Update stored rendition of varobj value when format changes.
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
a2fb1b05 25#include <cstring>
54dc6425 26#include <algorithm>
a2fb1b05
ILT
27#include <iostream>
28#include <utility>
29
7e1edb90 30#include "parameters.h"
14144f39 31#include "options.h"
a445fddf
ILT
32#include "script.h"
33#include "script-sections.h"
a2fb1b05 34#include "output.h"
f6ce93d6 35#include "symtab.h"
a3ad94ed 36#include "dynobj.h"
3151305a 37#include "ehframe.h"
96803768 38#include "compressed_output.h"
a2fb1b05
ILT
39#include "layout.h"
40
41namespace gold
42{
43
92e059d8 44// Layout_task_runner methods.
a2fb1b05
ILT
45
46// Lay out the sections. This is called after all the input objects
47// have been read.
48
49void
17a1d0a9 50Layout_task_runner::run(Workqueue* workqueue, const Task* task)
a2fb1b05 51{
12e14209 52 off_t file_size = this->layout_->finalize(this->input_objects_,
17a1d0a9
ILT
53 this->symtab_,
54 task);
61ba1cf9
ILT
55
56 // Now we know the final size of the output file and we know where
57 // each piece of information goes.
14144f39 58 Output_file* of = new Output_file(parameters->output_file_name());
61ba1cf9
ILT
59 of->open(file_size);
60
61 // Queue up the final set of tasks.
62 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 63 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
64}
65
66// Layout methods.
67
e5756efb
ILT
68Layout::Layout(const General_options& options, Script_options* script_options)
69 : options_(options), script_options_(script_options), namepool_(),
70 sympool_(), dynpool_(), signatures_(),
61ba1cf9 71 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed 72 unattached_section_list_(), special_output_list_(),
27bc2bce 73 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
3151305a 74 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
35cdfc9a
ILT
75 eh_frame_section_(NULL), output_file_size_(-1),
76 input_requires_executable_stack_(false),
77 input_with_gnu_stack_note_(false),
535890bb 78 input_without_gnu_stack_note_(false),
17a1d0a9
ILT
79 has_static_tls_(false),
80 any_postprocessing_sections_(false)
54dc6425
ILT
81{
82 // Make space for more than enough segments for a typical file.
83 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
84 this->segment_list_.reserve(12);
85
27bc2bce
ILT
86 // We expect two unattached Output_data objects: the file header and
87 // the segment headers.
88 this->special_output_list_.reserve(2);
54dc6425
ILT
89}
90
a2fb1b05
ILT
91// Hash a key we use to look up an output section mapping.
92
93size_t
94Layout::Hash_key::operator()(const Layout::Key& k) const
95{
f0641a0b 96 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
97}
98
9e2dcb77
ILT
99// Return whether PREFIX is a prefix of STR.
100
101static inline bool
102is_prefix_of(const char* prefix, const char* str)
103{
104 return strncmp(prefix, str, strlen(prefix)) == 0;
105}
106
02d2ba74
ILT
107// Returns whether the given section is in the list of
108// debug-sections-used-by-some-version-of-gdb. Currently,
109// we've checked versions of gdb up to and including 6.7.1.
110
111static const char* gdb_sections[] =
112{ ".debug_abbrev",
113 // ".debug_aranges", // not used by gdb as of 6.7.1
114 ".debug_frame",
115 ".debug_info",
116 ".debug_line",
117 ".debug_loc",
118 ".debug_macinfo",
119 // ".debug_pubnames", // not used by gdb as of 6.7.1
120 ".debug_ranges",
121 ".debug_str",
122};
123
124static inline bool
125is_gdb_debug_section(const char* str)
126{
127 // We can do this faster: binary search or a hashtable. But why bother?
128 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
129 if (strcmp(str, gdb_sections[i]) == 0)
130 return true;
131 return false;
132}
133
a2fb1b05
ILT
134// Whether to include this section in the link.
135
136template<int size, bool big_endian>
137bool
730cdc88 138Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
a2fb1b05
ILT
139 const elfcpp::Shdr<size, big_endian>& shdr)
140{
141 // Some section types are never linked. Some are only linked when
142 // doing a relocateable link.
143 switch (shdr.get_sh_type())
144 {
145 case elfcpp::SHT_NULL:
146 case elfcpp::SHT_SYMTAB:
147 case elfcpp::SHT_DYNSYM:
148 case elfcpp::SHT_STRTAB:
149 case elfcpp::SHT_HASH:
150 case elfcpp::SHT_DYNAMIC:
151 case elfcpp::SHT_SYMTAB_SHNDX:
152 return false;
153
154 case elfcpp::SHT_RELA:
155 case elfcpp::SHT_REL:
156 case elfcpp::SHT_GROUP:
7e1edb90 157 return parameters->output_is_object();
a2fb1b05 158
9e2dcb77
ILT
159 case elfcpp::SHT_PROGBITS:
160 if (parameters->strip_debug()
161 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
162 {
163 // Debugging sections can only be recognized by name.
164 if (is_prefix_of(".debug", name)
165 || is_prefix_of(".gnu.linkonce.wi.", name)
166 || is_prefix_of(".line", name)
167 || is_prefix_of(".stab", name))
168 return false;
169 }
02d2ba74
ILT
170 if (parameters->strip_debug_gdb()
171 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
172 {
173 // Debugging sections can only be recognized by name.
174 if (is_prefix_of(".debug", name)
175 && !is_gdb_debug_section(name))
176 return false;
177 }
9e2dcb77
ILT
178 return true;
179
a2fb1b05 180 default:
a2fb1b05
ILT
181 return true;
182 }
183}
184
ead1e424 185// Return an output section named NAME, or NULL if there is none.
a2fb1b05 186
a2fb1b05 187Output_section*
ead1e424 188Layout::find_output_section(const char* name) const
a2fb1b05 189{
a445fddf
ILT
190 for (Section_list::const_iterator p = this->section_list_.begin();
191 p != this->section_list_.end();
ead1e424 192 ++p)
a445fddf
ILT
193 if (strcmp((*p)->name(), name) == 0)
194 return *p;
ead1e424
ILT
195 return NULL;
196}
a2fb1b05 197
ead1e424
ILT
198// Return an output segment of type TYPE, with segment flags SET set
199// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 200
ead1e424
ILT
201Output_segment*
202Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
203 elfcpp::Elf_Word clear) const
204{
205 for (Segment_list::const_iterator p = this->segment_list_.begin();
206 p != this->segment_list_.end();
207 ++p)
208 if (static_cast<elfcpp::PT>((*p)->type()) == type
209 && ((*p)->flags() & set) == set
210 && ((*p)->flags() & clear) == 0)
211 return *p;
212 return NULL;
213}
a2fb1b05 214
ead1e424 215// Return the output section to use for section NAME with type TYPE
a445fddf
ILT
216// and section flags FLAGS. NAME must be canonicalized in the string
217// pool, and NAME_KEY is the key.
a2fb1b05 218
ead1e424 219Output_section*
f0641a0b
ILT
220Layout::get_output_section(const char* name, Stringpool::Key name_key,
221 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424 222{
f0641a0b 223 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
224 const std::pair<Key, Output_section*> v(key, NULL);
225 std::pair<Section_name_map::iterator, bool> ins(
226 this->section_name_map_.insert(v));
227
a2fb1b05 228 if (!ins.second)
ead1e424 229 return ins.first->second;
a2fb1b05
ILT
230 else
231 {
232 // This is the first time we've seen this name/type/flags
233 // combination.
ead1e424 234 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 235 ins.first->second = os;
ead1e424 236 return os;
a2fb1b05 237 }
ead1e424
ILT
238}
239
a445fddf
ILT
240// Pick the output section to use for section NAME, in input file
241// RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
242// linker created section. ADJUST_NAME is true if we should apply the
243// standard name mappings in Layout::output_section_name. This will
244// return NULL if the input section should be discarded.
245
246Output_section*
247Layout::choose_output_section(const Relobj* relobj, const char* name,
248 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
249 bool adjust_name)
250{
251 // We should ignore some flags. FIXME: This will need some
252 // adjustment for ld -r.
253 flags &= ~ (elfcpp::SHF_INFO_LINK
254 | elfcpp::SHF_LINK_ORDER
255 | elfcpp::SHF_GROUP
256 | elfcpp::SHF_MERGE
257 | elfcpp::SHF_STRINGS);
258
259 if (this->script_options_->saw_sections_clause())
260 {
261 // We are using a SECTIONS clause, so the output section is
262 // chosen based only on the name.
263
264 Script_sections* ss = this->script_options_->script_sections();
265 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
266 Output_section** output_section_slot;
267 name = ss->output_section_name(file_name, name, &output_section_slot);
268 if (name == NULL)
269 {
270 // The SECTIONS clause says to discard this input section.
271 return NULL;
272 }
273
274 // If this is an orphan section--one not mentioned in the linker
275 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
276 // default processing below.
277
278 if (output_section_slot != NULL)
279 {
280 if (*output_section_slot != NULL)
281 return *output_section_slot;
282
283 // We don't put sections found in the linker script into
284 // SECTION_NAME_MAP_. That keeps us from getting confused
285 // if an orphan section is mapped to a section with the same
286 // name as one in the linker script.
287
288 name = this->namepool_.add(name, false, NULL);
289
290 Output_section* os = this->make_output_section(name, type, flags);
291 os->set_found_in_sections_clause();
292 *output_section_slot = os;
293 return os;
294 }
295 }
296
297 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
298
299 // Turn NAME from the name of the input section into the name of the
300 // output section.
301
302 size_t len = strlen(name);
303 if (adjust_name && !parameters->output_is_object())
304 name = Layout::output_section_name(name, &len);
305
306 Stringpool::Key name_key;
307 name = this->namepool_.add_with_length(name, len, true, &name_key);
308
309 // Find or make the output section. The output section is selected
310 // based on the section name, type, and flags.
311 return this->get_output_section(name, name_key, type, flags);
312}
313
ead1e424 314// Return the output section to use for input section SHNDX, with name
730cdc88
ILT
315// NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
316// index of a relocation section which applies to this section, or 0
317// if none, or -1U if more than one. RELOC_TYPE is the type of the
318// relocation section if there is one. Set *OFF to the offset of this
319// input section without the output section. Return NULL if the
320// section should be discarded. Set *OFF to -1 if the section
321// contents should not be written directly to the output file, but
322// will instead receive special handling.
ead1e424
ILT
323
324template<int size, bool big_endian>
325Output_section*
730cdc88
ILT
326Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
327 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
328 unsigned int reloc_shndx, unsigned int, off_t* off)
ead1e424
ILT
329{
330 if (!this->include_section(object, name, shdr))
331 return NULL;
332
a445fddf
ILT
333 Output_section* os = this->choose_output_section(object,
334 name,
335 shdr.get_sh_type(),
336 shdr.get_sh_flags(),
337 true);
338 if (os == NULL)
339 return NULL;
a2fb1b05
ILT
340
341 // FIXME: Handle SHF_LINK_ORDER somewhere.
