*** empty log message ***
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
3#include "gold.h"
4
a2fb1b05 5#include <cstring>
54dc6425 6#include <algorithm>
a2fb1b05
ILT
7#include <iostream>
8#include <utility>
9
10#include "output.h"
f6ce93d6 11#include "symtab.h"
a3ad94ed 12#include "dynobj.h"
a2fb1b05
ILT
13#include "layout.h"
14
15namespace gold
16{
17
92e059d8 18// Layout_task_runner methods.
a2fb1b05
ILT
19
20// Lay out the sections. This is called after all the input objects
21// have been read.
22
23void
92e059d8 24Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 25{
12e14209
ILT
26 off_t file_size = this->layout_->finalize(this->input_objects_,
27 this->symtab_);
61ba1cf9
ILT
28
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file* of = new Output_file(this->options_);
32 of->open(file_size);
33
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 36 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
37}
38
39// Layout methods.
40
54dc6425 41Layout::Layout(const General_options& options)
a3ad94ed 42 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
61ba1cf9 43 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed 44 unattached_section_list_(), special_output_list_(),
16649710
ILT
45 tls_segment_(NULL), symtab_section_(NULL), dynsym_section_(NULL),
46 dynamic_section_(NULL), dynamic_data_(NULL)
54dc6425
ILT
47{
48 // Make space for more than enough segments for a typical file.
49 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
50 this->segment_list_.reserve(12);
51
52 // We expect three unattached Output_data objects: the file header,
53 // the segment headers, and the section headers.
54 this->special_output_list_.reserve(3);
54dc6425
ILT
55}
56
a2fb1b05
ILT
57// Hash a key we use to look up an output section mapping.
58
59size_t
60Layout::Hash_key::operator()(const Layout::Key& k) const
61{
f0641a0b 62 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
63}
64
65// Whether to include this section in the link.
66
67template<int size, bool big_endian>
68bool
69Layout::include_section(Object*, const char*,
70 const elfcpp::Shdr<size, big_endian>& shdr)
71{
72 // Some section types are never linked. Some are only linked when
73 // doing a relocateable link.
74 switch (shdr.get_sh_type())
75 {
76 case elfcpp::SHT_NULL:
77 case elfcpp::SHT_SYMTAB:
78 case elfcpp::SHT_DYNSYM:
79 case elfcpp::SHT_STRTAB:
80 case elfcpp::SHT_HASH:
81 case elfcpp::SHT_DYNAMIC:
82 case elfcpp::SHT_SYMTAB_SHNDX:
83 return false;
84
85 case elfcpp::SHT_RELA:
86 case elfcpp::SHT_REL:
87 case elfcpp::SHT_GROUP:
88 return this->options_.is_relocatable();
89
90 default:
91 // FIXME: Handle stripping debug sections here.
92 return true;
93 }
94}
95
ead1e424 96// Return an output section named NAME, or NULL if there is none.
a2fb1b05 97
a2fb1b05 98Output_section*
ead1e424 99Layout::find_output_section(const char* name) const
a2fb1b05 100{
ead1e424
ILT
101 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
102 p != this->section_name_map_.end();
103 ++p)
f0641a0b 104 if (strcmp(p->second->name(), name) == 0)
ead1e424
ILT
105 return p->second;
106 return NULL;
107}
a2fb1b05 108
ead1e424
ILT
109// Return an output segment of type TYPE, with segment flags SET set
110// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 111
ead1e424
ILT
112Output_segment*
113Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
114 elfcpp::Elf_Word clear) const
115{
116 for (Segment_list::const_iterator p = this->segment_list_.begin();
117 p != this->segment_list_.end();
118 ++p)
119 if (static_cast<elfcpp::PT>((*p)->type()) == type
120 && ((*p)->flags() & set) == set
121 && ((*p)->flags() & clear) == 0)
122 return *p;
123 return NULL;
124}
a2fb1b05 125
ead1e424
ILT
126// Return the output section to use for section NAME with type TYPE
127// and section flags FLAGS.
a2fb1b05 128
ead1e424 129Output_section*
f0641a0b
ILT
130Layout::get_output_section(const char* name, Stringpool::Key name_key,
131 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424
ILT
132{
133 // We should ignore some flags.
134 flags &= ~ (elfcpp::SHF_INFO_LINK
135 | elfcpp::SHF_LINK_ORDER
136 | elfcpp::SHF_GROUP);
a2fb1b05 137
f0641a0b 138 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
139 const std::pair<Key, Output_section*> v(key, NULL);
140 std::pair<Section_name_map::iterator, bool> ins(
141 this->section_name_map_.insert(v));
142
a2fb1b05 143 if (!ins.second)
ead1e424 144 return ins.first->second;
a2fb1b05
ILT
145 else
146 {
147 // This is the first time we've seen this name/type/flags
148 // combination.
ead1e424 149 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 150 ins.first->second = os;
ead1e424 151 return os;
a2fb1b05 152 }
ead1e424
ILT
153}
154
155// Return the output section to use for input section SHNDX, with name
156// NAME, with header HEADER, from object OBJECT. Set *OFF to the
157// offset of this input section without the output section.
158
159template<int size, bool big_endian>
160Output_section*
f6ce93d6 161Layout::layout(Relobj* object, unsigned int shndx, const char* name,
ead1e424
ILT
162 const elfcpp::Shdr<size, big_endian>& shdr, off_t* off)
163{
164 if (!this->include_section(object, name, shdr))
165 return NULL;
166
167 // If we are not doing a relocateable link, choose the name to use
168 // for the output section.
