Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / mips.cc
CommitLineData
9810d34d
SS
1// mips.cc -- mips target support for gold.
2
b90efa5b 3// Copyright (C) 2011-2015 Free Software Foundation, Inc.
9810d34d
SS
4// Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5// and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6// This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8// This file is part of gold.
9
10// This program is free software; you can redistribute it and/or modify
11// it under the terms of the GNU General Public License as published by
12// the Free Software Foundation; either version 3 of the License, or
13// (at your option) any later version.
14
15// This program is distributed in the hope that it will be useful,
16// but WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19
20// You should have received a copy of the GNU General Public License
21// along with this program; if not, write to the Free Software
22// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23// MA 02110-1301, USA.
24
25#include "gold.h"
26
27#include <algorithm>
28#include <set>
29#include <sstream>
30#include "demangle.h"
31
32#include "elfcpp.h"
33#include "parameters.h"
34#include "reloc.h"
35#include "mips.h"
36#include "object.h"
37#include "symtab.h"
38#include "layout.h"
39#include "output.h"
40#include "copy-relocs.h"
41#include "target.h"
42#include "target-reloc.h"
43#include "target-select.h"
44#include "tls.h"
45#include "errors.h"
46#include "gc.h"
62661c93 47#include "nacl.h"
9810d34d
SS
48
49namespace
50{
51using namespace gold;
52
53template<int size, bool big_endian>
54class Mips_output_data_plt;
55
56template<int size, bool big_endian>
57class Mips_output_data_got;
58
59template<int size, bool big_endian>
60class Target_mips;
61
62template<int size, bool big_endian>
63class Mips_output_section_reginfo;
64
65template<int size, bool big_endian>
66class Mips_output_data_la25_stub;
67
68template<int size, bool big_endian>
69class Mips_output_data_mips_stubs;
70
71template<int size>
72class Mips_symbol;
73
74template<int size, bool big_endian>
75class Mips_got_info;
76
77template<int size, bool big_endian>
78class Mips_relobj;
79
80class Mips16_stub_section_base;
81
82template<int size, bool big_endian>
83class Mips16_stub_section;
84
85// The ABI says that every symbol used by dynamic relocations must have
86// a global GOT entry. Among other things, this provides the dynamic
87// linker with a free, directly-indexed cache. The GOT can therefore
88// contain symbols that are not referenced by GOT relocations themselves
89// (in other words, it may have symbols that are not referenced by things
90// like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92// GOT relocations are less likely to overflow if we put the associated
93// GOT entries towards the beginning. We therefore divide the global
94// GOT entries into two areas: "normal" and "reloc-only". Entries in
95// the first area can be used for both dynamic relocations and GP-relative
96// accesses, while those in the "reloc-only" area are for dynamic
97// relocations only.
98
99// These GGA_* ("Global GOT Area") values are organised so that lower
100// values are more general than higher values. Also, non-GGA_NONE
101// values are ordered by the position of the area in the GOT.
102
103enum Global_got_area
104{
105 GGA_NORMAL = 0,
106 GGA_RELOC_ONLY = 1,
107 GGA_NONE = 2
108};
109
110// The types of GOT entries needed for this platform.
111// These values are exposed to the ABI in an incremental link.
112// Do not renumber existing values without changing the version
113// number of the .gnu_incremental_inputs section.
114enum Got_type
115{
116 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
117 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
118 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
119
120 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121 GOT_TYPE_STANDARD_MULTIGOT = 3,
122 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124};
125
126// TLS type of GOT entry.
127enum Got_tls_type
128{
129 GOT_TLS_NONE = 0,
130 GOT_TLS_GD = 1,
131 GOT_TLS_LDM = 2,
132 GOT_TLS_IE = 4
133};
134
135// Return TRUE if a relocation of type R_TYPE from OBJECT might
136// require an la25 stub. See also local_pic_function, which determines
137// whether the destination function ever requires a stub.
138template<int size, bool big_endian>
139static inline bool
140relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141 unsigned int r_type, bool target_is_16_bit_code)
142{
143 // We specifically ignore branches and jumps from EF_PIC objects,
144 // where the onus is on the compiler or programmer to perform any
145 // necessary initialization of $25. Sometimes such initialization
146 // is unnecessary; for example, -mno-shared functions do not use
147 // the incoming value of $25, and may therefore be called directly.
148 if (object->is_pic())
149 return false;
150
151 switch (r_type)
152 {
153 case elfcpp::R_MIPS_26:
154 case elfcpp::R_MIPS_PC16:
155 case elfcpp::R_MICROMIPS_26_S1:
156 case elfcpp::R_MICROMIPS_PC7_S1:
157 case elfcpp::R_MICROMIPS_PC10_S1:
158 case elfcpp::R_MICROMIPS_PC16_S1:
159 case elfcpp::R_MICROMIPS_PC23_S2:
160 return true;
161
162 case elfcpp::R_MIPS16_26:
163 return !target_is_16_bit_code;
164
165 default:
166 return false;
167 }
168}
169
170// Return true if SYM is a locally-defined PIC function, in the sense
171// that it or its fn_stub might need $25 to be valid on entry.
172// Note that MIPS16 functions set up $gp using PC-relative instructions,
173// so they themselves never need $25 to be valid. Only non-MIPS16
174// entry points are of interest here.
175template<int size, bool big_endian>
176static inline bool
177local_pic_function(Mips_symbol<size>* sym)
178{
179 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180 && !sym->object()->is_dynamic()
181 && !sym->is_undefined());
182
183 if (sym->is_defined() && def_regular)
184 {
185 Mips_relobj<size, big_endian>* object =
186 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188 if ((object->is_pic() || sym->is_pic())
189 && (!sym->is_mips16()
190 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191 return true;
192 }
193 return false;
194}
195
196static inline bool
197hi16_reloc(int r_type)
198{
199 return (r_type == elfcpp::R_MIPS_HI16
200 || r_type == elfcpp::R_MIPS16_HI16
201 || r_type == elfcpp::R_MICROMIPS_HI16);
202}
203
204static inline bool
205lo16_reloc(int r_type)
206{
207 return (r_type == elfcpp::R_MIPS_LO16
208 || r_type == elfcpp::R_MIPS16_LO16
209 || r_type == elfcpp::R_MICROMIPS_LO16);
210}
211
212static inline bool
213got16_reloc(unsigned int r_type)
214{
215 return (r_type == elfcpp::R_MIPS_GOT16
216 || r_type == elfcpp::R_MIPS16_GOT16
217 || r_type == elfcpp::R_MICROMIPS_GOT16);
218}
219
220static inline bool
221call_lo16_reloc(unsigned int r_type)
222{
223 return (r_type == elfcpp::R_MIPS_CALL_LO16
224 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225}
226
227static inline bool
228got_lo16_reloc(unsigned int r_type)
229{
230 return (r_type == elfcpp::R_MIPS_GOT_LO16
231 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232}
233
234static inline bool
235got_disp_reloc(unsigned int r_type)
236{
237 return (r_type == elfcpp::R_MIPS_GOT_DISP
238 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239}
240
241static inline bool
242got_page_reloc(unsigned int r_type)
243{
244 return (r_type == elfcpp::R_MIPS_GOT_PAGE
245 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246}
247
248static inline bool
249tls_gd_reloc(unsigned int r_type)
250{
251 return (r_type == elfcpp::R_MIPS_TLS_GD
252 || r_type == elfcpp::R_MIPS16_TLS_GD
253 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254}
255
256static inline bool
257tls_gottprel_reloc(unsigned int r_type)
258{
259 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262}
263
264static inline bool
265tls_ldm_reloc(unsigned int r_type)
266{
267 return (r_type == elfcpp::R_MIPS_TLS_LDM
268 || r_type == elfcpp::R_MIPS16_TLS_LDM
269 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270}
271
272static inline bool
273mips16_call_reloc(unsigned int r_type)
274{
275 return (r_type == elfcpp::R_MIPS16_26
276 || r_type == elfcpp::R_MIPS16_CALL16);
277}
278
279static inline bool
280jal_reloc(unsigned int r_type)
281{
282 return (r_type == elfcpp::R_MIPS_26
283 || r_type == elfcpp::R_MIPS16_26
284 || r_type == elfcpp::R_MICROMIPS_26_S1);
285}
286
287static inline bool
288micromips_branch_reloc(unsigned int r_type)
289{
290 return (r_type == elfcpp::R_MICROMIPS_26_S1
291 || r_type == elfcpp::R_MICROMIPS_PC16_S1
292 || r_type == elfcpp::R_MICROMIPS_PC10_S1
293 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294}
295
296// Check if R_TYPE is a MIPS16 reloc.
297static inline bool
298mips16_reloc(unsigned int r_type)
299{
300 switch (r_type)
301 {
302 case elfcpp::R_MIPS16_26:
303 case elfcpp::R_MIPS16_GPREL:
304 case elfcpp::R_MIPS16_GOT16:
305 case elfcpp::R_MIPS16_CALL16:
306 case elfcpp::R_MIPS16_HI16:
307 case elfcpp::R_MIPS16_LO16:
308 case elfcpp::R_MIPS16_TLS_GD:
309 case elfcpp::R_MIPS16_TLS_LDM:
310 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312 case elfcpp::R_MIPS16_TLS_GOTTPREL:
313 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315 return true;
316
317 default:
318 return false;
319 }
320}
321
322// Check if R_TYPE is a microMIPS reloc.
323static inline bool
324micromips_reloc(unsigned int r_type)
325{
326 switch (r_type)
327 {
328 case elfcpp::R_MICROMIPS_26_S1:
329 case elfcpp::R_MICROMIPS_HI16:
330 case elfcpp::R_MICROMIPS_LO16:
331 case elfcpp::R_MICROMIPS_GPREL16:
332 case elfcpp::R_MICROMIPS_LITERAL:
333 case elfcpp::R_MICROMIPS_GOT16:
334 case elfcpp::R_MICROMIPS_PC7_S1:
335 case elfcpp::R_MICROMIPS_PC10_S1:
336 case elfcpp::R_MICROMIPS_PC16_S1:
337 case elfcpp::R_MICROMIPS_CALL16:
338 case elfcpp::R_MICROMIPS_GOT_DISP:
339 case elfcpp::R_MICROMIPS_GOT_PAGE:
340 case elfcpp::R_MICROMIPS_GOT_OFST:
341 case elfcpp::R_MICROMIPS_GOT_HI16:
342 case elfcpp::R_MICROMIPS_GOT_LO16:
343 case elfcpp::R_MICROMIPS_SUB:
344 case elfcpp::R_MICROMIPS_HIGHER:
345 case elfcpp::R_MICROMIPS_HIGHEST:
346 case elfcpp::R_MICROMIPS_CALL_HI16:
347 case elfcpp::R_MICROMIPS_CALL_LO16:
348 case elfcpp::R_MICROMIPS_SCN_DISP:
349 case elfcpp::R_MICROMIPS_JALR:
350 case elfcpp::R_MICROMIPS_HI0_LO16:
351 case elfcpp::R_MICROMIPS_TLS_GD:
352 case elfcpp::R_MICROMIPS_TLS_LDM:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358 case elfcpp::R_MICROMIPS_GPREL7_S2:
359 case elfcpp::R_MICROMIPS_PC23_S2:
360 return true;
361
362 default:
363 return false;
364 }
365}
366
367static inline bool
368is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369{
370 switch (high_reloc)
371 {
372 case elfcpp::R_MIPS_HI16:
373 case elfcpp::R_MIPS_GOT16:
374 return lo16_reloc == elfcpp::R_MIPS_LO16;
375 case elfcpp::R_MIPS16_HI16:
376 case elfcpp::R_MIPS16_GOT16:
377 return lo16_reloc == elfcpp::R_MIPS16_LO16;
378 case elfcpp::R_MICROMIPS_HI16:
379 case elfcpp::R_MICROMIPS_GOT16:
380 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381 default:
382 return false;
383 }
384}
385
386// This class is used to hold information about one GOT entry.
387// There are three types of entry:
388//
389// (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390// (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391// (2) a SYMBOL address, where SYMBOL is not local to an input object
392// (object != NULL, symndx == -1)
393// (3) a TLS LDM slot
394// (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396template<int size, bool big_endian>
397class Mips_got_entry
398{
399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401 public:
402 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403 Mips_address addend, unsigned char tls_type,
404 unsigned int shndx)
405 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406 { this->d.addend = addend; }
407
408 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409 unsigned char tls_type)
410 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411 { this->d.sym = sym; }
412
413 // Return whether this entry is for a local symbol.
414 bool
415 is_for_local_symbol() const
416 { return this->symndx_ != -1U; }
417
418 // Return whether this entry is for a global symbol.
419 bool
420 is_for_global_symbol() const
421 { return this->symndx_ == -1U; }
422
423 // Return the hash of this entry.
424 size_t
425 hash() const
426 {
427 if (this->tls_type_ == GOT_TLS_LDM)
428 return this->symndx_ + (1 << 18);
429 if (this->symndx_ != -1U)
430 {
431 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432 return this->symndx_ + object_id + this->d.addend;
433 }
434 else
435 {
436 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437 return this->symndx_ + sym_id;
438 }
439 }
440
441 // Return whether this entry is equal to OTHER.
442 bool
443 equals(Mips_got_entry<size, big_endian>* other) const
444 {
445 if (this->symndx_ != other->symndx_
446 || this->tls_type_ != other->tls_type_)
447 return false;
448 if (this->tls_type_ == GOT_TLS_LDM)
449 return true;
450 if (this->symndx_ != -1U)
451 return (this->object() == other->object()
452 && this->d.addend == other->d.addend);
453 else
454 return this->d.sym == other->d.sym;
455 }
456
457 // Return input object that needs this GOT entry.
458 Mips_relobj<size, big_endian>*
459 object() const
460 {
461 gold_assert(this->object_ != NULL);
462 return this->object_;
463 }
464
465 // Return local symbol index for local GOT entries.
466 unsigned int
467 symndx() const
468 {
469 gold_assert(this->symndx_ != -1U);
470 return this->symndx_;
471 }
472
473 // Return the relocation addend for local GOT entries.
474 Mips_address
475 addend() const
476 {
477 gold_assert(this->symndx_ != -1U);
478 return this->d.addend;
479 }
480
481 // Return global symbol for global GOT entries.
482 Mips_symbol<size>*
483 sym() const
484 {
485 gold_assert(this->symndx_ == -1U);
486 return this->d.sym;
487 }
488
489 // Return whether this is a TLS GOT entry.
490 bool
491 is_tls_entry() const
492 { return this->tls_type_ != GOT_TLS_NONE; }
493
494 // Return TLS type of this GOT entry.
495 unsigned char
496 tls_type() const
497 { return this->tls_type_; }
498
499 // Return section index of the local symbol for local GOT entries.
500 unsigned int
501 shndx() const
502 { return this->shndx_; }
503
504 private:
505 // The input object that needs the GOT entry.
506 Mips_relobj<size, big_endian>* object_;
507 // The index of the symbol if we have a local symbol; -1 otherwise.
508 unsigned int symndx_;
509
510 union
511 {
512 // If symndx != -1, the addend of the relocation that should be added to the
513 // symbol value.
514 Mips_address addend;
515 // If symndx == -1, the global symbol corresponding to this GOT entry. The
516 // symbol's entry is in the local area if mips_sym->global_got_area is
517 // GGA_NONE, otherwise it is in the global area.
518 Mips_symbol<size>* sym;
519 } d;
520
521 // The TLS type of this GOT entry. An LDM GOT entry will be a local
522 // symbol entry with r_symndx == 0.
523 unsigned char tls_type_;
524
525 // For local GOT entries, section index of the local symbol.
526 unsigned int shndx_;
527};
528
529// Hash for Mips_got_entry.
530
531template<int size, bool big_endian>
532class Mips_got_entry_hash
533{
534 public:
535 size_t
536 operator()(Mips_got_entry<size, big_endian>* entry) const
537 { return entry->hash(); }
538};
539
540// Equality for Mips_got_entry.
541
542template<int size, bool big_endian>
543class Mips_got_entry_eq
544{
545 public:
546 bool
547 operator()(Mips_got_entry<size, big_endian>* e1,
548 Mips_got_entry<size, big_endian>* e2) const
549 { return e1->equals(e2); }
550};
551
552// Got_page_range. This class describes a range of addends: [MIN_ADDEND,
553// MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
554// increasing MIN_ADDEND.
555
556struct Got_page_range
557{
558 Got_page_range()
559 : next(NULL), min_addend(0), max_addend(0)
560 { }
561
562 Got_page_range* next;
563 int min_addend;
564 int max_addend;
565
566 // Return the maximum number of GOT page entries required.
567 int
568 get_max_pages()
569 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570};
571
572// Got_page_entry. This class describes the range of addends that are applied
573// to page relocations against a given symbol.
574
575struct Got_page_entry
576{
577 Got_page_entry()
578 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579 { }
580
581 Got_page_entry(Object* object_, unsigned int symndx_)
582 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583 { }
584
585 // The input object that needs the GOT page entry.
586 Object* object;
587 // The index of the symbol, as stored in the relocation r_info.
588 unsigned int symndx;
589 // The ranges for this page entry.
590 Got_page_range* ranges;
591 // The maximum number of page entries needed for RANGES.
592 unsigned int num_pages;
593};
594
595// Hash for Got_page_entry.
596
597struct Got_page_entry_hash
598{
599 size_t
600 operator()(Got_page_entry* entry) const
601 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602};
603
604// Equality for Got_page_entry.
605
606struct Got_page_entry_eq
607{
608 bool
609 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610 {
611 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612 }
613};
614
615// This class is used to hold .got information when linking.
616
617template<int size, bool big_endian>
618class Mips_got_info
619{
620 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622 Reloc_section;
623 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625 // Unordered set of GOT entries.
626 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627 Mips_got_entry_hash<size, big_endian>,
628 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630 // Unordered set of GOT page entries.
631 typedef Unordered_set<Got_page_entry*,
632 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634 public:
635 Mips_got_info()
636 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640 offset_(0)
641 { }
642
643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645 void
646 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647 unsigned int symndx, Mips_address addend,
648 unsigned int r_type, unsigned int shndx);
649
650 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651 // in OBJECT. FOR_CALL is true if the caller is only interested in
652 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
653 // relocation.
654 void
655 record_global_got_symbol(Mips_symbol<size>* mips_sym,
656 Mips_relobj<size, big_endian>* object,
657 unsigned int r_type, bool dyn_reloc, bool for_call);
658
659 // Add ENTRY to master GOT and to OBJECT's GOT.
660 void
661 record_got_entry(Mips_got_entry<size, big_endian>* entry,
662 Mips_relobj<size, big_endian>* object);
663
664 // Record that OBJECT has a page relocation against symbol SYMNDX and
665 // that ADDEND is the addend for that relocation.
666 void
667 record_got_page_entry(Mips_relobj<size, big_endian>* object,
668 unsigned int symndx, int addend);
669
670 // Create all entries that should be in the local part of the GOT.
671 void
672 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674 // Create GOT page entries.
675 void
676 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679 void
680 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681 unsigned int non_reloc_only_global_gotno);
682
683 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684 void
685 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687 // Create TLS GOT entries.
688 void
689 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691 // Decide whether the symbol needs an entry in the global part of the primary
692 // GOT, setting global_got_area accordingly. Count the number of global
693 // symbols that are in the primary GOT only because they have dynamic
694 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695 void
696 count_got_symbols(Symbol_table* symtab);
697
698 // Return the offset of GOT page entry for VALUE.
699 unsigned int
700 get_got_page_offset(Mips_address value,
701 Mips_output_data_got<size, big_endian>* got);
702
703 // Count the number of GOT entries required.
704 void
705 count_got_entries();
706
707 // Count the number of GOT entries required by ENTRY. Accumulate the result.
708 void
709 count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711 // Add FROM's GOT entries.
712 void
713 add_got_entries(Mips_got_info<size, big_endian>* from);
714
715 // Add FROM's GOT page entries.
716 void
717 add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719 // Return GOT size.
720 unsigned int
721 got_size() const
722 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723 + this->tls_gotno_) * size/8);
724 }
725
726 // Return the number of local GOT entries.
727 unsigned int
728 local_gotno() const
729 { return this->local_gotno_; }
730
731 // Return the maximum number of page GOT entries needed.
732 unsigned int
733 page_gotno() const
734 { return this->page_gotno_; }
735
736 // Return the number of global GOT entries.
737 unsigned int
738 global_gotno() const
739 { return this->global_gotno_; }
740
741 // Set the number of global GOT entries.
742 void
743 set_global_gotno(unsigned int global_gotno)
744 { this->global_gotno_ = global_gotno; }
745
746 // Return the number of GGA_RELOC_ONLY global GOT entries.
747 unsigned int
748 reloc_only_gotno() const
749 { return this->reloc_only_gotno_; }
750
751 // Return the number of TLS GOT entries.
752 unsigned int
753 tls_gotno() const
754 { return this->tls_gotno_; }
755
756 // Return the GOT type for this GOT. Used for multi-GOT links only.
757 unsigned int
758 multigot_got_type(unsigned int got_type) const
759 {
760 switch (got_type)
761 {
762 case GOT_TYPE_STANDARD:
763 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764 case GOT_TYPE_TLS_OFFSET:
765 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766 case GOT_TYPE_TLS_PAIR:
767 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768 default:
769 gold_unreachable();
770 }
771 }
772
773 // Remove lazy-binding stubs for global symbols in this GOT.
774 void
775 remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777 // Return offset of this GOT from the start of .got section.
778 unsigned int
779 offset() const
780 { return this->offset_; }
781
782 // Set offset of this GOT from the start of .got section.
783 void
784 set_offset(unsigned int offset)
785 { this->offset_ = offset; }
786
787 // Set index of this GOT in multi-GOT links.
788 void
789 set_index(unsigned int index)
790 { this->index_ = index; }
791
792 // Return next GOT in multi-GOT links.
793 Mips_got_info<size, big_endian>*
794 next() const
795 { return this->next_; }
796
797 // Set next GOT in multi-GOT links.
798 void
799 set_next(Mips_got_info<size, big_endian>* next)
800 { this->next_ = next; }
801
802 // Return the offset of TLS LDM entry for this GOT.
803 unsigned int
804 tls_ldm_offset() const
805 { return this->tls_ldm_offset_; }
806
807 // Set the offset of TLS LDM entry for this GOT.
808 void
809 set_tls_ldm_offset(unsigned int tls_ldm_offset)
810 { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812 Unordered_set<Mips_symbol<size>*>&
813 global_got_symbols()
814 { return this->global_got_symbols_; }
815
816 // Return the GOT_TLS_* type required by relocation type R_TYPE.
817 static int
818 mips_elf_reloc_tls_type(unsigned int r_type)
819 {
820 if (tls_gd_reloc(r_type))
821 return GOT_TLS_GD;
822
823 if (tls_ldm_reloc(r_type))
824 return GOT_TLS_LDM;
825
826 if (tls_gottprel_reloc(r_type))
827 return GOT_TLS_IE;
828
829 return GOT_TLS_NONE;
830 }
831
832 // Return the number of GOT slots needed for GOT TLS type TYPE.
833 static int
834 mips_tls_got_entries(unsigned int type)
835 {
836 switch (type)
837 {
838 case GOT_TLS_GD:
839 case GOT_TLS_LDM:
840 return 2;
841
842 case GOT_TLS_IE:
843 return 1;
844
845 case GOT_TLS_NONE:
846 return 0;
847
848 default:
849 gold_unreachable();
850 }
851 }
852
853 private:
854 // The number of local GOT entries.
855 unsigned int local_gotno_;
856 // The maximum number of page GOT entries needed.
857 unsigned int page_gotno_;
858 // The number of global GOT entries.
859 unsigned int global_gotno_;
860 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861 unsigned int reloc_only_gotno_;
862 // The number of TLS GOT entries.
863 unsigned int tls_gotno_;
864 // The offset of TLS LDM entry for this GOT.
865 unsigned int tls_ldm_offset_;
866 // All symbols that have global GOT entry.
867 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868 // A hash table holding GOT entries.
869 Got_entry_set got_entries_;
870 // A hash table of GOT page entries.
871 Got_page_entry_set got_page_entries_;
872 // The offset of first GOT page entry for this GOT.
873 unsigned int got_page_offset_start_;
874 // The offset of next available GOT page entry for this GOT.
875 unsigned int got_page_offset_next_;
876 // A hash table that maps GOT page entry value to the GOT offset where
877 // the entry is located.
878 Got_page_offsets got_page_offsets_;
879 // In multi-GOT links, a pointer to the next GOT.
880 Mips_got_info<size, big_endian>* next_;
881 // Index of this GOT in multi-GOT links.
882 unsigned int index_;
883 // The offset of this GOT in multi-GOT links.
884 unsigned int offset_;
885};
886
887// This is a helper class used during relocation scan. It records GOT16 addend.
888
889template<int size, bool big_endian>
890struct got16_addend
891{
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896 Mips_address _addend)
897 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898 addend(_addend)
899 { }
900
901 const Sized_relobj_file<size, big_endian>* object;
902 unsigned int shndx;
903 unsigned int r_type;
904 unsigned int r_sym;
905 Mips_address addend;
906};
907
908// Mips_symbol class. Holds additional symbol information needed for Mips.
909
910template<int size>
911class Mips_symbol : public Sized_symbol<size>
912{
913 public:
914 Mips_symbol()
915 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922 { }
923
924 // Return whether this is a MIPS16 symbol.
925 bool
926 is_mips16() const
927 {
928 // (st_other & STO_MIPS16) == STO_MIPS16
929 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930 == elfcpp::STO_MIPS16 >> 2);
931 }
932
933 // Return whether this is a microMIPS symbol.
934 bool
935 is_micromips() const
936 {
937 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939 == elfcpp::STO_MICROMIPS >> 2);
940 }
941
942 // Return whether the symbol needs MIPS16 fn_stub.
943 bool
944 need_fn_stub() const
945 { return this->need_fn_stub_; }
946
947 // Set that the symbol needs MIPS16 fn_stub.
948 void
949 set_need_fn_stub()
950 { this->need_fn_stub_ = true; }
951
952 // Return whether this symbol is referenced by branch relocations from
953 // any non-PIC input file.
954 bool
955 has_nonpic_branches() const
956 { return this->has_nonpic_branches_; }
957
958 // Set that this symbol is referenced by branch relocations from
959 // any non-PIC input file.
960 void
961 set_has_nonpic_branches()
962 { this->has_nonpic_branches_ = true; }
963
964 // Return the offset of the la25 stub for this symbol from the start of the
965 // la25 stub section.
966 unsigned int
967 la25_stub_offset() const
968 { return this->la25_stub_offset_; }
969
970 // Set the offset of the la25 stub for this symbol from the start of the
971 // la25 stub section.
972 void
973 set_la25_stub_offset(unsigned int offset)
974 { this->la25_stub_offset_ = offset; }
975
976 // Return whether the symbol has la25 stub. This is true if this symbol is
977 // for a PIC function, and there are non-PIC branches and jumps to it.
978 bool
979 has_la25_stub() const
980 { return this->la25_stub_offset_ != -1U; }
981
982 // Return whether there is a relocation against this symbol that must be
983 // resolved by the static linker (that is, the relocation cannot possibly
984 // be made dynamic).
985 bool
986 has_static_relocs() const
987 { return this->has_static_relocs_; }
988
989 // Set that there is a relocation against this symbol that must be resolved
990 // by the static linker (that is, the relocation cannot possibly be made
991 // dynamic).
992 void
993 set_has_static_relocs()
994 { this->has_static_relocs_ = true; }
995
996 // Return whether we must not create a lazy-binding stub for this symbol.
997 bool
998 no_lazy_stub() const
999 { return this->no_lazy_stub_; }
1000
1001 // Set that we must not create a lazy-binding stub for this symbol.
1002 void
1003 set_no_lazy_stub()
1004 { this->no_lazy_stub_ = true; }
1005
1006 // Return the offset of the lazy-binding stub for this symbol from the start
1007 // of .MIPS.stubs section.
1008 unsigned int
1009 lazy_stub_offset() const
1010 { return this->lazy_stub_offset_; }
1011
1012 // Set the offset of the lazy-binding stub for this symbol from the start
1013 // of .MIPS.stubs section.
1014 void
1015 set_lazy_stub_offset(unsigned int offset)
1016 { this->lazy_stub_offset_ = offset; }
1017
1018 // Return whether there are any relocations for this symbol where
1019 // pointer equality matters.
1020 bool
1021 pointer_equality_needed() const
1022 { return this->pointer_equality_needed_; }
1023
1024 // Set that there are relocations for this symbol where pointer equality
1025 // matters.
1026 void
1027 set_pointer_equality_needed()
1028 { this->pointer_equality_needed_ = true; }
1029
1030 // Return global GOT area where this symbol in located.
1031 Global_got_area
1032 global_got_area() const
1033 { return this->global_got_area_; }
1034
1035 // Set global GOT area where this symbol in located.
1036 void
1037 set_global_got_area(Global_got_area global_got_area)
1038 { this->global_got_area_ = global_got_area; }
1039
1040 // Return the global GOT offset for this symbol. For multi-GOT links, this
1041 // returns the offset from the start of .got section to the first GOT entry
1042 // for the symbol. Note that in multi-GOT links the symbol can have entry
1043 // in more than one GOT.
1044 unsigned int
1045 global_gotoffset() const
1046 { return this->global_gotoffset_; }
1047
1048 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1049 // the symbol can have entry in more than one GOT. This method will set
1050 // the offset only if it is less than current offset.
1051 void
1052 set_global_gotoffset(unsigned int offset)
1053 {
1054 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055 this->global_gotoffset_ = offset;
1056 }
1057
1058 // Return whether all GOT relocations for this symbol are for calls.
1059 bool
1060 got_only_for_calls() const
1061 { return this->got_only_for_calls_; }
1062
1063 // Set that there is a GOT relocation for this symbol that is not for call.
1064 void
1065 set_got_not_only_for_calls()
1066 { this->got_only_for_calls_ = false; }
1067
1068 // Return whether this is a PIC symbol.
1069 bool
1070 is_pic() const
1071 {
1072 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074 == (elfcpp::STO_MIPS_PIC >> 2));
1075 }
1076
1077 // Set the flag in st_other field that marks this symbol as PIC.
1078 void
1079 set_pic()
1080 {
1081 if (this->is_mips16())
1082 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083 this->set_nonvis((this->nonvis()
1084 & ~((elfcpp::STO_MIPS16 >> 2)
1085 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086 | (elfcpp::STO_MIPS_PIC >> 2));
1087 else
1088 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090 | (elfcpp::STO_MIPS_PIC >> 2));
1091 }
1092
1093 // Set the flag in st_other field that marks this symbol as PLT.
1094 void
1095 set_mips_plt()
1096 {
1097 if (this->is_mips16())
1098 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099 this->set_nonvis((this->nonvis()
1100 & ((elfcpp::STO_MIPS16 >> 2)
1101 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102 | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104 else
1105 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107 | (elfcpp::STO_MIPS_PLT >> 2));
1108 }
1109
1110 // Downcast a base pointer to a Mips_symbol pointer.
1111 static Mips_symbol<size>*
1112 as_mips_sym(Symbol* sym)
1113 { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115 // Downcast a base pointer to a Mips_symbol pointer.
1116 static const Mips_symbol<size>*
1117 as_mips_sym(const Symbol* sym)
1118 { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120 // Return whether the symbol has lazy-binding stub.
1121 bool
1122 has_lazy_stub() const
1123 { return this->has_lazy_stub_; }
1124
1125 // Set whether the symbol has lazy-binding stub.
1126 void
1127 set_has_lazy_stub(bool has_lazy_stub)
1128 { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130 // Return whether the symbol needs a standard PLT entry.
1131 bool
1132 needs_mips_plt() const
1133 { return this->needs_mips_plt_; }
1134
1135 // Set whether the symbol needs a standard PLT entry.
1136 void
1137 set_needs_mips_plt(bool needs_mips_plt)
1138 { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141 // entry.
1142 bool
1143 needs_comp_plt() const
1144 { return this->needs_comp_plt_; }
1145
1146 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147 void
1148 set_needs_comp_plt(bool needs_comp_plt)
1149 { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151 // Return standard PLT entry offset, or -1 if none.
1152 unsigned int
1153 mips_plt_offset() const
1154 { return this->mips_plt_offset_; }
1155
1156 // Set standard PLT entry offset.
1157 void
1158 set_mips_plt_offset(unsigned int mips_plt_offset)
1159 { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161 // Return whether the symbol has standard PLT entry.
1162 bool
1163 has_mips_plt_offset() const
1164 { return this->mips_plt_offset_ != -1U; }
1165
1166 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167 unsigned int
1168 comp_plt_offset() const
1169 { return this->comp_plt_offset_; }
1170
1171 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172 void
1173 set_comp_plt_offset(unsigned int comp_plt_offset)
1174 { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177 bool
1178 has_comp_plt_offset() const
1179 { return this->comp_plt_offset_ != -1U; }
1180
1181 // Return MIPS16 fn stub for a symbol.
1182 template<bool big_endian>
1183 Mips16_stub_section<size, big_endian>*
1184 get_mips16_fn_stub() const
1185 {
1186 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187 }
1188
1189 // Set MIPS16 fn stub for a symbol.
1190 void
1191 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192 { this->mips16_fn_stub_ = stub; }
1193
1194 // Return whether symbol has MIPS16 fn stub.
1195 bool
1196 has_mips16_fn_stub() const
1197 { return this->mips16_fn_stub_ != NULL; }
1198
1199 // Return MIPS16 call stub for a symbol.
1200 template<bool big_endian>
1201 Mips16_stub_section<size, big_endian>*
1202 get_mips16_call_stub() const
1203 {
1204 return static_cast<Mips16_stub_section<size, big_endian>*>(
1205 mips16_call_stub_);
1206 }
1207
1208 // Set MIPS16 call stub for a symbol.
1209 void
1210 set_mips16_call_stub(Mips16_stub_section_base* stub)
1211 { this->mips16_call_stub_ = stub; }
1212
1213 // Return whether symbol has MIPS16 call stub.
1214 bool
1215 has_mips16_call_stub() const
1216 { return this->mips16_call_stub_ != NULL; }
1217
1218 // Return MIPS16 call_fp stub for a symbol.
1219 template<bool big_endian>
1220 Mips16_stub_section<size, big_endian>*
1221 get_mips16_call_fp_stub() const
1222 {
1223 return static_cast<Mips16_stub_section<size, big_endian>*>(
1224 mips16_call_fp_stub_);
1225 }
1226
1227 // Set MIPS16 call_fp stub for a symbol.
1228 void
1229 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230 { this->mips16_call_fp_stub_ = stub; }
1231
1232 // Return whether symbol has MIPS16 call_fp stub.
1233 bool
1234 has_mips16_call_fp_stub() const
1235 { return this->mips16_call_fp_stub_ != NULL; }
1236
1237 bool
1238 get_applied_secondary_got_fixup() const
1239 { return applied_secondary_got_fixup_; }
1240
1241 void
1242 set_applied_secondary_got_fixup()
1243 { this->applied_secondary_got_fixup_ = true; }
1244
1245 private:
1246 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1247 // appears in any relocs other than a 16 bit call.
1248 bool need_fn_stub_;
1249
1250 // True if this symbol is referenced by branch relocations from
1251 // any non-PIC input file. This is used to determine whether an
1252 // la25 stub is required.
1253 bool has_nonpic_branches_;
1254
1255 // The offset of the la25 stub for this symbol from the start of the
1256 // la25 stub section.
1257 unsigned int la25_stub_offset_;
1258
1259 // True if there is a relocation against this symbol that must be
1260 // resolved by the static linker (that is, the relocation cannot
1261 // possibly be made dynamic).
1262 bool has_static_relocs_;
1263
1264 // Whether we must not create a lazy-binding stub for this symbol.
1265 // This is true if the symbol has relocations related to taking the
1266 // function's address.
1267 bool no_lazy_stub_;
1268
1269 // The offset of the lazy-binding stub for this symbol from the start of
1270 // .MIPS.stubs section.
1271 unsigned int lazy_stub_offset_;
1272
1273 // True if there are any relocations for this symbol where pointer equality
1274 // matters.
1275 bool pointer_equality_needed_;
1276
1277 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278 // in the global part of the GOT.
1279 Global_got_area global_got_area_;
1280
1281 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1282 // from the start of .got section to the first GOT entry for the symbol.
1283 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284 unsigned int global_gotoffset_;
1285
1286 // Whether all GOT relocations for this symbol are for calls.
1287 bool got_only_for_calls_;
1288 // Whether the symbol has lazy-binding stub.
1289 bool has_lazy_stub_;
1290 // Whether the symbol needs a standard PLT entry.
1291 bool needs_mips_plt_;
1292 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293 bool needs_comp_plt_;
1294 // Standard PLT entry offset, or -1 if none.
1295 unsigned int mips_plt_offset_;
1296 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297 unsigned int comp_plt_offset_;
1298 // MIPS16 fn stub for a symbol.
1299 Mips16_stub_section_base* mips16_fn_stub_;
1300 // MIPS16 call stub for a symbol.
1301 Mips16_stub_section_base* mips16_call_stub_;
1302 // MIPS16 call_fp stub for a symbol.
1303 Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305 bool applied_secondary_got_fixup_;
1306};
1307
1308// Mips16_stub_section class.
1309
1310// The mips16 compiler uses a couple of special sections to handle
1311// floating point arguments.
1312
1313// Section names that look like .mips16.fn.FNNAME contain stubs that
1314// copy floating point arguments from the fp regs to the gp regs and
1315// then jump to FNNAME. If any 32 bit function calls FNNAME, the
1316// call should be redirected to the stub instead. If no 32 bit
1317// function calls FNNAME, the stub should be discarded. We need to
1318// consider any reference to the function, not just a call, because
1319// if the address of the function is taken we will need the stub,
1320// since the address might be passed to a 32 bit function.
1321
1322// Section names that look like .mips16.call.FNNAME contain stubs
1323// that copy floating point arguments from the gp regs to the fp
1324// regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1325// then any 16 bit function that calls FNNAME should be redirected
1326// to the stub instead. If FNNAME is not a 32 bit function, the
1327// stub should be discarded.
1328
1329// .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330// which call FNNAME and then copy the return value from the fp regs
1331// to the gp regs. These stubs store the return address in $18 while
1332// calling FNNAME; any function which might call one of these stubs
1333// must arrange to save $18 around the call. (This case is not
1334// needed for 32 bit functions that call 16 bit functions, because
1335// 16 bit functions always return floating point values in both
1336// $f0/$f1 and $2/$3.)
1337
1338// Note that in all cases FNNAME might be defined statically.
1339// Therefore, FNNAME is not used literally. Instead, the relocation
1340// information will indicate which symbol the section is for.
1341
1342// We record any stubs that we find in the symbol table.
1343
1344// TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346class Mips16_stub_section_base { };
1347
1348template<int size, bool big_endian>
1349class Mips16_stub_section : public Mips16_stub_section_base
1350{
1351 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353 public:
1354 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356 found_r_mips_none_(false)
1357 {
1358 gold_assert(object->is_mips16_fn_stub_section(shndx)
1359 || object->is_mips16_call_stub_section(shndx)
1360 || object->is_mips16_call_fp_stub_section(shndx));
1361 }
1362
1363 // Return the object of this stub section.
1364 Mips_relobj<size, big_endian>*
1365 object() const
1366 { return this->object_; }
1367
1368 // Return the size of a section.
1369 uint64_t
1370 section_size() const
1371 { return this->object_->section_size(this->shndx_); }
1372
1373 // Return section index of this stub section.
1374 unsigned int
1375 shndx() const
1376 { return this->shndx_; }
1377
1378 // Return symbol index, if stub is for a local function.
1379 unsigned int
1380 r_sym() const
1381 { return this->r_sym_; }
1382
1383 // Return symbol, if stub is for a global function.
1384 Mips_symbol<size>*
1385 gsym() const
1386 { return this->gsym_; }
1387
1388 // Return whether stub is for a local function.
1389 bool
1390 is_for_local_function() const
1391 { return this->gsym_ == NULL; }
1392
1393 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394 // is found in the stub section. Try to find stub target.
1395 void
1396 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397 {
1398 // To find target symbol for this stub, trust the first R_MIPS_NONE
1399 // relocation, if any. Otherwise trust the first relocation, whatever
1400 // its kind.
1401 if (this->found_r_mips_none_)
1402 return;
1403 if (r_type == elfcpp::R_MIPS_NONE)
1404 {
1405 this->r_sym_ = r_sym;
1406 this->gsym_ = NULL;
1407 this->found_r_mips_none_ = true;
1408 }
1409 else if (!is_target_found())
1410 this->r_sym_ = r_sym;
1411 }
1412
1413 // This method is called when a new relocation R_TYPE for global symbol GSYM
1414 // is found in the stub section. Try to find stub target.
1415 void
1416 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417 {
1418 // To find target symbol for this stub, trust the first R_MIPS_NONE
1419 // relocation, if any. Otherwise trust the first relocation, whatever
1420 // its kind.
