* symtab.cc (Symbol_table::add_from_object): If we don't use the
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
a2fb1b05
ILT
40#include "output.h"
41
c420411f
ILT
42// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43#ifndef MAP_ANONYMOUS
44# define MAP_ANONYMOUS MAP_ANON
45#endif
46
a2fb1b05
ILT
47namespace gold
48{
49
a3ad94ed
ILT
50// Output_data variables.
51
27bc2bce 52bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 53
a2fb1b05
ILT
54// Output_data methods.
55
56Output_data::~Output_data()
57{
58}
59
730cdc88
ILT
60// Return the default alignment for the target size.
61
62uint64_t
63Output_data::default_alignment()
64{
8851ecca
ILT
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
730cdc88
ILT
67}
68
75f65a3e
ILT
69// Return the default alignment for a size--32 or 64.
70
71uint64_t
730cdc88 72Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
73{
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
a3ad94ed 79 gold_unreachable();
75f65a3e
ILT
80}
81
75f65a3e
ILT
82// Output_section_header methods. This currently assumes that the
83// segment and section lists are complete at construction time.
84
85Output_section_headers::Output_section_headers(
16649710
ILT
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
6a74a719 88 const Layout::Section_list* section_list,
16649710 89 const Layout::Section_list* unattached_section_list,
61ba1cf9 90 const Stringpool* secnamepool)
9025d29d 91 : layout_(layout),
75f65a3e 92 segment_list_(segment_list),
6a74a719 93 section_list_(section_list),
a3ad94ed 94 unattached_section_list_(unattached_section_list),
61ba1cf9 95 secnamepool_(secnamepool)
75f65a3e 96{
61ba1cf9
ILT
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
8851ecca 99 if (!parameters->options().relocatable())
6a74a719
ILT
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
16649710 115 count += unattached_section_list->size();
75f65a3e 116
8851ecca 117 const int size = parameters->target().get_size();
75f65a3e
ILT
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
a3ad94ed 124 gold_unreachable();
75f65a3e
ILT
125
126 this->set_data_size(count * shdr_size);
127}
128
61ba1cf9
ILT
129// Write out the section headers.
130
75f65a3e 131void
61ba1cf9 132Output_section_headers::do_write(Output_file* of)
a2fb1b05 133{
8851ecca 134 switch (parameters->size_and_endianness())
61ba1cf9 135 {
9025d29d 136#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
9025d29d 140#endif
8851ecca
ILT
141#ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
9025d29d 145#endif
9025d29d 146#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
9025d29d 150#endif
8851ecca
ILT
151#ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155#endif
156 default:
157 gold_unreachable();
61ba1cf9 158 }
61ba1cf9
ILT
159}
160
161template<int size, bool big_endian>
162void
163Output_section_headers::do_sized_write(Output_file* of)
164{
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
6a74a719 187 unsigned int shndx = 1;
8851ecca 188 if (!parameters->options().relocatable())
6a74a719
ILT
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
a3ad94ed 219 for (Layout::Section_list::const_iterator p =
16649710
ILT
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
61ba1cf9
ILT
222 ++p)
223 {
6a74a719
ILT
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 227 && parameters->options().relocatable())
6a74a719 228 continue;
a3ad94ed 229 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 232 v += shdr_size;
ead1e424 233 ++shndx;
61ba1cf9
ILT
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
237}
238
54dc6425
ILT
239// Output_segment_header methods.
240
61ba1cf9 241Output_segment_headers::Output_segment_headers(
61ba1cf9 242 const Layout::Segment_list& segment_list)
9025d29d 243 : segment_list_(segment_list)
61ba1cf9 244{
8851ecca 245 const int size = parameters->target().get_size();
61ba1cf9
ILT
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
a3ad94ed 252 gold_unreachable();
61ba1cf9
ILT
253
254 this->set_data_size(segment_list.size() * phdr_size);
255}
256
54dc6425 257void
61ba1cf9 258Output_segment_headers::do_write(Output_file* of)
75f65a3e 259{
8851ecca 260 switch (parameters->size_and_endianness())
61ba1cf9 261 {
9025d29d 262#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
9025d29d 266#endif
8851ecca
ILT
267#ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
9025d29d 271#endif
9025d29d 272#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
9025d29d 276#endif
8851ecca
ILT
277#ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281#endif
282 default:
283 gold_unreachable();
61ba1cf9 284 }
61ba1cf9
ILT
285}
286
287template<int size, bool big_endian>
288void
289Output_segment_headers::do_sized_write(Output_file* of)
290{
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 293 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
a445fddf
ILT
306 gold_assert(v - view == all_phdrs_size);
307
61ba1cf9 308 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
309}
310
311// Output_file_header methods.
312
9025d29d 313Output_file_header::Output_file_header(const Target* target,
75f65a3e 314 const Symbol_table* symtab,
d391083d
ILT
315 const Output_segment_headers* osh,
316 const char* entry)
9025d29d 317 : target_(target),
75f65a3e 318 symtab_(symtab),
61ba1cf9 319 segment_header_(osh),
75f65a3e 320 section_header_(NULL),
d391083d
ILT
321 shstrtab_(NULL),
322 entry_(entry)
75f65a3e 323{
8851ecca 324 const int size = parameters->target().get_size();
61ba1cf9
ILT
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
a3ad94ed 331 gold_unreachable();
61ba1cf9
ILT
332
333 this->set_data_size(ehdr_size);
75f65a3e
ILT
334}
335
336// Set the section table information for a file header.
337
338void
339Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341{
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344}
345
346// Write out the file header.
347
348void
61ba1cf9 349Output_file_header::do_write(Output_file* of)
54dc6425 350{
27bc2bce
ILT
351 gold_assert(this->offset() == 0);
352
8851ecca 353 switch (parameters->size_and_endianness())
61ba1cf9 354 {
9025d29d 355#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
9025d29d 359#endif
8851ecca
ILT
360#ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
9025d29d 364#endif
9025d29d 365#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
9025d29d 369#endif
8851ecca
ILT
370#ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374#endif
375 default:
376 gold_unreachable();
61ba1cf9 377 }
61ba1cf9
ILT
378}
379
380// Write out the file header with appropriate size and endianess.
381
382template<int size, bool big_endian>
383void
384Output_file_header::do_sized_write(Output_file* of)
385{
a3ad94ed 386 gold_assert(this->offset() == 0);
61ba1cf9
ILT
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
a3ad94ed 403 gold_unreachable();
61ba1cf9
ILT
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
8851ecca 412 if (parameters->options().relocatable())
61ba1cf9 413 e_type = elfcpp::ET_REL;
8851ecca 414 else if (parameters->options().shared())
436ca963 415 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
d391083d 423 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 424
6a74a719
ILT
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
61ba1cf9
ILT
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
61ba1cf9
ILT
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
453
454 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
455}
456
d391083d
ILT
457// Return the value to use for the entry address. THIS->ENTRY_ is the
458// symbol specified on the command line, if any.
459
460template<int size>
461typename elfcpp::Elf_types<size>::Elf_Addr
462Output_file_header::entry()
463{
464 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
d391083d
ILT
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499}
500
dbe717ef
ILT
501// Output_data_const methods.
502
503void
a3ad94ed 504Output_data_const::do_write(Output_file* of)
dbe717ef 505{
a3ad94ed
ILT
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507}
508
509// Output_data_const_buffer methods.
510
511void
512Output_data_const_buffer::do_write(Output_file* of)
513{
514 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
515}
516
517// Output_section_data methods.
518
16649710
ILT
519// Record the output section, and set the entry size and such.
520
521void
522Output_section_data::set_output_section(Output_section* os)
523{
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527}
528
529// Return the section index of the output section.
530
dbe717ef
ILT
531unsigned int
532Output_section_data::do_out_shndx() const
533{
a3ad94ed 534 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
535 return this->output_section_->out_shndx();
536}
537
a3ad94ed
ILT
538// Output_data_strtab methods.
539
27bc2bce 540// Set the final data size.
a3ad94ed
ILT
541
542void
27bc2bce 543Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
544{
545 this->strtab_->set_string_offsets();
546 this->set_data_size(this->strtab_->get_strtab_size());
547}
548
549// Write out a string table.
550
551void
552Output_data_strtab::do_write(Output_file* of)
553{
554 this->strtab_->write(of, this->offset());
555}
556
c06b7b0b
ILT
557// Output_reloc methods.
558
7bf1f802
ILT
559// A reloc against a global symbol.
560
561template<bool dynamic, int size, bool big_endian>
562Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
563 Symbol* gsym,
564 unsigned int type,
565 Output_data* od,
e8c846c3
ILT
566 Address address,
567 bool is_relative)
7bf1f802 568 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 569 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 570{
dceae3c1
ILT
571 // this->type_ is a bitfield; make sure TYPE fits.
572 gold_assert(this->type_ == type);
7bf1f802
ILT
573 this->u1_.gsym = gsym;
574 this->u2_.od = od;
dceae3c1
ILT
575 if (dynamic)
576 this->set_needs_dynsym_index();
7bf1f802
ILT
577}
578
579template<bool dynamic, int size, bool big_endian>
580Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
581 Symbol* gsym,
582 unsigned int type,
583 Relobj* relobj,
584 unsigned int shndx,
e8c846c3
ILT
585 Address address,
586 bool is_relative)
7bf1f802 587 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 588 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
589{
590 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
591 // this->type_ is a bitfield; make sure TYPE fits.
592 gold_assert(this->type_ == type);
7bf1f802
ILT
593 this->u1_.gsym = gsym;
594 this->u2_.relobj = relobj;
dceae3c1
ILT
595 if (dynamic)
596 this->set_needs_dynsym_index();
7bf1f802
ILT
597}
598
599// A reloc against a local symbol.
600
601template<bool dynamic, int size, bool big_endian>
602Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
603 Sized_relobj<size, big_endian>* relobj,
604 unsigned int local_sym_index,
605 unsigned int type,
606 Output_data* od,
e8c846c3 607 Address address,
dceae3c1
ILT
608 bool is_relative,
609 bool is_section_symbol)
7bf1f802 610 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
611 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
612 shndx_(INVALID_CODE)
7bf1f802
ILT
613{
614 gold_assert(local_sym_index != GSYM_CODE
615 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
616 // this->type_ is a bitfield; make sure TYPE fits.
617 gold_assert(this->type_ == type);
7bf1f802
ILT
618 this->u1_.relobj = relobj;
619 this->u2_.od = od;
dceae3c1
ILT
620 if (dynamic)
621 this->set_needs_dynsym_index();
7bf1f802
ILT
622}
623
624template<bool dynamic, int size, bool big_endian>
625Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
626 Sized_relobj<size, big_endian>* relobj,
627 unsigned int local_sym_index,
628 unsigned int type,
629 unsigned int shndx,
e8c846c3 630 Address address,
dceae3c1
ILT
631 bool is_relative,
632 bool is_section_symbol)
7bf1f802 633 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
634 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
635 shndx_(shndx)
7bf1f802
ILT
636{
637 gold_assert(local_sym_index != GSYM_CODE
638 && local_sym_index != INVALID_CODE);
639 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
7bf1f802
ILT
642 this->u1_.relobj = relobj;
643 this->u2_.relobj = relobj;
dceae3c1
ILT
644 if (dynamic)
645 this->set_needs_dynsym_index();
7bf1f802
ILT
646}
647
648// A reloc against the STT_SECTION symbol of an output section.
649
650template<bool dynamic, int size, bool big_endian>
651Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
652 Output_section* os,
653 unsigned int type,
654 Output_data* od,
655 Address address)
656 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 657 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 658{
dceae3c1
ILT
659 // this->type_ is a bitfield; make sure TYPE fits.
660 gold_assert(this->type_ == type);
7bf1f802
ILT
661 this->u1_.os = os;
662 this->u2_.od = od;
663 if (dynamic)
dceae3c1
ILT
664 this->set_needs_dynsym_index();
665 else
666 os->set_needs_symtab_index();
7bf1f802
ILT
667}
668
669template<bool dynamic, int size, bool big_endian>
670Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
671 Output_section* os,
672 unsigned int type,
673 Relobj* relobj,
674 unsigned int shndx,
675 Address address)
676 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 677 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
678{
679 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
680 // this->type_ is a bitfield; make sure TYPE fits.
681 gold_assert(this->type_ == type);
7bf1f802
ILT
682 this->u1_.os = os;
683 this->u2_.relobj = relobj;
684 if (dynamic)
dceae3c1
ILT
685 this->set_needs_dynsym_index();
686 else
687 os->set_needs_symtab_index();
688}
689
690// Record that we need a dynamic symbol index for this relocation.
