daily update
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
a2fb1b05 5#include <cstring>
54dc6425 6#include <algorithm>
a2fb1b05
ILT
7#include <iostream>
8#include <utility>
9
10#include "output.h"
f6ce93d6 11#include "symtab.h"
a3ad94ed 12#include "dynobj.h"
a2fb1b05
ILT
13#include "layout.h"
14
15namespace gold
16{
17
92e059d8 18// Layout_task_runner methods.
a2fb1b05
ILT
19
20// Lay out the sections. This is called after all the input objects
21// have been read.
22
23void
92e059d8 24Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 25{
12e14209
ILT
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
61ba1cf9
ILT
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 36 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
37}
38
39// Layout methods.
40
54dc6425 41Layout::Layout(const General_options& options)
a3ad94ed 42 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
61ba1cf9 43 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed
ILT
44 unattached_section_list_(), special_output_list_(),
45 tls_segment_(NULL), symtab_section_(NULL), dynsym_section_(NULL)
54dc6425
ILT
46{
47 // Make space for more than enough segments for a typical file.
48 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
49 this->segment_list_.reserve(12);
50
51 // We expect three unattached Output_data objects: the file header,
52 // the segment headers, and the section headers.
53 this->special_output_list_.reserve(3);
54dc6425
ILT
54}
55
a2fb1b05
ILT
56// Hash a key we use to look up an output section mapping.
57
58size_t
59Layout::Hash_key::operator()(const Layout::Key& k) const
60{
f0641a0b 61 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
62}
63
64// Whether to include this section in the link.
65
66template<int size, bool big_endian>
67bool
68Layout::include_section(Object*, const char*,
69 const elfcpp::Shdr<size, big_endian>& shdr)
70{
71 // Some section types are never linked. Some are only linked when
72 // doing a relocateable link.
73 switch (shdr.get_sh_type())
74 {
75 case elfcpp::SHT_NULL:
76 case elfcpp::SHT_SYMTAB:
77 case elfcpp::SHT_DYNSYM:
78 case elfcpp::SHT_STRTAB:
79 case elfcpp::SHT_HASH:
80 case elfcpp::SHT_DYNAMIC:
81 case elfcpp::SHT_SYMTAB_SHNDX:
82 return false;
83
84 case elfcpp::SHT_RELA:
85 case elfcpp::SHT_REL:
86 case elfcpp::SHT_GROUP:
87 return this->options_.is_relocatable();
88
89 default:
90 // FIXME: Handle stripping debug sections here.
91 return true;
92 }
93}
94
ead1e424 95// Return an output section named NAME, or NULL if there is none.
a2fb1b05 96
a2fb1b05 97Output_section*
ead1e424 98Layout::find_output_section(const char* name) const
a2fb1b05 99{
ead1e424
ILT
100 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
101 p != this->section_name_map_.end();
102 ++p)
f0641a0b 103 if (strcmp(p->second->name(), name) == 0)
ead1e424
ILT
104 return p->second;
105 return NULL;
106}
a2fb1b05 107
ead1e424
ILT
108// Return an output segment of type TYPE, with segment flags SET set
109// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 110
ead1e424
ILT
111Output_segment*
112Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
113 elfcpp::Elf_Word clear) const
114{
115 for (Segment_list::const_iterator p = this->segment_list_.begin();
116 p != this->segment_list_.end();
117 ++p)
118 if (static_cast<elfcpp::PT>((*p)->type()) == type
119 && ((*p)->flags() & set) == set
120 && ((*p)->flags() & clear) == 0)
121 return *p;
122 return NULL;
123}
a2fb1b05 124
ead1e424
ILT
125// Return the output section to use for section NAME with type TYPE
126// and section flags FLAGS.
a2fb1b05 127
ead1e424 128Output_section*
f0641a0b
ILT
129Layout::get_output_section(const char* name, Stringpool::Key name_key,
130 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424
ILT
131{
132 // We should ignore some flags.
133 flags &= ~ (elfcpp::SHF_INFO_LINK
134 | elfcpp::SHF_LINK_ORDER
135 | elfcpp::SHF_GROUP);
a2fb1b05 136
f0641a0b 137 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
138 const std::pair<Key, Output_section*> v(key, NULL);
139 std::pair<Section_name_map::iterator, bool> ins(
140 this->section_name_map_.insert(v));
141
a2fb1b05 142 if (!ins.second)
ead1e424 143 return ins.first->second;
a2fb1b05
ILT
144 else
145 {
146 // This is the first time we've seen this name/type/flags
147 // combination.
ead1e424 148 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 149 ins.first->second = os;
ead1e424 150 return os;
a2fb1b05 151 }
ead1e424
ILT
152}
153
154// Return the output section to use for input section SHNDX, with name
155// NAME, with header HEADER, from object OBJECT. Set *OFF to the
156// offset of this input section without the output section.
157
158template<int size, bool big_endian>
159Output_section*
f6ce93d6 160Layout::layout(Relobj* object, unsigned int shndx, const char* name,
ead1e424
ILT
161 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
162{
163 if (!this->include_section(object, name, shdr))
164 return NULL;
165
166 // If we are not doing a relocateable link, choose the name to use
167 // for the output section.
