Fix comment.
[deliverable/binutils-gdb.git] / gold / layout.cc
CommitLineData
a2fb1b05
ILT
1// layout.cc -- lay out output file sections for gold
2
6cb15b7f
ILT
3// Copyright 2006, 2007 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
a2fb1b05 25#include <cstring>
54dc6425 26#include <algorithm>
a2fb1b05
ILT
27#include <iostream>
28#include <utility>
29
7e1edb90 30#include "parameters.h"
a2fb1b05 31#include "output.h"
f6ce93d6 32#include "symtab.h"
a3ad94ed 33#include "dynobj.h"
3151305a 34#include "ehframe.h"
96803768 35#include "compressed_output.h"
a2fb1b05
ILT
36#include "layout.h"
37
38namespace gold
39{
40
92e059d8 41// Layout_task_runner methods.
a2fb1b05
ILT
42
43// Lay out the sections. This is called after all the input objects
44// have been read.
45
46void
92e059d8 47Layout_task_runner::run(Workqueue* workqueue)
a2fb1b05 48{
12e14209
ILT
49 off_t file_size = this->layout_->finalize(this->input_objects_,
50 this->symtab_);
61ba1cf9
ILT
51
52 // Now we know the final size of the output file and we know where
53 // each piece of information goes.
c51e6221
ILT
54 Output_file* of = new Output_file(this->options_,
55 this->input_objects_->target());
61ba1cf9
ILT
56 of->open(file_size);
57
58 // Queue up the final set of tasks.
59 gold::queue_final_tasks(this->options_, this->input_objects_,
12e14209 60 this->symtab_, this->layout_, workqueue, of);
a2fb1b05
ILT
61}
62
63// Layout methods.
64
54dc6425 65Layout::Layout(const General_options& options)
a3ad94ed 66 : options_(options), namepool_(), sympool_(), dynpool_(), signatures_(),
61ba1cf9 67 section_name_map_(), segment_list_(), section_list_(),
a3ad94ed 68 unattached_section_list_(), special_output_list_(),
27bc2bce 69 section_headers_(NULL), tls_segment_(NULL), symtab_section_(NULL),
3151305a 70 dynsym_section_(NULL), dynamic_section_(NULL), dynamic_data_(NULL),
35cdfc9a
ILT
71 eh_frame_section_(NULL), output_file_size_(-1),
72 input_requires_executable_stack_(false),
73 input_with_gnu_stack_note_(false),
4f4c5f80 74 input_without_gnu_stack_note_(false)
54dc6425
ILT
75{
76 // Make space for more than enough segments for a typical file.
77 // This is just for efficiency--it's OK if we wind up needing more.
a3ad94ed
ILT
78 this->segment_list_.reserve(12);
79
27bc2bce
ILT
80 // We expect two unattached Output_data objects: the file header and
81 // the segment headers.
82 this->special_output_list_.reserve(2);
54dc6425
ILT
83}
84
a2fb1b05
ILT
85// Hash a key we use to look up an output section mapping.
86
87size_t
88Layout::Hash_key::operator()(const Layout::Key& k) const
89{
f0641a0b 90 return k.first + k.second.first + k.second.second;
a2fb1b05
ILT
91}
92
9e2dcb77
ILT
93// Return whether PREFIX is a prefix of STR.
94
95static inline bool
96is_prefix_of(const char* prefix, const char* str)
97{
98 return strncmp(prefix, str, strlen(prefix)) == 0;
99}
100
02d2ba74
ILT
101// Returns whether the given section is in the list of
102// debug-sections-used-by-some-version-of-gdb. Currently,
103// we've checked versions of gdb up to and including 6.7.1.
104
105static const char* gdb_sections[] =
106{ ".debug_abbrev",
107 // ".debug_aranges", // not used by gdb as of 6.7.1
108 ".debug_frame",
109 ".debug_info",
110 ".debug_line",
111 ".debug_loc",
112 ".debug_macinfo",
113 // ".debug_pubnames", // not used by gdb as of 6.7.1
114 ".debug_ranges",
115 ".debug_str",
116};
117
118static inline bool
119is_gdb_debug_section(const char* str)
120{
121 // We can do this faster: binary search or a hashtable. But why bother?
122 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
123 if (strcmp(str, gdb_sections[i]) == 0)
124 return true;
125 return false;
126}
127
a2fb1b05
ILT
128// Whether to include this section in the link.
129
130template<int size, bool big_endian>
131bool
730cdc88 132Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
a2fb1b05
ILT
133 const elfcpp::Shdr<size, big_endian>& shdr)
134{
135 // Some section types are never linked. Some are only linked when
136 // doing a relocateable link.
137 switch (shdr.get_sh_type())
138 {
139 case elfcpp::SHT_NULL:
140 case elfcpp::SHT_SYMTAB:
141 case elfcpp::SHT_DYNSYM:
142 case elfcpp::SHT_STRTAB:
143 case elfcpp::SHT_HASH:
144 case elfcpp::SHT_DYNAMIC:
145 case elfcpp::SHT_SYMTAB_SHNDX:
146 return false;
147
148 case elfcpp::SHT_RELA:
149 case elfcpp::SHT_REL:
150 case elfcpp::SHT_GROUP:
7e1edb90 151 return parameters->output_is_object();
a2fb1b05 152
9e2dcb77
ILT
153 case elfcpp::SHT_PROGBITS:
154 if (parameters->strip_debug()
155 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
156 {
157 // Debugging sections can only be recognized by name.
158 if (is_prefix_of(".debug", name)
159 || is_prefix_of(".gnu.linkonce.wi.", name)
160 || is_prefix_of(".line", name)
161 || is_prefix_of(".stab", name))
162 return false;
163 }
02d2ba74
ILT
164 if (parameters->strip_debug_gdb()
165 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
166 {
167 // Debugging sections can only be recognized by name.
168 if (is_prefix_of(".debug", name)
169 && !is_gdb_debug_section(name))
170 return false;
171 }
9e2dcb77
ILT
172 return true;
173
a2fb1b05 174 default:
a2fb1b05
ILT
175 return true;
176 }
177}
178
ead1e424 179// Return an output section named NAME, or NULL if there is none.
a2fb1b05 180
a2fb1b05 181Output_section*
ead1e424 182Layout::find_output_section(const char* name) const
a2fb1b05 183{
ead1e424
ILT
184 for (Section_name_map::const_iterator p = this->section_name_map_.begin();
185 p != this->section_name_map_.end();
186 ++p)
f0641a0b 187 if (strcmp(p->second->name(), name) == 0)
ead1e424
ILT
188 return p->second;
189 return NULL;
190}
a2fb1b05 191
ead1e424
ILT
192// Return an output segment of type TYPE, with segment flags SET set
193// and segment flags CLEAR clear. Return NULL if there is none.
a2fb1b05 194
ead1e424
ILT
195Output_segment*
196Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
197 elfcpp::Elf_Word clear) const
198{
199 for (Segment_list::const_iterator p = this->segment_list_.begin();
200 p != this->segment_list_.end();
201 ++p)
202 if (static_cast<elfcpp::PT>((*p)->type()) == type
203 && ((*p)->flags() & set) == set
204 && ((*p)->flags() & clear) == 0)
205 return *p;
206 return NULL;
207}
a2fb1b05 208
ead1e424
ILT
209// Return the output section to use for section NAME with type TYPE
210// and section flags FLAGS.
a2fb1b05 211
ead1e424 212Output_section*
f0641a0b
ILT
213Layout::get_output_section(const char* name, Stringpool::Key name_key,
214 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
ead1e424
ILT
215{
216 // We should ignore some flags.
217 flags &= ~ (elfcpp::SHF_INFO_LINK
218 | elfcpp::SHF_LINK_ORDER
b8e6aad9
ILT
219 | elfcpp::SHF_GROUP
220 | elfcpp::SHF_MERGE
221 | elfcpp::SHF_STRINGS);
a2fb1b05 222
f0641a0b 223 const Key key(name_key, std::make_pair(type, flags));
a2fb1b05
ILT
224 const std::pair<Key, Output_section*> v(key, NULL);
225 std::pair<Section_name_map::iterator, bool> ins(
226 this->section_name_map_.insert(v));
227
a2fb1b05 228 if (!ins.second)
ead1e424 229 return ins.first->second;
a2fb1b05
ILT
230 else
231 {
232 // This is the first time we've seen this name/type/flags
233 // combination.
ead1e424 234 Output_section* os = this->make_output_section(name, type, flags);
a2fb1b05 235 ins.first->second = os;
ead1e424 236 return os;
a2fb1b05 237 }
ead1e424
ILT
238}
239
240// Return the output section to use for input section SHNDX, with name
730cdc88
ILT
241// NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
242// index of a relocation section which applies to this section, or 0
243// if none, or -1U if more than one. RELOC_TYPE is the type of the
244// relocation section if there is one. Set *OFF to the offset of this
245// input section without the output section. Return NULL if the
246// section should be discarded. Set *OFF to -1 if the section
247// contents should not be written directly to the output file, but
248// will instead receive special handling.
ead1e424
ILT
249
250template<int size, bool big_endian>
251Output_section*
730cdc88
ILT
252Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
253 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
254 unsigned int reloc_shndx, unsigned int, off_t* off)
ead1e424
ILT
255{
256 if (!this->include_section(object, name, shdr))
257 return NULL;
258
259 // If we are not doing a relocateable link, choose the name to use
260 // for the output section.
261 size_t len = strlen(name);
7e1edb90 262 if (!parameters->output_is_object())
ead1e424
ILT
263 name = Layout::output_section_name(name, &len);
264
265 // FIXME: Handle SHF_OS_NONCONFORMING here.
266
267 // Canonicalize the section name.
f0641a0b 268 Stringpool::Key name_key;
cfd73a4e 269 name = this->namepool_.add_prefix(name, len, &name_key);
ead1e424
ILT
270
271 // Find the output section. The output section is selected based on
272 // the section name, type, and flags.
f0641a0b
ILT
273 Output_section* os = this->get_output_section(name, name_key,
274 shdr.get_sh_type(),
ead1e424 275 shdr.get_sh_flags());
a2fb1b05
ILT
276
277 // FIXME: Handle SHF_LINK_ORDER somewhere.
