*** empty log message ***
[deliverable/binutils-gdb.git] / gold / icf.cc
CommitLineData
ef15dade
ST
1// icf.cc -- Identical Code Folding.
2//
55a2bb35 3// Copyright 2009, 2010 Free Software Foundation, Inc.
ef15dade
ST
4// Written by Sriraman Tallam <tmsriram@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23// Identical Code Folding Algorithm
24// ----------------------------------
25// Detecting identical functions is done here and the basic algorithm
55a2bb35 26// is as follows. A checksum is computed on each foldable section using
ef15dade
ST
27// its contents and relocations. If the symbol name corresponding to
28// a relocation is known it is used to compute the checksum. If the
29// symbol name is not known the stringified name of the object and the
30// section number pointed to by the relocation is used. The checksums
31// are stored as keys in a hash map and a section is identical to some
32// other section if its checksum is already present in the hash map.
33// Checksum collisions are handled by using a multimap and explicitly
34// checking the contents when two sections have the same checksum.
35//
36// However, two functions A and B with identical text but with
55a2bb35
ST
37// relocations pointing to different foldable sections can be identical if
38// the corresponding foldable sections to which their relocations point to
ef15dade
ST
39// turn out to be identical. Hence, this checksumming process must be
40// done repeatedly until convergence is obtained. Here is an example for
41// the following case :
42//
43// int funcA () int funcB ()
44// { {
45// return foo(); return goo();
46// } }
47//
48// The functions funcA and funcB are identical if functions foo() and
49// goo() are identical.
50//
51// Hence, as described above, we repeatedly do the checksumming,
52// assigning identical functions to the same group, until convergence is
53// obtained. Now, we have two different ways to do this depending on how
54// we initialize.
55//
56// Algorithm I :
57// -----------
58// We can start with marking all functions as different and repeatedly do
59// the checksumming. This has the advantage that we do not need to wait
60// for convergence. We can stop at any point and correctness will be
61// guaranteed although not all cases would have been found. However, this
62// has a problem that some cases can never be found even if it is run until
63// convergence. Here is an example with mutually recursive functions :
64//
65// int funcA (int a) int funcB (int a)
66// { {
67// if (a == 1) if (a == 1)
68// return 1; return 1;
69// return 1 + funcB(a - 1); return 1 + funcA(a - 1);
70// } }
71//
72// In this example funcA and funcB are identical and one of them could be
73// folded into the other. However, if we start with assuming that funcA
74// and funcB are not identical, the algorithm, even after it is run to
75// convergence, cannot detect that they are identical. It should be noted
76// that even if the functions were self-recursive, Algorithm I cannot catch
77// that they are identical, at least as is.
78//
79// Algorithm II :
80// ------------
81// Here we start with marking all functions as identical and then repeat
82// the checksumming until convergence. This can detect the above case
83// mentioned above. It can detect all cases that Algorithm I can and more.
84// However, the caveat is that it has to be run to convergence. It cannot
85// be stopped arbitrarily like Algorithm I as correctness cannot be
86// guaranteed. Algorithm II is not implemented.
87//
88// Algorithm I is used because experiments show that about three
89// iterations are more than enough to achieve convergence. Algorithm I can
90// handle recursive calls if it is changed to use a special common symbol
91// for recursive relocs. This seems to be the most common case that
92// Algorithm I could not catch as is. Mutually recursive calls are not
93// frequent and Algorithm I wins because of its ability to be stopped
94// arbitrarily.
95//
96// Caveat with using function pointers :
97// ------------------------------------
98//
99// Programs using function pointer comparisons/checks should use function
100// folding with caution as the result of such comparisons could be different
101// when folding takes place. This could lead to unexpected run-time
102// behaviour.
103//
21bb3914
ST
104// Safe Folding :
105// ------------
106//
107// ICF in safe mode folds only ctors and dtors if their function pointers can
108// never be taken. Also, for X86-64, safe folding uses the relocation
109// type to determine if a function's pointer is taken or not and only folds
110// functions whose pointers are definitely not taken.
111//
112// Caveat with safe folding :
113// ------------------------
114//
115// This applies only to x86_64.
116//
117// Position independent executables are created from PIC objects (compiled
118// with -fPIC) and/or PIE objects (compiled with -fPIE). For PIE objects, the
119// relocation types for function pointer taken and a call are the same.