168 size_t len = strlen(name);
169 if (!this->options_.is_relocatable())
170 name = Layout::output_section_name(name, &len);
171
172 // FIXME: Handle SHF_OS_NONCONFORMING here.
173
174 // Canonicalize the section name.
f0641a0b
ILT
175 Stringpool::Key name_key;
176 name = this->namepool_.add(name, len, &name_key);
ead1e424
ILT
177
178 // Find the output section. The output section is selected based on
179 // the section name, type, and flags.
f0641a0b
ILT
180 Output_section* os = this->get_output_section(name, name_key,
181 shdr.get_sh_type(),
ead1e424 182 shdr.get_sh_flags());
a2fb1b05
ILT
183
184 // FIXME: Handle SHF_LINK_ORDER somewhere.
185
ead1e424 186 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
187
188 return os;
189}
190
ead1e424
ILT
191// Add POSD to an output section using NAME, TYPE, and FLAGS.
192
193void
194Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
195 elfcpp::Elf_Xword flags,
196 Output_section_data* posd)
197{
198 // Canonicalize the name.
f0641a0b
ILT
199 Stringpool::Key name_key;
200 name = this->namepool_.add(name, &name_key);
ead1e424 201
f0641a0b 202 Output_section* os = this->get_output_section(name, name_key, type, flags);
ead1e424
ILT
203 os->add_output_section_data(posd);
204}
205
a2fb1b05
ILT
206// Map section flags to segment flags.
207
208elfcpp::Elf_Word
209Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
210{
211 elfcpp::Elf_Word ret = elfcpp::PF_R;
212 if ((flags & elfcpp::SHF_WRITE) != 0)
213 ret |= elfcpp::PF_W;
214 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
215 ret |= elfcpp::PF_X;
216 return ret;
217}
218
219// Make a new Output_section, and attach it to segments as
220// appropriate.
221
222Output_section*
223Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
224 elfcpp::Elf_Xword flags)
225{
ead1e424 226 Output_section* os = new Output_section(name, type, flags, true);
a3ad94ed 227 this->section_list_.push_back(os);
a2fb1b05
ILT
228
229 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 230 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
231 else
232 {
233 // This output section goes into a PT_LOAD segment.
234
235 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
236
237 // The only thing we really care about for PT_LOAD segments is
238 // whether or not they are writable, so that is how we search
239 // for them. People who need segments sorted on some other
240 // basis will have to wait until we implement a mechanism for
241 // them to describe the segments they want.
242
243 Segment_list::const_iterator p;
244 for (p = this->segment_list_.begin();
245 p != this->segment_list_.end();
246 ++p)
247 {
248 if ((*p)->type() == elfcpp::PT_LOAD
249 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
250 {
75f65a3e 251 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
252 break;
253 }
254 }
255
256 if (p == this->segment_list_.end())
257 {
258 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
259 seg_flags);
260 this->segment_list_.push_back(oseg);
75f65a3e 261 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
262 }
263
264 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
265 // segment.
266 if (type == elfcpp::SHT_NOTE)
267 {
268 // See if we already have an equivalent PT_NOTE segment.
269 for (p = this->segment_list_.begin();
270 p != segment_list_.end();
271 ++p)
272 {
273 if ((*p)->type() == elfcpp::PT_NOTE
274 && (((*p)->flags() & elfcpp::PF_W)
275 == (seg_flags & elfcpp::PF_W)))
276 {
75f65a3e 277 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
278 break;
279 }
280 }
281
282 if (p == this->segment_list_.end())
283 {
284 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
285 seg_flags);
286 this->segment_list_.push_back(oseg);
75f65a3e 287 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
288 }
289 }
54dc6425
ILT
290
291 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 292 // segment. There can only be one such segment.
54dc6425
ILT
293 if ((flags & elfcpp::SHF_TLS) != 0)
294 {
92e059d8 295 if (this->tls_segment_ == NULL)
54dc6425 296 {
92e059d8
ILT
297 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
298 seg_flags);
299 this->segment_list_.push_back(this->tls_segment_);
54dc6425 300 }
92e059d8 301 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 302 }
a2fb1b05
ILT
303 }
304
305 return os;
306}
307
a3ad94ed
ILT
308// Create the dynamic sections which are needed before we read the
309// relocs.
310
311void
312Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
313 Symbol_table* symtab)
314{
315 if (!input_objects->any_dynamic())
316 return;
317
318 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
319 this->dynamic_section_ = this->make_output_section(dynamic_name,
320 elfcpp::SHT_DYNAMIC,
321 (elfcpp::SHF_ALLOC
322 | elfcpp::SHF_WRITE));
323
324 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC",
325 this->dynamic_section_, 0, 0,
326 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
327 elfcpp::STV_HIDDEN, 0, false, false);
328}
329
75f65a3e
ILT
330// Find the first read-only PT_LOAD segment, creating one if
331// necessary.
