merge from gcc
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
d77a0555
ILT
3// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4// Free Software Foundation, Inc.
6cb15b7f
ILT
5// Written by Ian Lance Taylor <iant@google.com>.
6
7// This file is part of gold.
8
9// This program is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 3 of the License, or
12// (at your option) any later version.
13
14// This program is distributed in the hope that it will be useful,
15// but WITHOUT ANY WARRANTY; without even the implied warranty of
16// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17// GNU General Public License for more details.
18
19// You should have received a copy of the GNU General Public License
20// along with this program; if not, write to the Free Software
21// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22// MA 02110-1301, USA.
23
a2fb1b05
ILT
24#include "gold.h"
25
26#include <cstdlib>
04bf7072 27#include <cstring>
61ba1cf9
ILT
28#include <cerrno>
29#include <fcntl.h>
30#include <unistd.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
88597d34
ILT
33
34#ifdef HAVE_SYS_MMAN_H
35#include <sys/mman.h>
36#endif
37
6a89f575 38#include "libiberty.h"
a2fb1b05 39
8ea8cd50 40#include "dwarf.h"
7e1edb90 41#include "parameters.h"
a2fb1b05 42#include "object.h"
ead1e424
ILT
43#include "symtab.h"
44#include "reloc.h"
b8e6aad9 45#include "merge.h"
2a00e4fb 46#include "descriptors.h"
5393d741 47#include "layout.h"
a2fb1b05
ILT
48#include "output.h"
49
88597d34
ILT
50// For systems without mmap support.
51#ifndef HAVE_MMAP
52# define mmap gold_mmap
53# define munmap gold_munmap
54# define mremap gold_mremap
55# ifndef MAP_FAILED
56# define MAP_FAILED (reinterpret_cast<void*>(-1))
57# endif
58# ifndef PROT_READ
59# define PROT_READ 0
60# endif
61# ifndef PROT_WRITE
62# define PROT_WRITE 0
63# endif
64# ifndef MAP_PRIVATE
65# define MAP_PRIVATE 0
66# endif
67# ifndef MAP_ANONYMOUS
68# define MAP_ANONYMOUS 0
69# endif
70# ifndef MAP_SHARED
71# define MAP_SHARED 0
72# endif
73
74# ifndef ENOSYS
75# define ENOSYS EINVAL
76# endif
77
78static void *
79gold_mmap(void *, size_t, int, int, int, off_t)
80{
81 errno = ENOSYS;
82 return MAP_FAILED;
83}
84
85static int
86gold_munmap(void *, size_t)
87{
88 errno = ENOSYS;
89 return -1;
90}
91
92static void *
93gold_mremap(void *, size_t, size_t, int)
94{
95 errno = ENOSYS;
96 return MAP_FAILED;
97}
98
99#endif
100
101#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102# define mremap gold_mremap
103extern "C" void *gold_mremap(void *, size_t, size_t, int);
104#endif
105
c420411f
ILT
106// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107#ifndef MAP_ANONYMOUS
108# define MAP_ANONYMOUS MAP_ANON
109#endif
110
88597d34
ILT
111#ifndef MREMAP_MAYMOVE
112# define MREMAP_MAYMOVE 1
113#endif
114
d0a9ace3
ILT
115// Mingw does not have S_ISLNK.
116#ifndef S_ISLNK
117# define S_ISLNK(mode) 0
118#endif
119
a2fb1b05
ILT
120namespace gold
121{
122
7c0640fa
CC
123// A wrapper around posix_fallocate. If we don't have posix_fallocate,
124// or the --no-posix-fallocate option is set, we try the fallocate
125// system call directly. If that fails, we use ftruncate to set
126// the file size and hope that there is enough disk space.
127
128static int
129gold_fallocate(int o, off_t offset, off_t len)
130{
131#ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134#endif // defined(HAVE_POSIX_FALLOCATE)
135#ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138#endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142}
143
a3ad94ed
ILT
144// Output_data variables.
145
27bc2bce 146bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 147
a2fb1b05
ILT
148// Output_data methods.
149
150Output_data::~Output_data()
151{
152}
153
730cdc88
ILT
154// Return the default alignment for the target size.
155
156uint64_t
157Output_data::default_alignment()
158{
8851ecca
ILT
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
730cdc88
ILT
161}
162
75f65a3e
ILT
163// Return the default alignment for a size--32 or 64.
164
165uint64_t
730cdc88 166Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
167{
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
a3ad94ed 173 gold_unreachable();
75f65a3e
ILT
174}
175
75f65a3e
ILT
176// Output_section_header methods. This currently assumes that the
177// segment and section lists are complete at construction time.
178
179Output_section_headers::Output_section_headers(
16649710
ILT
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
6a74a719 182 const Layout::Section_list* section_list,
16649710 183 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
9025d29d 186 : layout_(layout),
75f65a3e 187 segment_list_(segment_list),
6a74a719 188 section_list_(section_list),
a3ad94ed 189 unattached_section_list_(unattached_section_list),
d491d34e
ILT
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
192{
193}
194
195// Compute the current data size.
196
197off_t
198Output_section_headers::do_size() const
75f65a3e 199{
61ba1cf9
ILT
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
8851ecca 202 if (!parameters->options().relocatable())
6a74a719 203 {
20e6d0d6
DK
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
6a74a719
ILT
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
20e6d0d6
DK
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
6a74a719
ILT
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
20e6d0d6 220 count += this->unattached_section_list_->size();
75f65a3e 221
8851ecca 222 const int size = parameters->target().get_size();
75f65a3e
ILT
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
a3ad94ed 229 gold_unreachable();
75f65a3e 230
20e6d0d6 231 return count * shdr_size;
75f65a3e
ILT
232}
233
61ba1cf9
ILT
234// Write out the section headers.
235
75f65a3e 236void
61ba1cf9 237Output_section_headers::do_write(Output_file* of)
a2fb1b05 238{
8851ecca 239 switch (parameters->size_and_endianness())
61ba1cf9 240 {
9025d29d 241#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
9025d29d 245#endif
8851ecca
ILT
246#ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
9025d29d 250#endif
9025d29d 251#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
9025d29d 255#endif
8851ecca
ILT
256#ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260#endif
261 default:
262 gold_unreachable();
61ba1cf9 263 }
61ba1cf9
ILT
264}
265
266template<int size, bool big_endian>
267void
268Output_section_headers::do_sized_write(Output_file* of)
269{
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
d491d34e
ILT
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
5696ab0b
ILT
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
61ba1cf9
ILT
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
6a74a719 306 unsigned int shndx = 1;
8851ecca 307 if (!parameters->options().relocatable())
6a74a719
ILT
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
a3ad94ed 338 for (Layout::Section_list::const_iterator p =
16649710
ILT
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
61ba1cf9
ILT
341 ++p)
342 {
6a74a719
ILT
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 346 && parameters->options().relocatable())
6a74a719 347 continue;
a3ad94ed 348 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 351 v += shdr_size;
ead1e424 352 ++shndx;
61ba1cf9
ILT
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
356}
357
54dc6425
ILT
358// Output_segment_header methods.
359
61ba1cf9 360Output_segment_headers::Output_segment_headers(
61ba1cf9 361 const Layout::Segment_list& segment_list)
9025d29d 362 : segment_list_(segment_list)
61ba1cf9 363{
cdc29364 364 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
365}
366
54dc6425 367void
61ba1cf9 368Output_segment_headers::do_write(Output_file* of)
75f65a3e 369{
8851ecca 370 switch (parameters->size_and_endianness())
61ba1cf9 371 {
9025d29d 372#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
9025d29d 376#endif
8851ecca
ILT
377#ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
9025d29d 381#endif
9025d29d 382#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
9025d29d 386#endif
8851ecca
ILT
387#ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391#endif
392 default:
393 gold_unreachable();
61ba1cf9 394 }
61ba1cf9
ILT
395}
396
397template<int size, bool big_endian>
398void
399Output_segment_headers::do_sized_write(Output_file* of)
400{
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 403 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
a445fddf
ILT
416 gold_assert(v - view == all_phdrs_size);
417
61ba1cf9 418 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
419}
420
20e6d0d6
DK
421off_t
422Output_segment_headers::do_size() const
423{
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434}
435
75f65a3e
ILT
436// Output_file_header methods.
437
9025d29d 438Output_file_header::Output_file_header(const Target* target,
75f65a3e 439 const Symbol_table* symtab,
a10ae760 440 const Output_segment_headers* osh)
9025d29d 441 : target_(target),
75f65a3e 442 symtab_(symtab),
61ba1cf9 443 segment_header_(osh),
75f65a3e 444 section_header_(NULL),
a10ae760 445 shstrtab_(NULL)
75f65a3e 446{
20e6d0d6 447 this->set_data_size(this->do_size());
75f65a3e
ILT
448}
449
450// Set the section table information for a file header.
451
452void
453Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455{
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458}
459
460// Write out the file header.
461
462void
61ba1cf9 463Output_file_header::do_write(Output_file* of)
54dc6425 464{
27bc2bce
ILT
465 gold_assert(this->offset() == 0);
466
8851ecca 467 switch (parameters->size_and_endianness())
61ba1cf9 468 {
9025d29d 469#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
9025d29d 473#endif
8851ecca
ILT
474#ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
9025d29d 478#endif
9025d29d 479#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
9025d29d 483#endif
8851ecca
ILT
484#ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488#endif
489 default:
490 gold_unreachable();
61ba1cf9 491 }
61ba1cf9
ILT
492}
493
cc643b88 494// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
495
496template<int size, bool big_endian>
497void
498Output_file_header::do_sized_write(Output_file* of)
499{
a3ad94ed 500 gold_assert(this->offset() == 0);
61ba1cf9
ILT
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
a3ad94ed 517 gold_unreachable();
61ba1cf9
ILT
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
8851ecca 525 if (parameters->options().relocatable())
61ba1cf9 526 e_type = elfcpp::ET_REL;
374ad285 527 else if (parameters->options().output_is_position_independent())
436ca963 528 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
d391083d 536 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 537
6a74a719
ILT
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
61ba1cf9 543 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 544 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
6a74a719
ILT
560 }
561
61ba1cf9 562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 577
36959681
ILT
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
61ba1cf9 582 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
583}
584
a10ae760 585// Return the value to use for the entry address.
d391083d
ILT
586
587template<int size>
588typename elfcpp::Elf_types<size>::Elf_Addr
589Output_file_header::entry()
590{
a10ae760 591 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
a10ae760 594 const char* entry = parameters->entry();
2ea97941 595 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
2ea97941 603 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
2ea97941 611 v = strtoull(entry, &endptr, 0);
d391083d
ILT
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
2ea97941 615 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
616 v = 0;
617 }
618 }
619
620 return v;
621}
622
20e6d0d6
DK
623// Compute the current data size.
624
625off_t
626Output_file_header::do_size() const
627{
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635}
636
dbe717ef
ILT
637// Output_data_const methods.
638
639void
a3ad94ed 640Output_data_const::do_write(Output_file* of)
dbe717ef 641{
a3ad94ed
ILT
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643}
644
645// Output_data_const_buffer methods.
646
647void
648Output_data_const_buffer::do_write(Output_file* of)
649{
650 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
651}
652
653// Output_section_data methods.
654
16649710
ILT
655// Record the output section, and set the entry size and such.
656
657void
658Output_section_data::set_output_section(Output_section* os)
659{
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663}
664
665// Return the section index of the output section.
666
dbe717ef
ILT
667unsigned int
668Output_section_data::do_out_shndx() const
669{
a3ad94ed 670 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
671 return this->output_section_->out_shndx();
672}
673
759b1a24
ILT
674// Set the alignment, which means we may need to update the alignment
675// of the output section.
676
677void
2ea97941 678Output_section_data::set_addralign(uint64_t addralign)
759b1a24 679{
2ea97941 680 this->addralign_ = addralign;
759b1a24 681 if (this->output_section_ != NULL
2ea97941
ILT
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
759b1a24
ILT
684}
685
a3ad94ed
ILT
686// Output_data_strtab methods.
687
27bc2bce 688// Set the final data size.
a3ad94ed
ILT
689
690void
27bc2bce 691Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
692{
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695}
696
697// Write out a string table.
698
699void
700Output_data_strtab::do_write(Output_file* of)
701{
702 this->strtab_->write(of, this->offset());
703}
704
c06b7b0b
ILT
705// Output_reloc methods.
706
7bf1f802
ILT
707// A reloc against a global symbol.
708
709template<bool dynamic, int size, bool big_endian>
710Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
e8c846c3 714 Address address,
0da6fa6c 715 bool is_relative,
13cf9988
DM
716 bool is_symbolless,
717 bool use_plt_offset)
7bf1f802 718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 719 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 721{
dceae3c1
ILT
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
7bf1f802
ILT
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
dceae3c1
ILT
726 if (dynamic)
727 this->set_needs_dynsym_index();
7bf1f802
ILT
728}
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
ef9beddf 734 Sized_relobj<size, big_endian>* relobj,
7bf1f802 735 unsigned int shndx,
e8c846c3 736 Address address,
0da6fa6c 737 bool is_relative,
13cf9988
DM
738 bool is_symbolless,
739 bool use_plt_offset)
7bf1f802 740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 741 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
743{
744 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
7bf1f802
ILT
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
dceae3c1
ILT
749 if (dynamic)
750 this->set_needs_dynsym_index();
7bf1f802
ILT
751}
752
753// A reloc against a local symbol.
754
755template<bool dynamic, int size, bool big_endian>
756Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
e8c846c3 761 Address address,
2ea97941 762 bool is_relative,
0da6fa6c 763 bool is_symbolless,
397b129b
CC
764 bool is_section_symbol,
765 bool use_plt_offset)
7bf1f802 766 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 767 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
7bf1f802
ILT
770{
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
7bf1f802
ILT
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
dceae3c1
ILT
777 if (dynamic)
778 this->set_needs_dynsym_index();
7bf1f802
ILT
779}
780
781template<bool dynamic, int size, bool big_endian>
782Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
e8c846c3 787 Address address,
2ea97941 788 bool is_relative,
0da6fa6c 789 bool is_symbolless,
397b129b
CC
790 bool is_section_symbol,
791 bool use_plt_offset)
7bf1f802 792 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 793 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
7bf1f802
ILT
796{
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
7bf1f802
ILT
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
dceae3c1
ILT
804 if (dynamic)
805 this->set_needs_dynsym_index();
7bf1f802
ILT
806}
807
808// A reloc against the STT_SECTION symbol of an output section.
809
810template<bool dynamic, int size, bool big_endian>
811Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
703d02da
AM
815 Address address,
816 bool is_relative)
7bf1f802 817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 818 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 820{
dceae3c1
ILT
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
7bf1f802
ILT
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
dceae3c1
ILT
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
7bf1f802
ILT
829}
830
831template<bool dynamic, int size, bool big_endian>
832Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
ef9beddf 835 Sized_relobj<size, big_endian>* relobj,
7bf1f802 836 unsigned int shndx,
703d02da
AM
837 Address address,
838 bool is_relative)
7bf1f802 839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 840 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
842{
843 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
7bf1f802
ILT
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
dceae3c1
ILT
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852}
853
ec661b9d 854// An absolute or relative relocation.
e291e7b9
ILT
855
856template<bool dynamic, int size, bool big_endian>
857Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
ec661b9d
AM
860 Address address,
861 bool is_relative)
e291e7b9 862 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 863 is_relative_(is_relative), is_symbolless_(false),
397b129b 864 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
865{
866 // this->type_ is a bitfield; make sure TYPE fits.
867 gold_assert(this->type_ == type);
868 this->u1_.relobj = NULL;
869 this->u2_.od = od;
870}
871
872template<bool dynamic, int size, bool big_endian>
873Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 Sized_relobj<size, big_endian>* relobj,
876 unsigned int shndx,
ec661b9d
AM
877 Address address,
878 bool is_relative)
e291e7b9 879 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 880 is_relative_(is_relative), is_symbolless_(false),
397b129b 881 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
882{
883 gold_assert(shndx != INVALID_CODE);
884 // this->type_ is a bitfield; make sure TYPE fits.
885 gold_assert(this->type_ == type);
886 this->u1_.relobj = NULL;
887 this->u2_.relobj = relobj;
888}
889
890// A target specific relocation.
891
892template<bool dynamic, int size, bool big_endian>
893Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894 unsigned int type,
895 void* arg,
896 Output_data* od,
897 Address address)
898 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 899 is_relative_(false), is_symbolless_(false),
397b129b 900 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
901{
902 // this->type_ is a bitfield; make sure TYPE fits.
903 gold_assert(this->type_ == type);
904 this->u1_.arg = arg;
905 this->u2_.od = od;
906}
907
908template<bool dynamic, int size, bool big_endian>
909Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
910 unsigned int type,
911 void* arg,
912 Sized_relobj<size, big_endian>* relobj,
913 unsigned int shndx,
914 Address address)
915 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 916 is_relative_(false), is_symbolless_(false),
397b129b 917 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
918{
919 gold_assert(shndx != INVALID_CODE);
920 // this->type_ is a bitfield; make sure TYPE fits.
921 gold_assert(this->type_ == type);
922 this->u1_.arg = arg;
923 this->u2_.relobj = relobj;
924}
925
dceae3c1
ILT
926// Record that we need a dynamic symbol index for this relocation.
927
928template<bool dynamic, int size, bool big_endian>
929void
930Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
931set_needs_dynsym_index()
932{
0da6fa6c 933 if (this->is_symbolless_)
dceae3c1
ILT
934 return;
935 switch (this->local_sym_index_)
936 {
937 case INVALID_CODE:
938 gold_unreachable();
939
940 case GSYM_CODE:
941 this->u1_.gsym->set_needs_dynsym_entry();
942 break;
943
944 case SECTION_CODE:
945 this->u1_.os->set_needs_dynsym_index();
946 break;
947
e291e7b9
ILT
948 case TARGET_CODE:
949 // The target must take care of this if necessary.
950 break;
951
dceae3c1
ILT
952 case 0:
953 break;
954
955 default:
956 {
957 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
958 Sized_relobj_file<size, big_endian>* relobj =
959 this->u1_.relobj->sized_relobj();
960 gold_assert(relobj != NULL);
dceae3c1 961 if (!this->is_section_symbol_)
6fa2a40b 962 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 963 else
6fa2a40b 964 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
965 }
966 break;
967 }
7bf1f802
ILT
968}
969
c06b7b0b
ILT
970// Get the symbol index of a relocation.
971
972template<bool dynamic, int size, bool big_endian>
973unsigned int
974Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
975 const
976{
977 unsigned int index;
0da6fa6c
DM
978 if (this->is_symbolless_)
979 return 0;
c06b7b0b
ILT
980 switch (this->local_sym_index_)
981 {
982 case INVALID_CODE:
a3ad94ed 983 gold_unreachable();
c06b7b0b
ILT
984
985 case GSYM_CODE:
5a6f7e2d 986 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
987 index = 0;
988 else if (dynamic)
5a6f7e2d 989 index = this->u1_.gsym->dynsym_index();
c06b7b0b 990 else
5a6f7e2d 991 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
992 break;
993
994 case SECTION_CODE:
995 if (dynamic)
5a6f7e2d 996 index = this->u1_.os->dynsym_index();
c06b7b0b 997 else
5a6f7e2d 998 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
999 break;
1000
e291e7b9
ILT
1001 case TARGET_CODE:
1002 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1003 this->type_);
1004 break;
1005
436ca963
ILT
1006 case 0:
1007 // Relocations without symbols use a symbol index of 0.
1008 index = 0;
1009 break;
1010
c06b7b0b 1011 default:
dceae3c1
ILT
1012 {
1013 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1014 Sized_relobj_file<size, big_endian>* relobj =
1015 this->u1_.relobj->sized_relobj();
1016 gold_assert(relobj != NULL);
dceae3c1
ILT
1017 if (!this->is_section_symbol_)
1018 {
1019 if (dynamic)
6fa2a40b 1020 index = relobj->dynsym_index(lsi);
dceae3c1 1021 else
6fa2a40b 1022 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1023 }
1024 else
1025 {
6fa2a40b 1026 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1027 gold_assert(os != NULL);
1028 if (dynamic)
1029 index = os->dynsym_index();
1030 else
1031 index = os->symtab_index();
1032 }
1033 }
c06b7b0b
ILT
1034 break;
1035 }
a3ad94ed 1036 gold_assert(index != -1U);
c06b7b0b
ILT
1037 return index;
1038}
1039
624f8810
ILT
1040// For a local section symbol, get the address of the offset ADDEND
1041// within the input section.
dceae3c1
ILT
1042
1043template<bool dynamic, int size, bool big_endian>
ef9beddf 1044typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1045Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1046 local_section_offset(Addend addend) const
dceae3c1 1047{
624f8810
ILT
1048 gold_assert(this->local_sym_index_ != GSYM_CODE
1049 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1050 && this->local_sym_index_ != TARGET_CODE
624f8810 1051 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1052 && this->local_sym_index_ != 0
624f8810 1053 && this->is_section_symbol_);
dceae3c1 1054 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1055 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1056 gold_assert(os != NULL);
ef9beddf 1057 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1058 if (offset != invalid_address)
624f8810
ILT
1059 return offset + addend;
1060 // This is a merge section.
