*** empty log message ***
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
d77a0555
ILT
3// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4// Free Software Foundation, Inc.
6cb15b7f
ILT
5// Written by Ian Lance Taylor <iant@google.com>.
6
7// This file is part of gold.
8
9// This program is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 3 of the License, or
12// (at your option) any later version.
13
14// This program is distributed in the hope that it will be useful,
15// but WITHOUT ANY WARRANTY; without even the implied warranty of
16// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17// GNU General Public License for more details.
18
19// You should have received a copy of the GNU General Public License
20// along with this program; if not, write to the Free Software
21// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22// MA 02110-1301, USA.
23
a2fb1b05
ILT
24#include "gold.h"
25
26#include <cstdlib>
04bf7072 27#include <cstring>
61ba1cf9
ILT
28#include <cerrno>
29#include <fcntl.h>
30#include <unistd.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
88597d34
ILT
33
34#ifdef HAVE_SYS_MMAN_H
35#include <sys/mman.h>
36#endif
37
6a89f575 38#include "libiberty.h"
a2fb1b05 39
8ea8cd50 40#include "dwarf.h"
7e1edb90 41#include "parameters.h"
a2fb1b05 42#include "object.h"
ead1e424
ILT
43#include "symtab.h"
44#include "reloc.h"
b8e6aad9 45#include "merge.h"
2a00e4fb 46#include "descriptors.h"
5393d741 47#include "layout.h"
a2fb1b05
ILT
48#include "output.h"
49
88597d34
ILT
50// For systems without mmap support.
51#ifndef HAVE_MMAP
52# define mmap gold_mmap
53# define munmap gold_munmap
54# define mremap gold_mremap
55# ifndef MAP_FAILED
56# define MAP_FAILED (reinterpret_cast<void*>(-1))
57# endif
58# ifndef PROT_READ
59# define PROT_READ 0
60# endif
61# ifndef PROT_WRITE
62# define PROT_WRITE 0
63# endif
64# ifndef MAP_PRIVATE
65# define MAP_PRIVATE 0
66# endif
67# ifndef MAP_ANONYMOUS
68# define MAP_ANONYMOUS 0
69# endif
70# ifndef MAP_SHARED
71# define MAP_SHARED 0
72# endif
73
74# ifndef ENOSYS
75# define ENOSYS EINVAL
76# endif
77
78static void *
79gold_mmap(void *, size_t, int, int, int, off_t)
80{
81 errno = ENOSYS;
82 return MAP_FAILED;
83}
84
85static int
86gold_munmap(void *, size_t)
87{
88 errno = ENOSYS;
89 return -1;
90}
91
92static void *
93gold_mremap(void *, size_t, size_t, int)
94{
95 errno = ENOSYS;
96 return MAP_FAILED;
97}
98
99#endif
100
101#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102# define mremap gold_mremap
103extern "C" void *gold_mremap(void *, size_t, size_t, int);
104#endif
105
c420411f
ILT
106// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107#ifndef MAP_ANONYMOUS
108# define MAP_ANONYMOUS MAP_ANON
109#endif
110
88597d34
ILT
111#ifndef MREMAP_MAYMOVE
112# define MREMAP_MAYMOVE 1
113#endif
114
d0a9ace3
ILT
115// Mingw does not have S_ISLNK.
116#ifndef S_ISLNK
117# define S_ISLNK(mode) 0
118#endif
119
a2fb1b05
ILT
120namespace gold
121{
122
7c0640fa
CC
123// A wrapper around posix_fallocate. If we don't have posix_fallocate,
124// or the --no-posix-fallocate option is set, we try the fallocate
125// system call directly. If that fails, we use ftruncate to set
126// the file size and hope that there is enough disk space.
127
128static int
129gold_fallocate(int o, off_t offset, off_t len)
130{
131#ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134#endif // defined(HAVE_POSIX_FALLOCATE)
135#ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138#endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142}
143
a3ad94ed
ILT
144// Output_data variables.
145
27bc2bce 146bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 147
a2fb1b05
ILT
148// Output_data methods.
149
150Output_data::~Output_data()
151{
152}
153
730cdc88
ILT
154// Return the default alignment for the target size.
155
156uint64_t
157Output_data::default_alignment()
158{
8851ecca
ILT
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
730cdc88
ILT
161}
162
75f65a3e
ILT
163// Return the default alignment for a size--32 or 64.
164
165uint64_t
730cdc88 166Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
167{
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
a3ad94ed 173 gold_unreachable();
75f65a3e
ILT
174}
175
75f65a3e
ILT
176// Output_section_header methods. This currently assumes that the
177// segment and section lists are complete at construction time.
178
179Output_section_headers::Output_section_headers(
16649710
ILT
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
6a74a719 182 const Layout::Section_list* section_list,
16649710 183 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
9025d29d 186 : layout_(layout),
75f65a3e 187 segment_list_(segment_list),
6a74a719 188 section_list_(section_list),
a3ad94ed 189 unattached_section_list_(unattached_section_list),
d491d34e
ILT
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
192{
193}
194
195// Compute the current data size.
196
197off_t
198Output_section_headers::do_size() const
75f65a3e 199{
61ba1cf9
ILT
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
8851ecca 202 if (!parameters->options().relocatable())
6a74a719 203 {
20e6d0d6
DK
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
6a74a719
ILT
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
20e6d0d6
DK
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
6a74a719
ILT
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
20e6d0d6 220 count += this->unattached_section_list_->size();
75f65a3e 221
8851ecca 222 const int size = parameters->target().get_size();
75f65a3e
ILT
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
a3ad94ed 229 gold_unreachable();
75f65a3e 230
20e6d0d6 231 return count * shdr_size;
75f65a3e
ILT
232}
233
61ba1cf9
ILT
234// Write out the section headers.
235
75f65a3e 236void
61ba1cf9 237Output_section_headers::do_write(Output_file* of)
a2fb1b05 238{
8851ecca 239 switch (parameters->size_and_endianness())
61ba1cf9 240 {
9025d29d 241#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
9025d29d 245#endif
8851ecca
ILT
246#ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
9025d29d 250#endif
9025d29d 251#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
9025d29d 255#endif
8851ecca
ILT
256#ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260#endif
261 default:
262 gold_unreachable();
61ba1cf9 263 }
61ba1cf9
ILT
264}
265
266template<int size, bool big_endian>
267void
268Output_section_headers::do_sized_write(Output_file* of)
269{
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
d491d34e
ILT
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
5696ab0b
ILT
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
61ba1cf9
ILT
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
6a74a719 306 unsigned int shndx = 1;
8851ecca 307 if (!parameters->options().relocatable())
6a74a719
ILT
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
a3ad94ed 338 for (Layout::Section_list::const_iterator p =
16649710
ILT
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
61ba1cf9
ILT
341 ++p)
342 {
6a74a719
ILT
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 346 && parameters->options().relocatable())
6a74a719 347 continue;
a3ad94ed 348 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 351 v += shdr_size;
ead1e424 352 ++shndx;
61ba1cf9
ILT
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
356}
357
54dc6425
ILT
358// Output_segment_header methods.
359
61ba1cf9 360Output_segment_headers::Output_segment_headers(
61ba1cf9 361 const Layout::Segment_list& segment_list)
9025d29d 362 : segment_list_(segment_list)
61ba1cf9 363{
cdc29364 364 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
365}
366
54dc6425 367void
61ba1cf9 368Output_segment_headers::do_write(Output_file* of)
75f65a3e 369{
8851ecca 370 switch (parameters->size_and_endianness())
61ba1cf9 371 {
9025d29d 372#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
9025d29d 376#endif
8851ecca
ILT
377#ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
9025d29d 381#endif
9025d29d 382#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
9025d29d 386#endif
8851ecca
ILT
387#ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391#endif
392 default:
393 gold_unreachable();
61ba1cf9 394 }
61ba1cf9
ILT
395}
396
397template<int size, bool big_endian>
398void
399Output_segment_headers::do_sized_write(Output_file* of)
400{
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 403 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
a445fddf
ILT
416 gold_assert(v - view == all_phdrs_size);
417
61ba1cf9 418 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
419}
420
20e6d0d6
DK
421off_t
422Output_segment_headers::do_size() const
423{
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434}
435
75f65a3e
ILT
436// Output_file_header methods.
437
9025d29d 438Output_file_header::Output_file_header(const Target* target,
75f65a3e 439 const Symbol_table* symtab,
a10ae760 440 const Output_segment_headers* osh)
9025d29d 441 : target_(target),
75f65a3e 442 symtab_(symtab),
61ba1cf9 443 segment_header_(osh),
75f65a3e 444 section_header_(NULL),
a10ae760 445 shstrtab_(NULL)
75f65a3e 446{
20e6d0d6 447 this->set_data_size(this->do_size());
75f65a3e
ILT
448}
449
450// Set the section table information for a file header.
451
452void
453Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455{
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458}
459
460// Write out the file header.
461
462void
61ba1cf9 463Output_file_header::do_write(Output_file* of)
54dc6425 464{
27bc2bce
ILT
465 gold_assert(this->offset() == 0);
466
8851ecca 467 switch (parameters->size_and_endianness())
61ba1cf9 468 {
9025d29d 469#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
9025d29d 473#endif
8851ecca
ILT
474#ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
9025d29d 478#endif
9025d29d 479#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
9025d29d 483#endif
8851ecca
ILT
484#ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488#endif
489 default:
490 gold_unreachable();
61ba1cf9 491 }
61ba1cf9
ILT
492}
493
cc643b88 494// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
495
496template<int size, bool big_endian>
497void
498Output_file_header::do_sized_write(Output_file* of)
499{
a3ad94ed 500 gold_assert(this->offset() == 0);
61ba1cf9
ILT
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
a3ad94ed 517 gold_unreachable();
61ba1cf9
ILT
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
8851ecca 525 if (parameters->options().relocatable())
61ba1cf9 526 e_type = elfcpp::ET_REL;
374ad285 527 else if (parameters->options().output_is_position_independent())
436ca963 528 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
d391083d 536 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 537
6a74a719
ILT
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
61ba1cf9 543 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 544 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
6a74a719
ILT
560 }
561
61ba1cf9 562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 577
36959681
ILT
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
61ba1cf9 582 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
583}
584
a10ae760 585// Return the value to use for the entry address.
d391083d
ILT
586
587template<int size>
588typename elfcpp::Elf_types<size>::Elf_Addr
589Output_file_header::entry()
590{
a10ae760 591 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
a10ae760 594 const char* entry = parameters->entry();
2ea97941 595 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
2ea97941 603 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
2ea97941 611 v = strtoull(entry, &endptr, 0);
d391083d
ILT
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
2ea97941 615 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
616 v = 0;
617 }
618 }
619
620 return v;
621}
622
20e6d0d6
DK
623// Compute the current data size.
624
625off_t
626Output_file_header::do_size() const
627{
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635}
636
dbe717ef
ILT
637// Output_data_const methods.
638
639void
a3ad94ed 640Output_data_const::do_write(Output_file* of)
dbe717ef 641{
a3ad94ed
ILT
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643}
644
645// Output_data_const_buffer methods.
646
647void
648Output_data_const_buffer::do_write(Output_file* of)
649{
650 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
651}
652
653// Output_section_data methods.
654
16649710
ILT
655// Record the output section, and set the entry size and such.
656
657void
658Output_section_data::set_output_section(Output_section* os)
659{
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663}
664
665// Return the section index of the output section.
666
dbe717ef
ILT
667unsigned int
668Output_section_data::do_out_shndx() const
669{
a3ad94ed 670 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
671 return this->output_section_->out_shndx();
672}
673
759b1a24
ILT
674// Set the alignment, which means we may need to update the alignment
675// of the output section.
676
677void
2ea97941 678Output_section_data::set_addralign(uint64_t addralign)
759b1a24 679{
2ea97941 680 this->addralign_ = addralign;
759b1a24 681 if (this->output_section_ != NULL
2ea97941
ILT
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
759b1a24
ILT
684}
685
a3ad94ed
ILT
686// Output_data_strtab methods.
687
27bc2bce 688// Set the final data size.
a3ad94ed
ILT
689
690void
27bc2bce 691Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
692{
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695}
696
697// Write out a string table.
698
699void
700Output_data_strtab::do_write(Output_file* of)
701{
702 this->strtab_->write(of, this->offset());
703}
704
c06b7b0b
ILT
705// Output_reloc methods.
706
7bf1f802
ILT
707// A reloc against a global symbol.
708
709template<bool dynamic, int size, bool big_endian>
710Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
e8c846c3 714 Address address,
0da6fa6c 715 bool is_relative,
13cf9988
DM
716 bool is_symbolless,
717 bool use_plt_offset)
7bf1f802 718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 719 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 721{
dceae3c1
ILT
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
7bf1f802
ILT
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
dceae3c1
ILT
726 if (dynamic)
727 this->set_needs_dynsym_index();
7bf1f802
ILT
728}
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
ef9beddf 734 Sized_relobj<size, big_endian>* relobj,
7bf1f802 735 unsigned int shndx,
e8c846c3 736 Address address,
0da6fa6c 737 bool is_relative,
13cf9988
DM
738 bool is_symbolless,
739 bool use_plt_offset)
7bf1f802 740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 741 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
743{
744 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
7bf1f802
ILT
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
dceae3c1
ILT
749 if (dynamic)
750 this->set_needs_dynsym_index();
7bf1f802
ILT
751}
752
753// A reloc against a local symbol.
754
755template<bool dynamic, int size, bool big_endian>
756Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
e8c846c3 761 Address address,
2ea97941 762 bool is_relative,
0da6fa6c 763 bool is_symbolless,
397b129b
CC
764 bool is_section_symbol,
765 bool use_plt_offset)
7bf1f802 766 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 767 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
7bf1f802
ILT
770{
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
7bf1f802
ILT
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
dceae3c1
ILT
777 if (dynamic)
778 this->set_needs_dynsym_index();
7bf1f802
ILT
779}
780
781template<bool dynamic, int size, bool big_endian>
782Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
e8c846c3 787 Address address,
2ea97941 788 bool is_relative,
0da6fa6c 789 bool is_symbolless,
397b129b
CC
790 bool is_section_symbol,
791 bool use_plt_offset)
7bf1f802 792 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 793 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
7bf1f802
ILT
796{
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
7bf1f802
ILT
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
dceae3c1
ILT
804 if (dynamic)
805 this->set_needs_dynsym_index();
7bf1f802
ILT
806}
807
808// A reloc against the STT_SECTION symbol of an output section.
809
810template<bool dynamic, int size, bool big_endian>
811Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
703d02da
AM
815 Address address,
816 bool is_relative)
7bf1f802 817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 818 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 820{
dceae3c1
ILT
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
7bf1f802
ILT
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
dceae3c1
ILT
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
7bf1f802
ILT
829}
830
831template<bool dynamic, int size, bool big_endian>
832Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
ef9beddf 835 Sized_relobj<size, big_endian>* relobj,
7bf1f802 836 unsigned int shndx,
703d02da
AM
837 Address address,
838 bool is_relative)
7bf1f802 839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 840 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
842{
843 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
7bf1f802
ILT
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
dceae3c1
ILT
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852}
853
ec661b9d 854// An absolute or relative relocation.
e291e7b9
ILT
855
856template<bool dynamic, int size, bool big_endian>
857Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
ec661b9d
AM
860 Address address,
861 bool is_relative)
e291e7b9 862 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 863 is_relative_(is_relative), is_symbolless_(false),
397b129b 864 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
865{
866 // this->type_ is a bitfield; make sure TYPE fits.
867 gold_assert(this->type_ == type);
868 this->u1_.relobj = NULL;
869 this->u2_.od = od;
870}
871
872template<bool dynamic, int size, bool big_endian>
873Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 Sized_relobj<size, big_endian>* relobj,
876 unsigned int shndx,
ec661b9d
AM
877 Address address,
878 bool is_relative)
e291e7b9 879 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 880 is_relative_(is_relative), is_symbolless_(false),
397b129b 881 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
882{
883 gold_assert(shndx != INVALID_CODE);
884 // this->type_ is a bitfield; make sure TYPE fits.
885 gold_assert(this->type_ == type);
886 this->u1_.relobj = NULL;
887 this->u2_.relobj = relobj;
888}
889
890// A target specific relocation.
891
892template<bool dynamic, int size, bool big_endian>
893Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894 unsigned int type,
895 void* arg,
896 Output_data* od,
897 Address address)
898 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 899 is_relative_(false), is_symbolless_(false),
397b129b 900 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
901{
902 // this->type_ is a bitfield; make sure TYPE fits.
903 gold_assert(this->type_ == type);
904 this->u1_.arg = arg;
905 this->u2_.od = od;
906}
907
908template<bool dynamic, int size, bool big_endian>
909Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
910 unsigned int type,
911 void* arg,
912 Sized_relobj<size, big_endian>* relobj,
913 unsigned int shndx,
914 Address address)
915 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 916 is_relative_(false), is_symbolless_(false),
397b129b 917 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
918{
919 gold_assert(shndx != INVALID_CODE);
920 // this->type_ is a bitfield; make sure TYPE fits.
921 gold_assert(this->type_ == type);
922 this->u1_.arg = arg;
923 this->u2_.relobj = relobj;
924}
925
dceae3c1
ILT
926// Record that we need a dynamic symbol index for this relocation.
927
928template<bool dynamic, int size, bool big_endian>
929void
930Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
931set_needs_dynsym_index()
932{
0da6fa6c 933 if (this->is_symbolless_)
dceae3c1
ILT
934 return;
935 switch (this->local_sym_index_)
936 {
937 case INVALID_CODE:
938 gold_unreachable();
939
940 case GSYM_CODE:
941 this->u1_.gsym->set_needs_dynsym_entry();
942 break;
943
944 case SECTION_CODE:
945 this->u1_.os->set_needs_dynsym_index();
946 break;
947
e291e7b9
ILT
948 case TARGET_CODE:
949 // The target must take care of this if necessary.
950 break;
951
dceae3c1
ILT
952 case 0:
953 break;
954
955 default:
956 {
957 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
958 Sized_relobj_file<size, big_endian>* relobj =
959 this->u1_.relobj->sized_relobj();
960 gold_assert(relobj != NULL);
dceae3c1 961 if (!this->is_section_symbol_)
6fa2a40b 962 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 963 else
6fa2a40b 964 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
965 }
966 break;
967 }
7bf1f802
ILT
968}
969
c06b7b0b
ILT
970// Get the symbol index of a relocation.
971
972template<bool dynamic, int size, bool big_endian>
973unsigned int
974Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
975 const
976{
977 unsigned int index;
0da6fa6c
DM
978 if (this->is_symbolless_)
979 return 0;
c06b7b0b
ILT
980 switch (this->local_sym_index_)
981 {
982 case INVALID_CODE:
a3ad94ed 983 gold_unreachable();
c06b7b0b
ILT
984
985 case GSYM_CODE:
5a6f7e2d 986 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
987 index = 0;
988 else if (dynamic)
5a6f7e2d 989 index = this->u1_.gsym->dynsym_index();
c06b7b0b 990 else
5a6f7e2d 991 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
992 break;
993
994 case SECTION_CODE:
995 if (dynamic)
5a6f7e2d 996 index = this->u1_.os->dynsym_index();
c06b7b0b 997 else
5a6f7e2d 998 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
999 break;
1000
e291e7b9
ILT
1001 case TARGET_CODE:
1002 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1003 this->type_);
1004 break;
1005
436ca963
ILT
1006 case 0:
1007 // Relocations without symbols use a symbol index of 0.
1008 index = 0;
1009 break;
1010
c06b7b0b 1011 default:
dceae3c1
ILT
1012 {
1013 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1014 Sized_relobj_file<size, big_endian>* relobj =
1015 this->u1_.relobj->sized_relobj();
1016 gold_assert(relobj != NULL);
dceae3c1
ILT
1017 if (!this->is_section_symbol_)
1018 {
1019 if (dynamic)
6fa2a40b 1020 index = relobj->dynsym_index(lsi);
dceae3c1 1021 else
6fa2a40b 1022 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1023 }
1024 else
1025 {
6fa2a40b 1026 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1027 gold_assert(os != NULL);
1028 if (dynamic)
1029 index = os->dynsym_index();
1030 else
1031 index = os->symtab_index();
1032 }
1033 }
c06b7b0b
ILT
1034 break;
1035 }
a3ad94ed 1036 gold_assert(index != -1U);
c06b7b0b
ILT
1037 return index;
1038}
1039
624f8810
ILT
1040// For a local section symbol, get the address of the offset ADDEND
1041// within the input section.
dceae3c1
ILT
1042
1043template<bool dynamic, int size, bool big_endian>
ef9beddf 1044typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1045Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1046 local_section_offset(Addend addend) const
dceae3c1 1047{
624f8810
ILT
1048 gold_assert(this->local_sym_index_ != GSYM_CODE
1049 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1050 && this->local_sym_index_ != TARGET_CODE
624f8810 1051 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1052 && this->local_sym_index_ != 0
624f8810 1053 && this->is_section_symbol_);
dceae3c1 1054 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1055 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1056 gold_assert(os != NULL);
ef9beddf 1057 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1058 if (offset != invalid_address)
624f8810
ILT
1059 return offset + addend;
1060 // This is a merge section.
