* testsuite/Makefile.am (justsyms_2r.o): Add dependency on
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
a2fb1b05
ILT
40#include "output.h"
41
c420411f
ILT
42// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43#ifndef MAP_ANONYMOUS
44# define MAP_ANONYMOUS MAP_ANON
45#endif
46
a2fb1b05
ILT
47namespace gold
48{
49
a3ad94ed
ILT
50// Output_data variables.
51
27bc2bce 52bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 53
a2fb1b05
ILT
54// Output_data methods.
55
56Output_data::~Output_data()
57{
58}
59
730cdc88
ILT
60// Return the default alignment for the target size.
61
62uint64_t
63Output_data::default_alignment()
64{
8851ecca
ILT
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
730cdc88
ILT
67}
68
75f65a3e
ILT
69// Return the default alignment for a size--32 or 64.
70
71uint64_t
730cdc88 72Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
73{
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
a3ad94ed 79 gold_unreachable();
75f65a3e
ILT
80}
81
75f65a3e
ILT
82// Output_section_header methods. This currently assumes that the
83// segment and section lists are complete at construction time.
84
85Output_section_headers::Output_section_headers(
16649710
ILT
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
6a74a719 88 const Layout::Section_list* section_list,
16649710 89 const Layout::Section_list* unattached_section_list,
61ba1cf9 90 const Stringpool* secnamepool)
9025d29d 91 : layout_(layout),
75f65a3e 92 segment_list_(segment_list),
6a74a719 93 section_list_(section_list),
a3ad94ed 94 unattached_section_list_(unattached_section_list),
61ba1cf9 95 secnamepool_(secnamepool)
75f65a3e 96{
61ba1cf9
ILT
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
8851ecca 99 if (!parameters->options().relocatable())
6a74a719
ILT
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
16649710 115 count += unattached_section_list->size();
75f65a3e 116
8851ecca 117 const int size = parameters->target().get_size();
75f65a3e
ILT
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
a3ad94ed 124 gold_unreachable();
75f65a3e
ILT
125
126 this->set_data_size(count * shdr_size);
127}
128
61ba1cf9
ILT
129// Write out the section headers.
130
75f65a3e 131void
61ba1cf9 132Output_section_headers::do_write(Output_file* of)
a2fb1b05 133{
8851ecca 134 switch (parameters->size_and_endianness())
61ba1cf9 135 {
9025d29d 136#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
9025d29d 140#endif
8851ecca
ILT
141#ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
9025d29d 145#endif
9025d29d 146#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
9025d29d 150#endif
8851ecca
ILT
151#ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155#endif
156 default:
157 gold_unreachable();
61ba1cf9 158 }
61ba1cf9
ILT
159}
160
161template<int size, bool big_endian>
162void
163Output_section_headers::do_sized_write(Output_file* of)
164{
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
6a74a719 187 unsigned int shndx = 1;
8851ecca 188 if (!parameters->options().relocatable())
6a74a719
ILT
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
a3ad94ed 219 for (Layout::Section_list::const_iterator p =
16649710
ILT
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
61ba1cf9
ILT
222 ++p)
223 {
6a74a719
ILT
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 227 && parameters->options().relocatable())
6a74a719 228 continue;
a3ad94ed 229 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 232 v += shdr_size;
ead1e424 233 ++shndx;
61ba1cf9
ILT
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
237}
238
54dc6425
ILT
239// Output_segment_header methods.
240
61ba1cf9 241Output_segment_headers::Output_segment_headers(
61ba1cf9 242 const Layout::Segment_list& segment_list)
9025d29d 243 : segment_list_(segment_list)
61ba1cf9 244{
8851ecca 245 const int size = parameters->target().get_size();
61ba1cf9
ILT
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
a3ad94ed 252 gold_unreachable();
61ba1cf9
ILT
253
254 this->set_data_size(segment_list.size() * phdr_size);
255}
256
54dc6425 257void
61ba1cf9 258Output_segment_headers::do_write(Output_file* of)
75f65a3e 259{
8851ecca 260 switch (parameters->size_and_endianness())
61ba1cf9 261 {
9025d29d 262#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
9025d29d 266#endif
8851ecca
ILT
267#ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
9025d29d 271#endif
9025d29d 272#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
9025d29d 276#endif
8851ecca
ILT
277#ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281#endif
282 default:
283 gold_unreachable();
61ba1cf9 284 }
61ba1cf9
ILT
285}
286
287template<int size, bool big_endian>
288void
289Output_segment_headers::do_sized_write(Output_file* of)
290{
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 293 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
a445fddf
ILT
306 gold_assert(v - view == all_phdrs_size);
307
61ba1cf9 308 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
309}
310
311// Output_file_header methods.
312
9025d29d 313Output_file_header::Output_file_header(const Target* target,
75f65a3e 314 const Symbol_table* symtab,
d391083d
ILT
315 const Output_segment_headers* osh,
316 const char* entry)
9025d29d 317 : target_(target),
75f65a3e 318 symtab_(symtab),
61ba1cf9 319 segment_header_(osh),
75f65a3e 320 section_header_(NULL),
d391083d
ILT
321 shstrtab_(NULL),
322 entry_(entry)
75f65a3e 323{
8851ecca 324 const int size = parameters->target().get_size();
61ba1cf9
ILT
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
a3ad94ed 331 gold_unreachable();
61ba1cf9
ILT
332
333 this->set_data_size(ehdr_size);
75f65a3e
ILT
334}
335
336// Set the section table information for a file header.
337
338void
339Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341{
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344}
345
346// Write out the file header.
347
348void
61ba1cf9 349Output_file_header::do_write(Output_file* of)
54dc6425 350{
27bc2bce
ILT
351 gold_assert(this->offset() == 0);
352
8851ecca 353 switch (parameters->size_and_endianness())
61ba1cf9 354 {
9025d29d 355#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
9025d29d 359#endif
8851ecca
ILT
360#ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
9025d29d 364#endif
9025d29d 365#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
9025d29d 369#endif
8851ecca
ILT
370#ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374#endif
375 default:
376 gold_unreachable();
61ba1cf9 377 }
61ba1cf9
ILT
378}
379
380// Write out the file header with appropriate size and endianess.
381
382template<int size, bool big_endian>
383void
384Output_file_header::do_sized_write(Output_file* of)
385{
a3ad94ed 386 gold_assert(this->offset() == 0);
61ba1cf9
ILT
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
a3ad94ed 403 gold_unreachable();
61ba1cf9
ILT
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
8851ecca 412 if (parameters->options().relocatable())
61ba1cf9 413 e_type = elfcpp::ET_REL;
8851ecca 414 else if (parameters->options().shared())
436ca963 415 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
d391083d 423 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 424
6a74a719
ILT
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
61ba1cf9
ILT
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
61ba1cf9
ILT
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
453
454 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
455}
456
d391083d
ILT
457// Return the value to use for the entry address. THIS->ENTRY_ is the
458// symbol specified on the command line, if any.
459
460template<int size>
461typename elfcpp::Elf_types<size>::Elf_Addr
462Output_file_header::entry()
463{
464 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
d391083d
ILT
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499}
500
dbe717ef
ILT
501// Output_data_const methods.
502
503void
a3ad94ed 504Output_data_const::do_write(Output_file* of)
dbe717ef 505{
a3ad94ed
ILT
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507}
508
509// Output_data_const_buffer methods.
510
511void
512Output_data_const_buffer::do_write(Output_file* of)
513{
514 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
515}
516
517// Output_section_data methods.
518
16649710
ILT
519// Record the output section, and set the entry size and such.
520
521void
522Output_section_data::set_output_section(Output_section* os)
523{
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527}
528
529// Return the section index of the output section.
530
dbe717ef
ILT
531unsigned int
532Output_section_data::do_out_shndx() const
533{
a3ad94ed 534 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
535 return this->output_section_->out_shndx();
536}
537
a3ad94ed
ILT
538// Output_data_strtab methods.
539
27bc2bce 540// Set the final data size.
a3ad94ed
ILT
541
542void
27bc2bce 543Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
544{
545 this->strtab_->set_string_offsets();
546 this->set_data_size(this->strtab_->get_strtab_size());
547}
548
549// Write out a string table.
550
551void
552Output_data_strtab::do_write(Output_file* of)
553{
554 this->strtab_->write(of, this->offset());
555}
556
c06b7b0b
ILT
557// Output_reloc methods.