342
a445fddf
ILT
343 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
344 this->script_options_->saw_sections_clause());
a2fb1b05
ILT
345
346 return os;
347}
348
730cdc88
ILT
349// Special GNU handling of sections name .eh_frame. They will
350// normally hold exception frame data as defined by the C++ ABI
351// (http://codesourcery.com/cxx-abi/).
3151305a
ILT
352
353template<int size, bool big_endian>
730cdc88
ILT
354Output_section*
355Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
356 const unsigned char* symbols,
357 off_t symbols_size,
358 const unsigned char* symbol_names,
359 off_t symbol_names_size,
3151305a 360 unsigned int shndx,
3151305a 361 const elfcpp::Shdr<size, big_endian>& shdr,
730cdc88
ILT
362 unsigned int reloc_shndx, unsigned int reloc_type,
363 off_t* off)
3151305a 364{
730cdc88
ILT
365 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
366 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
367
a445fddf
ILT
368 const char* const name = ".eh_frame";
369 Output_section* os = this->choose_output_section(object,
370 name,
371 elfcpp::SHT_PROGBITS,
372 elfcpp::SHF_ALLOC,
373 false);
374 if (os == NULL)
375 return NULL;
730cdc88 376
3151305a
ILT
377 if (this->eh_frame_section_ == NULL)
378 {
379 this->eh_frame_section_ = os;
730cdc88
ILT
380 this->eh_frame_data_ = new Eh_frame();
381 os->add_output_section_data(this->eh_frame_data_);
3151305a
ILT
382
383 if (this->options_.create_eh_frame_hdr())
384 {
3151305a 385 Output_section* hdr_os =
a445fddf
ILT
386 this->choose_output_section(NULL,
387 ".eh_frame_hdr",
388 elfcpp::SHT_PROGBITS,
389 elfcpp::SHF_ALLOC,
390 false);
3151305a 391
a445fddf
ILT
392 if (hdr_os != NULL)
393 {
394 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
395 this->eh_frame_data_);
396 hdr_os->add_output_section_data(hdr_posd);
3151305a 397
a445fddf 398 hdr_os->set_after_input_sections();
730cdc88 399
a445fddf
ILT
400 Output_segment* hdr_oseg =
401 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
402 this->segment_list_.push_back(hdr_oseg);
403 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
730cdc88 404
a445fddf
ILT
405 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
406 }
3151305a
ILT
407 }
408 }
409
410 gold_assert(this->eh_frame_section_ == os);
411
730cdc88
ILT
412 if (this->eh_frame_data_->add_ehframe_input_section(object,
413 symbols,
414 symbols_size,
415 symbol_names,
416 symbol_names_size,
417 shndx,
418 reloc_shndx,
419 reloc_type))
420 *off = -1;
421 else
422 {
423 // We couldn't handle this .eh_frame section for some reason.
424 // Add it as a normal section.
a445fddf
ILT
425 bool saw_sections_clause = this->script_options_->saw_sections_clause();
426 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
427 saw_sections_clause);
730cdc88
ILT
428 }
429
430 return os;
3151305a
ILT
431}
432
ead1e424
ILT
433// Add POSD to an output section using NAME, TYPE, and FLAGS.
434
435void
436Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
437 elfcpp::Elf_Xword flags,
438 Output_section_data* posd)
439{
a445fddf
ILT
440 Output_section* os = this->choose_output_section(NULL, name, type, flags,
441 false);
442 if (os != NULL)
443 os->add_output_section_data(posd);
ead1e424
ILT
444}
445
a2fb1b05
ILT
446// Map section flags to segment flags.
447
448elfcpp::Elf_Word
449Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
450{
451 elfcpp::Elf_Word ret = elfcpp::PF_R;
452 if ((flags & elfcpp::SHF_WRITE) != 0)
453 ret |= elfcpp::PF_W;
454 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
455 ret |= elfcpp::PF_X;
456 return ret;
457}
458
96803768
ILT
459// Sometimes we compress sections. This is typically done for
460// sections that are not part of normal program execution (such as
461// .debug_* sections), and where the readers of these sections know
462// how to deal with compressed sections. (To make it easier for them,
463// we will rename the ouput section in such cases from .foo to
464// .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
465// doesn't say for certain whether we'll compress -- it depends on
466// commandline options as well -- just whether this section is a
467// candidate for compression.
468
469static bool
470is_compressible_debug_section(const char* secname)
471{
472 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
473}
474
a2fb1b05
ILT
475// Make a new Output_section, and attach it to segments as
476// appropriate.
477
478Output_section*
479Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
480 elfcpp::Elf_Xword flags)
481{
96803768
ILT
482 Output_section* os;
483 if ((flags & elfcpp::SHF_ALLOC) == 0
484 && this->options_.compress_debug_sections()
485 && is_compressible_debug_section(name))
486 os = new Output_compressed_section(&this->options_, name, type, flags);
487 else
488 os = new Output_section(name, type, flags);
489
a3ad94ed 490 this->section_list_.push_back(os);
a2fb1b05
ILT
491
492 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 493 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
494 else
495 {
a445fddf
ILT
496 // If we have a SECTIONS clause, we can't handle the attachment
497 // to segments until after we've seen all the sections.
498 if (this->script_options_->saw_sections_clause())
499 return os;
500
a2fb1b05
ILT
501 // This output section goes into a PT_LOAD segment.
502
503 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
504
505 // The only thing we really care about for PT_LOAD segments is
506 // whether or not they are writable, so that is how we search
507 // for them. People who need segments sorted on some other
508 // basis will have to wait until we implement a mechanism for
509 // them to describe the segments they want.
510
511 Segment_list::const_iterator p;
512 for (p = this->segment_list_.begin();
513 p != this->segment_list_.end();
514 ++p)
515 {
516 if ((*p)->type() == elfcpp::PT_LOAD
517 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
518 {
75f65a3e 519 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
520 break;
521 }
522 }
523
524 if (p == this->segment_list_.end())
525 {
526 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
527 seg_flags);
528 this->segment_list_.push_back(oseg);
75f65a3e 529 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
530 }
531
532 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
533 // segment.
534 if (type == elfcpp::SHT_NOTE)
535 {
536 // See if we already have an equivalent PT_NOTE segment.
537 for (p = this->segment_list_.begin();
538 p != segment_list_.end();
539 ++p)
540 {
541 if ((*p)->type() == elfcpp::PT_NOTE
542 && (((*p)->flags() & elfcpp::PF_W)
543 == (seg_flags & elfcpp::PF_W)))
544 {
75f65a3e 545 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
546 break;
547 }
548 }
549
550 if (p == this->segment_list_.end())
551 {
552 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
553 seg_flags);
554 this->segment_list_.push_back(oseg);
75f65a3e 555 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
556 }
557 }
54dc6425
ILT
558
559 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 560 // segment. There can only be one such segment.
54dc6425
ILT
561 if ((flags & elfcpp::SHF_TLS) != 0)
562 {
92e059d8 563 if (this->tls_segment_ == NULL)
54dc6425 564 {
92e059d8
ILT
565 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
566 seg_flags);
567 this->segment_list_.push_back(this->tls_segment_);
54dc6425 568 }
92e059d8 569 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 570 }
a2fb1b05
ILT
571 }
572
573 return os;
574}
575
35cdfc9a
ILT
576// Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
577// is whether we saw a .note.GNU-stack section in the object file.
578// GNU_STACK_FLAGS is the section flags. The flags give the
579// protection required for stack memory. We record this in an
580// executable as a PT_GNU_STACK segment. If an object file does not
581// have a .note.GNU-stack segment, we must assume that it is an old
582// object. On some targets that will force an executable stack.
583
584void
585Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
586{
587 if (!seen_gnu_stack)
588 this->input_without_gnu_stack_note_ = true;
589 else
590 {
591 this->input_with_gnu_stack_note_ = true;
592 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
593 this->input_requires_executable_stack_ = true;
594 }
595}
596
a3ad94ed
ILT
597// Create the dynamic sections which are needed before we read the
598// relocs.
599
600void
9b07f471 601Layout::create_initial_dynamic_sections(Symbol_table* symtab)
a3ad94ed 602{
436ca963 603 if (parameters->doing_static_link())
a3ad94ed
ILT
604 return;
605
cfd73a4e 606 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
a3ad94ed
ILT
607 this->dynamic_section_ = this->make_output_section(dynamic_name,
608 elfcpp::SHT_DYNAMIC,
609 (elfcpp::SHF_ALLOC
610 | elfcpp::SHF_WRITE));
611
9b07f471 612 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
a3ad94ed
ILT
613 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
614 elfcpp::STV_HIDDEN, 0, false, false);
16649710 615
9025d29d 616 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
16649710
ILT
617
618 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
a3ad94ed
ILT
619}
620
bfd58944
ILT
621// For each output section whose name can be represented as C symbol,
622// define __start and __stop symbols for the section. This is a GNU
623// extension.
624
625void
9b07f471 626Layout::define_section_symbols(Symbol_table* symtab)
bfd58944
ILT
627{
628 for (Section_list::const_iterator p = this->section_list_.begin();
629 p != this->section_list_.end();
630 ++p)
631 {
632 const char* const name = (*p)->name();
633 if (name[strspn(name,
634 ("0123456789"
635 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
636 "abcdefghijklmnopqrstuvwxyz"
637 "_"))]
638 == '\0')
639 {
640 const std::string name_string(name);
641 const std::string start_name("__start_" + name_string);
642 const std::string stop_name("__stop_" + name_string);
643
9b07f471 644 symtab->define_in_output_data(start_name.c_str(),
bfd58944
ILT
645 NULL, // version
646 *p,
647 0, // value
648 0, // symsize
649 elfcpp::STT_NOTYPE,
650 elfcpp::STB_GLOBAL,
651 elfcpp::STV_DEFAULT,
652 0, // nonvis
653 false, // offset_is_from_end
a445fddf 654 true); // only_if_ref
bfd58944 655
9b07f471 656 symtab->define_in_output_data(stop_name.c_str(),
bfd58944
ILT
657 NULL, // version
658 *p,
659 0, // value
660 0, // symsize
661 elfcpp::STT_NOTYPE,
662 elfcpp::STB_GLOBAL,
663 elfcpp::STV_DEFAULT,
664 0, // nonvis
665 true, // offset_is_from_end
a445fddf 666 true); // only_if_ref
bfd58944
ILT
667 }
668 }
669}
670
75f65a3e
ILT
671// Find the first read-only PT_LOAD segment, creating one if
672// necessary.