6fa2a40b
CC
1061 Sized_relobj_file<size, big_endian>* relobj =
1062 this->u1_.relobj->sized_relobj();
1063 gold_assert(relobj != NULL);
1064 offset = os->output_address(relobj, lsi, addend);
eff45813 1065 gold_assert(offset != invalid_address);
dceae3c1
ILT
1066 return offset;
1067}
1068
d98bc257 1069// Get the output address of a relocation.
c06b7b0b
ILT
1070
1071template<bool dynamic, int size, bool big_endian>
a984ee1d 1072typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1073Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1074{
a3ad94ed 1075 Address address = this->address_;
5a6f7e2d
ILT
1076 if (this->shndx_ != INVALID_CODE)
1077 {
ef9beddf 1078 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1079 gold_assert(os != NULL);
ef9beddf 1080 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1081 if (off != invalid_address)
730cdc88
ILT
1082 address += os->address() + off;
1083 else
1084 {
6fa2a40b
CC
1085 Sized_relobj_file<size, big_endian>* relobj =
1086 this->u2_.relobj->sized_relobj();
1087 gold_assert(relobj != NULL);
1088 address = os->output_address(relobj, this->shndx_, address);
eff45813 1089 gold_assert(address != invalid_address);
730cdc88 1090 }
5a6f7e2d
ILT
1091 }
1092 else if (this->u2_.od != NULL)
1093 address += this->u2_.od->address();
d98bc257
ILT
1094 return address;
1095}
1096
1097// Write out the offset and info fields of a Rel or Rela relocation
1098// entry.
1099
1100template<bool dynamic, int size, bool big_endian>
1101template<typename Write_rel>
1102void
1103Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1104 Write_rel* wr) const
1105{
1106 wr->put_r_offset(this->get_address());
0da6fa6c 1107 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1108 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1109}
1110
1111// Write out a Rel relocation.
1112
1113template<bool dynamic, int size, bool big_endian>
1114void
1115Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1116 unsigned char* pov) const
1117{
1118 elfcpp::Rel_write<size, big_endian> orel(pov);
1119 this->write_rel(&orel);
1120}
1121
e8c846c3
ILT
1122// Get the value of the symbol referred to by a Rel relocation.
1123
1124template<bool dynamic, int size, bool big_endian>
1125typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1126Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1127 Addend addend) const
e8c846c3
ILT
1128{
1129 if (this->local_sym_index_ == GSYM_CODE)
1130 {
1131 const Sized_symbol<size>* sym;
1132 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988 1133 if (this->use_plt_offset_ && sym->has_plt_offset())
19fec8c1 1134 return parameters->target().plt_address_for_global(sym);
13cf9988
DM
1135 else
1136 return sym->value() + addend;
e8c846c3 1137 }
703d02da
AM
1138 if (this->local_sym_index_ == SECTION_CODE)
1139 {
1140 gold_assert(!this->use_plt_offset_);
1141 return this->u1_.os->address() + addend;
1142 }
1143 gold_assert(this->local_sym_index_ != TARGET_CODE
d1f003c6 1144 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1145 && this->local_sym_index_ != 0
d1f003c6
ILT
1146 && !this->is_section_symbol_);
1147 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1148 Sized_relobj_file<size, big_endian>* relobj =
1149 this->u1_.relobj->sized_relobj();
1150 gold_assert(relobj != NULL);
397b129b 1151 if (this->use_plt_offset_)
19fec8c1 1152 return parameters->target().plt_address_for_local(relobj, lsi);
6fa2a40b
CC
1153 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1154 return symval->value(relobj, addend);
e8c846c3
ILT
1155}
1156
d98bc257
ILT
1157// Reloc comparison. This function sorts the dynamic relocs for the
1158// benefit of the dynamic linker. First we sort all relative relocs
1159// to the front. Among relative relocs, we sort by output address.
1160// Among non-relative relocs, we sort by symbol index, then by output
1161// address.
1162
1163template<bool dynamic, int size, bool big_endian>
1164int
1165Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1166 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1167 const
1168{
1169 if (this->is_relative_)
1170 {
1171 if (!r2.is_relative_)
1172 return -1;
1173 // Otherwise sort by reloc address below.
1174 }
1175 else if (r2.is_relative_)
1176 return 1;
1177 else
1178 {
1179 unsigned int sym1 = this->get_symbol_index();
1180 unsigned int sym2 = r2.get_symbol_index();
1181 if (sym1 < sym2)
1182 return -1;
1183 else if (sym1 > sym2)
1184 return 1;
1185 // Otherwise sort by reloc address.
1186 }
1187
1188 section_offset_type addr1 = this->get_address();
1189 section_offset_type addr2 = r2.get_address();
1190 if (addr1 < addr2)
1191 return -1;
1192 else if (addr1 > addr2)
1193 return 1;
1194
1195 // Final tie breaker, in order to generate the same output on any
1196 // host: reloc type.
1197 unsigned int type1 = this->type_;
1198 unsigned int type2 = r2.type_;
1199 if (type1 < type2)
1200 return -1;
1201 else if (type1 > type2)
1202 return 1;
1203
1204 // These relocs appear to be exactly the same.
1205 return 0;
1206}
1207
c06b7b0b
ILT
1208// Write out a Rela relocation.
1209
1210template<bool dynamic, int size, bool big_endian>
1211void
1212Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1213 unsigned char* pov) const
1214{
1215 elfcpp::Rela_write<size, big_endian> orel(pov);
1216 this->rel_.write_rel(&orel);
e8c846c3 1217 Addend addend = this->addend_;
e291e7b9
ILT
1218 if (this->rel_.is_target_specific())
1219 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1220 this->rel_.type(), addend);
0da6fa6c 1221 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1222 addend = this->rel_.symbol_value(addend);
1223 else if (this->rel_.is_local_section_symbol())
624f8810 1224 addend = this->rel_.local_section_offset(addend);
e8c846c3 1225 orel.put_r_addend(addend);
c06b7b0b
ILT
1226}
1227
1228// Output_data_reloc_base methods.
1229
16649710
ILT
1230// Adjust the output section.
1231
1232template<int sh_type, bool dynamic, int size, bool big_endian>
1233void
1234Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1235 ::do_adjust_output_section(Output_section* os)
1236{
1237 if (sh_type == elfcpp::SHT_REL)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1239 else if (sh_type == elfcpp::SHT_RELA)
1240 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1241 else
1242 gold_unreachable();
7223e9ca
ILT
1243
1244 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1245 // static link. The backends will generate a dynamic reloc section
1246 // to hold this. In that case we don't want to link to the dynsym
1247 // section, because there isn't one.
1248 if (!dynamic)
16649710 1249 os->set_should_link_to_symtab();
7223e9ca
ILT
1250 else if (parameters->doing_static_link())
1251 ;
1252 else
1253 os->set_should_link_to_dynsym();
16649710
ILT
1254}
1255
c06b7b0b
ILT
1256// Write out relocation data.
1257
1258template<int sh_type, bool dynamic, int size, bool big_endian>
1259void
1260Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1261 Output_file* of)
1262{
1263 const off_t off = this->offset();
1264 const off_t oview_size = this->data_size();
1265 unsigned char* const oview = of->get_output_view(off, oview_size);
1266
3a44184e 1267 if (this->sort_relocs())
d98bc257
ILT
1268 {
1269 gold_assert(dynamic);
1270 std::sort(this->relocs_.begin(), this->relocs_.end(),
1271 Sort_relocs_comparison());
1272 }
1273
c06b7b0b
ILT
1274 unsigned char* pov = oview;
1275 for (typename Relocs::const_iterator p = this->relocs_.begin();
1276 p != this->relocs_.end();
1277 ++p)
1278 {
1279 p->write(pov);
1280 pov += reloc_size;
1281 }
1282
a3ad94ed 1283 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1284
1285 of->write_output_view(off, oview_size, oview);
1286
1287 // We no longer need the relocation entries.
1288 this->relocs_.clear();
1289}
1290
6a74a719
ILT
1291// Class Output_relocatable_relocs.
1292
1293template<int sh_type, int size, bool big_endian>
1294void
1295Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296{
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299}
1300
1301// class Output_data_group.
1302
1303template<int size, bool big_endian>
1304Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1305 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1306 section_size_type entry_count,
8825ac63
ILT
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1309 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1310 relobj_(relobj),
1311 flags_(flags)
6a74a719 1312{
8825ac63 1313 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1314}
1315
1316// Write out the section group, which means translating the section
1317// indexes to apply to the output file.
1318
1319template<int size, bool big_endian>
1320void
1321Output_data_group<size, big_endian>::do_write(Output_file* of)
1322{
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
6a74a719
ILT
1335 ++p, ++contents)
1336 {
ef9beddf 1337 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
8825ac63 1358 this->input_shndxes_.clear();
6a74a719
ILT
1359}
1360
dbe717ef 1361// Output_data_got::Got_entry methods.
ead1e424
ILT
1362
1363// Write out the entry.
1364
d77a0555 1365template<int got_size, bool big_endian>
ead1e424 1366void
d77a0555 1367Output_data_got<got_size, big_endian>::Got_entry::write(
bd73a62d
AM
1368 unsigned int got_indx,
1369 unsigned char* pov) const
ead1e424
ILT
1370{
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
e8c846c3
ILT
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
ead1e424 1380 Symbol* gsym = this->u_.gsym;
bd73a62d 1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
19fec8c1 1382 val = parameters->target().plt_address_for_global(gsym);
7223e9ca
ILT
1383 else
1384 {
d77a0555
ILT
1385 switch (parameters->size_and_endianness())
1386 {
1387#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399#endif
1400#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409#endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
bd73a62d
AM
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
7223e9ca 1417 }
ead1e424
ILT
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
4829d394
CC
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
ead1e424 1432 default:
d1f003c6 1433 {
d77a0555 1434 const Relobj* object = this->u_.object;
d1f003c6 1435 const unsigned int lsi = this->local_sym_index_;
d77a0555 1436 bool is_tls = object->local_is_tls(lsi);
bd73a62d 1437 if (this->use_plt_or_tls_offset_ && !is_tls)
19fec8c1 1438 val = parameters->target().plt_address_for_local(object, lsi);
bd73a62d
AM
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, 0);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
d1f003c6 1447 }
e727fa71 1448 break;
ead1e424
ILT
1449 }
1450
d77a0555 1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
ead1e424
ILT
1452}
1453
dbe717ef 1454// Output_data_got methods.
ead1e424 1455
dbe717ef
ILT
1456// Add an entry for a global symbol to the GOT. This returns true if
1457// this is a new GOT entry, false if the symbol already had a GOT
1458// entry.
1459
d77a0555 1460template<int got_size, bool big_endian>
dbe717ef 1461bool
d77a0555 1462Output_data_got<got_size, big_endian>::add_global(
0a65a3a7
CC
1463 Symbol* gsym,
1464 unsigned int got_type)
ead1e424 1465{
0a65a3a7 1466 if (gsym->has_got_offset(got_type))
dbe717ef 1467 return false;
ead1e424 1468
4829d394
CC
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1471 return true;
1472}
1473
1474// Like add_global, but use the PLT offset.
1475
d77a0555 1476template<int got_size, bool big_endian>
7223e9ca 1477bool
d77a0555
ILT
1478Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
7223e9ca
ILT
1480{
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
4829d394
CC
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1486 return true;
1487}
ead1e424 1488
7bf1f802
ILT
1489// Add an entry for a global symbol to the GOT, and add a dynamic
1490// relocation of type R_TYPE for the GOT entry.
7223e9ca 1491
d77a0555 1492template<int got_size, bool big_endian>
7bf1f802 1493void
d77a0555 1494Output_data_got<got_size, big_endian>::add_global_with_rel(
7bf1f802 1495 Symbol* gsym,
0a65a3a7 1496 unsigned int got_type,
83896202 1497 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1498 unsigned int r_type)
1499{
0a65a3a7 1500 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1501 return;
1502
4829d394 1503 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1504 gsym->set_got_offset(got_type, got_offset);
83896202 1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1506}
1507
0a65a3a7
CC
1508// Add a pair of entries for a global symbol to the GOT, and add
1509// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510// If R_TYPE_2 == 0, add the second entry with no relocation.
d77a0555 1511template<int got_size, bool big_endian>
7bf1f802 1512void
d77a0555 1513Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
0a65a3a7
CC
1514 Symbol* gsym,
1515 unsigned int got_type,
83896202 1516 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
7bf1f802 1519{
0a65a3a7 1520 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1521 return;
1522
4829d394 1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1524 gsym->set_got_offset(got_type, got_offset);
83896202 1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1526
0a65a3a7 1527 if (r_type_2 != 0)
83896202 1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
d77a0555 1529 got_offset + got_size / 8, 0);
7bf1f802
ILT
1530}
1531
0a65a3a7
CC
1532// Add an entry for a local symbol to the GOT. This returns true if
1533// this is a new GOT entry, false if the symbol already has a GOT
1534// entry.
07f397ab 1535
d77a0555 1536template<int got_size, bool big_endian>
07f397ab 1537bool
d77a0555 1538Output_data_got<got_size, big_endian>::add_local(
83896202 1539 Relobj* object,
0a65a3a7
CC
1540 unsigned int symndx,
1541 unsigned int got_type)
07f397ab 1542{
0a65a3a7 1543 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1544 return false;
1545
4829d394
CC
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1549 return true;
1550}
1551
1552// Like add_local, but use the PLT offset.
1553
d77a0555 1554template<int got_size, bool big_endian>
7223e9ca 1555bool
d77a0555 1556Output_data_got<got_size, big_endian>::add_local_plt(
83896202 1557 Relobj* object,
7223e9ca
ILT
1558 unsigned int symndx,
1559 unsigned int got_type)
1560{
1561 if (object->local_has_got_offset(symndx, got_type))
1562 return false;
1563
4829d394
CC
1564 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1565 true));
1566 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1567 return true;
1568}
1569
0a65a3a7
CC
1570// Add an entry for a local symbol to the GOT, and add a dynamic
1571// relocation of type R_TYPE for the GOT entry.
7223e9ca 1572
d77a0555 1573template<int got_size, bool big_endian>
7bf1f802 1574void
d77a0555 1575Output_data_got<got_size, big_endian>::add_local_with_rel(
83896202 1576 Relobj* object,
0a65a3a7
CC
1577 unsigned int symndx,
1578 unsigned int got_type,
83896202 1579 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1580 unsigned int r_type)
1581{
0a65a3a7 1582 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1583 return;
1584
4829d394 1585 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1586 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1587 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1588}
1589
0a65a3a7 1590// Add a pair of entries for a local symbol to the GOT, and add
bd73a62d
AM
1591// a dynamic relocation of type R_TYPE using the section symbol of
1592// the output section to which input section SHNDX maps, on the first.
1593// The first got entry will have a value of zero, the second the
1594// value of the local symbol.
d77a0555 1595template<int got_size, bool big_endian>
7bf1f802 1596void
d77a0555 1597Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
83896202 1598 Relobj* object,
7bf1f802
ILT
1599 unsigned int symndx,
1600 unsigned int shndx,
0a65a3a7 1601 unsigned int got_type,
83896202 1602 Output_data_reloc_generic* rel_dyn,
bd73a62d 1603 unsigned int r_type)
7bf1f802 1604{
0a65a3a7 1605 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1606 return;
1607
4829d394
CC
1608 unsigned int got_offset =
1609 this->add_got_entry_pair(Got_entry(),
1610 Got_entry(object, symndx, false));
2ea97941 1611 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1612 Output_section* os = object->output_section(shndx);
bd73a62d
AM
1613 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1614}
7bf1f802 1615
bd73a62d
AM
1616// Add a pair of entries for a local symbol to the GOT, and add
1617// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1618// The first got entry will have a value of zero, the second the
1619// value of the local symbol offset by Target::tls_offset_for_local.
d77a0555 1620template<int got_size, bool big_endian>
bd73a62d 1621void
d77a0555 1622Output_data_got<got_size, big_endian>::add_local_tls_pair(
bd73a62d
AM
1623 Relobj* object,
1624 unsigned int symndx,
1625 unsigned int got_type,
1626 Output_data_reloc_generic* rel_dyn,
1627 unsigned int r_type)
1628{
1629 if (object->local_has_got_offset(symndx, got_type))
1630 return;
1631
1632 unsigned int got_offset
1633 = this->add_got_entry_pair(Got_entry(),
1634 Got_entry(object, symndx, true));
1635 object->set_local_got_offset(symndx, got_type, got_offset);
1636 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
4829d394
CC
1637}
1638
1639// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1640
d77a0555 1641template<int got_size, bool big_endian>
4829d394 1642void
d77a0555 1643Output_data_got<got_size, big_endian>::reserve_local(
6fa2a40b 1644 unsigned int i,
83896202 1645 Relobj* object,
6fa2a40b
CC
1646 unsigned int sym_index,
1647 unsigned int got_type)
4829d394 1648{
dd74ae06 1649 this->do_reserve_slot(i);
6fa2a40b 1650 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1651}
7bf1f802 1652
4829d394
CC
1653// Reserve a slot in the GOT for a global symbol.
1654
d77a0555 1655template<int got_size, bool big_endian>
4829d394 1656void
d77a0555 1657Output_data_got<got_size, big_endian>::reserve_global(
4829d394
CC
1658 unsigned int i,
1659 Symbol* gsym,
1660 unsigned int got_type)
1661{
dd74ae06 1662 this->do_reserve_slot(i);
4829d394 1663 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1664}
1665
ead1e424
ILT
1666// Write out the GOT.
1667
d77a0555 1668template<int got_size, bool big_endian>
ead1e424 1669void
d77a0555 1670Output_data_got<got_size, big_endian>::do_write(Output_file* of)
ead1e424 1671{
d77a0555 1672 const int add = got_size / 8;
ead1e424
ILT
1673
1674 const off_t off = this->offset();
c06b7b0b 1675 const off_t oview_size = this->data_size();
ead1e424
ILT
1676 unsigned char* const oview = of->get_output_view(off, oview_size);
1677
1678 unsigned char* pov = oview;
bd73a62d 1679 for (unsigned int i = 0; i < this->entries_.size(); ++i)
ead1e424 1680 {
bd73a62d 1681 this->entries_[i].write(i, pov);
ead1e424
ILT
1682 pov += add;
1683 }
1684
a3ad94ed 1685 gold_assert(pov - oview == oview_size);
c06b7b0b 1686
ead1e424
ILT
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691}
1692
4829d394
CC
1693// Create a new GOT entry and return its offset.
1694
d77a0555 1695template<int got_size, bool big_endian>
4829d394 1696unsigned int
d77a0555 1697Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
4829d394
CC
1698{
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
d77a0555
ILT
1708 off_t got_offset = this->free_list_.allocate(got_size / 8,
1709 got_size / 8, 0);
4829d394 1710 if (got_offset == -1)
e6455dfb
CC
1711 gold_fallback(_("out of patch space (GOT);"
1712 " relink with --incremental-full"));
d77a0555 1713 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1714 gold_assert(got_index < this->entries_.size());
1715 this->entries_[got_index] = got_entry;
1716 return static_cast<unsigned int>(got_offset);
1717 }
1718}
1719
1720// Create a pair of new GOT entries and return the offset of the first.
1721
d77a0555 1722template<int got_size, bool big_endian>
4829d394 1723unsigned int
d77a0555
ILT
1724Output_data_got<got_size, big_endian>::add_got_entry_pair(
1725 Got_entry got_entry_1,
1726 Got_entry got_entry_2)
4829d394
CC
1727{
1728 if (!this->is_data_size_valid())
1729 {
1730 unsigned int got_offset;
1731 this->entries_.push_back(got_entry_1);
1732 got_offset = this->last_got_offset();
1733 this->entries_.push_back(got_entry_2);
1734 this->set_got_size();
1735 return got_offset;
1736 }
1737 else
1738 {
1739 // For an incremental update, find an available pair of slots.
d77a0555
ILT
1740 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1741 got_size / 8, 0);
4829d394 1742 if (got_offset == -1)
e6455dfb
CC
1743 gold_fallback(_("out of patch space (GOT);"
1744 " relink with --incremental-full"));
d77a0555 1745 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1746 gold_assert(got_index < this->entries_.size());
1747 this->entries_[got_index] = got_entry_1;
1748 this->entries_[got_index + 1] = got_entry_2;
1749 return static_cast<unsigned int>(got_offset);
1750 }
1751}
1752
cf43a2fe
AM
1753// Replace GOT entry I with a new value.
1754
d77a0555 1755template<int got_size, bool big_endian>
cf43a2fe 1756void
d77a0555 1757Output_data_got<got_size, big_endian>::replace_got_entry(
cf43a2fe
AM
1758 unsigned int i,
1759 Got_entry got_entry)
1760{
1761 gold_assert(i < this->entries_.size());
1762 this->entries_[i] = got_entry;
1763}
1764
a3ad94ed
ILT
1765// Output_data_dynamic::Dynamic_entry methods.
