* pe-dll.c (generate_reloc): Don't emit a base reloc for an
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
9201d894
ILT
114#ifndef HAVE_POSIX_FALLOCATE
115// A dummy, non general, version of posix_fallocate. Here we just set
116// the file size and hope that there is enough disk space. FIXME: We
117// could allocate disk space by walking block by block and writing a
118// zero byte into each block.
119static int
120posix_fallocate(int o, off_t offset, off_t len)
121{
122 return ftruncate(o, offset + len);
123}
124#endif // !defined(HAVE_POSIX_FALLOCATE)
125
d0a9ace3
ILT
126// Mingw does not have S_ISLNK.
127#ifndef S_ISLNK
128# define S_ISLNK(mode) 0
129#endif
130
a2fb1b05
ILT
131namespace gold
132{
133
a3ad94ed
ILT
134// Output_data variables.
135
27bc2bce 136bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 137
a2fb1b05
ILT
138// Output_data methods.
139
140Output_data::~Output_data()
141{
142}
143
730cdc88
ILT
144// Return the default alignment for the target size.
145
146uint64_t
147Output_data::default_alignment()
148{
8851ecca
ILT
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
730cdc88
ILT
151}
152
75f65a3e
ILT
153// Return the default alignment for a size--32 or 64.
154
155uint64_t
730cdc88 156Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
157{
158 if (size == 32)
159 return 4;
160 else if (size == 64)
161 return 8;
162 else
a3ad94ed 163 gold_unreachable();
75f65a3e
ILT
164}
165
75f65a3e
ILT
166// Output_section_header methods. This currently assumes that the
167// segment and section lists are complete at construction time.
168
169Output_section_headers::Output_section_headers(
16649710
ILT
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
6a74a719 172 const Layout::Section_list* section_list,
16649710 173 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
9025d29d 176 : layout_(layout),
75f65a3e 177 segment_list_(segment_list),
6a74a719 178 section_list_(section_list),
a3ad94ed 179 unattached_section_list_(unattached_section_list),
d491d34e
ILT
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
182{
183}
184
185// Compute the current data size.
186
187off_t
188Output_section_headers::do_size() const
75f65a3e 189{
61ba1cf9
ILT
190 // Count all the sections. Start with 1 for the null section.
191 off_t count = 1;
8851ecca 192 if (!parameters->options().relocatable())
6a74a719 193 {
20e6d0d6
DK
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
6a74a719
ILT
197 ++p)
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
200 }
201 else
202 {
20e6d0d6
DK
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
6a74a719
ILT
206 ++p)
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208 ++count;
209 }
20e6d0d6 210 count += this->unattached_section_list_->size();
75f65a3e 211
8851ecca 212 const int size = parameters->target().get_size();
75f65a3e
ILT
213 int shdr_size;
214 if (size == 32)
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216 else if (size == 64)
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218 else
a3ad94ed 219 gold_unreachable();
75f65a3e 220
20e6d0d6 221 return count * shdr_size;
75f65a3e
ILT
222}
223
61ba1cf9
ILT
224// Write out the section headers.
225
75f65a3e 226void
61ba1cf9 227Output_section_headers::do_write(Output_file* of)
a2fb1b05 228{
8851ecca 229 switch (parameters->size_and_endianness())
61ba1cf9 230 {
9025d29d 231#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
234 break;
9025d29d 235#endif
8851ecca
ILT
236#ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
239 break;
9025d29d 240#endif
9025d29d 241#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
244 break;
9025d29d 245#endif
8851ecca
ILT
246#ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
249 break;
250#endif
251 default:
252 gold_unreachable();
61ba1cf9 253 }
61ba1cf9
ILT
254}
255
256template<int size, bool big_endian>
257void
258Output_section_headers::do_sized_write(Output_file* of)
259{
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
265
266 {
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
d491d34e
ILT
273
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
278 else
279 oshdr.put_sh_size(section_count);
280
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
284 else
285 oshdr.put_sh_link(shstrndx);
286
5696ab0b
ILT
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
61ba1cf9
ILT
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
292 }
293
294 v += shdr_size;
295
6a74a719 296 unsigned int shndx = 1;
8851ecca 297 if (!parameters->options().relocatable())
6a74a719
ILT
298 {
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
302 ++p)
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304 this->secnamepool_,
305 v,
306 &shndx);
307 }
308 else
309 {
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
313 ++p)
314 {
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
319 continue;
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323 v += shdr_size;
324 ++shndx;
325 }
326 }
327
a3ad94ed 328 for (Layout::Section_list::const_iterator p =
16649710
ILT
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
61ba1cf9
ILT
331 ++p)
332 {
6a74a719
ILT
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 336 && parameters->options().relocatable())
6a74a719 337 continue;
a3ad94ed 338 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 341 v += shdr_size;
ead1e424 342 ++shndx;
61ba1cf9
ILT
343 }
344
345 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
346}
347
54dc6425
ILT
348// Output_segment_header methods.
349
61ba1cf9 350Output_segment_headers::Output_segment_headers(
61ba1cf9 351 const Layout::Segment_list& segment_list)
9025d29d 352 : segment_list_(segment_list)
61ba1cf9 353{
cdc29364 354 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
355}
356
54dc6425 357void
61ba1cf9 358Output_segment_headers::do_write(Output_file* of)
75f65a3e 359{
8851ecca 360 switch (parameters->size_and_endianness())
61ba1cf9 361 {
9025d29d 362#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
365 break;
9025d29d 366#endif
8851ecca
ILT
367#ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
370 break;
9025d29d 371#endif
9025d29d 372#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
375 break;
9025d29d 376#endif
8851ecca
ILT
377#ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
380 break;
381#endif
382 default:
383 gold_unreachable();
61ba1cf9 384 }
61ba1cf9
ILT
385}
386
387template<int size, bool big_endian>
388void
389Output_segment_headers::do_sized_write(Output_file* of)
390{
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 393 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
394 unsigned char* view = of->get_output_view(this->offset(),
395 all_phdrs_size);
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
399 ++p)
400 {
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
403 v += phdr_size;
404 }
405
a445fddf
ILT
406 gold_assert(v - view == all_phdrs_size);
407
61ba1cf9 408 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
409}
410
20e6d0d6
DK
411off_t
412Output_segment_headers::do_size() const
413{
414 const int size = parameters->target().get_size();
415 int phdr_size;
416 if (size == 32)
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418 else if (size == 64)
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420 else
421 gold_unreachable();
422
423 return this->segment_list_.size() * phdr_size;
424}
425
75f65a3e
ILT
426// Output_file_header methods.
427
9025d29d 428Output_file_header::Output_file_header(const Target* target,
75f65a3e 429 const Symbol_table* symtab,
a10ae760 430 const Output_segment_headers* osh)
9025d29d 431 : target_(target),
75f65a3e 432 symtab_(symtab),
61ba1cf9 433 segment_header_(osh),
75f65a3e 434 section_header_(NULL),
a10ae760 435 shstrtab_(NULL)
75f65a3e 436{
20e6d0d6 437 this->set_data_size(this->do_size());
75f65a3e
ILT
438}
439
440// Set the section table information for a file header.
441
442void
443Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
445{
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
448}
449
450// Write out the file header.
451
452void
61ba1cf9 453Output_file_header::do_write(Output_file* of)
54dc6425 454{
27bc2bce
ILT
455 gold_assert(this->offset() == 0);
456
8851ecca 457 switch (parameters->size_and_endianness())
61ba1cf9 458 {
9025d29d 459#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
462 break;
9025d29d 463#endif
8851ecca
ILT
464#ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
467 break;
9025d29d 468#endif
9025d29d 469#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
472 break;
9025d29d 473#endif
8851ecca
ILT
474#ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
477 break;
478#endif
479 default:
480 gold_unreachable();
61ba1cf9 481 }
61ba1cf9
ILT
482}
483
cc643b88 484// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
485
486template<int size, bool big_endian>
487void
488Output_file_header::do_sized_write(Output_file* of)
489{
a3ad94ed 490 gold_assert(this->offset() == 0);
61ba1cf9
ILT
491
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502 if (size == 32)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504 else if (size == 64)
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506 else
a3ad94ed 507 gold_unreachable();
61ba1cf9
ILT
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
512 oehdr.put_e_ident(e_ident);
513
514 elfcpp::ET e_type;
8851ecca 515 if (parameters->options().relocatable())
61ba1cf9 516 e_type = elfcpp::ET_REL;
374ad285 517 else if (parameters->options().output_is_position_independent())
436ca963 518 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
519 else
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
522
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
525
d391083d 526 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 527
6a74a719
ILT
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
530 else
531 oehdr.put_e_phoff(this->segment_header_->offset());
532
61ba1cf9 533 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 534 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
536
537 if (this->segment_header_ == NULL)
538 {
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
541 }
542 else
543 {
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
6a74a719
ILT
550 }
551
61ba1cf9 552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
555
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
559 else
560 oehdr.put_e_shnum(0);
561
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565 else
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 567
36959681
ILT
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
571
61ba1cf9 572 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
573}
574
a10ae760 575// Return the value to use for the entry address.
d391083d
ILT
576
577template<int size>
578typename elfcpp::Elf_types<size>::Elf_Addr
579Output_file_header::entry()
580{
a10ae760 581 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
a10ae760 584 const char* entry = parameters->entry();
2ea97941 585 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
586
587 typename Sized_symbol<size>::Value_type v;
588 if (sym != NULL)
589 {
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
2ea97941 593 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
594 v = ssym->value();
595 }
596 else
597 {
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
600 char* endptr;
2ea97941 601 v = strtoull(entry, &endptr, 0);
d391083d
ILT
602 if (*endptr != '\0')
603 {
604 if (should_issue_warning)
2ea97941 605 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
606 v = 0;
607 }
608 }
609
610 return v;
611}
612
20e6d0d6
DK
613// Compute the current data size.
614
615off_t
616Output_file_header::do_size() const
617{
618 const int size = parameters->target().get_size();
619 if (size == 32)
620 return elfcpp::Elf_sizes<32>::ehdr_size;
621 else if (size == 64)
622 return elfcpp::Elf_sizes<64>::ehdr_size;
623 else
624 gold_unreachable();
625}
626
dbe717ef
ILT
627// Output_data_const methods.
628
629void
a3ad94ed 630Output_data_const::do_write(Output_file* of)
dbe717ef 631{
a3ad94ed
ILT
632 of->write(this->offset(), this->data_.data(), this->data_.size());
633}
634
635// Output_data_const_buffer methods.
636
637void
638Output_data_const_buffer::do_write(Output_file* of)
639{
640 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
641}
642
643// Output_section_data methods.
644
16649710
ILT
645// Record the output section, and set the entry size and such.
646
647void
648Output_section_data::set_output_section(Output_section* os)
649{
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
653}
654
655// Return the section index of the output section.
656
dbe717ef
ILT
657unsigned int
658Output_section_data::do_out_shndx() const
659{
a3ad94ed 660 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
661 return this->output_section_->out_shndx();
662}
663
759b1a24
ILT
664// Set the alignment, which means we may need to update the alignment
665// of the output section.
666
667void
2ea97941 668Output_section_data::set_addralign(uint64_t addralign)
759b1a24 669{
2ea97941 670 this->addralign_ = addralign;
759b1a24 671 if (this->output_section_ != NULL
2ea97941
ILT
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
759b1a24
ILT
674}
675
a3ad94ed
ILT
676// Output_data_strtab methods.
677
27bc2bce 678// Set the final data size.
a3ad94ed
ILT
679
680void
27bc2bce 681Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
682{
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
685}
686
687// Write out a string table.
688
689void
690Output_data_strtab::do_write(Output_file* of)
691{
692 this->strtab_->write(of, this->offset());
693}
694
c06b7b0b
ILT
695// Output_reloc methods.
696
7bf1f802
ILT
697// A reloc against a global symbol.
698
699template<bool dynamic, int size, bool big_endian>
700Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701 Symbol* gsym,
702 unsigned int type,
703 Output_data* od,
e8c846c3 704 Address address,
0da6fa6c
DM
705 bool is_relative,
706 bool is_symbolless)
7bf1f802 707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 708 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b 709 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 710{
dceae3c1
ILT
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
7bf1f802
ILT
713 this->u1_.gsym = gsym;
714 this->u2_.od = od;
dceae3c1
ILT
715 if (dynamic)
716 this->set_needs_dynsym_index();
7bf1f802
ILT
717}
718
719template<bool dynamic, int size, bool big_endian>
720Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Symbol* gsym,
722 unsigned int type,
ef9beddf 723 Sized_relobj<size, big_endian>* relobj,
7bf1f802 724 unsigned int shndx,
e8c846c3 725 Address address,
0da6fa6c
DM
726 bool is_relative,
727 bool is_symbolless)
7bf1f802 728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 729 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b 730 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
731{
732 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
7bf1f802
ILT
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
dceae3c1
ILT
737 if (dynamic)
738 this->set_needs_dynsym_index();
7bf1f802
ILT
739}
740
741// A reloc against a local symbol.
742
743template<bool dynamic, int size, bool big_endian>
744Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
747 unsigned int type,
748 Output_data* od,
e8c846c3 749 Address address,
2ea97941 750 bool is_relative,
0da6fa6c 751 bool is_symbolless,
397b129b
CC
752 bool is_section_symbol,
753 bool use_plt_offset)
7bf1f802 754 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 755 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
756 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
757 shndx_(INVALID_CODE)
7bf1f802
ILT
758{
759 gold_assert(local_sym_index != GSYM_CODE
760 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
761 // this->type_ is a bitfield; make sure TYPE fits.
762 gold_assert(this->type_ == type);
7bf1f802
ILT
763 this->u1_.relobj = relobj;
764 this->u2_.od = od;
dceae3c1
ILT
765 if (dynamic)
766 this->set_needs_dynsym_index();
7bf1f802
ILT
767}
768
769template<bool dynamic, int size, bool big_endian>
770Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
771 Sized_relobj<size, big_endian>* relobj,
772 unsigned int local_sym_index,
773 unsigned int type,
774 unsigned int shndx,
e8c846c3 775 Address address,
2ea97941 776 bool is_relative,
0da6fa6c 777 bool is_symbolless,
397b129b
CC
778 bool is_section_symbol,
779 bool use_plt_offset)
7bf1f802 780 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 781 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
782 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
783 shndx_(shndx)
7bf1f802
ILT
784{
785 gold_assert(local_sym_index != GSYM_CODE
786 && local_sym_index != INVALID_CODE);
787 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
788 // this->type_ is a bitfield; make sure TYPE fits.
789 gold_assert(this->type_ == type);
7bf1f802
ILT
790 this->u1_.relobj = relobj;
791 this->u2_.relobj = relobj;
dceae3c1
ILT
792 if (dynamic)
793 this->set_needs_dynsym_index();
7bf1f802
ILT
794}
795
796// A reloc against the STT_SECTION symbol of an output section.
797
798template<bool dynamic, int size, bool big_endian>
799Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 Output_section* os,
801 unsigned int type,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 805 is_relative_(false), is_symbolless_(false),
397b129b 806 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 807{
dceae3c1
ILT
808 // this->type_ is a bitfield; make sure TYPE fits.
809 gold_assert(this->type_ == type);
7bf1f802
ILT
810 this->u1_.os = os;
811 this->u2_.od = od;
812 if (dynamic)
dceae3c1
ILT
813 this->set_needs_dynsym_index();
814 else
815 os->set_needs_symtab_index();
7bf1f802
ILT
816}
817
818template<bool dynamic, int size, bool big_endian>
819Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
820 Output_section* os,
821 unsigned int type,
ef9beddf 822 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
823 unsigned int shndx,
824 Address address)
825 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c 826 is_relative_(false), is_symbolless_(false),
397b129b 827 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
828{
829 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
830 // this->type_ is a bitfield; make sure TYPE fits.
831 gold_assert(this->type_ == type);
7bf1f802
ILT
832 this->u1_.os = os;
833 this->u2_.relobj = relobj;
834 if (dynamic)
dceae3c1
ILT
835 this->set_needs_dynsym_index();
836 else
837 os->set_needs_symtab_index();
838}
839
e291e7b9
ILT
840// An absolute relocation.
841
842template<bool dynamic, int size, bool big_endian>
843Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844 unsigned int type,
845 Output_data* od,
846 Address address)
847 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 848 is_relative_(false), is_symbolless_(false),
397b129b 849 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
850{
851 // this->type_ is a bitfield; make sure TYPE fits.
852 gold_assert(this->type_ == type);
853 this->u1_.relobj = NULL;
854 this->u2_.od = od;
855}
856
857template<bool dynamic, int size, bool big_endian>
858Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
859 unsigned int type,
860 Sized_relobj<size, big_endian>* relobj,
861 unsigned int shndx,
862 Address address)
863 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 864 is_relative_(false), is_symbolless_(false),
397b129b 865 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
866{
867 gold_assert(shndx != INVALID_CODE);
868 // this->type_ is a bitfield; make sure TYPE fits.
869 gold_assert(this->type_ == type);
870 this->u1_.relobj = NULL;
871 this->u2_.relobj = relobj;
872}
873
874// A target specific relocation.
875
876template<bool dynamic, int size, bool big_endian>
877Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
878 unsigned int type,
879 void* arg,
880 Output_data* od,
881 Address address)
882 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 883 is_relative_(false), is_symbolless_(false),
397b129b 884 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
885{
886 // this->type_ is a bitfield; make sure TYPE fits.
887 gold_assert(this->type_ == type);
888 this->u1_.arg = arg;
889 this->u2_.od = od;
890}
891
892template<bool dynamic, int size, bool big_endian>
893Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894 unsigned int type,
895 void* arg,
896 Sized_relobj<size, big_endian>* relobj,
897 unsigned int shndx,
898 Address address)
899 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 900 is_relative_(false), is_symbolless_(false),
397b129b 901 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
902{
903 gold_assert(shndx != INVALID_CODE);
904 // this->type_ is a bitfield; make sure TYPE fits.
905 gold_assert(this->type_ == type);
906 this->u1_.arg = arg;
907 this->u2_.relobj = relobj;
908}
909
dceae3c1
ILT
910// Record that we need a dynamic symbol index for this relocation.
911
912template<bool dynamic, int size, bool big_endian>
913void
914Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
915set_needs_dynsym_index()
916{
0da6fa6c 917 if (this->is_symbolless_)
dceae3c1
ILT
918 return;
919 switch (this->local_sym_index_)
920 {
921 case INVALID_CODE:
922 gold_unreachable();
923
924 case GSYM_CODE:
925 this->u1_.gsym->set_needs_dynsym_entry();
926 break;
927
928 case SECTION_CODE:
929 this->u1_.os->set_needs_dynsym_index();
930 break;
931
e291e7b9
ILT
932 case TARGET_CODE:
933 // The target must take care of this if necessary.
934 break;
935
dceae3c1
ILT
936 case 0:
937 break;
938
939 default:
940 {
941 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
942 Sized_relobj_file<size, big_endian>* relobj =
943 this->u1_.relobj->sized_relobj();
944 gold_assert(relobj != NULL);
dceae3c1 945 if (!this->is_section_symbol_)
6fa2a40b 946 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 947 else
6fa2a40b 948 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
949 }
950 break;
951 }
7bf1f802
ILT
952}
953
c06b7b0b
ILT
954// Get the symbol index of a relocation.
955
956template<bool dynamic, int size, bool big_endian>
957unsigned int
958Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
959 const
960{
961 unsigned int index;
0da6fa6c
DM
962 if (this->is_symbolless_)
963 return 0;
c06b7b0b
ILT
964 switch (this->local_sym_index_)
965 {
966 case INVALID_CODE:
a3ad94ed 967 gold_unreachable();
c06b7b0b
ILT
968
969 case GSYM_CODE:
5a6f7e2d 970 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
971 index = 0;
972 else if (dynamic)
5a6f7e2d 973 index = this->u1_.gsym->dynsym_index();
c06b7b0b 974 else
5a6f7e2d 975 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
976 break;
977
978 case SECTION_CODE:
979 if (dynamic)
5a6f7e2d 980 index = this->u1_.os->dynsym_index();
c06b7b0b 981 else
5a6f7e2d 982 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
983 break;
984
e291e7b9
ILT
985 case TARGET_CODE:
986 index = parameters->target().reloc_symbol_index(this->u1_.arg,
987 this->type_);
988 break;
989
436ca963
ILT
990 case 0:
991 // Relocations without symbols use a symbol index of 0.
