gas/testsuite/
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
a2fb1b05 5#include <cstring>
54dc6425 6#include <algorithm>
a2fb1b05
ILT
7#include <iostream>
8#include <utility>
9
10#include "output.h"
f6ce93d6 11#include "symtab.h"
a3ad94ed 12#include "dynobj.h"
a2fb1b05
ILT
13#include "layout.h"
14
15namespace gold
16{
17
92e059d8 18// Layout_task_runner methods.
a2fb1b05
ILT
19
20// Lay out the sections. This is called after all the input objects
21// have been read.
22
23void
92e059d8 24Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 25{
12e14209
ILT
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
61ba1cf9
ILT
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 36 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
37}
38
39// Layout methods.
40
54dc6425 41Layout::Layout(const General_options& options)
a3ad94ed 42 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
61ba1cf9 43 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed
ILT
44 unattached_section_list_(), special_output_list_(),
45 tls_segment_(NULL), symtab_section_(NULL), dynsym_section_(NULL)
54dc6425
ILT
46{
47 // Make space for more than enough segments for a typical file.
48 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
49 this->segment_list_.reserve(12);
50
51 // We expect three unattached Output_data objects: the file header,
52 // the segment headers, and the section headers.
53 this->special_output_list_.reserve(3);
54dc6425
ILT
54}
55
a2fb1b05
ILT
56// Hash a key we use to look up an output section mapping.
57
58size_t
59Layout::Hash_key::operator()(const Layout::Key& k) const
60{
f0641a0b 61 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
62}
63
64// Whether to include this section in the link.
65
66template<int size, bool big_endian>
67bool
68Layout::include_section(Object*, const char*,
69 const elfcpp::Shdr<size, big_endian>& shdr)
70{
71 // Some section types are never linked. Some are only linked when
72 // doing a relocateable link.
73 switch (shdr.get_sh_type())
74 {
75 case elfcpp::SHT_NULL:
76 case elfcpp::SHT_SYMTAB:
77 case elfcpp::SHT_DYNSYM:
78 case elfcpp::SHT_STRTAB:
79 case elfcpp::SHT_HASH:
80 case elfcpp::SHT_DYNAMIC:
81 case elfcpp::SHT_SYMTAB_SHNDX:
82 return false;
83
84 case elfcpp::SHT_RELA:
85 case elfcpp::SHT_REL:
86 case elfcpp::SHT_GROUP:
87 return this->options_.is_relocatable();
88
89 default:
90 // FIXME: Handle stripping debug sections here.
91 return true;
92 }
93}
94
ead1e424 95// Return an output section named NAME, or NULL if there is none.
a2fb1b05 96
a2fb1b05 97Output_section*
ead1e424 98Layout::find_output_section(const char* name) const
a2fb1b05 99{
ead1e424
ILT
100 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
101 p != this->section_name_map_.end();
102 ++p)
f0641a0b 103 if (strcmp(p->second->name(), name) == 0)
ead1e424
ILT
104 return p->second;
105 return NULL;
106}
a2fb1b05 107
ead1e424
ILT
108// Return an output segment of type TYPE, with segment flags SET set
109// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 110
ead1e424
ILT
111Output_segment*
112Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
113 elfcpp::Elf_Word clear) const
114{
115 for (Segment_list::const_iterator p = this->segment_list_.begin();
116 p != this->segment_list_.end();
117 ++p)
118 if (static_cast<elfcpp::PT>((*p)->type()) == type
119 && ((*p)->flags() & set) == set
120 && ((*p)->flags() & clear) == 0)
121 return *p;
122 return NULL;
123}
a2fb1b05 124
ead1e424
ILT
125// Return the output section to use for section NAME with type TYPE
126// and section flags FLAGS.
a2fb1b05 127
ead1e424 128Output_section*
f0641a0b
ILT
129Layout::get_output_section(const char* name, Stringpool::Key name_key,
130 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424
ILT
131{
132 // We should ignore some flags.
133 flags &= ~ (elfcpp::SHF_INFO_LINK
134 | elfcpp::SHF_LINK_ORDER
135 | elfcpp::SHF_GROUP);
a2fb1b05 136
f0641a0b 137 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
138 const std::pair<Key, Output_section*> v(key, NULL);
139 std::pair<Section_name_map::iterator, bool> ins(
140 this->section_name_map_.insert(v));
141
a2fb1b05 142 if (!ins.second)
ead1e424 143 return ins.first->second;
a2fb1b05
ILT
144 else
145 {
146 // This is the first time we've seen this name/type/flags
147 // combination.
ead1e424 148 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 149 ins.first->second = os;
ead1e424 150 return os;
a2fb1b05 151 }
ead1e424
ILT
152}
153
154// Return the output section to use for input section SHNDX, with name
155// NAME, with header HEADER, from object OBJECT. Set *OFF to the
156// offset of this input section without the output section.
157
158template<int size, bool big_endian>
159Output_section*
f6ce93d6 160Layout::layout(Relobj* object, unsigned int shndx, const char* name,
ead1e424
ILT
161 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
162{
163 if (!this->include_section(object, name, shdr))
164 return NULL;
165
166 // If we are not doing a relocateable link, choose the name to use
167 // for the output section.