1766
1767// Write out the entry.
1768
1769template<int size, bool big_endian>
1770void
1771Output_data_dynamic::Dynamic_entry::write(
1772 unsigned char* pov,
7d1a9ebb 1773 const Stringpool* pool) const
a3ad94ed
ILT
1774{
1775 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1776 switch (this->offset_)
a3ad94ed
ILT
1777 {
1778 case DYNAMIC_NUMBER:
1779 val = this->u_.val;
1780 break;
1781
a3ad94ed 1782 case DYNAMIC_SECTION_SIZE:
16649710 1783 val = this->u_.od->data_size();
612a8d3d
DM
1784 if (this->od2 != NULL)
1785 val += this->od2->data_size();
a3ad94ed
ILT
1786 break;
1787
1788 case DYNAMIC_SYMBOL:
1789 {
16649710
ILT
1790 const Sized_symbol<size>* s =
1791 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1792 val = s->value();
1793 }
1794 break;
1795
1796 case DYNAMIC_STRING:
1797 val = pool->get_offset(this->u_.str);
1798 break;
1799
1800 default:
c2b45e22
CC
1801 val = this->u_.od->address() + this->offset_;
1802 break;
a3ad94ed
ILT
1803 }
1804
1805 elfcpp::Dyn_write<size, big_endian> dw(pov);
1806 dw.put_d_tag(this->tag_);
1807 dw.put_d_val(val);
1808}
1809
1810// Output_data_dynamic methods.
1811
16649710
ILT
1812// Adjust the output section to set the entry size.
1813
1814void
1815Output_data_dynamic::do_adjust_output_section(Output_section* os)
1816{
8851ecca 1817 if (parameters->target().get_size() == 32)
16649710 1818 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1819 else if (parameters->target().get_size() == 64)
16649710
ILT
1820 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1821 else
1822 gold_unreachable();
1823}
1824
a3ad94ed
ILT
1825// Set the final data size.
1826
1827void
27bc2bce 1828Output_data_dynamic::set_final_data_size()
a3ad94ed 1829{
20e6d0d6
DK
1830 // Add the terminating entry if it hasn't been added.
1831 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1832 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1833 {
1834 int extra = parameters->options().spare_dynamic_tags();
1835 for (int i = 0; i < extra; ++i)
1836 this->add_constant(elfcpp::DT_NULL, 0);
1837 this->add_constant(elfcpp::DT_NULL, 0);
1838 }
a3ad94ed
ILT
1839
1840 int dyn_size;
8851ecca 1841 if (parameters->target().get_size() == 32)
a3ad94ed 1842 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1843 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1844 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1845 else
1846 gold_unreachable();
1847 this->set_data_size(this->entries_.size() * dyn_size);
1848}
1849
1850// Write out the dynamic entries.
1851
1852void
1853Output_data_dynamic::do_write(Output_file* of)
1854{
8851ecca 1855 switch (parameters->size_and_endianness())
a3ad94ed 1856 {
9025d29d 1857#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1858 case Parameters::TARGET_32_LITTLE:
1859 this->sized_write<32, false>(of);
1860 break;
9025d29d 1861#endif
8851ecca
ILT
1862#ifdef HAVE_TARGET_32_BIG
1863 case Parameters::TARGET_32_BIG:
1864 this->sized_write<32, true>(of);
1865 break;
9025d29d 1866#endif
9025d29d 1867#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1868 case Parameters::TARGET_64_LITTLE:
1869 this->sized_write<64, false>(of);
1870 break;
9025d29d 1871#endif
8851ecca
ILT
1872#ifdef HAVE_TARGET_64_BIG
1873 case Parameters::TARGET_64_BIG:
1874 this->sized_write<64, true>(of);
1875 break;
1876#endif
1877 default:
1878 gold_unreachable();
a3ad94ed 1879 }
a3ad94ed
ILT
1880}
1881
1882template<int size, bool big_endian>
1883void
1884Output_data_dynamic::sized_write(Output_file* of)
1885{
1886 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1887
2ea97941 1888 const off_t offset = this->offset();
a3ad94ed 1889 const off_t oview_size = this->data_size();
2ea97941 1890 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1891
1892 unsigned char* pov = oview;
1893 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1894 p != this->entries_.end();
1895 ++p)
1896 {
7d1a9ebb 1897 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1898 pov += dyn_size;
1899 }
1900
1901 gold_assert(pov - oview == oview_size);
1902
2ea97941 1903 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1904
1905 // We no longer need the dynamic entries.
1906 this->entries_.clear();
1907}
1908
d491d34e
ILT
1909// Class Output_symtab_xindex.
1910
1911void
1912Output_symtab_xindex::do_write(Output_file* of)
1913{
2ea97941 1914 const off_t offset = this->offset();
d491d34e 1915 const off_t oview_size = this->data_size();
2ea97941 1916 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1917
1918 memset(oview, 0, oview_size);
1919
1920 if (parameters->target().is_big_endian())
1921 this->endian_do_write<true>(oview);
1922 else
1923 this->endian_do_write<false>(oview);
1924
2ea97941 1925 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1926
1927 // We no longer need the data.
1928 this->entries_.clear();
1929}
1930
1931template<bool big_endian>
1932void
1933Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1934{
1935 for (Xindex_entries::const_iterator p = this->entries_.begin();
1936 p != this->entries_.end();
1937 ++p)
20e6d0d6
DK
1938 {
1939 unsigned int symndx = p->first;
50ed5eb1 1940 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
20e6d0d6
DK
1941 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1942 }
d491d34e
ILT
1943}
1944
8ea8cd50
CC
1945// Output_fill_debug_info methods.
1946
1947// Return the minimum size needed for a dummy compilation unit header.
1948
1949size_t
1950Output_fill_debug_info::do_minimum_hole_size() const
1951{
1952 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1953 // address_size.
1954 const size_t len = 4 + 2 + 4 + 1;
1955 // For type units, add type_signature, type_offset.
1956 if (this->is_debug_types_)
1957 return len + 8 + 4;
1958 return len;
1959}
1960
1961// Write a dummy compilation unit header to fill a hole in the
1962// .debug_info or .debug_types section.
1963
1964void
1965Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1966{
66570254
CC
1967 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1968 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1969
1970 gold_assert(len >= this->do_minimum_hole_size());
1971
1972 unsigned char* const oview = of->get_output_view(off, len);
1973 unsigned char* pov = oview;
1974
1975 // Write header fields: unit_length, version, debug_abbrev_offset,
1976 // address_size.
1977 if (this->is_big_endian())
1978 {
24c6c55a
DM
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1980 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1981 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1982 }
1983 else
1984 {
24c6c55a
DM
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1986 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1987 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1988 }
1989 pov += 4 + 2 + 4;
1990 *pov++ = 4;
1991
1992 // For type units, the additional header fields -- type_signature,
1993 // type_offset -- can be filled with zeroes.
1994
1995 // Fill the remainder of the free space with zeroes. The first
1996 // zero should tell the consumer there are no DIEs to read in this
1997 // compilation unit.
1998 if (pov < oview + len)
1999 memset(pov, 0, oview + len - pov);
2000
2001 of->write_output_view(off, len, oview);
2002}
2003
2004// Output_fill_debug_line methods.
2005
2006// Return the minimum size needed for a dummy line number program header.
2007
2008size_t
2009Output_fill_debug_line::do_minimum_hole_size() const
2010{
2011 // Line number program header fields: unit_length, version, header_length,
2012 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2013 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2014 const size_t len = 4 + 2 + 4 + this->header_length;
2015 return len;
2016}
2017
2018// Write a dummy line number program header to fill a hole in the
2019// .debug_line section.
2020
2021void
2022Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2023{
66570254
CC
2024 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2025 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2026
2027 gold_assert(len >= this->do_minimum_hole_size());
2028
2029 unsigned char* const oview = of->get_output_view(off, len);
2030 unsigned char* pov = oview;
2031
2032 // Write header fields: unit_length, version, header_length,
2033 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2034 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2035 // We set the header_length field to cover the entire hole, so the
2036 // line number program is empty.
2037 if (this->is_big_endian())
2038 {
24c6c55a
DM
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2042 }
2043 else
2044 {
24c6c55a
DM
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2048 }
2049 pov += 4 + 2 + 4;
2050 *pov++ = 1; // minimum_instruction_length
2051 *pov++ = 0; // default_is_stmt
2052 *pov++ = 0; // line_base
2053 *pov++ = 5; // line_range
2054 *pov++ = 13; // opcode_base
2055 *pov++ = 0; // standard_opcode_lengths[1]
2056 *pov++ = 1; // standard_opcode_lengths[2]
2057 *pov++ = 1; // standard_opcode_lengths[3]
2058 *pov++ = 1; // standard_opcode_lengths[4]
2059 *pov++ = 1; // standard_opcode_lengths[5]
2060 *pov++ = 0; // standard_opcode_lengths[6]
2061 *pov++ = 0; // standard_opcode_lengths[7]
2062 *pov++ = 0; // standard_opcode_lengths[8]
2063 *pov++ = 1; // standard_opcode_lengths[9]
2064 *pov++ = 0; // standard_opcode_lengths[10]
2065 *pov++ = 0; // standard_opcode_lengths[11]
2066 *pov++ = 1; // standard_opcode_lengths[12]
2067 *pov++ = 0; // include_directories (empty)
2068 *pov++ = 0; // filenames (empty)
2069
2070 // Some consumers don't check the header_length field, and simply
2071 // start reading the line number program immediately following the
2072 // header. For those consumers, we fill the remainder of the free
2073 // space with DW_LNS_set_basic_block opcodes. These are effectively
2074 // no-ops: the resulting line table program will not create any rows.
2075 if (pov < oview + len)
2076 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2077
2078 of->write_output_view(off, len, oview);
2079}
2080
ead1e424
ILT
2081// Output_section::Input_section methods.
2082
cdc29364
CC
2083// Return the current data size. For an input section we store the size here.
2084// For an Output_section_data, we have to ask it for the size.
2085
2086off_t
2087Output_section::Input_section::current_data_size() const
2088{
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2091 else
2092 {
2093 this->u2_.posd->pre_finalize_data_size();
2094 return this->u2_.posd->current_data_size();
2095 }
2096}
2097
ead1e424
ILT
2098// Return the data size. For an input section we store the size here.
2099// For an Output_section_data, we have to ask it for the size.
2100
2101off_t
2102Output_section::Input_section::data_size() const
2103{
2104 if (this->is_input_section())
b8e6aad9 2105 return this->u1_.data_size;
ead1e424 2106 else
b8e6aad9 2107 return this->u2_.posd->data_size();
ead1e424
ILT
2108}
2109
0439c796
DK
2110// Return the object for an input section.
2111
2112Relobj*
2113Output_section::Input_section::relobj() const
2114{
2115 if (this->is_input_section())
2116 return this->u2_.object;
2117 else if (this->is_merge_section())
2118 {
2119 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2120 return this->u2_.pomb->first_relobj();
2121 }
2122 else if (this->is_relaxed_input_section())
2123 return this->u2_.poris->relobj();
2124 else
2125 gold_unreachable();
2126}
2127
2128// Return the input section index for an input section.
2129
2130unsigned int
2131Output_section::Input_section::shndx() const
2132{
2133 if (this->is_input_section())
2134 return this->shndx_;
2135 else if (this->is_merge_section())
2136 {
2137 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2138 return this->u2_.pomb->first_shndx();
2139 }
2140 else if (this->is_relaxed_input_section())
2141 return this->u2_.poris->shndx();
2142 else
2143 gold_unreachable();
2144}
2145
ead1e424
ILT
2146// Set the address and file offset.
2147
2148void
96803768
ILT
2149Output_section::Input_section::set_address_and_file_offset(
2150 uint64_t address,
2151 off_t file_offset,
2152 off_t section_file_offset)
ead1e424
ILT
2153{
2154 if (this->is_input_section())
96803768
ILT
2155 this->u2_.object->set_section_offset(this->shndx_,
2156 file_offset - section_file_offset);
ead1e424 2157 else
96803768
ILT
2158 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2159}
2160
a445fddf
ILT
2161// Reset the address and file offset.
2162
2163void
2164Output_section::Input_section::reset_address_and_file_offset()
2165{
2166 if (!this->is_input_section())
2167 this->u2_.posd->reset_address_and_file_offset();
2168}
2169
96803768
ILT
2170// Finalize the data size.
2171
2172void
2173Output_section::Input_section::finalize_data_size()
2174{
2175 if (!this->is_input_section())
2176 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2177}
2178
1e983657
ILT
2179// Try to turn an input offset into an output offset. We want to
2180// return the output offset relative to the start of this
2181// Input_section in the output section.
b8e6aad9 2182
8f00aeb8 2183inline bool
8383303e
ILT
2184Output_section::Input_section::output_offset(
2185 const Relobj* object,
2ea97941
ILT
2186 unsigned int shndx,
2187 section_offset_type offset,
ca09d69a 2188 section_offset_type* poutput) const
b8e6aad9
ILT
2189{
2190 if (!this->is_input_section())
2ea97941 2191 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2192 else
2193 {
2ea97941 2194 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2195 return false;
2ea97941 2196 *poutput = offset;
b8e6aad9
ILT
2197 return true;
2198 }
ead1e424
ILT
2199}
2200
a9a60db6
ILT
2201// Return whether this is the merge section for the input section
2202// SHNDX in OBJECT.
2203
2204inline bool
2205Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2206 unsigned int shndx) const
a9a60db6
ILT
2207{
2208 if (this->is_input_section())
2209 return false;
2ea97941 2210 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2211}
2212
ead1e424
ILT
2213// Write out the data. We don't have to do anything for an input
2214// section--they are handled via Object::relocate--but this is where
2215// we write out the data for an Output_section_data.
2216
2217void
2218Output_section::Input_section::write(Output_file* of)
2219{
2220 if (!this->is_input_section())
b8e6aad9 2221 this->u2_.posd->write(of);
ead1e424
ILT
2222}
2223
96803768
ILT
2224// Write the data to a buffer. As for write(), we don't have to do
2225// anything for an input section.
2226
2227void
2228Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2229{
2230 if (!this->is_input_section())
2231 this->u2_.posd->write_to_buffer(buffer);
2232}
2233
7d9e3d98
ILT
2234// Print to a map file.
2235
2236void
2237Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2238{
2239 switch (this->shndx_)
2240 {
2241 case OUTPUT_SECTION_CODE:
2242 case MERGE_DATA_SECTION_CODE:
2243 case MERGE_STRING_SECTION_CODE:
2244 this->u2_.posd->print_to_mapfile(mapfile);
2245 break;
2246
20e6d0d6
DK
2247 case RELAXED_INPUT_SECTION_CODE:
2248 {
2249 Output_relaxed_input_section* relaxed_section =
2250 this->relaxed_input_section();
2251 mapfile->print_input_section(relaxed_section->relobj(),
2252 relaxed_section->shndx());
2253 }
2254 break;
7d9e3d98
ILT
2255 default:
2256 mapfile->print_input_section(this->u2_.object, this->shndx_);
2257 break;
2258 }
2259}
2260
a2fb1b05
ILT
2261// Output_section methods.
2262
2263// Construct an Output_section. NAME will point into a Stringpool.
2264
2ea97941
ILT
2265Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2266 elfcpp::Elf_Xword flags)
2267 : name_(name),
a2fb1b05
ILT
2268 addralign_(0),
2269 entsize_(0),
a445fddf 2270 load_address_(0),
16649710 2271 link_section_(NULL),
a2fb1b05 2272 link_(0),
16649710 2273 info_section_(NULL),
6a74a719 2274 info_symndx_(NULL),
a2fb1b05 2275 info_(0),
2ea97941
ILT
2276 type_(type),
2277 flags_(flags),
22f0da72 2278 order_(ORDER_INVALID),
91ea499d 2279 out_shndx_(-1U),
c06b7b0b
ILT
2280 symtab_index_(0),
2281 dynsym_index_(0),
ead1e424
ILT
2282 input_sections_(),
2283 first_input_offset_(0),
c51e6221 2284 fills_(),
96803768 2285 postprocessing_buffer_(NULL),
a3ad94ed 2286 needs_symtab_index_(false),
16649710
ILT
2287 needs_dynsym_index_(false),
2288 should_link_to_symtab_(false),
730cdc88 2289 should_link_to_dynsym_(false),
27bc2bce 2290 after_input_sections_(false),
7bf1f802 2291 requires_postprocessing_(false),
a445fddf
ILT
2292 found_in_sections_clause_(false),
2293 has_load_address_(false),
755ab8af 2294 info_uses_section_index_(false),
6e9ba2ca 2295 input_section_order_specified_(false),
2fd32231
ILT
2296 may_sort_attached_input_sections_(false),
2297 must_sort_attached_input_sections_(false),
2298 attached_input_sections_are_sorted_(false),
9f1d377b 2299 is_relro_(false),
8a5e3e08
ILT
2300 is_small_section_(false),
2301 is_large_section_(false),
f5c870d2 2302 generate_code_fills_at_write_(false),
e8cd95c7 2303 is_entsize_zero_(false),
8923b24c 2304 section_offsets_need_adjustment_(false),
1e5d2fb1 2305 is_noload_(false),
131687b4 2306 always_keeps_input_sections_(false),
cdc29364 2307 has_fixed_layout_(false),
9fbd3822 2308 is_patch_space_allowed_(false),
16164a6b 2309 is_unique_segment_(false),
20e6d0d6 2310 tls_offset_(0),
16164a6b
ST
2311 extra_segment_flags_(0),
2312 segment_alignment_(0),
c0a62865 2313 checkpoint_(NULL),
cdc29364 2314 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2315 free_list_(),
8ea8cd50 2316 free_space_fill_(NULL),
9fbd3822 2317 patch_space_(0)
a2fb1b05 2318{
27bc2bce
ILT
2319 // An unallocated section has no address. Forcing this means that
2320 // we don't need special treatment for symbols defined in debug
2321 // sections.
2ea97941 2322 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2323 this->set_address(0);
a2fb1b05
ILT
2324}
2325
54dc6425
ILT
2326Output_section::~Output_section()
2327{
20e6d0d6 2328 delete this->checkpoint_;
54dc6425
ILT
2329}
2330
16649710
ILT
2331// Set the entry size.
2332
2333void
2334Output_section::set_entsize(uint64_t v)
2335{
e8cd95c7
ILT
2336 if (this->is_entsize_zero_)
2337 ;
2338 else if (this->entsize_ == 0)
16649710 2339 this->entsize_ = v;
e8cd95c7
ILT
2340 else if (this->entsize_ != v)
2341 {
2342 this->entsize_ = 0;
2343 this->is_entsize_zero_ = 1;
2344 }
16649710
ILT
2345}
2346
ead1e424 2347// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2348// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2349// relocation section which applies to this section, or 0 if none, or
2350// -1U if more than one. Return the offset of the input section
2351// within the output section. Return -1 if the input section will
2352// receive special handling. In the normal case we don't always keep
2353// track of input sections for an Output_section. Instead, each
2354// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2355// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2356// track of input sections here; this is used when SECTIONS appears in
2357// a linker script.
a2fb1b05
ILT
2358
2359template<int size, bool big_endian>
2360off_t
6e9ba2ca 2361Output_section::add_input_section(Layout* layout,
6fa2a40b 2362 Sized_relobj_file<size, big_endian>* object,
2ea97941 2363 unsigned int shndx,
ead1e424 2364 const char* secname,
730cdc88 2365 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2366 unsigned int reloc_shndx,
2367 bool have_sections_script)
a2fb1b05 2368{
2ea97941
ILT
2369 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2370 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2371 {
75f2446e 2372 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2373 static_cast<unsigned long>(addralign), secname);
2374 addralign = 1;
a2fb1b05 2375 }
a2fb1b05 2376
2ea97941
ILT
2377 if (addralign > this->addralign_)
2378 this->addralign_ = addralign;
a2fb1b05 2379
44a43cf9 2380 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2381 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2382
2383 // .debug_str is a mergeable string section, but is not always so
2384 // marked by compilers. Mark manually here so we can optimize.
2385 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2386 {
2387 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2388 entsize = 1;
4f833eee 2389 }
44a43cf9 2390
e8cd95c7
ILT
2391 this->update_flags_for_input_section(sh_flags);
2392 this->set_entsize(entsize);
2393
b8e6aad9 2394 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2395 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2396 // a section. We don't try to handle empty merge sections--they
2397 // mess up the mappings, and are useless anyhow.
cdc29364 2398 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2399 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2400 && reloc_shndx == 0
cdc29364
CC
2401 && shdr.get_sh_size() > 0
2402 && !parameters->incremental())
b8e6aad9 2403 {
0439c796
DK
2404 // Keep information about merged input sections for rebuilding fast
2405 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2406 bool keeps_input_sections = (this->always_keeps_input_sections_
2407 || have_sections_script
2408 || parameters->target().may_relax());
2409
0439c796
DK
2410 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2411 addralign, keeps_input_sections))
b8e6aad9
ILT
2412 {
2413 // Tell the relocation routines that they need to call the
730cdc88 2414 // output_offset method to determine the final address.
b8e6aad9
ILT
2415 return -1;
2416 }
2417 }
2418
cdc29364
CC
2419 section_size_type input_section_size = shdr.get_sh_size();
2420 section_size_type uncompressed_size;
2421 if (object->section_is_compressed(shndx, &uncompressed_size))
2422 input_section_size = uncompressed_size;
2423
2424 off_t offset_in_section;
2425 off_t aligned_offset_in_section;
2426 if (this->has_fixed_layout())
2427 {
2428 // For incremental updates, find a chunk of unused space in the section.