278
730cdc88 279 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
a2fb1b05
ILT
280
281 return os;
282}
283
730cdc88
ILT
284// Special GNU handling of sections name .eh_frame. They will
285// normally hold exception frame data as defined by the C++ ABI
286// (http://codesourcery.com/cxx-abi/).
3151305a
ILT
287
288template<int size, bool big_endian>
730cdc88
ILT
289Output_section*
290Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
291 const unsigned char* symbols,
292 off_t symbols_size,
293 const unsigned char* symbol_names,
294 off_t symbol_names_size,
3151305a 295 unsigned int shndx,
3151305a 296 const elfcpp::Shdr<size, big_endian>& shdr,
730cdc88
ILT
297 unsigned int reloc_shndx, unsigned int reloc_type,
298 off_t* off)
3151305a 299{
730cdc88
ILT
300 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
301 gold_assert(shdr.get_sh_flags() == elfcpp::SHF_ALLOC);
302
303 Stringpool::Key name_key;
304 const char* name = this->namepool_.add(".eh_frame", false, &name_key);
305
306 Output_section* os = this->get_output_section(name, name_key,
307 elfcpp::SHT_PROGBITS,
308 elfcpp::SHF_ALLOC);
309
3151305a
ILT
310 if (this->eh_frame_section_ == NULL)
311 {
312 this->eh_frame_section_ = os;
730cdc88
ILT
313 this->eh_frame_data_ = new Eh_frame();
314 os->add_output_section_data(this->eh_frame_data_);
3151305a
ILT
315
316 if (this->options_.create_eh_frame_hdr())
317 {
318 Stringpool::Key hdr_name_key;
319 const char* hdr_name = this->namepool_.add(".eh_frame_hdr",
cfd73a4e 320 false,
3151305a
ILT
321 &hdr_name_key);
322 Output_section* hdr_os =
323 this->get_output_section(hdr_name, hdr_name_key,
324 elfcpp::SHT_PROGBITS,
325 elfcpp::SHF_ALLOC);
326
730cdc88 327 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, this->eh_frame_data_);
3151305a
ILT
328 hdr_os->add_output_section_data(hdr_posd);
329
730cdc88
ILT
330 hdr_os->set_after_input_sections();
331
3151305a
ILT
332 Output_segment* hdr_oseg =
333 new Output_segment(elfcpp::PT_GNU_EH_FRAME, elfcpp::PF_R);
334 this->segment_list_.push_back(hdr_oseg);
335 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
730cdc88
ILT
336
337 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
3151305a
ILT
338 }
339 }
340
341 gold_assert(this->eh_frame_section_ == os);
342
730cdc88
ILT
343 if (this->eh_frame_data_->add_ehframe_input_section(object,
344 symbols,
345 symbols_size,
346 symbol_names,
347 symbol_names_size,
348 shndx,
349 reloc_shndx,
350 reloc_type))
351 *off = -1;
352 else
353 {
354 // We couldn't handle this .eh_frame section for some reason.
355 // Add it as a normal section.
356 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx);
357 }
358
359 return os;
3151305a
ILT
360}
361
ead1e424
ILT
362// Add POSD to an output section using NAME, TYPE, and FLAGS.
363
364void
365Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
366 elfcpp::Elf_Xword flags,
367 Output_section_data* posd)
368{
369 // Canonicalize the name.
f0641a0b 370 Stringpool::Key name_key;
cfd73a4e 371 name = this->namepool_.add(name, true, &name_key);
ead1e424 372
f0641a0b 373 Output_section* os = this->get_output_section(name, name_key, type, flags);
ead1e424
ILT
374 os->add_output_section_data(posd);
375}
376
a2fb1b05
ILT
377// Map section flags to segment flags.
378
379elfcpp::Elf_Word
380Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
381{
382 elfcpp::Elf_Word ret = elfcpp::PF_R;
383 if ((flags & elfcpp::SHF_WRITE) != 0)
384 ret |= elfcpp::PF_W;
385 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
386 ret |= elfcpp::PF_X;
387 return ret;
388}
389
96803768
ILT
390// Sometimes we compress sections. This is typically done for
391// sections that are not part of normal program execution (such as
392// .debug_* sections), and where the readers of these sections know
393// how to deal with compressed sections. (To make it easier for them,
394// we will rename the ouput section in such cases from .foo to
395// .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
396// doesn't say for certain whether we'll compress -- it depends on
397// commandline options as well -- just whether this section is a
398// candidate for compression.
399
400static bool
401is_compressible_debug_section(const char* secname)
402{
403 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
404}
405
a2fb1b05
ILT
406// Make a new Output_section, and attach it to segments as
407// appropriate.
408
409Output_section*
410Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
411 elfcpp::Elf_Xword flags)
412{
96803768
ILT
413 Output_section* os;
414 if ((flags & elfcpp::SHF_ALLOC) == 0
415 && this->options_.compress_debug_sections()
416 && is_compressible_debug_section(name))
417 os = new Output_compressed_section(&this->options_, name, type, flags);
418 else
419 os = new Output_section(name, type, flags);
420
a3ad94ed 421 this->section_list_.push_back(os);
a2fb1b05
ILT
422
423 if ((flags & elfcpp::SHF_ALLOC) == 0)
a3ad94ed 424 this->unattached_section_list_.push_back(os);
a2fb1b05
ILT
425 else
426 {
427 // This output section goes into a PT_LOAD segment.
428
429 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
430
431 // The only thing we really care about for PT_LOAD segments is
432 // whether or not they are writable, so that is how we search
433 // for them. People who need segments sorted on some other
434 // basis will have to wait until we implement a mechanism for
435 // them to describe the segments they want.
436
437 Segment_list::const_iterator p;
438 for (p = this->segment_list_.begin();
439 p != this->segment_list_.end();
440 ++p)
441 {
442 if ((*p)->type() == elfcpp::PT_LOAD
443 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
444 {
75f65a3e 445 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
446 break;
447 }
448 }
449
450 if (p == this->segment_list_.end())
451 {
452 Output_segment* oseg = new Output_segment(elfcpp::PT_LOAD,
453 seg_flags);
454 this->segment_list_.push_back(oseg);
75f65a3e 455 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
456 }
457
458 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
459 // segment.
460 if (type == elfcpp::SHT_NOTE)
461 {
462 // See if we already have an equivalent PT_NOTE segment.
463 for (p = this->segment_list_.begin();
464 p != segment_list_.end();
465 ++p)
466 {
467 if ((*p)->type() == elfcpp::PT_NOTE
468 && (((*p)->flags() & elfcpp::PF_W)
469 == (seg_flags & elfcpp::PF_W)))
470 {
75f65a3e 471 (*p)->add_output_section(os, seg_flags);
a2fb1b05
ILT
472 break;
473 }
474 }
475
476 if (p == this->segment_list_.end())
477 {
478 Output_segment* oseg = new Output_segment(elfcpp::PT_NOTE,
479 seg_flags);
480 this->segment_list_.push_back(oseg);
75f65a3e 481 oseg->add_output_section(os, seg_flags);
a2fb1b05
ILT
482 }
483 }
54dc6425
ILT
484
485 // If we see a loadable SHF_TLS section, we create a PT_TLS
92e059d8 486 // segment. There can only be one such segment.
54dc6425
ILT
487 if ((flags & elfcpp::SHF_TLS) != 0)
488 {
92e059d8 489 if (this->tls_segment_ == NULL)
54dc6425 490 {
92e059d8
ILT
491 this->tls_segment_ = new Output_segment(elfcpp::PT_TLS,
492 seg_flags);
493 this->segment_list_.push_back(this->tls_segment_);
54dc6425 494 }
92e059d8 495 this->tls_segment_->add_output_section(os, seg_flags);
54dc6425 496 }
a2fb1b05
ILT
497 }
498
499 return os;
500}
501
35cdfc9a
ILT
502// Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
503// is whether we saw a .note.GNU-stack section in the object file.
504// GNU_STACK_FLAGS is the section flags. The flags give the
505// protection required for stack memory. We record this in an
506// executable as a PT_GNU_STACK segment. If an object file does not
507// have a .note.GNU-stack segment, we must assume that it is an old
508// object. On some targets that will force an executable stack.
509
510void
511Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
512{
513 if (!seen_gnu_stack)
514 this->input_without_gnu_stack_note_ = true;
515 else
516 {
517 this->input_with_gnu_stack_note_ = true;
518 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
519 this->input_requires_executable_stack_ = true;
520 }
521}
522
a3ad94ed
ILT
523// Create the dynamic sections which are needed before we read the
524// relocs.
525
526void
527Layout::create_initial_dynamic_sections(const Input_objects* input_objects,
528 Symbol_table* symtab)
529{
436ca963 530 if (parameters->doing_static_link())
a3ad94ed
ILT
531 return;
532
cfd73a4e 533 const char* dynamic_name = this->namepool_.add(".dynamic", false, NULL);
a3ad94ed
ILT
534 this->dynamic_section_ = this->make_output_section(dynamic_name,
535 elfcpp::SHT_DYNAMIC,
536 (elfcpp::SHF_ALLOC
537 | elfcpp::SHF_WRITE));
538
14b31740 539 symtab->define_in_output_data(input_objects->target(), "_DYNAMIC", NULL,
a3ad94ed
ILT
540 this->dynamic_section_, 0, 0,
541 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
542 elfcpp::STV_HIDDEN, 0, false, false);
16649710 543
9025d29d 544 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
16649710
ILT
545
546 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
a3ad94ed
ILT
547}
548
bfd58944
ILT
549// For each output section whose name can be represented as C symbol,
550// define __start and __stop symbols for the section. This is a GNU
551// extension.
