Rework swapping code.
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
5#include <cassert>
6#include <cstring>
54dc6425 7#include <algorithm>
a2fb1b05
ILT
8#include <iostream>
9#include <utility>
10
11#include "output.h"
12#include "layout.h"
13
14namespace gold
15{
16
92e059d8 17// Layout_task_runner methods.
a2fb1b05
ILT
18
19// Lay out the sections. This is called after all the input objects
20// have been read.
21
22void
92e059d8 23Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 24{
12e14209
ILT
25 off_t file_size = this->layout_->finalize(this->input_objects_,
26 this->symtab_);
61ba1cf9
ILT
27
28 // Now we know the final size of the output file and we know where
29 // each piece of information goes.
30 Output_file* of = new Output_file(this->options_);
31 of->open(file_size);
32
33 // Queue up the final set of tasks.
34 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 35 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
36}
37
38// Layout methods.
39
54dc6425 40Layout::Layout(const General_options& options)
ead1e424 41 : options_(options), namepool_(), sympool_(), signatures_(),
61ba1cf9 42 section_name_map_(), segment_list_(), section_list_(),
92e059d8 43 special_output_list_(), tls_segment_(NULL)
54dc6425
ILT
44{
45 // Make space for more than enough segments for a typical file.
46 // This is just for efficiency--it's OK if we wind up needing more.
47 segment_list_.reserve(12);
48}
49
a2fb1b05
ILT
50// Hash a key we use to look up an output section mapping.
51
52size_t
53Layout::Hash_key::operator()(const Layout::Key& k) const
54{
55 return reinterpret_cast<size_t>(k.first) + k.second.first + k.second.second;
56}
57
58// Whether to include this section in the link.
59
60template<int size, bool big_endian>
61bool
62Layout::include_section(Object*, const char*,
63 const elfcpp::Shdr<size, big_endian>& shdr)
64{
65 // Some section types are never linked. Some are only linked when
66 // doing a relocateable link.
67 switch (shdr.get_sh_type())
68 {
69 case elfcpp::SHT_NULL:
70 case elfcpp::SHT_SYMTAB:
71 case elfcpp::SHT_DYNSYM:
72 case elfcpp::SHT_STRTAB:
73 case elfcpp::SHT_HASH:
74 case elfcpp::SHT_DYNAMIC:
75 case elfcpp::SHT_SYMTAB_SHNDX:
76 return false;
77
78 case elfcpp::SHT_RELA:
79 case elfcpp::SHT_REL:
80 case elfcpp::SHT_GROUP:
81 return this->options_.is_relocatable();
82
83 default:
84 // FIXME: Handle stripping debug sections here.
85 return true;
86 }
87}
88
ead1e424 89// Return an output section named NAME, or NULL if there is none.
a2fb1b05 90
a2fb1b05 91Output_section*
ead1e424 92Layout::find_output_section(const char* name) const
a2fb1b05 93{
ead1e424
ILT
94 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
95 p != this->section_name_map_.end();
96 ++p)
97 if (strcmp(p->first.first, name) == 0)
98 return p->second;
99 return NULL;
100}
a2fb1b05 101
ead1e424
ILT
102// Return an output segment of type TYPE, with segment flags SET set
103// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 104
ead1e424
ILT
105Output_segment*
106Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
107 elfcpp::Elf_Word clear) const
108{
109 for (Segment_list::const_iterator p = this->segment_list_.begin();
110 p != this->segment_list_.end();
111 ++p)
112 if (static_cast<elfcpp::PT>((*p)->type()) == type
113 && ((*p)->flags() & set) == set
114 && ((*p)->flags() & clear) == 0)
115 return *p;
116 return NULL;
117}
a2fb1b05 118
ead1e424
ILT
119// Return the output section to use for section NAME with type TYPE
120// and section flags FLAGS.
a2fb1b05 121
ead1e424
ILT
122Output_section*
123Layout::get_output_section(const char* name, elfcpp::Elf_Word type,
124 elfcpp::Elf_Xword flags)
125{
126 // We should ignore some flags.