2429 offset_in_section = this->free_list_.allocate(input_section_size,
2430 addralign, 0);
2431 if (offset_in_section == -1)
9fbd3822
CC
2432 gold_fallback(_("out of patch space in section %s; "
2433 "relink with --incremental-full"),
2434 this->name());
cdc29364
CC
2435 aligned_offset_in_section = offset_in_section;
2436 }
2437 else
2438 {
2439 offset_in_section = this->current_data_size_for_child();
2440 aligned_offset_in_section = align_address(offset_in_section,
2441 addralign);
2442 this->set_current_data_size_for_child(aligned_offset_in_section
2443 + input_section_size);
2444 }
c51e6221 2445
c0a62865
DK
2446 // Determine if we want to delay code-fill generation until the output
2447 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2448 // generating to avoid adjusting them during relaxation. Also, if we are
2449 // sorting input sections we must delay fill generation.
c0a62865
DK
2450 if (!this->generate_code_fills_at_write_
2451 && !have_sections_script
2452 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2453 && parameters->target().has_code_fill()
4cf7a849 2454 && (parameters->target().may_relax()
e9552f7e 2455 || layout->is_section_ordering_specified()))
c0a62865
DK
2456 {
2457 gold_assert(this->fills_.empty());
2458 this->generate_code_fills_at_write_ = true;
2459 }
2460
c51e6221 2461 if (aligned_offset_in_section > offset_in_section
c0a62865 2462 && !this->generate_code_fills_at_write_
a445fddf 2463 && !have_sections_script
44a43cf9 2464 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2465 && parameters->target().has_code_fill())
c51e6221
ILT
2466 {
2467 // We need to add some fill data. Using fill_list_ when
2468 // possible is an optimization, since we will often have fill
2469 // sections without input sections.
2470 off_t fill_len = aligned_offset_in_section - offset_in_section;
2471 if (this->input_sections_.empty())
2472 this->fills_.push_back(Fill(offset_in_section, fill_len));
2473 else
2474 {
029ba973 2475 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2476 Output_data_const* odc = new Output_data_const(fill_data, 1);
2477 this->input_sections_.push_back(Input_section(odc));
2478 }
2479 }
2480
28f2a4ac
ST
2481 // The GNU linker groups input sections whose names match .text.unlikely.*.
2482 // This is used to get better code layout. We are compatible.
2483 // Additionally, it could also be beneficial to group .text.hot.*,
2484 // .text.startup.* prefixed input sections. Function
2485 // "is_section_name_prefix_grouped" in layout.cc determines the input
2486 // section prefixes that must be grouped.
2487 if (!have_sections_script
2488 && !parameters->options().relocatable()
2489 && !this->input_section_order_specified()
2490 && !this->must_sort_attached_input_sections()
2491 && layout->is_section_name_prefix_grouped(secname))
2492 this->set_input_section_order_specified();
2493
ead1e424 2494 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2495 // track of sections, or if we are relaxing. Also, if this is a
2496 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2497 // the future, we keep track of the sections. If the
2498 // --section-ordering-file option is used to specify the order of
2499 // sections, we need to keep track of sections.
131687b4
DK
2500 if (this->always_keeps_input_sections_
2501 || have_sections_script
2fd32231
ILT
2502 || !this->input_sections_.empty()
2503 || this->may_sort_attached_input_sections()
7d9e3d98 2504 || this->must_sort_attached_input_sections()
20e6d0d6 2505 || parameters->options().user_set_Map()
6e9ba2ca 2506 || parameters->target().may_relax()
28f2a4ac
ST
2507 || layout->is_section_ordering_specified()
2508 || this->input_section_order_specified())
6e9ba2ca 2509 {
6fc6ea19 2510 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2511 /* If section ordering is requested by specifying a ordering file,
2512 using --section-ordering-file, match the section name with
2513 a pattern. */
2514 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2515 {
2516 unsigned int section_order_index =
2517 layout->find_section_order_index(std::string(secname));
2518 if (section_order_index != 0)
2519 {
2520 isecn.set_section_order_index(section_order_index);
2521 this->set_input_section_order_specified();
2522 }
2523 }
cdc29364
CC
2524 if (this->has_fixed_layout())
2525 {
2526 // For incremental updates, finalize the address and offset now.
2527 uint64_t addr = this->address();
2528 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2529 aligned_offset_in_section,
2530 this->offset());
2531 }
6e9ba2ca
ST
2532 this->input_sections_.push_back(isecn);
2533 }
54dc6425 2534
c51e6221 2535 return aligned_offset_in_section;
61ba1cf9
ILT
2536}
2537
ead1e424
ILT
2538// Add arbitrary data to an output section.
2539
2540void
2541Output_section::add_output_section_data(Output_section_data* posd)
2542{
b8e6aad9
ILT
2543 Input_section inp(posd);
2544 this->add_output_section_data(&inp);
a445fddf
ILT
2545
2546 if (posd->is_data_size_valid())
2547 {
cdc29364
CC
2548 off_t offset_in_section;
2549 if (this->has_fixed_layout())
2550 {
2551 // For incremental updates, find a chunk of unused space.
2552 offset_in_section = this->free_list_.allocate(posd->data_size(),
2553 posd->addralign(), 0);
2554 if (offset_in_section == -1)
9fbd3822
CC
2555 gold_fallback(_("out of patch space in section %s; "
2556 "relink with --incremental-full"),
2557 this->name());
cdc29364
CC
2558 // Finalize the address and offset now.
2559 uint64_t addr = this->address();
2560 off_t offset = this->offset();
2561 posd->set_address_and_file_offset(addr + offset_in_section,
2562 offset + offset_in_section);
2563 }
2564 else
2565 {
2566 offset_in_section = this->current_data_size_for_child();
2567 off_t aligned_offset_in_section = align_address(offset_in_section,
2568 posd->addralign());
2569 this->set_current_data_size_for_child(aligned_offset_in_section
2570 + posd->data_size());
2571 }
2572 }
2573 else if (this->has_fixed_layout())
2574 {
2575 // For incremental updates, arrange for the data to have a fixed layout.
2576 // This will mean that additions to the data must be allocated from
2577 // free space within the containing output section.
2578 uint64_t addr = this->address();
2579 posd->set_address(addr);
2580 posd->set_file_offset(0);
4829d394
CC
2581 // FIXME: This should eventually be unreachable.
2582 // gold_unreachable();
a445fddf 2583 }
b8e6aad9
ILT
2584}
2585
c0a62865
DK
2586// Add a relaxed input section.
2587
2588void
d06fb4d1
DK
2589Output_section::add_relaxed_input_section(Layout* layout,
2590 Output_relaxed_input_section* poris,
2591 const std::string& name)
c0a62865
DK
2592{
2593 Input_section inp(poris);
d06fb4d1
DK
2594
2595 // If the --section-ordering-file option is used to specify the order of
2596 // sections, we need to keep track of sections.
e9552f7e 2597 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2598 {
2599 unsigned int section_order_index =
2600 layout->find_section_order_index(name);
2601 if (section_order_index != 0)
2602 {
2603 inp.set_section_order_index(section_order_index);
2604 this->set_input_section_order_specified();
2605 }
2606 }
2607
c0a62865 2608 this->add_output_section_data(&inp);
0439c796
DK
2609 if (this->lookup_maps_->is_valid())
2610 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2611 poris->shndx(), poris);
c0a62865
DK
2612
2613 // For a relaxed section, we use the current data size. Linker scripts
2614 // get all the input sections, including relaxed one from an output
19fec8c1 2615 // section and add them back to the same output section to compute the
c0a62865 2616 // output section size. If we do not account for sizes of relaxed input
19fec8c1 2617 // sections, an output section would be incorrectly sized.
c0a62865
DK
2618 off_t offset_in_section = this->current_data_size_for_child();
2619 off_t aligned_offset_in_section = align_address(offset_in_section,
2620 poris->addralign());
2621 this->set_current_data_size_for_child(aligned_offset_in_section
2622 + poris->current_data_size());
2623}
2624
b8e6aad9 2625// Add arbitrary data to an output section by Input_section.
c06b7b0b 2626
b8e6aad9
ILT
2627void
2628Output_section::add_output_section_data(Input_section* inp)
2629{
ead1e424 2630 if (this->input_sections_.empty())
27bc2bce 2631 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2632
b8e6aad9 2633 this->input_sections_.push_back(*inp);
c06b7b0b 2634
2ea97941
ILT
2635 uint64_t addralign = inp->addralign();
2636 if (addralign > this->addralign_)
2637 this->addralign_ = addralign;
c06b7b0b 2638
b8e6aad9
ILT
2639 inp->set_output_section(this);
2640}
2641
2642// Add a merge section to an output section.
2643
2644void
2645Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2646 bool is_string, uint64_t entsize)
b8e6aad9 2647{
2ea97941 2648 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2649 this->add_output_section_data(&inp);
2650}
2651
2652// Add an input section to a SHF_MERGE section.
2653
2654bool
2ea97941
ILT
2655Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2656 uint64_t flags, uint64_t entsize,
0439c796
DK
2657 uint64_t addralign,
2658 bool keeps_input_sections)
b8e6aad9 2659{
2ea97941 2660 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2661
2662 // We only merge strings if the alignment is not more than the
2663 // character size. This could be handled, but it's unusual.
2ea97941 2664 if (is_string && addralign > entsize)
b8e6aad9
ILT
2665 return false;
2666
20e6d0d6
DK
2667 // We cannot restore merged input section states.
2668 gold_assert(this->checkpoint_ == NULL);
2669
c0a62865 2670 // Look up merge sections by required properties.
0439c796
DK
2671 // Currently, we only invalidate the lookup maps in script processing
2672 // and relaxation. We should not have done either when we reach here.
2673 // So we assume that the lookup maps are valid to simply code.
2674 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2675 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2676 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2677 bool is_new = false;
2678 if (pomb != NULL)
c0a62865 2679 {
6bf924b0
DK
2680 gold_assert(pomb->is_string() == is_string
2681 && pomb->entsize() == entsize
2682 && pomb->addralign() == addralign);
c0a62865 2683 }
b8e6aad9
ILT
2684 else
2685 {
6bf924b0
DK
2686 // Create a new Output_merge_data or Output_merge_string_data.
2687 if (!is_string)
2688 pomb = new Output_merge_data(entsize, addralign);
2689 else
9a0910c3 2690 {
6bf924b0
DK
2691 switch (entsize)
2692 {
2693 case 1:
2694 pomb = new Output_merge_string<char>(addralign);
2695 break;
2696 case 2:
2697 pomb = new Output_merge_string<uint16_t>(addralign);
2698 break;
2699 case 4:
2700 pomb = new Output_merge_string<uint32_t>(addralign);
2701 break;
2702 default:
2703 return false;
2704 }
9a0910c3 2705 }
0439c796
DK
2706 // If we need to do script processing or relaxation, we need to keep
2707 // the original input sections to rebuild the fast lookup maps.
2708 if (keeps_input_sections)
2709 pomb->set_keeps_input_sections();
2710 is_new = true;
b8e6aad9
ILT
2711 }
2712
6bf924b0
DK
2713 if (pomb->add_input_section(object, shndx))
2714 {
0439c796
DK
2715 // Add new merge section to this output section and link merge
2716 // section properties to new merge section in map.
2717 if (is_new)
2718 {
2719 this->add_output_merge_section(pomb, is_string, entsize);
2720 this->lookup_maps_->add_merge_section(msp, pomb);
2721 }
2722
6bf924b0
DK
2723 // Add input section to new merge section and link input section to new
2724 // merge section in map.
0439c796 2725 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2726 return true;
2727 }
2728 else
0439c796
DK
2729 {
2730 // If add_input_section failed, delete new merge section to avoid
2731 // exporting empty merge sections in Output_section::get_input_section.
2732 if (is_new)
2733 delete pomb;
2734 return false;
2735 }
b8e6aad9
ILT
2736}
2737
c0a62865 2738// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2739// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2740
20e6d0d6 2741void
c0a62865 2742Output_section::build_relaxation_map(
2ea97941 2743 const Input_section_list& input_sections,
c0a62865
DK
2744 size_t limit,
2745 Relaxation_map* relaxation_map) const
20e6d0d6 2746{
c0a62865
DK
2747 for (size_t i = 0; i < limit; ++i)
2748 {
2ea97941 2749 const Input_section& is(input_sections[i]);
c0a62865
DK
2750 if (is.is_input_section() || is.is_relaxed_input_section())
2751 {
5ac169d4
DK
2752 Section_id sid(is.relobj(), is.shndx());
2753 (*relaxation_map)[sid] = i;
c0a62865
DK
2754 }
2755 }
2756}
2757
2758// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2759// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2760// indices of INPUT_SECTIONS.
20e6d0d6 2761
c0a62865
DK
2762void
2763Output_section::convert_input_sections_in_list_to_relaxed_sections(
2764 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2765 const Relaxation_map& map,
2ea97941 2766 Input_section_list* input_sections)
c0a62865
DK
2767{
2768 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2769 {
2770 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2771 Section_id sid(poris->relobj(), poris->shndx());
2772 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2773 gold_assert(p != map.end());
2ea97941 2774 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2775
2776 // Remember section order index of original input section
2777 // if it is set. Copy it to the relaxed input section.
2778 unsigned int soi =
2779 (*input_sections)[p->second].section_order_index();
2ea97941 2780 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2781 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2782 }
2783}
50ed5eb1 2784
c0a62865
DK
2785// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2786// is a vector of pointers to Output_relaxed_input_section or its derived
2787// classes. The relaxed sections must correspond to existing input sections.
2788
2789void
2790Output_section::convert_input_sections_to_relaxed_sections(
2791 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2792{
029ba973 2793 gold_assert(parameters->target().may_relax());
20e6d0d6 2794
c0a62865
DK
2795 // We want to make sure that restore_states does not undo the effect of
2796 // this. If there is no checkpoint active, just search the current
2797 // input section list and replace the sections there. If there is
2798 // a checkpoint, also replace the sections there.
50ed5eb1 2799
c0a62865
DK
2800 // By default, we look at the whole list.
2801 size_t limit = this->input_sections_.size();
2802
2803 if (this->checkpoint_ != NULL)
20e6d0d6 2804 {
c0a62865
DK
2805 // Replace input sections with relaxed input section in the saved
2806 // copy of the input section list.
2807 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2808 {
c0a62865
DK
2809 Relaxation_map map;
2810 this->build_relaxation_map(
2811 *(this->checkpoint_->input_sections()),
2812 this->checkpoint_->input_sections()->size(),
2813 &map);
2814 this->convert_input_sections_in_list_to_relaxed_sections(
2815 relaxed_sections,
2816 map,
2817 this->checkpoint_->input_sections());
2818 }
2819 else
2820 {
2821 // We have not copied the input section list yet. Instead, just
2822 // look at the portion that would be saved.
2823 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2824 }
20e6d0d6 2825 }
c0a62865
DK
2826
2827 // Convert input sections in input_section_list.
2828 Relaxation_map map;
2829 this->build_relaxation_map(this->input_sections_, limit, &map);
2830 this->convert_input_sections_in_list_to_relaxed_sections(
2831 relaxed_sections,
2832 map,
2833 &this->input_sections_);
41263c05
DK
2834
2835 // Update fast look-up map.
0439c796 2836 if (this->lookup_maps_->is_valid())
41263c05
DK
2837 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2838 {
2839 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2840 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2841 poris->shndx(), poris);
41263c05 2842 }
20e6d0d6
DK
2843}
2844
9c547ec3
ILT
2845// Update the output section flags based on input section flags.
2846
2847void
2ea97941 2848Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2849{
2850 // If we created the section with SHF_ALLOC clear, we set the
2851 // address. If we are now setting the SHF_ALLOC flag, we need to
2852 // undo that.
2853 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2854 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2855 this->mark_address_invalid();
2856
2ea97941 2857 this->flags_ |= (flags
9c547ec3
ILT
2858 & (elfcpp::SHF_WRITE
2859 | elfcpp::SHF_ALLOC
2860 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2861
2862 if ((flags & elfcpp::SHF_MERGE) == 0)
2863 this->flags_ &=~ elfcpp::SHF_MERGE;
2864 else
2865 {
2866 if (this->current_data_size_for_child() == 0)
2867 this->flags_ |= elfcpp::SHF_MERGE;
2868 }
2869
2870 if ((flags & elfcpp::SHF_STRINGS) == 0)
2871 this->flags_ &=~ elfcpp::SHF_STRINGS;
2872 else
2873 {
2874 if (this->current_data_size_for_child() == 0)
2875 this->flags_ |= elfcpp::SHF_STRINGS;
2876 }
9c547ec3
ILT
2877}
2878
2ea97941 2879// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2880// OBJECT has been added. Return NULL if none found.
2881
2882Output_section_data*
2883Output_section::find_merge_section(const Relobj* object,
2ea97941 2884 unsigned int shndx) const
c0a62865 2885{
0439c796
DK
2886 if (!this->lookup_maps_->is_valid())
2887 this->build_lookup_maps();
2888 return this->lookup_maps_->find_merge_section(object, shndx);
2889}
2890
2891// Build the lookup maps for merge and relaxed sections. This is needs
2892// to be declared as a const methods so that it is callable with a const
2893// Output_section pointer. The method only updates states of the maps.
2894
2895void
2896Output_section::build_lookup_maps() const
2897{
2898 this->lookup_maps_->clear();
2899 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900 p != this->input_sections_.end();
2901 ++p)
c0a62865 2902 {
0439c796
DK
2903 if (p->is_merge_section())
2904 {
2905 Output_merge_base* pomb = p->output_merge_base();
2906 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2907 pomb->addralign());
2908 this->lookup_maps_->add_merge_section(msp, pomb);
2909 for (Output_merge_base::Input_sections::const_iterator is =
2910 pomb->input_sections_begin();
2911 is != pomb->input_sections_end();
50ed5eb1 2912 ++is)
0439c796
DK
2913 {
2914 const Const_section_id& csid = *is;
2915 this->lookup_maps_->add_merge_input_section(csid.first,
2916 csid.second, pomb);
2917 }
50ed5eb1 2918
0439c796
DK
2919 }
2920 else if (p->is_relaxed_input_section())
2921 {
2922 Output_relaxed_input_section* poris = p->relaxed_input_section();
2923 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2924 poris->shndx(), poris);
2925 }
c0a62865 2926 }
c0a62865
DK
2927}
2928
2929// Find an relaxed input section corresponding to an input section
2ea97941 2930// in OBJECT with index SHNDX.
c0a62865 2931
d6344fb5 2932const Output_relaxed_input_section*
c0a62865 2933Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2934 unsigned int shndx) const
c0a62865 2935{
0439c796
DK
2936 if (!this->lookup_maps_->is_valid())
2937 this->build_lookup_maps();
2938 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2939}
2940
2ea97941
ILT
2941// Given an address OFFSET relative to the start of input section
2942// SHNDX in OBJECT, return whether this address is being included in
2943// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2944// a special mapping.
2945
2946bool
2947Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2948 unsigned int shndx,
2949 off_t offset) const
730cdc88 2950{
c0a62865 2951 // Look at the Output_section_data_maps first.
2ea97941 2952 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2953 if (posd == NULL)
2ea97941 2954 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2955
2956 if (posd != NULL)
2957 {
2ea97941
ILT
2958 section_offset_type output_offset;
2959 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2960 gold_assert(found);
2ea97941 2961 return output_offset != -1;
c0a62865
DK
2962 }
2963
2964 // Fall back to the slow look-up.
730cdc88
ILT
2965 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2966 p != this->input_sections_.end();
2967 ++p)
2968 {
2ea97941
ILT
2969 section_offset_type output_offset;
2970 if (p->output_offset(object, shndx, offset, &output_offset))
2971 return output_offset != -1;
730cdc88
ILT
2972 }
2973
2974 // By default we assume that the address is mapped. This should
2975 // only be called after we have passed all sections to Layout. At
2976 // that point we should know what we are discarding.
2977 return true;
2978}
2979
2ea97941
ILT
2980// Given an address OFFSET relative to the start of input section
2981// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2982// start of the input section in the output section. This should only
2ea97941 2983// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2984
8383303e 2985section_offset_type
2ea97941
ILT
2986Output_section::output_offset(const Relobj* object, unsigned int shndx,
2987 section_offset_type offset) const
730cdc88 2988{
c0a62865
DK
2989 // This can only be called meaningfully when we know the data size
2990 // of this.