54dc6425 332
75f65a3e
ILT
333Output_segment*
334Layout::find_first_load_seg()
54dc6425 335{
75f65a3e
ILT
336 for (Segment_list::const_iterator p = this->segment_list_.begin();
337 p != this->segment_list_.end();
338 ++p)
339 {
340 if ((*p)->type() == elfcpp::PT_LOAD
341 && ((*p)->flags() & elfcpp::PF_R) != 0
342 && ((*p)->flags() & elfcpp::PF_W) == 0)
343 return *p;
344 }
345
346 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
347 this->segment_list_.push_back(load_seg);
348 return load_seg;
54dc6425
ILT
349}
350
351// Finalize the layout. When this is called, we have created all the
352// output sections and all the output segments which are based on
353// input sections. We have several things to do, and we have to do
354// them in the right order, so that we get the right results correctly
355// and efficiently.
356
357// 1) Finalize the list of output segments and create the segment
358// table header.
359
360// 2) Finalize the dynamic symbol table and associated sections.
361
362// 3) Determine the final file offset of all the output segments.
363
364// 4) Determine the final file offset of all the SHF_ALLOC output
365// sections.
366
75f65a3e
ILT
367// 5) Create the symbol table sections and the section name table
368// section.
369
370// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
371// value and make a final determination of which symbols are going
372// into the output symbol table.
373
54dc6425
ILT
374// 7) Create the section table header.
375
376// 8) Determine the final file offset of all the output sections which
377// are not SHF_ALLOC, including the section table header.
378
379// 9) Finalize the ELF file header.
380
75f65a3e
ILT
381// This function returns the size of the output file.
382
383off_t
384Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425 385{
a3ad94ed
ILT
386 const Target* const target = input_objects->target();
387 const int size = target->get_size();
dbe717ef
ILT
388
389 Output_segment* phdr_seg = NULL;
54dc6425
ILT
390 if (input_objects->any_dynamic())
391 {
dbe717ef
ILT
392 // There was a dynamic object in the link. We need to create
393 // some information for the dynamic linker.
394
395 // Create the PT_PHDR segment which will hold the program
396 // headers.
397 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
398 this->segment_list_.push_back(phdr_seg);
399
a3ad94ed
ILT
400 // This holds the dynamic tags.
401 Output_data_dynamic* odyn;
402 odyn = new Output_data_dynamic(input_objects->target(),
403 &this->dynpool_);
404
dbe717ef
ILT
405 // Create the dynamic symbol table, including the hash table,
406 // the dynamic relocations, and the version sections.
a3ad94ed 407 this->create_dynamic_symtab(target, odyn, symtab);
dbe717ef
ILT
408
409 // Create the .interp section to hold the name of the
410 // interpreter, and put it in a PT_INTERP segment.
a3ad94ed
ILT
411 this->create_interp(target);
412
413 // Finish the .dynamic section to hold the dynamic data, and put
414 // it in a PT_DYNAMIC segment.
415 this->finish_dynamic_section(input_objects, symtab, odyn);
54dc6425
ILT
416 }
417
418 // FIXME: Handle PT_GNU_STACK.
419
75f65a3e
ILT
420 Output_segment* load_seg = this->find_first_load_seg();
421
422 // Lay out the segment headers.
a3ad94ed 423 bool big_endian = target->is_big_endian();
75f65a3e 424 Output_segment_headers* segment_headers;
61ba1cf9
ILT
425 segment_headers = new Output_segment_headers(size, big_endian,
426 this->segment_list_);
75f65a3e 427 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 428 this->special_output_list_.push_back(segment_headers);
dbe717ef
ILT
429 if (phdr_seg != NULL)
430 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
431
432 // Lay out the file header.
433 Output_file_header* file_header;
434 file_header = new Output_file_header(size,
61ba1cf9 435 big_endian,
75f65a3e 436 this->options_,
a3ad94ed 437 target,
75f65a3e
ILT
438 symtab,
439 segment_headers);
440 load_seg->add_initial_output_data(file_header);
61ba1cf9 441 this->special_output_list_.push_back(file_header);
75f65a3e 442
ead1e424
ILT
443 // We set the output section indexes in set_segment_offsets and
444 // set_section_offsets.
445 unsigned int shndx = 1;
446
447 // Set the file offsets of all the segments, and all the sections
448 // they contain.
a3ad94ed 449 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e
ILT
450
451 // Create the symbol table sections.
452 // FIXME: We don't need to do this if we are stripping symbols.
75f65a3e 453 Output_section* ostrtab;
61ba1cf9 454 this->create_symtab_sections(size, input_objects, symtab, &off,
a3ad94ed 455 &ostrtab);
75f65a3e
ILT
456
457 // Create the .shstrtab section.
458 Output_section* shstrtab_section = this->create_shstrtab();
459
460 // Set the file offsets of all the sections not associated with
461 // segments.
ead1e424
ILT
462 off = this->set_section_offsets(off, &shndx);
463
464 // Now the section index of OSTRTAB is set.
a3ad94ed 465 this->symtab_section_->set_link(ostrtab->out_shndx());
75f65a3e
ILT
466
467 // Create the section table header.
61ba1cf9 468 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
469
470 file_header->set_section_info(oshdrs, shstrtab_section);
471
472 // Now we know exactly where everything goes in the output file.
a3ad94ed 473 Output_data::layout_complete();
75f65a3e
ILT
474
475 return off;
476}
477
478// Return whether SEG1 should be before SEG2 in the output file. This
479// is based entirely on the segment type and flags. When this is
480// called the segment addresses has normally not yet been set.