168 size_t len = strlen(name);
169 if (!this->options_.is_relocatable())
170 name = Layout::output_section_name(name, &len);
171
172 // FIXME: Handle SHF_OS_NONCONFORMING here.
173
174 // Canonicalize the section name.
f0641a0b
ILT
175 Stringpool::Key name_key;
176 name = this->namepool_.add(name, len, &name_key);
ead1e424
ILT
177
178 // Find the output section. The output section is selected based on
179 // the section name, type, and flags.
f0641a0b
ILT
180 Output_section* os = this->get_output_section(name, name_key,
181 shdr.get_sh_type(),
ead1e424 182 shdr.get_sh_flags());
a2fb1b05
ILT
183
184 // FIXME: Handle SHF_LINK_ORDER somewhere.
185
ead1e424 186 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
187
188 return os;
189}
190
ead1e424
ILT
191// Add POSD to an output section using NAME, TYPE, and FLAGS.
192
193void
194Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
195 elfcpp::Elf_Xword flags,
196 Output_section_data* posd)
197{
198 // Canonicalize the name.
f0641a0b
ILT
199 Stringpool::Key name_key;
200 name = this->namepool_.add(name, &name_key);
ead1e424 201
f0641a0b 202 Output_section* os = this->get_output_section(name, name_key, type, flags);
ead1e424
ILT
203 os->add_output_section_data(posd);
204}
205
a2fb1b05
ILT
206// Map section flags to segment flags.
207
208elfcpp::Elf_Word
209Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
210{
211 elfcpp::Elf_Word ret = elfcpp::PF_R;
212 if ((flags & elfcpp::SHF_WRITE) != 0)
213 ret |= elfcpp::PF_W;
214 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
215 ret |= elfcpp::PF_X;
216 return ret;
217}
218
219// Make a new Output_section, and attach it to segments as
220// appropriate.
221
222Output_section*
223Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
224 elfcpp::Elf_Xword flags)
225{
ead1e424 226 Output_section* os = new Output_section(name, type, flags, true);
a3ad94ed 227 this->section_list_.push_back(os);
a2fb1b05
ILT
228
229 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 230 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
231 else
232 {
233 // This output section goes into a PT_LOAD segment.
234
235 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
236
237 // The only thing we really care about for PT_LOAD segments is
238 // whether or not they are writable, so that is how we search
239 // for them. People who need segments sorted on some other
240 // basis will have to wait until we implement a mechanism for
241 // them to describe the segments they want.
242
243 Segment_list::const_iterator p;
244 for (p = this->segment_list_.begin();
245 p != this->segment_list_.end();
246 ++p)
247 {
248 if ((*p)->type() == elfcpp::PT_LOAD
249 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
250 {
75f65a3e 251 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
252 break;
253 }
254 }
255
256 if (p == this->segment_list_.end())
257 {
258 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
259 seg_flags);
260 this->segment_list_.push_back(oseg);
75f65a3e 261 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
262 }
263
264 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
265 // segment.
266 if (type == elfcpp::SHT_NOTE)
267 {
268 // See if we already have an equivalent PT_NOTE segment.
269 for (p = this->segment_list_.begin();
270 p != segment_list_.end();
271 ++p)
272 {
273 if ((*p)->type() == elfcpp::PT_NOTE
274 && (((*p)->flags() & elfcpp::PF_W)
275 == (seg_flags & elfcpp::PF_W)))
276 {
75f65a3e 277 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
278 break;
279 }
280 }
281
282 if (p == this->segment_list_.end())
283 {
284 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
285 seg_flags);
286 this->segment_list_.push_back(oseg);
75f65a3e 287 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
288 }
289 }
54dc6425
ILT
290
291 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 292 // segment. There can only be one such segment.
54dc6425
ILT
293 if ((flags & elfcpp::SHF_TLS) != 0)
294 {
92e059d8 295 if (this->tls_segment_ == NULL)
54dc6425 296 {
92e059d8
ILT
297 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
298 seg_flags);
299 this->segment_list_.push_back(this->tls_segment_);
54dc6425 300 }
92e059d8 301 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 302 }
a2fb1b05
ILT
303 }
304
305 return os;
306}
307
a3ad94ed
ILT
308// Create the dynamic sections which are needed before we read the
309// relocs.
310
311void
312Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
313 Symbol_table* symtab)
314{
315 if (!input_objects->any_dynamic())
316 return;
317
318 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
319 this->dynamic_section_ = this->make_output_section(dynamic_name,
320 elfcpp::SHT_DYNAMIC,
321 (elfcpp::SHF_ALLOC
322 | elfcpp::SHF_WRITE));
323
324 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC",
325 this->dynamic_section_, 0, 0,
326 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
327 elfcpp::STV_HIDDEN, 0, false, false);
328}
329
75f65a3e
ILT
330// Find the first read-only PT_LOAD segment, creating one if
331// necessary.