2991 gold_assert(this->is_data_size_valid());
730cdc88 2992
c0a62865 2993 // Look at the Output_section_data_maps first.
2ea97941 2994 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 2995 if (posd == NULL)
2ea97941 2996 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2997 if (posd != NULL)
2998 {
2ea97941
ILT
2999 section_offset_type output_offset;
3000 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 3001 gold_assert(found);
2ea97941 3002 return output_offset;
c0a62865
DK
3003 }
3004
3005 // Fall back to the slow look-up.
730cdc88
ILT
3006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007 p != this->input_sections_.end();
3008 ++p)
3009 {
2ea97941
ILT
3010 section_offset_type output_offset;
3011 if (p->output_offset(object, shndx, offset, &output_offset))
3012 return output_offset;
730cdc88
ILT
3013 }
3014 gold_unreachable();
3015}
3016
2ea97941
ILT
3017// Return the output virtual address of OFFSET relative to the start
3018// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
3019
3020uint64_t
2ea97941
ILT
3021Output_section::output_address(const Relobj* object, unsigned int shndx,
3022 off_t offset) const
b8e6aad9
ILT
3023{
3024 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
3025
3026 // Look at the Output_section_data_maps first.
2ea97941 3027 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 3028 if (posd == NULL)
2ea97941 3029 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
3030 if (posd != NULL && posd->is_address_valid())
3031 {
2ea97941
ILT
3032 section_offset_type output_offset;
3033 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 3034 gold_assert(found);
2ea97941 3035 return posd->address() + output_offset;
c0a62865
DK
3036 }
3037
3038 // Fall back to the slow look-up.
b8e6aad9
ILT
3039 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3040 p != this->input_sections_.end();
3041 ++p)
3042 {
3043 addr = align_address(addr, p->addralign());
2ea97941
ILT
3044 section_offset_type output_offset;
3045 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3046 {
2ea97941 3047 if (output_offset == -1)
eff45813 3048 return -1ULL;
2ea97941 3049 return addr + output_offset;
730cdc88 3050 }
b8e6aad9
ILT
3051 addr += p->data_size();
3052 }
3053
3054 // If we get here, it means that we don't know the mapping for this
3055 // input section. This might happen in principle if
3056 // add_input_section were called before add_output_section_data.
3057 // But it should never actually happen.
3058
3059 gold_unreachable();
ead1e424
ILT
3060}
3061
e29e076a 3062// Find the output address of the start of the merged section for
2ea97941 3063// input section SHNDX in object OBJECT.
a9a60db6 3064
e29e076a
ILT
3065bool
3066Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3067 unsigned int shndx,
e29e076a 3068 uint64_t* paddr) const
a9a60db6 3069{
c0a62865
DK
3070 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3071 // Looking up the merge section map does not always work as we sometimes
3072 // find a merge section without its address set.
a9a60db6
ILT
3073 uint64_t addr = this->address() + this->first_input_offset_;
3074 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3075 p != this->input_sections_.end();
3076 ++p)
3077 {
3078 addr = align_address(addr, p->addralign());
3079
3080 // It would be nice if we could use the existing output_offset
3081 // method to get the output offset of input offset 0.
3082 // Unfortunately we don't know for sure that input offset 0 is
3083 // mapped at all.
2ea97941 3084 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3085 {
3086 *paddr = addr;
3087 return true;
3088 }
a9a60db6
ILT
3089
3090 addr += p->data_size();
3091 }
e29e076a
ILT
3092
3093 // We couldn't find a merge output section for this input section.
3094 return false;
a9a60db6
ILT
3095}
3096
cdc29364
CC
3097// Update the data size of an Output_section.
3098
3099void
3100Output_section::update_data_size()
3101{
3102 if (this->input_sections_.empty())
3103 return;
3104
3105 if (this->must_sort_attached_input_sections()
3106 || this->input_section_order_specified())
3107 this->sort_attached_input_sections();
3108
3109 off_t off = this->first_input_offset_;
3110 for (Input_section_list::iterator p = this->input_sections_.begin();
3111 p != this->input_sections_.end();
3112 ++p)
3113 {
3114 off = align_address(off, p->addralign());
3115 off += p->current_data_size();
3116 }
3117
3118 this->set_current_data_size_for_child(off);
3119}
3120
27bc2bce 3121// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3122// setting the addresses of any Output_section_data objects.
3123
3124void
27bc2bce 3125Output_section::set_final_data_size()
ead1e424 3126{
9fbd3822
CC
3127 off_t data_size;
3128
ead1e424 3129 if (this->input_sections_.empty())
9fbd3822
CC
3130 data_size = this->current_data_size_for_child();
3131 else
27bc2bce 3132 {
9fbd3822
CC
3133 if (this->must_sort_attached_input_sections()
3134 || this->input_section_order_specified())
3135 this->sort_attached_input_sections();
ead1e424 3136
9fbd3822
CC
3137 uint64_t address = this->address();
3138 off_t startoff = this->offset();
3139 off_t off = startoff + this->first_input_offset_;
3140 for (Input_section_list::iterator p = this->input_sections_.begin();
3141 p != this->input_sections_.end();
3142 ++p)
3143 {
3144 off = align_address(off, p->addralign());
3145 p->set_address_and_file_offset(address + (off - startoff), off,
3146 startoff);
3147 off += p->data_size();
3148 }
3149 data_size = off - startoff;
3150 }
2fd32231 3151
9fbd3822
CC
3152 // For full incremental links, we want to allocate some patch space
3153 // in most sections for subsequent incremental updates.
3154 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3155 {
9fbd3822 3156 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3157 size_t extra = static_cast<size_t>(data_size * pct);
3158 if (this->free_space_fill_ != NULL
3159 && this->free_space_fill_->minimum_hole_size() > extra)
3160 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3161 off_t new_size = align_address(data_size + extra, this->addralign());
3162 this->patch_space_ = new_size - data_size;
3163 gold_debug(DEBUG_INCREMENTAL,
3164 "set_final_data_size: %08lx + %08lx: section %s",
3165 static_cast<long>(data_size),
3166 static_cast<long>(this->patch_space_),
3167 this->name());
3168 data_size = new_size;
ead1e424
ILT
3169 }
3170
9fbd3822 3171 this->set_data_size(data_size);
ead1e424 3172}
9a0910c3 3173
a445fddf
ILT
3174// Reset the address and file offset.
3175
3176void
3177Output_section::do_reset_address_and_file_offset()
3178{
20e6d0d6
DK
3179 // An unallocated section has no address. Forcing this means that
3180 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3181 // sections. We do the same in the constructor. This does not
3182 // apply to NOLOAD sections though.
3183 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3184 this->set_address(0);
3185
a445fddf
ILT
3186 for (Input_section_list::iterator p = this->input_sections_.begin();
3187 p != this->input_sections_.end();
3188 ++p)
3189 p->reset_address_and_file_offset();
9fbd3822
CC
3190
3191 // Remove any patch space that was added in set_final_data_size.
3192 if (this->patch_space_ > 0)
3193 {
3194 this->set_current_data_size_for_child(this->current_data_size_for_child()
3195 - this->patch_space_);
3196 this->patch_space_ = 0;
3197 }
a445fddf 3198}
9fbd3822 3199
20e6d0d6
DK
3200// Return true if address and file offset have the values after reset.
3201
3202bool
3203Output_section::do_address_and_file_offset_have_reset_values() const
3204{
3205 if (this->is_offset_valid())
3206 return false;
3207
3208 // An unallocated section has address 0 after its construction or a reset.
3209 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3210 return this->is_address_valid() && this->address() == 0;
3211 else
3212 return !this->is_address_valid();
3213}
a445fddf 3214
7bf1f802
ILT
3215// Set the TLS offset. Called only for SHT_TLS sections.
3216
3217void
3218Output_section::do_set_tls_offset(uint64_t tls_base)
3219{
3220 this->tls_offset_ = this->address() - tls_base;
3221}
3222
2fd32231
ILT
3223// In a few cases we need to sort the input sections attached to an
3224// output section. This is used to implement the type of constructor
3225// priority ordering implemented by the GNU linker, in which the
3226// priority becomes part of the section name and the sections are
3227// sorted by name. We only do this for an output section if we see an
5393d741 3228// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3229// ".init_array.*" or ".fini_array.*".
3230
3231class Output_section::Input_section_sort_entry
3232{
3233 public:
3234 Input_section_sort_entry()
3235 : input_section_(), index_(-1U), section_has_name_(false),
3236 section_name_()
3237 { }
3238
2ea97941 3239 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3240 unsigned int index,
3241 bool must_sort_attached_input_sections)
2ea97941
ILT
3242 : input_section_(input_section), index_(index),
3243 section_has_name_(input_section.is_input_section()
3244 || input_section.is_relaxed_input_section())
2fd32231 3245 {
6e9ba2ca
ST
3246 if (this->section_has_name_
3247 && must_sort_attached_input_sections)
2fd32231
ILT
3248 {
3249 // This is only called single-threaded from Layout::finalize,
3250 // so it is OK to lock. Unfortunately we have no way to pass
3251 // in a Task token.
3252 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3253 Object* obj = (input_section.is_input_section()
3254 ? input_section.relobj()
3255 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3256 Task_lock_obj<Object> tl(dummy_task, obj);
3257
3258 // This is a slow operation, which should be cached in
3259 // Layout::layout if this becomes a speed problem.
2ea97941 3260 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3261 }
3262 }
3263
3264 // Return the Input_section.
3265 const Input_section&
3266 input_section() const
3267 {
3268 gold_assert(this->index_ != -1U);
3269 return this->input_section_;
3270 }
3271
3272 // The index of this entry in the original list. This is used to
3273 // make the sort stable.
3274 unsigned int
3275 index() const
3276 {
3277 gold_assert(this->index_ != -1U);
3278 return this->index_;
3279 }
3280
3281 // Whether there is a section name.
3282 bool
3283 section_has_name() const
3284 { return this->section_has_name_; }
3285
3286 // The section name.
3287 const std::string&
3288 section_name() const
3289 {
3290 gold_assert(this->section_has_name_);
3291 return this->section_name_;
3292 }
3293
ab794b6b
ILT
3294 // Return true if the section name has a priority. This is assumed
3295 // to be true if it has a dot after the initial dot.
2fd32231 3296 bool
ab794b6b 3297 has_priority() const
2fd32231
ILT
3298 {
3299 gold_assert(this->section_has_name_);
2a0ff005 3300 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3301 }
3302
5393d741
ILT
3303 // Return the priority. Believe it or not, gcc encodes the priority
3304 // differently for .ctors/.dtors and .init_array/.fini_array
3305 // sections.
3306 unsigned int
3307 get_priority() const
3308 {
3309 gold_assert(this->section_has_name_);
3310 bool is_ctors;
3311 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3312 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3313 is_ctors = true;
3314 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3315 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3316 is_ctors = false;
3317 else
3318 return 0;
3319 char* end;
3320 unsigned long prio = strtoul((this->section_name_.c_str()
3321 + (is_ctors ? 7 : 12)),
3322 &end, 10);
3323 if (*end != '\0')
3324 return 0;
3325 else if (is_ctors)
3326 return 65535 - prio;
3327 else
3328 return prio;
3329 }
3330
ab794b6b
ILT
3331 // Return true if this an input file whose base name matches
3332 // FILE_NAME. The base name must have an extension of ".o", and
3333 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3334 // This is to match crtbegin.o as well as crtbeginS.o without
3335 // getting confused by other possibilities. Overall matching the
3336 // file name this way is a dreadful hack, but the GNU linker does it
3337 // in order to better support gcc, and we need to be compatible.
2fd32231 3338 bool
5393d741
ILT
3339 match_file_name(const char* file_name) const
3340 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3341
8fe2a369
ST
3342 // Returns 1 if THIS should appear before S in section order, -1 if S
3343 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3344 int
3345 compare_section_ordering(const Input_section_sort_entry& s) const
3346 {
8fe2a369
ST
3347 unsigned int this_secn_index = this->input_section_.section_order_index();
3348 unsigned int s_secn_index = s.input_section().section_order_index();
3349 if (this_secn_index > 0 && s_secn_index > 0)
3350 {
3351 if (this_secn_index < s_secn_index)
3352 return 1;
3353 else if (this_secn_index > s_secn_index)
3354 return -1;
3355 }
3356 return 0;
6e9ba2ca
ST
3357 }
3358
2fd32231
ILT
3359 private:
3360 // The Input_section we are sorting.
3361 Input_section input_section_;
3362 // The index of this Input_section in the original list.
3363 unsigned int index_;
3364 // Whether this Input_section has a section name--it won't if this
3365 // is some random Output_section_data.
3366 bool section_has_name_;
3367 // The section name if there is one.
3368 std::string section_name_;
3369};
3370
3371// Return true if S1 should come before S2 in the output section.
3372
3373bool
3374Output_section::Input_section_sort_compare::operator()(
3375 const Output_section::Input_section_sort_entry& s1,
3376 const Output_section::Input_section_sort_entry& s2) const
3377{
ab794b6b
ILT
3378 // crtbegin.o must come first.
3379 bool s1_begin = s1.match_file_name("crtbegin");
3380 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3381 if (s1_begin || s2_begin)
3382 {
3383 if (!s1_begin)
3384 return false;
3385 if (!s2_begin)
3386 return true;
3387 return s1.index() < s2.index();
3388 }
3389
ab794b6b
ILT
3390 // crtend.o must come last.
3391 bool s1_end = s1.match_file_name("crtend");
3392 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3393 if (s1_end || s2_end)
3394 {
3395 if (!s1_end)
3396 return true;
3397 if (!s2_end)
3398 return false;
3399 return s1.index() < s2.index();
3400 }
3401
ab794b6b
ILT
3402 // We sort all the sections with no names to the end.
3403 if (!s1.section_has_name() || !s2.section_has_name())
3404 {
3405 if (s1.section_has_name())
3406 return true;
3407 if (s2.section_has_name())
3408 return false;
3409 return s1.index() < s2.index();
3410 }
2fd32231 3411
ab794b6b 3412 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3413 bool s1_has_priority = s1.has_priority();
3414 bool s2_has_priority = s2.has_priority();
3415 if (s1_has_priority && !s2_has_priority)
2fd32231 3416 return false;
ab794b6b 3417 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3418 return true;
3419
6e9ba2ca
ST
3420 // Check if a section order exists for these sections through a section
3421 // ordering file. If sequence_num is 0, an order does not exist.
3422 int sequence_num = s1.compare_section_ordering(s2);
3423 if (sequence_num != 0)
3424 return sequence_num == 1;
3425
2fd32231
ILT
3426 // Otherwise we sort by name.
3427 int compare = s1.section_name().compare(s2.section_name());
3428 if (compare != 0)
3429 return compare < 0;
3430
3431 // Otherwise we keep the input order.
3432 return s1.index() < s2.index();
3433}
3434
2a0ff005
DK
3435// Return true if S1 should come before S2 in an .init_array or .fini_array
3436// output section.
3437
3438bool
3439Output_section::Input_section_sort_init_fini_compare::operator()(
3440 const Output_section::Input_section_sort_entry& s1,
3441 const Output_section::Input_section_sort_entry& s2) const
3442{
3443 // We sort all the sections with no names to the end.
3444 if (!s1.section_has_name() || !s2.section_has_name())
3445 {
3446 if (s1.section_has_name())
3447 return true;
3448 if (s2.section_has_name())
3449 return false;
3450 return s1.index() < s2.index();
3451 }
3452
3453 // A section without a priority follows a section with a priority.
3454 // This is the reverse of .ctors and .dtors sections.
3455 bool s1_has_priority = s1.has_priority();
3456 bool s2_has_priority = s2.has_priority();
3457 if (s1_has_priority && !s2_has_priority)
3458 return true;
3459 if (!s1_has_priority && s2_has_priority)
3460 return false;
3461
5393d741
ILT
3462 // .ctors and .dtors sections without priority come after
3463 // .init_array and .fini_array sections without priority.
3464 if (!s1_has_priority
3465 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3466 && s1.section_name() != s2.section_name())
3467 return false;
3468 if (!s2_has_priority
3469 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3470 && s2.section_name() != s1.section_name())
3471 return true;
3472
3473 // Sort by priority if we can.
3474 if (s1_has_priority)
3475 {
3476 unsigned int s1_prio = s1.get_priority();
3477 unsigned int s2_prio = s2.get_priority();
3478 if (s1_prio < s2_prio)
3479 return true;
3480 else if (s1_prio > s2_prio)
3481 return false;
3482 }
3483
6e9ba2ca
ST
3484 // Check if a section order exists for these sections through a section
3485 // ordering file. If sequence_num is 0, an order does not exist.
3486 int sequence_num = s1.compare_section_ordering(s2);
3487 if (sequence_num != 0)
3488 return sequence_num == 1;
3489
2a0ff005
DK
3490 // Otherwise we sort by name.
3491 int compare = s1.section_name().compare(s2.section_name());
3492 if (compare != 0)
3493 return compare < 0;
3494
3495 // Otherwise we keep the input order.
3496 return s1.index() < s2.index();
3497}
3498
8fe2a369
ST
3499// Return true if S1 should come before S2. Sections that do not match
3500// any pattern in the section ordering file are placed ahead of the sections
28f2a4ac
ST
3501// that match some pattern. This function is also used to group text according
3502// to their prefix. The following prefixes are recognized: ".text.startup",
3503// ".text.hot", and ".text.unlikely".
8fe2a369 3504
6e9ba2ca
ST
3505bool
3506Output_section::Input_section_sort_section_order_index_compare::operator()(
3507 const Output_section::Input_section_sort_entry& s1,
3508 const Output_section::Input_section_sort_entry& s2) const
3509{
8fe2a369
ST
3510 unsigned int s1_secn_index = s1.input_section().section_order_index();
3511 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3512
28f2a4ac
ST
3513 // If section ordering is specified, it takes precedence.
3514 if (s1_secn_index != s2_secn_index)
3515 return s1_secn_index < s2_secn_index;
3516
3517 // Sort all the sections with no names to the end.
3518 if (!s1.section_has_name() || !s2.section_has_name())
3519 {
3520 if (s1.section_has_name())
3521 return true;
3522 if (s2.section_has_name())
3523 return false;
3524 return s1.index() < s2.index();
3525 }
3526
3527 // If it is a text section use the following order:
3528 // .text.unlikely, .text.startup, .text.hot. The prefixes
3529 // must match those in function is_section_name_prefix_grouped
3530 // in layout.cc
3531 const char* section_prefix [] =
3532 {
3533 ".text.unlikely",
3534 ".text.startup",
3535 ".text.hot"
3536 };
3537
3538 const unsigned int num_prefixes
3539 = sizeof(section_prefix) / sizeof(const char*);
3540
3541 unsigned int s1_group_index = num_prefixes;
3542 unsigned int s2_group_index = num_prefixes;
3543
3544 unsigned int flag_done = 0;
3545 for (unsigned int i = 0; i < num_prefixes && flag_done < 2; i++)
3546 {
3547 if (s1_group_index == num_prefixes
3548 && is_prefix_of(section_prefix[i], s1.section_name().c_str()))
3549 {
3550 s1_group_index = i;
3551 flag_done++;
3552 }
50ed5eb1 3553
28f2a4ac
ST
3554 if (s2_group_index == num_prefixes
3555 && is_prefix_of(section_prefix[i], s2.section_name().c_str()))
3556 {
3557 s2_group_index = i;
3558 flag_done++;
3559 }
3560 }
3561
3562 if (s1_group_index == s2_group_index)
3563 return s1.index() < s2.index();
3564 else
3565 return s1_group_index < s2_group_index;
6e9ba2ca
ST
3566}
3567
e9552f7e
ST
3568// This updates the section order index of input sections according to the
3569// the order specified in the mapping from Section id to order index.
3570
3571void
3572Output_section::update_section_layout(
f0558624 3573 const Section_layout_order* order_map)
e9552f7e
ST
3574{
3575 for (Input_section_list::iterator p = this->input_sections_.begin();
3576 p != this->input_sections_.end();
3577 ++p)
3578 {
3579 if (p->is_input_section()
3580 || p->is_relaxed_input_section())
3581 {
3582 Object* obj = (p->is_input_section()
3583 ? p->relobj()
3584 : p->relaxed_input_section()->relobj());
3585 unsigned int shndx = p->shndx();
3586 Section_layout_order::const_iterator it
f0558624
ST
3587 = order_map->find(Section_id(obj, shndx));
3588 if (it == order_map->end())
e9552f7e
ST
3589 continue;
3590 unsigned int section_order_index = it->second;
3591 if (section_order_index != 0)
3592 {
3593 p->set_section_order_index(section_order_index);
3594 this->set_input_section_order_specified();
3595 }
3596 }
3597 }
3598}
3599
2fd32231
ILT
3600// Sort the input sections attached to an output section.
