/gas:
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
a2fb1b05
ILT
40#include "output.h"
41
c420411f
ILT
42// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43#ifndef MAP_ANONYMOUS
44# define MAP_ANONYMOUS MAP_ANON
45#endif
46
a2fb1b05
ILT
47namespace gold
48{
49
a3ad94ed
ILT
50// Output_data variables.
51
27bc2bce 52bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 53
a2fb1b05
ILT
54// Output_data methods.
55
56Output_data::~Output_data()
57{
58}
59
730cdc88
ILT
60// Return the default alignment for the target size.
61
62uint64_t
63Output_data::default_alignment()
64{
8851ecca
ILT
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
730cdc88
ILT
67}
68
75f65a3e
ILT
69// Return the default alignment for a size--32 or 64.
70
71uint64_t
730cdc88 72Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
73{
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
a3ad94ed 79 gold_unreachable();
75f65a3e
ILT
80}
81
75f65a3e
ILT
82// Output_section_header methods. This currently assumes that the
83// segment and section lists are complete at construction time.
84
85Output_section_headers::Output_section_headers(
16649710
ILT
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
6a74a719 88 const Layout::Section_list* section_list,
16649710 89 const Layout::Section_list* unattached_section_list,
61ba1cf9 90 const Stringpool* secnamepool)
9025d29d 91 : layout_(layout),
75f65a3e 92 segment_list_(segment_list),
6a74a719 93 section_list_(section_list),
a3ad94ed 94 unattached_section_list_(unattached_section_list),
61ba1cf9 95 secnamepool_(secnamepool)
75f65a3e 96{
61ba1cf9
ILT
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
8851ecca 99 if (!parameters->options().relocatable())
6a74a719
ILT
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
16649710 115 count += unattached_section_list->size();
75f65a3e 116
8851ecca 117 const int size = parameters->target().get_size();
75f65a3e
ILT
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
a3ad94ed 124 gold_unreachable();
75f65a3e
ILT
125
126 this->set_data_size(count * shdr_size);
127}
128
61ba1cf9
ILT
129// Write out the section headers.
130
75f65a3e 131void
61ba1cf9 132Output_section_headers::do_write(Output_file* of)
a2fb1b05 133{
8851ecca 134 switch (parameters->size_and_endianness())
61ba1cf9 135 {
9025d29d 136#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
9025d29d 140#endif
8851ecca
ILT
141#ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
9025d29d 145#endif
9025d29d 146#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
9025d29d 150#endif
8851ecca
ILT
151#ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155#endif
156 default:
157 gold_unreachable();
61ba1cf9 158 }
61ba1cf9
ILT
159}
160
161template<int size, bool big_endian>
162void
163Output_section_headers::do_sized_write(Output_file* of)
164{
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
6a74a719 187 unsigned int shndx = 1;
8851ecca 188 if (!parameters->options().relocatable())
6a74a719
ILT
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
a3ad94ed 219 for (Layout::Section_list::const_iterator p =
16649710
ILT
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
61ba1cf9
ILT
222 ++p)
223 {
6a74a719
ILT
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 227 && parameters->options().relocatable())
6a74a719 228 continue;
a3ad94ed 229 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 232 v += shdr_size;
ead1e424 233 ++shndx;
61ba1cf9
ILT
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
237}
238
54dc6425
ILT
239// Output_segment_header methods.
240
61ba1cf9 241Output_segment_headers::Output_segment_headers(
61ba1cf9 242 const Layout::Segment_list& segment_list)
9025d29d 243 : segment_list_(segment_list)
61ba1cf9 244{
8851ecca 245 const int size = parameters->target().get_size();
61ba1cf9
ILT
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
a3ad94ed 252 gold_unreachable();
61ba1cf9
ILT
253
254 this->set_data_size(segment_list.size() * phdr_size);
255}
256
54dc6425 257void
61ba1cf9 258Output_segment_headers::do_write(Output_file* of)
75f65a3e 259{
8851ecca 260 switch (parameters->size_and_endianness())
61ba1cf9 261 {
9025d29d 262#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
9025d29d 266#endif
8851ecca
ILT
267#ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
9025d29d 271#endif
9025d29d 272#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
9025d29d 276#endif
8851ecca
ILT
277#ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281#endif
282 default:
283 gold_unreachable();
61ba1cf9 284 }
61ba1cf9
ILT
285}
286
287template<int size, bool big_endian>
288void
289Output_segment_headers::do_sized_write(Output_file* of)
290{
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 293 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
a445fddf
ILT
306 gold_assert(v - view == all_phdrs_size);
307
61ba1cf9 308 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
309}
310
311// Output_file_header methods.
312
9025d29d 313Output_file_header::Output_file_header(const Target* target,
75f65a3e 314 const Symbol_table* symtab,
d391083d
ILT
315 const Output_segment_headers* osh,
316 const char* entry)
9025d29d 317 : target_(target),
75f65a3e 318 symtab_(symtab),
61ba1cf9 319 segment_header_(osh),
75f65a3e 320 section_header_(NULL),
d391083d
ILT
321 shstrtab_(NULL),
322 entry_(entry)
75f65a3e 323{
8851ecca 324 const int size = parameters->target().get_size();
61ba1cf9
ILT
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
a3ad94ed 331 gold_unreachable();
61ba1cf9
ILT
332
333 this->set_data_size(ehdr_size);
75f65a3e
ILT
334}
335
336// Set the section table information for a file header.
337
338void
339Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341{
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344}
345
346// Write out the file header.
347
348void
61ba1cf9 349Output_file_header::do_write(Output_file* of)
54dc6425 350{
27bc2bce
ILT
351 gold_assert(this->offset() == 0);
352
8851ecca 353 switch (parameters->size_and_endianness())
61ba1cf9 354 {
9025d29d 355#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
9025d29d 359#endif
8851ecca
ILT
360#ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
9025d29d 364#endif
9025d29d 365#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
9025d29d 369#endif
8851ecca
ILT
370#ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374#endif
375 default:
376 gold_unreachable();
61ba1cf9 377 }
61ba1cf9
ILT
378}
379
380// Write out the file header with appropriate size and endianess.
381
382template<int size, bool big_endian>
383void
384Output_file_header::do_sized_write(Output_file* of)
385{
a3ad94ed 386 gold_assert(this->offset() == 0);
61ba1cf9
ILT
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
a3ad94ed 403 gold_unreachable();
61ba1cf9
ILT
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
8851ecca 412 if (parameters->options().relocatable())
61ba1cf9 413 e_type = elfcpp::ET_REL;
8851ecca 414 else if (parameters->options().shared())
436ca963 415 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
d391083d 423 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 424
6a74a719
ILT
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
61ba1cf9
ILT
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
61ba1cf9
ILT
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
453
454 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
455}
456
d391083d
ILT
457// Return the value to use for the entry address. THIS->ENTRY_ is the
458// symbol specified on the command line, if any.
459
460template<int size>
461typename elfcpp::Elf_types<size>::Elf_Addr
462Output_file_header::entry()
463{
464 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
d391083d
ILT
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499}
500
dbe717ef
ILT
501// Output_data_const methods.
502
503void
a3ad94ed 504Output_data_const::do_write(Output_file* of)
dbe717ef 505{
a3ad94ed
ILT
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507}
508
509// Output_data_const_buffer methods.
510
511void
512Output_data_const_buffer::do_write(Output_file* of)
513{
514 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
515}
516
517// Output_section_data methods.
518
16649710
ILT
519// Record the output section, and set the entry size and such.
520
521void
522Output_section_data::set_output_section(Output_section* os)
523{
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527}
528
529// Return the section index of the output section.
530
dbe717ef
ILT
531unsigned int
532Output_section_data::do_out_shndx() const
533{
a3ad94ed 534 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
535 return this->output_section_->out_shndx();
536}
537
a3ad94ed
ILT
538// Output_data_strtab methods.
539
27bc2bce 540// Set the final data size.
a3ad94ed
ILT
541
542void
27bc2bce 543Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
544{
545 this->strtab_->set_string_offsets();
546 this->set_data_size(this->strtab_->get_strtab_size());
547}
548
549// Write out a string table.
550
551void
552Output_data_strtab::do_write(Output_file* of)
553{
554 this->strtab_->write(of, this->offset());
555}
556
c06b7b0b
ILT
557// Output_reloc methods.
558
7bf1f802
ILT
559// A reloc against a global symbol.
560
561template<bool dynamic, int size, bool big_endian>
562Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
563 Symbol* gsym,
564 unsigned int type,
565 Output_data* od,
e8c846c3
ILT
566 Address address,
567 bool is_relative)
7bf1f802 568 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 569 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 570{
dceae3c1
ILT
571 // this->type_ is a bitfield; make sure TYPE fits.
572 gold_assert(this->type_ == type);
7bf1f802
ILT
573 this->u1_.gsym = gsym;
574 this->u2_.od = od;
dceae3c1
ILT
575 if (dynamic)
576 this->set_needs_dynsym_index();
7bf1f802
ILT
577}
578
579template<bool dynamic, int size, bool big_endian>
580Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
581 Symbol* gsym,
582 unsigned int type,
583 Relobj* relobj,
584 unsigned int shndx,
e8c846c3
ILT
585 Address address,
586 bool is_relative)
7bf1f802 587 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 588 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
589{
590 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
591 // this->type_ is a bitfield; make sure TYPE fits.
592 gold_assert(this->type_ == type);
7bf1f802
ILT
593 this->u1_.gsym = gsym;
594 this->u2_.relobj = relobj;
dceae3c1
ILT
595 if (dynamic)
596 this->set_needs_dynsym_index();
7bf1f802
ILT
597}
598
599// A reloc against a local symbol.
600
601template<bool dynamic, int size, bool big_endian>
602Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
603 Sized_relobj<size, big_endian>* relobj,
604 unsigned int local_sym_index,
605 unsigned int type,
606 Output_data* od,
e8c846c3 607 Address address,
dceae3c1
ILT
608 bool is_relative,
609 bool is_section_symbol)
7bf1f802 610 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
611 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
612 shndx_(INVALID_CODE)
7bf1f802
ILT
613{
614 gold_assert(local_sym_index != GSYM_CODE
615 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
616 // this->type_ is a bitfield; make sure TYPE fits.
617 gold_assert(this->type_ == type);
7bf1f802
ILT
618 this->u1_.relobj = relobj;
619 this->u2_.od = od;
dceae3c1
ILT
620 if (dynamic)
621 this->set_needs_dynsym_index();
7bf1f802
ILT
622}
623
624template<bool dynamic, int size, bool big_endian>
625Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
626 Sized_relobj<size, big_endian>* relobj,
627 unsigned int local_sym_index,
628 unsigned int type,
629 unsigned int shndx,
e8c846c3 630 Address address,
dceae3c1
ILT
631 bool is_relative,
632 bool is_section_symbol)
7bf1f802 633 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
634 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
635 shndx_(shndx)
7bf1f802
ILT
636{
637 gold_assert(local_sym_index != GSYM_CODE
638 && local_sym_index != INVALID_CODE);
639 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
7bf1f802
ILT
642 this->u1_.relobj = relobj;
643 this->u2_.relobj = relobj;
dceae3c1
ILT
644 if (dynamic)
645 this->set_needs_dynsym_index();
7bf1f802
ILT
646}
647
648// A reloc against the STT_SECTION symbol of an output section.