992 index = 0;
993 break;
994
c06b7b0b 995 default:
dceae3c1
ILT
996 {
997 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
998 Sized_relobj_file<size, big_endian>* relobj =
999 this->u1_.relobj->sized_relobj();
1000 gold_assert(relobj != NULL);
dceae3c1
ILT
1001 if (!this->is_section_symbol_)
1002 {
1003 if (dynamic)
6fa2a40b 1004 index = relobj->dynsym_index(lsi);
dceae3c1 1005 else
6fa2a40b 1006 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1007 }
1008 else
1009 {
6fa2a40b 1010 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1011 gold_assert(os != NULL);
1012 if (dynamic)
1013 index = os->dynsym_index();
1014 else
1015 index = os->symtab_index();
1016 }
1017 }
c06b7b0b
ILT
1018 break;
1019 }
a3ad94ed 1020 gold_assert(index != -1U);
c06b7b0b
ILT
1021 return index;
1022}
1023
624f8810
ILT
1024// For a local section symbol, get the address of the offset ADDEND
1025// within the input section.
dceae3c1
ILT
1026
1027template<bool dynamic, int size, bool big_endian>
ef9beddf 1028typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1029Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1030 local_section_offset(Addend addend) const
dceae3c1 1031{
624f8810
ILT
1032 gold_assert(this->local_sym_index_ != GSYM_CODE
1033 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1034 && this->local_sym_index_ != TARGET_CODE
624f8810 1035 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1036 && this->local_sym_index_ != 0
624f8810 1037 && this->is_section_symbol_);
dceae3c1 1038 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1039 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1040 gold_assert(os != NULL);
ef9beddf 1041 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1042 if (offset != invalid_address)
624f8810
ILT
1043 return offset + addend;
1044 // This is a merge section.
6fa2a40b
CC
1045 Sized_relobj_file<size, big_endian>* relobj =
1046 this->u1_.relobj->sized_relobj();
1047 gold_assert(relobj != NULL);
1048 offset = os->output_address(relobj, lsi, addend);
eff45813 1049 gold_assert(offset != invalid_address);
dceae3c1
ILT
1050 return offset;
1051}
1052
d98bc257 1053// Get the output address of a relocation.
c06b7b0b
ILT
1054
1055template<bool dynamic, int size, bool big_endian>
a984ee1d 1056typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1057Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1058{
a3ad94ed 1059 Address address = this->address_;
5a6f7e2d
ILT
1060 if (this->shndx_ != INVALID_CODE)
1061 {
ef9beddf 1062 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1063 gold_assert(os != NULL);
ef9beddf 1064 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1065 if (off != invalid_address)
730cdc88
ILT
1066 address += os->address() + off;
1067 else
1068 {
6fa2a40b
CC
1069 Sized_relobj_file<size, big_endian>* relobj =
1070 this->u2_.relobj->sized_relobj();
1071 gold_assert(relobj != NULL);
1072 address = os->output_address(relobj, this->shndx_, address);
eff45813 1073 gold_assert(address != invalid_address);
730cdc88 1074 }
5a6f7e2d
ILT
1075 }
1076 else if (this->u2_.od != NULL)
1077 address += this->u2_.od->address();
d98bc257
ILT
1078 return address;
1079}
1080
1081// Write out the offset and info fields of a Rel or Rela relocation
1082// entry.
1083
1084template<bool dynamic, int size, bool big_endian>
1085template<typename Write_rel>
1086void
1087Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1088 Write_rel* wr) const
1089{
1090 wr->put_r_offset(this->get_address());
0da6fa6c 1091 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1092 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1093}
1094
1095// Write out a Rel relocation.
1096
1097template<bool dynamic, int size, bool big_endian>
1098void
1099Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1100 unsigned char* pov) const
1101{
1102 elfcpp::Rel_write<size, big_endian> orel(pov);
1103 this->write_rel(&orel);
1104}
1105
e8c846c3
ILT
1106// Get the value of the symbol referred to by a Rel relocation.
1107
1108template<bool dynamic, int size, bool big_endian>
1109typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1110Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1111 Addend addend) const
e8c846c3
ILT
1112{
1113 if (this->local_sym_index_ == GSYM_CODE)
1114 {
1115 const Sized_symbol<size>* sym;
1116 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1117 return sym->value() + addend;
e8c846c3
ILT
1118 }
1119 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1120 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1121 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1122 && this->local_sym_index_ != 0
d1f003c6
ILT
1123 && !this->is_section_symbol_);
1124 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1125 Sized_relobj_file<size, big_endian>* relobj =
1126 this->u1_.relobj->sized_relobj();
1127 gold_assert(relobj != NULL);
397b129b
CC
1128 if (this->use_plt_offset_)
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_local(relobj, lsi);
1132 return plt_address + relobj->local_plt_offset(lsi);
1133 }
6fa2a40b
CC
1134 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1135 return symval->value(relobj, addend);
e8c846c3
ILT
1136}
1137
d98bc257
ILT
1138// Reloc comparison. This function sorts the dynamic relocs for the
1139// benefit of the dynamic linker. First we sort all relative relocs
1140// to the front. Among relative relocs, we sort by output address.
1141// Among non-relative relocs, we sort by symbol index, then by output
1142// address.
1143
1144template<bool dynamic, int size, bool big_endian>
1145int
1146Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1147 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1148 const
1149{
1150 if (this->is_relative_)
1151 {
1152 if (!r2.is_relative_)
1153 return -1;
1154 // Otherwise sort by reloc address below.
1155 }
1156 else if (r2.is_relative_)
1157 return 1;
1158 else
1159 {
1160 unsigned int sym1 = this->get_symbol_index();
1161 unsigned int sym2 = r2.get_symbol_index();
1162 if (sym1 < sym2)
1163 return -1;
1164 else if (sym1 > sym2)
1165 return 1;
1166 // Otherwise sort by reloc address.
1167 }
1168
1169 section_offset_type addr1 = this->get_address();
1170 section_offset_type addr2 = r2.get_address();
1171 if (addr1 < addr2)
1172 return -1;
1173 else if (addr1 > addr2)
1174 return 1;
1175
1176 // Final tie breaker, in order to generate the same output on any
1177 // host: reloc type.
1178 unsigned int type1 = this->type_;
1179 unsigned int type2 = r2.type_;
1180 if (type1 < type2)
1181 return -1;
1182 else if (type1 > type2)
1183 return 1;
1184
1185 // These relocs appear to be exactly the same.
1186 return 0;
1187}
1188
c06b7b0b
ILT
1189// Write out a Rela relocation.
1190
1191template<bool dynamic, int size, bool big_endian>
1192void
1193Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1194 unsigned char* pov) const
1195{
1196 elfcpp::Rela_write<size, big_endian> orel(pov);
1197 this->rel_.write_rel(&orel);
e8c846c3 1198 Addend addend = this->addend_;
e291e7b9
ILT
1199 if (this->rel_.is_target_specific())
1200 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1201 this->rel_.type(), addend);
0da6fa6c 1202 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1203 addend = this->rel_.symbol_value(addend);
1204 else if (this->rel_.is_local_section_symbol())
624f8810 1205 addend = this->rel_.local_section_offset(addend);
e8c846c3 1206 orel.put_r_addend(addend);
c06b7b0b
ILT
1207}
1208
1209// Output_data_reloc_base methods.
1210
16649710
ILT
1211// Adjust the output section.
1212
1213template<int sh_type, bool dynamic, int size, bool big_endian>
1214void
1215Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1216 ::do_adjust_output_section(Output_section* os)
1217{
1218 if (sh_type == elfcpp::SHT_REL)
1219 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1220 else if (sh_type == elfcpp::SHT_RELA)
1221 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1222 else
1223 gold_unreachable();
7223e9ca
ILT
1224
1225 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1226 // static link. The backends will generate a dynamic reloc section
1227 // to hold this. In that case we don't want to link to the dynsym
1228 // section, because there isn't one.
1229 if (!dynamic)
16649710 1230 os->set_should_link_to_symtab();
7223e9ca
ILT
1231 else if (parameters->doing_static_link())
1232 ;
1233 else
1234 os->set_should_link_to_dynsym();
16649710
ILT
1235}
1236
c06b7b0b
ILT
1237// Write out relocation data.
1238
1239template<int sh_type, bool dynamic, int size, bool big_endian>
1240void
1241Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1242 Output_file* of)
1243{
1244 const off_t off = this->offset();
1245 const off_t oview_size = this->data_size();
1246 unsigned char* const oview = of->get_output_view(off, oview_size);
1247
3a44184e 1248 if (this->sort_relocs())
d98bc257
ILT
1249 {
1250 gold_assert(dynamic);
1251 std::sort(this->relocs_.begin(), this->relocs_.end(),
1252 Sort_relocs_comparison());
1253 }
1254
c06b7b0b
ILT
1255 unsigned char* pov = oview;
1256 for (typename Relocs::const_iterator p = this->relocs_.begin();
1257 p != this->relocs_.end();
1258 ++p)
1259 {
1260 p->write(pov);
1261 pov += reloc_size;
1262 }
1263
a3ad94ed 1264 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1265
1266 of->write_output_view(off, oview_size, oview);
1267
1268 // We no longer need the relocation entries.
1269 this->relocs_.clear();
1270}
1271
6a74a719
ILT
1272// Class Output_relocatable_relocs.
1273
1274template<int sh_type, int size, bool big_endian>
1275void
1276Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1277{
1278 this->set_data_size(this->rr_->output_reloc_count()
1279 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1280}
1281
1282// class Output_data_group.
1283
1284template<int size, bool big_endian>
1285Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1286 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1287 section_size_type entry_count,
8825ac63
ILT
1288 elfcpp::Elf_Word flags,
1289 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1290 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1291 relobj_(relobj),
1292 flags_(flags)
6a74a719 1293{
8825ac63 1294 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1295}
1296
1297// Write out the section group, which means translating the section
1298// indexes to apply to the output file.
1299
1300template<int size, bool big_endian>
1301void
1302Output_data_group<size, big_endian>::do_write(Output_file* of)
1303{
1304 const off_t off = this->offset();
1305 const section_size_type oview_size =
1306 convert_to_section_size_type(this->data_size());
1307 unsigned char* const oview = of->get_output_view(off, oview_size);
1308
1309 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1310 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1311 ++contents;
1312
1313 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1314 this->input_shndxes_.begin();
1315 p != this->input_shndxes_.end();
6a74a719
ILT
1316 ++p, ++contents)
1317 {
ef9beddf 1318 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1319
1320 unsigned int output_shndx;
1321 if (os != NULL)
1322 output_shndx = os->out_shndx();
1323 else
1324 {
1325 this->relobj_->error(_("section group retained but "
1326 "group element discarded"));
1327 output_shndx = 0;
1328 }
1329
1330 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1331 }
1332
1333 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1334 gold_assert(wrote == oview_size);
1335
1336 of->write_output_view(off, oview_size, oview);
1337
1338 // We no longer need this information.
8825ac63 1339 this->input_shndxes_.clear();
6a74a719
ILT
1340}
1341
dbe717ef 1342// Output_data_got::Got_entry methods.
ead1e424
ILT
1343
1344// Write out the entry.
1345
1346template<int size, bool big_endian>
1347void
7e1edb90 1348Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1349{
1350 Valtype val = 0;
1351
1352 switch (this->local_sym_index_)
1353 {
1354 case GSYM_CODE:
1355 {
e8c846c3
ILT
1356 // If the symbol is resolved locally, we need to write out the
1357 // link-time value, which will be relocated dynamically by a
1358 // RELATIVE relocation.
ead1e424 1359 Symbol* gsym = this->u_.gsym;
7223e9ca 1360 if (this->use_plt_offset_ && gsym->has_plt_offset())
67181c72 1361 val = (parameters->target().plt_address_for_global(gsym)
7223e9ca
ILT
1362 + gsym->plt_offset());
1363 else
1364 {
1365 Sized_symbol<size>* sgsym;
1366 // This cast is a bit ugly. We don't want to put a
1367 // virtual method in Symbol, because we want Symbol to be
1368 // as small as possible.
1369 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1370 val = sgsym->value();
1371 }
ead1e424
ILT
1372 }
1373 break;
1374
1375 case CONSTANT_CODE:
1376 val = this->u_.constant;
1377 break;
1378
4829d394
CC
1379 case RESERVED_CODE:
1380 // If we're doing an incremental update, don't touch this GOT entry.
1381 if (parameters->incremental_update())
1382 return;
1383 val = this->u_.constant;
1384 break;
1385
ead1e424 1386 default:
d1f003c6 1387 {
6fa2a40b 1388 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
d1f003c6 1389 const unsigned int lsi = this->local_sym_index_;
7223e9ca
ILT
1390 const Symbol_value<size>* symval = object->local_symbol(lsi);
1391 if (!this->use_plt_offset_)
1392 val = symval->value(this->u_.object, 0);
1393 else
1394 {
67181c72
ILT
1395 uint64_t plt_address =
1396 parameters->target().plt_address_for_local(object, lsi);
1397 val = plt_address + object->local_plt_offset(lsi);
7223e9ca 1398 }
d1f003c6 1399 }
e727fa71 1400 break;
ead1e424
ILT
1401 }
1402
a3ad94ed 1403 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1404}
1405
dbe717ef 1406// Output_data_got methods.
ead1e424 1407
dbe717ef
ILT
1408// Add an entry for a global symbol to the GOT. This returns true if
1409// this is a new GOT entry, false if the symbol already had a GOT
1410// entry.
1411
1412template<int size, bool big_endian>
1413bool
0a65a3a7
CC
1414Output_data_got<size, big_endian>::add_global(
1415 Symbol* gsym,
1416 unsigned int got_type)
ead1e424 1417{
0a65a3a7 1418 if (gsym->has_got_offset(got_type))
dbe717ef 1419 return false;
ead1e424 1420
4829d394
CC
1421 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1422 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1423 return true;
1424}
1425
1426// Like add_global, but use the PLT offset.
1427
1428template<int size, bool big_endian>
1429bool
1430Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1431 unsigned int got_type)
1432{
1433 if (gsym->has_got_offset(got_type))
1434 return false;
1435
4829d394
CC
1436 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1437 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1438 return true;
1439}
ead1e424 1440
7bf1f802
ILT
1441// Add an entry for a global symbol to the GOT, and add a dynamic
1442// relocation of type R_TYPE for the GOT entry.
7223e9ca 1443
7bf1f802
ILT
1444template<int size, bool big_endian>
1445void
1446Output_data_got<size, big_endian>::add_global_with_rel(
1447 Symbol* gsym,
0a65a3a7 1448 unsigned int got_type,
7bf1f802
ILT
1449 Rel_dyn* rel_dyn,
1450 unsigned int r_type)
1451{
0a65a3a7 1452 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1453 return;
1454
4829d394 1455 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1456 gsym->set_got_offset(got_type, got_offset);
1457 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1458}
1459
1460template<int size, bool big_endian>
1461void
1462Output_data_got<size, big_endian>::add_global_with_rela(
1463 Symbol* gsym,
0a65a3a7 1464 unsigned int got_type,
7bf1f802
ILT
1465 Rela_dyn* rela_dyn,
1466 unsigned int r_type)
1467{
0a65a3a7 1468 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1469 return;
1470
4829d394 1471 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1472 gsym->set_got_offset(got_type, got_offset);
1473 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1474}
1475
0a65a3a7
CC
1476// Add a pair of entries for a global symbol to the GOT, and add
1477// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1478// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1479template<int size, bool big_endian>
1480void
0a65a3a7
CC
1481Output_data_got<size, big_endian>::add_global_pair_with_rel(
1482 Symbol* gsym,
1483 unsigned int got_type,
7bf1f802 1484 Rel_dyn* rel_dyn,
0a65a3a7
CC
1485 unsigned int r_type_1,
1486 unsigned int r_type_2)
7bf1f802 1487{
0a65a3a7 1488 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1489 return;
1490
4829d394 1491 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7 1494
0a65a3a7 1495 if (r_type_2 != 0)
4829d394 1496 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1497}
1498
1499template<int size, bool big_endian>
1500void
0a65a3a7
CC
1501Output_data_got<size, big_endian>::add_global_pair_with_rela(
1502 Symbol* gsym,
1503 unsigned int got_type,
7bf1f802 1504 Rela_dyn* rela_dyn,
0a65a3a7
CC
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
7bf1f802 1507{
0a65a3a7 1508 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1509 return;
1510
4829d394 1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1512 gsym->set_got_offset(got_type, got_offset);
1513 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1514
0a65a3a7 1515 if (r_type_2 != 0)
4829d394 1516 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
7bf1f802
ILT
1517}
1518
0a65a3a7
CC
1519// Add an entry for a local symbol to the GOT. This returns true if
1520// this is a new GOT entry, false if the symbol already has a GOT
1521// entry.
07f397ab
ILT
1522
1523template<int size, bool big_endian>
1524bool
0a65a3a7 1525Output_data_got<size, big_endian>::add_local(
6fa2a40b 1526 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1527 unsigned int symndx,
1528 unsigned int got_type)
07f397ab 1529{
0a65a3a7 1530 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1531 return false;
1532
4829d394
CC
1533 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1534 false));
1535 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1536 return true;
1537}
1538
1539// Like add_local, but use the PLT offset.
1540
1541template<int size, bool big_endian>
1542bool
1543Output_data_got<size, big_endian>::add_local_plt(
6fa2a40b 1544 Sized_relobj_file<size, big_endian>* object,
7223e9ca
ILT
1545 unsigned int symndx,
1546 unsigned int got_type)
1547{
1548 if (object->local_has_got_offset(symndx, got_type))
1549 return false;
1550
4829d394
CC
1551 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1552 true));
1553 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1554 return true;
1555}
1556
0a65a3a7
CC
1557// Add an entry for a local symbol to the GOT, and add a dynamic
1558// relocation of type R_TYPE for the GOT entry.
7223e9ca 1559
7bf1f802
ILT
1560template<int size, bool big_endian>
1561void
0a65a3a7 1562Output_data_got<size, big_endian>::add_local_with_rel(
6fa2a40b 1563 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1564 unsigned int symndx,
1565 unsigned int got_type,
7bf1f802
ILT
1566 Rel_dyn* rel_dyn,
1567 unsigned int r_type)
1568{
0a65a3a7 1569 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1570 return;
1571
4829d394 1572 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1573 object->set_local_got_offset(symndx, got_type, got_offset);
1574 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1575}
1576
1577template<int size, bool big_endian>
1578void
0a65a3a7 1579Output_data_got<size, big_endian>::add_local_with_rela(
6fa2a40b 1580 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1581 unsigned int symndx,
1582 unsigned int got_type,
7bf1f802
ILT
1583 Rela_dyn* rela_dyn,
1584 unsigned int r_type)
1585{
0a65a3a7 1586 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1587 return;
1588
4829d394 1589 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1590 object->set_local_got_offset(symndx, got_type, got_offset);
1591 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1592}
1593
0a65a3a7
CC
1594// Add a pair of entries for a local symbol to the GOT, and add
1595// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1596// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1597template<int size, bool big_endian>
1598void
0a65a3a7 1599Output_data_got<size, big_endian>::add_local_pair_with_rel(
6fa2a40b 1600 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1601 unsigned int symndx,
1602 unsigned int shndx,
0a65a3a7 1603 unsigned int got_type,
7bf1f802 1604 Rel_dyn* rel_dyn,
0a65a3a7
CC
1605 unsigned int r_type_1,
1606 unsigned int r_type_2)
7bf1f802 1607{
0a65a3a7 1608 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1609 return;
1610
4829d394
CC
1611 unsigned int got_offset =
1612 this->add_got_entry_pair(Got_entry(),
1613 Got_entry(object, symndx, false));
2ea97941 1614 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1615 Output_section* os = object->output_section(shndx);
2ea97941 1616 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1617
0a65a3a7 1618 if (r_type_2 != 0)
4829d394 1619 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1620}
1621
1622template<int size, bool big_endian>
1623void
0a65a3a7 1624Output_data_got<size, big_endian>::add_local_pair_with_rela(
6fa2a40b 1625 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1626 unsigned int symndx,
1627 unsigned int shndx,
0a65a3a7 1628 unsigned int got_type,
7bf1f802 1629 Rela_dyn* rela_dyn,
0a65a3a7
CC
1630 unsigned int r_type_1,
1631 unsigned int r_type_2)
7bf1f802 1632{
0a65a3a7 1633 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1634 return;
1635
4829d394
CC
1636 unsigned int got_offset =
1637 this->add_got_entry_pair(Got_entry(),
1638 Got_entry(object, symndx, false));
2ea97941 1639 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1640 Output_section* os = object->output_section(shndx);
2ea97941 1641 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1642
0a65a3a7 1643 if (r_type_2 != 0)
4829d394
CC
1644 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1645}
1646
1647// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1648
1649template<int size, bool big_endian>
1650void
6fa2a40b
CC
1651Output_data_got<size, big_endian>::reserve_local(
1652 unsigned int i,
1653 Sized_relobj<size, big_endian>* object,
1654 unsigned int sym_index,
1655 unsigned int got_type)
4829d394 1656{
6fa2a40b
CC
1657 this->reserve_slot(i);
1658 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1659}
7bf1f802 1660
4829d394
CC
1661// Reserve a slot in the GOT for a global symbol.