3601
3602void
3603Output_section::sort_attached_input_sections()
3604{
3605 if (this->attached_input_sections_are_sorted_)
3606 return;
3607
20e6d0d6
DK
3608 if (this->checkpoint_ != NULL
3609 && !this->checkpoint_->input_sections_saved())
3610 this->checkpoint_->save_input_sections();
3611
2fd32231
ILT
3612 // The only thing we know about an input section is the object and
3613 // the section index. We need the section name. Recomputing this
3614 // is slow but this is an unusual case. If this becomes a speed
3615 // problem we can cache the names as required in Layout::layout.
3616
3617 // We start by building a larger vector holding a copy of each
3618 // Input_section, plus its current index in the list and its name.
3619 std::vector<Input_section_sort_entry> sort_list;
3620
3621 unsigned int i = 0;
3622 for (Input_section_list::iterator p = this->input_sections_.begin();
3623 p != this->input_sections_.end();
3624 ++p, ++i)
6e9ba2ca 3625 sort_list.push_back(Input_section_sort_entry(*p, i,
28f2a4ac
ST
3626 (this->must_sort_attached_input_sections()
3627 || this->input_section_order_specified())));
2fd32231
ILT
3628
3629 // Sort the input sections.
6e9ba2ca
ST
3630 if (this->must_sort_attached_input_sections())
3631 {
3632 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3633 || this->type() == elfcpp::SHT_INIT_ARRAY
3634 || this->type() == elfcpp::SHT_FINI_ARRAY)
3635 std::sort(sort_list.begin(), sort_list.end(),
3636 Input_section_sort_init_fini_compare());
3637 else
3638 std::sort(sort_list.begin(), sort_list.end(),
3639 Input_section_sort_compare());
3640 }
2a0ff005 3641 else
6e9ba2ca 3642 {
e9552f7e 3643 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3644 std::sort(sort_list.begin(), sort_list.end(),
3645 Input_section_sort_section_order_index_compare());
3646 }
2fd32231
ILT
3647
3648 // Copy the sorted input sections back to our list.
3649 this->input_sections_.clear();
3650 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3651 p != sort_list.end();
3652 ++p)
3653 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3654 sort_list.clear();
2fd32231
ILT
3655
3656 // Remember that we sorted the input sections, since we might get
3657 // called again.
3658 this->attached_input_sections_are_sorted_ = true;
3659}
3660
61ba1cf9
ILT
3661// Write the section header to *OSHDR.
3662
3663template<int size, bool big_endian>
3664void
16649710
ILT
3665Output_section::write_header(const Layout* layout,
3666 const Stringpool* secnamepool,
61ba1cf9
ILT
3667 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3668{
3669 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3670 oshdr->put_sh_type(this->type_);
6a74a719 3671
2ea97941 3672 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3673 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3674 flags |= elfcpp::SHF_INFO_LINK;
3675 oshdr->put_sh_flags(flags);
6a74a719 3676
61ba1cf9
ILT
3677 oshdr->put_sh_addr(this->address());
3678 oshdr->put_sh_offset(this->offset());
3679 oshdr->put_sh_size(this->data_size());
16649710
ILT
3680 if (this->link_section_ != NULL)
3681 oshdr->put_sh_link(this->link_section_->out_shndx());
3682 else if (this->should_link_to_symtab_)
886f533a 3683 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3684 else if (this->should_link_to_dynsym_)
3685 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3686 else
3687 oshdr->put_sh_link(this->link_);
755ab8af 3688
2ea97941 3689 elfcpp::Elf_Word info;
16649710 3690 if (this->info_section_ != NULL)
755ab8af
ILT
3691 {
3692 if (this->info_uses_section_index_)
2ea97941 3693 info = this->info_section_->out_shndx();
755ab8af 3694 else
2ea97941 3695 info = this->info_section_->symtab_index();
755ab8af 3696 }
6a74a719 3697 else if (this->info_symndx_ != NULL)
2ea97941 3698 info = this->info_symndx_->symtab_index();
16649710 3699 else
2ea97941
ILT
3700 info = this->info_;
3701 oshdr->put_sh_info(info);
755ab8af 3702
61ba1cf9
ILT
3703 oshdr->put_sh_addralign(this->addralign_);
3704 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3705}
3706
ead1e424
ILT
3707// Write out the data. For input sections the data is written out by
3708// Object::relocate, but we have to handle Output_section_data objects
3709// here.
3710
3711void
3712Output_section::do_write(Output_file* of)
3713{
96803768
ILT
3714 gold_assert(!this->requires_postprocessing());
3715
c0a62865
DK
3716 // If the target performs relaxation, we delay filler generation until now.
3717 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3718
c51e6221
ILT
3719 off_t output_section_file_offset = this->offset();
3720 for (Fill_list::iterator p = this->fills_.begin();
3721 p != this->fills_.end();
3722 ++p)
3723 {
8851ecca 3724 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3725 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3726 fill_data.data(), fill_data.size());
c51e6221
ILT
3727 }
3728
c0a62865 3729 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3730 for (Input_section_list::iterator p = this->input_sections_.begin();
3731 p != this->input_sections_.end();
3732 ++p)
c0a62865
DK
3733 {
3734 off_t aligned_off = align_address(off, p->addralign());
3735 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3736 {
3737 size_t fill_len = aligned_off - off;
3738 std::string fill_data(parameters->target().code_fill(fill_len));
3739 of->write(off, fill_data.data(), fill_data.size());
3740 }
3741
3742 p->write(of);
3743 off = aligned_off + p->data_size();
3744 }
8ea8cd50
CC
3745
3746 // For incremental links, fill in unused chunks in debug sections
3747 // with dummy compilation unit headers.
3748 if (this->free_space_fill_ != NULL)
3749 {
3750 for (Free_list::Const_iterator p = this->free_list_.begin();
3751 p != this->free_list_.end();
3752 ++p)
3753 {
3754 off_t off = p->start_;
3755 size_t len = p->end_ - off;
3756 this->free_space_fill_->write(of, this->offset() + off, len);
3757 }
3758 if (this->patch_space_ > 0)
3759 {
3760 off_t off = this->current_data_size_for_child() - this->patch_space_;
3761 this->free_space_fill_->write(of, this->offset() + off,
3762 this->patch_space_);
3763 }
3764 }
ead1e424
ILT
3765}
3766
96803768
ILT
3767// If a section requires postprocessing, create the buffer to use.
3768
3769void
3770Output_section::create_postprocessing_buffer()
3771{
3772 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3773
3774 if (this->postprocessing_buffer_ != NULL)
3775 return;
96803768
ILT
3776
3777 if (!this->input_sections_.empty())
3778 {
3779 off_t off = this->first_input_offset_;
3780 for (Input_section_list::iterator p = this->input_sections_.begin();
3781 p != this->input_sections_.end();
3782 ++p)
3783 {
3784 off = align_address(off, p->addralign());
3785 p->finalize_data_size();
3786 off += p->data_size();
3787 }
3788 this->set_current_data_size_for_child(off);
3789 }
3790
3791 off_t buffer_size = this->current_data_size_for_child();
3792 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3793}
3794
3795// Write all the data of an Output_section into the postprocessing
3796// buffer. This is used for sections which require postprocessing,
3797// such as compression. Input sections are handled by
3798// Object::Relocate.
3799
3800void
3801Output_section::write_to_postprocessing_buffer()
3802{
3803 gold_assert(this->requires_postprocessing());
3804
c0a62865
DK
3805 // If the target performs relaxation, we delay filler generation until now.
3806 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3807
96803768
ILT
3808 unsigned char* buffer = this->postprocessing_buffer();
3809 for (Fill_list::iterator p = this->fills_.begin();
3810 p != this->fills_.end();
3811 ++p)
3812 {
8851ecca 3813 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3814 memcpy(buffer + p->section_offset(), fill_data.data(),
3815 fill_data.size());
96803768
ILT
3816 }
3817
3818 off_t off = this->first_input_offset_;
3819 for (Input_section_list::iterator p = this->input_sections_.begin();
3820 p != this->input_sections_.end();
3821 ++p)
3822 {
c0a62865
DK
3823 off_t aligned_off = align_address(off, p->addralign());
3824 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3825 {
3826 size_t fill_len = aligned_off - off;
3827 std::string fill_data(parameters->target().code_fill(fill_len));
3828 memcpy(buffer + off, fill_data.data(), fill_data.size());
3829 }
3830
3831 p->write_to_buffer(buffer + aligned_off);
3832 off = aligned_off + p->data_size();
96803768
ILT
3833 }
3834}
3835
a445fddf
ILT
3836// Get the input sections for linker script processing. We leave
3837// behind the Output_section_data entries. Note that this may be
3838// slightly incorrect for merge sections. We will leave them behind,
3839// but it is possible that the script says that they should follow
3840// some other input sections, as in:
3841// .rodata { *(.rodata) *(.rodata.cst*) }
3842// For that matter, we don't handle this correctly:
3843// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3844// With luck this will never matter.
3845
3846uint64_t
3847Output_section::get_input_sections(
2ea97941 3848 uint64_t address,
a445fddf 3849 const std::string& fill,
6625d24e 3850 std::list<Input_section>* input_sections)
a445fddf 3851{
20e6d0d6
DK
3852 if (this->checkpoint_ != NULL
3853 && !this->checkpoint_->input_sections_saved())
3854 this->checkpoint_->save_input_sections();
3855
0439c796
DK
3856 // Invalidate fast look-up maps.
3857 this->lookup_maps_->invalidate();
c0a62865 3858
2ea97941 3859 uint64_t orig_address = address;
a445fddf 3860
2ea97941 3861 address = align_address(address, this->addralign());
a445fddf
ILT
3862
3863 Input_section_list remaining;
3864 for (Input_section_list::iterator p = this->input_sections_.begin();
3865 p != this->input_sections_.end();
3866 ++p)
3867 {
0439c796
DK
3868 if (p->is_input_section()
3869 || p->is_relaxed_input_section()
3870 || p->is_merge_section())
6625d24e 3871 input_sections->push_back(*p);
a445fddf
ILT
3872 else
3873 {
2ea97941
ILT
3874 uint64_t aligned_address = align_address(address, p->addralign());
3875 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3876 {
3877 section_size_type length =
2ea97941 3878 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3879 std::string this_fill;
3880 this_fill.reserve(length);
3881 while (this_fill.length() + fill.length() <= length)
3882 this_fill += fill;
3883 if (this_fill.length() < length)
3884 this_fill.append(fill, 0, length - this_fill.length());
3885
3886 Output_section_data* posd = new Output_data_const(this_fill, 0);
3887 remaining.push_back(Input_section(posd));
3888 }
2ea97941 3889 address = aligned_address;
a445fddf
ILT
3890
3891 remaining.push_back(*p);
3892
3893 p->finalize_data_size();
2ea97941 3894 address += p->data_size();
a445fddf
ILT
3895 }
3896 }
3897
3898 this->input_sections_.swap(remaining);
3899 this->first_input_offset_ = 0;
3900
2ea97941
ILT
3901 uint64_t data_size = address - orig_address;
3902 this->set_current_data_size_for_child(data_size);
3903 return data_size;
a445fddf
ILT
3904}
3905
6625d24e
DK
3906// Add a script input section. SIS is an Output_section::Input_section,
3907// which can be either a plain input section or a special input section like
3908// a relaxed input section. For a special input section, its size must be
3909// finalized.
a445fddf
ILT
3910
3911void
6625d24e 3912Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3913{
6625d24e
DK
3914 uint64_t data_size = sis.data_size();
3915 uint64_t addralign = sis.addralign();
2ea97941
ILT
3916 if (addralign > this->addralign_)
3917 this->addralign_ = addralign;
a445fddf
ILT
3918
3919 off_t offset_in_section = this->current_data_size_for_child();
3920 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3921 addralign);
a445fddf
ILT
3922
3923 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3924 + data_size);
a445fddf 3925
6625d24e 3926 this->input_sections_.push_back(sis);
0439c796 3927
50ed5eb1 3928 // Update fast lookup maps if necessary.
0439c796
DK
3929 if (this->lookup_maps_->is_valid())
3930 {
3931 if (sis.is_merge_section())
3932 {
3933 Output_merge_base* pomb = sis.output_merge_base();
3934 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3935 pomb->addralign());
3936 this->lookup_maps_->add_merge_section(msp, pomb);
3937 for (Output_merge_base::Input_sections::const_iterator p =
3938 pomb->input_sections_begin();
3939 p != pomb->input_sections_end();
3940 ++p)
3941 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3942 pomb);
3943 }
3944 else if (sis.is_relaxed_input_section())
3945 {
3946 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3947 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3948 poris->shndx(), poris);
3949 }
3950 }
20e6d0d6
DK
3951}
3952
8923b24c 3953// Save states for relaxation.
20e6d0d6
DK
3954
3955void
3956Output_section::save_states()
3957{
3958 gold_assert(this->checkpoint_ == NULL);
3959 Checkpoint_output_section* checkpoint =
3960 new Checkpoint_output_section(this->addralign_, this->flags_,
3961 this->input_sections_,
3962 this->first_input_offset_,
3963 this->attached_input_sections_are_sorted_);
3964 this->checkpoint_ = checkpoint;
3965 gold_assert(this->fills_.empty());
3966}
3967
8923b24c
DK
3968void
3969Output_section::discard_states()
3970{
3971 gold_assert(this->checkpoint_ != NULL);
3972 delete this->checkpoint_;
3973 this->checkpoint_ = NULL;
3974 gold_assert(this->fills_.empty());
3975
0439c796
DK
3976 // Simply invalidate the fast lookup maps since we do not keep
3977 // track of them.
3978 this->lookup_maps_->invalidate();
8923b24c
DK
3979}
3980
20e6d0d6
DK
3981void
3982Output_section::restore_states()
3983{
3984 gold_assert(this->checkpoint_ != NULL);
3985 Checkpoint_output_section* checkpoint = this->checkpoint_;
3986
3987 this->addralign_ = checkpoint->addralign();
3988 this->flags_ = checkpoint->flags();
3989 this->first_input_offset_ = checkpoint->first_input_offset();
3990
3991 if (!checkpoint->input_sections_saved())
3992 {
3993 // If we have not copied the input sections, just resize it.
3994 size_t old_size = checkpoint->input_sections_size();
3995 gold_assert(this->input_sections_.size() >= old_size);
3996 this->input_sections_.resize(old_size);
3997 }
3998 else
3999 {
4000 // We need to copy the whole list. This is not efficient for
4001 // extremely large output with hundreads of thousands of input
4002 // objects. We may need to re-think how we should pass sections
4003 // to scripts.
c0a62865 4004 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
4005 }
4006
4007 this->attached_input_sections_are_sorted_ =
4008 checkpoint->attached_input_sections_are_sorted();
c0a62865 4009
0439c796
DK
4010 // Simply invalidate the fast lookup maps since we do not keep
4011 // track of them.
4012 this->lookup_maps_->invalidate();
a445fddf
ILT
4013}
4014
8923b24c
DK
4015// Update the section offsets of input sections in this. This is required if
4016// relaxation causes some input sections to change sizes.
4017
4018void
4019Output_section::adjust_section_offsets()
4020{
4021 if (!this->section_offsets_need_adjustment_)
4022 return;
4023
4024 off_t off = 0;
4025 for (Input_section_list::iterator p = this->input_sections_.begin();
4026 p != this->input_sections_.end();
4027 ++p)
4028 {
4029 off = align_address(off, p->addralign());
4030 if (p->is_input_section())
4031 p->relobj()->set_section_offset(p->shndx(), off);
4032 off += p->data_size();
4033 }
4034
4035 this->section_offsets_need_adjustment_ = false;
4036}
4037
7d9e3d98
ILT
4038// Print to the map file.
4039
4040void
4041Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4042{
4043 mapfile->print_output_section(this);
4044
4045 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4046 p != this->input_sections_.end();
4047 ++p)
4048 p->print_to_mapfile(mapfile);
4049}
4050
38c5e8b4
ILT
4051// Print stats for merge sections to stderr.
4052
4053void
4054Output_section::print_merge_stats()
4055{
4056 Input_section_list::iterator p;
4057 for (p = this->input_sections_.begin();
4058 p != this->input_sections_.end();
4059 ++p)
4060 p->print_merge_stats(this->name_);
4061}
4062
cdc29364
CC
4063// Set a fixed layout for the section. Used for incremental update links.
4064
4065void
4066Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4067 off_t sh_size, uint64_t sh_addralign)
4068{
4069 this->addralign_ = sh_addralign;
4070 this->set_current_data_size(sh_size);
4071 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4072 this->set_address(sh_addr);
4073 this->set_file_offset(sh_offset);
4074 this->finalize_data_size();
4075 this->free_list_.init(sh_size, false);
4076 this->has_fixed_layout_ = true;
4077}
4078
4079// Reserve space within the fixed layout for the section. Used for
4080// incremental update links.
5146f448 4081
cdc29364
CC
4082void
4083Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4084{
4085 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4086}
4087
5146f448
CC
4088// Allocate space from the free list for the section. Used for
4089// incremental update links.
4090
4091off_t
4092Output_section::allocate(off_t len, uint64_t addralign)
4093{
4094 return this->free_list_.allocate(len, addralign, 0);
4095}
4096
a2fb1b05
ILT
4097// Output segment methods.
4098
2ea97941 4099Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4100 : vaddr_(0),
a2fb1b05
ILT
4101 paddr_(0),
4102 memsz_(0),
a445fddf
ILT
4103 max_align_(0),
4104 min_p_align_(0),
a2fb1b05
ILT
4105 offset_(0),
4106 filesz_(0),
2ea97941
ILT
4107 type_(type),
4108 flags_(flags),
a445fddf 4109 is_max_align_known_(false),
8a5e3e08 4110 are_addresses_set_(false),
16164a6b
ST
4111 is_large_data_segment_(false),
4112 is_unique_segment_(false)
a2fb1b05 4113{
bb321bb1
ILT
4114 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4115 // the flags.
4116 if (type == elfcpp::PT_TLS)
4117 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4118}
4119
22f0da72 4120// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4121
4122void
22f0da72
ILT
4123Output_segment::add_output_section_to_load(Layout* layout,
4124 Output_section* os,
4125 elfcpp::Elf_Word seg_flags)
a2fb1b05 4126{
22f0da72 4127 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4128 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4129 gold_assert(!this->is_max_align_known_);
8a5e3e08 4130 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4131
a192ba05 4132 this->update_flags_for_output_section(seg_flags);
75f65a3e 4133
22f0da72
ILT
4134 // We don't want to change the ordering if we have a linker script
4135 // with a SECTIONS clause.
4136 Output_section_order order = os->order();
4137 if (layout->script_options()->saw_sections_clause())
4138 order = static_cast<Output_section_order>(0);
75f65a3e 4139 else
22f0da72 4140 gold_assert(order != ORDER_INVALID);
54dc6425 4141
22f0da72
ILT
4142 this->output_lists_[order].push_back(os);
4143}
9f1d377b 4144
22f0da72 4145// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4146
22f0da72
ILT
4147void
4148Output_segment::add_output_section_to_nonload(Output_section* os,
4149 elfcpp::Elf_Word seg_flags)
4150{
4151 gold_assert(this->type() != elfcpp::PT_LOAD);
4152 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4153 gold_assert(!this->is_max_align_known_);
1a2dff53 4154
22f0da72 4155 this->update_flags_for_output_section(seg_flags);
9f1d377b 4156
22f0da72
ILT
4157 this->output_lists_[0].push_back(os);
4158}
8a5e3e08 4159
22f0da72
ILT
4160// Remove an Output_section from this segment. It is an error if it
4161// is not present.
8a5e3e08 4162
22f0da72
ILT
4163void
4164Output_segment::remove_output_section(Output_section* os)
4165{
4166 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4167 {
22f0da72
ILT
4168 Output_data_list* pdl = &this->output_lists_[i];
4169 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4170 {
22f0da72 4171 if (*p == os)
8a5e3e08 4172 {
22f0da72 4173 pdl->erase(p);
8a5e3e08
ILT
4174 return;
4175 }
4176 }
f5c870d2 4177 }
1650c4ff
ILT
4178 gold_unreachable();
4179}
4180
a192ba05
ILT
4181// Add an Output_data (which need not be an Output_section) to the
4182// start of a segment.
75f65a3e
ILT
4183
4184void
4185Output_segment::add_initial_output_data(Output_data* od)
4186{
a445fddf 4187 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4188 Output_data_list::iterator p = this->output_lists_[0].begin();
4189 this->output_lists_[0].insert(p, od);
4190}
4191
4192// Return true if this segment has any sections which hold actual
4193// data, rather than being a BSS section.
4194
4195bool
4196Output_segment::has_any_data_sections() const
4197{
4198 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4199 {
4200 const Output_data_list* pdl = &this->output_lists_[i];
4201 for (Output_data_list::const_iterator p = pdl->begin();
4202 p != pdl->end();
4203 ++p)
4204 {
4205 if (!(*p)->is_section())
4206 return true;
4207 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4208 return true;
4209 }
4210 }
4211 return false;
75f65a3e
ILT
4212}
4213
5bc2f5be
CC
4214// Return whether the first data section (not counting TLS sections)
4215// is a relro section.