6fa2a40b
CC
1061 Sized_relobj_file<size, big_endian>* relobj =
1062 this->u1_.relobj->sized_relobj();
1063 gold_assert(relobj != NULL);
1064 offset = os->output_address(relobj, lsi, addend);
eff45813 1065 gold_assert(offset != invalid_address);
dceae3c1
ILT
1066 return offset;
1067}
1068
d98bc257 1069// Get the output address of a relocation.
c06b7b0b
ILT
1070
1071template<bool dynamic, int size, bool big_endian>
a984ee1d 1072typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1073Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1074{
a3ad94ed 1075 Address address = this->address_;
5a6f7e2d
ILT
1076 if (this->shndx_ != INVALID_CODE)
1077 {
ef9beddf 1078 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1079 gold_assert(os != NULL);
ef9beddf 1080 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1081 if (off != invalid_address)
730cdc88
ILT
1082 address += os->address() + off;
1083 else
1084 {
6fa2a40b
CC
1085 Sized_relobj_file<size, big_endian>* relobj =
1086 this->u2_.relobj->sized_relobj();
1087 gold_assert(relobj != NULL);
1088 address = os->output_address(relobj, this->shndx_, address);
eff45813 1089 gold_assert(address != invalid_address);
730cdc88 1090 }
5a6f7e2d
ILT
1091 }
1092 else if (this->u2_.od != NULL)
1093 address += this->u2_.od->address();
d98bc257
ILT
1094 return address;
1095}
1096
1097// Write out the offset and info fields of a Rel or Rela relocation
1098// entry.
1099
1100template<bool dynamic, int size, bool big_endian>
1101template<typename Write_rel>
1102void
1103Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1104 Write_rel* wr) const
1105{
1106 wr->put_r_offset(this->get_address());
0da6fa6c 1107 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1108 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1109}
1110
1111// Write out a Rel relocation.
1112
1113template<bool dynamic, int size, bool big_endian>
1114void
1115Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1116 unsigned char* pov) const
1117{
1118 elfcpp::Rel_write<size, big_endian> orel(pov);
1119 this->write_rel(&orel);
1120}
1121
e8c846c3
ILT
1122// Get the value of the symbol referred to by a Rel relocation.
1123
1124template<bool dynamic, int size, bool big_endian>
1125typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1126Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1127 Addend addend) const
e8c846c3
ILT
1128{
1129 if (this->local_sym_index_ == GSYM_CODE)
1130 {
1131 const Sized_symbol<size>* sym;
1132 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988 1133 if (this->use_plt_offset_ && sym->has_plt_offset())
19fec8c1 1134 return parameters->target().plt_address_for_global(sym);
13cf9988
DM
1135 else
1136 return sym->value() + addend;
e8c846c3 1137 }
703d02da
AM
1138 if (this->local_sym_index_ == SECTION_CODE)
1139 {
1140 gold_assert(!this->use_plt_offset_);
1141 return this->u1_.os->address() + addend;
1142 }
1143 gold_assert(this->local_sym_index_ != TARGET_CODE
d1f003c6 1144 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1145 && this->local_sym_index_ != 0
d1f003c6
ILT
1146 && !this->is_section_symbol_);
1147 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1148 Sized_relobj_file<size, big_endian>* relobj =
1149 this->u1_.relobj->sized_relobj();
1150 gold_assert(relobj != NULL);
397b129b 1151 if (this->use_plt_offset_)
19fec8c1 1152 return parameters->target().plt_address_for_local(relobj, lsi);
6fa2a40b
CC
1153 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1154 return symval->value(relobj, addend);
e8c846c3
ILT
1155}
1156
d98bc257
ILT
1157// Reloc comparison. This function sorts the dynamic relocs for the
1158// benefit of the dynamic linker. First we sort all relative relocs
1159// to the front. Among relative relocs, we sort by output address.
1160// Among non-relative relocs, we sort by symbol index, then by output
1161// address.
1162
1163template<bool dynamic, int size, bool big_endian>
1164int
1165Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1166 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1167 const
1168{
1169 if (this->is_relative_)
1170 {
1171 if (!r2.is_relative_)
1172 return -1;
1173 // Otherwise sort by reloc address below.
1174 }
1175 else if (r2.is_relative_)
1176 return 1;
1177 else
1178 {
1179 unsigned int sym1 = this->get_symbol_index();
1180 unsigned int sym2 = r2.get_symbol_index();
1181 if (sym1 < sym2)
1182 return -1;
1183 else if (sym1 > sym2)
1184 return 1;
1185 // Otherwise sort by reloc address.
1186 }
1187
1188 section_offset_type addr1 = this->get_address();
1189 section_offset_type addr2 = r2.get_address();
1190 if (addr1 < addr2)
1191 return -1;
1192 else if (addr1 > addr2)
1193 return 1;
1194
1195 // Final tie breaker, in order to generate the same output on any
1196 // host: reloc type.
1197 unsigned int type1 = this->type_;
1198 unsigned int type2 = r2.type_;
1199 if (type1 < type2)
1200 return -1;
1201 else if (type1 > type2)
1202 return 1;
1203
1204 // These relocs appear to be exactly the same.
1205 return 0;
1206}
1207
c06b7b0b
ILT
1208// Write out a Rela relocation.
1209
1210template<bool dynamic, int size, bool big_endian>
1211void
1212Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1213 unsigned char* pov) const
1214{
1215 elfcpp::Rela_write<size, big_endian> orel(pov);
1216 this->rel_.write_rel(&orel);
e8c846c3 1217 Addend addend = this->addend_;
e291e7b9
ILT
1218 if (this->rel_.is_target_specific())
1219 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1220 this->rel_.type(), addend);
0da6fa6c 1221 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1222 addend = this->rel_.symbol_value(addend);
1223 else if (this->rel_.is_local_section_symbol())
624f8810 1224 addend = this->rel_.local_section_offset(addend);
e8c846c3 1225 orel.put_r_addend(addend);
c06b7b0b
ILT
1226}
1227
1228// Output_data_reloc_base methods.
1229
16649710
ILT
1230// Adjust the output section.
1231
1232template<int sh_type, bool dynamic, int size, bool big_endian>
1233void
1234Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1235 ::do_adjust_output_section(Output_section* os)
1236{
1237 if (sh_type == elfcpp::SHT_REL)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1239 else if (sh_type == elfcpp::SHT_RELA)
1240 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1241 else
1242 gold_unreachable();
7223e9ca
ILT
1243
1244 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1245 // static link. The backends will generate a dynamic reloc section
1246 // to hold this. In that case we don't want to link to the dynsym
1247 // section, because there isn't one.
1248 if (!dynamic)
16649710 1249 os->set_should_link_to_symtab();
7223e9ca
ILT
1250 else if (parameters->doing_static_link())
1251 ;
1252 else
1253 os->set_should_link_to_dynsym();
16649710
ILT
1254}
1255
c06b7b0b
ILT
1256// Write out relocation data.
1257
1258template<int sh_type, bool dynamic, int size, bool big_endian>
1259void
1260Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1261 Output_file* of)
1262{
1263 const off_t off = this->offset();
1264 const off_t oview_size = this->data_size();
1265 unsigned char* const oview = of->get_output_view(off, oview_size);
1266
3a44184e 1267 if (this->sort_relocs())
d98bc257
ILT
1268 {
1269 gold_assert(dynamic);
1270 std::sort(this->relocs_.begin(), this->relocs_.end(),
1271 Sort_relocs_comparison());
1272 }
1273
c06b7b0b
ILT
1274 unsigned char* pov = oview;
1275 for (typename Relocs::const_iterator p = this->relocs_.begin();
1276 p != this->relocs_.end();
1277 ++p)
1278 {
1279 p->write(pov);
1280 pov += reloc_size;
1281 }
1282
a3ad94ed 1283 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1284
1285 of->write_output_view(off, oview_size, oview);
1286
1287 // We no longer need the relocation entries.
1288 this->relocs_.clear();
1289}
1290
6a74a719
ILT
1291// Class Output_relocatable_relocs.
1292
1293template<int sh_type, int size, bool big_endian>
1294void
1295Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296{
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299}
1300
1301// class Output_data_group.
1302
1303template<int size, bool big_endian>
1304Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1305 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1306 section_size_type entry_count,
8825ac63
ILT
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1309 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1310 relobj_(relobj),
1311 flags_(flags)
6a74a719 1312{
8825ac63 1313 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1314}
1315
1316// Write out the section group, which means translating the section
1317// indexes to apply to the output file.
1318
1319template<int size, bool big_endian>
1320void
1321Output_data_group<size, big_endian>::do_write(Output_file* of)
1322{
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
6a74a719
ILT
1335 ++p, ++contents)
1336 {
ef9beddf 1337 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
8825ac63 1358 this->input_shndxes_.clear();
6a74a719
ILT
1359}
1360
dbe717ef 1361// Output_data_got::Got_entry methods.
ead1e424
ILT
1362
1363// Write out the entry.
1364
d77a0555 1365template<int got_size, bool big_endian>
ead1e424 1366void
d77a0555 1367Output_data_got<got_size, big_endian>::Got_entry::write(
bd73a62d
AM
1368 unsigned int got_indx,
1369 unsigned char* pov) const
ead1e424
ILT
1370{
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
e8c846c3
ILT
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
ead1e424 1380 Symbol* gsym = this->u_.gsym;
bd73a62d 1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
19fec8c1 1382 val = parameters->target().plt_address_for_global(gsym);
7223e9ca
ILT
1383 else
1384 {
d77a0555
ILT
1385 switch (parameters->size_and_endianness())
1386 {
1387#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399#endif
1400#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409#endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
bd73a62d
AM
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
7223e9ca 1417 }
ead1e424
ILT
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
4829d394
CC
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
ead1e424 1432 default:
d1f003c6 1433 {
d77a0555 1434 const Relobj* object = this->u_.object;
d1f003c6 1435 const unsigned int lsi = this->local_sym_index_;
d77a0555 1436 bool is_tls = object->local_is_tls(lsi);
bd73a62d 1437 if (this->use_plt_or_tls_offset_ && !is_tls)
19fec8c1 1438 val = parameters->target().plt_address_for_local(object, lsi);
bd73a62d
AM
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, 0);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
d1f003c6 1447 }
e727fa71 1448 break;
ead1e424
ILT
1449 }
1450
d77a0555 1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
ead1e424
ILT
1452}
1453
dbe717ef 1454// Output_data_got methods.
ead1e424 1455
dbe717ef
ILT
1456// Add an entry for a global symbol to the GOT. This returns true if
1457// this is a new GOT entry, false if the symbol already had a GOT
1458// entry.
1459
d77a0555 1460template<int got_size, bool big_endian>
dbe717ef 1461bool
d77a0555 1462Output_data_got<got_size, big_endian>::add_global(
0a65a3a7
CC
1463 Symbol* gsym,
1464 unsigned int got_type)
ead1e424 1465{
0a65a3a7 1466 if (gsym->has_got_offset(got_type))
dbe717ef 1467 return false;
ead1e424 1468
4829d394
CC
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1471 return true;
1472}
1473
1474// Like add_global, but use the PLT offset.
1475
d77a0555 1476template<int got_size, bool big_endian>
7223e9ca 1477bool
d77a0555
ILT
1478Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
7223e9ca
ILT
1480{
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
4829d394
CC
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1486 return true;
1487}
ead1e424 1488
7bf1f802
ILT
1489// Add an entry for a global symbol to the GOT, and add a dynamic
1490// relocation of type R_TYPE for the GOT entry.
7223e9ca 1491
d77a0555 1492template<int got_size, bool big_endian>
7bf1f802 1493void
d77a0555 1494Output_data_got<got_size, big_endian>::add_global_with_rel(
7bf1f802 1495 Symbol* gsym,
0a65a3a7 1496 unsigned int got_type,
83896202 1497 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1498 unsigned int r_type)
1499{
0a65a3a7 1500 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1501 return;
1502
4829d394 1503 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1504 gsym->set_got_offset(got_type, got_offset);
83896202 1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1506}
1507
0a65a3a7
CC
1508// Add a pair of entries for a global symbol to the GOT, and add
1509// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510// If R_TYPE_2 == 0, add the second entry with no relocation.
d77a0555 1511template<int got_size, bool big_endian>
7bf1f802 1512void
d77a0555 1513Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
0a65a3a7
CC
1514 Symbol* gsym,
1515 unsigned int got_type,
83896202 1516 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
7bf1f802 1519{
0a65a3a7 1520 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1521 return;
1522
4829d394 1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1524 gsym->set_got_offset(got_type, got_offset);
83896202 1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1526
0a65a3a7 1527 if (r_type_2 != 0)
83896202 1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
d77a0555 1529 got_offset + got_size / 8, 0);
7bf1f802
ILT
1530}
1531
0a65a3a7
CC
1532// Add an entry for a local symbol to the GOT. This returns true if
1533// this is a new GOT entry, false if the symbol already has a GOT
1534// entry.
07f397ab 1535
d77a0555 1536template<int got_size, bool big_endian>
07f397ab 1537bool
d77a0555 1538Output_data_got<got_size, big_endian>::add_local(
83896202 1539 Relobj* object,
0a65a3a7
CC
1540 unsigned int symndx,
1541 unsigned int got_type)
07f397ab 1542{
0a65a3a7 1543 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1544 return false;
1545
4829d394
CC
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1549 return true;
1550}
1551
1552// Like add_local, but use the PLT offset.
1553
d77a0555 1554template<int got_size, bool big_endian>
7223e9ca 1555bool
d77a0555 1556Output_data_got<got_size, big_endian>::add_local_plt(
83896202 1557 Relobj* object,
7223e9ca
ILT
1558 unsigned int symndx,
1559 unsigned int got_type)
1560{
1561 if (object->local_has_got_offset(symndx, got_type))
1562 return false;
1563
4829d394
CC
1564 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1565 true));
1566 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1567 return true;
1568}
1569
0a65a3a7
CC
1570// Add an entry for a local symbol to the GOT, and add a dynamic
1571// relocation of type R_TYPE for the GOT entry.
7223e9ca 1572
d77a0555 1573template<int got_size, bool big_endian>
7bf1f802 1574void
d77a0555 1575Output_data_got<got_size, big_endian>::add_local_with_rel(
83896202 1576 Relobj* object,
0a65a3a7
CC
1577 unsigned int symndx,
1578 unsigned int got_type,
83896202 1579 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1580 unsigned int r_type)
1581{
0a65a3a7 1582 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1583 return;
1584
4829d394 1585 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1586 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1587 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1588}
1589
0a65a3a7 1590// Add a pair of entries for a local symbol to the GOT, and add
bd73a62d
AM
1591// a dynamic relocation of type R_TYPE using the section symbol of
1592// the output section to which input section SHNDX maps, on the first.
1593// The first got entry will have a value of zero, the second the
1594// value of the local symbol.
d77a0555 1595template<int got_size, bool big_endian>
7bf1f802 1596void
d77a0555 1597Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
83896202 1598 Relobj* object,
7bf1f802
ILT
1599 unsigned int symndx,
1600 unsigned int shndx,
0a65a3a7 1601 unsigned int got_type,
83896202 1602 Output_data_reloc_generic* rel_dyn,
bd73a62d 1603 unsigned int r_type)
7bf1f802 1604{
0a65a3a7 1605 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1606 return;
1607
4829d394
CC
1608 unsigned int got_offset =
1609 this->add_got_entry_pair(Got_entry(),
1610 Got_entry(object, symndx, false));
2ea97941 1611 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1612 Output_section* os = object->output_section(shndx);
bd73a62d
AM
1613 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1614}
7bf1f802 1615
bd73a62d
AM
1616// Add a pair of entries for a local symbol to the GOT, and add
1617// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1618// The first got entry will have a value of zero, the second the
1619// value of the local symbol offset by Target::tls_offset_for_local.
d77a0555 1620template<int got_size, bool big_endian>
bd73a62d 1621void
d77a0555 1622Output_data_got<got_size, big_endian>::add_local_tls_pair(
bd73a62d
AM
1623 Relobj* object,
1624 unsigned int symndx,
1625 unsigned int got_type,
1626 Output_data_reloc_generic* rel_dyn,
1627 unsigned int r_type)
1628{
1629 if (object->local_has_got_offset(symndx, got_type))
1630 return;
1631
1632 unsigned int got_offset
1633 = this->add_got_entry_pair(Got_entry(),
1634 Got_entry(object, symndx, true));
1635 object->set_local_got_offset(symndx, got_type, got_offset);
1636 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
4829d394
CC
1637}
1638
1639// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1640
d77a0555 1641template<int got_size, bool big_endian>
4829d394 1642void
d77a0555 1643Output_data_got<got_size, big_endian>::reserve_local(
6fa2a40b 1644 unsigned int i,
83896202 1645 Relobj* object,
6fa2a40b
CC
1646 unsigned int sym_index,
1647 unsigned int got_type)
4829d394 1648{
dd74ae06 1649 this->do_reserve_slot(i);
6fa2a40b 1650 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1651}
7bf1f802 1652
4829d394
CC
1653// Reserve a slot in the GOT for a global symbol.
1654
d77a0555 1655template<int got_size, bool big_endian>
4829d394 1656void
d77a0555 1657Output_data_got<got_size, big_endian>::reserve_global(
4829d394
CC
1658 unsigned int i,
1659 Symbol* gsym,
1660 unsigned int got_type)
1661{
dd74ae06 1662 this->do_reserve_slot(i);
4829d394 1663 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1664}
1665
ead1e424
ILT
1666// Write out the GOT.
1667
d77a0555 1668template<int got_size, bool big_endian>
ead1e424 1669void
d77a0555 1670Output_data_got<got_size, big_endian>::do_write(Output_file* of)
ead1e424 1671{
d77a0555 1672 const int add = got_size / 8;
ead1e424
ILT
1673
1674 const off_t off = this->offset();
c06b7b0b 1675 const off_t oview_size = this->data_size();
ead1e424
ILT
1676 unsigned char* const oview = of->get_output_view(off, oview_size);
1677
1678 unsigned char* pov = oview;
bd73a62d 1679 for (unsigned int i = 0; i < this->entries_.size(); ++i)
ead1e424 1680 {
bd73a62d 1681 this->entries_[i].write(i, pov);
ead1e424
ILT
1682 pov += add;
1683 }
1684
a3ad94ed 1685 gold_assert(pov - oview == oview_size);
c06b7b0b 1686
ead1e424
ILT
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691}
1692
4829d394
CC
1693// Create a new GOT entry and return its offset.
1694
d77a0555 1695template<int got_size, bool big_endian>
4829d394 1696unsigned int
d77a0555 1697Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
4829d394
CC
1698{
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
d77a0555
ILT
1708 off_t got_offset = this->free_list_.allocate(got_size / 8,
1709 got_size / 8, 0);
4829d394 1710 if (got_offset == -1)
e6455dfb
CC
1711 gold_fallback(_("out of patch space (GOT);"
1712 " relink with --incremental-full"));
d77a0555 1713 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1714 gold_assert(got_index < this->entries_.size());
1715 this->entries_[got_index] = got_entry;
1716 return static_cast<unsigned int>(got_offset);
1717 }
1718}
1719
1720// Create a pair of new GOT entries and return the offset of the first.
1721
d77a0555 1722template<int got_size, bool big_endian>
4829d394 1723unsigned int
d77a0555
ILT
1724Output_data_got<got_size, big_endian>::add_got_entry_pair(
1725 Got_entry got_entry_1,
1726 Got_entry got_entry_2)
4829d394
CC
1727{
1728 if (!this->is_data_size_valid())
1729 {
1730 unsigned int got_offset;
1731 this->entries_.push_back(got_entry_1);
1732 got_offset = this->last_got_offset();
1733 this->entries_.push_back(got_entry_2);
1734 this->set_got_size();
1735 return got_offset;
1736 }
1737 else
1738 {
1739 // For an incremental update, find an available pair of slots.
d77a0555
ILT
1740 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1741 got_size / 8, 0);
4829d394 1742 if (got_offset == -1)
e6455dfb
CC
1743 gold_fallback(_("out of patch space (GOT);"
1744 " relink with --incremental-full"));
d77a0555 1745 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1746 gold_assert(got_index < this->entries_.size());
1747 this->entries_[got_index] = got_entry_1;
1748 this->entries_[got_index + 1] = got_entry_2;
1749 return static_cast<unsigned int>(got_offset);
1750 }
1751}
1752
cf43a2fe
AM
1753// Replace GOT entry I with a new value.