649
650template<bool dynamic, int size, bool big_endian>
651Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
652 Output_section* os,
653 unsigned int type,
654 Output_data* od,
655 Address address)
656 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 657 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 658{
dceae3c1
ILT
659 // this->type_ is a bitfield; make sure TYPE fits.
660 gold_assert(this->type_ == type);
7bf1f802
ILT
661 this->u1_.os = os;
662 this->u2_.od = od;
663 if (dynamic)
dceae3c1
ILT
664 this->set_needs_dynsym_index();
665 else
666 os->set_needs_symtab_index();
7bf1f802
ILT
667}
668
669template<bool dynamic, int size, bool big_endian>
670Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
671 Output_section* os,
672 unsigned int type,
673 Relobj* relobj,
674 unsigned int shndx,
675 Address address)
676 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 677 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
678{
679 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
680 // this->type_ is a bitfield; make sure TYPE fits.
681 gold_assert(this->type_ == type);
7bf1f802
ILT
682 this->u1_.os = os;
683 this->u2_.relobj = relobj;
684 if (dynamic)
dceae3c1
ILT
685 this->set_needs_dynsym_index();
686 else
687 os->set_needs_symtab_index();
688}
689
690// Record that we need a dynamic symbol index for this relocation.
691
692template<bool dynamic, int size, bool big_endian>
693void
694Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
695set_needs_dynsym_index()
696{
697 if (this->is_relative_)
698 return;
699 switch (this->local_sym_index_)
700 {
701 case INVALID_CODE:
702 gold_unreachable();
703
704 case GSYM_CODE:
705 this->u1_.gsym->set_needs_dynsym_entry();
706 break;
707
708 case SECTION_CODE:
709 this->u1_.os->set_needs_dynsym_index();
710 break;
711
712 case 0:
713 break;
714
715 default:
716 {
717 const unsigned int lsi = this->local_sym_index_;
718 if (!this->is_section_symbol_)
719 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
720 else
721 {
722 section_offset_type dummy;
723 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
724 gold_assert(os != NULL);
725 os->set_needs_dynsym_index();
726 }
727 }
728 break;
729 }
7bf1f802
ILT
730}
731
c06b7b0b
ILT
732// Get the symbol index of a relocation.
733
734template<bool dynamic, int size, bool big_endian>
735unsigned int
736Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
737 const
738{
739 unsigned int index;
740 switch (this->local_sym_index_)
741 {
742 case INVALID_CODE:
a3ad94ed 743 gold_unreachable();
c06b7b0b
ILT
744
745 case GSYM_CODE:
5a6f7e2d 746 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
747 index = 0;
748 else if (dynamic)
5a6f7e2d 749 index = this->u1_.gsym->dynsym_index();
c06b7b0b 750 else
5a6f7e2d 751 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
752 break;
753
754 case SECTION_CODE:
755 if (dynamic)
5a6f7e2d 756 index = this->u1_.os->dynsym_index();
c06b7b0b 757 else
5a6f7e2d 758 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
759 break;
760
436ca963
ILT
761 case 0:
762 // Relocations without symbols use a symbol index of 0.
763 index = 0;
764 break;
765
c06b7b0b 766 default:
dceae3c1
ILT
767 {
768 const unsigned int lsi = this->local_sym_index_;
769 if (!this->is_section_symbol_)
770 {
771 if (dynamic)
772 index = this->u1_.relobj->dynsym_index(lsi);
773 else
774 index = this->u1_.relobj->symtab_index(lsi);
775 }
776 else
777 {
778 section_offset_type dummy;
779 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
780 gold_assert(os != NULL);
781 if (dynamic)
782 index = os->dynsym_index();
783 else
784 index = os->symtab_index();
785 }
786 }
c06b7b0b
ILT
787 break;
788 }
a3ad94ed 789 gold_assert(index != -1U);
c06b7b0b
ILT
790 return index;
791}
792
dceae3c1
ILT
793// For a local section symbol, get the section offset of the input
794// section within the output section.
795
796template<bool dynamic, int size, bool big_endian>
797section_offset_type
798Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
799 local_section_offset() const
800{
801 const unsigned int lsi = this->local_sym_index_;
802 section_offset_type offset;
803 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
d1f003c6 804 gold_assert(os != NULL && offset != -1);
dceae3c1
ILT
805 return offset;
806}
807
c06b7b0b
ILT
808// Write out the offset and info fields of a Rel or Rela relocation
809// entry.
810
811template<bool dynamic, int size, bool big_endian>
812template<typename Write_rel>
813void
814Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
815 Write_rel* wr) const
816{
a3ad94ed 817 Address address = this->address_;
5a6f7e2d
ILT
818 if (this->shndx_ != INVALID_CODE)
819 {
8383303e 820 section_offset_type off;
5a6f7e2d
ILT
821 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
822 &off);
823 gold_assert(os != NULL);
730cdc88
ILT
824 if (off != -1)
825 address += os->address() + off;
826 else
827 {
828 address = os->output_address(this->u2_.relobj, this->shndx_,
829 address);
830 gold_assert(address != -1U);
831 }
5a6f7e2d
ILT
832 }
833 else if (this->u2_.od != NULL)
834 address += this->u2_.od->address();
a3ad94ed 835 wr->put_r_offset(address);
e8c846c3
ILT
836 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
837 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
838}
839
840// Write out a Rel relocation.
841
842template<bool dynamic, int size, bool big_endian>
843void
844Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
845 unsigned char* pov) const
846{
847 elfcpp::Rel_write<size, big_endian> orel(pov);
848 this->write_rel(&orel);
849}
850
e8c846c3
ILT
851// Get the value of the symbol referred to by a Rel relocation.
852
853template<bool dynamic, int size, bool big_endian>
854typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6
ILT
855Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
856 Address addend) const
e8c846c3
ILT
857{
858 if (this->local_sym_index_ == GSYM_CODE)
859 {
860 const Sized_symbol<size>* sym;
861 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 862 return sym->value() + addend;
e8c846c3
ILT
863 }
864 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
865 && this->local_sym_index_ != INVALID_CODE
866 && !this->is_section_symbol_);
867 const unsigned int lsi = this->local_sym_index_;
868 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
869 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
870}
871
c06b7b0b
ILT
872// Write out a Rela relocation.
873
874template<bool dynamic, int size, bool big_endian>
875void
876Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
877 unsigned char* pov) const
878{
879 elfcpp::Rela_write<size, big_endian> orel(pov);
880 this->rel_.write_rel(&orel);
e8c846c3 881 Addend addend = this->addend_;
dceae3c1 882 if (this->rel_.is_relative())
d1f003c6
ILT
883 addend = this->rel_.symbol_value(addend);
884 else if (this->rel_.is_local_section_symbol())
dceae3c1 885 addend += this->rel_.local_section_offset();
e8c846c3 886 orel.put_r_addend(addend);
c06b7b0b
ILT
887}
888
889// Output_data_reloc_base methods.
890
16649710
ILT
891// Adjust the output section.
892
893template<int sh_type, bool dynamic, int size, bool big_endian>
894void
895Output_data_reloc_base<sh_type, dynamic, size, big_endian>
896 ::do_adjust_output_section(Output_section* os)
897{
898 if (sh_type == elfcpp::SHT_REL)
899 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
900 else if (sh_type == elfcpp::SHT_RELA)
901 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
902 else
903 gold_unreachable();
904 if (dynamic)
905 os->set_should_link_to_dynsym();
906 else
907 os->set_should_link_to_symtab();
908}
909
c06b7b0b
ILT
910// Write out relocation data.
911
912template<int sh_type, bool dynamic, int size, bool big_endian>
913void
914Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
915 Output_file* of)
916{
917 const off_t off = this->offset();
918 const off_t oview_size = this->data_size();
919 unsigned char* const oview = of->get_output_view(off, oview_size);
920
921 unsigned char* pov = oview;
922 for (typename Relocs::const_iterator p = this->relocs_.begin();
923 p != this->relocs_.end();
924 ++p)
925 {
926 p->write(pov);
927 pov += reloc_size;
928 }
929
a3ad94ed 930 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
931
932 of->write_output_view(off, oview_size, oview);
933
934 // We no longer need the relocation entries.
935 this->relocs_.clear();
936}
937
6a74a719
ILT
938// Class Output_relocatable_relocs.
939
940template<int sh_type, int size, bool big_endian>
941void
942Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
943{
944 this->set_data_size(this->rr_->output_reloc_count()
945 * Reloc_types<sh_type, size, big_endian>::reloc_size);
946}
947
948// class Output_data_group.
949
950template<int size, bool big_endian>
951Output_data_group<size, big_endian>::Output_data_group(
952 Sized_relobj<size, big_endian>* relobj,
953 section_size_type entry_count,
954 const elfcpp::Elf_Word* contents)
955 : Output_section_data(entry_count * 4, 4),
956 relobj_(relobj)
957{
958 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
959 for (section_size_type i = 1; i < entry_count; ++i)
960 {
961 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
962 this->input_sections_.push_back(shndx);
963 }
964}
965
966// Write out the section group, which means translating the section
967// indexes to apply to the output file.
968
969template<int size, bool big_endian>
970void
971Output_data_group<size, big_endian>::do_write(Output_file* of)
972{
973 const off_t off = this->offset();
974 const section_size_type oview_size =
975 convert_to_section_size_type(this->data_size());
976 unsigned char* const oview = of->get_output_view(off, oview_size);
977
978 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
979 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
980 ++contents;
981
982 for (std::vector<unsigned int>::const_iterator p =
983 this->input_sections_.begin();
984 p != this->input_sections_.end();
985 ++p, ++contents)
986 {
987 section_offset_type dummy;
988 Output_section* os = this->relobj_->output_section(*p, &dummy);
989
990 unsigned int output_shndx;
991 if (os != NULL)
992 output_shndx = os->out_shndx();
993 else
994 {
995 this->relobj_->error(_("section group retained but "
996 "group element discarded"));
997 output_shndx = 0;
998 }
999
1000 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1001 }
1002
1003 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1004 gold_assert(wrote == oview_size);
1005
1006 of->write_output_view(off, oview_size, oview);
1007
1008 // We no longer need this information.
1009 this->input_sections_.clear();
1010}
1011
dbe717ef 1012// Output_data_got::Got_entry methods.
ead1e424
ILT
1013
1014// Write out the entry.
1015
1016template<int size, bool big_endian>
1017void
7e1edb90 1018Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1019{
1020 Valtype val = 0;
1021
1022 switch (this->local_sym_index_)
1023 {
1024 case GSYM_CODE:
1025 {
e8c846c3
ILT
1026 // If the symbol is resolved locally, we need to write out the
1027 // link-time value, which will be relocated dynamically by a
1028 // RELATIVE relocation.
ead1e424 1029 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1030 Sized_symbol<size>* sgsym;
1031 // This cast is a bit ugly. We don't want to put a
1032 // virtual method in Symbol, because we want Symbol to be
1033 // as small as possible.
1034 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1035 val = sgsym->value();
ead1e424
ILT
1036 }
1037 break;
1038
1039 case CONSTANT_CODE:
1040 val = this->u_.constant;
1041 break;
1042
1043 default:
d1f003c6
ILT
1044 {
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1047 val = symval->value(this->u_.object, 0);
1048 }
e727fa71 1049 break;
ead1e424
ILT
1050 }
1051
a3ad94ed 1052 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1053}
1054
dbe717ef 1055// Output_data_got methods.
ead1e424 1056
dbe717ef
ILT
1057// Add an entry for a global symbol to the GOT. This returns true if
1058// this is a new GOT entry, false if the symbol already had a GOT
1059// entry.
