daily update
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
61ba1cf9
ILT
26#include <cerrno>
27#include <fcntl.h>
28#include <unistd.h>
29#include <sys/mman.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
5ffcaa86 32#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 33
7e1edb90 34#include "parameters.h"
a2fb1b05 35#include "object.h"
ead1e424
ILT
36#include "symtab.h"
37#include "reloc.h"
b8e6aad9 38#include "merge.h"
a2fb1b05
ILT
39#include "output.h"
40
c420411f
ILT
41// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
42#ifndef MAP_ANONYMOUS
43# define MAP_ANONYMOUS MAP_ANON
44#endif
45
a2fb1b05
ILT
46namespace gold
47{
48
a3ad94ed
ILT
49// Output_data variables.
50
27bc2bce 51bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 52
a2fb1b05
ILT
53// Output_data methods.
54
55Output_data::~Output_data()
56{
57}
58
730cdc88
ILT
59// Return the default alignment for the target size.
60
61uint64_t
62Output_data::default_alignment()
63{
8851ecca
ILT
64 return Output_data::default_alignment_for_size(
65 parameters->target().get_size());
730cdc88
ILT
66}
67
75f65a3e
ILT
68// Return the default alignment for a size--32 or 64.
69
70uint64_t
730cdc88 71Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
72{
73 if (size == 32)
74 return 4;
75 else if (size == 64)
76 return 8;
77 else
a3ad94ed 78 gold_unreachable();
75f65a3e
ILT
79}
80
75f65a3e
ILT
81// Output_section_header methods. This currently assumes that the
82// segment and section lists are complete at construction time.
83
84Output_section_headers::Output_section_headers(
16649710
ILT
85 const Layout* layout,
86 const Layout::Segment_list* segment_list,
6a74a719 87 const Layout::Section_list* section_list,
16649710 88 const Layout::Section_list* unattached_section_list,
61ba1cf9 89 const Stringpool* secnamepool)
9025d29d 90 : layout_(layout),
75f65a3e 91 segment_list_(segment_list),
6a74a719 92 section_list_(section_list),
a3ad94ed 93 unattached_section_list_(unattached_section_list),
61ba1cf9 94 secnamepool_(secnamepool)
75f65a3e 95{
61ba1cf9
ILT
96 // Count all the sections. Start with 1 for the null section.
97 off_t count = 1;
8851ecca 98 if (!parameters->options().relocatable())
6a74a719
ILT
99 {
100 for (Layout::Segment_list::const_iterator p = segment_list->begin();
101 p != segment_list->end();
102 ++p)
103 if ((*p)->type() == elfcpp::PT_LOAD)
104 count += (*p)->output_section_count();
105 }
106 else
107 {
108 for (Layout::Section_list::const_iterator p = section_list->begin();
109 p != section_list->end();
110 ++p)
111 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
112 ++count;
113 }
16649710 114 count += unattached_section_list->size();
75f65a3e 115
8851ecca 116 const int size = parameters->target().get_size();
75f65a3e
ILT
117 int shdr_size;
118 if (size == 32)
119 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
120 else if (size == 64)
121 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
122 else
a3ad94ed 123 gold_unreachable();
75f65a3e
ILT
124
125 this->set_data_size(count * shdr_size);
126}
127
61ba1cf9
ILT
128// Write out the section headers.
129
75f65a3e 130void
61ba1cf9 131Output_section_headers::do_write(Output_file* of)
a2fb1b05 132{
8851ecca 133 switch (parameters->size_and_endianness())
61ba1cf9 134 {
9025d29d 135#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
136 case Parameters::TARGET_32_LITTLE:
137 this->do_sized_write<32, false>(of);
138 break;
9025d29d 139#endif
8851ecca
ILT
140#ifdef HAVE_TARGET_32_BIG
141 case Parameters::TARGET_32_BIG:
142 this->do_sized_write<32, true>(of);
143 break;
9025d29d 144#endif
9025d29d 145#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
146 case Parameters::TARGET_64_LITTLE:
147 this->do_sized_write<64, false>(of);
148 break;
9025d29d 149#endif
8851ecca
ILT
150#ifdef HAVE_TARGET_64_BIG
151 case Parameters::TARGET_64_BIG:
152 this->do_sized_write<64, true>(of);
153 break;
154#endif
155 default:
156 gold_unreachable();
61ba1cf9 157 }
61ba1cf9
ILT
158}
159
160template<int size, bool big_endian>
161void
162Output_section_headers::do_sized_write(Output_file* of)
163{
164 off_t all_shdrs_size = this->data_size();
165 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
166
167 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
168 unsigned char* v = view;
169
170 {
171 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
172 oshdr.put_sh_name(0);
173 oshdr.put_sh_type(elfcpp::SHT_NULL);
174 oshdr.put_sh_flags(0);
175 oshdr.put_sh_addr(0);
176 oshdr.put_sh_offset(0);
177 oshdr.put_sh_size(0);
178 oshdr.put_sh_link(0);
179 oshdr.put_sh_info(0);
180 oshdr.put_sh_addralign(0);
181 oshdr.put_sh_entsize(0);
182 }
183
184 v += shdr_size;
185
6a74a719 186 unsigned int shndx = 1;
8851ecca 187 if (!parameters->options().relocatable())
6a74a719
ILT
188 {
189 for (Layout::Segment_list::const_iterator p =
190 this->segment_list_->begin();
191 p != this->segment_list_->end();
192 ++p)
193 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
194 this->secnamepool_,
195 v,
196 &shndx);
197 }
198 else
199 {
200 for (Layout::Section_list::const_iterator p =
201 this->section_list_->begin();
202 p != this->section_list_->end();
203 ++p)
204 {
205 // We do unallocated sections below, except that group
206 // sections have to come first.
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
208 && (*p)->type() != elfcpp::SHT_GROUP)
209 continue;
210 gold_assert(shndx == (*p)->out_shndx());
211 elfcpp::Shdr_write<size, big_endian> oshdr(v);
212 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
213 v += shdr_size;
214 ++shndx;
215 }
216 }
217
a3ad94ed 218 for (Layout::Section_list::const_iterator p =
16649710
ILT
219 this->unattached_section_list_->begin();
220 p != this->unattached_section_list_->end();
61ba1cf9
ILT
221 ++p)
222 {
6a74a719
ILT
223 // For a relocatable link, we did unallocated group sections
224 // above, since they have to come first.
225 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 226 && parameters->options().relocatable())
6a74a719 227 continue;
a3ad94ed 228 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 229 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 230 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 231 v += shdr_size;
ead1e424 232 ++shndx;
61ba1cf9
ILT
233 }
234
235 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
236}
237
54dc6425
ILT
238// Output_segment_header methods.
239
61ba1cf9 240Output_segment_headers::Output_segment_headers(
61ba1cf9 241 const Layout::Segment_list& segment_list)
9025d29d 242 : segment_list_(segment_list)
61ba1cf9 243{
8851ecca 244 const int size = parameters->target().get_size();
61ba1cf9
ILT
245 int phdr_size;
246 if (size == 32)
247 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
248 else if (size == 64)
249 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
250 else
a3ad94ed 251 gold_unreachable();
61ba1cf9
ILT
252
253 this->set_data_size(segment_list.size() * phdr_size);
254}
255
54dc6425 256void
61ba1cf9 257Output_segment_headers::do_write(Output_file* of)
75f65a3e 258{
8851ecca 259 switch (parameters->size_and_endianness())
61ba1cf9 260 {
9025d29d 261#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
262 case Parameters::TARGET_32_LITTLE:
263 this->do_sized_write<32, false>(of);
264 break;
9025d29d 265#endif
8851ecca
ILT
266#ifdef HAVE_TARGET_32_BIG
267 case Parameters::TARGET_32_BIG:
268 this->do_sized_write<32, true>(of);
269 break;
9025d29d 270#endif
9025d29d 271#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
272 case Parameters::TARGET_64_LITTLE:
273 this->do_sized_write<64, false>(of);
274 break;
9025d29d 275#endif
8851ecca
ILT
276#ifdef HAVE_TARGET_64_BIG
277 case Parameters::TARGET_64_BIG:
278 this->do_sized_write<64, true>(of);
279 break;
280#endif
281 default:
282 gold_unreachable();
61ba1cf9 283 }
61ba1cf9
ILT
284}
285
286template<int size, bool big_endian>
287void
288Output_segment_headers::do_sized_write(Output_file* of)
289{
290 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
291 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 292 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
293 unsigned char* view = of->get_output_view(this->offset(),
294 all_phdrs_size);
295 unsigned char* v = view;
296 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
297 p != this->segment_list_.end();
298 ++p)
299 {
300 elfcpp::Phdr_write<size, big_endian> ophdr(v);
301 (*p)->write_header(&ophdr);
302 v += phdr_size;
303 }
304
a445fddf
ILT
305 gold_assert(v - view == all_phdrs_size);
306
61ba1cf9 307 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
308}
309
310// Output_file_header methods.
311
9025d29d 312Output_file_header::Output_file_header(const Target* target,
75f65a3e 313 const Symbol_table* symtab,
d391083d
ILT
314 const Output_segment_headers* osh,
315 const char* entry)
9025d29d 316 : target_(target),
75f65a3e 317 symtab_(symtab),
61ba1cf9 318 segment_header_(osh),
75f65a3e 319 section_header_(NULL),
d391083d
ILT
320 shstrtab_(NULL),
321 entry_(entry)
75f65a3e 322{
8851ecca 323 const int size = parameters->target().get_size();
61ba1cf9
ILT
324 int ehdr_size;
325 if (size == 32)
326 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
327 else if (size == 64)
328 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
329 else
a3ad94ed 330 gold_unreachable();
61ba1cf9
ILT
331
332 this->set_data_size(ehdr_size);
75f65a3e
ILT
333}
334
335// Set the section table information for a file header.
336
337void
338Output_file_header::set_section_info(const Output_section_headers* shdrs,
339 const Output_section* shstrtab)
340{
341 this->section_header_ = shdrs;
342 this->shstrtab_ = shstrtab;
343}
344
345// Write out the file header.
346
347void
61ba1cf9 348Output_file_header::do_write(Output_file* of)
54dc6425 349{
27bc2bce
ILT
350 gold_assert(this->offset() == 0);
351
8851ecca 352 switch (parameters->size_and_endianness())
61ba1cf9 353 {
9025d29d 354#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
355 case Parameters::TARGET_32_LITTLE:
356 this->do_sized_write<32, false>(of);
357 break;
9025d29d 358#endif
8851ecca
ILT
359#ifdef HAVE_TARGET_32_BIG
360 case Parameters::TARGET_32_BIG:
361 this->do_sized_write<32, true>(of);
362 break;
9025d29d 363#endif
9025d29d 364#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
365 case Parameters::TARGET_64_LITTLE:
366 this->do_sized_write<64, false>(of);
367 break;
9025d29d 368#endif
8851ecca
ILT
369#ifdef HAVE_TARGET_64_BIG
370 case Parameters::TARGET_64_BIG:
371 this->do_sized_write<64, true>(of);
372 break;
373#endif
374 default:
375 gold_unreachable();
61ba1cf9 376 }
61ba1cf9
ILT
377}
378
379// Write out the file header with appropriate size and endianess.
380
381template<int size, bool big_endian>
382void
383Output_file_header::do_sized_write(Output_file* of)
384{
a3ad94ed 385 gold_assert(this->offset() == 0);
61ba1cf9
ILT
386
387 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
388 unsigned char* view = of->get_output_view(0, ehdr_size);
389 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
390
391 unsigned char e_ident[elfcpp::EI_NIDENT];
392 memset(e_ident, 0, elfcpp::EI_NIDENT);
393 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
394 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
395 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
396 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
397 if (size == 32)
398 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
399 else if (size == 64)
400 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
401 else
a3ad94ed 402 gold_unreachable();
61ba1cf9
ILT
403 e_ident[elfcpp::EI_DATA] = (big_endian
404 ? elfcpp::ELFDATA2MSB
405 : elfcpp::ELFDATA2LSB);
406 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
407 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
408 oehdr.put_e_ident(e_ident);
409
410 elfcpp::ET e_type;
8851ecca 411 if (parameters->options().relocatable())
61ba1cf9 412 e_type = elfcpp::ET_REL;
8851ecca 413 else if (parameters->options().shared())
436ca963 414 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
415 else
416 e_type = elfcpp::ET_EXEC;
417 oehdr.put_e_type(e_type);
418
419 oehdr.put_e_machine(this->target_->machine_code());
420 oehdr.put_e_version(elfcpp::EV_CURRENT);
421
d391083d 422 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 423
6a74a719
ILT
424 if (this->segment_header_ == NULL)
425 oehdr.put_e_phoff(0);
426 else
427 oehdr.put_e_phoff(this->segment_header_->offset());
428
61ba1cf9
ILT
429 oehdr.put_e_shoff(this->section_header_->offset());
430
431 // FIXME: The target needs to set the flags.