127 flags &= ~ (elfcpp::SHF_INFO_LINK
128 | elfcpp::SHF_LINK_ORDER
129 | elfcpp::SHF_GROUP);
a2fb1b05 130
a2fb1b05
ILT
131 const Key key(name, std::make_pair(type, flags));
132 const std::pair<Key, Output_section*> v(key, NULL);
133 std::pair<Section_name_map::iterator, bool> ins(
134 this->section_name_map_.insert(v));
135
a2fb1b05 136 if (!ins.second)
ead1e424 137 return ins.first->second;
a2fb1b05
ILT
138 else
139 {
140 // This is the first time we've seen this name/type/flags
141 // combination.
ead1e424 142 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 143 ins.first->second = os;
ead1e424 144 return os;
a2fb1b05 145 }
ead1e424
ILT
146}
147
148// Return the output section to use for input section SHNDX, with name
149// NAME, with header HEADER, from object OBJECT. Set *OFF to the
150// offset of this input section without the output section.
151
152template<int size, bool big_endian>
153Output_section*
154Layout::layout(Object* object, unsigned int shndx, const char* name,
155 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
156{
157 if (!this->include_section(object, name, shdr))
158 return NULL;
159
160 // If we are not doing a relocateable link, choose the name to use
161 // for the output section.
162 size_t len = strlen(name);
163 if (!this->options_.is_relocatable())
164 name = Layout::output_section_name(name, &len);
165
166 // FIXME: Handle SHF_OS_NONCONFORMING here.
167
168 // Canonicalize the section name.
169 name = this->namepool_.add(name, len);
170
171 // Find the output section. The output section is selected based on
172 // the section name, type, and flags.
173 Output_section* os = this->get_output_section(name, shdr.get_sh_type(),
174 shdr.get_sh_flags());
a2fb1b05
ILT
175
176 // FIXME: Handle SHF_LINK_ORDER somewhere.
177
ead1e424 178 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
179
180 return os;
181}
182
ead1e424
ILT
183// Add POSD to an output section using NAME, TYPE, and FLAGS.
184
185void
186Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
187 elfcpp::Elf_Xword flags,
188 Output_section_data* posd)
189{
190 // Canonicalize the name.
191 name = this->namepool_.add(name);
192
193 Output_section* os = this->get_output_section(name, type, flags);
194 os->add_output_section_data(posd);
195}
196
a2fb1b05
ILT
197// Map section flags to segment flags.
198
199elfcpp::Elf_Word
200Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
201{
202 elfcpp::Elf_Word ret = elfcpp::PF_R;
203 if ((flags & elfcpp::SHF_WRITE) != 0)
204 ret |= elfcpp::PF_W;
205 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
206 ret |= elfcpp::PF_X;
207 return ret;
208}
209
210// Make a new Output_section, and attach it to segments as
211// appropriate.
212
213Output_section*
214Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
215 elfcpp::Elf_Xword flags)
216{
ead1e424 217 Output_section* os = new Output_section(name, type, flags, true);
a2fb1b05
ILT
218
219 if ((flags & elfcpp::SHF_ALLOC) == 0)
220 this->section_list_.push_back(os);
221 else
222 {
223 // This output section goes into a PT_LOAD segment.
224
225 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
226
227 // The only thing we really care about for PT_LOAD segments is
228 // whether or not they are writable, so that is how we search
229 // for them. People who need segments sorted on some other
230 // basis will have to wait until we implement a mechanism for
231 // them to describe the segments they want.
232
233 Segment_list::const_iterator p;
234 for (p = this->segment_list_.begin();
235 p != this->segment_list_.end();
236 ++p)
237 {
238 if ((*p)->type() == elfcpp::PT_LOAD
239 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
240 {
75f65a3e 241 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
242 break;
243 }
244 }
245
246 if (p == this->segment_list_.end())
247 {
248 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
249 seg_flags);
250 this->segment_list_.push_back(oseg);
75f65a3e 251 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
252 }
253
254 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
255 // segment.
