*** empty log message ***
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
2ea97941 641 bool is_relative)
7bf1f802 642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
2ea97941 643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 644{
dceae3c1
ILT
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
7bf1f802
ILT
647 this->u1_.gsym = gsym;
648 this->u2_.od = od;
dceae3c1
ILT
649 if (dynamic)
650 this->set_needs_dynsym_index();
7bf1f802
ILT
651}
652
653template<bool dynamic, int size, bool big_endian>
654Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655 Symbol* gsym,
656 unsigned int type,
ef9beddf 657 Sized_relobj<size, big_endian>* relobj,
7bf1f802 658 unsigned int shndx,
e8c846c3 659 Address address,
2ea97941 660 bool is_relative)
7bf1f802 661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
2ea97941 662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
663{
664 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
7bf1f802
ILT
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
dceae3c1
ILT
669 if (dynamic)
670 this->set_needs_dynsym_index();
7bf1f802
ILT
671}
672
673// A reloc against a local symbol.
674
675template<bool dynamic, int size, bool big_endian>
676Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
679 unsigned int type,
680 Output_data* od,
e8c846c3 681 Address address,
2ea97941 682 bool is_relative,
dceae3c1 683 bool is_section_symbol)
7bf1f802 684 : address_(address), local_sym_index_(local_sym_index), type_(type),
2ea97941 685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
dceae3c1 686 shndx_(INVALID_CODE)
7bf1f802
ILT
687{
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
7bf1f802
ILT
692 this->u1_.relobj = relobj;
693 this->u2_.od = od;
dceae3c1
ILT
694 if (dynamic)
695 this->set_needs_dynsym_index();
7bf1f802
ILT
696}
697
698template<bool dynamic, int size, bool big_endian>
699Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
702 unsigned int type,
703 unsigned int shndx,
e8c846c3 704 Address address,
2ea97941 705 bool is_relative,
dceae3c1 706 bool is_section_symbol)
7bf1f802 707 : address_(address), local_sym_index_(local_sym_index), type_(type),
2ea97941 708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
dceae3c1 709 shndx_(shndx)
7bf1f802
ILT
710{
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
7bf1f802
ILT
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
dceae3c1
ILT
718 if (dynamic)
719 this->set_needs_dynsym_index();
7bf1f802
ILT
720}
721
722// A reloc against the STT_SECTION symbol of an output section.
723
724template<bool dynamic, int size, bool big_endian>
725Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726 Output_section* os,
727 unsigned int type,
728 Output_data* od,
729 Address address)
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 732{
dceae3c1
ILT
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
7bf1f802
ILT
735 this->u1_.os = os;
736 this->u2_.od = od;
737 if (dynamic)
dceae3c1
ILT
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
7bf1f802
ILT
741}
742
743template<bool dynamic, int size, bool big_endian>
744Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Output_section* os,
746 unsigned int type,
ef9beddf 747 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
748 unsigned int shndx,
749 Address address)
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
752{
753 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
7bf1f802
ILT
756 this->u1_.os = os;
757 this->u2_.relobj = relobj;
758 if (dynamic)
dceae3c1
ILT
759 this->set_needs_dynsym_index();
760 else
761 os->set_needs_symtab_index();
762}
763
e291e7b9
ILT
764// An absolute relocation.
765
766template<bool dynamic, int size, bool big_endian>
767Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 unsigned int type,
769 Output_data* od,
770 Address address)
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773{
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
777 this->u2_.od = od;
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 unsigned int type,
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int shndx,
785 Address address)
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788{
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
794}
795
796// A target specific relocation.
797
798template<bool dynamic, int size, bool big_endian>
799Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 unsigned int type,
801 void* arg,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806{
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
809 this->u1_.arg = arg;
810 this->u2_.od = od;
811}
812
813template<bool dynamic, int size, bool big_endian>
814Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 unsigned int type,
816 void* arg,
817 Sized_relobj<size, big_endian>* relobj,
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822{
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
826 this->u1_.arg = arg;
827 this->u2_.relobj = relobj;
828}
829
dceae3c1
ILT
830// Record that we need a dynamic symbol index for this relocation.
831
832template<bool dynamic, int size, bool big_endian>
833void
834Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835set_needs_dynsym_index()
836{
837 if (this->is_relative_)
838 return;
839 switch (this->local_sym_index_)
840 {
841 case INVALID_CODE:
842 gold_unreachable();
843
844 case GSYM_CODE:
845 this->u1_.gsym->set_needs_dynsym_entry();
846 break;
847
848 case SECTION_CODE:
849 this->u1_.os->set_needs_dynsym_index();
850 break;
851
e291e7b9
ILT
852 case TARGET_CODE:
853 // The target must take care of this if necessary.
854 break;
855
dceae3c1
ILT
856 case 0:
857 break;
858
859 default:
860 {
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864 else
ef9beddf 865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
866 }
867 break;
868 }
7bf1f802
ILT
869}
870
c06b7b0b
ILT
871// Get the symbol index of a relocation.
872
873template<bool dynamic, int size, bool big_endian>
874unsigned int
875Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876 const
877{
878 unsigned int index;
879 switch (this->local_sym_index_)
880 {
881 case INVALID_CODE:
a3ad94ed 882 gold_unreachable();
c06b7b0b
ILT
883
884 case GSYM_CODE:
5a6f7e2d 885 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
886 index = 0;
887 else if (dynamic)
5a6f7e2d 888 index = this->u1_.gsym->dynsym_index();
c06b7b0b 889 else
5a6f7e2d 890 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
891 break;
892
893 case SECTION_CODE:
894 if (dynamic)
5a6f7e2d 895 index = this->u1_.os->dynsym_index();
c06b7b0b 896 else
5a6f7e2d 897 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
898 break;
899
e291e7b9
ILT
900 case TARGET_CODE:
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
902 this->type_);
903 break;
904
436ca963
ILT
905 case 0:
906 // Relocations without symbols use a symbol index of 0.
907 index = 0;
908 break;
909
c06b7b0b 910 default:
dceae3c1
ILT
911 {
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
914 {
915 if (dynamic)
916 index = this->u1_.relobj->dynsym_index(lsi);
917 else
918 index = this->u1_.relobj->symtab_index(lsi);
919 }
920 else
921 {
ef9beddf 922 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
923 gold_assert(os != NULL);
924 if (dynamic)
925 index = os->dynsym_index();
926 else
927 index = os->symtab_index();
928 }
929 }
c06b7b0b
ILT
930 break;
931 }
a3ad94ed 932 gold_assert(index != -1U);
c06b7b0b
ILT
933 return index;
934}
935
624f8810
ILT
936// For a local section symbol, get the address of the offset ADDEND
937// within the input section.
dceae3c1
ILT
938
939template<bool dynamic, int size, bool big_endian>
ef9beddf 940typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 941Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 942 local_section_offset(Addend addend) const
dceae3c1 943{
624f8810
ILT
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
e291e7b9 946 && this->local_sym_index_ != TARGET_CODE
624f8810 947 && this->local_sym_index_ != INVALID_CODE
e291e7b9 948 && this->local_sym_index_ != 0
624f8810 949 && this->is_section_symbol_);
dceae3c1 950 const unsigned int lsi = this->local_sym_index_;
ef9beddf 951 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 952 gold_assert(os != NULL);
ef9beddf 953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 954 if (offset != invalid_address)
624f8810
ILT
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 958 gold_assert(offset != invalid_address);
dceae3c1
ILT
959 return offset;
960}
961
d98bc257 962// Get the output address of a relocation.
c06b7b0b
ILT
963
964template<bool dynamic, int size, bool big_endian>
a984ee1d 965typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 966Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 967{
a3ad94ed 968 Address address = this->address_;
5a6f7e2d
ILT
969 if (this->shndx_ != INVALID_CODE)
970 {
ef9beddf 971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 972 gold_assert(os != NULL);
ef9beddf 973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 974 if (off != invalid_address)
730cdc88
ILT
975 address += os->address() + off;
976 else
977 {
978 address = os->output_address(this->u2_.relobj, this->shndx_,
979 address);
eff45813 980 gold_assert(address != invalid_address);
730cdc88 981 }
5a6f7e2d
ILT
982 }
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
d98bc257
ILT
985 return address;
986}
987
988// Write out the offset and info fields of a Rel or Rela relocation
989// entry.
990
991template<bool dynamic, int size, bool big_endian>
992template<typename Write_rel>
993void
994Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995 Write_rel* wr) const
996{
997 wr->put_r_offset(this->get_address());
e8c846c3
ILT
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1000}
1001
1002// Write out a Rel relocation.
1003
1004template<bool dynamic, int size, bool big_endian>
1005void
1006Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1008{
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1011}
1012
e8c846c3
ILT
1013// Get the value of the symbol referred to by a Rel relocation.
1014
1015template<bool dynamic, int size, bool big_endian>
1016typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1017Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1018 Addend addend) const
e8c846c3
ILT
1019{
1020 if (this->local_sym_index_ == GSYM_CODE)
1021 {
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1024 return sym->value() + addend;
e8c846c3
ILT
1025 }
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1027 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1028 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1029 && this->local_sym_index_ != 0
d1f003c6
ILT
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1034}
1035
d98bc257
ILT
1036// Reloc comparison. This function sorts the dynamic relocs for the
1037// benefit of the dynamic linker. First we sort all relative relocs
1038// to the front. Among relative relocs, we sort by output address.
1039// Among non-relative relocs, we sort by symbol index, then by output
1040// address.
1041
1042template<bool dynamic, int size, bool big_endian>
1043int
1044Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046 const
1047{
1048 if (this->is_relative_)
1049 {
1050 if (!r2.is_relative_)
1051 return -1;
1052 // Otherwise sort by reloc address below.
1053 }
1054 else if (r2.is_relative_)
1055 return 1;
1056 else
1057 {
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1060 if (sym1 < sym2)
1061 return -1;
1062 else if (sym1 > sym2)
1063 return 1;
1064 // Otherwise sort by reloc address.
1065 }
1066
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1069 if (addr1 < addr2)
1070 return -1;
1071 else if (addr1 > addr2)
1072 return 1;
1073
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1078 if (type1 < type2)
1079 return -1;
1080 else if (type1 > type2)
1081 return 1;
1082
1083 // These relocs appear to be exactly the same.
1084 return 0;
1085}
1086
c06b7b0b
ILT
1087// Write out a Rela relocation.
1088
1089template<bool dynamic, int size, bool big_endian>
1090void
1091Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1093{
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
e8c846c3 1096 Addend addend = this->addend_;
e291e7b9
ILT
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
d1f003c6
ILT
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
624f8810 1103 addend = this->rel_.local_section_offset(addend);
e8c846c3 1104 orel.put_r_addend(addend);
c06b7b0b
ILT
1105}
1106
1107// Output_data_reloc_base methods.
1108
16649710
ILT
1109// Adjust the output section.
1110
1111template<int sh_type, bool dynamic, int size, bool big_endian>
1112void
1113Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1115{
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120 else
1121 gold_unreachable();
1122 if (dynamic)
1123 os->set_should_link_to_dynsym();
1124 else
1125 os->set_should_link_to_symtab();
1126}
1127
c06b7b0b
ILT
1128// Write out relocation data.
1129
1130template<int sh_type, bool dynamic, int size, bool big_endian>
1131void
1132Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133 Output_file* of)
1134{
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1138
3a44184e 1139 if (this->sort_relocs())
d98bc257
ILT
1140 {
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1144 }
1145
c06b7b0b
ILT
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1149 ++p)
1150 {
1151 p->write(pov);
1152 pov += reloc_size;
1153 }
1154
a3ad94ed 1155 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1156
1157 of->write_output_view(off, oview_size, oview);
1158
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1161}
1162
6a74a719
ILT
1163// Class Output_relocatable_relocs.
1164
1165template<int sh_type, int size, bool big_endian>
1166void
1167Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168{
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171}
1172
1173// class Output_data_group.
1174
1175template<int size, bool big_endian>
1176Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
8825ac63
ILT
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1181 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1182 relobj_(relobj),
1183 flags_(flags)
6a74a719 1184{
8825ac63 1185 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1186}
1187
1188// Write out the section group, which means translating the section
1189// indexes to apply to the output file.
1190
1191template<int size, bool big_endian>
1192void
1193Output_data_group<size, big_endian>::do_write(Output_file* of)
1194{
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202 ++contents;
1203
1204 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
6a74a719
ILT
1207 ++p, ++contents)
1208 {
ef9beddf 1209 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1210
1211 unsigned int output_shndx;
1212 if (os != NULL)
1213 output_shndx = os->out_shndx();
1214 else
1215 {
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1218 output_shndx = 0;
1219 }
1220
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222 }
1223
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1226
1227 of->write_output_view(off, oview_size, oview);
1228
1229 // We no longer need this information.
8825ac63 1230 this->input_shndxes_.clear();
6a74a719
ILT
1231}
1232
dbe717ef 1233// Output_data_got::Got_entry methods.
ead1e424
ILT
1234
1235// Write out the entry.
1236
1237template<int size, bool big_endian>
1238void
7e1edb90 1239Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1240{
1241 Valtype val = 0;
1242
1243 switch (this->local_sym_index_)
1244 {
1245 case GSYM_CODE:
1246 {
e8c846c3
ILT
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
ead1e424 1250 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
ead1e424
ILT
1257 }
1258 break;
1259
1260 case CONSTANT_CODE:
1261 val = this->u_.constant;
1262 break;
1263
1264 default:
d1f003c6
ILT
1265 {
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1269 }
e727fa71 1270 break;
ead1e424
ILT
1271 }
1272
a3ad94ed 1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1274}
1275
dbe717ef 1276// Output_data_got methods.
ead1e424 1277
dbe717ef
ILT
1278// Add an entry for a global symbol to the GOT. This returns true if
1279// this is a new GOT entry, false if the symbol already had a GOT
1280// entry.
1281
1282template<int size, bool big_endian>
1283bool
0a65a3a7
CC
1284Output_data_got<size, big_endian>::add_global(
1285 Symbol* gsym,
1286 unsigned int got_type)
ead1e424 1287{
0a65a3a7 1288 if (gsym->has_got_offset(got_type))
dbe717ef 1289 return false;
ead1e424 1290
dbe717ef
ILT
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
0a65a3a7 1293 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1294 return true;
1295}
ead1e424 1296
7bf1f802
ILT
1297// Add an entry for a global symbol to the GOT, and add a dynamic
1298// relocation of type R_TYPE for the GOT entry.
