* elf64-ppc.c (enum _ppc64_sec_type): New.
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
5#include <cassert>
6#include <cstring>
54dc6425 7#include <algorithm>
a2fb1b05
ILT
8#include <iostream>
9#include <utility>
10
11#include "output.h"
f6ce93d6 12#include "symtab.h"
a2fb1b05
ILT
13#include "layout.h"
14
15namespace gold
16{
17
92e059d8 18// Layout_task_runner methods.
a2fb1b05
ILT
19
20// Lay out the sections. This is called after all the input objects
21// have been read.
22
23void
92e059d8 24Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 25{
12e14209
ILT
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
61ba1cf9
ILT
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 36 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
37}
38
39// Layout methods.
40
54dc6425 41Layout::Layout(const General_options& options)
ead1e424 42 : options_(options), namepool_(), sympool_(), signatures_(),
61ba1cf9 43 section_name_map_(), segment_list_(), section_list_(),
92e059d8 44 special_output_list_(), tls_segment_(NULL)
54dc6425
ILT
45{
46 // Make space for more than enough segments for a typical file.
47 // This is just for efficiency--it's OK if we wind up needing more.
48 segment_list_.reserve(12);
49}
50
a2fb1b05
ILT
51// Hash a key we use to look up an output section mapping.
52
53size_t
54Layout::Hash_key::operator()(const Layout::Key& k) const
55{
56 return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
57}
58
59// Whether to include this section in the link.
60
61template<int size, bool big_endian>
62bool
63Layout::include_section(Object*, const char*,
64 const elfcpp::Shdr<size, big_endian>& shdr)
65{
66 // Some section types are never linked. Some are only linked when
67 // doing a relocateable link.
68 switch (shdr.get_sh_type())
69 {
70 case elfcpp::SHT_NULL:
71 case elfcpp::SHT_SYMTAB:
72 case elfcpp::SHT_DYNSYM:
73 case elfcpp::SHT_STRTAB:
74 case elfcpp::SHT_HASH:
75 case elfcpp::SHT_DYNAMIC:
76 case elfcpp::SHT_SYMTAB_SHNDX:
77 return false;
78
79 case elfcpp::SHT_RELA:
80 case elfcpp::SHT_REL:
81 case elfcpp::SHT_GROUP:
82 return this->options_.is_relocatable();
83
84 default:
85 // FIXME: Handle stripping debug sections here.
86 return true;
87 }
88}
89
ead1e424 90// Return an output section named NAME, or NULL if there is none.
a2fb1b05 91
a2fb1b05 92Output_section*
ead1e424 93Layout::find_output_section(const char* name) const
a2fb1b05 94{
ead1e424
ILT
95 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
96 p != this->section_name_map_.end();
97 ++p)
98 if (strcmp(p->first.first, name) == 0)
99 return p->second;
100 return NULL;
101}
a2fb1b05 102
ead1e424
ILT
103// Return an output segment of type TYPE, with segment flags SET set
104// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 105
ead1e424
ILT
106Output_segment*
107Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
108 elfcpp::Elf_Word clear) const
109{
110 for (Segment_list::const_iterator p = this->segment_list_.begin();
111 p != this->segment_list_.end();
112 ++p)
113 if (static_cast<elfcpp::PT>((*p)->type()) == type
114 && ((*p)->flags() & set) == set
115 && ((*p)->flags() & clear) == 0)
116 return *p;
117 return NULL;
118}
a2fb1b05 119
ead1e424
ILT
120// Return the output section to use for section NAME with type TYPE
121// and section flags FLAGS.
a2fb1b05 122
ead1e424
ILT
123Output_section*
124Layout::get_output_section(const char* name, elfcpp::Elf_Word type,
125 elfcpp::Elf_Xword flags)
126{
127 // We should ignore some flags.