120// Now, it is not always possible to tell if an object used in the link of
121// a pie executable is a PIC object or a PIE object. Hence, for pie
122// executables, using relocation types to disambiguate function pointers is
123// currently disabled.
124//
125// Further, it is not correct to use safe folding to build non-pie
126// executables using PIC/PIE objects. PIC/PIE objects have different
127// relocation types for function pointers than non-PIC objects, and the
128// current implementation of safe folding does not handle those relocation
129// types. Hence, if used, functions whose pointers are taken could still be
130// folded causing unpredictable run-time behaviour if the pointers were used
131// in comparisons.
132//
133//
ef15dade 134//
55a2bb35 135// How to run : --icf=[safe|all|none]
ef15dade
ST
136// Optional parameters : --icf-iterations <num> --print-icf-sections
137//
138// Performance : Less than 20 % link-time overhead on industry strength
139// applications. Up to 6 % text size reductions.
140
141#include "gold.h"
142#include "object.h"
143#include "gc.h"
144#include "icf.h"
145#include "symtab.h"
146#include "libiberty.h"
032ce4e9 147#include "demangle.h"
ef15dade
ST
148
149namespace gold
150{
151
152// This function determines if a section or a group of identical
153// sections has unique contents. Such unique sections or groups can be
154// declared final and need not be processed any further.
155// Parameters :
156// ID_SECTION : Vector mapping a section index to a Section_id pair.
157// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
158// sections is already known to be unique.
159// SECTION_CONTENTS : Contains the section's text and relocs to sections
160// that cannot be folded. SECTION_CONTENTS are NULL
161// implies that this function is being called for the
162// first time before the first iteration of icf.
163
164static void
165preprocess_for_unique_sections(const std::vector<Section_id>& id_section,
166 std::vector<bool>* is_secn_or_group_unique,
167 std::vector<std::string>* section_contents)
168{
169 Unordered_map<uint32_t, unsigned int> uniq_map;
170 std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool>
171 uniq_map_insert;
172
173 for (unsigned int i = 0; i < id_section.size(); i++)
174 {
175 if ((*is_secn_or_group_unique)[i])
176 continue;
177
178 uint32_t cksum;
179 Section_id secn = id_section[i];
180 section_size_type plen;
181 if (section_contents == NULL)
182 {
183 const unsigned char* contents;
184 contents = secn.first->section_contents(secn.second,
185 &plen,
186 false);
187 cksum = xcrc32(contents, plen, 0xffffffff);
188 }
189 else
190 {
191 const unsigned char* contents_array = reinterpret_cast
192 <const unsigned char*>((*section_contents)[i].c_str());
193 cksum = xcrc32(contents_array, (*section_contents)[i].length(),
194 0xffffffff);
195 }
196 uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i));
197 if (uniq_map_insert.second)
198 {
199 (*is_secn_or_group_unique)[i] = true;
200 }
201 else
202 {
203 (*is_secn_or_group_unique)[i] = false;
204 (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false;
205 }
206 }
207}
208
209// This returns the buffer containing the section's contents, both
210// text and relocs. Relocs are differentiated as those pointing to
211// sections that could be folded and those that cannot. Only relocs
212// pointing to sections that could be folded are recomputed on
213// subsequent invocations of this function.
214// Parameters :
215// FIRST_ITERATION : true if it is the first invocation.
216// SECN : Section for which contents are desired.
217// SECTION_NUM : Unique section number of this section.
218// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
219// to ICF sections.
220// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
221// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
222// sections.
223
224static std::string
225get_section_contents(bool first_iteration,
226 const Section_id& secn,
227 unsigned int section_num,
228 unsigned int* num_tracked_relocs,
229 Symbol_table* symtab,
230 const std::vector<unsigned int>& kept_section_id,
231 std::vector<std::string>* section_contents)
232{
233 section_size_type plen;
234 const unsigned char* contents = NULL;
235
236 if (first_iteration)
237 {
238 contents = secn.first->section_contents(secn.second,
239 &plen,
240 false);
241 }
242
243 // The buffer to hold all the contents including relocs. A checksum
244 // is then computed on this buffer.