1662
1663template<int size, bool big_endian>
1664void
6fa2a40b 1665Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1666 unsigned int i,
1667 Symbol* gsym,
1668 unsigned int got_type)
1669{
6fa2a40b 1670 this->reserve_slot(i);
4829d394 1671 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1672}
1673
ead1e424
ILT
1674// Write out the GOT.
1675
1676template<int size, bool big_endian>
1677void
dbe717ef 1678Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1679{
1680 const int add = size / 8;
1681
1682 const off_t off = this->offset();
c06b7b0b 1683 const off_t oview_size = this->data_size();
ead1e424
ILT
1684 unsigned char* const oview = of->get_output_view(off, oview_size);
1685
1686 unsigned char* pov = oview;
1687 for (typename Got_entries::const_iterator p = this->entries_.begin();
1688 p != this->entries_.end();
1689 ++p)
1690 {
7e1edb90 1691 p->write(pov);
ead1e424
ILT
1692 pov += add;
1693 }
1694
a3ad94ed 1695 gold_assert(pov - oview == oview_size);
c06b7b0b 1696
ead1e424
ILT
1697 of->write_output_view(off, oview_size, oview);
1698
1699 // We no longer need the GOT entries.
1700 this->entries_.clear();
1701}
1702
4829d394
CC
1703// Create a new GOT entry and return its offset.
1704
1705template<int size, bool big_endian>
1706unsigned int
1707Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1708{
1709 if (!this->is_data_size_valid())
1710 {
1711 this->entries_.push_back(got_entry);
1712 this->set_got_size();
1713 return this->last_got_offset();
1714 }
1715 else
1716 {
1717 // For an incremental update, find an available slot.
1718 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1719 if (got_offset == -1)
e6455dfb
CC
1720 gold_fallback(_("out of patch space (GOT);"
1721 " relink with --incremental-full"));
4829d394
CC
1722 unsigned int got_index = got_offset / (size / 8);
1723 gold_assert(got_index < this->entries_.size());
1724 this->entries_[got_index] = got_entry;
1725 return static_cast<unsigned int>(got_offset);
1726 }
1727}
1728
1729// Create a pair of new GOT entries and return the offset of the first.
1730
1731template<int size, bool big_endian>
1732unsigned int
1733Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1734 Got_entry got_entry_2)
1735{
1736 if (!this->is_data_size_valid())
1737 {
1738 unsigned int got_offset;
1739 this->entries_.push_back(got_entry_1);
1740 got_offset = this->last_got_offset();
1741 this->entries_.push_back(got_entry_2);
1742 this->set_got_size();
1743 return got_offset;
1744 }
1745 else
1746 {
1747 // For an incremental update, find an available pair of slots.
1748 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1749 if (got_offset == -1)
e6455dfb
CC
1750 gold_fallback(_("out of patch space (GOT);"
1751 " relink with --incremental-full"));
4829d394
CC
1752 unsigned int got_index = got_offset / (size / 8);
1753 gold_assert(got_index < this->entries_.size());
1754 this->entries_[got_index] = got_entry_1;
1755 this->entries_[got_index + 1] = got_entry_2;
1756 return static_cast<unsigned int>(got_offset);
1757 }
1758}
1759
a3ad94ed
ILT
1760// Output_data_dynamic::Dynamic_entry methods.
1761
1762// Write out the entry.
1763
1764template<int size, bool big_endian>
1765void
1766Output_data_dynamic::Dynamic_entry::write(
1767 unsigned char* pov,
7d1a9ebb 1768 const Stringpool* pool) const
a3ad94ed
ILT
1769{
1770 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1771 switch (this->offset_)
a3ad94ed
ILT
1772 {
1773 case DYNAMIC_NUMBER:
1774 val = this->u_.val;
1775 break;
1776
a3ad94ed 1777 case DYNAMIC_SECTION_SIZE:
16649710 1778 val = this->u_.od->data_size();
612a8d3d
DM
1779 if (this->od2 != NULL)
1780 val += this->od2->data_size();
a3ad94ed
ILT
1781 break;
1782
1783 case DYNAMIC_SYMBOL:
1784 {
16649710
ILT
1785 const Sized_symbol<size>* s =
1786 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1787 val = s->value();
1788 }
1789 break;
1790
1791 case DYNAMIC_STRING:
1792 val = pool->get_offset(this->u_.str);
1793 break;
1794
1795 default:
c2b45e22
CC
1796 val = this->u_.od->address() + this->offset_;
1797 break;
a3ad94ed
ILT
1798 }
1799
1800 elfcpp::Dyn_write<size, big_endian> dw(pov);
1801 dw.put_d_tag(this->tag_);
1802 dw.put_d_val(val);
1803}
1804
1805// Output_data_dynamic methods.
1806
16649710
ILT
1807// Adjust the output section to set the entry size.
1808
1809void
1810Output_data_dynamic::do_adjust_output_section(Output_section* os)
1811{
8851ecca 1812 if (parameters->target().get_size() == 32)
16649710 1813 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1814 else if (parameters->target().get_size() == 64)
16649710
ILT
1815 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1816 else
1817 gold_unreachable();
1818}
1819
a3ad94ed
ILT
1820// Set the final data size.
1821
1822void
27bc2bce 1823Output_data_dynamic::set_final_data_size()
a3ad94ed 1824{
20e6d0d6
DK
1825 // Add the terminating entry if it hasn't been added.
1826 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1827 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1828 {
1829 int extra = parameters->options().spare_dynamic_tags();
1830 for (int i = 0; i < extra; ++i)
1831 this->add_constant(elfcpp::DT_NULL, 0);
1832 this->add_constant(elfcpp::DT_NULL, 0);
1833 }
a3ad94ed
ILT
1834
1835 int dyn_size;
8851ecca 1836 if (parameters->target().get_size() == 32)
a3ad94ed 1837 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1838 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1839 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1840 else
1841 gold_unreachable();
1842 this->set_data_size(this->entries_.size() * dyn_size);
1843}
1844
1845// Write out the dynamic entries.
1846
1847void
1848Output_data_dynamic::do_write(Output_file* of)
1849{
8851ecca 1850 switch (parameters->size_and_endianness())
a3ad94ed 1851 {
9025d29d 1852#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1853 case Parameters::TARGET_32_LITTLE:
1854 this->sized_write<32, false>(of);
1855 break;
9025d29d 1856#endif
8851ecca
ILT
1857#ifdef HAVE_TARGET_32_BIG
1858 case Parameters::TARGET_32_BIG:
1859 this->sized_write<32, true>(of);
1860 break;
9025d29d 1861#endif
9025d29d 1862#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1863 case Parameters::TARGET_64_LITTLE:
1864 this->sized_write<64, false>(of);
1865 break;
9025d29d 1866#endif
8851ecca
ILT
1867#ifdef HAVE_TARGET_64_BIG
1868 case Parameters::TARGET_64_BIG:
1869 this->sized_write<64, true>(of);
1870 break;
1871#endif
1872 default:
1873 gold_unreachable();
a3ad94ed 1874 }
a3ad94ed
ILT
1875}
1876
1877template<int size, bool big_endian>
1878void
1879Output_data_dynamic::sized_write(Output_file* of)
1880{
1881 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1882
2ea97941 1883 const off_t offset = this->offset();
a3ad94ed 1884 const off_t oview_size = this->data_size();
2ea97941 1885 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1886
1887 unsigned char* pov = oview;
1888 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1889 p != this->entries_.end();
1890 ++p)
1891 {
7d1a9ebb 1892 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1893 pov += dyn_size;
1894 }
1895
1896 gold_assert(pov - oview == oview_size);
1897
2ea97941 1898 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1899
1900 // We no longer need the dynamic entries.
1901 this->entries_.clear();
1902}
1903
d491d34e
ILT
1904// Class Output_symtab_xindex.
1905
1906void
1907Output_symtab_xindex::do_write(Output_file* of)
1908{
2ea97941 1909 const off_t offset = this->offset();
d491d34e 1910 const off_t oview_size = this->data_size();
2ea97941 1911 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1912
1913 memset(oview, 0, oview_size);
1914
1915 if (parameters->target().is_big_endian())
1916 this->endian_do_write<true>(oview);
1917 else
1918 this->endian_do_write<false>(oview);
1919
2ea97941 1920 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1921
1922 // We no longer need the data.
1923 this->entries_.clear();
1924}
1925
1926template<bool big_endian>
1927void
1928Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1929{
1930 for (Xindex_entries::const_iterator p = this->entries_.begin();
1931 p != this->entries_.end();
1932 ++p)
20e6d0d6
DK
1933 {
1934 unsigned int symndx = p->first;
1935 gold_assert(symndx * 4 < this->data_size());
1936 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1937 }
d491d34e
ILT
1938}
1939
8ea8cd50
CC
1940// Output_fill_debug_info methods.
1941
1942// Return the minimum size needed for a dummy compilation unit header.
1943
1944size_t
1945Output_fill_debug_info::do_minimum_hole_size() const
1946{
1947 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1948 // address_size.
1949 const size_t len = 4 + 2 + 4 + 1;
1950 // For type units, add type_signature, type_offset.
1951 if (this->is_debug_types_)
1952 return len + 8 + 4;
1953 return len;
1954}
1955
1956// Write a dummy compilation unit header to fill a hole in the
1957// .debug_info or .debug_types section.
1958
1959void
1960Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1961{
66570254
CC
1962 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1963 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1964
1965 gold_assert(len >= this->do_minimum_hole_size());
1966
1967 unsigned char* const oview = of->get_output_view(off, len);
1968 unsigned char* pov = oview;
1969
1970 // Write header fields: unit_length, version, debug_abbrev_offset,
1971 // address_size.
1972 if (this->is_big_endian())
1973 {
24c6c55a
DM
1974 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1975 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1976 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1977 }
1978 else
1979 {
24c6c55a
DM
1980 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1981 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1982 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1983 }
1984 pov += 4 + 2 + 4;
1985 *pov++ = 4;
1986
1987 // For type units, the additional header fields -- type_signature,
1988 // type_offset -- can be filled with zeroes.
1989
1990 // Fill the remainder of the free space with zeroes. The first
1991 // zero should tell the consumer there are no DIEs to read in this
1992 // compilation unit.
1993 if (pov < oview + len)
1994 memset(pov, 0, oview + len - pov);
1995
1996 of->write_output_view(off, len, oview);
1997}
1998
1999// Output_fill_debug_line methods.
2000
2001// Return the minimum size needed for a dummy line number program header.
2002
2003size_t
2004Output_fill_debug_line::do_minimum_hole_size() const
2005{
2006 // Line number program header fields: unit_length, version, header_length,
2007 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2008 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2009 const size_t len = 4 + 2 + 4 + this->header_length;
2010 return len;
2011}
2012
2013// Write a dummy line number program header to fill a hole in the
2014// .debug_line section.
2015
2016void
2017Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2018{
66570254
CC
2019 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2020 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2021
2022 gold_assert(len >= this->do_minimum_hole_size());
2023
2024 unsigned char* const oview = of->get_output_view(off, len);
2025 unsigned char* pov = oview;
2026
2027 // Write header fields: unit_length, version, header_length,
2028 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2029 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2030 // We set the header_length field to cover the entire hole, so the
2031 // line number program is empty.
2032 if (this->is_big_endian())
2033 {
24c6c55a
DM
2034 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2035 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2036 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2037 }
2038 else
2039 {
24c6c55a
DM
2040 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2041 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2042 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2043 }
2044 pov += 4 + 2 + 4;
2045 *pov++ = 1; // minimum_instruction_length
2046 *pov++ = 0; // default_is_stmt
2047 *pov++ = 0; // line_base
2048 *pov++ = 5; // line_range
2049 *pov++ = 13; // opcode_base
2050 *pov++ = 0; // standard_opcode_lengths[1]
2051 *pov++ = 1; // standard_opcode_lengths[2]
2052 *pov++ = 1; // standard_opcode_lengths[3]
2053 *pov++ = 1; // standard_opcode_lengths[4]
2054 *pov++ = 1; // standard_opcode_lengths[5]
2055 *pov++ = 0; // standard_opcode_lengths[6]
2056 *pov++ = 0; // standard_opcode_lengths[7]
2057 *pov++ = 0; // standard_opcode_lengths[8]
2058 *pov++ = 1; // standard_opcode_lengths[9]
2059 *pov++ = 0; // standard_opcode_lengths[10]
2060 *pov++ = 0; // standard_opcode_lengths[11]
2061 *pov++ = 1; // standard_opcode_lengths[12]
2062 *pov++ = 0; // include_directories (empty)
2063 *pov++ = 0; // filenames (empty)
2064
2065 // Some consumers don't check the header_length field, and simply
2066 // start reading the line number program immediately following the
2067 // header. For those consumers, we fill the remainder of the free
2068 // space with DW_LNS_set_basic_block opcodes. These are effectively
2069 // no-ops: the resulting line table program will not create any rows.
2070 if (pov < oview + len)
2071 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2072
2073 of->write_output_view(off, len, oview);
2074}
2075
ead1e424
ILT
2076// Output_section::Input_section methods.
2077
cdc29364
CC
2078// Return the current data size. For an input section we store the size here.
2079// For an Output_section_data, we have to ask it for the size.
2080
2081off_t
2082Output_section::Input_section::current_data_size() const
2083{
2084 if (this->is_input_section())
2085 return this->u1_.data_size;
2086 else
2087 {
2088 this->u2_.posd->pre_finalize_data_size();
2089 return this->u2_.posd->current_data_size();
2090 }
2091}
2092
ead1e424
ILT
2093// Return the data size. For an input section we store the size here.
2094// For an Output_section_data, we have to ask it for the size.
2095
2096off_t
2097Output_section::Input_section::data_size() const
2098{
2099 if (this->is_input_section())
b8e6aad9 2100 return this->u1_.data_size;
ead1e424 2101 else
b8e6aad9 2102 return this->u2_.posd->data_size();
ead1e424
ILT
2103}
2104
0439c796
DK
2105// Return the object for an input section.
2106
2107Relobj*
2108Output_section::Input_section::relobj() const
2109{
2110 if (this->is_input_section())
2111 return this->u2_.object;
2112 else if (this->is_merge_section())
2113 {
2114 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2115 return this->u2_.pomb->first_relobj();
2116 }
2117 else if (this->is_relaxed_input_section())
2118 return this->u2_.poris->relobj();
2119 else
2120 gold_unreachable();
2121}
2122
2123// Return the input section index for an input section.
2124
2125unsigned int
2126Output_section::Input_section::shndx() const
2127{
2128 if (this->is_input_section())
2129 return this->shndx_;
2130 else if (this->is_merge_section())
2131 {
2132 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2133 return this->u2_.pomb->first_shndx();
2134 }
2135 else if (this->is_relaxed_input_section())
2136 return this->u2_.poris->shndx();
2137 else
2138 gold_unreachable();
2139}
2140
ead1e424
ILT
2141// Set the address and file offset.
2142
2143void
96803768
ILT
2144Output_section::Input_section::set_address_and_file_offset(
2145 uint64_t address,
2146 off_t file_offset,
2147 off_t section_file_offset)
ead1e424
ILT
2148{
2149 if (this->is_input_section())
96803768
ILT
2150 this->u2_.object->set_section_offset(this->shndx_,
2151 file_offset - section_file_offset);
ead1e424 2152 else
96803768
ILT
2153 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2154}
2155
a445fddf
ILT
2156// Reset the address and file offset.
2157
2158void
2159Output_section::Input_section::reset_address_and_file_offset()
2160{
2161 if (!this->is_input_section())
2162 this->u2_.posd->reset_address_and_file_offset();
2163}
2164
96803768
ILT
2165// Finalize the data size.
2166
2167void
2168Output_section::Input_section::finalize_data_size()
2169{
2170 if (!this->is_input_section())
2171 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2172}
2173
1e983657
ILT
2174// Try to turn an input offset into an output offset. We want to
2175// return the output offset relative to the start of this
2176// Input_section in the output section.
b8e6aad9 2177
8f00aeb8 2178inline bool
8383303e
ILT
2179Output_section::Input_section::output_offset(
2180 const Relobj* object,
2ea97941
ILT
2181 unsigned int shndx,
2182 section_offset_type offset,
ca09d69a 2183 section_offset_type* poutput) const
b8e6aad9
ILT
2184{
2185 if (!this->is_input_section())
2ea97941 2186 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2187 else
2188 {
2ea97941 2189 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2190 return false;
2ea97941 2191 *poutput = offset;
b8e6aad9
ILT
2192 return true;
2193 }
ead1e424
ILT
2194}
2195
a9a60db6
ILT
2196// Return whether this is the merge section for the input section
2197// SHNDX in OBJECT.
2198
2199inline bool
2200Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2201 unsigned int shndx) const
a9a60db6
ILT
2202{
2203 if (this->is_input_section())
2204 return false;
2ea97941 2205 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2206}
2207
ead1e424
ILT
2208// Write out the data. We don't have to do anything for an input
2209// section--they are handled via Object::relocate--but this is where
2210// we write out the data for an Output_section_data.
2211
2212void
2213Output_section::Input_section::write(Output_file* of)
2214{
2215 if (!this->is_input_section())
b8e6aad9 2216 this->u2_.posd->write(of);
ead1e424
ILT
2217}
2218
96803768
ILT
2219// Write the data to a buffer. As for write(), we don't have to do
2220// anything for an input section.
2221
2222void
2223Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2224{
2225 if (!this->is_input_section())
2226 this->u2_.posd->write_to_buffer(buffer);
2227}
2228
7d9e3d98
ILT
2229// Print to a map file.
2230
2231void
2232Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2233{
2234 switch (this->shndx_)
2235 {
2236 case OUTPUT_SECTION_CODE:
2237 case MERGE_DATA_SECTION_CODE:
2238 case MERGE_STRING_SECTION_CODE:
2239 this->u2_.posd->print_to_mapfile(mapfile);
2240 break;
2241
20e6d0d6
DK
2242 case RELAXED_INPUT_SECTION_CODE:
2243 {
2244 Output_relaxed_input_section* relaxed_section =
2245 this->relaxed_input_section();
2246 mapfile->print_input_section(relaxed_section->relobj(),
2247 relaxed_section->shndx());
2248 }
2249 break;
7d9e3d98
ILT
2250 default:
2251 mapfile->print_input_section(this->u2_.object, this->shndx_);
2252 break;
2253 }
2254}
2255
a2fb1b05
ILT
2256// Output_section methods.
2257
2258// Construct an Output_section. NAME will point into a Stringpool.