432 oehdr.put_e_flags(0);
433
434 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
435
436 if (this->segment_header_ == NULL)
437 {
438 oehdr.put_e_phentsize(0);
439 oehdr.put_e_phnum(0);
440 }
441 else
442 {
443 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
444 oehdr.put_e_phnum(this->segment_header_->data_size()
445 / elfcpp::Elf_sizes<size>::phdr_size);
446 }
447
61ba1cf9
ILT
448 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
449 oehdr.put_e_shnum(this->section_header_->data_size()
450 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 451 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
452
453 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
454}
455
d391083d
ILT
456// Return the value to use for the entry address. THIS->ENTRY_ is the
457// symbol specified on the command line, if any.
458
459template<int size>
460typename elfcpp::Elf_types<size>::Elf_Addr
461Output_file_header::entry()
462{
463 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
464 && !parameters->options().relocatable()
465 && !parameters->options().shared());
d391083d
ILT
466
467 // FIXME: Need to support target specific entry symbol.
468 const char* entry = this->entry_;
469 if (entry == NULL)
470 entry = "_start";
471
472 Symbol* sym = this->symtab_->lookup(entry);
473
474 typename Sized_symbol<size>::Value_type v;
475 if (sym != NULL)
476 {
477 Sized_symbol<size>* ssym;
478 ssym = this->symtab_->get_sized_symbol<size>(sym);
479 if (!ssym->is_defined() && should_issue_warning)
480 gold_warning("entry symbol '%s' exists but is not defined", entry);
481 v = ssym->value();
482 }
483 else
484 {
485 // We couldn't find the entry symbol. See if we can parse it as
486 // a number. This supports, e.g., -e 0x1000.
487 char* endptr;
488 v = strtoull(entry, &endptr, 0);
489 if (*endptr != '\0')
490 {
491 if (should_issue_warning)
492 gold_warning("cannot find entry symbol '%s'", entry);
493 v = 0;
494 }
495 }
496
497 return v;
498}
499
dbe717ef
ILT
500// Output_data_const methods.
501
502void
a3ad94ed 503Output_data_const::do_write(Output_file* of)
dbe717ef 504{
a3ad94ed
ILT
505 of->write(this->offset(), this->data_.data(), this->data_.size());
506}
507
508// Output_data_const_buffer methods.
509
510void
511Output_data_const_buffer::do_write(Output_file* of)
512{
513 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
514}
515
516// Output_section_data methods.
517
16649710
ILT
518// Record the output section, and set the entry size and such.
519
520void
521Output_section_data::set_output_section(Output_section* os)
522{
523 gold_assert(this->output_section_ == NULL);
524 this->output_section_ = os;
525 this->do_adjust_output_section(os);
526}
527
528// Return the section index of the output section.
529
dbe717ef
ILT
530unsigned int
531Output_section_data::do_out_shndx() const
532{
a3ad94ed 533 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
534 return this->output_section_->out_shndx();
535}
536
a3ad94ed
ILT
537// Output_data_strtab methods.
538
27bc2bce 539// Set the final data size.
a3ad94ed
ILT
540
541void
27bc2bce 542Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
543{
544 this->strtab_->set_string_offsets();
545 this->set_data_size(this->strtab_->get_strtab_size());
546}
547
548// Write out a string table.
549
550void
551Output_data_strtab::do_write(Output_file* of)
552{
553 this->strtab_->write(of, this->offset());
554}
555
c06b7b0b
ILT
556// Output_reloc methods.
557
7bf1f802
ILT
558// A reloc against a global symbol.
559
560template<bool dynamic, int size, bool big_endian>
561Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
562 Symbol* gsym,
563 unsigned int type,
564 Output_data* od,
e8c846c3
ILT
565 Address address,
566 bool is_relative)
7bf1f802 567 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 568 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 569{
dceae3c1
ILT
570 // this->type_ is a bitfield; make sure TYPE fits.
571 gold_assert(this->type_ == type);
7bf1f802
ILT
572 this->u1_.gsym = gsym;
573 this->u2_.od = od;
dceae3c1
ILT
574 if (dynamic)
575 this->set_needs_dynsym_index();
7bf1f802
ILT
576}
577
578template<bool dynamic, int size, bool big_endian>
579Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
580 Symbol* gsym,
581 unsigned int type,
582 Relobj* relobj,
583 unsigned int shndx,
e8c846c3
ILT
584 Address address,
585 bool is_relative)
7bf1f802 586 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 587 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
588{
589 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
590 // this->type_ is a bitfield; make sure TYPE fits.
591 gold_assert(this->type_ == type);
7bf1f802
ILT
592 this->u1_.gsym = gsym;
593 this->u2_.relobj = relobj;
dceae3c1
ILT
594 if (dynamic)
595 this->set_needs_dynsym_index();
7bf1f802
ILT
596}
597
598// A reloc against a local symbol.
599
600template<bool dynamic, int size, bool big_endian>
601Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
602 Sized_relobj<size, big_endian>* relobj,
603 unsigned int local_sym_index,
604 unsigned int type,
605 Output_data* od,
e8c846c3 606 Address address,
dceae3c1
ILT
607 bool is_relative,
608 bool is_section_symbol)
7bf1f802 609 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
610 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
611 shndx_(INVALID_CODE)
7bf1f802
ILT
612{
613 gold_assert(local_sym_index != GSYM_CODE
614 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
615 // this->type_ is a bitfield; make sure TYPE fits.
616 gold_assert(this->type_ == type);
7bf1f802
ILT
617 this->u1_.relobj = relobj;
618 this->u2_.od = od;
dceae3c1
ILT
619 if (dynamic)
620 this->set_needs_dynsym_index();
7bf1f802
ILT
621}
622
623template<bool dynamic, int size, bool big_endian>
624Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
625 Sized_relobj<size, big_endian>* relobj,
626 unsigned int local_sym_index,
627 unsigned int type,
628 unsigned int shndx,
e8c846c3 629 Address address,
dceae3c1
ILT
630 bool is_relative,
631 bool is_section_symbol)
7bf1f802 632 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
633 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
634 shndx_(shndx)
7bf1f802
ILT
635{
636 gold_assert(local_sym_index != GSYM_CODE
637 && local_sym_index != INVALID_CODE);
638 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
639 // this->type_ is a bitfield; make sure TYPE fits.
640 gold_assert(this->type_ == type);
7bf1f802
ILT
641 this->u1_.relobj = relobj;
642 this->u2_.relobj = relobj;
dceae3c1
ILT
643 if (dynamic)
644 this->set_needs_dynsym_index();
7bf1f802
ILT
645}
646
647// A reloc against the STT_SECTION symbol of an output section.
648
649template<bool dynamic, int size, bool big_endian>
650Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
651 Output_section* os,
652 unsigned int type,
653 Output_data* od,
654 Address address)
655 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 656 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 657{
dceae3c1
ILT
658 // this->type_ is a bitfield; make sure TYPE fits.
659 gold_assert(this->type_ == type);
7bf1f802
ILT
660 this->u1_.os = os;
661 this->u2_.od = od;
662 if (dynamic)
dceae3c1
ILT
663 this->set_needs_dynsym_index();
664 else
665 os->set_needs_symtab_index();
7bf1f802
ILT
666}
667
668template<bool dynamic, int size, bool big_endian>
669Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
670 Output_section* os,
671 unsigned int type,
672 Relobj* relobj,
673 unsigned int shndx,
674 Address address)
675 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 676 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
677{
678 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
679 // this->type_ is a bitfield; make sure TYPE fits.
680 gold_assert(this->type_ == type);
7bf1f802
ILT
681 this->u1_.os = os;
682 this->u2_.relobj = relobj;
683 if (dynamic)
dceae3c1
ILT
684 this->set_needs_dynsym_index();
685 else
686 os->set_needs_symtab_index();
687}
688
689// Record that we need a dynamic symbol index for this relocation.
690
691template<bool dynamic, int size, bool big_endian>
692void
693Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
694set_needs_dynsym_index()
695{
696 if (this->is_relative_)
697 return;
698 switch (this->local_sym_index_)
699 {
700 case INVALID_CODE:
701 gold_unreachable();
702
703 case GSYM_CODE:
704 this->u1_.gsym->set_needs_dynsym_entry();
705 break;
706
707 case SECTION_CODE:
708 this->u1_.os->set_needs_dynsym_index();
709 break;
710
711 case 0:
712 break;
713
714 default:
715 {
716 const unsigned int lsi = this->local_sym_index_;
717 if (!this->is_section_symbol_)
718 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
719 else
720 {
721 section_offset_type dummy;
722 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
723 gold_assert(os != NULL);
724 os->set_needs_dynsym_index();
725 }
726 }
727 break;
728 }
7bf1f802
ILT
729}
730
c06b7b0b
ILT
731// Get the symbol index of a relocation.
732
733template<bool dynamic, int size, bool big_endian>
734unsigned int
735Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
736 const
737{
738 unsigned int index;
739 switch (this->local_sym_index_)
740 {
741 case INVALID_CODE:
a3ad94ed 742 gold_unreachable();
c06b7b0b
ILT
743
744 case GSYM_CODE:
5a6f7e2d 745 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
746 index = 0;
747 else if (dynamic)
5a6f7e2d 748 index = this->u1_.gsym->dynsym_index();
c06b7b0b 749 else
5a6f7e2d 750 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
751 break;
752
753 case SECTION_CODE:
754 if (dynamic)
5a6f7e2d 755 index = this->u1_.os->dynsym_index();
c06b7b0b 756 else
5a6f7e2d 757 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
758 break;
759
436ca963
ILT
760 case 0:
761 // Relocations without symbols use a symbol index of 0.
762 index = 0;
763 break;
764
c06b7b0b 765 default:
dceae3c1
ILT
766 {
767 const unsigned int lsi = this->local_sym_index_;
768 if (!this->is_section_symbol_)
769 {
770 if (dynamic)
771 index = this->u1_.relobj->dynsym_index(lsi);
772 else
773 index = this->u1_.relobj->symtab_index(lsi);
774 }
775 else
776 {
777 section_offset_type dummy;
778 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
779 gold_assert(os != NULL);
780 if (dynamic)
781 index = os->dynsym_index();
782 else
783 index = os->symtab_index();
784 }
785 }
c06b7b0b
ILT
786 break;
787 }
a3ad94ed 788 gold_assert(index != -1U);
c06b7b0b
ILT
789 return index;
790}
791
dceae3c1
ILT
792// For a local section symbol, get the section offset of the input
793// section within the output section.
794
795template<bool dynamic, int size, bool big_endian>
796section_offset_type
797Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
798 local_section_offset() const
799{
800 const unsigned int lsi = this->local_sym_index_;
801 section_offset_type offset;
802 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
d1f003c6 803 gold_assert(os != NULL && offset != -1);
dceae3c1
ILT
804 return offset;
805}
806
c06b7b0b
ILT
807// Write out the offset and info fields of a Rel or Rela relocation
808// entry.
809
810template<bool dynamic, int size, bool big_endian>
811template<typename Write_rel>
812void
813Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
814 Write_rel* wr) const
815{
a3ad94ed 816 Address address = this->address_;
5a6f7e2d
ILT
817 if (this->shndx_ != INVALID_CODE)
818 {
8383303e 819 section_offset_type off;
5a6f7e2d
ILT
820 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
821 &off);
822 gold_assert(os != NULL);
730cdc88
ILT
823 if (off != -1)
824 address += os->address() + off;
825 else
826 {
827 address = os->output_address(this->u2_.relobj, this->shndx_,
828 address);
829 gold_assert(address != -1U);
830 }
5a6f7e2d
ILT
831 }
832 else if (this->u2_.od != NULL)
833 address += this->u2_.od->address();
a3ad94ed 834 wr->put_r_offset(address);
e8c846c3
ILT
835 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
836 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
837}
838
839// Write out a Rel relocation.