558
7bf1f802
ILT
559// A reloc against a global symbol.
560
561template<bool dynamic, int size, bool big_endian>
562Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
563 Symbol* gsym,
564 unsigned int type,
565 Output_data* od,
e8c846c3
ILT
566 Address address,
567 bool is_relative)
7bf1f802 568 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 569 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 570{
dceae3c1
ILT
571 // this->type_ is a bitfield; make sure TYPE fits.
572 gold_assert(this->type_ == type);
7bf1f802
ILT
573 this->u1_.gsym = gsym;
574 this->u2_.od = od;
dceae3c1
ILT
575 if (dynamic)
576 this->set_needs_dynsym_index();
7bf1f802
ILT
577}
578
579template<bool dynamic, int size, bool big_endian>
580Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
581 Symbol* gsym,
582 unsigned int type,
583 Relobj* relobj,
584 unsigned int shndx,
e8c846c3
ILT
585 Address address,
586 bool is_relative)
7bf1f802 587 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 588 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
589{
590 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
591 // this->type_ is a bitfield; make sure TYPE fits.
592 gold_assert(this->type_ == type);
7bf1f802
ILT
593 this->u1_.gsym = gsym;
594 this->u2_.relobj = relobj;
dceae3c1
ILT
595 if (dynamic)
596 this->set_needs_dynsym_index();
7bf1f802
ILT
597}
598
599// A reloc against a local symbol.
600
601template<bool dynamic, int size, bool big_endian>
602Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
603 Sized_relobj<size, big_endian>* relobj,
604 unsigned int local_sym_index,
605 unsigned int type,
606 Output_data* od,
e8c846c3 607 Address address,
dceae3c1
ILT
608 bool is_relative,
609 bool is_section_symbol)
7bf1f802 610 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
611 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
612 shndx_(INVALID_CODE)
7bf1f802
ILT
613{
614 gold_assert(local_sym_index != GSYM_CODE
615 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
616 // this->type_ is a bitfield; make sure TYPE fits.
617 gold_assert(this->type_ == type);
7bf1f802
ILT
618 this->u1_.relobj = relobj;
619 this->u2_.od = od;
dceae3c1
ILT
620 if (dynamic)
621 this->set_needs_dynsym_index();
7bf1f802
ILT
622}
623
624template<bool dynamic, int size, bool big_endian>
625Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
626 Sized_relobj<size, big_endian>* relobj,
627 unsigned int local_sym_index,
628 unsigned int type,
629 unsigned int shndx,
e8c846c3 630 Address address,
dceae3c1
ILT
631 bool is_relative,
632 bool is_section_symbol)
7bf1f802 633 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
634 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
635 shndx_(shndx)
7bf1f802
ILT
636{
637 gold_assert(local_sym_index != GSYM_CODE
638 && local_sym_index != INVALID_CODE);
639 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
640 // this->type_ is a bitfield; make sure TYPE fits.
641 gold_assert(this->type_ == type);
7bf1f802
ILT
642 this->u1_.relobj = relobj;
643 this->u2_.relobj = relobj;
dceae3c1
ILT
644 if (dynamic)
645 this->set_needs_dynsym_index();
7bf1f802
ILT
646}
647
648// A reloc against the STT_SECTION symbol of an output section.
649
650template<bool dynamic, int size, bool big_endian>
651Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
652 Output_section* os,
653 unsigned int type,
654 Output_data* od,
655 Address address)
656 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 657 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 658{
dceae3c1
ILT
659 // this->type_ is a bitfield; make sure TYPE fits.
660 gold_assert(this->type_ == type);
7bf1f802
ILT
661 this->u1_.os = os;
662 this->u2_.od = od;
663 if (dynamic)
dceae3c1
ILT
664 this->set_needs_dynsym_index();
665 else
666 os->set_needs_symtab_index();
7bf1f802
ILT
667}
668
669template<bool dynamic, int size, bool big_endian>
670Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
671 Output_section* os,
672 unsigned int type,
673 Relobj* relobj,
674 unsigned int shndx,
675 Address address)
676 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 677 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
678{
679 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
680 // this->type_ is a bitfield; make sure TYPE fits.
681 gold_assert(this->type_ == type);
7bf1f802
ILT
682 this->u1_.os = os;
683 this->u2_.relobj = relobj;
684 if (dynamic)
dceae3c1
ILT
685 this->set_needs_dynsym_index();
686 else
687 os->set_needs_symtab_index();
688}
689
690// Record that we need a dynamic symbol index for this relocation.
691
692template<bool dynamic, int size, bool big_endian>
693void
694Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
695set_needs_dynsym_index()
696{
697 if (this->is_relative_)
698 return;
699 switch (this->local_sym_index_)
700 {
701 case INVALID_CODE:
702 gold_unreachable();
703
704 case GSYM_CODE:
705 this->u1_.gsym->set_needs_dynsym_entry();
706 break;
707
708 case SECTION_CODE:
709 this->u1_.os->set_needs_dynsym_index();
710 break;
711
712 case 0:
713 break;
714
715 default:
716 {
717 const unsigned int lsi = this->local_sym_index_;
718 if (!this->is_section_symbol_)
719 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
720 else
721 {
722 section_offset_type dummy;
723 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
724 gold_assert(os != NULL);
725 os->set_needs_dynsym_index();
726 }
727 }
728 break;
729 }
7bf1f802
ILT
730}
731
c06b7b0b
ILT
732// Get the symbol index of a relocation.
733
734template<bool dynamic, int size, bool big_endian>
735unsigned int
736Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
737 const
738{
739 unsigned int index;
740 switch (this->local_sym_index_)
741 {
742 case INVALID_CODE:
a3ad94ed 743 gold_unreachable();
c06b7b0b
ILT
744
745 case GSYM_CODE:
5a6f7e2d 746 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
747 index = 0;
748 else if (dynamic)
5a6f7e2d 749 index = this->u1_.gsym->dynsym_index();
c06b7b0b 750 else
5a6f7e2d 751 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
752 break;
753
754 case SECTION_CODE:
755 if (dynamic)
5a6f7e2d 756 index = this->u1_.os->dynsym_index();
c06b7b0b 757 else
5a6f7e2d 758 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
759 break;
760
436ca963
ILT
761 case 0:
762 // Relocations without symbols use a symbol index of 0.
763 index = 0;
764 break;
765
c06b7b0b 766 default:
dceae3c1
ILT
767 {
768 const unsigned int lsi = this->local_sym_index_;
769 if (!this->is_section_symbol_)
770 {
771 if (dynamic)
772 index = this->u1_.relobj->dynsym_index(lsi);
773 else
774 index = this->u1_.relobj->symtab_index(lsi);
775 }
776 else
777 {
778 section_offset_type dummy;
779 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
780 gold_assert(os != NULL);
781 if (dynamic)
782 index = os->dynsym_index();
783 else
784 index = os->symtab_index();
785 }
786 }
c06b7b0b
ILT
787 break;
788 }
a3ad94ed 789 gold_assert(index != -1U);
c06b7b0b
ILT
790 return index;
791}
792
624f8810
ILT
793// For a local section symbol, get the address of the offset ADDEND
794// within the input section.
dceae3c1
ILT
795
796template<bool dynamic, int size, bool big_endian>
797section_offset_type
798Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 799 local_section_offset(Addend addend) const
dceae3c1 800{
624f8810
ILT
801 gold_assert(this->local_sym_index_ != GSYM_CODE
802 && this->local_sym_index_ != SECTION_CODE
803 && this->local_sym_index_ != INVALID_CODE
804 && this->is_section_symbol_);
dceae3c1
ILT
805 const unsigned int lsi = this->local_sym_index_;
806 section_offset_type offset;
807 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
624f8810
ILT
808 gold_assert(os != NULL);
809 if (offset != -1)
810 return offset + addend;
811 // This is a merge section.
812 offset = os->output_address(this->u1_.relobj, lsi, addend);
813 gold_assert(offset != -1);
dceae3c1
ILT
814 return offset;
815}
816
c06b7b0b
ILT
817// Write out the offset and info fields of a Rel or Rela relocation
818// entry.