54dc6425 332
75f65a3e
ILT
333Output_segment*
334Layout::find_first_load_seg()
54dc6425 335{
75f65a3e
ILT
336 for (Segment_list::const_iterator p = this->segment_list_.begin();
337 p != this->segment_list_.end();
338 ++p)
339 {
340 if ((*p)->type() == elfcpp::PT_LOAD
341 && ((*p)->flags() & elfcpp::PF_R) != 0
342 && ((*p)->flags() & elfcpp::PF_W) == 0)
343 return *p;
344 }
345
346 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
347 this->segment_list_.push_back(load_seg);
348 return load_seg;
54dc6425
ILT
349}
350
351// Finalize the layout. When this is called, we have created all the
352// output sections and all the output segments which are based on
353// input sections. We have several things to do, and we have to do
354// them in the right order, so that we get the right results correctly
355// and efficiently.
356
357// 1) Finalize the list of output segments and create the segment
358// table header.
359
360// 2) Finalize the dynamic symbol table and associated sections.
361
362// 3) Determine the final file offset of all the output segments.
363
364// 4) Determine the final file offset of all the SHF_ALLOC output
365// sections.
366
75f65a3e
ILT
367// 5) Create the symbol table sections and the section name table
368// section.
369
370// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
371// value and make a final determination of which symbols are going
372// into the output symbol table.
373
54dc6425
ILT
374// 7) Create the section table header.
375
376// 8) Determine the final file offset of all the output sections which
377// are not SHF_ALLOC, including the section table header.
378
379// 9) Finalize the ELF file header.
380
75f65a3e
ILT
381// This function returns the size of the output file.
382
383off_t
384Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425 385{
5a6f7e2d 386 Target* const target = input_objects->target();
a3ad94ed 387 const int size = target->get_size();
dbe717ef 388
5a6f7e2d
ILT
389 target->finalize_sections(this);
390
dbe717ef 391 Output_segment* phdr_seg = NULL;
54dc6425
ILT
392 if (input_objects->any_dynamic())
393 {
dbe717ef
ILT
394 // There was a dynamic object in the link. We need to create
395 // some information for the dynamic linker.
396
397 // Create the PT_PHDR segment which will hold the program
398 // headers.
399 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
400 this->segment_list_.push_back(phdr_seg);
401
a3ad94ed
ILT
402 // This holds the dynamic tags.
403 Output_data_dynamic* odyn;
404 odyn = new Output_data_dynamic(input_objects->target(),
405 &this->dynpool_);
406
dbe717ef
ILT
407 // Create the dynamic symbol table, including the hash table,
408 // the dynamic relocations, and the version sections.
a3ad94ed 409 this->create_dynamic_symtab(target, odyn, symtab);
dbe717ef
ILT
410
411 // Create the .interp section to hold the name of the
412 // interpreter, and put it in a PT_INTERP segment.
a3ad94ed
ILT
413 this->create_interp(target);
414
415 // Finish the .dynamic section to hold the dynamic data, and put
416 // it in a PT_DYNAMIC segment.
417 this->finish_dynamic_section(input_objects, symtab, odyn);
54dc6425
ILT
418 }
419
420 // FIXME: Handle PT_GNU_STACK.
421
75f65a3e
ILT
422 Output_segment* load_seg = this->find_first_load_seg();
423
424 // Lay out the segment headers.
a3ad94ed 425 bool big_endian = target->is_big_endian();
75f65a3e 426 Output_segment_headers* segment_headers;
61ba1cf9
ILT
427 segment_headers = new Output_segment_headers(size, big_endian,
428 this->segment_list_);
75f65a3e 429 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 430 this->special_output_list_.push_back(segment_headers);
dbe717ef
ILT
431 if (phdr_seg != NULL)
432 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
433
434 // Lay out the file header.
435 Output_file_header* file_header;
436 file_header = new Output_file_header(size,
61ba1cf9 437 big_endian,
75f65a3e 438 this->options_,
a3ad94ed 439 target,
75f65a3e
ILT
440 symtab,
441 segment_headers);
442 load_seg->add_initial_output_data(file_header);
61ba1cf9 443 this->special_output_list_.push_back(file_header);
75f65a3e 444
ead1e424
ILT
445 // We set the output section indexes in set_segment_offsets and
446 // set_section_offsets.
447 unsigned int shndx = 1;
448
449 // Set the file offsets of all the segments, and all the sections
450 // they contain.
a3ad94ed 451 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e
ILT
452
453 // Create the symbol table sections.
454 // FIXME: We don't need to do this if we are stripping symbols.
75f65a3e 455 Output_section* ostrtab;
61ba1cf9 456 this->create_symtab_sections(size, input_objects, symtab, &off,
a3ad94ed 457 &ostrtab);
75f65a3e
ILT
458
459 // Create the .shstrtab section.
460 Output_section* shstrtab_section = this->create_shstrtab();
461
462 // Set the file offsets of all the sections not associated with
463 // segments.
ead1e424
ILT
464 off = this->set_section_offsets(off, &shndx);
465
466 // Now the section index of OSTRTAB is set.
a3ad94ed 467 this->symtab_section_->set_link(ostrtab->out_shndx());
75f65a3e
ILT
468
469 // Create the section table header.
61ba1cf9 470 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
471
472 file_header->set_section_info(oshdrs, shstrtab_section);
473
474 // Now we know exactly where everything goes in the output file.
a3ad94ed 475 Output_data::layout_complete();
75f65a3e
ILT
476
477 return off;
478}
479
480// Return whether SEG1 should be before SEG2 in the output file. This
481// is based entirely on the segment type and flags. When this is
482// called the segment addresses has normally not yet been set.