128 flags &= ~ (elfcpp::SHF_INFO_LINK
129 | elfcpp::SHF_LINK_ORDER
130 | elfcpp::SHF_GROUP);
a2fb1b05 131
a2fb1b05
ILT
132 const Key key(name, std::make_pair(type, flags));
133 const std::pair<Key, Output_section*> v(key, NULL);
134 std::pair<Section_name_map::iterator, bool> ins(
135 this->section_name_map_.insert(v));
136
a2fb1b05 137 if (!ins.second)
ead1e424 138 return ins.first->second;
a2fb1b05
ILT
139 else
140 {
141 // This is the first time we've seen this name/type/flags
142 // combination.
ead1e424 143 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 144 ins.first->second = os;
ead1e424 145 return os;
a2fb1b05 146 }
ead1e424
ILT
147}
148
149// Return the output section to use for input section SHNDX, with name
150// NAME, with header HEADER, from object OBJECT. Set *OFF to the
151// offset of this input section without the output section.
152
153template<int size, bool big_endian>
154Output_section*
f6ce93d6 155Layout::layout(Relobj* object, unsigned int shndx, const char* name,
ead1e424
ILT
156 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
157{
158 if (!this->include_section(object, name, shdr))
159 return NULL;
160
161 // If we are not doing a relocateable link, choose the name to use
162 // for the output section.
163 size_t len = strlen(name);
164 if (!this->options_.is_relocatable())
165 name = Layout::output_section_name(name, &len);
166
167 // FIXME: Handle SHF_OS_NONCONFORMING here.
168
169 // Canonicalize the section name.
170 name = this->namepool_.add(name, len);
171
172 // Find the output section. The output section is selected based on
173 // the section name, type, and flags.
174 Output_section* os = this->get_output_section(name, shdr.get_sh_type(),
175 shdr.get_sh_flags());
a2fb1b05
ILT
176
177 // FIXME: Handle SHF_LINK_ORDER somewhere.
178
ead1e424 179 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
180
181 return os;
182}
183
ead1e424
ILT
184// Add POSD to an output section using NAME, TYPE, and FLAGS.
185
186void
187Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
188 elfcpp::Elf_Xword flags,
189 Output_section_data* posd)
190{
191 // Canonicalize the name.
192 name = this->namepool_.add(name);
193
194 Output_section* os = this->get_output_section(name, type, flags);
195 os->add_output_section_data(posd);
196}
197
a2fb1b05
ILT
198// Map section flags to segment flags.
199
200elfcpp::Elf_Word
201Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
202{
203 elfcpp::Elf_Word ret = elfcpp::PF_R;
204 if ((flags & elfcpp::SHF_WRITE) != 0)
205 ret |= elfcpp::PF_W;
206 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
207 ret |= elfcpp::PF_X;
208 return ret;
209}
210
211// Make a new Output_section, and attach it to segments as
212// appropriate.
213
214Output_section*
215Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
216 elfcpp::Elf_Xword flags)
217{
ead1e424 218 Output_section* os = new Output_section(name, type, flags, true);
a2fb1b05
ILT
219
220 if ((flags & elfcpp::SHF_ALLOC) == 0)
221 this->section_list_.push_back(os);
222 else
223 {
224 // This output section goes into a PT_LOAD segment.
225
226 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
227
228 // The only thing we really care about for PT_LOAD segments is
229 // whether or not they are writable, so that is how we search
230 // for them. People who need segments sorted on some other
231 // basis will have to wait until we implement a mechanism for
232 // them to describe the segments they want.
233
234 Segment_list::const_iterator p;
235 for (p = this->segment_list_.begin();
236 p != this->segment_list_.end();
237 ++p)
238 {
239 if ((*p)->type() == elfcpp::PT_LOAD
240 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
241 {
75f65a3e 242 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
243 break;
244 }
245 }
246
247 if (p == this->segment_list_.end())
248 {
249 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
250 seg_flags);
251 this->segment_list_.push_back(oseg);
75f65a3e 252 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
253 }
254
255 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
256 // segment.