2259
2ea97941
ILT
2260Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2261 elfcpp::Elf_Xword flags)
2262 : name_(name),
a2fb1b05
ILT
2263 addralign_(0),
2264 entsize_(0),
a445fddf 2265 load_address_(0),
16649710 2266 link_section_(NULL),
a2fb1b05 2267 link_(0),
16649710 2268 info_section_(NULL),
6a74a719 2269 info_symndx_(NULL),
a2fb1b05 2270 info_(0),
2ea97941
ILT
2271 type_(type),
2272 flags_(flags),
22f0da72 2273 order_(ORDER_INVALID),
91ea499d 2274 out_shndx_(-1U),
c06b7b0b
ILT
2275 symtab_index_(0),
2276 dynsym_index_(0),
ead1e424
ILT
2277 input_sections_(),
2278 first_input_offset_(0),
c51e6221 2279 fills_(),
96803768 2280 postprocessing_buffer_(NULL),
a3ad94ed 2281 needs_symtab_index_(false),
16649710
ILT
2282 needs_dynsym_index_(false),
2283 should_link_to_symtab_(false),
730cdc88 2284 should_link_to_dynsym_(false),
27bc2bce 2285 after_input_sections_(false),
7bf1f802 2286 requires_postprocessing_(false),
a445fddf
ILT
2287 found_in_sections_clause_(false),
2288 has_load_address_(false),
755ab8af 2289 info_uses_section_index_(false),
6e9ba2ca 2290 input_section_order_specified_(false),
2fd32231
ILT
2291 may_sort_attached_input_sections_(false),
2292 must_sort_attached_input_sections_(false),
2293 attached_input_sections_are_sorted_(false),
9f1d377b 2294 is_relro_(false),
8a5e3e08
ILT
2295 is_small_section_(false),
2296 is_large_section_(false),
f5c870d2 2297 generate_code_fills_at_write_(false),
e8cd95c7 2298 is_entsize_zero_(false),
8923b24c 2299 section_offsets_need_adjustment_(false),
1e5d2fb1 2300 is_noload_(false),
131687b4 2301 always_keeps_input_sections_(false),
cdc29364 2302 has_fixed_layout_(false),
9fbd3822 2303 is_patch_space_allowed_(false),
20e6d0d6 2304 tls_offset_(0),
c0a62865 2305 checkpoint_(NULL),
cdc29364 2306 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2307 free_list_(),
8ea8cd50 2308 free_space_fill_(NULL),
9fbd3822 2309 patch_space_(0)
a2fb1b05 2310{
27bc2bce
ILT
2311 // An unallocated section has no address. Forcing this means that
2312 // we don't need special treatment for symbols defined in debug
2313 // sections.
2ea97941 2314 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2315 this->set_address(0);
a2fb1b05
ILT
2316}
2317
54dc6425
ILT
2318Output_section::~Output_section()
2319{
20e6d0d6 2320 delete this->checkpoint_;
54dc6425
ILT
2321}
2322
16649710
ILT
2323// Set the entry size.
2324
2325void
2326Output_section::set_entsize(uint64_t v)
2327{
e8cd95c7
ILT
2328 if (this->is_entsize_zero_)
2329 ;
2330 else if (this->entsize_ == 0)
16649710 2331 this->entsize_ = v;
e8cd95c7
ILT
2332 else if (this->entsize_ != v)
2333 {
2334 this->entsize_ = 0;
2335 this->is_entsize_zero_ = 1;
2336 }
16649710
ILT
2337}
2338
ead1e424 2339// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2340// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2341// relocation section which applies to this section, or 0 if none, or
2342// -1U if more than one. Return the offset of the input section
2343// within the output section. Return -1 if the input section will
2344// receive special handling. In the normal case we don't always keep
2345// track of input sections for an Output_section. Instead, each
2346// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2347// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2348// track of input sections here; this is used when SECTIONS appears in
2349// a linker script.
a2fb1b05
ILT
2350
2351template<int size, bool big_endian>
2352off_t
6e9ba2ca 2353Output_section::add_input_section(Layout* layout,
6fa2a40b 2354 Sized_relobj_file<size, big_endian>* object,
2ea97941 2355 unsigned int shndx,
ead1e424 2356 const char* secname,
730cdc88 2357 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2358 unsigned int reloc_shndx,
2359 bool have_sections_script)
a2fb1b05 2360{
2ea97941
ILT
2361 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2362 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2363 {
75f2446e 2364 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2365 static_cast<unsigned long>(addralign), secname);
2366 addralign = 1;
a2fb1b05 2367 }
a2fb1b05 2368
2ea97941
ILT
2369 if (addralign > this->addralign_)
2370 this->addralign_ = addralign;
a2fb1b05 2371
44a43cf9 2372 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2373 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2374
2375 // .debug_str is a mergeable string section, but is not always so
2376 // marked by compilers. Mark manually here so we can optimize.
2377 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2378 {
2379 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2380 entsize = 1;
4f833eee 2381 }
44a43cf9 2382
e8cd95c7
ILT
2383 this->update_flags_for_input_section(sh_flags);
2384 this->set_entsize(entsize);
2385
b8e6aad9 2386 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2387 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2388 // a section. We don't try to handle empty merge sections--they
2389 // mess up the mappings, and are useless anyhow.
cdc29364 2390 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2391 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2392 && reloc_shndx == 0
cdc29364
CC
2393 && shdr.get_sh_size() > 0
2394 && !parameters->incremental())
b8e6aad9 2395 {
0439c796
DK
2396 // Keep information about merged input sections for rebuilding fast
2397 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2398 bool keeps_input_sections = (this->always_keeps_input_sections_
2399 || have_sections_script
2400 || parameters->target().may_relax());
2401
0439c796
DK
2402 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2403 addralign, keeps_input_sections))
b8e6aad9
ILT
2404 {
2405 // Tell the relocation routines that they need to call the
730cdc88 2406 // output_offset method to determine the final address.
b8e6aad9
ILT
2407 return -1;
2408 }
2409 }
2410
cdc29364
CC
2411 section_size_type input_section_size = shdr.get_sh_size();
2412 section_size_type uncompressed_size;
2413 if (object->section_is_compressed(shndx, &uncompressed_size))
2414 input_section_size = uncompressed_size;
2415
2416 off_t offset_in_section;
2417 off_t aligned_offset_in_section;
2418 if (this->has_fixed_layout())
2419 {
2420 // For incremental updates, find a chunk of unused space in the section.
2421 offset_in_section = this->free_list_.allocate(input_section_size,
2422 addralign, 0);
2423 if (offset_in_section == -1)
9fbd3822
CC
2424 gold_fallback(_("out of patch space in section %s; "
2425 "relink with --incremental-full"),
2426 this->name());
cdc29364
CC
2427 aligned_offset_in_section = offset_in_section;
2428 }
2429 else
2430 {
2431 offset_in_section = this->current_data_size_for_child();
2432 aligned_offset_in_section = align_address(offset_in_section,
2433 addralign);
2434 this->set_current_data_size_for_child(aligned_offset_in_section
2435 + input_section_size);
2436 }
c51e6221 2437
c0a62865
DK
2438 // Determine if we want to delay code-fill generation until the output
2439 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2440 // generating to avoid adjusting them during relaxation. Also, if we are
2441 // sorting input sections we must delay fill generation.
c0a62865
DK
2442 if (!this->generate_code_fills_at_write_
2443 && !have_sections_script
2444 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445 && parameters->target().has_code_fill()
4cf7a849 2446 && (parameters->target().may_relax()
e9552f7e 2447 || layout->is_section_ordering_specified()))
c0a62865
DK
2448 {
2449 gold_assert(this->fills_.empty());
2450 this->generate_code_fills_at_write_ = true;
2451 }
2452
c51e6221 2453 if (aligned_offset_in_section > offset_in_section
c0a62865 2454 && !this->generate_code_fills_at_write_
a445fddf 2455 && !have_sections_script
44a43cf9 2456 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2457 && parameters->target().has_code_fill())
c51e6221
ILT
2458 {
2459 // We need to add some fill data. Using fill_list_ when
2460 // possible is an optimization, since we will often have fill
2461 // sections without input sections.
2462 off_t fill_len = aligned_offset_in_section - offset_in_section;
2463 if (this->input_sections_.empty())
2464 this->fills_.push_back(Fill(offset_in_section, fill_len));
2465 else
2466 {
029ba973 2467 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2468 Output_data_const* odc = new Output_data_const(fill_data, 1);
2469 this->input_sections_.push_back(Input_section(odc));
2470 }
2471 }
2472
ead1e424 2473 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2474 // track of sections, or if we are relaxing. Also, if this is a
2475 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2476 // the future, we keep track of the sections. If the
2477 // --section-ordering-file option is used to specify the order of
2478 // sections, we need to keep track of sections.
131687b4
DK
2479 if (this->always_keeps_input_sections_
2480 || have_sections_script
2fd32231
ILT
2481 || !this->input_sections_.empty()
2482 || this->may_sort_attached_input_sections()
7d9e3d98 2483 || this->must_sort_attached_input_sections()
20e6d0d6 2484 || parameters->options().user_set_Map()
6e9ba2ca 2485 || parameters->target().may_relax()
e9552f7e 2486 || layout->is_section_ordering_specified())
6e9ba2ca 2487 {
6fc6ea19 2488 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2489 /* If section ordering is requested by specifying a ordering file,
2490 using --section-ordering-file, match the section name with
2491 a pattern. */
2492 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2493 {
2494 unsigned int section_order_index =
2495 layout->find_section_order_index(std::string(secname));
2496 if (section_order_index != 0)
2497 {
2498 isecn.set_section_order_index(section_order_index);
2499 this->set_input_section_order_specified();
2500 }
2501 }
cdc29364
CC
2502 if (this->has_fixed_layout())
2503 {
2504 // For incremental updates, finalize the address and offset now.
2505 uint64_t addr = this->address();
2506 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2507 aligned_offset_in_section,
2508 this->offset());
2509 }
6e9ba2ca
ST
2510 this->input_sections_.push_back(isecn);
2511 }
54dc6425 2512
c51e6221 2513 return aligned_offset_in_section;
61ba1cf9
ILT
2514}
2515
ead1e424
ILT
2516// Add arbitrary data to an output section.
2517
2518void
2519Output_section::add_output_section_data(Output_section_data* posd)
2520{
b8e6aad9
ILT
2521 Input_section inp(posd);
2522 this->add_output_section_data(&inp);
a445fddf
ILT
2523
2524 if (posd->is_data_size_valid())
2525 {
cdc29364
CC
2526 off_t offset_in_section;
2527 if (this->has_fixed_layout())
2528 {
2529 // For incremental updates, find a chunk of unused space.
2530 offset_in_section = this->free_list_.allocate(posd->data_size(),
2531 posd->addralign(), 0);
2532 if (offset_in_section == -1)
9fbd3822
CC
2533 gold_fallback(_("out of patch space in section %s; "
2534 "relink with --incremental-full"),
2535 this->name());
cdc29364
CC
2536 // Finalize the address and offset now.
2537 uint64_t addr = this->address();
2538 off_t offset = this->offset();
2539 posd->set_address_and_file_offset(addr + offset_in_section,
2540 offset + offset_in_section);
2541 }
2542 else
2543 {
2544 offset_in_section = this->current_data_size_for_child();
2545 off_t aligned_offset_in_section = align_address(offset_in_section,
2546 posd->addralign());
2547 this->set_current_data_size_for_child(aligned_offset_in_section
2548 + posd->data_size());
2549 }
2550 }
2551 else if (this->has_fixed_layout())
2552 {
2553 // For incremental updates, arrange for the data to have a fixed layout.
2554 // This will mean that additions to the data must be allocated from
2555 // free space within the containing output section.
2556 uint64_t addr = this->address();
2557 posd->set_address(addr);
2558 posd->set_file_offset(0);
4829d394
CC
2559 // FIXME: This should eventually be unreachable.
2560 // gold_unreachable();
a445fddf 2561 }
b8e6aad9
ILT
2562}
2563
c0a62865
DK
2564// Add a relaxed input section.
2565
2566void
d06fb4d1
DK
2567Output_section::add_relaxed_input_section(Layout* layout,
2568 Output_relaxed_input_section* poris,
2569 const std::string& name)
c0a62865
DK
2570{
2571 Input_section inp(poris);
d06fb4d1
DK
2572
2573 // If the --section-ordering-file option is used to specify the order of
2574 // sections, we need to keep track of sections.
e9552f7e 2575 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2576 {
2577 unsigned int section_order_index =
2578 layout->find_section_order_index(name);
2579 if (section_order_index != 0)
2580 {
2581 inp.set_section_order_index(section_order_index);
2582 this->set_input_section_order_specified();
2583 }
2584 }
2585
c0a62865 2586 this->add_output_section_data(&inp);
0439c796
DK
2587 if (this->lookup_maps_->is_valid())
2588 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2589 poris->shndx(), poris);
c0a62865
DK
2590
2591 // For a relaxed section, we use the current data size. Linker scripts
2592 // get all the input sections, including relaxed one from an output
2593 // section and add them back to them same output section to compute the
2594 // output section size. If we do not account for sizes of relaxed input
2595 // sections, an output section would be incorrectly sized.
2596 off_t offset_in_section = this->current_data_size_for_child();
2597 off_t aligned_offset_in_section = align_address(offset_in_section,
2598 poris->addralign());
2599 this->set_current_data_size_for_child(aligned_offset_in_section
2600 + poris->current_data_size());
2601}
2602
b8e6aad9 2603// Add arbitrary data to an output section by Input_section.
c06b7b0b 2604
b8e6aad9
ILT
2605void
2606Output_section::add_output_section_data(Input_section* inp)
2607{
ead1e424 2608 if (this->input_sections_.empty())
27bc2bce 2609 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2610
b8e6aad9 2611 this->input_sections_.push_back(*inp);
c06b7b0b 2612
2ea97941
ILT
2613 uint64_t addralign = inp->addralign();
2614 if (addralign > this->addralign_)
2615 this->addralign_ = addralign;
c06b7b0b 2616
b8e6aad9
ILT
2617 inp->set_output_section(this);
2618}
2619
2620// Add a merge section to an output section.
2621
2622void
2623Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2624 bool is_string, uint64_t entsize)
b8e6aad9 2625{
2ea97941 2626 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2627 this->add_output_section_data(&inp);
2628}
2629
2630// Add an input section to a SHF_MERGE section.
2631
2632bool
2ea97941
ILT
2633Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2634 uint64_t flags, uint64_t entsize,
0439c796
DK
2635 uint64_t addralign,
2636 bool keeps_input_sections)
b8e6aad9 2637{
2ea97941 2638 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2639
2640 // We only merge strings if the alignment is not more than the
2641 // character size. This could be handled, but it's unusual.
2ea97941 2642 if (is_string && addralign > entsize)
b8e6aad9
ILT
2643 return false;
2644
20e6d0d6
DK
2645 // We cannot restore merged input section states.
2646 gold_assert(this->checkpoint_ == NULL);
2647
c0a62865 2648 // Look up merge sections by required properties.
0439c796
DK
2649 // Currently, we only invalidate the lookup maps in script processing
2650 // and relaxation. We should not have done either when we reach here.
2651 // So we assume that the lookup maps are valid to simply code.
2652 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2653 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2654 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2655 bool is_new = false;
2656 if (pomb != NULL)
c0a62865 2657 {
6bf924b0
DK
2658 gold_assert(pomb->is_string() == is_string
2659 && pomb->entsize() == entsize
2660 && pomb->addralign() == addralign);
c0a62865 2661 }
b8e6aad9
ILT
2662 else
2663 {
6bf924b0
DK
2664 // Create a new Output_merge_data or Output_merge_string_data.
2665 if (!is_string)
2666 pomb = new Output_merge_data(entsize, addralign);
2667 else
9a0910c3 2668 {
6bf924b0
DK
2669 switch (entsize)
2670 {
2671 case 1:
2672 pomb = new Output_merge_string<char>(addralign);
2673 break;
2674 case 2:
2675 pomb = new Output_merge_string<uint16_t>(addralign);
2676 break;
2677 case 4:
2678 pomb = new Output_merge_string<uint32_t>(addralign);
2679 break;
2680 default:
2681 return false;
2682 }
9a0910c3 2683 }
0439c796
DK
2684 // If we need to do script processing or relaxation, we need to keep
2685 // the original input sections to rebuild the fast lookup maps.
2686 if (keeps_input_sections)
2687 pomb->set_keeps_input_sections();
2688 is_new = true;
b8e6aad9
ILT
2689 }
2690
6bf924b0
DK
2691 if (pomb->add_input_section(object, shndx))
2692 {
0439c796
DK
2693 // Add new merge section to this output section and link merge
2694 // section properties to new merge section in map.
2695 if (is_new)
2696 {
2697 this->add_output_merge_section(pomb, is_string, entsize);
2698 this->lookup_maps_->add_merge_section(msp, pomb);
2699 }
2700
6bf924b0
DK
2701 // Add input section to new merge section and link input section to new
2702 // merge section in map.
0439c796 2703 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2704 return true;
2705 }
2706 else
0439c796
DK
2707 {
2708 // If add_input_section failed, delete new merge section to avoid
2709 // exporting empty merge sections in Output_section::get_input_section.
2710 if (is_new)
2711 delete pomb;
2712 return false;
2713 }
b8e6aad9
ILT
2714}
2715
c0a62865 2716// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2717// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2718
20e6d0d6 2719void
c0a62865 2720Output_section::build_relaxation_map(
2ea97941 2721 const Input_section_list& input_sections,
c0a62865
DK
2722 size_t limit,
2723 Relaxation_map* relaxation_map) const
20e6d0d6 2724{
c0a62865
DK
2725 for (size_t i = 0; i < limit; ++i)
2726 {
2ea97941 2727 const Input_section& is(input_sections[i]);
c0a62865
DK
2728 if (is.is_input_section() || is.is_relaxed_input_section())
2729 {
5ac169d4
DK
2730 Section_id sid(is.relobj(), is.shndx());
2731 (*relaxation_map)[sid] = i;
c0a62865
DK
2732 }
2733 }
2734}
2735
2736// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2737// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2738// indices of INPUT_SECTIONS.
20e6d0d6 2739
c0a62865
DK
2740void
2741Output_section::convert_input_sections_in_list_to_relaxed_sections(
2742 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2743 const Relaxation_map& map,
2ea97941 2744 Input_section_list* input_sections)
c0a62865
DK
2745{
2746 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2747 {
2748 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2749 Section_id sid(poris->relobj(), poris->shndx());
2750 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2751 gold_assert(p != map.end());
2ea97941 2752 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2753
2754 // Remember section order index of original input section
2755 // if it is set. Copy it to the relaxed input section.
2756 unsigned int soi =
2757 (*input_sections)[p->second].section_order_index();
2ea97941 2758 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2759 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2760 }
2761}
2762
2763// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2764// is a vector of pointers to Output_relaxed_input_section or its derived
2765// classes. The relaxed sections must correspond to existing input sections.
2766
2767void
2768Output_section::convert_input_sections_to_relaxed_sections(
2769 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2770{
029ba973 2771 gold_assert(parameters->target().may_relax());
20e6d0d6 2772
c0a62865
DK
2773 // We want to make sure that restore_states does not undo the effect of
2774 // this. If there is no checkpoint active, just search the current
2775 // input section list and replace the sections there. If there is
2776 // a checkpoint, also replace the sections there.
2777
2778 // By default, we look at the whole list.
2779 size_t limit = this->input_sections_.size();
2780
2781 if (this->checkpoint_ != NULL)
20e6d0d6 2782 {
c0a62865
DK
2783 // Replace input sections with relaxed input section in the saved
2784 // copy of the input section list.
2785 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2786 {
c0a62865
DK
2787 Relaxation_map map;
2788 this->build_relaxation_map(
2789 *(this->checkpoint_->input_sections()),
2790 this->checkpoint_->input_sections()->size(),
2791 &map);
2792 this->convert_input_sections_in_list_to_relaxed_sections(
2793 relaxed_sections,
2794 map,
2795 this->checkpoint_->input_sections());
2796 }
2797 else
2798 {
2799 // We have not copied the input section list yet. Instead, just
2800 // look at the portion that would be saved.
2801 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2802 }
20e6d0d6 2803 }
c0a62865
DK
2804
2805 // Convert input sections in input_section_list.
2806 Relaxation_map map;
2807 this->build_relaxation_map(this->input_sections_, limit, &map);
2808 this->convert_input_sections_in_list_to_relaxed_sections(
2809 relaxed_sections,
2810 map,
2811 &this->input_sections_);
41263c05
DK
2812
2813 // Update fast look-up map.
0439c796 2814 if (this->lookup_maps_->is_valid())
41263c05
DK
2815 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2816 {
2817 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2819 poris->shndx(), poris);
41263c05 2820 }
20e6d0d6
DK
2821}
2822
9c547ec3
ILT
2823// Update the output section flags based on input section flags.
2824
2825void
2ea97941 2826Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2827{
2828 // If we created the section with SHF_ALLOC clear, we set the
2829 // address. If we are now setting the SHF_ALLOC flag, we need to
2830 // undo that.
2831 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2832 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2833 this->mark_address_invalid();
2834
2ea97941 2835 this->flags_ |= (flags
9c547ec3
ILT
2836 & (elfcpp::SHF_WRITE
2837 | elfcpp::SHF_ALLOC
2838 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2839
2840 if ((flags & elfcpp::SHF_MERGE) == 0)
2841 this->flags_ &=~ elfcpp::SHF_MERGE;
2842 else
2843 {
2844 if (this->current_data_size_for_child() == 0)
2845 this->flags_ |= elfcpp::SHF_MERGE;
2846 }
2847
2848 if ((flags & elfcpp::SHF_STRINGS) == 0)
2849 this->flags_ &=~ elfcpp::SHF_STRINGS;
2850 else
2851 {
2852 if (this->current_data_size_for_child() == 0)
2853 this->flags_ |= elfcpp::SHF_STRINGS;
2854 }
9c547ec3
ILT
2855}
2856
2ea97941 2857// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2858// OBJECT has been added. Return NULL if none found.