552
553void
554Layout::define_section_symbols(Symbol_table* symtab, const Target* target)
555{
556 for (Section_list::const_iterator p = this->section_list_.begin();
557 p != this->section_list_.end();
558 ++p)
559 {
560 const char* const name = (*p)->name();
561 if (name[strspn(name,
562 ("0123456789"
563 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
564 "abcdefghijklmnopqrstuvwxyz"
565 "_"))]
566 == '\0')
567 {
568 const std::string name_string(name);
569 const std::string start_name("__start_" + name_string);
570 const std::string stop_name("__stop_" + name_string);
571
572 symtab->define_in_output_data(target,
573 start_name.c_str(),
574 NULL, // version
575 *p,
576 0, // value
577 0, // symsize
578 elfcpp::STT_NOTYPE,
579 elfcpp::STB_GLOBAL,
580 elfcpp::STV_DEFAULT,
581 0, // nonvis
582 false, // offset_is_from_end
583 false); // only_if_ref
584
585 symtab->define_in_output_data(target,
586 stop_name.c_str(),
587 NULL, // version
588 *p,
589 0, // value
590 0, // symsize
591 elfcpp::STT_NOTYPE,
592 elfcpp::STB_GLOBAL,
593 elfcpp::STV_DEFAULT,
594 0, // nonvis
595 true, // offset_is_from_end
596 false); // only_if_ref
597 }
598 }
599}
600
75f65a3e
ILT
601// Find the first read-only PT_LOAD segment, creating one if
602// necessary.
54dc6425 603
75f65a3e
ILT
604Output_segment*
605Layout::find_first_load_seg()
54dc6425 606{
75f65a3e
ILT
607 for (Segment_list::const_iterator p = this->segment_list_.begin();
608 p != this->segment_list_.end();
609 ++p)
610 {
611 if ((*p)->type() == elfcpp::PT_LOAD
612 && ((*p)->flags() & elfcpp::PF_R) != 0
613 && ((*p)->flags() & elfcpp::PF_W) == 0)
614 return *p;
615 }
616
617 Output_segment* load_seg = new Output_segment(elfcpp::PT_LOAD, elfcpp::PF_R);
618 this->segment_list_.push_back(load_seg);
619 return load_seg;
54dc6425
ILT
620}
621
622// Finalize the layout. When this is called, we have created all the
623// output sections and all the output segments which are based on
624// input sections. We have several things to do, and we have to do
625// them in the right order, so that we get the right results correctly
626// and efficiently.
627
628// 1) Finalize the list of output segments and create the segment
629// table header.
630
631// 2) Finalize the dynamic symbol table and associated sections.
632
633// 3) Determine the final file offset of all the output segments.
634
635// 4) Determine the final file offset of all the SHF_ALLOC output
636// sections.
637
75f65a3e
ILT
638// 5) Create the symbol table sections and the section name table
639// section.
640
641// 6) Finalize the symbol table: set symbol values to their final
54dc6425
ILT
642// value and make a final determination of which symbols are going
643// into the output symbol table.
644
54dc6425
ILT
645// 7) Create the section table header.
646
647// 8) Determine the final file offset of all the output sections which
648// are not SHF_ALLOC, including the section table header.
649
650// 9) Finalize the ELF file header.
651
75f65a3e
ILT
652// This function returns the size of the output file.
653
654off_t
655Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab)
54dc6425 656{
5a6f7e2d 657 Target* const target = input_objects->target();
dbe717ef 658
7e1edb90 659 target->finalize_sections(this);
5a6f7e2d 660
35cdfc9a
ILT
661 this->create_gold_note();
662 this->create_executable_stack_info(target);
4f211c8b 663
dbe717ef 664 Output_segment* phdr_seg = NULL;
436ca963 665 if (!parameters->doing_static_link())
54dc6425 666 {
dbe717ef
ILT
667 // There was a dynamic object in the link. We need to create
668 // some information for the dynamic linker.
669
670 // Create the PT_PHDR segment which will hold the program
671 // headers.
672 phdr_seg = new Output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
673 this->segment_list_.push_back(phdr_seg);
674
14b31740
ILT
675 // Create the dynamic symbol table, including the hash table.
676 Output_section* dynstr;
677 std::vector<Symbol*> dynamic_symbols;
678 unsigned int local_dynamic_count;
679 Versions versions;
680 this->create_dynamic_symtab(target, symtab, &dynstr,
681 &local_dynamic_count, &dynamic_symbols,
682 &versions);
dbe717ef
ILT
683
684 // Create the .interp section to hold the name of the
685 // interpreter, and put it in a PT_INTERP segment.
96f2030e
ILT
686 if (!parameters->output_is_shared())
687 this->create_interp(target);
a3ad94ed
ILT
688
689 // Finish the .dynamic section to hold the dynamic data, and put
690 // it in a PT_DYNAMIC segment.
16649710 691 this->finish_dynamic_section(input_objects, symtab);
14b31740
ILT
692
693 // We should have added everything we need to the dynamic string
694 // table.
695 this->dynpool_.set_string_offsets();
696
697 // Create the version sections. We can't do this until the
698 // dynamic string table is complete.
46fe1623 699 this->create_version_sections(&versions, symtab, local_dynamic_count,
14b31740 700 dynamic_symbols, dynstr);
54dc6425
ILT
701 }
702
703 // FIXME: Handle PT_GNU_STACK.
704
75f65a3e
ILT
705 Output_segment* load_seg = this->find_first_load_seg();
706
707 // Lay out the segment headers.
75f65a3e 708 Output_segment_headers* segment_headers;
9025d29d 709 segment_headers = new Output_segment_headers(this->segment_list_);
75f65a3e 710 load_seg->add_initial_output_data(segment_headers);
61ba1cf9 711 this->special_output_list_.push_back(segment_headers);
dbe717ef
ILT
712 if (phdr_seg != NULL)
713 phdr_seg->add_initial_output_data(segment_headers);
75f65a3e
ILT
714
715 // Lay out the file header.
716 Output_file_header* file_header;
9025d29d 717 file_header = new Output_file_header(target, symtab, segment_headers);
75f65a3e 718 load_seg->add_initial_output_data(file_header);
61ba1cf9 719 this->special_output_list_.push_back(file_header);
75f65a3e 720
ead1e424 721 // We set the output section indexes in set_segment_offsets and
27bc2bce 722 // set_section_indexes.
ead1e424
ILT
723 unsigned int shndx = 1;
724
725 // Set the file offsets of all the segments, and all the sections
726 // they contain.
a3ad94ed 727 off_t off = this->set_segment_offsets(target, load_seg, &shndx);
75f65a3e
ILT
728
729 // Create the symbol table sections.
9025d29d 730 this->create_symtab_sections(input_objects, symtab, &off);
75f65a3e
ILT
731
732 // Create the .shstrtab section.
733 Output_section* shstrtab_section = this->create_shstrtab();
734
27bc2bce
ILT
735 // Set the file offsets of all the non-data sections which don't
736 // have to wait for the input sections.
9a0910c3 737 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
86887060
ILT
738
739 // Now that all sections have been created, set the section indexes.
740 shndx = this->set_section_indexes(shndx);
ead1e424 741
75f65a3e 742 // Create the section table header.
27bc2bce 743 this->create_shdrs(&off);
75f65a3e 744
27bc2bce 745 file_header->set_section_info(this->section_headers_, shstrtab_section);
75f65a3e 746
27bc2bce
ILT
747 // Now we know exactly where everything goes in the output file
748 // (except for non-allocated sections which require postprocessing).
a3ad94ed 749 Output_data::layout_complete();
75f65a3e 750
e44fcf3b
ILT
751 this->output_file_size_ = off;
752
75f65a3e
ILT
753 return off;
754}
755
4f211c8b
ILT
756// Create a .note section for an executable or shared library. This
757// records the version of gold used to create the binary.
758
759void
35cdfc9a 760Layout::create_gold_note()
4f211c8b
ILT
761{
762 if (parameters->output_is_object())
763 return;
764
e2305dc0
ILT
765 // Authorities all agree that the values in a .note field should
766 // be aligned on 4-byte boundaries for 32-bit binaries. However,
767 // they differ on what the alignment is for 64-bit binaries.
768 // The GABI says unambiguously they take 8-byte alignment:
769 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
770 // Other documentation says alignment should always be 4 bytes:
771 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
772 // GNU ld and GNU readelf both support the latter (at least as of
773 // version 2.16.91), and glibc always generates the latter for
774 // .note.ABI-tag (as of version 1.6), so that's the one we go with
775 // here.
35cdfc9a 776#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
4f211c8b 777 const int size = parameters->get_size();
e2305dc0
ILT
778#else
779 const int size = 32;
780#endif
4f211c8b
ILT
781
782 // The contents of the .note section.
783 const char* name = "GNU";
784 std::string desc(std::string("gold ") + gold::get_version_string());
785 size_t namesz = strlen(name) + 1;
786 size_t aligned_namesz = align_address(namesz, size / 8);
787 size_t descsz = desc.length() + 1;
788 size_t aligned_descsz = align_address(descsz, size / 8);
789 const int note_type = 4;
790
791 size_t notesz = 3 * (size / 8) + aligned_namesz + aligned_descsz;
792
793 unsigned char buffer[128];
794 gold_assert(sizeof buffer >= notesz);
795 memset(buffer, 0, notesz);
796
797 bool is_big_endian = parameters->is_big_endian();
798
799 if (size == 32)
800 {
801 if (!is_big_endian)
802 {
803 elfcpp::Swap<32, false>::writeval(buffer, namesz);
804 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
805 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
806 }
807 else
808 {
809 elfcpp::Swap<32, true>::writeval(buffer, namesz);
810 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
811 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
812 }
813 }
814 else if (size == 64)
815 {
816 if (!is_big_endian)
817 {
818 elfcpp::Swap<64, false>::writeval(buffer, namesz);
819 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
820 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
821 }
822 else
823 {
824 elfcpp::Swap<64, true>::writeval(buffer, namesz);
825 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
826 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
827 }
828 }
829 else
830 gold_unreachable();
831
832 memcpy(buffer + 3 * (size / 8), name, namesz);
833 memcpy(buffer + 3 * (size / 8) + aligned_namesz, desc.data(), descsz);
834
cfd73a4e 835 const char* note_name = this->namepool_.add(".note", false, NULL);
4f211c8b
ILT
836 Output_section* os = this->make_output_section(note_name,
837 elfcpp::SHT_NOTE,
838 0);
839 Output_section_data* posd = new Output_data_const(buffer, notesz,
840 size / 8);
841 os->add_output_section_data(posd);
842}
843
35cdfc9a
ILT
844// Record whether the stack should be executable. This can be set
845// from the command line using the -z execstack or -z noexecstack
846// options. Otherwise, if any input file has a .note.GNU-stack
847// section with the SHF_EXECINSTR flag set, the stack should be
848// executable. Otherwise, if at least one input file a
849// .note.GNU-stack section, and some input file has no .note.GNU-stack
850// section, we use the target default for whether the stack should be
851// executable. Otherwise, we don't generate a stack note. When
852// generating a object file, we create a .note.GNU-stack section with
853// the appropriate marking. When generating an executable or shared
854// library, we create a PT_GNU_STACK segment.