245 std::string buffer;
246 std::string icf_reloc_buffer;
247
248 if (num_tracked_relocs)
249 *num_tracked_relocs = 0;
250
251 Icf::Section_list& seclist = symtab->icf()->section_reloc_list();
252 Icf::Symbol_list& symlist = symtab->icf()->symbol_reloc_list();
253 Icf::Addend_list& addendlist = symtab->icf()->addend_reloc_list();
254
255 Icf::Section_list::iterator it_seclist = seclist.find(secn);
256 Icf::Symbol_list::iterator it_symlist = symlist.find(secn);
257 Icf::Addend_list::iterator it_addendlist = addendlist.find(secn);
258
259 buffer.clear();
260 icf_reloc_buffer.clear();
261
262 // Process relocs and put them into the buffer.
263
264 if (it_seclist != seclist.end())
265 {
266 gold_assert(it_symlist != symlist.end());
267 gold_assert(it_addendlist != addendlist.end());
268 Icf::Sections_reachable_list v = it_seclist->second;
269 Icf::Symbol_info s = it_symlist->second;
270 Icf::Addend_info a = it_addendlist->second;
271 Icf::Sections_reachable_list::iterator it_v = v.begin();
272 Icf::Symbol_info::iterator it_s = s.begin();
273 Icf::Addend_info::iterator it_a = a.begin();
274
275 for (; it_v != v.end(); ++it_v, ++it_s, ++it_a)
276 {
277 // ADDEND_STR stores the symbol value and addend, each
278 // atmost 16 hex digits long. it_v points to a pair
279 // where first is the symbol value and second is the
280 // addend.
281 char addend_str[34];
282 snprintf(addend_str, sizeof(addend_str), "%llx %llx",
283 (*it_a).first, (*it_a).second);
284 Section_id reloc_secn(it_v->first, it_v->second);
285
286 // If this reloc turns back and points to the same section,
287 // like a recursive call, use a special symbol to mark this.
288 if (reloc_secn.first == secn.first
289 && reloc_secn.second == secn.second)
290 {
291 if (first_iteration)
292 {
293 buffer.append("R");
294 buffer.append(addend_str);
295 buffer.append("@");
296 }
297 continue;
298 }
299 Icf::Uniq_secn_id_map& section_id_map =
300 symtab->icf()->section_to_int_map();
301 Icf::Uniq_secn_id_map::iterator section_id_map_it =
302 section_id_map.find(reloc_secn);
303 if (section_id_map_it != section_id_map.end())
304 {
305 // This is a reloc to a section that might be folded.
306 if (num_tracked_relocs)
307 (*num_tracked_relocs)++;
308
309 char kept_section_str[10];
310 unsigned int secn_id = section_id_map_it->second;
311 snprintf(kept_section_str, sizeof(kept_section_str), "%u",
312 kept_section_id[secn_id]);
313 if (first_iteration)
314 {
315 buffer.append("ICF_R");
316 buffer.append(addend_str);
317 }
318 icf_reloc_buffer.append(kept_section_str);
319 // Append the addend.
320 icf_reloc_buffer.append(addend_str);
321 icf_reloc_buffer.append("@");
322 }
323 else
324 {
325 // This is a reloc to a section that cannot be folded.
326 // Process it only in the first iteration.
327 if (!first_iteration)
328 continue;
329
330 uint64_t secn_flags = (it_v->first)->section_flags(it_v->second);
331 // This reloc points to a merge section. Hash the
332 // contents of this section.
333 if ((secn_flags & elfcpp::SHF_MERGE) != 0)
334 {
335 uint64_t entsize =
336 (it_v->first)->section_entsize(it_v->second);
337 long long offset = it_a->first + it_a->second;
338 section_size_type secn_len;
339 const unsigned char* str_contents =
340 (it_v->first)->section_contents(it_v->second,
341 &secn_len,
342 false) + offset;
343 if ((secn_flags & elfcpp::SHF_STRINGS) != 0)
344 {
345 // String merge section.
346 const char* str_char =
347 reinterpret_cast<const char*>(str_contents);
348 switch(entsize)
349 {
350 case 1:
351 {
352 buffer.append(str_char);
353 break;
354 }
355 case 2:
356 {
357 const uint16_t* ptr_16 =
358 reinterpret_cast<const uint16_t*>(str_char);
359 unsigned int strlen_16 = 0;
360 // Find the NULL character.