840
841template<bool dynamic, int size, bool big_endian>
842void
843Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
844 unsigned char* pov) const
845{
846 elfcpp::Rel_write<size, big_endian> orel(pov);
847 this->write_rel(&orel);
848}
849
e8c846c3
ILT
850// Get the value of the symbol referred to by a Rel relocation.
851
852template<bool dynamic, int size, bool big_endian>
853typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6
ILT
854Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
855 Address addend) const
e8c846c3
ILT
856{
857 if (this->local_sym_index_ == GSYM_CODE)
858 {
859 const Sized_symbol<size>* sym;
860 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 861 return sym->value() + addend;
e8c846c3
ILT
862 }
863 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
864 && this->local_sym_index_ != INVALID_CODE
865 && !this->is_section_symbol_);
866 const unsigned int lsi = this->local_sym_index_;
867 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
868 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
869}
870
c06b7b0b
ILT
871// Write out a Rela relocation.
872
873template<bool dynamic, int size, bool big_endian>
874void
875Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
876 unsigned char* pov) const
877{
878 elfcpp::Rela_write<size, big_endian> orel(pov);
879 this->rel_.write_rel(&orel);
e8c846c3 880 Addend addend = this->addend_;
dceae3c1 881 if (this->rel_.is_relative())
d1f003c6
ILT
882 addend = this->rel_.symbol_value(addend);
883 else if (this->rel_.is_local_section_symbol())
dceae3c1 884 addend += this->rel_.local_section_offset();
e8c846c3 885 orel.put_r_addend(addend);
c06b7b0b
ILT
886}
887
888// Output_data_reloc_base methods.
889
16649710
ILT
890// Adjust the output section.
891
892template<int sh_type, bool dynamic, int size, bool big_endian>
893void
894Output_data_reloc_base<sh_type, dynamic, size, big_endian>
895 ::do_adjust_output_section(Output_section* os)
896{
897 if (sh_type == elfcpp::SHT_REL)
898 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
899 else if (sh_type == elfcpp::SHT_RELA)
900 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
901 else
902 gold_unreachable();
903 if (dynamic)
904 os->set_should_link_to_dynsym();
905 else
906 os->set_should_link_to_symtab();
907}
908
c06b7b0b
ILT
909// Write out relocation data.
910
911template<int sh_type, bool dynamic, int size, bool big_endian>
912void
913Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
914 Output_file* of)
915{
916 const off_t off = this->offset();
917 const off_t oview_size = this->data_size();
918 unsigned char* const oview = of->get_output_view(off, oview_size);
919
920 unsigned char* pov = oview;
921 for (typename Relocs::const_iterator p = this->relocs_.begin();
922 p != this->relocs_.end();
923 ++p)
924 {
925 p->write(pov);
926 pov += reloc_size;
927 }
928
a3ad94ed 929 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
930
931 of->write_output_view(off, oview_size, oview);
932
933 // We no longer need the relocation entries.
934 this->relocs_.clear();
935}
936
6a74a719
ILT
937// Class Output_relocatable_relocs.
938
939template<int sh_type, int size, bool big_endian>
940void
941Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
942{
943 this->set_data_size(this->rr_->output_reloc_count()
944 * Reloc_types<sh_type, size, big_endian>::reloc_size);
945}
946
947// class Output_data_group.
948
949template<int size, bool big_endian>
950Output_data_group<size, big_endian>::Output_data_group(
951 Sized_relobj<size, big_endian>* relobj,
952 section_size_type entry_count,
953 const elfcpp::Elf_Word* contents)
954 : Output_section_data(entry_count * 4, 4),
955 relobj_(relobj)
956{
957 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
958 for (section_size_type i = 1; i < entry_count; ++i)
959 {
960 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
961 this->input_sections_.push_back(shndx);
962 }
963}
964
965// Write out the section group, which means translating the section
966// indexes to apply to the output file.
967
968template<int size, bool big_endian>
969void
970Output_data_group<size, big_endian>::do_write(Output_file* of)
971{
972 const off_t off = this->offset();
973 const section_size_type oview_size =
974 convert_to_section_size_type(this->data_size());
975 unsigned char* const oview = of->get_output_view(off, oview_size);
976
977 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
978 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
979 ++contents;
980
981 for (std::vector<unsigned int>::const_iterator p =
982 this->input_sections_.begin();
983 p != this->input_sections_.end();
984 ++p, ++contents)
985 {
986 section_offset_type dummy;
987 Output_section* os = this->relobj_->output_section(*p, &dummy);
988
989 unsigned int output_shndx;
990 if (os != NULL)
991 output_shndx = os->out_shndx();
992 else
993 {
994 this->relobj_->error(_("section group retained but "
995 "group element discarded"));
996 output_shndx = 0;
997 }
998
999 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1000 }
1001
1002 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1003 gold_assert(wrote == oview_size);
1004
1005 of->write_output_view(off, oview_size, oview);
1006
1007 // We no longer need this information.
1008 this->input_sections_.clear();
1009}
1010
dbe717ef 1011// Output_data_got::Got_entry methods.
ead1e424
ILT
1012
1013// Write out the entry.
1014
1015template<int size, bool big_endian>
1016void
7e1edb90 1017Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1018{
1019 Valtype val = 0;
1020
1021 switch (this->local_sym_index_)
1022 {
1023 case GSYM_CODE:
1024 {
e8c846c3
ILT
1025 // If the symbol is resolved locally, we need to write out the
1026 // link-time value, which will be relocated dynamically by a
1027 // RELATIVE relocation.
ead1e424 1028 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1029 Sized_symbol<size>* sgsym;
1030 // This cast is a bit ugly. We don't want to put a
1031 // virtual method in Symbol, because we want Symbol to be
1032 // as small as possible.
1033 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1034 val = sgsym->value();
ead1e424
ILT
1035 }
1036 break;
1037
1038 case CONSTANT_CODE:
1039 val = this->u_.constant;
1040 break;
1041
1042 default:
d1f003c6
ILT
1043 {
1044 const unsigned int lsi = this->local_sym_index_;
1045 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1046 val = symval->value(this->u_.object, 0);
1047 }
e727fa71 1048 break;
ead1e424
ILT
1049 }
1050
a3ad94ed 1051 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1052}
1053
dbe717ef 1054// Output_data_got methods.
ead1e424 1055
dbe717ef
ILT
1056// Add an entry for a global symbol to the GOT. This returns true if
1057// this is a new GOT entry, false if the symbol already had a GOT
1058// entry.
1059
1060template<int size, bool big_endian>
1061bool
0a65a3a7
CC
1062Output_data_got<size, big_endian>::add_global(
1063 Symbol* gsym,
1064 unsigned int got_type)
ead1e424 1065{
0a65a3a7 1066 if (gsym->has_got_offset(got_type))
dbe717ef 1067 return false;
ead1e424 1068
dbe717ef
ILT
1069 this->entries_.push_back(Got_entry(gsym));
1070 this->set_got_size();
0a65a3a7 1071 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1072 return true;
1073}
ead1e424 1074
7bf1f802
ILT
1075// Add an entry for a global symbol to the GOT, and add a dynamic
1076// relocation of type R_TYPE for the GOT entry.
1077template<int size, bool big_endian>
1078void
1079Output_data_got<size, big_endian>::add_global_with_rel(
1080 Symbol* gsym,
0a65a3a7 1081 unsigned int got_type,
7bf1f802
ILT
1082 Rel_dyn* rel_dyn,
1083 unsigned int r_type)
1084{
0a65a3a7 1085 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1086 return;
1087
1088 this->entries_.push_back(Got_entry());
1089 this->set_got_size();
1090 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1091 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1092 rel_dyn->add_global(gsym, r_type, this, got_offset);
1093}
1094
1095template<int size, bool big_endian>
1096void
1097Output_data_got<size, big_endian>::add_global_with_rela(
1098 Symbol* gsym,
0a65a3a7 1099 unsigned int got_type,
7bf1f802
ILT
1100 Rela_dyn* rela_dyn,
1101 unsigned int r_type)
1102{
0a65a3a7 1103 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1104 return;
1105
1106 this->entries_.push_back(Got_entry());
1107 this->set_got_size();
1108 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1109 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1110 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1111}
1112
0a65a3a7
CC
1113// Add a pair of entries for a global symbol to the GOT, and add
1114// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1115// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1116template<int size, bool big_endian>
1117void
0a65a3a7
CC
1118Output_data_got<size, big_endian>::add_global_pair_with_rel(
1119 Symbol* gsym,
1120 unsigned int got_type,
7bf1f802 1121 Rel_dyn* rel_dyn,
0a65a3a7
CC
1122 unsigned int r_type_1,
1123 unsigned int r_type_2)
7bf1f802 1124{
0a65a3a7 1125 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1126 return;
1127
1128 this->entries_.push_back(Got_entry());
7bf1f802 1129 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1130 gsym->set_got_offset(got_type, got_offset);
1131 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1132
1133 this->entries_.push_back(Got_entry());
1134 if (r_type_2 != 0)
1135 {
1136 got_offset = this->last_got_offset();
1137 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1138 }
1139
1140 this->set_got_size();
7bf1f802
ILT
1141}
1142
1143template<int size, bool big_endian>
1144void
0a65a3a7
CC
1145Output_data_got<size, big_endian>::add_global_pair_with_rela(
1146 Symbol* gsym,
1147 unsigned int got_type,
7bf1f802 1148 Rela_dyn* rela_dyn,
0a65a3a7
CC
1149 unsigned int r_type_1,
1150 unsigned int r_type_2)
7bf1f802 1151{
0a65a3a7 1152 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1153 return;
1154
1155 this->entries_.push_back(Got_entry());
7bf1f802 1156 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1157 gsym->set_got_offset(got_type, got_offset);
1158 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1159
1160 this->entries_.push_back(Got_entry());
1161 if (r_type_2 != 0)
1162 {
1163 got_offset = this->last_got_offset();
1164 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1165 }
1166
1167 this->set_got_size();
7bf1f802
ILT
1168}
1169
0a65a3a7
CC
1170// Add an entry for a local symbol to the GOT. This returns true if
1171// this is a new GOT entry, false if the symbol already has a GOT
1172// entry.
07f397ab
ILT
1173
1174template<int size, bool big_endian>
1175bool
0a65a3a7
CC
1176Output_data_got<size, big_endian>::add_local(
1177 Sized_relobj<size, big_endian>* object,
1178 unsigned int symndx,
1179 unsigned int got_type)
07f397ab 1180{
0a65a3a7 1181 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1182 return false;
1183
0a65a3a7 1184 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1185 this->set_got_size();
0a65a3a7 1186 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1187 return true;
1188}
1189
0a65a3a7
CC
1190// Add an entry for a local symbol to the GOT, and add a dynamic
1191// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1192template<int size, bool big_endian>
1193void
0a65a3a7
CC
1194Output_data_got<size, big_endian>::add_local_with_rel(
1195 Sized_relobj<size, big_endian>* object,
1196 unsigned int symndx,
1197 unsigned int got_type,
7bf1f802
ILT
1198 Rel_dyn* rel_dyn,
1199 unsigned int r_type)
1200{
0a65a3a7 1201 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1202 return;
1203
1204 this->entries_.push_back(Got_entry());
1205 this->set_got_size();
1206 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1207 object->set_local_got_offset(symndx, got_type, got_offset);
1208 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1209}
1210
1211template<int size, bool big_endian>
1212void
0a65a3a7
CC
1213Output_data_got<size, big_endian>::add_local_with_rela(
1214 Sized_relobj<size, big_endian>* object,
1215 unsigned int symndx,
1216 unsigned int got_type,
7bf1f802
ILT
1217 Rela_dyn* rela_dyn,
1218 unsigned int r_type)
1219{
0a65a3a7 1220 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1221 return;
1222
1223 this->entries_.push_back(Got_entry());
1224 this->set_got_size();
1225 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1226 object->set_local_got_offset(symndx, got_type, got_offset);
1227 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1228}
1229
0a65a3a7
CC
1230// Add a pair of entries for a local symbol to the GOT, and add
1231// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1232// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1233template<int size, bool big_endian>
1234void
0a65a3a7 1235Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1236 Sized_relobj<size, big_endian>* object,
1237 unsigned int symndx,
1238 unsigned int shndx,
0a65a3a7 1239 unsigned int got_type,
7bf1f802 1240 Rel_dyn* rel_dyn,
0a65a3a7
CC
1241 unsigned int r_type_1,
1242 unsigned int r_type_2)
7bf1f802 1243{
0a65a3a7 1244 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1245 return;
1246
1247 this->entries_.push_back(Got_entry());
1248 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1249 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1250 section_offset_type off;
7bf1f802 1251 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1252 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1253
0a65a3a7
CC
1254 this->entries_.push_back(Got_entry(object, symndx));
1255 if (r_type_2 != 0)
1256 {
1257 got_offset = this->last_got_offset();
1258 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1259 }
7bf1f802
ILT
1260
1261 this->set_got_size();
1262}
1263
1264template<int size, bool big_endian>
1265void
0a65a3a7 1266Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1267 Sized_relobj<size, big_endian>* object,
1268 unsigned int symndx,
1269 unsigned int shndx,
0a65a3a7 1270 unsigned int got_type,
7bf1f802 1271 Rela_dyn* rela_dyn,
0a65a3a7
CC
1272 unsigned int r_type_1,
1273 unsigned int r_type_2)
7bf1f802 1274{
0a65a3a7 1275 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1276 return;
1277
1278 this->entries_.push_back(Got_entry());
1279 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1280 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1281 section_offset_type off;
7bf1f802 1282 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1283 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1284
0a65a3a7
CC
1285 this->entries_.push_back(Got_entry(object, symndx));
1286 if (r_type_2 != 0)
1287 {
1288 got_offset = this->last_got_offset();
1289 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1290 }
7bf1f802
ILT
1291
1292 this->set_got_size();
1293}
1294
ead1e424
ILT
1295// Write out the GOT.