1421 if (this->found_r_mips_none_)
1422 return;
1423 if (r_type == elfcpp::R_MIPS_NONE)
1424 {
1425 this->gsym_ = gsym;
1426 this->r_sym_ = 0;
1427 this->found_r_mips_none_ = true;
1428 }
1429 else if (!is_target_found())
1430 this->gsym_ = gsym;
1431 }
1432
1433 // Return whether we found the stub target.
1434 bool
1435 is_target_found() const
1436 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1437
1438 // Return whether this is a fn stub.
1439 bool
1440 is_fn_stub() const
1441 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443 // Return whether this is a call stub.
1444 bool
1445 is_call_stub() const
1446 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448 // Return whether this is a call_fp stub.
1449 bool
1450 is_call_fp_stub() const
1451 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453 // Return the output address.
1454 Mips_address
1455 output_address() const
1456 {
1457 return (this->object_->output_section(this->shndx_)->address()
1458 + this->object_->output_section_offset(this->shndx_));
1459 }
1460
1461 private:
1462 // The object of this stub section.
1463 Mips_relobj<size, big_endian>* object_;
1464 // The section index of this stub section.
1465 unsigned int shndx_;
1466 // The symbol index, if stub is for a local function.
1467 unsigned int r_sym_;
1468 // The symbol, if stub is for a global function.
1469 Mips_symbol<size>* gsym_;
1470 // True if we found R_MIPS_NONE relocation in this stub.
1471 bool found_r_mips_none_;
1472};
1473
1474// Mips_relobj class.
1475
1476template<int size, bool big_endian>
1477class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478{
1479 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481 Mips16_stubs_int_map;
1482 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484 public:
1485 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488 processor_specific_flags_(0), local_symbol_is_mips16_(),
1489 local_symbol_is_micromips_(), mips16_stub_sections_(),
1490 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495 {
1496 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499 }
1500
1501 ~Mips_relobj()
1502 { }
1503
1504 // Downcast a base pointer to a Mips_relobj pointer. This is
1505 // not type-safe but we only use Mips_relobj not the base class.
1506 static Mips_relobj<size, big_endian>*
1507 as_mips_relobj(Relobj* relobj)
1508 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510 // Downcast a base pointer to a Mips_relobj pointer. This is
1511 // not type-safe but we only use Mips_relobj not the base class.
1512 static const Mips_relobj<size, big_endian>*
1513 as_mips_relobj(const Relobj* relobj)
1514 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516 // Processor-specific flags in ELF file header. This is valid only after
1517 // reading symbols.
1518 elfcpp::Elf_Word
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1521
1522 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1523 // index. This is only valid after do_count_local_symbol is called.
1524 bool
1525 local_symbol_is_mips16(unsigned int r_sym) const
1526 {
1527 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528 return this->local_symbol_is_mips16_[r_sym];
1529 }
1530
1531 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1532 // index. This is only valid after do_count_local_symbol is called.
1533 bool
1534 local_symbol_is_micromips(unsigned int r_sym) const
1535 {
1536 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537 return this->local_symbol_is_micromips_[r_sym];
1538 }
1539
1540 // Get or create MIPS16 stub section.
1541 Mips16_stub_section<size, big_endian>*
1542 get_mips16_stub_section(unsigned int shndx)
1543 {
1544 typename Mips16_stubs_int_map::const_iterator it =
1545 this->mips16_stub_sections_.find(shndx);
1546 if (it != this->mips16_stub_sections_.end())
1547 return (*it).second;
1548
1549 Mips16_stub_section<size, big_endian>* stub_section =
1550 new Mips16_stub_section<size, big_endian>(this, shndx);
1551 this->mips16_stub_sections_.insert(
1552 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553 stub_section->shndx(), stub_section));
1554 return stub_section;
1555 }
1556
1557 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558 // object doesn't have fn stub for R_SYM.
1559 Mips16_stub_section<size, big_endian>*
1560 get_local_mips16_fn_stub(unsigned int r_sym) const
1561 {
1562 typename Mips16_stubs_int_map::const_iterator it =
1563 this->local_mips16_fn_stubs_.find(r_sym);
1564 if (it != this->local_mips16_fn_stubs_.end())
1565 return (*it).second;
1566 return NULL;
1567 }
1568
1569 // Record that this object has MIPS16 fn stub for local symbol. This method
1570 // is only called if we decided not to discard the stub.
1571 void
1572 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573 {
1574 gold_assert(stub->is_for_local_function());
1575 unsigned int r_sym = stub->r_sym();
1576 this->local_mips16_fn_stubs_.insert(
1577 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578 r_sym, stub));
1579 }
1580
1581 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582 // object doesn't have call stub for R_SYM.
1583 Mips16_stub_section<size, big_endian>*
1584 get_local_mips16_call_stub(unsigned int r_sym) const
1585 {
1586 typename Mips16_stubs_int_map::const_iterator it =
1587 this->local_mips16_call_stubs_.find(r_sym);
1588 if (it != this->local_mips16_call_stubs_.end())
1589 return (*it).second;
1590 return NULL;
1591 }
1592
1593 // Record that this object has MIPS16 call stub for local symbol. This method
1594 // is only called if we decided not to discard the stub.
1595 void
1596 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597 {
1598 gold_assert(stub->is_for_local_function());
1599 unsigned int r_sym = stub->r_sym();
1600 this->local_mips16_call_stubs_.insert(
1601 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602 r_sym, stub));
1603 }
1604
1605 // Record that we found "non 16-bit" call relocation against local symbol
1606 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1607 // is one.
1608 void
1609 add_local_non_16bit_call(unsigned int symndx)
1610 { this->local_non_16bit_calls_.insert(symndx); }
1611
1612 // Return true if there is any "non 16-bit" call relocation against local
1613 // symbol SYMNDX in this object.
1614 bool
1615 has_local_non_16bit_call_relocs(unsigned int symndx)
1616 {
1617 return (this->local_non_16bit_calls_.find(symndx)
1618 != this->local_non_16bit_calls_.end());
1619 }
1620
1621 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1623 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624 void
1625 add_local_16bit_call(unsigned int symndx)
1626 { this->local_16bit_calls_.insert(symndx); }
1627
1628 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629 // symbol SYMNDX in this object.
1630 bool
1631 has_local_16bit_call_relocs(unsigned int symndx)
1632 {
1633 return (this->local_16bit_calls_.find(symndx)
1634 != this->local_16bit_calls_.end());
1635 }
1636
1637 // Get gp value that was used to create this object.
1638 Mips_address
1639 gp_value() const
1640 { return this->gp_; }
1641
1642 // Return whether the object is a PIC object.
1643 bool
1644 is_pic() const
1645 { return this->is_pic_; }
1646
1647 // Return whether the object uses N32 ABI.
1648 bool
1649 is_n32() const
1650 { return this->is_n32_; }
1651
1652 // Return whether the object uses N64 ABI.
1653 bool
1654 is_n64() const
1655 { return this->is_n64_; }
1656
1657 // Return whether the object uses NewABI conventions.
1658 bool
1659 is_newabi() const
1660 { return this->is_n32_ || this->is_n64_; }
1661
1662 // Return Mips_got_info for this object.
1663 Mips_got_info<size, big_endian>*
1664 get_got_info() const
1665 { return this->got_info_; }
1666
1667 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1668 Mips_got_info<size, big_endian>*
1669 get_or_create_got_info()
1670 {
1671 if (!this->got_info_)
1672 this->got_info_ = new Mips_got_info<size, big_endian>();
1673 return this->got_info_;
1674 }
1675
1676 // Set Mips_got_info for this object.
1677 void
1678 set_got_info(Mips_got_info<size, big_endian>* got_info)
1679 { this->got_info_ = got_info; }
1680
1681 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1682 // after do_read_symbols is called.
1683 bool
1684 is_mips16_stub_section(unsigned int shndx)
1685 {
1686 return (is_mips16_fn_stub_section(shndx)
1687 || is_mips16_call_stub_section(shndx)
1688 || is_mips16_call_fp_stub_section(shndx));
1689 }
1690
1691 // Return TRUE if relocations in section SHNDX can refer directly to a
1692 // MIPS16 function rather than to a hard-float stub. This is only valid
1693 // after do_read_symbols is called.
1694 bool
1695 section_allows_mips16_refs(unsigned int shndx)
1696 {
1697 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698 }
1699
1700 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1701 // after do_read_symbols is called.
1702 bool
1703 is_mips16_fn_stub_section(unsigned int shndx)
1704 {
1705 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706 return this->section_is_mips16_fn_stub_[shndx];
1707 }
1708
1709 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1710 // after do_read_symbols is called.
1711 bool
1712 is_mips16_call_stub_section(unsigned int shndx)
1713 {
1714 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715 return this->section_is_mips16_call_stub_[shndx];
1716 }
1717
1718 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1719 // valid after do_read_symbols is called.
1720 bool
1721 is_mips16_call_fp_stub_section(unsigned int shndx)
1722 {
1723 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724 return this->section_is_mips16_call_fp_stub_[shndx];
1725 }
1726
1727 // Discard MIPS16 stub secions that are not needed.
1728 void
1729 discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731 // Return gprmask from the .reginfo section of this object.
1732 Valtype
1733 gprmask() const
1734 { return this->gprmask_; }
1735
1736 // Return cprmask1 from the .reginfo section of this object.
1737 Valtype
1738 cprmask1() const
1739 { return this->cprmask1_; }
1740
1741 // Return cprmask2 from the .reginfo section of this object.
1742 Valtype
1743 cprmask2() const
1744 { return this->cprmask2_; }
1745
1746 // Return cprmask3 from the .reginfo section of this object.
1747 Valtype
1748 cprmask3() const
1749 { return this->cprmask3_; }
1750
1751 // Return cprmask4 from the .reginfo section of this object.
1752 Valtype
1753 cprmask4() const
1754 { return this->cprmask4_; }
1755
1756 protected:
1757 // Count the local symbols.
1758 void
1759 do_count_local_symbols(Stringpool_template<char>*,
1760 Stringpool_template<char>*);
1761
1762 // Read the symbol information.
1763 void
1764 do_read_symbols(Read_symbols_data* sd);
1765
1766 private:
1767 // processor-specific flags in ELF file header.
1768 elfcpp::Elf_Word processor_specific_flags_;
1769
1770 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771 // This is only valid after do_count_local_symbol is called.
1772 std::vector<bool> local_symbol_is_mips16_;
1773
1774 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775 // This is only valid after do_count_local_symbol is called.
1776 std::vector<bool> local_symbol_is_micromips_;
1777
1778 // Map from section index to the MIPS16 stub for that section. This contains
1779 // all stubs found in this object.
1780 Mips16_stubs_int_map mips16_stub_sections_;
1781
1782 // Local symbols that have "non 16-bit" call relocation. This relocation
1783 // would need to refer to a MIPS16 fn stub, if there is one.
1784 std::set<unsigned int> local_non_16bit_calls_;
1785
1786 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1787 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788 // relocation that refers to the stub symbol.
1789 std::set<unsigned int> local_16bit_calls_;
1790
1791 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792 // This contains only the stubs that we decided not to discard.
1793 Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795 // Map from local symbol index to the MIPS16 call stub for that symbol.
1796 // This contains only the stubs that we decided not to discard.
1797 Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799 // gp value that was used to create this object.
1800 Mips_address gp_;
1801 // Whether the object is a PIC object.
1802 bool is_pic_ : 1;
1803 // Whether the object uses N32 ABI.
1804 bool is_n32_ : 1;
1805 // Whether the object uses N64 ABI.
1806 bool is_n64_ : 1;
1807 // The Mips_got_info for this object.
1808 Mips_got_info<size, big_endian>* got_info_;
1809
1810 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811 // This is only valid after do_read_symbols is called.
1812 std::vector<bool> section_is_mips16_fn_stub_;
1813
1814 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815 // This is only valid after do_read_symbols is called.
1816 std::vector<bool> section_is_mips16_call_stub_;
1817
1818 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819 // This is only valid after do_read_symbols is called.
1820 std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822 // .pdr section index.
1823 unsigned int pdr_shndx_;
1824
1825 // gprmask from the .reginfo section of this object.
1826 Valtype gprmask_;
1827 // cprmask1 from the .reginfo section of this object.
1828 Valtype cprmask1_;
1829 // cprmask2 from the .reginfo section of this object.
1830 Valtype cprmask2_;
1831 // cprmask3 from the .reginfo section of this object.
1832 Valtype cprmask3_;
1833 // cprmask4 from the .reginfo section of this object.
1834 Valtype cprmask4_;
1835};
1836
1837// Mips_output_data_got class.
1838
1839template<int size, bool big_endian>
1840class Mips_output_data_got : public Output_data_got<size, big_endian>
1841{
1842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844 Reloc_section;
1845 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847 public:
1848 Mips_output_data_got(Target_mips<size, big_endian>* target,
1849 Symbol_table* symtab, Layout* layout)
1850 : Output_data_got<size, big_endian>(), target_(target),
1851 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853 secondary_got_relocs_()
1854 {
1855 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856 this->set_addralign(16);
1857 }
1858
1859 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861 void
1862 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863 unsigned int symndx, Mips_address addend,
1864 unsigned int r_type, unsigned int shndx)
1865 {
1866 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867 r_type, shndx);
1868 }
1869
1870 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871 // in OBJECT. FOR_CALL is true if the caller is only interested in
1872 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1873 // relocation.
1874 void
1875 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876 Mips_relobj<size, big_endian>* object,
1877 unsigned int r_type, bool dyn_reloc, bool for_call)
1878 {
1879 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880 dyn_reloc, for_call);
1881 }
1882
1883 // Record that OBJECT has a page relocation against symbol SYMNDX and
1884 // that ADDEND is the addend for that relocation.
1885 void
1886 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887 unsigned int symndx, int addend)
1888 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1891 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892 // applied in a static link.
1893 void
1894 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895 Mips_symbol<size>* gsym)
1896 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1899 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1900 // relocation that needs to be applied in a static link.
1901 void
1902 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903 Sized_relobj_file<size, big_endian>* relobj,
1904 unsigned int index)
1905 {
1906 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907 index));
1908 }
1909
1910 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911 // secondary GOT at OFFSET.
1912 void
1913 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914 Mips_symbol<size>* gsym)
1915 {
1916 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917 r_type, gsym));
1918 }
1919
1920 // Update GOT entry at OFFSET with VALUE.
1921 void
1922 update_got_entry(unsigned int offset, Mips_address value)
1923 {
1924 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925 }
1926
1927 // Return the number of entries in local part of the GOT. This includes
1928 // local entries, page entries and 2 reserved entries.
1929 unsigned int
1930 get_local_gotno() const
1931 {
1932 if (!this->multi_got())
1933 {
1934 return (2 + this->master_got_info_->local_gotno()
1935 + this->master_got_info_->page_gotno());
1936 }
1937 else
1938 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939 }
1940
1941 // Return dynamic symbol table index of the first symbol with global GOT
1942 // entry.
1943 unsigned int
1944 first_global_got_dynsym_index() const
1945 { return this->first_global_got_dynsym_index_; }
1946
1947 // Set dynamic symbol table index of the first symbol with global GOT entry.
1948 void
1949 set_first_global_got_dynsym_index(unsigned int index)
1950 { this->first_global_got_dynsym_index_ = index; }
1951
1952 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1953 // larger than 64K, create multi-GOT.
1954 void
1955 lay_out_got(Layout* layout, Symbol_table* symtab,
1956 const Input_objects* input_objects);
1957
1958 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1959 void
1960 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962 // Attempt to merge GOTs of different input objects.
1963 void
1964 merge_gots(const Input_objects* input_objects);
1965
1966 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1967 // this would lead to overflow, true if they were merged successfully.
1968 bool
1969 merge_got_with(Mips_got_info<size, big_endian>* from,
1970 Mips_relobj<size, big_endian>* object,
1971 Mips_got_info<size, big_endian>* to);
1972
1973 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1974 // use OBJECT's GOT.
1975 unsigned int
1976 get_got_page_offset(Mips_address value,
1977 const Mips_relobj<size, big_endian>* object)
1978 {
1979 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980 ? this->master_got_info_
1981 : object->get_got_info());
1982 gold_assert(g != NULL);
1983 return g->get_got_page_offset(value, this);
1984 }
1985
1986 // Return the GOT offset of type GOT_TYPE of the global symbol
1987 // GSYM. For multi-GOT links, use OBJECT's GOT.
1988 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989 Mips_relobj<size, big_endian>* object) const
1990 {
1991 if (!this->multi_got())
1992 return gsym->got_offset(got_type);
1993 else
1994 {
1995 Mips_got_info<size, big_endian>* g = object->get_got_info();
1996 gold_assert(g != NULL);
1997 return gsym->got_offset(g->multigot_got_type(got_type));
1998 }
1999 }
2000
2001 // Return the GOT offset of type GOT_TYPE of the local symbol
2002 // SYMNDX.
2003 unsigned int
2004 got_offset(unsigned int symndx, unsigned int got_type,
2005 Sized_relobj_file<size, big_endian>* object) const
2006 { return object->local_got_offset(symndx, got_type); }
2007
2008 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2009 unsigned int
2010 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011 {
2012 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013 ? this->master_got_info_
2014 : object->get_got_info());
2015 gold_assert(g != NULL);
2016 return g->tls_ldm_offset();
2017 }
2018
2019 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2020 void
2021 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022 Mips_relobj<size, big_endian>* object)
2023 {
2024 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025 ? this->master_got_info_
2026 : object->get_got_info());
2027 gold_assert(g != NULL);
2028 g->set_tls_ldm_offset(tls_ldm_offset);
2029 }
2030
2031 // Return true for multi-GOT links.
2032 bool
2033 multi_got() const
2034 { return this->primary_got_ != NULL; }
2035
2036 // Return the offset of OBJECT's GOT from the start of .got section.
2037 unsigned int
2038 get_got_offset(const Mips_relobj<size, big_endian>* object)
2039 {
2040 if (!this->multi_got())
2041 return 0;
2042 else
2043 {
2044 Mips_got_info<size, big_endian>* g = object->get_got_info();
2045 return g != NULL ? g->offset() : 0;
2046 }
2047 }
2048
2049 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050 void
2051 add_reloc_only_entries()
2052 { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054 // Return offset of the primary GOT's entry for global symbol.
2055 unsigned int
2056 get_primary_got_offset(const Mips_symbol<size>* sym) const
2057 {
2058 gold_assert(sym->global_got_area() != GGA_NONE);
2059 return (this->get_local_gotno() + sym->dynsym_index()
2060 - this->first_global_got_dynsym_index()) * size/8;
2061 }
2062
2063 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064 // Input argument GOT_OFFSET is always global offset from the start of
2065 // .got section, for both single and multi-GOT links.
2066 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2067 // links, the return value is object_got_offset - 0x7FF0, where
2068 // object_got_offset is offset in the OBJECT's GOT.
2069 int
2070 gp_offset(unsigned int got_offset,
2071 const Mips_relobj<size, big_endian>* object) const
2072 {
2073 return (this->address() + got_offset
2074 - this->target_->adjusted_gp_value(object));
2075 }
2076
2077 protected:
2078 // Write out the GOT table.
2079 void
2080 do_write(Output_file*);
2081
2082 private:
2083
2084 // This class represent dynamic relocations that need to be applied by
2085 // gold because we are using TLS relocations in a static link.
2086 class Static_reloc
2087 {
2088 public:
2089 Static_reloc(unsigned int got_offset, unsigned int r_type,
2090 Mips_symbol<size>* gsym)
2091 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092 { this->u_.global.symbol = gsym; }
2093
2094 Static_reloc(unsigned int got_offset, unsigned int r_type,
2095 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097 {
2098 this->u_.local.relobj = relobj;
2099 this->u_.local.index = index;
2100 }
2101
2102 // Return the GOT offset.
2103 unsigned int
2104 got_offset() const
2105 { return this->got_offset_; }
2106
2107 // Relocation type.
2108 unsigned int
2109 r_type() const
2110 { return this->r_type_; }
2111
2112 // Whether the symbol is global or not.
2113 bool
2114 symbol_is_global() const
2115 { return this->symbol_is_global_; }
2116
2117 // For a relocation against a global symbol, the global symbol.
2118 Mips_symbol<size>*
2119 symbol() const
2120 {
2121 gold_assert(this->symbol_is_global_);
2122 return this->u_.global.symbol;
2123 }
2124
2125 // For a relocation against a local symbol, the defining object.
2126 Sized_relobj_file<size, big_endian>*
2127 relobj() const
2128 {
2129 gold_assert(!this->symbol_is_global_);
2130 return this->u_.local.relobj;
2131 }
2132
2133 // For a relocation against a local symbol, the local symbol index.
2134 unsigned int
2135 index() const
2136 {
2137 gold_assert(!this->symbol_is_global_);
2138 return this->u_.local.index;
2139 }
2140
2141 private:
2142 // GOT offset of the entry to which this relocation is applied.
2143 unsigned int got_offset_;
2144 // Type of relocation.
2145 unsigned int r_type_;
2146 // Whether this relocation is against a global symbol.
2147 bool symbol_is_global_;
2148 // A global or local symbol.
2149 union
2150 {
2151 struct
2152 {
2153 // For a global symbol, the symbol itself.
2154 Mips_symbol<size>* symbol;
2155 } global;
2156 struct
2157 {
2158 // For a local symbol, the object defining object.
2159 Sized_relobj_file<size, big_endian>* relobj;
2160 // For a local symbol, the symbol index.
2161 unsigned int index;
2162 } local;
2163 } u_;
2164 };
2165
2166 // The target.
2167 Target_mips<size, big_endian>* target_;
2168 // The symbol table.
2169 Symbol_table* symbol_table_;
2170 // The layout.
2171 Layout* layout_;
2172 // Static relocs to be applied to the GOT.
2173 std::vector<Static_reloc> static_relocs_;
2174 // .got section view.
2175 unsigned char* got_view_;
2176 // The dynamic symbol table index of the first symbol with global GOT entry.
2177 unsigned int first_global_got_dynsym_index_;
2178 // The master GOT information.
2179 Mips_got_info<size, big_endian>* master_got_info_;
2180 // The primary GOT information.
2181 Mips_got_info<size, big_endian>* primary_got_;
2182 // Secondary GOT fixups.
2183 std::vector<Static_reloc> secondary_got_relocs_;
2184};
2185
2186// A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187// two ways of creating these interfaces. The first is to add:
2188//
2189// lui $25,%hi(func)
2190// j func
2191// addiu $25,$25,%lo(func)
2192//
2193// to a separate trampoline section. The second is to add:
2194//
2195// lui $25,%hi(func)
2196// addiu $25,$25,%lo(func)
2197//
2198// immediately before a PIC function "func", but only if a function is at the
2199// beginning of the section, and the section is not too heavily aligned (i.e we
2200// would need to add no more than 2 nops before the stub.)
2201//
2202// We only create stubs of the first type.
2203
2204template<int size, bool big_endian>
2205class Mips_output_data_la25_stub : public Output_section_data
2206{
2207 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209 public:
2210 Mips_output_data_la25_stub()
2211 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212 { }
2213
2214 // Create LA25 stub for a symbol.
2215 void
2216 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217 Mips_symbol<size>* gsym);
2218
2219 // Return output address of a stub.
2220 Mips_address
2221 stub_address(const Mips_symbol<size>* sym) const
2222 {
2223 gold_assert(sym->has_la25_stub());
2224 return this->address() + sym->la25_stub_offset();
2225 }
2226
2227 protected:
2228 void
2229 do_adjust_output_section(Output_section* os)
2230 { os->set_entsize(0); }
2231
2232 private:
2233 // Template for standard LA25 stub.
2234 static const uint32_t la25_stub_entry[];
2235 // Template for microMIPS LA25 stub.
2236 static const uint32_t la25_stub_micromips_entry[];
2237
2238 // Set the final size.
2239 void
2240 set_final_data_size()
2241 { this->set_data_size(this->symbols_.size() * 16); }
2242
2243 // Create a symbol for SYM stub's value and size, to help make the
2244 // disassembly easier to read.
2245 void
2246 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247 Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249 // Write out the LA25 stub section.
2250 void
2251 do_write(Output_file*);
2252
2253 // Symbols that have LA25 stubs.
2254 Unordered_set<Mips_symbol<size>*> symbols_;
2255};
2256
2257// A class to handle the PLT data.
2258
2259template<int size, bool big_endian>
2260class Mips_output_data_plt : public Output_section_data
2261{
2262 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264 size, big_endian> Reloc_section;
2265
2266 public:
2267 // Create the PLT section. The ordinary .got section is an argument,
2268 // since we need to refer to the start.
2269 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270 Target_mips<size, big_endian>* target)
2271 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273 target_(target)
2274 {
2275 this->rel_ = new Reloc_section(false);
2276 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277 elfcpp::SHF_ALLOC, this->rel_,
2278 ORDER_DYNAMIC_PLT_RELOCS, false);
2279 }
2280
2281 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282 void
2283 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285 // Return the .rel.plt section data.
2286 const Reloc_section*
2287 rel_plt() const
2288 { return this->rel_; }
2289
2290 // Return the number of PLT entries.
2291 unsigned int
2292 entry_count() const
2293 { return this->symbols_.size(); }
2294
2295 // Return the offset of the first non-reserved PLT entry.
2296 unsigned int
2297 first_plt_entry_offset() const
2298 { return sizeof(plt0_entry_o32); }
2299
2300 // Return the size of a PLT entry.
2301 unsigned int
2302 plt_entry_size() const
2303 { return sizeof(plt_entry); }
2304
2305 // Set final PLT offsets. For each symbol, determine whether standard or
2306 // compressed (MIPS16 or microMIPS) PLT entry is used.
2307 void
2308 set_plt_offsets();
2309
2310 // Return the offset of the first standard PLT entry.
2311 unsigned int
2312 first_mips_plt_offset() const
2313 { return this->plt_header_size_; }
2314
2315 // Return the offset of the first compressed PLT entry.
2316 unsigned int
2317 first_comp_plt_offset() const
2318 { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320 // Return whether there are any standard PLT entries.
2321 bool
2322 has_standard_entries() const
2323 { return this->plt_mips_offset_ > 0; }
2324
2325 // Return the output address of standard PLT entry.
2326 Mips_address
2327 mips_entry_address(const Mips_symbol<size>* sym) const
2328 {
2329 gold_assert (sym->has_mips_plt_offset());
2330 return (this->address() + this->first_mips_plt_offset()
2331 + sym->mips_plt_offset());
2332 }
2333
2334 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335 Mips_address
2336 comp_entry_address(const Mips_symbol<size>* sym) const
2337 {
2338 gold_assert (sym->has_comp_plt_offset());
2339 return (this->address() + this->first_comp_plt_offset()
2340 + sym->comp_plt_offset());
2341 }
2342
2343 protected:
2344 void
2345 do_adjust_output_section(Output_section* os)
2346 { os->set_entsize(0); }
2347
2348 // Write to a map file.
2349 void
2350 do_print_to_mapfile(Mapfile* mapfile) const
2351 { mapfile->print_output_data(this, _(".plt")); }
2352
2353 private:
2354 // Template for the first PLT entry.
2355 static const uint32_t plt0_entry_o32[];
2356 static const uint32_t plt0_entry_n32[];
2357 static const uint32_t plt0_entry_n64[];
2358 static const uint32_t plt0_entry_micromips_o32[];
2359 static const uint32_t plt0_entry_micromips32_o32[];
2360
2361 // Template for subsequent PLT entries.
2362 static const uint32_t plt_entry[];
2363 static const uint32_t plt_entry_mips16_o32[];
2364 static const uint32_t plt_entry_micromips_o32[];
2365 static const uint32_t plt_entry_micromips32_o32[];
2366
2367 // Set the final size.
2368 void
2369 set_final_data_size()
2370 {
2371 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372 + this->plt_comp_offset_);
2373 }
2374
2375 // Write out the PLT data.
2376 void
2377 do_write(Output_file*);
2378
2379 // Return whether the plt header contains microMIPS code. For the sake of
2380 // cache alignment always use a standard header whenever any standard entries
2381 // are present even if microMIPS entries are present as well. This also lets
2382 // the microMIPS header rely on the value of $v0 only set by microMIPS
2383 // entries, for a small size reduction.
2384 bool
2385 is_plt_header_compressed() const
2386 {
2387 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389 }
2390
2391 // Return the size of the PLT header.
2392 unsigned int
2393 get_plt_header_size() const
2394 {
2395 if (this->target_->is_output_n64())
2396 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397 else if (this->target_->is_output_n32())
2398 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399 else if (!this->is_plt_header_compressed())
2400 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401 else if (this->target_->use_32bit_micromips_instructions())
2402 return (2 * sizeof(plt0_entry_micromips32_o32)
2403 / sizeof(plt0_entry_micromips32_o32[0]));
2404 else
2405 return (2 * sizeof(plt0_entry_micromips_o32)
2406 / sizeof(plt0_entry_micromips_o32[0]));
2407 }
2408
2409 // Return the PLT header entry.
2410 const uint32_t*
2411 get_plt_header_entry() const
2412 {
2413 if (this->target_->is_output_n64())
2414 return plt0_entry_n64;
2415 else if (this->target_->is_output_n32())
2416 return plt0_entry_n32;
2417 else if (!this->is_plt_header_compressed())
2418 return plt0_entry_o32;
2419 else if (this->target_->use_32bit_micromips_instructions())
2420 return plt0_entry_micromips32_o32;
2421 else
2422 return plt0_entry_micromips_o32;
2423 }
2424
2425 // Return the size of the standard PLT entry.
2426 unsigned int
2427 standard_plt_entry_size() const
2428 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430 // Return the size of the compressed PLT entry.
2431 unsigned int
2432 compressed_plt_entry_size() const
2433 {
2434 gold_assert(!this->target_->is_output_newabi());
2435
2436 if (!this->target_->is_output_micromips())
2437 return (2 * sizeof(plt_entry_mips16_o32)
2438 / sizeof(plt_entry_mips16_o32[0]));
2439 else if (this->target_->use_32bit_micromips_instructions())
2440 return (2 * sizeof(plt_entry_micromips32_o32)
2441 / sizeof(plt_entry_micromips32_o32[0]));
2442 else
2443 return (2 * sizeof(plt_entry_micromips_o32)
2444 / sizeof(plt_entry_micromips_o32[0]));
2445 }
2446
2447 // The reloc section.
2448 Reloc_section* rel_;
2449 // The .got.plt section.
2450 Output_data_space* got_plt_;
2451 // Symbols that have PLT entry.
2452 std::vector<Mips_symbol<size>*> symbols_;
2453 // The offset of the next standard PLT entry to create.
2454 unsigned int plt_mips_offset_;
2455 // The offset of the next compressed PLT entry to create.
2456 unsigned int plt_comp_offset_;
2457 // The size of the PLT header in bytes.
2458 unsigned int plt_header_size_;
2459 // The target.
2460 Target_mips<size, big_endian>* target_;
2461};
2462
2463// A class to handle the .MIPS.stubs data.
2464
2465template<int size, bool big_endian>
2466class Mips_output_data_mips_stubs : public Output_section_data
2467{
2468 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470 public:
2471 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473 stub_offsets_are_set_(false), target_(target)
2474 { }
2475
2476 // Create entry for a symbol.
2477 void
2478 make_entry(Mips_symbol<size>*);
2479
2480 // Remove entry for a symbol.
2481 void
2482 remove_entry(Mips_symbol<size>* gsym);
2483
2484 // Set stub offsets for symbols. This method expects that the number of
2485 // entries in dynamic symbol table is set.
2486 void
2487 set_lazy_stub_offsets();
2488
2489 void
2490 set_needs_dynsym_value();
2491
2492 // Set the number of entries in dynamic symbol table.
2493 void
2494 set_dynsym_count(unsigned int dynsym_count)
2495 { this->dynsym_count_ = dynsym_count; }
2496
2497 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498 // count is greater than 0x10000. If the dynamic symbol count is less than
2499 // 0x10000, the stub will be 4 bytes smaller.
2500 // There's no disadvantage from using microMIPS code here, so for the sake of
2501 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502 // output produced at all. This has a benefit of stubs being shorter by
2503 // 4 bytes each too, unless in the insn32 mode.
2504 unsigned int
2505 stub_max_size() const
2506 {
2507 if (!this->target_->is_output_micromips()
2508 || this->target_->use_32bit_micromips_instructions())
2509 return 20;
2510 else
2511 return 16;
2512 }
2513
2514 // Return the size of the stub. This method expects that the final dynsym
2515 // count is set.
2516 unsigned int
2517 stub_size() const
2518 {
2519 gold_assert(this->dynsym_count_ != -1U);
2520 if (this->dynsym_count_ > 0x10000)
2521 return this->stub_max_size();
2522 else
2523 return this->stub_max_size() - 4;
2524 }
2525
2526 // Return output address of a stub.
2527 Mips_address
2528 stub_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert(sym->has_lazy_stub());
2531 return this->address() + sym->lazy_stub_offset();
2532 }
2533
2534 protected:
2535 void
2536 do_adjust_output_section(Output_section* os)
2537 { os->set_entsize(0); }
2538
2539 // Write to a map file.
2540 void
2541 do_print_to_mapfile(Mapfile* mapfile) const
2542 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544 private:
2545 static const uint32_t lazy_stub_normal_1[];
2546 static const uint32_t lazy_stub_normal_1_n64[];
2547 static const uint32_t lazy_stub_normal_2[];
2548 static const uint32_t lazy_stub_normal_2_n64[];
2549 static const uint32_t lazy_stub_big[];
2550 static const uint32_t lazy_stub_big_n64[];
2551
2552 static const uint32_t lazy_stub_micromips_normal_1[];
2553 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554 static const uint32_t lazy_stub_micromips_normal_2[];
2555 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556 static const uint32_t lazy_stub_micromips_big[];
2557 static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559 static const uint32_t lazy_stub_micromips32_normal_1[];
2560 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561 static const uint32_t lazy_stub_micromips32_normal_2[];
2562 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563 static const uint32_t lazy_stub_micromips32_big[];
2564 static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566 // Set the final size.
2567 void
2568 set_final_data_size()
2569 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571 // Write out the .MIPS.stubs data.
2572 void
2573 do_write(Output_file*);
2574
2575 // .MIPS.stubs symbols
2576 Unordered_set<Mips_symbol<size>*> symbols_;
2577 // Number of entries in dynamic symbol table.
2578 unsigned int dynsym_count_;
2579 // Whether the stub offsets are set.
2580 bool stub_offsets_are_set_;
2581 // The target.
2582 Target_mips<size, big_endian>* target_;
2583};
2584
2585// This class handles Mips .reginfo output section.
2586
2587template<int size, bool big_endian>
2588class Mips_output_section_reginfo : public Output_section
2589{
2590 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592 public:
2593 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594 elfcpp::Elf_Xword flags,
2595 Target_mips<size, big_endian>* target)
2596 : Output_section(name, type, flags), target_(target), gprmask_(0),
2597 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598 { }
2599
2600 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601 static Mips_output_section_reginfo<size, big_endian>*
2602 as_mips_output_section_reginfo(Output_section* os)
2603 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605 // Set masks of the output .reginfo section.
2606 void
2607 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608 Valtype cprmask3, Valtype cprmask4)
2609 {
2610 this->gprmask_ = gprmask;
2611 this->cprmask1_ = cprmask1;
2612 this->cprmask2_ = cprmask2;
2613 this->cprmask3_ = cprmask3;
2614 this->cprmask4_ = cprmask4;
2615 }
2616
2617 protected:
2618 // Set the final data size.
2619 void
2620 set_final_data_size()
2621 { this->set_data_size(24); }
2622
2623 // Write out reginfo section.
2624 void
2625 do_write(Output_file* of);
2626
2627 private:
2628 Target_mips<size, big_endian>* target_;
2629
2630 // gprmask of the output .reginfo section.
2631 Valtype gprmask_;
2632 // cprmask1 of the output .reginfo section.
2633 Valtype cprmask1_;
2634 // cprmask2 of the output .reginfo section.
2635 Valtype cprmask2_;
2636 // cprmask3 of the output .reginfo section.
2637 Valtype cprmask3_;
2638 // cprmask4 of the output .reginfo section.
2639 Valtype cprmask4_;
2640};
2641
2642// The MIPS target has relocation types which default handling of relocatable
2643// relocation cannot process. So we have to extend the default code.
2644
2645template<bool big_endian, int sh_type, typename Classify_reloc>
2646class Mips_scan_relocatable_relocs :
2647 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2648{
2649 public:
2650 // Return the strategy to use for a local symbol which is a section
2651 // symbol, given the relocation type.
2652 inline Relocatable_relocs::Reloc_strategy
2653 local_section_strategy(unsigned int r_type, Relobj* object)
2654 {
2655 if (sh_type == elfcpp::SHT_RELA)
2656 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657 else
2658 {
2659 switch (r_type)
2660 {
2661 case elfcpp::R_MIPS_26:
2662 return Relocatable_relocs::RELOC_SPECIAL;
2663
2664 default:
2665 return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2666 local_section_strategy(r_type, object);
2667 }
2668 }
2669 }
2670};
2671
2672// Mips_copy_relocs class. The only difference from the base class is the
2673// method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674// Mips cannot convert all relocation types to dynamic relocs. If a reloc
2675// cannot be made dynamic, a COPY reloc is emitted.
2676
2677template<int sh_type, int size, bool big_endian>
2678class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679{
2680 public:
2681 Mips_copy_relocs()
2682 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683 { }
2684
2685 // Emit any saved relocations which turn out to be needed. This is
2686 // called after all the relocs have been scanned.
2687 void
2688 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691 private:
2692 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693 Copy_reloc_entry;
2694
2695 // Emit this reloc if appropriate. This is called after we have
2696 // scanned all the relocations, so we know whether we emitted a
2697 // COPY relocation for SYM_.
2698 void
2699 emit_entry(Copy_reloc_entry& entry,
2700 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701 Symbol_table* symtab, Layout* layout,
2702 Target_mips<size, big_endian>* target);
2703};
2704
2705
2706// Return true if the symbol SYM should be considered to resolve local
2707// to the current module, and false otherwise. The logic is taken from
2708// GNU ld's method _bfd_elf_symbol_refs_local_p.
2709static bool
2710symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711 bool local_protected)
2712{
2713 // If it's a local sym, of course we resolve locally.
2714 if (sym == NULL)
2715 return true;
2716
2717 // STV_HIDDEN or STV_INTERNAL ones must be local.
2718 if (sym->visibility() == elfcpp::STV_HIDDEN
2719 || sym->visibility() == elfcpp::STV_INTERNAL)
2720 return true;
2721
2722 // If we don't have a definition in a regular file, then we can't
2723 // resolve locally. The sym is either undefined or dynamic.
2724 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725 || sym->is_undefined())
2726 return false;
2727
2728 // Forced local symbols resolve locally.
2729 if (sym->is_forced_local())
2730 return true;
2731
2732 // As do non-dynamic symbols.
2733 if (!has_dynsym_entry)
2734 return true;
2735
2736 // At this point, we know the symbol is defined and dynamic. In an
2737 // executable it must resolve locally, likewise when building symbolic
2738 // shared libraries.
2739 if (parameters->options().output_is_executable()
2740 || parameters->options().Bsymbolic())
2741 return true;
2742
2743 // Now deal with defined dynamic symbols in shared libraries. Ones
2744 // with default visibility might not resolve locally.
2745 if (sym->visibility() == elfcpp::STV_DEFAULT)
2746 return false;
2747
2748 // STV_PROTECTED non-function symbols are local.
2749 if (sym->type() != elfcpp::STT_FUNC)
2750 return true;
2751
2752 // Function pointer equality tests may require that STV_PROTECTED
2753 // symbols be treated as dynamic symbols. If the address of a
2754 // function not defined in an executable is set to that function's
2755 // plt entry in the executable, then the address of the function in
2756 // a shared library must also be the plt entry in the executable.
2757 return local_protected;
2758}
2759
2760// Return TRUE if references to this symbol always reference the symbol in this
2761// object.
2762static bool
2763symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764{
2765 return symbol_refs_local(sym, has_dynsym_entry, false);
2766}
2767
2768// Return TRUE if calls to this symbol always call the version in this object.
2769static bool
2770symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771{
2772 return symbol_refs_local(sym, has_dynsym_entry, true);
2773}
2774
2775// Compare GOT offsets of two symbols.
2776
2777template<int size, bool big_endian>
2778static bool
2779got_offset_compare(Symbol* sym1, Symbol* sym2)
2780{
2781 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783 unsigned int area1 = mips_sym1->global_got_area();
2784 unsigned int area2 = mips_sym2->global_got_area();
2785 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788 if (area1 != area2)
2789 return area1 < area2;
2790
2791 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792}
2793
2794// This method divides dynamic symbols into symbols that have GOT entry, and
2795// symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2796// Mips ABI requires that symbols with the GOT entry must be at the end of
2797// dynamic symbol table, and the order in dynamic symbol table must match the
2798// order in GOT.
2799
2800template<int size, bool big_endian>
2801static void
2802reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803 std::vector<Symbol*>* non_got_symbols,
2804 std::vector<Symbol*>* got_symbols)
2805{
2806 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807 p != dyn_symbols->end();
2808 ++p)
2809 {
2810 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811 if (mips_sym->global_got_area() == GGA_NORMAL
2812 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813 got_symbols->push_back(mips_sym);
2814 else
2815 non_got_symbols->push_back(mips_sym);
2816 }
2817
2818 std::sort(got_symbols->begin(), got_symbols->end(),
2819 got_offset_compare<size, big_endian>);
2820}
2821
2822// Functor class for processing the global symbol table.