481
482bool
483Layout::segment_precedes(const Output_segment* seg1,
484 const Output_segment* seg2)
485{
486 elfcpp::Elf_Word type1 = seg1->type();
487 elfcpp::Elf_Word type2 = seg2->type();
488
489 // The single PT_PHDR segment is required to precede any loadable
490 // segment. We simply make it always first.
491 if (type1 == elfcpp::PT_PHDR)
492 {
a3ad94ed 493 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
494 return true;
495 }
496 if (type2 == elfcpp::PT_PHDR)
497 return false;
498
499 // The single PT_INTERP segment is required to precede any loadable
500 // segment. We simply make it always second.
501 if (type1 == elfcpp::PT_INTERP)
502 {
a3ad94ed 503 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
504 return true;
505 }
506 if (type2 == elfcpp::PT_INTERP)
507 return false;
508
509 // We then put PT_LOAD segments before any other segments.
510 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
511 return true;
512 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
513 return false;
514
92e059d8
ILT
515 // We put the PT_TLS segment last, because that is where the dynamic
516 // linker expects to find it (this is just for efficiency; other
517 // positions would also work correctly).
518 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
519 return false;
520 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
521 return true;
522
75f65a3e
ILT
523 const elfcpp::Elf_Word flags1 = seg1->flags();
524 const elfcpp::Elf_Word flags2 = seg2->flags();
525
526 // The order of non-PT_LOAD segments is unimportant. We simply sort
527 // by the numeric segment type and flags values. There should not
528 // be more than one segment with the same type and flags.
529 if (type1 != elfcpp::PT_LOAD)
530 {
531 if (type1 != type2)
532 return type1 < type2;
a3ad94ed 533 gold_assert(flags1 != flags2);
75f65a3e
ILT
534 return flags1 < flags2;
535 }
536
537 // We sort PT_LOAD segments based on the flags. Readonly segments
538 // come before writable segments. Then executable segments come
539 // before non-executable segments. Then the unlikely case of a
540 // non-readable segment comes before the normal case of a readable
541 // segment. If there are multiple segments with the same type and
542 // flags, we require that the address be set, and we sort by
543 // virtual address and then physical address.
544 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
545 return (flags1 & elfcpp::PF_W) == 0;
546 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
547 return (flags1 & elfcpp::PF_X) != 0;
548 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
549 return (flags1 & elfcpp::PF_R) == 0;
550
551 uint64_t vaddr1 = seg1->vaddr();
552 uint64_t vaddr2 = seg2->vaddr();
553 if (vaddr1 != vaddr2)
554 return vaddr1 < vaddr2;
555
556 uint64_t paddr1 = seg1->paddr();
557 uint64_t paddr2 = seg2->paddr();
a3ad94ed 558 gold_assert(paddr1 != paddr2);
75f65a3e
ILT
559 return paddr1 < paddr2;
560}
561
ead1e424
ILT
562// Set the file offsets of all the segments, and all the sections they
563// contain. They have all been created. LOAD_SEG must be be laid out
564// first. Return the offset of the data to follow.
75f65a3e
ILT
565
566off_t
ead1e424
ILT
567Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
568 unsigned int *pshndx)
75f65a3e
ILT
569{
570 // Sort them into the final order.
54dc6425
ILT
571 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
572 Layout::Compare_segments());
573
75f65a3e
ILT
574 // Find the PT_LOAD segments, and set their addresses and offsets
575 // and their section's addresses and offsets.
576 uint64_t addr = target->text_segment_address();
577 off_t off = 0;
578 bool was_readonly = false;
579 for (Segment_list::iterator p = this->segment_list_.begin();
580 p != this->segment_list_.end();
581 ++p)
582 {
583 if ((*p)->type() == elfcpp::PT_LOAD)
584 {
585 if (load_seg != NULL && load_seg != *p)
a3ad94ed 586 gold_unreachable();
75f65a3e
ILT
587 load_seg = NULL;
588
589 // If the last segment was readonly, and this one is not,
590 // then skip the address forward one page, maintaining the
591 // same position within the page. This lets us store both
592 // segments overlapping on a single page in the file, but
593 // the loader will put them on different pages in memory.
594
595 uint64_t orig_addr = addr;
596 uint64_t orig_off = off;
597
598 uint64_t aligned_addr = addr;
599 uint64_t abi_pagesize = target->abi_pagesize();
600 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
601 {
ead1e424 602 uint64_t align = (*p)->addralign();
75f65a3e 603
ead1e424 604 addr = align_address(addr, align);
75f65a3e
ILT
605 aligned_addr = addr;
606 if ((addr & (abi_pagesize - 1)) != 0)
607 addr = addr + abi_pagesize;
608 }
609
ead1e424 610 unsigned int shndx_hold = *pshndx;
75f65a3e 611 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 612 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
613
614 // Now that we know the size of this segment, we may be able
615 // to save a page in memory, at the cost of wasting some
616 // file space, by instead aligning to the start of a new
617 // page. Here we use the real machine page size rather than
618 // the ABI mandated page size.