691
692template<bool dynamic, int size, bool big_endian>
693void
694Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
695set_needs_dynsym_index()
696{
697 if (this->is_relative_)
698 return;
699 switch (this->local_sym_index_)
700 {
701 case INVALID_CODE:
702 gold_unreachable();
703
704 case GSYM_CODE:
705 this->u1_.gsym->set_needs_dynsym_entry();
706 break;
707
708 case SECTION_CODE:
709 this->u1_.os->set_needs_dynsym_index();
710 break;
711
712 case 0:
713 break;
714
715 default:
716 {
717 const unsigned int lsi = this->local_sym_index_;
718 if (!this->is_section_symbol_)
719 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
720 else
721 {
722 section_offset_type dummy;
723 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
724 gold_assert(os != NULL);
725 os->set_needs_dynsym_index();
726 }
727 }
728 break;
729 }
7bf1f802
ILT
730}
731
c06b7b0b
ILT
732// Get the symbol index of a relocation.
733
734template<bool dynamic, int size, bool big_endian>
735unsigned int
736Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
737 const
738{
739 unsigned int index;
740 switch (this->local_sym_index_)
741 {
742 case INVALID_CODE:
a3ad94ed 743 gold_unreachable();
c06b7b0b
ILT
744
745 case GSYM_CODE:
5a6f7e2d 746 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
747 index = 0;
748 else if (dynamic)
5a6f7e2d 749 index = this->u1_.gsym->dynsym_index();
c06b7b0b 750 else
5a6f7e2d 751 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
752 break;
753
754 case SECTION_CODE:
755 if (dynamic)
5a6f7e2d 756 index = this->u1_.os->dynsym_index();
c06b7b0b 757 else
5a6f7e2d 758 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
759 break;
760
436ca963
ILT
761 case 0:
762 // Relocations without symbols use a symbol index of 0.
763 index = 0;
764 break;
765
c06b7b0b 766 default:
dceae3c1
ILT
767 {
768 const unsigned int lsi = this->local_sym_index_;
769 if (!this->is_section_symbol_)
770 {
771 if (dynamic)
772 index = this->u1_.relobj->dynsym_index(lsi);
773 else
774 index = this->u1_.relobj->symtab_index(lsi);
775 }
776 else
777 {
778 section_offset_type dummy;
779 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
780 gold_assert(os != NULL);
781 if (dynamic)
782 index = os->dynsym_index();
783 else
784 index = os->symtab_index();
785 }
786 }
c06b7b0b
ILT
787 break;
788 }
a3ad94ed 789 gold_assert(index != -1U);
c06b7b0b
ILT
790 return index;
791}
792
dceae3c1
ILT
793// For a local section symbol, get the section offset of the input
794// section within the output section.
795
796template<bool dynamic, int size, bool big_endian>
797section_offset_type
798Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
799 local_section_offset() const
800{
801 const unsigned int lsi = this->local_sym_index_;
802 section_offset_type offset;
803 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
d1f003c6 804 gold_assert(os != NULL && offset != -1);
dceae3c1
ILT
805 return offset;
806}
807
c06b7b0b
ILT
808// Write out the offset and info fields of a Rel or Rela relocation
809// entry.
810
811template<bool dynamic, int size, bool big_endian>
812template<typename Write_rel>
813void
814Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
815 Write_rel* wr) const
816{
a3ad94ed 817 Address address = this->address_;
5a6f7e2d
ILT
818 if (this->shndx_ != INVALID_CODE)
819 {
8383303e 820 section_offset_type off;
5a6f7e2d
ILT
821 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
822 &off);
823 gold_assert(os != NULL);
730cdc88
ILT
824 if (off != -1)
825 address += os->address() + off;
826 else
827 {
828 address = os->output_address(this->u2_.relobj, this->shndx_,
829 address);
830 gold_assert(address != -1U);
831 }
5a6f7e2d
ILT
832 }
833 else if (this->u2_.od != NULL)
834 address += this->u2_.od->address();
a3ad94ed 835 wr->put_r_offset(address);
e8c846c3
ILT
836 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
837 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
838}
839
840// Write out a Rel relocation.
841
842template<bool dynamic, int size, bool big_endian>
843void
844Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
845 unsigned char* pov) const
846{
847 elfcpp::Rel_write<size, big_endian> orel(pov);
848 this->write_rel(&orel);
849}
850
e8c846c3
ILT
851// Get the value of the symbol referred to by a Rel relocation.
852
853template<bool dynamic, int size, bool big_endian>
854typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6
ILT
855Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
856 Address addend) const
e8c846c3
ILT
857{
858 if (this->local_sym_index_ == GSYM_CODE)
859 {
860 const Sized_symbol<size>* sym;
861 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 862 return sym->value() + addend;
e8c846c3
ILT
863 }
864 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
865 && this->local_sym_index_ != INVALID_CODE
866 && !this->is_section_symbol_);
867 const unsigned int lsi = this->local_sym_index_;
868 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
869 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
870}
871
c06b7b0b
ILT
872// Write out a Rela relocation.
873
874template<bool dynamic, int size, bool big_endian>
875void
876Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
877 unsigned char* pov) const
878{
879 elfcpp::Rela_write<size, big_endian> orel(pov);
880 this->rel_.write_rel(&orel);
e8c846c3 881 Addend addend = this->addend_;
dceae3c1 882 if (this->rel_.is_relative())
d1f003c6
ILT
883 addend = this->rel_.symbol_value(addend);
884 else if (this->rel_.is_local_section_symbol())
dceae3c1 885 addend += this->rel_.local_section_offset();
e8c846c3 886 orel.put_r_addend(addend);
c06b7b0b
ILT
887}
888
889// Output_data_reloc_base methods.
890
16649710
ILT
891// Adjust the output section.
892
893template<int sh_type, bool dynamic, int size, bool big_endian>
894void
895Output_data_reloc_base<sh_type, dynamic, size, big_endian>
896 ::do_adjust_output_section(Output_section* os)
897{
898 if (sh_type == elfcpp::SHT_REL)
899 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
900 else if (sh_type == elfcpp::SHT_RELA)
901 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
902 else
903 gold_unreachable();
904 if (dynamic)
905 os->set_should_link_to_dynsym();
906 else
907 os->set_should_link_to_symtab();
908}
909
c06b7b0b
ILT
910// Write out relocation data.
911
912template<int sh_type, bool dynamic, int size, bool big_endian>
913void
914Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
915 Output_file* of)
916{
917 const off_t off = this->offset();
918 const off_t oview_size = this->data_size();
919 unsigned char* const oview = of->get_output_view(off, oview_size);
920
921 unsigned char* pov = oview;
922 for (typename Relocs::const_iterator p = this->relocs_.begin();
923 p != this->relocs_.end();
924 ++p)
925 {
926 p->write(pov);
927 pov += reloc_size;
928 }
929
a3ad94ed 930 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
931
932 of->write_output_view(off, oview_size, oview);
933
934 // We no longer need the relocation entries.
935 this->relocs_.clear();
936}
937
6a74a719
ILT
938// Class Output_relocatable_relocs.
939
940template<int sh_type, int size, bool big_endian>
941void
942Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
943{
944 this->set_data_size(this->rr_->output_reloc_count()
945 * Reloc_types<sh_type, size, big_endian>::reloc_size);
946}
947
948// class Output_data_group.
949
950template<int size, bool big_endian>
951Output_data_group<size, big_endian>::Output_data_group(
952 Sized_relobj<size, big_endian>* relobj,
953 section_size_type entry_count,
954 const elfcpp::Elf_Word* contents)
955 : Output_section_data(entry_count * 4, 4),
956 relobj_(relobj)
957{
958 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
959 for (section_size_type i = 1; i < entry_count; ++i)
960 {
961 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
962 this->input_sections_.push_back(shndx);
963 }
964}
965
966// Write out the section group, which means translating the section
967// indexes to apply to the output file.
968
969template<int size, bool big_endian>
970void
971Output_data_group<size, big_endian>::do_write(Output_file* of)
972{
973 const off_t off = this->offset();
974 const section_size_type oview_size =
975 convert_to_section_size_type(this->data_size());
976 unsigned char* const oview = of->get_output_view(off, oview_size);
977
978 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
979 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
980 ++contents;
981
982 for (std::vector<unsigned int>::const_iterator p =
983 this->input_sections_.begin();
984 p != this->input_sections_.end();
985 ++p, ++contents)
986 {
987 section_offset_type dummy;
988 Output_section* os = this->relobj_->output_section(*p, &dummy);
989
990 unsigned int output_shndx;
991 if (os != NULL)
992 output_shndx = os->out_shndx();
993 else
994 {
995 this->relobj_->error(_("section group retained but "
996 "group element discarded"));
997 output_shndx = 0;
998 }
999
1000 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1001 }
1002
1003 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1004 gold_assert(wrote == oview_size);
1005
1006 of->write_output_view(off, oview_size, oview);
1007
1008 // We no longer need this information.
1009 this->input_sections_.clear();
1010}
1011
dbe717ef 1012// Output_data_got::Got_entry methods.
ead1e424
ILT
1013
1014// Write out the entry.
1015
1016template<int size, bool big_endian>
1017void
7e1edb90 1018Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1019{
1020 Valtype val = 0;
1021
1022 switch (this->local_sym_index_)
1023 {
1024 case GSYM_CODE:
1025 {
e8c846c3
ILT
1026 // If the symbol is resolved locally, we need to write out the
1027 // link-time value, which will be relocated dynamically by a
1028 // RELATIVE relocation.
ead1e424 1029 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1030 Sized_symbol<size>* sgsym;
1031 // This cast is a bit ugly. We don't want to put a
1032 // virtual method in Symbol, because we want Symbol to be
1033 // as small as possible.
1034 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1035 val = sgsym->value();
ead1e424
ILT
1036 }
1037 break;
1038
1039 case CONSTANT_CODE:
1040 val = this->u_.constant;
1041 break;
1042
1043 default:
d1f003c6
ILT
1044 {
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1047 val = symval->value(this->u_.object, 0);
1048 }
e727fa71 1049 break;
ead1e424
ILT
1050 }
1051
a3ad94ed 1052 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1053}
1054
dbe717ef 1055// Output_data_got methods.
ead1e424 1056
dbe717ef
ILT
1057// Add an entry for a global symbol to the GOT. This returns true if
1058// this is a new GOT entry, false if the symbol already had a GOT
1059// entry.
1060
1061template<int size, bool big_endian>
1062bool
0a65a3a7
CC
1063Output_data_got<size, big_endian>::add_global(
1064 Symbol* gsym,
1065 unsigned int got_type)
ead1e424 1066{
0a65a3a7 1067 if (gsym->has_got_offset(got_type))
dbe717ef 1068 return false;
ead1e424 1069
dbe717ef
ILT
1070 this->entries_.push_back(Got_entry(gsym));
1071 this->set_got_size();
0a65a3a7 1072 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1073 return true;
1074}
ead1e424 1075
7bf1f802
ILT
1076// Add an entry for a global symbol to the GOT, and add a dynamic
1077// relocation of type R_TYPE for the GOT entry.