855
856void
857Layout::create_executable_stack_info(const Target* target)
858{
859 bool is_stack_executable;
860 if (this->options_.is_execstack_set())
861 is_stack_executable = this->options_.is_stack_executable();
862 else if (!this->input_with_gnu_stack_note_)
863 return;
864 else
865 {
866 if (this->input_requires_executable_stack_)
867 is_stack_executable = true;
868 else if (this->input_without_gnu_stack_note_)
869 is_stack_executable = target->is_default_stack_executable();
870 else
871 is_stack_executable = false;
872 }
873
874 if (parameters->output_is_object())
875 {
876 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
877 elfcpp::Elf_Xword flags = 0;
878 if (is_stack_executable)
879 flags |= elfcpp::SHF_EXECINSTR;
880 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
881 }
882 else
883 {
884 int flags = elfcpp::PF_R | elfcpp::PF_W;
885 if (is_stack_executable)
886 flags |= elfcpp::PF_X;
887 Output_segment* oseg = new Output_segment(elfcpp::PT_GNU_STACK, flags);
888 this->segment_list_.push_back(oseg);
889 }
890}
891
75f65a3e
ILT
892// Return whether SEG1 should be before SEG2 in the output file. This
893// is based entirely on the segment type and flags. When this is
894// called the segment addresses has normally not yet been set.
895
896bool
897Layout::segment_precedes(const Output_segment* seg1,
898 const Output_segment* seg2)
899{
900 elfcpp::Elf_Word type1 = seg1->type();
901 elfcpp::Elf_Word type2 = seg2->type();
902
903 // The single PT_PHDR segment is required to precede any loadable
904 // segment. We simply make it always first.
905 if (type1 == elfcpp::PT_PHDR)
906 {
a3ad94ed 907 gold_assert(type2 != elfcpp::PT_PHDR);
75f65a3e
ILT
908 return true;
909 }
910 if (type2 == elfcpp::PT_PHDR)
911 return false;
912
913 // The single PT_INTERP segment is required to precede any loadable
914 // segment. We simply make it always second.
915 if (type1 == elfcpp::PT_INTERP)
916 {
a3ad94ed 917 gold_assert(type2 != elfcpp::PT_INTERP);
75f65a3e
ILT
918 return true;
919 }
920 if (type2 == elfcpp::PT_INTERP)
921 return false;
922
923 // We then put PT_LOAD segments before any other segments.
924 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
925 return true;
926 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
927 return false;
928
92e059d8
ILT
929 // We put the PT_TLS segment last, because that is where the dynamic
930 // linker expects to find it (this is just for efficiency; other
931 // positions would also work correctly).
932 if (type1 == elfcpp::PT_TLS && type2 != elfcpp::PT_TLS)
933 return false;
934 if (type2 == elfcpp::PT_TLS && type1 != elfcpp::PT_TLS)
935 return true;
936
75f65a3e
ILT
937 const elfcpp::Elf_Word flags1 = seg1->flags();
938 const elfcpp::Elf_Word flags2 = seg2->flags();
939
940 // The order of non-PT_LOAD segments is unimportant. We simply sort
941 // by the numeric segment type and flags values. There should not
942 // be more than one segment with the same type and flags.
943 if (type1 != elfcpp::PT_LOAD)
944 {
945 if (type1 != type2)
946 return type1 < type2;
a3ad94ed 947 gold_assert(flags1 != flags2);
75f65a3e
ILT
948 return flags1 < flags2;
949 }
950
951 // We sort PT_LOAD segments based on the flags. Readonly segments
952 // come before writable segments. Then executable segments come
953 // before non-executable segments. Then the unlikely case of a
954 // non-readable segment comes before the normal case of a readable
955 // segment. If there are multiple segments with the same type and
956 // flags, we require that the address be set, and we sort by
957 // virtual address and then physical address.
958 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
959 return (flags1 & elfcpp::PF_W) == 0;
960 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
961 return (flags1 & elfcpp::PF_X) != 0;
962 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
963 return (flags1 & elfcpp::PF_R) == 0;
964
965 uint64_t vaddr1 = seg1->vaddr();
966 uint64_t vaddr2 = seg2->vaddr();
967 if (vaddr1 != vaddr2)
968 return vaddr1 < vaddr2;
969
970 uint64_t paddr1 = seg1->paddr();
971 uint64_t paddr2 = seg2->paddr();
a3ad94ed 972 gold_assert(paddr1 != paddr2);
75f65a3e
ILT
973 return paddr1 < paddr2;
974}
975
ead1e424
ILT
976// Set the file offsets of all the segments, and all the sections they
977// contain. They have all been created. LOAD_SEG must be be laid out
978// first. Return the offset of the data to follow.
75f65a3e
ILT
979
980off_t
ead1e424
ILT
981Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
982 unsigned int *pshndx)
75f65a3e
ILT
983{
984 // Sort them into the final order.
54dc6425
ILT
985 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
986 Layout::Compare_segments());
987
75f65a3e
ILT
988 // Find the PT_LOAD segments, and set their addresses and offsets
989 // and their section's addresses and offsets.
0c5e9c22
ILT
990 uint64_t addr;
991 if (options_.user_set_text_segment_address())
992 addr = options_.text_segment_address();
993 else
994 addr = target->default_text_segment_address();
75f65a3e
ILT
995 off_t off = 0;
996 bool was_readonly = false;
997 for (Segment_list::iterator p = this->segment_list_.begin();
998 p != this->segment_list_.end();
999 ++p)
1000 {
1001 if ((*p)->type() == elfcpp::PT_LOAD)
1002 {
1003 if (load_seg != NULL && load_seg != *p)
a3ad94ed 1004 gold_unreachable();
75f65a3e
ILT
1005 load_seg = NULL;
1006
1007 // If the last segment was readonly, and this one is not,
1008 // then skip the address forward one page, maintaining the
1009 // same position within the page. This lets us store both
1010 // segments overlapping on a single page in the file, but
1011 // the loader will put them on different pages in memory.
1012
1013 uint64_t orig_addr = addr;
1014 uint64_t orig_off = off;
1015
1016 uint64_t aligned_addr = addr;
1017 uint64_t abi_pagesize = target->abi_pagesize();
0496d5e5
ILT
1018
1019 // FIXME: This should depend on the -n and -N options.
1020 (*p)->set_minimum_addralign(target->common_pagesize());
1021
75f65a3e
ILT
1022 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1023 {
ead1e424 1024 uint64_t align = (*p)->addralign();
75f65a3e 1025
ead1e424 1026 addr = align_address(addr, align);
75f65a3e
ILT
1027 aligned_addr = addr;
1028 if ((addr & (abi_pagesize - 1)) != 0)
1029 addr = addr + abi_pagesize;
1030 }
1031
ead1e424 1032 unsigned int shndx_hold = *pshndx;
75f65a3e 1033 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 1034 uint64_t new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
1035
1036 // Now that we know the size of this segment, we may be able
1037 // to save a page in memory, at the cost of wasting some
1038 // file space, by instead aligning to the start of a new
1039 // page. Here we use the real machine page size rather than
1040 // the ABI mandated page size.
1041
1042 if (aligned_addr != addr)
1043 {
1044 uint64_t common_pagesize = target->common_pagesize();
1045 uint64_t first_off = (common_pagesize
1046 - (aligned_addr
1047 & (common_pagesize - 1)));
1048 uint64_t last_off = new_addr & (common_pagesize - 1);
1049 if (first_off > 0
1050 && last_off > 0
1051 && ((aligned_addr & ~ (common_pagesize - 1))
1052 != (new_addr & ~ (common_pagesize - 1)))
1053 && first_off + last_off <= common_pagesize)
1054 {
ead1e424
ILT
1055 *pshndx = shndx_hold;
1056 addr = align_address(aligned_addr, common_pagesize);
75f65a3e 1057 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
ead1e424 1058 new_addr = (*p)->set_section_addresses(addr, &off, pshndx);
75f65a3e
ILT
1059 }
1060 }
1061
1062 addr = new_addr;
1063
1064 if (((*p)->flags() & elfcpp::PF_W) == 0)
1065 was_readonly = true;
1066 }
1067 }
1068
1069 // Handle the non-PT_LOAD segments, setting their offsets from their
1070 // section's offsets.
1071 for (Segment_list::iterator p = this->segment_list_.begin();
1072 p != this->segment_list_.end();
1073 ++p)
1074 {
1075 if ((*p)->type() != elfcpp::PT_LOAD)
1076 (*p)->set_offset();
1077 }
1078
1079 return off;
1080}
1081
1082// Set the file offset of all the sections not associated with a
1083// segment.
1084
1085off_t
9a0910c3 1086Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
75f65a3e 1087{
a3ad94ed
ILT
1088 for (Section_list::iterator p = this->unattached_section_list_.begin();
1089 p != this->unattached_section_list_.end();
75f65a3e
ILT
1090 ++p)
1091 {
27bc2bce
ILT
1092 // The symtab section is handled in create_symtab_sections.