2859
2860Output_section_data*
2861Output_section::find_merge_section(const Relobj* object,
2ea97941 2862 unsigned int shndx) const
c0a62865 2863{
0439c796
DK
2864 if (!this->lookup_maps_->is_valid())
2865 this->build_lookup_maps();
2866 return this->lookup_maps_->find_merge_section(object, shndx);
2867}
2868
2869// Build the lookup maps for merge and relaxed sections. This is needs
2870// to be declared as a const methods so that it is callable with a const
2871// Output_section pointer. The method only updates states of the maps.
2872
2873void
2874Output_section::build_lookup_maps() const
2875{
2876 this->lookup_maps_->clear();
2877 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2878 p != this->input_sections_.end();
2879 ++p)
c0a62865 2880 {
0439c796
DK
2881 if (p->is_merge_section())
2882 {
2883 Output_merge_base* pomb = p->output_merge_base();
2884 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2885 pomb->addralign());
2886 this->lookup_maps_->add_merge_section(msp, pomb);
2887 for (Output_merge_base::Input_sections::const_iterator is =
2888 pomb->input_sections_begin();
2889 is != pomb->input_sections_end();
2890 ++is)
2891 {
2892 const Const_section_id& csid = *is;
2893 this->lookup_maps_->add_merge_input_section(csid.first,
2894 csid.second, pomb);
2895 }
2896
2897 }
2898 else if (p->is_relaxed_input_section())
2899 {
2900 Output_relaxed_input_section* poris = p->relaxed_input_section();
2901 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2902 poris->shndx(), poris);
2903 }
c0a62865 2904 }
c0a62865
DK
2905}
2906
2907// Find an relaxed input section corresponding to an input section
2ea97941 2908// in OBJECT with index SHNDX.
c0a62865 2909
d6344fb5 2910const Output_relaxed_input_section*
c0a62865 2911Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2912 unsigned int shndx) const
c0a62865 2913{
0439c796
DK
2914 if (!this->lookup_maps_->is_valid())
2915 this->build_lookup_maps();
2916 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2917}
2918
2ea97941
ILT
2919// Given an address OFFSET relative to the start of input section
2920// SHNDX in OBJECT, return whether this address is being included in
2921// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2922// a special mapping.
2923
2924bool
2925Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2926 unsigned int shndx,
2927 off_t offset) const
730cdc88 2928{
c0a62865 2929 // Look at the Output_section_data_maps first.
2ea97941 2930 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2931 if (posd == NULL)
2ea97941 2932 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2933
2934 if (posd != NULL)
2935 {
2ea97941
ILT
2936 section_offset_type output_offset;
2937 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2938 gold_assert(found);
2ea97941 2939 return output_offset != -1;
c0a62865
DK
2940 }
2941
2942 // Fall back to the slow look-up.
730cdc88
ILT
2943 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2944 p != this->input_sections_.end();
2945 ++p)
2946 {
2ea97941
ILT
2947 section_offset_type output_offset;
2948 if (p->output_offset(object, shndx, offset, &output_offset))
2949 return output_offset != -1;
730cdc88
ILT
2950 }
2951
2952 // By default we assume that the address is mapped. This should
2953 // only be called after we have passed all sections to Layout. At
2954 // that point we should know what we are discarding.
2955 return true;
2956}
2957
2ea97941
ILT
2958// Given an address OFFSET relative to the start of input section
2959// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2960// start of the input section in the output section. This should only
2ea97941 2961// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2962
8383303e 2963section_offset_type
2ea97941
ILT
2964Output_section::output_offset(const Relobj* object, unsigned int shndx,
2965 section_offset_type offset) const
730cdc88 2966{
c0a62865
DK
2967 // This can only be called meaningfully when we know the data size
2968 // of this.
2969 gold_assert(this->is_data_size_valid());
730cdc88 2970
c0a62865 2971 // Look at the Output_section_data_maps first.
2ea97941 2972 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2973 if (posd == NULL)
2ea97941 2974 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2975 if (posd != NULL)
2976 {
2ea97941
ILT
2977 section_offset_type output_offset;
2978 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2979 gold_assert(found);
2ea97941 2980 return output_offset;
c0a62865
DK
2981 }
2982
2983 // Fall back to the slow look-up.
730cdc88
ILT
2984 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2985 p != this->input_sections_.end();
2986 ++p)
2987 {
2ea97941
ILT
2988 section_offset_type output_offset;
2989 if (p->output_offset(object, shndx, offset, &output_offset))
2990 return output_offset;
730cdc88
ILT
2991 }
2992 gold_unreachable();
2993}
2994
2ea97941
ILT
2995// Return the output virtual address of OFFSET relative to the start
2996// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2997
2998uint64_t
2ea97941
ILT
2999Output_section::output_address(const Relobj* object, unsigned int shndx,
3000 off_t offset) const
b8e6aad9
ILT
3001{
3002 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
3003
3004 // Look at the Output_section_data_maps first.
2ea97941 3005 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 3006 if (posd == NULL)
2ea97941 3007 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
3008 if (posd != NULL && posd->is_address_valid())
3009 {
2ea97941
ILT
3010 section_offset_type output_offset;
3011 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 3012 gold_assert(found);
2ea97941 3013 return posd->address() + output_offset;
c0a62865
DK
3014 }
3015
3016 // Fall back to the slow look-up.
b8e6aad9
ILT
3017 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3018 p != this->input_sections_.end();
3019 ++p)
3020 {
3021 addr = align_address(addr, p->addralign());
2ea97941
ILT
3022 section_offset_type output_offset;
3023 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3024 {
2ea97941 3025 if (output_offset == -1)
eff45813 3026 return -1ULL;
2ea97941 3027 return addr + output_offset;
730cdc88 3028 }
b8e6aad9
ILT
3029 addr += p->data_size();
3030 }
3031
3032 // If we get here, it means that we don't know the mapping for this
3033 // input section. This might happen in principle if
3034 // add_input_section were called before add_output_section_data.
3035 // But it should never actually happen.
3036
3037 gold_unreachable();
ead1e424
ILT
3038}
3039
e29e076a 3040// Find the output address of the start of the merged section for
2ea97941 3041// input section SHNDX in object OBJECT.
a9a60db6 3042
e29e076a
ILT
3043bool
3044Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3045 unsigned int shndx,
e29e076a 3046 uint64_t* paddr) const
a9a60db6 3047{
c0a62865
DK
3048 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3049 // Looking up the merge section map does not always work as we sometimes
3050 // find a merge section without its address set.
a9a60db6
ILT
3051 uint64_t addr = this->address() + this->first_input_offset_;
3052 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3053 p != this->input_sections_.end();
3054 ++p)
3055 {
3056 addr = align_address(addr, p->addralign());
3057
3058 // It would be nice if we could use the existing output_offset
3059 // method to get the output offset of input offset 0.
3060 // Unfortunately we don't know for sure that input offset 0 is
3061 // mapped at all.
2ea97941 3062 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3063 {
3064 *paddr = addr;
3065 return true;
3066 }
a9a60db6
ILT
3067
3068 addr += p->data_size();
3069 }
e29e076a
ILT
3070
3071 // We couldn't find a merge output section for this input section.
3072 return false;
a9a60db6
ILT
3073}
3074
cdc29364
CC
3075// Update the data size of an Output_section.
3076
3077void
3078Output_section::update_data_size()
3079{
3080 if (this->input_sections_.empty())
3081 return;
3082
3083 if (this->must_sort_attached_input_sections()
3084 || this->input_section_order_specified())
3085 this->sort_attached_input_sections();
3086
3087 off_t off = this->first_input_offset_;
3088 for (Input_section_list::iterator p = this->input_sections_.begin();
3089 p != this->input_sections_.end();
3090 ++p)
3091 {
3092 off = align_address(off, p->addralign());
3093 off += p->current_data_size();
3094 }
3095
3096 this->set_current_data_size_for_child(off);
3097}
3098
27bc2bce 3099// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3100// setting the addresses of any Output_section_data objects.
3101
3102void
27bc2bce 3103Output_section::set_final_data_size()
ead1e424 3104{
9fbd3822
CC
3105 off_t data_size;
3106
ead1e424 3107 if (this->input_sections_.empty())
9fbd3822
CC
3108 data_size = this->current_data_size_for_child();
3109 else
27bc2bce 3110 {
9fbd3822
CC
3111 if (this->must_sort_attached_input_sections()
3112 || this->input_section_order_specified())
3113 this->sort_attached_input_sections();
ead1e424 3114
9fbd3822
CC
3115 uint64_t address = this->address();
3116 off_t startoff = this->offset();
3117 off_t off = startoff + this->first_input_offset_;
3118 for (Input_section_list::iterator p = this->input_sections_.begin();
3119 p != this->input_sections_.end();
3120 ++p)
3121 {
3122 off = align_address(off, p->addralign());
3123 p->set_address_and_file_offset(address + (off - startoff), off,
3124 startoff);
3125 off += p->data_size();
3126 }
3127 data_size = off - startoff;
3128 }
2fd32231 3129
9fbd3822
CC
3130 // For full incremental links, we want to allocate some patch space
3131 // in most sections for subsequent incremental updates.
3132 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3133 {
9fbd3822 3134 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3135 size_t extra = static_cast<size_t>(data_size * pct);
3136 if (this->free_space_fill_ != NULL
3137 && this->free_space_fill_->minimum_hole_size() > extra)
3138 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3139 off_t new_size = align_address(data_size + extra, this->addralign());
3140 this->patch_space_ = new_size - data_size;
3141 gold_debug(DEBUG_INCREMENTAL,
3142 "set_final_data_size: %08lx + %08lx: section %s",
3143 static_cast<long>(data_size),
3144 static_cast<long>(this->patch_space_),
3145 this->name());
3146 data_size = new_size;
ead1e424
ILT
3147 }
3148
9fbd3822 3149 this->set_data_size(data_size);
ead1e424 3150}
9a0910c3 3151
a445fddf
ILT
3152// Reset the address and file offset.
3153
3154void
3155Output_section::do_reset_address_and_file_offset()
3156{
20e6d0d6
DK
3157 // An unallocated section has no address. Forcing this means that
3158 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3159 // sections. We do the same in the constructor. This does not
3160 // apply to NOLOAD sections though.
3161 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3162 this->set_address(0);
3163
a445fddf
ILT
3164 for (Input_section_list::iterator p = this->input_sections_.begin();
3165 p != this->input_sections_.end();
3166 ++p)
3167 p->reset_address_and_file_offset();
9fbd3822
CC
3168
3169 // Remove any patch space that was added in set_final_data_size.
3170 if (this->patch_space_ > 0)
3171 {
3172 this->set_current_data_size_for_child(this->current_data_size_for_child()
3173 - this->patch_space_);
3174 this->patch_space_ = 0;
3175 }
a445fddf 3176}
9fbd3822 3177
20e6d0d6
DK
3178// Return true if address and file offset have the values after reset.
3179
3180bool
3181Output_section::do_address_and_file_offset_have_reset_values() const
3182{
3183 if (this->is_offset_valid())
3184 return false;
3185
3186 // An unallocated section has address 0 after its construction or a reset.
3187 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3188 return this->is_address_valid() && this->address() == 0;
3189 else
3190 return !this->is_address_valid();
3191}
a445fddf 3192
7bf1f802
ILT
3193// Set the TLS offset. Called only for SHT_TLS sections.
3194
3195void
3196Output_section::do_set_tls_offset(uint64_t tls_base)
3197{
3198 this->tls_offset_ = this->address() - tls_base;
3199}
3200
2fd32231
ILT
3201// In a few cases we need to sort the input sections attached to an
3202// output section. This is used to implement the type of constructor
3203// priority ordering implemented by the GNU linker, in which the
3204// priority becomes part of the section name and the sections are
3205// sorted by name. We only do this for an output section if we see an
5393d741 3206// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3207// ".init_array.*" or ".fini_array.*".
3208
3209class Output_section::Input_section_sort_entry
3210{
3211 public:
3212 Input_section_sort_entry()
3213 : input_section_(), index_(-1U), section_has_name_(false),
3214 section_name_()
3215 { }
3216
2ea97941 3217 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3218 unsigned int index,
3219 bool must_sort_attached_input_sections)
2ea97941
ILT
3220 : input_section_(input_section), index_(index),
3221 section_has_name_(input_section.is_input_section()
3222 || input_section.is_relaxed_input_section())
2fd32231 3223 {
6e9ba2ca
ST
3224 if (this->section_has_name_
3225 && must_sort_attached_input_sections)
2fd32231
ILT
3226 {
3227 // This is only called single-threaded from Layout::finalize,
3228 // so it is OK to lock. Unfortunately we have no way to pass
3229 // in a Task token.
3230 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3231 Object* obj = (input_section.is_input_section()
3232 ? input_section.relobj()
3233 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3234 Task_lock_obj<Object> tl(dummy_task, obj);
3235
3236 // This is a slow operation, which should be cached in
3237 // Layout::layout if this becomes a speed problem.
2ea97941 3238 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3239 }
3240 }
3241
3242 // Return the Input_section.
3243 const Input_section&
3244 input_section() const
3245 {
3246 gold_assert(this->index_ != -1U);
3247 return this->input_section_;
3248 }
3249
3250 // The index of this entry in the original list. This is used to
3251 // make the sort stable.
3252 unsigned int
3253 index() const
3254 {
3255 gold_assert(this->index_ != -1U);
3256 return this->index_;
3257 }
3258
3259 // Whether there is a section name.
3260 bool
3261 section_has_name() const
3262 { return this->section_has_name_; }
3263
3264 // The section name.
3265 const std::string&
3266 section_name() const
3267 {
3268 gold_assert(this->section_has_name_);
3269 return this->section_name_;
3270 }
3271
ab794b6b
ILT
3272 // Return true if the section name has a priority. This is assumed
3273 // to be true if it has a dot after the initial dot.
2fd32231 3274 bool
ab794b6b 3275 has_priority() const
2fd32231
ILT
3276 {
3277 gold_assert(this->section_has_name_);
2a0ff005 3278 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3279 }
3280
5393d741
ILT
3281 // Return the priority. Believe it or not, gcc encodes the priority
3282 // differently for .ctors/.dtors and .init_array/.fini_array
3283 // sections.
3284 unsigned int
3285 get_priority() const
3286 {
3287 gold_assert(this->section_has_name_);
3288 bool is_ctors;
3289 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3290 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3291 is_ctors = true;
3292 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3293 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3294 is_ctors = false;
3295 else
3296 return 0;
3297 char* end;
3298 unsigned long prio = strtoul((this->section_name_.c_str()
3299 + (is_ctors ? 7 : 12)),
3300 &end, 10);
3301 if (*end != '\0')
3302 return 0;
3303 else if (is_ctors)
3304 return 65535 - prio;
3305 else
3306 return prio;
3307 }
3308
ab794b6b
ILT
3309 // Return true if this an input file whose base name matches
3310 // FILE_NAME. The base name must have an extension of ".o", and
3311 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3312 // This is to match crtbegin.o as well as crtbeginS.o without
3313 // getting confused by other possibilities. Overall matching the
3314 // file name this way is a dreadful hack, but the GNU linker does it
3315 // in order to better support gcc, and we need to be compatible.
2fd32231 3316 bool
5393d741
ILT
3317 match_file_name(const char* file_name) const
3318 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3319
8fe2a369
ST
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3322 int
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3324 {
8fe2a369
ST
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3328 {
3329 if (this_secn_index < s_secn_index)
3330 return 1;
3331 else if (this_secn_index > s_secn_index)
3332 return -1;
3333 }
3334 return 0;
6e9ba2ca
ST
3335 }
3336
2fd32231
ILT
3337 private:
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3347};
3348
3349// Return true if S1 should come before S2 in the output section.
3350
3351bool
3352Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3355{
ab794b6b
ILT
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3359 if (s1_begin || s2_begin)
3360 {
3361 if (!s1_begin)
3362 return false;
3363 if (!s2_begin)
3364 return true;
3365 return s1.index() < s2.index();
3366 }
3367
ab794b6b
ILT
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3371 if (s1_end || s2_end)
3372 {
3373 if (!s1_end)
3374 return true;
3375 if (!s2_end)
3376 return false;
3377 return s1.index() < s2.index();
3378 }
3379
ab794b6b
ILT
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3382 {
3383 if (s1.section_has_name())
3384 return true;
3385 if (s2.section_has_name())
3386 return false;
3387 return s1.index() < s2.index();
3388 }
2fd32231 3389
ab794b6b 3390 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
2fd32231 3394 return false;
ab794b6b 3395 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3396 return true;
3397
6e9ba2ca
ST
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3403
2fd32231
ILT
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3406 if (compare != 0)
3407 return compare < 0;
3408
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3411}
3412
2a0ff005
DK
3413// Return true if S1 should come before S2 in an .init_array or .fini_array
3414// output section.
3415
3416bool
3417Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3420{
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3423 {
3424 if (s1.section_has_name())
3425 return true;
3426 if (s2.section_has_name())
3427 return false;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3436 return true;
3437 if (!s1_has_priority && s2_has_priority)
3438 return false;
3439
5393d741
ILT
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3445 return false;
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3449 return true;
3450
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3453 {
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3457 return true;
3458 else if (s1_prio > s2_prio)
3459 return false;
3460 }
3461
6e9ba2ca
ST
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3467
2a0ff005
DK
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3470 if (compare != 0)
3471 return compare < 0;
3472
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3475}
3476
8fe2a369
ST
3477// Return true if S1 should come before S2. Sections that do not match
3478// any pattern in the section ordering file are placed ahead of the sections
3479// that match some pattern.
3480
6e9ba2ca
ST
3481bool
3482Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3485{
8fe2a369
ST
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3488
8fe2a369
ST
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
3491 return s1.index() < s2.index();
3492
3493 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3494}
3495
e9552f7e
ST
3496// This updates the section order index of input sections according to the
3497// the order specified in the mapping from Section id to order index.
3498
3499void
3500Output_section::update_section_layout(
f0558624 3501 const Section_layout_order* order_map)
e9552f7e
ST
3502{
3503 for (Input_section_list::iterator p = this->input_sections_.begin();
3504 p != this->input_sections_.end();
3505 ++p)
3506 {
3507 if (p->is_input_section()
3508 || p->is_relaxed_input_section())
3509 {
3510 Object* obj = (p->is_input_section()
3511 ? p->relobj()
3512 : p->relaxed_input_section()->relobj());
3513 unsigned int shndx = p->shndx();
3514 Section_layout_order::const_iterator it
f0558624
ST
3515 = order_map->find(Section_id(obj, shndx));
3516 if (it == order_map->end())
e9552f7e
ST
3517 continue;
3518 unsigned int section_order_index = it->second;
3519 if (section_order_index != 0)
3520 {
3521 p->set_section_order_index(section_order_index);
3522 this->set_input_section_order_specified();
3523 }
3524 }
3525 }
3526}
3527
2fd32231
ILT
3528// Sort the input sections attached to an output section.
3529
3530void
3531Output_section::sort_attached_input_sections()
3532{
3533 if (this->attached_input_sections_are_sorted_)
3534 return;
3535
20e6d0d6
DK
3536 if (this->checkpoint_ != NULL
3537 && !this->checkpoint_->input_sections_saved())
3538 this->checkpoint_->save_input_sections();
3539
2fd32231
ILT
3540 // The only thing we know about an input section is the object and
3541 // the section index. We need the section name. Recomputing this
3542 // is slow but this is an unusual case. If this becomes a speed
3543 // problem we can cache the names as required in Layout::layout.
3544
3545 // We start by building a larger vector holding a copy of each
3546 // Input_section, plus its current index in the list and its name.
3547 std::vector<Input_section_sort_entry> sort_list;
3548
3549 unsigned int i = 0;
3550 for (Input_section_list::iterator p = this->input_sections_.begin();
3551 p != this->input_sections_.end();
3552 ++p, ++i)
6e9ba2ca
ST
3553 sort_list.push_back(Input_section_sort_entry(*p, i,
3554 this->must_sort_attached_input_sections()));
2fd32231
ILT
3555
3556 // Sort the input sections.