619
620 if (aligned_addr != addr)
621 {
622 uint64_t common_pagesize = target->common_pagesize();
623 uint64_t first_off = (common_pagesize
624 - (aligned_addr
625 & (common_pagesize - 1)));
626 uint64_t last_off = new_addr & (common_pagesize - 1);
627 if (first_off > 0
628 && last_off > 0
629 && ((aligned_addr & ~ (common_pagesize - 1))
630 != (new_addr & ~ (common_pagesize - 1)))
631 && first_off + last_off <= common_pagesize)
632 {
ead1e424
ILT
633 *pshndx = shndx_hold;
634 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 635 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 636 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
637 }
638 }
639
640 addr = new_addr;
641
642 if (((*p)->flags() & elfcpp::PF_W) == 0)
643 was_readonly = true;
644 }
645 }
646
647 // Handle the non-PT_LOAD segments, setting their offsets from their
648 // section's offsets.
649 for (Segment_list::iterator p = this->segment_list_.begin();
650 p != this->segment_list_.end();
651 ++p)
652 {
653 if ((*p)->type() != elfcpp::PT_LOAD)
654 (*p)->set_offset();
655 }
656
657 return off;
658}
659
660// Set the file offset of all the sections not associated with a
661// segment.
662
663off_t
ead1e424 664Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e 665{
a3ad94ed
ILT
666 for (Section_list::iterator p = this->unattached_section_list_.begin();
667 p != this->unattached_section_list_.end();
75f65a3e
ILT
668 ++p)
669 {
ead1e424
ILT
670 (*p)->set_out_shndx(*pshndx);
671 ++*pshndx;
61ba1cf9
ILT
672 if ((*p)->offset() != -1)
673 continue;
ead1e424 674 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
675 (*p)->set_address(0, off);
676 off += (*p)->data_size();
677 }
678 return off;
679}
680
681// Create the symbol table sections.
682
683void
61ba1cf9 684Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 685 Symbol_table* symtab,
61ba1cf9 686 off_t* poff,
75f65a3e
ILT
687 Output_section** postrtab)
688{
61ba1cf9
ILT
689 int symsize;
690 unsigned int align;
691 if (size == 32)
692 {
693 symsize = elfcpp::Elf_sizes<32>::sym_size;
694 align = 4;
695 }
696 else if (size == 64)
697 {
698 symsize = elfcpp::Elf_sizes<64>::sym_size;
699 align = 8;
700 }
701 else
a3ad94ed 702 gold_unreachable();
61ba1cf9
ILT
703
704 off_t off = *poff;
ead1e424 705 off = align_address(off, align);
61ba1cf9
ILT
706 off_t startoff = off;
707
708 // Save space for the dummy symbol at the start of the section. We
709 // never bother to write this out--it will just be left as zero.
710 off += symsize;
c06b7b0b 711 unsigned int local_symbol_index = 1;
61ba1cf9 712
a3ad94ed
ILT
713 // Add STT_SECTION symbols for each Output section which needs one.
714 for (Section_list::iterator p = this->section_list_.begin();
715 p != this->section_list_.end();
716 ++p)
717 {
718 if (!(*p)->needs_symtab_index())
719 (*p)->set_symtab_index(-1U);
720 else
721 {
722 (*p)->set_symtab_index(local_symbol_index);
723 ++local_symbol_index;
724 off += symsize;
725 }
726 }
727
f6ce93d6
ILT
728 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
729 p != input_objects->relobj_end();
75f65a3e
ILT
730 ++p)
731 {
732 Task_lock_obj<Object> tlo(**p);
c06b7b0b
ILT
733 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
734 off,
735 &this->sympool_);
736 off += (index - local_symbol_index) * symsize;
737 local_symbol_index = index;
75f65a3e
ILT
738 }
739
c06b7b0b 740 unsigned int local_symcount = local_symbol_index;
a3ad94ed 741 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 742
c06b7b0b 743 off = symtab->finalize(local_symcount, off, &this->sympool_);
75f65a3e 744
61ba1cf9
ILT
745 this->sympool_.set_string_offsets();
746
f0641a0b 747 const char* symtab_name = this->namepool_.add(".symtab", NULL);
a3ad94ed
ILT
748 Output_section* osymtab = this->make_output_section(symtab_name,
749 elfcpp::SHT_SYMTAB,
750 0);
751 this->symtab_section_ = osymtab;
752
753 Output_section_data* pos = new Output_data_space(off - startoff,
754 align);
755 osymtab->add_output_section_data(pos);
61ba1cf9 756
f0641a0b 757 const char* strtab_name = this->namepool_.add(".strtab", NULL);
a3ad94ed
ILT
758 Output_section* ostrtab = this->make_output_section(strtab_name,
759 elfcpp::SHT_STRTAB,
760 0);
761
762 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
763 ostrtab->add_output_section_data(pstr);
61ba1cf9
ILT
764
765 osymtab->set_address(0, startoff);
61ba1cf9
ILT
766 osymtab->set_info(local_symcount);
767 osymtab->set_entsize(symsize);
61ba1cf9
ILT
768
769 *poff = off;
61ba1cf9 770 *postrtab = ostrtab;
75f65a3e
ILT
771}
772
773// Create the .shstrtab section, which holds the names of the
774// sections. At the time this is called, we have created all the
775// output sections except .shstrtab itself.
776
777Output_section*
778Layout::create_shstrtab()
779{
780 // FIXME: We don't need to create a .shstrtab section if we are
781 // stripping everything.
