This class manages the hashed symbol table for the .gdb_index section.
46// It is essentially equivalent to the hashtab implementation in libiberty,
47// but is copied into gdb sources and here for compatibility because its
48// data structure is exposed on disk.
49
50template <typename T>
51class Gdb_hashtab
52{
53 public:
54 Gdb_hashtab()
55 : size_(0), capacity_(0), hashtab_(NULL)
56 { }
57
58 ~Gdb_hashtab()
59 {
60 for (size_t i = 0; i < this->capacity_; ++i)
61 if (this->hashtab_[i] != NULL)
62 delete this->hashtab_[i];
63 delete[] this->hashtab_;
64 }
65
66 // Add a symbol.
67 T*
68 add(T* symbol)
69 {
70 // Resize the hash table if necessary.
71 if (4 * this->size_ / 3 >= this->capacity_)
72 this->expand();
73
74 T** slot = this->find_slot(symbol);
75 if (*slot == NULL)
76 {
77 ++this->size_;
78 *slot = symbol;
79 }
80
81 return *slot;
82 }
83
84 // Return the current size.
85 size_t
86 size() const
87 { return this->size_; }
88
89 // Return the current capacity.
90 size_t
91 capacity() const
92 { return this->capacity_; }
93
94 // Return the contents of slot N.
95 T*
96 operator[](size_t n)
97 { return this->hashtab_[n]; }
98
99 private:
100 // Find a symbol in the hash table, or return an empty slot if
101 // the symbol is not in the table.
102 T**
103 find_slot(T* symbol)
104 {
105 unsigned int index = symbol->hash() & (this->capacity_ - 1);
106 unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;
107
108 for (;;)
109 {
110 if (this->hashtab_[index] == NULL
111 || this->hashtab_[index]->equal(symbol))
112 return &this->hashtab_[index];
113 index = (index + step) & (this->capacity_ - 1);
114 }
115 }
116
117 // Expand the hash table.
118 void
119 expand()
120 {
121 if (this->capacity_ == 0)
122 {
123 // Allocate the hash table for the first time.
124 this->capacity_ = Gdb_hashtab::initial_size;
125 this->hashtab_ = new T*[this->capacity_];
126 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
127 }
128 else
129 {
130 // Expand and rehash.
131 unsigned int old_cap = this->capacity_;
132 T** old_hashtab = this->hashtab_;
133 this->capacity_ *= 2;
134 this->hashtab_ = new T*[this->capacity_];
135 memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
136 for (size_t i = 0; i < old_cap; ++i)
137 {
138 if (old_hashtab[i] != NULL)
139 {
140 T** slot = this->find_slot(old_hashtab[i]);
141 *slot = old_hashtab[i];
142 }
143 }
144 delete[] old_hashtab;
145 }
146 }
147
148 // Initial size of the hash table; must be a power of 2.
149 static const int initial_size = 1024;
150 size_t size_;
151 size_t capacity_;
152 T** hashtab_;
153};
154
155// The hash function for strings in the mapped index. This is copied
156// directly from gdb/dwarf2read.c.
157
158static unsigned int
159mapped_index_string_hash(const unsigned char* str)
160{
161 unsigned int r = 0;
162 unsigned char c;
163
164 while ((c = *str++) != 0)
165 {
166 if (gdb_index_version >= 5)
167 c = tolower (c);
168 r = r * 67 + c - 113;
169 }
170
171 return r;
172}
173
174// A specialization of Dwarf_info_reader, for building the .gdb_index.
175
176class Gdb_index_info_reader : public Dwarf_info_reader
177{
178 public:
179 Gdb_index_info_reader(bool is_type_unit,
180 Relobj* object,
181 const unsigned char* symbols,
182 off_t symbols_size,
183 unsigned int shndx,
184 unsigned int reloc_shndx,
185 unsigned int reloc_type,
186 Gdb_index* gdb_index)
187 : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
188 reloc_shndx, reloc_type),
189 gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
190 { }
191
192 ~Gdb_index_info_reader()
193 { this->clear_declarations(); }
194
195 // Print usage statistics.
196 static void
197 print_stats();
198
199 protected:
200 // Visit a compilation unit.
201 virtual void
202 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
203
204 // Visit a type unit.
205 virtual void
908794a9
CC
206 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
207 uint64_t signature, Dwarf_die*);
c1027032
CC
208
209 private:
210 // A map for recording DIEs we've seen that may be referred to be
211 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
212 // The map is indexed by a DIE offset within the compile unit.
213 // PARENT_OFFSET_ is the offset of the DIE that represents the
214 // outer context, and NAME_ is a pointer to a component of the
215 // fully-qualified name.
216 // Normally, the names we point to are in a string table, so we don't
217 // have to manage them, but when we have a fully-qualified name
218 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
219 // indicate a string that we are managing.
220 struct Declaration_pair
221 {
222 Declaration_pair(off_t parent_offset, const char* name)
223 : parent_offset_(parent_offset), name_(name)
224 { }
225
226 off_t parent_offset_;
227 const char* name_;
228 };
229 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;
230
231 // Visit a top-level DIE.