1060
1061template<int size, bool big_endian>
1062bool
0a65a3a7
CC
1063Output_data_got<size, big_endian>::add_global(
1064 Symbol* gsym,
1065 unsigned int got_type)
ead1e424 1066{
0a65a3a7 1067 if (gsym->has_got_offset(got_type))
dbe717ef 1068 return false;
ead1e424 1069
dbe717ef
ILT
1070 this->entries_.push_back(Got_entry(gsym));
1071 this->set_got_size();
0a65a3a7 1072 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1073 return true;
1074}
ead1e424 1075
7bf1f802
ILT
1076// Add an entry for a global symbol to the GOT, and add a dynamic
1077// relocation of type R_TYPE for the GOT entry.
1078template<int size, bool big_endian>
1079void
1080Output_data_got<size, big_endian>::add_global_with_rel(
1081 Symbol* gsym,
0a65a3a7 1082 unsigned int got_type,
7bf1f802
ILT
1083 Rel_dyn* rel_dyn,
1084 unsigned int r_type)
1085{
0a65a3a7 1086 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1087 return;
1088
1089 this->entries_.push_back(Got_entry());
1090 this->set_got_size();
1091 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1092 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1093 rel_dyn->add_global(gsym, r_type, this, got_offset);
1094}
1095
1096template<int size, bool big_endian>
1097void
1098Output_data_got<size, big_endian>::add_global_with_rela(
1099 Symbol* gsym,
0a65a3a7 1100 unsigned int got_type,
7bf1f802
ILT
1101 Rela_dyn* rela_dyn,
1102 unsigned int r_type)
1103{
0a65a3a7 1104 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1105 return;
1106
1107 this->entries_.push_back(Got_entry());
1108 this->set_got_size();
1109 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1110 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1111 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1112}
1113
0a65a3a7
CC
1114// Add a pair of entries for a global symbol to the GOT, and add
1115// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1116// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1117template<int size, bool big_endian>
1118void
0a65a3a7
CC
1119Output_data_got<size, big_endian>::add_global_pair_with_rel(
1120 Symbol* gsym,
1121 unsigned int got_type,
7bf1f802 1122 Rel_dyn* rel_dyn,
0a65a3a7
CC
1123 unsigned int r_type_1,
1124 unsigned int r_type_2)
7bf1f802 1125{
0a65a3a7 1126 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1127 return;
1128
1129 this->entries_.push_back(Got_entry());
7bf1f802 1130 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1131 gsym->set_got_offset(got_type, got_offset);
1132 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1133
1134 this->entries_.push_back(Got_entry());
1135 if (r_type_2 != 0)
1136 {
1137 got_offset = this->last_got_offset();
1138 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1139 }
1140
1141 this->set_got_size();
7bf1f802
ILT
1142}
1143
1144template<int size, bool big_endian>
1145void
0a65a3a7
CC
1146Output_data_got<size, big_endian>::add_global_pair_with_rela(
1147 Symbol* gsym,
1148 unsigned int got_type,
7bf1f802 1149 Rela_dyn* rela_dyn,
0a65a3a7
CC
1150 unsigned int r_type_1,
1151 unsigned int r_type_2)
7bf1f802 1152{
0a65a3a7 1153 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1154 return;
1155
1156 this->entries_.push_back(Got_entry());
7bf1f802 1157 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1158 gsym->set_got_offset(got_type, got_offset);
1159 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1160
1161 this->entries_.push_back(Got_entry());
1162 if (r_type_2 != 0)
1163 {
1164 got_offset = this->last_got_offset();
1165 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1166 }
1167
1168 this->set_got_size();
7bf1f802
ILT
1169}
1170
0a65a3a7
CC
1171// Add an entry for a local symbol to the GOT. This returns true if
1172// this is a new GOT entry, false if the symbol already has a GOT
1173// entry.
07f397ab
ILT
1174
1175template<int size, bool big_endian>
1176bool
0a65a3a7
CC
1177Output_data_got<size, big_endian>::add_local(
1178 Sized_relobj<size, big_endian>* object,
1179 unsigned int symndx,
1180 unsigned int got_type)
07f397ab 1181{
0a65a3a7 1182 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1183 return false;
1184
0a65a3a7 1185 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1186 this->set_got_size();
0a65a3a7 1187 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1188 return true;
1189}
1190
0a65a3a7
CC
1191// Add an entry for a local symbol to the GOT, and add a dynamic
1192// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1193template<int size, bool big_endian>
1194void
0a65a3a7
CC
1195Output_data_got<size, big_endian>::add_local_with_rel(
1196 Sized_relobj<size, big_endian>* object,
1197 unsigned int symndx,
1198 unsigned int got_type,
7bf1f802
ILT
1199 Rel_dyn* rel_dyn,
1200 unsigned int r_type)
1201{
0a65a3a7 1202 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1203 return;
1204
1205 this->entries_.push_back(Got_entry());
1206 this->set_got_size();
1207 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1208 object->set_local_got_offset(symndx, got_type, got_offset);
1209 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1210}
1211
1212template<int size, bool big_endian>
1213void
0a65a3a7
CC
1214Output_data_got<size, big_endian>::add_local_with_rela(
1215 Sized_relobj<size, big_endian>* object,
1216 unsigned int symndx,
1217 unsigned int got_type,
7bf1f802
ILT
1218 Rela_dyn* rela_dyn,
1219 unsigned int r_type)
1220{
0a65a3a7 1221 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1222 return;
1223
1224 this->entries_.push_back(Got_entry());
1225 this->set_got_size();
1226 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1227 object->set_local_got_offset(symndx, got_type, got_offset);
1228 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1229}
1230
0a65a3a7
CC
1231// Add a pair of entries for a local symbol to the GOT, and add
1232// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1233// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1234template<int size, bool big_endian>
1235void
0a65a3a7 1236Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1237 Sized_relobj<size, big_endian>* object,
1238 unsigned int symndx,
1239 unsigned int shndx,
0a65a3a7 1240 unsigned int got_type,
7bf1f802 1241 Rel_dyn* rel_dyn,
0a65a3a7
CC
1242 unsigned int r_type_1,
1243 unsigned int r_type_2)
7bf1f802 1244{
0a65a3a7 1245 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1246 return;
1247
1248 this->entries_.push_back(Got_entry());
1249 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1250 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1251 section_offset_type off;
7bf1f802 1252 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1253 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1254
0a65a3a7
CC
1255 this->entries_.push_back(Got_entry(object, symndx));
1256 if (r_type_2 != 0)
1257 {
1258 got_offset = this->last_got_offset();
1259 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1260 }
7bf1f802
ILT
1261
1262 this->set_got_size();
1263}
1264
1265template<int size, bool big_endian>
1266void
0a65a3a7 1267Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1268 Sized_relobj<size, big_endian>* object,
1269 unsigned int symndx,
1270 unsigned int shndx,
0a65a3a7 1271 unsigned int got_type,
7bf1f802 1272 Rela_dyn* rela_dyn,
0a65a3a7
CC
1273 unsigned int r_type_1,
1274 unsigned int r_type_2)
7bf1f802 1275{
0a65a3a7 1276 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1277 return;
1278
1279 this->entries_.push_back(Got_entry());
1280 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1281 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1282 section_offset_type off;
7bf1f802 1283 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1284 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1285
0a65a3a7
CC
1286 this->entries_.push_back(Got_entry(object, symndx));
1287 if (r_type_2 != 0)
1288 {
1289 got_offset = this->last_got_offset();
1290 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1291 }
7bf1f802
ILT
1292
1293 this->set_got_size();
1294}
1295
ead1e424
ILT
1296// Write out the GOT.
1297
1298template<int size, bool big_endian>
1299void
dbe717ef 1300Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1301{
1302 const int add = size / 8;
1303
1304 const off_t off = this->offset();
c06b7b0b 1305 const off_t oview_size = this->data_size();
ead1e424
ILT
1306 unsigned char* const oview = of->get_output_view(off, oview_size);
1307
1308 unsigned char* pov = oview;
1309 for (typename Got_entries::const_iterator p = this->entries_.begin();
1310 p != this->entries_.end();
1311 ++p)
1312 {
7e1edb90 1313 p->write(pov);
ead1e424
ILT
1314 pov += add;
1315 }
1316
a3ad94ed 1317 gold_assert(pov - oview == oview_size);
c06b7b0b 1318
ead1e424
ILT
1319 of->write_output_view(off, oview_size, oview);
1320
1321 // We no longer need the GOT entries.
1322 this->entries_.clear();
1323}
1324
a3ad94ed
ILT
1325// Output_data_dynamic::Dynamic_entry methods.
1326
1327// Write out the entry.
1328
1329template<int size, bool big_endian>
1330void
1331Output_data_dynamic::Dynamic_entry::write(
1332 unsigned char* pov,
7d1a9ebb 1333 const Stringpool* pool) const
a3ad94ed
ILT
1334{
1335 typename elfcpp::Elf_types<size>::Elf_WXword val;
1336 switch (this->classification_)
1337 {
1338 case DYNAMIC_NUMBER:
1339 val = this->u_.val;
1340 break;
1341
1342 case DYNAMIC_SECTION_ADDRESS:
16649710 1343 val = this->u_.od->address();
a3ad94ed
ILT
1344 break;
1345
1346 case DYNAMIC_SECTION_SIZE:
16649710 1347 val = this->u_.od->data_size();
a3ad94ed
ILT
1348 break;
1349
1350 case DYNAMIC_SYMBOL:
1351 {
16649710
ILT
1352 const Sized_symbol<size>* s =
1353 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1354 val = s->value();
1355 }
1356 break;
1357
1358 case DYNAMIC_STRING:
1359 val = pool->get_offset(this->u_.str);
1360 break;
1361
1362 default:
1363 gold_unreachable();
1364 }
1365
1366 elfcpp::Dyn_write<size, big_endian> dw(pov);
1367 dw.put_d_tag(this->tag_);
1368 dw.put_d_val(val);
1369}
1370
1371// Output_data_dynamic methods.
1372
16649710
ILT
1373// Adjust the output section to set the entry size.
1374
1375void
1376Output_data_dynamic::do_adjust_output_section(Output_section* os)
1377{
8851ecca 1378 if (parameters->target().get_size() == 32)
16649710 1379 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1380 else if (parameters->target().get_size() == 64)
16649710
ILT
1381 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1382 else
1383 gold_unreachable();
1384}
1385
a3ad94ed
ILT
1386// Set the final data size.
1387
1388void
27bc2bce 1389Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1390{
1391 // Add the terminating entry.
1392 this->add_constant(elfcpp::DT_NULL, 0);
1393
1394 int dyn_size;
8851ecca 1395 if (parameters->target().get_size() == 32)
a3ad94ed 1396 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1397 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1398 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1399 else
1400 gold_unreachable();
1401 this->set_data_size(this->entries_.size() * dyn_size);
1402}
1403
1404// Write out the dynamic entries.