1093 if (*p == this->symtab_section_)
61ba1cf9 1094 continue;
27bc2bce 1095
96803768
ILT
1096 if (pass == BEFORE_INPUT_SECTIONS_PASS
1097 && (*p)->requires_postprocessing())
1098 (*p)->create_postprocessing_buffer();
1099
9a0910c3
ILT
1100 if (pass == BEFORE_INPUT_SECTIONS_PASS
1101 && (*p)->after_input_sections())
1102 continue;
1103 else if (pass == AFTER_INPUT_SECTIONS_PASS
1104 && (!(*p)->after_input_sections()
1105 || (*p)->type() == elfcpp::SHT_STRTAB))
1106 continue;
1107 else if (pass == STRTAB_AFTER_INPUT_SECTIONS_PASS
1108 && (!(*p)->after_input_sections()
1109 || (*p)->type() != elfcpp::SHT_STRTAB))
1110 continue;
27bc2bce 1111
ead1e424 1112 off = align_address(off, (*p)->addralign());
27bc2bce
ILT
1113 (*p)->set_file_offset(off);
1114 (*p)->finalize_data_size();
75f65a3e 1115 off += (*p)->data_size();
96803768
ILT
1116
1117 // At this point the name must be set.
1118 if (pass != STRTAB_AFTER_INPUT_SECTIONS_PASS)
1119 this->namepool_.add((*p)->name(), false, NULL);
75f65a3e
ILT
1120 }
1121 return off;
1122}
1123
86887060
ILT
1124// Set the section indexes of all the sections not associated with a
1125// segment.
1126
1127unsigned int
1128Layout::set_section_indexes(unsigned int shndx)
1129{
1130 for (Section_list::iterator p = this->unattached_section_list_.begin();
1131 p != this->unattached_section_list_.end();
1132 ++p)
1133 {
1134 (*p)->set_out_shndx(shndx);
1135 ++shndx;
1136 }
1137 return shndx;
1138}
1139
b8e6aad9
ILT
1140// Create the symbol table sections. Here we also set the final
1141// values of the symbols. At this point all the loadable sections are
1142// fully laid out.
75f65a3e
ILT
1143
1144void
9025d29d 1145Layout::create_symtab_sections(const Input_objects* input_objects,
75f65a3e 1146 Symbol_table* symtab,
16649710 1147 off_t* poff)
75f65a3e 1148{
61ba1cf9
ILT
1149 int symsize;
1150 unsigned int align;
9025d29d 1151 if (parameters->get_size() == 32)
61ba1cf9
ILT
1152 {
1153 symsize = elfcpp::Elf_sizes<32>::sym_size;
1154 align = 4;
1155 }
9025d29d 1156 else if (parameters->get_size() == 64)
61ba1cf9
ILT
1157 {
1158 symsize = elfcpp::Elf_sizes<64>::sym_size;
1159 align = 8;
1160 }
1161 else
a3ad94ed 1162 gold_unreachable();
61ba1cf9
ILT
1163
1164 off_t off = *poff;
ead1e424 1165 off = align_address(off, align);
61ba1cf9
ILT
1166 off_t startoff = off;
1167
1168 // Save space for the dummy symbol at the start of the section. We
1169 // never bother to write this out--it will just be left as zero.
1170 off += symsize;
c06b7b0b 1171 unsigned int local_symbol_index = 1;
61ba1cf9 1172
a3ad94ed
ILT
1173 // Add STT_SECTION symbols for each Output section which needs one.
1174 for (Section_list::iterator p = this->section_list_.begin();
1175 p != this->section_list_.end();
1176 ++p)
1177 {
1178 if (!(*p)->needs_symtab_index())
1179 (*p)->set_symtab_index(-1U);
1180 else
1181 {
1182 (*p)->set_symtab_index(local_symbol_index);
1183 ++local_symbol_index;
1184 off += symsize;
1185 }
1186 }
1187
f6ce93d6
ILT
1188 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
1189 p != input_objects->relobj_end();
75f65a3e
ILT
1190 ++p)
1191 {
1192 Task_lock_obj<Object> tlo(**p);
c06b7b0b
ILT
1193 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
1194 off,
1195 &this->sympool_);
1196 off += (index - local_symbol_index) * symsize;
1197 local_symbol_index = index;
75f65a3e
ILT
1198 }
1199
c06b7b0b 1200 unsigned int local_symcount = local_symbol_index;
a3ad94ed 1201 gold_assert(local_symcount * symsize == off - startoff);
61ba1cf9 1202
16649710
ILT
1203 off_t dynoff;
1204 size_t dyn_global_index;
1205 size_t dyncount;
1206 if (this->dynsym_section_ == NULL)
1207 {
1208 dynoff = 0;
1209 dyn_global_index = 0;
1210 dyncount = 0;
1211 }
1212 else
1213 {
1214 dyn_global_index = this->dynsym_section_->info();
1215 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
1216 dynoff = this->dynsym_section_->offset() + locsize;
1217 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
f5c3f225 1218 gold_assert(static_cast<off_t>(dyncount * symsize)
16649710
ILT
1219 == this->dynsym_section_->data_size() - locsize);
1220 }
1221
1222 off = symtab->finalize(local_symcount, off, dynoff, dyn_global_index,
1223 dyncount, &this->sympool_);
75f65a3e 1224
9e2dcb77
ILT
1225 if (!parameters->strip_all())
1226 {
1227 this->sympool_.set_string_offsets();
61ba1cf9 1228
cfd73a4e 1229 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
9e2dcb77
ILT
1230 Output_section* osymtab = this->make_output_section(symtab_name,
1231 elfcpp::SHT_SYMTAB,
1232 0);
1233 this->symtab_section_ = osymtab;
a3ad94ed 1234
27bc2bce
ILT
1235 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
1236 align);
9e2dcb77 1237 osymtab->add_output_section_data(pos);
61ba1cf9 1238
cfd73a4e 1239 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
9e2dcb77
ILT
1240 Output_section* ostrtab = this->make_output_section(strtab_name,
1241 elfcpp::SHT_STRTAB,
1242 0);
a3ad94ed 1243
9e2dcb77
ILT
1244 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
1245 ostrtab->add_output_section_data(pstr);
61ba1cf9 1246
27bc2bce
ILT
1247 osymtab->set_file_offset(startoff);
1248 osymtab->finalize_data_size();
9e2dcb77
ILT
1249 osymtab->set_link_section(ostrtab);
1250 osymtab->set_info(local_symcount);
1251 osymtab->set_entsize(symsize);
61ba1cf9 1252
9e2dcb77
ILT
1253 *poff = off;
1254 }
75f65a3e
ILT
1255}
1256
1257// Create the .shstrtab section, which holds the names of the
1258// sections. At the time this is called, we have created all the
1259// output sections except .shstrtab itself.
1260
1261Output_section*
1262Layout::create_shstrtab()
1263{
1264 // FIXME: We don't need to create a .shstrtab section if we are
1265 // stripping everything.
1266
cfd73a4e 1267 const char* name = this->namepool_.add(".shstrtab", false, NULL);
75f65a3e 1268
a3ad94ed 1269 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
75f65a3e 1270
27bc2bce
ILT
1271 // We can't write out this section until we've set all the section
1272 // names, and we don't set the names of compressed output sections
1273 // until relocations are complete.
1274 os->set_after_input_sections();
1275
a3ad94ed
ILT
1276 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
1277 os->add_output_section_data(posd);
75f65a3e
ILT
1278
1279 return os;
1280}
1281
1282// Create the section headers. SIZE is 32 or 64. OFF is the file
1283// offset.
1284
27bc2bce 1285void
9025d29d 1286Layout::create_shdrs(off_t* poff)
75f65a3e
ILT
1287{
1288 Output_section_headers* oshdrs;
9025d29d 1289 oshdrs = new Output_section_headers(this,
16649710
ILT
1290 &this->segment_list_,
1291 &this->unattached_section_list_,
61ba1cf9 1292 &this->namepool_);
ead1e424 1293 off_t off = align_address(*poff, oshdrs->addralign());
27bc2bce 1294 oshdrs->set_address_and_file_offset(0, off);
61ba1cf9
ILT
1295 off += oshdrs->data_size();
1296 *poff = off;
27bc2bce 1297 this->section_headers_ = oshdrs;
54dc6425
ILT
1298}
1299
dbe717ef
ILT
1300// Create the dynamic symbol table.
1301
1302void
14b31740
ILT
1303Layout::create_dynamic_symtab(const Target* target, Symbol_table* symtab,
1304 Output_section **pdynstr,
1305 unsigned int* plocal_dynamic_count,
1306 std::vector<Symbol*>* pdynamic_symbols,
1307 Versions* pversions)
dbe717ef 1308{
a3ad94ed
ILT
1309 // Count all the symbols in the dynamic symbol table, and set the
1310 // dynamic symbol indexes.
dbe717ef 1311
a3ad94ed
ILT
1312 // Skip symbol 0, which is always all zeroes.
1313 unsigned int index = 1;
dbe717ef 1314
a3ad94ed
ILT
1315 // Add STT_SECTION symbols for each Output section which needs one.
1316 for (Section_list::iterator p = this->section_list_.begin();
1317 p != this->section_list_.end();
1318 ++p)
1319 {
1320 if (!(*p)->needs_dynsym_index())
1321 (*p)->set_dynsym_index(-1U);
1322 else
1323 {
1324 (*p)->set_dynsym_index(index);
1325 ++index;
1326 }
1327 }
1328
1329 // FIXME: Some targets apparently require local symbols in the
1330 // dynamic symbol table. Here is where we will have to count them,
1331 // and set the dynamic symbol indexes, and add the names to
1332 // this->dynpool_.
1333
1334 unsigned int local_symcount = index;
14b31740 1335 *plocal_dynamic_count = local_symcount;
a3ad94ed
ILT
1336
1337 // FIXME: We have to tell set_dynsym_indexes whether the
1338 // -E/--export-dynamic option was used.
35cdfc9a
ILT
1339 index = symtab->set_dynsym_indexes(target, index, pdynamic_symbols,
1340 &this->dynpool_, pversions);
a3ad94ed
ILT
1341
1342 int symsize;
1343 unsigned int align;
9025d29d 1344 const int size = parameters->get_size();
a3ad94ed
ILT
1345 if (size == 32)
1346 {
1347 symsize = elfcpp::Elf_sizes<32>::sym_size;
1348 align = 4;
1349 }
1350 else if (size == 64)
1351 {
1352 symsize = elfcpp::Elf_sizes<64>::sym_size;
1353 align = 8;
1354 }
1355 else
1356 gold_unreachable();
1357
14b31740
ILT
1358 // Create the dynamic symbol table section.