782
f0641a0b 783 const char* name = this->namepool_.add(".shstrtab", NULL);
75f65a3e 784
61ba1cf9
ILT
785 this->namepool_.set_string_offsets();
786
a3ad94ed 787 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 788
a3ad94ed
ILT
789 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
790 os->add_output_section_data(posd);
75f65a3e
ILT
791
792 return os;
793}
794
795// Create the section headers. SIZE is 32 or 64. OFF is the file
796// offset.
797
798Output_section_headers*
61ba1cf9 799Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
800{
801 Output_section_headers* oshdrs;
61ba1cf9 802 oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
a3ad94ed 803 this->unattached_section_list_,
61ba1cf9 804 &this->namepool_);
ead1e424 805 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 806 oshdrs->set_address(0, off);
61ba1cf9
ILT
807 off += oshdrs->data_size();
808 *poff = off;
809 this->special_output_list_.push_back(oshdrs);
75f65a3e 810 return oshdrs;
54dc6425
ILT
811}
812
dbe717ef
ILT
813// Create the dynamic symbol table.
814
815void
a3ad94ed
ILT
816Layout::create_dynamic_symtab(const Target* target, Output_data_dynamic* odyn,
817 Symbol_table* symtab)
dbe717ef 818{
a3ad94ed
ILT
819 // Count all the symbols in the dynamic symbol table, and set the
820 // dynamic symbol indexes.
dbe717ef 821
a3ad94ed
ILT
822 // Skip symbol 0, which is always all zeroes.
823 unsigned int index = 1;
dbe717ef 824
a3ad94ed
ILT
825 // Add STT_SECTION symbols for each Output section which needs one.
826 for (Section_list::iterator p = this->section_list_.begin();
827 p != this->section_list_.end();
828 ++p)
829 {
830 if (!(*p)->needs_dynsym_index())
831 (*p)->set_dynsym_index(-1U);
832 else
833 {
834 (*p)->set_dynsym_index(index);
835 ++index;
836 }
837 }
838
839 // FIXME: Some targets apparently require local symbols in the
840 // dynamic symbol table. Here is where we will have to count them,
841 // and set the dynamic symbol indexes, and add the names to
842 // this->dynpool_.
843
844 unsigned int local_symcount = index;
845
846 std::vector<Symbol*> dynamic_symbols;
847
848 // FIXME: We have to tell set_dynsym_indexes whether the
849 // -E/--export-dynamic option was used.
850 index = symtab->set_dynsym_indexes(index, &dynamic_symbols,
851 &this->dynpool_);
852
853 int symsize;
854 unsigned int align;
855 const int size = target->get_size();
856 if (size == 32)
857 {
858 symsize = elfcpp::Elf_sizes<32>::sym_size;
859 align = 4;
860 }
861 else if (size == 64)
862 {
863 symsize = elfcpp::Elf_sizes<64>::sym_size;
864 align = 8;
865 }
866 else
867 gold_unreachable();
868
869 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
870 Output_section* dynsym = this->make_output_section(dynsym_name,
871 elfcpp::SHT_DYNSYM,
872 elfcpp::SHF_ALLOC);
873
874 Output_section_data* odata = new Output_data_space(index * symsize,
875 align);
876 dynsym->add_output_section_data(odata);
877
878 dynsym->set_info(local_symcount);
879 dynsym->set_entsize(symsize);
880 dynsym->set_addralign(align);
881
882 this->dynsym_section_ = dynsym;
883
884 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
885 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
886
887 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
888 Output_section* dynstr = this->make_output_section(dynstr_name,
889 elfcpp::SHT_STRTAB,
890 elfcpp::SHF_ALLOC);
891
892 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
893 dynstr->add_output_section_data(strdata);
894
895 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
896 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
897
898 // FIXME: We need an option to create a GNU hash table.
899
900 unsigned char* phash;
901 unsigned int hashlen;
902 Dynobj::create_elf_hash_table(target, dynamic_symbols, local_symcount,
903 &phash, &hashlen);
904
905 const char* hash_name = this->namepool_.add(".hash", NULL);
906 Output_section* hashsec = this->make_output_section(hash_name,
907 elfcpp::SHT_HASH,
908 elfcpp::SHF_ALLOC);
909
910 Output_section_data* hashdata = new Output_data_const_buffer(phash,
911 hashlen,
912 align);
913 hashsec->add_output_section_data(hashdata);
914
915 hashsec->set_entsize(4);
916 // FIXME: .hash should link to .dynsym.
917
918 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
919}
920
921// Create the .interp section and PT_INTERP segment.
922
923void
924Layout::create_interp(const Target* target)
925{
926 const char* interp = this->options_.dynamic_linker();
927 if (interp == NULL)
928 {
929 interp = target->dynamic_linker();
a3ad94ed 930 gold_assert(interp != NULL);
dbe717ef
ILT
931 }
932
933 size_t len = strlen(interp) + 1;
934
935 Output_section_data* odata = new Output_data_const(interp, len, 1);
936
937 const char* interp_name = this->namepool_.add(".interp", NULL);
938 Output_section* osec = this->make_output_section(interp_name,
939 elfcpp::SHT_PROGBITS,
940 elfcpp::SHF_ALLOC);
941 osec->add_output_section_data(odata);
942
943 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
944 this->segment_list_.push_back(oseg);
945 oseg->add_initial_output_section(osec, elfcpp::PF_R);
946}
947
a3ad94ed
ILT
948// Finish the .dynamic section and PT_DYNAMIC segment.