1405
1406void
1407Output_data_dynamic::do_write(Output_file* of)
1408{
8851ecca 1409 switch (parameters->size_and_endianness())
a3ad94ed 1410 {
9025d29d 1411#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1412 case Parameters::TARGET_32_LITTLE:
1413 this->sized_write<32, false>(of);
1414 break;
9025d29d 1415#endif
8851ecca
ILT
1416#ifdef HAVE_TARGET_32_BIG
1417 case Parameters::TARGET_32_BIG:
1418 this->sized_write<32, true>(of);
1419 break;
9025d29d 1420#endif
9025d29d 1421#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1422 case Parameters::TARGET_64_LITTLE:
1423 this->sized_write<64, false>(of);
1424 break;
9025d29d 1425#endif
8851ecca
ILT
1426#ifdef HAVE_TARGET_64_BIG
1427 case Parameters::TARGET_64_BIG:
1428 this->sized_write<64, true>(of);
1429 break;
1430#endif
1431 default:
1432 gold_unreachable();
a3ad94ed 1433 }
a3ad94ed
ILT
1434}
1435
1436template<int size, bool big_endian>
1437void
1438Output_data_dynamic::sized_write(Output_file* of)
1439{
1440 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1441
1442 const off_t offset = this->offset();
1443 const off_t oview_size = this->data_size();
1444 unsigned char* const oview = of->get_output_view(offset, oview_size);
1445
1446 unsigned char* pov = oview;
1447 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1448 p != this->entries_.end();
1449 ++p)
1450 {
7d1a9ebb 1451 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1452 pov += dyn_size;
1453 }
1454
1455 gold_assert(pov - oview == oview_size);
1456
1457 of->write_output_view(offset, oview_size, oview);
1458
1459 // We no longer need the dynamic entries.
1460 this->entries_.clear();
1461}
1462
ead1e424
ILT
1463// Output_section::Input_section methods.
1464
1465// Return the data size. For an input section we store the size here.
1466// For an Output_section_data, we have to ask it for the size.
1467
1468off_t
1469Output_section::Input_section::data_size() const
1470{
1471 if (this->is_input_section())
b8e6aad9 1472 return this->u1_.data_size;
ead1e424 1473 else
b8e6aad9 1474 return this->u2_.posd->data_size();
ead1e424
ILT
1475}
1476
1477// Set the address and file offset.
1478
1479void
96803768
ILT
1480Output_section::Input_section::set_address_and_file_offset(
1481 uint64_t address,
1482 off_t file_offset,
1483 off_t section_file_offset)
ead1e424
ILT
1484{
1485 if (this->is_input_section())
96803768
ILT
1486 this->u2_.object->set_section_offset(this->shndx_,
1487 file_offset - section_file_offset);
ead1e424 1488 else
96803768
ILT
1489 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1490}
1491
a445fddf
ILT
1492// Reset the address and file offset.
1493
1494void
1495Output_section::Input_section::reset_address_and_file_offset()
1496{
1497 if (!this->is_input_section())
1498 this->u2_.posd->reset_address_and_file_offset();
1499}
1500
96803768
ILT
1501// Finalize the data size.
1502
1503void
1504Output_section::Input_section::finalize_data_size()
1505{
1506 if (!this->is_input_section())
1507 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1508}
1509
1e983657
ILT
1510// Try to turn an input offset into an output offset. We want to
1511// return the output offset relative to the start of this
1512// Input_section in the output section.
b8e6aad9 1513
8f00aeb8 1514inline bool
8383303e
ILT
1515Output_section::Input_section::output_offset(
1516 const Relobj* object,
1517 unsigned int shndx,
1518 section_offset_type offset,
1519 section_offset_type *poutput) const
b8e6aad9
ILT
1520{
1521 if (!this->is_input_section())
730cdc88 1522 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1523 else
1524 {
730cdc88 1525 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1526 return false;
1e983657 1527 *poutput = offset;
b8e6aad9
ILT
1528 return true;
1529 }
ead1e424
ILT
1530}
1531
a9a60db6
ILT
1532// Return whether this is the merge section for the input section
1533// SHNDX in OBJECT.
1534
1535inline bool
1536Output_section::Input_section::is_merge_section_for(const Relobj* object,
1537 unsigned int shndx) const
1538{
1539 if (this->is_input_section())
1540 return false;
1541 return this->u2_.posd->is_merge_section_for(object, shndx);
1542}
1543
ead1e424
ILT
1544// Write out the data. We don't have to do anything for an input
1545// section--they are handled via Object::relocate--but this is where
1546// we write out the data for an Output_section_data.
1547
1548void
1549Output_section::Input_section::write(Output_file* of)
1550{
1551 if (!this->is_input_section())
b8e6aad9 1552 this->u2_.posd->write(of);
ead1e424
ILT
1553}
1554
96803768
ILT
1555// Write the data to a buffer. As for write(), we don't have to do
1556// anything for an input section.
1557
1558void
1559Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1560{
1561 if (!this->is_input_section())
1562 this->u2_.posd->write_to_buffer(buffer);
1563}
1564
a2fb1b05
ILT
1565// Output_section methods.
1566
1567// Construct an Output_section. NAME will point into a Stringpool.
1568
96803768 1569Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1570 elfcpp::Elf_Xword flags)
96803768 1571 : name_(name),
a2fb1b05
ILT
1572 addralign_(0),
1573 entsize_(0),
a445fddf 1574 load_address_(0),
16649710 1575 link_section_(NULL),
a2fb1b05 1576 link_(0),
16649710 1577 info_section_(NULL),
6a74a719 1578 info_symndx_(NULL),
a2fb1b05
ILT
1579 info_(0),
1580 type_(type),
61ba1cf9 1581 flags_(flags),
91ea499d 1582 out_shndx_(-1U),
c06b7b0b
ILT
1583 symtab_index_(0),
1584 dynsym_index_(0),
ead1e424
ILT
1585 input_sections_(),
1586 first_input_offset_(0),
c51e6221 1587 fills_(),
96803768 1588 postprocessing_buffer_(NULL),
a3ad94ed 1589 needs_symtab_index_(false),
16649710
ILT
1590 needs_dynsym_index_(false),
1591 should_link_to_symtab_(false),
730cdc88 1592 should_link_to_dynsym_(false),
27bc2bce 1593 after_input_sections_(false),
7bf1f802 1594 requires_postprocessing_(false),
a445fddf
ILT
1595 found_in_sections_clause_(false),
1596 has_load_address_(false),
755ab8af 1597 info_uses_section_index_(false),
7bf1f802 1598 tls_offset_(0)
a2fb1b05 1599{
27bc2bce
ILT
1600 // An unallocated section has no address. Forcing this means that
1601 // we don't need special treatment for symbols defined in debug
1602 // sections.
1603 if ((flags & elfcpp::SHF_ALLOC) == 0)
1604 this->set_address(0);
a2fb1b05
ILT
1605}
1606
54dc6425
ILT
1607Output_section::~Output_section()
1608{
1609}
1610
16649710
ILT
1611// Set the entry size.
1612
1613void
1614Output_section::set_entsize(uint64_t v)
1615{
1616 if (this->entsize_ == 0)
1617 this->entsize_ = v;
1618 else
1619 gold_assert(this->entsize_ == v);
1620}
1621
ead1e424 1622// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1623// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1624// relocation section which applies to this section, or 0 if none, or
1625// -1U if more than one. Return the offset of the input section
1626// within the output section. Return -1 if the input section will
1627// receive special handling. In the normal case we don't always keep
1628// track of input sections for an Output_section. Instead, each
1629// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1630// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1631// track of input sections here; this is used when SECTIONS appears in
1632// a linker script.
a2fb1b05
ILT
1633
1634template<int size, bool big_endian>
1635off_t
730cdc88
ILT
1636Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1637 unsigned int shndx,
ead1e424 1638 const char* secname,
730cdc88 1639 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1640 unsigned int reloc_shndx,
1641 bool have_sections_script)
a2fb1b05
ILT
1642{
1643 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1644 if ((addralign & (addralign - 1)) != 0)
1645 {
75f2446e
ILT
1646 object->error(_("invalid alignment %lu for section \"%s\""),
1647 static_cast<unsigned long>(addralign), secname);
1648 addralign = 1;
a2fb1b05 1649 }
a2fb1b05
ILT
1650
1651 if (addralign > this->addralign_)
1652 this->addralign_ = addralign;
1653
44a43cf9 1654 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
a445fddf
ILT
1655 this->flags_ |= (sh_flags
1656 & (elfcpp::SHF_WRITE
1657 | elfcpp::SHF_ALLOC
1658 | elfcpp::SHF_EXECINSTR));
1659
4f833eee 1660 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1661
1662 // .debug_str is a mergeable string section, but is not always so
1663 // marked by compilers. Mark manually here so we can optimize.
1664 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1665 {
1666 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1667 entsize = 1;
1668 }
44a43cf9 1669
b8e6aad9 1670 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1671 // a Output_data_merge. We don't try to handle relocations for such
1672 // a section.
44a43cf9 1673 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1674 && reloc_shndx == 0)
b8e6aad9 1675 {
44a43cf9 1676 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1677 entsize, addralign))
b8e6aad9
ILT
1678 {
1679 // Tell the relocation routines that they need to call the
730cdc88 1680 // output_offset method to determine the final address.
b8e6aad9
ILT
1681 return -1;
1682 }
1683 }
1684
27bc2bce 1685 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1686 off_t aligned_offset_in_section = align_address(offset_in_section,
1687 addralign);
1688
1689 if (aligned_offset_in_section > offset_in_section
a445fddf 1690 && !have_sections_script
44a43cf9 1691 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1692 && object->target()->has_code_fill())
1693 {
1694 // We need to add some fill data. Using fill_list_ when
1695 // possible is an optimization, since we will often have fill
1696 // sections without input sections.
1697 off_t fill_len = aligned_offset_in_section - offset_in_section;
1698 if (this->input_sections_.empty())
1699 this->fills_.push_back(Fill(offset_in_section, fill_len));
1700 else
1701 {
1702 // FIXME: When relaxing, the size needs to adjust to
1703 // maintain a constant alignment.
1704 std::string fill_data(object->target()->code_fill(fill_len));
1705 Output_data_const* odc = new Output_data_const(fill_data, 1);
1706 this->input_sections_.push_back(Input_section(odc));
1707 }
1708 }
1709
27bc2bce
ILT
1710 this->set_current_data_size_for_child(aligned_offset_in_section
1711 + shdr.get_sh_size());
a2fb1b05 1712
ead1e424
ILT
1713 // We need to keep track of this section if we are already keeping
1714 // track of sections, or if we are relaxing. FIXME: Add test for
1715 // relaxing.
a445fddf 1716 if (have_sections_script || !this->input_sections_.empty())
ead1e424
ILT
1717 this->input_sections_.push_back(Input_section(object, shndx,
1718 shdr.get_sh_size(),
1719 addralign));
54dc6425 1720
c51e6221 1721 return aligned_offset_in_section;
61ba1cf9
ILT
1722}
1723
ead1e424
ILT
1724// Add arbitrary data to an output section.