483
484bool
485Layout::segment_precedes(const Output_segment* seg1,
486 const Output_segment* seg2)
487{
488 elfcpp::Elf_Word type1 = seg1->type();
489 elfcpp::Elf_Word type2 = seg2->type();
490
491 // The single PT_PHDR segment is required to precede any loadable
492 // segment. We simply make it always first.
493 if (type1 == elfcpp::PT_PHDR)
494 {
a3ad94ed 495 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
496 return true;
497 }
498 if (type2 == elfcpp::PT_PHDR)
499 return false;
500
501 // The single PT_INTERP segment is required to precede any loadable
502 // segment. We simply make it always second.
503 if (type1 == elfcpp::PT_INTERP)
504 {
a3ad94ed 505 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
506 return true;
507 }
508 if (type2 == elfcpp::PT_INTERP)
509 return false;
510
511 // We then put PT_LOAD segments before any other segments.
512 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
513 return true;
514 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
515 return false;
516
92e059d8
ILT
517 // We put the PT_TLS segment last, because that is where the dynamic
518 // linker expects to find it (this is just for efficiency; other
519 // positions would also work correctly).
520 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
521 return false;
522 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
523 return true;
524
75f65a3e
ILT
525 const elfcpp::Elf_Word flags1 = seg1->flags();
526 const elfcpp::Elf_Word flags2 = seg2->flags();
527
528 // The order of non-PT_LOAD segments is unimportant. We simply sort
529 // by the numeric segment type and flags values. There should not
530 // be more than one segment with the same type and flags.
531 if (type1 != elfcpp::PT_LOAD)
532 {
533 if (type1 != type2)
534 return type1 < type2;
a3ad94ed 535 gold_assert(flags1 != flags2);
75f65a3e
ILT
536 return flags1 < flags2;
537 }
538
539 // We sort PT_LOAD segments based on the flags. Readonly segments
540 // come before writable segments. Then executable segments come
541 // before non-executable segments. Then the unlikely case of a
542 // non-readable segment comes before the normal case of a readable
543 // segment. If there are multiple segments with the same type and
544 // flags, we require that the address be set, and we sort by
545 // virtual address and then physical address.
546 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
547 return (flags1 & elfcpp::PF_W) == 0;
548 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
549 return (flags1 & elfcpp::PF_X) != 0;
550 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
551 return (flags1 & elfcpp::PF_R) == 0;
552
553 uint64_t vaddr1 = seg1->vaddr();
554 uint64_t vaddr2 = seg2->vaddr();
555 if (vaddr1 != vaddr2)
556 return vaddr1 < vaddr2;
557
558 uint64_t paddr1 = seg1->paddr();
559 uint64_t paddr2 = seg2->paddr();
a3ad94ed 560 gold_assert(paddr1 != paddr2);
75f65a3e
ILT
561 return paddr1 < paddr2;
562}
563
ead1e424
ILT
564// Set the file offsets of all the segments, and all the sections they
565// contain. They have all been created. LOAD_SEG must be be laid out
566// first. Return the offset of the data to follow.
75f65a3e
ILT
567
568off_t
ead1e424
ILT
569Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
570 unsigned int *pshndx)
75f65a3e
ILT
571{
572 // Sort them into the final order.
54dc6425
ILT
573 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
574 Layout::Compare_segments());
575
75f65a3e
ILT
576 // Find the PT_LOAD segments, and set their addresses and offsets
577 // and their section's addresses and offsets.
578 uint64_t addr = target->text_segment_address();
579 off_t off = 0;
580 bool was_readonly = false;
581 for (Segment_list::iterator p = this->segment_list_.begin();
582 p != this->segment_list_.end();
583 ++p)
584 {
585 if ((*p)->type() == elfcpp::PT_LOAD)
586 {
587 if (load_seg != NULL && load_seg != *p)
a3ad94ed 588 gold_unreachable();
75f65a3e
ILT
589 load_seg = NULL;
590
591 // If the last segment was readonly, and this one is not,
592 // then skip the address forward one page, maintaining the
593 // same position within the page. This lets us store both
594 // segments overlapping on a single page in the file, but
595 // the loader will put them on different pages in memory.
596
597 uint64_t orig_addr = addr;
598 uint64_t orig_off = off;
599
600 uint64_t aligned_addr = addr;
601 uint64_t abi_pagesize = target->abi_pagesize();
602 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
603 {
ead1e424 604 uint64_t align = (*p)->addralign();
75f65a3e 605
ead1e424 606 addr = align_address(addr, align);
75f65a3e
ILT
607 aligned_addr = addr;
608 if ((addr & (abi_pagesize - 1)) != 0)
609 addr = addr + abi_pagesize;
610 }
611
ead1e424 612 unsigned int shndx_hold = *pshndx;
75f65a3e 613 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 614 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
615
616 // Now that we know the size of this segment, we may be able
617 // to save a page in memory, at the cost of wasting some
618 // file space, by instead aligning to the start of a new
619 // page. Here we use the real machine page size rather than
620 // the ABI mandated page size.