9f1d377b
ILT
4216
4217bool
4218Output_segment::is_first_section_relro() const
4219{
22f0da72
ILT
4220 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4221 {
5bc2f5be
CC
4222 if (i == static_cast<int>(ORDER_TLS_DATA)
4223 || i == static_cast<int>(ORDER_TLS_BSS))
4224 continue;
22f0da72
ILT
4225 const Output_data_list* pdl = &this->output_lists_[i];
4226 if (!pdl->empty())
4227 {
4228 Output_data* p = pdl->front();
4229 return p->is_section() && p->output_section()->is_relro();
4230 }
4231 }
4232 return false;
9f1d377b
ILT
4233}
4234
75f65a3e 4235// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4236
4237uint64_t
a445fddf 4238Output_segment::maximum_alignment()
75f65a3e 4239{
a445fddf 4240 if (!this->is_max_align_known_)
ead1e424 4241 {
22f0da72 4242 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
50ed5eb1 4243 {
22f0da72
ILT
4244 const Output_data_list* pdl = &this->output_lists_[i];
4245 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4246 if (addralign > this->max_align_)
4247 this->max_align_ = addralign;
4248 }
a445fddf 4249 this->is_max_align_known_ = true;
ead1e424
ILT
4250 }
4251
a445fddf 4252 return this->max_align_;
75f65a3e
ILT
4253}
4254
ead1e424
ILT
4255// Return the maximum alignment of a list of Output_data.
4256
4257uint64_t
a445fddf 4258Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4259{
4260 uint64_t ret = 0;
4261 for (Output_data_list::const_iterator p = pdl->begin();
4262 p != pdl->end();
4263 ++p)
4264 {
2ea97941
ILT
4265 uint64_t addralign = (*p)->addralign();
4266 if (addralign > ret)
4267 ret = addralign;
ead1e424
ILT
4268 }
4269 return ret;
4270}
4271
22f0da72 4272// Return whether this segment has any dynamic relocs.
4f4c5f80 4273
22f0da72
ILT
4274bool
4275Output_segment::has_dynamic_reloc() const
4f4c5f80 4276{
22f0da72
ILT
4277 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4278 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4279 return true;
4280 return false;
4f4c5f80
ILT
4281}
4282
22f0da72 4283// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4284
22f0da72
ILT
4285bool
4286Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4287{
4f4c5f80
ILT
4288 for (Output_data_list::const_iterator p = pdl->begin();
4289 p != pdl->end();
4290 ++p)
22f0da72
ILT
4291 if ((*p)->has_dynamic_reloc())
4292 return true;
4293 return false;
4f4c5f80
ILT
4294}
4295
a445fddf
ILT
4296// Set the section addresses for an Output_segment. If RESET is true,
4297// reset the addresses first. ADDR is the address and *POFF is the
4298// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4299// INCREASE_RELRO is the size of the portion of the first non-relro
4300// section that should be included in the PT_GNU_RELRO segment.
4301// If this segment has relro sections, and has been aligned for
4302// that purpose, set *HAS_RELRO to TRUE. Return the address of
4303// the immediately following segment. Update *HAS_RELRO, *POFF,
4304// and *PSHNDX.
75f65a3e
ILT
4305
4306uint64_t
cdc29364 4307Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4308 uint64_t addr,
fd064a5b 4309 unsigned int* increase_relro,
fc497986 4310 bool* has_relro,
1a2dff53 4311 off_t* poff,
ead1e424 4312 unsigned int* pshndx)
75f65a3e 4313{
a3ad94ed 4314 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4315
fc497986 4316 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4317 off_t orig_off = *poff;
4318
5bc2f5be
CC
4319 bool in_tls = false;
4320
1a2dff53 4321 // If we have relro sections, we need to pad forward now so that the
815a1205 4322 // relro sections plus INCREASE_RELRO end on an abi page boundary.
1a2dff53
ILT
4323 if (parameters->options().relro()
4324 && this->is_first_section_relro()
4325 && (!this->are_addresses_set_ || reset))
4326 {
4327 uint64_t relro_size = 0;
4328 off_t off = *poff;
fc497986 4329 uint64_t max_align = 0;
5bc2f5be 4330 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4331 {
22f0da72
ILT
4332 Output_data_list* pdl = &this->output_lists_[i];
4333 Output_data_list::iterator p;
4334 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4335 {
22f0da72
ILT
4336 if (!(*p)->is_section())
4337 break;
fc497986
CC
4338 uint64_t align = (*p)->addralign();
4339 if (align > max_align)
4340 max_align = align;
5bc2f5be
CC
4341 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4342 in_tls = true;
4343 else if (in_tls)
4344 {
4345 // Align the first non-TLS section to the alignment
4346 // of the TLS segment.
4347 align = max_align;
4348 in_tls = false;
4349 }
fc497986 4350 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4351 // Ignore the size of the .tbss section.
4352 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4353 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4354 continue;
22f0da72
ILT
4355 if ((*p)->is_address_valid())
4356 relro_size += (*p)->data_size();
4357 else
4358 {
4359 // FIXME: This could be faster.
4360 (*p)->set_address_and_file_offset(addr + relro_size,
4361 off + relro_size);
4362 relro_size += (*p)->data_size();
4363 (*p)->reset_address_and_file_offset();
4364 }
1a2dff53 4365 }
22f0da72
ILT
4366 if (p != pdl->end())
4367 break;
1a2dff53 4368 }
fd064a5b 4369 relro_size += *increase_relro;
fc497986
CC
4370 // Pad the total relro size to a multiple of the maximum
4371 // section alignment seen.
4372 uint64_t aligned_size = align_address(relro_size, max_align);
4373 // Note the amount of padding added after the last relro section.
4374 last_relro_pad = aligned_size - relro_size;
fc497986 4375 *has_relro = true;
1a2dff53 4376
815a1205 4377 uint64_t page_align = parameters->target().abi_pagesize();
1a2dff53
ILT
4378
4379 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4380 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4381 if (desired_align < *poff % page_align)
4382 *poff += page_align - *poff % page_align;
4383 *poff += desired_align - *poff % page_align;
4384 addr += *poff - orig_off;
4385 orig_off = *poff;
4386 }
4387
a445fddf
ILT
4388 if (!reset && this->are_addresses_set_)
4389 {
4390 gold_assert(this->paddr_ == addr);
4391 addr = this->vaddr_;
4392 }
4393 else
4394 {
4395 this->vaddr_ = addr;
4396 this->paddr_ = addr;
4397 this->are_addresses_set_ = true;
4398 }
75f65a3e 4399
5bc2f5be 4400 in_tls = false;
96a2b4e4 4401
75f65a3e
ILT
4402 this->offset_ = orig_off;
4403
22f0da72
ILT
4404 off_t off = 0;
4405 uint64_t ret;
4406 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4407 {
fc497986
CC
4408 if (i == static_cast<int>(ORDER_RELRO_LAST))
4409 {
4410 *poff += last_relro_pad;
4411 addr += last_relro_pad;
fd064a5b
CC
4412 if (this->output_lists_[i].empty())
4413 {
4414 // If there is nothing in the ORDER_RELRO_LAST list,
4415 // the padding will occur at the end of the relro
4416 // segment, and we need to add it to *INCREASE_RELRO.
4417 *increase_relro += last_relro_pad;
4418 }
fc497986 4419 }
5bc2f5be
CC
4420 addr = this->set_section_list_addresses(layout, reset,
4421 &this->output_lists_[i],
4422 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4423 if (i < static_cast<int>(ORDER_SMALL_BSS))
4424 {
4425 this->filesz_ = *poff - orig_off;
4426 off = *poff;
4427 }
75f65a3e 4428
22f0da72
ILT
4429 ret = addr;
4430 }
96a2b4e4
ILT
4431
4432 // If the last section was a TLS section, align upward to the
4433 // alignment of the TLS segment, so that the overall size of the TLS
4434 // segment is aligned.
4435 if (in_tls)
4436 {
4437 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4438 *poff = align_address(*poff, segment_align);
4439 }
4440
75f65a3e
ILT
4441 this->memsz_ = *poff - orig_off;
4442
4443 // Ignore the file offset adjustments made by the BSS Output_data
4444 // objects.
4445 *poff = off;
61ba1cf9
ILT
4446
4447 return ret;
75f65a3e
ILT
4448}
4449
b8e6aad9
ILT
4450// Set the addresses and file offsets in a list of Output_data
4451// structures.
75f65a3e
ILT
4452
4453uint64_t
cdc29364 4454Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4455 Output_data_list* pdl,
ead1e424 4456 uint64_t addr, off_t* poff,
96a2b4e4 4457 unsigned int* pshndx,
1a2dff53 4458 bool* in_tls)
75f65a3e 4459{
ead1e424 4460 off_t startoff = *poff;
cdc29364
CC
4461 // For incremental updates, we may allocate non-fixed sections from
4462 // free space in the file. This keeps track of the high-water mark.
4463 off_t maxoff = startoff;
75f65a3e 4464
ead1e424 4465 off_t off = startoff;
75f65a3e
ILT
4466 for (Output_data_list::iterator p = pdl->begin();
4467 p != pdl->end();
4468 ++p)
4469 {
a445fddf
ILT
4470 if (reset)
4471 (*p)->reset_address_and_file_offset();
4472
cdc29364
CC
4473 // When doing an incremental update or when using a linker script,
4474 // the section will most likely already have an address.
a445fddf 4475 if (!(*p)->is_address_valid())
3802b2dd 4476 {
96a2b4e4
ILT
4477 uint64_t align = (*p)->addralign();
4478
4479 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4480 {
4481 // Give the first TLS section the alignment of the
4482 // entire TLS segment. Otherwise the TLS segment as a
4483 // whole may be misaligned.
4484 if (!*in_tls)
4485 {
4486 Output_segment* tls_segment = layout->tls_segment();
4487 gold_assert(tls_segment != NULL);
4488 uint64_t segment_align = tls_segment->maximum_alignment();
4489 gold_assert(segment_align >= align);
4490 align = segment_align;
4491
4492 *in_tls = true;
4493 }
4494 }
4495 else
4496 {
4497 // If this is the first section after the TLS segment,
4498 // align it to at least the alignment of the TLS
4499 // segment, so that the size of the overall TLS segment
4500 // is aligned.
4501 if (*in_tls)
4502 {
4503 uint64_t segment_align =
4504 layout->tls_segment()->maximum_alignment();
4505 if (segment_align > align)
4506 align = segment_align;
4507
4508 *in_tls = false;
4509 }
4510 }
4511
fb0e076f 4512 if (!parameters->incremental_update())
cdc29364
CC
4513 {
4514 off = align_address(off, align);
4515 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4516 }
4517 else
4518 {
4519 // Incremental update: allocate file space from free list.
4520 (*p)->pre_finalize_data_size();
4521 off_t current_size = (*p)->current_data_size();
4522 off = layout->allocate(current_size, align, startoff);
4523 if (off == -1)
4524 {
4525 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4526 gold_fallback(_("out of patch space for section %s; "
4527 "relink with --incremental-full"),
4528 (*p)->output_section()->name());
cdc29364
CC
4529 }
4530 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4531 if ((*p)->data_size() > current_size)
4532 {
4533 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4534 gold_fallback(_("%s: section changed size; "
4535 "relink with --incremental-full"),
4536 (*p)->output_section()->name());
cdc29364
CC
4537 }
4538 }
3802b2dd 4539 }
cdc29364
CC
4540 else if (parameters->incremental_update())
4541 {
4542 // For incremental updates, use the fixed offset for the
4543 // high-water mark computation.
4544 off = (*p)->offset();
4545 }
a445fddf
ILT
4546 else
4547 {
4548 // The script may have inserted a skip forward, but it
4549 // better not have moved backward.
661be1e2
ILT
4550 if ((*p)->address() >= addr + (off - startoff))
4551 off += (*p)->address() - (addr + (off - startoff));
4552 else
4553 {
4554 if (!layout->script_options()->saw_sections_clause())
4555 gold_unreachable();
4556 else
4557 {
4558 Output_section* os = (*p)->output_section();
64b1ae37
DK
4559
4560 // Cast to unsigned long long to avoid format warnings.
4561 unsigned long long previous_dot =
4562 static_cast<unsigned long long>(addr + (off - startoff));
4563 unsigned long long dot =
4564 static_cast<unsigned long long>((*p)->address());
4565
661be1e2
ILT
4566 if (os == NULL)
4567 gold_error(_("dot moves backward in linker script "
64b1ae37 4568 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4569 else
4570 gold_error(_("address of section '%s' moves backward "
4571 "from 0x%llx to 0x%llx"),
64b1ae37 4572 os->name(), previous_dot, dot);
661be1e2
ILT
4573 }
4574 }
a445fddf
ILT
4575 (*p)->set_file_offset(off);
4576 (*p)->finalize_data_size();
4577 }
ead1e424 4578
9fbd3822
CC
4579 if (parameters->incremental_update())
4580 gold_debug(DEBUG_INCREMENTAL,
4581 "set_section_list_addresses: %08lx %08lx %s",
4582 static_cast<long>(off),
4583 static_cast<long>((*p)->data_size()),
4584 ((*p)->output_section() != NULL
4585 ? (*p)->output_section()->name() : "(special)"));
4586
4587 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4588 // section. Such a section does not affect the size of a
4589 // PT_LOAD segment.
4590 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4591 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4592 off += (*p)->data_size();
75f65a3e 4593
cdc29364
CC
4594 if (off > maxoff)
4595 maxoff = off;
4596
ead1e424
ILT
4597 if ((*p)->is_section())
4598 {
4599 (*p)->set_out_shndx(*pshndx);
4600 ++*pshndx;
4601 }
75f65a3e
ILT
4602 }
4603
cdc29364
CC
4604 *poff = maxoff;
4605 return addr + (maxoff - startoff);
75f65a3e
ILT
4606}
4607
4608// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4609// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4610
4611void
1a2dff53 4612Output_segment::set_offset(unsigned int increase)
75f65a3e 4613{
a3ad94ed 4614 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4615
a445fddf
ILT
4616 gold_assert(!this->are_addresses_set_);
4617
22f0da72
ILT
4618 // A non-load section only uses output_lists_[0].
4619
4620 Output_data_list* pdl = &this->output_lists_[0];
4621
4622 if (pdl->empty())
75f65a3e 4623 {
1a2dff53 4624 gold_assert(increase == 0);
75f65a3e
ILT
4625 this->vaddr_ = 0;
4626 this->paddr_ = 0;
a445fddf 4627 this->are_addresses_set_ = true;
75f65a3e 4628 this->memsz_ = 0;
a445fddf 4629 this->min_p_align_ = 0;
75f65a3e
ILT
4630 this->offset_ = 0;
4631 this->filesz_ = 0;
4632 return;
4633 }
4634
22f0da72 4635 // Find the first and last section by address.
5f1ab67a
ILT
4636 const Output_data* first = NULL;
4637 const Output_data* last_data = NULL;
4638 const Output_data* last_bss = NULL;
22f0da72
ILT
4639 for (Output_data_list::const_iterator p = pdl->begin();
4640 p != pdl->end();
4641 ++p)
4642 {
4643 if (first == NULL
4644 || (*p)->address() < first->address()
4645 || ((*p)->address() == first->address()
4646 && (*p)->data_size() < first->data_size()))
4647 first = *p;
4648 const Output_data** plast;
4649 if ((*p)->is_section()
4650 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4651 plast = &last_bss;
4652 else
4653 plast = &last_data;
4654 if (*plast == NULL
4655 || (*p)->address() > (*plast)->address()
4656 || ((*p)->address() == (*plast)->address()
4657 && (*p)->data_size() > (*plast)->data_size()))
4658 *plast = *p;
4659 }
5f1ab67a 4660
75f65a3e 4661 this->vaddr_ = first->address();
a445fddf
ILT
4662 this->paddr_ = (first->has_load_address()
4663 ? first->load_address()
4664 : this->vaddr_);
4665 this->are_addresses_set_ = true;
75f65a3e
ILT
4666 this->offset_ = first->offset();
4667
22f0da72 4668 if (last_data == NULL)
75f65a3e
ILT
4669 this->filesz_ = 0;
4670 else
5f1ab67a
ILT
4671 this->filesz_ = (last_data->address()
4672 + last_data->data_size()
4673 - this->vaddr_);
75f65a3e 4674
5f1ab67a 4675 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4676 this->memsz_ = (last->address()
4677 + last->data_size()
4678 - this->vaddr_);
96a2b4e4 4679
1a2dff53
ILT
4680 this->filesz_ += increase;
4681 this->memsz_ += increase;
4682
fd064a5b
CC
4683 // If this is a RELRO segment, verify that the segment ends at a
4684 // page boundary.
4685 if (this->type_ == elfcpp::PT_GNU_RELRO)
4686 {
815a1205 4687 uint64_t page_align = parameters->target().abi_pagesize();
fd064a5b 4688 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4689 if (parameters->incremental_update())
4690 {
4691 // The INCREASE_RELRO calculation is bypassed for an incremental
4692 // update, so we need to adjust the segment size manually here.
4693 segment_end = align_address(segment_end, page_align);
4694 this->memsz_ = segment_end - this->vaddr_;
4695 }
4696 else
4697 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4698 }
4699
96a2b4e4
ILT
4700 // If this is a TLS segment, align the memory size. The code in
4701 // set_section_list ensures that the section after the TLS segment
4702 // is aligned to give us room.
4703 if (this->type_ == elfcpp::PT_TLS)
4704 {
4705 uint64_t segment_align = this->maximum_alignment();
4706 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4707 this->memsz_ = align_address(this->memsz_, segment_align);
4708 }
75f65a3e
ILT
4709}
4710
7bf1f802
ILT
4711// Set the TLS offsets of the sections in the PT_TLS segment.
4712
4713void
4714Output_segment::set_tls_offsets()
4715{
4716 gold_assert(this->type_ == elfcpp::PT_TLS);
4717
22f0da72
ILT
4718 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4719 p != this->output_lists_[0].end();
7bf1f802
ILT
4720 ++p)
4721 (*p)->set_tls_offset(this->vaddr_);
4722}
4723
7404fe1b 4724// Return the first section.
a445fddf 4725
7404fe1b
AM
4726Output_section*
4727Output_segment::first_section() const
a445fddf 4728{
22f0da72
ILT
4729 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4730 {
4731 const Output_data_list* pdl = &this->output_lists_[i];
4732 for (Output_data_list::const_iterator p = pdl->begin();
4733 p != pdl->end();
4734 ++p)
4735 {
4736 if ((*p)->is_section())
7404fe1b 4737 return (*p)->output_section();
22f0da72
ILT
4738 }
4739 }
a445fddf
ILT
4740 gold_unreachable();
4741}
4742
75f65a3e
ILT
4743// Return the number of Output_sections in an Output_segment.
4744
4745unsigned int
4746Output_segment::output_section_count() const
4747{
22f0da72
ILT
4748 unsigned int ret = 0;
4749 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4750 ret += this->output_section_count_list(&this->output_lists_[i]);
4751 return ret;
75f65a3e
ILT
4752}
4753
4754// Return the number of Output_sections in an Output_data_list.
4755
4756unsigned int
4757Output_segment::output_section_count_list(const Output_data_list* pdl) const
4758{
4759 unsigned int count = 0;
4760 for (Output_data_list::const_iterator p = pdl->begin();
4761 p != pdl->end();
4762 ++p)
4763 {
4764 if ((*p)->is_section())
4765 ++count;
4766 }
4767 return count;
a2fb1b05
ILT
4768}
4769
1c4f3631
ILT
4770// Return the section attached to the list segment with the lowest
4771// load address. This is used when handling a PHDRS clause in a
4772// linker script.
4773
4774Output_section*
4775Output_segment::section_with_lowest_load_address() const
4776{
4777 Output_section* found = NULL;
4778 uint64_t found_lma = 0;
22f0da72
ILT
4779 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4780 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4781 &found_lma);
1c4f3631
ILT
4782 return found;
4783}
4784
4785// Look through a list for a section with a lower load address.
4786
4787void
4788Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4789 Output_section** found,
4790 uint64_t* found_lma) const
4791{
4792 for (Output_data_list::const_iterator p = pdl->begin();
4793 p != pdl->end();
4794 ++p)
4795 {
4796 if (!(*p)->is_section())
4797 continue;
4798 Output_section* os = static_cast<Output_section*>(*p);
4799 uint64_t lma = (os->has_load_address()
4800 ? os->load_address()
4801 : os->address());
4802 if (*found == NULL || lma < *found_lma)
4803 {
4804 *found = os;
4805 *found_lma = lma;
4806 }
4807 }
4808}
4809
61ba1cf9
ILT
4810// Write the segment data into *OPHDR.