819
820template<bool dynamic, int size, bool big_endian>
821template<typename Write_rel>
822void
823Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
824 Write_rel* wr) const
825{
a3ad94ed 826 Address address = this->address_;
5a6f7e2d
ILT
827 if (this->shndx_ != INVALID_CODE)
828 {
8383303e 829 section_offset_type off;
5a6f7e2d
ILT
830 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
831 &off);
832 gold_assert(os != NULL);
730cdc88
ILT
833 if (off != -1)
834 address += os->address() + off;
835 else
836 {
837 address = os->output_address(this->u2_.relobj, this->shndx_,
838 address);
839 gold_assert(address != -1U);
840 }
5a6f7e2d
ILT
841 }
842 else if (this->u2_.od != NULL)
843 address += this->u2_.od->address();
a3ad94ed 844 wr->put_r_offset(address);
e8c846c3
ILT
845 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
846 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
847}
848
849// Write out a Rel relocation.
850
851template<bool dynamic, int size, bool big_endian>
852void
853Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
854 unsigned char* pov) const
855{
856 elfcpp::Rel_write<size, big_endian> orel(pov);
857 this->write_rel(&orel);
858}
859
e8c846c3
ILT
860// Get the value of the symbol referred to by a Rel relocation.
861
862template<bool dynamic, int size, bool big_endian>
863typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 864Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 865 Addend addend) const
e8c846c3
ILT
866{
867 if (this->local_sym_index_ == GSYM_CODE)
868 {
869 const Sized_symbol<size>* sym;
870 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 871 return sym->value() + addend;
e8c846c3
ILT
872 }
873 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
874 && this->local_sym_index_ != INVALID_CODE
875 && !this->is_section_symbol_);
876 const unsigned int lsi = this->local_sym_index_;
877 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
878 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
879}
880
c06b7b0b
ILT
881// Write out a Rela relocation.
882
883template<bool dynamic, int size, bool big_endian>
884void
885Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
886 unsigned char* pov) const
887{
888 elfcpp::Rela_write<size, big_endian> orel(pov);
889 this->rel_.write_rel(&orel);
e8c846c3 890 Addend addend = this->addend_;
dceae3c1 891 if (this->rel_.is_relative())
d1f003c6
ILT
892 addend = this->rel_.symbol_value(addend);
893 else if (this->rel_.is_local_section_symbol())
624f8810 894 addend = this->rel_.local_section_offset(addend);
e8c846c3 895 orel.put_r_addend(addend);
c06b7b0b
ILT
896}
897
898// Output_data_reloc_base methods.
899
16649710
ILT
900// Adjust the output section.
901
902template<int sh_type, bool dynamic, int size, bool big_endian>
903void
904Output_data_reloc_base<sh_type, dynamic, size, big_endian>
905 ::do_adjust_output_section(Output_section* os)
906{
907 if (sh_type == elfcpp::SHT_REL)
908 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
909 else if (sh_type == elfcpp::SHT_RELA)
910 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
911 else
912 gold_unreachable();
913 if (dynamic)
914 os->set_should_link_to_dynsym();
915 else
916 os->set_should_link_to_symtab();
917}
918
c06b7b0b
ILT
919// Write out relocation data.
920
921template<int sh_type, bool dynamic, int size, bool big_endian>
922void
923Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
924 Output_file* of)
925{
926 const off_t off = this->offset();
927 const off_t oview_size = this->data_size();
928 unsigned char* const oview = of->get_output_view(off, oview_size);
929
930 unsigned char* pov = oview;
931 for (typename Relocs::const_iterator p = this->relocs_.begin();
932 p != this->relocs_.end();
933 ++p)
934 {
935 p->write(pov);
936 pov += reloc_size;
937 }
938
a3ad94ed 939 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
940
941 of->write_output_view(off, oview_size, oview);
942
943 // We no longer need the relocation entries.
944 this->relocs_.clear();
945}
946
6a74a719
ILT
947// Class Output_relocatable_relocs.
948
949template<int sh_type, int size, bool big_endian>
950void
951Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
952{
953 this->set_data_size(this->rr_->output_reloc_count()
954 * Reloc_types<sh_type, size, big_endian>::reloc_size);
955}
956
957// class Output_data_group.
958
959template<int size, bool big_endian>
960Output_data_group<size, big_endian>::Output_data_group(
961 Sized_relobj<size, big_endian>* relobj,
962 section_size_type entry_count,
963 const elfcpp::Elf_Word* contents)
964 : Output_section_data(entry_count * 4, 4),
965 relobj_(relobj)
966{
967 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
968 for (section_size_type i = 1; i < entry_count; ++i)
969 {
970 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
971 this->input_sections_.push_back(shndx);
972 }
973}
974
975// Write out the section group, which means translating the section
976// indexes to apply to the output file.
977
978template<int size, bool big_endian>
979void
980Output_data_group<size, big_endian>::do_write(Output_file* of)
981{
982 const off_t off = this->offset();
983 const section_size_type oview_size =
984 convert_to_section_size_type(this->data_size());
985 unsigned char* const oview = of->get_output_view(off, oview_size);
986
987 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
988 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
989 ++contents;
990
991 for (std::vector<unsigned int>::const_iterator p =
992 this->input_sections_.begin();
993 p != this->input_sections_.end();
994 ++p, ++contents)
995 {
996 section_offset_type dummy;
997 Output_section* os = this->relobj_->output_section(*p, &dummy);
998
999 unsigned int output_shndx;
1000 if (os != NULL)
1001 output_shndx = os->out_shndx();
1002 else
1003 {
1004 this->relobj_->error(_("section group retained but "
1005 "group element discarded"));
1006 output_shndx = 0;
1007 }
1008
1009 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1010 }
1011
1012 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1013 gold_assert(wrote == oview_size);
1014
1015 of->write_output_view(off, oview_size, oview);
1016
1017 // We no longer need this information.
1018 this->input_sections_.clear();
1019}
1020
dbe717ef 1021// Output_data_got::Got_entry methods.
ead1e424
ILT
1022
1023// Write out the entry.
1024
1025template<int size, bool big_endian>
1026void
7e1edb90 1027Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1028{
1029 Valtype val = 0;
1030
1031 switch (this->local_sym_index_)
1032 {
1033 case GSYM_CODE:
1034 {
e8c846c3
ILT
1035 // If the symbol is resolved locally, we need to write out the
1036 // link-time value, which will be relocated dynamically by a
1037 // RELATIVE relocation.
ead1e424 1038 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1039 Sized_symbol<size>* sgsym;
1040 // This cast is a bit ugly. We don't want to put a
1041 // virtual method in Symbol, because we want Symbol to be
1042 // as small as possible.
1043 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1044 val = sgsym->value();
ead1e424
ILT
1045 }
1046 break;
1047
1048 case CONSTANT_CODE:
1049 val = this->u_.constant;
1050 break;
1051
1052 default:
d1f003c6
ILT
1053 {
1054 const unsigned int lsi = this->local_sym_index_;
1055 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1056 val = symval->value(this->u_.object, 0);
1057 }
e727fa71 1058 break;
ead1e424
ILT
1059 }
1060
a3ad94ed 1061 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1062}
1063
dbe717ef 1064// Output_data_got methods.
ead1e424 1065
dbe717ef
ILT
1066// Add an entry for a global symbol to the GOT. This returns true if
1067// this is a new GOT entry, false if the symbol already had a GOT
1068// entry.
1069
1070template<int size, bool big_endian>
1071bool
0a65a3a7
CC
1072Output_data_got<size, big_endian>::add_global(
1073 Symbol* gsym,
1074 unsigned int got_type)
ead1e424 1075{
0a65a3a7 1076 if (gsym->has_got_offset(got_type))
dbe717ef 1077 return false;
ead1e424 1078
dbe717ef
ILT
1079 this->entries_.push_back(Got_entry(gsym));
1080 this->set_got_size();
0a65a3a7 1081 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1082 return true;
1083}
ead1e424 1084
7bf1f802
ILT
1085// Add an entry for a global symbol to the GOT, and add a dynamic
1086// relocation of type R_TYPE for the GOT entry.