621
622 if (aligned_addr != addr)
623 {
624 uint64_t common_pagesize = target->common_pagesize();
625 uint64_t first_off = (common_pagesize
626 - (aligned_addr
627 & (common_pagesize - 1)));
628 uint64_t last_off = new_addr & (common_pagesize - 1);
629 if (first_off > 0
630 && last_off > 0
631 && ((aligned_addr & ~ (common_pagesize - 1))
632 != (new_addr & ~ (common_pagesize - 1)))
633 && first_off + last_off <= common_pagesize)
634 {
ead1e424
ILT
635 *pshndx = shndx_hold;
636 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 637 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 638 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
639 }
640 }
641
642 addr = new_addr;
643
644 if (((*p)->flags() & elfcpp::PF_W) == 0)
645 was_readonly = true;
646 }
647 }
648
649 // Handle the non-PT_LOAD segments, setting their offsets from their
650 // section's offsets.
651 for (Segment_list::iterator p = this->segment_list_.begin();
652 p != this->segment_list_.end();
653 ++p)
654 {
655 if ((*p)->type() != elfcpp::PT_LOAD)
656 (*p)->set_offset();
657 }
658
659 return off;
660}
661
662// Set the file offset of all the sections not associated with a
663// segment.
664
665off_t
ead1e424 666Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e 667{
a3ad94ed
ILT
668 for (Section_list::iterator p = this->unattached_section_list_.begin();
669 p != this->unattached_section_list_.end();
75f65a3e
ILT
670 ++p)
671 {
ead1e424
ILT
672 (*p)->set_out_shndx(*pshndx);
673 ++*pshndx;
61ba1cf9
ILT
674 if ((*p)->offset() != -1)
675 continue;
ead1e424 676 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
677 (*p)->set_address(0, off);
678 off += (*p)->data_size();
679 }
680 return off;
681}
682
683// Create the symbol table sections.
684
685void
61ba1cf9 686Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 687 Symbol_table* symtab,
61ba1cf9 688 off_t* poff,
75f65a3e
ILT
689 Output_section** postrtab)
690{
61ba1cf9
ILT
691 int symsize;
692 unsigned int align;
693 if (size == 32)
694 {
695 symsize = elfcpp::Elf_sizes<32>::sym_size;
696 align = 4;
697 }
698 else if (size == 64)
699 {
700 symsize = elfcpp::Elf_sizes<64>::sym_size;
701 align = 8;
702 }
703 else
a3ad94ed 704 gold_unreachable();
61ba1cf9
ILT
705
706 off_t off = *poff;
ead1e424 707 off = align_address(off, align);
61ba1cf9
ILT
708 off_t startoff = off;
709
710 // Save space for the dummy symbol at the start of the section. We
711 // never bother to write this out--it will just be left as zero.
712 off += symsize;
c06b7b0b 713 unsigned int local_symbol_index = 1;
61ba1cf9 714
a3ad94ed
ILT
715 // Add STT_SECTION symbols for each Output section which needs one.
716 for (Section_list::iterator p = this->section_list_.begin();
717 p != this->section_list_.end();
718 ++p)
719 {
720 if (!(*p)->needs_symtab_index())
721 (*p)->set_symtab_index(-1U);
722 else
723 {
724 (*p)->set_symtab_index(local_symbol_index);
725 ++local_symbol_index;
726 off += symsize;
727 }
728 }
729
f6ce93d6
ILT
730 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
731 p != input_objects->relobj_end();
75f65a3e
ILT
732 ++p)
733 {
734 Task_lock_obj<Object> tlo(**p);
c06b7b0b
ILT
735 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
736 off,
737 &this->sympool_);
738 off += (index - local_symbol_index) * symsize;
739 local_symbol_index = index;
75f65a3e
ILT
740 }
741
c06b7b0b 742 unsigned int local_symcount = local_symbol_index;
a3ad94ed 743 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 744
c06b7b0b 745 off = symtab->finalize(local_symcount, off, &this->sympool_);
75f65a3e 746
61ba1cf9
ILT
747 this->sympool_.set_string_offsets();
748
f0641a0b 749 const char* symtab_name = this->namepool_.add(".symtab", NULL);
a3ad94ed
ILT
750 Output_section* osymtab = this->make_output_section(symtab_name,
751 elfcpp::SHT_SYMTAB,
752 0);
753 this->symtab_section_ = osymtab;
754
755 Output_section_data* pos = new Output_data_space(off - startoff,
756 align);
757 osymtab->add_output_section_data(pos);
61ba1cf9 758
f0641a0b 759 const char* strtab_name = this->namepool_.add(".strtab", NULL);
a3ad94ed
ILT
760 Output_section* ostrtab = this->make_output_section(strtab_name,
761 elfcpp::SHT_STRTAB,
762 0);
763
764 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
765 ostrtab->add_output_section_data(pstr);
61ba1cf9
ILT
766
767 osymtab->set_address(0, startoff);
61ba1cf9
ILT
768 osymtab->set_info(local_symcount);
769 osymtab->set_entsize(symsize);
61ba1cf9
ILT
770
771 *poff = off;
61ba1cf9 772 *postrtab = ostrtab;
75f65a3e
ILT
773}
774
775// Create the .shstrtab section, which holds the names of the
776// sections. At the time this is called, we have created all the
777// output sections except .shstrtab itself.
778
779Output_section*
780Layout::create_shstrtab()
781{
782 // FIXME: We don't need to create a .shstrtab section if we are
783 // stripping everything.