1296
1297template<int size, bool big_endian>
1298void
dbe717ef 1299Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1300{
1301 const int add = size / 8;
1302
1303 const off_t off = this->offset();
c06b7b0b 1304 const off_t oview_size = this->data_size();
ead1e424
ILT
1305 unsigned char* const oview = of->get_output_view(off, oview_size);
1306
1307 unsigned char* pov = oview;
1308 for (typename Got_entries::const_iterator p = this->entries_.begin();
1309 p != this->entries_.end();
1310 ++p)
1311 {
7e1edb90 1312 p->write(pov);
ead1e424
ILT
1313 pov += add;
1314 }
1315
a3ad94ed 1316 gold_assert(pov - oview == oview_size);
c06b7b0b 1317
ead1e424
ILT
1318 of->write_output_view(off, oview_size, oview);
1319
1320 // We no longer need the GOT entries.
1321 this->entries_.clear();
1322}
1323
a3ad94ed
ILT
1324// Output_data_dynamic::Dynamic_entry methods.
1325
1326// Write out the entry.
1327
1328template<int size, bool big_endian>
1329void
1330Output_data_dynamic::Dynamic_entry::write(
1331 unsigned char* pov,
7d1a9ebb 1332 const Stringpool* pool) const
a3ad94ed
ILT
1333{
1334 typename elfcpp::Elf_types<size>::Elf_WXword val;
1335 switch (this->classification_)
1336 {
1337 case DYNAMIC_NUMBER:
1338 val = this->u_.val;
1339 break;
1340
1341 case DYNAMIC_SECTION_ADDRESS:
16649710 1342 val = this->u_.od->address();
a3ad94ed
ILT
1343 break;
1344
1345 case DYNAMIC_SECTION_SIZE:
16649710 1346 val = this->u_.od->data_size();
a3ad94ed
ILT
1347 break;
1348
1349 case DYNAMIC_SYMBOL:
1350 {
16649710
ILT
1351 const Sized_symbol<size>* s =
1352 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1353 val = s->value();
1354 }
1355 break;
1356
1357 case DYNAMIC_STRING:
1358 val = pool->get_offset(this->u_.str);
1359 break;
1360
1361 default:
1362 gold_unreachable();
1363 }
1364
1365 elfcpp::Dyn_write<size, big_endian> dw(pov);
1366 dw.put_d_tag(this->tag_);
1367 dw.put_d_val(val);
1368}
1369
1370// Output_data_dynamic methods.
1371
16649710
ILT
1372// Adjust the output section to set the entry size.
1373
1374void
1375Output_data_dynamic::do_adjust_output_section(Output_section* os)
1376{
8851ecca 1377 if (parameters->target().get_size() == 32)
16649710 1378 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1379 else if (parameters->target().get_size() == 64)
16649710
ILT
1380 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1381 else
1382 gold_unreachable();
1383}
1384
a3ad94ed
ILT
1385// Set the final data size.
1386
1387void
27bc2bce 1388Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1389{
1390 // Add the terminating entry.
1391 this->add_constant(elfcpp::DT_NULL, 0);
1392
1393 int dyn_size;
8851ecca 1394 if (parameters->target().get_size() == 32)
a3ad94ed 1395 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1396 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1397 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1398 else
1399 gold_unreachable();
1400 this->set_data_size(this->entries_.size() * dyn_size);
1401}
1402
1403// Write out the dynamic entries.
1404
1405void
1406Output_data_dynamic::do_write(Output_file* of)
1407{
8851ecca 1408 switch (parameters->size_and_endianness())
a3ad94ed 1409 {
9025d29d 1410#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1411 case Parameters::TARGET_32_LITTLE:
1412 this->sized_write<32, false>(of);
1413 break;
9025d29d 1414#endif
8851ecca
ILT
1415#ifdef HAVE_TARGET_32_BIG
1416 case Parameters::TARGET_32_BIG:
1417 this->sized_write<32, true>(of);
1418 break;
9025d29d 1419#endif
9025d29d 1420#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1421 case Parameters::TARGET_64_LITTLE:
1422 this->sized_write<64, false>(of);
1423 break;
9025d29d 1424#endif
8851ecca
ILT
1425#ifdef HAVE_TARGET_64_BIG
1426 case Parameters::TARGET_64_BIG:
1427 this->sized_write<64, true>(of);
1428 break;
1429#endif
1430 default:
1431 gold_unreachable();
a3ad94ed 1432 }
a3ad94ed
ILT
1433}
1434
1435template<int size, bool big_endian>
1436void
1437Output_data_dynamic::sized_write(Output_file* of)
1438{
1439 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1440
1441 const off_t offset = this->offset();
1442 const off_t oview_size = this->data_size();
1443 unsigned char* const oview = of->get_output_view(offset, oview_size);
1444
1445 unsigned char* pov = oview;
1446 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1447 p != this->entries_.end();
1448 ++p)
1449 {
7d1a9ebb 1450 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1451 pov += dyn_size;
1452 }
1453
1454 gold_assert(pov - oview == oview_size);
1455
1456 of->write_output_view(offset, oview_size, oview);
1457
1458 // We no longer need the dynamic entries.
1459 this->entries_.clear();
1460}
1461
ead1e424
ILT
1462// Output_section::Input_section methods.
1463
1464// Return the data size. For an input section we store the size here.
1465// For an Output_section_data, we have to ask it for the size.
1466
1467off_t
1468Output_section::Input_section::data_size() const
1469{
1470 if (this->is_input_section())
b8e6aad9 1471 return this->u1_.data_size;
ead1e424 1472 else
b8e6aad9 1473 return this->u2_.posd->data_size();
ead1e424
ILT
1474}
1475
1476// Set the address and file offset.
1477
1478void
96803768
ILT
1479Output_section::Input_section::set_address_and_file_offset(
1480 uint64_t address,
1481 off_t file_offset,
1482 off_t section_file_offset)
ead1e424
ILT
1483{
1484 if (this->is_input_section())
96803768
ILT
1485 this->u2_.object->set_section_offset(this->shndx_,
1486 file_offset - section_file_offset);
ead1e424 1487 else
96803768
ILT
1488 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1489}
1490
a445fddf
ILT
1491// Reset the address and file offset.
1492
1493void
1494Output_section::Input_section::reset_address_and_file_offset()
1495{
1496 if (!this->is_input_section())
1497 this->u2_.posd->reset_address_and_file_offset();
1498}
1499
96803768
ILT
1500// Finalize the data size.
1501
1502void
1503Output_section::Input_section::finalize_data_size()
1504{
1505 if (!this->is_input_section())
1506 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1507}
1508
1e983657
ILT
1509// Try to turn an input offset into an output offset. We want to
1510// return the output offset relative to the start of this
1511// Input_section in the output section.
b8e6aad9 1512
8f00aeb8 1513inline bool
8383303e
ILT
1514Output_section::Input_section::output_offset(
1515 const Relobj* object,
1516 unsigned int shndx,
1517 section_offset_type offset,
1518 section_offset_type *poutput) const
b8e6aad9
ILT
1519{
1520 if (!this->is_input_section())
730cdc88 1521 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1522 else
1523 {
730cdc88 1524 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1525 return false;
1e983657 1526 *poutput = offset;
b8e6aad9
ILT
1527 return true;
1528 }
ead1e424
ILT
1529}
1530
a9a60db6
ILT
1531// Return whether this is the merge section for the input section
1532// SHNDX in OBJECT.
1533
1534inline bool
1535Output_section::Input_section::is_merge_section_for(const Relobj* object,
1536 unsigned int shndx) const
1537{
1538 if (this->is_input_section())
1539 return false;
1540 return this->u2_.posd->is_merge_section_for(object, shndx);
1541}
1542
ead1e424
ILT
1543// Write out the data. We don't have to do anything for an input
1544// section--they are handled via Object::relocate--but this is where
1545// we write out the data for an Output_section_data.
1546
1547void
1548Output_section::Input_section::write(Output_file* of)
1549{
1550 if (!this->is_input_section())
b8e6aad9 1551 this->u2_.posd->write(of);
ead1e424
ILT
1552}
1553
96803768
ILT
1554// Write the data to a buffer. As for write(), we don't have to do
1555// anything for an input section.
1556
1557void
1558Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1559{
1560 if (!this->is_input_section())
1561 this->u2_.posd->write_to_buffer(buffer);
1562}
1563
a2fb1b05
ILT
1564// Output_section methods.
1565
1566// Construct an Output_section. NAME will point into a Stringpool.
1567
96803768 1568Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1569 elfcpp::Elf_Xword flags)
96803768 1570 : name_(name),
a2fb1b05
ILT
1571 addralign_(0),
1572 entsize_(0),
a445fddf 1573 load_address_(0),
16649710 1574 link_section_(NULL),
a2fb1b05 1575 link_(0),
16649710 1576 info_section_(NULL),
6a74a719 1577 info_symndx_(NULL),
a2fb1b05
ILT
1578 info_(0),
1579 type_(type),
61ba1cf9 1580 flags_(flags),
91ea499d 1581 out_shndx_(-1U),
c06b7b0b
ILT
1582 symtab_index_(0),
1583 dynsym_index_(0),
ead1e424
ILT
1584 input_sections_(),
1585 first_input_offset_(0),
c51e6221 1586 fills_(),
96803768 1587 postprocessing_buffer_(NULL),
a3ad94ed 1588 needs_symtab_index_(false),
16649710
ILT
1589 needs_dynsym_index_(false),
1590 should_link_to_symtab_(false),
730cdc88 1591 should_link_to_dynsym_(false),
27bc2bce 1592 after_input_sections_(false),
7bf1f802 1593 requires_postprocessing_(false),
a445fddf
ILT
1594 found_in_sections_clause_(false),
1595 has_load_address_(false),
755ab8af 1596 info_uses_section_index_(false),
7bf1f802 1597 tls_offset_(0)
a2fb1b05 1598{
27bc2bce
ILT
1599 // An unallocated section has no address. Forcing this means that
1600 // we don't need special treatment for symbols defined in debug
1601 // sections.
1602 if ((flags & elfcpp::SHF_ALLOC) == 0)
1603 this->set_address(0);
a2fb1b05
ILT
1604}
1605
54dc6425
ILT
1606Output_section::~Output_section()
1607{
1608}
1609
16649710
ILT
1610// Set the entry size.