54dc6425 673
75f65a3e
ILT
674Output_segment*
675Layout::find_first_load_seg()
54dc6425 676{
75f65a3e
ILT
677 for (Segment_list::const_iterator p = this->segment_list_.begin();
678 p != this->segment_list_.end();
679 ++p)
680 {
681 if ((*p)->type() == elfcpp::PT_LOAD
682 && ((*p)->flags() & elfcpp::PF_R) != 0
683 && ((*p)->flags() & elfcpp::PF_W) == 0)
684 return *p;
685 }
686
687 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
688 this->segment_list_.push_back(load_seg);
689 return load_seg;
54dc6425
ILT
690}
691
692// Finalize the layout. When this is called, we have created all the
693// output sections and all the output segments which are based on
694// input sections. We have several things to do, and we have to do
695// them in the right order, so that we get the right results correctly
696// and efficiently.
697
698// 1) Finalize the list of output segments and create the segment
699// table header.
700
701// 2) Finalize the dynamic symbol table and associated sections.
702
703// 3) Determine the final file offset of all the output segments.
704
705// 4) Determine the final file offset of all the SHF_ALLOC output
706// sections.
707
75f65a3e
ILT
708// 5) Create the symbol table sections and the section name table
709// section.
710
711// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
712// value and make a final determination of which symbols are going
713// into the output symbol table.
714
54dc6425
ILT
715// 7) Create the section table header.
716
717// 8) Determine the final file offset of all the output sections which
718// are not SHF_ALLOC, including the section table header.
719
720// 9) Finalize the ELF file header.
721
75f65a3e
ILT
722// This function returns the size of the output file.
723
724off_t
17a1d0a9
ILT
725Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
726 const Task* task)
54dc6425 727{
5a6f7e2d 728 Target* const target = input_objects->target();
dbe717ef 729
7e1edb90 730 target->finalize_sections(this);
5a6f7e2d 731
17a1d0a9 732 this->count_local_symbols(task, input_objects);
7bf1f802 733
35cdfc9a
ILT
734 this->create_gold_note();
735 this->create_executable_stack_info(target);
4f211c8b 736
a445fddf 737 if (!parameters->output_is_object() && !parameters->doing_static_link())
54dc6425 738 {
dbe717ef
ILT
739 // There was a dynamic object in the link. We need to create
740 // some information for the dynamic linker.
741
14b31740
ILT
742 // Create the dynamic symbol table, including the hash table.
743 Output_section* dynstr;
744 std::vector<Symbol*> dynamic_symbols;
745 unsigned int local_dynamic_count;
09124467 746 Versions versions(this->options_, &this->dynpool_);
9b07f471 747 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
14b31740
ILT
748 &local_dynamic_count, &dynamic_symbols,
749 &versions);
dbe717ef
ILT
750
751 // Create the .interp section to hold the name of the
752 // interpreter, and put it in a PT_INTERP segment.
96f2030e
ILT
753 if (!parameters->output_is_shared())
754 this->create_interp(target);
a3ad94ed
ILT
755
756 // Finish the .dynamic section to hold the dynamic data, and put
757 // it in a PT_DYNAMIC segment.
16649710 758 this->finish_dynamic_section(input_objects, symtab);
14b31740
ILT
759
760 // We should have added everything we need to the dynamic string
761 // table.
762 this->dynpool_.set_string_offsets();
763
764 // Create the version sections. We can't do this until the
765 // dynamic string table is complete.
46fe1623 766 this->create_version_sections(&versions, symtab, local_dynamic_count,
14b31740 767 dynamic_symbols, dynstr);
54dc6425
ILT
768 }
769
a445fddf
ILT
770 // If there is a SECTIONS clause, put all the input sections into
771 // the required order.
772 Output_segment* load_seg;
773 if (this->script_options_->saw_sections_clause())
774 load_seg = this->set_section_addresses_from_script(symtab);
775 else
776 load_seg = this->find_first_load_seg();
54dc6425 777
a445fddf
ILT
778 Output_segment* phdr_seg = NULL;
779 if (load_seg != NULL
780 && !parameters->output_is_object()
781 && !parameters->doing_static_link())
782 {
783 // Create the PT_PHDR segment which will hold the program
784 // headers.
785 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
786 this->segment_list_.push_back(phdr_seg);
787 }
75f65a3e
ILT
788
789 // Lay out the segment headers.
75f65a3e 790 Output_segment_headers* segment_headers;
9025d29d 791 segment_headers = new Output_segment_headers(this->segment_list_);
a445fddf
ILT
792 if (load_seg != NULL)
793 load_seg->add_initial_output_data(segment_headers);
dbe717ef
ILT
794 if (phdr_seg != NULL)
795 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
796
797 // Lay out the file header.
798 Output_file_header* file_header;
d391083d 799 file_header = new Output_file_header(target, symtab, segment_headers,
e5756efb 800 this->script_options_->entry());
a445fddf
ILT
801 if (load_seg != NULL)
802 load_seg->add_initial_output_data(file_header);
803
61ba1cf9 804 this->special_output_list_.push_back(file_header);
a445fddf 805 this->special_output_list_.push_back(segment_headers);
75f65a3e 806
ead1e424 807 // We set the output section indexes in set_segment_offsets and
27bc2bce 808 // set_section_indexes.
ead1e424
ILT
809 unsigned int shndx = 1;
810
811 // Set the file offsets of all the segments, and all the sections
812 // they contain.
a3ad94ed 813 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e 814
a9a60db6
ILT
815 // Set the file offsets of all the non-data sections we've seen so
816 // far which don't have to wait for the input sections. We need
817 // this in order to finalize local symbols in non-allocated
818 // sections.
819 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
820
75f65a3e 821 // Create the symbol table sections.
cb295612 822 this->create_symtab_sections(input_objects, symtab, &off);
7bf1f802
ILT
823 if (!parameters->doing_static_link())
824 this->assign_local_dynsym_offsets(input_objects);
75f65a3e 825
e5756efb
ILT
826 // Process any symbol assignments from a linker script. This must
827 // be called after the symbol table has been finalized.
828 this->script_options_->finalize_symbols(symtab, this);
829
75f65a3e
ILT
830 // Create the .shstrtab section.
831 Output_section* shstrtab_section = this->create_shstrtab();
832
a9a60db6
ILT
833 // Set the file offsets of the rest of the non-data sections which
834 // don't have to wait for the input sections.
9a0910c3 835 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
86887060
ILT
836
837 // Now that all sections have been created, set the section indexes.
838 shndx = this->set_section_indexes(shndx);
ead1e424 839
75f65a3e 840 // Create the section table header.
27bc2bce 841 this->create_shdrs(&off);
75f65a3e 842
17a1d0a9
ILT
843 // If there are no sections which require postprocessing, we can
844 // handle the section names now, and avoid a resize later.
845 if (!this->any_postprocessing_sections_)
846 off = this->set_section_offsets(off,
847 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
848
27bc2bce 849 file_header->set_section_info(this->section_headers_, shstrtab_section);
75f65a3e 850
27bc2bce
ILT
851 // Now we know exactly where everything goes in the output file
852 // (except for non-allocated sections which require postprocessing).
a3ad94ed 853 Output_data::layout_complete();
75f65a3e 854
e44fcf3b
ILT
855 this->output_file_size_ = off;
856
75f65a3e
ILT
857 return off;
858}
859
4f211c8b
ILT
860// Create a .note section for an executable or shared library. This
861// records the version of gold used to create the binary.
862
863void
35cdfc9a 864Layout::create_gold_note()
4f211c8b
ILT
865{
866 if (parameters->output_is_object())
867 return;
868
e2305dc0
ILT
869 // Authorities all agree that the values in a .note field should
870 // be aligned on 4-byte boundaries for 32-bit binaries. However,
871 // they differ on what the alignment is for 64-bit binaries.
872 // The GABI says unambiguously they take 8-byte alignment:
873 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
874 // Other documentation says alignment should always be 4 bytes:
875 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
876 // GNU ld and GNU readelf both support the latter (at least as of
877 // version 2.16.91), and glibc always generates the latter for
878 // .note.ABI-tag (as of version 1.6), so that's the one we go with
879 // here.
35cdfc9a 880#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
4f211c8b 881 const int size = parameters->get_size();
e2305dc0
ILT
882#else
883 const int size = 32;
884#endif
4f211c8b
ILT
885
886 // The contents of the .note section.
887 const char* name = "GNU";
888 std::string desc(std::string("gold ") + gold::get_version_string());
889 size_t namesz = strlen(name) + 1;
890 size_t aligned_namesz = align_address(namesz, size / 8);
891 size_t descsz = desc.length() + 1;
892 size_t aligned_descsz = align_address(descsz, size / 8);
893 const int note_type = 4;
894
895 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
896
897 unsigned char buffer[128];
898 gold_assert(sizeof buffer >= notesz);
899 memset(buffer, 0, notesz);
900
901 bool is_big_endian = parameters->is_big_endian();
902
903 if (size == 32)
904 {
905 if (!is_big_endian)
906 {
907 elfcpp::Swap<32, false>::writeval(buffer, namesz);
908 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
909 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
910 }
911 else
912 {
913 elfcpp::Swap<32, true>::writeval(buffer, namesz);
914 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
915 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
916 }
917 }
918 else if (size == 64)
919 {
920 if (!is_big_endian)
921 {
922 elfcpp::Swap<64, false>::writeval(buffer, namesz);
923 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
924 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
925 }
926 else
927 {
928 elfcpp::Swap<64, true>::writeval(buffer, namesz);
929 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
930 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
931 }
932 }
933 else
934 gold_unreachable();
935
936 memcpy(buffer + 3 * (size / 8), name, namesz);
937 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
938
cfd73a4e 939 const char* note_name = this->namepool_.add(".note", false, NULL);
4f211c8b
ILT
940 Output_section* os = this->make_output_section(note_name,
941 elfcpp::SHT_NOTE,
942 0);
943 Output_section_data* posd = new Output_data_const(buffer, notesz,
944 size / 8);
945 os->add_output_section_data(posd);
946}
947
35cdfc9a
ILT
948// Record whether the stack should be executable. This can be set
949// from the command line using the -z execstack or -z noexecstack
950// options. Otherwise, if any input file has a .note.GNU-stack
951// section with the SHF_EXECINSTR flag set, the stack should be
952// executable. Otherwise, if at least one input file a
953// .note.GNU-stack section, and some input file has no .note.GNU-stack
954// section, we use the target default for whether the stack should be
955// executable. Otherwise, we don't generate a stack note. When
956// generating a object file, we create a .note.GNU-stack section with
957// the appropriate marking. When generating an executable or shared
958// library, we create a PT_GNU_STACK segment.