232 void
233 visit_top_die(Dwarf_die* die);
234
235 // Visit the children of a DIE.
236 void
237 visit_children(Dwarf_die* die, Dwarf_die* context);
238
239 // Visit a DIE.
240 void
241 visit_die(Dwarf_die* die, Dwarf_die* context);
242
243 // Visit the children of a DIE.
244 void
245 visit_children_for_decls(Dwarf_die* die);
246
247 // Visit a DIE.
248 void
249 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);
250
251 // Guess a fully-qualified name for a class type, based on member function
252 // linkage names.
253 std::string
254 guess_full_class_name(Dwarf_die* die);
255
256 // Add a declaration DIE to the table of declarations.
257 void
258 add_declaration(Dwarf_die* die, Dwarf_die* context);
259
260 // Add a declaration whose fully-qualified name is already known.
261 void
262 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);
263
264 // Return the context for a DIE whose parent is at DIE_OFFSET.
265 std::string
266 get_context(off_t die_offset);
267
268 // Construct a fully-qualified name for DIE.
269 std::string
270 get_qualified_name(Dwarf_die* die, Dwarf_die* context);
271
272 // Record the address ranges for a compilation unit.
273 void
274 record_cu_ranges(Dwarf_die* die);
275
234d4ab8 276 // Wrapper for read_pubtable.
c1027032
CC
277 bool
278 read_pubnames_and_pubtypes(Dwarf_die* die);
279
234d4ab8
SA
280 // Read the .debug_pubnames and .debug_pubtypes tables.
281 bool
282 read_pubtable(Dwarf_pubnames_table* table, off_t offset);
283
c1027032
CC
284 // Clear the declarations map.
285 void
286 clear_declarations();
287
288 // The Gdb_index section.
289 Gdb_index* gdb_index_;
290 // The current CU index (negative for a TU).
291 int cu_index_;
292 // The language of the current CU or TU.
293 unsigned int cu_language_;
294 // Map from DIE offset to (parent offset, name) pair,
295 // for DW_AT_specification.
296 Declaration_map declarations_;
297
298 // Statistics.
299 // Total number of DWARF compilation units processed.
300 static unsigned int dwarf_cu_count;
301 // Number of DWARF compilation units with pubnames/pubtypes.
302 static unsigned int dwarf_cu_nopubnames_count;
303 // Total number of DWARF type units processed.
304 static unsigned int dwarf_tu_count;
305 // Number of DWARF type units with pubnames/pubtypes.
306 static unsigned int dwarf_tu_nopubnames_count;
307};
308
309// Total number of DWARF compilation units processed.
310unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
311// Number of DWARF compilation units without pubnames/pubtypes.
312unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
313// Total number of DWARF type units processed.
314unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
315// Number of DWARF type units without pubnames/pubtypes.
316unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;
317
318// Process a compilation unit and parse its child DIE.
319
320void
321Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
322 Dwarf_die* root_die)
323{
324 ++Gdb_index_info_reader::dwarf_cu_count;
325 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
326 this->visit_top_die(root_die);
327}
328
329// Process a type unit and parse its child DIE.
330
331void
908794a9
CC
332Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
333 off_t type_offset, uint64_t signature,
334 Dwarf_die* root_die)
c1027032
CC
335{
336 ++Gdb_index_info_reader::dwarf_tu_count;
337 // Use a negative index to flag this as a TU instead of a CU.
338 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
339 signature);
340 this->visit_top_die(root_die);
341}
342
343// Process a top-level DIE.
344// For compile_unit DIEs, record the address ranges. For all
345// interesting tags, add qualified names to the symbol table
346// and process interesting children. We may need to process
347// certain children just for saving declarations that might be
348// referenced by later DIEs with a DW_AT_specification attribute.
349
350void
351Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
352{
353 this->clear_declarations();
354
355 switch (die->tag())
356 {
357 case elfcpp::DW_TAG_compile_unit:
358 case elfcpp::DW_TAG_type_unit:
359 this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
360 // Check for languages that require specialized knowledge to
361 // construct fully-qualified names, that we don't yet support.
362 if (this->cu_language_ == elfcpp::DW_LANG_Ada83
363 || this->cu_language_ == elfcpp::DW_LANG_Fortran77
364 || this->cu_language_ == elfcpp::DW_LANG_Fortran90
365 || this->cu_language_ == elfcpp::DW_LANG_Java
366 || this->cu_language_ == elfcpp::DW_LANG_Ada95
367 || this->cu_language_ == elfcpp::DW_LANG_Fortran95)
368 {
369 gold_warning(_("%s: --gdb-index currently supports "
370 "only C and C++ languages"),
371 this->object()->name().c_str());
372 return;
373 }
374 if (die->tag() == elfcpp::DW_TAG_compile_unit)
375 this->record_cu_ranges(die);
376 // If there is a pubnames and/or pubtypes section for this
377 // compilation unit, use those; otherwise, parse the DWARF
378 // info to extract the names.