256 if (type == elfcpp::SHT_NOTE)
257 {
258 // See if we already have an equivalent PT_NOTE segment.
259 for (p = this->segment_list_.begin();
260 p != segment_list_.end();
261 ++p)
262 {
263 if ((*p)->type() == elfcpp::PT_NOTE
264 && (((*p)->flags() & elfcpp::PF_W)
265 == (seg_flags & elfcpp::PF_W)))
266 {
75f65a3e 267 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
268 break;
269 }
270 }
271
272 if (p == this->segment_list_.end())
273 {
274 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
275 seg_flags);
276 this->segment_list_.push_back(oseg);
75f65a3e 277 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
278 }
279 }
54dc6425
ILT
280
281 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 282 // segment. There can only be one such segment.
54dc6425
ILT
283 if ((flags & elfcpp::SHF_TLS) != 0)
284 {
92e059d8 285 if (this->tls_segment_ == NULL)
54dc6425 286 {
92e059d8
ILT
287 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
288 seg_flags);
289 this->segment_list_.push_back(this->tls_segment_);
54dc6425 290 }
92e059d8 291 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 292 }
a2fb1b05
ILT
293 }
294
295 return os;
296}
297
75f65a3e
ILT
298// Find the first read-only PT_LOAD segment, creating one if
299// necessary.
54dc6425 300
75f65a3e
ILT
301Output_segment*
302Layout::find_first_load_seg()
54dc6425 303{
75f65a3e
ILT
304 for (Segment_list::const_iterator p = this->segment_list_.begin();
305 p != this->segment_list_.end();
306 ++p)
307 {
308 if ((*p)->type() == elfcpp::PT_LOAD
309 && ((*p)->flags() & elfcpp::PF_R) != 0
310 && ((*p)->flags() & elfcpp::PF_W) == 0)
311 return *p;
312 }
313
314 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
315 this->segment_list_.push_back(load_seg);
316 return load_seg;
54dc6425
ILT
317}
318
319// Finalize the layout. When this is called, we have created all the
320// output sections and all the output segments which are based on
321// input sections. We have several things to do, and we have to do
322// them in the right order, so that we get the right results correctly
323// and efficiently.
324
325// 1) Finalize the list of output segments and create the segment
326// table header.
327
328// 2) Finalize the dynamic symbol table and associated sections.
329
330// 3) Determine the final file offset of all the output segments.
331
332// 4) Determine the final file offset of all the SHF_ALLOC output
333// sections.
334
75f65a3e
ILT
335// 5) Create the symbol table sections and the section name table
336// section.
337
338// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
339// value and make a final determination of which symbols are going
340// into the output symbol table.
341
54dc6425
ILT
342// 7) Create the section table header.
343
344// 8) Determine the final file offset of all the output sections which
345// are not SHF_ALLOC, including the section table header.
346
347// 9) Finalize the ELF file header.
348
75f65a3e
ILT
349// This function returns the size of the output file.
350
351off_t
352Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425
ILT
353{
354 if (input_objects->any_dynamic())
355 {
356 // If there are any dynamic objects in the link, then we need
357 // some additional segments: PT_PHDRS, PT_INTERP, and
358 // PT_DYNAMIC. We also need to finalize the dynamic symbol
359 // table and create the dynamic hash table.
360 abort();
361 }
362
363 // FIXME: Handle PT_GNU_STACK.
364
75f65a3e
ILT
365 Output_segment* load_seg = this->find_first_load_seg();
366
367 // Lay out the segment headers.
368 int size = input_objects->target()->get_size();
61ba1cf9 369 bool big_endian = input_objects->target()->is_big_endian();
75f65a3e 370 Output_segment_headers* segment_headers;
61ba1cf9
ILT
371 segment_headers = new Output_segment_headers(size, big_endian,
372 this->segment_list_);
75f65a3e 373 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 374 this->special_output_list_.push_back(segment_headers);
75f65a3e
ILT
375 // FIXME: Attach them to PT_PHDRS if necessary.