1299template<int size, bool big_endian>
1300void
1301Output_data_got<size, big_endian>::add_global_with_rel(
1302 Symbol* gsym,
0a65a3a7 1303 unsigned int got_type,
7bf1f802
ILT
1304 Rel_dyn* rel_dyn,
1305 unsigned int r_type)
1306{
0a65a3a7 1307 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1308 return;
1309
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
2ea97941
ILT
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1315}
1316
1317template<int size, bool big_endian>
1318void
1319Output_data_got<size, big_endian>::add_global_with_rela(
1320 Symbol* gsym,
0a65a3a7 1321 unsigned int got_type,
7bf1f802
ILT
1322 Rela_dyn* rela_dyn,
1323 unsigned int r_type)
1324{
0a65a3a7 1325 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1326 return;
1327
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
2ea97941
ILT
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1333}
1334
0a65a3a7
CC
1335// Add a pair of entries for a global symbol to the GOT, and add
1336// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1338template<int size, bool big_endian>
1339void
0a65a3a7
CC
1340Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341 Symbol* gsym,
1342 unsigned int got_type,
7bf1f802 1343 Rel_dyn* rel_dyn,
0a65a3a7
CC
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
7bf1f802 1346{
0a65a3a7 1347 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1348 return;
1349
1350 this->entries_.push_back(Got_entry());
2ea97941
ILT
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1354
1355 this->entries_.push_back(Got_entry());
1356 if (r_type_2 != 0)
1357 {
2ea97941
ILT
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1360 }
1361
1362 this->set_got_size();
7bf1f802
ILT
1363}
1364
1365template<int size, bool big_endian>
1366void
0a65a3a7
CC
1367Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368 Symbol* gsym,
1369 unsigned int got_type,
7bf1f802 1370 Rela_dyn* rela_dyn,
0a65a3a7
CC
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
7bf1f802 1373{
0a65a3a7 1374 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1375 return;
1376
1377 this->entries_.push_back(Got_entry());
2ea97941
ILT
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1381
1382 this->entries_.push_back(Got_entry());
1383 if (r_type_2 != 0)
1384 {
2ea97941
ILT
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1387 }
1388
1389 this->set_got_size();
7bf1f802
ILT
1390}
1391
0a65a3a7
CC
1392// Add an entry for a local symbol to the GOT. This returns true if
1393// this is a new GOT entry, false if the symbol already has a GOT
1394// entry.
07f397ab
ILT
1395
1396template<int size, bool big_endian>
1397bool
0a65a3a7
CC
1398Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
07f397ab 1402{
0a65a3a7 1403 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1404 return false;
1405
0a65a3a7 1406 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1407 this->set_got_size();
0a65a3a7 1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1409 return true;
1410}
1411
0a65a3a7
CC
1412// Add an entry for a local symbol to the GOT, and add a dynamic
1413// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1414template<int size, bool big_endian>
1415void
0a65a3a7
CC
1416Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
7bf1f802
ILT
1420 Rel_dyn* rel_dyn,
1421 unsigned int r_type)
1422{
0a65a3a7 1423 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1424 return;
1425
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
2ea97941
ILT
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1431}
1432
1433template<int size, bool big_endian>
1434void
0a65a3a7
CC
1435Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
7bf1f802
ILT
1439 Rela_dyn* rela_dyn,
1440 unsigned int r_type)
1441{
0a65a3a7 1442 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1443 return;
1444
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
2ea97941
ILT
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1450}
1451
0a65a3a7
CC
1452// Add a pair of entries for a local symbol to the GOT, and add
1453// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1455template<int size, bool big_endian>
1456void
0a65a3a7 1457Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1460 unsigned int shndx,
0a65a3a7 1461 unsigned int got_type,
7bf1f802 1462 Rel_dyn* rel_dyn,
0a65a3a7
CC
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
7bf1f802 1465{
0a65a3a7 1466 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1467 return;
1468
1469 this->entries_.push_back(Got_entry());
2ea97941
ILT
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1472 Output_section* os = object->output_section(shndx);
2ea97941 1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1474
0a65a3a7
CC
1475 this->entries_.push_back(Got_entry(object, symndx));
1476 if (r_type_2 != 0)
1477 {
2ea97941
ILT
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1480 }
7bf1f802
ILT
1481
1482 this->set_got_size();
1483}
1484
1485template<int size, bool big_endian>
1486void
0a65a3a7 1487Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int shndx,
0a65a3a7 1491 unsigned int got_type,
7bf1f802 1492 Rela_dyn* rela_dyn,
0a65a3a7
CC
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
7bf1f802 1495{
0a65a3a7 1496 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1497 return;
1498
1499 this->entries_.push_back(Got_entry());
2ea97941
ILT
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1502 Output_section* os = object->output_section(shndx);
2ea97941 1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1504
0a65a3a7
CC
1505 this->entries_.push_back(Got_entry(object, symndx));
1506 if (r_type_2 != 0)
1507 {
2ea97941
ILT
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1510 }
7bf1f802
ILT
1511
1512 this->set_got_size();
1513}
1514
ead1e424
ILT
1515// Write out the GOT.
1516
1517template<int size, bool big_endian>
1518void
dbe717ef 1519Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1520{
1521 const int add = size / 8;
1522
1523 const off_t off = this->offset();
c06b7b0b 1524 const off_t oview_size = this->data_size();
ead1e424
ILT
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1530 ++p)
1531 {
7e1edb90 1532 p->write(pov);
ead1e424
ILT
1533 pov += add;
1534 }
1535
a3ad94ed 1536 gold_assert(pov - oview == oview_size);
c06b7b0b 1537
ead1e424
ILT
1538 of->write_output_view(off, oview_size, oview);
1539
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1542}
1543
a3ad94ed
ILT
1544// Output_data_dynamic::Dynamic_entry methods.
1545
1546// Write out the entry.
1547
1548template<int size, bool big_endian>
1549void
1550Output_data_dynamic::Dynamic_entry::write(
1551 unsigned char* pov,
7d1a9ebb 1552 const Stringpool* pool) const
a3ad94ed
ILT
1553{
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1555 switch (this->offset_)
a3ad94ed
ILT
1556 {
1557 case DYNAMIC_NUMBER:
1558 val = this->u_.val;
1559 break;
1560
a3ad94ed 1561 case DYNAMIC_SECTION_SIZE:
16649710 1562 val = this->u_.od->data_size();
a3ad94ed
ILT
1563 break;
1564
1565 case DYNAMIC_SYMBOL:
1566 {
16649710
ILT
1567 const Sized_symbol<size>* s =
1568 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1569 val = s->value();
1570 }
1571 break;
1572
1573 case DYNAMIC_STRING:
1574 val = pool->get_offset(this->u_.str);
1575 break;
1576
1577 default:
c2b45e22
CC
1578 val = this->u_.od->address() + this->offset_;
1579 break;
a3ad94ed
ILT
1580 }
1581
1582 elfcpp::Dyn_write<size, big_endian> dw(pov);
1583 dw.put_d_tag(this->tag_);
1584 dw.put_d_val(val);
1585}
1586
1587// Output_data_dynamic methods.
1588
16649710
ILT
1589// Adjust the output section to set the entry size.
1590
1591void
1592Output_data_dynamic::do_adjust_output_section(Output_section* os)
1593{
8851ecca 1594 if (parameters->target().get_size() == 32)
16649710 1595 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1596 else if (parameters->target().get_size() == 64)
16649710
ILT
1597 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1598 else
1599 gold_unreachable();
1600}
1601
a3ad94ed
ILT
1602// Set the final data size.
1603
1604void
27bc2bce 1605Output_data_dynamic::set_final_data_size()
a3ad94ed 1606{
20e6d0d6
DK
1607 // Add the terminating entry if it hasn't been added.
1608 // Because of relaxation, we can run this multiple times.
1609 if (this->entries_.empty()
1610 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1611 this->add_constant(elfcpp::DT_NULL, 0);
a3ad94ed
ILT
1612
1613 int dyn_size;
8851ecca 1614 if (parameters->target().get_size() == 32)
a3ad94ed 1615 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1616 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1617 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1618 else
1619 gold_unreachable();
1620 this->set_data_size(this->entries_.size() * dyn_size);
1621}
1622
1623// Write out the dynamic entries.
1624
1625void
1626Output_data_dynamic::do_write(Output_file* of)
1627{
8851ecca 1628 switch (parameters->size_and_endianness())
a3ad94ed 1629 {
9025d29d 1630#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1631 case Parameters::TARGET_32_LITTLE:
1632 this->sized_write<32, false>(of);
1633 break;
9025d29d 1634#endif
8851ecca
ILT
1635#ifdef HAVE_TARGET_32_BIG
1636 case Parameters::TARGET_32_BIG:
1637 this->sized_write<32, true>(of);
1638 break;
9025d29d 1639#endif
9025d29d 1640#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1641 case Parameters::TARGET_64_LITTLE:
1642 this->sized_write<64, false>(of);
1643 break;
9025d29d 1644#endif
8851ecca
ILT
1645#ifdef HAVE_TARGET_64_BIG
1646 case Parameters::TARGET_64_BIG:
1647 this->sized_write<64, true>(of);
1648 break;
1649#endif
1650 default:
1651 gold_unreachable();
a3ad94ed 1652 }
a3ad94ed
ILT
1653}
1654
1655template<int size, bool big_endian>
1656void
1657Output_data_dynamic::sized_write(Output_file* of)
1658{
1659 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1660
2ea97941 1661 const off_t offset = this->offset();
a3ad94ed 1662 const off_t oview_size = this->data_size();
2ea97941 1663 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1664
1665 unsigned char* pov = oview;
1666 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1667 p != this->entries_.end();
1668 ++p)
1669 {
7d1a9ebb 1670 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1671 pov += dyn_size;
1672 }
1673
1674 gold_assert(pov - oview == oview_size);
1675
2ea97941 1676 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1677
1678 // We no longer need the dynamic entries.
1679 this->entries_.clear();
1680}
1681
d491d34e
ILT
1682// Class Output_symtab_xindex.
1683
1684void
1685Output_symtab_xindex::do_write(Output_file* of)
1686{
2ea97941 1687 const off_t offset = this->offset();
d491d34e 1688 const off_t oview_size = this->data_size();
2ea97941 1689 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1690
1691 memset(oview, 0, oview_size);
1692
1693 if (parameters->target().is_big_endian())
1694 this->endian_do_write<true>(oview);
1695 else
1696 this->endian_do_write<false>(oview);
1697
2ea97941 1698 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1699
1700 // We no longer need the data.
1701 this->entries_.clear();
1702}
1703
1704template<bool big_endian>
1705void
1706Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1707{
1708 for (Xindex_entries::const_iterator p = this->entries_.begin();
1709 p != this->entries_.end();
1710 ++p)
20e6d0d6
DK
1711 {
1712 unsigned int symndx = p->first;
1713 gold_assert(symndx * 4 < this->data_size());
1714 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1715 }
d491d34e
ILT
1716}
1717
ead1e424
ILT
1718// Output_section::Input_section methods.
1719
1720// Return the data size. For an input section we store the size here.
1721// For an Output_section_data, we have to ask it for the size.
1722
1723off_t
1724Output_section::Input_section::data_size() const
1725{
1726 if (this->is_input_section())
b8e6aad9 1727 return this->u1_.data_size;
ead1e424 1728 else
b8e6aad9 1729 return this->u2_.posd->data_size();
ead1e424
ILT
1730}
1731
1732// Set the address and file offset.
1733
1734void
96803768
ILT
1735Output_section::Input_section::set_address_and_file_offset(
1736 uint64_t address,
1737 off_t file_offset,
1738 off_t section_file_offset)
ead1e424
ILT
1739{
1740 if (this->is_input_section())
96803768
ILT
1741 this->u2_.object->set_section_offset(this->shndx_,
1742 file_offset - section_file_offset);
ead1e424 1743 else
96803768
ILT
1744 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1745}
1746
a445fddf
ILT
1747// Reset the address and file offset.
1748
1749void
1750Output_section::Input_section::reset_address_and_file_offset()
1751{
1752 if (!this->is_input_section())
1753 this->u2_.posd->reset_address_and_file_offset();
1754}
1755
96803768
ILT
1756// Finalize the data size.
1757
1758void
1759Output_section::Input_section::finalize_data_size()
1760{
1761 if (!this->is_input_section())
1762 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1763}
1764
1e983657
ILT
1765// Try to turn an input offset into an output offset. We want to
1766// return the output offset relative to the start of this
1767// Input_section in the output section.
b8e6aad9 1768
8f00aeb8 1769inline bool
8383303e
ILT
1770Output_section::Input_section::output_offset(
1771 const Relobj* object,
2ea97941
ILT
1772 unsigned int shndx,
1773 section_offset_type offset,
8383303e 1774 section_offset_type *poutput) const
b8e6aad9
ILT
1775{
1776 if (!this->is_input_section())
2ea97941 1777 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1778 else
1779 {
2ea97941 1780 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1781 return false;
2ea97941 1782 *poutput = offset;
b8e6aad9
ILT
1783 return true;
1784 }
ead1e424
ILT
1785}
1786
a9a60db6
ILT
1787// Return whether this is the merge section for the input section
1788// SHNDX in OBJECT.
1789
1790inline bool
1791Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1792 unsigned int shndx) const
a9a60db6
ILT
1793{
1794 if (this->is_input_section())
1795 return false;
2ea97941 1796 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1797}
1798
ead1e424
ILT
1799// Write out the data. We don't have to do anything for an input
1800// section--they are handled via Object::relocate--but this is where
1801// we write out the data for an Output_section_data.
1802
1803void
1804Output_section::Input_section::write(Output_file* of)
1805{
1806 if (!this->is_input_section())
b8e6aad9 1807 this->u2_.posd->write(of);
ead1e424
ILT
1808}
1809
96803768
ILT
1810// Write the data to a buffer. As for write(), we don't have to do
1811// anything for an input section.
1812
1813void
1814Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1815{
1816 if (!this->is_input_section())
1817 this->u2_.posd->write_to_buffer(buffer);
1818}
1819
7d9e3d98
ILT
1820// Print to a map file.
1821
1822void
1823Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1824{
1825 switch (this->shndx_)
1826 {
1827 case OUTPUT_SECTION_CODE:
1828 case MERGE_DATA_SECTION_CODE:
1829 case MERGE_STRING_SECTION_CODE:
1830 this->u2_.posd->print_to_mapfile(mapfile);
1831 break;
1832
20e6d0d6
DK
1833 case RELAXED_INPUT_SECTION_CODE:
1834 {
1835 Output_relaxed_input_section* relaxed_section =
1836 this->relaxed_input_section();
1837 mapfile->print_input_section(relaxed_section->relobj(),
1838 relaxed_section->shndx());
1839 }
1840 break;
7d9e3d98
ILT
1841 default:
1842 mapfile->print_input_section(this->u2_.object, this->shndx_);
1843 break;
1844 }
1845}
1846
a2fb1b05
ILT
1847// Output_section methods.
1848
1849// Construct an Output_section. NAME will point into a Stringpool.