379 if (!this->read_pubnames_and_pubtypes(die))
380 {
381 if (die->tag() == elfcpp::DW_TAG_compile_unit)
382 ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
383 else
384 ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
385 this->visit_children(die, NULL);
386 }
387 break;
388 default:
389 // The top level DIE should be one of the above.
390 gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
391 "or DW_TAG_type_unit"),
392 this->object()->name().c_str());
393 return;
394 }
395
396}
397
398// Visit the children of PARENT, looking for symbols to add to the index.
399// CONTEXT points to the DIE to use for constructing the qualified name --
400// NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.
401
402void
403Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
404{
405 off_t next_offset = 0;
406 for (off_t die_offset = parent->child_offset();
407 die_offset != 0;
408 die_offset = next_offset)
409 {
410 Dwarf_die die(this, die_offset, parent);
411 if (die.tag() == 0)
412 break;
413 this->visit_die(&die, context);
414 next_offset = die.sibling_offset();
415 }
416}
417
418// Visit a child DIE, looking for symbols to add to the index.
419// CONTEXT is the parent DIE, used for constructing the qualified name;
420// it is NULL if the parent DIE is the top-level DIE.
421
422void
423Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
424{
425 switch (die->tag())
426 {
427 case elfcpp::DW_TAG_subprogram:
428 case elfcpp::DW_TAG_constant:
429 case elfcpp::DW_TAG_variable:
430 case elfcpp::DW_TAG_enumerator:
431 case elfcpp::DW_TAG_base_type:
432 if (die->is_declaration())
433 this->add_declaration(die, context);
434 else
435 {
436 // If the DIE is not a declaration, add it to the index.
437 std::string full_name = this->get_qualified_name(die, context);
438 if (!full_name.empty())
439 this->gdb_index_->add_symbol(this->cu_index_, full_name.c_str());
440 }
441 break;
442 case elfcpp::DW_TAG_typedef:
443 case elfcpp::DW_TAG_union_type:
444 case elfcpp::DW_TAG_class_type:
445 case elfcpp::DW_TAG_interface_type:
446 case elfcpp::DW_TAG_structure_type:
447 case elfcpp::DW_TAG_enumeration_type:
448 case elfcpp::DW_TAG_subrange_type:
449 case elfcpp::DW_TAG_namespace:
450 {
451 std::string full_name;
452
453 // For classes at the top level, we need to look for a
454 // member function with a linkage name in order to get
455 // the properly-canonicalized name.
456 if (context == NULL
457 && (die->tag() == elfcpp::DW_TAG_class_type
458 || die->tag() == elfcpp::DW_TAG_structure_type
459 || die->tag() == elfcpp::DW_TAG_union_type))
460 full_name.assign(this->guess_full_class_name(die));
461
462 // Because we will visit the children, we need to add this DIE
463 // to the declarations table.
464 if (full_name.empty())
465 this->add_declaration(die, context);
466 else
467 this->add_declaration_with_full_name(die, full_name.c_str());
468
469 // If the DIE is not a declaration, add it to the index.
470 // Gdb stores a namespace in the index even when it is
471 // a declaration.
472 if (die->tag() == elfcpp::DW_TAG_namespace
473 || !die->is_declaration())
474 {
475 if (full_name.empty())
476 full_name = this->get_qualified_name(die, context);
477 if (!full_name.empty())
478 this->gdb_index_->add_symbol(this->cu_index_,
479 full_name.c_str());
480 }
481
482 // We're interested in the children only for namespaces and
483 // enumeration types. For enumeration types, we do not include
484 // the enumeration tag as part of the full name. For other tags,
485 // visit the children only to collect declarations.
486 if (die->tag() == elfcpp::DW_TAG_namespace
487 || die->tag() == elfcpp::DW_TAG_enumeration_type)
488 this->visit_children(die, die);
489 else
490 this->visit_children_for_decls(die);
491 }
492 break;
493 default:
494 break;
495 }
496}
497
498// Visit the children of PARENT, looking only for declarations that
499// may be referenced by later specification DIEs.
500
501void
502Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
503{
504 off_t next_offset = 0;
505 for (off_t die_offset = parent->child_offset();
506 die_offset != 0;
507 die_offset = next_offset)
508 {
509 Dwarf_die die(this, die_offset, parent);
510 if (die.tag() == 0)
511 break;
512 this->visit_die_for_decls(&die, parent);
513 next_offset = die.sibling_offset();
514 }
515}
516
517// Visit a child DIE, looking only for declarations that
518// may be referenced by later specification DIEs.