1087template<int size, bool big_endian>
1088void
1089Output_data_got<size, big_endian>::add_global_with_rel(
1090 Symbol* gsym,
0a65a3a7 1091 unsigned int got_type,
7bf1f802
ILT
1092 Rel_dyn* rel_dyn,
1093 unsigned int r_type)
1094{
0a65a3a7 1095 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1096 return;
1097
1098 this->entries_.push_back(Got_entry());
1099 this->set_got_size();
1100 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1101 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1102 rel_dyn->add_global(gsym, r_type, this, got_offset);
1103}
1104
1105template<int size, bool big_endian>
1106void
1107Output_data_got<size, big_endian>::add_global_with_rela(
1108 Symbol* gsym,
0a65a3a7 1109 unsigned int got_type,
7bf1f802
ILT
1110 Rela_dyn* rela_dyn,
1111 unsigned int r_type)
1112{
0a65a3a7 1113 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1114 return;
1115
1116 this->entries_.push_back(Got_entry());
1117 this->set_got_size();
1118 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1119 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1120 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1121}
1122
0a65a3a7
CC
1123// Add a pair of entries for a global symbol to the GOT, and add
1124// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1125// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1126template<int size, bool big_endian>
1127void
0a65a3a7
CC
1128Output_data_got<size, big_endian>::add_global_pair_with_rel(
1129 Symbol* gsym,
1130 unsigned int got_type,
7bf1f802 1131 Rel_dyn* rel_dyn,
0a65a3a7
CC
1132 unsigned int r_type_1,
1133 unsigned int r_type_2)
7bf1f802 1134{
0a65a3a7 1135 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1136 return;
1137
1138 this->entries_.push_back(Got_entry());
7bf1f802 1139 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1140 gsym->set_got_offset(got_type, got_offset);
1141 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1142
1143 this->entries_.push_back(Got_entry());
1144 if (r_type_2 != 0)
1145 {
1146 got_offset = this->last_got_offset();
1147 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1148 }
1149
1150 this->set_got_size();
7bf1f802
ILT
1151}
1152
1153template<int size, bool big_endian>
1154void
0a65a3a7
CC
1155Output_data_got<size, big_endian>::add_global_pair_with_rela(
1156 Symbol* gsym,
1157 unsigned int got_type,
7bf1f802 1158 Rela_dyn* rela_dyn,
0a65a3a7
CC
1159 unsigned int r_type_1,
1160 unsigned int r_type_2)
7bf1f802 1161{
0a65a3a7 1162 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1163 return;
1164
1165 this->entries_.push_back(Got_entry());
7bf1f802 1166 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1167 gsym->set_got_offset(got_type, got_offset);
1168 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1169
1170 this->entries_.push_back(Got_entry());
1171 if (r_type_2 != 0)
1172 {
1173 got_offset = this->last_got_offset();
1174 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1175 }
1176
1177 this->set_got_size();
7bf1f802
ILT
1178}
1179
0a65a3a7
CC
1180// Add an entry for a local symbol to the GOT. This returns true if
1181// this is a new GOT entry, false if the symbol already has a GOT
1182// entry.
07f397ab
ILT
1183
1184template<int size, bool big_endian>
1185bool
0a65a3a7
CC
1186Output_data_got<size, big_endian>::add_local(
1187 Sized_relobj<size, big_endian>* object,
1188 unsigned int symndx,
1189 unsigned int got_type)
07f397ab 1190{
0a65a3a7 1191 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1192 return false;
1193
0a65a3a7 1194 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1195 this->set_got_size();
0a65a3a7 1196 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1197 return true;
1198}
1199
0a65a3a7
CC
1200// Add an entry for a local symbol to the GOT, and add a dynamic
1201// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1202template<int size, bool big_endian>
1203void
0a65a3a7
CC
1204Output_data_got<size, big_endian>::add_local_with_rel(
1205 Sized_relobj<size, big_endian>* object,
1206 unsigned int symndx,
1207 unsigned int got_type,
7bf1f802
ILT
1208 Rel_dyn* rel_dyn,
1209 unsigned int r_type)
1210{
0a65a3a7 1211 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1212 return;
1213
1214 this->entries_.push_back(Got_entry());
1215 this->set_got_size();
1216 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1217 object->set_local_got_offset(symndx, got_type, got_offset);
1218 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1219}
1220
1221template<int size, bool big_endian>
1222void
0a65a3a7
CC
1223Output_data_got<size, big_endian>::add_local_with_rela(
1224 Sized_relobj<size, big_endian>* object,
1225 unsigned int symndx,
1226 unsigned int got_type,
7bf1f802
ILT
1227 Rela_dyn* rela_dyn,
1228 unsigned int r_type)
1229{
0a65a3a7 1230 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1231 return;
1232
1233 this->entries_.push_back(Got_entry());
1234 this->set_got_size();
1235 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1236 object->set_local_got_offset(symndx, got_type, got_offset);
1237 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1238}
1239
0a65a3a7
CC
1240// Add a pair of entries for a local symbol to the GOT, and add
1241// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1242// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1243template<int size, bool big_endian>
1244void
0a65a3a7 1245Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1246 Sized_relobj<size, big_endian>* object,
1247 unsigned int symndx,
1248 unsigned int shndx,
0a65a3a7 1249 unsigned int got_type,
7bf1f802 1250 Rel_dyn* rel_dyn,
0a65a3a7
CC
1251 unsigned int r_type_1,
1252 unsigned int r_type_2)
7bf1f802 1253{
0a65a3a7 1254 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1255 return;
1256
1257 this->entries_.push_back(Got_entry());
1258 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1259 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1260 section_offset_type off;
7bf1f802 1261 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1262 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1263
0a65a3a7
CC
1264 this->entries_.push_back(Got_entry(object, symndx));
1265 if (r_type_2 != 0)
1266 {
1267 got_offset = this->last_got_offset();
1268 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1269 }
7bf1f802
ILT
1270
1271 this->set_got_size();
1272}
1273
1274template<int size, bool big_endian>
1275void
0a65a3a7 1276Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1277 Sized_relobj<size, big_endian>* object,
1278 unsigned int symndx,
1279 unsigned int shndx,
0a65a3a7 1280 unsigned int got_type,
7bf1f802 1281 Rela_dyn* rela_dyn,
0a65a3a7
CC
1282 unsigned int r_type_1,
1283 unsigned int r_type_2)
7bf1f802 1284{
0a65a3a7 1285 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1286 return;
1287
1288 this->entries_.push_back(Got_entry());
1289 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1290 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1291 section_offset_type off;
7bf1f802 1292 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1293 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1294
0a65a3a7
CC
1295 this->entries_.push_back(Got_entry(object, symndx));
1296 if (r_type_2 != 0)
1297 {
1298 got_offset = this->last_got_offset();
1299 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1300 }
7bf1f802
ILT
1301
1302 this->set_got_size();
1303}
1304
ead1e424
ILT
1305// Write out the GOT.
1306
1307template<int size, bool big_endian>
1308void
dbe717ef 1309Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1310{
1311 const int add = size / 8;
1312
1313 const off_t off = this->offset();
c06b7b0b 1314 const off_t oview_size = this->data_size();
ead1e424
ILT
1315 unsigned char* const oview = of->get_output_view(off, oview_size);
1316
1317 unsigned char* pov = oview;
1318 for (typename Got_entries::const_iterator p = this->entries_.begin();
1319 p != this->entries_.end();
1320 ++p)
1321 {
7e1edb90 1322 p->write(pov);
ead1e424
ILT
1323 pov += add;
1324 }
1325
a3ad94ed 1326 gold_assert(pov - oview == oview_size);
c06b7b0b 1327
ead1e424
ILT
1328 of->write_output_view(off, oview_size, oview);
1329
1330 // We no longer need the GOT entries.
1331 this->entries_.clear();
1332}
1333
a3ad94ed
ILT
1334// Output_data_dynamic::Dynamic_entry methods.
1335
1336// Write out the entry.