784
f0641a0b 785 const char* name = this->namepool_.add(".shstrtab", NULL);
75f65a3e 786
61ba1cf9
ILT
787 this->namepool_.set_string_offsets();
788
a3ad94ed 789 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 790
a3ad94ed
ILT
791 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
792 os->add_output_section_data(posd);
75f65a3e
ILT
793
794 return os;
795}
796
797// Create the section headers. SIZE is 32 or 64. OFF is the file
798// offset.
799
800Output_section_headers*
61ba1cf9 801Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
802{
803 Output_section_headers* oshdrs;
61ba1cf9 804 oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
a3ad94ed 805 this->unattached_section_list_,
61ba1cf9 806 &this->namepool_);
ead1e424 807 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 808 oshdrs->set_address(0, off);
61ba1cf9
ILT
809 off += oshdrs->data_size();
810 *poff = off;
811 this->special_output_list_.push_back(oshdrs);
75f65a3e 812 return oshdrs;
54dc6425
ILT
813}
814
dbe717ef
ILT
815// Create the dynamic symbol table.
816
817void
a3ad94ed
ILT
818Layout::create_dynamic_symtab(const Target* target, Output_data_dynamic* odyn,
819 Symbol_table* symtab)
dbe717ef 820{
a3ad94ed
ILT
821 // Count all the symbols in the dynamic symbol table, and set the
822 // dynamic symbol indexes.
dbe717ef 823
a3ad94ed
ILT
824 // Skip symbol 0, which is always all zeroes.
825 unsigned int index = 1;
dbe717ef 826
a3ad94ed
ILT
827 // Add STT_SECTION symbols for each Output section which needs one.
828 for (Section_list::iterator p = this->section_list_.begin();
829 p != this->section_list_.end();
830 ++p)
831 {
832 if (!(*p)->needs_dynsym_index())
833 (*p)->set_dynsym_index(-1U);
834 else
835 {
836 (*p)->set_dynsym_index(index);
837 ++index;
838 }
839 }
840
841 // FIXME: Some targets apparently require local symbols in the
842 // dynamic symbol table. Here is where we will have to count them,
843 // and set the dynamic symbol indexes, and add the names to
844 // this->dynpool_.
845
846 unsigned int local_symcount = index;
847
848 std::vector<Symbol*> dynamic_symbols;
849
850 // FIXME: We have to tell set_dynsym_indexes whether the
851 // -E/--export-dynamic option was used.
852 index = symtab->set_dynsym_indexes(index, &dynamic_symbols,
853 &this->dynpool_);
854
855 int symsize;
856 unsigned int align;
857 const int size = target->get_size();
858 if (size == 32)
859 {
860 symsize = elfcpp::Elf_sizes<32>::sym_size;
861 align = 4;
862 }
863 else if (size == 64)
864 {
865 symsize = elfcpp::Elf_sizes<64>::sym_size;
866 align = 8;
867 }
868 else
869 gold_unreachable();
870
871 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
872 Output_section* dynsym = this->make_output_section(dynsym_name,
873 elfcpp::SHT_DYNSYM,
874 elfcpp::SHF_ALLOC);
875
876 Output_section_data* odata = new Output_data_space(index * symsize,
877 align);
878 dynsym->add_output_section_data(odata);
879
880 dynsym->set_info(local_symcount);
881 dynsym->set_entsize(symsize);
882 dynsym->set_addralign(align);
883
884 this->dynsym_section_ = dynsym;
885
886 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
887 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
888
889 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
890 Output_section* dynstr = this->make_output_section(dynstr_name,
891 elfcpp::SHT_STRTAB,
892 elfcpp::SHF_ALLOC);
893
894 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
895 dynstr->add_output_section_data(strdata);
896
897 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
898 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
899
900 // FIXME: We need an option to create a GNU hash table.
901
902 unsigned char* phash;
903 unsigned int hashlen;
904 Dynobj::create_elf_hash_table(target, dynamic_symbols, local_symcount,
905 &phash, &hashlen);
906
907 const char* hash_name = this->namepool_.add(".hash", NULL);
908 Output_section* hashsec = this->make_output_section(hash_name,
909 elfcpp::SHT_HASH,
910 elfcpp::SHF_ALLOC);
911
912 Output_section_data* hashdata = new Output_data_const_buffer(phash,
913 hashlen,
914 align);
915 hashsec->add_output_section_data(hashdata);
916
917 hashsec->set_entsize(4);
918 // FIXME: .hash should link to .dynsym.
919
920 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
921}
922
923// Create the .interp section and PT_INTERP segment.
924
925void
926Layout::create_interp(const Target* target)
927{
928 const char* interp = this->options_.dynamic_linker();
929 if (interp == NULL)
930 {
931 interp = target->dynamic_linker();
a3ad94ed 932 gold_assert(interp != NULL);
dbe717ef
ILT
933 }
934
935 size_t len = strlen(interp) + 1;
936
937 Output_section_data* odata = new Output_data_const(interp, len, 1);
938
939 const char* interp_name = this->namepool_.add(".interp", NULL);
940 Output_section* osec = this->make_output_section(interp_name,
941 elfcpp::SHT_PROGBITS,
942 elfcpp::SHF_ALLOC);
943 osec->add_output_section_data(odata);
944
945 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
946 this->segment_list_.push_back(oseg);
947 oseg->add_initial_output_section(osec, elfcpp::PF_R);
948}
949
a3ad94ed
ILT
950// Finish the .dynamic section and PT_DYNAMIC segment.