169 size_t len = strlen(name);
170 if (!this->options_.is_relocatable())
171 name = Layout::output_section_name(name, &len);
172
173 // FIXME: Handle SHF_OS_NONCONFORMING here.
174
175 // Canonicalize the section name.
f0641a0b
ILT
176 Stringpool::Key name_key;
177 name = this->namepool_.add(name, len, &name_key);
ead1e424
ILT
178
179 // Find the output section. The output section is selected based on
180 // the section name, type, and flags.
f0641a0b
ILT
181 Output_section* os = this->get_output_section(name, name_key,
182 shdr.get_sh_type(),
ead1e424 183 shdr.get_sh_flags());
a2fb1b05
ILT
184
185 // FIXME: Handle SHF_LINK_ORDER somewhere.
186
ead1e424 187 *off = os->add_input_section(object, shndx, name, shdr);
a2fb1b05
ILT
188
189 return os;
190}
191
ead1e424
ILT
192// Add POSD to an output section using NAME, TYPE, and FLAGS.
193
194void
195Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
196 elfcpp::Elf_Xword flags,
197 Output_section_data* posd)
198{
199 // Canonicalize the name.
f0641a0b
ILT
200 Stringpool::Key name_key;
201 name = this->namepool_.add(name, &name_key);
ead1e424 202
f0641a0b 203 Output_section* os = this->get_output_section(name, name_key, type, flags);
ead1e424
ILT
204 os->add_output_section_data(posd);
205}
206
a2fb1b05
ILT
207// Map section flags to segment flags.
208
209elfcpp::Elf_Word
210Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
211{
212 elfcpp::Elf_Word ret = elfcpp::PF_R;
213 if ((flags & elfcpp::SHF_WRITE) != 0)
214 ret |= elfcpp::PF_W;
215 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
216 ret |= elfcpp::PF_X;
217 return ret;
218}
219
220// Make a new Output_section, and attach it to segments as
221// appropriate.
222
223Output_section*
224Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
225 elfcpp::Elf_Xword flags)
226{
ead1e424 227 Output_section* os = new Output_section(name, type, flags, true);
a3ad94ed 228 this->section_list_.push_back(os);
a2fb1b05
ILT
229
230 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 231 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
232 else
233 {
234 // This output section goes into a PT_LOAD segment.
235
236 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
237
238 // The only thing we really care about for PT_LOAD segments is
239 // whether or not they are writable, so that is how we search
240 // for them. People who need segments sorted on some other
241 // basis will have to wait until we implement a mechanism for
242 // them to describe the segments they want.
243
244 Segment_list::const_iterator p;
245 for (p = this->segment_list_.begin();
246 p != this->segment_list_.end();
247 ++p)
248 {
249 if ((*p)->type() == elfcpp::PT_LOAD
250 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
251 {
75f65a3e 252 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
253 break;
254 }
255 }
256
257 if (p == this->segment_list_.end())
258 {
259 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
260 seg_flags);
261 this->segment_list_.push_back(oseg);
75f65a3e 262 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
263 }
264
265 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
266 // segment.
267 if (type == elfcpp::SHT_NOTE)
268 {
269 // See if we already have an equivalent PT_NOTE segment.
270 for (p = this->segment_list_.begin();
271 p != segment_list_.end();
272 ++p)
273 {
274 if ((*p)->type() == elfcpp::PT_NOTE
275 && (((*p)->flags() & elfcpp::PF_W)
276 == (seg_flags & elfcpp::PF_W)))
277 {
75f65a3e 278 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
279 break;
280 }
281 }
282
283 if (p == this->segment_list_.end())
284 {
285 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
286 seg_flags);
287 this->segment_list_.push_back(oseg);
75f65a3e 288 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
289 }
290 }
54dc6425
ILT
291
292 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 293 // segment. There can only be one such segment.
54dc6425
ILT
294 if ((flags & elfcpp::SHF_TLS) != 0)
295 {
92e059d8 296 if (this->tls_segment_ == NULL)
54dc6425 297 {
92e059d8
ILT
298 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
299 seg_flags);
300 this->segment_list_.push_back(this->tls_segment_);
54dc6425 301 }
92e059d8 302 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 303 }
a2fb1b05
ILT
304 }
305
306 return os;
307}
308
a3ad94ed
ILT
309// Create the dynamic sections which are needed before we read the
310// relocs.
311
312void
313Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
314 Symbol_table* symtab)
315{
316 if (!input_objects->any_dynamic())
317 return;
318
319 const char* dynamic_name = this->namepool_.add(".dynamic", NULL);
320 this->dynamic_section_ = this->make_output_section(dynamic_name,
321 elfcpp::SHT_DYNAMIC,
322 (elfcpp::SHF_ALLOC
323 | elfcpp::SHF_WRITE));
324
325 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC",
326 this->dynamic_section_, 0, 0,
327 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
328 elfcpp::STV_HIDDEN, 0, false, false);
16649710
ILT
329
330 this->dynamic_data_ = new Output_data_dynamic(input_objects->target(),
331 &this->dynpool_);
332
333 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
a3ad94ed
ILT
334}
335
75f65a3e
ILT
336// Find the first read-only PT_LOAD segment, creating one if
337// necessary.