1337
1338template<int size, bool big_endian>
1339void
1340Output_data_dynamic::Dynamic_entry::write(
1341 unsigned char* pov,
7d1a9ebb 1342 const Stringpool* pool) const
a3ad94ed
ILT
1343{
1344 typename elfcpp::Elf_types<size>::Elf_WXword val;
1345 switch (this->classification_)
1346 {
1347 case DYNAMIC_NUMBER:
1348 val = this->u_.val;
1349 break;
1350
1351 case DYNAMIC_SECTION_ADDRESS:
16649710 1352 val = this->u_.od->address();
a3ad94ed
ILT
1353 break;
1354
1355 case DYNAMIC_SECTION_SIZE:
16649710 1356 val = this->u_.od->data_size();
a3ad94ed
ILT
1357 break;
1358
1359 case DYNAMIC_SYMBOL:
1360 {
16649710
ILT
1361 const Sized_symbol<size>* s =
1362 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1363 val = s->value();
1364 }
1365 break;
1366
1367 case DYNAMIC_STRING:
1368 val = pool->get_offset(this->u_.str);
1369 break;
1370
1371 default:
1372 gold_unreachable();
1373 }
1374
1375 elfcpp::Dyn_write<size, big_endian> dw(pov);
1376 dw.put_d_tag(this->tag_);
1377 dw.put_d_val(val);
1378}
1379
1380// Output_data_dynamic methods.
1381
16649710
ILT
1382// Adjust the output section to set the entry size.
1383
1384void
1385Output_data_dynamic::do_adjust_output_section(Output_section* os)
1386{
8851ecca 1387 if (parameters->target().get_size() == 32)
16649710 1388 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1389 else if (parameters->target().get_size() == 64)
16649710
ILT
1390 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1391 else
1392 gold_unreachable();
1393}
1394
a3ad94ed
ILT
1395// Set the final data size.
1396
1397void
27bc2bce 1398Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1399{
1400 // Add the terminating entry.
1401 this->add_constant(elfcpp::DT_NULL, 0);
1402
1403 int dyn_size;
8851ecca 1404 if (parameters->target().get_size() == 32)
a3ad94ed 1405 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1406 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1407 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1408 else
1409 gold_unreachable();
1410 this->set_data_size(this->entries_.size() * dyn_size);
1411}
1412
1413// Write out the dynamic entries.
1414
1415void
1416Output_data_dynamic::do_write(Output_file* of)
1417{
8851ecca 1418 switch (parameters->size_and_endianness())
a3ad94ed 1419 {
9025d29d 1420#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1421 case Parameters::TARGET_32_LITTLE:
1422 this->sized_write<32, false>(of);
1423 break;
9025d29d 1424#endif
8851ecca
ILT
1425#ifdef HAVE_TARGET_32_BIG
1426 case Parameters::TARGET_32_BIG:
1427 this->sized_write<32, true>(of);
1428 break;
9025d29d 1429#endif
9025d29d 1430#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1431 case Parameters::TARGET_64_LITTLE:
1432 this->sized_write<64, false>(of);
1433 break;
9025d29d 1434#endif
8851ecca
ILT
1435#ifdef HAVE_TARGET_64_BIG
1436 case Parameters::TARGET_64_BIG:
1437 this->sized_write<64, true>(of);
1438 break;
1439#endif
1440 default:
1441 gold_unreachable();
a3ad94ed 1442 }
a3ad94ed
ILT
1443}
1444
1445template<int size, bool big_endian>
1446void
1447Output_data_dynamic::sized_write(Output_file* of)
1448{
1449 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1450
1451 const off_t offset = this->offset();
1452 const off_t oview_size = this->data_size();
1453 unsigned char* const oview = of->get_output_view(offset, oview_size);
1454
1455 unsigned char* pov = oview;
1456 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1457 p != this->entries_.end();
1458 ++p)
1459 {
7d1a9ebb 1460 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1461 pov += dyn_size;
1462 }
1463
1464 gold_assert(pov - oview == oview_size);
1465
1466 of->write_output_view(offset, oview_size, oview);
1467
1468 // We no longer need the dynamic entries.
1469 this->entries_.clear();
1470}
1471
ead1e424
ILT
1472// Output_section::Input_section methods.
1473
1474// Return the data size. For an input section we store the size here.
1475// For an Output_section_data, we have to ask it for the size.
1476
1477off_t
1478Output_section::Input_section::data_size() const
1479{
1480 if (this->is_input_section())
b8e6aad9 1481 return this->u1_.data_size;
ead1e424 1482 else
b8e6aad9 1483 return this->u2_.posd->data_size();
ead1e424
ILT
1484}
1485
1486// Set the address and file offset.
1487
1488void
96803768
ILT
1489Output_section::Input_section::set_address_and_file_offset(
1490 uint64_t address,
1491 off_t file_offset,
1492 off_t section_file_offset)
ead1e424
ILT
1493{
1494 if (this->is_input_section())
96803768
ILT
1495 this->u2_.object->set_section_offset(this->shndx_,
1496 file_offset - section_file_offset);
ead1e424 1497 else
96803768
ILT
1498 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1499}
1500
a445fddf
ILT
1501// Reset the address and file offset.
1502
1503void
1504Output_section::Input_section::reset_address_and_file_offset()
1505{
1506 if (!this->is_input_section())
1507 this->u2_.posd->reset_address_and_file_offset();
1508}
1509
96803768
ILT
1510// Finalize the data size.
1511
1512void
1513Output_section::Input_section::finalize_data_size()
1514{
1515 if (!this->is_input_section())
1516 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1517}
1518
1e983657
ILT
1519// Try to turn an input offset into an output offset. We want to
1520// return the output offset relative to the start of this
1521// Input_section in the output section.
b8e6aad9 1522
8f00aeb8 1523inline bool
8383303e
ILT
1524Output_section::Input_section::output_offset(
1525 const Relobj* object,
1526 unsigned int shndx,
1527 section_offset_type offset,
1528 section_offset_type *poutput) const
b8e6aad9
ILT
1529{
1530 if (!this->is_input_section())
730cdc88 1531 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1532 else
1533 {
730cdc88 1534 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1535 return false;
1e983657 1536 *poutput = offset;
b8e6aad9
ILT
1537 return true;
1538 }
ead1e424
ILT
1539}
1540
a9a60db6
ILT
1541// Return whether this is the merge section for the input section
1542// SHNDX in OBJECT.
1543
1544inline bool
1545Output_section::Input_section::is_merge_section_for(const Relobj* object,
1546 unsigned int shndx) const
1547{
1548 if (this->is_input_section())
1549 return false;
1550 return this->u2_.posd->is_merge_section_for(object, shndx);
1551}
1552
ead1e424
ILT
1553// Write out the data. We don't have to do anything for an input
1554// section--they are handled via Object::relocate--but this is where
1555// we write out the data for an Output_section_data.
1556
1557void
1558Output_section::Input_section::write(Output_file* of)
1559{
1560 if (!this->is_input_section())
b8e6aad9 1561 this->u2_.posd->write(of);
ead1e424
ILT
1562}
1563
96803768
ILT
1564// Write the data to a buffer. As for write(), we don't have to do
1565// anything for an input section.
1566
1567void
1568Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1569{
1570 if (!this->is_input_section())
1571 this->u2_.posd->write_to_buffer(buffer);
1572}
1573
a2fb1b05
ILT
1574// Output_section methods.
1575
1576// Construct an Output_section. NAME will point into a Stringpool.
1577
96803768 1578Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1579 elfcpp::Elf_Xword flags)
96803768 1580 : name_(name),
a2fb1b05
ILT
1581 addralign_(0),
1582 entsize_(0),
a445fddf 1583 load_address_(0),
16649710 1584 link_section_(NULL),
a2fb1b05 1585 link_(0),
16649710 1586 info_section_(NULL),
6a74a719 1587 info_symndx_(NULL),
a2fb1b05
ILT
1588 info_(0),
1589 type_(type),
61ba1cf9 1590 flags_(flags),
91ea499d 1591 out_shndx_(-1U),
c06b7b0b
ILT
1592 symtab_index_(0),
1593 dynsym_index_(0),
ead1e424
ILT
1594 input_sections_(),
1595 first_input_offset_(0),
c51e6221 1596 fills_(),
96803768 1597 postprocessing_buffer_(NULL),
a3ad94ed 1598 needs_symtab_index_(false),
16649710
ILT
1599 needs_dynsym_index_(false),
1600 should_link_to_symtab_(false),
730cdc88 1601 should_link_to_dynsym_(false),
27bc2bce 1602 after_input_sections_(false),
7bf1f802 1603 requires_postprocessing_(false),
a445fddf
ILT
1604 found_in_sections_clause_(false),
1605 has_load_address_(false),
755ab8af 1606 info_uses_section_index_(false),
2fd32231
ILT
1607 may_sort_attached_input_sections_(false),
1608 must_sort_attached_input_sections_(false),
1609 attached_input_sections_are_sorted_(false),
7bf1f802 1610 tls_offset_(0)
a2fb1b05 1611{
27bc2bce
ILT
1612 // An unallocated section has no address. Forcing this means that
1613 // we don't need special treatment for symbols defined in debug
1614 // sections.