959
960void
961Layout::create_executable_stack_info(const Target* target)
962{
963 bool is_stack_executable;
964 if (this->options_.is_execstack_set())
965 is_stack_executable = this->options_.is_stack_executable();
966 else if (!this->input_with_gnu_stack_note_)
967 return;
968 else
969 {
970 if (this->input_requires_executable_stack_)
971 is_stack_executable = true;
972 else if (this->input_without_gnu_stack_note_)
973 is_stack_executable = target->is_default_stack_executable();
974 else
975 is_stack_executable = false;
976 }
977
978 if (parameters->output_is_object())
979 {
980 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
981 elfcpp::Elf_Xword flags = 0;
982 if (is_stack_executable)
983 flags |= elfcpp::SHF_EXECINSTR;
984 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
985 }
986 else
987 {
988 int flags = elfcpp::PF_R | elfcpp::PF_W;
989 if (is_stack_executable)
990 flags |= elfcpp::PF_X;
991 Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
992 this->segment_list_.push_back(oseg);
993 }
994}
995
75f65a3e
ILT
996// Return whether SEG1 should be before SEG2 in the output file. This
997// is based entirely on the segment type and flags. When this is
998// called the segment addresses has normally not yet been set.
999
1000bool
1001Layout::segment_precedes(const Output_segment* seg1,
1002 const Output_segment* seg2)
1003{
1004 elfcpp::Elf_Word type1 = seg1->type();
1005 elfcpp::Elf_Word type2 = seg2->type();
1006
1007 // The single PT_PHDR segment is required to precede any loadable
1008 // segment. We simply make it always first.
1009 if (type1 == elfcpp::PT_PHDR)
1010 {
a3ad94ed 1011 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
1012 return true;
1013 }
1014 if (type2 == elfcpp::PT_PHDR)
1015 return false;
1016
1017 // The single PT_INTERP segment is required to precede any loadable
1018 // segment. We simply make it always second.
1019 if (type1 == elfcpp::PT_INTERP)
1020 {
a3ad94ed 1021 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
1022 return true;
1023 }
1024 if (type2 == elfcpp::PT_INTERP)
1025 return false;
1026
1027 // We then put PT_LOAD segments before any other segments.
1028 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1029 return true;
1030 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1031 return false;
1032
92e059d8
ILT
1033 // We put the PT_TLS segment last, because that is where the dynamic
1034 // linker expects to find it (this is just for efficiency; other
1035 // positions would also work correctly).
1036 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
1037 return false;
1038 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
1039 return true;
1040
75f65a3e
ILT
1041 const elfcpp::Elf_Word flags1 = seg1->flags();
1042 const elfcpp::Elf_Word flags2 = seg2->flags();
1043
1044 // The order of non-PT_LOAD segments is unimportant. We simply sort
1045 // by the numeric segment type and flags values. There should not
1046 // be more than one segment with the same type and flags.
1047 if (type1 != elfcpp::PT_LOAD)
1048 {
1049 if (type1 != type2)
1050 return type1 < type2;
a3ad94ed 1051 gold_assert(flags1 != flags2);
75f65a3e
ILT
1052 return flags1 < flags2;
1053 }
1054
a445fddf
ILT
1055 // If the addresses are set already, sort by load address.
1056 if (seg1->are_addresses_set())
1057 {
1058 if (!seg2->are_addresses_set())
1059 return true;
1060
1061 unsigned int section_count1 = seg1->output_section_count();
1062 unsigned int section_count2 = seg2->output_section_count();
1063 if (section_count1 == 0 && section_count2 > 0)
1064 return true;
1065 if (section_count1 > 0 && section_count2 == 0)
1066 return false;
1067
1068 uint64_t paddr1 = seg1->first_section_load_address();
1069 uint64_t paddr2 = seg2->first_section_load_address();
1070 if (paddr1 != paddr2)
1071 return paddr1 < paddr2;
1072 }
1073 else if (seg2->are_addresses_set())
1074 return false;
1075
75f65a3e
ILT
1076 // We sort PT_LOAD segments based on the flags. Readonly segments
1077 // come before writable segments. Then executable segments come
1078 // before non-executable segments. Then the unlikely case of a
1079 // non-readable segment comes before the normal case of a readable
1080 // segment. If there are multiple segments with the same type and
1081 // flags, we require that the address be set, and we sort by
1082 // virtual address and then physical address.
1083 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1084 return (flags1 & elfcpp::PF_W) == 0;
1085 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1086 return (flags1 & elfcpp::PF_X) != 0;
1087 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1088 return (flags1 & elfcpp::PF_R) == 0;
1089
a445fddf
ILT
1090 // We shouldn't get here--we shouldn't create segments which we
1091 // can't distinguish.
1092 gold_unreachable();
75f65a3e
ILT
1093}
1094
ead1e424
ILT
1095// Set the file offsets of all the segments, and all the sections they
1096// contain. They have all been created. LOAD_SEG must be be laid out
1097// first. Return the offset of the data to follow.
75f65a3e
ILT
1098
1099off_t
ead1e424
ILT
1100Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1101 unsigned int *pshndx)
75f65a3e
ILT
1102{
1103 // Sort them into the final order.
54dc6425
ILT
1104 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1105 Layout::Compare_segments());
1106
75f65a3e
ILT
1107 // Find the PT_LOAD segments, and set their addresses and offsets
1108 // and their section's addresses and offsets.
0c5e9c22 1109 uint64_t addr;
a445fddf 1110 if (this->options_.user_set_text_segment_address())
0c5e9c22 1111 addr = options_.text_segment_address();
a445fddf
ILT
1112 else if (parameters->output_is_shared())
1113 addr = 0;
0c5e9c22
ILT
1114 else
1115 addr = target->default_text_segment_address();
75f65a3e 1116 off_t off = 0;
a445fddf
ILT
1117
1118 // If LOAD_SEG is NULL, then the file header and segment headers
1119 // will not be loadable. But they still need to be at offset 0 in
1120 // the file. Set their offsets now.
1121 if (load_seg == NULL)
1122 {
1123 for (Data_list::iterator p = this->special_output_list_.begin();
1124 p != this->special_output_list_.end();
1125 ++p)
1126 {
1127 off = align_address(off, (*p)->addralign());
1128 (*p)->set_address_and_file_offset(0, off);
1129 off += (*p)->data_size();
1130 }
1131 }
1132
75f65a3e
ILT
1133 bool was_readonly = false;
1134 for (Segment_list::iterator p = this->segment_list_.begin();
1135 p != this->segment_list_.end();
1136 ++p)
1137 {
1138 if ((*p)->type() == elfcpp::PT_LOAD)
1139 {
1140 if (load_seg != NULL && load_seg != *p)
a3ad94ed 1141 gold_unreachable();
75f65a3e
ILT
1142 load_seg = NULL;
1143
75f65a3e
ILT
1144 uint64_t orig_addr = addr;
1145 uint64_t orig_off = off;
1146
a445fddf 1147 uint64_t aligned_addr = 0;
75f65a3e 1148 uint64_t abi_pagesize = target->abi_pagesize();
0496d5e5 1149
a445fddf
ILT
1150 // FIXME: This should depend on the -n and -N options.
1151 (*p)->set_minimum_p_align(target->common_pagesize());
0496d5e5 1152
a445fddf
ILT
1153 bool are_addresses_set = (*p)->are_addresses_set();
1154 if (are_addresses_set)
75f65a3e 1155 {
a445fddf
ILT
1156 // When it comes to setting file offsets, we care about
1157 // the physical address.
1158 addr = (*p)->paddr();
1159
1160 // Adjust the file offset to the same address modulo the
1161 // page size.
1162 uint64_t unsigned_off = off;
1163 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1164 | (addr & (abi_pagesize - 1)));
1165 if (aligned_off < unsigned_off)
1166 aligned_off += abi_pagesize;
1167 off = aligned_off;
1168 }
1169 else
1170 {
1171 // If the last segment was readonly, and this one is
1172 // not, then skip the address forward one page,
1173 // maintaining the same position within the page. This
1174 // lets us store both segments overlapping on a single
1175 // page in the file, but the loader will put them on
1176 // different pages in memory.
1177
1178 addr = align_address(addr, (*p)->maximum_alignment());
75f65a3e 1179 aligned_addr = addr;
a445fddf
ILT
1180
1181 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1182 {
1183 if ((addr & (abi_pagesize - 1)) != 0)
1184 addr = addr + abi_pagesize;
1185 }
1186
1187 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
75f65a3e
ILT
1188 }
1189
ead1e424 1190 unsigned int shndx_hold = *pshndx;
a445fddf
ILT
1191 uint64_t new_addr = (*p)->set_section_addresses(false, addr, &off,
1192 pshndx);
75f65a3e
ILT
1193
1194 // Now that we know the size of this segment, we may be able
1195 // to save a page in memory, at the cost of wasting some
1196 // file space, by instead aligning to the start of a new
1197 // page. Here we use the real machine page size rather than
1198 // the ABI mandated page size.
1199
a445fddf 1200 if (!are_addresses_set && aligned_addr != addr)
75f65a3e
ILT
1201 {
1202 uint64_t common_pagesize = target->common_pagesize();
1203 uint64_t first_off = (common_pagesize
1204 - (aligned_addr
1205 & (common_pagesize - 1)));
1206 uint64_t last_off = new_addr & (common_pagesize - 1);
1207 if (first_off > 0
1208 && last_off > 0
1209 && ((aligned_addr & ~ (common_pagesize - 1))
1210 != (new_addr & ~ (common_pagesize - 1)))
1211 && first_off + last_off <= common_pagesize)
1212 {
ead1e424
ILT
1213 *pshndx = shndx_hold;
1214 addr = align_address(aligned_addr, common_pagesize);
a445fddf 1215 addr = align_address(addr, (*p)->maximum_alignment());
75f65a3e 1216 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
a445fddf
ILT
1217 new_addr = (*p)->set_section_addresses(true, addr, &off,
1218 pshndx);
75f65a3e
ILT
1219 }
1220 }
1221
1222 addr = new_addr;
1223
1224 if (((*p)->flags() & elfcpp::PF_W) == 0)
1225 was_readonly = true;
1226 }
1227 }
1228
1229 // Handle the non-PT_LOAD segments, setting their offsets from their
1230 // section's offsets.
1231 for (Segment_list::iterator p = this->segment_list_.begin();
1232 p != this->segment_list_.end();
1233 ++p)
1234 {
1235 if ((*p)->type() != elfcpp::PT_LOAD)
1236 (*p)->set_offset();
1237 }
1238
7bf1f802
ILT
1239 // Set the TLS offsets for each section in the PT_TLS segment.
1240 if (this->tls_segment_ != NULL)
1241 this->tls_segment_->set_tls_offsets();
1242
75f65a3e
ILT
1243 return off;
1244}
1245
1246// Set the file offset of all the sections not associated with a
1247// segment.