519
520void
521Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
522{
523 switch (die->tag())
524 {
525 case elfcpp::DW_TAG_subprogram:
526 case elfcpp::DW_TAG_constant:
527 case elfcpp::DW_TAG_variable:
528 case elfcpp::DW_TAG_enumerator:
529 case elfcpp::DW_TAG_base_type:
530 {
531 if (die->is_declaration())
532 this->add_declaration(die, context);
533 }
534 break;
535 case elfcpp::DW_TAG_typedef:
536 case elfcpp::DW_TAG_union_type:
537 case elfcpp::DW_TAG_class_type:
538 case elfcpp::DW_TAG_interface_type:
539 case elfcpp::DW_TAG_structure_type:
540 case elfcpp::DW_TAG_enumeration_type:
541 case elfcpp::DW_TAG_subrange_type:
542 case elfcpp::DW_TAG_namespace:
543 {
544 if (die->is_declaration())
545 this->add_declaration(die, context);
546 this->visit_children_for_decls(die);
547 }
548 break;
549 default:
550 break;
551 }
552}
553
554// Extract the class name from the linkage name of a member function.
555// This code is adapted from ../gdb/cp-support.c.
556
557#define d_left(dc) (dc)->u.s_binary.left
558#define d_right(dc) (dc)->u.s_binary.right
559
560static char*
561class_name_from_linkage_name(const char* linkage_name)
562{
563 void* storage;
564 struct demangle_component* tree =
565 cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
566 if (tree == NULL)
567 return NULL;
568
569 int done = 0;
570
571 // First strip off any qualifiers, if we have a function or
572 // method.
573 while (!done)
574 switch (tree->type)
575 {
576 case DEMANGLE_COMPONENT_CONST:
577 case DEMANGLE_COMPONENT_RESTRICT:
578 case DEMANGLE_COMPONENT_VOLATILE:
579 case DEMANGLE_COMPONENT_CONST_THIS:
580 case DEMANGLE_COMPONENT_RESTRICT_THIS:
581 case DEMANGLE_COMPONENT_VOLATILE_THIS:
582 case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
583 tree = d_left(tree);
584 break;
585 default:
586 done = 1;
587 break;
588 }
589
590 // If what we have now is a function, discard the argument list.
591 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
592 tree = d_left(tree);
593
594 // If what we have now is a template, strip off the template
595 // arguments. The left subtree may be a qualified name.
596 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
597 tree = d_left(tree);
598
599 // What we have now should be a name, possibly qualified.
600 // Additional qualifiers could live in the left subtree or the right
601 // subtree. Find the last piece.
602 done = 0;
603 struct demangle_component* prev_comp = NULL;
604 struct demangle_component* cur_comp = tree;
605 while (!done)
606 switch (cur_comp->type)
607 {
608 case DEMANGLE_COMPONENT_QUAL_NAME:
609 case DEMANGLE_COMPONENT_LOCAL_NAME:
610 prev_comp = cur_comp;
611 cur_comp = d_right(cur_comp);
612 break;
613 case DEMANGLE_COMPONENT_TEMPLATE:
614 case DEMANGLE_COMPONENT_NAME:
615 case DEMANGLE_COMPONENT_CTOR:
616 case DEMANGLE_COMPONENT_DTOR:
617 case DEMANGLE_COMPONENT_OPERATOR:
618 case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
619 done = 1;
620 break;
621 default:
622 done = 1;
623 cur_comp = NULL;
624 break;
625 }
626
627 char* ret = NULL;
628 if (cur_comp != NULL && prev_comp != NULL)
629 {
630 // We want to discard the rightmost child of PREV_COMP.
631 *prev_comp = *d_left(prev_comp);
632 size_t allocated_size;
633 ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
634 }
635
636 free(storage);
637 return ret;
638}
639
640// Guess a fully-qualified name for a class type, based on member function
641// linkage names. This is needed for class/struct/union types at the
642// top level, because GCC does not always properly embed them within
643// the namespace. As in gdb, we look for a member function with a linkage
644// name and extract the qualified name from the demangled name.
645
646std::string
647Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
648{
649 std::string full_name;
650 off_t next_offset = 0;
651
652 // This routine scans ahead in the DIE structure, possibly advancing
653 // the relocation tracker beyond the current DIE. We need to checkpoint
654 // the tracker and reset it when we're done.
655 uint64_t checkpoint = this->get_reloc_checkpoint();
656
657 for (off_t child_offset = die->child_offset();
658 child_offset != 0;
659 child_offset = next_offset)
660 {
661 Dwarf_die child(this, child_offset, die);
662 if (child.tag() == 0)
663 break;
664 if (child.tag() == elfcpp::DW_TAG_subprogram)
665 {
666 const char* linkage_name = child.linkage_name();
667 if (linkage_name != NULL)
668 {
669 char* guess = class_name_from_linkage_name(linkage_name);
670 if (guess != NULL)
671 {
672 full_name.assign(guess);
673 free(guess);
674 break;
675 }
676 }
677 }
678 next_offset = child.sibling_offset();
679 }
680
681 this->reset_relocs(checkpoint);
682 return full_name;
683}
684
685// Add a declaration DIE to the table of declarations.
686
687void
688Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
689{
690 const char* name = die->name();
691
692 off_t parent_offset = context != NULL ? context->offset() : 0;
693
694 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
695 // attribute, use the parent and name from the earlier declaration.