951
952void
953Layout::finish_dynamic_section(const Input_objects* input_objects,
954 const Symbol_table* symtab,
955 Output_data_dynamic* odyn)
956{
957 this->dynamic_section_->add_output_section_data(odyn);
958
959 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
960 elfcpp::PF_R | elfcpp::PF_W);
961 this->segment_list_.push_back(oseg);
962 oseg->add_initial_output_section(this->dynamic_section_,
963 elfcpp::PF_R | elfcpp::PF_W);
964
965 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
966 p != input_objects->dynobj_end();
967 ++p)
968 {
969 // FIXME: Handle --as-needed.
970 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
971 }
972
973 // FIXME: Support --init and --fini.
974 Symbol* sym = symtab->lookup("_init");
975 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
976 odyn->add_symbol(elfcpp::DT_INIT, sym);
977
978 sym = symtab->lookup("_fini");
979 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
980 odyn->add_symbol(elfcpp::DT_FINI, sym);
981
982 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
983}
984
a2fb1b05
ILT
985// The mapping of .gnu.linkonce section names to real section names.
986
ead1e424 987#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
988const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
989{
990 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
991 MAPPING_INIT("t", ".text"),
992 MAPPING_INIT("r", ".rodata"),
993 MAPPING_INIT("d", ".data"),
994 MAPPING_INIT("b", ".bss"),
995 MAPPING_INIT("s", ".sdata"),
996 MAPPING_INIT("sb", ".sbss"),
997 MAPPING_INIT("s2", ".sdata2"),
998 MAPPING_INIT("sb2", ".sbss2"),
999 MAPPING_INIT("wi", ".debug_info"),
1000 MAPPING_INIT("td", ".tdata"),
1001 MAPPING_INIT("tb", ".tbss"),
1002 MAPPING_INIT("lr", ".lrodata"),
1003 MAPPING_INIT("l", ".ldata"),
1004 MAPPING_INIT("lb", ".lbss"),
1005};
1006#undef MAPPING_INIT
1007
1008const int Layout::linkonce_mapping_count =
1009 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1010
1011// Return the name of the output section to use for a .gnu.linkonce
1012// section. This is based on the default ELF linker script of the old
1013// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1014// to ".text". Set *PLEN to the length of the name. *PLEN is
1015// initialized to the length of NAME.
a2fb1b05
ILT
1016
1017const char*
ead1e424 1018Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1019{
1020 const char* s = name + sizeof(".gnu.linkonce") - 1;
1021 if (*s != '.')
1022 return name;
1023 ++s;
1024 const Linkonce_mapping* plm = linkonce_mapping;
1025 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1026 {
1027 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1028 {
1029 *plen = plm->tolen;
1030 return plm->to;
1031 }
a2fb1b05
ILT
1032 }
1033 return name;
1034}
1035
ead1e424
ILT
1036// Choose the output section name to use given an input section name.
1037// Set *PLEN to the length of the name. *PLEN is initialized to the
1038// length of NAME.
1039
1040const char*
1041Layout::output_section_name(const char* name, size_t* plen)
1042{
1043 if (Layout::is_linkonce(name))
1044 {
1045 // .gnu.linkonce sections are laid out as though they were named
1046 // for the sections are placed into.
1047 return Layout::linkonce_output_name(name, plen);
1048 }
1049
1050 // If the section name has no '.', or only an initial '.', we use
1051 // the name unchanged (i.e., ".text" is unchanged).
1052
1053 // Otherwise, if the section name does not include ".rel", we drop
1054 // the last '.' and everything that follows (i.e., ".text.XXX"
1055 // becomes ".text").
1056
1057 // Otherwise, if the section name has zero or one '.' after the
1058 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1059 // unchanged).
1060
1061 // Otherwise, we drop the last '.' and everything that follows
1062 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1063
1064 const char* s = name;
1065 if (*s == '.')
1066 ++s;
1067 const char* sdot = strchr(s, '.');
1068 if (sdot == NULL)
1069 return name;
1070
1071 const char* srel = strstr(s, ".rel");
1072 if (srel == NULL)
1073 {
1074 *plen = sdot - name;
1075 return name;
1076 }
1077
1078 sdot = strchr(srel + 1, '.');
1079 if (sdot == NULL)
1080 return name;
1081 sdot = strchr(sdot + 1, '.');
1082 if (sdot == NULL)
1083 return name;
1084
1085 *plen = sdot - name;
1086 return name;
1087}
1088
a2fb1b05
ILT
1089// Record the signature of a comdat section, and return whether to
1090// include it in the link. If GROUP is true, this is a regular
1091// section group. If GROUP is false, this is a group signature
1092// derived from the name of a linkonce section. We want linkonce
1093// signatures and group signatures to block each other, but we don't
1094// want a linkonce signature to block another linkonce signature.
1095
1096bool
1097Layout::add_comdat(const char* signature, bool group)
1098{
1099 std::string sig(signature);
1100 std::pair<Signatures::iterator, bool> ins(
ead1e424 1101 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
1102
1103 if (ins.second)
1104 {
1105 // This is the first time we've seen this signature.