54dc6425 338
75f65a3e
ILT
339Output_segment*
340Layout::find_first_load_seg()
54dc6425 341{
75f65a3e
ILT
342 for (Segment_list::const_iterator p = this->segment_list_.begin();
343 p != this->segment_list_.end();
344 ++p)
345 {
346 if ((*p)->type() == elfcpp::PT_LOAD
347 && ((*p)->flags() & elfcpp::PF_R) != 0
348 && ((*p)->flags() & elfcpp::PF_W) == 0)
349 return *p;
350 }
351
352 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
353 this->segment_list_.push_back(load_seg);
354 return load_seg;
54dc6425
ILT
355}
356
357// Finalize the layout. When this is called, we have created all the
358// output sections and all the output segments which are based on
359// input sections. We have several things to do, and we have to do
360// them in the right order, so that we get the right results correctly
361// and efficiently.
362
363// 1) Finalize the list of output segments and create the segment
364// table header.
365
366// 2) Finalize the dynamic symbol table and associated sections.
367
368// 3) Determine the final file offset of all the output segments.
369
370// 4) Determine the final file offset of all the SHF_ALLOC output
371// sections.
372
75f65a3e
ILT
373// 5) Create the symbol table sections and the section name table
374// section.
375
376// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
377// value and make a final determination of which symbols are going
378// into the output symbol table.
379
54dc6425
ILT
380// 7) Create the section table header.
381
382// 8) Determine the final file offset of all the output sections which
383// are not SHF_ALLOC, including the section table header.
384
385// 9) Finalize the ELF file header.
386
75f65a3e
ILT
387// This function returns the size of the output file.
388
389off_t
390Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425 391{
5a6f7e2d 392 Target* const target = input_objects->target();
a3ad94ed 393 const int size = target->get_size();
dbe717ef 394
16649710 395 target->finalize_sections(&this->options_, this);
5a6f7e2d 396
dbe717ef 397 Output_segment* phdr_seg = NULL;
54dc6425
ILT
398 if (input_objects->any_dynamic())
399 {
dbe717ef
ILT
400 // There was a dynamic object in the link. We need to create
401 // some information for the dynamic linker.
402
403 // Create the PT_PHDR segment which will hold the program
404 // headers.
405 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
406 this->segment_list_.push_back(phdr_seg);
407
408 // Create the dynamic symbol table, including the hash table,
409 // the dynamic relocations, and the version sections.
16649710 410 this->create_dynamic_symtab(target, symtab);
dbe717ef
ILT
411
412 // Create the .interp section to hold the name of the
413 // interpreter, and put it in a PT_INTERP segment.
a3ad94ed
ILT
414 this->create_interp(target);
415
416 // Finish the .dynamic section to hold the dynamic data, and put
417 // it in a PT_DYNAMIC segment.
16649710 418 this->finish_dynamic_section(input_objects, symtab);
54dc6425
ILT
419 }
420
421 // FIXME: Handle PT_GNU_STACK.
422
75f65a3e
ILT
423 Output_segment* load_seg = this->find_first_load_seg();
424
425 // Lay out the segment headers.
a3ad94ed 426 bool big_endian = target->is_big_endian();
75f65a3e 427 Output_segment_headers* segment_headers;
61ba1cf9
ILT
428 segment_headers = new Output_segment_headers(size, big_endian,
429 this->segment_list_);
75f65a3e 430 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 431 this->special_output_list_.push_back(segment_headers);
dbe717ef
ILT
432 if (phdr_seg != NULL)
433 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
434
435 // Lay out the file header.
436 Output_file_header* file_header;
437 file_header = new Output_file_header(size,
61ba1cf9 438 big_endian,
75f65a3e 439 this->options_,
a3ad94ed 440 target,
75f65a3e
ILT
441 symtab,
442 segment_headers);
443 load_seg->add_initial_output_data(file_header);
61ba1cf9 444 this->special_output_list_.push_back(file_header);
75f65a3e 445
ead1e424
ILT
446 // We set the output section indexes in set_segment_offsets and
447 // set_section_offsets.
448 unsigned int shndx = 1;
449
450 // Set the file offsets of all the segments, and all the sections
451 // they contain.
a3ad94ed 452 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e
ILT
453
454 // Create the symbol table sections.
455 // FIXME: We don't need to do this if we are stripping symbols.
16649710 456 this->create_symtab_sections(size, input_objects, symtab, &off);
75f65a3e
ILT
457
458 // Create the .shstrtab section.
459 Output_section* shstrtab_section = this->create_shstrtab();
460
461 // Set the file offsets of all the sections not associated with
462 // segments.
ead1e424
ILT
463 off = this->set_section_offsets(off, &shndx);
464
75f65a3e 465 // Create the section table header.
61ba1cf9 466 Output_section_headers* oshdrs = this->create_shdrs(size, big_endian, &off);
75f65a3e
ILT
467
468 file_header->set_section_info(oshdrs, shstrtab_section);
469
470 // Now we know exactly where everything goes in the output file.
a3ad94ed 471 Output_data::layout_complete();
75f65a3e
ILT
472
473 return off;
474}
475
476// Return whether SEG1 should be before SEG2 in the output file. This
477// is based entirely on the segment type and flags. When this is
478// called the segment addresses has normally not yet been set.
479
480bool
481Layout::segment_precedes(const Output_segment* seg1,
482 const Output_segment* seg2)
483{
484 elfcpp::Elf_Word type1 = seg1->type();
485 elfcpp::Elf_Word type2 = seg2->type();
486
487 // The single PT_PHDR segment is required to precede any loadable
488 // segment. We simply make it always first.
489 if (type1 == elfcpp::PT_PHDR)
490 {
a3ad94ed 491 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
492 return true;
493 }
494 if (type2 == elfcpp::PT_PHDR)
495 return false;
496
497 // The single PT_INTERP segment is required to precede any loadable
498 // segment. We simply make it always second.