1078template<int size, bool big_endian>
1079void
1080Output_data_got<size, big_endian>::add_global_with_rel(
1081 Symbol* gsym,
0a65a3a7 1082 unsigned int got_type,
7bf1f802
ILT
1083 Rel_dyn* rel_dyn,
1084 unsigned int r_type)
1085{
0a65a3a7 1086 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1087 return;
1088
1089 this->entries_.push_back(Got_entry());
1090 this->set_got_size();
1091 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1092 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1093 rel_dyn->add_global(gsym, r_type, this, got_offset);
1094}
1095
1096template<int size, bool big_endian>
1097void
1098Output_data_got<size, big_endian>::add_global_with_rela(
1099 Symbol* gsym,
0a65a3a7 1100 unsigned int got_type,
7bf1f802
ILT
1101 Rela_dyn* rela_dyn,
1102 unsigned int r_type)
1103{
0a65a3a7 1104 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1105 return;
1106
1107 this->entries_.push_back(Got_entry());
1108 this->set_got_size();
1109 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1110 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1111 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1112}
1113
0a65a3a7
CC
1114// Add a pair of entries for a global symbol to the GOT, and add
1115// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1116// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1117template<int size, bool big_endian>
1118void
0a65a3a7
CC
1119Output_data_got<size, big_endian>::add_global_pair_with_rel(
1120 Symbol* gsym,
1121 unsigned int got_type,
7bf1f802 1122 Rel_dyn* rel_dyn,
0a65a3a7
CC
1123 unsigned int r_type_1,
1124 unsigned int r_type_2)
7bf1f802 1125{
0a65a3a7 1126 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1127 return;
1128
1129 this->entries_.push_back(Got_entry());
7bf1f802 1130 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1131 gsym->set_got_offset(got_type, got_offset);
1132 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1133
1134 this->entries_.push_back(Got_entry());
1135 if (r_type_2 != 0)
1136 {
1137 got_offset = this->last_got_offset();
1138 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1139 }
1140
1141 this->set_got_size();
7bf1f802
ILT
1142}
1143
1144template<int size, bool big_endian>
1145void
0a65a3a7
CC
1146Output_data_got<size, big_endian>::add_global_pair_with_rela(
1147 Symbol* gsym,
1148 unsigned int got_type,
7bf1f802 1149 Rela_dyn* rela_dyn,
0a65a3a7
CC
1150 unsigned int r_type_1,
1151 unsigned int r_type_2)
7bf1f802 1152{
0a65a3a7 1153 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1154 return;
1155
1156 this->entries_.push_back(Got_entry());
7bf1f802 1157 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1158 gsym->set_got_offset(got_type, got_offset);
1159 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1160
1161 this->entries_.push_back(Got_entry());
1162 if (r_type_2 != 0)
1163 {
1164 got_offset = this->last_got_offset();
1165 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1166 }
1167
1168 this->set_got_size();
7bf1f802
ILT
1169}
1170
0a65a3a7
CC
1171// Add an entry for a local symbol to the GOT. This returns true if
1172// this is a new GOT entry, false if the symbol already has a GOT
1173// entry.
07f397ab
ILT
1174
1175template<int size, bool big_endian>
1176bool
0a65a3a7
CC
1177Output_data_got<size, big_endian>::add_local(
1178 Sized_relobj<size, big_endian>* object,
1179 unsigned int symndx,
1180 unsigned int got_type)
07f397ab 1181{
0a65a3a7 1182 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1183 return false;
1184
0a65a3a7 1185 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1186 this->set_got_size();
0a65a3a7 1187 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1188 return true;
1189}
1190
0a65a3a7
CC
1191// Add an entry for a local symbol to the GOT, and add a dynamic
1192// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1193template<int size, bool big_endian>
1194void
0a65a3a7
CC
1195Output_data_got<size, big_endian>::add_local_with_rel(
1196 Sized_relobj<size, big_endian>* object,
1197 unsigned int symndx,
1198 unsigned int got_type,
7bf1f802
ILT
1199 Rel_dyn* rel_dyn,
1200 unsigned int r_type)
1201{
0a65a3a7 1202 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1203 return;
1204
1205 this->entries_.push_back(Got_entry());
1206 this->set_got_size();
1207 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1208 object->set_local_got_offset(symndx, got_type, got_offset);
1209 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1210}
1211
1212template<int size, bool big_endian>
1213void
0a65a3a7
CC
1214Output_data_got<size, big_endian>::add_local_with_rela(
1215 Sized_relobj<size, big_endian>* object,
1216 unsigned int symndx,
1217 unsigned int got_type,
7bf1f802
ILT
1218 Rela_dyn* rela_dyn,
1219 unsigned int r_type)
1220{
0a65a3a7 1221 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1222 return;
1223
1224 this->entries_.push_back(Got_entry());
1225 this->set_got_size();
1226 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1227 object->set_local_got_offset(symndx, got_type, got_offset);
1228 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1229}
1230
0a65a3a7
CC
1231// Add a pair of entries for a local symbol to the GOT, and add
1232// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1233// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1234template<int size, bool big_endian>
1235void
0a65a3a7 1236Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1237 Sized_relobj<size, big_endian>* object,
1238 unsigned int symndx,
1239 unsigned int shndx,
0a65a3a7 1240 unsigned int got_type,
7bf1f802 1241 Rel_dyn* rel_dyn,
0a65a3a7
CC
1242 unsigned int r_type_1,
1243 unsigned int r_type_2)
7bf1f802 1244{
0a65a3a7 1245 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1246 return;
1247
1248 this->entries_.push_back(Got_entry());
1249 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1250 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1251 section_offset_type off;
7bf1f802 1252 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1253 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1254
0a65a3a7
CC
1255 this->entries_.push_back(Got_entry(object, symndx));
1256 if (r_type_2 != 0)
1257 {
1258 got_offset = this->last_got_offset();
1259 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1260 }
7bf1f802
ILT
1261
1262 this->set_got_size();
1263}
1264
1265template<int size, bool big_endian>
1266void
0a65a3a7 1267Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1268 Sized_relobj<size, big_endian>* object,
1269 unsigned int symndx,
1270 unsigned int shndx,
0a65a3a7 1271 unsigned int got_type,
7bf1f802 1272 Rela_dyn* rela_dyn,
0a65a3a7
CC
1273 unsigned int r_type_1,
1274 unsigned int r_type_2)
7bf1f802 1275{
0a65a3a7 1276 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1277 return;
1278
1279 this->entries_.push_back(Got_entry());
1280 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1281 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1282 section_offset_type off;
7bf1f802 1283 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1284 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1285
0a65a3a7
CC
1286 this->entries_.push_back(Got_entry(object, symndx));
1287 if (r_type_2 != 0)
1288 {
1289 got_offset = this->last_got_offset();
1290 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1291 }
7bf1f802
ILT
1292
1293 this->set_got_size();
1294}
1295
ead1e424
ILT
1296// Write out the GOT.
1297
1298template<int size, bool big_endian>
1299void
dbe717ef 1300Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1301{
1302 const int add = size / 8;
1303
1304 const off_t off = this->offset();
c06b7b0b 1305 const off_t oview_size = this->data_size();
ead1e424
ILT
1306 unsigned char* const oview = of->get_output_view(off, oview_size);
1307
1308 unsigned char* pov = oview;
1309 for (typename Got_entries::const_iterator p = this->entries_.begin();
1310 p != this->entries_.end();
1311 ++p)
1312 {
7e1edb90 1313 p->write(pov);
ead1e424
ILT
1314 pov += add;
1315 }
1316
a3ad94ed 1317 gold_assert(pov - oview == oview_size);
c06b7b0b 1318
ead1e424
ILT
1319 of->write_output_view(off, oview_size, oview);
1320
1321 // We no longer need the GOT entries.
1322 this->entries_.clear();
1323}
1324
a3ad94ed
ILT
1325// Output_data_dynamic::Dynamic_entry methods.
1326
1327// Write out the entry.
1328
1329template<int size, bool big_endian>
1330void
1331Output_data_dynamic::Dynamic_entry::write(
1332 unsigned char* pov,
7d1a9ebb 1333 const Stringpool* pool) const
a3ad94ed
ILT
1334{
1335 typename elfcpp::Elf_types<size>::Elf_WXword val;
1336 switch (this->classification_)
1337 {
1338 case DYNAMIC_NUMBER:
1339 val = this->u_.val;
1340 break;
1341
1342 case DYNAMIC_SECTION_ADDRESS:
16649710 1343 val = this->u_.od->address();
a3ad94ed
ILT
1344 break;
1345
1346 case DYNAMIC_SECTION_SIZE:
16649710 1347 val = this->u_.od->data_size();
a3ad94ed
ILT
1348 break;
1349
1350 case DYNAMIC_SYMBOL:
1351 {
16649710
ILT
1352 const Sized_symbol<size>* s =
1353 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1354 val = s->value();
1355 }
1356 break;
1357
1358 case DYNAMIC_STRING:
1359 val = pool->get_offset(this->u_.str);
1360 break;
1361
1362 default:
1363 gold_unreachable();
1364 }
1365
1366 elfcpp::Dyn_write<size, big_endian> dw(pov);
1367 dw.put_d_tag(this->tag_);
1368 dw.put_d_val(val);
1369}
1370
1371// Output_data_dynamic methods.
1372
16649710
ILT
1373// Adjust the output section to set the entry size.
1374
1375void
1376Output_data_dynamic::do_adjust_output_section(Output_section* os)
1377{
8851ecca 1378 if (parameters->target().get_size() == 32)
16649710 1379 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1380 else if (parameters->target().get_size() == 64)
16649710
ILT
1381 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1382 else
1383 gold_unreachable();
1384}
1385
a3ad94ed
ILT
1386// Set the final data size.
1387
1388void
27bc2bce 1389Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1390{
1391 // Add the terminating entry.
1392 this->add_constant(elfcpp::DT_NULL, 0);
1393
1394 int dyn_size;
8851ecca 1395 if (parameters->target().get_size() == 32)
a3ad94ed 1396 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1397 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1398 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1399 else
1400 gold_unreachable();
1401 this->set_data_size(this->entries_.size() * dyn_size);
1402}
1403
1404// Write out the dynamic entries.
1405
1406void
1407Output_data_dynamic::do_write(Output_file* of)
1408{
8851ecca 1409 switch (parameters->size_and_endianness())
a3ad94ed 1410 {
9025d29d 1411#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1412 case Parameters::TARGET_32_LITTLE:
1413 this->sized_write<32, false>(of);
1414 break;
9025d29d 1415#endif
8851ecca
ILT
1416#ifdef HAVE_TARGET_32_BIG
1417 case Parameters::TARGET_32_BIG:
1418 this->sized_write<32, true>(of);
1419 break;
9025d29d 1420#endif
9025d29d 1421#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1422 case Parameters::TARGET_64_LITTLE:
1423 this->sized_write<64, false>(of);
1424 break;
9025d29d 1425#endif
8851ecca
ILT
1426#ifdef HAVE_TARGET_64_BIG
1427 case Parameters::TARGET_64_BIG:
1428 this->sized_write<64, true>(of);
1429 break;
1430#endif
1431 default:
1432 gold_unreachable();
a3ad94ed 1433 }
a3ad94ed
ILT
1434}
1435
1436template<int size, bool big_endian>
1437void
1438Output_data_dynamic::sized_write(Output_file* of)
1439{
1440 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1441
1442 const off_t offset = this->offset();
1443 const off_t oview_size = this->data_size();
1444 unsigned char* const oview = of->get_output_view(offset, oview_size);
1445
1446 unsigned char* pov = oview;
1447 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1448 p != this->entries_.end();
1449 ++p)
1450 {
7d1a9ebb 1451 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1452 pov += dyn_size;
1453 }
1454
1455 gold_assert(pov - oview == oview_size);
1456
1457 of->write_output_view(offset, oview_size, oview);
1458
1459 // We no longer need the dynamic entries.
1460 this->entries_.clear();
1461}
1462
ead1e424
ILT
1463// Output_section::Input_section methods.
1464
1465// Return the data size. For an input section we store the size here.
1466// For an Output_section_data, we have to ask it for the size.
1467
1468off_t
1469Output_section::Input_section::data_size() const
1470{
1471 if (this->is_input_section())
b8e6aad9 1472 return this->u1_.data_size;
ead1e424 1473 else
b8e6aad9 1474 return this->u2_.posd->data_size();
ead1e424
ILT
1475}
1476
1477// Set the address and file offset.
1478
1479void
96803768
ILT
1480Output_section::Input_section::set_address_and_file_offset(
1481 uint64_t address,
1482 off_t file_offset,
1483 off_t section_file_offset)
ead1e424
ILT
1484{
1485 if (this->is_input_section())
96803768
ILT
1486 this->u2_.object->set_section_offset(this->shndx_,
1487 file_offset - section_file_offset);
ead1e424 1488 else
96803768
ILT
1489 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1490}
1491
a445fddf
ILT
1492// Reset the address and file offset.
1493
1494void
1495Output_section::Input_section::reset_address_and_file_offset()
1496{
1497 if (!this->is_input_section())
1498 this->u2_.posd->reset_address_and_file_offset();
1499}
1500
96803768
ILT
1501// Finalize the data size.