1106 return true;
1107 }
1108
1109 if (ins.first->second)
1110 {
1111 // We've already seen a real section group with this signature.
1112 return false;
1113 }
1114 else if (group)
1115 {
1116 // This is a real section group, and we've already seen a
1117 // linkonce section with tihs signature. Record that we've seen
1118 // a section group, and don't include this section group.
1119 ins.first->second = true;
1120 return false;
1121 }
1122 else
1123 {
1124 // We've already seen a linkonce section and this is a linkonce
1125 // section. These don't block each other--this may be the same
1126 // symbol name with different section types.
1127 return true;
1128 }
1129}
1130
61ba1cf9
ILT
1131// Write out data not associated with a section or the symbol table.
1132
1133void
a3ad94ed
ILT
1134Layout::write_data(const Symbol_table* symtab, const Target* target,
1135 Output_file* of) const
61ba1cf9 1136{
a3ad94ed
ILT
1137 const Output_section* symtab_section = this->symtab_section_;
1138 for (Section_list::const_iterator p = this->section_list_.begin();
1139 p != this->section_list_.end();
1140 ++p)
1141 {
1142 if ((*p)->needs_symtab_index())
1143 {
1144 gold_assert(symtab_section != NULL);
1145 unsigned int index = (*p)->symtab_index();
1146 gold_assert(index > 0 && index != -1U);
1147 off_t off = (symtab_section->offset()
1148 + index * symtab_section->entsize());
1149 symtab->write_section_symbol(target, *p, of, off);
1150 }
1151 }
1152
1153 const Output_section* dynsym_section = this->dynsym_section_;
1154 for (Section_list::const_iterator p = this->section_list_.begin();
1155 p != this->section_list_.end();
1156 ++p)
1157 {
1158 if ((*p)->needs_dynsym_index())
1159 {
1160 gold_assert(dynsym_section != NULL);
1161 unsigned int index = (*p)->dynsym_index();
1162 gold_assert(index > 0 && index != -1U);
1163 off_t off = (dynsym_section->offset()
1164 + index * dynsym_section->entsize());
1165 symtab->write_section_symbol(target, *p, of, off);
1166 }
1167 }
1168
1169 // Write out the Output_sections. Most won't have anything to
1170 // write, since most of the data will come from input sections which
1171 // are handled elsewhere. But some Output_sections do have
1172 // Output_data.
1173 for (Section_list::const_iterator p = this->section_list_.begin();
1174 p != this->section_list_.end();
1175 ++p)
1176 (*p)->write(of);
1177
1178 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
1179 for (Data_list::const_iterator p = this->special_output_list_.begin();
1180 p != this->special_output_list_.end();
1181 ++p)
1182 (*p)->write(of);
1183}
1184
1185// Write_data_task methods.
1186
1187// We can always run this task.
1188
1189Task::Is_runnable_type
1190Write_data_task::is_runnable(Workqueue*)
1191{
1192 return IS_RUNNABLE;
1193}
1194
1195// We need to unlock FINAL_BLOCKER when finished.
1196
1197Task_locker*
1198Write_data_task::locks(Workqueue* workqueue)
1199{
1200 return new Task_locker_block(*this->final_blocker_, workqueue);
1201}
1202
1203// Run the task--write out the data.
1204
1205void
1206Write_data_task::run(Workqueue*)
1207{
a3ad94ed 1208 this->layout_->write_data(this->symtab_, this->target_, this->of_);
61ba1cf9
ILT
1209}
1210
1211// Write_symbols_task methods.
1212
1213// We can always run this task.
1214
1215Task::Is_runnable_type
1216Write_symbols_task::is_runnable(Workqueue*)
1217{
1218 return IS_RUNNABLE;
1219}
1220
1221// We need to unlock FINAL_BLOCKER when finished.
1222
1223Task_locker*
1224Write_symbols_task::locks(Workqueue* workqueue)
1225{
1226 return new Task_locker_block(*this->final_blocker_, workqueue);
1227}
1228
1229// Run the task--write out the symbols.
1230
1231void
1232Write_symbols_task::run(Workqueue*)
1233{
1234 this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
1235}
1236
92e059d8 1237// Close_task_runner methods.
61ba1cf9
ILT
1238
1239// Run the task--close the file.
1240
1241void
92e059d8 1242Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
1243{
1244 this->of_->close();
1245}
1246
a2fb1b05
ILT
1247// Instantiate the templates we need. We could use the configure
1248// script to restrict this to only the ones for implemented targets.
1249
1250template
1251Output_section*
f6ce93d6 1252Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1253 const elfcpp::Shdr<32, false>& shdr, off_t*);
1254
1255template
1256Output_section*
f6ce93d6 1257Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1258 const elfcpp::Shdr<32, true>& shdr, off_t*);
1259
1260template
1261Output_section*
f6ce93d6 1262Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1263 const elfcpp::Shdr<64, false>& shdr, off_t*);
1264
1265template
1266Output_section*
f6ce93d6 1267Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1268 const elfcpp::Shdr<64, true>& shdr, off_t*);
1269
1270
1271} // End namespace gold.
This page took 0.088777 seconds and 4 git commands to generate.