499 if (type1 == elfcpp::PT_INTERP)
500 {
a3ad94ed 501 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
502 return true;
503 }
504 if (type2 == elfcpp::PT_INTERP)
505 return false;
506
507 // We then put PT_LOAD segments before any other segments.
508 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
509 return true;
510 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
511 return false;
512
92e059d8
ILT
513 // We put the PT_TLS segment last, because that is where the dynamic
514 // linker expects to find it (this is just for efficiency; other
515 // positions would also work correctly).
516 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
517 return false;
518 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
519 return true;
520
75f65a3e
ILT
521 const elfcpp::Elf_Word flags1 = seg1->flags();
522 const elfcpp::Elf_Word flags2 = seg2->flags();
523
524 // The order of non-PT_LOAD segments is unimportant. We simply sort
525 // by the numeric segment type and flags values. There should not
526 // be more than one segment with the same type and flags.
527 if (type1 != elfcpp::PT_LOAD)
528 {
529 if (type1 != type2)
530 return type1 < type2;
a3ad94ed 531 gold_assert(flags1 != flags2);
75f65a3e
ILT
532 return flags1 < flags2;
533 }
534
535 // We sort PT_LOAD segments based on the flags. Readonly segments
536 // come before writable segments. Then executable segments come
537 // before non-executable segments. Then the unlikely case of a
538 // non-readable segment comes before the normal case of a readable
539 // segment. If there are multiple segments with the same type and
540 // flags, we require that the address be set, and we sort by
541 // virtual address and then physical address.
542 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
543 return (flags1 & elfcpp::PF_W) == 0;
544 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
545 return (flags1 & elfcpp::PF_X) != 0;
546 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
547 return (flags1 & elfcpp::PF_R) == 0;
548
549 uint64_t vaddr1 = seg1->vaddr();
550 uint64_t vaddr2 = seg2->vaddr();
551 if (vaddr1 != vaddr2)
552 return vaddr1 < vaddr2;
553
554 uint64_t paddr1 = seg1->paddr();
555 uint64_t paddr2 = seg2->paddr();
a3ad94ed 556 gold_assert(paddr1 != paddr2);
75f65a3e
ILT
557 return paddr1 < paddr2;
558}
559
ead1e424
ILT
560// Set the file offsets of all the segments, and all the sections they
561// contain. They have all been created. LOAD_SEG must be be laid out
562// first. Return the offset of the data to follow.
75f65a3e
ILT
563
564off_t
ead1e424
ILT
565Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
566 unsigned int *pshndx)
75f65a3e
ILT
567{
568 // Sort them into the final order.
54dc6425
ILT
569 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
570 Layout::Compare_segments());
571
75f65a3e
ILT
572 // Find the PT_LOAD segments, and set their addresses and offsets
573 // and their section's addresses and offsets.
574 uint64_t addr = target->text_segment_address();
575 off_t off = 0;
576 bool was_readonly = false;
577 for (Segment_list::iterator p = this->segment_list_.begin();
578 p != this->segment_list_.end();
579 ++p)
580 {
581 if ((*p)->type() == elfcpp::PT_LOAD)
582 {
583 if (load_seg != NULL && load_seg != *p)
a3ad94ed 584 gold_unreachable();
75f65a3e
ILT
585 load_seg = NULL;
586
587 // If the last segment was readonly, and this one is not,
588 // then skip the address forward one page, maintaining the
589 // same position within the page. This lets us store both
590 // segments overlapping on a single page in the file, but
591 // the loader will put them on different pages in memory.
592
593 uint64_t orig_addr = addr;
594 uint64_t orig_off = off;
595
596 uint64_t aligned_addr = addr;
597 uint64_t abi_pagesize = target->abi_pagesize();
598 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
599 {
ead1e424 600 uint64_t align = (*p)->addralign();
75f65a3e 601
ead1e424 602 addr = align_address(addr, align);
75f65a3e
ILT
603 aligned_addr = addr;
604 if ((addr & (abi_pagesize - 1)) != 0)
605 addr = addr + abi_pagesize;
606 }
607
ead1e424 608 unsigned int shndx_hold = *pshndx;
75f65a3e 609 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 610 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
611
612 // Now that we know the size of this segment, we may be able
613 // to save a page in memory, at the cost of wasting some
614 // file space, by instead aligning to the start of a new
615 // page. Here we use the real machine page size rather than
616 // the ABI mandated page size.
617
618 if (aligned_addr != addr)
619 {
620 uint64_t common_pagesize = target->common_pagesize();
621 uint64_t first_off = (common_pagesize
622 - (aligned_addr
623 & (common_pagesize - 1)));
624 uint64_t last_off = new_addr & (common_pagesize - 1);
625 if (first_off > 0
626 && last_off > 0
627 && ((aligned_addr & ~ (common_pagesize - 1))
628 != (new_addr & ~ (common_pagesize - 1)))
629 && first_off + last_off <= common_pagesize)
630 {
ead1e424
ILT
631 *pshndx = shndx_hold;
632 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 633 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 634 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
635 }
636 }
637
638 addr = new_addr;
639
640 if (((*p)->flags() & elfcpp::PF_W) == 0)
641 was_readonly = true;
642 }
643 }
644
645 // Handle the non-PT_LOAD segments, setting their offsets from their
646 // section's offsets.