361 while(*(ptr_16 + strlen_16) != 0)
362 strlen_16++;
363 buffer.append(str_char, strlen_16 * 2);
364 }
365 break;
366 case 4:
367 {
368 const uint32_t* ptr_32 =
369 reinterpret_cast<const uint32_t*>(str_char);
370 unsigned int strlen_32 = 0;
371 // Find the NULL character.
372 while(*(ptr_32 + strlen_32) != 0)
373 strlen_32++;
374 buffer.append(str_char, strlen_32 * 4);
375 }
376 break;
377 default:
378 gold_unreachable();
379 }
380 }
381 else
382 {
383 // Use the entsize to determine the length.
384 buffer.append(reinterpret_cast<const
385 char*>(str_contents),
386 entsize);
387 }
388 }
389 else if ((*it_s) != NULL)
390 {
391 // If symbol name is available use that.
392 const char *sym_name = (*it_s)->name();
393 buffer.append(sym_name);
394 // Append the addend.
395 buffer.append(addend_str);
396 buffer.append("@");
397 }
398 else
399 {
400 // Symbol name is not available, like for a local symbol,
401 // use object and section id.
402 buffer.append(it_v->first->name());
403 char secn_id[10];
404 snprintf(secn_id, sizeof(secn_id), "%u",it_v->second);
405 buffer.append(secn_id);
406 // Append the addend.
407 buffer.append(addend_str);
408 buffer.append("@");
409 }
410 }
411 }
412 }
413
414 if (first_iteration)
415 {
416 buffer.append("Contents = ");
417 buffer.append(reinterpret_cast<const char*>(contents), plen);
418 // Store the section contents that dont change to avoid recomputing
419 // during the next call to this function.
420 (*section_contents)[section_num] = buffer;
421 }
422 else
423 {
424 gold_assert(buffer.empty());
425 // Reuse the contents computed in the previous iteration.
426 buffer.append((*section_contents)[section_num]);
427 }
428
429 buffer.append(icf_reloc_buffer);
430 return buffer;
431}
432
433// This function computes a checksum on each section to detect and form
434// groups of identical sections. The first iteration does this for all
435// sections.
436// Further iterations do this only for the kept sections from each group to
437// determine if larger groups of identical sections could be formed. The
438// first section in each group is the kept section for that group.
439//
440// CRC32 is the checksumming algorithm and can have collisions. That is,
441// two sections with different contents can have the same checksum. Hence,
442// a multimap is used to maintain more than one group of checksum
443// identical sections. A section is added to a group only after its
444// contents are explicitly compared with the kept section of the group.
445//
446// Parameters :
447// ITERATION_NUM : Invocation instance of this function.
448// NUM_TRACKED_RELOCS : Vector reference to store the number of relocs
449// to ICF sections.
450// KEPT_SECTION_ID : Vector which maps folded sections to kept sections.
451// ID_SECTION : Vector mapping a section to an unique integer.
452// IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical
453// sectionsis already known to be unique.
454// SECTION_CONTENTS : Store the section's text and relocs to non-ICF
455// sections.
456
457static bool
458match_sections(unsigned int iteration_num,
459 Symbol_table* symtab,
460 std::vector<unsigned int>* num_tracked_relocs,
461 std::vector<unsigned int>* kept_section_id,
462 const std::vector<Section_id>& id_section,
463 std::vector<bool>* is_secn_or_group_unique,
464 std::vector<std::string>* section_contents)
465{
466 Unordered_multimap<uint32_t, unsigned int> section_cksum;
467 std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator,
468 Unordered_multimap<uint32_t, unsigned int>::iterator> key_range;
469 bool converged = true;
470
471 if (iteration_num == 1)
472 preprocess_for_unique_sections(id_section,
473 is_secn_or_group_unique,
474 NULL);
475 else
476 preprocess_for_unique_sections(id_section,
477 is_secn_or_group_unique,
478 section_contents);
479
480 std::vector<std::string> full_section_contents;
481
482 for (unsigned int i = 0; i < id_section.size(); i++)
483 {
484 full_section_contents.push_back("");
485 if ((*is_secn_or_group_unique)[i])
486 continue;
487
488 Section_id secn = id_section[i];
489 std::string this_secn_contents;
490 uint32_t cksum;
491 if (iteration_num == 1)
492 {
493 unsigned int num_relocs = 0;
494 this_secn_contents = get_section_contents(true, secn, i, &num_relocs,
495 symtab, (*kept_section_id),
496 section_contents);
497 (*num_tracked_relocs)[i] = num_relocs;
498 }
499 else
500 {
501 if ((*kept_section_id)[i] != i)
502 {
503 // This section is already folded into something. See
504 // if it should point to a different kept section.