1502
1503void
1504Output_section::Input_section::finalize_data_size()
1505{
1506 if (!this->is_input_section())
1507 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1508}
1509
1e983657
ILT
1510// Try to turn an input offset into an output offset. We want to
1511// return the output offset relative to the start of this
1512// Input_section in the output section.
b8e6aad9 1513
8f00aeb8 1514inline bool
8383303e
ILT
1515Output_section::Input_section::output_offset(
1516 const Relobj* object,
1517 unsigned int shndx,
1518 section_offset_type offset,
1519 section_offset_type *poutput) const
b8e6aad9
ILT
1520{
1521 if (!this->is_input_section())
730cdc88 1522 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1523 else
1524 {
730cdc88 1525 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1526 return false;
1e983657 1527 *poutput = offset;
b8e6aad9
ILT
1528 return true;
1529 }
ead1e424
ILT
1530}
1531
a9a60db6
ILT
1532// Return whether this is the merge section for the input section
1533// SHNDX in OBJECT.
1534
1535inline bool
1536Output_section::Input_section::is_merge_section_for(const Relobj* object,
1537 unsigned int shndx) const
1538{
1539 if (this->is_input_section())
1540 return false;
1541 return this->u2_.posd->is_merge_section_for(object, shndx);
1542}
1543
ead1e424
ILT
1544// Write out the data. We don't have to do anything for an input
1545// section--they are handled via Object::relocate--but this is where
1546// we write out the data for an Output_section_data.
1547
1548void
1549Output_section::Input_section::write(Output_file* of)
1550{
1551 if (!this->is_input_section())
b8e6aad9 1552 this->u2_.posd->write(of);
ead1e424
ILT
1553}
1554
96803768
ILT
1555// Write the data to a buffer. As for write(), we don't have to do
1556// anything for an input section.
1557
1558void
1559Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1560{
1561 if (!this->is_input_section())
1562 this->u2_.posd->write_to_buffer(buffer);
1563}
1564
a2fb1b05
ILT
1565// Output_section methods.
1566
1567// Construct an Output_section. NAME will point into a Stringpool.
1568
96803768 1569Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1570 elfcpp::Elf_Xword flags)
96803768 1571 : name_(name),
a2fb1b05
ILT
1572 addralign_(0),
1573 entsize_(0),
a445fddf 1574 load_address_(0),
16649710 1575 link_section_(NULL),
a2fb1b05 1576 link_(0),
16649710 1577 info_section_(NULL),
6a74a719 1578 info_symndx_(NULL),
a2fb1b05
ILT
1579 info_(0),
1580 type_(type),
61ba1cf9 1581 flags_(flags),
91ea499d 1582 out_shndx_(-1U),
c06b7b0b
ILT
1583 symtab_index_(0),
1584 dynsym_index_(0),
ead1e424
ILT
1585 input_sections_(),
1586 first_input_offset_(0),
c51e6221 1587 fills_(),
96803768 1588 postprocessing_buffer_(NULL),
a3ad94ed 1589 needs_symtab_index_(false),
16649710
ILT
1590 needs_dynsym_index_(false),
1591 should_link_to_symtab_(false),
730cdc88 1592 should_link_to_dynsym_(false),
27bc2bce 1593 after_input_sections_(false),
7bf1f802 1594 requires_postprocessing_(false),
a445fddf
ILT
1595 found_in_sections_clause_(false),
1596 has_load_address_(false),
755ab8af 1597 info_uses_section_index_(false),
2fd32231
ILT
1598 may_sort_attached_input_sections_(false),
1599 must_sort_attached_input_sections_(false),
1600 attached_input_sections_are_sorted_(false),
7bf1f802 1601 tls_offset_(0)
a2fb1b05 1602{
27bc2bce
ILT
1603 // An unallocated section has no address. Forcing this means that
1604 // we don't need special treatment for symbols defined in debug
1605 // sections.
1606 if ((flags & elfcpp::SHF_ALLOC) == 0)
1607 this->set_address(0);
a2fb1b05
ILT
1608}
1609
54dc6425
ILT
1610Output_section::~Output_section()
1611{
1612}
1613
16649710
ILT
1614// Set the entry size.
1615
1616void
1617Output_section::set_entsize(uint64_t v)
1618{
1619 if (this->entsize_ == 0)
1620 this->entsize_ = v;
1621 else
1622 gold_assert(this->entsize_ == v);
1623}
1624
ead1e424 1625// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1626// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1627// relocation section which applies to this section, or 0 if none, or
1628// -1U if more than one. Return the offset of the input section
1629// within the output section. Return -1 if the input section will
1630// receive special handling. In the normal case we don't always keep
1631// track of input sections for an Output_section. Instead, each
1632// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1633// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1634// track of input sections here; this is used when SECTIONS appears in
1635// a linker script.
a2fb1b05
ILT
1636
1637template<int size, bool big_endian>
1638off_t
730cdc88
ILT
1639Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1640 unsigned int shndx,
ead1e424 1641 const char* secname,
730cdc88 1642 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1643 unsigned int reloc_shndx,
1644 bool have_sections_script)
a2fb1b05
ILT
1645{
1646 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1647 if ((addralign & (addralign - 1)) != 0)
1648 {
75f2446e
ILT
1649 object->error(_("invalid alignment %lu for section \"%s\""),
1650 static_cast<unsigned long>(addralign), secname);
1651 addralign = 1;
a2fb1b05 1652 }
a2fb1b05
ILT
1653
1654 if (addralign > this->addralign_)
1655 this->addralign_ = addralign;
1656
44a43cf9 1657 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
a445fddf
ILT
1658 this->flags_ |= (sh_flags
1659 & (elfcpp::SHF_WRITE
1660 | elfcpp::SHF_ALLOC
1661 | elfcpp::SHF_EXECINSTR));
1662
4f833eee 1663 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1664
1665 // .debug_str is a mergeable string section, but is not always so
1666 // marked by compilers. Mark manually here so we can optimize.
1667 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1668 {
1669 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1670 entsize = 1;
1671 }
44a43cf9 1672
b8e6aad9 1673 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1674 // a Output_data_merge. We don't try to handle relocations for such
1675 // a section.
44a43cf9 1676 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1677 && reloc_shndx == 0)
b8e6aad9 1678 {
44a43cf9 1679 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1680 entsize, addralign))
b8e6aad9
ILT
1681 {
1682 // Tell the relocation routines that they need to call the
730cdc88 1683 // output_offset method to determine the final address.
b8e6aad9
ILT
1684 return -1;
1685 }
1686 }
1687
27bc2bce 1688 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1689 off_t aligned_offset_in_section = align_address(offset_in_section,
1690 addralign);
1691
1692 if (aligned_offset_in_section > offset_in_section
a445fddf 1693 && !have_sections_script
44a43cf9 1694 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1695 && object->target()->has_code_fill())
1696 {
1697 // We need to add some fill data. Using fill_list_ when
1698 // possible is an optimization, since we will often have fill
1699 // sections without input sections.
1700 off_t fill_len = aligned_offset_in_section - offset_in_section;
1701 if (this->input_sections_.empty())
1702 this->fills_.push_back(Fill(offset_in_section, fill_len));
1703 else
1704 {
1705 // FIXME: When relaxing, the size needs to adjust to
1706 // maintain a constant alignment.
1707 std::string fill_data(object->target()->code_fill(fill_len));
1708 Output_data_const* odc = new Output_data_const(fill_data, 1);
1709 this->input_sections_.push_back(Input_section(odc));
1710 }
1711 }
1712
27bc2bce
ILT
1713 this->set_current_data_size_for_child(aligned_offset_in_section
1714 + shdr.get_sh_size());
a2fb1b05 1715
ead1e424 1716 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1717 // track of sections, or if we are relaxing. Also, if this is a
1718 // section which requires sorting, or which may require sorting in
1719 // the future, we keep track of the sections. FIXME: Add test for
ead1e424 1720 // relaxing.
2fd32231
ILT
1721 if (have_sections_script
1722 || !this->input_sections_.empty()
1723 || this->may_sort_attached_input_sections()
1724 || this->must_sort_attached_input_sections())
ead1e424
ILT
1725 this->input_sections_.push_back(Input_section(object, shndx,
1726 shdr.get_sh_size(),
1727 addralign));
54dc6425 1728
c51e6221 1729 return aligned_offset_in_section;
61ba1cf9
ILT
1730}
1731
ead1e424
ILT
1732// Add arbitrary data to an output section.
1733
1734void
1735Output_section::add_output_section_data(Output_section_data* posd)
1736{
b8e6aad9
ILT
1737 Input_section inp(posd);
1738 this->add_output_section_data(&inp);
a445fddf
ILT
1739
1740 if (posd->is_data_size_valid())
1741 {
1742 off_t offset_in_section = this->current_data_size_for_child();
1743 off_t aligned_offset_in_section = align_address(offset_in_section,
1744 posd->addralign());
1745 this->set_current_data_size_for_child(aligned_offset_in_section
1746 + posd->data_size());
1747 }
b8e6aad9
ILT
1748}
1749
1750// Add arbitrary data to an output section by Input_section.
c06b7b0b 1751
b8e6aad9
ILT
1752void
1753Output_section::add_output_section_data(Input_section* inp)
1754{
ead1e424 1755 if (this->input_sections_.empty())
27bc2bce 1756 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1757
b8e6aad9 1758 this->input_sections_.push_back(*inp);
c06b7b0b 1759
b8e6aad9 1760 uint64_t addralign = inp->addralign();
ead1e424
ILT
1761 if (addralign > this->addralign_)
1762 this->addralign_ = addralign;
c06b7b0b 1763
b8e6aad9
ILT
1764 inp->set_output_section(this);
1765}
1766
1767// Add a merge section to an output section.
1768
1769void
1770Output_section::add_output_merge_section(Output_section_data* posd,
1771 bool is_string, uint64_t entsize)
1772{
1773 Input_section inp(posd, is_string, entsize);
1774 this->add_output_section_data(&inp);
1775}
1776
1777// Add an input section to a SHF_MERGE section.
1778
1779bool
1780Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1781 uint64_t flags, uint64_t entsize,
96803768 1782 uint64_t addralign)
b8e6aad9 1783{
87f95776
ILT
1784 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1785
1786 // We only merge strings if the alignment is not more than the
1787 // character size. This could be handled, but it's unusual.
1788 if (is_string && addralign > entsize)
b8e6aad9
ILT
1789 return false;
1790
b8e6aad9
ILT
1791 Input_section_list::iterator p;
1792 for (p = this->input_sections_.begin();
1793 p != this->input_sections_.end();
1794 ++p)
87f95776 1795 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1796 {
1797 p->add_input_section(object, shndx);
1798 return true;
1799 }
b8e6aad9
ILT
1800
1801 // We handle the actual constant merging in Output_merge_data or
1802 // Output_merge_string_data.
9a0910c3
ILT
1803 Output_section_data* posd;
1804 if (!is_string)
1805 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1806 else
1807 {
9a0910c3
ILT
1808 switch (entsize)
1809 {
1810 case 1:
1811 posd = new Output_merge_string<char>(addralign);
1812 break;
1813 case 2:
1814 posd = new Output_merge_string<uint16_t>(addralign);
1815 break;
1816 case 4:
1817 posd = new Output_merge_string<uint32_t>(addralign);
1818 break;
1819 default:
1820 return false;
1821 }
b8e6aad9
ILT
1822 }
1823
9a0910c3
ILT
1824 this->add_output_merge_section(posd, is_string, entsize);
1825 posd->add_input_section(object, shndx);
1826
b8e6aad9
ILT
1827 return true;
1828}
1829
730cdc88
ILT
1830// Given an address OFFSET relative to the start of input section
1831// SHNDX in OBJECT, return whether this address is being included in
1832// the final link. This should only be called if SHNDX in OBJECT has
1833// a special mapping.
1834
1835bool
1836Output_section::is_input_address_mapped(const Relobj* object,
1837 unsigned int shndx,
1838 off_t offset) const
1839{
1840 gold_assert(object->is_section_specially_mapped(shndx));
1841
1842 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1843 p != this->input_sections_.end();
1844 ++p)
1845 {
8383303e 1846 section_offset_type output_offset;
730cdc88
ILT
1847 if (p->output_offset(object, shndx, offset, &output_offset))
1848 return output_offset != -1;
1849 }
1850
1851 // By default we assume that the address is mapped. This should
1852 // only be called after we have passed all sections to Layout. At
1853 // that point we should know what we are discarding.
1854 return true;
1855}
1856
1857// Given an address OFFSET relative to the start of input section
1858// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1859// start of the input section in the output section. This should only
1860// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1861
8383303e 1862section_offset_type
730cdc88 1863Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1864 section_offset_type offset) const
730cdc88
ILT
1865{
1866 gold_assert(object->is_section_specially_mapped(shndx));
1867 // This can only be called meaningfully when layout is complete.