1725
1726void
1727Output_section::add_output_section_data(Output_section_data* posd)
1728{
b8e6aad9
ILT
1729 Input_section inp(posd);
1730 this->add_output_section_data(&inp);
a445fddf
ILT
1731
1732 if (posd->is_data_size_valid())
1733 {
1734 off_t offset_in_section = this->current_data_size_for_child();
1735 off_t aligned_offset_in_section = align_address(offset_in_section,
1736 posd->addralign());
1737 this->set_current_data_size_for_child(aligned_offset_in_section
1738 + posd->data_size());
1739 }
b8e6aad9
ILT
1740}
1741
1742// Add arbitrary data to an output section by Input_section.
c06b7b0b 1743
b8e6aad9
ILT
1744void
1745Output_section::add_output_section_data(Input_section* inp)
1746{
ead1e424 1747 if (this->input_sections_.empty())
27bc2bce 1748 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1749
b8e6aad9 1750 this->input_sections_.push_back(*inp);
c06b7b0b 1751
b8e6aad9 1752 uint64_t addralign = inp->addralign();
ead1e424
ILT
1753 if (addralign > this->addralign_)
1754 this->addralign_ = addralign;
c06b7b0b 1755
b8e6aad9
ILT
1756 inp->set_output_section(this);
1757}
1758
1759// Add a merge section to an output section.
1760
1761void
1762Output_section::add_output_merge_section(Output_section_data* posd,
1763 bool is_string, uint64_t entsize)
1764{
1765 Input_section inp(posd, is_string, entsize);
1766 this->add_output_section_data(&inp);
1767}
1768
1769// Add an input section to a SHF_MERGE section.
1770
1771bool
1772Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1773 uint64_t flags, uint64_t entsize,
96803768 1774 uint64_t addralign)
b8e6aad9 1775{
87f95776
ILT
1776 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1777
1778 // We only merge strings if the alignment is not more than the
1779 // character size. This could be handled, but it's unusual.
1780 if (is_string && addralign > entsize)
b8e6aad9
ILT
1781 return false;
1782
b8e6aad9
ILT
1783 Input_section_list::iterator p;
1784 for (p = this->input_sections_.begin();
1785 p != this->input_sections_.end();
1786 ++p)
87f95776 1787 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1788 {
1789 p->add_input_section(object, shndx);
1790 return true;
1791 }
b8e6aad9
ILT
1792
1793 // We handle the actual constant merging in Output_merge_data or
1794 // Output_merge_string_data.
9a0910c3
ILT
1795 Output_section_data* posd;
1796 if (!is_string)
1797 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1798 else
1799 {
9a0910c3
ILT
1800 switch (entsize)
1801 {
1802 case 1:
1803 posd = new Output_merge_string<char>(addralign);
1804 break;
1805 case 2:
1806 posd = new Output_merge_string<uint16_t>(addralign);
1807 break;
1808 case 4:
1809 posd = new Output_merge_string<uint32_t>(addralign);
1810 break;
1811 default:
1812 return false;
1813 }
b8e6aad9
ILT
1814 }
1815
9a0910c3
ILT
1816 this->add_output_merge_section(posd, is_string, entsize);
1817 posd->add_input_section(object, shndx);
1818
b8e6aad9
ILT
1819 return true;
1820}
1821
730cdc88
ILT
1822// Given an address OFFSET relative to the start of input section
1823// SHNDX in OBJECT, return whether this address is being included in
1824// the final link. This should only be called if SHNDX in OBJECT has
1825// a special mapping.
1826
1827bool
1828Output_section::is_input_address_mapped(const Relobj* object,
1829 unsigned int shndx,
1830 off_t offset) const
1831{
1832 gold_assert(object->is_section_specially_mapped(shndx));
1833
1834 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1835 p != this->input_sections_.end();
1836 ++p)
1837 {
8383303e 1838 section_offset_type output_offset;
730cdc88
ILT
1839 if (p->output_offset(object, shndx, offset, &output_offset))
1840 return output_offset != -1;
1841 }
1842
1843 // By default we assume that the address is mapped. This should
1844 // only be called after we have passed all sections to Layout. At
1845 // that point we should know what we are discarding.
1846 return true;
1847}
1848
1849// Given an address OFFSET relative to the start of input section
1850// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1851// start of the input section in the output section. This should only
1852// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1853
8383303e 1854section_offset_type
730cdc88 1855Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1856 section_offset_type offset) const
730cdc88
ILT
1857{
1858 gold_assert(object->is_section_specially_mapped(shndx));
1859 // This can only be called meaningfully when layout is complete.
1860 gold_assert(Output_data::is_layout_complete());
1861
1862 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1863 p != this->input_sections_.end();
1864 ++p)
1865 {
8383303e 1866 section_offset_type output_offset;
730cdc88
ILT
1867 if (p->output_offset(object, shndx, offset, &output_offset))
1868 return output_offset;
1869 }
1870 gold_unreachable();
1871}
1872
b8e6aad9
ILT
1873// Return the output virtual address of OFFSET relative to the start
1874// of input section SHNDX in object OBJECT.
1875
1876uint64_t
1877Output_section::output_address(const Relobj* object, unsigned int shndx,
1878 off_t offset) const
1879{
730cdc88 1880 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 1881
b8e6aad9
ILT
1882 uint64_t addr = this->address() + this->first_input_offset_;
1883 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1884 p != this->input_sections_.end();
1885 ++p)
1886 {
1887 addr = align_address(addr, p->addralign());
8383303e 1888 section_offset_type output_offset;
730cdc88
ILT
1889 if (p->output_offset(object, shndx, offset, &output_offset))
1890 {
1891 if (output_offset == -1)
1892 return -1U;
1893 return addr + output_offset;
1894 }
b8e6aad9
ILT
1895 addr += p->data_size();
1896 }
1897
1898 // If we get here, it means that we don't know the mapping for this
1899 // input section. This might happen in principle if
1900 // add_input_section were called before add_output_section_data.
1901 // But it should never actually happen.
1902
1903 gold_unreachable();
ead1e424
ILT
1904}
1905
a9a60db6
ILT
1906// Return the output address of the start of the merged section for
1907// input section SHNDX in object OBJECT.
1908
1909uint64_t
1910Output_section::starting_output_address(const Relobj* object,
1911 unsigned int shndx) const
1912{
1913 gold_assert(object->is_section_specially_mapped(shndx));
1914
1915 uint64_t addr = this->address() + this->first_input_offset_;
1916 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1917 p != this->input_sections_.end();
1918 ++p)
1919 {
1920 addr = align_address(addr, p->addralign());
1921
1922 // It would be nice if we could use the existing output_offset
1923 // method to get the output offset of input offset 0.
1924 // Unfortunately we don't know for sure that input offset 0 is
1925 // mapped at all.
1926 if (p->is_merge_section_for(object, shndx))
1927 return addr;
1928
1929 addr += p->data_size();
1930 }
1931 gold_unreachable();
1932}
1933
27bc2bce 1934// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1935// setting the addresses of any Output_section_data objects.
1936
1937void
27bc2bce 1938Output_section::set_final_data_size()
ead1e424
ILT
1939{
1940 if (this->input_sections_.empty())
27bc2bce
ILT
1941 {
1942 this->set_data_size(this->current_data_size_for_child());
1943 return;
1944 }
ead1e424 1945
27bc2bce
ILT
1946 uint64_t address = this->address();
1947 off_t startoff = this->offset();
ead1e424
ILT
1948 off_t off = startoff + this->first_input_offset_;
1949 for (Input_section_list::iterator p = this->input_sections_.begin();
1950 p != this->input_sections_.end();
1951 ++p)
1952 {
1953 off = align_address(off, p->addralign());
96803768
ILT
1954 p->set_address_and_file_offset(address + (off - startoff), off,
1955 startoff);
ead1e424
ILT
1956 off += p->data_size();
1957 }
1958
1959 this->set_data_size(off - startoff);
1960}
9a0910c3 1961
a445fddf
ILT
1962// Reset the address and file offset.
1963
1964void
1965Output_section::do_reset_address_and_file_offset()
1966{
1967 for (Input_section_list::iterator p = this->input_sections_.begin();
1968 p != this->input_sections_.end();
1969 ++p)
1970 p->reset_address_and_file_offset();
1971}
1972
7bf1f802
ILT
1973// Set the TLS offset. Called only for SHT_TLS sections.
1974
1975void
1976Output_section::do_set_tls_offset(uint64_t tls_base)
1977{
1978 this->tls_offset_ = this->address() - tls_base;
1979}
1980
61ba1cf9
ILT
1981// Write the section header to *OSHDR.
1982
1983template<int size, bool big_endian>
1984void
16649710
ILT
1985Output_section::write_header(const Layout* layout,
1986 const Stringpool* secnamepool,
61ba1cf9
ILT
1987 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1988{
1989 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1990 oshdr->put_sh_type(this->type_);
6a74a719
ILT
1991
1992 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 1993 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
1994 flags |= elfcpp::SHF_INFO_LINK;
1995 oshdr->put_sh_flags(flags);
1996
61ba1cf9
ILT
1997 oshdr->put_sh_addr(this->address());
1998 oshdr->put_sh_offset(this->offset());
1999 oshdr->put_sh_size(this->data_size());
16649710
ILT
2000 if (this->link_section_ != NULL)
2001 oshdr->put_sh_link(this->link_section_->out_shndx());
2002 else if (this->should_link_to_symtab_)
2003 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2004 else if (this->should_link_to_dynsym_)
2005 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2006 else
2007 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2008
2009 elfcpp::Elf_Word info;
16649710 2010 if (this->info_section_ != NULL)
755ab8af
ILT
2011 {
2012 if (this->info_uses_section_index_)
2013 info = this->info_section_->out_shndx();
2014 else
2015 info = this->info_section_->symtab_index();
2016 }
6a74a719 2017 else if (this->info_symndx_ != NULL)
755ab8af 2018 info = this->info_symndx_->symtab_index();
16649710 2019 else
755ab8af
ILT
2020 info = this->info_;
2021 oshdr->put_sh_info(info);
2022
61ba1cf9
ILT
2023 oshdr->put_sh_addralign(this->addralign_);
2024 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2025}
2026
ead1e424
ILT
2027// Write out the data. For input sections the data is written out by
2028// Object::relocate, but we have to handle Output_section_data objects
2029// here.
2030
2031void
2032Output_section::do_write(Output_file* of)
2033{
96803768
ILT
2034 gold_assert(!this->requires_postprocessing());
2035
c51e6221
ILT
2036 off_t output_section_file_offset = this->offset();
2037 for (Fill_list::iterator p = this->fills_.begin();
2038 p != this->fills_.end();
2039 ++p)
2040 {
8851ecca 2041 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2042 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2043 fill_data.data(), fill_data.size());
c51e6221
ILT
2044 }
2045
ead1e424
ILT
2046 for (Input_section_list::iterator p = this->input_sections_.begin();
2047 p != this->input_sections_.end();
2048 ++p)
2049 p->write(of);
2050}
2051
96803768
ILT
2052// If a section requires postprocessing, create the buffer to use.
2053
2054void
2055Output_section::create_postprocessing_buffer()
2056{
2057 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2058
2059 if (this->postprocessing_buffer_ != NULL)
2060 return;
96803768
ILT
2061
2062 if (!this->input_sections_.empty())
2063 {
2064 off_t off = this->first_input_offset_;
2065 for (Input_section_list::iterator p = this->input_sections_.begin();
2066 p != this->input_sections_.end();
2067 ++p)
2068 {
2069 off = align_address(off, p->addralign());
2070 p->finalize_data_size();
2071 off += p->data_size();
2072 }
2073 this->set_current_data_size_for_child(off);
2074 }
2075
2076 off_t buffer_size = this->current_data_size_for_child();
2077 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2078}
2079
2080// Write all the data of an Output_section into the postprocessing
2081// buffer. This is used for sections which require postprocessing,
2082// such as compression. Input sections are handled by
2083// Object::Relocate.