376
377 // Lay out the file header.
378 Output_file_header* file_header;
379 file_header = new Output_file_header(size,
61ba1cf9 380 big_endian,
75f65a3e
ILT
381 this->options_,
382 input_objects->target(),
383 symtab,
384 segment_headers);
385 load_seg->add_initial_output_data(file_header);
61ba1cf9 386 this->special_output_list_.push_back(file_header);
75f65a3e 387
ead1e424
ILT
388 // We set the output section indexes in set_segment_offsets and
389 // set_section_offsets.
390 unsigned int shndx = 1;
391
392 // Set the file offsets of all the segments, and all the sections
393 // they contain.
394 off_t off = this->set_segment_offsets(input_objects->target(), load_seg,
395 &shndx);
75f65a3e
ILT
396
397 // Create the symbol table sections.
398 // FIXME: We don't need to do this if we are stripping symbols.
399 Output_section* osymtab;
400 Output_section* ostrtab;
61ba1cf9
ILT
401 this->create_symtab_sections(size, input_objects, symtab, &off,
402 &osymtab, &ostrtab);
75f65a3e
ILT
403
404 // Create the .shstrtab section.
405 Output_section* shstrtab_section = this->create_shstrtab();
406
407 // Set the file offsets of all the sections not associated with
408 // segments.
ead1e424
ILT
409 off = this->set_section_offsets(off, &shndx);
410
411 // Now the section index of OSTRTAB is set.
412 osymtab->set_link(ostrtab->out_shndx());
75f65a3e
ILT
413
414 // Create the section table header.
61ba1cf9 415 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
416
417 file_header->set_section_info(oshdrs, shstrtab_section);
418
419 // Now we know exactly where everything goes in the output file.
420
421 return off;
422}
423
424// Return whether SEG1 should be before SEG2 in the output file. This
425// is based entirely on the segment type and flags. When this is
426// called the segment addresses has normally not yet been set.
427
428bool
429Layout::segment_precedes(const Output_segment* seg1,
430 const Output_segment* seg2)
431{
432 elfcpp::Elf_Word type1 = seg1->type();
433 elfcpp::Elf_Word type2 = seg2->type();
434
435 // The single PT_PHDR segment is required to precede any loadable
436 // segment. We simply make it always first.
437 if (type1 == elfcpp::PT_PHDR)
438 {
439 assert(type2 != elfcpp::PT_PHDR);
440 return true;
441 }
442 if (type2 == elfcpp::PT_PHDR)
443 return false;
444
445 // The single PT_INTERP segment is required to precede any loadable
446 // segment. We simply make it always second.
447 if (type1 == elfcpp::PT_INTERP)
448 {
449 assert(type2 != elfcpp::PT_INTERP);
450 return true;
451 }
452 if (type2 == elfcpp::PT_INTERP)
453 return false;
454
455 // We then put PT_LOAD segments before any other segments.
456 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
457 return true;
458 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
459 return false;
460
92e059d8
ILT
461 // We put the PT_TLS segment last, because that is where the dynamic
462 // linker expects to find it (this is just for efficiency; other
463 // positions would also work correctly).
464 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
465 return false;
466 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
467 return true;
468
75f65a3e
ILT
469 const elfcpp::Elf_Word flags1 = seg1->flags();
470 const elfcpp::Elf_Word flags2 = seg2->flags();
471
472 // The order of non-PT_LOAD segments is unimportant. We simply sort
473 // by the numeric segment type and flags values. There should not
474 // be more than one segment with the same type and flags.
475 if (type1 != elfcpp::PT_LOAD)
476 {
477 if (type1 != type2)
478 return type1 < type2;
479 assert(flags1 != flags2);
480 return flags1 < flags2;
481 }
482
483 // We sort PT_LOAD segments based on the flags. Readonly segments
484 // come before writable segments. Then executable segments come
485 // before non-executable segments. Then the unlikely case of a
486 // non-readable segment comes before the normal case of a readable
487 // segment. If there are multiple segments with the same type and
488 // flags, we require that the address be set, and we sort by
489 // virtual address and then physical address.