1359
cfd73a4e 1360 const char* dynsym_name = this->namepool_.add(".dynsym", false, NULL);
a3ad94ed
ILT
1361 Output_section* dynsym = this->make_output_section(dynsym_name,
1362 elfcpp::SHT_DYNSYM,
1363 elfcpp::SHF_ALLOC);
1364
27bc2bce
ILT
1365 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
1366 align);
a3ad94ed
ILT
1367 dynsym->add_output_section_data(odata);
1368
1369 dynsym->set_info(local_symcount);
1370 dynsym->set_entsize(symsize);
1371 dynsym->set_addralign(align);
1372
1373 this->dynsym_section_ = dynsym;
1374
16649710 1375 Output_data_dynamic* const odyn = this->dynamic_data_;
a3ad94ed
ILT
1376 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
1377 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
1378
14b31740
ILT
1379 // Create the dynamic string table section.
1380
cfd73a4e 1381 const char* dynstr_name = this->namepool_.add(".dynstr", false, NULL);
a3ad94ed
ILT
1382 Output_section* dynstr = this->make_output_section(dynstr_name,
1383 elfcpp::SHT_STRTAB,
1384 elfcpp::SHF_ALLOC);
1385
1386 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
1387 dynstr->add_output_section_data(strdata);
1388
16649710
ILT
1389 dynsym->set_link_section(dynstr);
1390 this->dynamic_section_->set_link_section(dynstr);
1391
a3ad94ed
ILT
1392 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
1393 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
1394
14b31740
ILT
1395 *pdynstr = dynstr;
1396
1397 // Create the hash tables.
1398
a3ad94ed
ILT
1399 // FIXME: We need an option to create a GNU hash table.
1400
1401 unsigned char* phash;
1402 unsigned int hashlen;
9025d29d 1403 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
a3ad94ed
ILT
1404 &phash, &hashlen);
1405
cfd73a4e 1406 const char* hash_name = this->namepool_.add(".hash", false, NULL);
a3ad94ed
ILT
1407 Output_section* hashsec = this->make_output_section(hash_name,
1408 elfcpp::SHT_HASH,
1409 elfcpp::SHF_ALLOC);
1410
1411 Output_section_data* hashdata = new Output_data_const_buffer(phash,
1412 hashlen,
1413 align);
1414 hashsec->add_output_section_data(hashdata);
1415
16649710 1416 hashsec->set_link_section(dynsym);
a3ad94ed 1417 hashsec->set_entsize(4);
a3ad94ed
ILT
1418
1419 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
dbe717ef
ILT
1420}
1421
14b31740
ILT
1422// Create the version sections.
1423
1424void
9025d29d 1425Layout::create_version_sections(const Versions* versions,
46fe1623 1426 const Symbol_table* symtab,
14b31740
ILT
1427 unsigned int local_symcount,
1428 const std::vector<Symbol*>& dynamic_symbols,
1429 const Output_section* dynstr)
1430{
1431 if (!versions->any_defs() && !versions->any_needs())
1432 return;
1433
9025d29d 1434 if (parameters->get_size() == 32)
14b31740 1435 {
9025d29d 1436 if (parameters->is_big_endian())
193a53d9
ILT
1437 {
1438#ifdef HAVE_TARGET_32_BIG
1439 this->sized_create_version_sections
1440 SELECT_SIZE_ENDIAN_NAME(32, true)(
46fe1623 1441 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1442 SELECT_SIZE_ENDIAN(32, true));
1443#else
1444 gold_unreachable();
1445#endif
1446 }
14b31740 1447 else
193a53d9
ILT
1448 {
1449#ifdef HAVE_TARGET_32_LITTLE
1450 this->sized_create_version_sections
1451 SELECT_SIZE_ENDIAN_NAME(32, false)(
46fe1623 1452 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1453 SELECT_SIZE_ENDIAN(32, false));
1454#else
1455 gold_unreachable();
1456#endif
1457 }
14b31740 1458 }
9025d29d 1459 else if (parameters->get_size() == 64)
14b31740 1460 {
9025d29d 1461 if (parameters->is_big_endian())
193a53d9
ILT
1462 {
1463#ifdef HAVE_TARGET_64_BIG
1464 this->sized_create_version_sections
1465 SELECT_SIZE_ENDIAN_NAME(64, true)(
46fe1623 1466 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1467 SELECT_SIZE_ENDIAN(64, true));
1468#else
1469 gold_unreachable();
1470#endif
1471 }
14b31740 1472 else
193a53d9
ILT
1473 {
1474#ifdef HAVE_TARGET_64_LITTLE
1475 this->sized_create_version_sections
1476 SELECT_SIZE_ENDIAN_NAME(64, false)(
46fe1623 1477 versions, symtab, local_symcount, dynamic_symbols, dynstr
193a53d9
ILT
1478 SELECT_SIZE_ENDIAN(64, false));
1479#else
1480 gold_unreachable();
1481#endif
1482 }
14b31740
ILT
1483 }
1484 else
1485 gold_unreachable();
1486}
1487
1488// Create the version sections, sized version.
1489
1490template<int size, bool big_endian>
1491void
1492Layout::sized_create_version_sections(
1493 const Versions* versions,
46fe1623 1494 const Symbol_table* symtab,
14b31740
ILT
1495 unsigned int local_symcount,
1496 const std::vector<Symbol*>& dynamic_symbols,
91da9340
ILT
1497 const Output_section* dynstr
1498 ACCEPT_SIZE_ENDIAN)
14b31740 1499{
cfd73a4e 1500 const char* vname = this->namepool_.add(".gnu.version", false, NULL);
14b31740
ILT
1501 Output_section* vsec = this->make_output_section(vname,
1502 elfcpp::SHT_GNU_versym,
1503 elfcpp::SHF_ALLOC);
1504
1505 unsigned char* vbuf;
1506 unsigned int vsize;
91da9340 1507 versions->symbol_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
46fe1623 1508 symtab, &this->dynpool_, local_symcount, dynamic_symbols, &vbuf, &vsize
7e1edb90 1509 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1510
1511 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2);
1512
1513 vsec->add_output_section_data(vdata);
1514 vsec->set_entsize(2);
1515 vsec->set_link_section(this->dynsym_section_);
1516
1517 Output_data_dynamic* const odyn = this->dynamic_data_;
1518 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
1519
1520 if (versions->any_defs())
1521 {
cfd73a4e 1522 const char* vdname = this->namepool_.add(".gnu.version_d", false, NULL);
14b31740
ILT
1523 Output_section *vdsec;
1524 vdsec = this->make_output_section(vdname, elfcpp::SHT_GNU_verdef,
1525 elfcpp::SHF_ALLOC);
1526
1527 unsigned char* vdbuf;
1528 unsigned int vdsize;
1529 unsigned int vdentries;
91da9340
ILT
1530 versions->def_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)(
1531 &this->dynpool_, &vdbuf, &vdsize, &vdentries
1532 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1533
1534 Output_section_data* vddata = new Output_data_const_buffer(vdbuf,
1535 vdsize,
1536 4);
1537
1538 vdsec->add_output_section_data(vddata);
1539 vdsec->set_link_section(dynstr);
1540 vdsec->set_info(vdentries);
1541
1542 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
1543 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
1544 }
1545
1546 if (versions->any_needs())
1547 {
cfd73a4e 1548 const char* vnname = this->namepool_.add(".gnu.version_r", false, NULL);
14b31740
ILT
1549 Output_section* vnsec;
1550 vnsec = this->make_output_section(vnname, elfcpp::SHT_GNU_verneed,
1551 elfcpp::SHF_ALLOC);
1552
1553 unsigned char* vnbuf;
1554 unsigned int vnsize;
1555 unsigned int vnentries;
91da9340
ILT
1556 versions->need_section_contents SELECT_SIZE_ENDIAN_NAME(size, big_endian)
1557 (&this->dynpool_, &vnbuf, &vnsize, &vnentries
1558 SELECT_SIZE_ENDIAN(size, big_endian));
14b31740
ILT
1559
1560 Output_section_data* vndata = new Output_data_const_buffer(vnbuf,
1561 vnsize,
1562 4);
1563
1564 vnsec->add_output_section_data(vndata);
1565 vnsec->set_link_section(dynstr);
1566 vnsec->set_info(vnentries);
1567
1568 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
1569 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
1570 }
1571}
1572
dbe717ef
ILT
1573// Create the .interp section and PT_INTERP segment.
1574
1575void
1576Layout::create_interp(const Target* target)
1577{
1578 const char* interp = this->options_.dynamic_linker();
1579 if (interp == NULL)
1580 {
1581 interp = target->dynamic_linker();
a3ad94ed 1582 gold_assert(interp != NULL);
dbe717ef
ILT
1583 }
1584
1585 size_t len = strlen(interp) + 1;
1586
1587 Output_section_data* odata = new Output_data_const(interp, len, 1);
1588
cfd73a4e 1589 const char* interp_name = this->namepool_.add(".interp", false, NULL);
dbe717ef
ILT
1590 Output_section* osec = this->make_output_section(interp_name,
1591 elfcpp::SHT_PROGBITS,
1592 elfcpp::SHF_ALLOC);
1593 osec->add_output_section_data(odata);
1594
1595 Output_segment* oseg = new Output_segment(elfcpp::PT_INTERP, elfcpp::PF_R);
1596 this->segment_list_.push_back(oseg);
1597 oseg->add_initial_output_section(osec, elfcpp::PF_R);
1598}
1599
a3ad94ed
ILT
1600// Finish the .dynamic section and PT_DYNAMIC segment.
1601
1602void
1603Layout::finish_dynamic_section(const Input_objects* input_objects,
16649710 1604 const Symbol_table* symtab)
a3ad94ed 1605{
a3ad94ed
ILT
1606 Output_segment* oseg = new Output_segment(elfcpp::PT_DYNAMIC,
1607 elfcpp::PF_R | elfcpp::PF_W);
1608 this->segment_list_.push_back(oseg);
1609 oseg->add_initial_output_section(this->dynamic_section_,
1610 elfcpp::PF_R | elfcpp::PF_W);
1611
16649710
ILT
1612 Output_data_dynamic* const odyn = this->dynamic_data_;
1613
a3ad94ed
ILT
1614 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
1615 p != input_objects->dynobj_end();
1616 ++p)
1617 {
1618 // FIXME: Handle --as-needed.