696 off_t spec = die->specification();
697 if (spec == 0)
698 spec = die->abstract_origin();
699 if (spec > 0)
700 {
701 Declaration_map::iterator it = this->declarations_.find(spec);
702 if (it != this->declarations_.end())
703 {
704 parent_offset = it->second.parent_offset_;
705 name = it->second.name_;
706 }
707 }
708
709 if (name == NULL)
710 {
711 if (die->tag() == elfcpp::DW_TAG_namespace)
712 name = "(anonymous namespace)";
713 else if (die->tag() == elfcpp::DW_TAG_union_type)
714 name = "(anonymous union)";
715 else
716 name = "(unknown)";
717 }
718
719 Declaration_pair decl(parent_offset, name);
720 this->declarations_.insert(std::make_pair(die->offset(), decl));
721}
722
723// Add a declaration whose fully-qualified name is already known.
724// In the case where we had to get the canonical name by demangling
725// a linkage name, this ensures we use that name instead of the one
726// provided in DW_AT_name.
727
728void
729Gdb_index_info_reader::add_declaration_with_full_name(
730 Dwarf_die* die,
731 const char* full_name)
732{
733 // We need to copy the name.
734 int len = strlen(full_name);
735 char* copy = new char[len + 1];
736 memcpy(copy, full_name, len + 1);
737
738 // Flag that we now manage the memory this points to.
739 Declaration_pair decl(-1, copy);
740 this->declarations_.insert(std::make_pair(die->offset(), decl));
741}
742
743// Return the context for a DIE whose parent is at DIE_OFFSET.
744
745std::string
746Gdb_index_info_reader::get_context(off_t die_offset)
747{
748 std::string context;
749 Declaration_map::iterator it = this->declarations_.find(die_offset);
750 if (it != this->declarations_.end())
751 {
752 off_t parent_offset = it->second.parent_offset_;
753 if (parent_offset > 0)
754 {
755 context = get_context(parent_offset);
756 context.append("::");
757 }
758 if (it->second.name_ != NULL)
759 context.append(it->second.name_);
760 }
761 return context;
762}
763
764// Construct the fully-qualified name for DIE.
765
766std::string
767Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
768{
769 std::string full_name;
770 const char* name = die->name();
771
772 off_t parent_offset = context != NULL ? context->offset() : 0;
773
774 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
775 // attribute, use the parent and name from the earlier declaration.
776 off_t spec = die->specification();
777 if (spec == 0)
778 spec = die->abstract_origin();
779 if (spec > 0)
780 {
781 Declaration_map::iterator it = this->declarations_.find(spec);
782 if (it != this->declarations_.end())
783 {
784 parent_offset = it->second.parent_offset_;
785 name = it->second.name_;
786 }
787 }
788
789 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
790 name = "(anonymous namespace)";
791 else if (name == NULL)
792 return full_name;
793
794 // If this is an enumerator constant, skip the immediate parent,
795 // which is the enumeration tag.
796 if (die->tag() == elfcpp::DW_TAG_enumerator)
797 {
798 Declaration_map::iterator it = this->declarations_.find(parent_offset);
799 if (it != this->declarations_.end())
800 parent_offset = it->second.parent_offset_;
801 }
802
803 if (parent_offset > 0)
804 {
805 full_name.assign(this->get_context(parent_offset));
806 full_name.append("::");
807 }
808 full_name.append(name);
809
810 return full_name;
811}
812
813// Record the address ranges for a compilation unit.
814
815void
816Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
817{
818 unsigned int shndx;
819 unsigned int shndx2;
820
821 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
822 if (ranges_offset != -1)
823 {
824 Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
825 if (ranges != NULL)
826 this->gdb_index_->add_address_range_list(this->object(),
827 this->cu_index_, ranges);
828 return;
829 }
830
57923f48
MW
831 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
832 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
833 if (high_pc == -1)
834 {
835 high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
836 high_pc += low_pc;
837 shndx2 = shndx;
838 }
839 if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
c1027032
CC
840 {
841 if (shndx != shndx2)
842 {
843 gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
844 "are in different sections"),
845 this->object()->name().c_str());
846 return;
847 }
848 if (shndx == 0 || this->object()->is_section_included(shndx))
849 {
850 Dwarf_range_list* ranges = new Dwarf_range_list();
851 ranges->add(shndx, low_pc, high_pc);
852 this->gdb_index_->add_address_range_list(this->object(),
853 this->cu_index_, ranges);
854 }
855 }
856}
857
234d4ab8
SA
858// Read table and add the relevant names to the index. Returns true
859// if any names were added.
c1027032
CC
860
861bool
234d4ab8 862Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
c1027032 863{
234d4ab8
SA
864 // If we couldn't read the section when building the cu_pubname_map,
865 // then we won't find any pubnames now.