1611
1612void
1613Output_section::set_entsize(uint64_t v)
1614{
1615 if (this->entsize_ == 0)
1616 this->entsize_ = v;
1617 else
1618 gold_assert(this->entsize_ == v);
1619}
1620
ead1e424 1621// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1622// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1623// relocation section which applies to this section, or 0 if none, or
1624// -1U if more than one. Return the offset of the input section
1625// within the output section. Return -1 if the input section will
1626// receive special handling. In the normal case we don't always keep
1627// track of input sections for an Output_section. Instead, each
1628// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1629// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1630// track of input sections here; this is used when SECTIONS appears in
1631// a linker script.
a2fb1b05
ILT
1632
1633template<int size, bool big_endian>
1634off_t
730cdc88
ILT
1635Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1636 unsigned int shndx,
ead1e424 1637 const char* secname,
730cdc88 1638 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1639 unsigned int reloc_shndx,
1640 bool have_sections_script)
a2fb1b05
ILT
1641{
1642 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1643 if ((addralign & (addralign - 1)) != 0)
1644 {
75f2446e
ILT
1645 object->error(_("invalid alignment %lu for section \"%s\""),
1646 static_cast<unsigned long>(addralign), secname);
1647 addralign = 1;
a2fb1b05 1648 }
a2fb1b05
ILT
1649
1650 if (addralign > this->addralign_)
1651 this->addralign_ = addralign;
1652
44a43cf9 1653 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
a445fddf
ILT
1654 this->flags_ |= (sh_flags
1655 & (elfcpp::SHF_WRITE
1656 | elfcpp::SHF_ALLOC
1657 | elfcpp::SHF_EXECINSTR));
1658
4f833eee 1659 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1660
1661 // .debug_str is a mergeable string section, but is not always so
1662 // marked by compilers. Mark manually here so we can optimize.
1663 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1664 {
1665 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1666 entsize = 1;
1667 }
44a43cf9 1668
b8e6aad9 1669 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1670 // a Output_data_merge. We don't try to handle relocations for such
1671 // a section.
44a43cf9 1672 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1673 && reloc_shndx == 0)
b8e6aad9 1674 {
44a43cf9 1675 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1676 entsize, addralign))
b8e6aad9
ILT
1677 {
1678 // Tell the relocation routines that they need to call the
730cdc88 1679 // output_offset method to determine the final address.
b8e6aad9
ILT
1680 return -1;
1681 }
1682 }
1683
27bc2bce 1684 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1685 off_t aligned_offset_in_section = align_address(offset_in_section,
1686 addralign);
1687
1688 if (aligned_offset_in_section > offset_in_section
a445fddf 1689 && !have_sections_script
44a43cf9 1690 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1691 && object->target()->has_code_fill())
1692 {
1693 // We need to add some fill data. Using fill_list_ when
1694 // possible is an optimization, since we will often have fill
1695 // sections without input sections.
1696 off_t fill_len = aligned_offset_in_section - offset_in_section;
1697 if (this->input_sections_.empty())
1698 this->fills_.push_back(Fill(offset_in_section, fill_len));
1699 else
1700 {
1701 // FIXME: When relaxing, the size needs to adjust to
1702 // maintain a constant alignment.
1703 std::string fill_data(object->target()->code_fill(fill_len));
1704 Output_data_const* odc = new Output_data_const(fill_data, 1);
1705 this->input_sections_.push_back(Input_section(odc));
1706 }
1707 }
1708
27bc2bce
ILT
1709 this->set_current_data_size_for_child(aligned_offset_in_section
1710 + shdr.get_sh_size());
a2fb1b05 1711
ead1e424
ILT
1712 // We need to keep track of this section if we are already keeping
1713 // track of sections, or if we are relaxing. FIXME: Add test for
1714 // relaxing.
a445fddf 1715 if (have_sections_script || !this->input_sections_.empty())
ead1e424
ILT
1716 this->input_sections_.push_back(Input_section(object, shndx,
1717 shdr.get_sh_size(),
1718 addralign));
54dc6425 1719
c51e6221 1720 return aligned_offset_in_section;
61ba1cf9
ILT
1721}
1722
ead1e424
ILT
1723// Add arbitrary data to an output section.
1724
1725void
1726Output_section::add_output_section_data(Output_section_data* posd)
1727{
b8e6aad9
ILT
1728 Input_section inp(posd);
1729 this->add_output_section_data(&inp);
a445fddf
ILT
1730
1731 if (posd->is_data_size_valid())
1732 {
1733 off_t offset_in_section = this->current_data_size_for_child();
1734 off_t aligned_offset_in_section = align_address(offset_in_section,
1735 posd->addralign());
1736 this->set_current_data_size_for_child(aligned_offset_in_section
1737 + posd->data_size());
1738 }
b8e6aad9
ILT
1739}
1740
1741// Add arbitrary data to an output section by Input_section.
c06b7b0b 1742
b8e6aad9
ILT
1743void
1744Output_section::add_output_section_data(Input_section* inp)
1745{
ead1e424 1746 if (this->input_sections_.empty())
27bc2bce 1747 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1748
b8e6aad9 1749 this->input_sections_.push_back(*inp);
c06b7b0b 1750
b8e6aad9 1751 uint64_t addralign = inp->addralign();
ead1e424
ILT
1752 if (addralign > this->addralign_)
1753 this->addralign_ = addralign;
c06b7b0b 1754
b8e6aad9
ILT
1755 inp->set_output_section(this);
1756}
1757
1758// Add a merge section to an output section.
1759
1760void
1761Output_section::add_output_merge_section(Output_section_data* posd,
1762 bool is_string, uint64_t entsize)
1763{
1764 Input_section inp(posd, is_string, entsize);
1765 this->add_output_section_data(&inp);
1766}
1767
1768// Add an input section to a SHF_MERGE section.
1769
1770bool
1771Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1772 uint64_t flags, uint64_t entsize,
96803768 1773 uint64_t addralign)
b8e6aad9 1774{
87f95776
ILT
1775 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1776
1777 // We only merge strings if the alignment is not more than the
1778 // character size. This could be handled, but it's unusual.
1779 if (is_string && addralign > entsize)
b8e6aad9
ILT
1780 return false;
1781
b8e6aad9
ILT
1782 Input_section_list::iterator p;
1783 for (p = this->input_sections_.begin();
1784 p != this->input_sections_.end();
1785 ++p)
87f95776 1786 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1787 {
1788 p->add_input_section(object, shndx);
1789 return true;
1790 }
b8e6aad9
ILT
1791
1792 // We handle the actual constant merging in Output_merge_data or
1793 // Output_merge_string_data.
9a0910c3
ILT
1794 Output_section_data* posd;
1795 if (!is_string)
1796 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1797 else
1798 {
9a0910c3
ILT
1799 switch (entsize)
1800 {
1801 case 1:
1802 posd = new Output_merge_string<char>(addralign);
1803 break;
1804 case 2:
1805 posd = new Output_merge_string<uint16_t>(addralign);
1806 break;
1807 case 4:
1808 posd = new Output_merge_string<uint32_t>(addralign);
1809 break;
1810 default:
1811 return false;
1812 }
b8e6aad9
ILT
1813 }
1814
9a0910c3
ILT
1815 this->add_output_merge_section(posd, is_string, entsize);
1816 posd->add_input_section(object, shndx);
1817
b8e6aad9
ILT
1818 return true;
1819}
1820
730cdc88
ILT
1821// Given an address OFFSET relative to the start of input section
1822// SHNDX in OBJECT, return whether this address is being included in
1823// the final link. This should only be called if SHNDX in OBJECT has
1824// a special mapping.
1825
1826bool
1827Output_section::is_input_address_mapped(const Relobj* object,
1828 unsigned int shndx,
1829 off_t offset) const
1830{
1831 gold_assert(object->is_section_specially_mapped(shndx));
1832
1833 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1834 p != this->input_sections_.end();
1835 ++p)
1836 {
8383303e 1837 section_offset_type output_offset;
730cdc88
ILT
1838 if (p->output_offset(object, shndx, offset, &output_offset))
1839 return output_offset != -1;
1840 }
1841
1842 // By default we assume that the address is mapped. This should
1843 // only be called after we have passed all sections to Layout. At
1844 // that point we should know what we are discarding.
1845 return true;
1846}
1847
1848// Given an address OFFSET relative to the start of input section
1849// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1850// start of the input section in the output section. This should only
1851// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1852
8383303e 1853section_offset_type
730cdc88 1854Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1855 section_offset_type offset) const
730cdc88
ILT
1856{
1857 gold_assert(object->is_section_specially_mapped(shndx));
1858 // This can only be called meaningfully when layout is complete.
1859 gold_assert(Output_data::is_layout_complete());
1860
1861 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1862 p != this->input_sections_.end();
1863 ++p)
1864 {
8383303e 1865 section_offset_type output_offset;
730cdc88
ILT
1866 if (p->output_offset(object, shndx, offset, &output_offset))
1867 return output_offset;
1868 }
1869 gold_unreachable();
1870}
1871
b8e6aad9
ILT
1872// Return the output virtual address of OFFSET relative to the start
1873// of input section SHNDX in object OBJECT.
1874
1875uint64_t
1876Output_section::output_address(const Relobj* object, unsigned int shndx,
1877 off_t offset) const
1878{
730cdc88 1879 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 1880
b8e6aad9
ILT
1881 uint64_t addr = this->address() + this->first_input_offset_;
1882 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1883 p != this->input_sections_.end();
1884 ++p)
1885 {
1886 addr = align_address(addr, p->addralign());
8383303e 1887 section_offset_type output_offset;
730cdc88
ILT
1888 if (p->output_offset(object, shndx, offset, &output_offset))
1889 {
1890 if (output_offset == -1)
1891 return -1U;
1892 return addr + output_offset;
1893 }
b8e6aad9
ILT
1894 addr += p->data_size();
1895 }
1896
1897 // If we get here, it means that we don't know the mapping for this
1898 // input section. This might happen in principle if
1899 // add_input_section were called before add_output_section_data.
1900 // But it should never actually happen.
1901
1902 gold_unreachable();
ead1e424
ILT
1903}
1904
a9a60db6
ILT
1905// Return the output address of the start of the merged section for
1906// input section SHNDX in object OBJECT.
1907
1908uint64_t
1909Output_section::starting_output_address(const Relobj* object,
1910 unsigned int shndx) const
1911{
1912 gold_assert(object->is_section_specially_mapped(shndx));
1913
1914 uint64_t addr = this->address() + this->first_input_offset_;
1915 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1916 p != this->input_sections_.end();
1917 ++p)
1918 {
1919 addr = align_address(addr, p->addralign());
1920
1921 // It would be nice if we could use the existing output_offset
1922 // method to get the output offset of input offset 0.
1923 // Unfortunately we don't know for sure that input offset 0 is
1924 // mapped at all.
1925 if (p->is_merge_section_for(object, shndx))
1926 return addr;
1927
1928 addr += p->data_size();
1929 }
1930 gold_unreachable();
1931}
1932
27bc2bce 1933// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1934// setting the addresses of any Output_section_data objects.
1935
1936void
27bc2bce 1937Output_section::set_final_data_size()
ead1e424
ILT
1938{
1939 if (this->input_sections_.empty())
27bc2bce
ILT
1940 {
1941 this->set_data_size(this->current_data_size_for_child());
1942 return;
1943 }
ead1e424 1944
27bc2bce
ILT
1945 uint64_t address = this->address();
1946 off_t startoff = this->offset();
ead1e424
ILT
1947 off_t off = startoff + this->first_input_offset_;
1948 for (Input_section_list::iterator p = this->input_sections_.begin();
1949 p != this->input_sections_.end();
1950 ++p)
1951 {
1952 off = align_address(off, p->addralign());
96803768
ILT
1953 p->set_address_and_file_offset(address + (off - startoff), off,
1954 startoff);
ead1e424
ILT
1955 off += p->data_size();
1956 }
1957
1958 this->set_data_size(off - startoff);
1959}
9a0910c3 1960
a445fddf
ILT
1961// Reset the address and file offset.
1962
1963void
1964Output_section::do_reset_address_and_file_offset()
1965{
1966 for (Input_section_list::iterator p = this->input_sections_.begin();
1967 p != this->input_sections_.end();
1968 ++p)
1969 p->reset_address_and_file_offset();
1970}
1971
7bf1f802
ILT
1972// Set the TLS offset. Called only for SHT_TLS sections.
1973
1974void
1975Output_section::do_set_tls_offset(uint64_t tls_base)
1976{
1977 this->tls_offset_ = this->address() - tls_base;
1978}
1979
61ba1cf9
ILT
1980// Write the section header to *OSHDR.