1248
1249off_t
9a0910c3 1250Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
75f65a3e 1251{
a3ad94ed
ILT
1252 for (Section_list::iterator p = this->unattached_section_list_.begin();
1253 p != this->unattached_section_list_.end();
75f65a3e
ILT
1254 ++p)
1255 {
27bc2bce
ILT
1256 // The symtab section is handled in create_symtab_sections.
1257 if (*p == this->symtab_section_)
61ba1cf9 1258 continue;
27bc2bce 1259
a9a60db6
ILT
1260 // If we've already set the data size, don't set it again.
1261 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1262 continue;
1263
96803768
ILT
1264 if (pass == BEFORE_INPUT_SECTIONS_PASS
1265 && (*p)->requires_postprocessing())
17a1d0a9
ILT
1266 {
1267 (*p)->create_postprocessing_buffer();
1268 this->any_postprocessing_sections_ = true;
1269 }
96803768 1270
9a0910c3
ILT
1271 if (pass == BEFORE_INPUT_SECTIONS_PASS
1272 && (*p)->after_input_sections())
1273 continue;
17a1d0a9 1274 else if (pass == POSTPROCESSING_SECTIONS_PASS
9a0910c3
ILT
1275 && (!(*p)->after_input_sections()
1276 || (*p)->type() == elfcpp::SHT_STRTAB))
1277 continue;
17a1d0a9 1278 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
9a0910c3
ILT
1279 && (!(*p)->after_input_sections()
1280 || (*p)->type() != elfcpp::SHT_STRTAB))
1281 continue;
27bc2bce 1282
ead1e424 1283 off = align_address(off, (*p)->addralign());
27bc2bce
ILT
1284 (*p)->set_file_offset(off);
1285 (*p)->finalize_data_size();
75f65a3e 1286 off += (*p)->data_size();
96803768
ILT
1287
1288 // At this point the name must be set.
17a1d0a9 1289 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
96803768 1290 this->namepool_.add((*p)->name(), false, NULL);
75f65a3e
ILT
1291 }
1292 return off;
1293}
1294
86887060
ILT
1295// Set the section indexes of all the sections not associated with a
1296// segment.
1297
1298unsigned int
1299Layout::set_section_indexes(unsigned int shndx)
1300{
1301 for (Section_list::iterator p = this->unattached_section_list_.begin();
1302 p != this->unattached_section_list_.end();
1303 ++p)
1304 {
1305 (*p)->set_out_shndx(shndx);
1306 ++shndx;
1307 }
1308 return shndx;
1309}
1310
a445fddf
ILT
1311// Set the section addresses according to the linker script. This is
1312// only called when we see a SECTIONS clause. This returns the
1313// program segment which should hold the file header and segment
1314// headers, if any. It will return NULL if they should not be in a
1315// segment.
1316
1317Output_segment*
1318Layout::set_section_addresses_from_script(Symbol_table* symtab)
1319{
1320 Script_sections* ss = this->script_options_->script_sections();
1321 gold_assert(ss->saw_sections_clause());
1322
1323 // Place each orphaned output section in the script.
1324 for (Section_list::iterator p = this->section_list_.begin();
1325 p != this->section_list_.end();
1326 ++p)
1327 {
1328 if (!(*p)->found_in_sections_clause())
1329 ss->place_orphan(*p);
1330 }
1331
1332 return this->script_options_->set_section_addresses(symtab, this);
1333}
1334
7bf1f802
ILT
1335// Count the local symbols in the regular symbol table and the dynamic
1336// symbol table, and build the respective string pools.
1337
1338void
17a1d0a9
ILT
1339Layout::count_local_symbols(const Task* task,
1340 const Input_objects* input_objects)
7bf1f802 1341{
6d013333
ILT
1342 // First, figure out an upper bound on the number of symbols we'll
1343 // be inserting into each pool. This helps us create the pools with
1344 // the right size, to avoid unnecessary hashtable resizing.
1345 unsigned int symbol_count = 0;
1346 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1347 p != input_objects->relobj_end();
1348 ++p)
1349 symbol_count += (*p)->local_symbol_count();
1350
1351 // Go from "upper bound" to "estimate." We overcount for two
1352 // reasons: we double-count symbols that occur in more than one
1353 // object file, and we count symbols that are dropped from the
1354 // output. Add it all together and assume we overcount by 100%.
1355 symbol_count /= 2;
1356
1357 // We assume all symbols will go into both the sympool and dynpool.
1358 this->sympool_.reserve(symbol_count);
1359 this->dynpool_.reserve(symbol_count);
1360
7bf1f802
ILT
1361 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1362 p != input_objects->relobj_end();
1363 ++p)
1364 {
17a1d0a9 1365 Task_lock_obj<Object> tlo(task, *p);
7bf1f802
ILT
1366 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
1367 }
1368}
1369
b8e6aad9
ILT
1370// Create the symbol table sections. Here we also set the final
1371// values of the symbols. At this point all the loadable sections are
1372// fully laid out.
75f65a3e
ILT
1373
1374void
9025d29d 1375Layout::create_symtab_sections(const Input_objects* input_objects,
75f65a3e 1376 Symbol_table* symtab,
16649710 1377 off_t* poff)
75f65a3e 1378{
61ba1cf9
ILT
1379 int symsize;
1380 unsigned int align;
9025d29d 1381 if (parameters->get_size() == 32)
61ba1cf9
ILT
1382 {
1383 symsize = elfcpp::Elf_sizes<32>::sym_size;
1384 align = 4;
1385 }
9025d29d 1386 else if (parameters->get_size() == 64)
61ba1cf9
ILT
1387 {
1388 symsize = elfcpp::Elf_sizes<64>::sym_size;
1389 align = 8;
1390 }
1391 else
a3ad94ed 1392 gold_unreachable();
61ba1cf9
ILT
1393
1394 off_t off = *poff;
ead1e424 1395 off = align_address(off, align);
61ba1cf9
ILT
1396 off_t startoff = off;
1397
1398 // Save space for the dummy symbol at the start of the section. We
1399 // never bother to write this out--it will just be left as zero.
1400 off += symsize;
c06b7b0b 1401 unsigned int local_symbol_index = 1;
61ba1cf9 1402
a3ad94ed
ILT
1403 // Add STT_SECTION symbols for each Output section which needs one.
1404 for (Section_list::iterator p = this->section_list_.begin();
1405 p != this->section_list_.end();
1406 ++p)
1407 {
1408 if (!(*p)->needs_symtab_index())
1409 (*p)->set_symtab_index(-1U);
1410 else
1411 {
1412 (*p)->set_symtab_index(local_symbol_index);
1413 ++local_symbol_index;
1414 off += symsize;
1415 }
1416 }
1417
f6ce93d6
ILT
1418 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1419 p != input_objects->relobj_end();
75f65a3e
ILT
1420 ++p)
1421 {
c06b7b0b 1422 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
7bf1f802 1423 off);
c06b7b0b
ILT
1424 off += (index - local_symbol_index) * symsize;
1425 local_symbol_index = index;
75f65a3e
ILT
1426 }
1427
c06b7b0b 1428 unsigned int local_symcount = local_symbol_index;
a3ad94ed 1429 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 1430
16649710
ILT
1431 off_t dynoff;
1432 size_t dyn_global_index;
1433 size_t dyncount;
1434 if (this->dynsym_section_ == NULL)
1435 {
1436 dynoff = 0;
1437 dyn_global_index = 0;
1438 dyncount = 0;
1439 }
1440 else
1441 {
1442 dyn_global_index = this->dynsym_section_->info();
1443 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1444 dynoff = this->dynsym_section_->offset() + locsize;
1445 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
f5c3f225 1446 gold_assert(static_cast<off_t>(dyncount * symsize)
16649710
ILT
1447 == this->dynsym_section_->data_size() - locsize);
1448 }
1449
55a93433
ILT
1450 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
1451 &this->sympool_, &local_symcount);
75f65a3e 1452
9e2dcb77
ILT
1453 if (!parameters->strip_all())
1454 {
1455 this->sympool_.set_string_offsets();
61ba1cf9 1456
cfd73a4e 1457 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
9e2dcb77
ILT
1458 Output_section* osymtab = this->make_output_section(symtab_name,
1459 elfcpp::SHT_SYMTAB,
1460 0);
1461 this->symtab_section_ = osymtab;
a3ad94ed 1462
27bc2bce
ILT
1463 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1464 align);
9e2dcb77 1465 osymtab->add_output_section_data(pos);
61ba1cf9 1466
cfd73a4e 1467 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
9e2dcb77
ILT
1468 Output_section* ostrtab = this->make_output_section(strtab_name,
1469 elfcpp::SHT_STRTAB,
1470 0);
a3ad94ed 1471
9e2dcb77
ILT
1472 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1473 ostrtab->add_output_section_data(pstr);
61ba1cf9 1474
27bc2bce
ILT
1475 osymtab->set_file_offset(startoff);
1476 osymtab->finalize_data_size();
9e2dcb77
ILT
1477 osymtab->set_link_section(ostrtab);
1478 osymtab->set_info(local_symcount);
1479 osymtab->set_entsize(symsize);
61ba1cf9 1480
9e2dcb77
ILT
1481 *poff = off;
1482 }
75f65a3e
ILT
1483}
1484
1485// Create the .shstrtab section, which holds the names of the
1486// sections. At the time this is called, we have created all the
1487// output sections except .shstrtab itself.
1488
1489Output_section*
1490Layout::create_shstrtab()
1491{
1492 // FIXME: We don't need to create a .shstrtab section if we are
1493 // stripping everything.
1494
cfd73a4e 1495 const char* name = this->namepool_.add(".shstrtab", false, NULL);
75f65a3e 1496
a3ad94ed 1497 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 1498
27bc2bce
ILT
1499 // We can't write out this section until we've set all the section
1500 // names, and we don't set the names of compressed output sections
1501 // until relocations are complete.
1502 os->set_after_input_sections();
1503
a3ad94ed
ILT
1504 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1505 os->add_output_section_data(posd);
75f65a3e
ILT
1506
1507 return os;
1508}
1509
1510// Create the section headers. SIZE is 32 or 64. OFF is the file
1511// offset.
1512
27bc2bce 1513void
9025d29d 1514Layout::create_shdrs(off_t* poff)
75f65a3e
ILT
1515{
1516 Output_section_headers* oshdrs;
9025d29d 1517 oshdrs = new Output_section_headers(this,
16649710
ILT
1518 &this->segment_list_,
1519 &this->unattached_section_list_,
61ba1cf9 1520 &this->namepool_);
ead1e424 1521 off_t off = align_address(*poff, oshdrs->addralign());
27bc2bce 1522 oshdrs->set_address_and_file_offset(0, off);
61ba1cf9
ILT
1523 off += oshdrs->data_size();
1524 *poff = off;
27bc2bce 1525 this->section_headers_ = oshdrs;
54dc6425
ILT
1526}
1527
dbe717ef
ILT
1528// Create the dynamic symbol table.