1868 gold_assert(Output_data::is_layout_complete());
1869
1870 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1871 p != this->input_sections_.end();
1872 ++p)
1873 {
8383303e 1874 section_offset_type output_offset;
730cdc88
ILT
1875 if (p->output_offset(object, shndx, offset, &output_offset))
1876 return output_offset;
1877 }
1878 gold_unreachable();
1879}
1880
b8e6aad9
ILT
1881// Return the output virtual address of OFFSET relative to the start
1882// of input section SHNDX in object OBJECT.
1883
1884uint64_t
1885Output_section::output_address(const Relobj* object, unsigned int shndx,
1886 off_t offset) const
1887{
730cdc88 1888 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 1889
b8e6aad9
ILT
1890 uint64_t addr = this->address() + this->first_input_offset_;
1891 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1892 p != this->input_sections_.end();
1893 ++p)
1894 {
1895 addr = align_address(addr, p->addralign());
8383303e 1896 section_offset_type output_offset;
730cdc88
ILT
1897 if (p->output_offset(object, shndx, offset, &output_offset))
1898 {
1899 if (output_offset == -1)
1900 return -1U;
1901 return addr + output_offset;
1902 }
b8e6aad9
ILT
1903 addr += p->data_size();
1904 }
1905
1906 // If we get here, it means that we don't know the mapping for this
1907 // input section. This might happen in principle if
1908 // add_input_section were called before add_output_section_data.
1909 // But it should never actually happen.
1910
1911 gold_unreachable();
ead1e424
ILT
1912}
1913
a9a60db6
ILT
1914// Return the output address of the start of the merged section for
1915// input section SHNDX in object OBJECT.
1916
1917uint64_t
1918Output_section::starting_output_address(const Relobj* object,
1919 unsigned int shndx) const
1920{
1921 gold_assert(object->is_section_specially_mapped(shndx));
1922
1923 uint64_t addr = this->address() + this->first_input_offset_;
1924 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1925 p != this->input_sections_.end();
1926 ++p)
1927 {
1928 addr = align_address(addr, p->addralign());
1929
1930 // It would be nice if we could use the existing output_offset
1931 // method to get the output offset of input offset 0.
1932 // Unfortunately we don't know for sure that input offset 0 is
1933 // mapped at all.
1934 if (p->is_merge_section_for(object, shndx))
1935 return addr;
1936
1937 addr += p->data_size();
1938 }
1939 gold_unreachable();
1940}
1941
27bc2bce 1942// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1943// setting the addresses of any Output_section_data objects.
1944
1945void
27bc2bce 1946Output_section::set_final_data_size()
ead1e424
ILT
1947{
1948 if (this->input_sections_.empty())
27bc2bce
ILT
1949 {
1950 this->set_data_size(this->current_data_size_for_child());
1951 return;
1952 }
ead1e424 1953
2fd32231
ILT
1954 if (this->must_sort_attached_input_sections())
1955 this->sort_attached_input_sections();
1956
27bc2bce
ILT
1957 uint64_t address = this->address();
1958 off_t startoff = this->offset();
ead1e424
ILT
1959 off_t off = startoff + this->first_input_offset_;
1960 for (Input_section_list::iterator p = this->input_sections_.begin();
1961 p != this->input_sections_.end();
1962 ++p)
1963 {
1964 off = align_address(off, p->addralign());
96803768
ILT
1965 p->set_address_and_file_offset(address + (off - startoff), off,
1966 startoff);
ead1e424
ILT
1967 off += p->data_size();
1968 }
1969
1970 this->set_data_size(off - startoff);
1971}
9a0910c3 1972
a445fddf
ILT
1973// Reset the address and file offset.
1974
1975void
1976Output_section::do_reset_address_and_file_offset()
1977{
1978 for (Input_section_list::iterator p = this->input_sections_.begin();
1979 p != this->input_sections_.end();
1980 ++p)
1981 p->reset_address_and_file_offset();
1982}
1983
7bf1f802
ILT
1984// Set the TLS offset. Called only for SHT_TLS sections.
1985
1986void
1987Output_section::do_set_tls_offset(uint64_t tls_base)
1988{
1989 this->tls_offset_ = this->address() - tls_base;
1990}
1991
2fd32231
ILT
1992// In a few cases we need to sort the input sections attached to an
1993// output section. This is used to implement the type of constructor
1994// priority ordering implemented by the GNU linker, in which the
1995// priority becomes part of the section name and the sections are
1996// sorted by name. We only do this for an output section if we see an
1997// attached input section matching ".ctor.*", ".dtor.*",
1998// ".init_array.*" or ".fini_array.*".
1999
2000class Output_section::Input_section_sort_entry
2001{
2002 public:
2003 Input_section_sort_entry()
2004 : input_section_(), index_(-1U), section_has_name_(false),
2005 section_name_()
2006 { }
2007
2008 Input_section_sort_entry(const Input_section& input_section,
2009 unsigned int index)
2010 : input_section_(input_section), index_(index),
2011 section_has_name_(input_section.is_input_section())
2012 {
2013 if (this->section_has_name_)
2014 {
2015 // This is only called single-threaded from Layout::finalize,
2016 // so it is OK to lock. Unfortunately we have no way to pass
2017 // in a Task token.
2018 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2019 Object* obj = input_section.relobj();
2020 Task_lock_obj<Object> tl(dummy_task, obj);
2021
2022 // This is a slow operation, which should be cached in
2023 // Layout::layout if this becomes a speed problem.
2024 this->section_name_ = obj->section_name(input_section.shndx());
2025 }
2026 }
2027
2028 // Return the Input_section.
2029 const Input_section&
2030 input_section() const
2031 {
2032 gold_assert(this->index_ != -1U);
2033 return this->input_section_;
2034 }
2035
2036 // The index of this entry in the original list. This is used to
2037 // make the sort stable.
2038 unsigned int
2039 index() const
2040 {
2041 gold_assert(this->index_ != -1U);
2042 return this->index_;
2043 }
2044
2045 // Whether there is a section name.
2046 bool
2047 section_has_name() const
2048 { return this->section_has_name_; }
2049
2050 // The section name.
2051 const std::string&
2052 section_name() const
2053 {
2054 gold_assert(this->section_has_name_);
2055 return this->section_name_;
2056 }
2057
2058 // Return true if the section name is either SECTION_NAME1 or
2059 // SECTION_NAME2.
2060 bool
2061 match_section_name(const char* section_name1, const char* section_name2) const
2062 {
2063 gold_assert(this->section_has_name_);
2064 return (this->section_name_ == section_name1
2065 || this->section_name_ == section_name2);
2066 }
2067
2068 // Return true if PREFIX1 or PREFIX2 is a prefix of the section
2069 // name.
2070 bool
2071 match_section_name_prefix(const char* prefix1, const char* prefix2) const
2072 {
2073 gold_assert(this->section_has_name_);
2074 return (this->section_name_.compare(0, strlen(prefix1), prefix1) == 0
2075 || this->section_name_.compare(0, strlen(prefix2), prefix2) == 0);
2076 }
2077
2078 // Return true if this is for a section named SECTION_NAME1 or
2079 // SECTION_NAME2 in an input file whose base name matches FILE_NAME.
2080 // The base name must have an extension of ".o", and must be exactly
2081 // FILE_NAME.o or FILE_NAME, one character, ".o". This is to match
2082 // crtbegin.o as well as crtbeginS.o without getting confused by
2083 // other possibilities. Overall matching the file name this way is
2084 // a dreadful hack, but the GNU linker does it in order to better
2085 // support gcc, and we need to be compatible.
2086 bool
2087 match_section_file(const char* section_name1, const char* section_name2,
2088 const char* match_file_name) const
2089 {
2090 gold_assert(this->section_has_name_);
2091 if (this->section_name_ != section_name1
2092 && this->section_name_ != section_name2)
2093 return false;
2094 const std::string& file_name(this->input_section_.relobj()->name());
2095 const char* base_name = lbasename(file_name.c_str());
2096 size_t match_len = strlen(match_file_name);
2097 if (strncmp(base_name, match_file_name, match_len) != 0)
2098 return false;
2099 size_t base_len = strlen(base_name);
2100 if (base_len != match_len + 2 && base_len != match_len + 3)
2101 return false;
2102 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2103 }
2104
2105 private:
2106 // The Input_section we are sorting.
2107 Input_section input_section_;
2108 // The index of this Input_section in the original list.
2109 unsigned int index_;
2110 // Whether this Input_section has a section name--it won't if this
2111 // is some random Output_section_data.
2112 bool section_has_name_;
2113 // The section name if there is one.
2114 std::string section_name_;
2115};
2116
2117// Return true if S1 should come before S2 in the output section.
2118
2119bool
2120Output_section::Input_section_sort_compare::operator()(
2121 const Output_section::Input_section_sort_entry& s1,
2122 const Output_section::Input_section_sort_entry& s2) const
2123{
2124 // We sort all the sections with no names to the end.
2125 if (!s1.section_has_name() || !s2.section_has_name())
2126 {
2127 if (s1.section_has_name())
2128 return true;
2129 if (s2.section_has_name())
2130 return false;
2131 return s1.index() < s2.index();
2132 }
2133
2134 // A .ctors or .dtors section from crtbegin.o must come before any
2135 // other .ctors* or .dtors* section.
2136 bool s1_begin = s1.match_section_file(".ctors", ".dtors", "crtbegin");
2137 bool s2_begin = s2.match_section_file(".ctors", ".dtors", "crtbegin");
2138 if (s1_begin || s2_begin)
2139 {
2140 if (!s1_begin)
2141 return false;
2142 if (!s2_begin)
2143 return true;
2144 return s1.index() < s2.index();
2145 }
2146
2147 // A .ctors or .dtors section from crtend.o must come after any
2148 // other .ctors* or .dtors* section.
2149 bool s1_end = s1.match_section_file(".ctors", ".dtors", "crtend");
2150 bool s2_end = s2.match_section_file(".ctors", ".dtors", "crtend");
2151 if (s1_end || s2_end)
2152 {
2153 if (!s1_end)
2154 return true;
2155 if (!s2_end)
2156 return false;
2157 return s1.index() < s2.index();
2158 }
2159
2160 // A .ctors or .init_array section with a priority precedes a .ctors
2161 // or .init_array section without a priority.
2162 if (s1.match_section_name_prefix(".ctors.", ".init_array.")
2163 && s2.match_section_name(".ctors", ".init_array"))
2164 return true;
2165 if (s2.match_section_name_prefix(".ctors.", ".init_array.")
2166 && s1.match_section_name(".ctors", ".init_array"))
2167 return false;
2168
2169 // A .dtors or .fini_array section with a priority follows a .dtors
2170 // or .fini_array section without a priority.
2171 if (s1.match_section_name_prefix(".dtors.", ".fini_array.")
2172 && s2.match_section_name(".dtors", ".fini_array"))
2173 return false;
2174 if (s2.match_section_name_prefix(".dtors.", ".fini_array.")
2175 && s1.match_section_name(".dtors", ".fini_array"))
2176 return true;
2177
2178 // Otherwise we sort by name.
2179 int compare = s1.section_name().compare(s2.section_name());
2180 if (compare != 0)
2181 return compare < 0;
2182
2183 // Otherwise we keep the input order.
2184 return s1.index() < s2.index();
2185}
2186
2187// Sort the input sections attached to an output section.
2188
2189void
2190Output_section::sort_attached_input_sections()
2191{
2192 if (this->attached_input_sections_are_sorted_)
2193 return;
2194
2195 // The only thing we know about an input section is the object and
2196 // the section index. We need the section name. Recomputing this
2197 // is slow but this is an unusual case. If this becomes a speed
2198 // problem we can cache the names as required in Layout::layout.
2199
2200 // We start by building a larger vector holding a copy of each
2201 // Input_section, plus its current index in the list and its name.
2202 std::vector<Input_section_sort_entry> sort_list;
2203
2204 unsigned int i = 0;
2205 for (Input_section_list::iterator p = this->input_sections_.begin();
2206 p != this->input_sections_.end();
2207 ++p, ++i)
2208 sort_list.push_back(Input_section_sort_entry(*p, i));
2209
2210 // Sort the input sections.
2211 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2212
2213 // Copy the sorted input sections back to our list.
2214 this->input_sections_.clear();
2215 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2216 p != sort_list.end();
2217 ++p)
2218 this->input_sections_.push_back(p->input_section());
2219
2220 // Remember that we sorted the input sections, since we might get
2221 // called again.