1981
1982template<int size, bool big_endian>
1983void
16649710
ILT
1984Output_section::write_header(const Layout* layout,
1985 const Stringpool* secnamepool,
61ba1cf9
ILT
1986 elfcpp::Shdr_write<size, big_endian>* oshdr) const
1987{
1988 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
1989 oshdr->put_sh_type(this->type_);
6a74a719
ILT
1990
1991 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 1992 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
1993 flags |= elfcpp::SHF_INFO_LINK;
1994 oshdr->put_sh_flags(flags);
1995
61ba1cf9
ILT
1996 oshdr->put_sh_addr(this->address());
1997 oshdr->put_sh_offset(this->offset());
1998 oshdr->put_sh_size(this->data_size());
16649710
ILT
1999 if (this->link_section_ != NULL)
2000 oshdr->put_sh_link(this->link_section_->out_shndx());
2001 else if (this->should_link_to_symtab_)
2002 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2003 else if (this->should_link_to_dynsym_)
2004 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2005 else
2006 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2007
2008 elfcpp::Elf_Word info;
16649710 2009 if (this->info_section_ != NULL)
755ab8af
ILT
2010 {
2011 if (this->info_uses_section_index_)
2012 info = this->info_section_->out_shndx();
2013 else
2014 info = this->info_section_->symtab_index();
2015 }
6a74a719 2016 else if (this->info_symndx_ != NULL)
755ab8af 2017 info = this->info_symndx_->symtab_index();
16649710 2018 else
755ab8af
ILT
2019 info = this->info_;
2020 oshdr->put_sh_info(info);
2021
61ba1cf9
ILT
2022 oshdr->put_sh_addralign(this->addralign_);
2023 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2024}
2025
ead1e424
ILT
2026// Write out the data. For input sections the data is written out by
2027// Object::relocate, but we have to handle Output_section_data objects
2028// here.
2029
2030void
2031Output_section::do_write(Output_file* of)
2032{
96803768
ILT
2033 gold_assert(!this->requires_postprocessing());
2034
c51e6221
ILT
2035 off_t output_section_file_offset = this->offset();
2036 for (Fill_list::iterator p = this->fills_.begin();
2037 p != this->fills_.end();
2038 ++p)
2039 {
8851ecca 2040 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2041 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2042 fill_data.data(), fill_data.size());
c51e6221
ILT
2043 }
2044
ead1e424
ILT
2045 for (Input_section_list::iterator p = this->input_sections_.begin();
2046 p != this->input_sections_.end();
2047 ++p)
2048 p->write(of);
2049}
2050
96803768
ILT
2051// If a section requires postprocessing, create the buffer to use.
2052
2053void
2054Output_section::create_postprocessing_buffer()
2055{
2056 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2057
2058 if (this->postprocessing_buffer_ != NULL)
2059 return;
96803768
ILT
2060
2061 if (!this->input_sections_.empty())
2062 {
2063 off_t off = this->first_input_offset_;
2064 for (Input_section_list::iterator p = this->input_sections_.begin();
2065 p != this->input_sections_.end();
2066 ++p)
2067 {
2068 off = align_address(off, p->addralign());
2069 p->finalize_data_size();
2070 off += p->data_size();
2071 }
2072 this->set_current_data_size_for_child(off);
2073 }
2074
2075 off_t buffer_size = this->current_data_size_for_child();
2076 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2077}
2078
2079// Write all the data of an Output_section into the postprocessing
2080// buffer. This is used for sections which require postprocessing,
2081// such as compression. Input sections are handled by
2082// Object::Relocate.
2083
2084void
2085Output_section::write_to_postprocessing_buffer()
2086{
2087 gold_assert(this->requires_postprocessing());
2088
96803768
ILT
2089 unsigned char* buffer = this->postprocessing_buffer();
2090 for (Fill_list::iterator p = this->fills_.begin();
2091 p != this->fills_.end();
2092 ++p)
2093 {
8851ecca 2094 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2095 memcpy(buffer + p->section_offset(), fill_data.data(),
2096 fill_data.size());
96803768
ILT
2097 }
2098
2099 off_t off = this->first_input_offset_;
2100 for (Input_section_list::iterator p = this->input_sections_.begin();
2101 p != this->input_sections_.end();
2102 ++p)
2103 {
2104 off = align_address(off, p->addralign());
2105 p->write_to_buffer(buffer + off);
2106 off += p->data_size();
2107 }
2108}
2109
a445fddf
ILT
2110// Get the input sections for linker script processing. We leave
2111// behind the Output_section_data entries. Note that this may be
2112// slightly incorrect for merge sections. We will leave them behind,
2113// but it is possible that the script says that they should follow
2114// some other input sections, as in:
2115// .rodata { *(.rodata) *(.rodata.cst*) }
2116// For that matter, we don't handle this correctly:
2117// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2118// With luck this will never matter.
2119
2120uint64_t
2121Output_section::get_input_sections(
2122 uint64_t address,
2123 const std::string& fill,
2124 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2125{
2126 uint64_t orig_address = address;
2127
2128 address = align_address(address, this->addralign());
2129
2130 Input_section_list remaining;
2131 for (Input_section_list::iterator p = this->input_sections_.begin();
2132 p != this->input_sections_.end();
2133 ++p)
2134 {
2135 if (p->is_input_section())
2136 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2137 else
2138 {
2139 uint64_t aligned_address = align_address(address, p->addralign());
2140 if (aligned_address != address && !fill.empty())
2141 {
2142 section_size_type length =
2143 convert_to_section_size_type(aligned_address - address);
2144 std::string this_fill;
2145 this_fill.reserve(length);
2146 while (this_fill.length() + fill.length() <= length)
2147 this_fill += fill;
2148 if (this_fill.length() < length)
2149 this_fill.append(fill, 0, length - this_fill.length());
2150
2151 Output_section_data* posd = new Output_data_const(this_fill, 0);
2152 remaining.push_back(Input_section(posd));
2153 }
2154 address = aligned_address;
2155
2156 remaining.push_back(*p);
2157
2158 p->finalize_data_size();
2159 address += p->data_size();
2160 }
2161 }
2162
2163 this->input_sections_.swap(remaining);
2164 this->first_input_offset_ = 0;
2165
2166 uint64_t data_size = address - orig_address;
2167 this->set_current_data_size_for_child(data_size);
2168 return data_size;
2169}
2170
2171// Add an input section from a script.
2172
2173void
2174Output_section::add_input_section_for_script(Relobj* object,
2175 unsigned int shndx,
2176 off_t data_size,
2177 uint64_t addralign)
2178{
2179 if (addralign > this->addralign_)
2180 this->addralign_ = addralign;
2181
2182 off_t offset_in_section = this->current_data_size_for_child();
2183 off_t aligned_offset_in_section = align_address(offset_in_section,
2184 addralign);
2185
2186 this->set_current_data_size_for_child(aligned_offset_in_section
2187 + data_size);
2188
2189 this->input_sections_.push_back(Input_section(object, shndx,
2190 data_size, addralign));
2191}
2192
38c5e8b4
ILT
2193// Print stats for merge sections to stderr.
2194
2195void
2196Output_section::print_merge_stats()
2197{
2198 Input_section_list::iterator p;
2199 for (p = this->input_sections_.begin();
2200 p != this->input_sections_.end();
2201 ++p)
2202 p->print_merge_stats(this->name_);
2203}
2204
a2fb1b05
ILT
2205// Output segment methods.
2206
2207Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2208 : output_data_(),
75f65a3e 2209 output_bss_(),
a2fb1b05
ILT
2210 vaddr_(0),
2211 paddr_(0),
2212 memsz_(0),
a445fddf
ILT
2213 max_align_(0),
2214 min_p_align_(0),
a2fb1b05
ILT
2215 offset_(0),
2216 filesz_(0),
2217 type_(type),
ead1e424 2218 flags_(flags),
a445fddf
ILT
2219 is_max_align_known_(false),
2220 are_addresses_set_(false)
a2fb1b05
ILT
2221{
2222}
2223
2224// Add an Output_section to an Output_segment.
2225
2226void
75f65a3e 2227Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
2228 elfcpp::Elf_Word seg_flags,
2229 bool front)
a2fb1b05 2230{
a3ad94ed 2231 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2232 gold_assert(!this->is_max_align_known_);
75f65a3e 2233
ead1e424 2234 // Update the segment flags.
75f65a3e 2235 this->flags_ |= seg_flags;
75f65a3e
ILT
2236
2237 Output_segment::Output_data_list* pdl;
2238 if (os->type() == elfcpp::SHT_NOBITS)
2239 pdl = &this->output_bss_;
2240 else
2241 pdl = &this->output_data_;
54dc6425 2242
a2fb1b05
ILT
2243 // So that PT_NOTE segments will work correctly, we need to ensure
2244 // that all SHT_NOTE sections are adjacent. This will normally
2245 // happen automatically, because all the SHT_NOTE input sections
2246 // will wind up in the same output section. However, it is possible
2247 // for multiple SHT_NOTE input sections to have different section
2248 // flags, and thus be in different output sections, but for the
2249 // different section flags to map into the same segment flags and
2250 // thus the same output segment.
54dc6425
ILT
2251
2252 // Note that while there may be many input sections in an output
2253 // section, there are normally only a few output sections in an
2254 // output segment. This loop is expected to be fast.
2255
61ba1cf9 2256 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2257 {
a3ad94ed 2258 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2259 do
54dc6425 2260 {
75f65a3e 2261 --p;
54dc6425
ILT
2262 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2263 {
dbe717ef 2264 // We don't worry about the FRONT parameter.
54dc6425 2265 ++p;
75f65a3e 2266 pdl->insert(p, os);
54dc6425
ILT
2267 return;
2268 }
2269 }
75f65a3e 2270 while (p != pdl->begin());
54dc6425
ILT
2271 }
2272
2273 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2274 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2275 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2276 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2277 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2278 // and the PT_TLS segment -- we do this grouping only for the
2279 // PT_LOAD segment.
2280 if (this->type_ != elfcpp::PT_TLS
2281 && (os->flags() & elfcpp::SHF_TLS) != 0
2282 && !this->output_data_.empty())
54dc6425 2283 {
75f65a3e
ILT
2284 pdl = &this->output_data_;
2285 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2286 bool sawtls = false;
a3ad94ed 2287 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2288 do
a2fb1b05 2289 {
75f65a3e 2290 --p;
ead1e424
ILT
2291 bool insert;
2292 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2293 {
2294 sawtls = true;
2295 // Put a NOBITS section after the first TLS section.
2296 // But a PROGBITS section after the first TLS/PROGBITS
2297 // section.
2298 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2299 }
2300 else
2301 {
2302 // If we've gone past the TLS sections, but we've seen a
2303 // TLS section, then we need to insert this section now.
2304 insert = sawtls;
2305 }
2306
2307 if (insert)
a2fb1b05 2308 {
dbe717ef 2309 // We don't worry about the FRONT parameter.
a2fb1b05 2310 ++p;
75f65a3e 2311 pdl->insert(p, os);
a2fb1b05
ILT
2312 return;
2313 }
2314 }
75f65a3e 2315 while (p != pdl->begin());
ead1e424 2316
dbe717ef
ILT
2317 // There are no TLS sections yet; put this one at the requested
2318 // location in the section list.
a2fb1b05
ILT
2319 }
2320
dbe717ef
ILT
2321 if (front)
2322 pdl->push_front(os);
2323 else
2324 pdl->push_back(os);
75f65a3e
ILT
2325}
2326
1650c4ff
ILT
2327// Remove an Output_section from this segment. It is an error if it
2328// is not present.
2329
2330void
2331Output_segment::remove_output_section(Output_section* os)
2332{
2333 // We only need this for SHT_PROGBITS.
2334 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2335 for (Output_data_list::iterator p = this->output_data_.begin();
2336 p != this->output_data_.end();
2337 ++p)
2338 {
2339 if (*p == os)
2340 {
2341 this->output_data_.erase(p);
2342 return;
2343 }
2344 }
2345 gold_unreachable();
2346}
2347
75f65a3e
ILT
2348// Add an Output_data (which is not an Output_section) to the start of
2349// a segment.