647 for (Segment_list::iterator p = this->segment_list_.begin();
648 p != this->segment_list_.end();
649 ++p)
650 {
651 if ((*p)->type() != elfcpp::PT_LOAD)
652 (*p)->set_offset();
653 }
654
655 return off;
656}
657
658// Set the file offset of all the sections not associated with a
659// segment.
660
661off_t
ead1e424 662Layout::set_section_offsets(off_t off, unsigned int* pshndx)
75f65a3e 663{
a3ad94ed
ILT
664 for (Section_list::iterator p = this->unattached_section_list_.begin();
665 p != this->unattached_section_list_.end();
75f65a3e
ILT
666 ++p)
667 {
ead1e424
ILT
668 (*p)->set_out_shndx(*pshndx);
669 ++*pshndx;
61ba1cf9
ILT
670 if ((*p)->offset() != -1)
671 continue;
ead1e424 672 off = align_address(off, (*p)->addralign());
75f65a3e
ILT
673 (*p)->set_address(0, off);
674 off += (*p)->data_size();
675 }
676 return off;
677}
678
679// Create the symbol table sections.
680
681void
61ba1cf9 682Layout::create_symtab_sections(int size, const Input_objects* input_objects,
75f65a3e 683 Symbol_table* symtab,
16649710 684 off_t* poff)
75f65a3e 685{
61ba1cf9
ILT
686 int symsize;
687 unsigned int align;
688 if (size == 32)
689 {
690 symsize = elfcpp::Elf_sizes<32>::sym_size;
691 align = 4;
692 }
693 else if (size == 64)
694 {
695 symsize = elfcpp::Elf_sizes<64>::sym_size;
696 align = 8;
697 }
698 else
a3ad94ed 699 gold_unreachable();
61ba1cf9
ILT
700
701 off_t off = *poff;
ead1e424 702 off = align_address(off, align);
61ba1cf9
ILT
703 off_t startoff = off;
704
705 // Save space for the dummy symbol at the start of the section. We
706 // never bother to write this out--it will just be left as zero.
707 off += symsize;
c06b7b0b 708 unsigned int local_symbol_index = 1;
61ba1cf9 709
a3ad94ed
ILT
710 // Add STT_SECTION symbols for each Output section which needs one.
711 for (Section_list::iterator p = this->section_list_.begin();
712 p != this->section_list_.end();
713 ++p)
714 {
715 if (!(*p)->needs_symtab_index())
716 (*p)->set_symtab_index(-1U);
717 else
718 {
719 (*p)->set_symtab_index(local_symbol_index);
720 ++local_symbol_index;
721 off += symsize;
722 }
723 }
724
f6ce93d6
ILT
725 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
726 p != input_objects->relobj_end();
75f65a3e
ILT
727 ++p)
728 {
729 Task_lock_obj<Object> tlo(**p);
c06b7b0b
ILT
730 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
731 off,
732 &this->sympool_);
733 off += (index - local_symbol_index) * symsize;
734 local_symbol_index = index;
75f65a3e
ILT
735 }
736
c06b7b0b 737 unsigned int local_symcount = local_symbol_index;
a3ad94ed 738 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 739
16649710
ILT
740 off_t dynoff;
741 size_t dyn_global_index;
742 size_t dyncount;
743 if (this->dynsym_section_ == NULL)
744 {
745 dynoff = 0;
746 dyn_global_index = 0;
747 dyncount = 0;
748 }
749 else
750 {
751 dyn_global_index = this->dynsym_section_->info();
752 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
753 dynoff = this->dynsym_section_->offset() + locsize;
754 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
755 gold_assert(dyncount * symsize
756 == this->dynsym_section_->data_size() - locsize);
757 }
758
759 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
760 dyncount, &this->sympool_);
75f65a3e 761
61ba1cf9
ILT
762 this->sympool_.set_string_offsets();
763
f0641a0b 764 const char* symtab_name = this->namepool_.add(".symtab", NULL);
a3ad94ed
ILT
765 Output_section* osymtab = this->make_output_section(symtab_name,
766 elfcpp::SHT_SYMTAB,
767 0);
768 this->symtab_section_ = osymtab;
769
770 Output_section_data* pos = new Output_data_space(off - startoff,
771 align);
772 osymtab->add_output_section_data(pos);
61ba1cf9 773
f0641a0b 774 const char* strtab_name = this->namepool_.add(".strtab", NULL);
a3ad94ed
ILT
775 Output_section* ostrtab = this->make_output_section(strtab_name,
776 elfcpp::SHT_STRTAB,
777 0);
778
779 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
780 ostrtab->add_output_section_data(pstr);
61ba1cf9
ILT
781
782 osymtab->set_address(0, startoff);
16649710 783 osymtab->set_link_section(ostrtab);
61ba1cf9
ILT
784 osymtab->set_info(local_symcount);
785 osymtab->set_entsize(symsize);
61ba1cf9
ILT
786
787 *poff = off;
75f65a3e
ILT
788}
789
790// Create the .shstrtab section, which holds the names of the
791// sections. At the time this is called, we have created all the
792// output sections except .shstrtab itself.
793
794Output_section*
795Layout::create_shstrtab()
796{
797 // FIXME: We don't need to create a .shstrtab section if we are
798 // stripping everything.
799
f0641a0b 800 const char* name = this->namepool_.add(".shstrtab", NULL);
75f65a3e 801
61ba1cf9
ILT
802 this->namepool_.set_string_offsets();
803
a3ad94ed 804 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 805
a3ad94ed
ILT
806 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
807 os->add_output_section_data(posd);
75f65a3e
ILT
808
809 return os;
810}
811
812// Create the section headers. SIZE is 32 or 64. OFF is the file
813// offset.