4811
4812template<int size, bool big_endian>
4813void
ead1e424 4814Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4815{
4816 ophdr->put_p_type(this->type_);
4817 ophdr->put_p_offset(this->offset_);
4818 ophdr->put_p_vaddr(this->vaddr_);
4819 ophdr->put_p_paddr(this->paddr_);
4820 ophdr->put_p_filesz(this->filesz_);
4821 ophdr->put_p_memsz(this->memsz_);
4822 ophdr->put_p_flags(this->flags_);
a445fddf 4823 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4824}
4825
4826// Write the section headers into V.
4827
4828template<int size, bool big_endian>
4829unsigned char*
16649710
ILT
4830Output_segment::write_section_headers(const Layout* layout,
4831 const Stringpool* secnamepool,
ead1e424 4832 unsigned char* v,
ca09d69a 4833 unsigned int* pshndx) const
5482377d 4834{
ead1e424
ILT
4835 // Every section that is attached to a segment must be attached to a
4836 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4837 // segments.
4838 if (this->type_ != elfcpp::PT_LOAD)
4839 return v;
4840
22f0da72
ILT
4841 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4842 {
4843 const Output_data_list* pdl = &this->output_lists_[i];
4844 v = this->write_section_headers_list<size, big_endian>(layout,
4845 secnamepool,
4846 pdl,
4847 v, pshndx);
4848 }
4849
61ba1cf9
ILT
4850 return v;
4851}
4852
4853template<int size, bool big_endian>
4854unsigned char*
16649710
ILT
4855Output_segment::write_section_headers_list(const Layout* layout,
4856 const Stringpool* secnamepool,
61ba1cf9 4857 const Output_data_list* pdl,
ead1e424 4858 unsigned char* v,
7d1a9ebb 4859 unsigned int* pshndx) const
61ba1cf9
ILT
4860{
4861 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4862 for (Output_data_list::const_iterator p = pdl->begin();
4863 p != pdl->end();
4864 ++p)
4865 {
4866 if ((*p)->is_section())
4867 {
5482377d 4868 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4869 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4870 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4871 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4872 v += shdr_size;
ead1e424 4873 ++*pshndx;
61ba1cf9
ILT
4874 }
4875 }
4876 return v;
4877}
4878
7d9e3d98
ILT
4879// Print the output sections to the map file.
4880
4881void
4882Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4883{
4884 if (this->type() != elfcpp::PT_LOAD)
4885 return;
22f0da72
ILT
4886 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4887 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4888}
4889
4890// Print an output section list to the map file.
4891
4892void
4893Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4894 const Output_data_list* pdl) const
4895{
4896 for (Output_data_list::const_iterator p = pdl->begin();
4897 p != pdl->end();
4898 ++p)
4899 (*p)->print_to_mapfile(mapfile);
4900}
4901
a2fb1b05
ILT
4902// Output_file methods.
4903
14144f39
ILT
4904Output_file::Output_file(const char* name)
4905 : name_(name),
61ba1cf9
ILT
4906 o_(-1),
4907 file_size_(0),
c420411f 4908 base_(NULL),
516cb3d0 4909 map_is_anonymous_(false),
88597d34 4910 map_is_allocated_(false),
516cb3d0 4911 is_temporary_(false)
61ba1cf9
ILT
4912{
4913}
4914
404c2abb 4915// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4916// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4917// NULL, open that file as the base for incremental linking, and
4918// copy its contents to the new output file. This routine can
4919// be called for incremental updates, in which case WRITABLE should
4920// be true, or by the incremental-dump utility, in which case
4921// WRITABLE should be false.
404c2abb
ILT
4922
4923bool
aa92d6ed 4924Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4925{
4926 // The name "-" means "stdout".
4927 if (strcmp(this->name_, "-") == 0)
4928 return false;
4929
aa92d6ed
CC
4930 bool use_base_file = base_name != NULL;
4931 if (!use_base_file)
4932 base_name = this->name_;
4933 else if (strcmp(base_name, this->name_) == 0)
4934 gold_fatal(_("%s: incremental base and output file name are the same"),
4935 base_name);
4936
404c2abb
ILT
4937 // Don't bother opening files with a size of zero.
4938 struct stat s;
aa92d6ed
CC
4939 if (::stat(base_name, &s) != 0)
4940 {
4941 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4942 return false;
4943 }
4944 if (s.st_size == 0)
4945 {
4946 gold_info(_("%s: incremental base file is empty"), base_name);
4947 return false;
4948 }
4949
4950 // If we're using a base file, we want to open it read-only.
4951 if (use_base_file)
4952 writable = false;
404c2abb 4953
aa92d6ed
CC
4954 int oflags = writable ? O_RDWR : O_RDONLY;
4955 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4956 if (o < 0)
aa92d6ed
CC
4957 {
4958 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4959 return false;
4960 }
4961
4962 // If the base file and the output file are different, open a
4963 // new output file and read the contents from the base file into
4964 // the newly-mapped region.
4965 if (use_base_file)
4966 {
4967 this->open(s.st_size);
dfb45471
CC
4968 ssize_t bytes_to_read = s.st_size;
4969 unsigned char* p = this->base_;
4970 while (bytes_to_read > 0)
4971 {
4972 ssize_t len = ::read(o, p, bytes_to_read);
4973 if (len < 0)
4974 {
4975 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4976 return false;
4977 }
4978 if (len == 0)
4979 {
4980 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4981 base_name,
4982 static_cast<long long>(s.st_size - bytes_to_read),
4983 static_cast<long long>(s.st_size));
4984 return false;
4985 }
4986 p += len;
4987 bytes_to_read -= len;
4988 }
aa92d6ed
CC
4989 ::close(o);
4990 return true;
4991 }
4992
404c2abb
ILT
4993 this->o_ = o;
4994 this->file_size_ = s.st_size;
4995
aa92d6ed 4996 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4997 {
4998 release_descriptor(o, true);
4999 this->o_ = -1;
5000 this->file_size_ = 0;
5001 return false;
5002 }
5003
5004 return true;
5005}
5006
61ba1cf9
ILT
5007// Open the output file.
5008
a2fb1b05 5009void
61ba1cf9 5010Output_file::open(off_t file_size)
a2fb1b05 5011{
61ba1cf9
ILT
5012 this->file_size_ = file_size;
5013
4e9d8586
ILT
5014 // Unlink the file first; otherwise the open() may fail if the file
5015 // is busy (e.g. it's an executable that's currently being executed).
5016 //
5017 // However, the linker may be part of a system where a zero-length
5018 // file is created for it to write to, with tight permissions (gcc
5019 // 2.95 did something like this). Unlinking the file would work
5020 // around those permission controls, so we only unlink if the file
5021 // has a non-zero size. We also unlink only regular files to avoid
5022 // trouble with directories/etc.
5023 //
5024 // If we fail, continue; this command is merely a best-effort attempt
5025 // to improve the odds for open().
5026
42a1b686 5027 // We let the name "-" mean "stdout"
516cb3d0 5028 if (!this->is_temporary_)
42a1b686 5029 {
516cb3d0
ILT
5030 if (strcmp(this->name_, "-") == 0)
5031 this->o_ = STDOUT_FILENO;
5032 else
5033 {
5034 struct stat s;
6a89f575
CC
5035 if (::stat(this->name_, &s) == 0
5036 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5037 {
5038 if (s.st_size != 0)
5039 ::unlink(this->name_);
5040 else if (!parameters->options().relocatable())
5041 {
5042 // If we don't unlink the existing file, add execute
5043 // permission where read permissions already exist
5044 // and where the umask permits.
5045 int mask = ::umask(0);
5046 ::umask(mask);
5047 s.st_mode |= (s.st_mode & 0444) >> 2;
5048 ::chmod(this->name_, s.st_mode & ~mask);
5049 }
5050 }
516cb3d0 5051
8851ecca 5052 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
5053 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5054 mode);
516cb3d0
ILT
5055 if (o < 0)
5056 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5057 this->o_ = o;
5058 }
42a1b686 5059 }
61ba1cf9 5060
27bc2bce
ILT
5061 this->map();
5062}
5063
5064// Resize the output file.
5065
5066void
5067Output_file::resize(off_t file_size)
5068{
c420411f
ILT
5069 // If the mmap is mapping an anonymous memory buffer, this is easy:
5070 // just mremap to the new size. If it's mapping to a file, we want
5071 // to unmap to flush to the file, then remap after growing the file.
5072 if (this->map_is_anonymous_)
5073 {
88597d34
ILT
5074 void* base;
5075 if (!this->map_is_allocated_)
5076 {
5077 base = ::mremap(this->base_, this->file_size_, file_size,
5078 MREMAP_MAYMOVE);
5079 if (base == MAP_FAILED)
5080 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5081 }
5082 else
5083 {
5084 base = realloc(this->base_, file_size);
5085 if (base == NULL)
5086 gold_nomem();
5087 if (file_size > this->file_size_)
5088 memset(static_cast<char*>(base) + this->file_size_, 0,
5089 file_size - this->file_size_);
5090 }
c420411f
ILT
5091 this->base_ = static_cast<unsigned char*>(base);
5092 this->file_size_ = file_size;
5093 }
5094 else
5095 {
5096 this->unmap();
5097 this->file_size_ = file_size;
aa92d6ed 5098 if (!this->map_no_anonymous(true))
fdcac5af 5099 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5100 }
27bc2bce
ILT
5101}
5102
404c2abb
ILT
5103// Map an anonymous block of memory which will later be written to the
5104// file. Return whether the map succeeded.
26736d8e 5105
404c2abb 5106bool
26736d8e
ILT
5107Output_file::map_anonymous()
5108{
404c2abb
ILT
5109 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5110 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5111 if (base == MAP_FAILED)
404c2abb 5112 {
88597d34
ILT
5113 base = malloc(this->file_size_);
5114 if (base == NULL)
5115 return false;
5116 memset(base, 0, this->file_size_);
5117 this->map_is_allocated_ = true;
404c2abb 5118 }
88597d34
ILT
5119 this->base_ = static_cast<unsigned char*>(base);
5120 this->map_is_anonymous_ = true;
5121 return true;
26736d8e
ILT
5122}
5123
404c2abb 5124// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5125// If WRITABLE is true, map with write access.
27bc2bce 5126
404c2abb 5127bool
aa92d6ed 5128Output_file::map_no_anonymous(bool writable)
27bc2bce 5129{
c420411f 5130 const int o = this->o_;
61ba1cf9 5131
c420411f
ILT
5132 // If the output file is not a regular file, don't try to mmap it;
5133 // instead, we'll mmap a block of memory (an anonymous buffer), and
5134 // then later write the buffer to the file.
5135 void* base;
5136 struct stat statbuf;
42a1b686
ILT
5137 if (o == STDOUT_FILENO || o == STDERR_FILENO
5138 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5139 || !S_ISREG(statbuf.st_mode)
5140 || this->is_temporary_)
404c2abb
ILT
5141 return false;
5142
5143 // Ensure that we have disk space available for the file. If we
5144 // don't do this, it is possible that we will call munmap, close,
5145 // and exit with dirty buffers still in the cache with no assigned
5146 // disk blocks. If the disk is out of space at that point, the
5147 // output file will wind up incomplete, but we will have already
5148 // exited. The alternative to fallocate would be to use fdatasync,
5149 // but that would be a more significant performance hit.
bab9090f
CC
5150 if (writable)
5151 {
7c0640fa 5152 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5153 if (err != 0)
5154 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5155 }
404c2abb
ILT
5156
5157 // Map the file into memory.
aa92d6ed
CC
5158 int prot = PROT_READ;
5159 if (writable)
5160 prot |= PROT_WRITE;
5161 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5162
5163 // The mmap call might fail because of file system issues: the file
5164 // system might not support mmap at all, or it might not support
5165 // mmap with PROT_WRITE.
61ba1cf9 5166 if (base == MAP_FAILED)
404c2abb
ILT
5167 return false;
5168
5169 this->map_is_anonymous_ = false;
61ba1cf9 5170 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5171 return true;
5172}
5173
5174// Map the file into memory.
5175
5176void
5177Output_file::map()
5178{
7c0640fa
CC
5179 if (parameters->options().mmap_output_file()
5180 && this->map_no_anonymous(true))
404c2abb
ILT
5181 return;
5182
5183 // The mmap call might fail because of file system issues: the file
5184 // system might not support mmap at all, or it might not support
5185 // mmap with PROT_WRITE. I'm not sure which errno values we will
5186 // see in all cases, so if the mmap fails for any reason and we
5187 // don't care about file contents, try for an anonymous map.
5188 if (this->map_anonymous())
5189 return;
5190
5191 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5192 this->name_, static_cast<unsigned long>(this->file_size_),
5193 strerror(errno));
61ba1cf9
ILT
5194}
5195
c420411f 5196// Unmap the file from memory.
61ba1cf9
ILT
5197
5198void
c420411f 5199Output_file::unmap()
61ba1cf9 5200{
88597d34
ILT
5201 if (this->map_is_anonymous_)
5202 {
5203 // We've already written out the data, so there is no reason to
5204 // waste time unmapping or freeing the memory.
5205 }
5206 else
5207 {
5208 if (::munmap(this->base_, this->file_size_) < 0)
5209 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5210 }
61ba1cf9 5211 this->base_ = NULL;
c420411f
ILT
5212}
5213
5214// Close the output file.
5215
5216void
5217Output_file::close()
5218{
5219 // If the map isn't file-backed, we need to write it now.
516cb3d0 5220 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5221 {
5222 size_t bytes_to_write = this->file_size_;
6d1e3092 5223 size_t offset = 0;
c420411f
ILT
5224 while (bytes_to_write > 0)
5225 {
6d1e3092
CD
5226 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5227 bytes_to_write);
c420411f
ILT
5228 if (bytes_written == 0)
5229 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5230 else if (bytes_written < 0)
5231 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5232 else
6d1e3092
CD
5233 {
5234 bytes_to_write -= bytes_written;
5235 offset += bytes_written;
5236 }
c420411f
ILT
5237 }
5238 }
5239 this->unmap();
61ba1cf9 5240
42a1b686 5241 // We don't close stdout or stderr
516cb3d0
ILT
5242 if (this->o_ != STDOUT_FILENO
5243 && this->o_ != STDERR_FILENO
5244 && !this->is_temporary_)
42a1b686
ILT
5245 if (::close(this->o_) < 0)
5246 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5247 this->o_ = -1;
a2fb1b05
ILT
5248}
5249
5250// Instantiate the templates we need. We could use the configure
5251// script to restrict this to only the ones for implemented targets.
5252
193a53d9 5253#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5254template
5255off_t
5256Output_section::add_input_section<32, false>(
6e9ba2ca 5257 Layout* layout,
6fa2a40b 5258 Sized_relobj_file<32, false>* object,
2ea97941 5259 unsigned int shndx,
a2fb1b05 5260 const char* secname,
730cdc88 5261 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5262 unsigned int reloc_shndx,
5263 bool have_sections_script);
193a53d9 5264#endif
a2fb1b05 5265
193a53d9 5266#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5267template
5268off_t
5269Output_section::add_input_section<32, true>(
6e9ba2ca 5270 Layout* layout,
6fa2a40b 5271 Sized_relobj_file<32, true>* object,
2ea97941 5272 unsigned int shndx,
a2fb1b05 5273 const char* secname,
730cdc88 5274 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5275 unsigned int reloc_shndx,
5276 bool have_sections_script);
193a53d9 5277#endif
a2fb1b05 5278
193a53d9 5279#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5280template
5281off_t
5282Output_section::add_input_section<64, false>(
6e9ba2ca 5283 Layout* layout,
6fa2a40b 5284 Sized_relobj_file<64, false>* object,
2ea97941 5285 unsigned int shndx,
a2fb1b05 5286 const char* secname,
730cdc88 5287 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5288 unsigned int reloc_shndx,
5289 bool have_sections_script);
193a53d9 5290#endif
a2fb1b05 5291
193a53d9 5292#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5293template
5294off_t
5295Output_section::add_input_section<64, true>(
6e9ba2ca 5296 Layout* layout,
6fa2a40b 5297 Sized_relobj_file<64, true>* object,
2ea97941 5298 unsigned int shndx,
a2fb1b05 5299 const char* secname,
730cdc88 5300 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5301 unsigned int reloc_shndx,
5302 bool have_sections_script);
193a53d9 5303#endif
a2fb1b05 5304
bbbfea06
CC
5305#ifdef HAVE_TARGET_32_LITTLE
5306template
5307class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5308#endif
5309
5310#ifdef HAVE_TARGET_32_BIG
5311template
5312class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5313#endif
5314
5315#ifdef HAVE_TARGET_64_LITTLE
5316template
5317class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5318#endif
5319
5320#ifdef HAVE_TARGET_64_BIG
5321template
5322class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5323#endif
5324
5325#ifdef HAVE_TARGET_32_LITTLE
5326template
5327class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5328#endif
5329
5330#ifdef HAVE_TARGET_32_BIG
5331template
5332class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5333#endif
5334
5335#ifdef HAVE_TARGET_64_LITTLE
5336template
5337class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5338#endif
5339
5340#ifdef HAVE_TARGET_64_BIG
5341template
5342class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5343#endif
5344
5345#ifdef HAVE_TARGET_32_LITTLE
5346template
5347class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5348#endif
5349
5350#ifdef HAVE_TARGET_32_BIG
5351template
5352class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5353#endif
5354
5355#ifdef HAVE_TARGET_64_LITTLE
5356template
5357class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5358#endif
5359
5360#ifdef HAVE_TARGET_64_BIG
5361template
5362class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5363#endif
5364
5365#ifdef HAVE_TARGET_32_LITTLE
5366template
5367class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5368#endif
5369
5370#ifdef HAVE_TARGET_32_BIG
5371template
5372class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5373#endif
5374
5375#ifdef HAVE_TARGET_64_LITTLE
5376template
5377class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5378#endif
5379
5380#ifdef HAVE_TARGET_64_BIG
5381template
5382class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5383#endif
5384
193a53d9 5385#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5386template
5387class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5388#endif
c06b7b0b 5389
193a53d9 5390#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5391template
5392class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5393#endif
c06b7b0b 5394
193a53d9 5395#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5396template
5397class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5398#endif
c06b7b0b 5399
193a53d9 5400#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5401template
5402class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5403#endif
c06b7b0b 5404
193a53d9 5405#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5406template
5407class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5408#endif
c06b7b0b 5409
193a53d9 5410#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5411template
5412class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5413#endif
c06b7b0b 5414
193a53d9 5415#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5416template
5417class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5418#endif
c06b7b0b 5419
193a53d9 5420#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5421template
5422class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5423#endif
c06b7b0b 5424
193a53d9 5425#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5426template
5427class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5428#endif
c06b7b0b 5429
193a53d9 5430#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5431template
5432class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5433#endif
c06b7b0b 5434
193a53d9 5435#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5436template
5437class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5438#endif
c06b7b0b 5439
193a53d9 5440#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5441template
5442class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5443#endif
c06b7b0b 5444
193a53d9 5445#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5446template
5447class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5448#endif
c06b7b0b 5449
193a53d9 5450#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5451template
5452class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5453#endif
c06b7b0b 5454
193a53d9 5455#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5456template
5457class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5458#endif
c06b7b0b 5459
193a53d9 5460#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5461template
5462class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5463#endif
c06b7b0b 5464
6a74a719
ILT
5465#ifdef HAVE_TARGET_32_LITTLE
5466template
5467class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5468#endif
5469
5470#ifdef HAVE_TARGET_32_BIG
5471template
5472class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5473#endif
5474
5475#ifdef HAVE_TARGET_64_LITTLE
5476template
5477class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5478#endif
5479
5480#ifdef HAVE_TARGET_64_BIG
5481template
5482class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5483#endif
5484
5485#ifdef HAVE_TARGET_32_LITTLE
5486template
5487class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5488#endif
5489
5490#ifdef HAVE_TARGET_32_BIG
5491template
5492class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5493#endif
5494
5495#ifdef HAVE_TARGET_64_LITTLE
5496template
5497class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5498#endif
5499
5500#ifdef HAVE_TARGET_64_BIG
5501template
5502class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5503#endif
5504
5505#ifdef HAVE_TARGET_32_LITTLE
5506template
5507class Output_data_group<32, false>;
5508#endif
5509
5510#ifdef HAVE_TARGET_32_BIG
5511template
5512class Output_data_group<32, true>;
5513#endif
5514
5515#ifdef HAVE_TARGET_64_LITTLE
5516template
5517class Output_data_group<64, false>;
5518#endif
5519
5520#ifdef HAVE_TARGET_64_BIG
5521template
5522class Output_data_group<64, true>;
5523#endif
5524
ead1e424 5525template
dbe717ef 5526class Output_data_got<32, false>;
ead1e424
ILT
5527
5528template
dbe717ef 5529class Output_data_got<32, true>;
ead1e424
ILT
5530
5531template
dbe717ef 5532class Output_data_got<64, false>;
ead1e424
ILT
5533
5534template
dbe717ef 5535class Output_data_got<64, true>;
ead1e424 5536
a2fb1b05 5537} // End namespace gold.
This page took 0.669747 seconds and 4 git commands to generate.