866 if (table == NULL)
867 return false;
868
869 if (!table->read_header(offset))
870 return false;
871 while (true)
c1027032 872 {
234d4ab8
SA
873 const char* name = table->next_name();
874 if (name == NULL)
875 break;
876
877 this->gdb_index_->add_symbol(this->cu_index_, name);
c1027032 878 }
234d4ab8
SA
879 return true;
880}
881
882// Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
883// Returns TRUE if either a pubnames or pubtypes section was found.
c1027032 884
234d4ab8
SA
885bool
886Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
887{
888 // We use stmt_list_off as a unique identifier for the
889 // compilation unit and its associated type units.
890 unsigned int shndx;
891 off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
892 &shndx);
893 // Look for the attr as either a flag or a ref.
894 off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);
895
896 // Newer versions of GCC generate CUs, but not TUs, with
897 // DW_AT_FORM_flag_present.
898 unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
899 if (offset == -1 && flag == 0)
c1027032 900 {
234d4ab8
SA
901 // Didn't find the attribute.
902 if (die->tag() == elfcpp::DW_TAG_type_unit)
903 {
904 // If die is a TU, then it might correspond to a CU which we
905 // have read. If it does, then no need to read the pubnames.
906 // If it doesn't, then the caller will have to parse the
907 // dies manually to find the names.
908 return this->gdb_index_->pubnames_read(this->object(),
909 stmt_list_off);
910 }
c1027032 911 else
234d4ab8
SA
912 {
913 // No attribute on the CU means that no pubnames were read.
914 return false;
915 }
c1027032
CC
916 }
917
234d4ab8
SA
918 // We found the attribute, so we can check if the corresponding
919 // pubnames have been read.
920 if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
921 return true;
922
923 this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);
924
925 // We have an attribute, and the pubnames haven't been read, so read
926 // them.
927 bool names = false;
928 // In some of the cases, we could rely on the previous value of
929 // offset here, but sorting out which cases complicates the logic
930 // enough that it isn't worth it. So just look up the offset again.
931 offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
932 names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);
933
934 bool types = false;
935 offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
936 types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
937 return names || types;
c1027032
CC
938}
939
940// Clear the declarations map.
941void
942Gdb_index_info_reader::clear_declarations()
943{
944 // Free strings in memory we manage.
945 for (Declaration_map::iterator it = this->declarations_.begin();
946 it != this->declarations_.end();
947 ++it)
948 {
949 if (it->second.parent_offset_ == -1)
950 delete[] it->second.name_;
951 }
952
953 this->declarations_.clear();
954}
955
956// Print usage statistics.
957void
958Gdb_index_info_reader::print_stats()
959{
960 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
961 program_name, Gdb_index_info_reader::dwarf_cu_count);
962 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
963 program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
964 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
965 program_name, Gdb_index_info_reader::dwarf_tu_count);
966 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
967 program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
968}
969
970// Class Gdb_index.
971
972// Construct the .gdb_index section.
973
974Gdb_index::Gdb_index(Output_section* gdb_index_section)
975 : Output_section_data(4),
234d4ab8
SA
976 pubnames_table_(NULL),
977 pubtypes_table_(NULL),
c1027032
CC
978 gdb_index_section_(gdb_index_section),
979 comp_units_(),
980 type_units_(),
981 ranges_(),
982 cu_vector_list_(),
983 cu_vector_offsets_(NULL),
984 stringpool_(),
985 tu_offset_(0),
986 addr_offset_(0),
987 symtab_offset_(0),
988 cu_pool_offset_(0),
989 stringpool_offset_(0),
c891b3f9 990 pubnames_object_(NULL),
234d4ab8 991 stmt_list_offset_(-1)
c1027032
CC
992{
993 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
994}
995
996Gdb_index::~Gdb_index()
997{
998 // Free the memory used by the symbol table.
999 delete this->gdb_symtab_;
1000 // Free the memory used by the CU vectors.
1001 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1002 delete this->cu_vector_list_[i];
1003}
1004
234d4ab8
SA
1005
1006// Scan the pubnames and pubtypes sections and build a map of the
1007// various cus and tus they refer to, so we can process the entries
1008// when we encounter the die for that cu or tu.
1009// Return the just-read table so it can be cached.
1010
1011Dwarf_pubnames_table*
1012Gdb_index::map_pubtable_to_dies(unsigned int attr,
1013 Gdb_index_info_reader* dwinfo,
1014 Relobj* object,
1015 const unsigned char* symbols,
1016 off_t symbols_size)
1017{
1018 uint64_t section_offset = 0;
1019 Dwarf_pubnames_table* table;
1020 Pubname_offset_map* map;
1021
1022 if (attr == elfcpp::DW_AT_GNU_pubnames)
1023 {
1024 table = new Dwarf_pubnames_table(dwinfo, false);
1025 map = &this->cu_pubname_map_;
1026 }
1027 else
1028 {
1029 table = new Dwarf_pubnames_table(dwinfo, true);
1030 map = &this->cu_pubtype_map_;
1031 }
1032
1033 map->clear();
1034 if (!table->read_section(object, symbols, symbols_size))
1035 return NULL;
1036
1037 while (table->read_header(section_offset))
1038 {
1039 map->insert(std::make_pair(table->cu_offset(), section_offset));
1040 section_offset += table->subsection_size();
1041 }
1042
1043 return table;
1044}
1045
1046// Wrapper for map_pubtable_to_dies
1047
1048void
1049Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
1050 Relobj* object,
1051 const unsigned char* symbols,
1052 off_t symbols_size)
1053{
1054 // This is a new object, so reset the relevant variables.