1529
1530void
7bf1f802 1531Layout::create_dynamic_symtab(const Input_objects* input_objects,
9b07f471 1532 Symbol_table* symtab,
14b31740
ILT
1533 Output_section **pdynstr,
1534 unsigned int* plocal_dynamic_count,
1535 std::vector<Symbol*>* pdynamic_symbols,
1536 Versions* pversions)
dbe717ef 1537{
a3ad94ed
ILT
1538 // Count all the symbols in the dynamic symbol table, and set the
1539 // dynamic symbol indexes.
dbe717ef 1540
a3ad94ed
ILT
1541 // Skip symbol 0, which is always all zeroes.
1542 unsigned int index = 1;
dbe717ef 1543
a3ad94ed
ILT
1544 // Add STT_SECTION symbols for each Output section which needs one.
1545 for (Section_list::iterator p = this->section_list_.begin();
1546 p != this->section_list_.end();
1547 ++p)
1548 {
1549 if (!(*p)->needs_dynsym_index())
1550 (*p)->set_dynsym_index(-1U);
1551 else
1552 {
1553 (*p)->set_dynsym_index(index);
1554 ++index;
1555 }
1556 }
1557
7bf1f802
ILT
1558 // Count the local symbols that need to go in the dynamic symbol table,
1559 // and set the dynamic symbol indexes.
1560 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1561 p != input_objects->relobj_end();
1562 ++p)
1563 {
1564 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
1565 index = new_index;
1566 }
a3ad94ed
ILT
1567
1568 unsigned int local_symcount = index;
14b31740 1569 *plocal_dynamic_count = local_symcount;
a3ad94ed
ILT
1570
1571 // FIXME: We have to tell set_dynsym_indexes whether the
1572 // -E/--export-dynamic option was used.
9b07f471 1573 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
35cdfc9a 1574 &this->dynpool_, pversions);
a3ad94ed
ILT
1575
1576 int symsize;
1577 unsigned int align;
9025d29d 1578 const int size = parameters->get_size();
a3ad94ed
ILT
1579 if (size == 32)
1580 {
1581 symsize = elfcpp::Elf_sizes<32>::sym_size;
1582 align = 4;
1583 }
1584 else if (size == 64)
1585 {
1586 symsize = elfcpp::Elf_sizes<64>::sym_size;
1587 align = 8;
1588 }
1589 else
1590 gold_unreachable();
1591
14b31740
ILT
1592 // Create the dynamic symbol table section.
1593
cfd73a4e 1594 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
a3ad94ed
ILT
1595 Output_section* dynsym = this->make_output_section(dynsym_name,
1596 elfcpp::SHT_DYNSYM,
1597 elfcpp::SHF_ALLOC);
1598
27bc2bce
ILT
1599 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1600 align);
a3ad94ed
ILT
1601 dynsym->add_output_section_data(odata);
1602
1603 dynsym->set_info(local_symcount);
1604 dynsym->set_entsize(symsize);
1605 dynsym->set_addralign(align);
1606
1607 this->dynsym_section_ = dynsym;
1608
16649710 1609 Output_data_dynamic* const odyn = this->dynamic_data_;
a3ad94ed
ILT
1610 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1611 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1612
14b31740
ILT
1613 // Create the dynamic string table section.
1614
cfd73a4e 1615 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
a3ad94ed
ILT
1616 Output_section* dynstr = this->make_output_section(dynstr_name,
1617 elfcpp::SHT_STRTAB,
1618 elfcpp::SHF_ALLOC);
1619
1620 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1621 dynstr->add_output_section_data(strdata);
1622
16649710
ILT
1623 dynsym->set_link_section(dynstr);
1624 this->dynamic_section_->set_link_section(dynstr);
1625
a3ad94ed
ILT
1626 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1627 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1628
14b31740
ILT
1629 *pdynstr = dynstr;
1630
1631 // Create the hash tables.
1632
a3ad94ed
ILT
1633 // FIXME: We need an option to create a GNU hash table.
1634
1635 unsigned char* phash;
1636 unsigned int hashlen;
9025d29d 1637 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
a3ad94ed
ILT
1638 &phash, &hashlen);
1639
cfd73a4e 1640 const char* hash_name = this->namepool_.add(".hash", false, NULL);
a3ad94ed
ILT
1641 Output_section* hashsec = this->make_output_section(hash_name,
1642 elfcpp::SHT_HASH,
1643 elfcpp::SHF_ALLOC);
1644
1645 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1646 hashlen,
1647 align);
1648 hashsec->add_output_section_data(hashdata);
1649
16649710 1650 hashsec->set_link_section(dynsym);
a3ad94ed 1651 hashsec->set_entsize(4);
a3ad94ed
ILT
1652
1653 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
1654}
1655
7bf1f802
ILT
1656// Assign offsets to each local portion of the dynamic symbol table.
1657
1658void
1659Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
1660{
1661 Output_section* dynsym = this->dynsym_section_;
1662 gold_assert(dynsym != NULL);
1663
1664 off_t off = dynsym->offset();
1665
1666 // Skip the dummy symbol at the start of the section.
1667 off += dynsym->entsize();
1668
1669 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1670 p != input_objects->relobj_end();
1671 ++p)
1672 {
1673 unsigned int count = (*p)->set_local_dynsym_offset(off);
1674 off += count * dynsym->entsize();
1675 }
1676}
1677
14b31740
ILT
1678// Create the version sections.
1679
1680void
9025d29d 1681Layout::create_version_sections(const Versions* versions,
46fe1623 1682 const Symbol_table* symtab,
14b31740
ILT
1683 unsigned int local_symcount,
1684 const std::vector<Symbol*>& dynamic_symbols,
1685 const Output_section* dynstr)
1686{
1687 if (!versions->any_defs() && !versions->any_needs())
1688 return;
1689
9025d29d 1690 if (parameters->get_size() == 32)
14b31740 1691 {
9025d29d 1692 if (parameters->is_big_endian())
193a53d9
ILT
1693 {
1694#ifdef HAVE_TARGET_32_BIG
1695 this->sized_create_version_sections
1696 SELECT_SIZE_ENDIAN_NAME(32, true)(
46fe1623 1697 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1698 SELECT_SIZE_ENDIAN(32, true));
1699#else
1700 gold_unreachable();
1701#endif
1702 }
14b31740 1703 else
193a53d9
ILT
1704 {
1705#ifdef HAVE_TARGET_32_LITTLE
1706 this->sized_create_version_sections
1707 SELECT_SIZE_ENDIAN_NAME(32, false)(
46fe1623 1708 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1709 SELECT_SIZE_ENDIAN(32, false));
1710#else
1711 gold_unreachable();
1712#endif
1713 }
14b31740 1714 }
9025d29d 1715 else if (parameters->get_size() == 64)
14b31740 1716 {
9025d29d 1717 if (parameters->is_big_endian())
193a53d9
ILT
1718 {
1719#ifdef HAVE_TARGET_64_BIG
1720 this->sized_create_version_sections
1721 SELECT_SIZE_ENDIAN_NAME(64, true)(
46fe1623 1722 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1723 SELECT_SIZE_ENDIAN(64, true));
1724#else
1725 gold_unreachable();
1726#endif
1727 }
14b31740 1728 else
193a53d9
ILT
1729 {
1730#ifdef HAVE_TARGET_64_LITTLE
1731 this->sized_create_version_sections
1732 SELECT_SIZE_ENDIAN_NAME(64, false)(
46fe1623 1733 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1734 SELECT_SIZE_ENDIAN(64, false));
1735#else
1736 gold_unreachable();
1737#endif
1738 }
14b31740
ILT
1739 }
1740 else
1741 gold_unreachable();
1742}
1743
1744// Create the version sections, sized version.
1745
1746template<int size, bool big_endian>
1747void
1748Layout::sized_create_version_sections(
1749 const Versions* versions,
46fe1623 1750 const Symbol_table* symtab,
14b31740
ILT
1751 unsigned int local_symcount,
1752 const std::vector<Symbol*>& dynamic_symbols,
91da9340
ILT
1753 const Output_section* dynstr
1754 ACCEPT_SIZE_ENDIAN)
14b31740 1755{
cfd73a4e 1756 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
14b31740
ILT
1757 Output_section* vsec = this->make_output_section(vname,
1758 elfcpp::SHT_GNU_versym,
1759 elfcpp::SHF_ALLOC);
1760
1761 unsigned char* vbuf;
1762 unsigned int vsize;
91da9340 1763 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
46fe1623 1764 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
7e1edb90 1765 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1766
1767 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1768
1769 vsec->add_output_section_data(vdata);
1770 vsec->set_entsize(2);
1771 vsec->set_link_section(this->dynsym_section_);
1772
1773 Output_data_dynamic* const odyn = this->dynamic_data_;
1774 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1775
1776 if (versions->any_defs())
1777 {
cfd73a4e 1778 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
14b31740
ILT
1779 Output_section *vdsec;
1780 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1781 elfcpp::SHF_ALLOC);
1782
1783 unsigned char* vdbuf;
1784 unsigned int vdsize;
1785 unsigned int vdentries;
91da9340
ILT
1786 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1787 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1788 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1789
1790 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1791 vdsize,
1792 4);
1793
1794 vdsec->add_output_section_data(vddata);
1795 vdsec->set_link_section(dynstr);
1796 vdsec->set_info(vdentries);
1797
1798 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1799 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1800 }
1801
1802 if (versions->any_needs())
1803 {
cfd73a4e 1804 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
14b31740
ILT
1805 Output_section* vnsec;
1806 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1807 elfcpp::SHF_ALLOC);
1808
1809 unsigned char* vnbuf;
1810 unsigned int vnsize;
1811 unsigned int vnentries;
91da9340
ILT
1812 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1813 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1814 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1815
1816 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1817 vnsize,
1818 4);
1819
1820 vnsec->add_output_section_data(vndata);
1821 vnsec->set_link_section(dynstr);
1822 vnsec->set_info(vnentries);
1823
1824 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1825 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1826 }
1827}
1828
dbe717ef
ILT
1829// Create the .interp section and PT_INTERP segment.
1830
1831void
1832Layout::create_interp(const Target* target)
1833{
1834 const char* interp = this->options_.dynamic_linker();
1835 if (interp == NULL)
1836 {
1837 interp = target->dynamic_linker();
a3ad94ed 1838 gold_assert(interp != NULL);
dbe717ef
ILT
1839 }
1840
1841 size_t len = strlen(interp) + 1;
1842
1843 Output_section_data* odata = new Output_data_const(interp, len, 1);
1844
cfd73a4e 1845 const char* interp_name = this->namepool_.add(".interp", false, NULL);
dbe717ef
ILT
1846 Output_section* osec = this->make_output_section(interp_name,
1847 elfcpp::SHT_PROGBITS,
1848 elfcpp::SHF_ALLOC);
1849 osec->add_output_section_data(odata);
1850
1851 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1852 this->segment_list_.push_back(oseg);
1853 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1854}
1855
a3ad94ed
ILT
1856// Finish the .dynamic section and PT_DYNAMIC segment.