257 if (type == elfcpp::SHT_NOTE)
258 {
259 // See if we already have an equivalent PT_NOTE segment.
260 for (p = this->segment_list_.begin();
261 p != segment_list_.end();
262 ++p)
263 {
264 if ((*p)->type() == elfcpp::PT_NOTE
265 && (((*p)->flags() & elfcpp::PF_W)
266 == (seg_flags & elfcpp::PF_W)))
267 {
75f65a3e 268 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
269 break;
270 }
271 }
272
273 if (p == this->segment_list_.end())
274 {
275 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
276 seg_flags);
277 this->segment_list_.push_back(oseg);
75f65a3e 278 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
279 }
280 }
54dc6425
ILT
281
282 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 283 // segment. There can only be one such segment.
54dc6425
ILT
284 if ((flags & elfcpp::SHF_TLS) != 0)
285 {
92e059d8 286 if (this->tls_segment_ == NULL)
54dc6425 287 {
92e059d8
ILT
288 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
289 seg_flags);
290 this->segment_list_.push_back(this->tls_segment_);
54dc6425 291 }
92e059d8 292 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 293 }
a2fb1b05
ILT
294 }
295
296 return os;
297}
298
75f65a3e
ILT
299// Find the first read-only PT_LOAD segment, creating one if
300// necessary.
54dc6425 301
75f65a3e
ILT
302Output_segment*
303Layout::find_first_load_seg()
54dc6425 304{
75f65a3e
ILT
305 for (Segment_list::const_iterator p = this->segment_list_.begin();
306 p != this->segment_list_.end();
307 ++p)
308 {
309 if ((*p)->type() == elfcpp::PT_LOAD
310 && ((*p)->flags() & elfcpp::PF_R) != 0
311 && ((*p)->flags() & elfcpp::PF_W) == 0)
312 return *p;
313 }
314
315 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
316 this->segment_list_.push_back(load_seg);
317 return load_seg;
54dc6425
ILT
318}
319
320// Finalize the layout. When this is called, we have created all the
321// output sections and all the output segments which are based on
322// input sections. We have several things to do, and we have to do
323// them in the right order, so that we get the right results correctly
324// and efficiently.
325
326// 1) Finalize the list of output segments and create the segment
327// table header.
328
329// 2) Finalize the dynamic symbol table and associated sections.
330
331// 3) Determine the final file offset of all the output segments.
332
333// 4) Determine the final file offset of all the SHF_ALLOC output
334// sections.
335
75f65a3e
ILT
336// 5) Create the symbol table sections and the section name table
337// section.
338
339// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
340// value and make a final determination of which symbols are going
341// into the output symbol table.
342
54dc6425
ILT
343// 7) Create the section table header.
344
345// 8) Determine the final file offset of all the output sections which
346// are not SHF_ALLOC, including the section table header.
347
348// 9) Finalize the ELF file header.
349
75f65a3e
ILT
350// This function returns the size of the output file.
351
352off_t
353Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425
ILT
354{
355 if (input_objects->any_dynamic())
356 {
357 // If there are any dynamic objects in the link, then we need
358 // some additional segments: PT_PHDRS, PT_INTERP, and
359 // PT_DYNAMIC. We also need to finalize the dynamic symbol
360 // table and create the dynamic hash table.
361 abort();
362 }
363
364 // FIXME: Handle PT_GNU_STACK.
365
75f65a3e
ILT
366 Output_segment* load_seg = this->find_first_load_seg();
367
368 // Lay out the segment headers.
369 int size = input_objects->target()->get_size();
61ba1cf9 370 bool big_endian = input_objects->target()->is_big_endian();
75f65a3e 371 Output_segment_headers* segment_headers;
61ba1cf9
ILT
372 segment_headers = new Output_segment_headers(size, big_endian,
373 this->segment_list_);
75f65a3e 374 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 375 this->special_output_list_.push_back(segment_headers);
75f65a3e
ILT
376 // FIXME: Attach them to PT_PHDRS if necessary.