490 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
491 return (flags1 & elfcpp::PF_W) == 0;
492 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
493 return (flags1 & elfcpp::PF_X) != 0;
494 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
495 return (flags1 & elfcpp::PF_R) == 0;
496
497 uint64_t vaddr1 = seg1->vaddr();
498 uint64_t vaddr2 = seg2->vaddr();
499 if (vaddr1 != vaddr2)
500 return vaddr1 < vaddr2;
501
502 uint64_t paddr1 = seg1->paddr();
503 uint64_t paddr2 = seg2->paddr();
504 assert(paddr1 != paddr2);
505 return paddr1 < paddr2;
506}
507
ead1e424
ILT
508// Set the file offsets of all the segments, and all the sections they
509// contain. They have all been created. LOAD_SEG must be be laid out
510// first. Return the offset of the data to follow.
75f65a3e
ILT
511
512off_t
ead1e424
ILT
513Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
514 unsigned int *pshndx)
75f65a3e
ILT
515{
516 // Sort them into the final order.
54dc6425
ILT
517 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
518 Layout::Compare_segments());
519
75f65a3e
ILT
520 // Find the PT_LOAD segments, and set their addresses and offsets
521 // and their section's addresses and offsets.
522 uint64_t addr = target->text_segment_address();
523 off_t off = 0;
524 bool was_readonly = false;
525 for (Segment_list::iterator p = this->segment_list_.begin();
526 p != this->segment_list_.end();
527 ++p)
528 {
529 if ((*p)->type() == elfcpp::PT_LOAD)
530 {
531 if (load_seg != NULL && load_seg != *p)
532 abort();
533 load_seg = NULL;
534
535 // If the last segment was readonly, and this one is not,
536 // then skip the address forward one page, maintaining the
537 // same position within the page. This lets us store both
538 // segments overlapping on a single page in the file, but
539 // the loader will put them on different pages in memory.
540
541 uint64_t orig_addr = addr;
542 uint64_t orig_off = off;
543
544 uint64_t aligned_addr = addr;
545 uint64_t abi_pagesize = target->abi_pagesize();
546 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
547 {
ead1e424 548 uint64_t align = (*p)->addralign();
75f65a3e 549
ead1e424 550 addr = align_address(addr, align);
75f65a3e
ILT
551 aligned_addr = addr;
552 if ((addr & (abi_pagesize - 1)) != 0)
553 addr = addr + abi_pagesize;
554 }
555
ead1e424 556 unsigned int shndx_hold = *pshndx;
75f65a3e 557 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 558 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
559
560 // Now that we know the size of this segment, we may be able
561 // to save a page in memory, at the cost of wasting some
562 // file space, by instead aligning to the start of a new
563 // page. Here we use the real machine page size rather than
564 // the ABI mandated page size.
565
566 if (aligned_addr != addr)
567 {
568 uint64_t common_pagesize = target->common_pagesize();
569 uint64_t first_off = (common_pagesize
570 - (aligned_addr
571 & (common_pagesize - 1)));
572 uint64_t last_off = new_addr & (common_pagesize - 1);
573 if (first_off > 0
574 && last_off > 0
575 && ((aligned_addr & ~ (common_pagesize - 1))
576 != (new_addr & ~ (common_pagesize - 1)))
577 && first_off + last_off <= common_pagesize)
578 {
ead1e424
ILT
579 *pshndx = shndx_hold;
580 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 581 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 582 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
583 }
584 }
585
586 addr = new_addr;
587
588 if (((*p)->flags() & elfcpp::PF_W) == 0)
589 was_readonly = true;
590 }
591 }
592
593 // Handle the non-PT_LOAD segments, setting their offsets from their
594 // section's offsets.