2222 this->attached_input_sections_are_sorted_ = true;
2223}
2224
61ba1cf9
ILT
2225// Write the section header to *OSHDR.
2226
2227template<int size, bool big_endian>
2228void
16649710
ILT
2229Output_section::write_header(const Layout* layout,
2230 const Stringpool* secnamepool,
61ba1cf9
ILT
2231 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2232{
2233 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2234 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2235
2236 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2237 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2238 flags |= elfcpp::SHF_INFO_LINK;
2239 oshdr->put_sh_flags(flags);
2240
61ba1cf9
ILT
2241 oshdr->put_sh_addr(this->address());
2242 oshdr->put_sh_offset(this->offset());
2243 oshdr->put_sh_size(this->data_size());
16649710
ILT
2244 if (this->link_section_ != NULL)
2245 oshdr->put_sh_link(this->link_section_->out_shndx());
2246 else if (this->should_link_to_symtab_)
2247 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2248 else if (this->should_link_to_dynsym_)
2249 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2250 else
2251 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2252
2253 elfcpp::Elf_Word info;
16649710 2254 if (this->info_section_ != NULL)
755ab8af
ILT
2255 {
2256 if (this->info_uses_section_index_)
2257 info = this->info_section_->out_shndx();
2258 else
2259 info = this->info_section_->symtab_index();
2260 }
6a74a719 2261 else if (this->info_symndx_ != NULL)
755ab8af 2262 info = this->info_symndx_->symtab_index();
16649710 2263 else
755ab8af
ILT
2264 info = this->info_;
2265 oshdr->put_sh_info(info);
2266
61ba1cf9
ILT
2267 oshdr->put_sh_addralign(this->addralign_);
2268 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2269}
2270
ead1e424
ILT
2271// Write out the data. For input sections the data is written out by
2272// Object::relocate, but we have to handle Output_section_data objects
2273// here.
2274
2275void
2276Output_section::do_write(Output_file* of)
2277{
96803768
ILT
2278 gold_assert(!this->requires_postprocessing());
2279
c51e6221
ILT
2280 off_t output_section_file_offset = this->offset();
2281 for (Fill_list::iterator p = this->fills_.begin();
2282 p != this->fills_.end();
2283 ++p)
2284 {
8851ecca 2285 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2286 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2287 fill_data.data(), fill_data.size());
c51e6221
ILT
2288 }
2289
ead1e424
ILT
2290 for (Input_section_list::iterator p = this->input_sections_.begin();
2291 p != this->input_sections_.end();
2292 ++p)
2293 p->write(of);
2294}
2295
96803768
ILT
2296// If a section requires postprocessing, create the buffer to use.
2297
2298void
2299Output_section::create_postprocessing_buffer()
2300{
2301 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2302
2303 if (this->postprocessing_buffer_ != NULL)
2304 return;
96803768
ILT
2305
2306 if (!this->input_sections_.empty())
2307 {
2308 off_t off = this->first_input_offset_;
2309 for (Input_section_list::iterator p = this->input_sections_.begin();
2310 p != this->input_sections_.end();
2311 ++p)
2312 {
2313 off = align_address(off, p->addralign());
2314 p->finalize_data_size();
2315 off += p->data_size();
2316 }
2317 this->set_current_data_size_for_child(off);
2318 }
2319
2320 off_t buffer_size = this->current_data_size_for_child();
2321 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2322}
2323
2324// Write all the data of an Output_section into the postprocessing
2325// buffer. This is used for sections which require postprocessing,
2326// such as compression. Input sections are handled by
2327// Object::Relocate.
2328
2329void
2330Output_section::write_to_postprocessing_buffer()
2331{
2332 gold_assert(this->requires_postprocessing());
2333
96803768
ILT
2334 unsigned char* buffer = this->postprocessing_buffer();
2335 for (Fill_list::iterator p = this->fills_.begin();
2336 p != this->fills_.end();
2337 ++p)
2338 {
8851ecca 2339 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2340 memcpy(buffer + p->section_offset(), fill_data.data(),
2341 fill_data.size());
96803768
ILT
2342 }
2343
2344 off_t off = this->first_input_offset_;
2345 for (Input_section_list::iterator p = this->input_sections_.begin();
2346 p != this->input_sections_.end();
2347 ++p)
2348 {
2349 off = align_address(off, p->addralign());
2350 p->write_to_buffer(buffer + off);
2351 off += p->data_size();
2352 }
2353}
2354
a445fddf
ILT
2355// Get the input sections for linker script processing. We leave
2356// behind the Output_section_data entries. Note that this may be
2357// slightly incorrect for merge sections. We will leave them behind,
2358// but it is possible that the script says that they should follow
2359// some other input sections, as in:
2360// .rodata { *(.rodata) *(.rodata.cst*) }
2361// For that matter, we don't handle this correctly:
2362// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2363// With luck this will never matter.
2364
2365uint64_t
2366Output_section::get_input_sections(
2367 uint64_t address,
2368 const std::string& fill,
2369 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2370{
2371 uint64_t orig_address = address;
2372
2373 address = align_address(address, this->addralign());
2374
2375 Input_section_list remaining;
2376 for (Input_section_list::iterator p = this->input_sections_.begin();
2377 p != this->input_sections_.end();
2378 ++p)
2379 {
2380 if (p->is_input_section())
2381 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2382 else
2383 {
2384 uint64_t aligned_address = align_address(address, p->addralign());
2385 if (aligned_address != address && !fill.empty())
2386 {
2387 section_size_type length =
2388 convert_to_section_size_type(aligned_address - address);
2389 std::string this_fill;
2390 this_fill.reserve(length);
2391 while (this_fill.length() + fill.length() <= length)
2392 this_fill += fill;
2393 if (this_fill.length() < length)
2394 this_fill.append(fill, 0, length - this_fill.length());
2395
2396 Output_section_data* posd = new Output_data_const(this_fill, 0);
2397 remaining.push_back(Input_section(posd));
2398 }
2399 address = aligned_address;
2400
2401 remaining.push_back(*p);
2402
2403 p->finalize_data_size();
2404 address += p->data_size();
2405 }
2406 }
2407
2408 this->input_sections_.swap(remaining);
2409 this->first_input_offset_ = 0;
2410
2411 uint64_t data_size = address - orig_address;
2412 this->set_current_data_size_for_child(data_size);
2413 return data_size;
2414}
2415
2416// Add an input section from a script.
2417
2418void
2419Output_section::add_input_section_for_script(Relobj* object,
2420 unsigned int shndx,
2421 off_t data_size,
2422 uint64_t addralign)
2423{
2424 if (addralign > this->addralign_)
2425 this->addralign_ = addralign;
2426
2427 off_t offset_in_section = this->current_data_size_for_child();
2428 off_t aligned_offset_in_section = align_address(offset_in_section,
2429 addralign);
2430
2431 this->set_current_data_size_for_child(aligned_offset_in_section
2432 + data_size);
2433
2434 this->input_sections_.push_back(Input_section(object, shndx,
2435 data_size, addralign));
2436}
2437
38c5e8b4
ILT
2438// Print stats for merge sections to stderr.
2439
2440void
2441Output_section::print_merge_stats()
2442{
2443 Input_section_list::iterator p;
2444 for (p = this->input_sections_.begin();
2445 p != this->input_sections_.end();
2446 ++p)
2447 p->print_merge_stats(this->name_);
2448}
2449
a2fb1b05
ILT
2450// Output segment methods.
2451
2452Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2453 : output_data_(),
75f65a3e 2454 output_bss_(),
a2fb1b05
ILT
2455 vaddr_(0),
2456 paddr_(0),
2457 memsz_(0),
a445fddf
ILT
2458 max_align_(0),
2459 min_p_align_(0),
a2fb1b05
ILT
2460 offset_(0),
2461 filesz_(0),
2462 type_(type),
ead1e424 2463 flags_(flags),
a445fddf
ILT
2464 is_max_align_known_(false),
2465 are_addresses_set_(false)
a2fb1b05
ILT
2466{
2467}
2468
2469// Add an Output_section to an Output_segment.
2470
2471void
75f65a3e 2472Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
2473 elfcpp::Elf_Word seg_flags,
2474 bool front)
a2fb1b05 2475{
a3ad94ed 2476 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2477 gold_assert(!this->is_max_align_known_);
75f65a3e 2478
ead1e424 2479 // Update the segment flags.
75f65a3e 2480 this->flags_ |= seg_flags;
75f65a3e
ILT
2481
2482 Output_segment::Output_data_list* pdl;
2483 if (os->type() == elfcpp::SHT_NOBITS)
2484 pdl = &this->output_bss_;
2485 else
2486 pdl = &this->output_data_;
54dc6425 2487
a2fb1b05
ILT
2488 // So that PT_NOTE segments will work correctly, we need to ensure
2489 // that all SHT_NOTE sections are adjacent. This will normally
2490 // happen automatically, because all the SHT_NOTE input sections
2491 // will wind up in the same output section. However, it is possible
2492 // for multiple SHT_NOTE input sections to have different section
2493 // flags, and thus be in different output sections, but for the
2494 // different section flags to map into the same segment flags and
2495 // thus the same output segment.
54dc6425
ILT
2496
2497 // Note that while there may be many input sections in an output
2498 // section, there are normally only a few output sections in an
2499 // output segment. This loop is expected to be fast.
2500
61ba1cf9 2501 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2502 {
a3ad94ed 2503 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2504 do
54dc6425 2505 {
75f65a3e 2506 --p;
54dc6425
ILT
2507 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2508 {
dbe717ef 2509 // We don't worry about the FRONT parameter.
54dc6425 2510 ++p;
75f65a3e 2511 pdl->insert(p, os);
54dc6425
ILT
2512 return;
2513 }
2514 }
75f65a3e 2515 while (p != pdl->begin());
54dc6425
ILT
2516 }
2517
2518 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2519 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2520 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2521 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2522 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2523 // and the PT_TLS segment -- we do this grouping only for the
2524 // PT_LOAD segment.
2525 if (this->type_ != elfcpp::PT_TLS
2526 && (os->flags() & elfcpp::SHF_TLS) != 0
2527 && !this->output_data_.empty())
54dc6425 2528 {
75f65a3e
ILT
2529 pdl = &this->output_data_;
2530 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2531 bool sawtls = false;
a3ad94ed 2532 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2533 do
a2fb1b05 2534 {
75f65a3e 2535 --p;
ead1e424
ILT
2536 bool insert;
2537 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2538 {
2539 sawtls = true;
2540 // Put a NOBITS section after the first TLS section.
2541 // But a PROGBITS section after the first TLS/PROGBITS
2542 // section.
2543 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2544 }
2545 else
2546 {
2547 // If we've gone past the TLS sections, but we've seen a
2548 // TLS section, then we need to insert this section now.
2549 insert = sawtls;
2550 }
2551
2552 if (insert)
a2fb1b05 2553 {
dbe717ef 2554 // We don't worry about the FRONT parameter.
a2fb1b05 2555 ++p;
75f65a3e 2556 pdl->insert(p, os);
a2fb1b05
ILT
2557 return;
2558 }
2559 }
75f65a3e 2560 while (p != pdl->begin());
ead1e424 2561
dbe717ef
ILT
2562 // There are no TLS sections yet; put this one at the requested
2563 // location in the section list.
a2fb1b05
ILT
2564 }
2565
dbe717ef
ILT
2566 if (front)
2567 pdl->push_front(os);
2568 else
2569 pdl->push_back(os);
75f65a3e
ILT
2570}
2571
1650c4ff
ILT
2572// Remove an Output_section from this segment. It is an error if it
2573// is not present.
2574
2575void
2576Output_segment::remove_output_section(Output_section* os)
2577{
2578 // We only need this for SHT_PROGBITS.
2579 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2580 for (Output_data_list::iterator p = this->output_data_.begin();
2581 p != this->output_data_.end();
2582 ++p)
2583 {
2584 if (*p == os)
2585 {
2586 this->output_data_.erase(p);
2587 return;
2588 }
2589 }
2590 gold_unreachable();
2591}
2592
75f65a3e
ILT
2593// Add an Output_data (which is not an Output_section) to the start of
2594// a segment.