505 unsigned int kept_section = (*kept_section_id)[i];
506 if (kept_section != (*kept_section_id)[kept_section])
507 {
508 (*kept_section_id)[i] = (*kept_section_id)[kept_section];
509 }
510 continue;
511 }
512 this_secn_contents = get_section_contents(false, secn, i, NULL,
513 symtab, (*kept_section_id),
514 section_contents);
515 }
516
517 const unsigned char* this_secn_contents_array =
518 reinterpret_cast<const unsigned char*>(this_secn_contents.c_str());
519 cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(),
520 0xffffffff);
521 size_t count = section_cksum.count(cksum);
522
523 if (count == 0)
524 {
525 // Start a group with this cksum.
526 section_cksum.insert(std::make_pair(cksum, i));
527 full_section_contents[i] = this_secn_contents;
528 }
529 else
530 {
531 key_range = section_cksum.equal_range(cksum);
532 Unordered_multimap<uint32_t, unsigned int>::iterator it;
533 // Search all the groups with this cksum for a match.
534 for (it = key_range.first; it != key_range.second; ++it)
535 {
536 unsigned int kept_section = it->second;
537 if (full_section_contents[kept_section].length()
538 != this_secn_contents.length())
539 continue;
540 if (memcmp(full_section_contents[kept_section].c_str(),
541 this_secn_contents.c_str(),
542 this_secn_contents.length()) != 0)
543 continue;
544 (*kept_section_id)[i] = kept_section;
545 converged = false;
546 break;
547 }
548 if (it == key_range.second)
549 {
550 // Create a new group for this cksum.
551 section_cksum.insert(std::make_pair(cksum, i));
552 full_section_contents[i] = this_secn_contents;
553 }
554 }
555 // If there are no relocs to foldable sections do not process
556 // this section any further.
557 if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0)
558 (*is_secn_or_group_unique)[i] = true;
559 }
560
561 return converged;
562}
563
032ce4e9
ST
564// During safe icf (--icf=safe), only fold functions that are ctors or dtors.
565// This function returns true if the mangled function name is a ctor or a
566// dtor.
567
568static bool
569is_function_ctor_or_dtor(const char* mangled_func_name)
570{
571 if ((is_prefix_of("_ZN", mangled_func_name)
572 || is_prefix_of("_ZZ", mangled_func_name))
573 && (is_gnu_v3_mangled_ctor(mangled_func_name)
574 || is_gnu_v3_mangled_dtor(mangled_func_name)))
575 {
576 return true;
577 }
578 return false;
579}
ef15dade
ST
580
581// This is the main ICF function called in gold.cc. This does the
582// initialization and calls match_sections repeatedly (twice by default)
583// which computes the crc checksums and detects identical functions.
584
585void
586Icf::find_identical_sections(const Input_objects* input_objects,
587 Symbol_table* symtab)
588{
589 unsigned int section_num = 0;
2ea97941 590 std::vector<unsigned int> num_tracked_relocs;
ef15dade
ST
591 std::vector<bool> is_secn_or_group_unique;
592 std::vector<std::string> section_contents;
21bb3914 593 const Target& target = parameters->target();
ef15dade
ST
594
595 // Decide which sections are possible candidates first.
596
597 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
598 p != input_objects->relobj_end();
599 ++p)
600 {
601 for (unsigned int i = 0;i < (*p)->shnum(); ++i)
602 {
032ce4e9 603 const char* section_name = (*p)->section_name(i).c_str();
55a2bb35 604 if (!is_section_foldable_candidate(section_name))
ef15dade
ST
605 continue;
606 if (!(*p)->is_section_included(i))
607 continue;
608 if (parameters->options().gc_sections()
609 && symtab->gc()->is_section_garbage(*p, i))
610 continue;
21bb3914
ST
611 const char* mangled_func_name = strrchr(section_name, '.');
612 gold_assert(mangled_func_name != NULL);
55a2bb35
ST
613 // With --icf=safe, check if the mangled function name is a ctor
614 // or a dtor. The mangled function name can be obtained from the
615 // section name by stripping the section prefix.