1850
2ea97941
ILT
1851Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1852 elfcpp::Elf_Xword flags)
1853 : name_(name),
a2fb1b05
ILT
1854 addralign_(0),
1855 entsize_(0),
a445fddf 1856 load_address_(0),
16649710 1857 link_section_(NULL),
a2fb1b05 1858 link_(0),
16649710 1859 info_section_(NULL),
6a74a719 1860 info_symndx_(NULL),
a2fb1b05 1861 info_(0),
2ea97941
ILT
1862 type_(type),
1863 flags_(flags),
91ea499d 1864 out_shndx_(-1U),
c06b7b0b
ILT
1865 symtab_index_(0),
1866 dynsym_index_(0),
ead1e424
ILT
1867 input_sections_(),
1868 first_input_offset_(0),
c51e6221 1869 fills_(),
96803768 1870 postprocessing_buffer_(NULL),
a3ad94ed 1871 needs_symtab_index_(false),
16649710
ILT
1872 needs_dynsym_index_(false),
1873 should_link_to_symtab_(false),
730cdc88 1874 should_link_to_dynsym_(false),
27bc2bce 1875 after_input_sections_(false),
7bf1f802 1876 requires_postprocessing_(false),
a445fddf
ILT
1877 found_in_sections_clause_(false),
1878 has_load_address_(false),
755ab8af 1879 info_uses_section_index_(false),
2fd32231
ILT
1880 may_sort_attached_input_sections_(false),
1881 must_sort_attached_input_sections_(false),
1882 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1883 is_relro_(false),
1884 is_relro_local_(false),
1a2dff53
ILT
1885 is_last_relro_(false),
1886 is_first_non_relro_(false),
8a5e3e08
ILT
1887 is_small_section_(false),
1888 is_large_section_(false),
f5c870d2
ILT
1889 is_interp_(false),
1890 is_dynamic_linker_section_(false),
1891 generate_code_fills_at_write_(false),
e8cd95c7 1892 is_entsize_zero_(false),
20e6d0d6 1893 tls_offset_(0),
c0a62865
DK
1894 checkpoint_(NULL),
1895 merge_section_map_(),
1896 merge_section_by_properties_map_(),
1897 relaxed_input_section_map_(),
f5c870d2 1898 is_relaxed_input_section_map_valid_(true)
a2fb1b05 1899{
27bc2bce
ILT
1900 // An unallocated section has no address. Forcing this means that
1901 // we don't need special treatment for symbols defined in debug
1902 // sections.
2ea97941 1903 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 1904 this->set_address(0);
a2fb1b05
ILT
1905}
1906
54dc6425
ILT
1907Output_section::~Output_section()
1908{
20e6d0d6 1909 delete this->checkpoint_;
54dc6425
ILT
1910}
1911
16649710
ILT
1912// Set the entry size.
1913
1914void
1915Output_section::set_entsize(uint64_t v)
1916{
e8cd95c7
ILT
1917 if (this->is_entsize_zero_)
1918 ;
1919 else if (this->entsize_ == 0)
16649710 1920 this->entsize_ = v;
e8cd95c7
ILT
1921 else if (this->entsize_ != v)
1922 {
1923 this->entsize_ = 0;
1924 this->is_entsize_zero_ = 1;
1925 }
16649710
ILT
1926}
1927
ead1e424 1928// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1929// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1930// relocation section which applies to this section, or 0 if none, or
1931// -1U if more than one. Return the offset of the input section
1932// within the output section. Return -1 if the input section will
1933// receive special handling. In the normal case we don't always keep
1934// track of input sections for an Output_section. Instead, each
1935// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1936// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1937// track of input sections here; this is used when SECTIONS appears in
1938// a linker script.
a2fb1b05
ILT
1939
1940template<int size, bool big_endian>
1941off_t
730cdc88 1942Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
2ea97941 1943 unsigned int shndx,
ead1e424 1944 const char* secname,
730cdc88 1945 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1946 unsigned int reloc_shndx,
1947 bool have_sections_script)
a2fb1b05 1948{
2ea97941
ILT
1949 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1950 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 1951 {
75f2446e 1952 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
1953 static_cast<unsigned long>(addralign), secname);
1954 addralign = 1;
a2fb1b05 1955 }
a2fb1b05 1956
2ea97941
ILT
1957 if (addralign > this->addralign_)
1958 this->addralign_ = addralign;
a2fb1b05 1959
44a43cf9 1960 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 1961 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1962
1963 // .debug_str is a mergeable string section, but is not always so
1964 // marked by compilers. Mark manually here so we can optimize.
1965 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1966 {
1967 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 1968 entsize = 1;
4f833eee 1969 }
44a43cf9 1970
e8cd95c7
ILT
1971 this->update_flags_for_input_section(sh_flags);
1972 this->set_entsize(entsize);
1973
b8e6aad9 1974 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 1975 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
1976 // a section. We don't try to handle empty merge sections--they
1977 // mess up the mappings, and are useless anyhow.
44a43cf9 1978 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
1979 && reloc_shndx == 0
1980 && shdr.get_sh_size() > 0)
b8e6aad9 1981 {
2ea97941
ILT
1982 if (this->add_merge_input_section(object, shndx, sh_flags,
1983 entsize, addralign))
b8e6aad9
ILT
1984 {
1985 // Tell the relocation routines that they need to call the
730cdc88 1986 // output_offset method to determine the final address.
b8e6aad9
ILT
1987 return -1;
1988 }
1989 }
1990
27bc2bce 1991 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 1992 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 1993 addralign);
c51e6221 1994
c0a62865
DK
1995 // Determine if we want to delay code-fill generation until the output
1996 // section is written. When the target is relaxing, we want to delay fill
1997 // generating to avoid adjusting them during relaxation.
1998 if (!this->generate_code_fills_at_write_
1999 && !have_sections_script
2000 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2001 && parameters->target().has_code_fill()
2002 && parameters->target().may_relax())
2003 {
2004 gold_assert(this->fills_.empty());
2005 this->generate_code_fills_at_write_ = true;
2006 }
2007
c51e6221 2008 if (aligned_offset_in_section > offset_in_section
c0a62865 2009 && !this->generate_code_fills_at_write_
a445fddf 2010 && !have_sections_script
44a43cf9 2011 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2012 && parameters->target().has_code_fill())
c51e6221
ILT
2013 {
2014 // We need to add some fill data. Using fill_list_ when
2015 // possible is an optimization, since we will often have fill
2016 // sections without input sections.
2017 off_t fill_len = aligned_offset_in_section - offset_in_section;
2018 if (this->input_sections_.empty())
2019 this->fills_.push_back(Fill(offset_in_section, fill_len));
2020 else
2021 {
029ba973 2022 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2023 Output_data_const* odc = new Output_data_const(fill_data, 1);
2024 this->input_sections_.push_back(Input_section(odc));
2025 }
2026 }
2027
27bc2bce
ILT
2028 this->set_current_data_size_for_child(aligned_offset_in_section
2029 + shdr.get_sh_size());
a2fb1b05 2030
ead1e424 2031 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2032 // track of sections, or if we are relaxing. Also, if this is a
2033 // section which requires sorting, or which may require sorting in
20e6d0d6 2034 // the future, we keep track of the sections.
2fd32231
ILT
2035 if (have_sections_script
2036 || !this->input_sections_.empty()
2037 || this->may_sort_attached_input_sections()
7d9e3d98 2038 || this->must_sort_attached_input_sections()
20e6d0d6 2039 || parameters->options().user_set_Map()
029ba973 2040 || parameters->target().may_relax())
2ea97941 2041 this->input_sections_.push_back(Input_section(object, shndx,
ead1e424 2042 shdr.get_sh_size(),
2ea97941 2043 addralign));
54dc6425 2044
c51e6221 2045 return aligned_offset_in_section;
61ba1cf9
ILT
2046}
2047
ead1e424
ILT
2048// Add arbitrary data to an output section.
2049
2050void
2051Output_section::add_output_section_data(Output_section_data* posd)
2052{
b8e6aad9
ILT
2053 Input_section inp(posd);
2054 this->add_output_section_data(&inp);
a445fddf
ILT
2055
2056 if (posd->is_data_size_valid())
2057 {
2058 off_t offset_in_section = this->current_data_size_for_child();
2059 off_t aligned_offset_in_section = align_address(offset_in_section,
2060 posd->addralign());
2061 this->set_current_data_size_for_child(aligned_offset_in_section
2062 + posd->data_size());
2063 }
b8e6aad9
ILT
2064}
2065
c0a62865
DK
2066// Add a relaxed input section.
2067
2068void
2069Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2070{
2071 Input_section inp(poris);
2072 this->add_output_section_data(&inp);
2073 if (this->is_relaxed_input_section_map_valid_)
2074 {
5ac169d4
DK
2075 Const_section_id csid(poris->relobj(), poris->shndx());
2076 this->relaxed_input_section_map_[csid] = poris;
c0a62865
DK
2077 }
2078
2079 // For a relaxed section, we use the current data size. Linker scripts
2080 // get all the input sections, including relaxed one from an output
2081 // section and add them back to them same output section to compute the
2082 // output section size. If we do not account for sizes of relaxed input
2083 // sections, an output section would be incorrectly sized.
2084 off_t offset_in_section = this->current_data_size_for_child();
2085 off_t aligned_offset_in_section = align_address(offset_in_section,
2086 poris->addralign());
2087 this->set_current_data_size_for_child(aligned_offset_in_section
2088 + poris->current_data_size());
2089}
2090
b8e6aad9 2091// Add arbitrary data to an output section by Input_section.
c06b7b0b 2092
b8e6aad9
ILT
2093void
2094Output_section::add_output_section_data(Input_section* inp)
2095{
ead1e424 2096 if (this->input_sections_.empty())
27bc2bce 2097 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2098
b8e6aad9 2099 this->input_sections_.push_back(*inp);
c06b7b0b 2100
2ea97941
ILT
2101 uint64_t addralign = inp->addralign();
2102 if (addralign > this->addralign_)
2103 this->addralign_ = addralign;
c06b7b0b 2104
b8e6aad9
ILT
2105 inp->set_output_section(this);
2106}
2107
2108// Add a merge section to an output section.
2109
2110void
2111Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2112 bool is_string, uint64_t entsize)
b8e6aad9 2113{
2ea97941 2114 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2115 this->add_output_section_data(&inp);
2116}
2117
2118// Add an input section to a SHF_MERGE section.
2119
2120bool
2ea97941
ILT
2121Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2122 uint64_t flags, uint64_t entsize,
2123 uint64_t addralign)
b8e6aad9 2124{
2ea97941 2125 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2126
2127 // We only merge strings if the alignment is not more than the
2128 // character size. This could be handled, but it's unusual.
2ea97941 2129 if (is_string && addralign > entsize)
b8e6aad9
ILT
2130 return false;
2131
20e6d0d6
DK
2132 // We cannot restore merged input section states.
2133 gold_assert(this->checkpoint_ == NULL);
2134
c0a62865 2135 // Look up merge sections by required properties.
2ea97941 2136 Merge_section_properties msp(is_string, entsize, addralign);
c0a62865
DK
2137 Merge_section_by_properties_map::const_iterator p =
2138 this->merge_section_by_properties_map_.find(msp);
2139 if (p != this->merge_section_by_properties_map_.end())
2140 {
2141 Output_merge_base* merge_section = p->second;
2ea97941 2142 merge_section->add_input_section(object, shndx);
c0a62865 2143 gold_assert(merge_section->is_string() == is_string
2ea97941
ILT
2144 && merge_section->entsize() == entsize
2145 && merge_section->addralign() == addralign);
c0a62865
DK
2146
2147 // Link input section to found merge section.
5ac169d4
DK
2148 Const_section_id csid(object, shndx);
2149 this->merge_section_map_[csid] = merge_section;
c0a62865
DK
2150 return true;
2151 }
b8e6aad9
ILT
2152
2153 // We handle the actual constant merging in Output_merge_data or
2154 // Output_merge_string_data.
c0a62865 2155 Output_merge_base* pomb;
9a0910c3 2156 if (!is_string)
2ea97941 2157 pomb = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
2158 else
2159 {
2ea97941 2160 switch (entsize)
9a0910c3
ILT
2161 {
2162 case 1:
2ea97941 2163 pomb = new Output_merge_string<char>(addralign);
9a0910c3
ILT
2164 break;
2165 case 2:
2ea97941 2166 pomb = new Output_merge_string<uint16_t>(addralign);
9a0910c3
ILT
2167 break;
2168 case 4:
2ea97941 2169 pomb = new Output_merge_string<uint32_t>(addralign);
9a0910c3
ILT
2170 break;
2171 default:
2172 return false;
2173 }
b8e6aad9
ILT
2174 }
2175
c0a62865
DK
2176 // Add new merge section to this output section and link merge section
2177 // properties to new merge section in map.
2ea97941 2178 this->add_output_merge_section(pomb, is_string, entsize);
c0a62865
DK
2179 this->merge_section_by_properties_map_[msp] = pomb;
2180
2181 // Add input section to new merge section and link input section to new
2182 // merge section in map.
2ea97941 2183 pomb->add_input_section(object, shndx);
5ac169d4
DK
2184 Const_section_id csid(object, shndx);
2185 this->merge_section_map_[csid] = pomb;
9a0910c3 2186
b8e6aad9
ILT
2187 return true;
2188}
2189
c0a62865 2190// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2191// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2192
20e6d0d6 2193void
c0a62865 2194Output_section::build_relaxation_map(
2ea97941 2195 const Input_section_list& input_sections,
c0a62865
DK
2196 size_t limit,
2197 Relaxation_map* relaxation_map) const
20e6d0d6 2198{
c0a62865
DK
2199 for (size_t i = 0; i < limit; ++i)
2200 {
2ea97941 2201 const Input_section& is(input_sections[i]);
c0a62865
DK
2202 if (is.is_input_section() || is.is_relaxed_input_section())
2203 {
5ac169d4
DK
2204 Section_id sid(is.relobj(), is.shndx());
2205 (*relaxation_map)[sid] = i;
c0a62865
DK
2206 }
2207 }
2208}
2209
2210// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2211// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2212// indices of INPUT_SECTIONS.
20e6d0d6 2213
c0a62865
DK
2214void
2215Output_section::convert_input_sections_in_list_to_relaxed_sections(
2216 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2217 const Relaxation_map& map,
2ea97941 2218 Input_section_list* input_sections)
c0a62865
DK
2219{
2220 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2221 {
2222 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2223 Section_id sid(poris->relobj(), poris->shndx());
2224 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2225 gold_assert(p != map.end());
2ea97941
ILT
2226 gold_assert((*input_sections)[p->second].is_input_section());
2227 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2228 }
2229}
2230
2231// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2232// is a vector of pointers to Output_relaxed_input_section or its derived
2233// classes. The relaxed sections must correspond to existing input sections.
2234
2235void
2236Output_section::convert_input_sections_to_relaxed_sections(
2237 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2238{
029ba973 2239 gold_assert(parameters->target().may_relax());
20e6d0d6 2240
c0a62865
DK
2241 // We want to make sure that restore_states does not undo the effect of
2242 // this. If there is no checkpoint active, just search the current
2243 // input section list and replace the sections there. If there is
2244 // a checkpoint, also replace the sections there.
2245
2246 // By default, we look at the whole list.