2823
2824template<int size, bool big_endian>
2825class Symbol_visitor_check_symbols
2826{
2827 public:
2828 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829 Layout* layout, Symbol_table* symtab)
2830 : target_(target), layout_(layout), symtab_(symtab)
2831 { }
2832
2833 void
2834 operator()(Sized_symbol<size>* sym)
2835 {
2836 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837 if (local_pic_function<size, big_endian>(mips_sym))
2838 {
2839 // SYM is a function that might need $25 to be valid on entry.
2840 // If we're creating a non-PIC relocatable object, mark SYM as
2841 // being PIC. If we're creating a non-relocatable object with
2842 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843 // stub.
2844 if (parameters->options().relocatable())
2845 {
2846 if (!parameters->options().output_is_position_independent())
2847 mips_sym->set_pic();
2848 }
2849 else if (mips_sym->has_nonpic_branches())
2850 {
2851 this->target_->la25_stub_section(layout_)
2852 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853 }
2854 }
2855 }
2856
2857 private:
2858 Target_mips<size, big_endian>* target_;
2859 Layout* layout_;
2860 Symbol_table* symtab_;
2861};
2862
2863template<int size, bool big_endian>
2864class Target_mips : public Sized_target<size, big_endian>
2865{
2866 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2867 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2868 Reloc_section;
2869 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2870 Reloca_section;
2871 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2872 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2873
2874 public:
2875 Target_mips(const Target::Target_info* info = &mips_info)
2876 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2877 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2878 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2879 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2880 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2881 {
2882 this->add_machine_extensions();
2883 }
2884
2885 // The offset of $gp from the beginning of the .got section.
2886 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2887
2888 // The maximum size of the GOT for it to be addressable using 16-bit
2889 // offsets from $gp.
2890 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2891
2892 // Make a new symbol table entry for the Mips target.
2893 Sized_symbol<size>*
2894 make_symbol() const
2895 { return new Mips_symbol<size>(); }
2896
2897 // Process the relocations to determine unreferenced sections for
2898 // garbage collection.
2899 void
2900 gc_process_relocs(Symbol_table* symtab,
2901 Layout* layout,
2902 Sized_relobj_file<size, big_endian>* object,
2903 unsigned int data_shndx,
2904 unsigned int sh_type,
2905 const unsigned char* prelocs,
2906 size_t reloc_count,
2907 Output_section* output_section,
2908 bool needs_special_offset_handling,
2909 size_t local_symbol_count,
2910 const unsigned char* plocal_symbols);
2911
2912 // Scan the relocations to look for symbol adjustments.
2913 void
2914 scan_relocs(Symbol_table* symtab,
2915 Layout* layout,
2916 Sized_relobj_file<size, big_endian>* object,
2917 unsigned int data_shndx,
2918 unsigned int sh_type,
2919 const unsigned char* prelocs,
2920 size_t reloc_count,
2921 Output_section* output_section,
2922 bool needs_special_offset_handling,
2923 size_t local_symbol_count,
2924 const unsigned char* plocal_symbols);
2925
2926 // Finalize the sections.
2927 void
2928 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2929
2930 // Relocate a section.
2931 void
2932 relocate_section(const Relocate_info<size, big_endian>*,
2933 unsigned int sh_type,
2934 const unsigned char* prelocs,
2935 size_t reloc_count,
2936 Output_section* output_section,
2937 bool needs_special_offset_handling,
2938 unsigned char* view,
2939 Mips_address view_address,
2940 section_size_type view_size,
2941 const Reloc_symbol_changes*);
2942
2943 // Scan the relocs during a relocatable link.
2944 void
2945 scan_relocatable_relocs(Symbol_table* symtab,
2946 Layout* layout,
2947 Sized_relobj_file<size, big_endian>* object,
2948 unsigned int data_shndx,
2949 unsigned int sh_type,
2950 const unsigned char* prelocs,
2951 size_t reloc_count,
2952 Output_section* output_section,
2953 bool needs_special_offset_handling,
2954 size_t local_symbol_count,
2955 const unsigned char* plocal_symbols,
2956 Relocatable_relocs*);
2957
2958 // Emit relocations for a section.
2959 void
2960 relocate_relocs(const Relocate_info<size, big_endian>*,
2961 unsigned int sh_type,
2962 const unsigned char* prelocs,
2963 size_t reloc_count,
2964 Output_section* output_section,
2965 typename elfcpp::Elf_types<size>::Elf_Off
2966 offset_in_output_section,
2967 const Relocatable_relocs*,
2968 unsigned char* view,
2969 Mips_address view_address,
2970 section_size_type view_size,
2971 unsigned char* reloc_view,
2972 section_size_type reloc_view_size);
2973
2974 // Perform target-specific processing in a relocatable link. This is
2975 // only used if we use the relocation strategy RELOC_SPECIAL.
2976 void
2977 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2978 unsigned int sh_type,
2979 const unsigned char* preloc_in,
2980 size_t relnum,
2981 Output_section* output_section,
2982 typename elfcpp::Elf_types<size>::Elf_Off
2983 offset_in_output_section,
2984 unsigned char* view,
2985 Mips_address view_address,
2986 section_size_type view_size,
2987 unsigned char* preloc_out);
2988
2989 // Return whether SYM is defined by the ABI.
2990 bool
2991 do_is_defined_by_abi(const Symbol* sym) const
2992 {
2993 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2994 || (strcmp(sym->name(), "_gp_disp") == 0)
2995 || (strcmp(sym->name(), "___tls_get_addr") == 0));
2996 }
2997
2998 // Return the number of entries in the GOT.
2999 unsigned int
3000 got_entry_count() const
3001 {
3002 if (!this->has_got_section())
3003 return 0;
3004 return this->got_size() / (size/8);
3005 }
3006
3007 // Return the number of entries in the PLT.
3008 unsigned int
3009 plt_entry_count() const
3010 {
3011 if (this->plt_ == NULL)
3012 return 0;
3013 return this->plt_->entry_count();
3014 }
3015
3016 // Return the offset of the first non-reserved PLT entry.
3017 unsigned int
3018 first_plt_entry_offset() const
3019 { return this->plt_->first_plt_entry_offset(); }
3020
3021 // Return the size of each PLT entry.
3022 unsigned int
3023 plt_entry_size() const
3024 { return this->plt_->plt_entry_size(); }
3025
3026 // Get the GOT section, creating it if necessary.
3027 Mips_output_data_got<size, big_endian>*
3028 got_section(Symbol_table*, Layout*);
3029
3030 // Get the GOT section.
3031 Mips_output_data_got<size, big_endian>*
3032 got_section() const
3033 {
3034 gold_assert(this->got_ != NULL);
3035 return this->got_;
3036 }
3037
3038 // Get the .MIPS.stubs section, creating it if necessary.
3039 Mips_output_data_mips_stubs<size, big_endian>*
3040 mips_stubs_section(Layout* layout);
3041
3042 // Get the .MIPS.stubs section.
3043 Mips_output_data_mips_stubs<size, big_endian>*
3044 mips_stubs_section() const
3045 {
3046 gold_assert(this->mips_stubs_ != NULL);
3047 return this->mips_stubs_;
3048 }
3049
3050 // Get the LA25 stub section, creating it if necessary.
3051 Mips_output_data_la25_stub<size, big_endian>*
3052 la25_stub_section(Layout*);
3053
3054 // Get the LA25 stub section.
3055 Mips_output_data_la25_stub<size, big_endian>*
3056 la25_stub_section()
3057 {
3058 gold_assert(this->la25_stub_ != NULL);
3059 return this->la25_stub_;
3060 }
3061
3062 // Get gp value. It has the value of .got + 0x7FF0.
3063 Mips_address
3064 gp_value() const
3065 {
3066 if (this->gp_ != NULL)
3067 return this->gp_->value();
3068 return 0;
3069 }
3070
3071 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3072 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3073 Mips_address
3074 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3075 {
3076 if (this->gp_ == NULL)
3077 return 0;
3078
3079 bool multi_got = false;
3080 if (this->has_got_section())
3081 multi_got = this->got_section()->multi_got();
3082 if (!multi_got)
3083 return this->gp_->value();
3084 else
3085 return this->gp_->value() + this->got_section()->get_got_offset(object);
3086 }
3087
3088 // Get the dynamic reloc section, creating it if necessary.
3089 Reloc_section*
3090 rel_dyn_section(Layout*);
3091
3092 bool
3093 do_has_custom_set_dynsym_indexes() const
3094 { return true; }
3095
3096 // Don't emit input .reginfo sections to output .reginfo.
3097 bool
3098 do_should_include_section(elfcpp::Elf_Word sh_type) const
3099 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3100
3101 // Set the dynamic symbol indexes. INDEX is the index of the first
3102 // global dynamic symbol. Pointers to the symbols are stored into the
3103 // vector SYMS. The names are added to DYNPOOL. This returns an
3104 // updated dynamic symbol index.
3105 unsigned int
3106 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3107 std::vector<Symbol*>* syms, Stringpool* dynpool,
3108 Versions* versions, Symbol_table* symtab) const;
3109
3110 // Remove .MIPS.stubs entry for a symbol.
3111 void
3112 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3113 {
3114 if (this->mips_stubs_ != NULL)
3115 this->mips_stubs_->remove_entry(sym);
3116 }
3117
3118 // The value to write into got[1] for SVR4 targets, to identify it is
3119 // a GNU object. The dynamic linker can then use got[1] to store the
3120 // module pointer.
3121 uint64_t
3122 mips_elf_gnu_got1_mask()
3123 {
3124 if (this->is_output_n64())
3125 return (uint64_t)1 << 63;
3126 else
3127 return 1 << 31;
3128 }
3129
3130 // Whether the output has microMIPS code. This is valid only after
3131 // merge_processor_specific_flags() is called.
3132 bool
3133 is_output_micromips() const
3134 {
3135 gold_assert(this->are_processor_specific_flags_set());
3136 return elfcpp::is_micromips(this->processor_specific_flags());
3137 }
3138
3139 // Whether the output uses N32 ABI. This is valid only after
3140 // merge_processor_specific_flags() is called.
3141 bool
3142 is_output_n32() const
3143 {
3144 gold_assert(this->are_processor_specific_flags_set());
3145 return elfcpp::abi_n32(this->processor_specific_flags());
3146 }
3147
3148 // Whether the output uses N64 ABI. This is valid only after
3149 // merge_processor_specific_flags() is called.
3150 bool
3151 is_output_n64() const
3152 {
3153 gold_assert(this->are_processor_specific_flags_set());
3154 return elfcpp::abi_64(this->ei_class_);
3155 }
3156
3157 // Whether the output uses NEWABI. This is valid only after
3158 // merge_processor_specific_flags() is called.
3159 bool
3160 is_output_newabi() const
3161 { return this->is_output_n32() || this->is_output_n64(); }
3162
3163 // Whether we can only use 32-bit microMIPS instructions.
3164 bool
3165 use_32bit_micromips_instructions() const
3166 { return this->insn32_; }
3167
3168 protected:
3169 // Return the value to use for a dynamic symbol which requires special
3170 // treatment. This is how we support equality comparisons of function
3171 // pointers across shared library boundaries, as described in the
3172 // processor specific ABI supplement.
3173 uint64_t
3174 do_dynsym_value(const Symbol* gsym) const;
3175
3176 // Make an ELF object.
3177 Object*
3178 do_make_elf_object(const std::string&, Input_file*, off_t,
3179 const elfcpp::Ehdr<size, big_endian>& ehdr);
3180
3181 Object*
3182 do_make_elf_object(const std::string&, Input_file*, off_t,
3183 const elfcpp::Ehdr<size, !big_endian>&)
3184 { gold_unreachable(); }
3185
3186 // Make an output section.
3187 Output_section*
3188 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3189 elfcpp::Elf_Xword flags)
3190 {
3191 if (type == elfcpp::SHT_MIPS_REGINFO)
3192 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3193 flags, this);
3194 else
3195 return new Output_section(name, type, flags);
3196 }
3197
3198 // Adjust ELF file header.
3199 void
3200 do_adjust_elf_header(unsigned char* view, int len);
3201
3202 // Get the custom dynamic tag value.
3203 unsigned int
3204 do_dynamic_tag_custom_value(elfcpp::DT) const;
3205
3206 // Adjust the value written to the dynamic symbol table.
3207 virtual void
3208 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3209 {
3210 elfcpp::Sym<size, big_endian> isym(view);
3211 elfcpp::Sym_write<size, big_endian> osym(view);
3212 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3213
3214 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3215 // to treat compressed symbols like any other.
3216 Mips_address value = isym.get_st_value();
3217 if (mips_sym->is_mips16() && value != 0)
3218 {
3219 if (!mips_sym->has_mips16_fn_stub())
3220 value |= 1;
3221 else
3222 {
3223 // If we have a MIPS16 function with a stub, the dynamic symbol
3224 // must refer to the stub, since only the stub uses the standard
3225 // calling conventions. Stub contains MIPS32 code, so don't add +1
3226 // in this case.
3227
3228 // There is a code which does this in the method
3229 // Target_mips::do_dynsym_value, but that code will only be
3230 // executed if the symbol is from dynobj.
3231 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3232 // table.
3233
3234 Mips16_stub_section<size, big_endian>* fn_stub =
3235 mips_sym->template get_mips16_fn_stub<big_endian>();
3236 value = fn_stub->output_address();
3237 osym.put_st_size(fn_stub->section_size());
3238 }
3239
3240 osym.put_st_value(value);
3241 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3242 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3243 }
3244 else if ((mips_sym->is_micromips()
3245 // Stubs are always microMIPS if there is any microMIPS code in
3246 // the output.
3247 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3248 && value != 0)
3249 {
3250 osym.put_st_value(value | 1);
3251 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3252 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3253 }
3254 }
3255
3256 private:
3257 // The class which scans relocations.
3258 class Scan
3259 {
3260 public:
3261 Scan()
3262 { }
3263
3264 static inline int
3265 get_reference_flags(unsigned int r_type);
3266
3267 inline void
3268 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3269 Sized_relobj_file<size, big_endian>* object,
3270 unsigned int data_shndx,
3271 Output_section* output_section,
3272 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3273 const elfcpp::Sym<size, big_endian>& lsym,
3274 bool is_discarded);
3275
3276 inline void
3277 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3278 Sized_relobj_file<size, big_endian>* object,
3279 unsigned int data_shndx,
3280 Output_section* output_section,
3281 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3282 const elfcpp::Sym<size, big_endian>& lsym,
3283 bool is_discarded);
3284
3285 inline void
3286 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3287 Sized_relobj_file<size, big_endian>* object,
3288 unsigned int data_shndx,
3289 Output_section* output_section,
3290 const elfcpp::Rela<size, big_endian>* rela,
3291 const elfcpp::Rel<size, big_endian>* rel,
3292 unsigned int rel_type,
3293 unsigned int r_type,
3294 const elfcpp::Sym<size, big_endian>& lsym,
3295 bool is_discarded);
3296
3297 inline void
3298 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3299 Sized_relobj_file<size, big_endian>* object,
3300 unsigned int data_shndx,
3301 Output_section* output_section,
3302 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3303 Symbol* gsym);
3304
3305 inline void
3306 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3307 Sized_relobj_file<size, big_endian>* object,
3308 unsigned int data_shndx,
3309 Output_section* output_section,
3310 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3311 Symbol* gsym);
3312
3313 inline void
3314 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3315 Sized_relobj_file<size, big_endian>* object,
3316 unsigned int data_shndx,
3317 Output_section* output_section,
3318 const elfcpp::Rela<size, big_endian>* rela,
3319 const elfcpp::Rel<size, big_endian>* rel,
3320 unsigned int rel_type,
3321 unsigned int r_type,
3322 Symbol* gsym);
3323
3324 inline bool
3325 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3326 Target_mips*,
3327 Sized_relobj_file<size, big_endian>*,
3328 unsigned int,
3329 Output_section*,
3330 const elfcpp::Rel<size, big_endian>&,
3331 unsigned int,
3332 const elfcpp::Sym<size, big_endian>&)
3333 { return false; }
3334
3335 inline bool
3336 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3337 Target_mips*,
3338 Sized_relobj_file<size, big_endian>*,
3339 unsigned int,
3340 Output_section*,
3341 const elfcpp::Rel<size, big_endian>&,
3342 unsigned int, Symbol*)
3343 { return false; }
3344
3345 inline bool
3346 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3347 Target_mips*,
3348 Sized_relobj_file<size, big_endian>*,
3349 unsigned int,
3350 Output_section*,
3351 const elfcpp::Rela<size, big_endian>&,
3352 unsigned int,
3353 const elfcpp::Sym<size, big_endian>&)
3354 { return false; }
3355
3356 inline bool
3357 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3358 Target_mips*,
3359 Sized_relobj_file<size, big_endian>*,
3360 unsigned int,
3361 Output_section*,
3362 const elfcpp::Rela<size, big_endian>&,
3363 unsigned int, Symbol*)
3364 { return false; }
3365 private:
3366 static void
3367 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3368 unsigned int r_type);
3369
3370 static void
3371 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3372 unsigned int r_type, Symbol*);
3373 };
3374
3375 // The class which implements relocation.
3376 class Relocate
3377 {
3378 public:
3379 Relocate()
3380 { }
3381
3382 ~Relocate()
3383 { }
3384
3385 // Return whether the R_MIPS_32 relocation needs to be applied.
3386 inline bool
3387 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3388 unsigned int r_type,
3389 Output_section* output_section,
3390 Target_mips* target);
3391
3392 // Do a relocation. Return false if the caller should not issue
3393 // any warnings about this relocation.
3394 inline bool
3395 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3396 Output_section*, size_t relnum,
3397 const elfcpp::Rela<size, big_endian>*,
3398 const elfcpp::Rel<size, big_endian>*,
3399 unsigned int,
3400 unsigned int, const Sized_symbol<size>*,
3401 const Symbol_value<size>*,
3402 unsigned char*,
3403 Mips_address,
3404 section_size_type);
3405
3406 inline bool
3407 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3408 Output_section*, size_t relnum,
3409 const elfcpp::Rel<size, big_endian>&,
3410 unsigned int, const Sized_symbol<size>*,
3411 const Symbol_value<size>*,
3412 unsigned char*,
3413 Mips_address,
3414 section_size_type);
3415
3416 inline bool
3417 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3418 Output_section*, size_t relnum,
3419 const elfcpp::Rela<size, big_endian>&,
3420 unsigned int, const Sized_symbol<size>*,
3421 const Symbol_value<size>*,
3422 unsigned char*,
3423 Mips_address,
3424 section_size_type);
3425 };
3426
3427 // A class which returns the size required for a relocation type,
3428 // used while scanning relocs during a relocatable link.
3429 class Relocatable_size_for_reloc
3430 {
3431 public:
3432 unsigned int
3433 get_size_for_reloc(unsigned int, Relobj*);
3434 };
3435
3436 // This POD class holds the dynamic relocations that should be emitted instead
3437 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3438 // relocations if it turns out that the symbol does not have static
3439 // relocations.
3440 class Dyn_reloc
3441 {
3442 public:
3443 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3444 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3445 Output_section* output_section, Mips_address r_offset)
3446 : sym_(sym), r_type_(r_type), relobj_(relobj),
3447 shndx_(shndx), output_section_(output_section),
3448 r_offset_(r_offset)
3449 { }
3450
3451 // Emit this reloc if appropriate. This is called after we have
3452 // scanned all the relocations, so we know whether the symbol has
3453 // static relocations.
3454 void
3455 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3456 Symbol_table* symtab)
3457 {
3458 if (!this->sym_->has_static_relocs())
3459 {
3460 got->record_global_got_symbol(this->sym_, this->relobj_,
3461 this->r_type_, true, false);
3462 if (!symbol_references_local(this->sym_,
3463 this->sym_->should_add_dynsym_entry(symtab)))
3464 rel_dyn->add_global(this->sym_, this->r_type_,
3465 this->output_section_, this->relobj_,
3466 this->shndx_, this->r_offset_);
3467 else
3468 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3469 this->output_section_, this->relobj_,
3470 this->shndx_, this->r_offset_);
3471 }
3472 }
3473
3474 private:
3475 Mips_symbol<size>* sym_;
3476 unsigned int r_type_;
3477 Mips_relobj<size, big_endian>* relobj_;
3478 unsigned int shndx_;
3479 Output_section* output_section_;
3480 Mips_address r_offset_;
3481 };
3482
3483 // Adjust TLS relocation type based on the options and whether this
3484 // is a local symbol.
3485 static tls::Tls_optimization
3486 optimize_tls_reloc(bool is_final, int r_type);
3487
3488 // Return whether there is a GOT section.
3489 bool
3490 has_got_section() const
3491 { return this->got_ != NULL; }
3492
3493 // Check whether the given ELF header flags describe a 32-bit binary.
3494 bool
3495 mips_32bit_flags(elfcpp::Elf_Word);
3496
3497 enum Mips_mach {
3498 mach_mips3000 = 3000,
3499 mach_mips3900 = 3900,
3500 mach_mips4000 = 4000,
3501 mach_mips4010 = 4010,
3502 mach_mips4100 = 4100,
3503 mach_mips4111 = 4111,
3504 mach_mips4120 = 4120,
3505 mach_mips4300 = 4300,
3506 mach_mips4400 = 4400,
3507 mach_mips4600 = 4600,
3508 mach_mips4650 = 4650,
3509 mach_mips5000 = 5000,
3510 mach_mips5400 = 5400,
3511 mach_mips5500 = 5500,
3512 mach_mips6000 = 6000,
3513 mach_mips7000 = 7000,
3514 mach_mips8000 = 8000,
3515 mach_mips9000 = 9000,
3516 mach_mips10000 = 10000,
3517 mach_mips12000 = 12000,
3518 mach_mips14000 = 14000,
3519 mach_mips16000 = 16000,
3520 mach_mips16 = 16,
3521 mach_mips5 = 5,
3522 mach_mips_loongson_2e = 3001,
3523 mach_mips_loongson_2f = 3002,
3524 mach_mips_loongson_3a = 3003,
3525 mach_mips_sb1 = 12310201, // octal 'SB', 01
3526 mach_mips_octeon = 6501,
3527 mach_mips_octeonp = 6601,
3528 mach_mips_octeon2 = 6502,
3529 mach_mips_xlr = 887682, // decimal 'XLR'
3530 mach_mipsisa32 = 32,
3531 mach_mipsisa32r2 = 33,
3532 mach_mipsisa64 = 64,
3533 mach_mipsisa64r2 = 65,
3534 mach_mips_micromips = 96
3535 };
3536
3537 // Return the MACH for a MIPS e_flags value.
3538 unsigned int
3539 elf_mips_mach(elfcpp::Elf_Word);
3540
3541 // Check whether machine EXTENSION is an extension of machine BASE.
3542 bool
3543 mips_mach_extends(unsigned int, unsigned int);
3544
3545 // Merge processor specific flags.
3546 void
3547 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3548 unsigned char, bool);
3549
3550 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3551 static inline bool
3552 jal_to_bal()
3553 { return false; }
3554
3555 // True if we are linking for CPUs that are faster if JALR is converted to
3556 // BAL. This should be safe for all architectures. We enable this predicate
3557 // for all CPUs.
3558 static inline bool
3559 jalr_to_bal()
3560 { return true; }
3561
3562 // True if we are linking for CPUs that are faster if JR is converted to B.
3563 // This should be safe for all architectures. We enable this predicate for
3564 // all CPUs.
3565 static inline bool
3566 jr_to_b()
3567 { return true; }
3568
3569 // Return the size of the GOT section.
3570 section_size_type
3571 got_size() const
3572 {
3573 gold_assert(this->got_ != NULL);
3574 return this->got_->data_size();
3575 }
3576
3577 // Create a PLT entry for a global symbol referenced by r_type relocation.
3578 void
3579 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3580 unsigned int r_type);
3581
3582 // Get the PLT section.
3583 Mips_output_data_plt<size, big_endian>*
3584 plt_section() const
3585 {
3586 gold_assert(this->plt_ != NULL);
3587 return this->plt_;
3588 }
3589
3590 // Get the GOT PLT section.
3591 const Mips_output_data_plt<size, big_endian>*
3592 got_plt_section() const
3593 {
3594 gold_assert(this->got_plt_ != NULL);
3595 return this->got_plt_;
3596 }
3597
3598 // Copy a relocation against a global symbol.
3599 void
3600 copy_reloc(Symbol_table* symtab, Layout* layout,
3601 Sized_relobj_file<size, big_endian>* object,
3602 unsigned int shndx, Output_section* output_section,
3603 Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3604 {
859d7987 3605 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
9810d34d
SS
3606 this->copy_relocs_.copy_reloc(symtab, layout,
3607 symtab->get_sized_symbol<size>(sym),
3608 object, shndx, output_section,
859d7987
CC
3609 r_type, reloc.get_r_offset(), 0,
3610 this->rel_dyn_section(layout));
9810d34d
SS
3611 }
3612
3613 void
3614 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3615 Mips_relobj<size, big_endian>* relobj,
3616 unsigned int shndx, Output_section* output_section,
3617 Mips_address r_offset)
3618 {
3619 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3620 output_section, r_offset));
3621 }
3622
3623 // Calculate value of _gp symbol.
3624 void
3625 set_gp(Layout*, Symbol_table*);
3626
3627 const char*
3628 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3629 const char*
3630 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3631
3632 // Adds entries that describe how machines relate to one another. The entries
3633 // are ordered topologically with MIPS I extensions listed last. First
3634 // element is extension, second element is base.
3635 void
3636 add_machine_extensions()
3637 {
3638 // MIPS64r2 extensions.
3639 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3640 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3641 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3642
3643 // MIPS64 extensions.
3644 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3645 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3646 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3647 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3648
3649 // MIPS V extensions.
3650 this->add_extension(mach_mipsisa64, mach_mips5);
3651
3652 // R10000 extensions.
3653 this->add_extension(mach_mips12000, mach_mips10000);
3654 this->add_extension(mach_mips14000, mach_mips10000);
3655 this->add_extension(mach_mips16000, mach_mips10000);
3656
3657 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3658 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3659 // better to allow vr5400 and vr5500 code to be merged anyway, since
3660 // many libraries will just use the core ISA. Perhaps we could add
3661 // some sort of ASE flag if this ever proves a problem.
3662 this->add_extension(mach_mips5500, mach_mips5400);
3663 this->add_extension(mach_mips5400, mach_mips5000);
3664
3665 // MIPS IV extensions.
3666 this->add_extension(mach_mips5, mach_mips8000);
3667 this->add_extension(mach_mips10000, mach_mips8000);
3668 this->add_extension(mach_mips5000, mach_mips8000);
3669 this->add_extension(mach_mips7000, mach_mips8000);
3670 this->add_extension(mach_mips9000, mach_mips8000);
3671
3672 // VR4100 extensions.
3673 this->add_extension(mach_mips4120, mach_mips4100);
3674 this->add_extension(mach_mips4111, mach_mips4100);
3675
3676 // MIPS III extensions.
3677 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3678 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3679 this->add_extension(mach_mips8000, mach_mips4000);
3680 this->add_extension(mach_mips4650, mach_mips4000);
3681 this->add_extension(mach_mips4600, mach_mips4000);
3682 this->add_extension(mach_mips4400, mach_mips4000);
3683 this->add_extension(mach_mips4300, mach_mips4000);
3684 this->add_extension(mach_mips4100, mach_mips4000);
3685 this->add_extension(mach_mips4010, mach_mips4000);
3686
3687 // MIPS32 extensions.
3688 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3689
3690 // MIPS II extensions.
3691 this->add_extension(mach_mips4000, mach_mips6000);
3692 this->add_extension(mach_mipsisa32, mach_mips6000);
3693
3694 // MIPS I extensions.
3695 this->add_extension(mach_mips6000, mach_mips3000);
3696 this->add_extension(mach_mips3900, mach_mips3000);
3697 }
3698
3699 // Add value to MIPS extenstions.
3700 void
3701 add_extension(unsigned int base, unsigned int extension)
3702 {
3703 std::pair<unsigned int, unsigned int> ext(base, extension);
3704 this->mips_mach_extensions_.push_back(ext);
3705 }
3706
3707 // Return the number of entries in the .dynsym section.
3708 unsigned int get_dt_mips_symtabno() const
3709 {
3710 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3711 / elfcpp::Elf_sizes<size>::sym_size));
3712 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3713 }
3714
3715 // Information about this specific target which we pass to the
3716 // general Target structure.
62661c93 3717 static const Target::Target_info mips_info;
9810d34d
SS
3718 // The GOT section.
3719 Mips_output_data_got<size, big_endian>* got_;
3720 // gp symbol. It has the value of .got + 0x7FF0.
3721 Sized_symbol<size>* gp_;
3722 // The PLT section.
3723 Mips_output_data_plt<size, big_endian>* plt_;
3724 // The GOT PLT section.
3725 Output_data_space* got_plt_;
3726 // The dynamic reloc section.
3727 Reloc_section* rel_dyn_;
3728 // Relocs saved to avoid a COPY reloc.
3729 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3730
3731 // A list of dyn relocs to be saved.
3732 std::vector<Dyn_reloc> dyn_relocs_;
3733
3734 // The LA25 stub section.
3735 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3736 // Architecture extensions.
3737 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3738 // .MIPS.stubs
3739 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3740
3741 unsigned char ei_class_;
3742 unsigned int mach_;
3743 Layout* layout_;
3744
3745 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3746
3747 // Whether the entry symbol is mips16 or micromips.
3748 bool entry_symbol_is_compressed_;
3749
3750 // Whether we can use only 32-bit microMIPS instructions.
3751 // TODO(sasa): This should be a linker option.
3752 bool insn32_;
3753};
3754
3755
3756// Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3757// It records high part of the relocation pair.
3758
3759template<int size, bool big_endian>
3760struct reloc_high
3761{
3762 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3763
3764 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3765 const Symbol_value<size>* _psymval, Mips_address _addend,
3d0064a9 3766 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
9810d34d
SS
3767 Mips_address _address = 0, bool _gp_disp = false)
3768 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3d0064a9
CC
3769 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3770 address(_address), gp_disp(_gp_disp)
9810d34d
SS
3771 { }
3772
3773 unsigned char* view;
3774 const Mips_relobj<size, big_endian>* object;
3775 const Symbol_value<size>* psymval;
3776 Mips_address addend;
3777 unsigned int r_type;
3d0064a9 3778 unsigned int r_sym;
9810d34d
SS
3779 bool extract_addend;
3780 Mips_address address;
3781 bool gp_disp;
3782};
3783
3784template<int size, bool big_endian>
3785class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3786{
3787 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3788 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3789 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3790
3791 public:
3792 typedef enum
3793 {
3794 STATUS_OKAY, // No error during relocation.
3795 STATUS_OVERFLOW, // Relocation overflow.
3796 STATUS_BAD_RELOC // Relocation cannot be applied.
3797 } Status;
3798
3799 private:
3800 typedef Relocate_functions<size, big_endian> Base;
3801 typedef Mips_relocate_functions<size, big_endian> This;
3802
3803 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3804 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3805
3806 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3807 // Most mips16 instructions are 16 bits, but these instructions
3808 // are 32 bits.
3809 //
3810 // The format of these instructions is:
3811 //
3812 // +--------------+--------------------------------+
3813 // | JALX | X| Imm 20:16 | Imm 25:21 |
3814 // +--------------+--------------------------------+
3815 // | Immediate 15:0 |
3816 // +-----------------------------------------------+
3817 //
3818 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3819 // Note that the immediate value in the first word is swapped.
3820 //
3821 // When producing a relocatable object file, R_MIPS16_26 is
3822 // handled mostly like R_MIPS_26. In particular, the addend is
3823 // stored as a straight 26-bit value in a 32-bit instruction.
3824 // (gas makes life simpler for itself by never adjusting a
3825 // R_MIPS16_26 reloc to be against a section, so the addend is
3826 // always zero). However, the 32 bit instruction is stored as 2
3827 // 16-bit values, rather than a single 32-bit value. In a
3828 // big-endian file, the result is the same; in a little-endian
3829 // file, the two 16-bit halves of the 32 bit value are swapped.
3830 // This is so that a disassembler can recognize the jal
3831 // instruction.
3832 //
3833 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
3834 // instruction stored as two 16-bit values. The addend A is the
3835 // contents of the targ26 field. The calculation is the same as
3836 // R_MIPS_26. When storing the calculated value, reorder the
3837 // immediate value as shown above, and don't forget to store the
3838 // value as two 16-bit values.
3839 //
3840 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3841 // defined as
3842 //
3843 // big-endian:
3844 // +--------+----------------------+
3845 // | | |
3846 // | | targ26-16 |
3847 // |31 26|25 0|
3848 // +--------+----------------------+
3849 //
3850 // little-endian:
3851 // +----------+------+-------------+
3852 // | | | |
3853 // | sub1 | | sub2 |
3854 // |0 9|10 15|16 31|
3855 // +----------+--------------------+
3856 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3857 // ((sub1 << 16) | sub2)).
3858 //
3859 // When producing a relocatable object file, the calculation is
3860 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3861 // When producing a fully linked file, the calculation is
3862 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3863 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3864 //
3865 // The table below lists the other MIPS16 instruction relocations.
3866 // Each one is calculated in the same way as the non-MIPS16 relocation
3867 // given on the right, but using the extended MIPS16 layout of 16-bit
3868 // immediate fields:
3869 //
3870 // R_MIPS16_GPREL R_MIPS_GPREL16
3871 // R_MIPS16_GOT16 R_MIPS_GOT16
3872 // R_MIPS16_CALL16 R_MIPS_CALL16
3873 // R_MIPS16_HI16 R_MIPS_HI16
3874 // R_MIPS16_LO16 R_MIPS_LO16
3875 //
3876 // A typical instruction will have a format like this:
3877 //
3878 // +--------------+--------------------------------+
3879 // | EXTEND | Imm 10:5 | Imm 15:11 |
3880 // +--------------+--------------------------------+
3881 // | Major | rx | ry | Imm 4:0 |
3882 // +--------------+--------------------------------+
3883 //
3884 // EXTEND is the five bit value 11110. Major is the instruction
3885 // opcode.
3886 //
3887 // All we need to do here is shuffle the bits appropriately.
3888 // As above, the two 16-bit halves must be swapped on a
3889 // little-endian system.
3890
3891 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3892 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
3893 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3894
3895 static inline bool
3896 should_shuffle_micromips_reloc(unsigned int r_type)
3897 {
3898 return (micromips_reloc(r_type)
3899 && r_type != elfcpp::R_MICROMIPS_PC7_S1
3900 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3901 }
3902
3903 static void
3904 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3905 bool jal_shuffle)
3906 {
3907 if (!mips16_reloc(r_type)
3908 && !should_shuffle_micromips_reloc(r_type))
3909 return;
3910
3911 // Pick up the first and second halfwords of the instruction.
3912 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3913 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3914 Valtype32 val;
3915
3916 if (micromips_reloc(r_type)
3917 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3918 val = first << 16 | second;
3919 else if (r_type != elfcpp::R_MIPS16_26)
3920 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3921 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3922 else
3923 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3924 | ((first & 0x1f) << 21) | second);
3925
3926 elfcpp::Swap<32, big_endian>::writeval(view, val);
3927 }
3928
3929 static void
3930 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3931 {
3932 if (!mips16_reloc(r_type)
3933 && !should_shuffle_micromips_reloc(r_type))
3934 return;
3935
3936 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3937 Valtype16 first, second;
3938
3939 if (micromips_reloc(r_type)
3940 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3941 {
3942 second = val & 0xffff;
3943 first = val >> 16;
3944 }
3945 else if (r_type != elfcpp::R_MIPS16_26)
3946 {
3947 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3948 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3949 }
3950 else
3951 {
3952 second = val & 0xffff;
3953 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3954 | ((val >> 21) & 0x1f);
3955 }
3956
3957 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3958 elfcpp::Swap<16, big_endian>::writeval(view, first);
3959 }
3960
3961 public:
3962 // R_MIPS_16: S + sign-extend(A)
3963 static inline typename This::Status
3964 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3965 const Symbol_value<size>* psymval, Mips_address addend_a,
3966 bool extract_addend, unsigned int r_type)
3967 {
3968 mips_reloc_unshuffle(view, r_type, false);
3969 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3970 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3971
3972 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3973 : Bits<16>::sign_extend32(addend_a));
3974
3975 Valtype32 x = psymval->value(object, addend);
3976 val = Bits<16>::bit_select32(val, x, 0xffffU);
3977 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3978 mips_reloc_shuffle(view, r_type, false);
3979 return (Bits<16>::has_overflow32(x)
3980 ? This::STATUS_OVERFLOW
3981 : This::STATUS_OKAY);
3982 }
3983
3984 // R_MIPS_32: S + A
3985 static inline typename This::Status
3986 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3987 const Symbol_value<size>* psymval, Mips_address addend_a,
3988 bool extract_addend, unsigned int r_type)
3989 {
3990 mips_reloc_unshuffle(view, r_type, false);
3991 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3992 Valtype32 addend = (extract_addend
3993 ? elfcpp::Swap<32, big_endian>::readval(wv)
3994 : Bits<32>::sign_extend32(addend_a));
3995 Valtype32 x = psymval->value(object, addend);
3996 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3997 mips_reloc_shuffle(view, r_type, false);
3998 return This::STATUS_OKAY;
3999 }
4000
4001 // R_MIPS_JALR, R_MICROMIPS_JALR
4002 static inline typename This::Status
4003 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4004 const Symbol_value<size>* psymval, Mips_address address,
4005 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4006 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4007 {
4008 mips_reloc_unshuffle(view, r_type, false);
4009 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4010 Valtype32 addend = extract_addend ? 0 : addend_a;
4011 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4012
4013 // Try converting J(AL)R to B(AL), if the target is in range.
4014 if (!parameters->options().relocatable()
4015 && r_type == elfcpp::R_MIPS_JALR
4016 && !cross_mode_jump
4017 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4018 || (jr_to_b && val == 0x03200008))) // jr t9
4019 {
4020 int offset = psymval->value(object, addend) - (address + 4);
4021 if (!Bits<18>::has_overflow32(offset))
4022 {
4023 if (val == 0x03200008) // jr t9
4024 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4025 else
4026 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4027 }
4028 }
4029
4030 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4031 mips_reloc_shuffle(view, r_type, false);
4032 return This::STATUS_OKAY;
4033 }
4034
4035 // R_MIPS_PC32: S + A - P
4036 static inline typename This::Status
4037 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4038 const Symbol_value<size>* psymval, Mips_address address,
4039 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4040 {
4041 mips_reloc_unshuffle(view, r_type, false);
4042 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4043 Valtype32 addend = (extract_addend
4044 ? elfcpp::Swap<32, big_endian>::readval(wv)
4045 : Bits<32>::sign_extend32(addend_a));
4046 Valtype32 x = psymval->value(object, addend) - address;
4047 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4048 mips_reloc_shuffle(view, r_type, false);
4049 return This::STATUS_OKAY;
4050 }
4051
4052 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4053 static inline typename This::Status
4054 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4055 const Symbol_value<size>* psymval, Mips_address address,
4056 bool local, Mips_address addend_a, bool extract_addend,
4057 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4058 bool jal_to_bal)
4059 {
4060 mips_reloc_unshuffle(view, r_type, false);
4061 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4062 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4063
4064 Valtype32 addend;
4065 if (extract_addend)
4066 {
4067 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4068 addend = (val & 0x03ffffff) << 1;
4069 else
4070 addend = (val & 0x03ffffff) << 2;
4071 }
4072 else
4073 addend = addend_a;
4074
4075 // Make sure the target of JALX is word-aligned. Bit 0 must be
4076 // the correct ISA mode selector and bit 1 must be 0.
4077 if (cross_mode_jump
4078 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4079 {
4080 gold_warning(_("JALX to a non-word-aligned address"));
4081 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4082 return This::STATUS_BAD_RELOC;
4083 }
4084
4085 // Shift is 2, unusually, for microMIPS JALX.
4086 unsigned int shift =
4087 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4088
4089 Valtype32 x;
4090 if (local)
4091 x = addend | ((address + 4) & (0xfc000000 << shift));
4092 else
4093 {
4094 if (shift == 1)
4095 x = Bits<27>::sign_extend32(addend);
4096 else
4097 x = Bits<28>::sign_extend32(addend);
4098 }
4099 x = psymval->value(object, x) >> shift;
4100
4101 if (!local && !gsym->is_weak_undefined())
4102 {
4103 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4104 {
4105 gold_error(_("relocation truncated to fit: %u against '%s'"),
4106 r_type, gsym->name());
4107 return This::STATUS_OVERFLOW;
4108 }
4109 }
4110
4111 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4112
4113 // If required, turn JAL into JALX.
4114 if (cross_mode_jump)
4115 {
4116 bool ok;
4117 Valtype32 opcode = val >> 26;
4118 Valtype32 jalx_opcode;
4119
4120 // Check to see if the opcode is already JAL or JALX.