1754
d77a0555 1755template<int got_size, bool big_endian>
cf43a2fe 1756void
d77a0555 1757Output_data_got<got_size, big_endian>::replace_got_entry(
cf43a2fe
AM
1758 unsigned int i,
1759 Got_entry got_entry)
1760{
1761 gold_assert(i < this->entries_.size());
1762 this->entries_[i] = got_entry;
1763}
1764
a3ad94ed
ILT
1765// Output_data_dynamic::Dynamic_entry methods.
1766
1767// Write out the entry.
1768
1769template<int size, bool big_endian>
1770void
1771Output_data_dynamic::Dynamic_entry::write(
1772 unsigned char* pov,
7d1a9ebb 1773 const Stringpool* pool) const
a3ad94ed
ILT
1774{
1775 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1776 switch (this->offset_)
a3ad94ed
ILT
1777 {
1778 case DYNAMIC_NUMBER:
1779 val = this->u_.val;
1780 break;
1781
a3ad94ed 1782 case DYNAMIC_SECTION_SIZE:
16649710 1783 val = this->u_.od->data_size();
612a8d3d
DM
1784 if (this->od2 != NULL)
1785 val += this->od2->data_size();
a3ad94ed
ILT
1786 break;
1787
1788 case DYNAMIC_SYMBOL:
1789 {
16649710
ILT
1790 const Sized_symbol<size>* s =
1791 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1792 val = s->value();
1793 }
1794 break;
1795
1796 case DYNAMIC_STRING:
1797 val = pool->get_offset(this->u_.str);
1798 break;
1799
1800 default:
c2b45e22
CC
1801 val = this->u_.od->address() + this->offset_;
1802 break;
a3ad94ed
ILT
1803 }
1804
1805 elfcpp::Dyn_write<size, big_endian> dw(pov);
1806 dw.put_d_tag(this->tag_);
1807 dw.put_d_val(val);
1808}
1809
1810// Output_data_dynamic methods.
1811
16649710
ILT
1812// Adjust the output section to set the entry size.
1813
1814void
1815Output_data_dynamic::do_adjust_output_section(Output_section* os)
1816{
8851ecca 1817 if (parameters->target().get_size() == 32)
16649710 1818 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1819 else if (parameters->target().get_size() == 64)
16649710
ILT
1820 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1821 else
1822 gold_unreachable();
1823}
1824
a3ad94ed
ILT
1825// Set the final data size.
1826
1827void
27bc2bce 1828Output_data_dynamic::set_final_data_size()
a3ad94ed 1829{
20e6d0d6
DK
1830 // Add the terminating entry if it hasn't been added.
1831 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1832 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1833 {
1834 int extra = parameters->options().spare_dynamic_tags();
1835 for (int i = 0; i < extra; ++i)
1836 this->add_constant(elfcpp::DT_NULL, 0);
1837 this->add_constant(elfcpp::DT_NULL, 0);
1838 }
a3ad94ed
ILT
1839
1840 int dyn_size;
8851ecca 1841 if (parameters->target().get_size() == 32)
a3ad94ed 1842 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1843 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1844 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1845 else
1846 gold_unreachable();
1847 this->set_data_size(this->entries_.size() * dyn_size);
1848}
1849
1850// Write out the dynamic entries.
1851
1852void
1853Output_data_dynamic::do_write(Output_file* of)
1854{
8851ecca 1855 switch (parameters->size_and_endianness())
a3ad94ed 1856 {
9025d29d 1857#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1858 case Parameters::TARGET_32_LITTLE:
1859 this->sized_write<32, false>(of);
1860 break;
9025d29d 1861#endif
8851ecca
ILT
1862#ifdef HAVE_TARGET_32_BIG
1863 case Parameters::TARGET_32_BIG:
1864 this->sized_write<32, true>(of);
1865 break;
9025d29d 1866#endif
9025d29d 1867#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1868 case Parameters::TARGET_64_LITTLE:
1869 this->sized_write<64, false>(of);
1870 break;
9025d29d 1871#endif
8851ecca
ILT
1872#ifdef HAVE_TARGET_64_BIG
1873 case Parameters::TARGET_64_BIG:
1874 this->sized_write<64, true>(of);
1875 break;
1876#endif
1877 default:
1878 gold_unreachable();
a3ad94ed 1879 }
a3ad94ed
ILT
1880}
1881
1882template<int size, bool big_endian>
1883void
1884Output_data_dynamic::sized_write(Output_file* of)
1885{
1886 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1887
2ea97941 1888 const off_t offset = this->offset();
a3ad94ed 1889 const off_t oview_size = this->data_size();
2ea97941 1890 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1891
1892 unsigned char* pov = oview;
1893 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1894 p != this->entries_.end();
1895 ++p)
1896 {
7d1a9ebb 1897 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1898 pov += dyn_size;
1899 }
1900
1901 gold_assert(pov - oview == oview_size);
1902
2ea97941 1903 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1904
1905 // We no longer need the dynamic entries.
1906 this->entries_.clear();
1907}
1908
d491d34e
ILT
1909// Class Output_symtab_xindex.
1910
1911void
1912Output_symtab_xindex::do_write(Output_file* of)
1913{
2ea97941 1914 const off_t offset = this->offset();
d491d34e 1915 const off_t oview_size = this->data_size();
2ea97941 1916 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1917
1918 memset(oview, 0, oview_size);
1919
1920 if (parameters->target().is_big_endian())
1921 this->endian_do_write<true>(oview);
1922 else
1923 this->endian_do_write<false>(oview);
1924
2ea97941 1925 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1926
1927 // We no longer need the data.
1928 this->entries_.clear();
1929}
1930
1931template<bool big_endian>
1932void
1933Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1934{
1935 for (Xindex_entries::const_iterator p = this->entries_.begin();
1936 p != this->entries_.end();
1937 ++p)
20e6d0d6
DK
1938 {
1939 unsigned int symndx = p->first;
50ed5eb1 1940 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
20e6d0d6
DK
1941 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1942 }
d491d34e
ILT
1943}
1944
8ea8cd50
CC
1945// Output_fill_debug_info methods.
1946
1947// Return the minimum size needed for a dummy compilation unit header.
1948
1949size_t
1950Output_fill_debug_info::do_minimum_hole_size() const
1951{
1952 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1953 // address_size.
1954 const size_t len = 4 + 2 + 4 + 1;
1955 // For type units, add type_signature, type_offset.
1956 if (this->is_debug_types_)
1957 return len + 8 + 4;
1958 return len;
1959}
1960
1961// Write a dummy compilation unit header to fill a hole in the
1962// .debug_info or .debug_types section.
1963
1964void
1965Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1966{
66570254
CC
1967 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1968 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1969
1970 gold_assert(len >= this->do_minimum_hole_size());
1971
1972 unsigned char* const oview = of->get_output_view(off, len);
1973 unsigned char* pov = oview;
1974
1975 // Write header fields: unit_length, version, debug_abbrev_offset,
1976 // address_size.
1977 if (this->is_big_endian())
1978 {
24c6c55a
DM
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1980 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1981 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1982 }
1983 else
1984 {
24c6c55a
DM
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1986 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1987 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1988 }
1989 pov += 4 + 2 + 4;
1990 *pov++ = 4;
1991
1992 // For type units, the additional header fields -- type_signature,
1993 // type_offset -- can be filled with zeroes.
1994
1995 // Fill the remainder of the free space with zeroes. The first
1996 // zero should tell the consumer there are no DIEs to read in this
1997 // compilation unit.
1998 if (pov < oview + len)
1999 memset(pov, 0, oview + len - pov);
2000
2001 of->write_output_view(off, len, oview);
2002}
2003
2004// Output_fill_debug_line methods.
2005
2006// Return the minimum size needed for a dummy line number program header.
2007
2008size_t
2009Output_fill_debug_line::do_minimum_hole_size() const
2010{
2011 // Line number program header fields: unit_length, version, header_length,
2012 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2013 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2014 const size_t len = 4 + 2 + 4 + this->header_length;
2015 return len;
2016}
2017
2018// Write a dummy line number program header to fill a hole in the
2019// .debug_line section.
2020
2021void
2022Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2023{
66570254
CC
2024 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2025 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2026
2027 gold_assert(len >= this->do_minimum_hole_size());
2028
2029 unsigned char* const oview = of->get_output_view(off, len);
2030 unsigned char* pov = oview;
2031
2032 // Write header fields: unit_length, version, header_length,
2033 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2034 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2035 // We set the header_length field to cover the entire hole, so the
2036 // line number program is empty.
2037 if (this->is_big_endian())
2038 {
24c6c55a
DM
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2042 }
2043 else
2044 {
24c6c55a
DM
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2048 }
2049 pov += 4 + 2 + 4;
2050 *pov++ = 1; // minimum_instruction_length
2051 *pov++ = 0; // default_is_stmt
2052 *pov++ = 0; // line_base
2053 *pov++ = 5; // line_range
2054 *pov++ = 13; // opcode_base
2055 *pov++ = 0; // standard_opcode_lengths[1]
2056 *pov++ = 1; // standard_opcode_lengths[2]
2057 *pov++ = 1; // standard_opcode_lengths[3]
2058 *pov++ = 1; // standard_opcode_lengths[4]
2059 *pov++ = 1; // standard_opcode_lengths[5]
2060 *pov++ = 0; // standard_opcode_lengths[6]
2061 *pov++ = 0; // standard_opcode_lengths[7]
2062 *pov++ = 0; // standard_opcode_lengths[8]
2063 *pov++ = 1; // standard_opcode_lengths[9]
2064 *pov++ = 0; // standard_opcode_lengths[10]
2065 *pov++ = 0; // standard_opcode_lengths[11]
2066 *pov++ = 1; // standard_opcode_lengths[12]
2067 *pov++ = 0; // include_directories (empty)
2068 *pov++ = 0; // filenames (empty)
2069
2070 // Some consumers don't check the header_length field, and simply
2071 // start reading the line number program immediately following the
2072 // header. For those consumers, we fill the remainder of the free
2073 // space with DW_LNS_set_basic_block opcodes. These are effectively
2074 // no-ops: the resulting line table program will not create any rows.
2075 if (pov < oview + len)
2076 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2077
2078 of->write_output_view(off, len, oview);
2079}
2080
ead1e424
ILT
2081// Output_section::Input_section methods.
2082
cdc29364
CC
2083// Return the current data size. For an input section we store the size here.
2084// For an Output_section_data, we have to ask it for the size.
2085
2086off_t
2087Output_section::Input_section::current_data_size() const
2088{
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2091 else
2092 {
2093 this->u2_.posd->pre_finalize_data_size();
2094 return this->u2_.posd->current_data_size();
2095 }
2096}
2097
ead1e424
ILT
2098// Return the data size. For an input section we store the size here.
2099// For an Output_section_data, we have to ask it for the size.
2100
2101off_t
2102Output_section::Input_section::data_size() const
2103{
2104 if (this->is_input_section())
b8e6aad9 2105 return this->u1_.data_size;
ead1e424 2106 else
b8e6aad9 2107 return this->u2_.posd->data_size();
ead1e424
ILT
2108}
2109
0439c796
DK
2110// Return the object for an input section.
2111
2112Relobj*
2113Output_section::Input_section::relobj() const
2114{
2115 if (this->is_input_section())
2116 return this->u2_.object;
2117 else if (this->is_merge_section())
2118 {
2119 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2120 return this->u2_.pomb->first_relobj();
2121 }
2122 else if (this->is_relaxed_input_section())
2123 return this->u2_.poris->relobj();
2124 else
2125 gold_unreachable();
2126}
2127
2128// Return the input section index for an input section.
2129
2130unsigned int
2131Output_section::Input_section::shndx() const
2132{
2133 if (this->is_input_section())
2134 return this->shndx_;
2135 else if (this->is_merge_section())
2136 {
2137 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2138 return this->u2_.pomb->first_shndx();
2139 }
2140 else if (this->is_relaxed_input_section())
2141 return this->u2_.poris->shndx();
2142 else
2143 gold_unreachable();
2144}
2145
ead1e424
ILT
2146// Set the address and file offset.
2147
2148void
96803768
ILT
2149Output_section::Input_section::set_address_and_file_offset(
2150 uint64_t address,
2151 off_t file_offset,
2152 off_t section_file_offset)
ead1e424
ILT
2153{
2154 if (this->is_input_section())
96803768
ILT
2155 this->u2_.object->set_section_offset(this->shndx_,
2156 file_offset - section_file_offset);
ead1e424 2157 else
96803768
ILT
2158 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2159}
2160
a445fddf
ILT
2161// Reset the address and file offset.
2162
2163void
2164Output_section::Input_section::reset_address_and_file_offset()
2165{
2166 if (!this->is_input_section())
2167 this->u2_.posd->reset_address_and_file_offset();
2168}
2169
96803768
ILT
2170// Finalize the data size.
2171
2172void
2173Output_section::Input_section::finalize_data_size()
2174{
2175 if (!this->is_input_section())
2176 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2177}
2178
1e983657
ILT
2179// Try to turn an input offset into an output offset. We want to
2180// return the output offset relative to the start of this
2181// Input_section in the output section.
b8e6aad9 2182
8f00aeb8 2183inline bool
8383303e
ILT
2184Output_section::Input_section::output_offset(
2185 const Relobj* object,
2ea97941
ILT
2186 unsigned int shndx,
2187 section_offset_type offset,
ca09d69a 2188 section_offset_type* poutput) const
b8e6aad9
ILT
2189{
2190 if (!this->is_input_section())
2ea97941 2191 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2192 else
2193 {
2ea97941 2194 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2195 return false;
2ea97941 2196 *poutput = offset;
b8e6aad9
ILT
2197 return true;
2198 }
ead1e424
ILT
2199}
2200
a9a60db6
ILT
2201// Return whether this is the merge section for the input section
2202// SHNDX in OBJECT.
2203
2204inline bool
2205Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2206 unsigned int shndx) const
a9a60db6
ILT
2207{
2208 if (this->is_input_section())
2209 return false;
2ea97941 2210 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2211}
2212
ead1e424
ILT
2213// Write out the data. We don't have to do anything for an input
2214// section--they are handled via Object::relocate--but this is where
2215// we write out the data for an Output_section_data.
2216
2217void
2218Output_section::Input_section::write(Output_file* of)
2219{
2220 if (!this->is_input_section())
b8e6aad9 2221 this->u2_.posd->write(of);
ead1e424
ILT
2222}
2223
96803768
ILT
2224// Write the data to a buffer. As for write(), we don't have to do
2225// anything for an input section.
2226
2227void
2228Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2229{
2230 if (!this->is_input_section())
2231 this->u2_.posd->write_to_buffer(buffer);
2232}
2233
7d9e3d98
ILT
2234// Print to a map file.
2235
2236void
2237Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2238{
2239 switch (this->shndx_)
2240 {
2241 case OUTPUT_SECTION_CODE:
2242 case MERGE_DATA_SECTION_CODE:
2243 case MERGE_STRING_SECTION_CODE:
2244 this->u2_.posd->print_to_mapfile(mapfile);
2245 break;
2246
20e6d0d6
DK
2247 case RELAXED_INPUT_SECTION_CODE:
2248 {
2249 Output_relaxed_input_section* relaxed_section =
2250 this->relaxed_input_section();
2251 mapfile->print_input_section(relaxed_section->relobj(),
2252 relaxed_section->shndx());
2253 }
2254 break;
7d9e3d98
ILT
2255 default:
2256 mapfile->print_input_section(this->u2_.object, this->shndx_);
2257 break;
2258 }
2259}
2260
a2fb1b05
ILT
2261// Output_section methods.
2262
2263// Construct an Output_section. NAME will point into a Stringpool.
2264
2ea97941
ILT
2265Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2266 elfcpp::Elf_Xword flags)
2267 : name_(name),
a2fb1b05
ILT
2268 addralign_(0),
2269 entsize_(0),
a445fddf 2270 load_address_(0),
16649710 2271 link_section_(NULL),
a2fb1b05 2272 link_(0),
16649710 2273 info_section_(NULL),
6a74a719 2274 info_symndx_(NULL),
a2fb1b05 2275 info_(0),
2ea97941
ILT
2276 type_(type),
2277 flags_(flags),
22f0da72 2278 order_(ORDER_INVALID),
91ea499d 2279 out_shndx_(-1U),
c06b7b0b
ILT
2280 symtab_index_(0),
2281 dynsym_index_(0),
ead1e424
ILT
2282 input_sections_(),
2283 first_input_offset_(0),
c51e6221 2284 fills_(),
96803768 2285 postprocessing_buffer_(NULL),
a3ad94ed 2286 needs_symtab_index_(false),
16649710
ILT
2287 needs_dynsym_index_(false),
2288 should_link_to_symtab_(false),
730cdc88 2289 should_link_to_dynsym_(false),
27bc2bce 2290 after_input_sections_(false),
7bf1f802 2291 requires_postprocessing_(false),
a445fddf
ILT
2292 found_in_sections_clause_(false),
2293 has_load_address_(false),
755ab8af 2294 info_uses_section_index_(false),
6e9ba2ca 2295 input_section_order_specified_(false),
2fd32231
ILT
2296 may_sort_attached_input_sections_(false),
2297 must_sort_attached_input_sections_(false),
2298 attached_input_sections_are_sorted_(false),
9f1d377b 2299 is_relro_(false),
8a5e3e08
ILT
2300 is_small_section_(false),
2301 is_large_section_(false),
f5c870d2 2302 generate_code_fills_at_write_(false),
e8cd95c7 2303 is_entsize_zero_(false),
8923b24c 2304 section_offsets_need_adjustment_(false),
1e5d2fb1 2305 is_noload_(false),
131687b4 2306 always_keeps_input_sections_(false),
cdc29364 2307 has_fixed_layout_(false),
9fbd3822 2308 is_patch_space_allowed_(false),
16164a6b 2309 is_unique_segment_(false),
20e6d0d6 2310 tls_offset_(0),
16164a6b
ST
2311 extra_segment_flags_(0),
2312 segment_alignment_(0),
c0a62865 2313 checkpoint_(NULL),
cdc29364 2314 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2315 free_list_(),
8ea8cd50 2316 free_space_fill_(NULL),
9fbd3822 2317 patch_space_(0)
a2fb1b05 2318{
27bc2bce
ILT
2319 // An unallocated section has no address. Forcing this means that
2320 // we don't need special treatment for symbols defined in debug
2321 // sections.
2ea97941 2322 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2323 this->set_address(0);
a2fb1b05
ILT
2324}
2325
54dc6425
ILT
2326Output_section::~Output_section()
2327{
20e6d0d6 2328 delete this->checkpoint_;
54dc6425
ILT
2329}
2330
16649710
ILT
2331// Set the entry size.
2332
2333void
2334Output_section::set_entsize(uint64_t v)
2335{
e8cd95c7
ILT
2336 if (this->is_entsize_zero_)
2337 ;
2338 else if (this->entsize_ == 0)
16649710 2339 this->entsize_ = v;
e8cd95c7
ILT
2340 else if (this->entsize_ != v)
2341 {
2342 this->entsize_ = 0;
2343 this->is_entsize_zero_ = 1;
2344 }
16649710
ILT
2345}
2346
ead1e424 2347// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2348// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2349// relocation section which applies to this section, or 0 if none, or
2350// -1U if more than one. Return the offset of the input section
2351// within the output section. Return -1 if the input section will
2352// receive special handling. In the normal case we don't always keep
2353// track of input sections for an Output_section. Instead, each
2354// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2355// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2356// track of input sections here; this is used when SECTIONS appears in
2357// a linker script.
a2fb1b05
ILT
2358
2359template<int size, bool big_endian>
2360off_t
6e9ba2ca 2361Output_section::add_input_section(Layout* layout,
6fa2a40b 2362 Sized_relobj_file<size, big_endian>* object,
2ea97941 2363 unsigned int shndx,
ead1e424 2364 const char* secname,
730cdc88 2365 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2366 unsigned int reloc_shndx,
2367 bool have_sections_script)
a2fb1b05 2368{
2ea97941
ILT
2369 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2370 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2371 {
75f2446e 2372 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2373 static_cast<unsigned long>(addralign), secname);
2374 addralign = 1;
a2fb1b05 2375 }
a2fb1b05 2376
2ea97941
ILT
2377 if (addralign > this->addralign_)
2378 this->addralign_ = addralign;
a2fb1b05 2379
44a43cf9 2380 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2381 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2382
2383 // .debug_str is a mergeable string section, but is not always so
2384 // marked by compilers. Mark manually here so we can optimize.