949
950void
951Layout::finish_dynamic_section(const Input_objects* input_objects,
952 const Symbol_table* symtab,
953 Output_data_dynamic* odyn)
954{
955 this->dynamic_section_->add_output_section_data(odyn);
956
957 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
958 elfcpp::PF_R | elfcpp::PF_W);
959 this->segment_list_.push_back(oseg);
960 oseg->add_initial_output_section(this->dynamic_section_,
961 elfcpp::PF_R | elfcpp::PF_W);
962
963 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
964 p != input_objects->dynobj_end();
965 ++p)
966 {
967 // FIXME: Handle --as-needed.
968 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
969 }
970
971 // FIXME: Support --init and --fini.
972 Symbol* sym = symtab->lookup("_init");
973 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
974 odyn->add_symbol(elfcpp::DT_INIT, sym);
975
976 sym = symtab->lookup("_fini");
977 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
978 odyn->add_symbol(elfcpp::DT_FINI, sym);
979
980 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
981}
982
a2fb1b05
ILT
983// The mapping of .gnu.linkonce section names to real section names.
984
ead1e424 985#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
986const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
987{
988 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
989 MAPPING_INIT("t", ".text"),
990 MAPPING_INIT("r", ".rodata"),
991 MAPPING_INIT("d", ".data"),
992 MAPPING_INIT("b", ".bss"),
993 MAPPING_INIT("s", ".sdata"),
994 MAPPING_INIT("sb", ".sbss"),
995 MAPPING_INIT("s2", ".sdata2"),
996 MAPPING_INIT("sb2", ".sbss2"),
997 MAPPING_INIT("wi", ".debug_info"),
998 MAPPING_INIT("td", ".tdata"),
999 MAPPING_INIT("tb", ".tbss"),
1000 MAPPING_INIT("lr", ".lrodata"),
1001 MAPPING_INIT("l", ".ldata"),
1002 MAPPING_INIT("lb", ".lbss"),
1003};
1004#undef MAPPING_INIT
1005
1006const int Layout::linkonce_mapping_count =
1007 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1008
1009// Return the name of the output section to use for a .gnu.linkonce
1010// section. This is based on the default ELF linker script of the old
1011// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1012// to ".text". Set *PLEN to the length of the name. *PLEN is
1013// initialized to the length of NAME.
a2fb1b05
ILT
1014
1015const char*
ead1e424 1016Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1017{
1018 const char* s = name + sizeof(".gnu.linkonce") - 1;
1019 if (*s != '.')
1020 return name;
1021 ++s;
1022 const Linkonce_mapping* plm = linkonce_mapping;
1023 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1024 {
1025 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1026 {
1027 *plen = plm->tolen;
1028 return plm->to;
1029 }
a2fb1b05
ILT
1030 }
1031 return name;
1032}
1033
ead1e424
ILT
1034// Choose the output section name to use given an input section name.
1035// Set *PLEN to the length of the name. *PLEN is initialized to the
1036// length of NAME.
1037
1038const char*
1039Layout::output_section_name(const char* name, size_t* plen)
1040{
1041 if (Layout::is_linkonce(name))
1042 {
1043 // .gnu.linkonce sections are laid out as though they were named
1044 // for the sections are placed into.
1045 return Layout::linkonce_output_name(name, plen);
1046 }
1047
1048 // If the section name has no '.', or only an initial '.', we use
1049 // the name unchanged (i.e., ".text" is unchanged).
1050
1051 // Otherwise, if the section name does not include ".rel", we drop
1052 // the last '.' and everything that follows (i.e., ".text.XXX"
1053 // becomes ".text").
1054
1055 // Otherwise, if the section name has zero or one '.' after the
1056 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1057 // unchanged).
1058
1059 // Otherwise, we drop the last '.' and everything that follows
1060 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1061
1062 const char* s = name;
1063 if (*s == '.')
1064 ++s;
1065 const char* sdot = strchr(s, '.');
1066 if (sdot == NULL)
1067 return name;
1068
1069 const char* srel = strstr(s, ".rel");
1070 if (srel == NULL)
1071 {
1072 *plen = sdot - name;
1073 return name;
1074 }
1075
1076 sdot = strchr(srel + 1, '.');
1077 if (sdot == NULL)
1078 return name;
1079 sdot = strchr(sdot + 1, '.');
1080 if (sdot == NULL)
1081 return name;
1082
1083 *plen = sdot - name;
1084 return name;
1085}
1086
a2fb1b05
ILT
1087// Record the signature of a comdat section, and return whether to
1088// include it in the link. If GROUP is true, this is a regular
1089// section group. If GROUP is false, this is a group signature
1090// derived from the name of a linkonce section. We want linkonce
1091// signatures and group signatures to block each other, but we don't
1092// want a linkonce signature to block another linkonce signature.
1093
1094bool
1095Layout::add_comdat(const char* signature, bool group)
1096{
1097 std::string sig(signature);
1098 std::pair<Signatures::iterator, bool> ins(
ead1e424 1099 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
1100
1101 if (ins.second)
1102 {
1103 // This is the first time we've seen this signature.