4121 if (r_type == elfcpp::R_MIPS16_26)
4122 {
4123 ok = (opcode == 0x6) || (opcode == 0x7);
4124 jalx_opcode = 0x7;
4125 }
4126 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4127 {
4128 ok = (opcode == 0x3d) || (opcode == 0x3c);
4129 jalx_opcode = 0x3c;
4130 }
4131 else
4132 {
4133 ok = (opcode == 0x3) || (opcode == 0x1d);
4134 jalx_opcode = 0x1d;
4135 }
4136
4137 // If the opcode is not JAL or JALX, there's a problem. We cannot
4138 // convert J or JALS to JALX.
4139 if (!ok)
4140 {
4141 gold_error(_("Unsupported jump between ISA modes; consider "
4142 "recompiling with interlinking enabled."));
4143 return This::STATUS_BAD_RELOC;
4144 }
4145
4146 // Make this the JALX opcode.
4147 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4148 }
4149
4150 // Try converting JAL to BAL, if the target is in range.
4151 if (!parameters->options().relocatable()
4152 && !cross_mode_jump
4153 && ((jal_to_bal
4154 && r_type == elfcpp::R_MIPS_26
4155 && (val >> 26) == 0x3))) // jal addr
4156 {
4157 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4158 int offset = dest - (address + 4);
4159 if (!Bits<18>::has_overflow32(offset))
4160 {
4161 if (val == 0x03200008) // jr t9
4162 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4163 else
4164 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4165 }
4166 }
4167
4168 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4169 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4170 return This::STATUS_OKAY;
4171 }
4172
4173 // R_MIPS_PC16
4174 static inline typename This::Status
4175 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4176 const Symbol_value<size>* psymval, Mips_address address,
4177 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4178 {
4179 mips_reloc_unshuffle(view, r_type, false);
4180 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4181 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4182
4183 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4184 addend = Bits<18>::sign_extend32(addend);
4185
4186 Valtype32 x = psymval->value(object, addend) - address;
4187 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4188 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4189 mips_reloc_shuffle(view, r_type, false);
4190 return (Bits<18>::has_overflow32(x)
4191 ? This::STATUS_OVERFLOW
4192 : This::STATUS_OKAY);
4193 }
4194
4195 // R_MICROMIPS_PC7_S1
4196 static inline typename This::Status
4197 relmicromips_pc7_s1(unsigned char* view,
4198 const Mips_relobj<size, big_endian>* object,
4199 const Symbol_value<size>* psymval, Mips_address address,
4200 Mips_address addend_a, bool extract_addend,
4201 unsigned int r_type)
4202 {
4203 mips_reloc_unshuffle(view, r_type, false);
4204 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4205 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4206
4207 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4208 addend = Bits<8>::sign_extend32(addend);
4209
4210 Valtype32 x = psymval->value(object, addend) - address;
4211 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4212 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4213 mips_reloc_shuffle(view, r_type, false);
4214 return (Bits<8>::has_overflow32(x)
4215 ? This::STATUS_OVERFLOW
4216 : This::STATUS_OKAY);
4217 }
4218
4219 // R_MICROMIPS_PC10_S1
4220 static inline typename This::Status
4221 relmicromips_pc10_s1(unsigned char* view,
4222 const Mips_relobj<size, big_endian>* object,
4223 const Symbol_value<size>* psymval, Mips_address address,
4224 Mips_address addend_a, bool extract_addend,
4225 unsigned int r_type)
4226 {
4227 mips_reloc_unshuffle(view, r_type, false);
4228 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4229 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4230
4231 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4232 addend = Bits<11>::sign_extend32(addend);
4233
4234 Valtype32 x = psymval->value(object, addend) - address;
4235 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4236 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4237 mips_reloc_shuffle(view, r_type, false);
4238 return (Bits<11>::has_overflow32(x)
4239 ? This::STATUS_OVERFLOW
4240 : This::STATUS_OKAY);
4241 }
4242
4243 // R_MICROMIPS_PC16_S1
4244 static inline typename This::Status
4245 relmicromips_pc16_s1(unsigned char* view,
4246 const Mips_relobj<size, big_endian>* object,
4247 const Symbol_value<size>* psymval, Mips_address address,
4248 Mips_address addend_a, bool extract_addend,
4249 unsigned int r_type)
4250 {
4251 mips_reloc_unshuffle(view, r_type, false);
4252 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4253 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4254
4255 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4256 addend = Bits<17>::sign_extend32(addend);
4257
4258 Valtype32 x = psymval->value(object, addend) - address;
4259 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4260 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4261 mips_reloc_shuffle(view, r_type, false);
4262 return (Bits<17>::has_overflow32(x)
4263 ? This::STATUS_OVERFLOW
4264 : This::STATUS_OKAY);
4265 }
4266
4267 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4268 static inline typename This::Status
4269 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4270 const Symbol_value<size>* psymval, Mips_address addend,
4271 Mips_address address, bool gp_disp, unsigned int r_type,
3d0064a9 4272 unsigned int r_sym, bool extract_addend)
9810d34d
SS
4273 {
4274 // Record the relocation. It will be resolved when we find lo16 part.
4275 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9
CC
4276 addend, r_type, r_sym, extract_addend, address,
4277 gp_disp));
9810d34d
SS
4278 return This::STATUS_OKAY;
4279 }
4280
4281 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4282 static inline typename This::Status
4283 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4284 const Symbol_value<size>* psymval, Mips_address addend_hi,
4285 Mips_address address, bool is_gp_disp, unsigned int r_type,
4286 bool extract_addend, Valtype32 addend_lo,
4287 Target_mips<size, big_endian>* target)
4288 {
4289 mips_reloc_unshuffle(view, r_type, false);
4290 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4291 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4292
4293 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4294 : addend_hi);
4295
4296 Valtype32 value;
4297 if (!is_gp_disp)
4298 value = psymval->value(object, addend);
4299 else
4300 {
4301 // For MIPS16 ABI code we generate this sequence
4302 // 0: li $v0,%hi(_gp_disp)
4303 // 4: addiupc $v1,%lo(_gp_disp)
4304 // 8: sll $v0,16
4305 // 12: addu $v0,$v1
4306 // 14: move $gp,$v0
4307 // So the offsets of hi and lo relocs are the same, but the
4308 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4309 // ADDIUPC clears the low two bits of the instruction address,
4310 // so the base is ($t9 + 4) & ~3.
4311 Valtype32 gp_disp;
4312 if (r_type == elfcpp::R_MIPS16_HI16)
4313 gp_disp = (target->adjusted_gp_value(object)
4314 - ((address + 4) & ~0x3));
4315 // The microMIPS .cpload sequence uses the same assembly
4316 // instructions as the traditional psABI version, but the
4317 // incoming $t9 has the low bit set.
4318 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4319 gp_disp = target->adjusted_gp_value(object) - address - 1;
4320 else
4321 gp_disp = target->adjusted_gp_value(object) - address;
4322 value = gp_disp + addend;
4323 }
4324 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4325 val = Bits<32>::bit_select32(val, x, 0xffff);
4326 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4327 mips_reloc_shuffle(view, r_type, false);
4328 return (is_gp_disp && Bits<16>::has_overflow32(x)
4329 ? This::STATUS_OVERFLOW
4330 : This::STATUS_OKAY);
4331 }
4332
4333 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4334 static inline typename This::Status
4335 relgot16_local(unsigned char* view,
4336 const Mips_relobj<size, big_endian>* object,
4337 const Symbol_value<size>* psymval, Mips_address addend_a,
3d0064a9 4338 bool extract_addend, unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4339 {
4340 // Record the relocation. It will be resolved when we find lo16 part.
4341 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
3d0064a9 4342 addend_a, r_type, r_sym, extract_addend));
9810d34d
SS
4343 return This::STATUS_OKAY;
4344 }
4345
4346 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4347 static inline typename This::Status
4348 do_relgot16_local(unsigned char* view,
4349 const Mips_relobj<size, big_endian>* object,
4350 const Symbol_value<size>* psymval, Mips_address addend_hi,
4351 unsigned int r_type, bool extract_addend,
4352 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4353 {
4354 mips_reloc_unshuffle(view, r_type, false);
4355 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4356 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4357
4358 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4359 : addend_hi);
4360
4361 // Find GOT page entry.
4362 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4363 & 0xffff;
4364 value <<= 16;
4365 unsigned int got_offset =
4366 target->got_section()->get_got_page_offset(value, object);
4367
4368 // Resolve the relocation.
4369 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4370 val = Bits<32>::bit_select32(val, x, 0xffff);
4371 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4372 mips_reloc_shuffle(view, r_type, false);
4373 return (Bits<16>::has_overflow32(x)
4374 ? This::STATUS_OVERFLOW
4375 : This::STATUS_OKAY);
4376 }
4377
4378 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4379 static inline typename This::Status
4380 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4381 const Mips_relobj<size, big_endian>* object,
4382 const Symbol_value<size>* psymval, Mips_address addend_a,
4383 bool extract_addend, Mips_address address, bool is_gp_disp,
3d0064a9 4384 unsigned int r_type, unsigned int r_sym)
9810d34d
SS
4385 {
4386 mips_reloc_unshuffle(view, r_type, false);
4387 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4388 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4389
4390 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4391 : addend_a);
4392
4393 // Resolve pending R_MIPS_HI16 relocations.
4394 typename std::list<reloc_high<size, big_endian> >::iterator it =
4395 hi16_relocs.begin();
4396 while (it != hi16_relocs.end())
4397 {
4398 reloc_high<size, big_endian> hi16 = *it;
3d0064a9
CC
4399 if (hi16.r_sym == r_sym
4400 && is_matching_lo16_reloc(hi16.r_type, r_type))
9810d34d
SS
4401 {
4402 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4403 hi16.address, hi16.gp_disp, hi16.r_type,
4404 hi16.extract_addend, addend, target)
4405 == This::STATUS_OVERFLOW)
4406 return This::STATUS_OVERFLOW;
4407 it = hi16_relocs.erase(it);
4408 }
4409 else
4410 ++it;
4411 }
4412
4413 // Resolve pending local R_MIPS_GOT16 relocations.
4414 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4415 got16_relocs.begin();
4416 while (it2 != got16_relocs.end())
4417 {
4418 reloc_high<size, big_endian> got16 = *it2;
3d0064a9
CC
4419 if (got16.r_sym == r_sym
4420 && is_matching_lo16_reloc(got16.r_type, r_type))
9810d34d
SS
4421 {
4422 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4423 got16.addend, got16.r_type,
4424 got16.extract_addend, addend,
4425 target) == This::STATUS_OVERFLOW)
4426 return This::STATUS_OVERFLOW;
4427 it2 = got16_relocs.erase(it2);
4428 }
4429 else
4430 ++it2;
4431 }
4432
4433 // Resolve R_MIPS_LO16 relocation.
4434 Valtype32 x;
4435 if (!is_gp_disp)
4436 x = psymval->value(object, addend);
4437 else
4438 {
4439 // See the comment for R_MIPS16_HI16 above for the reason
4440 // for this conditional.
4441 Valtype32 gp_disp;
4442 if (r_type == elfcpp::R_MIPS16_LO16)
4443 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4444 else if (r_type == elfcpp::R_MICROMIPS_LO16
4445 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4446 gp_disp = target->adjusted_gp_value(object) - address + 3;
4447 else
4448 gp_disp = target->adjusted_gp_value(object) - address + 4;
4449 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4450 // for overflow. Relocations against _gp_disp are normally
4451 // generated from the .cpload pseudo-op. It generates code
4452 // that normally looks like this:
4453
4454 // lui $gp,%hi(_gp_disp)
4455 // addiu $gp,$gp,%lo(_gp_disp)
4456 // addu $gp,$gp,$t9
4457
4458 // Here $t9 holds the address of the function being called,
4459 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4460 // relocation can easily overflow in this situation, but the
4461 // R_MIPS_HI16 relocation will handle the overflow.
4462 // Therefore, we consider this a bug in the MIPS ABI, and do
4463 // not check for overflow here.
4464 x = gp_disp + addend;
4465 }
4466 val = Bits<32>::bit_select32(val, x, 0xffff);
4467 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4468 mips_reloc_shuffle(view, r_type, false);
4469 return This::STATUS_OKAY;
4470 }
4471
4472 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4473 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4474 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4475 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4476 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4477 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4478 static inline typename This::Status
4479 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4480 {
4481 mips_reloc_unshuffle(view, r_type, false);
4482 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4483 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4484 Valtype32 x = gp_offset;
4485 val = Bits<32>::bit_select32(val, x, 0xffff);
4486 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4487 mips_reloc_shuffle(view, r_type, false);
4488 return (Bits<16>::has_overflow32(x)
4489 ? This::STATUS_OVERFLOW
4490 : This::STATUS_OKAY);
4491 }
4492
4493 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4494 static inline typename This::Status
4495 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4496 const Mips_relobj<size, big_endian>* object,
4497 const Symbol_value<size>* psymval, Mips_address addend_a,
4498 bool extract_addend, unsigned int r_type)
4499 {
4500 mips_reloc_unshuffle(view, r_type, false);
4501 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4502 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4503 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4504
4505 // Find a GOT page entry that points to within 32KB of symbol + addend.
4506 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4507 unsigned int got_offset =
4508 target->got_section()->get_got_page_offset(value, object);
4509
4510 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4511 val = Bits<32>::bit_select32(val, x, 0xffff);
4512 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4513 mips_reloc_shuffle(view, r_type, false);
4514 return (Bits<16>::has_overflow32(x)
4515 ? This::STATUS_OVERFLOW
4516 : This::STATUS_OKAY);
4517 }
4518
4519 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4520 static inline typename This::Status
4521 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4522 const Mips_relobj<size, big_endian>* object,
4523 const Symbol_value<size>* psymval, Mips_address addend_a,
4524 bool extract_addend, bool local, unsigned int r_type)
4525 {
4526 mips_reloc_unshuffle(view, r_type, false);
4527 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4528 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4529 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4530
4531 // For a local symbol, find a GOT page entry that points to within 32KB of
4532 // symbol + addend. Relocation value is the offset of the GOT page entry's
4533 // value from symbol + addend.
4534 // For a global symbol, relocation value is addend.
4535 Valtype32 x;
4536 if (local)
4537 {
4538 // Find GOT page entry.
4539 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4540 & ~0xffff);
4541 target->got_section()->get_got_page_offset(value, object);
4542
4543 x = psymval->value(object, addend) - value;
4544 }
4545 else
4546 x = addend;
4547 val = Bits<32>::bit_select32(val, x, 0xffff);
4548 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4549 mips_reloc_shuffle(view, r_type, false);
4550 return (Bits<16>::has_overflow32(x)
4551 ? This::STATUS_OVERFLOW
4552 : This::STATUS_OKAY);
4553 }
4554
4555 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4556 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4557 static inline typename This::Status
4558 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4559 {
4560 mips_reloc_unshuffle(view, r_type, false);
4561 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4562 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4563 Valtype32 x = gp_offset;
4564 x = ((x + 0x8000) >> 16) & 0xffff;
4565 val = Bits<32>::bit_select32(val, x, 0xffff);
4566 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4567 mips_reloc_shuffle(view, r_type, false);
4568 return This::STATUS_OKAY;
4569 }
4570
4571 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4572 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4573 static inline typename This::Status
4574 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4575 {
4576 mips_reloc_unshuffle(view, r_type, false);
4577 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4578 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4579 Valtype32 x = gp_offset;
4580 val = Bits<32>::bit_select32(val, x, 0xffff);
4581 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4582 mips_reloc_shuffle(view, r_type, false);
4583 return This::STATUS_OKAY;
4584 }
4585
4586 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4587 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4588 static inline typename This::Status
4589 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4590 const Symbol_value<size>* psymval, Mips_address gp,
4591 Mips_address addend_a, bool extract_addend, bool local,
4592 unsigned int r_type)
4593 {
4594 mips_reloc_unshuffle(view, r_type, false);
4595 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4596 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4597
4598 Valtype32 addend;
4599 if (extract_addend)
4600 {
4601 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4602 addend = (val & 0x7f) << 2;
4603 else
4604 addend = val & 0xffff;
4605 // Only sign-extend the addend if it was extracted from the
4606 // instruction. If the addend was separate, leave it alone,
4607 // otherwise we may lose significant bits.
4608 addend = Bits<16>::sign_extend32(addend);
4609 }
4610 else
4611 addend = addend_a;
4612
4613 Valtype32 x = psymval->value(object, addend) - gp;
4614
4615 // If the symbol was local, any earlier relocatable links will
4616 // have adjusted its addend with the gp offset, so compensate
4617 // for that now. Don't do it for symbols forced local in this
4618 // link, though, since they won't have had the gp offset applied
4619 // to them before.
4620 if (local)
4621 x += object->gp_value();
4622
4623 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4624 val = Bits<32>::bit_select32(val, x, 0x7f);
4625 else
4626 val = Bits<32>::bit_select32(val, x, 0xffff);
4627 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4628 mips_reloc_shuffle(view, r_type, false);
4629 if (Bits<16>::has_overflow32(x))
4630 {
4631 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4632 "limit (see option -G)"));
4633 return This::STATUS_OVERFLOW;
4634 }
4635 return This::STATUS_OKAY;
4636 }
4637
4638 // R_MIPS_GPREL32
4639 static inline typename This::Status
4640 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4641 const Symbol_value<size>* psymval, Mips_address gp,
4642 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4643 {
4644 mips_reloc_unshuffle(view, r_type, false);
4645 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4646 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4647 Valtype32 addend = extract_addend ? val : addend_a;
4648
4649 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4650 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4651 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4652 mips_reloc_shuffle(view, r_type, false);
4653 return This::STATUS_OKAY;
4654 }
4655
4656 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4657 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4658 // R_MICROMIPS_TLS_DTPREL_HI16
4659 static inline typename This::Status
4660 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4661 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4662 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4663 {
4664 mips_reloc_unshuffle(view, r_type, false);
4665 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4666 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4667 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4668
4669 // tls symbol values are relative to tls_segment()->vaddr()
4670 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4671 val = Bits<32>::bit_select32(val, x, 0xffff);
4672 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4673 mips_reloc_shuffle(view, r_type, false);
4674 return This::STATUS_OKAY;
4675 }
4676
4677 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4678 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4679 // R_MICROMIPS_TLS_DTPREL_LO16,
4680 static inline typename This::Status
4681 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4682 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4683 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4684 {
4685 mips_reloc_unshuffle(view, r_type, false);
4686 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4687 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4688 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4689
4690 // tls symbol values are relative to tls_segment()->vaddr()
4691 Valtype32 x = psymval->value(object, addend) - tp_offset;
4692 val = Bits<32>::bit_select32(val, x, 0xffff);
4693 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4694 mips_reloc_shuffle(view, r_type, false);
4695 return This::STATUS_OKAY;
4696 }
4697
4698 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4699 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4700 static inline typename This::Status
4701 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4702 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4703 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4704 {
4705 mips_reloc_unshuffle(view, r_type, false);
4706 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4707 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4708 Valtype32 addend = extract_addend ? val : addend_a;
4709
4710 // tls symbol values are relative to tls_segment()->vaddr()
4711 Valtype32 x = psymval->value(object, addend) - tp_offset;
4712 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4713 mips_reloc_shuffle(view, r_type, false);
4714 return This::STATUS_OKAY;
4715 }
4716
4717 // R_MIPS_SUB, R_MICROMIPS_SUB
4718 static inline typename This::Status
4719 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4720 const Symbol_value<size>* psymval, Mips_address addend_a,
4721 bool extract_addend, unsigned int r_type)
4722 {
4723 mips_reloc_unshuffle(view, r_type, false);
4724 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4725 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4726 Valtype32 addend = extract_addend ? val : addend_a;
4727
4728 Valtype32 x = psymval->value(object, -addend);
4729 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4730 mips_reloc_shuffle(view, r_type, false);
4731 return This::STATUS_OKAY;
4732 }
4733};
4734
4735template<int size, bool big_endian>
4736typename std::list<reloc_high<size, big_endian> >
4737 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4738
4739template<int size, bool big_endian>
4740typename std::list<reloc_high<size, big_endian> >
4741 Mips_relocate_functions<size, big_endian>::got16_relocs;
4742
4743// Mips_got_info methods.
4744
4745// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4746// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4747
4748template<int size, bool big_endian>
4749void
4750Mips_got_info<size, big_endian>::record_local_got_symbol(
4751 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4752 Mips_address addend, unsigned int r_type, unsigned int shndx)
4753{
4754 Mips_got_entry<size, big_endian>* entry =
4755 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4756 mips_elf_reloc_tls_type(r_type),
4757 shndx);
4758 this->record_got_entry(entry, object);
4759}
4760
4761// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4762// in OBJECT. FOR_CALL is true if the caller is only interested in
4763// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4764// relocation.
4765
4766template<int size, bool big_endian>
4767void
4768Mips_got_info<size, big_endian>::record_global_got_symbol(
4769 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4770 unsigned int r_type, bool dyn_reloc, bool for_call)
4771{
4772 if (!for_call)
4773 mips_sym->set_got_not_only_for_calls();
4774
4775 // A global symbol in the GOT must also be in the dynamic symbol table.
4776 if (!mips_sym->needs_dynsym_entry())
4777 {
4778 switch (mips_sym->visibility())
4779 {
4780 case elfcpp::STV_INTERNAL:
4781 case elfcpp::STV_HIDDEN:
4782 mips_sym->set_is_forced_local();
4783 break;
4784 default:
4785 mips_sym->set_needs_dynsym_entry();
4786 break;
4787 }
4788 }
4789
4790 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4791 if (tls_type == GOT_TLS_NONE)
4792 this->global_got_symbols_.insert(mips_sym);
4793
4794 if (dyn_reloc)
4795 {
4796 if (mips_sym->global_got_area() == GGA_NONE)
4797 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4798 return;
4799 }
4800
4801 Mips_got_entry<size, big_endian>* entry =
4802 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4803
4804 this->record_got_entry(entry, object);
4805}
4806
4807// Add ENTRY to master GOT and to OBJECT's GOT.
4808
4809template<int size, bool big_endian>
4810void
4811Mips_got_info<size, big_endian>::record_got_entry(
4812 Mips_got_entry<size, big_endian>* entry,
4813 Mips_relobj<size, big_endian>* object)
4814{
4815 if (this->got_entries_.find(entry) == this->got_entries_.end())
4816 this->got_entries_.insert(entry);
4817
4818 // Create the GOT entry for the OBJECT's GOT.
4819 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4820 Mips_got_entry<size, big_endian>* entry2 =
4821 new Mips_got_entry<size, big_endian>(*entry);
4822
4823 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4824 g->got_entries_.insert(entry2);
4825}
4826
4827// Record that OBJECT has a page relocation against symbol SYMNDX and
4828// that ADDEND is the addend for that relocation.
4829// This function creates an upper bound on the number of GOT slots
4830// required; no attempt is made to combine references to non-overridable
4831// global symbols across multiple input files.
4832
4833template<int size, bool big_endian>
4834void
4835Mips_got_info<size, big_endian>::record_got_page_entry(
4836 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4837{
4838 struct Got_page_range **range_ptr, *range;
4839 int old_pages, new_pages;
4840
4841 // Find the Got_page_entry for this symbol.
4842 Got_page_entry* entry = new Got_page_entry(object, symndx);
4843 typename Got_page_entry_set::iterator it =
4844 this->got_page_entries_.find(entry);
4845 if (it != this->got_page_entries_.end())
4846 entry = *it;
4847 else
4848 this->got_page_entries_.insert(entry);
4849
4850 // Add the same entry to the OBJECT's GOT.
4851 Got_page_entry* entry2 = NULL;
4852 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4853 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4854 {
4855 entry2 = new Got_page_entry(*entry);
4856 g2->got_page_entries_.insert(entry2);
4857 }
4858
4859 // Skip over ranges whose maximum extent cannot share a page entry
4860 // with ADDEND.
4861 range_ptr = &entry->ranges;
4862 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4863 range_ptr = &(*range_ptr)->next;
4864
4865 // If we scanned to the end of the list, or found a range whose
4866 // minimum extent cannot share a page entry with ADDEND, create
4867 // a new singleton range.
4868 range = *range_ptr;
4869 if (!range || addend < range->min_addend - 0xffff)
4870 {
4871 range = new Got_page_range();
4872 range->next = *range_ptr;
4873 range->min_addend = addend;
4874 range->max_addend = addend;
4875
4876 *range_ptr = range;
4877 ++entry->num_pages;
4878 if (entry2 != NULL)
4879 ++entry2->num_pages;
4880 ++this->page_gotno_;
4881 ++g2->page_gotno_;
4882 return;
4883 }
4884
4885 // Remember how many pages the old range contributed.
4886 old_pages = range->get_max_pages();
4887
4888 // Update the ranges.
4889 if (addend < range->min_addend)
4890 range->min_addend = addend;
4891 else if (addend > range->max_addend)
4892 {
4893 if (range->next && addend >= range->next->min_addend - 0xffff)
4894 {
4895 old_pages += range->next->get_max_pages();
4896 range->max_addend = range->next->max_addend;
4897 range->next = range->next->next;
4898 }
4899 else
4900 range->max_addend = addend;
4901 }
4902
4903 // Record any change in the total estimate.
4904 new_pages = range->get_max_pages();
4905 if (old_pages != new_pages)
4906 {
4907 entry->num_pages += new_pages - old_pages;
4908 if (entry2 != NULL)
4909 entry2->num_pages += new_pages - old_pages;
4910 this->page_gotno_ += new_pages - old_pages;
4911 g2->page_gotno_ += new_pages - old_pages;
4912 }
4913}
4914
4915// Create all entries that should be in the local part of the GOT.
4916
4917template<int size, bool big_endian>
4918void
4919Mips_got_info<size, big_endian>::add_local_entries(
4920 Target_mips<size, big_endian>* target, Layout* layout)
4921{
4922 Mips_output_data_got<size, big_endian>* got = target->got_section();
4923 // First two GOT entries are reserved. The first entry will be filled at
4924 // runtime. The second entry will be used by some runtime loaders.
4925 got->add_constant(0);
4926 got->add_constant(target->mips_elf_gnu_got1_mask());
4927
4928 for (typename Got_entry_set::iterator
4929 p = this->got_entries_.begin();
4930 p != this->got_entries_.end();
4931 ++p)
4932 {
4933 Mips_got_entry<size, big_endian>* entry = *p;
4934 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4935 {
4936 got->add_local(entry->object(), entry->symndx(),
4937 GOT_TYPE_STANDARD);
4938 unsigned int got_offset = entry->object()->local_got_offset(
4939 entry->symndx(), GOT_TYPE_STANDARD);
4940 if (got->multi_got() && this->index_ > 0
4941 && parameters->options().output_is_position_independent())
4942 target->rel_dyn_section(layout)->add_local(entry->object(),
4943 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4944 }
4945 }
4946
4947 this->add_page_entries(target, layout);
4948
4949 // Add global entries that should be in the local area.
4950 for (typename Got_entry_set::iterator
4951 p = this->got_entries_.begin();
4952 p != this->got_entries_.end();
4953 ++p)
4954 {
4955 Mips_got_entry<size, big_endian>* entry = *p;
4956 if (!entry->is_for_global_symbol())
4957 continue;
4958
4959 Mips_symbol<size>* mips_sym = entry->sym();
4960 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4961 {
4962 unsigned int got_type;
4963 if (!got->multi_got())
4964 got_type = GOT_TYPE_STANDARD;
4965 else
4966 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4967 if (got->add_global(mips_sym, got_type))
4968 {
4969 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4970 if (got->multi_got() && this->index_ > 0
4971 && parameters->options().output_is_position_independent())
4972 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4973 mips_sym, elfcpp::R_MIPS_REL32, got,
4974 mips_sym->got_offset(got_type));
4975 }
4976 }
4977 }
4978}
4979
4980// Create GOT page entries.
4981
4982template<int size, bool big_endian>
4983void
4984Mips_got_info<size, big_endian>::add_page_entries(
4985 Target_mips<size, big_endian>* target, Layout* layout)
4986{
4987 if (this->page_gotno_ == 0)
4988 return;
4989
4990 Mips_output_data_got<size, big_endian>* got = target->got_section();
4991 this->got_page_offset_start_ = got->add_constant(0);
4992 if (got->multi_got() && this->index_ > 0
4993 && parameters->options().output_is_position_independent())
4994 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4995 this->got_page_offset_start_);
4996 int num_entries = this->page_gotno_;
4997 unsigned int prev_offset = this->got_page_offset_start_;
4998 while (--num_entries > 0)
4999 {
5000 unsigned int next_offset = got->add_constant(0);
5001 if (got->multi_got() && this->index_ > 0
5002 && parameters->options().output_is_position_independent())
5003 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5004 next_offset);
5005 gold_assert(next_offset == prev_offset + size/8);
5006 prev_offset = next_offset;
5007 }
5008 this->got_page_offset_next_ = this->got_page_offset_start_;
5009}
5010
5011// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5012
5013template<int size, bool big_endian>
5014void
5015Mips_got_info<size, big_endian>::add_global_entries(
5016 Target_mips<size, big_endian>* target, Layout* layout,
5017 unsigned int non_reloc_only_global_gotno)
5018{
5019 Mips_output_data_got<size, big_endian>* got = target->got_section();
5020 // Add GGA_NORMAL entries.
5021 unsigned int count = 0;
5022 for (typename Got_entry_set::iterator
5023 p = this->got_entries_.begin();
5024 p != this->got_entries_.end();
5025 ++p)
5026 {
5027 Mips_got_entry<size, big_endian>* entry = *p;
5028 if (!entry->is_for_global_symbol())
5029 continue;
5030
5031 Mips_symbol<size>* mips_sym = entry->sym();
5032 if (mips_sym->global_got_area() != GGA_NORMAL)
5033 continue;
5034
5035 unsigned int got_type;
5036 if (!got->multi_got())
5037 got_type = GOT_TYPE_STANDARD;
5038 else
5039 // In multi-GOT links, global symbol can be in both primary and
5040 // secondary GOT(s). By creating custom GOT type
5041 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5042 // is added to secondary GOT(s).
5043 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5044 if (!got->add_global(mips_sym, got_type))
5045 continue;
5046
5047 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5048 if (got->multi_got() && this->index_ == 0)
5049 count++;
5050 if (got->multi_got() && this->index_ > 0)
5051 {
5052 if (parameters->options().output_is_position_independent()
5053 || (!parameters->doing_static_link()
5054 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5055 {
5056 target->rel_dyn_section(layout)->add_global(
5057 mips_sym, elfcpp::R_MIPS_REL32, got,
5058 mips_sym->got_offset(got_type));
5059 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5060 elfcpp::R_MIPS_REL32, mips_sym);
5061 }
5062 }
5063 }
5064
5065 if (!got->multi_got() || this->index_ == 0)
5066 {
5067 if (got->multi_got())
5068 {
5069 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5070 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5071 // entries correspond to dynamic symbol indexes.
5072 while (count < non_reloc_only_global_gotno)
5073 {
5074 got->add_constant(0);
5075 ++count;
5076 }
5077 }
5078
5079 // Add GGA_RELOC_ONLY entries.
5080 got->add_reloc_only_entries();
5081 }
5082}
5083
5084// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5085
5086template<int size, bool big_endian>
5087void
5088Mips_got_info<size, big_endian>::add_reloc_only_entries(
5089 Mips_output_data_got<size, big_endian>* got)
5090{
5091 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5092 p = this->global_got_symbols_.begin();
5093 p != this->global_got_symbols_.end();
5094 ++p)
5095 {
5096 Mips_symbol<size>* mips_sym = *p;
5097 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5098 {
5099 unsigned int got_type;
5100 if (!got->multi_got())
5101 got_type = GOT_TYPE_STANDARD;
5102 else
5103 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5104 if (got->add_global(mips_sym, got_type))
5105 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5106 }
5107 }
5108}
5109
5110// Create TLS GOT entries.
5111
5112template<int size, bool big_endian>
5113void
5114Mips_got_info<size, big_endian>::add_tls_entries(
5115 Target_mips<size, big_endian>* target, Layout* layout)
5116{
5117 Mips_output_data_got<size, big_endian>* got = target->got_section();
5118 // Add local tls entries.
5119 for (typename Got_entry_set::iterator
5120 p = this->got_entries_.begin();
5121 p != this->got_entries_.end();
5122 ++p)
5123 {
5124 Mips_got_entry<size, big_endian>* entry = *p;
5125 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5126 continue;
5127
5128 if (entry->tls_type() == GOT_TLS_GD)
5129 {
5130 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5131 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5132 : elfcpp::R_MIPS_TLS_DTPMOD64);
5133 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5134 : elfcpp::R_MIPS_TLS_DTPREL64);
5135
5136 if (!parameters->doing_static_link())
5137 {
5138 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5139 entry->shndx(), got_type,
5140 target->rel_dyn_section(layout),
5141 r_type1);
5142 unsigned int got_offset =
5143 entry->object()->local_got_offset(entry->symndx(), got_type);
5144 got->add_static_reloc(got_offset + size/8, r_type2,
5145 entry->object(), entry->symndx());
5146 }
5147 else
5148 {
5149 // We are doing a static link. Mark it as belong to module 1,
5150 // the executable.
5151 unsigned int got_offset = got->add_constant(1);
5152 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5153 got_offset);
5154 got->add_constant(0);
5155 got->add_static_reloc(got_offset + size/8, r_type2,
5156 entry->object(), entry->symndx());
5157 }
5158 }
5159 else if (entry->tls_type() == GOT_TLS_IE)
5160 {
5161 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5162 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5163 : elfcpp::R_MIPS_TLS_TPREL64);
5164 if (!parameters->doing_static_link())
5165 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5166 target->rel_dyn_section(layout), r_type);
5167 else
5168 {
5169 got->add_local(entry->object(), entry->symndx(), got_type);
5170 unsigned int got_offset =
5171 entry->object()->local_got_offset(entry->symndx(), got_type);
5172 got->add_static_reloc(got_offset, r_type, entry->object(),
5173 entry->symndx());
5174 }
5175 }
5176 else if (entry->tls_type() == GOT_TLS_LDM)
5177 {
5178 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5179 : elfcpp::R_MIPS_TLS_DTPMOD64);
5180 unsigned int got_offset;
5181 if (!parameters->doing_static_link())
5182 {
5183 got_offset = got->add_constant(0);
5184 target->rel_dyn_section(layout)->add_local(
5185 entry->object(), 0, r_type, got, got_offset);
5186 }
5187 else
5188 // We are doing a static link. Just mark it as belong to module 1,
5189 // the executable.
5190 got_offset = got->add_constant(1);
5191
5192 got->add_constant(0);
5193 got->set_tls_ldm_offset(got_offset, entry->object());
5194 }
5195 else
5196 gold_unreachable();
5197 }
5198
5199 // Add global tls entries.
5200 for (typename Got_entry_set::iterator
5201 p = this->got_entries_.begin();
5202 p != this->got_entries_.end();
5203 ++p)
5204 {
5205 Mips_got_entry<size, big_endian>* entry = *p;
5206 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5207 continue;
5208
5209 Mips_symbol<size>* mips_sym = entry->sym();
5210 if (entry->tls_type() == GOT_TLS_GD)
5211 {
5212 unsigned int got_type;
5213 if (!got->multi_got())
5214 got_type = GOT_TYPE_TLS_PAIR;
5215 else
5216 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5217 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5218 : elfcpp::R_MIPS_TLS_DTPMOD64);
5219 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5220 : elfcpp::R_MIPS_TLS_DTPREL64);
5221 if (!parameters->doing_static_link())
5222 got->add_global_pair_with_rel(mips_sym, got_type,
5223 target->rel_dyn_section(layout), r_type1, r_type2);
5224 else
5225 {
5226 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5227 // GOT entries. The first one is initialized to be 1, which is the
5228 // module index for the main executable and the second one 0. A
5229 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5230 // the second GOT entry and will be applied by gold.
5231 unsigned int got_offset = got->add_constant(1);
5232 mips_sym->set_got_offset(got_type, got_offset);
5233 got->add_constant(0);
5234 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5235 }
5236 }
5237 else if (entry->tls_type() == GOT_TLS_IE)
5238 {
5239 unsigned int got_type;
5240 if (!got->multi_got())
5241 got_type = GOT_TYPE_TLS_OFFSET;
5242 else
5243 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5244 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5245 : elfcpp::R_MIPS_TLS_TPREL64);
5246 if (!parameters->doing_static_link())
5247 got->add_global_with_rel(mips_sym, got_type,
5248 target->rel_dyn_section(layout), r_type);
5249 else
5250 {
5251 got->add_global(mips_sym, got_type);
5252 unsigned int got_offset = mips_sym->got_offset(got_type);
5253 got->add_static_reloc(got_offset, r_type, mips_sym);
5254 }
5255 }
5256 else
5257 gold_unreachable();
5258 }
5259}
5260
5261// Decide whether the symbol needs an entry in the global part of the primary
5262// GOT, setting global_got_area accordingly. Count the number of global
5263// symbols that are in the primary GOT only because they have dynamic
5264// relocations R_MIPS_REL32 against them (reloc_only_gotno).
5265
5266template<int size, bool big_endian>
5267void
5268Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5269{
5270 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5271 p = this->global_got_symbols_.begin();
5272 p != this->global_got_symbols_.end();
5273 ++p)
5274 {
5275 Mips_symbol<size>* sym = *p;
5276 // Make a final decision about whether the symbol belongs in the
5277 // local or global GOT. Symbols that bind locally can (and in the
5278 // case of forced-local symbols, must) live in the local GOT.
5279 // Those that are aren't in the dynamic symbol table must also
5280 // live in the local GOT.
5281
5282 if (!sym->should_add_dynsym_entry(symtab)
5283 || (sym->got_only_for_calls()
5284 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5285 : symbol_references_local(sym,
5286 sym->should_add_dynsym_entry(symtab))))
5287 // The symbol belongs in the local GOT. We no longer need this
5288 // entry if it was only used for relocations; those relocations
5289 // will be against the null or section symbol instead.
5290 sym->set_global_got_area(GGA_NONE);
5291 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5292 {
5293 ++this->reloc_only_gotno_;
5294 ++this->global_gotno_ ;
5295 }
5296 }
5297}
5298
5299// Return the offset of GOT page entry for VALUE. Initialize the entry with
5300// VALUE if it is not initialized.
5301
5302template<int size, bool big_endian>
5303unsigned int
5304Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5305 Mips_output_data_got<size, big_endian>* got)
5306{
5307 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5308 if (it != this->got_page_offsets_.end())
5309 return it->second;
5310
5311 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5312 + (size/8) * this->page_gotno_);
5313
5314 unsigned int got_offset = this->got_page_offset_next_;
5315 this->got_page_offsets_[value] = got_offset;
5316 this->got_page_offset_next_ += size/8;
5317 got->update_got_entry(got_offset, value);
5318 return got_offset;
5319}
5320
5321// Remove lazy-binding stubs for global symbols in this GOT.
5322
5323template<int size, bool big_endian>
5324void
5325Mips_got_info<size, big_endian>::remove_lazy_stubs(
5326 Target_mips<size, big_endian>* target)
5327{
5328 for (typename Got_entry_set::iterator
5329 p = this->got_entries_.begin();
5330 p != this->got_entries_.end();
5331 ++p)
5332 {
5333 Mips_got_entry<size, big_endian>* entry = *p;
5334 if (entry->is_for_global_symbol())
5335 target->remove_lazy_stub_entry(entry->sym());
5336 }
5337}
5338
5339// Count the number of GOT entries required.
5340
5341template<int size, bool big_endian>
5342void
5343Mips_got_info<size, big_endian>::count_got_entries()
5344{
5345 for (typename Got_entry_set::iterator
5346 p = this->got_entries_.begin();
5347 p != this->got_entries_.end();
5348 ++p)
5349 {
5350 this->count_got_entry(*p);
5351 }
5352}
5353
5354// Count the number of GOT entries required by ENTRY. Accumulate the result.
5355
5356template<int size, bool big_endian>
5357void
5358Mips_got_info<size, big_endian>::count_got_entry(
5359 Mips_got_entry<size, big_endian>* entry)
5360{
5361 if (entry->is_tls_entry())
5362 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5363 else if (entry->is_for_local_symbol()
5364 || entry->sym()->global_got_area() == GGA_NONE)
5365 ++this->local_gotno_;
5366 else
5367 ++this->global_gotno_;
5368}
5369
5370// Add FROM's GOT entries.
5371
5372template<int size, bool big_endian>
5373void
5374Mips_got_info<size, big_endian>::add_got_entries(
5375 Mips_got_info<size, big_endian>* from)
5376{
5377 for (typename Got_entry_set::iterator
5378 p = from->got_entries_.begin();
5379 p != from->got_entries_.end();
5380 ++p)
5381 {
5382 Mips_got_entry<size, big_endian>* entry = *p;
5383 if (this->got_entries_.find(entry) == this->got_entries_.end())
5384 {
5385 Mips_got_entry<size, big_endian>* entry2 =
5386 new Mips_got_entry<size, big_endian>(*entry);
5387 this->got_entries_.insert(entry2);
5388 this->count_got_entry(entry);
5389 }
5390 }
5391}
5392
5393// Add FROM's GOT page entries.