2385 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2386 {
2387 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2388 entsize = 1;
4f833eee 2389 }
44a43cf9 2390
e8cd95c7
ILT
2391 this->update_flags_for_input_section(sh_flags);
2392 this->set_entsize(entsize);
2393
b8e6aad9 2394 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2395 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2396 // a section. We don't try to handle empty merge sections--they
2397 // mess up the mappings, and are useless anyhow.
cdc29364 2398 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2399 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2400 && reloc_shndx == 0
cdc29364
CC
2401 && shdr.get_sh_size() > 0
2402 && !parameters->incremental())
b8e6aad9 2403 {
0439c796
DK
2404 // Keep information about merged input sections for rebuilding fast
2405 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2406 bool keeps_input_sections = (this->always_keeps_input_sections_
2407 || have_sections_script
2408 || parameters->target().may_relax());
2409
0439c796
DK
2410 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2411 addralign, keeps_input_sections))
b8e6aad9
ILT
2412 {
2413 // Tell the relocation routines that they need to call the
730cdc88 2414 // output_offset method to determine the final address.
b8e6aad9
ILT
2415 return -1;
2416 }
2417 }
2418
cdc29364
CC
2419 section_size_type input_section_size = shdr.get_sh_size();
2420 section_size_type uncompressed_size;
2421 if (object->section_is_compressed(shndx, &uncompressed_size))
2422 input_section_size = uncompressed_size;
2423
2424 off_t offset_in_section;
2425 off_t aligned_offset_in_section;
2426 if (this->has_fixed_layout())
2427 {
2428 // For incremental updates, find a chunk of unused space in the section.
2429 offset_in_section = this->free_list_.allocate(input_section_size,
2430 addralign, 0);
2431 if (offset_in_section == -1)
9fbd3822
CC
2432 gold_fallback(_("out of patch space in section %s; "
2433 "relink with --incremental-full"),
2434 this->name());
cdc29364
CC
2435 aligned_offset_in_section = offset_in_section;
2436 }
2437 else
2438 {
2439 offset_in_section = this->current_data_size_for_child();
2440 aligned_offset_in_section = align_address(offset_in_section,
2441 addralign);
2442 this->set_current_data_size_for_child(aligned_offset_in_section
2443 + input_section_size);
2444 }
c51e6221 2445
c0a62865
DK
2446 // Determine if we want to delay code-fill generation until the output
2447 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2448 // generating to avoid adjusting them during relaxation. Also, if we are
2449 // sorting input sections we must delay fill generation.
c0a62865
DK
2450 if (!this->generate_code_fills_at_write_
2451 && !have_sections_script
2452 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2453 && parameters->target().has_code_fill()
4cf7a849 2454 && (parameters->target().may_relax()
e9552f7e 2455 || layout->is_section_ordering_specified()))
c0a62865
DK
2456 {
2457 gold_assert(this->fills_.empty());
2458 this->generate_code_fills_at_write_ = true;
2459 }
2460
c51e6221 2461 if (aligned_offset_in_section > offset_in_section
c0a62865 2462 && !this->generate_code_fills_at_write_
a445fddf 2463 && !have_sections_script
44a43cf9 2464 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2465 && parameters->target().has_code_fill())
c51e6221
ILT
2466 {
2467 // We need to add some fill data. Using fill_list_ when
2468 // possible is an optimization, since we will often have fill
2469 // sections without input sections.
2470 off_t fill_len = aligned_offset_in_section - offset_in_section;
2471 if (this->input_sections_.empty())
2472 this->fills_.push_back(Fill(offset_in_section, fill_len));
2473 else
2474 {
029ba973 2475 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2476 Output_data_const* odc = new Output_data_const(fill_data, 1);
2477 this->input_sections_.push_back(Input_section(odc));
2478 }
2479 }
2480
ead1e424 2481 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2482 // track of sections, or if we are relaxing. Also, if this is a
2483 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2484 // the future, we keep track of the sections. If the
2485 // --section-ordering-file option is used to specify the order of
2486 // sections, we need to keep track of sections.
131687b4
DK
2487 if (this->always_keeps_input_sections_
2488 || have_sections_script
2fd32231
ILT
2489 || !this->input_sections_.empty()
2490 || this->may_sort_attached_input_sections()
7d9e3d98 2491 || this->must_sort_attached_input_sections()
20e6d0d6 2492 || parameters->options().user_set_Map()
6e9ba2ca 2493 || parameters->target().may_relax()
edcac0c1 2494 || layout->is_section_ordering_specified())
6e9ba2ca 2495 {
6fc6ea19 2496 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2497 /* If section ordering is requested by specifying a ordering file,
2498 using --section-ordering-file, match the section name with
2499 a pattern. */
2500 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2501 {
2502 unsigned int section_order_index =
2503 layout->find_section_order_index(std::string(secname));
2504 if (section_order_index != 0)
2505 {
2506 isecn.set_section_order_index(section_order_index);
2507 this->set_input_section_order_specified();
2508 }
2509 }
cdc29364
CC
2510 if (this->has_fixed_layout())
2511 {
2512 // For incremental updates, finalize the address and offset now.
2513 uint64_t addr = this->address();
2514 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2515 aligned_offset_in_section,
2516 this->offset());
2517 }
6e9ba2ca
ST
2518 this->input_sections_.push_back(isecn);
2519 }
54dc6425 2520
c51e6221 2521 return aligned_offset_in_section;
61ba1cf9
ILT
2522}
2523
ead1e424
ILT
2524// Add arbitrary data to an output section.
2525
2526void
2527Output_section::add_output_section_data(Output_section_data* posd)
2528{
b8e6aad9
ILT
2529 Input_section inp(posd);
2530 this->add_output_section_data(&inp);
a445fddf
ILT
2531
2532 if (posd->is_data_size_valid())
2533 {
cdc29364
CC
2534 off_t offset_in_section;
2535 if (this->has_fixed_layout())
2536 {
2537 // For incremental updates, find a chunk of unused space.
2538 offset_in_section = this->free_list_.allocate(posd->data_size(),
2539 posd->addralign(), 0);
2540 if (offset_in_section == -1)
9fbd3822
CC
2541 gold_fallback(_("out of patch space in section %s; "
2542 "relink with --incremental-full"),
2543 this->name());
cdc29364
CC
2544 // Finalize the address and offset now.
2545 uint64_t addr = this->address();
2546 off_t offset = this->offset();
2547 posd->set_address_and_file_offset(addr + offset_in_section,
2548 offset + offset_in_section);
2549 }
2550 else
2551 {
2552 offset_in_section = this->current_data_size_for_child();
2553 off_t aligned_offset_in_section = align_address(offset_in_section,
2554 posd->addralign());
2555 this->set_current_data_size_for_child(aligned_offset_in_section
2556 + posd->data_size());
2557 }
2558 }
2559 else if (this->has_fixed_layout())
2560 {
2561 // For incremental updates, arrange for the data to have a fixed layout.
2562 // This will mean that additions to the data must be allocated from
2563 // free space within the containing output section.
2564 uint64_t addr = this->address();
2565 posd->set_address(addr);
2566 posd->set_file_offset(0);
4829d394
CC
2567 // FIXME: This should eventually be unreachable.
2568 // gold_unreachable();
a445fddf 2569 }
b8e6aad9
ILT
2570}
2571
c0a62865
DK
2572// Add a relaxed input section.
2573
2574void
d06fb4d1
DK
2575Output_section::add_relaxed_input_section(Layout* layout,
2576 Output_relaxed_input_section* poris,
2577 const std::string& name)
c0a62865
DK
2578{
2579 Input_section inp(poris);
d06fb4d1
DK
2580
2581 // If the --section-ordering-file option is used to specify the order of
2582 // sections, we need to keep track of sections.
e9552f7e 2583 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2584 {
2585 unsigned int section_order_index =
2586 layout->find_section_order_index(name);
2587 if (section_order_index != 0)
2588 {
2589 inp.set_section_order_index(section_order_index);
2590 this->set_input_section_order_specified();
2591 }
2592 }
2593
c0a62865 2594 this->add_output_section_data(&inp);
0439c796
DK
2595 if (this->lookup_maps_->is_valid())
2596 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2597 poris->shndx(), poris);
c0a62865
DK
2598
2599 // For a relaxed section, we use the current data size. Linker scripts
2600 // get all the input sections, including relaxed one from an output
19fec8c1 2601 // section and add them back to the same output section to compute the
c0a62865 2602 // output section size. If we do not account for sizes of relaxed input
19fec8c1 2603 // sections, an output section would be incorrectly sized.
c0a62865
DK
2604 off_t offset_in_section = this->current_data_size_for_child();
2605 off_t aligned_offset_in_section = align_address(offset_in_section,
2606 poris->addralign());
2607 this->set_current_data_size_for_child(aligned_offset_in_section
2608 + poris->current_data_size());
2609}
2610
b8e6aad9 2611// Add arbitrary data to an output section by Input_section.
c06b7b0b 2612
b8e6aad9
ILT
2613void
2614Output_section::add_output_section_data(Input_section* inp)
2615{
ead1e424 2616 if (this->input_sections_.empty())
27bc2bce 2617 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2618
b8e6aad9 2619 this->input_sections_.push_back(*inp);
c06b7b0b 2620
2ea97941
ILT
2621 uint64_t addralign = inp->addralign();
2622 if (addralign > this->addralign_)
2623 this->addralign_ = addralign;
c06b7b0b 2624
b8e6aad9
ILT
2625 inp->set_output_section(this);
2626}
2627
2628// Add a merge section to an output section.
2629
2630void
2631Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2632 bool is_string, uint64_t entsize)
b8e6aad9 2633{
2ea97941 2634 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2635 this->add_output_section_data(&inp);
2636}
2637
2638// Add an input section to a SHF_MERGE section.
2639
2640bool
2ea97941
ILT
2641Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2642 uint64_t flags, uint64_t entsize,
0439c796
DK
2643 uint64_t addralign,
2644 bool keeps_input_sections)
b8e6aad9 2645{
2ea97941 2646 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2647
2648 // We only merge strings if the alignment is not more than the
2649 // character size. This could be handled, but it's unusual.
2ea97941 2650 if (is_string && addralign > entsize)
b8e6aad9
ILT
2651 return false;
2652
20e6d0d6
DK
2653 // We cannot restore merged input section states.
2654 gold_assert(this->checkpoint_ == NULL);
2655
c0a62865 2656 // Look up merge sections by required properties.
0439c796
DK
2657 // Currently, we only invalidate the lookup maps in script processing
2658 // and relaxation. We should not have done either when we reach here.
2659 // So we assume that the lookup maps are valid to simply code.
2660 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2661 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2662 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2663 bool is_new = false;
2664 if (pomb != NULL)
c0a62865 2665 {
6bf924b0
DK
2666 gold_assert(pomb->is_string() == is_string
2667 && pomb->entsize() == entsize
2668 && pomb->addralign() == addralign);
c0a62865 2669 }
b8e6aad9
ILT
2670 else
2671 {
6bf924b0
DK
2672 // Create a new Output_merge_data or Output_merge_string_data.
2673 if (!is_string)
2674 pomb = new Output_merge_data(entsize, addralign);
2675 else
9a0910c3 2676 {
6bf924b0
DK
2677 switch (entsize)
2678 {
2679 case 1:
2680 pomb = new Output_merge_string<char>(addralign);
2681 break;
2682 case 2:
2683 pomb = new Output_merge_string<uint16_t>(addralign);
2684 break;
2685 case 4:
2686 pomb = new Output_merge_string<uint32_t>(addralign);
2687 break;
2688 default:
2689 return false;
2690 }
9a0910c3 2691 }
0439c796
DK
2692 // If we need to do script processing or relaxation, we need to keep
2693 // the original input sections to rebuild the fast lookup maps.
2694 if (keeps_input_sections)
2695 pomb->set_keeps_input_sections();
2696 is_new = true;
b8e6aad9
ILT
2697 }
2698
6bf924b0
DK
2699 if (pomb->add_input_section(object, shndx))
2700 {
0439c796
DK
2701 // Add new merge section to this output section and link merge
2702 // section properties to new merge section in map.
2703 if (is_new)
2704 {
2705 this->add_output_merge_section(pomb, is_string, entsize);
2706 this->lookup_maps_->add_merge_section(msp, pomb);
2707 }
2708
6bf924b0
DK
2709 // Add input section to new merge section and link input section to new
2710 // merge section in map.
0439c796 2711 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2712 return true;
2713 }
2714 else
0439c796
DK
2715 {
2716 // If add_input_section failed, delete new merge section to avoid
2717 // exporting empty merge sections in Output_section::get_input_section.
2718 if (is_new)
2719 delete pomb;
2720 return false;
2721 }
b8e6aad9
ILT
2722}
2723
c0a62865 2724// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2725// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2726
20e6d0d6 2727void
c0a62865 2728Output_section::build_relaxation_map(
2ea97941 2729 const Input_section_list& input_sections,
c0a62865
DK
2730 size_t limit,
2731 Relaxation_map* relaxation_map) const
20e6d0d6 2732{
c0a62865
DK
2733 for (size_t i = 0; i < limit; ++i)
2734 {
2ea97941 2735 const Input_section& is(input_sections[i]);
c0a62865
DK
2736 if (is.is_input_section() || is.is_relaxed_input_section())
2737 {
5ac169d4
DK
2738 Section_id sid(is.relobj(), is.shndx());
2739 (*relaxation_map)[sid] = i;
c0a62865
DK
2740 }
2741 }
2742}
2743
2744// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2745// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2746// indices of INPUT_SECTIONS.
20e6d0d6 2747
c0a62865
DK
2748void
2749Output_section::convert_input_sections_in_list_to_relaxed_sections(
2750 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2751 const Relaxation_map& map,
2ea97941 2752 Input_section_list* input_sections)
c0a62865
DK
2753{
2754 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2755 {
2756 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2757 Section_id sid(poris->relobj(), poris->shndx());
2758 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2759 gold_assert(p != map.end());
2ea97941 2760 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2761
2762 // Remember section order index of original input section
2763 // if it is set. Copy it to the relaxed input section.
2764 unsigned int soi =
2765 (*input_sections)[p->second].section_order_index();
2ea97941 2766 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2767 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2768 }
2769}
50ed5eb1 2770
c0a62865
DK
2771// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2772// is a vector of pointers to Output_relaxed_input_section or its derived
2773// classes. The relaxed sections must correspond to existing input sections.
2774
2775void
2776Output_section::convert_input_sections_to_relaxed_sections(
2777 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2778{
029ba973 2779 gold_assert(parameters->target().may_relax());
20e6d0d6 2780
c0a62865
DK
2781 // We want to make sure that restore_states does not undo the effect of
2782 // this. If there is no checkpoint active, just search the current
2783 // input section list and replace the sections there. If there is
2784 // a checkpoint, also replace the sections there.
50ed5eb1 2785
c0a62865
DK
2786 // By default, we look at the whole list.
2787 size_t limit = this->input_sections_.size();
2788
2789 if (this->checkpoint_ != NULL)
20e6d0d6 2790 {
c0a62865
DK
2791 // Replace input sections with relaxed input section in the saved
2792 // copy of the input section list.
2793 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2794 {
c0a62865
DK
2795 Relaxation_map map;
2796 this->build_relaxation_map(
2797 *(this->checkpoint_->input_sections()),
2798 this->checkpoint_->input_sections()->size(),
2799 &map);
2800 this->convert_input_sections_in_list_to_relaxed_sections(
2801 relaxed_sections,
2802 map,
2803 this->checkpoint_->input_sections());
2804 }
2805 else
2806 {
2807 // We have not copied the input section list yet. Instead, just
2808 // look at the portion that would be saved.
2809 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2810 }
20e6d0d6 2811 }
c0a62865
DK
2812
2813 // Convert input sections in input_section_list.
2814 Relaxation_map map;
2815 this->build_relaxation_map(this->input_sections_, limit, &map);
2816 this->convert_input_sections_in_list_to_relaxed_sections(
2817 relaxed_sections,
2818 map,
2819 &this->input_sections_);
41263c05
DK
2820
2821 // Update fast look-up map.
0439c796 2822 if (this->lookup_maps_->is_valid())
41263c05
DK
2823 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2824 {
2825 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2826 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2827 poris->shndx(), poris);
41263c05 2828 }
20e6d0d6
DK
2829}
2830
9c547ec3
ILT
2831// Update the output section flags based on input section flags.
2832
2833void
2ea97941 2834Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2835{
2836 // If we created the section with SHF_ALLOC clear, we set the
2837 // address. If we are now setting the SHF_ALLOC flag, we need to
2838 // undo that.
2839 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2840 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2841 this->mark_address_invalid();
2842
2ea97941 2843 this->flags_ |= (flags
9c547ec3
ILT
2844 & (elfcpp::SHF_WRITE
2845 | elfcpp::SHF_ALLOC
2846 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2847
2848 if ((flags & elfcpp::SHF_MERGE) == 0)
2849 this->flags_ &=~ elfcpp::SHF_MERGE;
2850 else
2851 {
2852 if (this->current_data_size_for_child() == 0)
2853 this->flags_ |= elfcpp::SHF_MERGE;
2854 }
2855
2856 if ((flags & elfcpp::SHF_STRINGS) == 0)
2857 this->flags_ &=~ elfcpp::SHF_STRINGS;
2858 else
2859 {
2860 if (this->current_data_size_for_child() == 0)
2861 this->flags_ |= elfcpp::SHF_STRINGS;
2862 }
9c547ec3
ILT
2863}
2864
2ea97941 2865// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2866// OBJECT has been added. Return NULL if none found.
2867
2868Output_section_data*
2869Output_section::find_merge_section(const Relobj* object,
2ea97941 2870 unsigned int shndx) const
c0a62865 2871{
0439c796
DK
2872 if (!this->lookup_maps_->is_valid())
2873 this->build_lookup_maps();
2874 return this->lookup_maps_->find_merge_section(object, shndx);
2875}
2876
2877// Build the lookup maps for merge and relaxed sections. This is needs
2878// to be declared as a const methods so that it is callable with a const
2879// Output_section pointer. The method only updates states of the maps.
2880
2881void
2882Output_section::build_lookup_maps() const
2883{
2884 this->lookup_maps_->clear();
2885 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2886 p != this->input_sections_.end();
2887 ++p)
c0a62865 2888 {
0439c796
DK
2889 if (p->is_merge_section())
2890 {
2891 Output_merge_base* pomb = p->output_merge_base();
2892 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2893 pomb->addralign());
2894 this->lookup_maps_->add_merge_section(msp, pomb);
2895 for (Output_merge_base::Input_sections::const_iterator is =
2896 pomb->input_sections_begin();
2897 is != pomb->input_sections_end();
50ed5eb1 2898 ++is)
0439c796
DK
2899 {
2900 const Const_section_id& csid = *is;
2901 this->lookup_maps_->add_merge_input_section(csid.first,
2902 csid.second, pomb);
2903 }
50ed5eb1 2904
0439c796
DK
2905 }
2906 else if (p->is_relaxed_input_section())
2907 {
2908 Output_relaxed_input_section* poris = p->relaxed_input_section();
2909 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2910 poris->shndx(), poris);
2911 }
c0a62865 2912 }
c0a62865
DK
2913}
2914
2915// Find an relaxed input section corresponding to an input section
2ea97941 2916// in OBJECT with index SHNDX.
c0a62865 2917
d6344fb5 2918const Output_relaxed_input_section*
c0a62865 2919Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2920 unsigned int shndx) const
c0a62865 2921{
0439c796
DK
2922 if (!this->lookup_maps_->is_valid())
2923 this->build_lookup_maps();
2924 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2925}
2926
2ea97941
ILT
2927// Given an address OFFSET relative to the start of input section
2928// SHNDX in OBJECT, return whether this address is being included in
2929// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2930// a special mapping.
2931
2932bool
2933Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2934 unsigned int shndx,
2935 off_t offset) const
730cdc88 2936{
c0a62865 2937 // Look at the Output_section_data_maps first.
2ea97941 2938 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2939 if (posd == NULL)
2ea97941 2940 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2941
2942 if (posd != NULL)
2943 {
2ea97941
ILT
2944 section_offset_type output_offset;
2945 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2946 gold_assert(found);
2ea97941 2947 return output_offset != -1;
c0a62865
DK
2948 }
2949
2950 // Fall back to the slow look-up.
730cdc88
ILT
2951 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2952 p != this->input_sections_.end();
2953 ++p)
2954 {
2ea97941
ILT
2955 section_offset_type output_offset;
2956 if (p->output_offset(object, shndx, offset, &output_offset))
2957 return output_offset != -1;
730cdc88
ILT
2958 }
2959
2960 // By default we assume that the address is mapped. This should
2961 // only be called after we have passed all sections to Layout. At
2962 // that point we should know what we are discarding.