2350
2351void
2352Output_segment::add_initial_output_data(Output_data* od)
2353{
a445fddf 2354 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2355 this->output_data_.push_front(od);
2356}
2357
2358// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2359
2360uint64_t
a445fddf 2361Output_segment::maximum_alignment()
75f65a3e 2362{
a445fddf 2363 if (!this->is_max_align_known_)
ead1e424
ILT
2364 {
2365 uint64_t addralign;
2366
a445fddf
ILT
2367 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2368 if (addralign > this->max_align_)
2369 this->max_align_ = addralign;
ead1e424 2370
a445fddf
ILT
2371 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2372 if (addralign > this->max_align_)
2373 this->max_align_ = addralign;
ead1e424 2374
a445fddf 2375 this->is_max_align_known_ = true;
ead1e424
ILT
2376 }
2377
a445fddf 2378 return this->max_align_;
75f65a3e
ILT
2379}
2380
ead1e424
ILT
2381// Return the maximum alignment of a list of Output_data.
2382
2383uint64_t
a445fddf 2384Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2385{
2386 uint64_t ret = 0;
2387 for (Output_data_list::const_iterator p = pdl->begin();
2388 p != pdl->end();
2389 ++p)
2390 {
2391 uint64_t addralign = (*p)->addralign();
2392 if (addralign > ret)
2393 ret = addralign;
2394 }
2395 return ret;
2396}
2397
4f4c5f80
ILT
2398// Return the number of dynamic relocs applied to this segment.
2399
2400unsigned int
2401Output_segment::dynamic_reloc_count() const
2402{
2403 return (this->dynamic_reloc_count_list(&this->output_data_)
2404 + this->dynamic_reloc_count_list(&this->output_bss_));
2405}
2406
2407// Return the number of dynamic relocs applied to an Output_data_list.
2408
2409unsigned int
2410Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2411{
2412 unsigned int count = 0;
2413 for (Output_data_list::const_iterator p = pdl->begin();
2414 p != pdl->end();
2415 ++p)
2416 count += (*p)->dynamic_reloc_count();
2417 return count;
2418}
2419
a445fddf
ILT
2420// Set the section addresses for an Output_segment. If RESET is true,
2421// reset the addresses first. ADDR is the address and *POFF is the
2422// file offset. Set the section indexes starting with *PSHNDX.
2423// Return the address of the immediately following segment. Update
2424// *POFF and *PSHNDX.
75f65a3e
ILT
2425
2426uint64_t
96a2b4e4
ILT
2427Output_segment::set_section_addresses(const Layout* layout, bool reset,
2428 uint64_t addr, off_t* poff,
ead1e424 2429 unsigned int* pshndx)
75f65a3e 2430{
a3ad94ed 2431 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2432
a445fddf
ILT
2433 if (!reset && this->are_addresses_set_)
2434 {
2435 gold_assert(this->paddr_ == addr);
2436 addr = this->vaddr_;
2437 }
2438 else
2439 {
2440 this->vaddr_ = addr;
2441 this->paddr_ = addr;
2442 this->are_addresses_set_ = true;
2443 }
75f65a3e 2444
96a2b4e4
ILT
2445 bool in_tls = false;
2446
75f65a3e
ILT
2447 off_t orig_off = *poff;
2448 this->offset_ = orig_off;
2449
96a2b4e4
ILT
2450 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2451 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
2452 this->filesz_ = *poff - orig_off;
2453
2454 off_t off = *poff;
2455
96a2b4e4
ILT
2456 uint64_t ret = this->set_section_list_addresses(layout, reset,
2457 &this->output_bss_,
2458 addr, poff, pshndx,
2459 &in_tls);
2460
2461 // If the last section was a TLS section, align upward to the
2462 // alignment of the TLS segment, so that the overall size of the TLS
2463 // segment is aligned.
2464 if (in_tls)
2465 {
2466 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2467 *poff = align_address(*poff, segment_align);
2468 }
2469
75f65a3e
ILT
2470 this->memsz_ = *poff - orig_off;
2471
2472 // Ignore the file offset adjustments made by the BSS Output_data
2473 // objects.
2474 *poff = off;
61ba1cf9
ILT
2475
2476 return ret;
75f65a3e
ILT
2477}
2478
b8e6aad9
ILT
2479// Set the addresses and file offsets in a list of Output_data
2480// structures.
75f65a3e
ILT
2481
2482uint64_t
96a2b4e4
ILT
2483Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2484 Output_data_list* pdl,
ead1e424 2485 uint64_t addr, off_t* poff,
96a2b4e4
ILT
2486 unsigned int* pshndx,
2487 bool* in_tls)
75f65a3e 2488{
ead1e424 2489 off_t startoff = *poff;
75f65a3e 2490
ead1e424 2491 off_t off = startoff;
75f65a3e
ILT
2492 for (Output_data_list::iterator p = pdl->begin();
2493 p != pdl->end();
2494 ++p)
2495 {
a445fddf
ILT
2496 if (reset)
2497 (*p)->reset_address_and_file_offset();
2498
2499 // When using a linker script the section will most likely
2500 // already have an address.
2501 if (!(*p)->is_address_valid())
3802b2dd 2502 {
96a2b4e4
ILT
2503 uint64_t align = (*p)->addralign();
2504
2505 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2506 {
2507 // Give the first TLS section the alignment of the
2508 // entire TLS segment. Otherwise the TLS segment as a
2509 // whole may be misaligned.
2510 if (!*in_tls)
2511 {
2512 Output_segment* tls_segment = layout->tls_segment();
2513 gold_assert(tls_segment != NULL);
2514 uint64_t segment_align = tls_segment->maximum_alignment();
2515 gold_assert(segment_align >= align);
2516 align = segment_align;
2517
2518 *in_tls = true;
2519 }
2520 }
2521 else
2522 {
2523 // If this is the first section after the TLS segment,
2524 // align it to at least the alignment of the TLS
2525 // segment, so that the size of the overall TLS segment
2526 // is aligned.
2527 if (*in_tls)
2528 {
2529 uint64_t segment_align =
2530 layout->tls_segment()->maximum_alignment();
2531 if (segment_align > align)
2532 align = segment_align;
2533
2534 *in_tls = false;
2535 }
2536 }
2537
2538 off = align_address(off, align);
3802b2dd
ILT
2539 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2540 }
a445fddf
ILT
2541 else
2542 {
2543 // The script may have inserted a skip forward, but it
2544 // better not have moved backward.
3802b2dd
ILT
2545 gold_assert((*p)->address() >= addr + (off - startoff));
2546 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2547 (*p)->set_file_offset(off);
2548 (*p)->finalize_data_size();
2549 }
ead1e424 2550
96a2b4e4
ILT
2551 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2552 // section. Such a section does not affect the size of a
2553 // PT_LOAD segment.
2554 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2555 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2556 off += (*p)->data_size();
75f65a3e 2557
ead1e424
ILT
2558 if ((*p)->is_section())
2559 {
2560 (*p)->set_out_shndx(*pshndx);
2561 ++*pshndx;
2562 }
75f65a3e
ILT
2563 }
2564
2565 *poff = off;
ead1e424 2566 return addr + (off - startoff);
75f65a3e
ILT
2567}
2568
2569// For a non-PT_LOAD segment, set the offset from the sections, if
2570// any.
2571
2572void
2573Output_segment::set_offset()
2574{
a3ad94ed 2575 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2576
a445fddf
ILT
2577 gold_assert(!this->are_addresses_set_);
2578
75f65a3e
ILT
2579 if (this->output_data_.empty() && this->output_bss_.empty())
2580 {
2581 this->vaddr_ = 0;
2582 this->paddr_ = 0;
a445fddf 2583 this->are_addresses_set_ = true;
75f65a3e 2584 this->memsz_ = 0;
a445fddf 2585 this->min_p_align_ = 0;
75f65a3e
ILT
2586 this->offset_ = 0;
2587 this->filesz_ = 0;
2588 return;
2589 }
2590
2591 const Output_data* first;
2592 if (this->output_data_.empty())
2593 first = this->output_bss_.front();
2594 else
2595 first = this->output_data_.front();
2596 this->vaddr_ = first->address();
a445fddf
ILT
2597 this->paddr_ = (first->has_load_address()
2598 ? first->load_address()
2599 : this->vaddr_);
2600 this->are_addresses_set_ = true;
75f65a3e
ILT
2601 this->offset_ = first->offset();
2602
2603 if (this->output_data_.empty())
2604 this->filesz_ = 0;
2605 else
2606 {
2607 const Output_data* last_data = this->output_data_.back();
2608 this->filesz_ = (last_data->address()
2609 + last_data->data_size()
2610 - this->vaddr_);
2611 }
2612
2613 const Output_data* last;
2614 if (this->output_bss_.empty())
2615 last = this->output_data_.back();
2616 else
2617 last = this->output_bss_.back();
2618 this->memsz_ = (last->address()
2619 + last->data_size()
2620 - this->vaddr_);
96a2b4e4
ILT
2621
2622 // If this is a TLS segment, align the memory size. The code in
2623 // set_section_list ensures that the section after the TLS segment
2624 // is aligned to give us room.
2625 if (this->type_ == elfcpp::PT_TLS)
2626 {
2627 uint64_t segment_align = this->maximum_alignment();
2628 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2629 this->memsz_ = align_address(this->memsz_, segment_align);
2630 }
75f65a3e
ILT
2631}
2632
7bf1f802
ILT
2633// Set the TLS offsets of the sections in the PT_TLS segment.
2634
2635void
2636Output_segment::set_tls_offsets()
2637{
2638 gold_assert(this->type_ == elfcpp::PT_TLS);
2639
2640 for (Output_data_list::iterator p = this->output_data_.begin();
2641 p != this->output_data_.end();
2642 ++p)
2643 (*p)->set_tls_offset(this->vaddr_);
2644
2645 for (Output_data_list::iterator p = this->output_bss_.begin();
2646 p != this->output_bss_.end();
2647 ++p)
2648 (*p)->set_tls_offset(this->vaddr_);
2649}
2650
a445fddf
ILT
2651// Return the address of the first section.
2652
2653uint64_t
2654Output_segment::first_section_load_address() const
2655{
2656 for (Output_data_list::const_iterator p = this->output_data_.begin();
2657 p != this->output_data_.end();
2658 ++p)
2659 if ((*p)->is_section())
2660 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2661
2662 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2663 p != this->output_bss_.end();
2664 ++p)
2665 if ((*p)->is_section())
2666 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2667
2668 gold_unreachable();
2669}
2670
75f65a3e
ILT
2671// Return the number of Output_sections in an Output_segment.
2672
2673unsigned int
2674Output_segment::output_section_count() const
2675{
2676 return (this->output_section_count_list(&this->output_data_)
2677 + this->output_section_count_list(&this->output_bss_));
2678}
2679
2680// Return the number of Output_sections in an Output_data_list.
2681
2682unsigned int
2683Output_segment::output_section_count_list(const Output_data_list* pdl) const
2684{
2685 unsigned int count = 0;
2686 for (Output_data_list::const_iterator p = pdl->begin();
2687 p != pdl->end();
2688 ++p)
2689 {
2690 if ((*p)->is_section())
2691 ++count;
2692 }
2693 return count;
a2fb1b05
ILT
2694}
2695
1c4f3631
ILT
2696// Return the section attached to the list segment with the lowest
2697// load address. This is used when handling a PHDRS clause in a
2698// linker script.
2699
2700Output_section*
2701Output_segment::section_with_lowest_load_address() const
2702{
2703 Output_section* found = NULL;
2704 uint64_t found_lma = 0;
2705 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2706
2707 Output_section* found_data = found;
2708 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2709 if (found != found_data && found_data != NULL)
2710 {
2711 gold_error(_("nobits section %s may not precede progbits section %s "
2712 "in same segment"),
2713 found->name(), found_data->name());
2714 return NULL;
2715 }
2716
2717 return found;
2718}
2719
2720// Look through a list for a section with a lower load address.
2721
2722void
2723Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2724 Output_section** found,
2725 uint64_t* found_lma) const
2726{
2727 for (Output_data_list::const_iterator p = pdl->begin();
2728 p != pdl->end();
2729 ++p)
2730 {
2731 if (!(*p)->is_section())
2732 continue;
2733 Output_section* os = static_cast<Output_section*>(*p);
2734 uint64_t lma = (os->has_load_address()
2735 ? os->load_address()
2736 : os->address());
2737 if (*found == NULL || lma < *found_lma)
2738 {
2739 *found = os;
2740 *found_lma = lma;
2741 }
2742 }
2743}
2744
61ba1cf9
ILT
2745// Write the segment data into *OPHDR.