5394
5395template<int size, bool big_endian>
5396void
5397Mips_got_info<size, big_endian>::add_got_page_entries(
5398 Mips_got_info<size, big_endian>* from)
5399{
5400 for (typename Got_page_entry_set::iterator
5401 p = from->got_page_entries_.begin();
5402 p != from->got_page_entries_.end();
5403 ++p)
5404 {
5405 Got_page_entry* entry = *p;
5406 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5407 {
5408 Got_page_entry* entry2 = new Got_page_entry(*entry);
5409 this->got_page_entries_.insert(entry2);
5410 this->page_gotno_ += entry->num_pages;
5411 }
5412 }
5413}
5414
5415// Mips_output_data_got methods.
5416
5417// Lay out the GOT. Add local, global and TLS entries. If GOT is
5418// larger than 64K, create multi-GOT.
5419
5420template<int size, bool big_endian>
5421void
5422Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5423 Symbol_table* symtab, const Input_objects* input_objects)
5424{
5425 // Decide which symbols need to go in the global part of the GOT and
5426 // count the number of reloc-only GOT symbols.
5427 this->master_got_info_->count_got_symbols(symtab);
5428
5429 // Count the number of GOT entries.
5430 this->master_got_info_->count_got_entries();
5431
5432 unsigned int got_size = this->master_got_info_->got_size();
5433 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5434 this->lay_out_multi_got(layout, input_objects);
5435 else
5436 {
5437 // Record that all objects use single GOT.
5438 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5439 p != input_objects->relobj_end();
5440 ++p)
5441 {
5442 Mips_relobj<size, big_endian>* object =
5443 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5444 if (object->get_got_info() != NULL)
5445 object->set_got_info(this->master_got_info_);
5446 }
5447
5448 this->master_got_info_->add_local_entries(this->target_, layout);
5449 this->master_got_info_->add_global_entries(this->target_, layout,
5450 /*not used*/-1U);
5451 this->master_got_info_->add_tls_entries(this->target_, layout);
5452 }
5453}
5454
5455// Create multi-GOT. For every GOT, add local, global and TLS entries.
5456
5457template<int size, bool big_endian>
5458void
5459Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5460 const Input_objects* input_objects)
5461{
5462 // Try to merge the GOTs of input objects together, as long as they
5463 // don't seem to exceed the maximum GOT size, choosing one of them
5464 // to be the primary GOT.
5465 this->merge_gots(input_objects);
5466
5467 // Every symbol that is referenced in a dynamic relocation must be
5468 // present in the primary GOT.
5469 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5470
5471 // Add GOT entries.
5472 unsigned int i = 0;
5473 unsigned int offset = 0;
5474 Mips_got_info<size, big_endian>* g = this->primary_got_;
5475 do
5476 {
5477 g->set_index(i);
5478 g->set_offset(offset);
5479
5480 g->add_local_entries(this->target_, layout);
5481 if (i == 0)
5482 g->add_global_entries(this->target_, layout,
5483 (this->master_got_info_->global_gotno()
5484 - this->master_got_info_->reloc_only_gotno()));
5485 else
5486 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5487 g->add_tls_entries(this->target_, layout);
5488
5489 // Forbid global symbols in every non-primary GOT from having
5490 // lazy-binding stubs.
5491 if (i > 0)
5492 g->remove_lazy_stubs(this->target_);
5493
5494 ++i;
5495 offset += g->got_size();
5496 g = g->next();
5497 }
5498 while (g);
5499}
5500
5501// Attempt to merge GOTs of different input objects. Try to use as much as
5502// possible of the primary GOT, since it doesn't require explicit dynamic
5503// relocations, but don't use objects that would reference global symbols
5504// out of the addressable range. Failing the primary GOT, attempt to merge
5505// with the current GOT, or finish the current GOT and then make make the new
5506// GOT current.
5507
5508template<int size, bool big_endian>
5509void
5510Mips_output_data_got<size, big_endian>::merge_gots(
5511 const Input_objects* input_objects)
5512{
5513 gold_assert(this->primary_got_ == NULL);
5514 Mips_got_info<size, big_endian>* current = NULL;
5515
5516 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5517 p != input_objects->relobj_end();
5518 ++p)
5519 {
5520 Mips_relobj<size, big_endian>* object =
5521 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5522
5523 Mips_got_info<size, big_endian>* g = object->get_got_info();
5524 if (g == NULL)
5525 continue;
5526
5527 g->count_got_entries();
5528
5529 // Work out the number of page, local and TLS entries.
5530 unsigned int estimate = this->master_got_info_->page_gotno();
5531 if (estimate > g->page_gotno())
5532 estimate = g->page_gotno();
5533 estimate += g->local_gotno() + g->tls_gotno();
5534
5535 // We place TLS GOT entries after both locals and globals. The globals
5536 // for the primary GOT may overflow the normal GOT size limit, so be
5537 // sure not to merge a GOT which requires TLS with the primary GOT in that
5538 // case. This doesn't affect non-primary GOTs.
5539 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5540 : g->global_gotno());
5541
5542 unsigned int max_count =
5543 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5544 if (estimate <= max_count)
5545 {
5546 // If we don't have a primary GOT, use it as
5547 // a starting point for the primary GOT.
5548 if (!this->primary_got_)
5549 {
5550 this->primary_got_ = g;
5551 continue;
5552 }
5553
5554 // Try merging with the primary GOT.
5555 if (this->merge_got_with(g, object, this->primary_got_))
5556 continue;
5557 }
5558
5559 // If we can merge with the last-created GOT, do it.
5560 if (current && this->merge_got_with(g, object, current))
5561 continue;
5562
5563 // Well, we couldn't merge, so create a new GOT. Don't check if it
5564 // fits; if it turns out that it doesn't, we'll get relocation
5565 // overflows anyway.
5566 g->set_next(current);
5567 current = g;
5568 }
5569
5570 // If we do not find any suitable primary GOT, create an empty one.
5571 if (this->primary_got_ == NULL)
5572 this->primary_got_ = new Mips_got_info<size, big_endian>();
5573
5574 // Link primary GOT with secondary GOTs.
5575 this->primary_got_->set_next(current);
5576}
5577
5578// Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5579// this would lead to overflow, true if they were merged successfully.
5580
5581template<int size, bool big_endian>
5582bool
5583Mips_output_data_got<size, big_endian>::merge_got_with(
5584 Mips_got_info<size, big_endian>* from,
5585 Mips_relobj<size, big_endian>* object,
5586 Mips_got_info<size, big_endian>* to)
5587{
5588 // Work out how many page entries we would need for the combined GOT.
5589 unsigned int estimate = this->master_got_info_->page_gotno();
5590 if (estimate >= from->page_gotno() + to->page_gotno())
5591 estimate = from->page_gotno() + to->page_gotno();
5592
5593 // Conservatively estimate how many local and TLS entries would be needed.
5594 estimate += from->local_gotno() + to->local_gotno();
5595 estimate += from->tls_gotno() + to->tls_gotno();
5596
5597 // If we're merging with the primary got, any TLS relocations will
5598 // come after the full set of global entries. Otherwise estimate those
5599 // conservatively as well.
5600 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5601 estimate += this->master_got_info_->global_gotno();
5602 else
5603 estimate += from->global_gotno() + to->global_gotno();
5604
5605 // Bail out if the combined GOT might be too big.
5606 unsigned int max_count =
5607 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5608 if (estimate > max_count)
5609 return false;
5610
5611 // Transfer the object's GOT information from FROM to TO.
5612 to->add_got_entries(from);
5613 to->add_got_page_entries(from);
5614
5615 // Record that OBJECT should use output GOT TO.
5616 object->set_got_info(to);
5617
5618 return true;
5619}
5620
5621// Write out the GOT.
5622
5623template<int size, bool big_endian>
5624void
5625Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5626{
5627 // Call parent to write out GOT.
5628 Output_data_got<size, big_endian>::do_write(of);
5629
5630 const off_t offset = this->offset();
5631 const section_size_type oview_size =
5632 convert_to_section_size_type(this->data_size());
5633 unsigned char* const oview = of->get_output_view(offset, oview_size);
5634
5635 // Needed for fixing values of .got section.
5636 this->got_view_ = oview;
5637
5638 // Write lazy stub addresses.
5639 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5640 p = this->master_got_info_->global_got_symbols().begin();
5641 p != this->master_got_info_->global_got_symbols().end();
5642 ++p)
5643 {
5644 Mips_symbol<size>* mips_sym = *p;
5645 if (mips_sym->has_lazy_stub())
5646 {
5647 Valtype* wv = reinterpret_cast<Valtype*>(
5648 oview + this->get_primary_got_offset(mips_sym));
5649 Valtype value =
5650 this->target_->mips_stubs_section()->stub_address(mips_sym);
5651 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5652 }
5653 }
5654
5655 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5656 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5657 p = this->master_got_info_->global_got_symbols().begin();
5658 p != this->master_got_info_->global_got_symbols().end();
5659 ++p)
5660 {
5661 Mips_symbol<size>* mips_sym = *p;
5662 if (!this->multi_got()
5663 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5664 && mips_sym->global_got_area() == GGA_NONE
5665 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5666 {
5667 Valtype* wv = reinterpret_cast<Valtype*>(
5668 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5669 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5670 if (value != 0)
5671 {
5672 value |= 1;
5673 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5674 }
5675 }
5676 }
5677
5678 if (!this->secondary_got_relocs_.empty())
5679 {
5680 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5681 // secondary GOT entries with non-zero initial value copy the value
5682 // to the corresponding primary GOT entry, and set the secondary GOT
5683 // entry to zero.
5684 // TODO(sasa): This is workaround. It needs to be investigated further.
5685
5686 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5687 {
5688 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5689 if (reloc.symbol_is_global())
5690 {
5691 Mips_symbol<size>* gsym = reloc.symbol();
5692 gold_assert(gsym != NULL);
5693
5694 unsigned got_offset = reloc.got_offset();
5695 gold_assert(got_offset < oview_size);
5696
5697 // Find primary GOT entry.
5698 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5699 oview + this->get_primary_got_offset(gsym));
5700
5701 // Find secondary GOT entry.
5702 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5703
5704 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5705 if (value != 0)
5706 {
5707 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5708 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5709 gsym->set_applied_secondary_got_fixup();
5710 }
5711 }
5712 }
5713
5714 of->write_output_view(offset, oview_size, oview);
5715 }
5716
5717 // We are done if there is no fix up.
5718 if (this->static_relocs_.empty())
5719 return;
5720
5721 Output_segment* tls_segment = this->layout_->tls_segment();
5722 gold_assert(tls_segment != NULL);
5723
5724 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5725 {
5726 Static_reloc& reloc(this->static_relocs_[i]);
5727
5728 Mips_address value;
5729 if (!reloc.symbol_is_global())
5730 {
5731 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5732 const Symbol_value<size>* psymval =
5733 object->local_symbol(reloc.index());
5734
5735 // We are doing static linking. Issue an error and skip this
5736 // relocation if the symbol is undefined or in a discarded_section.
5737 bool is_ordinary;
5738 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5739 if ((shndx == elfcpp::SHN_UNDEF)
5740 || (is_ordinary
5741 && shndx != elfcpp::SHN_UNDEF
5742 && !object->is_section_included(shndx)
5743 && !this->symbol_table_->is_section_folded(object, shndx)))
5744 {
5745 gold_error(_("undefined or discarded local symbol %u from "
5746 " object %s in GOT"),
5747 reloc.index(), reloc.relobj()->name().c_str());
5748 continue;
5749 }
5750
5751 value = psymval->value(object, 0);
5752 }
5753 else
5754 {
5755 const Mips_symbol<size>* gsym = reloc.symbol();
5756 gold_assert(gsym != NULL);
5757
5758 // We are doing static linking. Issue an error and skip this
5759 // relocation if the symbol is undefined or in a discarded_section
5760 // unless it is a weakly_undefined symbol.
5761 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5762 && !gsym->is_weak_undefined())
5763 {
5764 gold_error(_("undefined or discarded symbol %s in GOT"),
5765 gsym->name());
5766 continue;
5767 }
5768
5769 if (!gsym->is_weak_undefined())
5770 value = gsym->value();
5771 else
5772 value = 0;
5773 }
5774
5775 unsigned got_offset = reloc.got_offset();
5776 gold_assert(got_offset < oview_size);
5777
5778 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5779 Valtype x;
5780
5781 switch (reloc.r_type())
5782 {
5783 case elfcpp::R_MIPS_TLS_DTPMOD32:
5784 case elfcpp::R_MIPS_TLS_DTPMOD64:
5785 x = value;
5786 break;
5787 case elfcpp::R_MIPS_TLS_DTPREL32:
5788 case elfcpp::R_MIPS_TLS_DTPREL64:
5789 x = value - elfcpp::DTP_OFFSET;
5790 break;
5791 case elfcpp::R_MIPS_TLS_TPREL32:
5792 case elfcpp::R_MIPS_TLS_TPREL64:
5793 x = value - elfcpp::TP_OFFSET;
5794 break;
5795 default:
5796 gold_unreachable();
5797 break;
5798 }
5799
5800 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5801 }
5802
5803 of->write_output_view(offset, oview_size, oview);
5804}
5805
5806// Mips_relobj methods.
5807
5808// Count the local symbols. The Mips backend needs to know if a symbol
5809// is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5810// because the Symbol object keeps the ELF symbol type and st_other field.
5811// For local symbol it is harder because we cannot access this information.
5812// So we override the do_count_local_symbol in parent and scan local symbols to
5813// mark MIPS16 and microMIPS functions. This is not the most efficient way but
5814// I do not want to slow down other ports by calling a per symbol target hook
5815// inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5816
5817template<int size, bool big_endian>
5818void
5819Mips_relobj<size, big_endian>::do_count_local_symbols(
5820 Stringpool_template<char>* pool,
5821 Stringpool_template<char>* dynpool)
5822{
5823 // Ask parent to count the local symbols.
5824 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5825 const unsigned int loccount = this->local_symbol_count();
5826 if (loccount == 0)
5827 return;
5828
5829 // Initialize the mips16 and micromips function bit-vector.
5830 this->local_symbol_is_mips16_.resize(loccount, false);
5831 this->local_symbol_is_micromips_.resize(loccount, false);
5832
5833 // Read the symbol table section header.
5834 const unsigned int symtab_shndx = this->symtab_shndx();
5835 elfcpp::Shdr<size, big_endian>
5836 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5837 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5838
5839 // Read the local symbols.
5840 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5841 gold_assert(loccount == symtabshdr.get_sh_info());
5842 off_t locsize = loccount * sym_size;
5843 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5844 locsize, true, true);
5845
5846 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5847
5848 // Skip the first dummy symbol.
5849 psyms += sym_size;
5850 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5851 {
5852 elfcpp::Sym<size, big_endian> sym(psyms);
5853 unsigned char st_other = sym.get_st_other();
5854 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5855 this->local_symbol_is_micromips_[i] =
5856 elfcpp::elf_st_is_micromips(st_other);
5857 }
5858}
5859
5860// Read the symbol information.
5861
5862template<int size, bool big_endian>
5863void
5864Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5865{
5866 // Call parent class to read symbol information.
f35c4853 5867 this->base_read_symbols(sd);
9810d34d
SS
5868
5869 // Read processor-specific flags in ELF file header.
5870 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5871 elfcpp::Elf_sizes<size>::ehdr_size,
5872 true, false);
5873 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5874 this->processor_specific_flags_ = ehdr.get_e_flags();
5875
5876 // Get the section names.
5877 const unsigned char* pnamesu = sd->section_names->data();
5878 const char* pnames = reinterpret_cast<const char*>(pnamesu);
5879
5880 // Initialize the mips16 stub section bit-vectors.
5881 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5882 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5883 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5884
5885 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5886 const unsigned char* pshdrs = sd->section_headers->data();
5887 const unsigned char* ps = pshdrs + shdr_size;
5888 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5889 {
5890 elfcpp::Shdr<size, big_endian> shdr(ps);
5891
5892 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5893 {
5894 // Read the gp value that was used to create this object. We need the
5895 // gp value while processing relocs. The .reginfo section is not used
5896 // in the 64-bit MIPS ELF ABI.
5897 section_offset_type section_offset = shdr.get_sh_offset();
5898 section_size_type section_size =
5899 convert_to_section_size_type(shdr.get_sh_size());
5900 const unsigned char* view =
5901 this->get_view(section_offset, section_size, true, false);
5902
5903 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5904
5905 // Read the rest of .reginfo.
5906 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5907 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5908 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5909 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5910 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5911 }
5912
5913 const char* name = pnames + shdr.get_sh_name();
5914 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5915 this->section_is_mips16_call_stub_[i] =
5916 is_prefix_of(".mips16.call.", name);
5917 this->section_is_mips16_call_fp_stub_[i] =
5918 is_prefix_of(".mips16.call.fp.", name);
5919
5920 if (strcmp(name, ".pdr") == 0)
5921 {
5922 gold_assert(this->pdr_shndx_ == -1U);
5923 this->pdr_shndx_ = i;
5924 }
5925 }
5926}
5927
5928// Discard MIPS16 stub secions that are not needed.
5929
5930template<int size, bool big_endian>
5931void
5932Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5933{
5934 for (typename Mips16_stubs_int_map::const_iterator
5935 it = this->mips16_stub_sections_.begin();
5936 it != this->mips16_stub_sections_.end(); ++it)
5937 {
5938 Mips16_stub_section<size, big_endian>* stub_section = it->second;
5939 if (!stub_section->is_target_found())
5940 {
5941 gold_error(_("no relocation found in mips16 stub section '%s'"),
5942 stub_section->object()
5943 ->section_name(stub_section->shndx()).c_str());
5944 }
5945
5946 bool discard = false;
5947 if (stub_section->is_for_local_function())
5948 {
5949 if (stub_section->is_fn_stub())
5950 {
5951 // This stub is for a local symbol. This stub will only
5952 // be needed if there is some relocation in this object,
5953 // other than a 16 bit function call, which refers to this
5954 // symbol.
5955 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5956 discard = true;
5957 else
5958 this->add_local_mips16_fn_stub(stub_section);
5959 }
5960 else
5961 {
5962 // This stub is for a local symbol. This stub will only
5963 // be needed if there is some relocation (R_MIPS16_26) in
5964 // this object that refers to this symbol.
5965 gold_assert(stub_section->is_call_stub()
5966 || stub_section->is_call_fp_stub());
5967 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5968 discard = true;
5969 else
5970 this->add_local_mips16_call_stub(stub_section);
5971 }
5972 }
5973 else
5974 {
5975 Mips_symbol<size>* gsym = stub_section->gsym();
5976 if (stub_section->is_fn_stub())
5977 {
5978 if (gsym->has_mips16_fn_stub())
5979 // We already have a stub for this function.
5980 discard = true;
5981 else
5982 {
5983 gsym->set_mips16_fn_stub(stub_section);
5984 if (gsym->should_add_dynsym_entry(symtab))
5985 {
5986 // If we have a MIPS16 function with a stub, the
5987 // dynamic symbol must refer to the stub, since only
5988 // the stub uses the standard calling conventions.
5989 gsym->set_need_fn_stub();
5990 if (gsym->is_from_dynobj())
5991 gsym->set_needs_dynsym_value();
5992 }
5993 }
5994 if (!gsym->need_fn_stub())
5995 discard = true;
5996 }
5997 else if (stub_section->is_call_stub())
5998 {
5999 if (gsym->is_mips16())
6000 // We don't need the call_stub; this is a 16 bit
6001 // function, so calls from other 16 bit functions are
6002 // OK.
6003 discard = true;
6004 else if (gsym->has_mips16_call_stub())
6005 // We already have a stub for this function.
6006 discard = true;
6007 else
6008 gsym->set_mips16_call_stub(stub_section);
6009 }
6010 else
6011 {
6012 gold_assert(stub_section->is_call_fp_stub());
6013 if (gsym->is_mips16())
6014 // We don't need the call_stub; this is a 16 bit
6015 // function, so calls from other 16 bit functions are
6016 // OK.
6017 discard = true;
6018 else if (gsym->has_mips16_call_fp_stub())
6019 // We already have a stub for this function.
6020 discard = true;
6021 else
6022 gsym->set_mips16_call_fp_stub(stub_section);
6023 }
6024 }
6025 if (discard)
6026 this->set_output_section(stub_section->shndx(), NULL);
6027 }
6028}
6029
6030// Mips_output_data_la25_stub methods.
6031
6032// Template for standard LA25 stub.
6033template<int size, bool big_endian>
6034const uint32_t
6035Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6036{
6037 0x3c190000, // lui $25,%hi(func)
6038 0x08000000, // j func
6039 0x27390000, // add $25,$25,%lo(func)
6040 0x00000000 // nop
6041};
6042
6043// Template for microMIPS LA25 stub.
6044template<int size, bool big_endian>
6045const uint32_t
6046Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6047{
6048 0x41b9, 0x0000, // lui t9,%hi(func)
6049 0xd400, 0x0000, // j func
6050 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6051 0x0000, 0x0000 // nop
6052};
6053
6054// Create la25 stub for a symbol.
6055
6056template<int size, bool big_endian>
6057void
6058Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6059 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6060 Mips_symbol<size>* gsym)
6061{
6062 if (!gsym->has_la25_stub())
6063 {
6064 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6065 this->symbols_.insert(gsym);
6066 this->create_stub_symbol(gsym, symtab, target, 16);
6067 }
6068}
6069
6070// Create a symbol for SYM stub's value and size, to help make the disassembly
6071// easier to read.
6072
6073template<int size, bool big_endian>
6074void
6075Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6076 Mips_symbol<size>* sym, Symbol_table* symtab,
6077 Target_mips<size, big_endian>* target, uint64_t symsize)
6078{
6079 std::string name(".pic.");
6080 name += sym->name();
6081
6082 unsigned int offset = sym->la25_stub_offset();
6083 if (sym->is_micromips())
6084 offset |= 1;
6085
6086 // Make it a local function.
6087 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6088 Symbol_table::PREDEFINED,
6089 target->la25_stub_section(),
6090 offset, symsize, elfcpp::STT_FUNC,
6091 elfcpp::STB_LOCAL,
6092 elfcpp::STV_DEFAULT, 0,
6093 false, false);
6094 new_sym->set_is_forced_local();
6095}
6096
6097// Write out la25 stubs. This uses the hand-coded instructions above,
6098// and adjusts them as needed.
6099
6100template<int size, bool big_endian>
6101void
6102Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6103{
6104 const off_t offset = this->offset();
6105 const section_size_type oview_size =
6106 convert_to_section_size_type(this->data_size());
6107 unsigned char* const oview = of->get_output_view(offset, oview_size);
6108
6109 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6110 p = this->symbols_.begin();
6111 p != this->symbols_.end();
6112 ++p)
6113 {
6114 Mips_symbol<size>* sym = *p;
6115 unsigned char* pov = oview + sym->la25_stub_offset();
6116
6117 Mips_address target = sym->value();
6118 if (!sym->is_micromips())
6119 {
6120 elfcpp::Swap<32, big_endian>::writeval(pov,
6121 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6122 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6123 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6124 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6125 la25_stub_entry[2] | (target & 0xffff));
6126 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6127 }
6128 else
6129 {
6130 target |= 1;
6131 // First stub instruction. Paste high 16-bits of the target.
6132 elfcpp::Swap<16, big_endian>::writeval(pov,
6133 la25_stub_micromips_entry[0]);
6134 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6135 ((target + 0x8000) >> 16) & 0xffff);
6136 // Second stub instruction. Paste low 26-bits of the target, shifted
6137 // right by 1.
6138 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6139 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6140 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6141 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6142 // Third stub instruction. Paste low 16-bits of the target.
6143 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6144 la25_stub_micromips_entry[4]);
6145 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6146 // Fourth stub instruction.
6147 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6148 la25_stub_micromips_entry[6]);
6149 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6150 la25_stub_micromips_entry[7]);
6151 }
6152 }
6153
6154 of->write_output_view(offset, oview_size, oview);
6155}
6156
6157// Mips_output_data_plt methods.
6158
6159// The format of the first PLT entry in an O32 executable.
6160template<int size, bool big_endian>
6161const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6162{
6163 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6164 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6165 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6166 0x031cc023, // subu $24, $24, $28
40fc1451 6167 0x03e07825, // or $15, $31, zero
9810d34d
SS
6168 0x0018c082, // srl $24, $24, 2
6169 0x0320f809, // jalr $25
6170 0x2718fffe // subu $24, $24, 2
6171};
6172
6173// The format of the first PLT entry in an N32 executable. Different
6174// because gp ($28) is not available; we use t2 ($14) instead.
6175template<int size, bool big_endian>
6176const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6177{
6178 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6179 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6180 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6181 0x030ec023, // subu $24, $24, $14
40fc1451 6182 0x03e07825, // or $15, $31, zero
9810d34d
SS
6183 0x0018c082, // srl $24, $24, 2
6184 0x0320f809, // jalr $25
6185 0x2718fffe // subu $24, $24, 2
6186};
6187
6188// The format of the first PLT entry in an N64 executable. Different
6189// from N32 because of the increased size of GOT entries.
6190template<int size, bool big_endian>
6191const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6192{
6193 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6194 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6195 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6196 0x030ec023, // subu $24, $24, $14
40fc1451 6197 0x03e07825, // or $15, $31, zero
9810d34d
SS
6198 0x0018c0c2, // srl $24, $24, 3
6199 0x0320f809, // jalr $25
6200 0x2718fffe // subu $24, $24, 2
6201};
6202
6203// The format of the microMIPS first PLT entry in an O32 executable.
6204// We rely on v0 ($2) rather than t8 ($24) to contain the address
6205// of the GOTPLT entry handled, so this stub may only be used when
6206// all the subsequent PLT entries are microMIPS code too.
6207//
6208// The trailing NOP is for alignment and correct disassembly only.
6209template<int size, bool big_endian>
6210const uint32_t Mips_output_data_plt<size, big_endian>::
6211plt0_entry_micromips_o32[] =
6212{
6213 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6214 0xff23, 0x0000, // lw $25, 0($3)
6215 0x0535, // subu $2, $2, $3
6216 0x2525, // srl $2, $2, 2
6217 0x3302, 0xfffe, // subu $24, $2, 2
6218 0x0dff, // move $15, $31
6219 0x45f9, // jalrs $25
6220 0x0f83, // move $28, $3
6221 0x0c00 // nop
6222};
6223
6224// The format of the microMIPS first PLT entry in an O32 executable
6225// in the insn32 mode.
6226template<int size, bool big_endian>
6227const uint32_t Mips_output_data_plt<size, big_endian>::
6228plt0_entry_micromips32_o32[] =
6229{
6230 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6231 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6232 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6233 0x0398, 0xc1d0, // subu $24, $24, $28
40fc1451 6234 0x001f, 0x7a90, // or $15, $31, zero
9810d34d
SS
6235 0x0318, 0x1040, // srl $24, $24, 2
6236 0x03f9, 0x0f3c, // jalr $25
6237 0x3318, 0xfffe // subu $24, $24, 2
6238};
6239
6240// The format of subsequent standard entries in the PLT.
6241template<int size, bool big_endian>
6242const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6243{
6244 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6245 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6246 0x03200008, // jr $25
6247 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6248};
6249
6250// The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6251// temporary because t8 ($24) and t9 ($25) are not directly addressable.
6252// Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6253// We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6254// target function address in register v0.
6255template<int size, bool big_endian>
6256const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6257{
6258 0xb303, // lw $3, 12($pc)
6259 0x651b, // move $24, $3
6260 0x9b60, // lw $3, 0($3)
6261 0xeb00, // jr $3
6262 0x653b, // move $25, $3
6263 0x6500, // nop
6264 0x0000, 0x0000 // .word (.got.plt entry)
6265};
6266
6267// The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6268// as a temporary because t8 ($24) is not addressable with ADDIUPC.
6269template<int size, bool big_endian>
6270const uint32_t Mips_output_data_plt<size, big_endian>::
6271plt_entry_micromips_o32[] =
6272{
6273 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6274 0xff22, 0x0000, // lw $25, 0($2)
6275 0x4599, // jr $25
6276 0x0f02 // move $24, $2
6277};
6278
6279// The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6280template<int size, bool big_endian>
6281const uint32_t Mips_output_data_plt<size, big_endian>::
6282plt_entry_micromips32_o32[] =
6283{
6284 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6285 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6286 0x0019, 0x0f3c, // jr $25
6287 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6288};
6289
6290// Add an entry to the PLT for a symbol referenced by r_type relocation.
6291
6292template<int size, bool big_endian>
6293void
6294Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6295 unsigned int r_type)
6296{
6297 gold_assert(!gsym->has_plt_offset());
6298
6299 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6300 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6301 + sizeof(plt0_entry_o32));
6302 this->symbols_.push_back(gsym);
6303
6304 // Record whether the relocation requires a standard MIPS
6305 // or a compressed code entry.
6306 if (jal_reloc(r_type))
6307 {
6308 if (r_type == elfcpp::R_MIPS_26)
6309 gsym->set_needs_mips_plt(true);
6310 else
6311 gsym->set_needs_comp_plt(true);
6312 }
6313
6314 section_offset_type got_offset = this->got_plt_->current_data_size();
6315
6316 // Every PLT entry needs a GOT entry which points back to the PLT
6317 // entry (this will be changed by the dynamic linker, normally
6318 // lazily when the function is called).
6319 this->got_plt_->set_current_data_size(got_offset + size/8);
6320
6321 gsym->set_needs_dynsym_entry();
6322 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6323 got_offset);
6324}
6325
6326// Set final PLT offsets. For each symbol, determine whether standard or
6327// compressed (MIPS16 or microMIPS) PLT entry is used.
6328
6329template<int size, bool big_endian>
6330void
6331Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6332{
6333 // The sizes of individual PLT entries.
6334 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6335 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6336 ? this->compressed_plt_entry_size() : 0);
6337
6338 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6339 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6340 {
6341 Mips_symbol<size>* mips_sym = *p;
6342
6343 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6344 // so always use a standard entry there.
6345 //
6346 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6347 // all MIPS16 calls will go via that stub, and there is no benefit
6348 // to having a MIPS16 entry. And in the case of call_stub a
6349 // standard entry actually has to be used as the stub ends with a J
6350 // instruction.
6351 if (this->target_->is_output_newabi()
6352 || mips_sym->has_mips16_call_stub()
6353 || mips_sym->has_mips16_call_fp_stub())
6354 {
6355 mips_sym->set_needs_mips_plt(true);
6356 mips_sym->set_needs_comp_plt(false);
6357 }
6358
6359 // Otherwise, if there are no direct calls to the function, we
6360 // have a free choice of whether to use standard or compressed
6361 // entries. Prefer microMIPS entries if the object is known to
6362 // contain microMIPS code, so that it becomes possible to create
6363 // pure microMIPS binaries. Prefer standard entries otherwise,
6364 // because MIPS16 ones are no smaller and are usually slower.
6365 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6366 {
6367 if (this->target_->is_output_micromips())
6368 mips_sym->set_needs_comp_plt(true);
6369 else
6370 mips_sym->set_needs_mips_plt(true);
6371 }
6372
6373 if (mips_sym->needs_mips_plt())
6374 {
6375 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6376 this->plt_mips_offset_ += plt_mips_entry_size;
6377 }
6378 if (mips_sym->needs_comp_plt())
6379 {
6380 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6381 this->plt_comp_offset_ += plt_comp_entry_size;
6382 }
6383 }
6384
6385 // Figure out the size of the PLT header if we know that we are using it.
6386 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6387 this->plt_header_size_ = this->get_plt_header_size();
6388}
6389
6390// Write out the PLT. This uses the hand-coded instructions above,
6391// and adjusts them as needed.
6392
6393template<int size, bool big_endian>
6394void
6395Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6396{
6397 const off_t offset = this->offset();
6398 const section_size_type oview_size =
6399 convert_to_section_size_type(this->data_size());
6400 unsigned char* const oview = of->get_output_view(offset, oview_size);
6401
6402 const off_t gotplt_file_offset = this->got_plt_->offset();
6403 const section_size_type gotplt_size =
6404 convert_to_section_size_type(this->got_plt_->data_size());
6405 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6406 gotplt_size);
6407 unsigned char* pov = oview;
6408
6409 Mips_address plt_address = this->address();
6410
6411 // Calculate the address of .got.plt.
6412 Mips_address gotplt_addr = this->got_plt_->address();
6413 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6414 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6415
6416 // The PLT sequence is not safe for N64 if .got.plt's address can
6417 // not be loaded in two instructions.
6418 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6419 || ~(gotplt_addr | 0x7fffffff) == 0);
6420
6421 // Write the PLT header.
6422 const uint32_t* plt0_entry = this->get_plt_header_entry();
6423 if (plt0_entry == plt0_entry_micromips_o32)
6424 {
6425 // Write microMIPS PLT header.
6426 gold_assert(gotplt_addr % 4 == 0);
6427
6428 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6429
6430 // ADDIUPC has a span of +/-16MB, check we're in range.
6431 if (gotpc_offset + 0x1000000 >= 0x2000000)
6432 {
6433 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6434 "ADDIUPC"), (long)gotpc_offset);
6435 return;
6436 }
6437
6438 elfcpp::Swap<16, big_endian>::writeval(pov,
6439 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6440 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6441 (gotpc_offset >> 2) & 0xffff);
6442 pov += 4;
6443 for (unsigned int i = 2;
6444 i < (sizeof(plt0_entry_micromips_o32)
6445 / sizeof(plt0_entry_micromips_o32[0]));
6446 i++)
6447 {
6448 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6449 pov += 2;
6450 }
6451 }
6452 else if (plt0_entry == plt0_entry_micromips32_o32)
6453 {
6454 // Write microMIPS PLT header in insn32 mode.
6455 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6456 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6457 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6458 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6459 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6460 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6461 pov += 12;
6462 for (unsigned int i = 6;
6463 i < (sizeof(plt0_entry_micromips32_o32)
6464 / sizeof(plt0_entry_micromips32_o32[0]));
6465 i++)
6466 {
6467 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6468 pov += 2;
6469 }
6470 }
6471 else
6472 {
6473 // Write standard PLT header.
6474 elfcpp::Swap<32, big_endian>::writeval(pov,
6475 plt0_entry[0] | gotplt_addr_high);
6476 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6477 plt0_entry[1] | gotplt_addr_low);
6478 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6479 plt0_entry[2] | gotplt_addr_low);
6480 pov += 12;
6481 for (int i = 3; i < 8; i++)
6482 {
6483 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6484 pov += 4;
6485 }
6486 }
6487
6488
6489 unsigned char* gotplt_pov = gotplt_view;
6490 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6491
6492 // The first two entries in .got.plt are reserved.
6493 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6494 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6495
6496 unsigned int gotplt_offset = 2 * got_entry_size;
6497 gotplt_pov += 2 * got_entry_size;
6498
6499 // Calculate the address of the PLT header.
6500 Mips_address header_address = (plt_address
6501 + (this->is_plt_header_compressed() ? 1 : 0));
6502
6503 // Initialize compressed PLT area view.
6504 unsigned char* pov2 = pov + this->plt_mips_offset_;
6505
6506 // Write the PLT entries.
6507 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6508 p = this->symbols_.begin();
6509 p != this->symbols_.end();
6510 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6511 {
6512 Mips_symbol<size>* mips_sym = *p;
6513
6514 // Calculate the address of the .got.plt entry.
6515 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6516 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6517 & 0xffff);
6518 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6519
6520 // Initially point the .got.plt entry at the PLT header.
6521 if (this->target_->is_output_n64())
6522 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6523 else
6524 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6525
6526 // Now handle the PLT itself. First the standard entry.
6527 if (mips_sym->has_mips_plt_offset())
6528 {
6529 // Pick the load opcode (LW or LD).
6530 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6531 : 0x8c000000;
6532
6533 // Fill in the PLT entry itself.
6534 elfcpp::Swap<32, big_endian>::writeval(pov,
6535 plt_entry[0] | gotplt_entry_addr_hi);
6536 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6537 plt_entry[1] | gotplt_entry_addr_lo | load);
6538 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6539 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6540 plt_entry[3] | gotplt_entry_addr_lo);
6541 pov += 16;
6542 }
6543
6544 // Now the compressed entry. They come after any standard ones.
6545 if (mips_sym->has_comp_plt_offset())
6546 {
6547 if (!this->target_->is_output_micromips())
6548 {
6549 // Write MIPS16 PLT entry.
6550 const uint32_t* plt_entry = plt_entry_mips16_o32;
6551
6552 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6553 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6554 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6555 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6556 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6557 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6558 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6559 gotplt_entry_addr);
6560 pov2 += 16;
6561 }
6562 else if (this->target_->use_32bit_micromips_instructions())
6563 {
6564 // Write microMIPS PLT entry in insn32 mode.
6565 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6566
6567 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6568 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6569 gotplt_entry_addr_hi);
6570 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6571 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6572 gotplt_entry_addr_lo);
6573 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6574 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6575 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6576 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6577 gotplt_entry_addr_lo);
6578 pov2 += 16;
6579 }
6580 else
6581 {
6582 // Write microMIPS PLT entry.
6583 const uint32_t* plt_entry = plt_entry_micromips_o32;
6584
6585 gold_assert(gotplt_entry_addr % 4 == 0);
6586
6587 Mips_address loc_address = plt_address + pov2 - oview;
6588 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6589
6590 // ADDIUPC has a span of +/-16MB, check we're in range.
6591 if (gotpc_offset + 0x1000000 >= 0x2000000)
6592 {
6593 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6594 "range of ADDIUPC"), (long)gotpc_offset);
6595 return;
6596 }
6597
6598 elfcpp::Swap<16, big_endian>::writeval(pov2,
6599 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6600 elfcpp::Swap<16, big_endian>::writeval(
6601 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6602 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6603 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6604 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6605 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6606 pov2 += 12;
6607 }
6608 }
6609 }
6610
6611 // Check the number of bytes written for standard entries.
6612 gold_assert(static_cast<section_size_type>(
6613 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6614 // Check the number of bytes written for compressed entries.
6615 gold_assert((static_cast<section_size_type>(pov2 - pov)
6616 == this->plt_comp_offset_));
6617 // Check the total number of bytes written.
6618 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6619
6620 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6621 == gotplt_size);
6622
6623 of->write_output_view(offset, oview_size, oview);
6624 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6625}
6626
6627// Mips_output_data_mips_stubs methods.
6628
6629// The format of the lazy binding stub when dynamic symbol count is less than
6630// 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6631template<int size, bool big_endian>
6632const uint32_t
6633Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6634{
6635 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6636 0x03e07825, // or t7,ra,zero
9810d34d
SS
6637 0x0320f809, // jalr t9,ra
6638 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6639};
6640
6641// The format of the lazy binding stub when dynamic symbol count is less than
6642// 64K, dynamic symbol index is less than 32K, and ABI is N64.
6643template<int size, bool big_endian>
6644const uint32_t
6645Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6646{
6647 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6648 0x03e07825, // or t7,ra,zero
9810d34d
SS
6649 0x0320f809, // jalr t9,ra
6650 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6651};
6652
6653// The format of the lazy binding stub when dynamic symbol count is less than
6654// 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6655template<int size, bool big_endian>
6656const uint32_t
6657Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6658{
6659 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6660 0x03e07825, // or t7,ra,zero
9810d34d
SS
6661 0x0320f809, // jalr t9,ra
6662 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6663};
6664
6665// The format of the lazy binding stub when dynamic symbol count is less than
6666// 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6667template<int size, bool big_endian>
6668const uint32_t
6669Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6670{
6671 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6672 0x03e07825, // or t7,ra,zero
9810d34d
SS
6673 0x0320f809, // jalr t9,ra
6674 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6675};
6676
6677// The format of the lazy binding stub when dynamic symbol count is greater than
6678// 64K, and ABI is not N64.
6679template<int size, bool big_endian>
6680const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6681{
6682 0x8f998010, // lw t9,0x8010(gp)
40fc1451 6683 0x03e07825, // or t7,ra,zero
9810d34d
SS
6684 0x3c180000, // lui t8,DYN_INDEX
6685 0x0320f809, // jalr t9,ra
6686 0x37180000 // ori t8,t8,DYN_INDEX
6687};
6688
6689// The format of the lazy binding stub when dynamic symbol count is greater than
6690// 64K, and ABI is N64.
6691template<int size, bool big_endian>
6692const uint32_t
6693Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6694{
6695 0xdf998010, // ld t9,0x8010(gp)
40fc1451 6696 0x03e07825, // or t7,ra,zero
9810d34d
SS
6697 0x3c180000, // lui t8,DYN_INDEX
6698 0x0320f809, // jalr t9,ra
6699 0x37180000 // ori t8,t8,DYN_INDEX
6700};
6701
6702// microMIPS stubs.
6703
6704// The format of the microMIPS lazy binding stub when dynamic symbol count is
6705// less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6706template<int size, bool big_endian>
6707const uint32_t
6708Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6709{
6710 0xff3c, 0x8010, // lw t9,0x8010(gp)
6711 0x0dff, // move t7,ra
6712 0x45d9, // jalr t9
6713 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6714};
6715
6716// The format of the microMIPS lazy binding stub when dynamic symbol count is
6717// less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6718template<int size, bool big_endian>
6719const uint32_t
6720Mips_output_data_mips_stubs<size, big_endian>::
6721lazy_stub_micromips_normal_1_n64[] =
6722{
6723 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6724 0x0dff, // move t7,ra
6725 0x45d9, // jalr t9
6726 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6727};
6728
6729// The format of the microMIPS lazy binding stub when dynamic symbol
6730// count is less than 64K, dynamic symbol index is between 32K and 64K,
6731// and ABI is not N64.