595 for (Segment_list::iterator p = this->segment_list_.begin();
596 p != this->segment_list_.end();
597 ++p)
598 {
599 if ((*p)->type() != elfcpp::PT_LOAD)
600 (*p)->set_offset();
601 }
602
603 return off;
604}
605
606// Set the file offset of all the sections not associated with a
607// segment.
608
609off_t
ead1e424 610Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e
ILT
611{
612 for (Layout::Section_list::iterator p = this->section_list_.begin();
613 p != this->section_list_.end();
614 ++p)
615 {
ead1e424
ILT
616 (*p)->set_out_shndx(*pshndx);
617 ++*pshndx;
61ba1cf9
ILT
618 if ((*p)->offset() != -1)
619 continue;
ead1e424 620 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
621 (*p)->set_address(0, off);
622 off += (*p)->data_size();
623 }
624 return off;
625}
626
627// Create the symbol table sections.
628
629void
61ba1cf9 630Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 631 Symbol_table* symtab,
61ba1cf9 632 off_t* poff,
75f65a3e
ILT
633 Output_section** posymtab,
634 Output_section** postrtab)
635{
61ba1cf9
ILT
636 int symsize;
637 unsigned int align;
638 if (size == 32)
639 {
640 symsize = elfcpp::Elf_sizes<32>::sym_size;
641 align = 4;
642 }
643 else if (size == 64)
644 {
645 symsize = elfcpp::Elf_sizes<64>::sym_size;
646 align = 8;
647 }
648 else
649 abort();
650
651 off_t off = *poff;
ead1e424 652 off = align_address(off, align);
61ba1cf9
ILT
653 off_t startoff = off;
654
655 // Save space for the dummy symbol at the start of the section. We
656 // never bother to write this out--it will just be left as zero.
657 off += symsize;
658
75f65a3e
ILT
659 for (Input_objects::Object_list::const_iterator p = input_objects->begin();
660 p != input_objects->end();
661 ++p)
662 {
663 Task_lock_obj<Object> tlo(**p);
664 off = (*p)->finalize_local_symbols(off, &this->sympool_);
665 }
666
61ba1cf9
ILT
667 unsigned int local_symcount = (off - startoff) / symsize;
668 assert(local_symcount * symsize == off - startoff);
669
75f65a3e
ILT
670 off = symtab->finalize(off, &this->sympool_);
671
61ba1cf9
ILT
672 this->sympool_.set_string_offsets();
673
61ba1cf9
ILT
674 const char* symtab_name = this->namepool_.add(".symtab");
675 Output_section* osymtab = new Output_section_symtab(symtab_name,
ead1e424 676 off - startoff);
61ba1cf9
ILT
677 this->section_list_.push_back(osymtab);
678
61ba1cf9
ILT
679 const char* strtab_name = this->namepool_.add(".strtab");
680 Output_section *ostrtab = new Output_section_strtab(strtab_name,
ead1e424 681 &this->sympool_);
61ba1cf9
ILT
682 this->section_list_.push_back(ostrtab);
683 this->special_output_list_.push_back(ostrtab);
684
685 osymtab->set_address(0, startoff);
61ba1cf9
ILT
686 osymtab->set_info(local_symcount);
687 osymtab->set_entsize(symsize);
688 osymtab->set_addralign(align);
689
690 *poff = off;
691 *posymtab = osymtab;
692 *postrtab = ostrtab;
75f65a3e
ILT
693}
694
695// Create the .shstrtab section, which holds the names of the
696// sections. At the time this is called, we have created all the
697// output sections except .shstrtab itself.
698
699Output_section*
700Layout::create_shstrtab()
701{
702 // FIXME: We don't need to create a .shstrtab section if we are
703 // stripping everything.
704
705 const char* name = this->namepool_.add(".shstrtab");
706
61ba1cf9
ILT
707 this->namepool_.set_string_offsets();
708
ead1e424 709 Output_section* os = new Output_section_strtab(name, &this->namepool_);
75f65a3e
ILT
710
711 this->section_list_.push_back(os);
61ba1cf9 712 this->special_output_list_.push_back(os);
75f65a3e
ILT
713
714 return os;
715}
716
717// Create the section headers. SIZE is 32 or 64. OFF is the file
718// offset.