2247 size_t limit = this->input_sections_.size();
2248
2249 if (this->checkpoint_ != NULL)
20e6d0d6 2250 {
c0a62865
DK
2251 // Replace input sections with relaxed input section in the saved
2252 // copy of the input section list.
2253 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2254 {
c0a62865
DK
2255 Relaxation_map map;
2256 this->build_relaxation_map(
2257 *(this->checkpoint_->input_sections()),
2258 this->checkpoint_->input_sections()->size(),
2259 &map);
2260 this->convert_input_sections_in_list_to_relaxed_sections(
2261 relaxed_sections,
2262 map,
2263 this->checkpoint_->input_sections());
2264 }
2265 else
2266 {
2267 // We have not copied the input section list yet. Instead, just
2268 // look at the portion that would be saved.
2269 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2270 }
20e6d0d6 2271 }
c0a62865
DK
2272
2273 // Convert input sections in input_section_list.
2274 Relaxation_map map;
2275 this->build_relaxation_map(this->input_sections_, limit, &map);
2276 this->convert_input_sections_in_list_to_relaxed_sections(
2277 relaxed_sections,
2278 map,
2279 &this->input_sections_);
41263c05
DK
2280
2281 // Update fast look-up map.
2282 if (this->is_relaxed_input_section_map_valid_)
2283 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2284 {
2285 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2286 Const_section_id csid(poris->relobj(), poris->shndx());
2287 this->relaxed_input_section_map_[csid] = poris;
41263c05 2288 }
20e6d0d6
DK
2289}
2290
9c547ec3
ILT
2291// Update the output section flags based on input section flags.
2292
2293void
2ea97941 2294Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2295{
2296 // If we created the section with SHF_ALLOC clear, we set the
2297 // address. If we are now setting the SHF_ALLOC flag, we need to
2298 // undo that.
2299 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2300 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2301 this->mark_address_invalid();
2302
2ea97941 2303 this->flags_ |= (flags
9c547ec3
ILT
2304 & (elfcpp::SHF_WRITE
2305 | elfcpp::SHF_ALLOC
2306 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2307
2308 if ((flags & elfcpp::SHF_MERGE) == 0)
2309 this->flags_ &=~ elfcpp::SHF_MERGE;
2310 else
2311 {
2312 if (this->current_data_size_for_child() == 0)
2313 this->flags_ |= elfcpp::SHF_MERGE;
2314 }
2315
2316 if ((flags & elfcpp::SHF_STRINGS) == 0)
2317 this->flags_ &=~ elfcpp::SHF_STRINGS;
2318 else
2319 {
2320 if (this->current_data_size_for_child() == 0)
2321 this->flags_ |= elfcpp::SHF_STRINGS;
2322 }
9c547ec3
ILT
2323}
2324
2ea97941 2325// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2326// OBJECT has been added. Return NULL if none found.
2327
2328Output_section_data*
2329Output_section::find_merge_section(const Relobj* object,
2ea97941 2330 unsigned int shndx) const
c0a62865 2331{
5ac169d4 2332 Const_section_id csid(object, shndx);
c0a62865 2333 Output_section_data_by_input_section_map::const_iterator p =
5ac169d4 2334 this->merge_section_map_.find(csid);
c0a62865
DK
2335 if (p != this->merge_section_map_.end())
2336 {
2337 Output_section_data* posd = p->second;
2ea97941 2338 gold_assert(posd->is_merge_section_for(object, shndx));
c0a62865
DK
2339 return posd;
2340 }
2341 else
2342 return NULL;
2343}
2344
2345// Find an relaxed input section corresponding to an input section
2ea97941 2346// in OBJECT with index SHNDX.
c0a62865 2347
d6344fb5 2348const Output_relaxed_input_section*
c0a62865 2349Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2350 unsigned int shndx) const
c0a62865
DK
2351{
2352 // Be careful that the map may not be valid due to input section export
2353 // to scripts or a check-point restore.
2354 if (!this->is_relaxed_input_section_map_valid_)
2355 {
2356 // Rebuild the map as needed.
2357 this->relaxed_input_section_map_.clear();
2358 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2359 p != this->input_sections_.end();
2360 ++p)
2361 if (p->is_relaxed_input_section())
2362 {
5ac169d4
DK
2363 Const_section_id csid(p->relobj(), p->shndx());
2364 this->relaxed_input_section_map_[csid] =
c0a62865
DK
2365 p->relaxed_input_section();
2366 }
2367 this->is_relaxed_input_section_map_valid_ = true;
2368 }
2369
5ac169d4 2370 Const_section_id csid(object, shndx);
d6344fb5 2371 Output_relaxed_input_section_by_input_section_map::const_iterator p =
5ac169d4 2372 this->relaxed_input_section_map_.find(csid);
c0a62865
DK
2373 if (p != this->relaxed_input_section_map_.end())
2374 return p->second;
2375 else
2376 return NULL;
2377}
2378
2ea97941
ILT
2379// Given an address OFFSET relative to the start of input section
2380// SHNDX in OBJECT, return whether this address is being included in
2381// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2382// a special mapping.
2383
2384bool
2385Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2386 unsigned int shndx,
2387 off_t offset) const
730cdc88 2388{
c0a62865 2389 // Look at the Output_section_data_maps first.
2ea97941 2390 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2391 if (posd == NULL)
2ea97941 2392 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2393
2394 if (posd != NULL)
2395 {
2ea97941
ILT
2396 section_offset_type output_offset;
2397 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2398 gold_assert(found);
2ea97941 2399 return output_offset != -1;
c0a62865
DK
2400 }
2401
2402 // Fall back to the slow look-up.
730cdc88
ILT
2403 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2404 p != this->input_sections_.end();
2405 ++p)
2406 {
2ea97941
ILT
2407 section_offset_type output_offset;
2408 if (p->output_offset(object, shndx, offset, &output_offset))
2409 return output_offset != -1;
730cdc88
ILT
2410 }
2411
2412 // By default we assume that the address is mapped. This should
2413 // only be called after we have passed all sections to Layout. At
2414 // that point we should know what we are discarding.
2415 return true;
2416}
2417
2ea97941
ILT
2418// Given an address OFFSET relative to the start of input section
2419// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2420// start of the input section in the output section. This should only
2ea97941 2421// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2422
8383303e 2423section_offset_type
2ea97941
ILT
2424Output_section::output_offset(const Relobj* object, unsigned int shndx,
2425 section_offset_type offset) const
730cdc88 2426{
c0a62865
DK
2427 // This can only be called meaningfully when we know the data size
2428 // of this.
2429 gold_assert(this->is_data_size_valid());
730cdc88 2430
c0a62865 2431 // Look at the Output_section_data_maps first.
2ea97941 2432 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2433 if (posd == NULL)
2ea97941 2434 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2435 if (posd != NULL)
2436 {
2ea97941
ILT
2437 section_offset_type output_offset;
2438 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2439 gold_assert(found);
2ea97941 2440 return output_offset;
c0a62865
DK
2441 }
2442
2443 // Fall back to the slow look-up.
730cdc88
ILT
2444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2445 p != this->input_sections_.end();
2446 ++p)
2447 {
2ea97941
ILT
2448 section_offset_type output_offset;
2449 if (p->output_offset(object, shndx, offset, &output_offset))
2450 return output_offset;
730cdc88
ILT
2451 }
2452 gold_unreachable();
2453}
2454
2ea97941
ILT
2455// Return the output virtual address of OFFSET relative to the start
2456// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2457
2458uint64_t
2ea97941
ILT
2459Output_section::output_address(const Relobj* object, unsigned int shndx,
2460 off_t offset) const
b8e6aad9
ILT
2461{
2462 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2463
2464 // Look at the Output_section_data_maps first.
2ea97941 2465 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2466 if (posd == NULL)
2ea97941 2467 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2468 if (posd != NULL && posd->is_address_valid())
2469 {
2ea97941
ILT
2470 section_offset_type output_offset;
2471 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2472 gold_assert(found);
2ea97941 2473 return posd->address() + output_offset;
c0a62865
DK
2474 }
2475
2476 // Fall back to the slow look-up.
b8e6aad9
ILT
2477 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2478 p != this->input_sections_.end();
2479 ++p)
2480 {
2481 addr = align_address(addr, p->addralign());
2ea97941
ILT
2482 section_offset_type output_offset;
2483 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2484 {
2ea97941 2485 if (output_offset == -1)
eff45813 2486 return -1ULL;
2ea97941 2487 return addr + output_offset;
730cdc88 2488 }
b8e6aad9
ILT
2489 addr += p->data_size();
2490 }
2491
2492 // If we get here, it means that we don't know the mapping for this
2493 // input section. This might happen in principle if
2494 // add_input_section were called before add_output_section_data.
2495 // But it should never actually happen.
2496
2497 gold_unreachable();
ead1e424
ILT
2498}
2499
e29e076a 2500// Find the output address of the start of the merged section for
2ea97941 2501// input section SHNDX in object OBJECT.
a9a60db6 2502
e29e076a
ILT
2503bool
2504Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2505 unsigned int shndx,
e29e076a 2506 uint64_t* paddr) const
a9a60db6 2507{
c0a62865
DK
2508 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2509 // Looking up the merge section map does not always work as we sometimes
2510 // find a merge section without its address set.
a9a60db6
ILT
2511 uint64_t addr = this->address() + this->first_input_offset_;
2512 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2513 p != this->input_sections_.end();
2514 ++p)
2515 {
2516 addr = align_address(addr, p->addralign());
2517
2518 // It would be nice if we could use the existing output_offset
2519 // method to get the output offset of input offset 0.
2520 // Unfortunately we don't know for sure that input offset 0 is
2521 // mapped at all.
2ea97941 2522 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2523 {
2524 *paddr = addr;
2525 return true;
2526 }
a9a60db6
ILT
2527
2528 addr += p->data_size();
2529 }
e29e076a
ILT
2530
2531 // We couldn't find a merge output section for this input section.
2532 return false;
a9a60db6
ILT
2533}
2534
27bc2bce 2535// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2536// setting the addresses of any Output_section_data objects.
2537
2538void
27bc2bce 2539Output_section::set_final_data_size()
ead1e424
ILT
2540{
2541 if (this->input_sections_.empty())
27bc2bce
ILT
2542 {
2543 this->set_data_size(this->current_data_size_for_child());
2544 return;
2545 }
ead1e424 2546
2fd32231
ILT
2547 if (this->must_sort_attached_input_sections())
2548 this->sort_attached_input_sections();
2549
2ea97941 2550 uint64_t address = this->address();
27bc2bce 2551 off_t startoff = this->offset();
ead1e424
ILT
2552 off_t off = startoff + this->first_input_offset_;
2553 for (Input_section_list::iterator p = this->input_sections_.begin();
2554 p != this->input_sections_.end();
2555 ++p)
2556 {
2557 off = align_address(off, p->addralign());
2ea97941 2558 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2559 startoff);
ead1e424
ILT
2560 off += p->data_size();
2561 }
2562
2563 this->set_data_size(off - startoff);
2564}
9a0910c3 2565
a445fddf
ILT
2566// Reset the address and file offset.
2567
2568void
2569Output_section::do_reset_address_and_file_offset()
2570{
20e6d0d6
DK
2571 // An unallocated section has no address. Forcing this means that
2572 // we don't need special treatment for symbols defined in debug
2573 // sections. We do the same in the constructor.
2574 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2575 this->set_address(0);
2576
a445fddf
ILT
2577 for (Input_section_list::iterator p = this->input_sections_.begin();
2578 p != this->input_sections_.end();
2579 ++p)
2580 p->reset_address_and_file_offset();
2581}
20e6d0d6
DK
2582
2583// Return true if address and file offset have the values after reset.
2584
2585bool
2586Output_section::do_address_and_file_offset_have_reset_values() const
2587{
2588 if (this->is_offset_valid())
2589 return false;
2590
2591 // An unallocated section has address 0 after its construction or a reset.
2592 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2593 return this->is_address_valid() && this->address() == 0;
2594 else
2595 return !this->is_address_valid();
2596}
a445fddf 2597
7bf1f802
ILT
2598// Set the TLS offset. Called only for SHT_TLS sections.
2599
2600void
2601Output_section::do_set_tls_offset(uint64_t tls_base)
2602{
2603 this->tls_offset_ = this->address() - tls_base;
2604}
2605
2fd32231
ILT
2606// In a few cases we need to sort the input sections attached to an
2607// output section. This is used to implement the type of constructor
2608// priority ordering implemented by the GNU linker, in which the
2609// priority becomes part of the section name and the sections are
2610// sorted by name. We only do this for an output section if we see an
2611// attached input section matching ".ctor.*", ".dtor.*",
2612// ".init_array.*" or ".fini_array.*".
2613
2614class Output_section::Input_section_sort_entry
2615{
2616 public:
2617 Input_section_sort_entry()
2618 : input_section_(), index_(-1U), section_has_name_(false),
2619 section_name_()
2620 { }
2621
2ea97941
ILT
2622 Input_section_sort_entry(const Input_section& input_section,
2623 unsigned int index)
2624 : input_section_(input_section), index_(index),
2625 section_has_name_(input_section.is_input_section()
2626 || input_section.is_relaxed_input_section())
2fd32231
ILT
2627 {
2628 if (this->section_has_name_)
2629 {
2630 // This is only called single-threaded from Layout::finalize,
2631 // so it is OK to lock. Unfortunately we have no way to pass
2632 // in a Task token.
2633 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2634 Object* obj = (input_section.is_input_section()
2635 ? input_section.relobj()
2636 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2637 Task_lock_obj<Object> tl(dummy_task, obj);
2638
2639 // This is a slow operation, which should be cached in
2640 // Layout::layout if this becomes a speed problem.
2ea97941 2641 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2642 }
2643 }
2644
2645 // Return the Input_section.
2646 const Input_section&
2647 input_section() const
2648 {
2649 gold_assert(this->index_ != -1U);
2650 return this->input_section_;
2651 }
2652
2653 // The index of this entry in the original list. This is used to
2654 // make the sort stable.
2655 unsigned int
2656 index() const
2657 {
2658 gold_assert(this->index_ != -1U);
2659 return this->index_;
2660 }
2661
2662 // Whether there is a section name.
2663 bool
2664 section_has_name() const
2665 { return this->section_has_name_; }
2666
2667 // The section name.
2668 const std::string&
2669 section_name() const
2670 {
2671 gold_assert(this->section_has_name_);
2672 return this->section_name_;
2673 }
2674
ab794b6b
ILT
2675 // Return true if the section name has a priority. This is assumed
2676 // to be true if it has a dot after the initial dot.
2fd32231 2677 bool
ab794b6b 2678 has_priority() const
2fd32231
ILT
2679 {
2680 gold_assert(this->section_has_name_);
ab794b6b 2681 return this->section_name_.find('.', 1);
2fd32231
ILT
2682 }
2683
ab794b6b
ILT
2684 // Return true if this an input file whose base name matches
2685 // FILE_NAME. The base name must have an extension of ".o", and
2686 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2687 // This is to match crtbegin.o as well as crtbeginS.o without
2688 // getting confused by other possibilities. Overall matching the
2689 // file name this way is a dreadful hack, but the GNU linker does it
2690 // in order to better support gcc, and we need to be compatible.