377
378 // Lay out the file header.
379 Output_file_header* file_header;
380 file_header = new Output_file_header(size,
61ba1cf9 381 big_endian,
75f65a3e
ILT
382 this->options_,
383 input_objects->target(),
384 symtab,
385 segment_headers);
386 load_seg->add_initial_output_data(file_header);
61ba1cf9 387 this->special_output_list_.push_back(file_header);
75f65a3e 388
ead1e424
ILT
389 // We set the output section indexes in set_segment_offsets and
390 // set_section_offsets.
391 unsigned int shndx = 1;
392
393 // Set the file offsets of all the segments, and all the sections
394 // they contain.
395 off_t off = this->set_segment_offsets(input_objects->target(), load_seg,
396 &shndx);
75f65a3e
ILT
397
398 // Create the symbol table sections.
399 // FIXME: We don't need to do this if we are stripping symbols.
400 Output_section* osymtab;
401 Output_section* ostrtab;
61ba1cf9
ILT
402 this->create_symtab_sections(size, input_objects, symtab, &off,
403 &osymtab, &ostrtab);
75f65a3e
ILT
404
405 // Create the .shstrtab section.
406 Output_section* shstrtab_section = this->create_shstrtab();
407
408 // Set the file offsets of all the sections not associated with
409 // segments.
ead1e424
ILT
410 off = this->set_section_offsets(off, &shndx);
411
412 // Now the section index of OSTRTAB is set.
413 osymtab->set_link(ostrtab->out_shndx());
75f65a3e
ILT
414
415 // Create the section table header.
61ba1cf9 416 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
417
418 file_header->set_section_info(oshdrs, shstrtab_section);
419
420 // Now we know exactly where everything goes in the output file.
421
422 return off;
423}
424
425// Return whether SEG1 should be before SEG2 in the output file. This
426// is based entirely on the segment type and flags. When this is
427// called the segment addresses has normally not yet been set.
428
429bool
430Layout::segment_precedes(const Output_segment* seg1,
431 const Output_segment* seg2)
432{
433 elfcpp::Elf_Word type1 = seg1->type();
434 elfcpp::Elf_Word type2 = seg2->type();
435
436 // The single PT_PHDR segment is required to precede any loadable
437 // segment. We simply make it always first.
438 if (type1 == elfcpp::PT_PHDR)
439 {
440 assert(type2 != elfcpp::PT_PHDR);
441 return true;
442 }
443 if (type2 == elfcpp::PT_PHDR)
444 return false;
445
446 // The single PT_INTERP segment is required to precede any loadable
447 // segment. We simply make it always second.
448 if (type1 == elfcpp::PT_INTERP)
449 {
450 assert(type2 != elfcpp::PT_INTERP);
451 return true;
452 }
453 if (type2 == elfcpp::PT_INTERP)
454 return false;
455
456 // We then put PT_LOAD segments before any other segments.
457 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
458 return true;
459 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
460 return false;
461
92e059d8
ILT
462 // We put the PT_TLS segment last, because that is where the dynamic
463 // linker expects to find it (this is just for efficiency; other
464 // positions would also work correctly).
465 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
466 return false;
467 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
468 return true;
469
75f65a3e
ILT
470 const elfcpp::Elf_Word flags1 = seg1->flags();
471 const elfcpp::Elf_Word flags2 = seg2->flags();
472
473 // The order of non-PT_LOAD segments is unimportant. We simply sort
474 // by the numeric segment type and flags values. There should not
475 // be more than one segment with the same type and flags.
476 if (type1 != elfcpp::PT_LOAD)
477 {
478 if (type1 != type2)
479 return type1 < type2;
480 assert(flags1 != flags2);
481 return flags1 < flags2;
482 }
483
484 // We sort PT_LOAD segments based on the flags. Readonly segments
485 // come before writable segments. Then executable segments come
486 // before non-executable segments. Then the unlikely case of a
487 // non-readable segment comes before the normal case of a readable
488 // segment. If there are multiple segments with the same type and
489 // flags, we require that the address be set, and we sort by
490 // virtual address and then physical address.