1055 this->pubnames_object_ = object;
1056 this->stmt_list_offset_ = -1;
1057
1058 delete this->pubnames_table_;
1059 this->pubnames_table_
1060 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
1061 object, symbols, symbols_size);
1062 delete this->pubtypes_table_;
1063 this->pubtypes_table_
1064 = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
1065 object, symbols, symbols_size);
1066}
1067
1068// Given a cu_offset, find the associated section of the pubnames
1069// table.
1070
1071off_t
1072Gdb_index::find_pubname_offset(off_t cu_offset)
1073{
1074 Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
1075 if (it != this->cu_pubname_map_.end())
1076 return it->second;
1077 return -1;
1078}
1079
1080// Given a cu_offset, find the associated section of the pubnames
1081// table.
1082
1083off_t
1084Gdb_index::find_pubtype_offset(off_t cu_offset)
1085{
1086 Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
1087 if (it != this->cu_pubtype_map_.end())
1088 return it->second;
1089 return -1;
1090}
1091
c1027032
CC
1092// Scan a .debug_info or .debug_types input section.
1093
1094void
1095Gdb_index::scan_debug_info(bool is_type_unit,
1096 Relobj* object,
1097 const unsigned char* symbols,
1098 off_t symbols_size,
1099 unsigned int shndx,
1100 unsigned int reloc_shndx,
1101 unsigned int reloc_type)
1102{
1103 Gdb_index_info_reader dwinfo(is_type_unit, object,
1104 symbols, symbols_size,
1105 shndx, reloc_shndx,
1106 reloc_type, this);
234d4ab8
SA
1107 if (object != this->pubnames_object_)
1108 map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
c1027032
CC
1109 dwinfo.parse();
1110}
1111
1112// Add a symbol.
1113
1114void
1115Gdb_index::add_symbol(int cu_index, const char* sym_name)
1116{
1117 unsigned int hash = mapped_index_string_hash(
1118 reinterpret_cast<const unsigned char*>(sym_name));
1119 Gdb_symbol* sym = new Gdb_symbol();
1120 this->stringpool_.add(sym_name, true, &sym->name_key);
1121 sym->hashval = hash;
1122 sym->cu_vector_index = 0;
1123
1124 Gdb_symbol* found = this->gdb_symtab_->add(sym);
1125 if (found == sym)
1126 {
1127 // New symbol -- allocate a new CU index vector.
1128 found->cu_vector_index = this->cu_vector_list_.size();
1129 this->cu_vector_list_.push_back(new Cu_vector());
1130 }
1131 else
1132 {
1133 // Found an existing symbol -- append to the existing
1134 // CU index vector.
1135 delete sym;
1136 }
1137
1138 // Add the CU index to the vector list for this symbol,
1139 // if it's not already on the list. We only need to
1140 // check the last added entry.
1141 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
1142 if (cu_vec->size() == 0 || cu_vec->back() != cu_index)
1143 cu_vec->push_back(cu_index);
1144}
1145
234d4ab8
SA
1146// Return TRUE if we have already processed the pubnames associated
1147// with the statement list at the given OFFSET.
c1027032
CC
1148
1149bool
234d4ab8 1150Gdb_index::pubnames_read(const Relobj* object, off_t offset)
c1027032 1151{
c891b3f9 1152 bool ret = (this->pubnames_object_ == object
234d4ab8 1153 && this->stmt_list_offset_ == offset);
c1027032
CC
1154 return ret;
1155}
1156
234d4ab8
SA
1157// Record that we have processed the pubnames associated with the
1158// statement list for OBJECT at the given OFFSET.
c1027032 1159
234d4ab8
SA
1160void
1161Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
c1027032 1162{
234d4ab8
SA
1163 this->pubnames_object_ = object;
1164 this->stmt_list_offset_ = offset;
c1027032
CC
1165}
1166
1167// Set the size of the .gdb_index section.
1168
1169void
1170Gdb_index::set_final_data_size()
1171{
1172 // Finalize the string pool.
1173 this->stringpool_.set_string_offsets();
1174
1175 // Compute the total size of the CU vectors.
1176 // For each CU vector, include one entry for the count at the
1177 // beginning of the vector.
1178 unsigned int cu_vector_count = this->cu_vector_list_.size();
1179 unsigned int cu_vector_size = 0;
1180 this->cu_vector_offsets_ = new off_t[cu_vector_count];
1181 for (unsigned int i = 0; i < cu_vector_count; ++i)
1182 {
1183 Cu_vector* cu_vec = this->cu_vector_list_[i];
1184 cu_vector_offsets_[i] = cu_vector_size;
1185 cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
1186 }
1187
1188 // Assign relative offsets to each portion of the index,
1189 // and find the total size of the section.