2963 return true;
2964}
2965
2ea97941
ILT
2966// Given an address OFFSET relative to the start of input section
2967// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2968// start of the input section in the output section. This should only
2ea97941 2969// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2970
8383303e 2971section_offset_type
2ea97941
ILT
2972Output_section::output_offset(const Relobj* object, unsigned int shndx,
2973 section_offset_type offset) const
730cdc88 2974{
c0a62865
DK
2975 // This can only be called meaningfully when we know the data size
2976 // of this.
2977 gold_assert(this->is_data_size_valid());
730cdc88 2978
c0a62865 2979 // Look at the Output_section_data_maps first.
2ea97941 2980 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 2981 if (posd == NULL)
2ea97941 2982 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2983 if (posd != NULL)
2984 {
2ea97941
ILT
2985 section_offset_type output_offset;
2986 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2987 gold_assert(found);
2ea97941 2988 return output_offset;
c0a62865
DK
2989 }
2990
2991 // Fall back to the slow look-up.
730cdc88
ILT
2992 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2993 p != this->input_sections_.end();
2994 ++p)
2995 {
2ea97941
ILT
2996 section_offset_type output_offset;
2997 if (p->output_offset(object, shndx, offset, &output_offset))
2998 return output_offset;
730cdc88
ILT
2999 }
3000 gold_unreachable();
3001}
3002
2ea97941
ILT
3003// Return the output virtual address of OFFSET relative to the start
3004// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
3005
3006uint64_t
2ea97941
ILT
3007Output_section::output_address(const Relobj* object, unsigned int shndx,
3008 off_t offset) const
b8e6aad9
ILT
3009{
3010 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
3011
3012 // Look at the Output_section_data_maps first.
2ea97941 3013 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 3014 if (posd == NULL)
2ea97941 3015 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
3016 if (posd != NULL && posd->is_address_valid())
3017 {
2ea97941
ILT
3018 section_offset_type output_offset;
3019 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 3020 gold_assert(found);
2ea97941 3021 return posd->address() + output_offset;
c0a62865
DK
3022 }
3023
3024 // Fall back to the slow look-up.
b8e6aad9
ILT
3025 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3026 p != this->input_sections_.end();
3027 ++p)
3028 {
3029 addr = align_address(addr, p->addralign());
2ea97941
ILT
3030 section_offset_type output_offset;
3031 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3032 {
2ea97941 3033 if (output_offset == -1)
eff45813 3034 return -1ULL;
2ea97941 3035 return addr + output_offset;
730cdc88 3036 }
b8e6aad9
ILT
3037 addr += p->data_size();
3038 }
3039
3040 // If we get here, it means that we don't know the mapping for this
3041 // input section. This might happen in principle if
3042 // add_input_section were called before add_output_section_data.
3043 // But it should never actually happen.
3044
3045 gold_unreachable();
ead1e424
ILT
3046}
3047
e29e076a 3048// Find the output address of the start of the merged section for
2ea97941 3049// input section SHNDX in object OBJECT.
a9a60db6 3050
e29e076a
ILT
3051bool
3052Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3053 unsigned int shndx,
e29e076a 3054 uint64_t* paddr) const
a9a60db6 3055{
c0a62865
DK
3056 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3057 // Looking up the merge section map does not always work as we sometimes
3058 // find a merge section without its address set.
a9a60db6
ILT
3059 uint64_t addr = this->address() + this->first_input_offset_;
3060 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3061 p != this->input_sections_.end();
3062 ++p)
3063 {
3064 addr = align_address(addr, p->addralign());
3065
3066 // It would be nice if we could use the existing output_offset
3067 // method to get the output offset of input offset 0.
3068 // Unfortunately we don't know for sure that input offset 0 is
3069 // mapped at all.
2ea97941 3070 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3071 {
3072 *paddr = addr;
3073 return true;
3074 }
a9a60db6
ILT
3075
3076 addr += p->data_size();
3077 }
e29e076a
ILT
3078
3079 // We couldn't find a merge output section for this input section.
3080 return false;
a9a60db6
ILT
3081}
3082
cdc29364
CC
3083// Update the data size of an Output_section.
3084
3085void
3086Output_section::update_data_size()
3087{
3088 if (this->input_sections_.empty())
3089 return;
3090
3091 if (this->must_sort_attached_input_sections()
3092 || this->input_section_order_specified())
3093 this->sort_attached_input_sections();
3094
3095 off_t off = this->first_input_offset_;
3096 for (Input_section_list::iterator p = this->input_sections_.begin();
3097 p != this->input_sections_.end();
3098 ++p)
3099 {
3100 off = align_address(off, p->addralign());
3101 off += p->current_data_size();
3102 }
3103
3104 this->set_current_data_size_for_child(off);
3105}
3106
27bc2bce 3107// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3108// setting the addresses of any Output_section_data objects.
3109
3110void
27bc2bce 3111Output_section::set_final_data_size()
ead1e424 3112{
9fbd3822
CC
3113 off_t data_size;
3114
ead1e424 3115 if (this->input_sections_.empty())
9fbd3822
CC
3116 data_size = this->current_data_size_for_child();
3117 else
27bc2bce 3118 {
9fbd3822
CC
3119 if (this->must_sort_attached_input_sections()
3120 || this->input_section_order_specified())
3121 this->sort_attached_input_sections();
ead1e424 3122
9fbd3822
CC
3123 uint64_t address = this->address();
3124 off_t startoff = this->offset();
3125 off_t off = startoff + this->first_input_offset_;
3126 for (Input_section_list::iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3128 ++p)
3129 {
3130 off = align_address(off, p->addralign());
3131 p->set_address_and_file_offset(address + (off - startoff), off,
3132 startoff);
3133 off += p->data_size();
3134 }
3135 data_size = off - startoff;
3136 }
2fd32231 3137
9fbd3822
CC
3138 // For full incremental links, we want to allocate some patch space
3139 // in most sections for subsequent incremental updates.
3140 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3141 {
9fbd3822 3142 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3143 size_t extra = static_cast<size_t>(data_size * pct);
3144 if (this->free_space_fill_ != NULL
3145 && this->free_space_fill_->minimum_hole_size() > extra)
3146 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3147 off_t new_size = align_address(data_size + extra, this->addralign());
3148 this->patch_space_ = new_size - data_size;
3149 gold_debug(DEBUG_INCREMENTAL,
3150 "set_final_data_size: %08lx + %08lx: section %s",
3151 static_cast<long>(data_size),
3152 static_cast<long>(this->patch_space_),
3153 this->name());
3154 data_size = new_size;
ead1e424
ILT
3155 }
3156
9fbd3822 3157 this->set_data_size(data_size);
ead1e424 3158}
9a0910c3 3159
a445fddf
ILT
3160// Reset the address and file offset.
3161
3162void
3163Output_section::do_reset_address_and_file_offset()
3164{
20e6d0d6
DK
3165 // An unallocated section has no address. Forcing this means that
3166 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3167 // sections. We do the same in the constructor. This does not
3168 // apply to NOLOAD sections though.
3169 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3170 this->set_address(0);
3171
a445fddf
ILT
3172 for (Input_section_list::iterator p = this->input_sections_.begin();
3173 p != this->input_sections_.end();
3174 ++p)
3175 p->reset_address_and_file_offset();
9fbd3822
CC
3176
3177 // Remove any patch space that was added in set_final_data_size.
3178 if (this->patch_space_ > 0)
3179 {
3180 this->set_current_data_size_for_child(this->current_data_size_for_child()
3181 - this->patch_space_);
3182 this->patch_space_ = 0;
3183 }
a445fddf 3184}
9fbd3822 3185
20e6d0d6
DK
3186// Return true if address and file offset have the values after reset.
3187
3188bool
3189Output_section::do_address_and_file_offset_have_reset_values() const
3190{
3191 if (this->is_offset_valid())
3192 return false;
3193
3194 // An unallocated section has address 0 after its construction or a reset.
3195 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3196 return this->is_address_valid() && this->address() == 0;
3197 else
3198 return !this->is_address_valid();
3199}
a445fddf 3200
7bf1f802
ILT
3201// Set the TLS offset. Called only for SHT_TLS sections.
3202
3203void
3204Output_section::do_set_tls_offset(uint64_t tls_base)
3205{
3206 this->tls_offset_ = this->address() - tls_base;
3207}
3208
2fd32231
ILT
3209// In a few cases we need to sort the input sections attached to an
3210// output section. This is used to implement the type of constructor
3211// priority ordering implemented by the GNU linker, in which the
3212// priority becomes part of the section name and the sections are
3213// sorted by name. We only do this for an output section if we see an
5393d741 3214// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3215// ".init_array.*" or ".fini_array.*".
3216
3217class Output_section::Input_section_sort_entry
3218{
3219 public:
3220 Input_section_sort_entry()
3221 : input_section_(), index_(-1U), section_has_name_(false),
3222 section_name_()
3223 { }
3224
2ea97941 3225 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3226 unsigned int index,
3227 bool must_sort_attached_input_sections)
2ea97941
ILT
3228 : input_section_(input_section), index_(index),
3229 section_has_name_(input_section.is_input_section()
3230 || input_section.is_relaxed_input_section())
2fd32231 3231 {
6e9ba2ca
ST
3232 if (this->section_has_name_
3233 && must_sort_attached_input_sections)
2fd32231
ILT
3234 {
3235 // This is only called single-threaded from Layout::finalize,
3236 // so it is OK to lock. Unfortunately we have no way to pass
3237 // in a Task token.
3238 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3239 Object* obj = (input_section.is_input_section()
3240 ? input_section.relobj()
3241 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3242 Task_lock_obj<Object> tl(dummy_task, obj);
3243
3244 // This is a slow operation, which should be cached in
3245 // Layout::layout if this becomes a speed problem.
2ea97941 3246 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3247 }
3248 }
3249
3250 // Return the Input_section.
3251 const Input_section&
3252 input_section() const
3253 {
3254 gold_assert(this->index_ != -1U);
3255 return this->input_section_;
3256 }
3257
3258 // The index of this entry in the original list. This is used to
3259 // make the sort stable.
3260 unsigned int
3261 index() const
3262 {
3263 gold_assert(this->index_ != -1U);
3264 return this->index_;
3265 }
3266
3267 // Whether there is a section name.
3268 bool
3269 section_has_name() const
3270 { return this->section_has_name_; }
3271
3272 // The section name.
3273 const std::string&
3274 section_name() const
3275 {
3276 gold_assert(this->section_has_name_);
3277 return this->section_name_;
3278 }
3279
ab794b6b
ILT
3280 // Return true if the section name has a priority. This is assumed
3281 // to be true if it has a dot after the initial dot.
2fd32231 3282 bool
ab794b6b 3283 has_priority() const
2fd32231
ILT
3284 {
3285 gold_assert(this->section_has_name_);
2a0ff005 3286 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3287 }
3288
5393d741
ILT
3289 // Return the priority. Believe it or not, gcc encodes the priority
3290 // differently for .ctors/.dtors and .init_array/.fini_array
3291 // sections.
3292 unsigned int
3293 get_priority() const
3294 {
3295 gold_assert(this->section_has_name_);
3296 bool is_ctors;
3297 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3298 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3299 is_ctors = true;
3300 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3301 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3302 is_ctors = false;
3303 else
3304 return 0;
3305 char* end;
3306 unsigned long prio = strtoul((this->section_name_.c_str()
3307 + (is_ctors ? 7 : 12)),
3308 &end, 10);
3309 if (*end != '\0')
3310 return 0;
3311 else if (is_ctors)
3312 return 65535 - prio;
3313 else
3314 return prio;
3315 }
3316
ab794b6b
ILT
3317 // Return true if this an input file whose base name matches
3318 // FILE_NAME. The base name must have an extension of ".o", and
3319 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3320 // This is to match crtbegin.o as well as crtbeginS.o without
3321 // getting confused by other possibilities. Overall matching the
3322 // file name this way is a dreadful hack, but the GNU linker does it
3323 // in order to better support gcc, and we need to be compatible.
2fd32231 3324 bool
5393d741 3325 match_file_name(const char* file_name) const
edcac0c1
ILT
3326 {
3327 if (this->input_section_.is_output_section_data())
3328 return false;
3329 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3330 }
2fd32231 3331
8fe2a369
ST
3332 // Returns 1 if THIS should appear before S in section order, -1 if S
3333 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3334 int
3335 compare_section_ordering(const Input_section_sort_entry& s) const
3336 {
8fe2a369
ST
3337 unsigned int this_secn_index = this->input_section_.section_order_index();
3338 unsigned int s_secn_index = s.input_section().section_order_index();
3339 if (this_secn_index > 0 && s_secn_index > 0)
3340 {
3341 if (this_secn_index < s_secn_index)
3342 return 1;
3343 else if (this_secn_index > s_secn_index)
3344 return -1;
3345 }
3346 return 0;
6e9ba2ca
ST
3347 }
3348
2fd32231
ILT
3349 private:
3350 // The Input_section we are sorting.
3351 Input_section input_section_;
3352 // The index of this Input_section in the original list.
3353 unsigned int index_;
3354 // Whether this Input_section has a section name--it won't if this
3355 // is some random Output_section_data.
3356 bool section_has_name_;
3357 // The section name if there is one.
3358 std::string section_name_;
3359};
3360
3361// Return true if S1 should come before S2 in the output section.
3362
3363bool
3364Output_section::Input_section_sort_compare::operator()(
3365 const Output_section::Input_section_sort_entry& s1,
3366 const Output_section::Input_section_sort_entry& s2) const
3367{
ab794b6b
ILT
3368 // crtbegin.o must come first.
3369 bool s1_begin = s1.match_file_name("crtbegin");
3370 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3371 if (s1_begin || s2_begin)
3372 {
3373 if (!s1_begin)
3374 return false;
3375 if (!s2_begin)
3376 return true;
3377 return s1.index() < s2.index();
3378 }
3379
ab794b6b
ILT
3380 // crtend.o must come last.
3381 bool s1_end = s1.match_file_name("crtend");
3382 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3383 if (s1_end || s2_end)
3384 {
3385 if (!s1_end)
3386 return true;
3387 if (!s2_end)
3388 return false;
3389 return s1.index() < s2.index();
3390 }
3391
ab794b6b
ILT
3392 // We sort all the sections with no names to the end.
3393 if (!s1.section_has_name() || !s2.section_has_name())
3394 {
3395 if (s1.section_has_name())
3396 return true;
3397 if (s2.section_has_name())
3398 return false;
3399 return s1.index() < s2.index();
3400 }
2fd32231 3401
edcac0c1
ILT
3402 // Some input section names have special ordering requirements.
3403 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3404 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3405 if (o1 != o2)
3406 {
3407 if (o1 < 0)
3408 return false;
3409 else if (o2 < 0)
3410 return true;
3411 else
3412 return o1 < o2;
3413 }
3414
ab794b6b 3415 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3416 bool s1_has_priority = s1.has_priority();
3417 bool s2_has_priority = s2.has_priority();
3418 if (s1_has_priority && !s2_has_priority)
2fd32231 3419 return false;
ab794b6b 3420 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3421 return true;
3422
6e9ba2ca
ST
3423 // Check if a section order exists for these sections through a section
3424 // ordering file. If sequence_num is 0, an order does not exist.
3425 int sequence_num = s1.compare_section_ordering(s2);
3426 if (sequence_num != 0)
3427 return sequence_num == 1;
3428
2fd32231
ILT
3429 // Otherwise we sort by name.
3430 int compare = s1.section_name().compare(s2.section_name());
3431 if (compare != 0)
3432 return compare < 0;
3433
3434 // Otherwise we keep the input order.
3435 return s1.index() < s2.index();
3436}
3437
2a0ff005
DK
3438// Return true if S1 should come before S2 in an .init_array or .fini_array
3439// output section.
3440
3441bool
3442Output_section::Input_section_sort_init_fini_compare::operator()(
3443 const Output_section::Input_section_sort_entry& s1,
3444 const Output_section::Input_section_sort_entry& s2) const
3445{
3446 // We sort all the sections with no names to the end.
3447 if (!s1.section_has_name() || !s2.section_has_name())
3448 {
3449 if (s1.section_has_name())
3450 return true;
3451 if (s2.section_has_name())
3452 return false;
3453 return s1.index() < s2.index();
3454 }
3455
3456 // A section without a priority follows a section with a priority.
3457 // This is the reverse of .ctors and .dtors sections.
3458 bool s1_has_priority = s1.has_priority();
3459 bool s2_has_priority = s2.has_priority();
3460 if (s1_has_priority && !s2_has_priority)
3461 return true;
3462 if (!s1_has_priority && s2_has_priority)
3463 return false;
3464
5393d741
ILT
3465 // .ctors and .dtors sections without priority come after
3466 // .init_array and .fini_array sections without priority.
3467 if (!s1_has_priority
3468 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3469 && s1.section_name() != s2.section_name())
3470 return false;
3471 if (!s2_has_priority
3472 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3473 && s2.section_name() != s1.section_name())
3474 return true;
3475
3476 // Sort by priority if we can.
3477 if (s1_has_priority)
3478 {
3479 unsigned int s1_prio = s1.get_priority();
3480 unsigned int s2_prio = s2.get_priority();
3481 if (s1_prio < s2_prio)
3482 return true;
3483 else if (s1_prio > s2_prio)
3484 return false;
3485 }
3486
6e9ba2ca
ST
3487 // Check if a section order exists for these sections through a section
3488 // ordering file. If sequence_num is 0, an order does not exist.
3489 int sequence_num = s1.compare_section_ordering(s2);
3490 if (sequence_num != 0)
3491 return sequence_num == 1;
3492
2a0ff005
DK
3493 // Otherwise we sort by name.
3494 int compare = s1.section_name().compare(s2.section_name());
3495 if (compare != 0)
3496 return compare < 0;
3497
3498 // Otherwise we keep the input order.
3499 return s1.index() < s2.index();
3500}
3501
8fe2a369
ST
3502// Return true if S1 should come before S2. Sections that do not match
3503// any pattern in the section ordering file are placed ahead of the sections
edcac0c1 3504// that match some pattern.
8fe2a369 3505
6e9ba2ca
ST
3506bool
3507Output_section::Input_section_sort_section_order_index_compare::operator()(
3508 const Output_section::Input_section_sort_entry& s1,
3509 const Output_section::Input_section_sort_entry& s2) const
3510{
8fe2a369
ST
3511 unsigned int s1_secn_index = s1.input_section().section_order_index();
3512 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3513
edcac0c1
ILT
3514 // Keep input order if section ordering cannot determine order.
3515 if (s1_secn_index == s2_secn_index)
28f2a4ac 3516 return s1.index() < s2.index();
edcac0c1
ILT
3517
3518 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3519}
3520
e9552f7e
ST
3521// This updates the section order index of input sections according to the
3522// the order specified in the mapping from Section id to order index.
3523
3524void
3525Output_section::update_section_layout(
f0558624 3526 const Section_layout_order* order_map)
e9552f7e
ST
3527{
3528 for (Input_section_list::iterator p = this->input_sections_.begin();
3529 p != this->input_sections_.end();
3530 ++p)
3531 {
3532 if (p->is_input_section()
3533 || p->is_relaxed_input_section())
3534 {
3535 Object* obj = (p->is_input_section()
3536 ? p->relobj()
3537 : p->relaxed_input_section()->relobj());
3538 unsigned int shndx = p->shndx();
3539 Section_layout_order::const_iterator it
f0558624
ST
3540 = order_map->find(Section_id(obj, shndx));
3541 if (it == order_map->end())
e9552f7e
ST
3542 continue;
3543 unsigned int section_order_index = it->second;
3544 if (section_order_index != 0)
3545 {
3546 p->set_section_order_index(section_order_index);
3547 this->set_input_section_order_specified();
3548 }
3549 }
3550 }
3551}
3552
2fd32231
ILT
3553// Sort the input sections attached to an output section.
3554
3555void
3556Output_section::sort_attached_input_sections()
3557{
3558 if (this->attached_input_sections_are_sorted_)
3559 return;
3560
20e6d0d6
DK
3561 if (this->checkpoint_ != NULL
3562 && !this->checkpoint_->input_sections_saved())
3563 this->checkpoint_->save_input_sections();
3564
2fd32231
ILT
3565 // The only thing we know about an input section is the object and
3566 // the section index. We need the section name. Recomputing this
3567 // is slow but this is an unusual case. If this becomes a speed
3568 // problem we can cache the names as required in Layout::layout.
3569
3570 // We start by building a larger vector holding a copy of each
3571 // Input_section, plus its current index in the list and its name.