2fd32231 2691 bool
2ea97941 2692 match_file_name(const char* match_file_name) const
2fd32231 2693 {
2fd32231
ILT
2694 const std::string& file_name(this->input_section_.relobj()->name());
2695 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2696 size_t match_len = strlen(match_file_name);
2697 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2698 return false;
2699 size_t base_len = strlen(base_name);
2700 if (base_len != match_len + 2 && base_len != match_len + 3)
2701 return false;
2702 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2703 }
2704
2705 private:
2706 // The Input_section we are sorting.
2707 Input_section input_section_;
2708 // The index of this Input_section in the original list.
2709 unsigned int index_;
2710 // Whether this Input_section has a section name--it won't if this
2711 // is some random Output_section_data.
2712 bool section_has_name_;
2713 // The section name if there is one.
2714 std::string section_name_;
2715};
2716
2717// Return true if S1 should come before S2 in the output section.
2718
2719bool
2720Output_section::Input_section_sort_compare::operator()(
2721 const Output_section::Input_section_sort_entry& s1,
2722 const Output_section::Input_section_sort_entry& s2) const
2723{
ab794b6b
ILT
2724 // crtbegin.o must come first.
2725 bool s1_begin = s1.match_file_name("crtbegin");
2726 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2727 if (s1_begin || s2_begin)
2728 {
2729 if (!s1_begin)
2730 return false;
2731 if (!s2_begin)
2732 return true;
2733 return s1.index() < s2.index();
2734 }
2735
ab794b6b
ILT
2736 // crtend.o must come last.
2737 bool s1_end = s1.match_file_name("crtend");
2738 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2739 if (s1_end || s2_end)
2740 {
2741 if (!s1_end)
2742 return true;
2743 if (!s2_end)
2744 return false;
2745 return s1.index() < s2.index();
2746 }
2747
ab794b6b
ILT
2748 // We sort all the sections with no names to the end.
2749 if (!s1.section_has_name() || !s2.section_has_name())
2750 {
2751 if (s1.section_has_name())
2752 return true;
2753 if (s2.section_has_name())
2754 return false;
2755 return s1.index() < s2.index();
2756 }
2fd32231 2757
ab794b6b
ILT
2758 // A section with a priority follows a section without a priority.
2759 // The GNU linker does this for all but .init_array sections; until
2760 // further notice we'll assume that that is an mistake.
2761 bool s1_has_priority = s1.has_priority();
2762 bool s2_has_priority = s2.has_priority();
2763 if (s1_has_priority && !s2_has_priority)
2fd32231 2764 return false;
ab794b6b 2765 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2766 return true;
2767
2768 // Otherwise we sort by name.
2769 int compare = s1.section_name().compare(s2.section_name());
2770 if (compare != 0)
2771 return compare < 0;
2772
2773 // Otherwise we keep the input order.
2774 return s1.index() < s2.index();
2775}
2776
2777// Sort the input sections attached to an output section.
2778
2779void
2780Output_section::sort_attached_input_sections()
2781{
2782 if (this->attached_input_sections_are_sorted_)
2783 return;
2784
20e6d0d6
DK
2785 if (this->checkpoint_ != NULL
2786 && !this->checkpoint_->input_sections_saved())
2787 this->checkpoint_->save_input_sections();
2788
2fd32231
ILT
2789 // The only thing we know about an input section is the object and
2790 // the section index. We need the section name. Recomputing this
2791 // is slow but this is an unusual case. If this becomes a speed
2792 // problem we can cache the names as required in Layout::layout.
2793
2794 // We start by building a larger vector holding a copy of each
2795 // Input_section, plus its current index in the list and its name.
2796 std::vector<Input_section_sort_entry> sort_list;
2797
2798 unsigned int i = 0;
2799 for (Input_section_list::iterator p = this->input_sections_.begin();
2800 p != this->input_sections_.end();
2801 ++p, ++i)
2802 sort_list.push_back(Input_section_sort_entry(*p, i));
2803
2804 // Sort the input sections.
2805 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2806
2807 // Copy the sorted input sections back to our list.
2808 this->input_sections_.clear();
2809 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2810 p != sort_list.end();
2811 ++p)
2812 this->input_sections_.push_back(p->input_section());
2813
2814 // Remember that we sorted the input sections, since we might get
2815 // called again.
2816 this->attached_input_sections_are_sorted_ = true;
2817}
2818
61ba1cf9
ILT
2819// Write the section header to *OSHDR.
2820
2821template<int size, bool big_endian>
2822void
16649710
ILT
2823Output_section::write_header(const Layout* layout,
2824 const Stringpool* secnamepool,
61ba1cf9
ILT
2825 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2826{
2827 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2828 oshdr->put_sh_type(this->type_);
6a74a719 2829
2ea97941 2830 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2831 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
2832 flags |= elfcpp::SHF_INFO_LINK;
2833 oshdr->put_sh_flags(flags);
6a74a719 2834
61ba1cf9
ILT
2835 oshdr->put_sh_addr(this->address());
2836 oshdr->put_sh_offset(this->offset());
2837 oshdr->put_sh_size(this->data_size());
16649710
ILT
2838 if (this->link_section_ != NULL)
2839 oshdr->put_sh_link(this->link_section_->out_shndx());
2840 else if (this->should_link_to_symtab_)
2841 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2842 else if (this->should_link_to_dynsym_)
2843 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2844 else
2845 oshdr->put_sh_link(this->link_);
755ab8af 2846
2ea97941 2847 elfcpp::Elf_Word info;
16649710 2848 if (this->info_section_ != NULL)
755ab8af
ILT
2849 {
2850 if (this->info_uses_section_index_)
2ea97941 2851 info = this->info_section_->out_shndx();
755ab8af 2852 else
2ea97941 2853 info = this->info_section_->symtab_index();
755ab8af 2854 }
6a74a719 2855 else if (this->info_symndx_ != NULL)
2ea97941 2856 info = this->info_symndx_->symtab_index();
16649710 2857 else
2ea97941
ILT
2858 info = this->info_;
2859 oshdr->put_sh_info(info);
755ab8af 2860
61ba1cf9
ILT
2861 oshdr->put_sh_addralign(this->addralign_);
2862 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2863}
2864
ead1e424
ILT
2865// Write out the data. For input sections the data is written out by
2866// Object::relocate, but we have to handle Output_section_data objects
2867// here.
2868
2869void
2870Output_section::do_write(Output_file* of)
2871{
96803768
ILT
2872 gold_assert(!this->requires_postprocessing());
2873
c0a62865
DK
2874 // If the target performs relaxation, we delay filler generation until now.
2875 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2876
c51e6221
ILT
2877 off_t output_section_file_offset = this->offset();
2878 for (Fill_list::iterator p = this->fills_.begin();
2879 p != this->fills_.end();
2880 ++p)
2881 {
8851ecca 2882 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2883 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2884 fill_data.data(), fill_data.size());
c51e6221
ILT
2885 }
2886
c0a62865 2887 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
2888 for (Input_section_list::iterator p = this->input_sections_.begin();
2889 p != this->input_sections_.end();
2890 ++p)
c0a62865
DK
2891 {
2892 off_t aligned_off = align_address(off, p->addralign());
2893 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2894 {
2895 size_t fill_len = aligned_off - off;
2896 std::string fill_data(parameters->target().code_fill(fill_len));
2897 of->write(off, fill_data.data(), fill_data.size());
2898 }
2899
2900 p->write(of);
2901 off = aligned_off + p->data_size();
2902 }
ead1e424
ILT
2903}
2904
96803768
ILT
2905// If a section requires postprocessing, create the buffer to use.
2906
2907void
2908Output_section::create_postprocessing_buffer()
2909{
2910 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2911
2912 if (this->postprocessing_buffer_ != NULL)
2913 return;
96803768
ILT
2914
2915 if (!this->input_sections_.empty())
2916 {
2917 off_t off = this->first_input_offset_;
2918 for (Input_section_list::iterator p = this->input_sections_.begin();
2919 p != this->input_sections_.end();
2920 ++p)
2921 {
2922 off = align_address(off, p->addralign());
2923 p->finalize_data_size();
2924 off += p->data_size();
2925 }
2926 this->set_current_data_size_for_child(off);
2927 }
2928
2929 off_t buffer_size = this->current_data_size_for_child();
2930 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2931}
2932
2933// Write all the data of an Output_section into the postprocessing
2934// buffer. This is used for sections which require postprocessing,
2935// such as compression. Input sections are handled by
2936// Object::Relocate.
2937
2938void
2939Output_section::write_to_postprocessing_buffer()
2940{
2941 gold_assert(this->requires_postprocessing());
2942
c0a62865
DK
2943 // If the target performs relaxation, we delay filler generation until now.
2944 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2945
96803768
ILT
2946 unsigned char* buffer = this->postprocessing_buffer();
2947 for (Fill_list::iterator p = this->fills_.begin();
2948 p != this->fills_.end();
2949 ++p)
2950 {
8851ecca 2951 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2952 memcpy(buffer + p->section_offset(), fill_data.data(),
2953 fill_data.size());
96803768
ILT
2954 }
2955
2956 off_t off = this->first_input_offset_;
2957 for (Input_section_list::iterator p = this->input_sections_.begin();
2958 p != this->input_sections_.end();
2959 ++p)
2960 {
c0a62865
DK
2961 off_t aligned_off = align_address(off, p->addralign());
2962 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2963 {
2964 size_t fill_len = aligned_off - off;
2965 std::string fill_data(parameters->target().code_fill(fill_len));
2966 memcpy(buffer + off, fill_data.data(), fill_data.size());
2967 }
2968
2969 p->write_to_buffer(buffer + aligned_off);
2970 off = aligned_off + p->data_size();
96803768
ILT
2971 }
2972}
2973
a445fddf
ILT
2974// Get the input sections for linker script processing. We leave
2975// behind the Output_section_data entries. Note that this may be
2976// slightly incorrect for merge sections. We will leave them behind,
2977// but it is possible that the script says that they should follow
2978// some other input sections, as in:
2979// .rodata { *(.rodata) *(.rodata.cst*) }
2980// For that matter, we don't handle this correctly:
2981// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2982// With luck this will never matter.
2983
2984uint64_t
2985Output_section::get_input_sections(
2ea97941 2986 uint64_t address,
a445fddf 2987 const std::string& fill,
2ea97941 2988 std::list<Simple_input_section>* input_sections)
a445fddf 2989{
20e6d0d6
DK
2990 if (this->checkpoint_ != NULL
2991 && !this->checkpoint_->input_sections_saved())
2992 this->checkpoint_->save_input_sections();
2993
c0a62865
DK
2994 // Invalidate the relaxed input section map.
2995 this->is_relaxed_input_section_map_valid_ = false;
2996
2ea97941 2997 uint64_t orig_address = address;
a445fddf 2998
2ea97941 2999 address = align_address(address, this->addralign());
a445fddf
ILT
3000
3001 Input_section_list remaining;
3002 for (Input_section_list::iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3004 ++p)
3005 {
3006 if (p->is_input_section())
2ea97941 3007 input_sections->push_back(Simple_input_section(p->relobj(),
20e6d0d6
DK
3008 p->shndx()));
3009 else if (p->is_relaxed_input_section())
2ea97941 3010 input_sections->push_back(
20e6d0d6 3011 Simple_input_section(p->relaxed_input_section()));
a445fddf
ILT
3012 else
3013 {
2ea97941
ILT
3014 uint64_t aligned_address = align_address(address, p->addralign());
3015 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3016 {
3017 section_size_type length =
2ea97941 3018 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3019 std::string this_fill;
3020 this_fill.reserve(length);
3021 while (this_fill.length() + fill.length() <= length)
3022 this_fill += fill;
3023 if (this_fill.length() < length)
3024 this_fill.append(fill, 0, length - this_fill.length());
3025
3026 Output_section_data* posd = new Output_data_const(this_fill, 0);
3027 remaining.push_back(Input_section(posd));
3028 }
2ea97941 3029 address = aligned_address;
a445fddf
ILT
3030
3031 remaining.push_back(*p);
3032
3033 p->finalize_data_size();
2ea97941 3034 address += p->data_size();
a445fddf
ILT
3035 }
3036 }
3037
3038 this->input_sections_.swap(remaining);
3039 this->first_input_offset_ = 0;
3040
2ea97941
ILT
3041 uint64_t data_size = address - orig_address;
3042 this->set_current_data_size_for_child(data_size);
3043 return data_size;
a445fddf
ILT
3044}
3045
3046// Add an input section from a script.
3047
3048void
20e6d0d6 3049Output_section::add_input_section_for_script(const Simple_input_section& sis,
2ea97941
ILT
3050 off_t data_size,
3051 uint64_t addralign)
a445fddf 3052{
2ea97941
ILT
3053 if (addralign > this->addralign_)
3054 this->addralign_ = addralign;
a445fddf
ILT
3055
3056 off_t offset_in_section = this->current_data_size_for_child();
3057 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3058 addralign);
a445fddf
ILT
3059
3060 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3061 + data_size);
a445fddf 3062
20e6d0d6
DK
3063 Input_section is =
3064 (sis.is_relaxed_input_section()
3065 ? Input_section(sis.relaxed_input_section())
2ea97941 3066 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
20e6d0d6
DK
3067 this->input_sections_.push_back(is);
3068}
3069
3070//
3071
3072void
3073Output_section::save_states()
3074{
3075 gold_assert(this->checkpoint_ == NULL);
3076 Checkpoint_output_section* checkpoint =
3077 new Checkpoint_output_section(this->addralign_, this->flags_,
3078 this->input_sections_,
3079 this->first_input_offset_,
3080 this->attached_input_sections_are_sorted_);
3081 this->checkpoint_ = checkpoint;
3082 gold_assert(this->fills_.empty());
3083}
3084
3085void
3086Output_section::restore_states()
3087{
3088 gold_assert(this->checkpoint_ != NULL);
3089 Checkpoint_output_section* checkpoint = this->checkpoint_;
3090
3091 this->addralign_ = checkpoint->addralign();
3092 this->flags_ = checkpoint->flags();
3093 this->first_input_offset_ = checkpoint->first_input_offset();
3094
3095 if (!checkpoint->input_sections_saved())
3096 {
3097 // If we have not copied the input sections, just resize it.
3098 size_t old_size = checkpoint->input_sections_size();
3099 gold_assert(this->input_sections_.size() >= old_size);
3100 this->input_sections_.resize(old_size);
3101 }
3102 else
3103 {
3104 // We need to copy the whole list. This is not efficient for
3105 // extremely large output with hundreads of thousands of input
3106 // objects. We may need to re-think how we should pass sections
3107 // to scripts.
c0a62865 3108 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3109 }
3110
3111 this->attached_input_sections_are_sorted_ =
3112 checkpoint->attached_input_sections_are_sorted();
c0a62865
DK
3113
3114 // Simply invalidate the relaxed input section map since we do not keep
3115 // track of it.