814
815Output_section_headers*
61ba1cf9 816Layout::create_shdrs(int size, bool big_endian, off_t* poff)
75f65a3e
ILT
817{
818 Output_section_headers* oshdrs;
16649710
ILT
819 oshdrs = new Output_section_headers(size, big_endian, this,
820 &this->segment_list_,
821 &this->unattached_section_list_,
61ba1cf9 822 &this->namepool_);
ead1e424 823 off_t off = align_address(*poff, oshdrs->addralign());
75f65a3e 824 oshdrs->set_address(0, off);
61ba1cf9
ILT
825 off += oshdrs->data_size();
826 *poff = off;
827 this->special_output_list_.push_back(oshdrs);
75f65a3e 828 return oshdrs;
54dc6425
ILT
829}
830
dbe717ef
ILT
831// Create the dynamic symbol table.
832
833void
16649710 834Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab)
dbe717ef 835{
a3ad94ed
ILT
836 // Count all the symbols in the dynamic symbol table, and set the
837 // dynamic symbol indexes.
dbe717ef 838
a3ad94ed
ILT
839 // Skip symbol 0, which is always all zeroes.
840 unsigned int index = 1;
dbe717ef 841
a3ad94ed
ILT
842 // Add STT_SECTION symbols for each Output section which needs one.
843 for (Section_list::iterator p = this->section_list_.begin();
844 p != this->section_list_.end();
845 ++p)
846 {
847 if (!(*p)->needs_dynsym_index())
848 (*p)->set_dynsym_index(-1U);
849 else
850 {
851 (*p)->set_dynsym_index(index);
852 ++index;
853 }
854 }
855
856 // FIXME: Some targets apparently require local symbols in the
857 // dynamic symbol table. Here is where we will have to count them,
858 // and set the dynamic symbol indexes, and add the names to
859 // this->dynpool_.
860
861 unsigned int local_symcount = index;
862
863 std::vector<Symbol*> dynamic_symbols;
864
865 // FIXME: We have to tell set_dynsym_indexes whether the
866 // -E/--export-dynamic option was used.
867 index = symtab->set_dynsym_indexes(index, &dynamic_symbols,
868 &this->dynpool_);
869
870 int symsize;
871 unsigned int align;
872 const int size = target->get_size();
873 if (size == 32)
874 {
875 symsize = elfcpp::Elf_sizes<32>::sym_size;
876 align = 4;
877 }
878 else if (size == 64)
879 {
880 symsize = elfcpp::Elf_sizes<64>::sym_size;
881 align = 8;
882 }
883 else
884 gold_unreachable();
885
886 const char* dynsym_name = this->namepool_.add(".dynsym", NULL);
887 Output_section* dynsym = this->make_output_section(dynsym_name,
888 elfcpp::SHT_DYNSYM,
889 elfcpp::SHF_ALLOC);
890
891 Output_section_data* odata = new Output_data_space(index * symsize,
892 align);
893 dynsym->add_output_section_data(odata);
894
895 dynsym->set_info(local_symcount);
896 dynsym->set_entsize(symsize);
897 dynsym->set_addralign(align);
898
899 this->dynsym_section_ = dynsym;
900
16649710 901 Output_data_dynamic* const odyn = this->dynamic_data_;
a3ad94ed
ILT
902 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
903 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
904
905 const char* dynstr_name = this->namepool_.add(".dynstr", NULL);
906 Output_section* dynstr = this->make_output_section(dynstr_name,
907 elfcpp::SHT_STRTAB,
908 elfcpp::SHF_ALLOC);
909
910 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
911 dynstr->add_output_section_data(strdata);
912
16649710
ILT
913 dynsym->set_link_section(dynstr);
914 this->dynamic_section_->set_link_section(dynstr);
915
a3ad94ed
ILT
916 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
917 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
918
919 // FIXME: We need an option to create a GNU hash table.
920
921 unsigned char* phash;
922 unsigned int hashlen;
923 Dynobj::create_elf_hash_table(target, dynamic_symbols, local_symcount,
924 &phash, &hashlen);
925
926 const char* hash_name = this->namepool_.add(".hash", NULL);
927 Output_section* hashsec = this->make_output_section(hash_name,
928 elfcpp::SHT_HASH,
929 elfcpp::SHF_ALLOC);
930
931 Output_section_data* hashdata = new Output_data_const_buffer(phash,
932 hashlen,
933 align);
934 hashsec->add_output_section_data(hashdata);
935
16649710 936 hashsec->set_link_section(dynsym);
a3ad94ed 937 hashsec->set_entsize(4);
a3ad94ed
ILT
938
939 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
940}
941
942// Create the .interp section and PT_INTERP segment.
943
944void
945Layout::create_interp(const Target* target)
946{
947 const char* interp = this->options_.dynamic_linker();
948 if (interp == NULL)
949 {
950 interp = target->dynamic_linker();
a3ad94ed 951 gold_assert(interp != NULL);
dbe717ef
ILT
952 }
953
954 size_t len = strlen(interp) + 1;
955
956 Output_section_data* odata = new Output_data_const(interp, len, 1);
957
958 const char* interp_name = this->namepool_.add(".interp", NULL);
959 Output_section* osec = this->make_output_section(interp_name,
960 elfcpp::SHT_PROGBITS,
961 elfcpp::SHF_ALLOC);
962 osec->add_output_section_data(odata);
963
964 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
965 this->segment_list_.push_back(oseg);
966 oseg->add_initial_output_section(osec, elfcpp::PF_R);
967}
968
a3ad94ed
ILT
969// Finish the .dynamic section and PT_DYNAMIC segment.