6732template<int size, bool big_endian>
6733const uint32_t
6734Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6735{
6736 0xff3c, 0x8010, // lw t9,0x8010(gp)
6737 0x0dff, // move t7,ra
6738 0x45d9, // jalr t9
6739 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6740};
6741
6742// The format of the microMIPS lazy binding stub when dynamic symbol
6743// count is less than 64K, dynamic symbol index is between 32K and 64K,
6744// and ABI is N64.
6745template<int size, bool big_endian>
6746const uint32_t
6747Mips_output_data_mips_stubs<size, big_endian>::
6748lazy_stub_micromips_normal_2_n64[] =
6749{
6750 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6751 0x0dff, // move t7,ra
6752 0x45d9, // jalr t9
6753 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6754};
6755
6756// The format of the microMIPS lazy binding stub when dynamic symbol count is
6757// greater than 64K, and ABI is not N64.
6758template<int size, bool big_endian>
6759const uint32_t
6760Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6761{
6762 0xff3c, 0x8010, // lw t9,0x8010(gp)
6763 0x0dff, // move t7,ra
6764 0x41b8, 0x0000, // lui t8,DYN_INDEX
6765 0x45d9, // jalr t9
6766 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6767};
6768
6769// The format of the microMIPS lazy binding stub when dynamic symbol count is
6770// greater than 64K, and ABI is N64.
6771template<int size, bool big_endian>
6772const uint32_t
6773Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6774{
6775 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6776 0x0dff, // move t7,ra
6777 0x41b8, 0x0000, // lui t8,DYN_INDEX
6778 0x45d9, // jalr t9
6779 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6780};
6781
6782// 32-bit microMIPS stubs.
6783
6784// The format of the microMIPS lazy binding stub when dynamic symbol count is
6785// less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6786// can use only 32-bit instructions.
6787template<int size, bool big_endian>
6788const uint32_t
6789Mips_output_data_mips_stubs<size, big_endian>::
6790lazy_stub_micromips32_normal_1[] =
6791{
6792 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6793 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6794 0x03f9, 0x0f3c, // jalr ra,t9
6795 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6796};
6797
6798// The format of the microMIPS lazy binding stub when dynamic symbol count is
6799// less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6800// use only 32-bit instructions.
6801template<int size, bool big_endian>
6802const uint32_t
6803Mips_output_data_mips_stubs<size, big_endian>::
6804lazy_stub_micromips32_normal_1_n64[] =
6805{
6806 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6807 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6808 0x03f9, 0x0f3c, // jalr ra,t9
6809 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6810};
6811
6812// The format of the microMIPS lazy binding stub when dynamic symbol
6813// count is less than 64K, dynamic symbol index is between 32K and 64K,
6814// ABI is not N64, and we can use only 32-bit instructions.
6815template<int size, bool big_endian>
6816const uint32_t
6817Mips_output_data_mips_stubs<size, big_endian>::
6818lazy_stub_micromips32_normal_2[] =
6819{
6820 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6821 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6822 0x03f9, 0x0f3c, // jalr ra,t9
6823 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6824};
6825
6826// The format of the microMIPS lazy binding stub when dynamic symbol
6827// count is less than 64K, dynamic symbol index is between 32K and 64K,
6828// ABI is N64, and we can use only 32-bit instructions.
6829template<int size, bool big_endian>
6830const uint32_t
6831Mips_output_data_mips_stubs<size, big_endian>::
6832lazy_stub_micromips32_normal_2_n64[] =
6833{
6834 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6835 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6836 0x03f9, 0x0f3c, // jalr ra,t9
6837 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6838};
6839
6840// The format of the microMIPS lazy binding stub when dynamic symbol count is
6841// greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6842template<int size, bool big_endian>
6843const uint32_t
6844Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6845{
6846 0xff3c, 0x8010, // lw t9,0x8010(gp)
40fc1451 6847 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6848 0x41b8, 0x0000, // lui t8,DYN_INDEX
6849 0x03f9, 0x0f3c, // jalr ra,t9
6850 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6851};
6852
6853// The format of the microMIPS lazy binding stub when dynamic symbol count is
6854// greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6855template<int size, bool big_endian>
6856const uint32_t
6857Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6858{
6859 0xdf3c, 0x8010, // ld t9,0x8010(gp)
40fc1451 6860 0x001f, 0x7a90, // or t7,ra,zero
9810d34d
SS
6861 0x41b8, 0x0000, // lui t8,DYN_INDEX
6862 0x03f9, 0x0f3c, // jalr ra,t9
6863 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6864};
6865
6866// Create entry for a symbol.
6867
6868template<int size, bool big_endian>
6869void
6870Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6871 Mips_symbol<size>* gsym)
6872{
6873 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6874 {
6875 this->symbols_.insert(gsym);
6876 gsym->set_has_lazy_stub(true);
6877 }
6878}
6879
6880// Remove entry for a symbol.
6881
6882template<int size, bool big_endian>
6883void
6884Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6885 Mips_symbol<size>* gsym)
6886{
6887 if (gsym->has_lazy_stub())
6888 {
6889 this->symbols_.erase(gsym);
6890 gsym->set_has_lazy_stub(false);
6891 }
6892}
6893
6894// Set stub offsets for symbols. This method expects that the number of
6895// entries in dynamic symbol table is set.
6896
6897template<int size, bool big_endian>
6898void
6899Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6900{
6901 gold_assert(this->dynsym_count_ != -1U);
6902
6903 if (this->stub_offsets_are_set_)
6904 return;
6905
6906 unsigned int stub_size = this->stub_size();
6907 unsigned int offset = 0;
6908 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6909 p = this->symbols_.begin();
6910 p != this->symbols_.end();
6911 ++p, offset += stub_size)
6912 {
6913 Mips_symbol<size>* mips_sym = *p;
6914 mips_sym->set_lazy_stub_offset(offset);
6915 }
6916 this->stub_offsets_are_set_ = true;
6917}
6918
6919template<int size, bool big_endian>
6920void
6921Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6922{
6923 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6924 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6925 {
6926 Mips_symbol<size>* sym = *p;
6927 if (sym->is_from_dynobj())
6928 sym->set_needs_dynsym_value();
6929 }
6930}
6931
6932// Write out the .MIPS.stubs. This uses the hand-coded instructions and
6933// adjusts them as needed.
6934
6935template<int size, bool big_endian>
6936void
6937Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6938{
6939 const off_t offset = this->offset();
6940 const section_size_type oview_size =
6941 convert_to_section_size_type(this->data_size());
6942 unsigned char* const oview = of->get_output_view(offset, oview_size);
6943
6944 bool big_stub = this->dynsym_count_ > 0x10000;
6945
6946 unsigned char* pov = oview;
6947 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6948 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6949 {
6950 Mips_symbol<size>* sym = *p;
6951 const uint32_t* lazy_stub;
6952 bool n64 = this->target_->is_output_n64();
6953
6954 if (!this->target_->is_output_micromips())
6955 {
6956 // Write standard (non-microMIPS) stub.
6957 if (!big_stub)
6958 {
6959 if (sym->dynsym_index() & ~0x7fff)
6960 // Dynsym index is between 32K and 64K.
6961 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6962 else
6963 // Dynsym index is less than 32K.
6964 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6965 }
6966 else
6967 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6968
6969 unsigned int i = 0;
6970 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6971 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6972 pov += 8;
6973
6974 i += 2;
6975 if (big_stub)
6976 {
6977 // LUI instruction of the big stub. Paste high 16 bits of the
6978 // dynsym index.
6979 elfcpp::Swap<32, big_endian>::writeval(pov,
6980 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6981 pov += 4;
6982 i += 1;
6983 }
6984 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6985 // Last stub instruction. Paste low 16 bits of the dynsym index.
6986 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6987 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6988 pov += 8;
6989 }
6990 else if (this->target_->use_32bit_micromips_instructions())
6991 {
6992 // Write microMIPS stub in insn32 mode.
6993 if (!big_stub)
6994 {
6995 if (sym->dynsym_index() & ~0x7fff)
6996 // Dynsym index is between 32K and 64K.
6997 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6998 : lazy_stub_micromips32_normal_2;
6999 else
7000 // Dynsym index is less than 32K.
7001 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
7002 : lazy_stub_micromips32_normal_1;
7003 }
7004 else
7005 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
7006 : lazy_stub_micromips32_big;
7007
7008 unsigned int i = 0;
7009 // First stub instruction. We emit 32-bit microMIPS instructions by
7010 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7011 // the instruction where the opcode is must always come first, for
7012 // both little and big endian.
7013 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7014 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7015 // Second stub instruction.
7016 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7017 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7018 pov += 8;
7019 i += 4;
7020 if (big_stub)
7021 {
7022 // LUI instruction of the big stub. Paste high 16 bits of the
7023 // dynsym index.
7024 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7025 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7026 (sym->dynsym_index() >> 16) & 0x7fff);
7027 pov += 4;
7028 i += 2;
7029 }
7030 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7031 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7032 // Last stub instruction. Paste low 16 bits of the dynsym index.
7033 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7034 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7035 sym->dynsym_index() & 0xffff);
7036 pov += 8;
7037 }
7038 else
7039 {
7040 // Write microMIPS stub.
7041 if (!big_stub)
7042 {
7043 if (sym->dynsym_index() & ~0x7fff)
7044 // Dynsym index is between 32K and 64K.
7045 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7046 : lazy_stub_micromips_normal_2;
7047 else
7048 // Dynsym index is less than 32K.
7049 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7050 : lazy_stub_micromips_normal_1;
7051 }
7052 else
7053 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7054 : lazy_stub_micromips_big;
7055
7056 unsigned int i = 0;
7057 // First stub instruction. We emit 32-bit microMIPS instructions by
7058 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7059 // the instruction where the opcode is must always come first, for
7060 // both little and big endian.
7061 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7062 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7063 // Second stub instruction.
7064 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7065 pov += 6;
7066 i += 3;
7067 if (big_stub)
7068 {
7069 // LUI instruction of the big stub. Paste high 16 bits of the
7070 // dynsym index.
7071 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7072 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7073 (sym->dynsym_index() >> 16) & 0x7fff);
7074 pov += 4;
7075 i += 2;
7076 }
7077 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7078 // Last stub instruction. Paste low 16 bits of the dynsym index.
7079 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7080 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7081 sym->dynsym_index() & 0xffff);
7082 pov += 6;
7083 }
7084 }
7085
7086 // We always allocate 20 bytes for every stub, because final dynsym count is
7087 // not known in method do_finalize_sections. There are 4 unused bytes per
7088 // stub if final dynsym count is less than 0x10000.
7089 unsigned int used = pov - oview;
7090 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7091 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7092
7093 // Fill the unused space with zeroes.
7094 // TODO(sasa): Can we strip unused bytes during the relaxation?
7095 if (unused > 0)
7096 memset(pov, 0, unused);
7097
7098 of->write_output_view(offset, oview_size, oview);
7099}
7100
7101// Mips_output_section_reginfo methods.
7102
7103template<int size, bool big_endian>
7104void
7105Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7106{
7107 off_t offset = this->offset();
7108 off_t data_size = this->data_size();
7109
7110 unsigned char* view = of->get_output_view(offset, data_size);
7111 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7112 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7113 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7114 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7115 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7116 // Write the gp value.
7117 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7118 this->target_->gp_value());
7119
7120 of->write_output_view(offset, data_size, view);
7121}
7122
7123// Mips_copy_relocs methods.
7124
7125// Emit any saved relocs.
7126
7127template<int sh_type, int size, bool big_endian>
7128void
7129Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7130 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7131 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7132{
7133 for (typename Copy_relocs<sh_type, size, big_endian>::
7134 Copy_reloc_entries::iterator p = this->entries_.begin();
7135 p != this->entries_.end();
7136 ++p)
7137 emit_entry(*p, reloc_section, symtab, layout, target);
7138
7139 // We no longer need the saved information.
7140 this->entries_.clear();
7141}
7142
7143// Emit the reloc if appropriate.
7144
7145template<int sh_type, int size, bool big_endian>
7146void
7147Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7148 Copy_reloc_entry& entry,
7149 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7150 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7151{
7152 // If the symbol is no longer defined in a dynamic object, then we
7153 // emitted a COPY relocation, and we do not want to emit this
7154 // dynamic relocation.
7155 if (!entry.sym_->is_from_dynobj())
7156 return;
7157
7158 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7159 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7160 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7161
7162 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7163 if (can_make_dynamic && !sym->has_static_relocs())
7164 {
7165 Mips_relobj<size, big_endian>* object =
7166 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7167 target->got_section(symtab, layout)->record_global_got_symbol(
7168 sym, object, entry.reloc_type_, true, false);
7169 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7170 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7171 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7172 else
7173 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7174 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7175 entry.shndx_, entry.address_);
7176 }
7177 else
7178 this->make_copy_reloc(symtab, layout,
7179 static_cast<Sized_symbol<size>*>(entry.sym_),
7180 reloc_section);
7181}
7182
7183// Target_mips methods.
7184
7185// Return the value to use for a dynamic symbol which requires special
7186// treatment. This is how we support equality comparisons of function
7187// pointers across shared library boundaries, as described in the
7188// processor specific ABI supplement.
7189
7190template<int size, bool big_endian>
7191uint64_t
7192Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7193{
7194 uint64_t value = 0;
7195 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7196
7197 if (!mips_sym->has_lazy_stub())
7198 {
7199 if (mips_sym->has_plt_offset())
7200 {
7201 // We distinguish between PLT entries and lazy-binding stubs by
7202 // giving the former an st_other value of STO_MIPS_PLT. Set the
7203 // value to the stub address if there are any relocations in the
7204 // binary where pointer equality matters.
7205 if (mips_sym->pointer_equality_needed())
7206 {
7207 // Prefer a standard MIPS PLT entry.
7208 if (mips_sym->has_mips_plt_offset())
7209 value = this->plt_section()->mips_entry_address(mips_sym);
7210 else
7211 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7212 }
7213 else
7214 value = 0;
7215 }
7216 }
7217 else
7218 {
7219 // First, set stub offsets for symbols. This method expects that the
7220 // number of entries in dynamic symbol table is set.
7221 this->mips_stubs_section()->set_lazy_stub_offsets();
7222
7223 // The run-time linker uses the st_value field of the symbol
7224 // to reset the global offset table entry for this external
7225 // to its stub address when unlinking a shared object.
7226 value = this->mips_stubs_section()->stub_address(mips_sym);
7227 }
7228
7229 if (mips_sym->has_mips16_fn_stub())
7230 {
7231 // If we have a MIPS16 function with a stub, the dynamic symbol must
7232 // refer to the stub, since only the stub uses the standard calling
7233 // conventions.
7234 value = mips_sym->template
7235 get_mips16_fn_stub<big_endian>()->output_address();
7236 }
7237
7238 return value;
7239}
7240
7241// Get the dynamic reloc section, creating it if necessary. It's always
7242// .rel.dyn, even for MIPS64.
7243
7244template<int size, bool big_endian>
7245typename Target_mips<size, big_endian>::Reloc_section*
7246Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7247{
7248 if (this->rel_dyn_ == NULL)
7249 {
7250 gold_assert(layout != NULL);
7251 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7252 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7253 elfcpp::SHF_ALLOC, this->rel_dyn_,
7254 ORDER_DYNAMIC_RELOCS, false);
7255
7256 // First entry in .rel.dyn has to be null.
7257 // This is hack - we define dummy output data and set its address to 0,
7258 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7259 // This ensures that the entry is null.
7260 Output_data* od = new Output_data_zero_fill(0, 0);
7261 od->set_address(0);
7262 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7263 }
7264 return this->rel_dyn_;
7265}
7266
7267// Get the GOT section, creating it if necessary.
7268
7269template<int size, bool big_endian>
7270Mips_output_data_got<size, big_endian>*
7271Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7272 Layout* layout)
7273{
7274 if (this->got_ == NULL)
7275 {
7276 gold_assert(symtab != NULL && layout != NULL);
7277
7278 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7279 layout);
7280 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7281 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7282 elfcpp::SHF_MIPS_GPREL),
7283 this->got_, ORDER_DATA, false);
7284
7285 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7286 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7287 Symbol_table::PREDEFINED,
7288 this->got_,
7289 0, 0, elfcpp::STT_OBJECT,
7290 elfcpp::STB_GLOBAL,
7291 elfcpp::STV_DEFAULT, 0,
7292 false, false);
7293 }
7294
7295 return this->got_;
7296}
7297
7298// Calculate value of _gp symbol.
7299
7300template<int size, bool big_endian>
7301void
7302Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7303{
7304 if (this->gp_ != NULL)
7305 return;
7306
7307 Output_data* section = layout->find_output_section(".got");
7308 if (section == NULL)
7309 {
7310 // If there is no .got section, gp should be based on .sdata.
7311 // TODO(sasa): This is probably not needed. This was needed for older
7312 // MIPS architectures which accessed both GOT and .sdata section using
7313 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7314 // access .sdata using gp-relative addressing.
7315 for (Layout::Section_list::const_iterator
7316 p = layout->section_list().begin();
7317 p != layout->section_list().end();
7318 ++p)
7319 {
7320 if (strcmp((*p)->name(), ".sdata") == 0)
7321 {
7322 section = *p;
7323 break;
7324 }
7325 }
7326 }
7327
7328 Sized_symbol<size>* gp =
7329 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7330 if (gp != NULL)
7331 {
7332 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7333 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7334 elfcpp::STT_OBJECT,
7335 elfcpp::STB_GLOBAL,
7336 elfcpp::STV_DEFAULT, 0,
7337 false, false);
7338 this->gp_ = gp;
7339 }
7340 else if (section != NULL)
7341 {
7342 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7343 "_gp", NULL, Symbol_table::PREDEFINED,
7344 section, MIPS_GP_OFFSET, 0,
7345 elfcpp::STT_OBJECT,
7346 elfcpp::STB_GLOBAL,
7347 elfcpp::STV_DEFAULT,
7348 0, false, false));
7349 this->gp_ = gp;
7350 }
7351}
7352
7353// Set the dynamic symbol indexes. INDEX is the index of the first
7354// global dynamic symbol. Pointers to the symbols are stored into the
7355// vector SYMS. The names are added to DYNPOOL. This returns an
7356// updated dynamic symbol index.
7357
7358template<int size, bool big_endian>
7359unsigned int
7360Target_mips<size, big_endian>::do_set_dynsym_indexes(
7361 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7362 std::vector<Symbol*>* syms, Stringpool* dynpool,
7363 Versions* versions, Symbol_table* symtab) const
7364{
7365 std::vector<Symbol*> non_got_symbols;
7366 std::vector<Symbol*> got_symbols;
7367
7368 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7369 &got_symbols);
7370
7371 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7372 p != non_got_symbols.end();
7373 ++p)
7374 {
7375 Symbol* sym = *p;
7376
7377 // Note that SYM may already have a dynamic symbol index, since
7378 // some symbols appear more than once in the symbol table, with
7379 // and without a version.
7380
7381 if (!sym->has_dynsym_index())
7382 {
7383 sym->set_dynsym_index(index);
7384 ++index;
7385 syms->push_back(sym);
7386 dynpool->add(sym->name(), false, NULL);
7387
7388 // Record any version information.
7389 if (sym->version() != NULL)
7390 versions->record_version(symtab, dynpool, sym);
7391
7392 // If the symbol is defined in a dynamic object and is
7393 // referenced in a regular object, then mark the dynamic
7394 // object as needed. This is used to implement --as-needed.
7395 if (sym->is_from_dynobj() && sym->in_reg())
7396 sym->object()->set_is_needed();
7397 }
7398 }
7399
7400 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7401 p != got_symbols.end();
7402 ++p)
7403 {
7404 Symbol* sym = *p;
7405 if (!sym->has_dynsym_index())
7406 {
7407 // Record any version information.
7408 if (sym->version() != NULL)
7409 versions->record_version(symtab, dynpool, sym);
7410 }
7411 }
7412
7413 index = versions->finalize(symtab, index, syms);
7414
7415 int got_sym_count = 0;
7416 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7417 p != got_symbols.end();
7418 ++p)
7419 {
7420 Symbol* sym = *p;
7421
7422 if (!sym->has_dynsym_index())
7423 {
7424 ++got_sym_count;
7425 sym->set_dynsym_index(index);
7426 ++index;
7427 syms->push_back(sym);
7428 dynpool->add(sym->name(), false, NULL);
7429
7430 // If the symbol is defined in a dynamic object and is
7431 // referenced in a regular object, then mark the dynamic
7432 // object as needed. This is used to implement --as-needed.
7433 if (sym->is_from_dynobj() && sym->in_reg())
7434 sym->object()->set_is_needed();
7435 }
7436 }
7437
7438 // Set index of the first symbol that has .got entry.
7439 this->got_->set_first_global_got_dynsym_index(
7440 got_sym_count > 0 ? index - got_sym_count : -1U);
7441
7442 if (this->mips_stubs_ != NULL)
7443 this->mips_stubs_->set_dynsym_count(index);
7444
7445 return index;
7446}
7447
7448// Create a PLT entry for a global symbol referenced by r_type relocation.
7449
7450template<int size, bool big_endian>
7451void
7452Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7453 Layout* layout,
7454 Mips_symbol<size>* gsym,
7455 unsigned int r_type)
7456{
7457 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7458 return;
7459
7460 if (this->plt_ == NULL)
7461 {
7462 // Create the GOT section first.
7463 this->got_section(symtab, layout);
7464
7465 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7466 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7467 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7468 this->got_plt_, ORDER_DATA, false);
7469
7470 // The first two entries are reserved.
7471 this->got_plt_->set_current_data_size(2 * size/8);
7472
7473 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7474 this->got_plt_,
7475 this);
7476 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7477 (elfcpp::SHF_ALLOC
7478 | elfcpp::SHF_EXECINSTR),
7479 this->plt_, ORDER_PLT, false);
7480 }
7481
7482 this->plt_->add_entry(gsym, r_type);
7483}
7484
7485
7486// Get the .MIPS.stubs section, creating it if necessary.
7487
7488template<int size, bool big_endian>
7489Mips_output_data_mips_stubs<size, big_endian>*
7490Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7491{
7492 if (this->mips_stubs_ == NULL)
7493 {
7494 this->mips_stubs_ =
7495 new Mips_output_data_mips_stubs<size, big_endian>(this);
7496 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7497 (elfcpp::SHF_ALLOC
7498 | elfcpp::SHF_EXECINSTR),
7499 this->mips_stubs_, ORDER_PLT, false);
7500 }
7501 return this->mips_stubs_;
7502}
7503
7504// Get the LA25 stub section, creating it if necessary.
7505
7506template<int size, bool big_endian>
7507Mips_output_data_la25_stub<size, big_endian>*
7508Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7509{
7510 if (this->la25_stub_ == NULL)
7511 {
7512 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7513 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7514 (elfcpp::SHF_ALLOC
7515 | elfcpp::SHF_EXECINSTR),
7516 this->la25_stub_, ORDER_TEXT, false);
7517 }
7518 return this->la25_stub_;
7519}
7520
7521// Process the relocations to determine unreferenced sections for
7522// garbage collection.
7523
7524template<int size, bool big_endian>
7525void
7526Target_mips<size, big_endian>::gc_process_relocs(
7527 Symbol_table* symtab,
7528 Layout* layout,
7529 Sized_relobj_file<size, big_endian>* object,
7530 unsigned int data_shndx,
7531 unsigned int,
7532 const unsigned char* prelocs,
7533 size_t reloc_count,
7534 Output_section* output_section,
7535 bool needs_special_offset_handling,
7536 size_t local_symbol_count,
7537 const unsigned char* plocal_symbols)
7538{
7539 typedef Target_mips<size, big_endian> Mips;
7540 typedef typename Target_mips<size, big_endian>::Scan Scan;
7541
7542 gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7543 typename Target_mips::Relocatable_size_for_reloc>(
7544 symtab,
7545 layout,
7546 this,
7547 object,
7548 data_shndx,
7549 prelocs,
7550 reloc_count,
7551 output_section,
7552 needs_special_offset_handling,
7553 local_symbol_count,
7554 plocal_symbols);
7555}
7556
7557// Scan relocations for a section.
7558
7559template<int size, bool big_endian>
7560void
7561Target_mips<size, big_endian>::scan_relocs(
7562 Symbol_table* symtab,
7563 Layout* layout,
7564 Sized_relobj_file<size, big_endian>* object,
7565 unsigned int data_shndx,
7566 unsigned int sh_type,
7567 const unsigned char* prelocs,
7568 size_t reloc_count,
7569 Output_section* output_section,
7570 bool needs_special_offset_handling,
7571 size_t local_symbol_count,
7572 const unsigned char* plocal_symbols)
7573{
7574 typedef Target_mips<size, big_endian> Mips;
7575 typedef typename Target_mips<size, big_endian>::Scan Scan;
7576
7577 if (sh_type == elfcpp::SHT_REL)
7578 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7579 symtab,
7580 layout,
7581 this,
7582 object,
7583 data_shndx,
7584 prelocs,
7585 reloc_count,
7586 output_section,
7587 needs_special_offset_handling,
7588 local_symbol_count,
7589 plocal_symbols);
7590 else if (sh_type == elfcpp::SHT_RELA)
7591 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7592 symtab,
7593 layout,
7594 this,
7595 object,
7596 data_shndx,
7597 prelocs,
7598 reloc_count,
7599 output_section,
7600 needs_special_offset_handling,
7601 local_symbol_count,
7602 plocal_symbols);
7603}
7604
7605template<int size, bool big_endian>
7606bool
7607Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7608{
7609 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7610 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7611 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7612 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7613 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7614 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7615 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7616}
7617
7618// Return the MACH for a MIPS e_flags value.
7619template<int size, bool big_endian>
7620unsigned int
7621Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7622{
7623 switch (flags & elfcpp::EF_MIPS_MACH)
7624 {
7625 case elfcpp::E_MIPS_MACH_3900:
7626 return mach_mips3900;
7627
7628 case elfcpp::E_MIPS_MACH_4010:
7629 return mach_mips4010;
7630
7631 case elfcpp::E_MIPS_MACH_4100:
7632 return mach_mips4100;
7633
7634 case elfcpp::E_MIPS_MACH_4111:
7635 return mach_mips4111;
7636
7637 case elfcpp::E_MIPS_MACH_4120:
7638 return mach_mips4120;
7639
7640 case elfcpp::E_MIPS_MACH_4650:
7641 return mach_mips4650;
7642
7643 case elfcpp::E_MIPS_MACH_5400:
7644 return mach_mips5400;
7645
7646 case elfcpp::E_MIPS_MACH_5500:
7647 return mach_mips5500;
7648
7649 case elfcpp::E_MIPS_MACH_9000:
7650 return mach_mips9000;
7651
7652 case elfcpp::E_MIPS_MACH_SB1:
7653 return mach_mips_sb1;
7654
7655 case elfcpp::E_MIPS_MACH_LS2E:
7656 return mach_mips_loongson_2e;
7657
7658 case elfcpp::E_MIPS_MACH_LS2F:
7659 return mach_mips_loongson_2f;
7660
7661 case elfcpp::E_MIPS_MACH_LS3A:
7662 return mach_mips_loongson_3a;
7663
7664 case elfcpp::E_MIPS_MACH_OCTEON2:
7665 return mach_mips_octeon2;
7666
7667 case elfcpp::E_MIPS_MACH_OCTEON:
7668 return mach_mips_octeon;
7669
7670 case elfcpp::E_MIPS_MACH_XLR:
7671 return mach_mips_xlr;
7672
7673 default:
7674 switch (flags & elfcpp::EF_MIPS_ARCH)
7675 {
7676 default:
7677 case elfcpp::E_MIPS_ARCH_1:
7678 return mach_mips3000;
7679
7680 case elfcpp::E_MIPS_ARCH_2:
7681 return mach_mips6000;
7682
7683 case elfcpp::E_MIPS_ARCH_3:
7684 return mach_mips4000;
7685
7686 case elfcpp::E_MIPS_ARCH_4:
7687 return mach_mips8000;
7688
7689 case elfcpp::E_MIPS_ARCH_5:
7690 return mach_mips5;
7691
7692 case elfcpp::E_MIPS_ARCH_32:
7693 return mach_mipsisa32;
7694
7695 case elfcpp::E_MIPS_ARCH_64:
7696 return mach_mipsisa64;
7697
7698 case elfcpp::E_MIPS_ARCH_32R2:
7699 return mach_mipsisa32r2;
7700
7701 case elfcpp::E_MIPS_ARCH_64R2:
7702 return mach_mipsisa64r2;
7703 }
7704 }
7705
7706 return 0;
7707}
7708
7709// Check whether machine EXTENSION is an extension of machine BASE.
7710template<int size, bool big_endian>
7711bool
7712Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7713 unsigned int extension)
7714{
7715 if (extension == base)
7716 return true;
7717
7718 if ((base == mach_mipsisa32)
7719 && this->mips_mach_extends(mach_mipsisa64, extension))
7720 return true;
7721
7722 if ((base == mach_mipsisa32r2)
7723 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7724 return true;
7725
7726 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7727 if (extension == this->mips_mach_extensions_[i].first)
7728 {
7729 extension = this->mips_mach_extensions_[i].second;
7730 if (extension == base)
7731 return true;
7732 }
7733
7734 return false;
7735}
7736
7737template<int size, bool big_endian>
7738void
7739Target_mips<size, big_endian>::merge_processor_specific_flags(
7740 const std::string& name, elfcpp::Elf_Word in_flags,
7741 unsigned char in_ei_class, bool dyn_obj)
7742{
7743 // If flags are not set yet, just copy them.
7744 if (!this->are_processor_specific_flags_set())
7745 {
7746 this->set_processor_specific_flags(in_flags);
7747 this->ei_class_ = in_ei_class;
7748 this->mach_ = this->elf_mips_mach(in_flags);
7749 return;
7750 }
7751
7752 elfcpp::Elf_Word new_flags = in_flags;
7753 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7754 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7755 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7756
7757 // Check flag compatibility.
7758 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7759 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7760
7761 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7762 // doesn't seem to matter.
7763 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7764 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7765
7766 // MIPSpro generates ucode info in n64 objects. Again, we should
7767 // just be able to ignore this.
7768 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7769 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7770
7771 // DSOs should only be linked with CPIC code.
7772 if (dyn_obj)
7773 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7774
7775 if (new_flags == old_flags)
7776 {
7777 this->set_processor_specific_flags(merged_flags);
7778 return;
7779 }
7780
7781 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7782 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7783 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7784 name.c_str());
7785
7786 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7787 merged_flags |= elfcpp::EF_MIPS_CPIC;
7788 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7789 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7790
7791 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7792 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7793
7794 // Compare the ISAs.
7795 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7796 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7797 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7798 {
7799 // Output ISA isn't the same as, or an extension of, input ISA.
7800 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7801 {
7802 // Copy the architecture info from input object to output. Also copy
7803 // the 32-bit flag (if set) so that we continue to recognise
7804 // output as a 32-bit binary.
7805 this->mach_ = this->elf_mips_mach(in_flags);
7806 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7807 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7808 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7809
7810 // Copy across the ABI flags if output doesn't use them
7811 // and if that was what caused us to treat input object as 32-bit.
7812 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7813 && this->mips_32bit_flags(new_flags)
7814 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7815 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7816 }
7817 else
7818 // The ISAs aren't compatible.
7819 gold_error(_("%s: linking %s module with previous %s modules"),
7820 name.c_str(), this->elf_mips_mach_name(in_flags),
7821 this->elf_mips_mach_name(merged_flags));
7822 }
7823
7824 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7825 | elfcpp::EF_MIPS_32BITMODE));
7826 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7827 | elfcpp::EF_MIPS_32BITMODE));
7828
7829 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7830 // EI_CLASS differently from any 32-bit ABI.
7831 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7832 || (in_ei_class != this->ei_class_))
7833 {
7834 // Only error if both are set (to different values).
7835 if (((new_flags & elfcpp::EF_MIPS_ABI)
7836 && (old_flags & elfcpp::EF_MIPS_ABI))
7837 || (in_ei_class != this->ei_class_))
7838 gold_error(_("%s: ABI mismatch: linking %s module with "
7839 "previous %s modules"), name.c_str(),
7840 this->elf_mips_abi_name(in_flags, in_ei_class),
7841 this->elf_mips_abi_name(merged_flags, this->ei_class_));
7842
7843 new_flags &= ~elfcpp::EF_MIPS_ABI;
7844 old_flags &= ~elfcpp::EF_MIPS_ABI;
7845 }
7846
7847 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
7848 // and allow arbitrary mixing of the remaining ASEs (retain the union).
7849 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7850 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7851 {
7852 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7853 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7854 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7855 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7856 int micro_mis = old_m16 && new_micro;
7857 int m16_mis = old_micro && new_m16;
7858
7859 if (m16_mis || micro_mis)
7860 gold_error(_("%s: ASE mismatch: linking %s module with "
7861 "previous %s modules"), name.c_str(),
7862 m16_mis ? "MIPS16" : "microMIPS",
7863 m16_mis ? "microMIPS" : "MIPS16");
7864
7865 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7866
7867 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7868 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7869 }
7870
7871 // Warn about any other mismatches.
7872 if (new_flags != old_flags)
7873 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7874 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7875
7876 this->set_processor_specific_flags(merged_flags);
7877}
7878
7879// Adjust ELF file header.
7880
7881template<int size, bool big_endian>
7882void
7883Target_mips<size, big_endian>::do_adjust_elf_header(
7884 unsigned char* view,
7885 int len)
7886{
7887 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7888
7889 elfcpp::Ehdr<size, big_endian> ehdr(view);
7890 unsigned char e_ident[elfcpp::EI_NIDENT];
7891 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7892
7893 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7894
7895 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7896 oehdr.put_e_ident(e_ident);
7897 if (this->entry_symbol_is_compressed_)
7898 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7899}
7900
7901// do_make_elf_object to override the same function in the base class.
7902// We need to use a target-specific sub-class of
7903// Sized_relobj_file<size, big_endian> to store Mips specific information.
7904// Hence we need to have our own ELF object creation.
7905
7906template<int size, bool big_endian>
7907Object*
7908Target_mips<size, big_endian>::do_make_elf_object(
7909 const std::string& name,
7910 Input_file* input_file,
7911 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7912{
7913 int et = ehdr.get_e_type();
7914 // ET_EXEC files are valid input for --just-symbols/-R,
7915 // and we treat them as relocatable objects.
7916 if (et == elfcpp::ET_REL
7917 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7918 {
7919 Mips_relobj<size, big_endian>* obj =
7920 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7921 obj->setup();
7922 return obj;
7923 }
7924 else if (et == elfcpp::ET_DYN)
7925 {
7926 // TODO(sasa): Should we create Mips_dynobj?
7927 return Target::do_make_elf_object(name, input_file, offset, ehdr);
7928 }
7929 else
7930 {
7931 gold_error(_("%s: unsupported ELF file type %d"),
7932 name.c_str(), et);
7933 return NULL;
7934 }
7935}
7936
7937// Finalize the sections.
7938
7939template <int size, bool big_endian>
7940void
7941Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7942 const Input_objects* input_objects,
7943 Symbol_table* symtab)
7944{
7945 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7946 // DT_FINI have correct values.
7947 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7948 symtab->lookup(parameters->options().init()));
7949 if (init != NULL && (init->is_mips16() || init->is_micromips()))
7950 init->set_value(init->value() | 1);
7951 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7952 symtab->lookup(parameters->options().fini()));
7953 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7954 fini->set_value(fini->value() | 1);
7955
7956 // Check whether the entry symbol is mips16 or micromips. This is needed to
7957 // adjust entry address in ELF header.
7958 Mips_symbol<size>* entry =
7959 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7960 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7961 || entry->is_micromips()));
7962
7963 if (!parameters->doing_static_link()
7964 && (strcmp(parameters->options().hash_style(), "gnu") == 0
7965 || strcmp(parameters->options().hash_style(), "both") == 0))
7966 {
7967 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7968 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
7969 // MIPS ABI requires a mapping between the GOT and the symbol table.
7970 gold_error(".gnu.hash is incompatible with the MIPS ABI");
7971 }
7972
7973 // Check whether the final section that was scanned has HI16 or GOT16
7974 // relocations without the corresponding LO16 part.
7975 if (this->got16_addends_.size() > 0)
7976 gold_error("Can't find matching LO16 reloc");
7977
7978 // Set _gp value.
7979 this->set_gp(layout, symtab);
7980
7981 // Check for any mips16 stub sections that we can discard.
7982 if (!parameters->options().relocatable())
7983 {
7984 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7985 p != input_objects->relobj_end();
7986 ++p)
7987 {
7988 Mips_relobj<size, big_endian>* object =
7989 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7990 object->discard_mips16_stub_sections(symtab);
7991 }
7992 }
7993
7994 // Merge processor-specific flags.
7995 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7996 p != input_objects->relobj_end();
7997 ++p)
7998 {
7999 Mips_relobj<size, big_endian>* relobj =
8000 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8001
8002 Input_file::Format format = relobj->input_file()->format();
8003 if (format == Input_file::FORMAT_ELF)
8004 {
8005 // Read processor-specific flags in ELF file header.
8006 const unsigned char* pehdr = relobj->get_view(
8007 elfcpp::file_header_offset,
8008 elfcpp::Elf_sizes<size>::ehdr_size,
8009 true, false);
8010
8011 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8012 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8013 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8014
8015 this->merge_processor_specific_flags(relobj->name(), in_flags,
8016 ei_class, false);
8017 }
8018 }
8019
8020 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8021 p != input_objects->dynobj_end();
8022 ++p)
8023 {
8024 Sized_dynobj<size, big_endian>* dynobj =
8025 static_cast<Sized_dynobj<size, big_endian>*>(*p);
8026
8027 // Read processor-specific flags.
8028 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8029 elfcpp::Elf_sizes<size>::ehdr_size,
8030 true, false);
8031
8032 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8033 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8034 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8035
8036 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8037 true);
8038 }
8039
8040 // Merge .reginfo contents of input objects.
8041 Valtype gprmask = 0;
8042 Valtype cprmask1 = 0;
8043 Valtype cprmask2 = 0;
8044 Valtype cprmask3 = 0;
8045 Valtype cprmask4 = 0;
8046 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8047 p != input_objects->relobj_end();
8048 ++p)
8049 {
8050 Mips_relobj<size, big_endian>* relobj =
8051 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8052
8053 gprmask |= relobj->gprmask();
8054 cprmask1 |= relobj->cprmask1();
8055 cprmask2 |= relobj->cprmask2();
8056 cprmask3 |= relobj->cprmask3();
8057 cprmask4 |= relobj->cprmask4();
8058 }
8059
8060 if (this->plt_ != NULL)
8061 {
8062 // Set final PLT offsets for symbols.
8063 this->plt_section()->set_plt_offsets();
8064
8065 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8066 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8067 // there are no standard PLT entries present.
8068 unsigned char nonvis = 0;
8069 if (this->is_output_micromips()
8070 && !this->plt_section()->has_standard_entries())
8071 nonvis = elfcpp::STO_MICROMIPS >> 2;
8072 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8073 Symbol_table::PREDEFINED,
8074 this->plt_,
8075 0, 0, elfcpp::STT_FUNC,
8076 elfcpp::STB_LOCAL,
8077 elfcpp::STV_DEFAULT, nonvis,
8078 false, false);
8079 }
8080
8081 if (this->mips_stubs_ != NULL)
8082 {
8083 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8084 unsigned char nonvis = 0;
8085 if (this->is_output_micromips())
8086 nonvis = elfcpp::STO_MICROMIPS >> 2;
8087 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8088 Symbol_table::PREDEFINED,
8089 this->mips_stubs_,
8090 0, 0, elfcpp::STT_FUNC,
8091 elfcpp::STB_LOCAL,
8092 elfcpp::STV_DEFAULT, nonvis,
8093 false, false);
8094 }
8095
8096 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8097 // In case there is no .got section, create one.
8098 this->got_section(symtab, layout);
8099
8100 // Emit any relocs we saved in an attempt to avoid generating COPY
8101 // relocs.
8102 if (this->copy_relocs_.any_saved_relocs())
8103 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8104 this);
8105
8106 // Emit dynamic relocs.
8107 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8108 p != this->dyn_relocs_.end();
8109 ++p)
8110 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8111
8112 if (this->has_got_section())
8113 this->got_section()->lay_out_got(layout, symtab, input_objects);
8114
8115 if (this->mips_stubs_ != NULL)
8116 this->mips_stubs_->set_needs_dynsym_value();
8117
8118 // Check for functions that might need $25 to be valid on entry.
8119 // TODO(sasa): Can we do this without iterating over all symbols?
8120 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8121 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8122 symtab));
8123
8124 // Add NULL segment.