2084
2085void
2086Output_section::write_to_postprocessing_buffer()
2087{
2088 gold_assert(this->requires_postprocessing());
2089
96803768
ILT
2090 unsigned char* buffer = this->postprocessing_buffer();
2091 for (Fill_list::iterator p = this->fills_.begin();
2092 p != this->fills_.end();
2093 ++p)
2094 {
8851ecca 2095 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2096 memcpy(buffer + p->section_offset(), fill_data.data(),
2097 fill_data.size());
96803768
ILT
2098 }
2099
2100 off_t off = this->first_input_offset_;
2101 for (Input_section_list::iterator p = this->input_sections_.begin();
2102 p != this->input_sections_.end();
2103 ++p)
2104 {
2105 off = align_address(off, p->addralign());
2106 p->write_to_buffer(buffer + off);
2107 off += p->data_size();
2108 }
2109}
2110
a445fddf
ILT
2111// Get the input sections for linker script processing. We leave
2112// behind the Output_section_data entries. Note that this may be
2113// slightly incorrect for merge sections. We will leave them behind,
2114// but it is possible that the script says that they should follow
2115// some other input sections, as in:
2116// .rodata { *(.rodata) *(.rodata.cst*) }
2117// For that matter, we don't handle this correctly:
2118// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2119// With luck this will never matter.
2120
2121uint64_t
2122Output_section::get_input_sections(
2123 uint64_t address,
2124 const std::string& fill,
2125 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2126{
2127 uint64_t orig_address = address;
2128
2129 address = align_address(address, this->addralign());
2130
2131 Input_section_list remaining;
2132 for (Input_section_list::iterator p = this->input_sections_.begin();
2133 p != this->input_sections_.end();
2134 ++p)
2135 {
2136 if (p->is_input_section())
2137 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2138 else
2139 {
2140 uint64_t aligned_address = align_address(address, p->addralign());
2141 if (aligned_address != address && !fill.empty())
2142 {
2143 section_size_type length =
2144 convert_to_section_size_type(aligned_address - address);
2145 std::string this_fill;
2146 this_fill.reserve(length);
2147 while (this_fill.length() + fill.length() <= length)
2148 this_fill += fill;
2149 if (this_fill.length() < length)
2150 this_fill.append(fill, 0, length - this_fill.length());
2151
2152 Output_section_data* posd = new Output_data_const(this_fill, 0);
2153 remaining.push_back(Input_section(posd));
2154 }
2155 address = aligned_address;
2156
2157 remaining.push_back(*p);
2158
2159 p->finalize_data_size();
2160 address += p->data_size();
2161 }
2162 }
2163
2164 this->input_sections_.swap(remaining);
2165 this->first_input_offset_ = 0;
2166
2167 uint64_t data_size = address - orig_address;
2168 this->set_current_data_size_for_child(data_size);
2169 return data_size;
2170}
2171
2172// Add an input section from a script.
2173
2174void
2175Output_section::add_input_section_for_script(Relobj* object,
2176 unsigned int shndx,
2177 off_t data_size,
2178 uint64_t addralign)
2179{
2180 if (addralign > this->addralign_)
2181 this->addralign_ = addralign;
2182
2183 off_t offset_in_section = this->current_data_size_for_child();
2184 off_t aligned_offset_in_section = align_address(offset_in_section,
2185 addralign);
2186
2187 this->set_current_data_size_for_child(aligned_offset_in_section
2188 + data_size);
2189
2190 this->input_sections_.push_back(Input_section(object, shndx,
2191 data_size, addralign));
2192}
2193
38c5e8b4
ILT
2194// Print stats for merge sections to stderr.
2195
2196void
2197Output_section::print_merge_stats()
2198{
2199 Input_section_list::iterator p;
2200 for (p = this->input_sections_.begin();
2201 p != this->input_sections_.end();
2202 ++p)
2203 p->print_merge_stats(this->name_);
2204}
2205
a2fb1b05
ILT
2206// Output segment methods.
2207
2208Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2209 : output_data_(),
75f65a3e 2210 output_bss_(),
a2fb1b05
ILT
2211 vaddr_(0),
2212 paddr_(0),
2213 memsz_(0),
a445fddf
ILT
2214 max_align_(0),
2215 min_p_align_(0),
a2fb1b05
ILT
2216 offset_(0),
2217 filesz_(0),
2218 type_(type),
ead1e424 2219 flags_(flags),
a445fddf
ILT
2220 is_max_align_known_(false),
2221 are_addresses_set_(false)
a2fb1b05
ILT
2222{
2223}
2224
2225// Add an Output_section to an Output_segment.
2226
2227void
75f65a3e 2228Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
2229 elfcpp::Elf_Word seg_flags,
2230 bool front)
a2fb1b05 2231{
a3ad94ed 2232 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2233 gold_assert(!this->is_max_align_known_);
75f65a3e 2234
ead1e424 2235 // Update the segment flags.
75f65a3e 2236 this->flags_ |= seg_flags;
75f65a3e
ILT
2237
2238 Output_segment::Output_data_list* pdl;
2239 if (os->type() == elfcpp::SHT_NOBITS)
2240 pdl = &this->output_bss_;
2241 else
2242 pdl = &this->output_data_;
54dc6425 2243
a2fb1b05
ILT
2244 // So that PT_NOTE segments will work correctly, we need to ensure
2245 // that all SHT_NOTE sections are adjacent. This will normally
2246 // happen automatically, because all the SHT_NOTE input sections
2247 // will wind up in the same output section. However, it is possible
2248 // for multiple SHT_NOTE input sections to have different section
2249 // flags, and thus be in different output sections, but for the
2250 // different section flags to map into the same segment flags and
2251 // thus the same output segment.
54dc6425
ILT
2252
2253 // Note that while there may be many input sections in an output
2254 // section, there are normally only a few output sections in an
2255 // output segment. This loop is expected to be fast.
2256
61ba1cf9 2257 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2258 {
a3ad94ed 2259 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2260 do
54dc6425 2261 {
75f65a3e 2262 --p;
54dc6425
ILT
2263 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2264 {
dbe717ef 2265 // We don't worry about the FRONT parameter.
54dc6425 2266 ++p;
75f65a3e 2267 pdl->insert(p, os);
54dc6425
ILT
2268 return;
2269 }
2270 }
75f65a3e 2271 while (p != pdl->begin());
54dc6425
ILT
2272 }
2273
2274 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2275 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2276 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2277 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2278 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2279 // and the PT_TLS segment -- we do this grouping only for the
2280 // PT_LOAD segment.
2281 if (this->type_ != elfcpp::PT_TLS
2282 && (os->flags() & elfcpp::SHF_TLS) != 0
2283 && !this->output_data_.empty())
54dc6425 2284 {
75f65a3e
ILT
2285 pdl = &this->output_data_;
2286 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2287 bool sawtls = false;
a3ad94ed 2288 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2289 do
a2fb1b05 2290 {
75f65a3e 2291 --p;
ead1e424
ILT
2292 bool insert;
2293 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2294 {
2295 sawtls = true;
2296 // Put a NOBITS section after the first TLS section.
2297 // But a PROGBITS section after the first TLS/PROGBITS
2298 // section.
2299 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2300 }
2301 else
2302 {
2303 // If we've gone past the TLS sections, but we've seen a
2304 // TLS section, then we need to insert this section now.
2305 insert = sawtls;
2306 }
2307
2308 if (insert)
a2fb1b05 2309 {
dbe717ef 2310 // We don't worry about the FRONT parameter.
a2fb1b05 2311 ++p;
75f65a3e 2312 pdl->insert(p, os);
a2fb1b05
ILT
2313 return;
2314 }
2315 }
75f65a3e 2316 while (p != pdl->begin());
ead1e424 2317
dbe717ef
ILT
2318 // There are no TLS sections yet; put this one at the requested
2319 // location in the section list.
a2fb1b05
ILT
2320 }
2321
dbe717ef
ILT
2322 if (front)
2323 pdl->push_front(os);
2324 else
2325 pdl->push_back(os);
75f65a3e
ILT
2326}
2327
1650c4ff
ILT
2328// Remove an Output_section from this segment. It is an error if it
2329// is not present.
2330
2331void
2332Output_segment::remove_output_section(Output_section* os)
2333{
2334 // We only need this for SHT_PROGBITS.
2335 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2336 for (Output_data_list::iterator p = this->output_data_.begin();
2337 p != this->output_data_.end();
2338 ++p)
2339 {
2340 if (*p == os)
2341 {
2342 this->output_data_.erase(p);
2343 return;
2344 }
2345 }
2346 gold_unreachable();
2347}
2348
75f65a3e
ILT
2349// Add an Output_data (which is not an Output_section) to the start of
2350// a segment.
2351
2352void
2353Output_segment::add_initial_output_data(Output_data* od)
2354{
a445fddf 2355 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2356 this->output_data_.push_front(od);
2357}
2358
2359// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2360
2361uint64_t
a445fddf 2362Output_segment::maximum_alignment()
75f65a3e 2363{
a445fddf 2364 if (!this->is_max_align_known_)
ead1e424
ILT
2365 {
2366 uint64_t addralign;
2367
a445fddf
ILT
2368 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2369 if (addralign > this->max_align_)
2370 this->max_align_ = addralign;
ead1e424 2371
a445fddf
ILT
2372 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2373 if (addralign > this->max_align_)
2374 this->max_align_ = addralign;
ead1e424 2375
a445fddf 2376 this->is_max_align_known_ = true;
ead1e424
ILT
2377 }
2378
a445fddf 2379 return this->max_align_;
75f65a3e
ILT
2380}
2381
ead1e424
ILT
2382// Return the maximum alignment of a list of Output_data.
2383
2384uint64_t
a445fddf 2385Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2386{
2387 uint64_t ret = 0;
2388 for (Output_data_list::const_iterator p = pdl->begin();
2389 p != pdl->end();
2390 ++p)
2391 {
2392 uint64_t addralign = (*p)->addralign();
2393 if (addralign > ret)
2394 ret = addralign;
2395 }
2396 return ret;
2397}
2398
4f4c5f80
ILT
2399// Return the number of dynamic relocs applied to this segment.
2400
2401unsigned int
2402Output_segment::dynamic_reloc_count() const
2403{
2404 return (this->dynamic_reloc_count_list(&this->output_data_)
2405 + this->dynamic_reloc_count_list(&this->output_bss_));
2406}
2407
2408// Return the number of dynamic relocs applied to an Output_data_list.
2409
2410unsigned int
2411Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2412{
2413 unsigned int count = 0;
2414 for (Output_data_list::const_iterator p = pdl->begin();
2415 p != pdl->end();
2416 ++p)
2417 count += (*p)->dynamic_reloc_count();
2418 return count;
2419}
2420
a445fddf
ILT
2421// Set the section addresses for an Output_segment. If RESET is true,
2422// reset the addresses first. ADDR is the address and *POFF is the
2423// file offset. Set the section indexes starting with *PSHNDX.
2424// Return the address of the immediately following segment. Update
2425// *POFF and *PSHNDX.