2746
2747template<int size, bool big_endian>
2748void
ead1e424 2749Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2750{
2751 ophdr->put_p_type(this->type_);
2752 ophdr->put_p_offset(this->offset_);
2753 ophdr->put_p_vaddr(this->vaddr_);
2754 ophdr->put_p_paddr(this->paddr_);
2755 ophdr->put_p_filesz(this->filesz_);
2756 ophdr->put_p_memsz(this->memsz_);
2757 ophdr->put_p_flags(this->flags_);
a445fddf 2758 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
2759}
2760
2761// Write the section headers into V.
2762
2763template<int size, bool big_endian>
2764unsigned char*
16649710
ILT
2765Output_segment::write_section_headers(const Layout* layout,
2766 const Stringpool* secnamepool,
ead1e424 2767 unsigned char* v,
7d1a9ebb 2768 unsigned int *pshndx) const
5482377d 2769{
ead1e424
ILT
2770 // Every section that is attached to a segment must be attached to a
2771 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2772 // segments.
2773 if (this->type_ != elfcpp::PT_LOAD)
2774 return v;
2775
7d1a9ebb
ILT
2776 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2777 &this->output_data_,
2778 v, pshndx);
2779 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
2780 &this->output_bss_,
2781 v, pshndx);
61ba1cf9
ILT
2782 return v;
2783}
2784
2785template<int size, bool big_endian>
2786unsigned char*
16649710
ILT
2787Output_segment::write_section_headers_list(const Layout* layout,
2788 const Stringpool* secnamepool,
61ba1cf9 2789 const Output_data_list* pdl,
ead1e424 2790 unsigned char* v,
7d1a9ebb 2791 unsigned int* pshndx) const
61ba1cf9
ILT
2792{
2793 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2794 for (Output_data_list::const_iterator p = pdl->begin();
2795 p != pdl->end();
2796 ++p)
2797 {
2798 if ((*p)->is_section())
2799 {
5482377d 2800 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 2801 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 2802 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 2803 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 2804 v += shdr_size;
ead1e424 2805 ++*pshndx;
61ba1cf9
ILT
2806 }
2807 }
2808 return v;
2809}
2810
a2fb1b05
ILT
2811// Output_file methods.
2812
14144f39
ILT
2813Output_file::Output_file(const char* name)
2814 : name_(name),
61ba1cf9
ILT
2815 o_(-1),
2816 file_size_(0),
c420411f 2817 base_(NULL),
516cb3d0
ILT
2818 map_is_anonymous_(false),
2819 is_temporary_(false)
61ba1cf9
ILT
2820{
2821}
2822
2823// Open the output file.
2824
a2fb1b05 2825void
61ba1cf9 2826Output_file::open(off_t file_size)
a2fb1b05 2827{
61ba1cf9
ILT
2828 this->file_size_ = file_size;
2829
4e9d8586
ILT
2830 // Unlink the file first; otherwise the open() may fail if the file
2831 // is busy (e.g. it's an executable that's currently being executed).
2832 //
2833 // However, the linker may be part of a system where a zero-length
2834 // file is created for it to write to, with tight permissions (gcc
2835 // 2.95 did something like this). Unlinking the file would work
2836 // around those permission controls, so we only unlink if the file
2837 // has a non-zero size. We also unlink only regular files to avoid
2838 // trouble with directories/etc.
2839 //
2840 // If we fail, continue; this command is merely a best-effort attempt
2841 // to improve the odds for open().
2842
42a1b686 2843 // We let the name "-" mean "stdout"
516cb3d0 2844 if (!this->is_temporary_)
42a1b686 2845 {
516cb3d0
ILT
2846 if (strcmp(this->name_, "-") == 0)
2847 this->o_ = STDOUT_FILENO;
2848 else
2849 {
2850 struct stat s;
2851 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
2852 unlink_if_ordinary(this->name_);
2853
8851ecca 2854 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
2855 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
2856 if (o < 0)
2857 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
2858 this->o_ = o;
2859 }
42a1b686 2860 }
61ba1cf9 2861
27bc2bce
ILT
2862 this->map();
2863}
2864
2865// Resize the output file.
2866
2867void
2868Output_file::resize(off_t file_size)
2869{
c420411f
ILT
2870 // If the mmap is mapping an anonymous memory buffer, this is easy:
2871 // just mremap to the new size. If it's mapping to a file, we want
2872 // to unmap to flush to the file, then remap after growing the file.
2873 if (this->map_is_anonymous_)
2874 {
2875 void* base = ::mremap(this->base_, this->file_size_, file_size,
2876 MREMAP_MAYMOVE);
2877 if (base == MAP_FAILED)
2878 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
2879 this->base_ = static_cast<unsigned char*>(base);
2880 this->file_size_ = file_size;
2881 }
2882 else
2883 {
2884 this->unmap();
2885 this->file_size_ = file_size;
2886 this->map();
2887 }
27bc2bce
ILT
2888}
2889
2890// Map the file into memory.
2891
2892void
2893Output_file::map()
2894{
c420411f 2895 const int o = this->o_;
61ba1cf9 2896
c420411f
ILT
2897 // If the output file is not a regular file, don't try to mmap it;
2898 // instead, we'll mmap a block of memory (an anonymous buffer), and
2899 // then later write the buffer to the file.
2900 void* base;
2901 struct stat statbuf;
42a1b686
ILT
2902 if (o == STDOUT_FILENO || o == STDERR_FILENO
2903 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
2904 || !S_ISREG(statbuf.st_mode)
2905 || this->is_temporary_)
c420411f
ILT
2906 {
2907 this->map_is_anonymous_ = true;
2908 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2909 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2910 }
2911 else
2912 {
2913 // Write out one byte to make the file the right size.
2914 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
2915 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
2916 char b = 0;
2917 if (::write(o, &b, 1) != 1)
2918 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
2919
2920 // Map the file into memory.
2921 this->map_is_anonymous_ = false;
2922 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
2923 MAP_SHARED, o, 0);
2924 }
61ba1cf9 2925 if (base == MAP_FAILED)
75f2446e 2926 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
2927 this->base_ = static_cast<unsigned char*>(base);
2928}
2929
c420411f 2930// Unmap the file from memory.
61ba1cf9
ILT
2931
2932void
c420411f 2933Output_file::unmap()
61ba1cf9
ILT
2934{
2935 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 2936 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 2937 this->base_ = NULL;
c420411f
ILT
2938}
2939
2940// Close the output file.
2941
2942void
2943Output_file::close()
2944{
2945 // If the map isn't file-backed, we need to write it now.
516cb3d0 2946 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
2947 {
2948 size_t bytes_to_write = this->file_size_;
2949 while (bytes_to_write > 0)
2950 {
2951 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
2952 if (bytes_written == 0)
2953 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
2954 else if (bytes_written < 0)
2955 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
2956 else
2957 bytes_to_write -= bytes_written;
2958 }
2959 }
2960 this->unmap();
61ba1cf9 2961
42a1b686 2962 // We don't close stdout or stderr
516cb3d0
ILT
2963 if (this->o_ != STDOUT_FILENO
2964 && this->o_ != STDERR_FILENO
2965 && !this->is_temporary_)
42a1b686
ILT
2966 if (::close(this->o_) < 0)
2967 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 2968 this->o_ = -1;
a2fb1b05
ILT
2969}
2970
2971// Instantiate the templates we need. We could use the configure
2972// script to restrict this to only the ones for implemented targets.
2973
193a53d9 2974#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
2975template
2976off_t
2977Output_section::add_input_section<32, false>(
730cdc88 2978 Sized_relobj<32, false>* object,
ead1e424 2979 unsigned int shndx,
a2fb1b05 2980 const char* secname,
730cdc88 2981 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
2982 unsigned int reloc_shndx,
2983 bool have_sections_script);
193a53d9 2984#endif
a2fb1b05 2985
193a53d9 2986#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
2987template
2988off_t
2989Output_section::add_input_section<32, true>(
730cdc88 2990 Sized_relobj<32, true>* object,
ead1e424 2991 unsigned int shndx,
a2fb1b05 2992 const char* secname,
730cdc88 2993 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
2994 unsigned int reloc_shndx,
2995 bool have_sections_script);
193a53d9 2996#endif
a2fb1b05 2997
193a53d9 2998#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
2999template
3000off_t
3001Output_section::add_input_section<64, false>(
730cdc88 3002 Sized_relobj<64, false>* object,
ead1e424 3003 unsigned int shndx,
a2fb1b05 3004 const char* secname,
730cdc88 3005 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3006 unsigned int reloc_shndx,
3007 bool have_sections_script);
193a53d9 3008#endif
a2fb1b05 3009
193a53d9 3010#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3011template
3012off_t
3013Output_section::add_input_section<64, true>(
730cdc88 3014 Sized_relobj<64, true>* object,
ead1e424 3015 unsigned int shndx,
a2fb1b05 3016 const char* secname,
730cdc88 3017 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3018 unsigned int reloc_shndx,
3019 bool have_sections_script);
193a53d9 3020#endif
a2fb1b05 3021
193a53d9 3022#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3023template
3024class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3025#endif
c06b7b0b 3026
193a53d9 3027#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3028template
3029class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3030#endif
c06b7b0b 3031
193a53d9 3032#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3033template
3034class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3035#endif
c06b7b0b 3036
193a53d9 3037#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3038template
3039class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3040#endif
c06b7b0b 3041
193a53d9 3042#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3043template
3044class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3045#endif
c06b7b0b 3046
193a53d9 3047#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3048template
3049class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3050#endif
c06b7b0b 3051
193a53d9 3052#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3053template
3054class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3055#endif
c06b7b0b 3056
193a53d9 3057#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3058template
3059class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3060#endif
c06b7b0b 3061
193a53d9 3062#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3063template
3064class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3065#endif
c06b7b0b 3066
193a53d9 3067#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3068template
3069class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3070#endif
c06b7b0b 3071
193a53d9 3072#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3073template
3074class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3075#endif
c06b7b0b 3076
193a53d9 3077#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3078template
3079class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3080#endif
c06b7b0b 3081
193a53d9 3082#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3083template
3084class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3085#endif
c06b7b0b 3086
193a53d9 3087#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3088template
3089class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3090#endif
c06b7b0b 3091
193a53d9 3092#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3093template
3094class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3095#endif
c06b7b0b 3096
193a53d9 3097#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3098template
3099class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3100#endif
c06b7b0b 3101
6a74a719
ILT
3102#ifdef HAVE_TARGET_32_LITTLE
3103template
3104class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3105#endif
3106
3107#ifdef HAVE_TARGET_32_BIG
3108template
3109class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3110#endif
3111
3112#ifdef HAVE_TARGET_64_LITTLE
3113template
3114class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3115#endif
3116
3117#ifdef HAVE_TARGET_64_BIG
3118template
3119class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3120#endif
3121
3122#ifdef HAVE_TARGET_32_LITTLE
3123template
3124class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3125#endif
3126
3127#ifdef HAVE_TARGET_32_BIG
3128template
3129class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3130#endif
3131
3132#ifdef HAVE_TARGET_64_LITTLE
3133template
3134class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3135#endif
3136
3137#ifdef HAVE_TARGET_64_BIG
3138template
3139class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3140#endif
3141
3142#ifdef HAVE_TARGET_32_LITTLE
3143template
3144class Output_data_group<32, false>;
3145#endif
3146
3147#ifdef HAVE_TARGET_32_BIG
3148template
3149class Output_data_group<32, true>;
3150#endif
3151
3152#ifdef HAVE_TARGET_64_LITTLE
3153template
3154class Output_data_group<64, false>;
3155#endif
3156
3157#ifdef HAVE_TARGET_64_BIG
3158template
3159class Output_data_group<64, true>;
3160#endif
3161
193a53d9 3162#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3163template
dbe717ef 3164class Output_data_got<32, false>;
193a53d9 3165#endif
ead1e424 3166
193a53d9 3167#ifdef HAVE_TARGET_32_BIG
ead1e424 3168template
dbe717ef 3169class Output_data_got<32, true>;
193a53d9 3170#endif
ead1e424 3171
193a53d9 3172#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3173template
dbe717ef 3174class Output_data_got<64, false>;
193a53d9 3175#endif
ead1e424 3176
193a53d9 3177#ifdef HAVE_TARGET_64_BIG
ead1e424 3178template
dbe717ef 3179class Output_data_got<64, true>;
193a53d9 3180#endif
ead1e424 3181
a2fb1b05 3182} // End namespace gold.
This page took 0.23789 seconds and 4 git commands to generate.