1104 return true;
1105 }
1106
1107 if (ins.first->second)
1108 {
1109 // We've already seen a real section group with this signature.
1110 return false;
1111 }
1112 else if (group)
1113 {
1114 // This is a real section group, and we've already seen a
1115 // linkonce section with tihs signature. Record that we've seen
1116 // a section group, and don't include this section group.
1117 ins.first->second = true;
1118 return false;
1119 }
1120 else
1121 {
1122 // We've already seen a linkonce section and this is a linkonce
1123 // section. These don't block each other--this may be the same
1124 // symbol name with different section types.
1125 return true;
1126 }
1127}
1128
61ba1cf9
ILT
1129// Write out data not associated with a section or the symbol table.
1130
1131void
a3ad94ed
ILT
1132Layout::write_data(const Symbol_table* symtab, const Target* target,
1133 Output_file* of) const
61ba1cf9 1134{
a3ad94ed
ILT
1135 const Output_section* symtab_section = this->symtab_section_;
1136 for (Section_list::const_iterator p = this->section_list_.begin();
1137 p != this->section_list_.end();
1138 ++p)
1139 {
1140 if ((*p)->needs_symtab_index())
1141 {
1142 gold_assert(symtab_section != NULL);
1143 unsigned int index = (*p)->symtab_index();
1144 gold_assert(index > 0 && index != -1U);
1145 off_t off = (symtab_section->offset()
1146 + index * symtab_section->entsize());
1147 symtab->write_section_symbol(target, *p, of, off);
1148 }
1149 }
1150
1151 const Output_section* dynsym_section = this->dynsym_section_;
1152 for (Section_list::const_iterator p = this->section_list_.begin();
1153 p != this->section_list_.end();
1154 ++p)
1155 {
1156 if ((*p)->needs_dynsym_index())
1157 {
1158 gold_assert(dynsym_section != NULL);
1159 unsigned int index = (*p)->dynsym_index();
1160 gold_assert(index > 0 && index != -1U);
1161 off_t off = (dynsym_section->offset()
1162 + index * dynsym_section->entsize());
1163 symtab->write_section_symbol(target, *p, of, off);
1164 }
1165 }
1166
1167 // Write out the Output_sections. Most won't have anything to
1168 // write, since most of the data will come from input sections which
1169 // are handled elsewhere. But some Output_sections do have
1170 // Output_data.
1171 for (Section_list::const_iterator p = this->section_list_.begin();
1172 p != this->section_list_.end();
1173 ++p)
1174 (*p)->write(of);
1175
1176 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
1177 for (Data_list::const_iterator p = this->special_output_list_.begin();
1178 p != this->special_output_list_.end();
1179 ++p)
1180 (*p)->write(of);
1181}
1182
1183// Write_data_task methods.
1184
1185// We can always run this task.
1186
1187Task::Is_runnable_type
1188Write_data_task::is_runnable(Workqueue*)
1189{
1190 return IS_RUNNABLE;
1191}
1192
1193// We need to unlock FINAL_BLOCKER when finished.
1194
1195Task_locker*
1196Write_data_task::locks(Workqueue* workqueue)
1197{
1198 return new Task_locker_block(*this->final_blocker_, workqueue);
1199}
1200
1201// Run the task--write out the data.
1202
1203void
1204Write_data_task::run(Workqueue*)
1205{
a3ad94ed 1206 this->layout_->write_data(this->symtab_, this->target_, this->of_);
61ba1cf9
ILT
1207}
1208
1209// Write_symbols_task methods.
1210
1211// We can always run this task.
1212
1213Task::Is_runnable_type
1214Write_symbols_task::is_runnable(Workqueue*)
1215{
1216 return IS_RUNNABLE;
1217}
1218
1219// We need to unlock FINAL_BLOCKER when finished.
1220
1221Task_locker*
1222Write_symbols_task::locks(Workqueue* workqueue)
1223{
1224 return new Task_locker_block(*this->final_blocker_, workqueue);
1225}
1226
1227// Run the task--write out the symbols.
1228
1229void
1230Write_symbols_task::run(Workqueue*)
1231{
1232 this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
1233}
1234
92e059d8 1235// Close_task_runner methods.
61ba1cf9
ILT
1236
1237// Run the task--close the file.
1238
1239void
92e059d8 1240Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
1241{
1242 this->of_->close();
1243}
1244
a2fb1b05
ILT
1245// Instantiate the templates we need. We could use the configure
1246// script to restrict this to only the ones for implemented targets.
1247
1248template
1249Output_section*
f6ce93d6 1250Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1251 const elfcpp::Shdr<32, false>& shdr, off_t*);
1252
1253template
1254Output_section*
f6ce93d6 1255Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1256 const elfcpp::Shdr<32, true>& shdr, off_t*);
1257
1258template
1259Output_section*
f6ce93d6 1260Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1261 const elfcpp::Shdr<64, false>& shdr, off_t*);
1262
1263template
1264Output_section*
f6ce93d6 1265Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1266 const elfcpp::Shdr<64, true>& shdr, off_t*);
1267
1268
1269} // End namespace gold.
This page took 0.112308 seconds and 4 git commands to generate.