3116 this->is_relaxed_input_section_map_valid_ = false;
a445fddf
ILT
3117}
3118
7d9e3d98
ILT
3119// Print to the map file.
3120
3121void
3122Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3123{
3124 mapfile->print_output_section(this);
3125
3126 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3128 ++p)
3129 p->print_to_mapfile(mapfile);
3130}
3131
38c5e8b4
ILT
3132// Print stats for merge sections to stderr.
3133
3134void
3135Output_section::print_merge_stats()
3136{
3137 Input_section_list::iterator p;
3138 for (p = this->input_sections_.begin();
3139 p != this->input_sections_.end();
3140 ++p)
3141 p->print_merge_stats(this->name_);
3142}
3143
a2fb1b05
ILT
3144// Output segment methods.
3145
2ea97941 3146Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3147 : output_data_(),
75f65a3e 3148 output_bss_(),
a2fb1b05
ILT
3149 vaddr_(0),
3150 paddr_(0),
3151 memsz_(0),
a445fddf
ILT
3152 max_align_(0),
3153 min_p_align_(0),
a2fb1b05
ILT
3154 offset_(0),
3155 filesz_(0),
2ea97941
ILT
3156 type_(type),
3157 flags_(flags),
a445fddf 3158 is_max_align_known_(false),
8a5e3e08
ILT
3159 are_addresses_set_(false),
3160 is_large_data_segment_(false)
a2fb1b05 3161{
bb321bb1
ILT
3162 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3163 // the flags.
3164 if (type == elfcpp::PT_TLS)
3165 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3166}
3167
3168// Add an Output_section to an Output_segment.
3169
3170void
75f65a3e 3171Output_segment::add_output_section(Output_section* os,
f5c870d2
ILT
3172 elfcpp::Elf_Word seg_flags,
3173 bool do_sort)
a2fb1b05 3174{
a3ad94ed 3175 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3176 gold_assert(!this->is_max_align_known_);
8a5e3e08 3177 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
96a0d71b 3178 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
75f65a3e 3179
a192ba05 3180 this->update_flags_for_output_section(seg_flags);
75f65a3e
ILT
3181
3182 Output_segment::Output_data_list* pdl;
3183 if (os->type() == elfcpp::SHT_NOBITS)
3184 pdl = &this->output_bss_;
3185 else
3186 pdl = &this->output_data_;
54dc6425 3187
f5c870d2
ILT
3188 // Note that while there may be many input sections in an output
3189 // section, there are normally only a few output sections in an
3190 // output segment. The loops below are expected to be fast.
3191
a2fb1b05 3192 // So that PT_NOTE segments will work correctly, we need to ensure
96a0d71b 3193 // that all SHT_NOTE sections are adjacent.
61ba1cf9 3194 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3195 {
a3ad94ed 3196 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3197 do
54dc6425 3198 {
75f65a3e 3199 --p;
54dc6425
ILT
3200 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3201 {
3202 ++p;
75f65a3e 3203 pdl->insert(p, os);
54dc6425
ILT
3204 return;
3205 }
3206 }
75f65a3e 3207 while (p != pdl->begin());
54dc6425
ILT
3208 }
3209
3210 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3211 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3212 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3213 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab 3214 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
f5c870d2
ILT
3215 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3216 // segment.
07f397ab 3217 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3218 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3219 {
75f65a3e 3220 pdl = &this->output_data_;
661be1e2 3221 if (!pdl->empty())
a2fb1b05 3222 {
661be1e2
ILT
3223 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3224 bool sawtls = false;
3225 Output_segment::Output_data_list::iterator p = pdl->end();
3226 gold_assert(p != pdl->begin());
3227 do
a2fb1b05 3228 {
661be1e2
ILT
3229 --p;
3230 bool insert;
3231 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3232 {
3233 sawtls = true;
3234 // Put a NOBITS section after the first TLS section.
3235 // Put a PROGBITS section after the first
3236 // TLS/PROGBITS section.
3237 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3238 }
3239 else
3240 {
3241 // If we've gone past the TLS sections, but we've
3242 // seen a TLS section, then we need to insert this
3243 // section now.
3244 insert = sawtls;
3245 }
3246
3247 if (insert)
3248 {
3249 ++p;
3250 pdl->insert(p, os);
3251 return;
3252 }
a2fb1b05 3253 }
661be1e2 3254 while (p != pdl->begin());
a2fb1b05 3255 }
ead1e424 3256
dbe717ef
ILT
3257 // There are no TLS sections yet; put this one at the requested
3258 // location in the section list.
a2fb1b05
ILT
3259 }
3260
1a2dff53 3261 if (do_sort)
9f1d377b 3262 {
1a2dff53
ILT
3263 // For the PT_GNU_RELRO segment, we need to group relro
3264 // sections, and we need to put them before any non-relro
3265 // sections. Any relro local sections go before relro non-local
3266 // sections. One section may be marked as the last relro
3267 // section.
3268 if (os->is_relro())
9f1d377b 3269 {
1a2dff53
ILT
3270 gold_assert(pdl == &this->output_data_);
3271 Output_segment::Output_data_list::iterator p;
3272 for (p = pdl->begin(); p != pdl->end(); ++p)
3273 {
3274 if (!(*p)->is_section())
3275 break;
9f1d377b 3276
1a2dff53
ILT
3277 Output_section* pos = (*p)->output_section();
3278 if (!pos->is_relro()
3279 || (os->is_relro_local() && !pos->is_relro_local())
3280 || (!os->is_last_relro() && pos->is_last_relro()))
3281 break;
3282 }
3283
3284 pdl->insert(p, os);
3285 return;
9f1d377b
ILT
3286 }
3287
1a2dff53
ILT
3288 // One section may be marked as the first section which follows
3289 // the relro sections.
3290 if (os->is_first_non_relro())
3291 {
3292 gold_assert(pdl == &this->output_data_);
3293 Output_segment::Output_data_list::iterator p;
3294 for (p = pdl->begin(); p != pdl->end(); ++p)
3295 {
3296 if (!(*p)->is_section())
3297 break;
3298
3299 Output_section* pos = (*p)->output_section();
3300 if (!pos->is_relro())
3301 break;
3302 }
3303
3304 pdl->insert(p, os);
3305 return;
3306 }
9f1d377b
ILT
3307 }
3308
8a5e3e08
ILT
3309 // Small data sections go at the end of the list of data sections.
3310 // If OS is not small, and there are small sections, we have to
3311 // insert it before the first small section.
3312 if (os->type() != elfcpp::SHT_NOBITS
3313 && !os->is_small_section()
3314 && !pdl->empty()
3315 && pdl->back()->is_section()
3316 && pdl->back()->output_section()->is_small_section())
3317 {
3318 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3319 p != pdl->end();
3320 ++p)
3321 {
3322 if ((*p)->is_section()
3323 && (*p)->output_section()->is_small_section())
3324 {
3325 pdl->insert(p, os);
3326 return;
3327 }
3328 }
3329 gold_unreachable();
3330 }
3331
3332 // A small BSS section goes at the start of the BSS sections, after
3333 // other small BSS sections.
3334 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3335 {
3336 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3337 p != pdl->end();
3338 ++p)
3339 {
3340 if (!(*p)->is_section()
3341 || !(*p)->output_section()->is_small_section())
3342 {
3343 pdl->insert(p, os);
3344 return;
3345 }
3346 }
3347 }
3348
3349 // A large BSS section goes at the end of the BSS sections, which
3350 // means that one that is not large must come before the first large
3351 // one.
3352 if (os->type() == elfcpp::SHT_NOBITS
3353 && !os->is_large_section()
3354 && !pdl->empty()
3355 && pdl->back()->is_section()
3356 && pdl->back()->output_section()->is_large_section())
3357 {
3358 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3359 p != pdl->end();
3360 ++p)
3361 {
3362 if ((*p)->is_section()
3363 && (*p)->output_section()->is_large_section())
3364 {
3365 pdl->insert(p, os);
3366 return;
3367 }
3368 }
3369 gold_unreachable();
3370 }
3371
f5c870d2
ILT
3372 // We do some further output section sorting in order to make the
3373 // generated program run more efficiently. We should only do this
3374 // when not using a linker script, so it is controled by the DO_SORT
3375 // parameter.
3376 if (do_sort)
3377 {
3378 // FreeBSD requires the .interp section to be in the first page
3379 // of the executable. That is a more efficient location anyhow
3380 // for any OS, since it means that the kernel will have the data
3381 // handy after it reads the program headers.
3382 if (os->is_interp() && !pdl->empty())
3383 {
3384 pdl->insert(pdl->begin(), os);
3385 return;
3386 }
3387
3388 // Put loadable non-writable notes immediately after the .interp
3389 // sections, so that the PT_NOTE segment is on the first page of
3390 // the executable.
3391 if (os->type() == elfcpp::SHT_NOTE
3392 && (os->flags() & elfcpp::SHF_WRITE) == 0
3393 && !pdl->empty())
3394 {
3395 Output_segment::Output_data_list::iterator p = pdl->begin();
3396 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3397 ++p;
3398 pdl->insert(p, os);
96a0d71b 3399 return;
f5c870d2
ILT
3400 }
3401
3402 // If this section is used by the dynamic linker, and it is not
3403 // writable, then put it first, after the .interp section and
3404 // any loadable notes. This makes it more likely that the
3405 // dynamic linker will have to read less data from the disk.
3406 if (os->is_dynamic_linker_section()
3407 && !pdl->empty()
3408 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3409 {
3410 bool is_reloc = (os->type() == elfcpp::SHT_REL
3411 || os->type() == elfcpp::SHT_RELA);
3412 Output_segment::Output_data_list::iterator p = pdl->begin();
3413 while (p != pdl->end()
3414 && (*p)->is_section()
3415 && ((*p)->output_section()->is_dynamic_linker_section()
3416 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3417 {
3418 // Put reloc sections after the other ones. Putting the
3419 // dynamic reloc sections first confuses BFD, notably
3420 // objcopy and strip.
3421 if (!is_reloc
3422 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3423 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3424 break;
3425 ++p;
3426 }
3427 pdl->insert(p, os);
3428 return;
3429 }
3430 }
3431
3432 // If there were no constraints on the output section, just add it
3433 // to the end of the list.
01676dcd 3434 pdl->push_back(os);
75f65a3e
ILT
3435}
3436
1650c4ff
ILT
3437// Remove an Output_section from this segment. It is an error if it
3438// is not present.
3439
3440void
3441Output_segment::remove_output_section(Output_section* os)
3442{
3443 // We only need this for SHT_PROGBITS.
3444 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3445 for (Output_data_list::iterator p = this->output_data_.begin();
3446 p != this->output_data_.end();
3447 ++p)
3448 {
3449 if (*p == os)
3450 {
3451 this->output_data_.erase(p);
3452 return;
3453 }
3454 }
3455 gold_unreachable();
3456}
3457
a192ba05
ILT
3458// Add an Output_data (which need not be an Output_section) to the
3459// start of a segment.
75f65a3e
ILT
3460
3461void
3462Output_segment::add_initial_output_data(Output_data* od)
3463{
a445fddf 3464 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3465 this->output_data_.push_front(od);
3466}
3467
9f1d377b
ILT
3468// Return whether the first data section is a relro section.
3469
3470bool
3471Output_segment::is_first_section_relro() const
3472{
3473 return (!this->output_data_.empty()
3474 && this->output_data_.front()->is_section()
3475 && this->output_data_.front()->output_section()->is_relro());
3476}
3477
75f65a3e 3478// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3479
3480uint64_t
a445fddf 3481Output_segment::maximum_alignment()
75f65a3e 3482{
a445fddf 3483 if (!this->is_max_align_known_)
ead1e424 3484 {
2ea97941 3485 uint64_t addralign;
ead1e424 3486
2ea97941
ILT
3487 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3488 if (addralign > this->max_align_)
3489 this->max_align_ = addralign;
ead1e424 3490
2ea97941
ILT
3491 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3492 if (addralign > this->max_align_)
3493 this->max_align_ = addralign;
ead1e424 3494
a445fddf 3495 this->is_max_align_known_ = true;
ead1e424
ILT
3496 }
3497
a445fddf 3498 return this->max_align_;
75f65a3e
ILT
3499}
3500
ead1e424
ILT
3501// Return the maximum alignment of a list of Output_data.
3502
3503uint64_t
a445fddf 3504Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3505{
3506 uint64_t ret = 0;
3507 for (Output_data_list::const_iterator p = pdl->begin();
3508 p != pdl->end();
3509 ++p)
3510 {
2ea97941
ILT
3511 uint64_t addralign = (*p)->addralign();
3512 if (addralign > ret)
3513 ret = addralign;
ead1e424
ILT
3514 }
3515 return ret;
3516}
3517
4f4c5f80
ILT
3518// Return the number of dynamic relocs applied to this segment.
3519
3520unsigned int
3521Output_segment::dynamic_reloc_count() const
3522{
3523 return (this->dynamic_reloc_count_list(&this->output_data_)
3524 + this->dynamic_reloc_count_list(&this->output_bss_));
3525}
3526
3527// Return the number of dynamic relocs applied to an Output_data_list.
3528
3529unsigned int
3530Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3531{
3532 unsigned int count = 0;
3533 for (Output_data_list::const_iterator p = pdl->begin();
3534 p != pdl->end();
3535 ++p)
3536 count += (*p)->dynamic_reloc_count();
3537 return count;
3538}
3539
a445fddf
ILT
3540// Set the section addresses for an Output_segment. If RESET is true,
3541// reset the addresses first. ADDR is the address and *POFF is the
3542// file offset. Set the section indexes starting with *PSHNDX.
3543// Return the address of the immediately following segment. Update
3544// *POFF and *PSHNDX.
75f65a3e
ILT
3545
3546uint64_t
96a2b4e4 3547Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53
ILT
3548 uint64_t addr,
3549 unsigned int increase_relro,
3550 off_t* poff,
ead1e424 3551 unsigned int* pshndx)
75f65a3e 3552{
a3ad94ed 3553 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3554
1a2dff53
ILT
3555 off_t orig_off = *poff;
3556
3557 // If we have relro sections, we need to pad forward now so that the
3558 // relro sections plus INCREASE_RELRO end on a common page boundary.
3559 if (parameters->options().relro()
3560 && this->is_first_section_relro()
3561 && (!this->are_addresses_set_ || reset))
3562 {
3563 uint64_t relro_size = 0;
3564 off_t off = *poff;
3565 for (Output_data_list::iterator p = this->output_data_.begin();
3566 p != this->output_data_.end();
3567 ++p)
3568 {
3569 if (!(*p)->is_section())
3570 break;
3571 Output_section* pos = (*p)->output_section();
3572 if (!pos->is_relro())
3573 break;
3574 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3575 if ((*p)->is_address_valid())
3576 relro_size += (*p)->data_size();
3577 else
3578 {
3579 // FIXME: This could be faster.