2595
2596void
2597Output_segment::add_initial_output_data(Output_data* od)
2598{
a445fddf 2599 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2600 this->output_data_.push_front(od);
2601}
2602
2603// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2604
2605uint64_t
a445fddf 2606Output_segment::maximum_alignment()
75f65a3e 2607{
a445fddf 2608 if (!this->is_max_align_known_)
ead1e424
ILT
2609 {
2610 uint64_t addralign;
2611
a445fddf
ILT
2612 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2613 if (addralign > this->max_align_)
2614 this->max_align_ = addralign;
ead1e424 2615
a445fddf
ILT
2616 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2617 if (addralign > this->max_align_)
2618 this->max_align_ = addralign;
ead1e424 2619
a445fddf 2620 this->is_max_align_known_ = true;
ead1e424
ILT
2621 }
2622
a445fddf 2623 return this->max_align_;
75f65a3e
ILT
2624}
2625
ead1e424
ILT
2626// Return the maximum alignment of a list of Output_data.
2627
2628uint64_t
a445fddf 2629Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2630{
2631 uint64_t ret = 0;
2632 for (Output_data_list::const_iterator p = pdl->begin();
2633 p != pdl->end();
2634 ++p)
2635 {
2636 uint64_t addralign = (*p)->addralign();
2637 if (addralign > ret)
2638 ret = addralign;
2639 }
2640 return ret;
2641}
2642
4f4c5f80
ILT
2643// Return the number of dynamic relocs applied to this segment.
2644
2645unsigned int
2646Output_segment::dynamic_reloc_count() const
2647{
2648 return (this->dynamic_reloc_count_list(&this->output_data_)
2649 + this->dynamic_reloc_count_list(&this->output_bss_));
2650}
2651
2652// Return the number of dynamic relocs applied to an Output_data_list.
2653
2654unsigned int
2655Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2656{
2657 unsigned int count = 0;
2658 for (Output_data_list::const_iterator p = pdl->begin();
2659 p != pdl->end();
2660 ++p)
2661 count += (*p)->dynamic_reloc_count();
2662 return count;
2663}
2664
a445fddf
ILT
2665// Set the section addresses for an Output_segment. If RESET is true,
2666// reset the addresses first. ADDR is the address and *POFF is the
2667// file offset. Set the section indexes starting with *PSHNDX.
2668// Return the address of the immediately following segment. Update
2669// *POFF and *PSHNDX.
75f65a3e
ILT
2670
2671uint64_t
96a2b4e4
ILT
2672Output_segment::set_section_addresses(const Layout* layout, bool reset,
2673 uint64_t addr, off_t* poff,
ead1e424 2674 unsigned int* pshndx)
75f65a3e 2675{
a3ad94ed 2676 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2677
a445fddf
ILT
2678 if (!reset && this->are_addresses_set_)
2679 {
2680 gold_assert(this->paddr_ == addr);
2681 addr = this->vaddr_;
2682 }
2683 else
2684 {
2685 this->vaddr_ = addr;
2686 this->paddr_ = addr;
2687 this->are_addresses_set_ = true;
2688 }
75f65a3e 2689
96a2b4e4
ILT
2690 bool in_tls = false;
2691
75f65a3e
ILT
2692 off_t orig_off = *poff;
2693 this->offset_ = orig_off;
2694
96a2b4e4
ILT
2695 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2696 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
2697 this->filesz_ = *poff - orig_off;
2698
2699 off_t off = *poff;
2700
96a2b4e4
ILT
2701 uint64_t ret = this->set_section_list_addresses(layout, reset,
2702 &this->output_bss_,
2703 addr, poff, pshndx,
2704 &in_tls);
2705
2706 // If the last section was a TLS section, align upward to the
2707 // alignment of the TLS segment, so that the overall size of the TLS
2708 // segment is aligned.
2709 if (in_tls)
2710 {
2711 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2712 *poff = align_address(*poff, segment_align);
2713 }
2714
75f65a3e
ILT
2715 this->memsz_ = *poff - orig_off;
2716
2717 // Ignore the file offset adjustments made by the BSS Output_data
2718 // objects.
2719 *poff = off;
61ba1cf9
ILT
2720
2721 return ret;
75f65a3e
ILT
2722}
2723
b8e6aad9
ILT
2724// Set the addresses and file offsets in a list of Output_data
2725// structures.
75f65a3e
ILT
2726
2727uint64_t
96a2b4e4
ILT
2728Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2729 Output_data_list* pdl,
ead1e424 2730 uint64_t addr, off_t* poff,
96a2b4e4
ILT
2731 unsigned int* pshndx,
2732 bool* in_tls)
75f65a3e 2733{
ead1e424 2734 off_t startoff = *poff;
75f65a3e 2735
ead1e424 2736 off_t off = startoff;
75f65a3e
ILT
2737 for (Output_data_list::iterator p = pdl->begin();
2738 p != pdl->end();
2739 ++p)
2740 {
a445fddf
ILT
2741 if (reset)
2742 (*p)->reset_address_and_file_offset();
2743
2744 // When using a linker script the section will most likely
2745 // already have an address.
2746 if (!(*p)->is_address_valid())
3802b2dd 2747 {
96a2b4e4
ILT
2748 uint64_t align = (*p)->addralign();
2749
2750 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2751 {
2752 // Give the first TLS section the alignment of the
2753 // entire TLS segment. Otherwise the TLS segment as a
2754 // whole may be misaligned.
2755 if (!*in_tls)
2756 {
2757 Output_segment* tls_segment = layout->tls_segment();
2758 gold_assert(tls_segment != NULL);
2759 uint64_t segment_align = tls_segment->maximum_alignment();
2760 gold_assert(segment_align >= align);
2761 align = segment_align;
2762
2763 *in_tls = true;
2764 }
2765 }
2766 else
2767 {
2768 // If this is the first section after the TLS segment,
2769 // align it to at least the alignment of the TLS
2770 // segment, so that the size of the overall TLS segment
2771 // is aligned.
2772 if (*in_tls)
2773 {
2774 uint64_t segment_align =
2775 layout->tls_segment()->maximum_alignment();
2776 if (segment_align > align)
2777 align = segment_align;
2778
2779 *in_tls = false;
2780 }
2781 }
2782
2783 off = align_address(off, align);
3802b2dd
ILT
2784 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2785 }
a445fddf
ILT
2786 else
2787 {
2788 // The script may have inserted a skip forward, but it
2789 // better not have moved backward.
3802b2dd
ILT
2790 gold_assert((*p)->address() >= addr + (off - startoff));
2791 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2792 (*p)->set_file_offset(off);
2793 (*p)->finalize_data_size();
2794 }
ead1e424 2795
96a2b4e4
ILT
2796 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2797 // section. Such a section does not affect the size of a
2798 // PT_LOAD segment.
2799 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2800 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2801 off += (*p)->data_size();
75f65a3e 2802
ead1e424
ILT
2803 if ((*p)->is_section())
2804 {
2805 (*p)->set_out_shndx(*pshndx);
2806 ++*pshndx;
2807 }
75f65a3e
ILT
2808 }
2809
2810 *poff = off;
ead1e424 2811 return addr + (off - startoff);
75f65a3e
ILT
2812}
2813
2814// For a non-PT_LOAD segment, set the offset from the sections, if
2815// any.
2816
2817void
2818Output_segment::set_offset()
2819{
a3ad94ed 2820 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2821
a445fddf
ILT
2822 gold_assert(!this->are_addresses_set_);
2823
75f65a3e
ILT
2824 if (this->output_data_.empty() && this->output_bss_.empty())
2825 {
2826 this->vaddr_ = 0;
2827 this->paddr_ = 0;
a445fddf 2828 this->are_addresses_set_ = true;
75f65a3e 2829 this->memsz_ = 0;
a445fddf 2830 this->min_p_align_ = 0;
75f65a3e
ILT
2831 this->offset_ = 0;
2832 this->filesz_ = 0;
2833 return;
2834 }
2835
2836 const Output_data* first;
2837 if (this->output_data_.empty())
2838 first = this->output_bss_.front();
2839 else
2840 first = this->output_data_.front();
2841 this->vaddr_ = first->address();
a445fddf
ILT
2842 this->paddr_ = (first->has_load_address()
2843 ? first->load_address()
2844 : this->vaddr_);
2845 this->are_addresses_set_ = true;
75f65a3e
ILT
2846 this->offset_ = first->offset();
2847
2848 if (this->output_data_.empty())
2849 this->filesz_ = 0;
2850 else
2851 {
2852 const Output_data* last_data = this->output_data_.back();
2853 this->filesz_ = (last_data->address()
2854 + last_data->data_size()
2855 - this->vaddr_);
2856 }
2857
2858 const Output_data* last;
2859 if (this->output_bss_.empty())
2860 last = this->output_data_.back();
2861 else
2862 last = this->output_bss_.back();
2863 this->memsz_ = (last->address()
2864 + last->data_size()
2865 - this->vaddr_);
96a2b4e4
ILT
2866
2867 // If this is a TLS segment, align the memory size. The code in
2868 // set_section_list ensures that the section after the TLS segment
2869 // is aligned to give us room.
2870 if (this->type_ == elfcpp::PT_TLS)
2871 {
2872 uint64_t segment_align = this->maximum_alignment();
2873 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2874 this->memsz_ = align_address(this->memsz_, segment_align);
2875 }
75f65a3e
ILT
2876}
2877
7bf1f802
ILT
2878// Set the TLS offsets of the sections in the PT_TLS segment.
2879
2880void
2881Output_segment::set_tls_offsets()
2882{
2883 gold_assert(this->type_ == elfcpp::PT_TLS);
2884
2885 for (Output_data_list::iterator p = this->output_data_.begin();
2886 p != this->output_data_.end();
2887 ++p)
2888 (*p)->set_tls_offset(this->vaddr_);
2889
2890 for (Output_data_list::iterator p = this->output_bss_.begin();
2891 p != this->output_bss_.end();
2892 ++p)
2893 (*p)->set_tls_offset(this->vaddr_);
2894}
2895
a445fddf
ILT
2896// Return the address of the first section.
2897
2898uint64_t
2899Output_segment::first_section_load_address() const
2900{
2901 for (Output_data_list::const_iterator p = this->output_data_.begin();
2902 p != this->output_data_.end();
2903 ++p)
2904 if ((*p)->is_section())
2905 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2906
2907 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2908 p != this->output_bss_.end();
2909 ++p)
2910 if ((*p)->is_section())
2911 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2912
2913 gold_unreachable();
2914}
2915
75f65a3e
ILT
2916// Return the number of Output_sections in an Output_segment.
2917
2918unsigned int
2919Output_segment::output_section_count() const
2920{
2921 return (this->output_section_count_list(&this->output_data_)
2922 + this->output_section_count_list(&this->output_bss_));
2923}
2924
2925// Return the number of Output_sections in an Output_data_list.
2926
2927unsigned int
2928Output_segment::output_section_count_list(const Output_data_list* pdl) const
2929{
2930 unsigned int count = 0;
2931 for (Output_data_list::const_iterator p = pdl->begin();
2932 p != pdl->end();
2933 ++p)
2934 {
2935 if ((*p)->is_section())
2936 ++count;
2937 }
2938 return count;
a2fb1b05
ILT
2939}
2940
1c4f3631
ILT
2941// Return the section attached to the list segment with the lowest
2942// load address. This is used when handling a PHDRS clause in a
2943// linker script.
2944
2945Output_section*
2946Output_segment::section_with_lowest_load_address() const
2947{
2948 Output_section* found = NULL;
2949 uint64_t found_lma = 0;
2950 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2951
2952 Output_section* found_data = found;
2953 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2954 if (found != found_data && found_data != NULL)
2955 {
2956 gold_error(_("nobits section %s may not precede progbits section %s "
2957 "in same segment"),
2958 found->name(), found_data->name());
2959 return NULL;
2960 }
2961
2962 return found;
2963}
2964
2965// Look through a list for a section with a lower load address.
2966
2967void
2968Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2969 Output_section** found,
2970 uint64_t* found_lma) const
2971{
2972 for (Output_data_list::const_iterator p = pdl->begin();
2973 p != pdl->end();
2974 ++p)
2975 {
2976 if (!(*p)->is_section())
2977 continue;
2978 Output_section* os = static_cast<Output_section*>(*p);
2979 uint64_t lma = (os->has_load_address()
2980 ? os->load_address()
2981 : os->address());
2982 if (*found == NULL || lma < *found_lma)
2983 {
2984 *found = os;
2985 *found_lma = lma;
2986 }
2987 }
2988}
2989
61ba1cf9
ILT
2990// Write the segment data into *OPHDR.