970
971void
972Layout::finish_dynamic_section(const Input_objects* input_objects,
16649710 973 const Symbol_table* symtab)
a3ad94ed 974{
a3ad94ed
ILT
975 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
976 elfcpp::PF_R | elfcpp::PF_W);
977 this->segment_list_.push_back(oseg);
978 oseg->add_initial_output_section(this->dynamic_section_,
979 elfcpp::PF_R | elfcpp::PF_W);
980
16649710
ILT
981 Output_data_dynamic* const odyn = this->dynamic_data_;
982
a3ad94ed
ILT
983 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
984 p != input_objects->dynobj_end();
985 ++p)
986 {
987 // FIXME: Handle --as-needed.
988 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
989 }
990
991 // FIXME: Support --init and --fini.
992 Symbol* sym = symtab->lookup("_init");
993 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
994 odyn->add_symbol(elfcpp::DT_INIT, sym);
995
996 sym = symtab->lookup("_fini");
997 if (sym != NULL && sym->is_defined() && !sym->is_defined_in_dynobj())
998 odyn->add_symbol(elfcpp::DT_FINI, sym);
999
1000 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
1001}
1002
a2fb1b05
ILT
1003// The mapping of .gnu.linkonce section names to real section names.
1004
ead1e424 1005#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
1006const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1007{
1008 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1009 MAPPING_INIT("t", ".text"),
1010 MAPPING_INIT("r", ".rodata"),
1011 MAPPING_INIT("d", ".data"),
1012 MAPPING_INIT("b", ".bss"),
1013 MAPPING_INIT("s", ".sdata"),
1014 MAPPING_INIT("sb", ".sbss"),
1015 MAPPING_INIT("s2", ".sdata2"),
1016 MAPPING_INIT("sb2", ".sbss2"),
1017 MAPPING_INIT("wi", ".debug_info"),
1018 MAPPING_INIT("td", ".tdata"),
1019 MAPPING_INIT("tb", ".tbss"),
1020 MAPPING_INIT("lr", ".lrodata"),
1021 MAPPING_INIT("l", ".ldata"),
1022 MAPPING_INIT("lb", ".lbss"),
1023};
1024#undef MAPPING_INIT
1025
1026const int Layout::linkonce_mapping_count =
1027 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1028
1029// Return the name of the output section to use for a .gnu.linkonce
1030// section. This is based on the default ELF linker script of the old
1031// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1032// to ".text". Set *PLEN to the length of the name. *PLEN is
1033// initialized to the length of NAME.
a2fb1b05
ILT
1034
1035const char*
ead1e424 1036Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1037{
1038 const char* s = name + sizeof(".gnu.linkonce") - 1;
1039 if (*s != '.')
1040 return name;
1041 ++s;
1042 const Linkonce_mapping* plm = linkonce_mapping;
1043 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1044 {
1045 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1046 {
1047 *plen = plm->tolen;
1048 return plm->to;
1049 }
a2fb1b05
ILT
1050 }
1051 return name;
1052}
1053
ead1e424
ILT
1054// Choose the output section name to use given an input section name.
1055// Set *PLEN to the length of the name. *PLEN is initialized to the
1056// length of NAME.
1057
1058const char*
1059Layout::output_section_name(const char* name, size_t* plen)
1060{
1061 if (Layout::is_linkonce(name))
1062 {
1063 // .gnu.linkonce sections are laid out as though they were named
1064 // for the sections are placed into.
1065 return Layout::linkonce_output_name(name, plen);
1066 }
1067
1068 // If the section name has no '.', or only an initial '.', we use
1069 // the name unchanged (i.e., ".text" is unchanged).
1070
1071 // Otherwise, if the section name does not include ".rel", we drop
1072 // the last '.' and everything that follows (i.e., ".text.XXX"
1073 // becomes ".text").
1074
1075 // Otherwise, if the section name has zero or one '.' after the
1076 // ".rel", we use the name unchanged (i.e., ".rel.text" is
1077 // unchanged).
1078
1079 // Otherwise, we drop the last '.' and everything that follows
1080 // (i.e., ".rel.text.XXX" becomes ".rel.text").
1081
1082 const char* s = name;
1083 if (*s == '.')
1084 ++s;
1085 const char* sdot = strchr(s, '.');
1086 if (sdot == NULL)
1087 return name;
1088
1089 const char* srel = strstr(s, ".rel");
1090 if (srel == NULL)
1091 {
1092 *plen = sdot - name;
1093 return name;
1094 }
1095
1096 sdot = strchr(srel + 1, '.');
1097 if (sdot == NULL)
1098 return name;
1099 sdot = strchr(sdot + 1, '.');
1100 if (sdot == NULL)
1101 return name;
1102
1103 *plen = sdot - name;
1104 return name;
1105}
1106
a2fb1b05
ILT
1107// Record the signature of a comdat section, and return whether to
1108// include it in the link. If GROUP is true, this is a regular
1109// section group. If GROUP is false, this is a group signature
1110// derived from the name of a linkonce section. We want linkonce
1111// signatures and group signatures to block each other, but we don't
1112// want a linkonce signature to block another linkonce signature.
1113
1114bool
1115Layout::add_comdat(const char* signature, bool group)
1116{
1117 std::string sig(signature);
1118 std::pair<Signatures::iterator, bool> ins(
ead1e424 1119 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
1120
1121 if (ins.second)
1122 {
1123 // This is the first time we've seen this signature.