1619 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
1620 }
1621
1622 // FIXME: Support --init and --fini.
1623 Symbol* sym = symtab->lookup("_init");
14b31740 1624 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1625 odyn->add_symbol(elfcpp::DT_INIT, sym);
1626
1627 sym = symtab->lookup("_fini");
14b31740 1628 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
a3ad94ed
ILT
1629 odyn->add_symbol(elfcpp::DT_FINI, sym);
1630
1631 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
41f542e7
ILT
1632
1633 // Add a DT_RPATH entry if needed.
1634 const General_options::Dir_list& rpath(this->options_.rpath());
1635 if (!rpath.empty())
1636 {
1637 std::string rpath_val;
1638 for (General_options::Dir_list::const_iterator p = rpath.begin();
1639 p != rpath.end();
1640 ++p)
1641 {
1642 if (rpath_val.empty())
ad2d6943 1643 rpath_val = p->name();
41f542e7
ILT
1644 else
1645 {
1646 // Eliminate duplicates.
1647 General_options::Dir_list::const_iterator q;
1648 for (q = rpath.begin(); q != p; ++q)
ad2d6943 1649 if (q->name() == p->name())
41f542e7
ILT
1650 break;
1651 if (q == p)
1652 {
1653 rpath_val += ':';
ad2d6943 1654 rpath_val += p->name();
41f542e7
ILT
1655 }
1656 }
1657 }
1658
1659 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
1660 }
4f4c5f80
ILT
1661
1662 // Look for text segments that have dynamic relocations.
1663 bool have_textrel = false;
1664 for (Segment_list::const_iterator p = this->segment_list_.begin();
1665 p != this->segment_list_.end();
1666 ++p)
1667 {
1668 if (((*p)->flags() & elfcpp::PF_W) == 0
1669 && (*p)->dynamic_reloc_count() > 0)
1670 {
1671 have_textrel = true;
1672 break;
1673 }
1674 }
1675
1676 // Add a DT_FLAGS entry. We add it even if no flags are set so that
1677 // post-link tools can easily modify these flags if desired.
1678 unsigned int flags = 0;
1679 if (have_textrel)
1680 flags |= elfcpp::DF_TEXTREL;
1681 odyn->add_constant(elfcpp::DT_FLAGS, flags);
a3ad94ed
ILT
1682}
1683
a2fb1b05
ILT
1684// The mapping of .gnu.linkonce section names to real section names.
1685
ead1e424 1686#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
a2fb1b05
ILT
1687const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
1688{
1689 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
1690 MAPPING_INIT("t", ".text"),
1691 MAPPING_INIT("r", ".rodata"),
1692 MAPPING_INIT("d", ".data"),
1693 MAPPING_INIT("b", ".bss"),
1694 MAPPING_INIT("s", ".sdata"),
1695 MAPPING_INIT("sb", ".sbss"),
1696 MAPPING_INIT("s2", ".sdata2"),
1697 MAPPING_INIT("sb2", ".sbss2"),
1698 MAPPING_INIT("wi", ".debug_info"),
1699 MAPPING_INIT("td", ".tdata"),
1700 MAPPING_INIT("tb", ".tbss"),
1701 MAPPING_INIT("lr", ".lrodata"),
1702 MAPPING_INIT("l", ".ldata"),
1703 MAPPING_INIT("lb", ".lbss"),
1704};
1705#undef MAPPING_INIT
1706
1707const int Layout::linkonce_mapping_count =
1708 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
1709
1710// Return the name of the output section to use for a .gnu.linkonce
1711// section. This is based on the default ELF linker script of the old
1712// GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
ead1e424
ILT
1713// to ".text". Set *PLEN to the length of the name. *PLEN is
1714// initialized to the length of NAME.
a2fb1b05
ILT
1715
1716const char*
ead1e424 1717Layout::linkonce_output_name(const char* name, size_t *plen)
a2fb1b05
ILT
1718{
1719 const char* s = name + sizeof(".gnu.linkonce") - 1;
1720 if (*s != '.')
1721 return name;
1722 ++s;
1723 const Linkonce_mapping* plm = linkonce_mapping;
1724 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
1725 {
1726 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
ead1e424
ILT
1727 {
1728 *plen = plm->tolen;
1729 return plm->to;
1730 }
a2fb1b05
ILT
1731 }
1732 return name;
1733}
1734
ead1e424
ILT
1735// Choose the output section name to use given an input section name.
1736// Set *PLEN to the length of the name. *PLEN is initialized to the
1737// length of NAME.
1738
1739const char*
1740Layout::output_section_name(const char* name, size_t* plen)
1741{
1742 if (Layout::is_linkonce(name))
1743 {
1744 // .gnu.linkonce sections are laid out as though they were named
1745 // for the sections are placed into.
1746 return Layout::linkonce_output_name(name, plen);
1747 }
1748
af4a8a83
ILT
1749 // gcc 4.3 generates the following sorts of section names when it
1750 // needs a section name specific to a function:
1751 // .text.FN
1752 // .rodata.FN
1753 // .sdata2.FN
1754 // .data.FN
1755 // .data.rel.FN
1756 // .data.rel.local.FN
1757 // .data.rel.ro.FN
1758 // .data.rel.ro.local.FN
1759 // .sdata.FN
1760 // .bss.FN
1761 // .sbss.FN
1762 // .tdata.FN
1763 // .tbss.FN
1764
1765 // The GNU linker maps all of those to the part before the .FN,
1766 // except that .data.rel.local.FN is mapped to .data, and
1767 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
1768 // beginning with .data.rel.ro.local are grouped together.
1769
1770 // For an anonymous namespace, the string FN can contain a '.'.
1771
1772 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
1773 // GNU linker maps to .rodata.
1774
1775 // The .data.rel.ro sections enable a security feature triggered by
1776 // the -z relro option. Section which need to be relocated at
1777 // program startup time but which may be readonly after startup are
1778 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
1779 // segment. The dynamic linker will make that segment writable,
1780 // perform relocations, and then make it read-only. FIXME: We do
1781 // not yet implement this optimization.
1782
1783 // It is hard to handle this in a principled way.
1784
1785 // These are the rules we follow:
1786
1787 // If the section name has no initial '.', or no dot other than an
1788 // initial '.', we use the name unchanged (i.e., "mysection" and
1789 // ".text" are unchanged).
1790
1791 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
1792
1793 // Otherwise, we drop the second '.' and everything that comes after
1794 // it (i.e., ".text.XXX" becomes ".text").
ead1e424
ILT
1795
1796 const char* s = name;
af4a8a83
ILT
1797 if (*s != '.')
1798 return name;
1799 ++s;
ead1e424
ILT
1800 const char* sdot = strchr(s, '.');
1801 if (sdot == NULL)
1802 return name;
1803
af4a8a83
ILT
1804 const char* const data_rel_ro = ".data.rel.ro";
1805 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
ead1e424 1806 {
af4a8a83
ILT
1807 *plen = strlen(data_rel_ro);
1808 return data_rel_ro;
ead1e424
ILT
1809 }
1810
ead1e424
ILT
1811 *plen = sdot - name;
1812 return name;
1813}
1814
a2fb1b05
ILT
1815// Record the signature of a comdat section, and return whether to
1816// include it in the link. If GROUP is true, this is a regular
1817// section group. If GROUP is false, this is a group signature
1818// derived from the name of a linkonce section. We want linkonce
1819// signatures and group signatures to block each other, but we don't
1820// want a linkonce signature to block another linkonce signature.
1821
1822bool
1823Layout::add_comdat(const char* signature, bool group)
1824{
1825 std::string sig(signature);
1826 std::pair<Signatures::iterator, bool> ins(
ead1e424 1827 this->signatures_.insert(std::make_pair(sig, group)));
a2fb1b05
ILT
1828
1829 if (ins.second)
1830 {
1831 // This is the first time we've seen this signature.
1832 return true;
1833 }
1834
1835 if (ins.first->second)
1836 {
1837 // We've already seen a real section group with this signature.
1838 return false;
1839 }
1840 else if (group)
1841 {
1842 // This is a real section group, and we've already seen a
a0fa0c07 1843 // linkonce section with this signature. Record that we've seen
a2fb1b05
ILT
1844 // a section group, and don't include this section group.
1845 ins.first->second = true;
1846 return false;
1847 }
1848 else
1849 {
1850 // We've already seen a linkonce section and this is a linkonce
1851 // section. These don't block each other--this may be the same
1852 // symbol name with different section types.
1853 return true;
1854 }
1855}
1856
730cdc88
ILT
1857// Write out the Output_sections. Most won't have anything to write,
1858// since most of the data will come from input sections which are
1859// handled elsewhere. But some Output_sections do have Output_data.
1860
1861void
1862Layout::write_output_sections(Output_file* of) const
1863{
1864 for (Section_list::const_iterator p = this->section_list_.begin();
1865 p != this->section_list_.end();
1866 ++p)
1867 {
1868 if (!(*p)->after_input_sections())
1869 (*p)->write(of);
1870 }
1871}
1872
61ba1cf9
ILT
1873// Write out data not associated with a section or the symbol table.
1874
1875void
9025d29d 1876Layout::write_data(const Symbol_table* symtab, Output_file* of) const
61ba1cf9 1877{
9e2dcb77 1878 if (!parameters->strip_all())
a3ad94ed 1879 {
9e2dcb77
ILT
1880 const Output_section* symtab_section = this->symtab_section_;
1881 for (Section_list::const_iterator p = this->section_list_.begin();
1882 p != this->section_list_.end();
1883 ++p)
a3ad94ed 1884 {
9e2dcb77
ILT
1885 if ((*p)->needs_symtab_index())
1886 {
1887 gold_assert(symtab_section != NULL);
1888 unsigned int index = (*p)->symtab_index();
1889 gold_assert(index > 0 && index != -1U);
1890 off_t off = (symtab_section->offset()
1891 + index * symtab_section->entsize());
1892 symtab->write_section_symbol(*p, of, off);
1893 }
a3ad94ed
ILT
1894 }
1895 }
1896
1897 const Output_section* dynsym_section = this->dynsym_section_;
1898 for (Section_list::const_iterator p = this->section_list_.begin();
1899 p != this->section_list_.end();
1900 ++p)
1901 {
1902 if ((*p)->needs_dynsym_index())
1903 {
1904 gold_assert(dynsym_section != NULL);
1905 unsigned int index = (*p)->dynsym_index();
1906 gold_assert(index > 0 && index != -1U);
1907 off_t off = (dynsym_section->offset()
1908 + index * dynsym_section->entsize());
9025d29d 1909 symtab->write_section_symbol(*p, of, off);
a3ad94ed
ILT
1910 }
1911 }
1912
a3ad94ed 1913 // Write out the Output_data which are not in an Output_section.