6e9ba2ca
ST
3557 if (this->must_sort_attached_input_sections())
3558 {
3559 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3560 || this->type() == elfcpp::SHT_INIT_ARRAY
3561 || this->type() == elfcpp::SHT_FINI_ARRAY)
3562 std::sort(sort_list.begin(), sort_list.end(),
3563 Input_section_sort_init_fini_compare());
3564 else
3565 std::sort(sort_list.begin(), sort_list.end(),
3566 Input_section_sort_compare());
3567 }
2a0ff005 3568 else
6e9ba2ca 3569 {
e9552f7e 3570 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3571 std::sort(sort_list.begin(), sort_list.end(),
3572 Input_section_sort_section_order_index_compare());
3573 }
2fd32231
ILT
3574
3575 // Copy the sorted input sections back to our list.
3576 this->input_sections_.clear();
3577 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3578 p != sort_list.end();
3579 ++p)
3580 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3581 sort_list.clear();
2fd32231
ILT
3582
3583 // Remember that we sorted the input sections, since we might get
3584 // called again.
3585 this->attached_input_sections_are_sorted_ = true;
3586}
3587
61ba1cf9
ILT
3588// Write the section header to *OSHDR.
3589
3590template<int size, bool big_endian>
3591void
16649710
ILT
3592Output_section::write_header(const Layout* layout,
3593 const Stringpool* secnamepool,
61ba1cf9
ILT
3594 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3595{
3596 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3597 oshdr->put_sh_type(this->type_);
6a74a719 3598
2ea97941 3599 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3600 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3601 flags |= elfcpp::SHF_INFO_LINK;
3602 oshdr->put_sh_flags(flags);
6a74a719 3603
61ba1cf9
ILT
3604 oshdr->put_sh_addr(this->address());
3605 oshdr->put_sh_offset(this->offset());
3606 oshdr->put_sh_size(this->data_size());
16649710
ILT
3607 if (this->link_section_ != NULL)
3608 oshdr->put_sh_link(this->link_section_->out_shndx());
3609 else if (this->should_link_to_symtab_)
886f533a 3610 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3611 else if (this->should_link_to_dynsym_)
3612 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3613 else
3614 oshdr->put_sh_link(this->link_);
755ab8af 3615
2ea97941 3616 elfcpp::Elf_Word info;
16649710 3617 if (this->info_section_ != NULL)
755ab8af
ILT
3618 {
3619 if (this->info_uses_section_index_)
2ea97941 3620 info = this->info_section_->out_shndx();
755ab8af 3621 else
2ea97941 3622 info = this->info_section_->symtab_index();
755ab8af 3623 }
6a74a719 3624 else if (this->info_symndx_ != NULL)
2ea97941 3625 info = this->info_symndx_->symtab_index();
16649710 3626 else
2ea97941
ILT
3627 info = this->info_;
3628 oshdr->put_sh_info(info);
755ab8af 3629
61ba1cf9
ILT
3630 oshdr->put_sh_addralign(this->addralign_);
3631 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3632}
3633
ead1e424
ILT
3634// Write out the data. For input sections the data is written out by
3635// Object::relocate, but we have to handle Output_section_data objects
3636// here.
3637
3638void
3639Output_section::do_write(Output_file* of)
3640{
96803768
ILT
3641 gold_assert(!this->requires_postprocessing());
3642
c0a62865
DK
3643 // If the target performs relaxation, we delay filler generation until now.
3644 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3645
c51e6221
ILT
3646 off_t output_section_file_offset = this->offset();
3647 for (Fill_list::iterator p = this->fills_.begin();
3648 p != this->fills_.end();
3649 ++p)
3650 {
8851ecca 3651 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3652 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3653 fill_data.data(), fill_data.size());
c51e6221
ILT
3654 }
3655
c0a62865 3656 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3657 for (Input_section_list::iterator p = this->input_sections_.begin();
3658 p != this->input_sections_.end();
3659 ++p)
c0a62865
DK
3660 {
3661 off_t aligned_off = align_address(off, p->addralign());
3662 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3663 {
3664 size_t fill_len = aligned_off - off;
3665 std::string fill_data(parameters->target().code_fill(fill_len));
3666 of->write(off, fill_data.data(), fill_data.size());
3667 }
3668
3669 p->write(of);
3670 off = aligned_off + p->data_size();
3671 }
8ea8cd50
CC
3672
3673 // For incremental links, fill in unused chunks in debug sections
3674 // with dummy compilation unit headers.
3675 if (this->free_space_fill_ != NULL)
3676 {
3677 for (Free_list::Const_iterator p = this->free_list_.begin();
3678 p != this->free_list_.end();
3679 ++p)
3680 {
3681 off_t off = p->start_;
3682 size_t len = p->end_ - off;
3683 this->free_space_fill_->write(of, this->offset() + off, len);
3684 }
3685 if (this->patch_space_ > 0)
3686 {
3687 off_t off = this->current_data_size_for_child() - this->patch_space_;
3688 this->free_space_fill_->write(of, this->offset() + off,
3689 this->patch_space_);
3690 }
3691 }
ead1e424
ILT
3692}
3693
96803768
ILT
3694// If a section requires postprocessing, create the buffer to use.
3695
3696void
3697Output_section::create_postprocessing_buffer()
3698{
3699 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3700
3701 if (this->postprocessing_buffer_ != NULL)
3702 return;
96803768
ILT
3703
3704 if (!this->input_sections_.empty())
3705 {
3706 off_t off = this->first_input_offset_;
3707 for (Input_section_list::iterator p = this->input_sections_.begin();
3708 p != this->input_sections_.end();
3709 ++p)
3710 {
3711 off = align_address(off, p->addralign());
3712 p->finalize_data_size();
3713 off += p->data_size();
3714 }
3715 this->set_current_data_size_for_child(off);
3716 }
3717
3718 off_t buffer_size = this->current_data_size_for_child();
3719 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3720}
3721
3722// Write all the data of an Output_section into the postprocessing
3723// buffer. This is used for sections which require postprocessing,
3724// such as compression. Input sections are handled by
3725// Object::Relocate.
3726
3727void
3728Output_section::write_to_postprocessing_buffer()
3729{
3730 gold_assert(this->requires_postprocessing());
3731
c0a62865
DK
3732 // If the target performs relaxation, we delay filler generation until now.
3733 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3734
96803768
ILT
3735 unsigned char* buffer = this->postprocessing_buffer();
3736 for (Fill_list::iterator p = this->fills_.begin();
3737 p != this->fills_.end();
3738 ++p)
3739 {
8851ecca 3740 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3741 memcpy(buffer + p->section_offset(), fill_data.data(),
3742 fill_data.size());
96803768
ILT
3743 }
3744
3745 off_t off = this->first_input_offset_;
3746 for (Input_section_list::iterator p = this->input_sections_.begin();
3747 p != this->input_sections_.end();
3748 ++p)
3749 {
c0a62865
DK
3750 off_t aligned_off = align_address(off, p->addralign());
3751 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3752 {
3753 size_t fill_len = aligned_off - off;
3754 std::string fill_data(parameters->target().code_fill(fill_len));
3755 memcpy(buffer + off, fill_data.data(), fill_data.size());
3756 }
3757
3758 p->write_to_buffer(buffer + aligned_off);
3759 off = aligned_off + p->data_size();
96803768
ILT
3760 }
3761}
3762
a445fddf
ILT
3763// Get the input sections for linker script processing. We leave
3764// behind the Output_section_data entries. Note that this may be
3765// slightly incorrect for merge sections. We will leave them behind,
3766// but it is possible that the script says that they should follow
3767// some other input sections, as in:
3768// .rodata { *(.rodata) *(.rodata.cst*) }
3769// For that matter, we don't handle this correctly:
3770// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3771// With luck this will never matter.
3772
3773uint64_t
3774Output_section::get_input_sections(
2ea97941 3775 uint64_t address,
a445fddf 3776 const std::string& fill,
6625d24e 3777 std::list<Input_section>* input_sections)
a445fddf 3778{
20e6d0d6
DK
3779 if (this->checkpoint_ != NULL
3780 && !this->checkpoint_->input_sections_saved())
3781 this->checkpoint_->save_input_sections();
3782
0439c796
DK
3783 // Invalidate fast look-up maps.
3784 this->lookup_maps_->invalidate();
c0a62865 3785
2ea97941 3786 uint64_t orig_address = address;
a445fddf 3787
2ea97941 3788 address = align_address(address, this->addralign());
a445fddf
ILT
3789
3790 Input_section_list remaining;
3791 for (Input_section_list::iterator p = this->input_sections_.begin();
3792 p != this->input_sections_.end();
3793 ++p)
3794 {
0439c796
DK
3795 if (p->is_input_section()
3796 || p->is_relaxed_input_section()
3797 || p->is_merge_section())
6625d24e 3798 input_sections->push_back(*p);
a445fddf
ILT
3799 else
3800 {
2ea97941
ILT
3801 uint64_t aligned_address = align_address(address, p->addralign());
3802 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3803 {
3804 section_size_type length =
2ea97941 3805 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3806 std::string this_fill;
3807 this_fill.reserve(length);
3808 while (this_fill.length() + fill.length() <= length)
3809 this_fill += fill;
3810 if (this_fill.length() < length)
3811 this_fill.append(fill, 0, length - this_fill.length());
3812
3813 Output_section_data* posd = new Output_data_const(this_fill, 0);
3814 remaining.push_back(Input_section(posd));
3815 }
2ea97941 3816 address = aligned_address;
a445fddf
ILT
3817
3818 remaining.push_back(*p);
3819
3820 p->finalize_data_size();
2ea97941 3821 address += p->data_size();
a445fddf
ILT
3822 }
3823 }
3824
3825 this->input_sections_.swap(remaining);
3826 this->first_input_offset_ = 0;
3827
2ea97941
ILT
3828 uint64_t data_size = address - orig_address;
3829 this->set_current_data_size_for_child(data_size);
3830 return data_size;
a445fddf
ILT
3831}
3832
6625d24e
DK
3833// Add a script input section. SIS is an Output_section::Input_section,
3834// which can be either a plain input section or a special input section like
3835// a relaxed input section. For a special input section, its size must be
3836// finalized.
a445fddf
ILT
3837
3838void
6625d24e 3839Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3840{
6625d24e
DK
3841 uint64_t data_size = sis.data_size();
3842 uint64_t addralign = sis.addralign();
2ea97941
ILT
3843 if (addralign > this->addralign_)
3844 this->addralign_ = addralign;
a445fddf
ILT
3845
3846 off_t offset_in_section = this->current_data_size_for_child();
3847 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3848 addralign);
a445fddf
ILT
3849
3850 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3851 + data_size);
a445fddf 3852
6625d24e 3853 this->input_sections_.push_back(sis);
0439c796
DK
3854
3855 // Update fast lookup maps if necessary.
3856 if (this->lookup_maps_->is_valid())
3857 {
3858 if (sis.is_merge_section())
3859 {
3860 Output_merge_base* pomb = sis.output_merge_base();
3861 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3862 pomb->addralign());
3863 this->lookup_maps_->add_merge_section(msp, pomb);
3864 for (Output_merge_base::Input_sections::const_iterator p =
3865 pomb->input_sections_begin();
3866 p != pomb->input_sections_end();
3867 ++p)
3868 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3869 pomb);
3870 }
3871 else if (sis.is_relaxed_input_section())
3872 {
3873 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3874 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3875 poris->shndx(), poris);
3876 }
3877 }
20e6d0d6
DK
3878}
3879
8923b24c 3880// Save states for relaxation.
20e6d0d6
DK
3881
3882void
3883Output_section::save_states()
3884{
3885 gold_assert(this->checkpoint_ == NULL);
3886 Checkpoint_output_section* checkpoint =
3887 new Checkpoint_output_section(this->addralign_, this->flags_,
3888 this->input_sections_,
3889 this->first_input_offset_,
3890 this->attached_input_sections_are_sorted_);
3891 this->checkpoint_ = checkpoint;
3892 gold_assert(this->fills_.empty());
3893}
3894
8923b24c
DK
3895void
3896Output_section::discard_states()
3897{
3898 gold_assert(this->checkpoint_ != NULL);
3899 delete this->checkpoint_;
3900 this->checkpoint_ = NULL;
3901 gold_assert(this->fills_.empty());
3902
0439c796
DK
3903 // Simply invalidate the fast lookup maps since we do not keep
3904 // track of them.
3905 this->lookup_maps_->invalidate();
8923b24c
DK
3906}
3907
20e6d0d6
DK
3908void
3909Output_section::restore_states()
3910{
3911 gold_assert(this->checkpoint_ != NULL);
3912 Checkpoint_output_section* checkpoint = this->checkpoint_;
3913
3914 this->addralign_ = checkpoint->addralign();
3915 this->flags_ = checkpoint->flags();
3916 this->first_input_offset_ = checkpoint->first_input_offset();
3917
3918 if (!checkpoint->input_sections_saved())
3919 {
3920 // If we have not copied the input sections, just resize it.
3921 size_t old_size = checkpoint->input_sections_size();
3922 gold_assert(this->input_sections_.size() >= old_size);
3923 this->input_sections_.resize(old_size);
3924 }
3925 else
3926 {
3927 // We need to copy the whole list. This is not efficient for
3928 // extremely large output with hundreads of thousands of input
3929 // objects. We may need to re-think how we should pass sections
3930 // to scripts.
c0a62865 3931 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3932 }
3933
3934 this->attached_input_sections_are_sorted_ =
3935 checkpoint->attached_input_sections_are_sorted();
c0a62865 3936
0439c796
DK
3937 // Simply invalidate the fast lookup maps since we do not keep
3938 // track of them.
3939 this->lookup_maps_->invalidate();
a445fddf
ILT
3940}
3941
8923b24c
DK
3942// Update the section offsets of input sections in this. This is required if
3943// relaxation causes some input sections to change sizes.
3944
3945void
3946Output_section::adjust_section_offsets()
3947{
3948 if (!this->section_offsets_need_adjustment_)
3949 return;
3950
3951 off_t off = 0;
3952 for (Input_section_list::iterator p = this->input_sections_.begin();
3953 p != this->input_sections_.end();
3954 ++p)
3955 {
3956 off = align_address(off, p->addralign());
3957 if (p->is_input_section())
3958 p->relobj()->set_section_offset(p->shndx(), off);
3959 off += p->data_size();
3960 }
3961
3962 this->section_offsets_need_adjustment_ = false;
3963}
3964
7d9e3d98
ILT
3965// Print to the map file.
3966
3967void
3968Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3969{
3970 mapfile->print_output_section(this);
3971
3972 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3973 p != this->input_sections_.end();
3974 ++p)
3975 p->print_to_mapfile(mapfile);
3976}
3977
38c5e8b4
ILT
3978// Print stats for merge sections to stderr.
3979
3980void
3981Output_section::print_merge_stats()
3982{
3983 Input_section_list::iterator p;
3984 for (p = this->input_sections_.begin();
3985 p != this->input_sections_.end();
3986 ++p)
3987 p->print_merge_stats(this->name_);
3988}
3989
cdc29364
CC
3990// Set a fixed layout for the section. Used for incremental update links.
3991
3992void
3993Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3994 off_t sh_size, uint64_t sh_addralign)
3995{
3996 this->addralign_ = sh_addralign;
3997 this->set_current_data_size(sh_size);
3998 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3999 this->set_address(sh_addr);
4000 this->set_file_offset(sh_offset);
4001 this->finalize_data_size();
4002 this->free_list_.init(sh_size, false);
4003 this->has_fixed_layout_ = true;
4004}
4005
4006// Reserve space within the fixed layout for the section. Used for
4007// incremental update links.
5146f448 4008
cdc29364
CC
4009void
4010Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4011{
4012 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4013}
4014
5146f448
CC
4015// Allocate space from the free list for the section. Used for
4016// incremental update links.
4017
4018off_t
4019Output_section::allocate(off_t len, uint64_t addralign)
4020{
4021 return this->free_list_.allocate(len, addralign, 0);
4022}
4023
a2fb1b05
ILT
4024// Output segment methods.
4025
2ea97941 4026Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4027 : vaddr_(0),
a2fb1b05
ILT
4028 paddr_(0),
4029 memsz_(0),
a445fddf
ILT
4030 max_align_(0),
4031 min_p_align_(0),
a2fb1b05
ILT
4032 offset_(0),
4033 filesz_(0),
2ea97941
ILT
4034 type_(type),
4035 flags_(flags),
a445fddf 4036 is_max_align_known_(false),
8a5e3e08
ILT
4037 are_addresses_set_(false),
4038 is_large_data_segment_(false)
a2fb1b05 4039{
bb321bb1
ILT
4040 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4041 // the flags.
4042 if (type == elfcpp::PT_TLS)
4043 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4044}
4045
22f0da72 4046// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4047
4048void
22f0da72
ILT
4049Output_segment::add_output_section_to_load(Layout* layout,
4050 Output_section* os,
4051 elfcpp::Elf_Word seg_flags)
a2fb1b05 4052{
22f0da72 4053 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4054 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4055 gold_assert(!this->is_max_align_known_);
8a5e3e08 4056 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4057
a192ba05 4058 this->update_flags_for_output_section(seg_flags);
75f65a3e 4059
22f0da72
ILT
4060 // We don't want to change the ordering if we have a linker script
4061 // with a SECTIONS clause.
4062 Output_section_order order = os->order();
4063 if (layout->script_options()->saw_sections_clause())
4064 order = static_cast<Output_section_order>(0);
75f65a3e 4065 else
22f0da72 4066 gold_assert(order != ORDER_INVALID);
54dc6425 4067
22f0da72
ILT
4068 this->output_lists_[order].push_back(os);
4069}
9f1d377b 4070
22f0da72 4071// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4072
22f0da72
ILT
4073void
4074Output_segment::add_output_section_to_nonload(Output_section* os,
4075 elfcpp::Elf_Word seg_flags)
4076{
4077 gold_assert(this->type() != elfcpp::PT_LOAD);
4078 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4079 gold_assert(!this->is_max_align_known_);
1a2dff53 4080
22f0da72 4081 this->update_flags_for_output_section(seg_flags);
9f1d377b 4082
22f0da72
ILT
4083 this->output_lists_[0].push_back(os);
4084}
8a5e3e08 4085
22f0da72
ILT
4086// Remove an Output_section from this segment. It is an error if it
4087// is not present.
8a5e3e08 4088
22f0da72
ILT
4089void
4090Output_segment::remove_output_section(Output_section* os)
4091{
4092 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4093 {
22f0da72
ILT
4094 Output_data_list* pdl = &this->output_lists_[i];
4095 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4096 {
22f0da72 4097 if (*p == os)
8a5e3e08 4098 {
22f0da72 4099 pdl->erase(p);
8a5e3e08
ILT
4100 return;
4101 }
4102 }
f5c870d2 4103 }
1650c4ff
ILT
4104 gold_unreachable();
4105}
4106
a192ba05
ILT
4107// Add an Output_data (which need not be an Output_section) to the
4108// start of a segment.
75f65a3e
ILT
4109
4110void
4111Output_segment::add_initial_output_data(Output_data* od)
4112{
a445fddf 4113 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4114 Output_data_list::iterator p = this->output_lists_[0].begin();
4115 this->output_lists_[0].insert(p, od);
4116}
4117
4118// Return true if this segment has any sections which hold actual
4119// data, rather than being a BSS section.
4120
4121bool
4122Output_segment::has_any_data_sections() const
4123{
4124 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4125 {
4126 const Output_data_list* pdl = &this->output_lists_[i];
4127 for (Output_data_list::const_iterator p = pdl->begin();
4128 p != pdl->end();
4129 ++p)
4130 {
4131 if (!(*p)->is_section())
4132 return true;
4133 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4134 return true;
4135 }
4136 }
4137 return false;
75f65a3e
ILT
4138}
4139
5bc2f5be
CC
4140// Return whether the first data section (not counting TLS sections)
4141// is a relro section.