1615 if ((flags & elfcpp::SHF_ALLOC) == 0)
1616 this->set_address(0);
a2fb1b05
ILT
1617}
1618
54dc6425
ILT
1619Output_section::~Output_section()
1620{
1621}
1622
16649710
ILT
1623// Set the entry size.
1624
1625void
1626Output_section::set_entsize(uint64_t v)
1627{
1628 if (this->entsize_ == 0)
1629 this->entsize_ = v;
1630 else
1631 gold_assert(this->entsize_ == v);
1632}
1633
ead1e424 1634// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1635// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1636// relocation section which applies to this section, or 0 if none, or
1637// -1U if more than one. Return the offset of the input section
1638// within the output section. Return -1 if the input section will
1639// receive special handling. In the normal case we don't always keep
1640// track of input sections for an Output_section. Instead, each
1641// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1642// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1643// track of input sections here; this is used when SECTIONS appears in
1644// a linker script.
a2fb1b05
ILT
1645
1646template<int size, bool big_endian>
1647off_t
730cdc88
ILT
1648Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1649 unsigned int shndx,
ead1e424 1650 const char* secname,
730cdc88 1651 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1652 unsigned int reloc_shndx,
1653 bool have_sections_script)
a2fb1b05
ILT
1654{
1655 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1656 if ((addralign & (addralign - 1)) != 0)
1657 {
75f2446e
ILT
1658 object->error(_("invalid alignment %lu for section \"%s\""),
1659 static_cast<unsigned long>(addralign), secname);
1660 addralign = 1;
a2fb1b05 1661 }
a2fb1b05
ILT
1662
1663 if (addralign > this->addralign_)
1664 this->addralign_ = addralign;
1665
44a43cf9 1666 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
a445fddf
ILT
1667 this->flags_ |= (sh_flags
1668 & (elfcpp::SHF_WRITE
1669 | elfcpp::SHF_ALLOC
1670 | elfcpp::SHF_EXECINSTR));
1671
4f833eee 1672 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1673
1674 // .debug_str is a mergeable string section, but is not always so
1675 // marked by compilers. Mark manually here so we can optimize.
1676 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1677 {
1678 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1679 entsize = 1;
1680 }
44a43cf9 1681
b8e6aad9 1682 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1683 // a Output_data_merge. We don't try to handle relocations for such
1684 // a section.
44a43cf9 1685 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1686 && reloc_shndx == 0)
b8e6aad9 1687 {
44a43cf9 1688 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1689 entsize, addralign))
b8e6aad9
ILT
1690 {
1691 // Tell the relocation routines that they need to call the
730cdc88 1692 // output_offset method to determine the final address.
b8e6aad9
ILT
1693 return -1;
1694 }
1695 }
1696
27bc2bce 1697 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1698 off_t aligned_offset_in_section = align_address(offset_in_section,
1699 addralign);
1700
1701 if (aligned_offset_in_section > offset_in_section
a445fddf 1702 && !have_sections_script
44a43cf9 1703 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1704 && object->target()->has_code_fill())
1705 {
1706 // We need to add some fill data. Using fill_list_ when
1707 // possible is an optimization, since we will often have fill
1708 // sections without input sections.
1709 off_t fill_len = aligned_offset_in_section - offset_in_section;
1710 if (this->input_sections_.empty())
1711 this->fills_.push_back(Fill(offset_in_section, fill_len));
1712 else
1713 {
1714 // FIXME: When relaxing, the size needs to adjust to
1715 // maintain a constant alignment.
1716 std::string fill_data(object->target()->code_fill(fill_len));
1717 Output_data_const* odc = new Output_data_const(fill_data, 1);
1718 this->input_sections_.push_back(Input_section(odc));
1719 }
1720 }
1721
27bc2bce
ILT
1722 this->set_current_data_size_for_child(aligned_offset_in_section
1723 + shdr.get_sh_size());
a2fb1b05 1724
ead1e424 1725 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1726 // track of sections, or if we are relaxing. Also, if this is a
1727 // section which requires sorting, or which may require sorting in
1728 // the future, we keep track of the sections. FIXME: Add test for
ead1e424 1729 // relaxing.
2fd32231
ILT
1730 if (have_sections_script
1731 || !this->input_sections_.empty()
1732 || this->may_sort_attached_input_sections()
1733 || this->must_sort_attached_input_sections())
ead1e424
ILT
1734 this->input_sections_.push_back(Input_section(object, shndx,
1735 shdr.get_sh_size(),
1736 addralign));
54dc6425 1737
c51e6221 1738 return aligned_offset_in_section;
61ba1cf9
ILT
1739}
1740
ead1e424
ILT
1741// Add arbitrary data to an output section.
1742
1743void
1744Output_section::add_output_section_data(Output_section_data* posd)
1745{
b8e6aad9
ILT
1746 Input_section inp(posd);
1747 this->add_output_section_data(&inp);
a445fddf
ILT
1748
1749 if (posd->is_data_size_valid())
1750 {
1751 off_t offset_in_section = this->current_data_size_for_child();
1752 off_t aligned_offset_in_section = align_address(offset_in_section,
1753 posd->addralign());
1754 this->set_current_data_size_for_child(aligned_offset_in_section
1755 + posd->data_size());
1756 }
b8e6aad9
ILT
1757}
1758
1759// Add arbitrary data to an output section by Input_section.
c06b7b0b 1760
b8e6aad9
ILT
1761void
1762Output_section::add_output_section_data(Input_section* inp)
1763{
ead1e424 1764 if (this->input_sections_.empty())
27bc2bce 1765 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1766
b8e6aad9 1767 this->input_sections_.push_back(*inp);
c06b7b0b 1768
b8e6aad9 1769 uint64_t addralign = inp->addralign();
ead1e424
ILT
1770 if (addralign > this->addralign_)
1771 this->addralign_ = addralign;
c06b7b0b 1772
b8e6aad9
ILT
1773 inp->set_output_section(this);
1774}
1775
1776// Add a merge section to an output section.
1777
1778void
1779Output_section::add_output_merge_section(Output_section_data* posd,
1780 bool is_string, uint64_t entsize)
1781{
1782 Input_section inp(posd, is_string, entsize);
1783 this->add_output_section_data(&inp);
1784}
1785
1786// Add an input section to a SHF_MERGE section.
1787
1788bool
1789Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1790 uint64_t flags, uint64_t entsize,
96803768 1791 uint64_t addralign)
b8e6aad9 1792{
87f95776
ILT
1793 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1794
1795 // We only merge strings if the alignment is not more than the
1796 // character size. This could be handled, but it's unusual.
1797 if (is_string && addralign > entsize)
b8e6aad9
ILT
1798 return false;
1799
b8e6aad9
ILT
1800 Input_section_list::iterator p;
1801 for (p = this->input_sections_.begin();
1802 p != this->input_sections_.end();
1803 ++p)
87f95776 1804 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1805 {
1806 p->add_input_section(object, shndx);
1807 return true;
1808 }
b8e6aad9
ILT
1809
1810 // We handle the actual constant merging in Output_merge_data or
1811 // Output_merge_string_data.
9a0910c3
ILT
1812 Output_section_data* posd;
1813 if (!is_string)
1814 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1815 else
1816 {
9a0910c3
ILT
1817 switch (entsize)
1818 {
1819 case 1:
1820 posd = new Output_merge_string<char>(addralign);
1821 break;
1822 case 2:
1823 posd = new Output_merge_string<uint16_t>(addralign);
1824 break;
1825 case 4:
1826 posd = new Output_merge_string<uint32_t>(addralign);
1827 break;
1828 default:
1829 return false;
1830 }
b8e6aad9
ILT
1831 }
1832
9a0910c3
ILT
1833 this->add_output_merge_section(posd, is_string, entsize);
1834 posd->add_input_section(object, shndx);
1835
b8e6aad9
ILT
1836 return true;
1837}
1838
730cdc88
ILT
1839// Given an address OFFSET relative to the start of input section
1840// SHNDX in OBJECT, return whether this address is being included in
1841// the final link. This should only be called if SHNDX in OBJECT has
1842// a special mapping.