1857
1858void
1859Layout::finish_dynamic_section(const Input_objects* input_objects,
16649710 1860 const Symbol_table* symtab)
a3ad94ed 1861{
a3ad94ed
ILT
1862 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1863 elfcpp::PF_R | elfcpp::PF_W);
1864 this->segment_list_.push_back(oseg);
1865 oseg->add_initial_output_section(this->dynamic_section_,
1866 elfcpp::PF_R | elfcpp::PF_W);
1867
16649710
ILT
1868 Output_data_dynamic* const odyn = this->dynamic_data_;
1869
a3ad94ed
ILT
1870 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1871 p != input_objects->dynobj_end();
1872 ++p)
1873 {
1874 // FIXME: Handle --as-needed.
1875 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1876 }
1877
fced7afd
ILT
1878 if (parameters->output_is_shared())
1879 {
1880 const char* soname = this->options_.soname();
1881 if (soname != NULL)
1882 odyn->add_string(elfcpp::DT_SONAME, soname);
1883 }
1884
a3ad94ed
ILT
1885 // FIXME: Support --init and --fini.
1886 Symbol* sym = symtab->lookup("_init");
14b31740 1887 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1888 odyn->add_symbol(elfcpp::DT_INIT, sym);
1889
1890 sym = symtab->lookup("_fini");
14b31740 1891 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1892 odyn->add_symbol(elfcpp::DT_FINI, sym);
1893
1894 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
41f542e7
ILT
1895
1896 // Add a DT_RPATH entry if needed.
1897 const General_options::Dir_list& rpath(this->options_.rpath());
1898 if (!rpath.empty())
1899 {
1900 std::string rpath_val;
1901 for (General_options::Dir_list::const_iterator p = rpath.begin();
1902 p != rpath.end();
1903 ++p)
1904 {
1905 if (rpath_val.empty())
ad2d6943 1906 rpath_val = p->name();
41f542e7
ILT
1907 else
1908 {
1909 // Eliminate duplicates.
1910 General_options::Dir_list::const_iterator q;
1911 for (q = rpath.begin(); q != p; ++q)
ad2d6943 1912 if (q->name() == p->name())
41f542e7
ILT
1913 break;
1914 if (q == p)
1915 {
1916 rpath_val += ':';
ad2d6943 1917 rpath_val += p->name();
41f542e7
ILT
1918 }
1919 }
1920 }
1921
1922 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1923 }
4f4c5f80
ILT
1924
1925 // Look for text segments that have dynamic relocations.
1926 bool have_textrel = false;
1927 for (Segment_list::const_iterator p = this->segment_list_.begin();
1928 p != this->segment_list_.end();
1929 ++p)
1930 {
1931 if (((*p)->flags() & elfcpp::PF_W) == 0
1932 && (*p)->dynamic_reloc_count() > 0)
1933 {
1934 have_textrel = true;
1935 break;
1936 }
1937 }
1938
1939 // Add a DT_FLAGS entry. We add it even if no flags are set so that
1940 // post-link tools can easily modify these flags if desired.
1941 unsigned int flags = 0;
1942 if (have_textrel)
6a41d30b
ILT
1943 {
1944 // Add a DT_TEXTREL for compatibility with older loaders.
1945 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
1946 flags |= elfcpp::DF_TEXTREL;
1947 }
535890bb
ILT
1948 if (parameters->output_is_shared() && this->has_static_tls())
1949 flags |= elfcpp::DF_STATIC_TLS;
4f4c5f80 1950 odyn->add_constant(elfcpp::DT_FLAGS, flags);
a3ad94ed
ILT
1951}
1952
a2fb1b05
ILT
1953// The mapping of .gnu.linkonce section names to real section names.
1954
ead1e424 1955#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
1956const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1957{
1958 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1959 MAPPING_INIT("t", ".text"),
1960 MAPPING_INIT("r", ".rodata"),
1961 MAPPING_INIT("d", ".data"),
1962 MAPPING_INIT("b", ".bss"),
1963 MAPPING_INIT("s", ".sdata"),
1964 MAPPING_INIT("sb", ".sbss"),
1965 MAPPING_INIT("s2", ".sdata2"),
1966 MAPPING_INIT("sb2", ".sbss2"),
1967 MAPPING_INIT("wi", ".debug_info"),
1968 MAPPING_INIT("td", ".tdata"),
1969 MAPPING_INIT("tb", ".tbss"),
1970 MAPPING_INIT("lr", ".lrodata"),
1971 MAPPING_INIT("l", ".ldata"),
1972 MAPPING_INIT("lb", ".lbss"),
1973};
1974#undef MAPPING_INIT
1975
1976const int Layout::linkonce_mapping_count =
1977 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1978
1979// Return the name of the output section to use for a .gnu.linkonce
1980// section. This is based on the default ELF linker script of the old
1981// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1982// to ".text". Set *PLEN to the length of the name. *PLEN is
1983// initialized to the length of NAME.
a2fb1b05
ILT
1984
1985const char*
ead1e424 1986Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1987{
1988 const char* s = name + sizeof(".gnu.linkonce") - 1;
1989 if (*s != '.')
1990 return name;
1991 ++s;
1992 const Linkonce_mapping* plm = linkonce_mapping;
1993 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1994 {
1995 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1996 {
1997 *plen = plm->tolen;
1998 return plm->to;
1999 }
a2fb1b05
ILT
2000 }
2001 return name;
2002}
2003
ead1e424
ILT
2004// Choose the output section name to use given an input section name.
2005// Set *PLEN to the length of the name. *PLEN is initialized to the
2006// length of NAME.
2007
2008const char*
2009Layout::output_section_name(const char* name, size_t* plen)
2010{
2011 if (Layout::is_linkonce(name))
2012 {
2013 // .gnu.linkonce sections are laid out as though they were named
2014 // for the sections are placed into.
2015 return Layout::linkonce_output_name(name, plen);
2016 }
2017
af4a8a83
ILT
2018 // gcc 4.3 generates the following sorts of section names when it
2019 // needs a section name specific to a function:
2020 // .text.FN
2021 // .rodata.FN
2022 // .sdata2.FN
2023 // .data.FN
2024 // .data.rel.FN
2025 // .data.rel.local.FN
2026 // .data.rel.ro.FN
2027 // .data.rel.ro.local.FN
2028 // .sdata.FN
2029 // .bss.FN
2030 // .sbss.FN
2031 // .tdata.FN
2032 // .tbss.FN
2033
2034 // The GNU linker maps all of those to the part before the .FN,
2035 // except that .data.rel.local.FN is mapped to .data, and
2036 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2037 // beginning with .data.rel.ro.local are grouped together.
2038
2039 // For an anonymous namespace, the string FN can contain a '.'.
2040
2041 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2042 // GNU linker maps to .rodata.
2043
2044 // The .data.rel.ro sections enable a security feature triggered by
2045 // the -z relro option. Section which need to be relocated at
2046 // program startup time but which may be readonly after startup are
2047 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2048 // segment. The dynamic linker will make that segment writable,
2049 // perform relocations, and then make it read-only. FIXME: We do
2050 // not yet implement this optimization.
2051
2052 // It is hard to handle this in a principled way.
2053
2054 // These are the rules we follow:
2055
2056 // If the section name has no initial '.', or no dot other than an
2057 // initial '.', we use the name unchanged (i.e., "mysection" and
2058 // ".text" are unchanged).
2059
2060 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2061
2062 // Otherwise, we drop the second '.' and everything that comes after
2063 // it (i.e., ".text.XXX" becomes ".text").
ead1e424
ILT
2064
2065 const char* s = name;
af4a8a83
ILT
2066 if (*s != '.')
2067 return name;
2068 ++s;
ead1e424
ILT
2069 const char* sdot = strchr(s, '.');
2070 if (sdot == NULL)
2071 return name;
2072
af4a8a83
ILT
2073 const char* const data_rel_ro = ".data.rel.ro";
2074 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
ead1e424 2075 {
af4a8a83
ILT
2076 *plen = strlen(data_rel_ro);
2077 return data_rel_ro;
ead1e424
ILT
2078 }
2079
ead1e424
ILT
2080 *plen = sdot - name;
2081 return name;
2082}
2083
a2fb1b05
ILT
2084// Record the signature of a comdat section, and return whether to
2085// include it in the link. If GROUP is true, this is a regular
2086// section group. If GROUP is false, this is a group signature
2087// derived from the name of a linkonce section. We want linkonce
2088// signatures and group signatures to block each other, but we don't
2089// want a linkonce signature to block another linkonce signature.
2090
2091bool
2092Layout::add_comdat(const char* signature, bool group)
2093{
2094 std::string sig(signature);
2095 std::pair<Signatures::iterator, bool> ins(
ead1e424 2096 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
2097
2098 if (ins.second)
2099 {
2100 // This is the first time we've seen this signature.
2101 return true;
2102 }
2103
2104 if (ins.first->second)
2105 {
2106 // We've already seen a real section group with this signature.
2107 return false;
2108 }
2109 else if (group)
2110 {
2111 // This is a real section group, and we've already seen a
a0fa0c07 2112 // linkonce section with this signature. Record that we've seen
a2fb1b05
ILT
2113 // a section group, and don't include this section group.
2114 ins.first->second = true;
2115 return false;
2116 }
2117 else
2118 {
2119 // We've already seen a linkonce section and this is a linkonce
2120 // section. These don't block each other--this may be the same
2121 // symbol name with different section types.
2122 return true;
2123 }
2124}
2125
a445fddf
ILT
2126// Store the allocated sections into the section list.
2127
2128void
2129Layout::get_allocated_sections(Section_list* section_list) const
2130{
2131 for (Section_list::const_iterator p = this->section_list_.begin();
2132 p != this->section_list_.end();
2133 ++p)
2134 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2135 section_list->push_back(*p);
2136}
2137
2138// Create an output segment.
2139
2140Output_segment*
2141Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2142{
2143 Output_segment* oseg = new Output_segment(type, flags);
2144 this->segment_list_.push_back(oseg);
2145 return oseg;
2146}
2147
730cdc88
ILT
2148// Write out the Output_sections. Most won't have anything to write,
2149// since most of the data will come from input sections which are
2150// handled elsewhere. But some Output_sections do have Output_data.
2151
2152void
2153Layout::write_output_sections(Output_file* of) const
2154{
2155 for (Section_list::const_iterator p = this->section_list_.begin();
2156 p != this->section_list_.end();
2157 ++p)
2158 {
2159 if (!(*p)->after_input_sections())
2160 (*p)->write(of);
2161 }
2162}
2163
61ba1cf9
ILT
2164// Write out data not associated with a section or the symbol table.