491 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
492 return (flags1 & elfcpp::PF_W) == 0;
493 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
494 return (flags1 & elfcpp::PF_X) != 0;
495 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
496 return (flags1 & elfcpp::PF_R) == 0;
497
498 uint64_t vaddr1 = seg1->vaddr();
499 uint64_t vaddr2 = seg2->vaddr();
500 if (vaddr1 != vaddr2)
501 return vaddr1 < vaddr2;
502
503 uint64_t paddr1 = seg1->paddr();
504 uint64_t paddr2 = seg2->paddr();
505 assert(paddr1 != paddr2);
506 return paddr1 < paddr2;
507}
508
ead1e424
ILT
509// Set the file offsets of all the segments, and all the sections they
510// contain. They have all been created. LOAD_SEG must be be laid out
511// first. Return the offset of the data to follow.
75f65a3e
ILT
512
513off_t
ead1e424
ILT
514Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
515 unsigned int *pshndx)
75f65a3e
ILT
516{
517 // Sort them into the final order.
54dc6425
ILT
518 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
519 Layout::Compare_segments());
520
75f65a3e
ILT
521 // Find the PT_LOAD segments, and set their addresses and offsets
522 // and their section's addresses and offsets.
523 uint64_t addr = target->text_segment_address();
524 off_t off = 0;
525 bool was_readonly = false;
526 for (Segment_list::iterator p = this->segment_list_.begin();
527 p != this->segment_list_.end();
528 ++p)
529 {
530 if ((*p)->type() == elfcpp::PT_LOAD)
531 {
532 if (load_seg != NULL && load_seg != *p)
533 abort();
534 load_seg = NULL;
535
536 // If the last segment was readonly, and this one is not,
537 // then skip the address forward one page, maintaining the
538 // same position within the page. This lets us store both
539 // segments overlapping on a single page in the file, but
540 // the loader will put them on different pages in memory.
541
542 uint64_t orig_addr = addr;
543 uint64_t orig_off = off;
544
545 uint64_t aligned_addr = addr;
546 uint64_t abi_pagesize = target->abi_pagesize();
547 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
548 {
ead1e424 549 uint64_t align = (*p)->addralign();
75f65a3e 550
ead1e424 551 addr = align_address(addr, align);
75f65a3e
ILT
552 aligned_addr = addr;
553 if ((addr & (abi_pagesize - 1)) != 0)
554 addr = addr + abi_pagesize;
555 }
556
ead1e424 557 unsigned int shndx_hold = *pshndx;
75f65a3e 558 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 559 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
560
561 // Now that we know the size of this segment, we may be able
562 // to save a page in memory, at the cost of wasting some
563 // file space, by instead aligning to the start of a new
564 // page. Here we use the real machine page size rather than
565 // the ABI mandated page size.
566
567 if (aligned_addr != addr)
568 {
569 uint64_t common_pagesize = target->common_pagesize();
570 uint64_t first_off = (common_pagesize
571 - (aligned_addr
572 & (common_pagesize - 1)));
573 uint64_t last_off = new_addr & (common_pagesize - 1);
574 if (first_off > 0
575 && last_off > 0
576 && ((aligned_addr & ~ (common_pagesize - 1))
577 != (new_addr & ~ (common_pagesize - 1)))
578 && first_off + last_off <= common_pagesize)
579 {
ead1e424
ILT
580 *pshndx = shndx_hold;
581 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 582 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 583 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
584 }
585 }
586
587 addr = new_addr;
588
589 if (((*p)->flags() & elfcpp::PF_W) == 0)
590 was_readonly = true;
591 }
592 }
593
594 // Handle the non-PT_LOAD segments, setting their offsets from their
595 // section's offsets.