1843
1844bool
1845Output_section::is_input_address_mapped(const Relobj* object,
1846 unsigned int shndx,
1847 off_t offset) const
1848{
1849 gold_assert(object->is_section_specially_mapped(shndx));
1850
1851 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1852 p != this->input_sections_.end();
1853 ++p)
1854 {
8383303e 1855 section_offset_type output_offset;
730cdc88
ILT
1856 if (p->output_offset(object, shndx, offset, &output_offset))
1857 return output_offset != -1;
1858 }
1859
1860 // By default we assume that the address is mapped. This should
1861 // only be called after we have passed all sections to Layout. At
1862 // that point we should know what we are discarding.
1863 return true;
1864}
1865
1866// Given an address OFFSET relative to the start of input section
1867// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1868// start of the input section in the output section. This should only
1869// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1870
8383303e 1871section_offset_type
730cdc88 1872Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1873 section_offset_type offset) const
730cdc88
ILT
1874{
1875 gold_assert(object->is_section_specially_mapped(shndx));
1876 // This can only be called meaningfully when layout is complete.
1877 gold_assert(Output_data::is_layout_complete());
1878
1879 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1880 p != this->input_sections_.end();
1881 ++p)
1882 {
8383303e 1883 section_offset_type output_offset;
730cdc88
ILT
1884 if (p->output_offset(object, shndx, offset, &output_offset))
1885 return output_offset;
1886 }
1887 gold_unreachable();
1888}
1889
b8e6aad9
ILT
1890// Return the output virtual address of OFFSET relative to the start
1891// of input section SHNDX in object OBJECT.
1892
1893uint64_t
1894Output_section::output_address(const Relobj* object, unsigned int shndx,
1895 off_t offset) const
1896{
730cdc88 1897 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 1898
b8e6aad9
ILT
1899 uint64_t addr = this->address() + this->first_input_offset_;
1900 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1901 p != this->input_sections_.end();
1902 ++p)
1903 {
1904 addr = align_address(addr, p->addralign());
8383303e 1905 section_offset_type output_offset;
730cdc88
ILT
1906 if (p->output_offset(object, shndx, offset, &output_offset))
1907 {
1908 if (output_offset == -1)
1909 return -1U;
1910 return addr + output_offset;
1911 }
b8e6aad9
ILT
1912 addr += p->data_size();
1913 }
1914
1915 // If we get here, it means that we don't know the mapping for this
1916 // input section. This might happen in principle if
1917 // add_input_section were called before add_output_section_data.
1918 // But it should never actually happen.
1919
1920 gold_unreachable();
ead1e424
ILT
1921}
1922
a9a60db6
ILT
1923// Return the output address of the start of the merged section for
1924// input section SHNDX in object OBJECT.
1925
1926uint64_t
1927Output_section::starting_output_address(const Relobj* object,
1928 unsigned int shndx) const
1929{
1930 gold_assert(object->is_section_specially_mapped(shndx));
1931
1932 uint64_t addr = this->address() + this->first_input_offset_;
1933 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1934 p != this->input_sections_.end();
1935 ++p)
1936 {
1937 addr = align_address(addr, p->addralign());
1938
1939 // It would be nice if we could use the existing output_offset
1940 // method to get the output offset of input offset 0.
1941 // Unfortunately we don't know for sure that input offset 0 is
1942 // mapped at all.
1943 if (p->is_merge_section_for(object, shndx))
1944 return addr;
1945
1946 addr += p->data_size();
1947 }
1948 gold_unreachable();
1949}
1950
27bc2bce 1951// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1952// setting the addresses of any Output_section_data objects.
1953
1954void
27bc2bce 1955Output_section::set_final_data_size()
ead1e424
ILT
1956{
1957 if (this->input_sections_.empty())
27bc2bce
ILT
1958 {
1959 this->set_data_size(this->current_data_size_for_child());
1960 return;
1961 }
ead1e424 1962
2fd32231
ILT
1963 if (this->must_sort_attached_input_sections())
1964 this->sort_attached_input_sections();
1965
27bc2bce
ILT
1966 uint64_t address = this->address();
1967 off_t startoff = this->offset();
ead1e424
ILT
1968 off_t off = startoff + this->first_input_offset_;
1969 for (Input_section_list::iterator p = this->input_sections_.begin();
1970 p != this->input_sections_.end();
1971 ++p)
1972 {
1973 off = align_address(off, p->addralign());
96803768
ILT
1974 p->set_address_and_file_offset(address + (off - startoff), off,
1975 startoff);
ead1e424
ILT
1976 off += p->data_size();
1977 }
1978
1979 this->set_data_size(off - startoff);
1980}
9a0910c3 1981
a445fddf
ILT
1982// Reset the address and file offset.
1983
1984void
1985Output_section::do_reset_address_and_file_offset()
1986{
1987 for (Input_section_list::iterator p = this->input_sections_.begin();
1988 p != this->input_sections_.end();
1989 ++p)
1990 p->reset_address_and_file_offset();
1991}
1992
7bf1f802
ILT
1993// Set the TLS offset. Called only for SHT_TLS sections.
1994
1995void
1996Output_section::do_set_tls_offset(uint64_t tls_base)
1997{
1998 this->tls_offset_ = this->address() - tls_base;
1999}
2000
2fd32231
ILT
2001// In a few cases we need to sort the input sections attached to an
2002// output section. This is used to implement the type of constructor
2003// priority ordering implemented by the GNU linker, in which the
2004// priority becomes part of the section name and the sections are
2005// sorted by name. We only do this for an output section if we see an
2006// attached input section matching ".ctor.*", ".dtor.*",
2007// ".init_array.*" or ".fini_array.*".
2008
2009class Output_section::Input_section_sort_entry
2010{
2011 public:
2012 Input_section_sort_entry()
2013 : input_section_(), index_(-1U), section_has_name_(false),
2014 section_name_()
2015 { }
2016
2017 Input_section_sort_entry(const Input_section& input_section,
2018 unsigned int index)
2019 : input_section_(input_section), index_(index),
2020 section_has_name_(input_section.is_input_section())
2021 {
2022 if (this->section_has_name_)
2023 {
2024 // This is only called single-threaded from Layout::finalize,
2025 // so it is OK to lock. Unfortunately we have no way to pass
2026 // in a Task token.
2027 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2028 Object* obj = input_section.relobj();
2029 Task_lock_obj<Object> tl(dummy_task, obj);
2030
2031 // This is a slow operation, which should be cached in
2032 // Layout::layout if this becomes a speed problem.
2033 this->section_name_ = obj->section_name(input_section.shndx());
2034 }
2035 }
2036
2037 // Return the Input_section.
2038 const Input_section&
2039 input_section() const
2040 {
2041 gold_assert(this->index_ != -1U);
2042 return this->input_section_;
2043 }
2044
2045 // The index of this entry in the original list. This is used to
2046 // make the sort stable.
2047 unsigned int
2048 index() const
2049 {
2050 gold_assert(this->index_ != -1U);
2051 return this->index_;
2052 }
2053
2054 // Whether there is a section name.
2055 bool
2056 section_has_name() const
2057 { return this->section_has_name_; }
2058
2059 // The section name.
2060 const std::string&
2061 section_name() const
2062 {
2063 gold_assert(this->section_has_name_);
2064 return this->section_name_;
2065 }
2066
ab794b6b
ILT
2067 // Return true if the section name has a priority. This is assumed
2068 // to be true if it has a dot after the initial dot.
2fd32231 2069 bool
ab794b6b 2070 has_priority() const
2fd32231
ILT
2071 {
2072 gold_assert(this->section_has_name_);
ab794b6b 2073 return this->section_name_.find('.', 1);
2fd32231
ILT
2074 }
2075
ab794b6b
ILT
2076 // Return true if this an input file whose base name matches
2077 // FILE_NAME. The base name must have an extension of ".o", and
2078 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2079 // This is to match crtbegin.o as well as crtbeginS.o without
2080 // getting confused by other possibilities. Overall matching the
2081 // file name this way is a dreadful hack, but the GNU linker does it
2082 // in order to better support gcc, and we need to be compatible.