2165
2166void
9025d29d 2167Layout::write_data(const Symbol_table* symtab, Output_file* of) const
61ba1cf9 2168{
9e2dcb77 2169 if (!parameters->strip_all())
a3ad94ed 2170 {
9e2dcb77
ILT
2171 const Output_section* symtab_section = this->symtab_section_;
2172 for (Section_list::const_iterator p = this->section_list_.begin();
2173 p != this->section_list_.end();
2174 ++p)
a3ad94ed 2175 {
9e2dcb77
ILT
2176 if ((*p)->needs_symtab_index())
2177 {
2178 gold_assert(symtab_section != NULL);
2179 unsigned int index = (*p)->symtab_index();
2180 gold_assert(index > 0 && index != -1U);
2181 off_t off = (symtab_section->offset()
2182 + index * symtab_section->entsize());
2183 symtab->write_section_symbol(*p, of, off);
2184 }
a3ad94ed
ILT
2185 }
2186 }
2187
2188 const Output_section* dynsym_section = this->dynsym_section_;
2189 for (Section_list::const_iterator p = this->section_list_.begin();
2190 p != this->section_list_.end();
2191 ++p)
2192 {
2193 if ((*p)->needs_dynsym_index())
2194 {
2195 gold_assert(dynsym_section != NULL);
2196 unsigned int index = (*p)->dynsym_index();
2197 gold_assert(index > 0 && index != -1U);
2198 off_t off = (dynsym_section->offset()
2199 + index * dynsym_section->entsize());
9025d29d 2200 symtab->write_section_symbol(*p, of, off);
a3ad94ed
ILT
2201 }
2202 }
2203
a3ad94ed 2204 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
2205 for (Data_list::const_iterator p = this->special_output_list_.begin();
2206 p != this->special_output_list_.end();
2207 ++p)
2208 (*p)->write(of);
2209}
2210
730cdc88
ILT
2211// Write out the Output_sections which can only be written after the
2212// input sections are complete.
2213
2214void
27bc2bce 2215Layout::write_sections_after_input_sections(Output_file* of)
730cdc88 2216{
27bc2bce 2217 // Determine the final section offsets, and thus the final output
9a0910c3
ILT
2218 // file size. Note we finalize the .shstrab last, to allow the
2219 // after_input_section sections to modify their section-names before
2220 // writing.
17a1d0a9 2221 if (this->any_postprocessing_sections_)
27bc2bce 2222 {
17a1d0a9
ILT
2223 off_t off = this->output_file_size_;
2224 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
2225
2226 // Now that we've finalized the names, we can finalize the shstrab.
2227 off =
2228 this->set_section_offsets(off,
2229 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2230
2231 if (off > this->output_file_size_)
2232 {
2233 of->resize(off);
2234 this->output_file_size_ = off;
2235 }
27bc2bce
ILT
2236 }
2237
730cdc88
ILT
2238 for (Section_list::const_iterator p = this->section_list_.begin();
2239 p != this->section_list_.end();
2240 ++p)
2241 {
2242 if ((*p)->after_input_sections())
2243 (*p)->write(of);
2244 }
27bc2bce 2245
27bc2bce 2246 this->section_headers_->write(of);
730cdc88
ILT
2247}
2248
ad8f37d1
ILT
2249// Print statistical information to stderr. This is used for --stats.
2250
2251void
2252Layout::print_stats() const
2253{
2254 this->namepool_.print_stats("section name pool");
2255 this->sympool_.print_stats("output symbol name pool");
2256 this->dynpool_.print_stats("dynamic name pool");
38c5e8b4
ILT
2257
2258 for (Section_list::const_iterator p = this->section_list_.begin();
2259 p != this->section_list_.end();
2260 ++p)
2261 (*p)->print_merge_stats();
ad8f37d1
ILT
2262}
2263
730cdc88
ILT
2264// Write_sections_task methods.
2265
2266// We can always run this task.
2267
17a1d0a9
ILT
2268Task_token*
2269Write_sections_task::is_runnable()
730cdc88 2270{
17a1d0a9 2271 return NULL;
730cdc88
ILT
2272}
2273
2274// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2275// when finished.
2276
17a1d0a9
ILT
2277void
2278Write_sections_task::locks(Task_locker* tl)
730cdc88 2279{
17a1d0a9
ILT
2280 tl->add(this, this->output_sections_blocker_);
2281 tl->add(this, this->final_blocker_);
730cdc88
ILT
2282}
2283
2284// Run the task--write out the data.
2285
2286void
2287Write_sections_task::run(Workqueue*)
2288{
2289 this->layout_->write_output_sections(this->of_);
2290}
2291
61ba1cf9
ILT
2292// Write_data_task methods.
2293
2294// We can always run this task.
2295
17a1d0a9
ILT
2296Task_token*
2297Write_data_task::is_runnable()
61ba1cf9 2298{
17a1d0a9 2299 return NULL;
61ba1cf9
ILT
2300}
2301
2302// We need to unlock FINAL_BLOCKER when finished.
2303
17a1d0a9
ILT
2304void
2305Write_data_task::locks(Task_locker* tl)
61ba1cf9 2306{
17a1d0a9 2307 tl->add(this, this->final_blocker_);
61ba1cf9
ILT
2308}
2309
2310// Run the task--write out the data.
2311
2312void
2313Write_data_task::run(Workqueue*)
2314{
9025d29d 2315 this->layout_->write_data(this->symtab_, this->of_);
61ba1cf9
ILT
2316}
2317
2318// Write_symbols_task methods.
2319
2320// We can always run this task.
2321
17a1d0a9
ILT
2322Task_token*
2323Write_symbols_task::is_runnable()
61ba1cf9 2324{
17a1d0a9 2325 return NULL;
61ba1cf9
ILT
2326}
2327
2328// We need to unlock FINAL_BLOCKER when finished.
2329
17a1d0a9
ILT
2330void
2331Write_symbols_task::locks(Task_locker* tl)
61ba1cf9 2332{
17a1d0a9 2333 tl->add(this, this->final_blocker_);
61ba1cf9
ILT
2334}
2335
2336// Run the task--write out the symbols.
2337
2338void
2339Write_symbols_task::run(Workqueue*)
2340{
9a2d6984
ILT
2341 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2342 this->dynpool_, this->of_);
61ba1cf9
ILT
2343}
2344
730cdc88
ILT
2345// Write_after_input_sections_task methods.
2346
2347// We can only run this task after the input sections have completed.
2348
17a1d0a9
ILT
2349Task_token*
2350Write_after_input_sections_task::is_runnable()
730cdc88
ILT
2351{
2352 if (this->input_sections_blocker_->is_blocked())
17a1d0a9
ILT
2353 return this->input_sections_blocker_;
2354 return NULL;
730cdc88
ILT
2355}
2356
2357// We need to unlock FINAL_BLOCKER when finished.
2358
17a1d0a9
ILT
2359void
2360Write_after_input_sections_task::locks(Task_locker* tl)
730cdc88 2361{
17a1d0a9 2362 tl->add(this, this->final_blocker_);
730cdc88
ILT
2363}
2364
2365// Run the task.
2366
2367void
2368Write_after_input_sections_task::run(Workqueue*)
2369{
2370 this->layout_->write_sections_after_input_sections(this->of_);
2371}
2372
92e059d8 2373// Close_task_runner methods.
61ba1cf9
ILT
2374
2375// Run the task--close the file.
2376
2377void
17a1d0a9 2378Close_task_runner::run(Workqueue*, const Task*)
61ba1cf9
ILT
2379{
2380 this->of_->close();
2381}
2382
a2fb1b05
ILT
2383// Instantiate the templates we need. We could use the configure
2384// script to restrict this to only the ones for implemented targets.
2385
193a53d9 2386#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
2387template
2388Output_section*
730cdc88
ILT
2389Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2390 const char* name,
2391 const elfcpp::Shdr<32, false>& shdr,
2392 unsigned int, unsigned int, off_t*);
193a53d9 2393#endif
a2fb1b05 2394
193a53d9 2395#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
2396template
2397Output_section*
730cdc88
ILT
2398Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2399 const char* name,
2400 const elfcpp::Shdr<32, true>& shdr,
2401 unsigned int, unsigned int, off_t*);
193a53d9 2402#endif
a2fb1b05 2403
193a53d9 2404#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
2405template
2406Output_section*
730cdc88
ILT
2407Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2408 const char* name,
2409 const elfcpp::Shdr<64, false>& shdr,
2410 unsigned int, unsigned int, off_t*);
193a53d9 2411#endif
a2fb1b05 2412
193a53d9 2413#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
2414template
2415Output_section*
730cdc88
ILT
2416Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2417 const char* name,
2418 const elfcpp::Shdr<64, true>& shdr,
2419 unsigned int, unsigned int, off_t*);
193a53d9 2420#endif
a2fb1b05 2421
730cdc88
ILT
2422#ifdef HAVE_TARGET_32_LITTLE
2423template
2424Output_section*
2425Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2426 const unsigned char* symbols,
2427 off_t symbols_size,
2428 const unsigned char* symbol_names,
2429 off_t symbol_names_size,
2430 unsigned int shndx,
2431 const elfcpp::Shdr<32, false>& shdr,
2432 unsigned int reloc_shndx,
2433 unsigned int reloc_type,
2434 off_t* off);
2435#endif
2436
2437#ifdef HAVE_TARGET_32_BIG
2438template
2439Output_section*
2440Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2441 const unsigned char* symbols,
2442 off_t symbols_size,
2443 const unsigned char* symbol_names,
2444 off_t symbol_names_size,
2445 unsigned int shndx,
2446 const elfcpp::Shdr<32, true>& shdr,
2447 unsigned int reloc_shndx,
2448 unsigned int reloc_type,
2449 off_t* off);
2450#endif
2451
2452#ifdef HAVE_TARGET_64_LITTLE
2453template
2454Output_section*
2455Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2456 const unsigned char* symbols,
2457 off_t symbols_size,
2458 const unsigned char* symbol_names,
2459 off_t symbol_names_size,
2460 unsigned int shndx,
2461 const elfcpp::Shdr<64, false>& shdr,
2462 unsigned int reloc_shndx,
2463 unsigned int reloc_type,
2464 off_t* off);
2465#endif
2466
2467#ifdef HAVE_TARGET_64_BIG
2468template
2469Output_section*
2470Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2471 const unsigned char* symbols,
2472 off_t symbols_size,
2473 const unsigned char* symbol_names,
2474 off_t symbol_names_size,
2475 unsigned int shndx,
2476 const elfcpp::Shdr<64, true>& shdr,
2477 unsigned int reloc_shndx,
2478 unsigned int reloc_type,
2479 off_t* off);
2480#endif
a2fb1b05
ILT
2481
2482} // End namespace gold.
This page took 0.26613 seconds and 4 git commands to generate.