596 for (Segment_list::iterator p = this->segment_list_.begin();
597 p != this->segment_list_.end();
598 ++p)
599 {
600 if ((*p)->type() != elfcpp::PT_LOAD)
601 (*p)->set_offset();
602 }
603
604 return off;
605}
606
607// Set the file offset of all the sections not associated with a
608// segment.
609
610off_t
ead1e424 611Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e
ILT
612{
613 for (Layout::Section_list::iterator p = this->section_list_.begin();
614 p != this->section_list_.end();
615 ++p)
616 {
ead1e424
ILT
617 (*p)->set_out_shndx(*pshndx);
618 ++*pshndx;
61ba1cf9
ILT
619 if ((*p)->offset() != -1)
620 continue;
ead1e424 621 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
622 (*p)->set_address(0, off);
623 off += (*p)->data_size();
624 }
625 return off;
626}
627
628// Create the symbol table sections.
629
630void
61ba1cf9 631Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 632 Symbol_table* symtab,
61ba1cf9 633 off_t* poff,
75f65a3e
ILT
634 Output_section** posymtab,
635 Output_section** postrtab)
636{
61ba1cf9
ILT
637 int symsize;
638 unsigned int align;
639 if (size == 32)
640 {
641 symsize = elfcpp::Elf_sizes<32>::sym_size;
642 align = 4;
643 }
644 else if (size == 64)
645 {
646 symsize = elfcpp::Elf_sizes<64>::sym_size;
647 align = 8;
648 }
649 else
650 abort();
651
652 off_t off = *poff;
ead1e424 653 off = align_address(off, align);
61ba1cf9
ILT
654 off_t startoff = off;
655
656 // Save space for the dummy symbol at the start of the section. We
657 // never bother to write this out--it will just be left as zero.
658 off += symsize;
659
f6ce93d6
ILT
660 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
661 p != input_objects->relobj_end();
75f65a3e
ILT
662 ++p)
663 {
664 Task_lock_obj<Object> tlo(**p);
665 off = (*p)->finalize_local_symbols(off, &this->sympool_);
666 }
667
61ba1cf9
ILT
668 unsigned int local_symcount = (off - startoff) / symsize;
669 assert(local_symcount * symsize == off - startoff);
670
75f65a3e
ILT
671 off = symtab->finalize(off, &this->sympool_);
672
61ba1cf9
ILT
673 this->sympool_.set_string_offsets();
674
61ba1cf9
ILT
675 const char* symtab_name = this->namepool_.add(".symtab");
676 Output_section* osymtab = new Output_section_symtab(symtab_name,
ead1e424 677 off - startoff);
61ba1cf9
ILT
678 this->section_list_.push_back(osymtab);
679
61ba1cf9
ILT
680 const char* strtab_name = this->namepool_.add(".strtab");
681 Output_section *ostrtab = new Output_section_strtab(strtab_name,
ead1e424 682 &this->sympool_);
61ba1cf9
ILT
683 this->section_list_.push_back(ostrtab);
684 this->special_output_list_.push_back(ostrtab);
685
686 osymtab->set_address(0, startoff);
61ba1cf9
ILT
687 osymtab->set_info(local_symcount);
688 osymtab->set_entsize(symsize);
689 osymtab->set_addralign(align);
690
691 *poff = off;
692 *posymtab = osymtab;
693 *postrtab = ostrtab;
75f65a3e
ILT
694}
695
696// Create the .shstrtab section, which holds the names of the
697// sections. At the time this is called, we have created all the
698// output sections except .shstrtab itself.
699
700Output_section*
701Layout::create_shstrtab()
702{
703 // FIXME: We don't need to create a .shstrtab section if we are
704 // stripping everything.