719
720Output_section_headers*
61ba1cf9 721Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
722{
723 Output_section_headers* oshdrs;
61ba1cf9
ILT
724 oshdrs = new Output_section_headers(size, big_endian, this->segment_list_,
725 this->section_list_,
726 &this->namepool_);
ead1e424 727 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 728 oshdrs->set_address(0, off);
61ba1cf9
ILT
729 off += oshdrs->data_size();
730 *poff = off;
731 this->special_output_list_.push_back(oshdrs);
75f65a3e 732 return oshdrs;
54dc6425
ILT
733}
734
a2fb1b05
ILT
735// The mapping of .gnu.linkonce section names to real section names.
736
ead1e424 737#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
738const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
739{
740 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
741 MAPPING_INIT("t", ".text"),
742 MAPPING_INIT("r", ".rodata"),
743 MAPPING_INIT("d", ".data"),
744 MAPPING_INIT("b", ".bss"),
745 MAPPING_INIT("s", ".sdata"),
746 MAPPING_INIT("sb", ".sbss"),
747 MAPPING_INIT("s2", ".sdata2"),
748 MAPPING_INIT("sb2", ".sbss2"),
749 MAPPING_INIT("wi", ".debug_info"),
750 MAPPING_INIT("td", ".tdata"),
751 MAPPING_INIT("tb", ".tbss"),
752 MAPPING_INIT("lr", ".lrodata"),
753 MAPPING_INIT("l", ".ldata"),
754 MAPPING_INIT("lb", ".lbss"),
755};
756#undef MAPPING_INIT
757
758const int Layout::linkonce_mapping_count =
759 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
760
761// Return the name of the output section to use for a .gnu.linkonce
762// section. This is based on the default ELF linker script of the old
763// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
764// to ".text". Set *PLEN to the length of the name. *PLEN is
765// initialized to the length of NAME.
a2fb1b05
ILT
766
767const char*
ead1e424 768Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
769{
770 const char* s = name + sizeof(".gnu.linkonce") - 1;
771 if (*s != '.')
772 return name;
773 ++s;
774 const Linkonce_mapping* plm = linkonce_mapping;
775 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
776 {
777 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
778 {
779 *plen = plm->tolen;
780 return plm->to;
781 }
a2fb1b05
ILT
782 }
783 return name;
784}
785
ead1e424
ILT
786// Choose the output section name to use given an input section name.
787// Set *PLEN to the length of the name. *PLEN is initialized to the
788// length of NAME.
789
790const char*
791Layout::output_section_name(const char* name, size_t* plen)
792{
793 if (Layout::is_linkonce(name))
794 {
795 // .gnu.linkonce sections are laid out as though they were named
796 // for the sections are placed into.
797 return Layout::linkonce_output_name(name, plen);
798 }
799
800 // If the section name has no '.', or only an initial '.', we use
801 // the name unchanged (i.e., ".text" is unchanged).
802
803 // Otherwise, if the section name does not include ".rel", we drop
804 // the last '.' and everything that follows (i.e., ".text.XXX"
805 // becomes ".text").
806
807 // Otherwise, if the section name has zero or one '.' after the
808 // ".rel", we use the name unchanged (i.e., ".rel.text" is
809 // unchanged).
810
811 // Otherwise, we drop the last '.' and everything that follows
812 // (i.e., ".rel.text.XXX" becomes ".rel.text").
813
814 const char* s = name;
815 if (*s == '.')