3572 std::vector<Input_section_sort_entry> sort_list;
3573
3574 unsigned int i = 0;
3575 for (Input_section_list::iterator p = this->input_sections_.begin();
3576 p != this->input_sections_.end();
3577 ++p, ++i)
6e9ba2ca 3578 sort_list.push_back(Input_section_sort_entry(*p, i,
edcac0c1 3579 this->must_sort_attached_input_sections()));
2fd32231
ILT
3580
3581 // Sort the input sections.
6e9ba2ca
ST
3582 if (this->must_sort_attached_input_sections())
3583 {
3584 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3585 || this->type() == elfcpp::SHT_INIT_ARRAY
3586 || this->type() == elfcpp::SHT_FINI_ARRAY)
3587 std::sort(sort_list.begin(), sort_list.end(),
3588 Input_section_sort_init_fini_compare());
3589 else
3590 std::sort(sort_list.begin(), sort_list.end(),
3591 Input_section_sort_compare());
3592 }
2a0ff005 3593 else
6e9ba2ca 3594 {
e9552f7e 3595 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3596 std::sort(sort_list.begin(), sort_list.end(),
3597 Input_section_sort_section_order_index_compare());
3598 }
2fd32231
ILT
3599
3600 // Copy the sorted input sections back to our list.
3601 this->input_sections_.clear();
3602 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3603 p != sort_list.end();
3604 ++p)
3605 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3606 sort_list.clear();
2fd32231
ILT
3607
3608 // Remember that we sorted the input sections, since we might get
3609 // called again.
3610 this->attached_input_sections_are_sorted_ = true;
3611}
3612
61ba1cf9
ILT
3613// Write the section header to *OSHDR.
3614
3615template<int size, bool big_endian>
3616void
16649710
ILT
3617Output_section::write_header(const Layout* layout,
3618 const Stringpool* secnamepool,
61ba1cf9
ILT
3619 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3620{
3621 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3622 oshdr->put_sh_type(this->type_);
6a74a719 3623
2ea97941 3624 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3625 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3626 flags |= elfcpp::SHF_INFO_LINK;
3627 oshdr->put_sh_flags(flags);
6a74a719 3628
61ba1cf9
ILT
3629 oshdr->put_sh_addr(this->address());
3630 oshdr->put_sh_offset(this->offset());
3631 oshdr->put_sh_size(this->data_size());
16649710
ILT
3632 if (this->link_section_ != NULL)
3633 oshdr->put_sh_link(this->link_section_->out_shndx());
3634 else if (this->should_link_to_symtab_)
886f533a 3635 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3636 else if (this->should_link_to_dynsym_)
3637 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3638 else
3639 oshdr->put_sh_link(this->link_);
755ab8af 3640
2ea97941 3641 elfcpp::Elf_Word info;
16649710 3642 if (this->info_section_ != NULL)
755ab8af
ILT
3643 {
3644 if (this->info_uses_section_index_)
2ea97941 3645 info = this->info_section_->out_shndx();
755ab8af 3646 else
2ea97941 3647 info = this->info_section_->symtab_index();
755ab8af 3648 }
6a74a719 3649 else if (this->info_symndx_ != NULL)
2ea97941 3650 info = this->info_symndx_->symtab_index();
16649710 3651 else
2ea97941
ILT
3652 info = this->info_;
3653 oshdr->put_sh_info(info);
755ab8af 3654
61ba1cf9
ILT
3655 oshdr->put_sh_addralign(this->addralign_);
3656 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3657}
3658
ead1e424
ILT
3659// Write out the data. For input sections the data is written out by
3660// Object::relocate, but we have to handle Output_section_data objects
3661// here.
3662
3663void
3664Output_section::do_write(Output_file* of)
3665{
96803768
ILT
3666 gold_assert(!this->requires_postprocessing());
3667
c0a62865
DK
3668 // If the target performs relaxation, we delay filler generation until now.
3669 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3670
c51e6221
ILT
3671 off_t output_section_file_offset = this->offset();
3672 for (Fill_list::iterator p = this->fills_.begin();
3673 p != this->fills_.end();
3674 ++p)
3675 {
8851ecca 3676 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3677 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3678 fill_data.data(), fill_data.size());
c51e6221
ILT
3679 }
3680
c0a62865 3681 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3682 for (Input_section_list::iterator p = this->input_sections_.begin();
3683 p != this->input_sections_.end();
3684 ++p)
c0a62865
DK
3685 {
3686 off_t aligned_off = align_address(off, p->addralign());
3687 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3688 {
3689 size_t fill_len = aligned_off - off;
3690 std::string fill_data(parameters->target().code_fill(fill_len));
3691 of->write(off, fill_data.data(), fill_data.size());
3692 }
3693
3694 p->write(of);
3695 off = aligned_off + p->data_size();
3696 }
8ea8cd50
CC
3697
3698 // For incremental links, fill in unused chunks in debug sections
3699 // with dummy compilation unit headers.
3700 if (this->free_space_fill_ != NULL)
3701 {
3702 for (Free_list::Const_iterator p = this->free_list_.begin();
3703 p != this->free_list_.end();
3704 ++p)
3705 {
3706 off_t off = p->start_;
3707 size_t len = p->end_ - off;
3708 this->free_space_fill_->write(of, this->offset() + off, len);
3709 }
3710 if (this->patch_space_ > 0)
3711 {
3712 off_t off = this->current_data_size_for_child() - this->patch_space_;
3713 this->free_space_fill_->write(of, this->offset() + off,
3714 this->patch_space_);
3715 }
3716 }
ead1e424
ILT
3717}
3718
96803768
ILT
3719// If a section requires postprocessing, create the buffer to use.
3720
3721void
3722Output_section::create_postprocessing_buffer()
3723{
3724 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3725
3726 if (this->postprocessing_buffer_ != NULL)
3727 return;
96803768
ILT
3728
3729 if (!this->input_sections_.empty())
3730 {
3731 off_t off = this->first_input_offset_;
3732 for (Input_section_list::iterator p = this->input_sections_.begin();
3733 p != this->input_sections_.end();
3734 ++p)
3735 {
3736 off = align_address(off, p->addralign());
3737 p->finalize_data_size();
3738 off += p->data_size();
3739 }
3740 this->set_current_data_size_for_child(off);
3741 }
3742
3743 off_t buffer_size = this->current_data_size_for_child();
3744 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3745}
3746
3747// Write all the data of an Output_section into the postprocessing
3748// buffer. This is used for sections which require postprocessing,
3749// such as compression. Input sections are handled by
3750// Object::Relocate.
3751
3752void
3753Output_section::write_to_postprocessing_buffer()
3754{
3755 gold_assert(this->requires_postprocessing());
3756
c0a62865
DK
3757 // If the target performs relaxation, we delay filler generation until now.
3758 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3759
96803768
ILT
3760 unsigned char* buffer = this->postprocessing_buffer();
3761 for (Fill_list::iterator p = this->fills_.begin();
3762 p != this->fills_.end();
3763 ++p)
3764 {
8851ecca 3765 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3766 memcpy(buffer + p->section_offset(), fill_data.data(),
3767 fill_data.size());
96803768
ILT
3768 }
3769
3770 off_t off = this->first_input_offset_;
3771 for (Input_section_list::iterator p = this->input_sections_.begin();
3772 p != this->input_sections_.end();
3773 ++p)
3774 {
c0a62865
DK
3775 off_t aligned_off = align_address(off, p->addralign());
3776 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3777 {
3778 size_t fill_len = aligned_off - off;
3779 std::string fill_data(parameters->target().code_fill(fill_len));
3780 memcpy(buffer + off, fill_data.data(), fill_data.size());
3781 }
3782
3783 p->write_to_buffer(buffer + aligned_off);
3784 off = aligned_off + p->data_size();
96803768
ILT
3785 }
3786}
3787
a445fddf
ILT
3788// Get the input sections for linker script processing. We leave
3789// behind the Output_section_data entries. Note that this may be
3790// slightly incorrect for merge sections. We will leave them behind,
3791// but it is possible that the script says that they should follow
3792// some other input sections, as in:
3793// .rodata { *(.rodata) *(.rodata.cst*) }
3794// For that matter, we don't handle this correctly:
3795// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3796// With luck this will never matter.
3797
3798uint64_t
3799Output_section::get_input_sections(
2ea97941 3800 uint64_t address,
a445fddf 3801 const std::string& fill,
6625d24e 3802 std::list<Input_section>* input_sections)
a445fddf 3803{
20e6d0d6
DK
3804 if (this->checkpoint_ != NULL
3805 && !this->checkpoint_->input_sections_saved())
3806 this->checkpoint_->save_input_sections();
3807
0439c796
DK
3808 // Invalidate fast look-up maps.
3809 this->lookup_maps_->invalidate();
c0a62865 3810
2ea97941 3811 uint64_t orig_address = address;
a445fddf 3812
2ea97941 3813 address = align_address(address, this->addralign());
a445fddf
ILT
3814
3815 Input_section_list remaining;
3816 for (Input_section_list::iterator p = this->input_sections_.begin();
3817 p != this->input_sections_.end();
3818 ++p)
3819 {
0439c796
DK
3820 if (p->is_input_section()
3821 || p->is_relaxed_input_section()
3822 || p->is_merge_section())
6625d24e 3823 input_sections->push_back(*p);
a445fddf
ILT
3824 else
3825 {
2ea97941
ILT
3826 uint64_t aligned_address = align_address(address, p->addralign());
3827 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3828 {
3829 section_size_type length =
2ea97941 3830 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3831 std::string this_fill;
3832 this_fill.reserve(length);
3833 while (this_fill.length() + fill.length() <= length)
3834 this_fill += fill;
3835 if (this_fill.length() < length)
3836 this_fill.append(fill, 0, length - this_fill.length());
3837
3838 Output_section_data* posd = new Output_data_const(this_fill, 0);
3839 remaining.push_back(Input_section(posd));
3840 }
2ea97941 3841 address = aligned_address;
a445fddf
ILT
3842
3843 remaining.push_back(*p);
3844
3845 p->finalize_data_size();
2ea97941 3846 address += p->data_size();
a445fddf
ILT
3847 }
3848 }
3849
3850 this->input_sections_.swap(remaining);
3851 this->first_input_offset_ = 0;
3852
2ea97941
ILT
3853 uint64_t data_size = address - orig_address;
3854 this->set_current_data_size_for_child(data_size);
3855 return data_size;
a445fddf
ILT
3856}
3857
6625d24e
DK
3858// Add a script input section. SIS is an Output_section::Input_section,
3859// which can be either a plain input section or a special input section like
3860// a relaxed input section. For a special input section, its size must be
3861// finalized.
a445fddf
ILT
3862
3863void
6625d24e 3864Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3865{
6625d24e
DK
3866 uint64_t data_size = sis.data_size();
3867 uint64_t addralign = sis.addralign();
2ea97941
ILT
3868 if (addralign > this->addralign_)
3869 this->addralign_ = addralign;
a445fddf
ILT
3870
3871 off_t offset_in_section = this->current_data_size_for_child();
3872 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3873 addralign);
a445fddf
ILT
3874
3875 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3876 + data_size);
a445fddf 3877
6625d24e 3878 this->input_sections_.push_back(sis);
0439c796 3879
50ed5eb1 3880 // Update fast lookup maps if necessary.
0439c796
DK
3881 if (this->lookup_maps_->is_valid())
3882 {
3883 if (sis.is_merge_section())
3884 {
3885 Output_merge_base* pomb = sis.output_merge_base();
3886 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3887 pomb->addralign());
3888 this->lookup_maps_->add_merge_section(msp, pomb);
3889 for (Output_merge_base::Input_sections::const_iterator p =
3890 pomb->input_sections_begin();
3891 p != pomb->input_sections_end();
3892 ++p)
3893 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3894 pomb);
3895 }
3896 else if (sis.is_relaxed_input_section())
3897 {
3898 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3899 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3900 poris->shndx(), poris);
3901 }
3902 }
20e6d0d6
DK
3903}
3904
8923b24c 3905// Save states for relaxation.
20e6d0d6
DK
3906
3907void
3908Output_section::save_states()
3909{
3910 gold_assert(this->checkpoint_ == NULL);
3911 Checkpoint_output_section* checkpoint =
3912 new Checkpoint_output_section(this->addralign_, this->flags_,
3913 this->input_sections_,
3914 this->first_input_offset_,
3915 this->attached_input_sections_are_sorted_);
3916 this->checkpoint_ = checkpoint;
3917 gold_assert(this->fills_.empty());
3918}
3919
8923b24c
DK
3920void
3921Output_section::discard_states()
3922{
3923 gold_assert(this->checkpoint_ != NULL);
3924 delete this->checkpoint_;
3925 this->checkpoint_ = NULL;
3926 gold_assert(this->fills_.empty());
3927
0439c796
DK
3928 // Simply invalidate the fast lookup maps since we do not keep
3929 // track of them.
3930 this->lookup_maps_->invalidate();
8923b24c
DK
3931}
3932
20e6d0d6
DK
3933void
3934Output_section::restore_states()
3935{
3936 gold_assert(this->checkpoint_ != NULL);
3937 Checkpoint_output_section* checkpoint = this->checkpoint_;
3938
3939 this->addralign_ = checkpoint->addralign();
3940 this->flags_ = checkpoint->flags();
3941 this->first_input_offset_ = checkpoint->first_input_offset();
3942
3943 if (!checkpoint->input_sections_saved())
3944 {
3945 // If we have not copied the input sections, just resize it.
3946 size_t old_size = checkpoint->input_sections_size();
3947 gold_assert(this->input_sections_.size() >= old_size);
3948 this->input_sections_.resize(old_size);
3949 }
3950 else
3951 {
3952 // We need to copy the whole list. This is not efficient for
3953 // extremely large output with hundreads of thousands of input
3954 // objects. We may need to re-think how we should pass sections
3955 // to scripts.
c0a62865 3956 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3957 }
3958
3959 this->attached_input_sections_are_sorted_ =
3960 checkpoint->attached_input_sections_are_sorted();
c0a62865 3961
0439c796
DK
3962 // Simply invalidate the fast lookup maps since we do not keep
3963 // track of them.
3964 this->lookup_maps_->invalidate();
a445fddf
ILT
3965}
3966
8923b24c
DK
3967// Update the section offsets of input sections in this. This is required if
3968// relaxation causes some input sections to change sizes.
3969
3970void
3971Output_section::adjust_section_offsets()
3972{
3973 if (!this->section_offsets_need_adjustment_)
3974 return;
3975
3976 off_t off = 0;
3977 for (Input_section_list::iterator p = this->input_sections_.begin();
3978 p != this->input_sections_.end();
3979 ++p)
3980 {
3981 off = align_address(off, p->addralign());
3982 if (p->is_input_section())
3983 p->relobj()->set_section_offset(p->shndx(), off);
3984 off += p->data_size();
3985 }
3986
3987 this->section_offsets_need_adjustment_ = false;
3988}
3989
7d9e3d98
ILT
3990// Print to the map file.
3991
3992void
3993Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3994{
3995 mapfile->print_output_section(this);
3996
3997 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3998 p != this->input_sections_.end();
3999 ++p)
4000 p->print_to_mapfile(mapfile);
4001}
4002
38c5e8b4
ILT
4003// Print stats for merge sections to stderr.
4004
4005void
4006Output_section::print_merge_stats()
4007{
4008 Input_section_list::iterator p;
4009 for (p = this->input_sections_.begin();
4010 p != this->input_sections_.end();
4011 ++p)
4012 p->print_merge_stats(this->name_);
4013}
4014
cdc29364
CC
4015// Set a fixed layout for the section. Used for incremental update links.
4016
4017void
4018Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4019 off_t sh_size, uint64_t sh_addralign)
4020{
4021 this->addralign_ = sh_addralign;
4022 this->set_current_data_size(sh_size);
4023 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4024 this->set_address(sh_addr);
4025 this->set_file_offset(sh_offset);
4026 this->finalize_data_size();
4027 this->free_list_.init(sh_size, false);
4028 this->has_fixed_layout_ = true;
4029}
4030
4031// Reserve space within the fixed layout for the section. Used for
4032// incremental update links.
5146f448 4033
cdc29364
CC
4034void
4035Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4036{
4037 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4038}
4039
5146f448
CC
4040// Allocate space from the free list for the section. Used for
4041// incremental update links.
4042
4043off_t
4044Output_section::allocate(off_t len, uint64_t addralign)
4045{
4046 return this->free_list_.allocate(len, addralign, 0);
4047}
4048
a2fb1b05
ILT
4049// Output segment methods.
4050
2ea97941 4051Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4052 : vaddr_(0),
a2fb1b05
ILT
4053 paddr_(0),
4054 memsz_(0),
a445fddf
ILT
4055 max_align_(0),
4056 min_p_align_(0),
a2fb1b05
ILT
4057 offset_(0),
4058 filesz_(0),
2ea97941
ILT
4059 type_(type),
4060 flags_(flags),
a445fddf 4061 is_max_align_known_(false),
8a5e3e08 4062 are_addresses_set_(false),
16164a6b
ST
4063 is_large_data_segment_(false),
4064 is_unique_segment_(false)
a2fb1b05 4065{
bb321bb1
ILT
4066 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4067 // the flags.
4068 if (type == elfcpp::PT_TLS)
4069 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4070}
4071
22f0da72 4072// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4073
4074void
22f0da72
ILT
4075Output_segment::add_output_section_to_load(Layout* layout,
4076 Output_section* os,
4077 elfcpp::Elf_Word seg_flags)
a2fb1b05 4078{
22f0da72 4079 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4080 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4081 gold_assert(!this->is_max_align_known_);
8a5e3e08 4082 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4083
a192ba05 4084 this->update_flags_for_output_section(seg_flags);
75f65a3e 4085
22f0da72
ILT
4086 // We don't want to change the ordering if we have a linker script
4087 // with a SECTIONS clause.
4088 Output_section_order order = os->order();
4089 if (layout->script_options()->saw_sections_clause())
4090 order = static_cast<Output_section_order>(0);
75f65a3e 4091 else
22f0da72 4092 gold_assert(order != ORDER_INVALID);
54dc6425 4093
22f0da72
ILT
4094 this->output_lists_[order].push_back(os);
4095}
9f1d377b 4096
22f0da72 4097// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4098
22f0da72
ILT
4099void
4100Output_segment::add_output_section_to_nonload(Output_section* os,
4101 elfcpp::Elf_Word seg_flags)
4102{
4103 gold_assert(this->type() != elfcpp::PT_LOAD);
4104 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4105 gold_assert(!this->is_max_align_known_);
1a2dff53 4106
22f0da72 4107 this->update_flags_for_output_section(seg_flags);
9f1d377b 4108
22f0da72
ILT
4109 this->output_lists_[0].push_back(os);
4110}
8a5e3e08 4111
22f0da72
ILT
4112// Remove an Output_section from this segment. It is an error if it
4113// is not present.
8a5e3e08 4114
22f0da72
ILT
4115void
4116Output_segment::remove_output_section(Output_section* os)
4117{
4118 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4119 {
22f0da72
ILT
4120 Output_data_list* pdl = &this->output_lists_[i];
4121 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4122 {
22f0da72 4123 if (*p == os)
8a5e3e08 4124 {
22f0da72 4125 pdl->erase(p);
8a5e3e08
ILT
4126 return;
4127 }
4128 }
f5c870d2 4129 }
1650c4ff
ILT
4130 gold_unreachable();
4131}
4132
a192ba05
ILT
4133// Add an Output_data (which need not be an Output_section) to the
4134// start of a segment.
75f65a3e
ILT
4135
4136void
4137Output_segment::add_initial_output_data(Output_data* od)
4138{
a445fddf 4139 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4140 Output_data_list::iterator p = this->output_lists_[0].begin();
4141 this->output_lists_[0].insert(p, od);
4142}
4143
4144// Return true if this segment has any sections which hold actual
4145// data, rather than being a BSS section.
4146
4147bool
4148Output_segment::has_any_data_sections() const
4149{
4150 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4151 {
4152 const Output_data_list* pdl = &this->output_lists_[i];
4153 for (Output_data_list::const_iterator p = pdl->begin();
4154 p != pdl->end();
4155 ++p)
4156 {
4157 if (!(*p)->is_section())
4158 return true;
4159 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4160 return true;
4161 }
4162 }
4163 return false;
75f65a3e
ILT
4164}
4165
5bc2f5be
CC
4166// Return whether the first data section (not counting TLS sections)
4167// is a relro section.