705
706 const char* name = this->namepool_.add(".shstrtab");
707
61ba1cf9
ILT
708 this->namepool_.set_string_offsets();
709
ead1e424 710 Output_section* os = new Output_section_strtab(name, &this->namepool_);
75f65a3e
ILT
711
712 this->section_list_.push_back(os);
61ba1cf9 713 this->special_output_list_.push_back(os);
75f65a3e
ILT
714
715 return os;
716}
717
718// Create the section headers. SIZE is 32 or 64. OFF is the file
719// offset.
720
721Output_section_headers*
61ba1cf9 722Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
723{
724 Output_section_headers* oshdrs;
61ba1cf9
ILT
725 oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
726 this->section_list_,
727 &this->namepool_);
ead1e424 728 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 729 oshdrs->set_address(0, off);
61ba1cf9
ILT
730 off += oshdrs->data_size();
731 *poff = off;
732 this->special_output_list_.push_back(oshdrs);
75f65a3e 733 return oshdrs;
54dc6425
ILT
734}
735
a2fb1b05
ILT
736// The mapping of .gnu.linkonce section names to real section names.
737
ead1e424 738#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
739const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
740{
741 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
742 MAPPING_INIT("t", ".text"),
743 MAPPING_INIT("r", ".rodata"),
744 MAPPING_INIT("d", ".data"),
745 MAPPING_INIT("b", ".bss"),
746 MAPPING_INIT("s", ".sdata"),
747 MAPPING_INIT("sb", ".sbss"),
748 MAPPING_INIT("s2", ".sdata2"),
749 MAPPING_INIT("sb2", ".sbss2"),
750 MAPPING_INIT("wi", ".debug_info"),
751 MAPPING_INIT("td", ".tdata"),
752 MAPPING_INIT("tb", ".tbss"),
753 MAPPING_INIT("lr", ".lrodata"),
754 MAPPING_INIT("l", ".ldata"),
755 MAPPING_INIT("lb", ".lbss"),
756};
757#undef MAPPING_INIT
758
759const int Layout::linkonce_mapping_count =
760 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
761
762// Return the name of the output section to use for a .gnu.linkonce
763// section. This is based on the default ELF linker script of the old
764// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
765// to ".text". Set *PLEN to the length of the name. *PLEN is
766// initialized to the length of NAME.
a2fb1b05
ILT
767
768const char*
ead1e424 769Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
770{
771 const char* s = name + sizeof(".gnu.linkonce") - 1;
772 if (*s != '.')
773 return name;
774 ++s;
775 const Linkonce_mapping* plm = linkonce_mapping;
776 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
777 {
778 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
779 {
780 *plen = plm->tolen;
781 return plm->to;
782 }
a2fb1b05
ILT
783 }
784 return name;
785}
786
ead1e424
ILT
787// Choose the output section name to use given an input section name.
788// Set *PLEN to the length of the name. *PLEN is initialized to the
789// length of NAME.
790
791const char*
792Layout::output_section_name(const char* name, size_t* plen)
793{
794 if (Layout::is_linkonce(name))
795 {
796 // .gnu.linkonce sections are laid out as though they were named
797 // for the sections are placed into.
798 return Layout::linkonce_output_name(name, plen);
799 }
800
801 // If the section name has no '.', or only an initial '.', we use
802 // the name unchanged (i.e., ".text" is unchanged).
803
804 // Otherwise, if the section name does not include ".rel", we drop
805 // the last '.' and everything that follows (i.e., ".text.XXX"
806 // becomes ".text").
807
808 // Otherwise, if the section name has zero or one '.' after the
809 // ".rel", we use the name unchanged (i.e., ".rel.text" is
810 // unchanged).
811
812 // Otherwise, we drop the last '.' and everything that follows
813 // (i.e., ".rel.text.XXX" becomes ".rel.text").
814
815 const char* s = name;
816 if (*s == '.')