1190 section_size_type data_size = gdb_index_hdr_size;
1191 data_size += this->comp_units_.size() * gdb_index_cu_size;
1192 this->tu_offset_ = data_size;
1193 data_size += this->type_units_.size() * gdb_index_tu_size;
1194 this->addr_offset_ = data_size;
1195 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1196 data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
1197 this->symtab_offset_ = data_size;
1198 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
1199 this->cu_pool_offset_ = data_size;
1200 data_size += cu_vector_size;
1201 this->stringpool_offset_ = data_size;
1202 data_size += this->stringpool_.get_strtab_size();
1203
1204 this->set_data_size(data_size);
1205}
1206
1207// Write the data to the file.
1208
1209void
1210Gdb_index::do_write(Output_file* of)
1211{
1212 const off_t off = this->offset();
1213 const off_t oview_size = this->data_size();
1214 unsigned char* const oview = of->get_output_view(off, oview_size);
1215 unsigned char* pov = oview;
1216
1217 // Write the file header.
1218 // (1) Version number.
1219 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
1220 pov += 4;
1221 // (2) Offset of the CU list.
1222 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
1223 pov += 4;
1224 // (3) Offset of the types CU list.
1225 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
1226 pov += 4;
1227 // (4) Offset of the address area.
1228 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
1229 pov += 4;
1230 // (5) Offset of the symbol table.
1231 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
1232 pov += 4;
1233 // (6) Offset of the constant pool.
1234 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
1235 pov += 4;
1236
1237 gold_assert(pov - oview == gdb_index_hdr_size);
1238
1239 // Write the CU list.
1240 unsigned int comp_units_count = this->comp_units_.size();
1241 for (unsigned int i = 0; i < comp_units_count; ++i)
1242 {
1243 const Comp_unit& cu = this->comp_units_[i];
1244 elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
1245 elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
1246 pov += 16;
1247 }
1248
1249 gold_assert(pov - oview == this->tu_offset_);
1250
1251 // Write the types CU list.
1252 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
1253 {
1254 const Type_unit& tu = this->type_units_[i];
1255 elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
1256 elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
1257 elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
1258 pov += 24;
1259 }
1260
1261 gold_assert(pov - oview == this->addr_offset_);
1262
1263 // Write the address area.
1264 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
1265 {
1266 int cu_index = this->ranges_[i].cu_index;
1267 // Translate negative indexes, which refer to a TU, to a
1268 // logical index into a concatenated CU/TU list.
1269 if (cu_index < 0)
1270 cu_index = comp_units_count + (-1 - cu_index);
1271 Relobj* object = this->ranges_[i].object;
1272 const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
1273 for (unsigned int j = 0; j < ranges.size(); ++j)
1274 {
1275 const Dwarf_range_list::Range& range = ranges[j];
1276 uint64_t base = 0;
1277 if (range.shndx > 0)
1278 {
1279 const Output_section* os = object->output_section(range.shndx);
1280 base = (os->address()
1281 + object->output_section_offset(range.shndx));
1282 }
1d509098
CC
1283 elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
1284 elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
1285 base + range.end);
c1027032
CC
1286 elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
1287 pov += 20;
1288 }
1289 }
1290
1291 gold_assert(pov - oview == this->symtab_offset_);
1292
1293 // Write the symbol table.
1294 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
1295 {
1296 const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
1297 section_offset_type name_offset = 0;
1298 unsigned int cu_vector_offset = 0;
1299 if (sym != NULL)
1300 {
1301 name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
1302 + this->stringpool_offset_ - this->cu_pool_offset_);
1303 cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
1304 }
1305 elfcpp::Swap<32, false>::writeval(pov, name_offset);
1306 elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
1307 pov += 8;
1308 }
1309
1310 gold_assert(pov - oview == this->cu_pool_offset_);
1311
1312 // Write the CU vectors into the constant pool.
1313 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
1314 {
1315 Cu_vector* cu_vec = this->cu_vector_list_[i];
1316 elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
1317 pov += 4;
1318 for (unsigned int j = 0; j < cu_vec->size(); ++j)
1319 {
1320 int cu_index = (*cu_vec)[j];
1321 if (cu_index < 0)
1322 cu_index = comp_units_count + (-1 - cu_index);
1323 elfcpp::Swap<32, false>::writeval(pov, cu_index);
1324 pov += 4;
1325 }
1326 }
1327
1328 gold_assert(pov - oview == this->stringpool_offset_);
1329
1330 // Write the strings into the constant pool.
1331 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);
1332
1333 of->write_output_view(off, oview_size, oview);
1334}
1335
1336// Print usage statistics.
1337void
1338Gdb_index::print_stats()
1339{
1340 if (parameters->options().gdb_index())
1341 Gdb_index_info_reader::print_stats();
1342}
1343
1344} // End namespace gold.
This page took 0.140051 seconds and 4 git commands to generate.