1124 return true;
1125 }
1126
1127 if (ins.first->second)
1128 {
1129 // We've already seen a real section group with this signature.
1130 return false;
1131 }
1132 else if (group)
1133 {
1134 // This is a real section group, and we've already seen a
1135 // linkonce section with tihs signature. Record that we've seen
1136 // a section group, and don't include this section group.
1137 ins.first->second = true;
1138 return false;
1139 }
1140 else
1141 {
1142 // We've already seen a linkonce section and this is a linkonce
1143 // section. These don't block each other--this may be the same
1144 // symbol name with different section types.
1145 return true;
1146 }
1147}
1148
61ba1cf9
ILT
1149// Write out data not associated with a section or the symbol table.
1150
1151void
a3ad94ed
ILT
1152Layout::write_data(const Symbol_table* symtab, const Target* target,
1153 Output_file* of) const
61ba1cf9 1154{
a3ad94ed
ILT
1155 const Output_section* symtab_section = this->symtab_section_;
1156 for (Section_list::const_iterator p = this->section_list_.begin();
1157 p != this->section_list_.end();
1158 ++p)
1159 {
1160 if ((*p)->needs_symtab_index())
1161 {
1162 gold_assert(symtab_section != NULL);
1163 unsigned int index = (*p)->symtab_index();
1164 gold_assert(index > 0 && index != -1U);
1165 off_t off = (symtab_section->offset()
1166 + index * symtab_section->entsize());
1167 symtab->write_section_symbol(target, *p, of, off);
1168 }
1169 }
1170
1171 const Output_section* dynsym_section = this->dynsym_section_;
1172 for (Section_list::const_iterator p = this->section_list_.begin();
1173 p != this->section_list_.end();
1174 ++p)
1175 {
1176 if ((*p)->needs_dynsym_index())
1177 {
1178 gold_assert(dynsym_section != NULL);
1179 unsigned int index = (*p)->dynsym_index();
1180 gold_assert(index > 0 && index != -1U);
1181 off_t off = (dynsym_section->offset()
1182 + index * dynsym_section->entsize());
1183 symtab->write_section_symbol(target, *p, of, off);
1184 }
1185 }
1186
1187 // Write out the Output_sections. Most won't have anything to
1188 // write, since most of the data will come from input sections which
1189 // are handled elsewhere. But some Output_sections do have
1190 // Output_data.
1191 for (Section_list::const_iterator p = this->section_list_.begin();
1192 p != this->section_list_.end();
1193 ++p)
1194 (*p)->write(of);
1195
1196 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
1197 for (Data_list::const_iterator p = this->special_output_list_.begin();
1198 p != this->special_output_list_.end();
1199 ++p)
1200 (*p)->write(of);
1201}
1202
1203// Write_data_task methods.
1204
1205// We can always run this task.
1206
1207Task::Is_runnable_type
1208Write_data_task::is_runnable(Workqueue*)
1209{
1210 return IS_RUNNABLE;
1211}
1212
1213// We need to unlock FINAL_BLOCKER when finished.
1214
1215Task_locker*
1216Write_data_task::locks(Workqueue* workqueue)
1217{
1218 return new Task_locker_block(*this->final_blocker_, workqueue);
1219}
1220
1221// Run the task--write out the data.
1222
1223void
1224Write_data_task::run(Workqueue*)
1225{
a3ad94ed 1226 this->layout_->write_data(this->symtab_, this->target_, this->of_);
61ba1cf9
ILT
1227}
1228
1229// Write_symbols_task methods.
1230
1231// We can always run this task.
1232
1233Task::Is_runnable_type
1234Write_symbols_task::is_runnable(Workqueue*)
1235{
1236 return IS_RUNNABLE;
1237}
1238
1239// We need to unlock FINAL_BLOCKER when finished.
1240
1241Task_locker*
1242Write_symbols_task::locks(Workqueue* workqueue)
1243{
1244 return new Task_locker_block(*this->final_blocker_, workqueue);
1245}
1246
1247// Run the task--write out the symbols.
1248
1249void
1250Write_symbols_task::run(Workqueue*)
1251{
16649710
ILT
1252 this->symtab_->write_globals(this->target_, this->sympool_, this->dynpool_,
1253 this->of_);
61ba1cf9
ILT
1254}
1255
92e059d8 1256// Close_task_runner methods.
61ba1cf9
ILT
1257
1258// Run the task--close the file.
1259
1260void
92e059d8 1261Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
1262{
1263 this->of_->close();
1264}
1265
a2fb1b05
ILT
1266// Instantiate the templates we need. We could use the configure
1267// script to restrict this to only the ones for implemented targets.
1268
1269template
1270Output_section*
f6ce93d6 1271Layout::layout<32, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1272 const elfcpp::Shdr<32, false>& shdr, off_t*);
1273
1274template
1275Output_section*
f6ce93d6 1276Layout::layout<32, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1277 const elfcpp::Shdr<32, true>& shdr, off_t*);
1278
1279template
1280Output_section*
f6ce93d6 1281Layout::layout<64, false>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1282 const elfcpp::Shdr<64, false>& shdr, off_t*);
1283
1284template
1285Output_section*
f6ce93d6 1286Layout::layout<64, true>(Relobj* object, unsigned int shndx, const char* name,
a2fb1b05
ILT
1287 const elfcpp::Shdr<64, true>& shdr, off_t*);
1288
1289
1290} // End namespace gold.
This page took 0.087807 seconds and 4 git commands to generate.