61ba1cf9
ILT
1914 for (Data_list::const_iterator p = this->special_output_list_.begin();
1915 p != this->special_output_list_.end();
1916 ++p)
1917 (*p)->write(of);
1918}
1919
730cdc88
ILT
1920// Write out the Output_sections which can only be written after the
1921// input sections are complete.
1922
1923void
27bc2bce 1924Layout::write_sections_after_input_sections(Output_file* of)
730cdc88 1925{
27bc2bce 1926 // Determine the final section offsets, and thus the final output
9a0910c3
ILT
1927 // file size. Note we finalize the .shstrab last, to allow the
1928 // after_input_section sections to modify their section-names before
1929 // writing.
27bc2bce 1930 off_t off = this->output_file_size_;
9a0910c3
ILT
1931 off = this->set_section_offsets(off, AFTER_INPUT_SECTIONS_PASS);
1932
9a0910c3
ILT
1933 // Now that we've finalized the names, we can finalize the shstrab.
1934 off = this->set_section_offsets(off, STRTAB_AFTER_INPUT_SECTIONS_PASS);
1935
27bc2bce
ILT
1936 if (off > this->output_file_size_)
1937 {
1938 of->resize(off);
1939 this->output_file_size_ = off;
1940 }
1941
730cdc88
ILT
1942 for (Section_list::const_iterator p = this->section_list_.begin();
1943 p != this->section_list_.end();
1944 ++p)
1945 {
1946 if ((*p)->after_input_sections())
1947 (*p)->write(of);
1948 }
27bc2bce
ILT
1949
1950 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
1951 p != this->unattached_section_list_.end();
1952 ++p)
1953 {
1954 if ((*p)->after_input_sections())
1955 (*p)->write(of);
1956 }
1957
1958 this->section_headers_->write(of);
730cdc88
ILT
1959}
1960
ad8f37d1
ILT
1961// Print statistical information to stderr. This is used for --stats.
1962
1963void
1964Layout::print_stats() const
1965{
1966 this->namepool_.print_stats("section name pool");
1967 this->sympool_.print_stats("output symbol name pool");
1968 this->dynpool_.print_stats("dynamic name pool");
1969}
1970
730cdc88
ILT
1971// Write_sections_task methods.
1972
1973// We can always run this task.
1974
1975Task::Is_runnable_type
1976Write_sections_task::is_runnable(Workqueue*)
1977{
1978 return IS_RUNNABLE;
1979}
1980
1981// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
1982// when finished.
1983
1984class Write_sections_task::Write_sections_locker : public Task_locker
1985{
1986 public:
1987 Write_sections_locker(Task_token& output_sections_blocker,
1988 Task_token& final_blocker,
1989 Workqueue* workqueue)
1990 : output_sections_block_(output_sections_blocker, workqueue),
1991 final_block_(final_blocker, workqueue)
1992 { }
1993
1994 private:
1995 Task_block_token output_sections_block_;
1996 Task_block_token final_block_;
1997};
1998
1999Task_locker*
2000Write_sections_task::locks(Workqueue* workqueue)
2001{
2002 return new Write_sections_locker(*this->output_sections_blocker_,
2003 *this->final_blocker_,
2004 workqueue);
2005}
2006
2007// Run the task--write out the data.
2008
2009void
2010Write_sections_task::run(Workqueue*)
2011{
2012 this->layout_->write_output_sections(this->of_);
2013}
2014
61ba1cf9
ILT
2015// Write_data_task methods.
2016
2017// We can always run this task.
2018
2019Task::Is_runnable_type
2020Write_data_task::is_runnable(Workqueue*)
2021{
2022 return IS_RUNNABLE;
2023}
2024
2025// We need to unlock FINAL_BLOCKER when finished.
2026
2027Task_locker*
2028Write_data_task::locks(Workqueue* workqueue)
2029{
2030 return new Task_locker_block(*this->final_blocker_, workqueue);
2031}
2032
2033// Run the task--write out the data.
2034
2035void
2036Write_data_task::run(Workqueue*)
2037{
9025d29d 2038 this->layout_->write_data(this->symtab_, this->of_);
61ba1cf9
ILT
2039}
2040
2041// Write_symbols_task methods.
2042
2043// We can always run this task.
2044
2045Task::Is_runnable_type
2046Write_symbols_task::is_runnable(Workqueue*)
2047{
2048 return IS_RUNNABLE;
2049}
2050
2051// We need to unlock FINAL_BLOCKER when finished.
2052
2053Task_locker*
2054Write_symbols_task::locks(Workqueue* workqueue)
2055{
2056 return new Task_locker_block(*this->final_blocker_, workqueue);
2057}
2058
2059// Run the task--write out the symbols.
2060
2061void
2062Write_symbols_task::run(Workqueue*)
2063{
9a2d6984
ILT
2064 this->symtab_->write_globals(this->input_objects_, this->sympool_,
2065 this->dynpool_, this->of_);
61ba1cf9
ILT
2066}
2067
730cdc88
ILT
2068// Write_after_input_sections_task methods.
2069
2070// We can only run this task after the input sections have completed.
2071
2072Task::Is_runnable_type
2073Write_after_input_sections_task::is_runnable(Workqueue*)
2074{
2075 if (this->input_sections_blocker_->is_blocked())
2076 return IS_BLOCKED;
2077 return IS_RUNNABLE;
2078}
2079
2080// We need to unlock FINAL_BLOCKER when finished.
2081
2082Task_locker*
2083Write_after_input_sections_task::locks(Workqueue* workqueue)
2084{
2085 return new Task_locker_block(*this->final_blocker_, workqueue);
2086}
2087
2088// Run the task.
2089
2090void
2091Write_after_input_sections_task::run(Workqueue*)
2092{
2093 this->layout_->write_sections_after_input_sections(this->of_);
2094}
2095
92e059d8 2096// Close_task_runner methods.
61ba1cf9
ILT
2097
2098// Run the task--close the file.
2099
2100void
92e059d8 2101Close_task_runner::run(Workqueue*)
61ba1cf9
ILT
2102{
2103 this->of_->close();
2104}
2105
a2fb1b05
ILT
2106// Instantiate the templates we need. We could use the configure
2107// script to restrict this to only the ones for implemented targets.
2108
193a53d9 2109#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
2110template
2111Output_section*
730cdc88
ILT
2112Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
2113 const char* name,
2114 const elfcpp::Shdr<32, false>& shdr,
2115 unsigned int, unsigned int, off_t*);
193a53d9 2116#endif
a2fb1b05 2117
193a53d9 2118#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
2119template
2120Output_section*
730cdc88
ILT
2121Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
2122 const char* name,
2123 const elfcpp::Shdr<32, true>& shdr,
2124 unsigned int, unsigned int, off_t*);
193a53d9 2125#endif
a2fb1b05 2126
193a53d9 2127#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
2128template
2129Output_section*
730cdc88
ILT
2130Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
2131 const char* name,
2132 const elfcpp::Shdr<64, false>& shdr,
2133 unsigned int, unsigned int, off_t*);
193a53d9 2134#endif
a2fb1b05 2135
193a53d9 2136#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
2137template
2138Output_section*
730cdc88
ILT
2139Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
2140 const char* name,
2141 const elfcpp::Shdr<64, true>& shdr,
2142 unsigned int, unsigned int, off_t*);
193a53d9 2143#endif
a2fb1b05 2144
730cdc88
ILT
2145#ifdef HAVE_TARGET_32_LITTLE
2146template
2147Output_section*
2148Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
2149 const unsigned char* symbols,
2150 off_t symbols_size,
2151 const unsigned char* symbol_names,
2152 off_t symbol_names_size,
2153 unsigned int shndx,
2154 const elfcpp::Shdr<32, false>& shdr,
2155 unsigned int reloc_shndx,
2156 unsigned int reloc_type,
2157 off_t* off);
2158#endif
2159
2160#ifdef HAVE_TARGET_32_BIG
2161template
2162Output_section*
2163Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
2164 const unsigned char* symbols,
2165 off_t symbols_size,
2166 const unsigned char* symbol_names,
2167 off_t symbol_names_size,
2168 unsigned int shndx,
2169 const elfcpp::Shdr<32, true>& shdr,
2170 unsigned int reloc_shndx,
2171 unsigned int reloc_type,
2172 off_t* off);
2173#endif
2174
2175#ifdef HAVE_TARGET_64_LITTLE
2176template
2177Output_section*
2178Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
2179 const unsigned char* symbols,
2180 off_t symbols_size,
2181 const unsigned char* symbol_names,
2182 off_t symbol_names_size,
2183 unsigned int shndx,
2184 const elfcpp::Shdr<64, false>& shdr,
2185 unsigned int reloc_shndx,
2186 unsigned int reloc_type,
2187 off_t* off);
2188#endif
2189
2190#ifdef HAVE_TARGET_64_BIG
2191template
2192Output_section*
2193Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
2194 const unsigned char* symbols,
2195 off_t symbols_size,
2196 const unsigned char* symbol_names,
2197 off_t symbol_names_size,
2198 unsigned int shndx,
2199 const elfcpp::Shdr<64, true>& shdr,
2200 unsigned int reloc_shndx,
2201 unsigned int reloc_type,
2202 off_t* off);
2203#endif
a2fb1b05
ILT
2204
2205} // End namespace gold.
This page took 0.195104 seconds and 4 git commands to generate.