8125 if (!parameters->options().relocatable())
8126 layout->make_output_segment(elfcpp::PT_NULL, 0);
8127
8128 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8129 p != layout->section_list().end();
8130 ++p)
8131 {
8132 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8133 {
8134 Mips_output_section_reginfo<size, big_endian>* reginfo =
8135 Mips_output_section_reginfo<size, big_endian>::
8136 as_mips_output_section_reginfo(*p);
8137
8138 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8139
8140 if (!parameters->options().relocatable())
8141 {
8142 Output_segment* reginfo_segment =
8143 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8144 elfcpp::PF_R);
8145 reginfo_segment->add_output_section_to_nonload(reginfo,
8146 elfcpp::PF_R);
8147 }
8148 }
8149 }
8150
8151 // Fill in some more dynamic tags.
8152 // TODO(sasa): Add more dynamic tags.
8153 const Reloc_section* rel_plt = (this->plt_ == NULL
8154 ? NULL : this->plt_->rel_plt());
8155 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8156 this->rel_dyn_, true, false);
8157
8158 Output_data_dynamic* const odyn = layout->dynamic_data();
8159 if (odyn != NULL
8160 && !parameters->options().relocatable()
8161 && !parameters->doing_static_link())
8162 {
8163 unsigned int d_val;
8164 // This element holds a 32-bit version id for the Runtime
8165 // Linker Interface. This will start at integer value 1.
8166 d_val = 0x01;
8167 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8168
8169 // Dynamic flags
8170 d_val = elfcpp::RHF_NOTPOT;
8171 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8172
8173 // Save layout for using when emiting custom dynamic tags.
8174 this->layout_ = layout;
8175
8176 // This member holds the base address of the segment.
8177 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8178
8179 // This member holds the number of entries in the .dynsym section.
8180 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8181
8182 // This member holds the index of the first dynamic symbol
8183 // table entry that corresponds to an entry in the global offset table.
8184 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8185
8186 // This member holds the number of local GOT entries.
8187 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8188 this->got_->get_local_gotno());
8189
8190 if (this->plt_ != NULL)
8191 // DT_MIPS_PLTGOT dynamic tag
8192 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8193 }
8194 }
8195
8196// Get the custom dynamic tag value.
8197template<int size, bool big_endian>
8198unsigned int
8199Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8200{
8201 switch (tag)
8202 {
8203 case elfcpp::DT_MIPS_BASE_ADDRESS:
8204 {
8205 // The base address of the segment.
8206 // At this point, the segment list has been sorted into final order,
8207 // so just return vaddr of the first readable PT_LOAD segment.
8208 Output_segment* seg =
8209 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8210 gold_assert(seg != NULL);
8211 return seg->vaddr();
8212 }
8213
8214 case elfcpp::DT_MIPS_SYMTABNO:
8215 // The number of entries in the .dynsym section.
8216 return this->get_dt_mips_symtabno();
8217
8218 case elfcpp::DT_MIPS_GOTSYM:
8219 {
8220 // The index of the first dynamic symbol table entry that corresponds
8221 // to an entry in the GOT.
8222 if (this->got_->first_global_got_dynsym_index() != -1U)
8223 return this->got_->first_global_got_dynsym_index();
8224 else
8225 // In case if we don't have global GOT symbols we default to setting
8226 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8227 return this->get_dt_mips_symtabno();
8228 }
8229
8230 default:
8231 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8232 }
8233
8234 return (unsigned int)-1;
8235}
8236
8237// Relocate section data.
8238
8239template<int size, bool big_endian>
8240void
8241Target_mips<size, big_endian>::relocate_section(
8242 const Relocate_info<size, big_endian>* relinfo,
8243 unsigned int sh_type,
8244 const unsigned char* prelocs,
8245 size_t reloc_count,
8246 Output_section* output_section,
8247 bool needs_special_offset_handling,
8248 unsigned char* view,
8249 Mips_address address,
8250 section_size_type view_size,
8251 const Reloc_symbol_changes* reloc_symbol_changes)
8252{
8253 typedef Target_mips<size, big_endian> Mips;
8254 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8255
8256 if (sh_type == elfcpp::SHT_REL)
8257 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8258 Mips_relocate, gold::Default_comdat_behavior>(
8259 relinfo,
8260 this,
8261 prelocs,
8262 reloc_count,
8263 output_section,
8264 needs_special_offset_handling,
8265 view,
8266 address,
8267 view_size,
8268 reloc_symbol_changes);
8269 else if (sh_type == elfcpp::SHT_RELA)
8270 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8271 Mips_relocate, gold::Default_comdat_behavior>(
8272 relinfo,
8273 this,
8274 prelocs,
8275 reloc_count,
8276 output_section,
8277 needs_special_offset_handling,
8278 view,
8279 address,
8280 view_size,
8281 reloc_symbol_changes);
8282}
8283
8284// Return the size of a relocation while scanning during a relocatable
8285// link.
8286
8287template<int size, bool big_endian>
8288unsigned int
8289Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8290 unsigned int r_type,
8291 Relobj* object)
8292{
8293 switch (r_type)
8294 {
8295 case elfcpp::R_MIPS_NONE:
8296 case elfcpp::R_MIPS_TLS_DTPMOD64:
8297 case elfcpp::R_MIPS_TLS_DTPREL64:
8298 case elfcpp::R_MIPS_TLS_TPREL64:
8299 return 0;
8300
8301 case elfcpp::R_MIPS_32:
8302 case elfcpp::R_MIPS_TLS_DTPMOD32:
8303 case elfcpp::R_MIPS_TLS_DTPREL32:
8304 case elfcpp::R_MIPS_TLS_TPREL32:
8305 case elfcpp::R_MIPS_REL32:
8306 case elfcpp::R_MIPS_PC32:
8307 case elfcpp::R_MIPS_GPREL32:
8308 case elfcpp::R_MIPS_JALR:
8309 return 4;
8310
8311 case elfcpp::R_MIPS_16:
8312 case elfcpp::R_MIPS_HI16:
8313 case elfcpp::R_MIPS_LO16:
8314 case elfcpp::R_MIPS_GPREL16:
8315 case elfcpp::R_MIPS16_HI16:
8316 case elfcpp::R_MIPS16_LO16:
8317 case elfcpp::R_MIPS_PC16:
8318 case elfcpp::R_MIPS_GOT16:
8319 case elfcpp::R_MIPS16_GOT16:
8320 case elfcpp::R_MIPS_CALL16:
8321 case elfcpp::R_MIPS16_CALL16:
8322 case elfcpp::R_MIPS_GOT_HI16:
8323 case elfcpp::R_MIPS_CALL_HI16:
8324 case elfcpp::R_MIPS_GOT_LO16:
8325 case elfcpp::R_MIPS_CALL_LO16:
8326 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8327 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8328 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8329 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8330 case elfcpp::R_MIPS16_GPREL:
8331 case elfcpp::R_MIPS_GOT_DISP:
8332 case elfcpp::R_MIPS_LITERAL:
8333 case elfcpp::R_MIPS_GOT_PAGE:
8334 case elfcpp::R_MIPS_GOT_OFST:
8335 case elfcpp::R_MIPS_TLS_GD:
8336 case elfcpp::R_MIPS_TLS_LDM:
8337 case elfcpp::R_MIPS_TLS_GOTTPREL:
8338 return 2;
8339
8340 // These relocations are not byte sized
8341 case elfcpp::R_MIPS_26:
8342 case elfcpp::R_MIPS16_26:
8343 return 4;
8344
8345 case elfcpp::R_MIPS_COPY:
8346 case elfcpp::R_MIPS_JUMP_SLOT:
8347 object->error(_("unexpected reloc %u in object file"), r_type);
8348 return 0;
8349
8350 default:
8351 object->error(_("unsupported reloc %u in object file"), r_type);
8352 return 0;
8353 }
8354}
8355
8356// Scan the relocs during a relocatable link.
8357
8358template<int size, bool big_endian>
8359void
8360Target_mips<size, big_endian>::scan_relocatable_relocs(
8361 Symbol_table* symtab,
8362 Layout* layout,
8363 Sized_relobj_file<size, big_endian>* object,
8364 unsigned int data_shndx,
8365 unsigned int sh_type,
8366 const unsigned char* prelocs,
8367 size_t reloc_count,
8368 Output_section* output_section,
8369 bool needs_special_offset_handling,
8370 size_t local_symbol_count,
8371 const unsigned char* plocal_symbols,
8372 Relocatable_relocs* rr)
8373{
8374 gold_assert(sh_type == elfcpp::SHT_REL);
8375
8376 typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8377 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8378
8379 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8380 Scan_relocatable_relocs>(
8381 symtab,
8382 layout,
8383 object,
8384 data_shndx,
8385 prelocs,
8386 reloc_count,
8387 output_section,
8388 needs_special_offset_handling,
8389 local_symbol_count,
8390 plocal_symbols,
8391 rr);
8392}
8393
8394// Emit relocations for a section.
8395
8396template<int size, bool big_endian>
8397void
8398Target_mips<size, big_endian>::relocate_relocs(
8399 const Relocate_info<size, big_endian>* relinfo,
8400 unsigned int sh_type,
8401 const unsigned char* prelocs,
8402 size_t reloc_count,
8403 Output_section* output_section,
8404 typename elfcpp::Elf_types<size>::Elf_Off
8405 offset_in_output_section,
8406 const Relocatable_relocs* rr,
8407 unsigned char* view,
8408 Mips_address view_address,
8409 section_size_type view_size,
8410 unsigned char* reloc_view,
8411 section_size_type reloc_view_size)
8412{
8413 gold_assert(sh_type == elfcpp::SHT_REL);
8414
8415 gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8416 relinfo,
8417 prelocs,
8418 reloc_count,
8419 output_section,
8420 offset_in_output_section,
8421 rr,
8422 view,
8423 view_address,
8424 view_size,
8425 reloc_view,
8426 reloc_view_size);
8427}
8428
8429// Perform target-specific processing in a relocatable link. This is
8430// only used if we use the relocation strategy RELOC_SPECIAL.
8431
8432template<int size, bool big_endian>
8433void
8434Target_mips<size, big_endian>::relocate_special_relocatable(
8435 const Relocate_info<size, big_endian>* relinfo,
8436 unsigned int sh_type,
8437 const unsigned char* preloc_in,
8438 size_t relnum,
8439 Output_section* output_section,
8440 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8441 unsigned char* view,
8442 Mips_address view_address,
8443 section_size_type,
8444 unsigned char* preloc_out)
8445{
8446 // We can only handle REL type relocation sections.
8447 gold_assert(sh_type == elfcpp::SHT_REL);
8448
8449 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8450 Reltype;
8451 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8452 Reltype_write;
8453
8454 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8455
8456 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8457
8458 Mips_relobj<size, big_endian>* object =
8459 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8460 const unsigned int local_count = object->local_symbol_count();
8461
8462 Reltype reloc(preloc_in);
8463 Reltype_write reloc_write(preloc_out);
8464
8465 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8466 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8467 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8468
8469 // Get the new symbol index.
8470 // We only use RELOC_SPECIAL strategy in local relocations.
8471 gold_assert(r_sym < local_count);
8472
8473 // We are adjusting a section symbol. We need to find
8474 // the symbol table index of the section symbol for
8475 // the output section corresponding to input section
8476 // in which this symbol is defined.
8477 bool is_ordinary;
8478 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8479 gold_assert(is_ordinary);
8480 Output_section* os = object->output_section(shndx);
8481 gold_assert(os != NULL);
8482 gold_assert(os->needs_symtab_index());
8483 unsigned int new_symndx = os->symtab_index();
8484
8485 // Get the new offset--the location in the output section where
8486 // this relocation should be applied.
8487
8488 Mips_address offset = reloc.get_r_offset();
8489 Mips_address new_offset;
8490 if (offset_in_output_section != invalid_address)
8491 new_offset = offset + offset_in_output_section;
8492 else
8493 {
8494 section_offset_type sot_offset =
8495 convert_types<section_offset_type, Mips_address>(offset);
8496 section_offset_type new_sot_offset =
8497 output_section->output_offset(object, relinfo->data_shndx,
8498 sot_offset);
8499 gold_assert(new_sot_offset != -1);
8500 new_offset = new_sot_offset;
8501 }
8502
8503 // In an object file, r_offset is an offset within the section.
8504 // In an executable or dynamic object, generated by
8505 // --emit-relocs, r_offset is an absolute address.
8506 if (!parameters->options().relocatable())
8507 {
8508 new_offset += view_address;
8509 if (offset_in_output_section != invalid_address)
8510 new_offset -= offset_in_output_section;
8511 }
8512
8513 reloc_write.put_r_offset(new_offset);
8514 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8515
8516 // Handle the reloc addend.
8517 // The relocation uses a section symbol in the input file.
8518 // We are adjusting it to use a section symbol in the output
8519 // file. The input section symbol refers to some address in
8520 // the input section. We need the relocation in the output
8521 // file to refer to that same address. This adjustment to
8522 // the addend is the same calculation we use for a simple
8523 // absolute relocation for the input section symbol.
8524
8525 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8526
8527 unsigned char* paddend = view + offset;
8528 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8529 switch (r_type)
8530 {
8531 case elfcpp::R_MIPS_26:
8532 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8533 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8534 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8535 break;
8536
8537 default:
8538 gold_unreachable();
8539 }
8540
8541 // Report any errors.
8542 switch (reloc_status)
8543 {
8544 case Reloc_funcs::STATUS_OKAY:
8545 break;
8546 case Reloc_funcs::STATUS_OVERFLOW:
8547 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8548 _("relocation overflow"));
8549 break;
8550 case Reloc_funcs::STATUS_BAD_RELOC:
8551 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8552 _("unexpected opcode while processing relocation"));
8553 break;
8554 default:
8555 gold_unreachable();
8556 }
8557}
8558
8559// Optimize the TLS relocation type based on what we know about the
8560// symbol. IS_FINAL is true if the final address of this symbol is
8561// known at link time.
8562
8563template<int size, bool big_endian>
8564tls::Tls_optimization
8565Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8566{
8567 // FIXME: Currently we do not do any TLS optimization.
8568 return tls::TLSOPT_NONE;
8569}
8570
8571// Scan a relocation for a local symbol.
8572
8573template<int size, bool big_endian>
8574inline void
8575Target_mips<size, big_endian>::Scan::local(
8576 Symbol_table* symtab,
8577 Layout* layout,
8578 Target_mips<size, big_endian>* target,
8579 Sized_relobj_file<size, big_endian>* object,
8580 unsigned int data_shndx,
8581 Output_section* output_section,
8582 const elfcpp::Rela<size, big_endian>* rela,
8583 const elfcpp::Rel<size, big_endian>* rel,
8584 unsigned int rel_type,
8585 unsigned int r_type,
8586 const elfcpp::Sym<size, big_endian>& lsym,
8587 bool is_discarded)
8588{
8589 if (is_discarded)
8590 return;
8591
8592 Mips_address r_offset;
8593 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8594 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8595
8596 if (rel_type == elfcpp::SHT_RELA)
8597 {
8598 r_offset = rela->get_r_offset();
8599 r_info = rela->get_r_info();
8600 r_addend = rela->get_r_addend();
8601 }
8602 else
8603 {
8604 r_offset = rel->get_r_offset();
8605 r_info = rel->get_r_info();
8606 r_addend = 0;
8607 }
8608
8609 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8610 Mips_relobj<size, big_endian>* mips_obj =
8611 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8612
8613 if (mips_obj->is_mips16_stub_section(data_shndx))
8614 {
8615 mips_obj->get_mips16_stub_section(data_shndx)
8616 ->new_local_reloc_found(r_type, r_sym);
8617 }
8618
8619 if (r_type == elfcpp::R_MIPS_NONE)
8620 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8621 // mips16 stub.
8622 return;
8623
8624 if (!mips16_call_reloc(r_type)
8625 && !mips_obj->section_allows_mips16_refs(data_shndx))
8626 // This reloc would need to refer to a MIPS16 hard-float stub, if
8627 // there is one. We ignore MIPS16 stub sections and .pdr section when
8628 // looking for relocs that would need to refer to MIPS16 stubs.
8629 mips_obj->add_local_non_16bit_call(r_sym);
8630
8631 if (r_type == elfcpp::R_MIPS16_26
8632 && !mips_obj->section_allows_mips16_refs(data_shndx))
8633 mips_obj->add_local_16bit_call(r_sym);
8634
8635 switch (r_type)
8636 {
8637 case elfcpp::R_MIPS_GOT16:
8638 case elfcpp::R_MIPS_CALL16:
8639 case elfcpp::R_MIPS_CALL_HI16:
8640 case elfcpp::R_MIPS_CALL_LO16:
8641 case elfcpp::R_MIPS_GOT_HI16:
8642 case elfcpp::R_MIPS_GOT_LO16:
8643 case elfcpp::R_MIPS_GOT_PAGE:
8644 case elfcpp::R_MIPS_GOT_OFST:
8645 case elfcpp::R_MIPS_GOT_DISP:
8646 case elfcpp::R_MIPS_TLS_GOTTPREL:
8647 case elfcpp::R_MIPS_TLS_GD:
8648 case elfcpp::R_MIPS_TLS_LDM:
8649 case elfcpp::R_MIPS16_GOT16:
8650 case elfcpp::R_MIPS16_CALL16:
8651 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8652 case elfcpp::R_MIPS16_TLS_GD:
8653 case elfcpp::R_MIPS16_TLS_LDM:
8654 case elfcpp::R_MICROMIPS_GOT16:
8655 case elfcpp::R_MICROMIPS_CALL16:
8656 case elfcpp::R_MICROMIPS_CALL_HI16:
8657 case elfcpp::R_MICROMIPS_CALL_LO16:
8658 case elfcpp::R_MICROMIPS_GOT_HI16:
8659 case elfcpp::R_MICROMIPS_GOT_LO16:
8660 case elfcpp::R_MICROMIPS_GOT_PAGE:
8661 case elfcpp::R_MICROMIPS_GOT_OFST:
8662 case elfcpp::R_MICROMIPS_GOT_DISP:
8663 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8664 case elfcpp::R_MICROMIPS_TLS_GD:
8665 case elfcpp::R_MICROMIPS_TLS_LDM:
8666 // We need a GOT section.
8667 target->got_section(symtab, layout);
8668 break;
8669
8670 default:
8671 break;
8672 }
8673
8674 if (call_lo16_reloc(r_type)
8675 || got_lo16_reloc(r_type)
8676 || got_disp_reloc(r_type))
8677 {
8678 // We may need a local GOT entry for this relocation. We
8679 // don't count R_MIPS_GOT_PAGE because we can estimate the
8680 // maximum number of pages needed by looking at the size of
8681 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8682 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8683 // R_MIPS_CALL_HI16 because these are always followed by an
8684 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8685 Mips_output_data_got<size, big_endian>* got =
8686 target->got_section(symtab, layout);
8687 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8688 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8689 }
8690
8691 switch (r_type)
8692 {
8693 case elfcpp::R_MIPS_CALL16:
8694 case elfcpp::R_MIPS16_CALL16:
8695 case elfcpp::R_MICROMIPS_CALL16:
8696 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8697 (unsigned long)r_offset);
8698 return;
8699
8700 case elfcpp::R_MIPS_GOT_PAGE:
8701 case elfcpp::R_MICROMIPS_GOT_PAGE:
8702 case elfcpp::R_MIPS16_GOT16:
8703 case elfcpp::R_MIPS_GOT16:
8704 case elfcpp::R_MIPS_GOT_HI16:
8705 case elfcpp::R_MIPS_GOT_LO16:
8706 case elfcpp::R_MICROMIPS_GOT16:
8707 case elfcpp::R_MICROMIPS_GOT_HI16:
8708 case elfcpp::R_MICROMIPS_GOT_LO16:
8709 {
8710 // This relocation needs a page entry in the GOT.
8711 // Get the section contents.
8712 section_size_type view_size = 0;
8713 const unsigned char* view = object->section_contents(data_shndx,
8714 &view_size, false);
8715 view += r_offset;
8716
8717 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8718 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8719 : r_addend);
8720
8721 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8722 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8723 object, data_shndx, r_type, r_sym, addend));
8724 else
8725 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8726 break;
8727 }
8728
8729 case elfcpp::R_MIPS_HI16:
8730 case elfcpp::R_MIPS16_HI16:
8731 case elfcpp::R_MICROMIPS_HI16:
8732 // Record the reloc so that we can check whether the corresponding LO16
8733 // part exists.
8734 if (rel_type == elfcpp::SHT_REL)
8735 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8736 object, data_shndx, r_type, r_sym, 0));
8737 break;
8738
8739 case elfcpp::R_MIPS_LO16:
8740 case elfcpp::R_MIPS16_LO16:
8741 case elfcpp::R_MICROMIPS_LO16:
8742 {
8743 if (rel_type != elfcpp::SHT_REL)
8744 break;
8745
8746 // Find corresponding GOT16/HI16 relocation.
8747
8748 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8749 // be immediately following. However, for the IRIX6 ABI, the next
8750 // relocation may be a composed relocation consisting of several
8751 // relocations for the same address. In that case, the R_MIPS_LO16
8752 // relocation may occur as one of these. We permit a similar
8753 // extension in general, as that is useful for GCC.
8754
8755 // In some cases GCC dead code elimination removes the LO16 but
8756 // keeps the corresponding HI16. This is strictly speaking a
8757 // violation of the ABI but not immediately harmful.
8758
8759 typename std::list<got16_addend<size, big_endian> >::iterator it =
8760 target->got16_addends_.begin();
8761 while (it != target->got16_addends_.end())
8762 {
8763 got16_addend<size, big_endian> _got16_addend = *it;
8764
8765 // TODO(sasa): Split got16_addends_ list into two lists - one for
8766 // GOT16 relocs and the other for HI16 relocs.
8767
8768 // Report an error if we find HI16 or GOT16 reloc from the
8769 // previous section without the matching LO16 part.
8770 if (_got16_addend.object != object
8771 || _got16_addend.shndx != data_shndx)
8772 {
8773 gold_error("Can't find matching LO16 reloc");
8774 break;
8775 }
8776
8777 if (_got16_addend.r_sym != r_sym
8778 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8779 {
8780 ++it;
8781 continue;
8782 }
8783
8784 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8785 // For GOT16, we need to calculate combined addend and record GOT page
8786 // entry.
8787 if (got16_reloc(_got16_addend.r_type))
8788 {
8789
8790 section_size_type view_size = 0;
8791 const unsigned char* view = object->section_contents(data_shndx,
8792 &view_size,
8793 false);
8794 view += r_offset;
8795
8796 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8797 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8798
8799 addend = (_got16_addend.addend << 16) + addend;
8800 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8801 addend);
8802 }
8803
8804 it = target->got16_addends_.erase(it);
8805 }
8806 break;
8807 }
8808 }
8809
8810 switch (r_type)
8811 {
8812 case elfcpp::R_MIPS_32:
8813 case elfcpp::R_MIPS_REL32:
8814 case elfcpp::R_MIPS_64:
8815 {
8816 if (parameters->options().output_is_position_independent())
8817 {
8818 // If building a shared library (or a position-independent
8819 // executable), we need to create a dynamic relocation for
8820 // this location.
8821 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8822 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8823 rel_dyn->add_symbolless_local_addend(object, r_sym,
8824 elfcpp::R_MIPS_REL32,
8825 output_section, data_shndx,
8826 r_offset);
8827 }
8828 break;
8829 }
8830
8831 case elfcpp::R_MIPS_TLS_GOTTPREL:
8832 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8833 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8834 case elfcpp::R_MIPS_TLS_LDM:
8835 case elfcpp::R_MIPS16_TLS_LDM:
8836 case elfcpp::R_MICROMIPS_TLS_LDM:
8837 case elfcpp::R_MIPS_TLS_GD:
8838 case elfcpp::R_MIPS16_TLS_GD:
8839 case elfcpp::R_MICROMIPS_TLS_GD:
8840 {
8841 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8842 bool output_is_shared = parameters->options().shared();
8843 const tls::Tls_optimization optimized_type
8844 = Target_mips<size, big_endian>::optimize_tls_reloc(
8845 !output_is_shared, r_type);
8846 switch (r_type)
8847 {
8848 case elfcpp::R_MIPS_TLS_GD:
8849 case elfcpp::R_MIPS16_TLS_GD:
8850 case elfcpp::R_MICROMIPS_TLS_GD:
8851 if (optimized_type == tls::TLSOPT_NONE)
8852 {
8853 // Create a pair of GOT entries for the module index and
8854 // dtv-relative offset.
8855 Mips_output_data_got<size, big_endian>* got =
8856 target->got_section(symtab, layout);
8857 unsigned int shndx = lsym.get_st_shndx();
8858 bool is_ordinary;
8859 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8860 if (!is_ordinary)
8861 {
8862 object->error(_("local symbol %u has bad shndx %u"),
8863 r_sym, shndx);
8864 break;
8865 }
8866 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8867 shndx);
8868 }
8869 else
8870 {
8871 // FIXME: TLS optimization not supported yet.
8872 gold_unreachable();
8873 }
8874 break;
8875
8876 case elfcpp::R_MIPS_TLS_LDM:
8877 case elfcpp::R_MIPS16_TLS_LDM:
8878 case elfcpp::R_MICROMIPS_TLS_LDM:
8879 if (optimized_type == tls::TLSOPT_NONE)
8880 {
8881 // We always record LDM symbols as local with index 0.
8882 target->got_section()->record_local_got_symbol(mips_obj, 0,
8883 r_addend, r_type,
8884 -1U);
8885 }
8886 else
8887 {
8888 // FIXME: TLS optimization not supported yet.
8889 gold_unreachable();
8890 }
8891 break;
8892 case elfcpp::R_MIPS_TLS_GOTTPREL:
8893 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8894 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8895 layout->set_has_static_tls();
8896 if (optimized_type == tls::TLSOPT_NONE)
8897 {
8898 // Create a GOT entry for the tp-relative offset.
8899 Mips_output_data_got<size, big_endian>* got =
8900 target->got_section(symtab, layout);
8901 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8902 -1U);
8903 }
8904 else
8905 {
8906 // FIXME: TLS optimization not supported yet.
8907 gold_unreachable();
8908 }
8909 break;
8910
8911 default:
8912 gold_unreachable();
8913 }
8914 }
8915 break;
8916
8917 default:
8918 break;
8919 }
8920
8921 // Refuse some position-dependent relocations when creating a
8922 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8923 // not PIC, but we can create dynamic relocations and the result
8924 // will be fine. Also do not refuse R_MIPS_LO16, which can be
8925 // combined with R_MIPS_GOT16.
8926 if (parameters->options().shared())
8927 {
8928 switch (r_type)
8929 {
8930 case elfcpp::R_MIPS16_HI16:
8931 case elfcpp::R_MIPS_HI16:
8932 case elfcpp::R_MICROMIPS_HI16:
8933 // Don't refuse a high part relocation if it's against
8934 // no symbol (e.g. part of a compound relocation).
8935 if (r_sym == 0)
8936 break;
8937
8938 // FALLTHROUGH
8939
8940 case elfcpp::R_MIPS16_26:
8941 case elfcpp::R_MIPS_26:
8942 case elfcpp::R_MICROMIPS_26_S1:
8943 gold_error(_("%s: relocation %u against `%s' can not be used when "
8944 "making a shared object; recompile with -fPIC"),
8945 object->name().c_str(), r_type, "a local symbol");
8946 default:
8947 break;
8948 }
8949 }
8950}
8951
8952template<int size, bool big_endian>
8953inline void
8954Target_mips<size, big_endian>::Scan::local(
8955 Symbol_table* symtab,
8956 Layout* layout,
8957 Target_mips<size, big_endian>* target,
8958 Sized_relobj_file<size, big_endian>* object,
8959 unsigned int data_shndx,
8960 Output_section* output_section,
8961 const elfcpp::Rel<size, big_endian>& reloc,
8962 unsigned int r_type,
8963 const elfcpp::Sym<size, big_endian>& lsym,
8964 bool is_discarded)
8965{
8966 if (is_discarded)
8967 return;
8968
8969 local(
8970 symtab,
8971 layout,
8972 target,
8973 object,
8974 data_shndx,
8975 output_section,
8976 (const elfcpp::Rela<size, big_endian>*) NULL,
8977 &reloc,
8978 elfcpp::SHT_REL,
8979 r_type,
8980 lsym, is_discarded);
8981}
8982
8983
8984template<int size, bool big_endian>
8985inline void
8986Target_mips<size, big_endian>::Scan::local(
8987 Symbol_table* symtab,
8988 Layout* layout,
8989 Target_mips<size, big_endian>* target,
8990 Sized_relobj_file<size, big_endian>* object,
8991 unsigned int data_shndx,
8992 Output_section* output_section,
8993 const elfcpp::Rela<size, big_endian>& reloc,
8994 unsigned int r_type,
8995 const elfcpp::Sym<size, big_endian>& lsym,
8996 bool is_discarded)
8997{
8998 if (is_discarded)
8999 return;
9000
9001 local(
9002 symtab,
9003 layout,
9004 target,
9005 object,
9006 data_shndx,
9007 output_section,
9008 &reloc,
9009 (const elfcpp::Rel<size, big_endian>*) NULL,
9010 elfcpp::SHT_RELA,
9011 r_type,
9012 lsym, is_discarded);
9013}
9014
9015// Scan a relocation for a global symbol.
9016
9017template<int size, bool big_endian>
9018inline void
9019Target_mips<size, big_endian>::Scan::global(
9020 Symbol_table* symtab,
9021 Layout* layout,
9022 Target_mips<size, big_endian>* target,
9023 Sized_relobj_file<size, big_endian>* object,
9024 unsigned int data_shndx,
9025 Output_section* output_section,
9026 const elfcpp::Rela<size, big_endian>* rela,
9027 const elfcpp::Rel<size, big_endian>* rel,
9028 unsigned int rel_type,
9029 unsigned int r_type,
9030 Symbol* gsym)
9031{
9032 Mips_address r_offset;
9033 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9034 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9035
9036 if (rel_type == elfcpp::SHT_RELA)
9037 {
9038 r_offset = rela->get_r_offset();
9039 r_info = rela->get_r_info();
9040 r_addend = rela->get_r_addend();
9041 }
9042 else
9043 {
9044 r_offset = rel->get_r_offset();
9045 r_info = rel->get_r_info();
9046 r_addend = 0;
9047 }
9048
9049 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9050 Mips_relobj<size, big_endian>* mips_obj =
9051 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9052 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9053
9054 if (mips_obj->is_mips16_stub_section(data_shndx))
9055 {
9056 mips_obj->get_mips16_stub_section(data_shndx)
9057 ->new_global_reloc_found(r_type, mips_sym);
9058 }
9059
9060 if (r_type == elfcpp::R_MIPS_NONE)
9061 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9062 // mips16 stub.
9063 return;
9064
9065 if (!mips16_call_reloc(r_type)
9066 && !mips_obj->section_allows_mips16_refs(data_shndx))
9067 // This reloc would need to refer to a MIPS16 hard-float stub, if
9068 // there is one. We ignore MIPS16 stub sections and .pdr section when
9069 // looking for relocs that would need to refer to MIPS16 stubs.
9070 mips_sym->set_need_fn_stub();
9071
9072 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9073 // section. We check here to avoid creating a dynamic reloc against
9074 // _GLOBAL_OFFSET_TABLE_.
9075 if (!target->has_got_section()
9076 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9077 target->got_section(symtab, layout);
9078
9079 // We need PLT entries if there are static-only relocations against
9080 // an externally-defined function. This can technically occur for
9081 // shared libraries if there are branches to the symbol, although it
9082 // is unlikely that this will be used in practice due to the short
9083 // ranges involved. It can occur for any relative or absolute relocation
9084 // in executables; in that case, the PLT entry becomes the function's
9085 // canonical address.
9086 bool static_reloc = false;
9087
9088 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9089 // relocation into a dynamic one.
9090 bool can_make_dynamic = false;
9091 switch (r_type)
9092 {
9093 case elfcpp::R_MIPS_GOT16:
9094 case elfcpp::R_MIPS_CALL16:
9095 case elfcpp::R_MIPS_CALL_HI16:
9096 case elfcpp::R_MIPS_CALL_LO16:
9097 case elfcpp::R_MIPS_GOT_HI16:
9098 case elfcpp::R_MIPS_GOT_LO16:
9099 case elfcpp::R_MIPS_GOT_PAGE:
9100 case elfcpp::R_MIPS_GOT_OFST:
9101 case elfcpp::R_MIPS_GOT_DISP:
9102 case elfcpp::R_MIPS_TLS_GOTTPREL:
9103 case elfcpp::R_MIPS_TLS_GD:
9104 case elfcpp::R_MIPS_TLS_LDM:
9105 case elfcpp::R_MIPS16_GOT16:
9106 case elfcpp::R_MIPS16_CALL16:
9107 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9108 case elfcpp::R_MIPS16_TLS_GD:
9109 case elfcpp::R_MIPS16_TLS_LDM:
9110 case elfcpp::R_MICROMIPS_GOT16:
9111 case elfcpp::R_MICROMIPS_CALL16:
9112 case elfcpp::R_MICROMIPS_CALL_HI16:
9113 case elfcpp::R_MICROMIPS_CALL_LO16:
9114 case elfcpp::R_MICROMIPS_GOT_HI16:
9115 case elfcpp::R_MICROMIPS_GOT_LO16:
9116 case elfcpp::R_MICROMIPS_GOT_PAGE:
9117 case elfcpp::R_MICROMIPS_GOT_OFST:
9118 case elfcpp::R_MICROMIPS_GOT_DISP:
9119 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9120 case elfcpp::R_MICROMIPS_TLS_GD:
9121 case elfcpp::R_MICROMIPS_TLS_LDM:
9122 // We need a GOT section.
9123 target->got_section(symtab, layout);
9124 break;
9125
9126 // This is just a hint; it can safely be ignored. Don't set
9127 // has_static_relocs for the corresponding symbol.
9128 case elfcpp::R_MIPS_JALR:
9129 case elfcpp::R_MICROMIPS_JALR:
9130 break;
9131
9132 case elfcpp::R_MIPS_GPREL16:
9133 case elfcpp::R_MIPS_GPREL32:
9134 case elfcpp::R_MIPS16_GPREL:
9135 case elfcpp::R_MICROMIPS_GPREL16:
9136 // TODO(sasa)
9137 // GP-relative relocations always resolve to a definition in a
9138 // regular input file, ignoring the one-definition rule. This is
9139 // important for the GP setup sequence in NewABI code, which
9140 // always resolves to a local function even if other relocations
9141 // against the symbol wouldn't.
9142 //constrain_symbol_p = FALSE;
9143 break;
9144
9145 case elfcpp::R_MIPS_32:
9146 case elfcpp::R_MIPS_REL32:
9147 case elfcpp::R_MIPS_64:
9148 if (parameters->options().shared()
9149 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9150 {
9151 if (r_type != elfcpp::R_MIPS_REL32)
9152 {
9153 static_reloc = true;
9154 mips_sym->set_pointer_equality_needed();
9155 }
9156 can_make_dynamic = true;
9157 break;
9158 }
9159 // Fall through.
9160
9161 default:
9162 // Most static relocations require pointer equality, except
9163 // for branches.
9164 mips_sym->set_pointer_equality_needed();
9165
9166 // Fall through.
9167
9168 case elfcpp::R_MIPS_26:
9169 case elfcpp::R_MIPS_PC16:
9170 case elfcpp::R_MIPS16_26:
9171 case elfcpp::R_MICROMIPS_26_S1:
9172 case elfcpp::R_MICROMIPS_PC7_S1:
9173 case elfcpp::R_MICROMIPS_PC10_S1:
9174 case elfcpp::R_MICROMIPS_PC16_S1:
9175 case elfcpp::R_MICROMIPS_PC23_S2:
9176 static_reloc = true;
9177 mips_sym->set_has_static_relocs();
9178 break;
9179 }
9180
9181 // If there are call relocations against an externally-defined symbol,
9182 // see whether we can create a MIPS lazy-binding stub for it. We can
9183 // only do this if all references to the function are through call
9184 // relocations, and in that case, the traditional lazy-binding stubs
9185 // are much more efficient than PLT entries.
9186 switch (r_type)
9187 {
9188 case elfcpp::R_MIPS16_CALL16:
9189 case elfcpp::R_MIPS_CALL16:
9190 case elfcpp::R_MIPS_CALL_HI16:
9191 case elfcpp::R_MIPS_CALL_LO16:
9192 case elfcpp::R_MIPS_JALR:
9193 case elfcpp::R_MICROMIPS_CALL16:
9194 case elfcpp::R_MICROMIPS_CALL_HI16:
9195 case elfcpp::R_MICROMIPS_CALL_LO16:
9196 case elfcpp::R_MICROMIPS_JALR:
9197 if (!mips_sym->no_lazy_stub())
9198 {
9199 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9200 // Calls from shared objects to undefined symbols of type
9201 // STT_NOTYPE need lazy-binding stub.
9202 || (mips_sym->is_undefined() && parameters->options().shared()))
9203 target->mips_stubs_section(layout)->make_entry(mips_sym);
9204 }
9205 break;
9206 default:
9207 {
9208 // We must not create a stub for a symbol that has relocations
9209 // related to taking the function's address.
9210 mips_sym->set_no_lazy_stub();
9211 target->remove_lazy_stub_entry(mips_sym);
9212 break;
9213 }
9214 }
9215
9216 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9217 mips_sym->is_mips16()))
9218 mips_sym->set_has_nonpic_branches();
9219
9220 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9221 // and has a special meaning.
9222 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9223 && strcmp(gsym->name(), "_gp_disp") == 0
9224 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9225 if (static_reloc && gsym->needs_plt_entry())
9226 {
9227 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9228
9229 // Since this is not a PC-relative relocation, we may be
9230 // taking the address of a function. In that case we need to
9231 // set the entry in the dynamic symbol table to the address of
9232 // the PLT entry.
9233 if (gsym->is_from_dynobj() && !parameters->options().shared())
9234 {
9235 gsym->set_needs_dynsym_value();
9236 // We distinguish between PLT entries and lazy-binding stubs by
9237 // giving the former an st_other value of STO_MIPS_PLT. Set the
9238 // flag if there are any relocations in the binary where pointer
9239 // equality matters.
9240 if (mips_sym->pointer_equality_needed())
9241 mips_sym->set_mips_plt();
9242 }
9243 }
9244 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9245 {
9246 // Absolute addressing relocations.
9247 // Make a dynamic relocation if necessary.
9248 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9249 {
9250 if (gsym->may_need_copy_reloc())
9251 {
9252 target->copy_reloc(symtab, layout, object,
9253 data_shndx, output_section, gsym, *rel);
9254 }
9255 else if (can_make_dynamic)
9256 {
9257 // Create .rel.dyn section.
9258 target->rel_dyn_section(layout);
9259 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9260 data_shndx, output_section, r_offset);
9261 }
9262 else
9263 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9264 gsym->name());
9265 }
9266 }
9267
9268 bool for_call = false;
9269 switch (r_type)
9270 {
9271 case elfcpp::R_MIPS_CALL16:
9272 case elfcpp::R_MIPS16_CALL16:
9273 case elfcpp::R_MICROMIPS_CALL16:
9274 case elfcpp::R_MIPS_CALL_HI16:
9275 case elfcpp::R_MIPS_CALL_LO16:
9276 case elfcpp::R_MICROMIPS_CALL_HI16:
9277 case elfcpp::R_MICROMIPS_CALL_LO16:
9278 for_call = true;
9279 // Fall through.
9280
9281 case elfcpp::R_MIPS16_GOT16:
9282 case elfcpp::R_MIPS_GOT16:
9283 case elfcpp::R_MIPS_GOT_HI16:
9284 case elfcpp::R_MIPS_GOT_LO16:
9285 case elfcpp::R_MICROMIPS_GOT16:
9286 case elfcpp::R_MICROMIPS_GOT_HI16:
9287 case elfcpp::R_MICROMIPS_GOT_LO16:
9288 case elfcpp::R_MIPS_GOT_DISP:
9289 case elfcpp::R_MICROMIPS_GOT_DISP:
9290 {
9291 // The symbol requires a GOT entry.
9292 Mips_output_data_got<size, big_endian>* got =
9293 target->got_section(symtab, layout);
9294 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9295 for_call);
9296 mips_sym->set_global_got_area(GGA_NORMAL);
9297 }
9298 break;
9299
9300 case elfcpp::R_MIPS_GOT_PAGE:
9301 case elfcpp::R_MICROMIPS_GOT_PAGE:
9302 {
9303 // This relocation needs a page entry in the GOT.
9304 // Get the section contents.
9305 section_size_type view_size = 0;
9306 const unsigned char* view =
9307 object->section_contents(data_shndx, &view_size, false);
9308 view += r_offset;
9309
9310 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9311 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9312 : r_addend);
9313 Mips_output_data_got<size, big_endian>* got =
9314 target->got_section(symtab, layout);
9315 got->record_got_page_entry(mips_obj, r_sym, addend);
9316
9317 // If this is a global, overridable symbol, GOT_PAGE will
9318 // decay to GOT_DISP, so we'll need a GOT entry for it.