3580 (*p)->set_address_and_file_offset(addr + relro_size,
3581 off + relro_size);
3582 relro_size += (*p)->data_size();
3583 (*p)->reset_address_and_file_offset();
3584 }
3585 }
3586 relro_size += increase_relro;
3587
3588 uint64_t page_align = parameters->target().common_pagesize();
3589
3590 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3591 uint64_t desired_align = page_align - (relro_size % page_align);
3592 if (desired_align < *poff % page_align)
3593 *poff += page_align - *poff % page_align;
3594 *poff += desired_align - *poff % page_align;
3595 addr += *poff - orig_off;
3596 orig_off = *poff;
3597 }
3598
a445fddf
ILT
3599 if (!reset && this->are_addresses_set_)
3600 {
3601 gold_assert(this->paddr_ == addr);
3602 addr = this->vaddr_;
3603 }
3604 else
3605 {
3606 this->vaddr_ = addr;
3607 this->paddr_ = addr;
3608 this->are_addresses_set_ = true;
3609 }
75f65a3e 3610
96a2b4e4
ILT
3611 bool in_tls = false;
3612
75f65a3e
ILT
3613 this->offset_ = orig_off;
3614
96a2b4e4 3615 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
1a2dff53 3616 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
3617 this->filesz_ = *poff - orig_off;
3618
3619 off_t off = *poff;
3620
96a2b4e4
ILT
3621 uint64_t ret = this->set_section_list_addresses(layout, reset,
3622 &this->output_bss_,
3623 addr, poff, pshndx,
1a2dff53 3624 &in_tls);
96a2b4e4
ILT
3625
3626 // If the last section was a TLS section, align upward to the
3627 // alignment of the TLS segment, so that the overall size of the TLS
3628 // segment is aligned.
3629 if (in_tls)
3630 {
3631 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3632 *poff = align_address(*poff, segment_align);
3633 }
3634
75f65a3e
ILT
3635 this->memsz_ = *poff - orig_off;
3636
3637 // Ignore the file offset adjustments made by the BSS Output_data
3638 // objects.
3639 *poff = off;
61ba1cf9
ILT
3640
3641 return ret;
75f65a3e
ILT
3642}
3643
b8e6aad9
ILT
3644// Set the addresses and file offsets in a list of Output_data
3645// structures.
75f65a3e
ILT
3646
3647uint64_t
96a2b4e4
ILT
3648Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3649 Output_data_list* pdl,
ead1e424 3650 uint64_t addr, off_t* poff,
96a2b4e4 3651 unsigned int* pshndx,
1a2dff53 3652 bool* in_tls)
75f65a3e 3653{
ead1e424 3654 off_t startoff = *poff;
75f65a3e 3655
ead1e424 3656 off_t off = startoff;
75f65a3e
ILT
3657 for (Output_data_list::iterator p = pdl->begin();
3658 p != pdl->end();
3659 ++p)
3660 {
a445fddf
ILT
3661 if (reset)
3662 (*p)->reset_address_and_file_offset();
3663
3664 // When using a linker script the section will most likely
3665 // already have an address.
3666 if (!(*p)->is_address_valid())
3802b2dd 3667 {
96a2b4e4
ILT
3668 uint64_t align = (*p)->addralign();
3669
3670 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3671 {
3672 // Give the first TLS section the alignment of the
3673 // entire TLS segment. Otherwise the TLS segment as a
3674 // whole may be misaligned.
3675 if (!*in_tls)
3676 {
3677 Output_segment* tls_segment = layout->tls_segment();
3678 gold_assert(tls_segment != NULL);
3679 uint64_t segment_align = tls_segment->maximum_alignment();
3680 gold_assert(segment_align >= align);
3681 align = segment_align;
3682
3683 *in_tls = true;
3684 }
3685 }
3686 else
3687 {
3688 // If this is the first section after the TLS segment,
3689 // align it to at least the alignment of the TLS
3690 // segment, so that the size of the overall TLS segment
3691 // is aligned.
3692 if (*in_tls)
3693 {
3694 uint64_t segment_align =
3695 layout->tls_segment()->maximum_alignment();
3696 if (segment_align > align)
3697 align = segment_align;
3698
3699 *in_tls = false;
3700 }
3701 }
3702
3703 off = align_address(off, align);
3802b2dd
ILT
3704 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3705 }
a445fddf
ILT
3706 else
3707 {
3708 // The script may have inserted a skip forward, but it
3709 // better not have moved backward.
661be1e2
ILT
3710 if ((*p)->address() >= addr + (off - startoff))
3711 off += (*p)->address() - (addr + (off - startoff));
3712 else
3713 {
3714 if (!layout->script_options()->saw_sections_clause())
3715 gold_unreachable();
3716 else
3717 {
3718 Output_section* os = (*p)->output_section();
64b1ae37
DK
3719
3720 // Cast to unsigned long long to avoid format warnings.
3721 unsigned long long previous_dot =
3722 static_cast<unsigned long long>(addr + (off - startoff));
3723 unsigned long long dot =
3724 static_cast<unsigned long long>((*p)->address());
3725
661be1e2
ILT
3726 if (os == NULL)
3727 gold_error(_("dot moves backward in linker script "
64b1ae37 3728 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3729 else
3730 gold_error(_("address of section '%s' moves backward "
3731 "from 0x%llx to 0x%llx"),
64b1ae37 3732 os->name(), previous_dot, dot);
661be1e2
ILT
3733 }
3734 }
a445fddf
ILT
3735 (*p)->set_file_offset(off);
3736 (*p)->finalize_data_size();
3737 }
ead1e424 3738
96a2b4e4
ILT
3739 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3740 // section. Such a section does not affect the size of a
3741 // PT_LOAD segment.
3742 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3743 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3744 off += (*p)->data_size();
75f65a3e 3745
ead1e424
ILT
3746 if ((*p)->is_section())
3747 {
3748 (*p)->set_out_shndx(*pshndx);
3749 ++*pshndx;
3750 }
75f65a3e
ILT
3751 }
3752
3753 *poff = off;
ead1e424 3754 return addr + (off - startoff);
75f65a3e
ILT
3755}
3756
3757// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3758// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3759
3760void
1a2dff53 3761Output_segment::set_offset(unsigned int increase)
75f65a3e 3762{
a3ad94ed 3763 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3764
a445fddf
ILT
3765 gold_assert(!this->are_addresses_set_);
3766
75f65a3e
ILT
3767 if (this->output_data_.empty() && this->output_bss_.empty())
3768 {
1a2dff53 3769 gold_assert(increase == 0);
75f65a3e
ILT
3770 this->vaddr_ = 0;
3771 this->paddr_ = 0;
a445fddf 3772 this->are_addresses_set_ = true;
75f65a3e 3773 this->memsz_ = 0;
a445fddf 3774 this->min_p_align_ = 0;
75f65a3e
ILT
3775 this->offset_ = 0;
3776 this->filesz_ = 0;
3777 return;
3778 }
3779
3780 const Output_data* first;
3781 if (this->output_data_.empty())
3782 first = this->output_bss_.front();
3783 else
3784 first = this->output_data_.front();
3785 this->vaddr_ = first->address();
a445fddf
ILT
3786 this->paddr_ = (first->has_load_address()
3787 ? first->load_address()
3788 : this->vaddr_);
3789 this->are_addresses_set_ = true;
75f65a3e
ILT
3790 this->offset_ = first->offset();
3791
3792 if (this->output_data_.empty())
3793 this->filesz_ = 0;
3794 else
3795 {
3796 const Output_data* last_data = this->output_data_.back();
3797 this->filesz_ = (last_data->address()
3798 + last_data->data_size()
3799 - this->vaddr_);
3800 }
3801
3802 const Output_data* last;
3803 if (this->output_bss_.empty())
3804 last = this->output_data_.back();
3805 else
3806 last = this->output_bss_.back();
3807 this->memsz_ = (last->address()
3808 + last->data_size()
3809 - this->vaddr_);
96a2b4e4 3810
1a2dff53
ILT
3811 this->filesz_ += increase;
3812 this->memsz_ += increase;
3813
96a2b4e4
ILT
3814 // If this is a TLS segment, align the memory size. The code in
3815 // set_section_list ensures that the section after the TLS segment
3816 // is aligned to give us room.
3817 if (this->type_ == elfcpp::PT_TLS)
3818 {
3819 uint64_t segment_align = this->maximum_alignment();
3820 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3821 this->memsz_ = align_address(this->memsz_, segment_align);
3822 }
75f65a3e
ILT
3823}
3824
7bf1f802
ILT
3825// Set the TLS offsets of the sections in the PT_TLS segment.
3826
3827void
3828Output_segment::set_tls_offsets()
3829{
3830 gold_assert(this->type_ == elfcpp::PT_TLS);
3831
3832 for (Output_data_list::iterator p = this->output_data_.begin();
3833 p != this->output_data_.end();
3834 ++p)
3835 (*p)->set_tls_offset(this->vaddr_);
3836
3837 for (Output_data_list::iterator p = this->output_bss_.begin();
3838 p != this->output_bss_.end();
3839 ++p)
3840 (*p)->set_tls_offset(this->vaddr_);
3841}
3842
a445fddf
ILT
3843// Return the address of the first section.
3844
3845uint64_t
3846Output_segment::first_section_load_address() const
3847{
3848 for (Output_data_list::const_iterator p = this->output_data_.begin();
3849 p != this->output_data_.end();
3850 ++p)
3851 if ((*p)->is_section())
3852 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3853
3854 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3855 p != this->output_bss_.end();
3856 ++p)
3857 if ((*p)->is_section())
3858 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3859
3860 gold_unreachable();
3861}
3862
75f65a3e
ILT
3863// Return the number of Output_sections in an Output_segment.
3864
3865unsigned int
3866Output_segment::output_section_count() const
3867{
3868 return (this->output_section_count_list(&this->output_data_)
3869 + this->output_section_count_list(&this->output_bss_));
3870}
3871
3872// Return the number of Output_sections in an Output_data_list.
3873
3874unsigned int
3875Output_segment::output_section_count_list(const Output_data_list* pdl) const
3876{
3877 unsigned int count = 0;
3878 for (Output_data_list::const_iterator p = pdl->begin();
3879 p != pdl->end();
3880 ++p)
3881 {
3882 if ((*p)->is_section())
3883 ++count;
3884 }
3885 return count;
a2fb1b05
ILT
3886}
3887
1c4f3631
ILT
3888// Return the section attached to the list segment with the lowest
3889// load address. This is used when handling a PHDRS clause in a
3890// linker script.
3891
3892Output_section*
3893Output_segment::section_with_lowest_load_address() const
3894{
3895 Output_section* found = NULL;
3896 uint64_t found_lma = 0;
3897 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3898
3899 Output_section* found_data = found;
3900 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3901 if (found != found_data && found_data != NULL)
3902 {
3903 gold_error(_("nobits section %s may not precede progbits section %s "
3904 "in same segment"),
3905 found->name(), found_data->name());
3906 return NULL;
3907 }
3908
3909 return found;
3910}
3911
3912// Look through a list for a section with a lower load address.
3913
3914void
3915Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3916 Output_section** found,
3917 uint64_t* found_lma) const
3918{
3919 for (Output_data_list::const_iterator p = pdl->begin();
3920 p != pdl->end();
3921 ++p)
3922 {
3923 if (!(*p)->is_section())
3924 continue;
3925 Output_section* os = static_cast<Output_section*>(*p);
3926 uint64_t lma = (os->has_load_address()
3927 ? os->load_address()
3928 : os->address());
3929 if (*found == NULL || lma < *found_lma)
3930 {
3931 *found = os;
3932 *found_lma = lma;
3933 }
3934 }
3935}
3936
61ba1cf9
ILT
3937// Write the segment data into *OPHDR.
3938
3939template<int size, bool big_endian>
3940void
ead1e424 3941Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
3942{
3943 ophdr->put_p_type(this->type_);
3944 ophdr->put_p_offset(this->offset_);
3945 ophdr->put_p_vaddr(this->vaddr_);
3946 ophdr->put_p_paddr(this->paddr_);
3947 ophdr->put_p_filesz(this->filesz_);
3948 ophdr->put_p_memsz(this->memsz_);
3949 ophdr->put_p_flags(this->flags_);
a445fddf 3950 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
3951}
3952
3953// Write the section headers into V.
3954
3955template<int size, bool big_endian>
3956unsigned char*
16649710
ILT
3957Output_segment::write_section_headers(const Layout* layout,
3958 const Stringpool* secnamepool,
ead1e424 3959 unsigned char* v,
7d1a9ebb 3960 unsigned int *pshndx) const
5482377d 3961{
ead1e424
ILT
3962 // Every section that is attached to a segment must be attached to a
3963 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3964 // segments.
3965 if (this->type_ != elfcpp::PT_LOAD)
3966 return v;
3967
7d1a9ebb
ILT
3968 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3969 &this->output_data_,
3970 v, pshndx);
3971 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3972 &this->output_bss_,
3973 v, pshndx);
61ba1cf9
ILT
3974 return v;
3975}
3976
3977template<int size, bool big_endian>
3978unsigned char*
16649710
ILT
3979Output_segment::write_section_headers_list(const Layout* layout,
3980 const Stringpool* secnamepool,
61ba1cf9 3981 const Output_data_list* pdl,
ead1e424 3982 unsigned char* v,
7d1a9ebb 3983 unsigned int* pshndx) const
61ba1cf9
ILT
3984{
3985 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3986 for (Output_data_list::const_iterator p = pdl->begin();
3987 p != pdl->end();
3988 ++p)
3989 {
3990 if ((*p)->is_section())
3991 {
5482377d 3992 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3993 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3994 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3995 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3996 v += shdr_size;
ead1e424 3997 ++*pshndx;
61ba1cf9
ILT
3998 }
3999 }
4000 return v;
4001}
4002
7d9e3d98
ILT
4003// Print the output sections to the map file.
4004
4005void
4006Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4007{
4008 if (this->type() != elfcpp::PT_LOAD)
4009 return;
4010 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4011 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4012}
4013
4014// Print an output section list to the map file.
4015
4016void
4017Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4018 const Output_data_list* pdl) const
4019{
4020 for (Output_data_list::const_iterator p = pdl->begin();
4021 p != pdl->end();
4022 ++p)
4023 (*p)->print_to_mapfile(mapfile);
4024}
4025
a2fb1b05
ILT
4026// Output_file methods.
4027
14144f39
ILT
4028Output_file::Output_file(const char* name)
4029 : name_(name),
61ba1cf9
ILT
4030 o_(-1),
4031 file_size_(0),
c420411f 4032 base_(NULL),
516cb3d0
ILT
4033 map_is_anonymous_(false),
4034 is_temporary_(false)
61ba1cf9
ILT
4035{
4036}
4037
404c2abb
ILT
4038// Try to open an existing file. Returns false if the file doesn't
4039// exist, has a size of 0 or can't be mmapped.