816 ++s;
817 const char* sdot = strchr(s, '.');
818 if (sdot == NULL)
819 return name;
820
821 const char* srel = strstr(s, ".rel");
822 if (srel == NULL)
823 {
824 *plen = sdot - name;
825 return name;
826 }
827
828 sdot = strchr(srel + 1, '.');
829 if (sdot == NULL)
830 return name;
831 sdot = strchr(sdot + 1, '.');
832 if (sdot == NULL)
833 return name;
834
835 *plen = sdot - name;
836 return name;
837}
838
a2fb1b05
ILT
839// Record the signature of a comdat section, and return whether to
840// include it in the link. If GROUP is true, this is a regular
841// section group. If GROUP is false, this is a group signature
842// derived from the name of a linkonce section. We want linkonce
843// signatures and group signatures to block each other, but we don't
844// want a linkonce signature to block another linkonce signature.
845
846bool
847Layout::add_comdat(const char* signature, bool group)
848{
849 std::string sig(signature);
850 std::pair<Signatures::iterator, bool> ins(
ead1e424 851 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
852
853 if (ins.second)
854 {
855 // This is the first time we've seen this signature.
856 return true;
857 }
858
859 if (ins.first->second)
860 {
861 // We've already seen a real section group with this signature.
862 return false;
863 }
864 else if (group)
865 {
866 // This is a real section group, and we've already seen a
867 // linkonce section with tihs signature. Record that we've seen
868 // a section group, and don't include this section group.
869 ins.first->second = true;
870 return false;
871 }
872 else
873 {
874 // We've already seen a linkonce section and this is a linkonce
875 // section. These don't block each other--this may be the same
876 // symbol name with different section types.
877 return true;
878 }
879}
880
61ba1cf9
ILT
881// Write out data not associated with a section or the symbol table.
882
883void
884Layout::write_data(Output_file* of) const
885{
886 for (Data_list::const_iterator p = this->special_output_list_.begin();
887 p != this->special_output_list_.end();
888 ++p)
889 (*p)->write(of);
890}
891
892// Write_data_task methods.
893
894// We can always run this task.
895
896Task::Is_runnable_type
897Write_data_task::is_runnable(Workqueue*)
898{
899 return IS_RUNNABLE;
900}
901
902// We need to unlock FINAL_BLOCKER when finished.
903
904Task_locker*
905Write_data_task::locks(Workqueue* workqueue)
906{
907 return new Task_locker_block(*this->final_blocker_, workqueue);
908}
909
910// Run the task--write out the data.
911
912void
913Write_data_task::run(Workqueue*)
914{
915 this->layout_->write_data(this->of_);
916}
917
918// Write_symbols_task methods.
919
920// We can always run this task.
921
922Task::Is_runnable_type
923Write_symbols_task::is_runnable(Workqueue*)
924{
925 return IS_RUNNABLE;
926}
927
928// We need to unlock FINAL_BLOCKER when finished.
929
930Task_locker*
931Write_symbols_task::locks(Workqueue* workqueue)
932{
933 return new Task_locker_block(*this->final_blocker_, workqueue);
934}
935
936// Run the task--write out the symbols.
937
938void
939Write_symbols_task::run(Workqueue*)
940{
941 this->symtab_->write_globals(this->target_, this->sympool_, this->of_);
942}
943
92e059d8 944// Close_task_runner methods.
61ba1cf9
ILT
945
946// Run the task--close the file.
947
948void
92e059d8 949Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
950{
951 this->of_->close();
952}
953
a2fb1b05
ILT
954// Instantiate the templates we need. We could use the configure
955// script to restrict this to only the ones for implemented targets.
956
957template
958Output_section*
ead1e424 959Layout::layout<32, false>(Object* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
960 const elfcpp::Shdr<32, false>& shdr, off_t*);
961
962template
963Output_section*
ead1e424 964Layout::layout<32, true>(Object* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
965 const elfcpp::Shdr<32, true>& shdr, off_t*);
966
967template
968Output_section*
ead1e424 969Layout::layout<64, false>(Object* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
970 const elfcpp::Shdr<64, false>& shdr, off_t*);
971
972template
973Output_section*
ead1e424 974Layout::layout<64, true>(Object* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
975 const elfcpp::Shdr<64, true>& shdr, off_t*);
976
977
978} // End namespace gold.
This page took 0.091123 seconds and 4 git commands to generate.