75f65a3e
ILT
2426
2427uint64_t
96a2b4e4
ILT
2428Output_segment::set_section_addresses(const Layout* layout, bool reset,
2429 uint64_t addr, off_t* poff,
ead1e424 2430 unsigned int* pshndx)
75f65a3e 2431{
a3ad94ed 2432 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2433
a445fddf
ILT
2434 if (!reset && this->are_addresses_set_)
2435 {
2436 gold_assert(this->paddr_ == addr);
2437 addr = this->vaddr_;
2438 }
2439 else
2440 {
2441 this->vaddr_ = addr;
2442 this->paddr_ = addr;
2443 this->are_addresses_set_ = true;
2444 }
75f65a3e 2445
96a2b4e4
ILT
2446 bool in_tls = false;
2447
75f65a3e
ILT
2448 off_t orig_off = *poff;
2449 this->offset_ = orig_off;
2450
96a2b4e4
ILT
2451 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2452 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
2453 this->filesz_ = *poff - orig_off;
2454
2455 off_t off = *poff;
2456
96a2b4e4
ILT
2457 uint64_t ret = this->set_section_list_addresses(layout, reset,
2458 &this->output_bss_,
2459 addr, poff, pshndx,
2460 &in_tls);
2461
2462 // If the last section was a TLS section, align upward to the
2463 // alignment of the TLS segment, so that the overall size of the TLS
2464 // segment is aligned.
2465 if (in_tls)
2466 {
2467 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2468 *poff = align_address(*poff, segment_align);
2469 }
2470
75f65a3e
ILT
2471 this->memsz_ = *poff - orig_off;
2472
2473 // Ignore the file offset adjustments made by the BSS Output_data
2474 // objects.
2475 *poff = off;
61ba1cf9
ILT
2476
2477 return ret;
75f65a3e
ILT
2478}
2479
b8e6aad9
ILT
2480// Set the addresses and file offsets in a list of Output_data
2481// structures.
75f65a3e
ILT
2482
2483uint64_t
96a2b4e4
ILT
2484Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2485 Output_data_list* pdl,
ead1e424 2486 uint64_t addr, off_t* poff,
96a2b4e4
ILT
2487 unsigned int* pshndx,
2488 bool* in_tls)
75f65a3e 2489{
ead1e424 2490 off_t startoff = *poff;
75f65a3e 2491
ead1e424 2492 off_t off = startoff;
75f65a3e
ILT
2493 for (Output_data_list::iterator p = pdl->begin();
2494 p != pdl->end();
2495 ++p)
2496 {
a445fddf
ILT
2497 if (reset)
2498 (*p)->reset_address_and_file_offset();
2499
2500 // When using a linker script the section will most likely
2501 // already have an address.
2502 if (!(*p)->is_address_valid())
3802b2dd 2503 {
96a2b4e4
ILT
2504 uint64_t align = (*p)->addralign();
2505
2506 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2507 {
2508 // Give the first TLS section the alignment of the
2509 // entire TLS segment. Otherwise the TLS segment as a
2510 // whole may be misaligned.
2511 if (!*in_tls)
2512 {
2513 Output_segment* tls_segment = layout->tls_segment();
2514 gold_assert(tls_segment != NULL);
2515 uint64_t segment_align = tls_segment->maximum_alignment();
2516 gold_assert(segment_align >= align);
2517 align = segment_align;
2518
2519 *in_tls = true;
2520 }
2521 }
2522 else
2523 {
2524 // If this is the first section after the TLS segment,
2525 // align it to at least the alignment of the TLS
2526 // segment, so that the size of the overall TLS segment
2527 // is aligned.
2528 if (*in_tls)
2529 {
2530 uint64_t segment_align =
2531 layout->tls_segment()->maximum_alignment();
2532 if (segment_align > align)
2533 align = segment_align;
2534
2535 *in_tls = false;
2536 }
2537 }
2538
2539 off = align_address(off, align);
3802b2dd
ILT
2540 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2541 }
a445fddf
ILT
2542 else
2543 {
2544 // The script may have inserted a skip forward, but it
2545 // better not have moved backward.
3802b2dd
ILT
2546 gold_assert((*p)->address() >= addr + (off - startoff));
2547 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2548 (*p)->set_file_offset(off);
2549 (*p)->finalize_data_size();
2550 }
ead1e424 2551
96a2b4e4
ILT
2552 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2553 // section. Such a section does not affect the size of a
2554 // PT_LOAD segment.
2555 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2556 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2557 off += (*p)->data_size();
75f65a3e 2558
ead1e424
ILT
2559 if ((*p)->is_section())
2560 {
2561 (*p)->set_out_shndx(*pshndx);
2562 ++*pshndx;
2563 }
75f65a3e
ILT
2564 }
2565
2566 *poff = off;
ead1e424 2567 return addr + (off - startoff);
75f65a3e
ILT
2568}
2569
2570// For a non-PT_LOAD segment, set the offset from the sections, if
2571// any.
2572
2573void
2574Output_segment::set_offset()
2575{
a3ad94ed 2576 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2577
a445fddf
ILT
2578 gold_assert(!this->are_addresses_set_);
2579
75f65a3e
ILT
2580 if (this->output_data_.empty() && this->output_bss_.empty())
2581 {
2582 this->vaddr_ = 0;
2583 this->paddr_ = 0;
a445fddf 2584 this->are_addresses_set_ = true;
75f65a3e 2585 this->memsz_ = 0;
a445fddf 2586 this->min_p_align_ = 0;
75f65a3e
ILT
2587 this->offset_ = 0;
2588 this->filesz_ = 0;
2589 return;
2590 }
2591
2592 const Output_data* first;
2593 if (this->output_data_.empty())
2594 first = this->output_bss_.front();
2595 else
2596 first = this->output_data_.front();
2597 this->vaddr_ = first->address();
a445fddf
ILT
2598 this->paddr_ = (first->has_load_address()
2599 ? first->load_address()
2600 : this->vaddr_);
2601 this->are_addresses_set_ = true;
75f65a3e
ILT
2602 this->offset_ = first->offset();
2603
2604 if (this->output_data_.empty())
2605 this->filesz_ = 0;
2606 else
2607 {
2608 const Output_data* last_data = this->output_data_.back();
2609 this->filesz_ = (last_data->address()
2610 + last_data->data_size()
2611 - this->vaddr_);
2612 }
2613
2614 const Output_data* last;
2615 if (this->output_bss_.empty())
2616 last = this->output_data_.back();
2617 else
2618 last = this->output_bss_.back();
2619 this->memsz_ = (last->address()
2620 + last->data_size()
2621 - this->vaddr_);
96a2b4e4
ILT
2622
2623 // If this is a TLS segment, align the memory size. The code in
2624 // set_section_list ensures that the section after the TLS segment
2625 // is aligned to give us room.
2626 if (this->type_ == elfcpp::PT_TLS)
2627 {
2628 uint64_t segment_align = this->maximum_alignment();
2629 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2630 this->memsz_ = align_address(this->memsz_, segment_align);
2631 }
75f65a3e
ILT
2632}
2633
7bf1f802
ILT
2634// Set the TLS offsets of the sections in the PT_TLS segment.
2635
2636void
2637Output_segment::set_tls_offsets()
2638{
2639 gold_assert(this->type_ == elfcpp::PT_TLS);
2640
2641 for (Output_data_list::iterator p = this->output_data_.begin();
2642 p != this->output_data_.end();
2643 ++p)
2644 (*p)->set_tls_offset(this->vaddr_);
2645
2646 for (Output_data_list::iterator p = this->output_bss_.begin();
2647 p != this->output_bss_.end();
2648 ++p)
2649 (*p)->set_tls_offset(this->vaddr_);
2650}
2651
a445fddf
ILT
2652// Return the address of the first section.
2653
2654uint64_t
2655Output_segment::first_section_load_address() const
2656{
2657 for (Output_data_list::const_iterator p = this->output_data_.begin();
2658 p != this->output_data_.end();
2659 ++p)
2660 if ((*p)->is_section())
2661 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2662
2663 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2664 p != this->output_bss_.end();
2665 ++p)
2666 if ((*p)->is_section())
2667 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2668
2669 gold_unreachable();
2670}
2671
75f65a3e
ILT
2672// Return the number of Output_sections in an Output_segment.
2673
2674unsigned int
2675Output_segment::output_section_count() const
2676{
2677 return (this->output_section_count_list(&this->output_data_)
2678 + this->output_section_count_list(&this->output_bss_));
2679}
2680
2681// Return the number of Output_sections in an Output_data_list.
2682
2683unsigned int
2684Output_segment::output_section_count_list(const Output_data_list* pdl) const
2685{
2686 unsigned int count = 0;
2687 for (Output_data_list::const_iterator p = pdl->begin();
2688 p != pdl->end();
2689 ++p)
2690 {
2691 if ((*p)->is_section())
2692 ++count;
2693 }
2694 return count;
a2fb1b05
ILT
2695}
2696
1c4f3631
ILT
2697// Return the section attached to the list segment with the lowest
2698// load address. This is used when handling a PHDRS clause in a
2699// linker script.
2700
2701Output_section*
2702Output_segment::section_with_lowest_load_address() const
2703{
2704 Output_section* found = NULL;
2705 uint64_t found_lma = 0;
2706 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2707
2708 Output_section* found_data = found;
2709 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2710 if (found != found_data && found_data != NULL)
2711 {
2712 gold_error(_("nobits section %s may not precede progbits section %s "
2713 "in same segment"),
2714 found->name(), found_data->name());
2715 return NULL;
2716 }
2717
2718 return found;
2719}
2720
2721// Look through a list for a section with a lower load address.
2722
2723void
2724Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2725 Output_section** found,
2726 uint64_t* found_lma) const
2727{
2728 for (Output_data_list::const_iterator p = pdl->begin();
2729 p != pdl->end();
2730 ++p)
2731 {
2732 if (!(*p)->is_section())
2733 continue;
2734 Output_section* os = static_cast<Output_section*>(*p);
2735 uint64_t lma = (os->has_load_address()
2736 ? os->load_address()
2737 : os->address());
2738 if (*found == NULL || lma < *found_lma)
2739 {
2740 *found = os;
2741 *found_lma = lma;
2742 }
2743 }
2744}
2745
61ba1cf9
ILT
2746// Write the segment data into *OPHDR.
2747
2748template<int size, bool big_endian>
2749void
ead1e424 2750Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2751{
2752 ophdr->put_p_type(this->type_);
2753 ophdr->put_p_offset(this->offset_);
2754 ophdr->put_p_vaddr(this->vaddr_);
2755 ophdr->put_p_paddr(this->paddr_);
2756 ophdr->put_p_filesz(this->filesz_);
2757 ophdr->put_p_memsz(this->memsz_);
2758 ophdr->put_p_flags(this->flags_);
a445fddf 2759 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
2760}
2761
2762// Write the section headers into V.
2763
2764template<int size, bool big_endian>
2765unsigned char*
16649710
ILT
2766Output_segment::write_section_headers(const Layout* layout,
2767 const Stringpool* secnamepool,
ead1e424 2768 unsigned char* v,
7d1a9ebb 2769 unsigned int *pshndx) const
5482377d 2770{
ead1e424
ILT
2771 // Every section that is attached to a segment must be attached to a
2772 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2773 // segments.