9f1d377b
ILT
4142
4143bool
4144Output_segment::is_first_section_relro() const
4145{
22f0da72
ILT
4146 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4147 {
5bc2f5be
CC
4148 if (i == static_cast<int>(ORDER_TLS_DATA)
4149 || i == static_cast<int>(ORDER_TLS_BSS))
4150 continue;
22f0da72
ILT
4151 const Output_data_list* pdl = &this->output_lists_[i];
4152 if (!pdl->empty())
4153 {
4154 Output_data* p = pdl->front();
4155 return p->is_section() && p->output_section()->is_relro();
4156 }
4157 }
4158 return false;
9f1d377b
ILT
4159}
4160
75f65a3e 4161// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4162
4163uint64_t
a445fddf 4164Output_segment::maximum_alignment()
75f65a3e 4165{
a445fddf 4166 if (!this->is_max_align_known_)
ead1e424 4167 {
22f0da72
ILT
4168 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4169 {
4170 const Output_data_list* pdl = &this->output_lists_[i];
4171 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4172 if (addralign > this->max_align_)
4173 this->max_align_ = addralign;
4174 }
a445fddf 4175 this->is_max_align_known_ = true;
ead1e424
ILT
4176 }
4177
a445fddf 4178 return this->max_align_;
75f65a3e
ILT
4179}
4180
ead1e424
ILT
4181// Return the maximum alignment of a list of Output_data.
4182
4183uint64_t
a445fddf 4184Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4185{
4186 uint64_t ret = 0;
4187 for (Output_data_list::const_iterator p = pdl->begin();
4188 p != pdl->end();
4189 ++p)
4190 {
2ea97941
ILT
4191 uint64_t addralign = (*p)->addralign();
4192 if (addralign > ret)
4193 ret = addralign;
ead1e424
ILT
4194 }
4195 return ret;
4196}
4197
22f0da72 4198// Return whether this segment has any dynamic relocs.
4f4c5f80 4199
22f0da72
ILT
4200bool
4201Output_segment::has_dynamic_reloc() const
4f4c5f80 4202{
22f0da72
ILT
4203 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4204 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4205 return true;
4206 return false;
4f4c5f80
ILT
4207}
4208
22f0da72 4209// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4210
22f0da72
ILT
4211bool
4212Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4213{
4f4c5f80
ILT
4214 for (Output_data_list::const_iterator p = pdl->begin();
4215 p != pdl->end();
4216 ++p)
22f0da72
ILT
4217 if ((*p)->has_dynamic_reloc())
4218 return true;
4219 return false;
4f4c5f80
ILT
4220}
4221
a445fddf
ILT
4222// Set the section addresses for an Output_segment. If RESET is true,
4223// reset the addresses first. ADDR is the address and *POFF is the
4224// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4225// INCREASE_RELRO is the size of the portion of the first non-relro
4226// section that should be included in the PT_GNU_RELRO segment.
4227// If this segment has relro sections, and has been aligned for
4228// that purpose, set *HAS_RELRO to TRUE. Return the address of
4229// the immediately following segment. Update *HAS_RELRO, *POFF,
4230// and *PSHNDX.
75f65a3e
ILT
4231
4232uint64_t
cdc29364 4233Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4234 uint64_t addr,
fd064a5b 4235 unsigned int* increase_relro,
fc497986 4236 bool* has_relro,
1a2dff53 4237 off_t* poff,
ead1e424 4238 unsigned int* pshndx)
75f65a3e 4239{
a3ad94ed 4240 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4241
fc497986 4242 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4243 off_t orig_off = *poff;
4244
5bc2f5be
CC
4245 bool in_tls = false;
4246
1a2dff53
ILT
4247 // If we have relro sections, we need to pad forward now so that the
4248 // relro sections plus INCREASE_RELRO end on a common page boundary.
4249 if (parameters->options().relro()
4250 && this->is_first_section_relro()
4251 && (!this->are_addresses_set_ || reset))
4252 {
4253 uint64_t relro_size = 0;
4254 off_t off = *poff;
fc497986 4255 uint64_t max_align = 0;
5bc2f5be 4256 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4257 {
22f0da72
ILT
4258 Output_data_list* pdl = &this->output_lists_[i];
4259 Output_data_list::iterator p;
4260 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4261 {
22f0da72
ILT
4262 if (!(*p)->is_section())
4263 break;
fc497986
CC
4264 uint64_t align = (*p)->addralign();
4265 if (align > max_align)
4266 max_align = align;
5bc2f5be
CC
4267 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4268 in_tls = true;
4269 else if (in_tls)
4270 {
4271 // Align the first non-TLS section to the alignment
4272 // of the TLS segment.
4273 align = max_align;
4274 in_tls = false;
4275 }
fc497986 4276 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4277 // Ignore the size of the .tbss section.
4278 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4279 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4280 continue;
22f0da72
ILT
4281 if ((*p)->is_address_valid())
4282 relro_size += (*p)->data_size();
4283 else
4284 {
4285 // FIXME: This could be faster.
4286 (*p)->set_address_and_file_offset(addr + relro_size,
4287 off + relro_size);
4288 relro_size += (*p)->data_size();
4289 (*p)->reset_address_and_file_offset();
4290 }
1a2dff53 4291 }
22f0da72
ILT
4292 if (p != pdl->end())
4293 break;
1a2dff53 4294 }
fd064a5b 4295 relro_size += *increase_relro;
fc497986
CC
4296 // Pad the total relro size to a multiple of the maximum
4297 // section alignment seen.
4298 uint64_t aligned_size = align_address(relro_size, max_align);
4299 // Note the amount of padding added after the last relro section.
4300 last_relro_pad = aligned_size - relro_size;
fc497986 4301 *has_relro = true;
1a2dff53
ILT
4302
4303 uint64_t page_align = parameters->target().common_pagesize();
4304
4305 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4306 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4307 if (desired_align < *poff % page_align)
4308 *poff += page_align - *poff % page_align;
4309 *poff += desired_align - *poff % page_align;
4310 addr += *poff - orig_off;
4311 orig_off = *poff;
4312 }
4313
a445fddf
ILT
4314 if (!reset && this->are_addresses_set_)
4315 {
4316 gold_assert(this->paddr_ == addr);
4317 addr = this->vaddr_;
4318 }
4319 else
4320 {
4321 this->vaddr_ = addr;
4322 this->paddr_ = addr;
4323 this->are_addresses_set_ = true;
4324 }
75f65a3e 4325
5bc2f5be 4326 in_tls = false;
96a2b4e4 4327
75f65a3e
ILT
4328 this->offset_ = orig_off;
4329
22f0da72
ILT
4330 off_t off = 0;
4331 uint64_t ret;
4332 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4333 {
fc497986
CC
4334 if (i == static_cast<int>(ORDER_RELRO_LAST))
4335 {
4336 *poff += last_relro_pad;
4337 addr += last_relro_pad;
fd064a5b
CC
4338 if (this->output_lists_[i].empty())
4339 {
4340 // If there is nothing in the ORDER_RELRO_LAST list,
4341 // the padding will occur at the end of the relro
4342 // segment, and we need to add it to *INCREASE_RELRO.
4343 *increase_relro += last_relro_pad;
4344 }
fc497986 4345 }
5bc2f5be
CC
4346 addr = this->set_section_list_addresses(layout, reset,
4347 &this->output_lists_[i],
4348 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4349 if (i < static_cast<int>(ORDER_SMALL_BSS))
4350 {
4351 this->filesz_ = *poff - orig_off;
4352 off = *poff;
4353 }
75f65a3e 4354
22f0da72
ILT
4355 ret = addr;
4356 }
96a2b4e4
ILT
4357
4358 // If the last section was a TLS section, align upward to the
4359 // alignment of the TLS segment, so that the overall size of the TLS
4360 // segment is aligned.
4361 if (in_tls)
4362 {
4363 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4364 *poff = align_address(*poff, segment_align);
4365 }
4366
75f65a3e
ILT
4367 this->memsz_ = *poff - orig_off;
4368
4369 // Ignore the file offset adjustments made by the BSS Output_data
4370 // objects.
4371 *poff = off;
61ba1cf9
ILT
4372
4373 return ret;
75f65a3e
ILT
4374}
4375
b8e6aad9
ILT
4376// Set the addresses and file offsets in a list of Output_data
4377// structures.
75f65a3e
ILT
4378
4379uint64_t
cdc29364 4380Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4381 Output_data_list* pdl,
ead1e424 4382 uint64_t addr, off_t* poff,
96a2b4e4 4383 unsigned int* pshndx,
1a2dff53 4384 bool* in_tls)
75f65a3e 4385{
ead1e424 4386 off_t startoff = *poff;
cdc29364
CC
4387 // For incremental updates, we may allocate non-fixed sections from
4388 // free space in the file. This keeps track of the high-water mark.
4389 off_t maxoff = startoff;
75f65a3e 4390
ead1e424 4391 off_t off = startoff;
75f65a3e
ILT
4392 for (Output_data_list::iterator p = pdl->begin();
4393 p != pdl->end();
4394 ++p)
4395 {
a445fddf
ILT
4396 if (reset)
4397 (*p)->reset_address_and_file_offset();
4398
cdc29364
CC
4399 // When doing an incremental update or when using a linker script,
4400 // the section will most likely already have an address.
a445fddf 4401 if (!(*p)->is_address_valid())
3802b2dd 4402 {
96a2b4e4
ILT
4403 uint64_t align = (*p)->addralign();
4404
4405 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4406 {
4407 // Give the first TLS section the alignment of the
4408 // entire TLS segment. Otherwise the TLS segment as a
4409 // whole may be misaligned.
4410 if (!*in_tls)
4411 {
4412 Output_segment* tls_segment = layout->tls_segment();
4413 gold_assert(tls_segment != NULL);
4414 uint64_t segment_align = tls_segment->maximum_alignment();
4415 gold_assert(segment_align >= align);
4416 align = segment_align;
4417
4418 *in_tls = true;
4419 }
4420 }
4421 else
4422 {
4423 // If this is the first section after the TLS segment,
4424 // align it to at least the alignment of the TLS
4425 // segment, so that the size of the overall TLS segment
4426 // is aligned.
4427 if (*in_tls)
4428 {
4429 uint64_t segment_align =
4430 layout->tls_segment()->maximum_alignment();
4431 if (segment_align > align)
4432 align = segment_align;
4433
4434 *in_tls = false;
4435 }
4436 }
4437
fb0e076f 4438 if (!parameters->incremental_update())
cdc29364
CC
4439 {
4440 off = align_address(off, align);
4441 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442 }
4443 else
4444 {
4445 // Incremental update: allocate file space from free list.
4446 (*p)->pre_finalize_data_size();
4447 off_t current_size = (*p)->current_data_size();
4448 off = layout->allocate(current_size, align, startoff);
4449 if (off == -1)
4450 {
4451 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4452 gold_fallback(_("out of patch space for section %s; "
4453 "relink with --incremental-full"),
4454 (*p)->output_section()->name());
cdc29364
CC
4455 }
4456 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4457 if ((*p)->data_size() > current_size)
4458 {
4459 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4460 gold_fallback(_("%s: section changed size; "
4461 "relink with --incremental-full"),
4462 (*p)->output_section()->name());
cdc29364
CC
4463 }
4464 }
3802b2dd 4465 }
cdc29364
CC
4466 else if (parameters->incremental_update())
4467 {
4468 // For incremental updates, use the fixed offset for the
4469 // high-water mark computation.
4470 off = (*p)->offset();
4471 }
a445fddf
ILT
4472 else
4473 {
4474 // The script may have inserted a skip forward, but it
4475 // better not have moved backward.
661be1e2
ILT
4476 if ((*p)->address() >= addr + (off - startoff))
4477 off += (*p)->address() - (addr + (off - startoff));
4478 else
4479 {
4480 if (!layout->script_options()->saw_sections_clause())
4481 gold_unreachable();
4482 else
4483 {
4484 Output_section* os = (*p)->output_section();
64b1ae37
DK
4485
4486 // Cast to unsigned long long to avoid format warnings.
4487 unsigned long long previous_dot =
4488 static_cast<unsigned long long>(addr + (off - startoff));
4489 unsigned long long dot =
4490 static_cast<unsigned long long>((*p)->address());
4491
661be1e2
ILT
4492 if (os == NULL)
4493 gold_error(_("dot moves backward in linker script "
64b1ae37 4494 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4495 else
4496 gold_error(_("address of section '%s' moves backward "
4497 "from 0x%llx to 0x%llx"),
64b1ae37 4498 os->name(), previous_dot, dot);
661be1e2
ILT
4499 }
4500 }
a445fddf
ILT
4501 (*p)->set_file_offset(off);
4502 (*p)->finalize_data_size();
4503 }
ead1e424 4504
9fbd3822
CC
4505 if (parameters->incremental_update())
4506 gold_debug(DEBUG_INCREMENTAL,
4507 "set_section_list_addresses: %08lx %08lx %s",
4508 static_cast<long>(off),
4509 static_cast<long>((*p)->data_size()),
4510 ((*p)->output_section() != NULL
4511 ? (*p)->output_section()->name() : "(special)"));
4512
4513 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4514 // section. Such a section does not affect the size of a
4515 // PT_LOAD segment.
4516 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4517 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4518 off += (*p)->data_size();
75f65a3e 4519
cdc29364
CC
4520 if (off > maxoff)
4521 maxoff = off;
4522
ead1e424
ILT
4523 if ((*p)->is_section())
4524 {
4525 (*p)->set_out_shndx(*pshndx);
4526 ++*pshndx;
4527 }
75f65a3e
ILT
4528 }
4529
cdc29364
CC
4530 *poff = maxoff;
4531 return addr + (maxoff - startoff);
75f65a3e
ILT
4532}
4533
4534// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4535// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4536
4537void
1a2dff53 4538Output_segment::set_offset(unsigned int increase)
75f65a3e 4539{
a3ad94ed 4540 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4541
a445fddf
ILT
4542 gold_assert(!this->are_addresses_set_);
4543
22f0da72
ILT
4544 // A non-load section only uses output_lists_[0].
4545
4546 Output_data_list* pdl = &this->output_lists_[0];
4547
4548 if (pdl->empty())
75f65a3e 4549 {
1a2dff53 4550 gold_assert(increase == 0);
75f65a3e
ILT
4551 this->vaddr_ = 0;
4552 this->paddr_ = 0;
a445fddf 4553 this->are_addresses_set_ = true;
75f65a3e 4554 this->memsz_ = 0;
a445fddf 4555 this->min_p_align_ = 0;
75f65a3e
ILT
4556 this->offset_ = 0;
4557 this->filesz_ = 0;
4558 return;
4559 }
4560
22f0da72 4561 // Find the first and last section by address.
5f1ab67a
ILT
4562 const Output_data* first = NULL;
4563 const Output_data* last_data = NULL;
4564 const Output_data* last_bss = NULL;
22f0da72
ILT
4565 for (Output_data_list::const_iterator p = pdl->begin();
4566 p != pdl->end();
4567 ++p)
4568 {
4569 if (first == NULL
4570 || (*p)->address() < first->address()
4571 || ((*p)->address() == first->address()
4572 && (*p)->data_size() < first->data_size()))
4573 first = *p;
4574 const Output_data** plast;
4575 if ((*p)->is_section()
4576 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4577 plast = &last_bss;
4578 else
4579 plast = &last_data;
4580 if (*plast == NULL
4581 || (*p)->address() > (*plast)->address()
4582 || ((*p)->address() == (*plast)->address()
4583 && (*p)->data_size() > (*plast)->data_size()))
4584 *plast = *p;
4585 }
5f1ab67a 4586
75f65a3e 4587 this->vaddr_ = first->address();
a445fddf
ILT
4588 this->paddr_ = (first->has_load_address()
4589 ? first->load_address()
4590 : this->vaddr_);
4591 this->are_addresses_set_ = true;
75f65a3e
ILT
4592 this->offset_ = first->offset();
4593
22f0da72 4594 if (last_data == NULL)
75f65a3e
ILT
4595 this->filesz_ = 0;
4596 else
5f1ab67a
ILT
4597 this->filesz_ = (last_data->address()
4598 + last_data->data_size()
4599 - this->vaddr_);
75f65a3e 4600
5f1ab67a 4601 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4602 this->memsz_ = (last->address()
4603 + last->data_size()
4604 - this->vaddr_);
96a2b4e4 4605
1a2dff53
ILT
4606 this->filesz_ += increase;
4607 this->memsz_ += increase;
4608
fd064a5b
CC
4609 // If this is a RELRO segment, verify that the segment ends at a
4610 // page boundary.
4611 if (this->type_ == elfcpp::PT_GNU_RELRO)
4612 {
4613 uint64_t page_align = parameters->target().common_pagesize();
4614 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4615 if (parameters->incremental_update())
4616 {
4617 // The INCREASE_RELRO calculation is bypassed for an incremental
4618 // update, so we need to adjust the segment size manually here.
4619 segment_end = align_address(segment_end, page_align);
4620 this->memsz_ = segment_end - this->vaddr_;
4621 }
4622 else
4623 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4624 }
4625
96a2b4e4
ILT
4626 // If this is a TLS segment, align the memory size. The code in
4627 // set_section_list ensures that the section after the TLS segment
4628 // is aligned to give us room.
4629 if (this->type_ == elfcpp::PT_TLS)
4630 {
4631 uint64_t segment_align = this->maximum_alignment();
4632 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4633 this->memsz_ = align_address(this->memsz_, segment_align);
4634 }
75f65a3e
ILT
4635}
4636
7bf1f802
ILT
4637// Set the TLS offsets of the sections in the PT_TLS segment.
4638
4639void
4640Output_segment::set_tls_offsets()
4641{
4642 gold_assert(this->type_ == elfcpp::PT_TLS);
4643
22f0da72
ILT
4644 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4645 p != this->output_lists_[0].end();
7bf1f802
ILT
4646 ++p)
4647 (*p)->set_tls_offset(this->vaddr_);
4648}
4649
22f0da72 4650// Return the load address of the first section.
a445fddf
ILT
4651
4652uint64_t
4653Output_segment::first_section_load_address() const
4654{
22f0da72
ILT
4655 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4656 {
4657 const Output_data_list* pdl = &this->output_lists_[i];
4658 for (Output_data_list::const_iterator p = pdl->begin();
4659 p != pdl->end();
4660 ++p)
4661 {
4662 if ((*p)->is_section())
4663 return ((*p)->has_load_address()
4664 ? (*p)->load_address()
4665 : (*p)->address());
4666 }
4667 }
a445fddf
ILT
4668 gold_unreachable();
4669}
4670
75f65a3e
ILT
4671// Return the number of Output_sections in an Output_segment.
4672
4673unsigned int
4674Output_segment::output_section_count() const
4675{
22f0da72
ILT
4676 unsigned int ret = 0;
4677 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4678 ret += this->output_section_count_list(&this->output_lists_[i]);
4679 return ret;
75f65a3e
ILT
4680}
4681
4682// Return the number of Output_sections in an Output_data_list.
4683
4684unsigned int
4685Output_segment::output_section_count_list(const Output_data_list* pdl) const
4686{
4687 unsigned int count = 0;
4688 for (Output_data_list::const_iterator p = pdl->begin();
4689 p != pdl->end();
4690 ++p)
4691 {
4692 if ((*p)->is_section())
4693 ++count;
4694 }
4695 return count;
a2fb1b05
ILT
4696}
4697
1c4f3631
ILT
4698// Return the section attached to the list segment with the lowest
4699// load address. This is used when handling a PHDRS clause in a
4700// linker script.
4701
4702Output_section*
4703Output_segment::section_with_lowest_load_address() const
4704{
4705 Output_section* found = NULL;
4706 uint64_t found_lma = 0;
22f0da72
ILT
4707 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4708 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4709 &found_lma);
1c4f3631
ILT
4710 return found;
4711}
4712
4713// Look through a list for a section with a lower load address.
4714
4715void
4716Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4717 Output_section** found,
4718 uint64_t* found_lma) const
4719{
4720 for (Output_data_list::const_iterator p = pdl->begin();
4721 p != pdl->end();
4722 ++p)
4723 {
4724 if (!(*p)->is_section())
4725 continue;
4726 Output_section* os = static_cast<Output_section*>(*p);
4727 uint64_t lma = (os->has_load_address()
4728 ? os->load_address()
4729 : os->address());
4730 if (*found == NULL || lma < *found_lma)
4731 {
4732 *found = os;
4733 *found_lma = lma;
4734 }
4735 }
4736}
4737
61ba1cf9
ILT
4738// Write the segment data into *OPHDR.
4739
4740template<int size, bool big_endian>
4741void
ead1e424 4742Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4743{
4744 ophdr->put_p_type(this->type_);
4745 ophdr->put_p_offset(this->offset_);
4746 ophdr->put_p_vaddr(this->vaddr_);
4747 ophdr->put_p_paddr(this->paddr_);
4748 ophdr->put_p_filesz(this->filesz_);
4749 ophdr->put_p_memsz(this->memsz_);
4750 ophdr->put_p_flags(this->flags_);
a445fddf 4751 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4752}
4753
4754// Write the section headers into V.