817 ++s;
818 const char* sdot = strchr(s, '.');
819 if (sdot == NULL)
820 return name;
821
822 const char* srel = strstr(s, ".rel");
823 if (srel == NULL)
824 {
825 *plen = sdot - name;
826 return name;
827 }
828
829 sdot = strchr(srel + 1, '.');
830 if (sdot == NULL)
831 return name;
832 sdot = strchr(sdot + 1, '.');
833 if (sdot == NULL)
834 return name;
835
836 *plen = sdot - name;
837 return name;
838}
839
a2fb1b05
ILT
840// Record the signature of a comdat section, and return whether to
841// include it in the link. If GROUP is true, this is a regular
842// section group. If GROUP is false, this is a group signature
843// derived from the name of a linkonce section. We want linkonce
844// signatures and group signatures to block each other, but we don't
845// want a linkonce signature to block another linkonce signature.
846
847bool
848Layout::add_comdat(const char* signature, bool group)
849{
850 std::string sig(signature);
851 std::pair<Signatures::iterator, bool> ins(
ead1e424 852 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
853
854 if (ins.second)
855 {
856 // This is the first time we've seen this signature.
857 return true;
858 }
859
860 if (ins.first->second)
861 {
862 // We've already seen a real section group with this signature.
863 return false;
864 }
865 else if (group)
866 {
867 // This is a real section group, and we've already seen a
868 // linkonce section with tihs signature. Record that we've seen
869 // a section group, and don't include this section group.
870 ins.first->second = true;
871 return false;
872 }
873 else
874 {
875 // We've already seen a linkonce section and this is a linkonce
876 // section. These don't block each other--this may be the same
877 // symbol name with different section types.
878 return true;
879 }
880}
881
61ba1cf9
ILT
882// Write out data not associated with a section or the symbol table.
883
884void
885Layout::write_data(Output_file* of) const
886{
887 for (Data_list::const_iterator p = this->special_output_list_.begin();
888 p != this->special_output_list_.end();
889 ++p)
890 (*p)->write(of);
891}
892
893// Write_data_task methods.
894
895// We can always run this task.
896
897Task::Is_runnable_type
898Write_data_task::is_runnable(Workqueue*)
899{
900 return IS_RUNNABLE;
901}
902
903// We need to unlock FINAL_BLOCKER when finished.
904
905Task_locker*
906Write_data_task::locks(Workqueue* workqueue)
907{
908 return new Task_locker_block(*this->final_blocker_, workqueue);
909}
910
911// Run the task--write out the data.
912
913void
914Write_data_task::run(Workqueue*)
915{
916 this->layout_->write_data(this->of_);
917}
918
919// Write_symbols_task methods.
920
921// We can always run this task.
922
923Task::Is_runnable_type
924Write_symbols_task::is_runnable(Workqueue*)
925{
926 return IS_RUNNABLE;
927}
928
929// We need to unlock FINAL_BLOCKER when finished.
930
931Task_locker*
932Write_symbols_task::locks(Workqueue* workqueue)
933{
934 return new Task_locker_block(*this->final_blocker_, workqueue);
935}
936
937// Run the task--write out the symbols.
938
939void
940Write_symbols_task::run(Workqueue*)
941{
942 this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
943}
944
92e059d8 945// Close_task_runner methods.
61ba1cf9
ILT
946
947// Run the task--close the file.
948
949void
92e059d8 950Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
951{
952 this->of_->close();
953}
954
a2fb1b05
ILT
955// Instantiate the templates we need. We could use the configure
956// script to restrict this to only the ones for implemented targets.
957
958template
959Output_section*
f6ce93d6 960Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
961 const elfcpp::Shdr<32, false>& shdr, off_t*);
962
963template
964Output_section*
f6ce93d6 965Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
966 const elfcpp::Shdr<32, true>& shdr, off_t*);
967
968template
969Output_section*
f6ce93d6 970Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
971 const elfcpp::Shdr<64, false>& shdr, off_t*);
972
973template
974Output_section*
f6ce93d6 975Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
976 const elfcpp::Shdr<64, true>& shdr, off_t*);
977
978
979} // End namespace gold.
This page took 0.073234 seconds and 4 git commands to generate.