2991
2992template<int size, bool big_endian>
2993void
ead1e424 2994Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2995{
2996 ophdr->put_p_type(this->type_);
2997 ophdr->put_p_offset(this->offset_);
2998 ophdr->put_p_vaddr(this->vaddr_);
2999 ophdr->put_p_paddr(this->paddr_);
3000 ophdr->put_p_filesz(this->filesz_);
3001 ophdr->put_p_memsz(this->memsz_);
3002 ophdr->put_p_flags(this->flags_);
a445fddf 3003 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
3004}
3005
3006// Write the section headers into V.
3007
3008template<int size, bool big_endian>
3009unsigned char*
16649710
ILT
3010Output_segment::write_section_headers(const Layout* layout,
3011 const Stringpool* secnamepool,
ead1e424 3012 unsigned char* v,
7d1a9ebb 3013 unsigned int *pshndx) const
5482377d 3014{
ead1e424
ILT
3015 // Every section that is attached to a segment must be attached to a
3016 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3017 // segments.
3018 if (this->type_ != elfcpp::PT_LOAD)
3019 return v;
3020
7d1a9ebb
ILT
3021 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3022 &this->output_data_,
3023 v, pshndx);
3024 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3025 &this->output_bss_,
3026 v, pshndx);
61ba1cf9
ILT
3027 return v;
3028}
3029
3030template<int size, bool big_endian>
3031unsigned char*
16649710
ILT
3032Output_segment::write_section_headers_list(const Layout* layout,
3033 const Stringpool* secnamepool,
61ba1cf9 3034 const Output_data_list* pdl,
ead1e424 3035 unsigned char* v,
7d1a9ebb 3036 unsigned int* pshndx) const
61ba1cf9
ILT
3037{
3038 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3039 for (Output_data_list::const_iterator p = pdl->begin();
3040 p != pdl->end();
3041 ++p)
3042 {
3043 if ((*p)->is_section())
3044 {
5482377d 3045 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3046 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3047 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3048 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3049 v += shdr_size;
ead1e424 3050 ++*pshndx;
61ba1cf9
ILT
3051 }
3052 }
3053 return v;
3054}
3055
a2fb1b05
ILT
3056// Output_file methods.
3057
14144f39
ILT
3058Output_file::Output_file(const char* name)
3059 : name_(name),
61ba1cf9
ILT
3060 o_(-1),
3061 file_size_(0),
c420411f 3062 base_(NULL),
516cb3d0
ILT
3063 map_is_anonymous_(false),
3064 is_temporary_(false)
61ba1cf9
ILT
3065{
3066}
3067
3068// Open the output file.
3069
a2fb1b05 3070void
61ba1cf9 3071Output_file::open(off_t file_size)
a2fb1b05 3072{
61ba1cf9
ILT
3073 this->file_size_ = file_size;
3074
4e9d8586
ILT
3075 // Unlink the file first; otherwise the open() may fail if the file
3076 // is busy (e.g. it's an executable that's currently being executed).
3077 //
3078 // However, the linker may be part of a system where a zero-length
3079 // file is created for it to write to, with tight permissions (gcc
3080 // 2.95 did something like this). Unlinking the file would work
3081 // around those permission controls, so we only unlink if the file
3082 // has a non-zero size. We also unlink only regular files to avoid
3083 // trouble with directories/etc.
3084 //
3085 // If we fail, continue; this command is merely a best-effort attempt
3086 // to improve the odds for open().
3087
42a1b686 3088 // We let the name "-" mean "stdout"
516cb3d0 3089 if (!this->is_temporary_)
42a1b686 3090 {
516cb3d0
ILT
3091 if (strcmp(this->name_, "-") == 0)
3092 this->o_ = STDOUT_FILENO;
3093 else
3094 {
3095 struct stat s;
3096 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3097 unlink_if_ordinary(this->name_);
3098
8851ecca 3099 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
3100 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3101 if (o < 0)
3102 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3103 this->o_ = o;
3104 }
42a1b686 3105 }
61ba1cf9 3106
27bc2bce
ILT
3107 this->map();
3108}
3109
3110// Resize the output file.
3111
3112void
3113Output_file::resize(off_t file_size)
3114{
c420411f
ILT
3115 // If the mmap is mapping an anonymous memory buffer, this is easy:
3116 // just mremap to the new size. If it's mapping to a file, we want
3117 // to unmap to flush to the file, then remap after growing the file.
3118 if (this->map_is_anonymous_)
3119 {
3120 void* base = ::mremap(this->base_, this->file_size_, file_size,
3121 MREMAP_MAYMOVE);
3122 if (base == MAP_FAILED)
3123 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3124 this->base_ = static_cast<unsigned char*>(base);
3125 this->file_size_ = file_size;
3126 }
3127 else
3128 {
3129 this->unmap();
3130 this->file_size_ = file_size;
3131 this->map();
3132 }
27bc2bce
ILT
3133}
3134
3135// Map the file into memory.
3136
3137void
3138Output_file::map()
3139{
c420411f 3140 const int o = this->o_;
61ba1cf9 3141
c420411f
ILT
3142 // If the output file is not a regular file, don't try to mmap it;
3143 // instead, we'll mmap a block of memory (an anonymous buffer), and
3144 // then later write the buffer to the file.
3145 void* base;
3146 struct stat statbuf;
42a1b686
ILT
3147 if (o == STDOUT_FILENO || o == STDERR_FILENO
3148 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3149 || !S_ISREG(statbuf.st_mode)
3150 || this->is_temporary_)
c420411f
ILT
3151 {
3152 this->map_is_anonymous_ = true;
3153 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3154 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3155 }
3156 else
3157 {
3158 // Write out one byte to make the file the right size.
3159 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3160 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3161 char b = 0;
3162 if (::write(o, &b, 1) != 1)
3163 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3164
3165 // Map the file into memory.
3166 this->map_is_anonymous_ = false;
3167 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3168 MAP_SHARED, o, 0);
3169 }
61ba1cf9 3170 if (base == MAP_FAILED)
75f2446e 3171 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
3172 this->base_ = static_cast<unsigned char*>(base);
3173}
3174
c420411f 3175// Unmap the file from memory.
61ba1cf9
ILT
3176
3177void
c420411f 3178Output_file::unmap()
61ba1cf9
ILT
3179{
3180 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 3181 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 3182 this->base_ = NULL;
c420411f
ILT
3183}
3184
3185// Close the output file.
3186
3187void
3188Output_file::close()
3189{
3190 // If the map isn't file-backed, we need to write it now.
516cb3d0 3191 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
3192 {
3193 size_t bytes_to_write = this->file_size_;
3194 while (bytes_to_write > 0)
3195 {
3196 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3197 if (bytes_written == 0)
3198 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3199 else if (bytes_written < 0)
3200 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3201 else
3202 bytes_to_write -= bytes_written;
3203 }
3204 }
3205 this->unmap();
61ba1cf9 3206
42a1b686 3207 // We don't close stdout or stderr
516cb3d0
ILT
3208 if (this->o_ != STDOUT_FILENO
3209 && this->o_ != STDERR_FILENO
3210 && !this->is_temporary_)
42a1b686
ILT
3211 if (::close(this->o_) < 0)
3212 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 3213 this->o_ = -1;
a2fb1b05
ILT
3214}
3215
3216// Instantiate the templates we need. We could use the configure
3217// script to restrict this to only the ones for implemented targets.
3218
193a53d9 3219#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
3220template
3221off_t
3222Output_section::add_input_section<32, false>(
730cdc88 3223 Sized_relobj<32, false>* object,
ead1e424 3224 unsigned int shndx,
a2fb1b05 3225 const char* secname,
730cdc88 3226 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
3227 unsigned int reloc_shndx,
3228 bool have_sections_script);
193a53d9 3229#endif
a2fb1b05 3230
193a53d9 3231#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
3232template
3233off_t
3234Output_section::add_input_section<32, true>(
730cdc88 3235 Sized_relobj<32, true>* object,
ead1e424 3236 unsigned int shndx,
a2fb1b05 3237 const char* secname,
730cdc88 3238 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
3239 unsigned int reloc_shndx,
3240 bool have_sections_script);
193a53d9 3241#endif
a2fb1b05 3242
193a53d9 3243#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3244template
3245off_t
3246Output_section::add_input_section<64, false>(
730cdc88 3247 Sized_relobj<64, false>* object,
ead1e424 3248 unsigned int shndx,
a2fb1b05 3249 const char* secname,
730cdc88 3250 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3251 unsigned int reloc_shndx,
3252 bool have_sections_script);
193a53d9 3253#endif
a2fb1b05 3254
193a53d9 3255#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3256template
3257off_t
3258Output_section::add_input_section<64, true>(
730cdc88 3259 Sized_relobj<64, true>* object,
ead1e424 3260 unsigned int shndx,
a2fb1b05 3261 const char* secname,
730cdc88 3262 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3263 unsigned int reloc_shndx,
3264 bool have_sections_script);
193a53d9 3265#endif
a2fb1b05 3266
193a53d9 3267#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3268template
3269class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3270#endif
c06b7b0b 3271
193a53d9 3272#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3273template
3274class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3275#endif
c06b7b0b 3276
193a53d9 3277#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3278template
3279class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3280#endif
c06b7b0b 3281
193a53d9 3282#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3283template
3284class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3285#endif
c06b7b0b 3286
193a53d9 3287#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3288template
3289class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3290#endif
c06b7b0b 3291
193a53d9 3292#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3293template
3294class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3295#endif
c06b7b0b 3296
193a53d9 3297#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3298template
3299class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3300#endif
c06b7b0b 3301
193a53d9 3302#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3303template
3304class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3305#endif
c06b7b0b 3306
193a53d9 3307#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3308template
3309class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3310#endif
c06b7b0b 3311
193a53d9 3312#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3313template
3314class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3315#endif
c06b7b0b 3316
193a53d9 3317#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3318template
3319class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3320#endif
c06b7b0b 3321
193a53d9 3322#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3323template
3324class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3325#endif
c06b7b0b 3326
193a53d9 3327#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3328template
3329class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3330#endif
c06b7b0b 3331
193a53d9 3332#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3333template
3334class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3335#endif
c06b7b0b 3336
193a53d9 3337#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3338template
3339class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3340#endif
c06b7b0b 3341
193a53d9 3342#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3343template
3344class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3345#endif
c06b7b0b 3346
6a74a719
ILT
3347#ifdef HAVE_TARGET_32_LITTLE
3348template
3349class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3350#endif
3351
3352#ifdef HAVE_TARGET_32_BIG
3353template
3354class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3355#endif
3356
3357#ifdef HAVE_TARGET_64_LITTLE
3358template
3359class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3360#endif
3361
3362#ifdef HAVE_TARGET_64_BIG
3363template
3364class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3365#endif
3366
3367#ifdef HAVE_TARGET_32_LITTLE
3368template
3369class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3370#endif
3371
3372#ifdef HAVE_TARGET_32_BIG
3373template
3374class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3375#endif
3376
3377#ifdef HAVE_TARGET_64_LITTLE
3378template
3379class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3380#endif
3381
3382#ifdef HAVE_TARGET_64_BIG
3383template
3384class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3385#endif
3386
3387#ifdef HAVE_TARGET_32_LITTLE
3388template
3389class Output_data_group<32, false>;
3390#endif
3391
3392#ifdef HAVE_TARGET_32_BIG
3393template
3394class Output_data_group<32, true>;
3395#endif
3396
3397#ifdef HAVE_TARGET_64_LITTLE
3398template
3399class Output_data_group<64, false>;
3400#endif
3401
3402#ifdef HAVE_TARGET_64_BIG
3403template
3404class Output_data_group<64, true>;
3405#endif
3406
193a53d9 3407#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3408template
dbe717ef 3409class Output_data_got<32, false>;
193a53d9 3410#endif
ead1e424 3411
193a53d9 3412#ifdef HAVE_TARGET_32_BIG
ead1e424 3413template
dbe717ef 3414class Output_data_got<32, true>;
193a53d9 3415#endif
ead1e424 3416
193a53d9 3417#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3418template
dbe717ef 3419class Output_data_got<64, false>;
193a53d9 3420#endif
ead1e424 3421
193a53d9 3422#ifdef HAVE_TARGET_64_BIG
ead1e424 3423template
dbe717ef 3424class Output_data_got<64, true>;
193a53d9 3425#endif
ead1e424 3426
a2fb1b05 3427} // End namespace gold.
This page took 0.343265 seconds and 4 git commands to generate.