9f1d377b
ILT
4168
4169bool
4170Output_segment::is_first_section_relro() const
4171{
22f0da72
ILT
4172 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4173 {
5bc2f5be
CC
4174 if (i == static_cast<int>(ORDER_TLS_DATA)
4175 || i == static_cast<int>(ORDER_TLS_BSS))
4176 continue;
22f0da72
ILT
4177 const Output_data_list* pdl = &this->output_lists_[i];
4178 if (!pdl->empty())
4179 {
4180 Output_data* p = pdl->front();
4181 return p->is_section() && p->output_section()->is_relro();
4182 }
4183 }
4184 return false;
9f1d377b
ILT
4185}
4186
75f65a3e 4187// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4188
4189uint64_t
a445fddf 4190Output_segment::maximum_alignment()
75f65a3e 4191{
a445fddf 4192 if (!this->is_max_align_known_)
ead1e424 4193 {
22f0da72 4194 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
50ed5eb1 4195 {
22f0da72
ILT
4196 const Output_data_list* pdl = &this->output_lists_[i];
4197 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4198 if (addralign > this->max_align_)
4199 this->max_align_ = addralign;
4200 }
a445fddf 4201 this->is_max_align_known_ = true;
ead1e424
ILT
4202 }
4203
a445fddf 4204 return this->max_align_;
75f65a3e
ILT
4205}
4206
ead1e424
ILT
4207// Return the maximum alignment of a list of Output_data.
4208
4209uint64_t
a445fddf 4210Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4211{
4212 uint64_t ret = 0;
4213 for (Output_data_list::const_iterator p = pdl->begin();
4214 p != pdl->end();
4215 ++p)
4216 {
2ea97941
ILT
4217 uint64_t addralign = (*p)->addralign();
4218 if (addralign > ret)
4219 ret = addralign;
ead1e424
ILT
4220 }
4221 return ret;
4222}
4223
22f0da72 4224// Return whether this segment has any dynamic relocs.
4f4c5f80 4225
22f0da72
ILT
4226bool
4227Output_segment::has_dynamic_reloc() const
4f4c5f80 4228{
22f0da72
ILT
4229 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4230 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4231 return true;
4232 return false;
4f4c5f80
ILT
4233}
4234
22f0da72 4235// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4236
22f0da72
ILT
4237bool
4238Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4239{
4f4c5f80
ILT
4240 for (Output_data_list::const_iterator p = pdl->begin();
4241 p != pdl->end();
4242 ++p)
22f0da72
ILT
4243 if ((*p)->has_dynamic_reloc())
4244 return true;
4245 return false;
4f4c5f80
ILT
4246}
4247
a445fddf
ILT
4248// Set the section addresses for an Output_segment. If RESET is true,
4249// reset the addresses first. ADDR is the address and *POFF is the
4250// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4251// INCREASE_RELRO is the size of the portion of the first non-relro
4252// section that should be included in the PT_GNU_RELRO segment.
4253// If this segment has relro sections, and has been aligned for
4254// that purpose, set *HAS_RELRO to TRUE. Return the address of
4255// the immediately following segment. Update *HAS_RELRO, *POFF,
4256// and *PSHNDX.
75f65a3e
ILT
4257
4258uint64_t
cdc29364 4259Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4260 uint64_t addr,
fd064a5b 4261 unsigned int* increase_relro,
fc497986 4262 bool* has_relro,
1a2dff53 4263 off_t* poff,
ead1e424 4264 unsigned int* pshndx)
75f65a3e 4265{
a3ad94ed 4266 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4267
fc497986 4268 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4269 off_t orig_off = *poff;
4270
5bc2f5be
CC
4271 bool in_tls = false;
4272
1a2dff53 4273 // If we have relro sections, we need to pad forward now so that the
815a1205 4274 // relro sections plus INCREASE_RELRO end on an abi page boundary.
1a2dff53
ILT
4275 if (parameters->options().relro()
4276 && this->is_first_section_relro()
4277 && (!this->are_addresses_set_ || reset))
4278 {
4279 uint64_t relro_size = 0;
4280 off_t off = *poff;
fc497986 4281 uint64_t max_align = 0;
5bc2f5be 4282 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4283 {
22f0da72
ILT
4284 Output_data_list* pdl = &this->output_lists_[i];
4285 Output_data_list::iterator p;
4286 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4287 {
22f0da72
ILT
4288 if (!(*p)->is_section())
4289 break;
fc497986
CC
4290 uint64_t align = (*p)->addralign();
4291 if (align > max_align)
4292 max_align = align;
5bc2f5be
CC
4293 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4294 in_tls = true;
4295 else if (in_tls)
4296 {
4297 // Align the first non-TLS section to the alignment
4298 // of the TLS segment.
4299 align = max_align;
4300 in_tls = false;
4301 }
fc497986 4302 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4303 // Ignore the size of the .tbss section.
4304 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4305 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4306 continue;
22f0da72
ILT
4307 if ((*p)->is_address_valid())
4308 relro_size += (*p)->data_size();
4309 else
4310 {
4311 // FIXME: This could be faster.
4312 (*p)->set_address_and_file_offset(addr + relro_size,
4313 off + relro_size);
4314 relro_size += (*p)->data_size();
4315 (*p)->reset_address_and_file_offset();
4316 }
1a2dff53 4317 }
22f0da72
ILT
4318 if (p != pdl->end())
4319 break;
1a2dff53 4320 }
fd064a5b 4321 relro_size += *increase_relro;
fc497986
CC
4322 // Pad the total relro size to a multiple of the maximum
4323 // section alignment seen.
4324 uint64_t aligned_size = align_address(relro_size, max_align);
4325 // Note the amount of padding added after the last relro section.
4326 last_relro_pad = aligned_size - relro_size;
fc497986 4327 *has_relro = true;
1a2dff53 4328
815a1205 4329 uint64_t page_align = parameters->target().abi_pagesize();
1a2dff53
ILT
4330
4331 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4332 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4333 if (desired_align < *poff % page_align)
4334 *poff += page_align - *poff % page_align;
4335 *poff += desired_align - *poff % page_align;
4336 addr += *poff - orig_off;
4337 orig_off = *poff;
4338 }
4339
a445fddf
ILT
4340 if (!reset && this->are_addresses_set_)
4341 {
4342 gold_assert(this->paddr_ == addr);
4343 addr = this->vaddr_;
4344 }
4345 else
4346 {
4347 this->vaddr_ = addr;
4348 this->paddr_ = addr;
4349 this->are_addresses_set_ = true;
4350 }
75f65a3e 4351
5bc2f5be 4352 in_tls = false;
96a2b4e4 4353
75f65a3e
ILT
4354 this->offset_ = orig_off;
4355
22f0da72
ILT
4356 off_t off = 0;
4357 uint64_t ret;
4358 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4359 {
fc497986
CC
4360 if (i == static_cast<int>(ORDER_RELRO_LAST))
4361 {
4362 *poff += last_relro_pad;
4363 addr += last_relro_pad;
fd064a5b
CC
4364 if (this->output_lists_[i].empty())
4365 {
4366 // If there is nothing in the ORDER_RELRO_LAST list,
4367 // the padding will occur at the end of the relro
4368 // segment, and we need to add it to *INCREASE_RELRO.
4369 *increase_relro += last_relro_pad;
4370 }
fc497986 4371 }
5bc2f5be
CC
4372 addr = this->set_section_list_addresses(layout, reset,
4373 &this->output_lists_[i],
4374 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4375 if (i < static_cast<int>(ORDER_SMALL_BSS))
4376 {
4377 this->filesz_ = *poff - orig_off;
4378 off = *poff;
4379 }
75f65a3e 4380
22f0da72
ILT
4381 ret = addr;
4382 }
96a2b4e4
ILT
4383
4384 // If the last section was a TLS section, align upward to the
4385 // alignment of the TLS segment, so that the overall size of the TLS
4386 // segment is aligned.
4387 if (in_tls)
4388 {
4389 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4390 *poff = align_address(*poff, segment_align);
4391 }
4392
75f65a3e
ILT
4393 this->memsz_ = *poff - orig_off;
4394
4395 // Ignore the file offset adjustments made by the BSS Output_data
4396 // objects.
4397 *poff = off;
61ba1cf9
ILT
4398
4399 return ret;
75f65a3e
ILT
4400}
4401
b8e6aad9
ILT
4402// Set the addresses and file offsets in a list of Output_data
4403// structures.
75f65a3e
ILT
4404
4405uint64_t
cdc29364 4406Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4407 Output_data_list* pdl,
ead1e424 4408 uint64_t addr, off_t* poff,
96a2b4e4 4409 unsigned int* pshndx,
1a2dff53 4410 bool* in_tls)
75f65a3e 4411{
ead1e424 4412 off_t startoff = *poff;
cdc29364
CC
4413 // For incremental updates, we may allocate non-fixed sections from
4414 // free space in the file. This keeps track of the high-water mark.
4415 off_t maxoff = startoff;
75f65a3e 4416
ead1e424 4417 off_t off = startoff;
75f65a3e
ILT
4418 for (Output_data_list::iterator p = pdl->begin();
4419 p != pdl->end();
4420 ++p)
4421 {
a445fddf
ILT
4422 if (reset)
4423 (*p)->reset_address_and_file_offset();
4424
cdc29364
CC
4425 // When doing an incremental update or when using a linker script,
4426 // the section will most likely already have an address.
a445fddf 4427 if (!(*p)->is_address_valid())
3802b2dd 4428 {
96a2b4e4
ILT
4429 uint64_t align = (*p)->addralign();
4430
4431 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4432 {
4433 // Give the first TLS section the alignment of the
4434 // entire TLS segment. Otherwise the TLS segment as a
4435 // whole may be misaligned.
4436 if (!*in_tls)
4437 {
4438 Output_segment* tls_segment = layout->tls_segment();
4439 gold_assert(tls_segment != NULL);
4440 uint64_t segment_align = tls_segment->maximum_alignment();
4441 gold_assert(segment_align >= align);
4442 align = segment_align;
4443
4444 *in_tls = true;
4445 }
4446 }
4447 else
4448 {
4449 // If this is the first section after the TLS segment,
4450 // align it to at least the alignment of the TLS
4451 // segment, so that the size of the overall TLS segment
4452 // is aligned.
4453 if (*in_tls)
4454 {
4455 uint64_t segment_align =
4456 layout->tls_segment()->maximum_alignment();
4457 if (segment_align > align)
4458 align = segment_align;
4459
4460 *in_tls = false;
4461 }
4462 }
4463
fb0e076f 4464 if (!parameters->incremental_update())
cdc29364
CC
4465 {
4466 off = align_address(off, align);
4467 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4468 }
4469 else
4470 {
4471 // Incremental update: allocate file space from free list.
4472 (*p)->pre_finalize_data_size();
4473 off_t current_size = (*p)->current_data_size();
4474 off = layout->allocate(current_size, align, startoff);
4475 if (off == -1)
4476 {
4477 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4478 gold_fallback(_("out of patch space for section %s; "
4479 "relink with --incremental-full"),
4480 (*p)->output_section()->name());
cdc29364
CC
4481 }
4482 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4483 if ((*p)->data_size() > current_size)
4484 {
4485 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4486 gold_fallback(_("%s: section changed size; "
4487 "relink with --incremental-full"),
4488 (*p)->output_section()->name());
cdc29364
CC
4489 }
4490 }
3802b2dd 4491 }
cdc29364
CC
4492 else if (parameters->incremental_update())
4493 {
4494 // For incremental updates, use the fixed offset for the
4495 // high-water mark computation.
4496 off = (*p)->offset();
4497 }
a445fddf
ILT
4498 else
4499 {
4500 // The script may have inserted a skip forward, but it
4501 // better not have moved backward.
661be1e2
ILT
4502 if ((*p)->address() >= addr + (off - startoff))
4503 off += (*p)->address() - (addr + (off - startoff));
4504 else
4505 {
4506 if (!layout->script_options()->saw_sections_clause())
4507 gold_unreachable();
4508 else
4509 {
4510 Output_section* os = (*p)->output_section();
64b1ae37
DK
4511
4512 // Cast to unsigned long long to avoid format warnings.
4513 unsigned long long previous_dot =
4514 static_cast<unsigned long long>(addr + (off - startoff));
4515 unsigned long long dot =
4516 static_cast<unsigned long long>((*p)->address());
4517
661be1e2
ILT
4518 if (os == NULL)
4519 gold_error(_("dot moves backward in linker script "
64b1ae37 4520 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4521 else
4522 gold_error(_("address of section '%s' moves backward "
4523 "from 0x%llx to 0x%llx"),
64b1ae37 4524 os->name(), previous_dot, dot);
661be1e2
ILT
4525 }
4526 }
a445fddf
ILT
4527 (*p)->set_file_offset(off);
4528 (*p)->finalize_data_size();
4529 }
ead1e424 4530
9fbd3822
CC
4531 if (parameters->incremental_update())
4532 gold_debug(DEBUG_INCREMENTAL,
4533 "set_section_list_addresses: %08lx %08lx %s",
4534 static_cast<long>(off),
4535 static_cast<long>((*p)->data_size()),
4536 ((*p)->output_section() != NULL
4537 ? (*p)->output_section()->name() : "(special)"));
4538
4539 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4540 // section. Such a section does not affect the size of a
4541 // PT_LOAD segment.
4542 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4543 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4544 off += (*p)->data_size();
75f65a3e 4545
cdc29364
CC
4546 if (off > maxoff)
4547 maxoff = off;
4548
ead1e424
ILT
4549 if ((*p)->is_section())
4550 {
4551 (*p)->set_out_shndx(*pshndx);
4552 ++*pshndx;
4553 }
75f65a3e
ILT
4554 }
4555
cdc29364
CC
4556 *poff = maxoff;
4557 return addr + (maxoff - startoff);
75f65a3e
ILT
4558}
4559
4560// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4561// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4562
4563void
1a2dff53 4564Output_segment::set_offset(unsigned int increase)
75f65a3e 4565{
a3ad94ed 4566 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4567
a445fddf
ILT
4568 gold_assert(!this->are_addresses_set_);
4569
22f0da72
ILT
4570 // A non-load section only uses output_lists_[0].
4571
4572 Output_data_list* pdl = &this->output_lists_[0];
4573
4574 if (pdl->empty())
75f65a3e 4575 {
1a2dff53 4576 gold_assert(increase == 0);
75f65a3e
ILT
4577 this->vaddr_ = 0;
4578 this->paddr_ = 0;
a445fddf 4579 this->are_addresses_set_ = true;
75f65a3e 4580 this->memsz_ = 0;
a445fddf 4581 this->min_p_align_ = 0;
75f65a3e
ILT
4582 this->offset_ = 0;
4583 this->filesz_ = 0;
4584 return;
4585 }
4586
22f0da72 4587 // Find the first and last section by address.
5f1ab67a
ILT
4588 const Output_data* first = NULL;
4589 const Output_data* last_data = NULL;
4590 const Output_data* last_bss = NULL;
22f0da72
ILT
4591 for (Output_data_list::const_iterator p = pdl->begin();
4592 p != pdl->end();
4593 ++p)
4594 {
4595 if (first == NULL
4596 || (*p)->address() < first->address()
4597 || ((*p)->address() == first->address()
4598 && (*p)->data_size() < first->data_size()))
4599 first = *p;
4600 const Output_data** plast;
4601 if ((*p)->is_section()
4602 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4603 plast = &last_bss;
4604 else
4605 plast = &last_data;
4606 if (*plast == NULL
4607 || (*p)->address() > (*plast)->address()
4608 || ((*p)->address() == (*plast)->address()
4609 && (*p)->data_size() > (*plast)->data_size()))
4610 *plast = *p;
4611 }
5f1ab67a 4612
75f65a3e 4613 this->vaddr_ = first->address();
a445fddf
ILT
4614 this->paddr_ = (first->has_load_address()
4615 ? first->load_address()
4616 : this->vaddr_);
4617 this->are_addresses_set_ = true;
75f65a3e
ILT
4618 this->offset_ = first->offset();
4619
22f0da72 4620 if (last_data == NULL)
75f65a3e
ILT
4621 this->filesz_ = 0;
4622 else
5f1ab67a
ILT
4623 this->filesz_ = (last_data->address()
4624 + last_data->data_size()
4625 - this->vaddr_);
75f65a3e 4626
5f1ab67a 4627 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4628 this->memsz_ = (last->address()
4629 + last->data_size()
4630 - this->vaddr_);
96a2b4e4 4631
1a2dff53
ILT
4632 this->filesz_ += increase;
4633 this->memsz_ += increase;
4634
fd064a5b
CC
4635 // If this is a RELRO segment, verify that the segment ends at a
4636 // page boundary.
4637 if (this->type_ == elfcpp::PT_GNU_RELRO)
4638 {
815a1205 4639 uint64_t page_align = parameters->target().abi_pagesize();
fd064a5b 4640 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4641 if (parameters->incremental_update())
4642 {
4643 // The INCREASE_RELRO calculation is bypassed for an incremental
4644 // update, so we need to adjust the segment size manually here.
4645 segment_end = align_address(segment_end, page_align);
4646 this->memsz_ = segment_end - this->vaddr_;
4647 }
4648 else
4649 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4650 }
4651
96a2b4e4
ILT
4652 // If this is a TLS segment, align the memory size. The code in
4653 // set_section_list ensures that the section after the TLS segment
4654 // is aligned to give us room.
4655 if (this->type_ == elfcpp::PT_TLS)
4656 {
4657 uint64_t segment_align = this->maximum_alignment();
4658 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4659 this->memsz_ = align_address(this->memsz_, segment_align);
4660 }
75f65a3e
ILT
4661}
4662
7bf1f802
ILT
4663// Set the TLS offsets of the sections in the PT_TLS segment.
4664
4665void
4666Output_segment::set_tls_offsets()
4667{
4668 gold_assert(this->type_ == elfcpp::PT_TLS);
4669
22f0da72
ILT
4670 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4671 p != this->output_lists_[0].end();
7bf1f802
ILT
4672 ++p)
4673 (*p)->set_tls_offset(this->vaddr_);
4674}
4675
7404fe1b 4676// Return the first section.
a445fddf 4677
7404fe1b
AM
4678Output_section*
4679Output_segment::first_section() const
a445fddf 4680{
22f0da72
ILT
4681 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4682 {
4683 const Output_data_list* pdl = &this->output_lists_[i];
4684 for (Output_data_list::const_iterator p = pdl->begin();
4685 p != pdl->end();
4686 ++p)
4687 {
4688 if ((*p)->is_section())
7404fe1b 4689 return (*p)->output_section();
22f0da72
ILT
4690 }
4691 }
a445fddf
ILT
4692 gold_unreachable();
4693}
4694
75f65a3e
ILT
4695// Return the number of Output_sections in an Output_segment.
4696
4697unsigned int
4698Output_segment::output_section_count() const
4699{
22f0da72
ILT
4700 unsigned int ret = 0;
4701 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4702 ret += this->output_section_count_list(&this->output_lists_[i]);
4703 return ret;
75f65a3e
ILT
4704}
4705
4706// Return the number of Output_sections in an Output_data_list.
4707
4708unsigned int
4709Output_segment::output_section_count_list(const Output_data_list* pdl) const
4710{
4711 unsigned int count = 0;
4712 for (Output_data_list::const_iterator p = pdl->begin();
4713 p != pdl->end();
4714 ++p)
4715 {
4716 if ((*p)->is_section())
4717 ++count;
4718 }
4719 return count;
a2fb1b05
ILT
4720}
4721
1c4f3631
ILT
4722// Return the section attached to the list segment with the lowest
4723// load address. This is used when handling a PHDRS clause in a
4724// linker script.
4725
4726Output_section*
4727Output_segment::section_with_lowest_load_address() const
4728{
4729 Output_section* found = NULL;
4730 uint64_t found_lma = 0;
22f0da72
ILT
4731 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4732 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4733 &found_lma);
1c4f3631
ILT
4734 return found;
4735}
4736
4737// Look through a list for a section with a lower load address.
4738
4739void
4740Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4741 Output_section** found,
4742 uint64_t* found_lma) const
4743{
4744 for (Output_data_list::const_iterator p = pdl->begin();
4745 p != pdl->end();
4746 ++p)
4747 {
4748 if (!(*p)->is_section())
4749 continue;
4750 Output_section* os = static_cast<Output_section*>(*p);
4751 uint64_t lma = (os->has_load_address()
4752 ? os->load_address()
4753 : os->address());
4754 if (*found == NULL || lma < *found_lma)
4755 {
4756 *found = os;
4757 *found_lma = lma;
4758 }
4759 }
4760}
4761
61ba1cf9
ILT
4762// Write the segment data into *OPHDR.
4763
4764template<int size, bool big_endian>
4765void
ead1e424 4766Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4767{
4768 ophdr->put_p_type(this->type_);
4769 ophdr->put_p_offset(this->offset_);
4770 ophdr->put_p_vaddr(this->vaddr_);
4771 ophdr->put_p_paddr(this->paddr_);
4772 ophdr->put_p_filesz(this->filesz_);
4773 ophdr->put_p_memsz(this->memsz_);
4774 ophdr->put_p_flags(this->flags_);
a445fddf 4775 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4776}
4777
4778// Write the section headers into V.