4040
4041bool
4042Output_file::open_for_modification()
4043{
4044 // The name "-" means "stdout".
4045 if (strcmp(this->name_, "-") == 0)
4046 return false;
4047
4048 // Don't bother opening files with a size of zero.
4049 struct stat s;
4050 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4051 return false;
4052
4053 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4054 if (o < 0)
4055 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4056 this->o_ = o;
4057 this->file_size_ = s.st_size;
4058
4059 // If the file can't be mmapped, copying the content to an anonymous
4060 // map will probably negate the performance benefits of incremental
4061 // linking. This could be helped by using views and loading only
4062 // the necessary parts, but this is not supported as of now.
4063 if (!this->map_no_anonymous())
4064 {
4065 release_descriptor(o, true);
4066 this->o_ = -1;
4067 this->file_size_ = 0;
4068 return false;
4069 }
4070
4071 return true;
4072}
4073
61ba1cf9
ILT
4074// Open the output file.
4075
a2fb1b05 4076void
61ba1cf9 4077Output_file::open(off_t file_size)
a2fb1b05 4078{
61ba1cf9
ILT
4079 this->file_size_ = file_size;
4080
4e9d8586
ILT
4081 // Unlink the file first; otherwise the open() may fail if the file
4082 // is busy (e.g. it's an executable that's currently being executed).
4083 //
4084 // However, the linker may be part of a system where a zero-length
4085 // file is created for it to write to, with tight permissions (gcc
4086 // 2.95 did something like this). Unlinking the file would work
4087 // around those permission controls, so we only unlink if the file
4088 // has a non-zero size. We also unlink only regular files to avoid
4089 // trouble with directories/etc.
4090 //
4091 // If we fail, continue; this command is merely a best-effort attempt
4092 // to improve the odds for open().
4093
42a1b686 4094 // We let the name "-" mean "stdout"
516cb3d0 4095 if (!this->is_temporary_)
42a1b686 4096 {
516cb3d0
ILT
4097 if (strcmp(this->name_, "-") == 0)
4098 this->o_ = STDOUT_FILENO;
4099 else
4100 {
4101 struct stat s;
6a89f575
CC
4102 if (::stat(this->name_, &s) == 0
4103 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4104 {
4105 if (s.st_size != 0)
4106 ::unlink(this->name_);
4107 else if (!parameters->options().relocatable())
4108 {
4109 // If we don't unlink the existing file, add execute
4110 // permission where read permissions already exist
4111 // and where the umask permits.
4112 int mask = ::umask(0);
4113 ::umask(mask);
4114 s.st_mode |= (s.st_mode & 0444) >> 2;
4115 ::chmod(this->name_, s.st_mode & ~mask);
4116 }
4117 }
516cb3d0 4118
8851ecca 4119 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4120 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4121 mode);
516cb3d0
ILT
4122 if (o < 0)
4123 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4124 this->o_ = o;
4125 }
42a1b686 4126 }
61ba1cf9 4127
27bc2bce
ILT
4128 this->map();
4129}
4130
4131// Resize the output file.
4132
4133void
4134Output_file::resize(off_t file_size)
4135{
c420411f
ILT
4136 // If the mmap is mapping an anonymous memory buffer, this is easy:
4137 // just mremap to the new size. If it's mapping to a file, we want
4138 // to unmap to flush to the file, then remap after growing the file.
4139 if (this->map_is_anonymous_)
4140 {
4141 void* base = ::mremap(this->base_, this->file_size_, file_size,
4142 MREMAP_MAYMOVE);
4143 if (base == MAP_FAILED)
4144 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4145 this->base_ = static_cast<unsigned char*>(base);
4146 this->file_size_ = file_size;
4147 }
4148 else
4149 {
4150 this->unmap();
4151 this->file_size_ = file_size;
fdcac5af
ILT
4152 if (!this->map_no_anonymous())
4153 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4154 }
27bc2bce
ILT
4155}
4156
404c2abb
ILT
4157// Map an anonymous block of memory which will later be written to the
4158// file. Return whether the map succeeded.
26736d8e 4159
404c2abb 4160bool
26736d8e
ILT
4161Output_file::map_anonymous()
4162{
404c2abb
ILT
4163 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4164 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4165 if (base != MAP_FAILED)
4166 {
4167 this->map_is_anonymous_ = true;
4168 this->base_ = static_cast<unsigned char*>(base);
4169 return true;
4170 }
4171 return false;
26736d8e
ILT
4172}
4173
404c2abb 4174// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4175
404c2abb
ILT
4176bool
4177Output_file::map_no_anonymous()
27bc2bce 4178{
c420411f 4179 const int o = this->o_;
61ba1cf9 4180
c420411f
ILT
4181 // If the output file is not a regular file, don't try to mmap it;
4182 // instead, we'll mmap a block of memory (an anonymous buffer), and
4183 // then later write the buffer to the file.
4184 void* base;
4185 struct stat statbuf;
42a1b686
ILT
4186 if (o == STDOUT_FILENO || o == STDERR_FILENO
4187 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4188 || !S_ISREG(statbuf.st_mode)
4189 || this->is_temporary_)
404c2abb
ILT
4190 return false;
4191
4192 // Ensure that we have disk space available for the file. If we
4193 // don't do this, it is possible that we will call munmap, close,
4194 // and exit with dirty buffers still in the cache with no assigned
4195 // disk blocks. If the disk is out of space at that point, the
4196 // output file will wind up incomplete, but we will have already
4197 // exited. The alternative to fallocate would be to use fdatasync,
4198 // but that would be a more significant performance hit.
4199 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4200 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4201
4202 // Map the file into memory.
4203 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4204 MAP_SHARED, o, 0);
4205
4206 // The mmap call might fail because of file system issues: the file
4207 // system might not support mmap at all, or it might not support
4208 // mmap with PROT_WRITE.
61ba1cf9 4209 if (base == MAP_FAILED)
404c2abb
ILT
4210 return false;
4211
4212 this->map_is_anonymous_ = false;
61ba1cf9 4213 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4214 return true;
4215}
4216
4217// Map the file into memory.
4218
4219void
4220Output_file::map()
4221{
4222 if (this->map_no_anonymous())
4223 return;
4224
4225 // The mmap call might fail because of file system issues: the file
4226 // system might not support mmap at all, or it might not support
4227 // mmap with PROT_WRITE. I'm not sure which errno values we will
4228 // see in all cases, so if the mmap fails for any reason and we
4229 // don't care about file contents, try for an anonymous map.
4230 if (this->map_anonymous())
4231 return;
4232
4233 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4234 this->name_, static_cast<unsigned long>(this->file_size_),
4235 strerror(errno));
61ba1cf9
ILT
4236}
4237
c420411f 4238// Unmap the file from memory.
61ba1cf9
ILT
4239
4240void
c420411f 4241Output_file::unmap()
61ba1cf9
ILT
4242{
4243 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4244 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4245 this->base_ = NULL;
c420411f
ILT
4246}
4247
4248// Close the output file.
4249
4250void
4251Output_file::close()
4252{
4253 // If the map isn't file-backed, we need to write it now.
516cb3d0 4254 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4255 {
4256 size_t bytes_to_write = this->file_size_;
6d1e3092 4257 size_t offset = 0;
c420411f
ILT
4258 while (bytes_to_write > 0)
4259 {
6d1e3092
CD
4260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4261 bytes_to_write);
c420411f
ILT
4262 if (bytes_written == 0)
4263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4264 else if (bytes_written < 0)
4265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4266 else
6d1e3092
CD
4267 {
4268 bytes_to_write -= bytes_written;
4269 offset += bytes_written;
4270 }
c420411f
ILT
4271 }
4272 }
4273 this->unmap();
61ba1cf9 4274
42a1b686 4275 // We don't close stdout or stderr
516cb3d0
ILT
4276 if (this->o_ != STDOUT_FILENO
4277 && this->o_ != STDERR_FILENO
4278 && !this->is_temporary_)
42a1b686
ILT
4279 if (::close(this->o_) < 0)
4280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4281 this->o_ = -1;
a2fb1b05
ILT
4282}
4283
4284// Instantiate the templates we need. We could use the configure
4285// script to restrict this to only the ones for implemented targets.
4286
193a53d9 4287#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4288template
4289off_t
4290Output_section::add_input_section<32, false>(
730cdc88 4291 Sized_relobj<32, false>* object,
2ea97941 4292 unsigned int shndx,
a2fb1b05 4293 const char* secname,
730cdc88 4294 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4295 unsigned int reloc_shndx,
4296 bool have_sections_script);
193a53d9 4297#endif
a2fb1b05 4298
193a53d9 4299#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4300template
4301off_t
4302Output_section::add_input_section<32, true>(
730cdc88 4303 Sized_relobj<32, true>* object,
2ea97941 4304 unsigned int shndx,
a2fb1b05 4305 const char* secname,
730cdc88 4306 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4307 unsigned int reloc_shndx,
4308 bool have_sections_script);
193a53d9 4309#endif
a2fb1b05 4310
193a53d9 4311#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4312template
4313off_t
4314Output_section::add_input_section<64, false>(
730cdc88 4315 Sized_relobj<64, false>* object,
2ea97941 4316 unsigned int shndx,
a2fb1b05 4317 const char* secname,
730cdc88 4318 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4319 unsigned int reloc_shndx,
4320 bool have_sections_script);
193a53d9 4321#endif
a2fb1b05 4322
193a53d9 4323#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4324template
4325off_t
4326Output_section::add_input_section<64, true>(
730cdc88 4327 Sized_relobj<64, true>* object,
2ea97941 4328 unsigned int shndx,
a2fb1b05 4329 const char* secname,
730cdc88 4330 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4331 unsigned int reloc_shndx,
4332 bool have_sections_script);
193a53d9 4333#endif
a2fb1b05 4334
bbbfea06
CC
4335#ifdef HAVE_TARGET_32_LITTLE
4336template
4337class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4338#endif
4339
4340#ifdef HAVE_TARGET_32_BIG
4341template
4342class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4343#endif
4344
4345#ifdef HAVE_TARGET_64_LITTLE
4346template
4347class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4348#endif
4349
4350#ifdef HAVE_TARGET_64_BIG
4351template
4352class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4353#endif
4354
4355#ifdef HAVE_TARGET_32_LITTLE
4356template
4357class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4358#endif
4359
4360#ifdef HAVE_TARGET_32_BIG
4361template
4362class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4363#endif
4364
4365#ifdef HAVE_TARGET_64_LITTLE
4366template
4367class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4368#endif
4369
4370#ifdef HAVE_TARGET_64_BIG
4371template
4372class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4373#endif
4374
4375#ifdef HAVE_TARGET_32_LITTLE
4376template
4377class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4378#endif
4379
4380#ifdef HAVE_TARGET_32_BIG
4381template
4382class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4383#endif
4384
4385#ifdef HAVE_TARGET_64_LITTLE
4386template
4387class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4388#endif
4389
4390#ifdef HAVE_TARGET_64_BIG
4391template
4392class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4393#endif
4394
4395#ifdef HAVE_TARGET_32_LITTLE
4396template
4397class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4398#endif
4399
4400#ifdef HAVE_TARGET_32_BIG
4401template
4402class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4403#endif
4404
4405#ifdef HAVE_TARGET_64_LITTLE
4406template
4407class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4408#endif
4409
4410#ifdef HAVE_TARGET_64_BIG
4411template
4412class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4413#endif
4414
193a53d9 4415#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4416template
4417class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4418#endif
c06b7b0b 4419
193a53d9 4420#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4421template
4422class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4423#endif
c06b7b0b 4424
193a53d9 4425#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4426template
4427class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4428#endif
c06b7b0b 4429
193a53d9 4430#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4431template
4432class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4433#endif
c06b7b0b 4434
193a53d9 4435#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4436template
4437class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4438#endif
c06b7b0b 4439
193a53d9 4440#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4441template
4442class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4443#endif
c06b7b0b 4444
193a53d9 4445#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4446template
4447class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4448#endif
c06b7b0b 4449
193a53d9 4450#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4451template
4452class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4453#endif
c06b7b0b 4454
193a53d9 4455#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4456template
4457class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4458#endif
c06b7b0b 4459
193a53d9 4460#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4461template
4462class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4463#endif
c06b7b0b 4464
193a53d9 4465#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4466template
4467class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4468#endif
c06b7b0b 4469
193a53d9 4470#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4471template
4472class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4473#endif
c06b7b0b 4474
193a53d9 4475#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4476template
4477class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4478#endif
c06b7b0b 4479
193a53d9 4480#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4481template
4482class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4483#endif
c06b7b0b 4484
193a53d9 4485#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4486template
4487class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4488#endif
c06b7b0b 4489
193a53d9 4490#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4491template
4492class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4493#endif
c06b7b0b 4494
6a74a719
ILT
4495#ifdef HAVE_TARGET_32_LITTLE
4496template
4497class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4498#endif
4499
4500#ifdef HAVE_TARGET_32_BIG
4501template
4502class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4503#endif
4504
4505#ifdef HAVE_TARGET_64_LITTLE
4506template
4507class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4508#endif
4509
4510#ifdef HAVE_TARGET_64_BIG
4511template
4512class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4513#endif
4514
4515#ifdef HAVE_TARGET_32_LITTLE
4516template
4517class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4518#endif
4519
4520#ifdef HAVE_TARGET_32_BIG
4521template
4522class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4523#endif
4524
4525#ifdef HAVE_TARGET_64_LITTLE
4526template
4527class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4528#endif
4529
4530#ifdef HAVE_TARGET_64_BIG
4531template
4532class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4533#endif
4534
4535#ifdef HAVE_TARGET_32_LITTLE
4536template
4537class Output_data_group<32, false>;
4538#endif
4539
4540#ifdef HAVE_TARGET_32_BIG
4541template
4542class Output_data_group<32, true>;
4543#endif
4544
4545#ifdef HAVE_TARGET_64_LITTLE
4546template
4547class Output_data_group<64, false>;
4548#endif
4549
4550#ifdef HAVE_TARGET_64_BIG
4551template
4552class Output_data_group<64, true>;
4553#endif
4554
193a53d9 4555#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4556template
dbe717ef 4557class Output_data_got<32, false>;
193a53d9 4558#endif
ead1e424 4559
193a53d9 4560#ifdef HAVE_TARGET_32_BIG
ead1e424 4561template
dbe717ef 4562class Output_data_got<32, true>;
193a53d9 4563#endif
ead1e424 4564
193a53d9 4565#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4566template
dbe717ef 4567class Output_data_got<64, false>;
193a53d9 4568#endif
ead1e424 4569
193a53d9 4570#ifdef HAVE_TARGET_64_BIG
ead1e424 4571template
dbe717ef 4572class Output_data_got<64, true>;
193a53d9 4573#endif
ead1e424 4574
a2fb1b05 4575} // End namespace gold.
This page took 0.391755 seconds and 4 git commands to generate.