4755
4756template<int size, bool big_endian>
4757unsigned char*
16649710
ILT
4758Output_segment::write_section_headers(const Layout* layout,
4759 const Stringpool* secnamepool,
ead1e424 4760 unsigned char* v,
ca09d69a 4761 unsigned int* pshndx) const
5482377d 4762{
ead1e424
ILT
4763 // Every section that is attached to a segment must be attached to a
4764 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4765 // segments.
4766 if (this->type_ != elfcpp::PT_LOAD)
4767 return v;
4768
22f0da72
ILT
4769 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4770 {
4771 const Output_data_list* pdl = &this->output_lists_[i];
4772 v = this->write_section_headers_list<size, big_endian>(layout,
4773 secnamepool,
4774 pdl,
4775 v, pshndx);
4776 }
4777
61ba1cf9
ILT
4778 return v;
4779}
4780
4781template<int size, bool big_endian>
4782unsigned char*
16649710
ILT
4783Output_segment::write_section_headers_list(const Layout* layout,
4784 const Stringpool* secnamepool,
61ba1cf9 4785 const Output_data_list* pdl,
ead1e424 4786 unsigned char* v,
7d1a9ebb 4787 unsigned int* pshndx) const
61ba1cf9
ILT
4788{
4789 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4790 for (Output_data_list::const_iterator p = pdl->begin();
4791 p != pdl->end();
4792 ++p)
4793 {
4794 if ((*p)->is_section())
4795 {
5482377d 4796 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4797 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4798 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4799 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4800 v += shdr_size;
ead1e424 4801 ++*pshndx;
61ba1cf9
ILT
4802 }
4803 }
4804 return v;
4805}
4806
7d9e3d98
ILT
4807// Print the output sections to the map file.
4808
4809void
4810Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4811{
4812 if (this->type() != elfcpp::PT_LOAD)
4813 return;
22f0da72
ILT
4814 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4815 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4816}
4817
4818// Print an output section list to the map file.
4819
4820void
4821Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4822 const Output_data_list* pdl) const
4823{
4824 for (Output_data_list::const_iterator p = pdl->begin();
4825 p != pdl->end();
4826 ++p)
4827 (*p)->print_to_mapfile(mapfile);
4828}
4829
a2fb1b05
ILT
4830// Output_file methods.
4831
14144f39
ILT
4832Output_file::Output_file(const char* name)
4833 : name_(name),
61ba1cf9
ILT
4834 o_(-1),
4835 file_size_(0),
c420411f 4836 base_(NULL),
516cb3d0 4837 map_is_anonymous_(false),
88597d34 4838 map_is_allocated_(false),
516cb3d0 4839 is_temporary_(false)
61ba1cf9
ILT
4840{
4841}
4842
404c2abb 4843// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4844// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4845// NULL, open that file as the base for incremental linking, and
4846// copy its contents to the new output file. This routine can
4847// be called for incremental updates, in which case WRITABLE should
4848// be true, or by the incremental-dump utility, in which case
4849// WRITABLE should be false.
404c2abb
ILT
4850
4851bool
aa92d6ed 4852Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4853{
4854 // The name "-" means "stdout".
4855 if (strcmp(this->name_, "-") == 0)
4856 return false;
4857
aa92d6ed
CC
4858 bool use_base_file = base_name != NULL;
4859 if (!use_base_file)
4860 base_name = this->name_;
4861 else if (strcmp(base_name, this->name_) == 0)
4862 gold_fatal(_("%s: incremental base and output file name are the same"),
4863 base_name);
4864
404c2abb
ILT
4865 // Don't bother opening files with a size of zero.
4866 struct stat s;
aa92d6ed
CC
4867 if (::stat(base_name, &s) != 0)
4868 {
4869 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4870 return false;
4871 }
4872 if (s.st_size == 0)
4873 {
4874 gold_info(_("%s: incremental base file is empty"), base_name);
4875 return false;
4876 }
4877
4878 // If we're using a base file, we want to open it read-only.
4879 if (use_base_file)
4880 writable = false;
404c2abb 4881
aa92d6ed
CC
4882 int oflags = writable ? O_RDWR : O_RDONLY;
4883 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4884 if (o < 0)
aa92d6ed
CC
4885 {
4886 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4887 return false;
4888 }
4889
4890 // If the base file and the output file are different, open a
4891 // new output file and read the contents from the base file into
4892 // the newly-mapped region.
4893 if (use_base_file)
4894 {
4895 this->open(s.st_size);
4896 ssize_t len = ::read(o, this->base_, s.st_size);
4897 if (len < 0)
4898 {
4899 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4900 return false;
4901 }
4902 if (len < s.st_size)
4903 {
4904 gold_info(_("%s: file too short"), base_name);
4905 return false;
4906 }
4907 ::close(o);
4908 return true;
4909 }
4910
404c2abb
ILT
4911 this->o_ = o;
4912 this->file_size_ = s.st_size;
4913
aa92d6ed 4914 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4915 {
4916 release_descriptor(o, true);
4917 this->o_ = -1;
4918 this->file_size_ = 0;
4919 return false;
4920 }
4921
4922 return true;
4923}
4924
61ba1cf9
ILT
4925// Open the output file.
4926
a2fb1b05 4927void
61ba1cf9 4928Output_file::open(off_t file_size)
a2fb1b05 4929{
61ba1cf9
ILT
4930 this->file_size_ = file_size;
4931
4e9d8586
ILT
4932 // Unlink the file first; otherwise the open() may fail if the file
4933 // is busy (e.g. it's an executable that's currently being executed).
4934 //
4935 // However, the linker may be part of a system where a zero-length
4936 // file is created for it to write to, with tight permissions (gcc
4937 // 2.95 did something like this). Unlinking the file would work
4938 // around those permission controls, so we only unlink if the file
4939 // has a non-zero size. We also unlink only regular files to avoid
4940 // trouble with directories/etc.
4941 //
4942 // If we fail, continue; this command is merely a best-effort attempt
4943 // to improve the odds for open().
4944
42a1b686 4945 // We let the name "-" mean "stdout"
516cb3d0 4946 if (!this->is_temporary_)
42a1b686 4947 {
516cb3d0
ILT
4948 if (strcmp(this->name_, "-") == 0)
4949 this->o_ = STDOUT_FILENO;
4950 else
4951 {
4952 struct stat s;
6a89f575
CC
4953 if (::stat(this->name_, &s) == 0
4954 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4955 {
4956 if (s.st_size != 0)
4957 ::unlink(this->name_);
4958 else if (!parameters->options().relocatable())
4959 {
4960 // If we don't unlink the existing file, add execute
4961 // permission where read permissions already exist
4962 // and where the umask permits.
4963 int mask = ::umask(0);
4964 ::umask(mask);
4965 s.st_mode |= (s.st_mode & 0444) >> 2;
4966 ::chmod(this->name_, s.st_mode & ~mask);
4967 }
4968 }
516cb3d0 4969
8851ecca 4970 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4971 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4972 mode);
516cb3d0
ILT
4973 if (o < 0)
4974 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4975 this->o_ = o;
4976 }
42a1b686 4977 }
61ba1cf9 4978
27bc2bce
ILT
4979 this->map();
4980}
4981
4982// Resize the output file.
4983
4984void
4985Output_file::resize(off_t file_size)
4986{
c420411f
ILT
4987 // If the mmap is mapping an anonymous memory buffer, this is easy:
4988 // just mremap to the new size. If it's mapping to a file, we want
4989 // to unmap to flush to the file, then remap after growing the file.
4990 if (this->map_is_anonymous_)
4991 {
88597d34
ILT
4992 void* base;
4993 if (!this->map_is_allocated_)
4994 {
4995 base = ::mremap(this->base_, this->file_size_, file_size,
4996 MREMAP_MAYMOVE);
4997 if (base == MAP_FAILED)
4998 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4999 }
5000 else
5001 {
5002 base = realloc(this->base_, file_size);
5003 if (base == NULL)
5004 gold_nomem();
5005 if (file_size > this->file_size_)
5006 memset(static_cast<char*>(base) + this->file_size_, 0,
5007 file_size - this->file_size_);
5008 }
c420411f
ILT
5009 this->base_ = static_cast<unsigned char*>(base);
5010 this->file_size_ = file_size;
5011 }
5012 else
5013 {
5014 this->unmap();
5015 this->file_size_ = file_size;
aa92d6ed 5016 if (!this->map_no_anonymous(true))
fdcac5af 5017 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5018 }
27bc2bce
ILT
5019}
5020
404c2abb
ILT
5021// Map an anonymous block of memory which will later be written to the
5022// file. Return whether the map succeeded.
26736d8e 5023
404c2abb 5024bool
26736d8e
ILT
5025Output_file::map_anonymous()
5026{
404c2abb
ILT
5027 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5028 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5029 if (base == MAP_FAILED)
404c2abb 5030 {
88597d34
ILT
5031 base = malloc(this->file_size_);
5032 if (base == NULL)
5033 return false;
5034 memset(base, 0, this->file_size_);
5035 this->map_is_allocated_ = true;
404c2abb 5036 }
88597d34
ILT
5037 this->base_ = static_cast<unsigned char*>(base);
5038 this->map_is_anonymous_ = true;
5039 return true;
26736d8e
ILT
5040}
5041
404c2abb 5042// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5043// If WRITABLE is true, map with write access.
27bc2bce 5044
404c2abb 5045bool
aa92d6ed 5046Output_file::map_no_anonymous(bool writable)
27bc2bce 5047{
c420411f 5048 const int o = this->o_;
61ba1cf9 5049
c420411f
ILT
5050 // If the output file is not a regular file, don't try to mmap it;
5051 // instead, we'll mmap a block of memory (an anonymous buffer), and
5052 // then later write the buffer to the file.
5053 void* base;
5054 struct stat statbuf;
42a1b686
ILT
5055 if (o == STDOUT_FILENO || o == STDERR_FILENO
5056 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5057 || !S_ISREG(statbuf.st_mode)
5058 || this->is_temporary_)
404c2abb
ILT
5059 return false;
5060
5061 // Ensure that we have disk space available for the file. If we
5062 // don't do this, it is possible that we will call munmap, close,
5063 // and exit with dirty buffers still in the cache with no assigned
5064 // disk blocks. If the disk is out of space at that point, the
5065 // output file will wind up incomplete, but we will have already
5066 // exited. The alternative to fallocate would be to use fdatasync,
5067 // but that would be a more significant performance hit.
aa92d6ed 5068 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
404c2abb
ILT
5069 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5070
5071 // Map the file into memory.
aa92d6ed
CC
5072 int prot = PROT_READ;
5073 if (writable)
5074 prot |= PROT_WRITE;
5075 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5076
5077 // The mmap call might fail because of file system issues: the file
5078 // system might not support mmap at all, or it might not support
5079 // mmap with PROT_WRITE.
61ba1cf9 5080 if (base == MAP_FAILED)
404c2abb
ILT
5081 return false;
5082
5083 this->map_is_anonymous_ = false;
61ba1cf9 5084 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5085 return true;
5086}
5087
5088// Map the file into memory.
5089
5090void
5091Output_file::map()
5092{
aa92d6ed 5093 if (this->map_no_anonymous(true))
404c2abb
ILT
5094 return;
5095
5096 // The mmap call might fail because of file system issues: the file
5097 // system might not support mmap at all, or it might not support
5098 // mmap with PROT_WRITE. I'm not sure which errno values we will
5099 // see in all cases, so if the mmap fails for any reason and we
5100 // don't care about file contents, try for an anonymous map.
5101 if (this->map_anonymous())
5102 return;
5103
5104 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5105 this->name_, static_cast<unsigned long>(this->file_size_),
5106 strerror(errno));
61ba1cf9
ILT
5107}
5108
c420411f 5109// Unmap the file from memory.
61ba1cf9
ILT
5110
5111void
c420411f 5112Output_file::unmap()
61ba1cf9 5113{
88597d34
ILT
5114 if (this->map_is_anonymous_)
5115 {
5116 // We've already written out the data, so there is no reason to
5117 // waste time unmapping or freeing the memory.
5118 }
5119 else
5120 {
5121 if (::munmap(this->base_, this->file_size_) < 0)
5122 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5123 }
61ba1cf9 5124 this->base_ = NULL;
c420411f
ILT
5125}
5126
5127// Close the output file.
5128
5129void
5130Output_file::close()
5131{
5132 // If the map isn't file-backed, we need to write it now.
516cb3d0 5133 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5134 {
5135 size_t bytes_to_write = this->file_size_;
6d1e3092 5136 size_t offset = 0;
c420411f
ILT
5137 while (bytes_to_write > 0)
5138 {
6d1e3092
CD
5139 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5140 bytes_to_write);
c420411f
ILT
5141 if (bytes_written == 0)
5142 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5143 else if (bytes_written < 0)
5144 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5145 else
6d1e3092
CD
5146 {
5147 bytes_to_write -= bytes_written;
5148 offset += bytes_written;
5149 }
c420411f
ILT
5150 }
5151 }
5152 this->unmap();
61ba1cf9 5153
42a1b686 5154 // We don't close stdout or stderr
516cb3d0
ILT
5155 if (this->o_ != STDOUT_FILENO
5156 && this->o_ != STDERR_FILENO
5157 && !this->is_temporary_)
42a1b686
ILT
5158 if (::close(this->o_) < 0)
5159 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5160 this->o_ = -1;
a2fb1b05
ILT
5161}
5162
5163// Instantiate the templates we need. We could use the configure
5164// script to restrict this to only the ones for implemented targets.
5165
193a53d9 5166#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5167template
5168off_t
5169Output_section::add_input_section<32, false>(
6e9ba2ca 5170 Layout* layout,
6fa2a40b 5171 Sized_relobj_file<32, false>* object,
2ea97941 5172 unsigned int shndx,
a2fb1b05 5173 const char* secname,
730cdc88 5174 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5175 unsigned int reloc_shndx,
5176 bool have_sections_script);
193a53d9 5177#endif
a2fb1b05 5178
193a53d9 5179#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5180template
5181off_t
5182Output_section::add_input_section<32, true>(
6e9ba2ca 5183 Layout* layout,
6fa2a40b 5184 Sized_relobj_file<32, true>* object,
2ea97941 5185 unsigned int shndx,
a2fb1b05 5186 const char* secname,
730cdc88 5187 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5188 unsigned int reloc_shndx,
5189 bool have_sections_script);
193a53d9 5190#endif
a2fb1b05 5191
193a53d9 5192#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5193template
5194off_t
5195Output_section::add_input_section<64, false>(
6e9ba2ca 5196 Layout* layout,
6fa2a40b 5197 Sized_relobj_file<64, false>* object,
2ea97941 5198 unsigned int shndx,
a2fb1b05 5199 const char* secname,
730cdc88 5200 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5201 unsigned int reloc_shndx,
5202 bool have_sections_script);
193a53d9 5203#endif
a2fb1b05 5204
193a53d9 5205#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5206template
5207off_t
5208Output_section::add_input_section<64, true>(
6e9ba2ca 5209 Layout* layout,
6fa2a40b 5210 Sized_relobj_file<64, true>* object,
2ea97941 5211 unsigned int shndx,
a2fb1b05 5212 const char* secname,
730cdc88 5213 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5214 unsigned int reloc_shndx,
5215 bool have_sections_script);
193a53d9 5216#endif
a2fb1b05 5217
bbbfea06
CC
5218#ifdef HAVE_TARGET_32_LITTLE
5219template
5220class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5221#endif
5222
5223#ifdef HAVE_TARGET_32_BIG
5224template
5225class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5226#endif
5227
5228#ifdef HAVE_TARGET_64_LITTLE
5229template
5230class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5231#endif
5232
5233#ifdef HAVE_TARGET_64_BIG
5234template
5235class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5236#endif
5237
5238#ifdef HAVE_TARGET_32_LITTLE
5239template
5240class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5241#endif
5242
5243#ifdef HAVE_TARGET_32_BIG
5244template
5245class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5246#endif
5247
5248#ifdef HAVE_TARGET_64_LITTLE
5249template
5250class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5251#endif
5252
5253#ifdef HAVE_TARGET_64_BIG
5254template
5255class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5256#endif
5257
5258#ifdef HAVE_TARGET_32_LITTLE
5259template
5260class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5261#endif
5262
5263#ifdef HAVE_TARGET_32_BIG
5264template
5265class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5266#endif
5267
5268#ifdef HAVE_TARGET_64_LITTLE
5269template
5270class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5271#endif
5272
5273#ifdef HAVE_TARGET_64_BIG
5274template
5275class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5276#endif
5277
5278#ifdef HAVE_TARGET_32_LITTLE
5279template
5280class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5281#endif
5282
5283#ifdef HAVE_TARGET_32_BIG
5284template
5285class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5286#endif
5287
5288#ifdef HAVE_TARGET_64_LITTLE
5289template
5290class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5291#endif
5292
5293#ifdef HAVE_TARGET_64_BIG
5294template
5295class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5296#endif
5297
193a53d9 5298#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5299template
5300class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5301#endif
c06b7b0b 5302
193a53d9 5303#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5304template
5305class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5306#endif
c06b7b0b 5307
193a53d9 5308#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5309template
5310class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5311#endif
c06b7b0b 5312
193a53d9 5313#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5314template
5315class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5316#endif
c06b7b0b 5317
193a53d9 5318#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5319template
5320class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5321#endif
c06b7b0b 5322
193a53d9 5323#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5324template
5325class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5326#endif
c06b7b0b 5327
193a53d9 5328#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5329template
5330class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5331#endif
c06b7b0b 5332
193a53d9 5333#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5334template
5335class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5336#endif
c06b7b0b 5337
193a53d9 5338#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5339template
5340class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5341#endif
c06b7b0b 5342
193a53d9 5343#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5344template
5345class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5346#endif
c06b7b0b 5347
193a53d9 5348#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5349template
5350class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5351#endif
c06b7b0b 5352
193a53d9 5353#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5354template
5355class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5356#endif
c06b7b0b 5357
193a53d9 5358#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5359template
5360class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5361#endif
c06b7b0b 5362
193a53d9 5363#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5364template
5365class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5366#endif
c06b7b0b 5367
193a53d9 5368#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5369template
5370class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5371#endif
c06b7b0b 5372
193a53d9 5373#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5374template
5375class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5376#endif
c06b7b0b 5377
6a74a719
ILT
5378#ifdef HAVE_TARGET_32_LITTLE
5379template
5380class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5381#endif
5382
5383#ifdef HAVE_TARGET_32_BIG
5384template
5385class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5386#endif
5387
5388#ifdef HAVE_TARGET_64_LITTLE
5389template
5390class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5391#endif
5392
5393#ifdef HAVE_TARGET_64_BIG
5394template
5395class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5396#endif
5397
5398#ifdef HAVE_TARGET_32_LITTLE
5399template
5400class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5401#endif
5402
5403#ifdef HAVE_TARGET_32_BIG
5404template
5405class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5406#endif
5407
5408#ifdef HAVE_TARGET_64_LITTLE
5409template
5410class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5411#endif
5412
5413#ifdef HAVE_TARGET_64_BIG
5414template
5415class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5416#endif
5417
5418#ifdef HAVE_TARGET_32_LITTLE
5419template
5420class Output_data_group<32, false>;
5421#endif
5422
5423#ifdef HAVE_TARGET_32_BIG
5424template
5425class Output_data_group<32, true>;
5426#endif
5427
5428#ifdef HAVE_TARGET_64_LITTLE
5429template
5430class Output_data_group<64, false>;
5431#endif
5432
5433#ifdef HAVE_TARGET_64_BIG
5434template
5435class Output_data_group<64, true>;
5436#endif
5437
193a53d9 5438#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5439template
dbe717ef 5440class Output_data_got<32, false>;
193a53d9 5441#endif
ead1e424 5442
193a53d9 5443#ifdef HAVE_TARGET_32_BIG
ead1e424 5444template
dbe717ef 5445class Output_data_got<32, true>;
193a53d9 5446#endif
ead1e424 5447
193a53d9 5448#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5449template
dbe717ef 5450class Output_data_got<64, false>;
193a53d9 5451#endif
ead1e424 5452
193a53d9 5453#ifdef HAVE_TARGET_64_BIG
ead1e424 5454template
dbe717ef 5455class Output_data_got<64, true>;
193a53d9 5456#endif
ead1e424 5457
a2fb1b05 5458} // End namespace gold.
This page took 0.605108 seconds and 4 git commands to generate.