9319 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9320 && !mips_sym->object()->is_dynamic()
9321 && !mips_sym->is_undefined());
9322 if (!def_regular
9323 || (parameters->options().output_is_position_independent()
9324 && !parameters->options().Bsymbolic()
9325 && !mips_sym->is_forced_local()))
9326 {
9327 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9328 for_call);
9329 mips_sym->set_global_got_area(GGA_NORMAL);
9330 }
9331 }
9332 break;
9333
9334 case elfcpp::R_MIPS_TLS_GOTTPREL:
9335 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9336 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9337 case elfcpp::R_MIPS_TLS_LDM:
9338 case elfcpp::R_MIPS16_TLS_LDM:
9339 case elfcpp::R_MICROMIPS_TLS_LDM:
9340 case elfcpp::R_MIPS_TLS_GD:
9341 case elfcpp::R_MIPS16_TLS_GD:
9342 case elfcpp::R_MICROMIPS_TLS_GD:
9343 {
9344 const bool is_final = gsym->final_value_is_known();
9345 const tls::Tls_optimization optimized_type =
9346 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9347
9348 switch (r_type)
9349 {
9350 case elfcpp::R_MIPS_TLS_GD:
9351 case elfcpp::R_MIPS16_TLS_GD:
9352 case elfcpp::R_MICROMIPS_TLS_GD:
9353 if (optimized_type == tls::TLSOPT_NONE)
9354 {
9355 // Create a pair of GOT entries for the module index and
9356 // dtv-relative offset.
9357 Mips_output_data_got<size, big_endian>* got =
9358 target->got_section(symtab, layout);
9359 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9360 false);
9361 }
9362 else
9363 {
9364 // FIXME: TLS optimization not supported yet.
9365 gold_unreachable();
9366 }
9367 break;
9368
9369 case elfcpp::R_MIPS_TLS_LDM:
9370 case elfcpp::R_MIPS16_TLS_LDM:
9371 case elfcpp::R_MICROMIPS_TLS_LDM:
9372 if (optimized_type == tls::TLSOPT_NONE)
9373 {
9374 // We always record LDM symbols as local with index 0.
9375 target->got_section()->record_local_got_symbol(mips_obj, 0,
9376 r_addend, r_type,
9377 -1U);
9378 }
9379 else
9380 {
9381 // FIXME: TLS optimization not supported yet.
9382 gold_unreachable();
9383 }
9384 break;
9385 case elfcpp::R_MIPS_TLS_GOTTPREL:
9386 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9387 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9388 layout->set_has_static_tls();
9389 if (optimized_type == tls::TLSOPT_NONE)
9390 {
9391 // Create a GOT entry for the tp-relative offset.
9392 Mips_output_data_got<size, big_endian>* got =
9393 target->got_section(symtab, layout);
9394 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9395 false);
9396 }
9397 else
9398 {
9399 // FIXME: TLS optimization not supported yet.
9400 gold_unreachable();
9401 }
9402 break;
9403
9404 default:
9405 gold_unreachable();
9406 }
9407 }
9408 break;
9409 case elfcpp::R_MIPS_COPY:
9410 case elfcpp::R_MIPS_JUMP_SLOT:
9411 // These are relocations which should only be seen by the
9412 // dynamic linker, and should never be seen here.
9413 gold_error(_("%s: unexpected reloc %u in object file"),
9414 object->name().c_str(), r_type);
9415 break;
9416
9417 default:
9418 break;
9419 }
9420
9421 // Refuse some position-dependent relocations when creating a
9422 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9423 // not PIC, but we can create dynamic relocations and the result
9424 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9425 // combined with R_MIPS_GOT16.
9426 if (parameters->options().shared())
9427 {
9428 switch (r_type)
9429 {
9430 case elfcpp::R_MIPS16_HI16:
9431 case elfcpp::R_MIPS_HI16:
9432 case elfcpp::R_MICROMIPS_HI16:
9433 // Don't refuse a high part relocation if it's against
9434 // no symbol (e.g. part of a compound relocation).
9435 if (r_sym == 0)
9436 break;
9437
9438 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9439 // and has a special meaning.
9440 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9441 break;
9442
9443 // FALLTHROUGH
9444
9445 case elfcpp::R_MIPS16_26:
9446 case elfcpp::R_MIPS_26:
9447 case elfcpp::R_MICROMIPS_26_S1:
9448 gold_error(_("%s: relocation %u against `%s' can not be used when "
9449 "making a shared object; recompile with -fPIC"),
9450 object->name().c_str(), r_type, gsym->name());
9451 default:
9452 break;
9453 }
9454 }
9455}
9456
9457template<int size, bool big_endian>
9458inline void
9459Target_mips<size, big_endian>::Scan::global(
9460 Symbol_table* symtab,
9461 Layout* layout,
9462 Target_mips<size, big_endian>* target,
9463 Sized_relobj_file<size, big_endian>* object,
9464 unsigned int data_shndx,
9465 Output_section* output_section,
9466 const elfcpp::Rela<size, big_endian>& reloc,
9467 unsigned int r_type,
9468 Symbol* gsym)
9469{
9470 global(
9471 symtab,
9472 layout,
9473 target,
9474 object,
9475 data_shndx,
9476 output_section,
9477 &reloc,
9478 (const elfcpp::Rel<size, big_endian>*) NULL,
9479 elfcpp::SHT_RELA,
9480 r_type,
9481 gsym);
9482}
9483
9484template<int size, bool big_endian>
9485inline void
9486Target_mips<size, big_endian>::Scan::global(
9487 Symbol_table* symtab,
9488 Layout* layout,
9489 Target_mips<size, big_endian>* target,
9490 Sized_relobj_file<size, big_endian>* object,
9491 unsigned int data_shndx,
9492 Output_section* output_section,
9493 const elfcpp::Rel<size, big_endian>& reloc,
9494 unsigned int r_type,
9495 Symbol* gsym)
9496{
9497 global(
9498 symtab,
9499 layout,
9500 target,
9501 object,
9502 data_shndx,
9503 output_section,
9504 (const elfcpp::Rela<size, big_endian>*) NULL,
9505 &reloc,
9506 elfcpp::SHT_REL,
9507 r_type,
9508 gsym);
9509}
9510
9511// Return whether a R_MIPS_32 relocation needs to be applied.
9512
9513template<int size, bool big_endian>
9514inline bool
9515Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9516 const Mips_symbol<size>* gsym,
9517 unsigned int r_type,
9518 Output_section* output_section,
9519 Target_mips* target)
9520{
9521 // If the output section is not allocated, then we didn't call
9522 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9523 // the reloc here.
9524 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9525 return true;
9526
9527 if (gsym == NULL)
9528 return true;
9529 else
9530 {
9531 // For global symbols, we use the same helper routines used in the
9532 // scan pass.
9533 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9534 && !gsym->may_need_copy_reloc())
9535 {
9536 // We have generated dynamic reloc (R_MIPS_REL32).
9537
9538 bool multi_got = false;
9539 if (target->has_got_section())
9540 multi_got = target->got_section()->multi_got();
9541 bool has_got_offset;
9542 if (!multi_got)
9543 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9544 else
9545 has_got_offset = gsym->global_gotoffset() != -1U;
9546 if (!has_got_offset)
9547 return true;
9548 else
9549 // Apply the relocation only if the symbol is in the local got.
9550 // Do not apply the relocation if the symbol is in the global
9551 // got.
9552 return symbol_references_local(gsym, gsym->has_dynsym_index());
9553 }
9554 else
9555 // We have not generated dynamic reloc.
9556 return true;
9557 }
9558}
9559
9560// Perform a relocation.
9561
9562template<int size, bool big_endian>
9563inline bool
9564Target_mips<size, big_endian>::Relocate::relocate(
9565 const Relocate_info<size, big_endian>* relinfo,
9566 Target_mips* target,
9567 Output_section* output_section,
9568 size_t relnum,
9569 const elfcpp::Rela<size, big_endian>* rela,
9570 const elfcpp::Rel<size, big_endian>* rel,
9571 unsigned int rel_type,
9572 unsigned int r_type,
9573 const Sized_symbol<size>* gsym,
9574 const Symbol_value<size>* psymval,
9575 unsigned char* view,
9576 Mips_address address,
9577 section_size_type)
9578{
9579 Mips_address r_offset;
9580 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9581 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9582
9583 if (rel_type == elfcpp::SHT_RELA)
9584 {
9585 r_offset = rela->get_r_offset();
9586 r_info = rela->get_r_info();
9587 r_addend = rela->get_r_addend();
9588 }
9589 else
9590 {
9591 r_offset = rel->get_r_offset();
9592 r_info = rel->get_r_info();
9593 r_addend = 0;
9594 }
9595
9596 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9597 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9598
9599 Mips_relobj<size, big_endian>* object =
9600 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9601
9602 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9603 bool target_is_16_bit_code = false;
9604 bool target_is_micromips_code = false;
9605 bool cross_mode_jump;
9606
9607 Symbol_value<size> symval;
9608
9609 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9610
9611 bool changed_symbol_value = false;
9612 if (gsym == NULL)
9613 {
9614 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9615 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9616 if (target_is_16_bit_code || target_is_micromips_code)
9617 {
9618 // MIPS16/microMIPS text labels should be treated as odd.
9619 symval.set_output_value(psymval->value(object, 1));
9620 psymval = &symval;
9621 changed_symbol_value = true;
9622 }
9623 }
9624 else
9625 {
9626 target_is_16_bit_code = mips_sym->is_mips16();
9627 target_is_micromips_code = mips_sym->is_micromips();
9628
9629 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9630 // it odd. This will cause something like .word SYM to come up with
9631 // the right value when it is loaded into the PC.
9632
9633 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9634 && psymval->value(object, 0) != 0)
9635 {
9636 symval.set_output_value(psymval->value(object, 0) | 1);
9637 psymval = &symval;
9638 changed_symbol_value = true;
9639 }
9640
9641 // Pick the value to use for symbols defined in shared objects.
9642 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9643 || mips_sym->has_lazy_stub())
9644 {
9645 Mips_address value;
9646 if (!mips_sym->has_lazy_stub())
9647 {
9648 // Prefer a standard MIPS PLT entry.
9649 if (mips_sym->has_mips_plt_offset())
9650 {
9651 value = target->plt_section()->mips_entry_address(mips_sym);
9652 target_is_micromips_code = false;
9653 target_is_16_bit_code = false;
9654 }
9655 else
9656 {
9657 value = (target->plt_section()->comp_entry_address(mips_sym)
9658 + 1);
9659 if (target->is_output_micromips())
9660 target_is_micromips_code = true;
9661 else
9662 target_is_16_bit_code = true;
9663 }
9664 }
9665 else
9666 value = target->mips_stubs_section()->stub_address(mips_sym);
9667
9668 symval.set_output_value(value);
9669 psymval = &symval;
9670 }
9671 }
9672
9673 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9674 // Note that such a symbol must always be a global symbol.
9675 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9676 && !object->is_newabi());
9677
9678 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9679 // Note that such a symbol must always be a global symbol.
9680 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9681
9682
9683 if (gp_disp)
9684 {
9685 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9686 gold_error_at_location(relinfo, relnum, r_offset,
9687 _("relocations against _gp_disp are permitted only"
9688 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9689 }
9690 else if (gnu_local_gp)
9691 {
9692 // __gnu_local_gp is _gp symbol.
9693 symval.set_output_value(target->adjusted_gp_value(object));
9694 psymval = &symval;
9695 }
9696
9697 // If this is a reference to a 16-bit function with a stub, we need
9698 // to redirect the relocation to the stub unless:
9699 //
9700 // (a) the relocation is for a MIPS16 JAL;
9701 //
9702 // (b) the relocation is for a MIPS16 PIC call, and there are no
9703 // non-MIPS16 uses of the GOT slot; or
9704 //
9705 // (c) the section allows direct references to MIPS16 functions.
9706 if (r_type != elfcpp::R_MIPS16_26
9707 && !parameters->options().relocatable()
9708 && ((mips_sym != NULL
9709 && mips_sym->has_mips16_fn_stub()
9710 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9711 || (mips_sym == NULL
9712 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9713 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9714 {
9715 // This is a 32- or 64-bit call to a 16-bit function. We should
9716 // have already noticed that we were going to need the
9717 // stub.
9718 Mips_address value;
9719 if (mips_sym == NULL)
9720 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9721 else
9722 {
9723 gold_assert(mips_sym->need_fn_stub());
9724 if (mips_sym->has_la25_stub())
9725 value = target->la25_stub_section()->stub_address(mips_sym);
9726 else
9727 {
9728 value = mips_sym->template
9729 get_mips16_fn_stub<big_endian>()->output_address();
9730 }
9731 }
9732 symval.set_output_value(value);
9733 psymval = &symval;
9734 changed_symbol_value = true;
9735
9736 // The target is 16-bit, but the stub isn't.
9737 target_is_16_bit_code = false;
9738 }
9739 // If this is a MIPS16 call with a stub, that is made through the PLT or
9740 // to a standard MIPS function, we need to redirect the call to the stub.
9741 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9742 // indirect calls should use an indirect stub instead.
9743 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9744 && ((mips_sym != NULL
9745 && (mips_sym->has_mips16_call_stub()
9746 || mips_sym->has_mips16_call_fp_stub()))
9747 || (mips_sym == NULL
9748 && object->get_local_mips16_call_stub(r_sym) != NULL))
9749 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9750 || !target_is_16_bit_code))
9751 {
9752 Mips16_stub_section<size, big_endian>* call_stub;
9753 if (mips_sym == NULL)
9754 call_stub = object->get_local_mips16_call_stub(r_sym);
9755 else
9756 {
9757 // If both call_stub and call_fp_stub are defined, we can figure
9758 // out which one to use by checking which one appears in the input
9759 // file.
9760 if (mips_sym->has_mips16_call_stub()
9761 && mips_sym->has_mips16_call_fp_stub())
9762 {
9763 call_stub = NULL;
9764 for (unsigned int i = 1; i < object->shnum(); ++i)
9765 {
9766 if (object->is_mips16_call_fp_stub_section(i))
9767 {
9768 call_stub = mips_sym->template
9769 get_mips16_call_fp_stub<big_endian>();
9770 break;
9771 }
9772
9773 }
9774 if (call_stub == NULL)
9775 call_stub =
9776 mips_sym->template get_mips16_call_stub<big_endian>();
9777 }
9778 else if (mips_sym->has_mips16_call_stub())
9779 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9780 else
9781 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9782 }
9783
9784 symval.set_output_value(call_stub->output_address());
9785 psymval = &symval;
9786 changed_symbol_value = true;
9787 }
9788 // If this is a direct call to a PIC function, redirect to the
9789 // non-PIC stub.
9790 else if (mips_sym != NULL
9791 && mips_sym->has_la25_stub()
9792 && relocation_needs_la25_stub<size, big_endian>(
9793 object, r_type, target_is_16_bit_code))
9794 {
9795 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9796 if (mips_sym->is_micromips())
9797 value += 1;
9798 symval.set_output_value(value);
9799 psymval = &symval;
9800 }
9801 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9802 // entry is used if a standard PLT entry has also been made.
9803 else if ((r_type == elfcpp::R_MIPS16_26
9804 || r_type == elfcpp::R_MICROMIPS_26_S1)
9805 && !parameters->options().relocatable()
9806 && mips_sym != NULL
9807 && mips_sym->has_plt_offset()
9808 && mips_sym->has_comp_plt_offset()
9809 && mips_sym->has_mips_plt_offset())
9810 {
9811 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9812 + 1);
9813 symval.set_output_value(value);
9814 psymval = &symval;
9815
9816 target_is_16_bit_code = !target->is_output_micromips();
9817 target_is_micromips_code = target->is_output_micromips();
9818 }
9819
9820 // Make sure MIPS16 and microMIPS are not used together.
9821 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9822 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9823 {
9824 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9825 }
9826
9827 // Calls from 16-bit code to 32-bit code and vice versa require the
9828 // mode change. However, we can ignore calls to undefined weak symbols,
9829 // which should never be executed at runtime. This exception is important
9830 // because the assembly writer may have "known" that any definition of the
9831 // symbol would be 16-bit code, and that direct jumps were therefore
9832 // acceptable.
9833 cross_mode_jump =
9834 (!parameters->options().relocatable()
9835 && !(gsym != NULL && gsym->is_weak_undefined())
9836 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9837 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9838 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9839 && (target_is_16_bit_code || target_is_micromips_code))));
9840
9841 bool local = (mips_sym == NULL
9842 || (mips_sym->got_only_for_calls()
9843 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9844 : symbol_references_local(mips_sym,
9845 mips_sym->has_dynsym_index())));
9846
9847 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9848 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
9849 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9850 if (got_page_reloc(r_type) && !local)
9851 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9852 : elfcpp::R_MIPS_GOT_DISP);
9853
9854 unsigned int got_offset = 0;
9855 int gp_offset = 0;
9856
9857 bool update_got_entry = false;
9858 bool extract_addend = rel_type == elfcpp::SHT_REL;
9859 switch (r_type)
9860 {
9861 case elfcpp::R_MIPS_NONE:
9862 break;
9863 case elfcpp::R_MIPS_16:
9864 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9865 extract_addend, r_type);
9866 break;
9867
9868 case elfcpp::R_MIPS_32:
9869 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9870 target))
9871 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9872 extract_addend, r_type);
9873 if (mips_sym != NULL
9874 && (mips_sym->is_mips16() || mips_sym->is_micromips())
9875 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9876 {
9877 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9878 // already updated by adding +1.
9879 if (mips_sym->has_mips16_fn_stub())
9880 {
9881 gold_assert(mips_sym->need_fn_stub());
9882 Mips16_stub_section<size, big_endian>* fn_stub =
9883 mips_sym->template get_mips16_fn_stub<big_endian>();
9884
9885 symval.set_output_value(fn_stub->output_address());
9886 psymval = &symval;
9887 }
9888 got_offset = mips_sym->global_gotoffset();
9889 update_got_entry = true;
9890 }
9891 break;
9892
9893 case elfcpp::R_MIPS_REL32:
9894 gold_unreachable();
9895
9896 case elfcpp::R_MIPS_PC32:
9897 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9898 r_addend, extract_addend, r_type);
9899 break;
9900
9901 case elfcpp::R_MIPS16_26:
9902 // The calculation for R_MIPS16_26 is just the same as for an
9903 // R_MIPS_26. It's only the storage of the relocated field into
9904 // the output file that's different. So, we just fall through to the
9905 // R_MIPS_26 case here.
9906 case elfcpp::R_MIPS_26:
9907 case elfcpp::R_MICROMIPS_26_S1:
9908 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9909 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9910 target->jal_to_bal());
9911 break;
9912
9913 case elfcpp::R_MIPS_HI16:
9914 case elfcpp::R_MIPS16_HI16:
9915 case elfcpp::R_MICROMIPS_HI16:
9916 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
3d0064a9 9917 address, gp_disp, r_type, r_sym,
9810d34d
SS
9918 extract_addend);
9919 break;
9920
9921 case elfcpp::R_MIPS_LO16:
9922 case elfcpp::R_MIPS16_LO16:
9923 case elfcpp::R_MICROMIPS_LO16:
9924 case elfcpp::R_MICROMIPS_HI0_LO16:
9925 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9926 r_addend, extract_addend, address,
3d0064a9 9927 gp_disp, r_type, r_sym);
9810d34d
SS
9928 break;
9929
9930 case elfcpp::R_MIPS_LITERAL:
9931 case elfcpp::R_MICROMIPS_LITERAL:
9932 // Because we don't merge literal sections, we can handle this
9933 // just like R_MIPS_GPREL16. In the long run, we should merge
9934 // shared literals, and then we will need to additional work
9935 // here.
9936
9937 // Fall through.
9938
9939 case elfcpp::R_MIPS_GPREL16:
9940 case elfcpp::R_MIPS16_GPREL:
9941 case elfcpp::R_MICROMIPS_GPREL7_S2:
9942 case elfcpp::R_MICROMIPS_GPREL16:
9943 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9944 target->adjusted_gp_value(object),
9945 r_addend, extract_addend,
9946 gsym == NULL, r_type);
9947 break;
9948
9949 case elfcpp::R_MIPS_PC16:
9950 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9951 r_addend, extract_addend, r_type);
9952 break;
9953 case elfcpp::R_MICROMIPS_PC7_S1:
9954 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9955 address, r_addend,
9956 extract_addend, r_type);
9957 break;
9958 case elfcpp::R_MICROMIPS_PC10_S1:
9959 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9960 address, r_addend,
9961 extract_addend, r_type);
9962 break;
9963 case elfcpp::R_MICROMIPS_PC16_S1:
9964 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9965 address, r_addend,
9966 extract_addend, r_type);
9967 break;
9968 case elfcpp::R_MIPS_GPREL32:
9969 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9970 target->adjusted_gp_value(object),
9971 r_addend, extract_addend, r_type);
9972 break;
9973 case elfcpp::R_MIPS_GOT_HI16:
9974 case elfcpp::R_MIPS_CALL_HI16:
9975 case elfcpp::R_MICROMIPS_GOT_HI16:
9976 case elfcpp::R_MICROMIPS_CALL_HI16:
9977 if (gsym != NULL)
9978 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9979 object);
9980 else
9981 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9982 object);
9983 gp_offset = target->got_section()->gp_offset(got_offset, object);
9984 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9985 update_got_entry = changed_symbol_value;
9986 break;
9987
9988 case elfcpp::R_MIPS_GOT_LO16:
9989 case elfcpp::R_MIPS_CALL_LO16:
9990 case elfcpp::R_MICROMIPS_GOT_LO16:
9991 case elfcpp::R_MICROMIPS_CALL_LO16:
9992 if (gsym != NULL)
9993 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9994 object);
9995 else
9996 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9997 object);
9998 gp_offset = target->got_section()->gp_offset(got_offset, object);
9999 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
10000 update_got_entry = changed_symbol_value;
10001 break;
10002
10003 case elfcpp::R_MIPS_GOT_DISP:
10004 case elfcpp::R_MICROMIPS_GOT_DISP:
10005 if (gsym != NULL)
10006 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10007 object);
10008 else
10009 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10010 object);
10011 gp_offset = target->got_section()->gp_offset(got_offset, object);
10012 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10013 break;
10014
10015 case elfcpp::R_MIPS_CALL16:
10016 case elfcpp::R_MIPS16_CALL16:
10017 case elfcpp::R_MICROMIPS_CALL16:
10018 gold_assert(gsym != NULL);
10019 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10020 object);
10021 gp_offset = target->got_section()->gp_offset(got_offset, object);
10022 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10023 // TODO(sasa): We should also initialize update_got_entry in other places
10024 // where relgot is called.
10025 update_got_entry = changed_symbol_value;
10026 break;
10027
10028 case elfcpp::R_MIPS_GOT16:
10029 case elfcpp::R_MIPS16_GOT16:
10030 case elfcpp::R_MICROMIPS_GOT16:
10031 if (gsym != NULL)
10032 {
10033 got_offset = target->got_section()->got_offset(gsym,
10034 GOT_TYPE_STANDARD,
10035 object);
10036 gp_offset = target->got_section()->gp_offset(got_offset, object);
10037 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10038 }
10039 else
10040 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10041 r_addend, extract_addend,
3d0064a9 10042 r_type, r_sym);
9810d34d
SS
10043 update_got_entry = changed_symbol_value;
10044 break;
10045
10046 case elfcpp::R_MIPS_TLS_GD:
10047 case elfcpp::R_MIPS16_TLS_GD:
10048 case elfcpp::R_MICROMIPS_TLS_GD:
10049 if (gsym != NULL)
10050 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10051 object);
10052 else
10053 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10054 object);
10055 gp_offset = target->got_section()->gp_offset(got_offset, object);
10056 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10057 break;
10058
10059 case elfcpp::R_MIPS_TLS_GOTTPREL:
10060 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10061 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10062 if (gsym != NULL)
10063 got_offset = target->got_section()->got_offset(gsym,
10064 GOT_TYPE_TLS_OFFSET,
10065 object);
10066 else
10067 got_offset = target->got_section()->got_offset(r_sym,
10068 GOT_TYPE_TLS_OFFSET,
10069 object);
10070 gp_offset = target->got_section()->gp_offset(got_offset, object);
10071 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10072 break;
10073
10074 case elfcpp::R_MIPS_TLS_LDM:
10075 case elfcpp::R_MIPS16_TLS_LDM:
10076 case elfcpp::R_MICROMIPS_TLS_LDM:
10077 // Relocate the field with the offset of the GOT entry for
10078 // the module index.
10079 got_offset = target->got_section()->tls_ldm_offset(object);
10080 gp_offset = target->got_section()->gp_offset(got_offset, object);
10081 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10082 break;
10083
10084 case elfcpp::R_MIPS_GOT_PAGE:
10085 case elfcpp::R_MICROMIPS_GOT_PAGE:
10086 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10087 r_addend, extract_addend, r_type);
10088 break;
10089
10090 case elfcpp::R_MIPS_GOT_OFST:
10091 case elfcpp::R_MICROMIPS_GOT_OFST:
10092 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10093 r_addend, extract_addend, local,
10094 r_type);
10095 break;
10096
10097 case elfcpp::R_MIPS_JALR:
10098 case elfcpp::R_MICROMIPS_JALR:
10099 // This relocation is only a hint. In some cases, we optimize
10100 // it into a bal instruction. But we don't try to optimize
10101 // when the symbol does not resolve locally.
10102 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10103 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10104 r_addend, extract_addend,
10105 cross_mode_jump, r_type,
10106 target->jalr_to_bal(),
10107 target->jr_to_b());
10108 break;
10109
10110 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10111 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10112 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10113 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10114 elfcpp::DTP_OFFSET, r_addend,
10115 extract_addend, r_type);
10116 break;
10117 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10118 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10119 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10120 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10121 elfcpp::DTP_OFFSET, r_addend,
10122 extract_addend, r_type);
10123 break;
10124 case elfcpp::R_MIPS_TLS_DTPREL32:
10125 case elfcpp::R_MIPS_TLS_DTPREL64:
10126 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10127 elfcpp::DTP_OFFSET, r_addend,
10128 extract_addend, r_type);
10129 break;
10130 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10131 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10132 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10133 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10134 elfcpp::TP_OFFSET, r_addend,
10135 extract_addend, r_type);
10136 break;
10137 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10138 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10139 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10140 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10141 elfcpp::TP_OFFSET, r_addend,
10142 extract_addend, r_type);
10143 break;
10144 case elfcpp::R_MIPS_TLS_TPREL32:
10145 case elfcpp::R_MIPS_TLS_TPREL64:
10146 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10147 elfcpp::TP_OFFSET, r_addend,
10148 extract_addend, r_type);
10149 break;
10150 case elfcpp::R_MIPS_SUB:
10151 case elfcpp::R_MICROMIPS_SUB:
10152 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10153 extract_addend, r_type);
10154 break;
10155 default:
10156 gold_error_at_location(relinfo, relnum, r_offset,
10157 _("unsupported reloc %u"), r_type);
10158 break;
10159 }
10160
10161 if (update_got_entry)
10162 {
10163 Mips_output_data_got<size, big_endian>* got = target->got_section();
10164 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10165 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10166 psymval->value(object, 0));
10167 else
10168 got->update_got_entry(got_offset, psymval->value(object, 0));
10169 }
10170
10171 // Report any errors.
10172 switch (reloc_status)
10173 {
10174 case Reloc_funcs::STATUS_OKAY:
10175 break;
10176 case Reloc_funcs::STATUS_OVERFLOW:
10177 gold_error_at_location(relinfo, relnum, r_offset,
10178 _("relocation overflow"));
10179 break;
10180 case Reloc_funcs::STATUS_BAD_RELOC:
10181 gold_error_at_location(relinfo, relnum, r_offset,
10182 _("unexpected opcode while processing relocation"));
10183 break;
10184 default:
10185 gold_unreachable();
10186 }
10187
10188 return true;
10189}
10190
10191template<int size, bool big_endian>
10192inline bool
10193Target_mips<size, big_endian>::Relocate::relocate(
10194 const Relocate_info<size, big_endian>* relinfo,
10195 Target_mips* target,
10196 Output_section* output_section,
10197 size_t relnum,
10198 const elfcpp::Rela<size, big_endian>& reloc,
10199 unsigned int r_type,
10200 const Sized_symbol<size>* gsym,
10201 const Symbol_value<size>* psymval,
10202 unsigned char* view,
10203 Mips_address address,
10204 section_size_type view_size)
10205{
10206 return relocate(
10207 relinfo,
10208 target,
10209 output_section,
10210 relnum,
10211 &reloc,
10212 (const elfcpp::Rel<size, big_endian>*) NULL,
10213 elfcpp::SHT_RELA,
10214 r_type,
10215 gsym,
10216 psymval,
10217 view,
10218 address,
10219 view_size);
10220}
10221
10222template<int size, bool big_endian>
10223inline bool
10224Target_mips<size, big_endian>::Relocate::relocate(
10225 const Relocate_info<size, big_endian>* relinfo,
10226 Target_mips* target,
10227 Output_section* output_section,
10228 size_t relnum,
10229 const elfcpp::Rel<size, big_endian>& reloc,
10230 unsigned int r_type,
10231 const Sized_symbol<size>* gsym,
10232 const Symbol_value<size>* psymval,
10233 unsigned char* view,
10234 Mips_address address,
10235 section_size_type view_size)
10236{
10237 return relocate(
10238 relinfo,
10239 target,
10240 output_section,
10241 relnum,
10242 (const elfcpp::Rela<size, big_endian>*) NULL,
10243 &reloc,
10244 elfcpp::SHT_REL,
10245 r_type,
10246 gsym,
10247 psymval,
10248 view,
10249 address,
10250 view_size);
10251}
10252
10253// Get the Reference_flags for a particular relocation.
10254
10255template<int size, bool big_endian>
10256int
10257Target_mips<size, big_endian>::Scan::get_reference_flags(
10258 unsigned int r_type)
10259{
10260 switch (r_type)
10261 {
10262 case elfcpp::R_MIPS_NONE:
10263 // No symbol reference.
10264 return 0;
10265
10266 case elfcpp::R_MIPS_16:
10267 case elfcpp::R_MIPS_32:
10268 case elfcpp::R_MIPS_64:
10269 case elfcpp::R_MIPS_HI16:
10270 case elfcpp::R_MIPS_LO16:
10271 case elfcpp::R_MIPS16_HI16:
10272 case elfcpp::R_MIPS16_LO16:
10273 case elfcpp::R_MICROMIPS_HI16:
10274 case elfcpp::R_MICROMIPS_LO16:
10275 return Symbol::ABSOLUTE_REF;
10276
10277 case elfcpp::R_MIPS_26:
10278 case elfcpp::R_MIPS16_26:
10279 case elfcpp::R_MICROMIPS_26_S1:
10280 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10281
10282 case elfcpp::R_MIPS_GPREL32:
10283 case elfcpp::R_MIPS_GPREL16:
10284 case elfcpp::R_MIPS_REL32:
10285 case elfcpp::R_MIPS16_GPREL:
10286 return Symbol::RELATIVE_REF;
10287
10288 case elfcpp::R_MIPS_PC16:
10289 case elfcpp::R_MIPS_PC32:
10290 case elfcpp::R_MIPS_JALR:
10291 case elfcpp::R_MICROMIPS_JALR:
10292 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10293
10294 case elfcpp::R_MIPS_GOT16:
10295 case elfcpp::R_MIPS_CALL16:
10296 case elfcpp::R_MIPS_GOT_DISP:
10297 case elfcpp::R_MIPS_GOT_HI16:
10298 case elfcpp::R_MIPS_GOT_LO16:
10299 case elfcpp::R_MIPS_CALL_HI16:
10300 case elfcpp::R_MIPS_CALL_LO16:
10301 case elfcpp::R_MIPS_LITERAL:
10302 case elfcpp::R_MIPS_GOT_PAGE:
10303 case elfcpp::R_MIPS_GOT_OFST:
10304 case elfcpp::R_MIPS16_GOT16:
10305 case elfcpp::R_MIPS16_CALL16:
10306 case elfcpp::R_MICROMIPS_GOT16:
10307 case elfcpp::R_MICROMIPS_CALL16:
10308 case elfcpp::R_MICROMIPS_GOT_HI16:
10309 case elfcpp::R_MICROMIPS_GOT_LO16:
10310 case elfcpp::R_MICROMIPS_CALL_HI16:
10311 case elfcpp::R_MICROMIPS_CALL_LO16:
10312 // Absolute in GOT.
10313 return Symbol::RELATIVE_REF;
10314
10315 case elfcpp::R_MIPS_TLS_DTPMOD32:
10316 case elfcpp::R_MIPS_TLS_DTPREL32:
10317 case elfcpp::R_MIPS_TLS_DTPMOD64:
10318 case elfcpp::R_MIPS_TLS_DTPREL64:
10319 case elfcpp::R_MIPS_TLS_GD:
10320 case elfcpp::R_MIPS_TLS_LDM:
10321 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10322 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10323 case elfcpp::R_MIPS_TLS_GOTTPREL:
10324 case elfcpp::R_MIPS_TLS_TPREL32:
10325 case elfcpp::R_MIPS_TLS_TPREL64:
10326 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10327 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10328 case elfcpp::R_MIPS16_TLS_GD:
10329 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10330 case elfcpp::R_MICROMIPS_TLS_GD:
10331 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10332 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10333 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10334 return Symbol::TLS_REF;
10335
10336 case elfcpp::R_MIPS_COPY:
10337 case elfcpp::R_MIPS_JUMP_SLOT:
10338 default:
10339 gold_unreachable();
10340 // Not expected. We will give an error later.
10341 return 0;
10342 }
10343}
10344
10345// Report an unsupported relocation against a local symbol.
10346
10347template<int size, bool big_endian>
10348void
10349Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10350 Sized_relobj_file<size, big_endian>* object,
10351 unsigned int r_type)
10352{
10353 gold_error(_("%s: unsupported reloc %u against local symbol"),
10354 object->name().c_str(), r_type);
10355}
10356
10357// Report an unsupported relocation against a global symbol.
10358
10359template<int size, bool big_endian>
10360void
10361Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10362 Sized_relobj_file<size, big_endian>* object,
10363 unsigned int r_type,
10364 Symbol* gsym)
10365{
10366 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10367 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10368}
10369
10370// Return printable name for ABI.
10371template<int size, bool big_endian>
10372const char*
10373Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10374 unsigned char ei_class)
10375{
10376 switch (e_flags & elfcpp::EF_MIPS_ABI)
10377 {
10378 case 0:
10379 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10380 return "N32";
10381 else if (elfcpp::abi_64(ei_class))
10382 return "64";
10383 else
10384 return "none";
10385 case elfcpp::E_MIPS_ABI_O32:
10386 return "O32";
10387 case elfcpp::E_MIPS_ABI_O64:
10388 return "O64";
10389 case elfcpp::E_MIPS_ABI_EABI32:
10390 return "EABI32";
10391 case elfcpp::E_MIPS_ABI_EABI64:
10392 return "EABI64";
10393 default:
10394 return "unknown abi";
10395 }
10396}
10397
10398template<int size, bool big_endian>
10399const char*
10400Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10401{
10402 switch (e_flags & elfcpp::EF_MIPS_MACH)
10403 {
10404 case elfcpp::E_MIPS_MACH_3900:
10405 return "mips:3900";
10406 case elfcpp::E_MIPS_MACH_4010:
10407 return "mips:4010";
10408 case elfcpp::E_MIPS_MACH_4100:
10409 return "mips:4100";
10410 case elfcpp::E_MIPS_MACH_4111:
10411 return "mips:4111";
10412 case elfcpp::E_MIPS_MACH_4120:
10413 return "mips:4120";
10414 case elfcpp::E_MIPS_MACH_4650:
10415 return "mips:4650";
10416 case elfcpp::E_MIPS_MACH_5400:
10417 return "mips:5400";
10418 case elfcpp::E_MIPS_MACH_5500:
10419 return "mips:5500";
10420 case elfcpp::E_MIPS_MACH_SB1:
10421 return "mips:sb1";
10422 case elfcpp::E_MIPS_MACH_9000:
10423 return "mips:9000";
10424 case elfcpp::E_MIPS_MACH_LS2E:
10425 return "mips:loongson-2e";
10426 case elfcpp::E_MIPS_MACH_LS2F:
10427 return "mips:loongson-2f";
10428 case elfcpp::E_MIPS_MACH_LS3A:
10429 return "mips:loongson-3a";
10430 case elfcpp::E_MIPS_MACH_OCTEON:
10431 return "mips:octeon";
10432 case elfcpp::E_MIPS_MACH_OCTEON2:
10433 return "mips:octeon2";
10434 case elfcpp::E_MIPS_MACH_XLR:
10435 return "mips:xlr";
10436 default:
10437 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10438 {
10439 default:
10440 case elfcpp::E_MIPS_ARCH_1:
10441 return "mips:3000";
10442
10443 case elfcpp::E_MIPS_ARCH_2:
10444 return "mips:6000";
10445
10446 case elfcpp::E_MIPS_ARCH_3:
10447 return "mips:4000";
10448
10449 case elfcpp::E_MIPS_ARCH_4:
10450 return "mips:8000";
10451
10452 case elfcpp::E_MIPS_ARCH_5:
10453 return "mips:mips5";
10454
10455 case elfcpp::E_MIPS_ARCH_32:
10456 return "mips:isa32";
10457
10458 case elfcpp::E_MIPS_ARCH_64:
10459 return "mips:isa64";
10460
10461 case elfcpp::E_MIPS_ARCH_32R2:
10462 return "mips:isa32r2";
10463
10464 case elfcpp::E_MIPS_ARCH_64R2:
10465 return "mips:isa64r2";
10466 }
10467 }
10468 return "unknown CPU";
10469}
10470
10471template<int size, bool big_endian>
62661c93 10472const Target::Target_info Target_mips<size, big_endian>::mips_info =
9810d34d
SS
10473{
10474 size, // size
10475 big_endian, // is_big_endian
10476 elfcpp::EM_MIPS, // machine_code
10477 true, // has_make_symbol
10478 false, // has_resolve
10479 false, // has_code_fill
10480 true, // is_default_stack_executable
10481 false, // can_icf_inline_merge_sections
10482 '\0', // wrap_char
10483 "/lib/ld.so.1", // dynamic_linker
10484 0x400000, // default_text_segment_address
10485 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10486 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10487 false, // isolate_execinstr
10488 0, // rosegment_gap
10489 elfcpp::SHN_UNDEF, // small_common_shndx
10490 elfcpp::SHN_UNDEF, // large_common_shndx
10491 0, // small_common_section_flags
10492 0, // large_common_section_flags
10493 NULL, // attributes_section
10494 NULL, // attributes_vendor
8d9743bd
MK
10495 "__start", // entry_symbol_name
10496 32, // hash_entry_size
9810d34d
SS
10497};
10498
62661c93
SS
10499template<int size, bool big_endian>
10500class Target_mips_nacl : public Target_mips<size, big_endian>
10501{
10502 public:
10503 Target_mips_nacl()
10504 : Target_mips<size, big_endian>(&mips_nacl_info)
10505 { }
10506
10507 private:
10508 static const Target::Target_info mips_nacl_info;
10509};
10510
10511template<int size, bool big_endian>
10512const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10513{
10514 size, // size
10515 big_endian, // is_big_endian
10516 elfcpp::EM_MIPS, // machine_code
10517 true, // has_make_symbol
10518 false, // has_resolve
10519 false, // has_code_fill
10520 true, // is_default_stack_executable
10521 false, // can_icf_inline_merge_sections
10522 '\0', // wrap_char
10523 "/lib/ld.so.1", // dynamic_linker
10524 0x20000, // default_text_segment_address
10525 0x10000, // abi_pagesize (overridable by -z max-page-size)
10526 0x10000, // common_pagesize (overridable by -z common-page-size)
10527 true, // isolate_execinstr
10528 0x10000000, // rosegment_gap
10529 elfcpp::SHN_UNDEF, // small_common_shndx
10530 elfcpp::SHN_UNDEF, // large_common_shndx
10531 0, // small_common_section_flags
10532 0, // large_common_section_flags
10533 NULL, // attributes_section
10534 NULL, // attributes_vendor
8d9743bd
MK
10535 "_start", // entry_symbol_name
10536 32, // hash_entry_size
62661c93
SS
10537};
10538
10539// Target selector for Mips. Note this is never instantiated directly.
10540// It's only used in Target_selector_mips_nacl, below.
9810d34d
SS
10541
10542template<int size, bool big_endian>
10543class Target_selector_mips : public Target_selector
10544{
10545public:
10546 Target_selector_mips()
10547 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10548 (size == 64 ?
10549 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10550 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10551 (size == 64 ?
10552 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10553 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10554 { }
10555
10556 Target* do_instantiate_target()
10557 { return new Target_mips<size, big_endian>(); }
10558};
10559
62661c93
SS
10560template<int size, bool big_endian>
10561class Target_selector_mips_nacl
10562 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10563 Target_mips_nacl<size, big_endian> >
10564{
10565 public:
10566 Target_selector_mips_nacl()
10567 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10568 Target_mips_nacl<size, big_endian> >(
10569 // NaCl currently supports only MIPS32 little-endian.
10570 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10571 { }
10572};
9810d34d 10573
62661c93
SS
10574Target_selector_mips_nacl<32, true> target_selector_mips32;
10575Target_selector_mips_nacl<32, false> target_selector_mips32el;
10576Target_selector_mips_nacl<64, true> target_selector_mips64;
10577Target_selector_mips_nacl<64, false> target_selector_mips64el;
9810d34d
SS
10578
10579} // End anonymous namespace.
This page took 0.592231 seconds and 4 git commands to generate.