032ce4e9 616 if (parameters->options().icf_safe_folding()
21bb3914
ST
617 && !is_function_ctor_or_dtor(mangled_func_name + 1)
618 && (!target.can_check_for_function_pointers()
619 || section_has_function_pointers(*p, i)))
620 {
621 continue;
622 }
ef15dade
ST
623 this->id_section_.push_back(Section_id(*p, i));
624 this->section_id_[Section_id(*p, i)] = section_num;
625 this->kept_section_id_.push_back(section_num);
2ea97941 626 num_tracked_relocs.push_back(0);
ef15dade
ST
627 is_secn_or_group_unique.push_back(false);
628 section_contents.push_back("");
629 section_num++;
630 }
631 }
632
633 unsigned int num_iterations = 0;
634
635 // Default number of iterations to run ICF is 2.
636 unsigned int max_iterations = (parameters->options().icf_iterations() > 0)
637 ? parameters->options().icf_iterations()
638 : 2;
639
640 bool converged = false;
641
642 while (!converged && (num_iterations < max_iterations))
643 {
644 num_iterations++;
645 converged = match_sections(num_iterations, symtab,
2ea97941 646 &num_tracked_relocs, &this->kept_section_id_,
ef15dade
ST
647 this->id_section_, &is_secn_or_group_unique,
648 &section_contents);
649 }
650
651 if (parameters->options().print_icf_sections())
652 {
653 if (converged)
654 gold_info(_("%s: ICF Converged after %u iteration(s)"),
655 program_name, num_iterations);
656 else
657 gold_info(_("%s: ICF stopped after %u iteration(s)"),
658 program_name, num_iterations);
659 }
660
48c187ce
ST
661 // Unfold --keep-unique symbols.
662 for (options::String_set::const_iterator p =
663 parameters->options().keep_unique_begin();
664 p != parameters->options().keep_unique_end();
665 ++p)
666 {
667 const char* name = p->c_str();
668 Symbol* sym = symtab->lookup(name);
ef5e0cb1
ST
669 if (sym == NULL)
670 {
671 gold_warning(_("Could not find symbol %s to unfold\n"), name);
672 }
673 else if (sym->source() == Symbol::FROM_OBJECT
674 && !sym->object()->is_dynamic())
48c187ce
ST
675 {
676 Object* obj = sym->object();
677 bool is_ordinary;
678 unsigned int shndx = sym->shndx(&is_ordinary);
679 if (is_ordinary)
680 {
681 this->unfold_section(obj, shndx);
682 }
683 }
684
685 }
686
ef15dade
ST
687 this->icf_ready();
688}
689
48c187ce
ST
690// Unfolds the section denoted by OBJ and SHNDX if folded.
691
692void
693Icf::unfold_section(Object* obj, unsigned int shndx)
694{
695 Section_id secn(obj, shndx);
696 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
697 if (it == this->section_id_.end())
698 return;
699 unsigned int section_num = it->second;
700 unsigned int kept_section_id = this->kept_section_id_[section_num];
701 if (kept_section_id != section_num)
702 this->kept_section_id_[section_num] = section_num;
703}
704
ef15dade
ST
705// This function determines if the section corresponding to the
706// given object and index is folded based on if the kept section
707// is different from this section.
708
709bool
710Icf::is_section_folded(Object* obj, unsigned int shndx)
711{
712 Section_id secn(obj, shndx);
713 Uniq_secn_id_map::iterator it = this->section_id_.find(secn);
714 if (it == this->section_id_.end())
715 return false;
716 unsigned int section_num = it->second;
717 unsigned int kept_section_id = this->kept_section_id_[section_num];
718 return kept_section_id != section_num;
719}
720
721// This function returns the folded section for the given section.
722
723Section_id
724Icf::get_folded_section(Object* dup_obj, unsigned int dup_shndx)
725{
726 Section_id dup_secn(dup_obj, dup_shndx);
727 Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn);
728 gold_assert(it != this->section_id_.end());
729 unsigned int section_num = it->second;
730 unsigned int kept_section_id = this->kept_section_id_[section_num];
731 Section_id folded_section = this->id_section_[kept_section_id];
732 return folded_section;
733}
734
735} // End of namespace gold.
This page took 0.07545 seconds and 4 git commands to generate.