4779
4780template<int size, bool big_endian>
4781unsigned char*
16649710
ILT
4782Output_segment::write_section_headers(const Layout* layout,
4783 const Stringpool* secnamepool,
ead1e424 4784 unsigned char* v,
ca09d69a 4785 unsigned int* pshndx) const
5482377d 4786{
ead1e424
ILT
4787 // Every section that is attached to a segment must be attached to a
4788 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4789 // segments.
4790 if (this->type_ != elfcpp::PT_LOAD)
4791 return v;
4792
22f0da72
ILT
4793 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4794 {
4795 const Output_data_list* pdl = &this->output_lists_[i];
4796 v = this->write_section_headers_list<size, big_endian>(layout,
4797 secnamepool,
4798 pdl,
4799 v, pshndx);
4800 }
4801
61ba1cf9
ILT
4802 return v;
4803}
4804
4805template<int size, bool big_endian>
4806unsigned char*
16649710
ILT
4807Output_segment::write_section_headers_list(const Layout* layout,
4808 const Stringpool* secnamepool,
61ba1cf9 4809 const Output_data_list* pdl,
ead1e424 4810 unsigned char* v,
7d1a9ebb 4811 unsigned int* pshndx) const
61ba1cf9
ILT
4812{
4813 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4814 for (Output_data_list::const_iterator p = pdl->begin();
4815 p != pdl->end();
4816 ++p)
4817 {
4818 if ((*p)->is_section())
4819 {
5482377d 4820 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4821 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4822 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4823 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4824 v += shdr_size;
ead1e424 4825 ++*pshndx;
61ba1cf9
ILT
4826 }
4827 }
4828 return v;
4829}
4830
7d9e3d98
ILT
4831// Print the output sections to the map file.
4832
4833void
4834Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4835{
4836 if (this->type() != elfcpp::PT_LOAD)
4837 return;
22f0da72
ILT
4838 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4839 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4840}
4841
4842// Print an output section list to the map file.
4843
4844void
4845Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4846 const Output_data_list* pdl) const
4847{
4848 for (Output_data_list::const_iterator p = pdl->begin();
4849 p != pdl->end();
4850 ++p)
4851 (*p)->print_to_mapfile(mapfile);
4852}
4853
a2fb1b05
ILT
4854// Output_file methods.
4855
14144f39
ILT
4856Output_file::Output_file(const char* name)
4857 : name_(name),
61ba1cf9
ILT
4858 o_(-1),
4859 file_size_(0),
c420411f 4860 base_(NULL),
516cb3d0 4861 map_is_anonymous_(false),
88597d34 4862 map_is_allocated_(false),
516cb3d0 4863 is_temporary_(false)
61ba1cf9
ILT
4864{
4865}
4866
404c2abb 4867// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4868// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4869// NULL, open that file as the base for incremental linking, and
4870// copy its contents to the new output file. This routine can
4871// be called for incremental updates, in which case WRITABLE should
4872// be true, or by the incremental-dump utility, in which case
4873// WRITABLE should be false.
404c2abb
ILT
4874
4875bool
aa92d6ed 4876Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4877{
4878 // The name "-" means "stdout".
4879 if (strcmp(this->name_, "-") == 0)
4880 return false;
4881
aa92d6ed
CC
4882 bool use_base_file = base_name != NULL;
4883 if (!use_base_file)
4884 base_name = this->name_;
4885 else if (strcmp(base_name, this->name_) == 0)
4886 gold_fatal(_("%s: incremental base and output file name are the same"),
4887 base_name);
4888
404c2abb
ILT
4889 // Don't bother opening files with a size of zero.
4890 struct stat s;
aa92d6ed
CC
4891 if (::stat(base_name, &s) != 0)
4892 {
4893 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4894 return false;
4895 }
4896 if (s.st_size == 0)
4897 {
4898 gold_info(_("%s: incremental base file is empty"), base_name);
4899 return false;
4900 }
4901
4902 // If we're using a base file, we want to open it read-only.
4903 if (use_base_file)
4904 writable = false;
404c2abb 4905
aa92d6ed
CC
4906 int oflags = writable ? O_RDWR : O_RDONLY;
4907 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4908 if (o < 0)
aa92d6ed
CC
4909 {
4910 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4911 return false;
4912 }
4913
4914 // If the base file and the output file are different, open a
4915 // new output file and read the contents from the base file into
4916 // the newly-mapped region.
4917 if (use_base_file)
4918 {
4919 this->open(s.st_size);
dfb45471
CC
4920 ssize_t bytes_to_read = s.st_size;
4921 unsigned char* p = this->base_;
4922 while (bytes_to_read > 0)
4923 {
4924 ssize_t len = ::read(o, p, bytes_to_read);
4925 if (len < 0)
4926 {
4927 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4928 return false;
4929 }
4930 if (len == 0)
4931 {
4932 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4933 base_name,
4934 static_cast<long long>(s.st_size - bytes_to_read),
4935 static_cast<long long>(s.st_size));
4936 return false;
4937 }
4938 p += len;
4939 bytes_to_read -= len;
4940 }
aa92d6ed
CC
4941 ::close(o);
4942 return true;
4943 }
4944
404c2abb
ILT
4945 this->o_ = o;
4946 this->file_size_ = s.st_size;
4947
aa92d6ed 4948 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4949 {
4950 release_descriptor(o, true);
4951 this->o_ = -1;
4952 this->file_size_ = 0;
4953 return false;
4954 }
4955
4956 return true;
4957}
4958
61ba1cf9
ILT
4959// Open the output file.
4960
a2fb1b05 4961void
61ba1cf9 4962Output_file::open(off_t file_size)
a2fb1b05 4963{
61ba1cf9
ILT
4964 this->file_size_ = file_size;
4965
4e9d8586
ILT
4966 // Unlink the file first; otherwise the open() may fail if the file
4967 // is busy (e.g. it's an executable that's currently being executed).
4968 //
4969 // However, the linker may be part of a system where a zero-length
4970 // file is created for it to write to, with tight permissions (gcc
4971 // 2.95 did something like this). Unlinking the file would work
4972 // around those permission controls, so we only unlink if the file
4973 // has a non-zero size. We also unlink only regular files to avoid
4974 // trouble with directories/etc.
4975 //
4976 // If we fail, continue; this command is merely a best-effort attempt
4977 // to improve the odds for open().
4978
42a1b686 4979 // We let the name "-" mean "stdout"
516cb3d0 4980 if (!this->is_temporary_)
42a1b686 4981 {
516cb3d0
ILT
4982 if (strcmp(this->name_, "-") == 0)
4983 this->o_ = STDOUT_FILENO;
4984 else
4985 {
4986 struct stat s;
6a89f575
CC
4987 if (::stat(this->name_, &s) == 0
4988 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4989 {
4990 if (s.st_size != 0)
4991 ::unlink(this->name_);
4992 else if (!parameters->options().relocatable())
4993 {
4994 // If we don't unlink the existing file, add execute
4995 // permission where read permissions already exist
4996 // and where the umask permits.
4997 int mask = ::umask(0);
4998 ::umask(mask);
4999 s.st_mode |= (s.st_mode & 0444) >> 2;
5000 ::chmod(this->name_, s.st_mode & ~mask);
5001 }
5002 }
516cb3d0 5003
8851ecca 5004 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
5005 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5006 mode);
516cb3d0
ILT
5007 if (o < 0)
5008 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5009 this->o_ = o;
5010 }
42a1b686 5011 }
61ba1cf9 5012
27bc2bce
ILT
5013 this->map();
5014}
5015
5016// Resize the output file.
5017
5018void
5019Output_file::resize(off_t file_size)
5020{
c420411f
ILT
5021 // If the mmap is mapping an anonymous memory buffer, this is easy:
5022 // just mremap to the new size. If it's mapping to a file, we want
5023 // to unmap to flush to the file, then remap after growing the file.
5024 if (this->map_is_anonymous_)
5025 {
88597d34
ILT
5026 void* base;
5027 if (!this->map_is_allocated_)
5028 {
5029 base = ::mremap(this->base_, this->file_size_, file_size,
5030 MREMAP_MAYMOVE);
5031 if (base == MAP_FAILED)
5032 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5033 }
5034 else
5035 {
5036 base = realloc(this->base_, file_size);
5037 if (base == NULL)
5038 gold_nomem();
5039 if (file_size > this->file_size_)
5040 memset(static_cast<char*>(base) + this->file_size_, 0,
5041 file_size - this->file_size_);
5042 }
c420411f
ILT
5043 this->base_ = static_cast<unsigned char*>(base);
5044 this->file_size_ = file_size;
5045 }
5046 else
5047 {
5048 this->unmap();
5049 this->file_size_ = file_size;
aa92d6ed 5050 if (!this->map_no_anonymous(true))
fdcac5af 5051 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5052 }
27bc2bce
ILT
5053}
5054
404c2abb
ILT
5055// Map an anonymous block of memory which will later be written to the
5056// file. Return whether the map succeeded.
26736d8e 5057
404c2abb 5058bool
26736d8e
ILT
5059Output_file::map_anonymous()
5060{
404c2abb
ILT
5061 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5062 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5063 if (base == MAP_FAILED)
404c2abb 5064 {
88597d34
ILT
5065 base = malloc(this->file_size_);
5066 if (base == NULL)
5067 return false;
5068 memset(base, 0, this->file_size_);
5069 this->map_is_allocated_ = true;
404c2abb 5070 }
88597d34
ILT
5071 this->base_ = static_cast<unsigned char*>(base);
5072 this->map_is_anonymous_ = true;
5073 return true;
26736d8e
ILT
5074}
5075
404c2abb 5076// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5077// If WRITABLE is true, map with write access.
27bc2bce 5078
404c2abb 5079bool
aa92d6ed 5080Output_file::map_no_anonymous(bool writable)
27bc2bce 5081{
c420411f 5082 const int o = this->o_;
61ba1cf9 5083
c420411f
ILT
5084 // If the output file is not a regular file, don't try to mmap it;
5085 // instead, we'll mmap a block of memory (an anonymous buffer), and
5086 // then later write the buffer to the file.
5087 void* base;
5088 struct stat statbuf;
42a1b686
ILT
5089 if (o == STDOUT_FILENO || o == STDERR_FILENO
5090 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5091 || !S_ISREG(statbuf.st_mode)
5092 || this->is_temporary_)
404c2abb
ILT
5093 return false;
5094
5095 // Ensure that we have disk space available for the file. If we
5096 // don't do this, it is possible that we will call munmap, close,
5097 // and exit with dirty buffers still in the cache with no assigned
5098 // disk blocks. If the disk is out of space at that point, the
5099 // output file will wind up incomplete, but we will have already
5100 // exited. The alternative to fallocate would be to use fdatasync,
5101 // but that would be a more significant performance hit.
bab9090f
CC
5102 if (writable)
5103 {
7c0640fa 5104 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5105 if (err != 0)
5106 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5107 }
404c2abb
ILT
5108
5109 // Map the file into memory.
aa92d6ed
CC
5110 int prot = PROT_READ;
5111 if (writable)
5112 prot |= PROT_WRITE;
5113 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5114
5115 // The mmap call might fail because of file system issues: the file
5116 // system might not support mmap at all, or it might not support
5117 // mmap with PROT_WRITE.
61ba1cf9 5118 if (base == MAP_FAILED)
404c2abb
ILT
5119 return false;
5120
5121 this->map_is_anonymous_ = false;
61ba1cf9 5122 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5123 return true;
5124}
5125
5126// Map the file into memory.
5127
5128void
5129Output_file::map()
5130{
7c0640fa
CC
5131 if (parameters->options().mmap_output_file()
5132 && this->map_no_anonymous(true))
404c2abb
ILT
5133 return;
5134
5135 // The mmap call might fail because of file system issues: the file
5136 // system might not support mmap at all, or it might not support
5137 // mmap with PROT_WRITE. I'm not sure which errno values we will
5138 // see in all cases, so if the mmap fails for any reason and we
5139 // don't care about file contents, try for an anonymous map.
5140 if (this->map_anonymous())
5141 return;
5142
5143 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5144 this->name_, static_cast<unsigned long>(this->file_size_),
5145 strerror(errno));
61ba1cf9
ILT
5146}
5147
c420411f 5148// Unmap the file from memory.
61ba1cf9
ILT
5149
5150void
c420411f 5151Output_file::unmap()
61ba1cf9 5152{
88597d34
ILT
5153 if (this->map_is_anonymous_)
5154 {
5155 // We've already written out the data, so there is no reason to
5156 // waste time unmapping or freeing the memory.
5157 }
5158 else
5159 {
5160 if (::munmap(this->base_, this->file_size_) < 0)
5161 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5162 }
61ba1cf9 5163 this->base_ = NULL;
c420411f
ILT
5164}
5165
5166// Close the output file.
5167
5168void
5169Output_file::close()
5170{
5171 // If the map isn't file-backed, we need to write it now.
516cb3d0 5172 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5173 {
5174 size_t bytes_to_write = this->file_size_;
6d1e3092 5175 size_t offset = 0;
c420411f
ILT
5176 while (bytes_to_write > 0)
5177 {
6d1e3092
CD
5178 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5179 bytes_to_write);
c420411f
ILT
5180 if (bytes_written == 0)
5181 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5182 else if (bytes_written < 0)
5183 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5184 else
6d1e3092
CD
5185 {
5186 bytes_to_write -= bytes_written;
5187 offset += bytes_written;
5188 }
c420411f
ILT
5189 }
5190 }
5191 this->unmap();
61ba1cf9 5192
42a1b686 5193 // We don't close stdout or stderr
516cb3d0
ILT
5194 if (this->o_ != STDOUT_FILENO
5195 && this->o_ != STDERR_FILENO
5196 && !this->is_temporary_)
42a1b686
ILT
5197 if (::close(this->o_) < 0)
5198 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5199 this->o_ = -1;
a2fb1b05
ILT
5200}
5201
5202// Instantiate the templates we need. We could use the configure
5203// script to restrict this to only the ones for implemented targets.
5204
193a53d9 5205#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5206template
5207off_t
5208Output_section::add_input_section<32, false>(
6e9ba2ca 5209 Layout* layout,
6fa2a40b 5210 Sized_relobj_file<32, false>* object,
2ea97941 5211 unsigned int shndx,
a2fb1b05 5212 const char* secname,
730cdc88 5213 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5214 unsigned int reloc_shndx,
5215 bool have_sections_script);
193a53d9 5216#endif
a2fb1b05 5217
193a53d9 5218#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5219template
5220off_t
5221Output_section::add_input_section<32, true>(
6e9ba2ca 5222 Layout* layout,
6fa2a40b 5223 Sized_relobj_file<32, true>* object,
2ea97941 5224 unsigned int shndx,
a2fb1b05 5225 const char* secname,
730cdc88 5226 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5227 unsigned int reloc_shndx,
5228 bool have_sections_script);
193a53d9 5229#endif
a2fb1b05 5230
193a53d9 5231#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5232template
5233off_t
5234Output_section::add_input_section<64, false>(
6e9ba2ca 5235 Layout* layout,
6fa2a40b 5236 Sized_relobj_file<64, false>* object,
2ea97941 5237 unsigned int shndx,
a2fb1b05 5238 const char* secname,
730cdc88 5239 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5240 unsigned int reloc_shndx,
5241 bool have_sections_script);
193a53d9 5242#endif
a2fb1b05 5243
193a53d9 5244#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5245template
5246off_t
5247Output_section::add_input_section<64, true>(
6e9ba2ca 5248 Layout* layout,
6fa2a40b 5249 Sized_relobj_file<64, true>* object,
2ea97941 5250 unsigned int shndx,
a2fb1b05 5251 const char* secname,
730cdc88 5252 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5253 unsigned int reloc_shndx,
5254 bool have_sections_script);
193a53d9 5255#endif
a2fb1b05 5256
bbbfea06
CC
5257#ifdef HAVE_TARGET_32_LITTLE
5258template
5259class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5260#endif
5261
5262#ifdef HAVE_TARGET_32_BIG
5263template
5264class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5265#endif
5266
5267#ifdef HAVE_TARGET_64_LITTLE
5268template
5269class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5270#endif
5271
5272#ifdef HAVE_TARGET_64_BIG
5273template
5274class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5275#endif
5276
5277#ifdef HAVE_TARGET_32_LITTLE
5278template
5279class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5280#endif
5281
5282#ifdef HAVE_TARGET_32_BIG
5283template
5284class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5285#endif
5286
5287#ifdef HAVE_TARGET_64_LITTLE
5288template
5289class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5290#endif
5291
5292#ifdef HAVE_TARGET_64_BIG
5293template
5294class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5295#endif
5296
5297#ifdef HAVE_TARGET_32_LITTLE
5298template
5299class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5300#endif
5301
5302#ifdef HAVE_TARGET_32_BIG
5303template
5304class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5305#endif
5306
5307#ifdef HAVE_TARGET_64_LITTLE
5308template
5309class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5310#endif
5311
5312#ifdef HAVE_TARGET_64_BIG
5313template
5314class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5315#endif
5316
5317#ifdef HAVE_TARGET_32_LITTLE
5318template
5319class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5320#endif
5321
5322#ifdef HAVE_TARGET_32_BIG
5323template
5324class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5325#endif
5326
5327#ifdef HAVE_TARGET_64_LITTLE
5328template
5329class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5330#endif
5331
5332#ifdef HAVE_TARGET_64_BIG
5333template
5334class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5335#endif
5336
193a53d9 5337#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5338template
5339class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5340#endif
c06b7b0b 5341
193a53d9 5342#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5343template
5344class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5345#endif
c06b7b0b 5346
193a53d9 5347#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5348template
5349class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5350#endif
c06b7b0b 5351
193a53d9 5352#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5353template
5354class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5355#endif
c06b7b0b 5356
193a53d9 5357#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5358template
5359class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5360#endif
c06b7b0b 5361
193a53d9 5362#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5363template
5364class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5365#endif
c06b7b0b 5366
193a53d9 5367#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5368template
5369class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5370#endif
c06b7b0b 5371
193a53d9 5372#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5373template
5374class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5375#endif
c06b7b0b 5376
193a53d9 5377#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5378template
5379class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5380#endif
c06b7b0b 5381
193a53d9 5382#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5383template
5384class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5385#endif
c06b7b0b 5386
193a53d9 5387#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5388template
5389class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5390#endif
c06b7b0b 5391
193a53d9 5392#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5393template
5394class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5395#endif
c06b7b0b 5396
193a53d9 5397#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5398template
5399class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5400#endif
c06b7b0b 5401
193a53d9 5402#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5403template
5404class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5405#endif
c06b7b0b 5406
193a53d9 5407#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5408template
5409class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5410#endif
c06b7b0b 5411
193a53d9 5412#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5413template
5414class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5415#endif
c06b7b0b 5416
6a74a719
ILT
5417#ifdef HAVE_TARGET_32_LITTLE
5418template
5419class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5420#endif
5421
5422#ifdef HAVE_TARGET_32_BIG
5423template
5424class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5425#endif
5426
5427#ifdef HAVE_TARGET_64_LITTLE
5428template
5429class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5430#endif
5431
5432#ifdef HAVE_TARGET_64_BIG
5433template
5434class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5435#endif
5436
5437#ifdef HAVE_TARGET_32_LITTLE
5438template
5439class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5440#endif
5441
5442#ifdef HAVE_TARGET_32_BIG
5443template
5444class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5445#endif
5446
5447#ifdef HAVE_TARGET_64_LITTLE
5448template
5449class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5450#endif
5451
5452#ifdef HAVE_TARGET_64_BIG
5453template
5454class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5455#endif
5456
5457#ifdef HAVE_TARGET_32_LITTLE
5458template
5459class Output_data_group<32, false>;
5460#endif
5461
5462#ifdef HAVE_TARGET_32_BIG
5463template
5464class Output_data_group<32, true>;
5465#endif
5466
5467#ifdef HAVE_TARGET_64_LITTLE
5468template
5469class Output_data_group<64, false>;
5470#endif
5471
5472#ifdef HAVE_TARGET_64_BIG
5473template
5474class Output_data_group<64, true>;
5475#endif
5476
ead1e424 5477template
dbe717ef 5478class Output_data_got<32, false>;
ead1e424
ILT
5479
5480template
dbe717ef 5481class Output_data_got<32, true>;
ead1e424
ILT
5482
5483template
dbe717ef 5484class Output_data_got<64, false>;
ead1e424
ILT
5485
5486template
dbe717ef 5487class Output_data_got<64, true>;
ead1e424 5488
a2fb1b05 5489} // End namespace gold.
This page took 0.611077 seconds and 4 git commands to generate.