2774 if (this->type_ != elfcpp::PT_LOAD)
2775 return v;
2776
7d1a9ebb
ILT
2777 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2778 &this->output_data_,
2779 v, pshndx);
2780 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2781 &this->output_bss_,
2782 v, pshndx);
61ba1cf9
ILT
2783 return v;
2784}
2785
2786template<int size, bool big_endian>
2787unsigned char*
16649710
ILT
2788Output_segment::write_section_headers_list(const Layout* layout,
2789 const Stringpool* secnamepool,
61ba1cf9 2790 const Output_data_list* pdl,
ead1e424 2791 unsigned char* v,
7d1a9ebb 2792 unsigned int* pshndx) const
61ba1cf9
ILT
2793{
2794 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2795 for (Output_data_list::const_iterator p = pdl->begin();
2796 p != pdl->end();
2797 ++p)
2798 {
2799 if ((*p)->is_section())
2800 {
5482377d 2801 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 2802 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 2803 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 2804 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 2805 v += shdr_size;
ead1e424 2806 ++*pshndx;
61ba1cf9
ILT
2807 }
2808 }
2809 return v;
2810}
2811
a2fb1b05
ILT
2812// Output_file methods.
2813
14144f39
ILT
2814Output_file::Output_file(const char* name)
2815 : name_(name),
61ba1cf9
ILT
2816 o_(-1),
2817 file_size_(0),
c420411f 2818 base_(NULL),
516cb3d0
ILT
2819 map_is_anonymous_(false),
2820 is_temporary_(false)
61ba1cf9
ILT
2821{
2822}
2823
2824// Open the output file.
2825
a2fb1b05 2826void
61ba1cf9 2827Output_file::open(off_t file_size)
a2fb1b05 2828{
61ba1cf9
ILT
2829 this->file_size_ = file_size;
2830
4e9d8586
ILT
2831 // Unlink the file first; otherwise the open() may fail if the file
2832 // is busy (e.g. it's an executable that's currently being executed).
2833 //
2834 // However, the linker may be part of a system where a zero-length
2835 // file is created for it to write to, with tight permissions (gcc
2836 // 2.95 did something like this). Unlinking the file would work
2837 // around those permission controls, so we only unlink if the file
2838 // has a non-zero size. We also unlink only regular files to avoid
2839 // trouble with directories/etc.
2840 //
2841 // If we fail, continue; this command is merely a best-effort attempt
2842 // to improve the odds for open().
2843
42a1b686 2844 // We let the name "-" mean "stdout"
516cb3d0 2845 if (!this->is_temporary_)
42a1b686 2846 {
516cb3d0
ILT
2847 if (strcmp(this->name_, "-") == 0)
2848 this->o_ = STDOUT_FILENO;
2849 else
2850 {
2851 struct stat s;
2852 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2853 unlink_if_ordinary(this->name_);
2854
8851ecca 2855 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
2856 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2857 if (o < 0)
2858 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2859 this->o_ = o;
2860 }
42a1b686 2861 }
61ba1cf9 2862
27bc2bce
ILT
2863 this->map();
2864}
2865
2866// Resize the output file.
2867
2868void
2869Output_file::resize(off_t file_size)
2870{
c420411f
ILT
2871 // If the mmap is mapping an anonymous memory buffer, this is easy:
2872 // just mremap to the new size. If it's mapping to a file, we want
2873 // to unmap to flush to the file, then remap after growing the file.
2874 if (this->map_is_anonymous_)
2875 {
2876 void* base = ::mremap(this->base_, this->file_size_, file_size,
2877 MREMAP_MAYMOVE);
2878 if (base == MAP_FAILED)
2879 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2880 this->base_ = static_cast<unsigned char*>(base);
2881 this->file_size_ = file_size;
2882 }
2883 else
2884 {
2885 this->unmap();
2886 this->file_size_ = file_size;
2887 this->map();
2888 }
27bc2bce
ILT
2889}
2890
2891// Map the file into memory.
2892
2893void
2894Output_file::map()
2895{
c420411f 2896 const int o = this->o_;
61ba1cf9 2897
c420411f
ILT
2898 // If the output file is not a regular file, don't try to mmap it;
2899 // instead, we'll mmap a block of memory (an anonymous buffer), and
2900 // then later write the buffer to the file.
2901 void* base;
2902 struct stat statbuf;
42a1b686
ILT
2903 if (o == STDOUT_FILENO || o == STDERR_FILENO
2904 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
2905 || !S_ISREG(statbuf.st_mode)
2906 || this->is_temporary_)
c420411f
ILT
2907 {
2908 this->map_is_anonymous_ = true;
2909 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2910 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2911 }
2912 else
2913 {
2914 // Write out one byte to make the file the right size.
2915 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2916 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2917 char b = 0;
2918 if (::write(o, &b, 1) != 1)
2919 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2920
2921 // Map the file into memory.
2922 this->map_is_anonymous_ = false;
2923 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2924 MAP_SHARED, o, 0);
2925 }
61ba1cf9 2926 if (base == MAP_FAILED)
75f2446e 2927 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
2928 this->base_ = static_cast<unsigned char*>(base);
2929}
2930
c420411f 2931// Unmap the file from memory.
61ba1cf9
ILT
2932
2933void
c420411f 2934Output_file::unmap()
61ba1cf9
ILT
2935{
2936 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 2937 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 2938 this->base_ = NULL;
c420411f
ILT
2939}
2940
2941// Close the output file.
2942
2943void
2944Output_file::close()
2945{
2946 // If the map isn't file-backed, we need to write it now.
516cb3d0 2947 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
2948 {
2949 size_t bytes_to_write = this->file_size_;
2950 while (bytes_to_write > 0)
2951 {
2952 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2953 if (bytes_written == 0)
2954 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2955 else if (bytes_written < 0)
2956 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2957 else
2958 bytes_to_write -= bytes_written;
2959 }
2960 }
2961 this->unmap();
61ba1cf9 2962
42a1b686 2963 // We don't close stdout or stderr
516cb3d0
ILT
2964 if (this->o_ != STDOUT_FILENO
2965 && this->o_ != STDERR_FILENO
2966 && !this->is_temporary_)
42a1b686
ILT
2967 if (::close(this->o_) < 0)
2968 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 2969 this->o_ = -1;
a2fb1b05
ILT
2970}
2971
2972// Instantiate the templates we need. We could use the configure
2973// script to restrict this to only the ones for implemented targets.
2974
193a53d9 2975#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
2976template
2977off_t
2978Output_section::add_input_section<32, false>(
730cdc88 2979 Sized_relobj<32, false>* object,
ead1e424 2980 unsigned int shndx,
a2fb1b05 2981 const char* secname,
730cdc88 2982 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
2983 unsigned int reloc_shndx,
2984 bool have_sections_script);
193a53d9 2985#endif
a2fb1b05 2986
193a53d9 2987#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
2988template
2989off_t
2990Output_section::add_input_section<32, true>(
730cdc88 2991 Sized_relobj<32, true>* object,
ead1e424 2992 unsigned int shndx,
a2fb1b05 2993 const char* secname,
730cdc88 2994 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
2995 unsigned int reloc_shndx,
2996 bool have_sections_script);
193a53d9 2997#endif
a2fb1b05 2998
193a53d9 2999#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3000template
3001off_t
3002Output_section::add_input_section<64, false>(
730cdc88 3003 Sized_relobj<64, false>* object,
ead1e424 3004 unsigned int shndx,
a2fb1b05 3005 const char* secname,
730cdc88 3006 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3007 unsigned int reloc_shndx,
3008 bool have_sections_script);
193a53d9 3009#endif
a2fb1b05 3010
193a53d9 3011#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3012template
3013off_t
3014Output_section::add_input_section<64, true>(
730cdc88 3015 Sized_relobj<64, true>* object,
ead1e424 3016 unsigned int shndx,
a2fb1b05 3017 const char* secname,
730cdc88 3018 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3019 unsigned int reloc_shndx,
3020 bool have_sections_script);
193a53d9 3021#endif
a2fb1b05 3022
193a53d9 3023#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3024template
3025class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3026#endif
c06b7b0b 3027
193a53d9 3028#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3029template
3030class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3031#endif
c06b7b0b 3032
193a53d9 3033#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3034template
3035class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3036#endif
c06b7b0b 3037
193a53d9 3038#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3039template
3040class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3041#endif
c06b7b0b 3042
193a53d9 3043#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3044template
3045class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3046#endif
c06b7b0b 3047
193a53d9 3048#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3049template
3050class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3051#endif
c06b7b0b 3052
193a53d9 3053#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3054template
3055class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3056#endif
c06b7b0b 3057
193a53d9 3058#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3059template
3060class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3061#endif
c06b7b0b 3062
193a53d9 3063#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3064template
3065class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3066#endif
c06b7b0b 3067
193a53d9 3068#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3069template
3070class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3071#endif
c06b7b0b 3072
193a53d9 3073#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3074template
3075class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3076#endif
c06b7b0b 3077
193a53d9 3078#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3079template
3080class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3081#endif
c06b7b0b 3082
193a53d9 3083#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3084template
3085class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3086#endif
c06b7b0b 3087
193a53d9 3088#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3089template
3090class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3091#endif
c06b7b0b 3092
193a53d9 3093#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3094template
3095class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3096#endif
c06b7b0b 3097
193a53d9 3098#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3099template
3100class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3101#endif
c06b7b0b 3102
6a74a719
ILT
3103#ifdef HAVE_TARGET_32_LITTLE
3104template
3105class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3106#endif
3107
3108#ifdef HAVE_TARGET_32_BIG
3109template
3110class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3111#endif
3112
3113#ifdef HAVE_TARGET_64_LITTLE
3114template
3115class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3116#endif
3117
3118#ifdef HAVE_TARGET_64_BIG
3119template
3120class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3121#endif
3122
3123#ifdef HAVE_TARGET_32_LITTLE
3124template
3125class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3126#endif
3127
3128#ifdef HAVE_TARGET_32_BIG
3129template
3130class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3131#endif
3132
3133#ifdef HAVE_TARGET_64_LITTLE
3134template
3135class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3136#endif
3137
3138#ifdef HAVE_TARGET_64_BIG
3139template
3140class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3141#endif
3142
3143#ifdef HAVE_TARGET_32_LITTLE
3144template
3145class Output_data_group<32, false>;
3146#endif
3147
3148#ifdef HAVE_TARGET_32_BIG
3149template
3150class Output_data_group<32, true>;
3151#endif
3152
3153#ifdef HAVE_TARGET_64_LITTLE
3154template
3155class Output_data_group<64, false>;
3156#endif
3157
3158#ifdef HAVE_TARGET_64_BIG
3159template
3160class Output_data_group<64, true>;
3161#endif
3162
193a53d9 3163#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3164template
dbe717ef 3165class Output_data_got<32, false>;
193a53d9 3166#endif
ead1e424 3167
193a53d9 3168#ifdef HAVE_TARGET_32_BIG
ead1e424 3169template
dbe717ef 3170class Output_data_got<32, true>;
193a53d9 3171#endif
ead1e424 3172
193a53d9 3173#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3174template
dbe717ef 3175class Output_data_got<64, false>;
193a53d9 3176#endif
ead1e424 3177
193a53d9 3178#ifdef HAVE_TARGET_64_BIG
ead1e424 3179template
dbe717ef 3180class Output_data_got<64, true>;
193a53d9 3181#endif
ead1e424 3182
a2fb1b05 3183} // End namespace gold.
This page took 0.252919 seconds and 4 git commands to generate.