2fd32231 2083 bool
ab794b6b 2084 match_file_name(const char* match_file_name) const
2fd32231 2085 {
2fd32231
ILT
2086 const std::string& file_name(this->input_section_.relobj()->name());
2087 const char* base_name = lbasename(file_name.c_str());
2088 size_t match_len = strlen(match_file_name);
2089 if (strncmp(base_name, match_file_name, match_len) != 0)
2090 return false;
2091 size_t base_len = strlen(base_name);
2092 if (base_len != match_len + 2 && base_len != match_len + 3)
2093 return false;
2094 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2095 }
2096
2097 private:
2098 // The Input_section we are sorting.
2099 Input_section input_section_;
2100 // The index of this Input_section in the original list.
2101 unsigned int index_;
2102 // Whether this Input_section has a section name--it won't if this
2103 // is some random Output_section_data.
2104 bool section_has_name_;
2105 // The section name if there is one.
2106 std::string section_name_;
2107};
2108
2109// Return true if S1 should come before S2 in the output section.
2110
2111bool
2112Output_section::Input_section_sort_compare::operator()(
2113 const Output_section::Input_section_sort_entry& s1,
2114 const Output_section::Input_section_sort_entry& s2) const
2115{
ab794b6b
ILT
2116 // crtbegin.o must come first.
2117 bool s1_begin = s1.match_file_name("crtbegin");
2118 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2119 if (s1_begin || s2_begin)
2120 {
2121 if (!s1_begin)
2122 return false;
2123 if (!s2_begin)
2124 return true;
2125 return s1.index() < s2.index();
2126 }
2127
ab794b6b
ILT
2128 // crtend.o must come last.
2129 bool s1_end = s1.match_file_name("crtend");
2130 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2131 if (s1_end || s2_end)
2132 {
2133 if (!s1_end)
2134 return true;
2135 if (!s2_end)
2136 return false;
2137 return s1.index() < s2.index();
2138 }
2139
ab794b6b
ILT
2140 // We sort all the sections with no names to the end.
2141 if (!s1.section_has_name() || !s2.section_has_name())
2142 {
2143 if (s1.section_has_name())
2144 return true;
2145 if (s2.section_has_name())
2146 return false;
2147 return s1.index() < s2.index();
2148 }
2fd32231 2149
ab794b6b
ILT
2150 // A section with a priority follows a section without a priority.
2151 // The GNU linker does this for all but .init_array sections; until
2152 // further notice we'll assume that that is an mistake.
2153 bool s1_has_priority = s1.has_priority();
2154 bool s2_has_priority = s2.has_priority();
2155 if (s1_has_priority && !s2_has_priority)
2fd32231 2156 return false;
ab794b6b 2157 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2158 return true;
2159
2160 // Otherwise we sort by name.
2161 int compare = s1.section_name().compare(s2.section_name());
2162 if (compare != 0)
2163 return compare < 0;
2164
2165 // Otherwise we keep the input order.
2166 return s1.index() < s2.index();
2167}
2168
2169// Sort the input sections attached to an output section.
2170
2171void
2172Output_section::sort_attached_input_sections()
2173{
2174 if (this->attached_input_sections_are_sorted_)
2175 return;
2176
2177 // The only thing we know about an input section is the object and
2178 // the section index. We need the section name. Recomputing this
2179 // is slow but this is an unusual case. If this becomes a speed
2180 // problem we can cache the names as required in Layout::layout.
2181
2182 // We start by building a larger vector holding a copy of each
2183 // Input_section, plus its current index in the list and its name.
2184 std::vector<Input_section_sort_entry> sort_list;
2185
2186 unsigned int i = 0;
2187 for (Input_section_list::iterator p = this->input_sections_.begin();
2188 p != this->input_sections_.end();
2189 ++p, ++i)
2190 sort_list.push_back(Input_section_sort_entry(*p, i));
2191
2192 // Sort the input sections.
2193 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2194
2195 // Copy the sorted input sections back to our list.
2196 this->input_sections_.clear();
2197 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2198 p != sort_list.end();
2199 ++p)
2200 this->input_sections_.push_back(p->input_section());
2201
2202 // Remember that we sorted the input sections, since we might get
2203 // called again.
2204 this->attached_input_sections_are_sorted_ = true;
2205}
2206
61ba1cf9
ILT
2207// Write the section header to *OSHDR.
2208
2209template<int size, bool big_endian>
2210void
16649710
ILT
2211Output_section::write_header(const Layout* layout,
2212 const Stringpool* secnamepool,
61ba1cf9
ILT
2213 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2214{
2215 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2216 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2217
2218 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2219 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2220 flags |= elfcpp::SHF_INFO_LINK;
2221 oshdr->put_sh_flags(flags);
2222
61ba1cf9
ILT
2223 oshdr->put_sh_addr(this->address());
2224 oshdr->put_sh_offset(this->offset());
2225 oshdr->put_sh_size(this->data_size());
16649710
ILT
2226 if (this->link_section_ != NULL)
2227 oshdr->put_sh_link(this->link_section_->out_shndx());
2228 else if (this->should_link_to_symtab_)
2229 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2230 else if (this->should_link_to_dynsym_)
2231 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2232 else
2233 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2234
2235 elfcpp::Elf_Word info;
16649710 2236 if (this->info_section_ != NULL)
755ab8af
ILT
2237 {
2238 if (this->info_uses_section_index_)
2239 info = this->info_section_->out_shndx();
2240 else
2241 info = this->info_section_->symtab_index();
2242 }
6a74a719 2243 else if (this->info_symndx_ != NULL)
755ab8af 2244 info = this->info_symndx_->symtab_index();
16649710 2245 else
755ab8af
ILT
2246 info = this->info_;
2247 oshdr->put_sh_info(info);
2248
61ba1cf9
ILT
2249 oshdr->put_sh_addralign(this->addralign_);
2250 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2251}
2252
ead1e424
ILT
2253// Write out the data. For input sections the data is written out by
2254// Object::relocate, but we have to handle Output_section_data objects
2255// here.
2256
2257void
2258Output_section::do_write(Output_file* of)
2259{
96803768
ILT
2260 gold_assert(!this->requires_postprocessing());
2261
c51e6221
ILT
2262 off_t output_section_file_offset = this->offset();
2263 for (Fill_list::iterator p = this->fills_.begin();
2264 p != this->fills_.end();
2265 ++p)
2266 {
8851ecca 2267 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2268 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2269 fill_data.data(), fill_data.size());
c51e6221
ILT
2270 }
2271
ead1e424
ILT
2272 for (Input_section_list::iterator p = this->input_sections_.begin();
2273 p != this->input_sections_.end();
2274 ++p)
2275 p->write(of);
2276}
2277
96803768
ILT
2278// If a section requires postprocessing, create the buffer to use.
2279
2280void
2281Output_section::create_postprocessing_buffer()
2282{
2283 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2284
2285 if (this->postprocessing_buffer_ != NULL)
2286 return;
96803768
ILT
2287
2288 if (!this->input_sections_.empty())
2289 {
2290 off_t off = this->first_input_offset_;
2291 for (Input_section_list::iterator p = this->input_sections_.begin();
2292 p != this->input_sections_.end();
2293 ++p)
2294 {
2295 off = align_address(off, p->addralign());
2296 p->finalize_data_size();
2297 off += p->data_size();
2298 }
2299 this->set_current_data_size_for_child(off);
2300 }
2301
2302 off_t buffer_size = this->current_data_size_for_child();
2303 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2304}
2305
2306// Write all the data of an Output_section into the postprocessing
2307// buffer. This is used for sections which require postprocessing,
2308// such as compression. Input sections are handled by
2309// Object::Relocate.
2310
2311void
2312Output_section::write_to_postprocessing_buffer()
2313{
2314 gold_assert(this->requires_postprocessing());
2315
96803768
ILT
2316 unsigned char* buffer = this->postprocessing_buffer();
2317 for (Fill_list::iterator p = this->fills_.begin();
2318 p != this->fills_.end();
2319 ++p)
2320 {
8851ecca 2321 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2322 memcpy(buffer + p->section_offset(), fill_data.data(),
2323 fill_data.size());
96803768
ILT
2324 }
2325
2326 off_t off = this->first_input_offset_;
2327 for (Input_section_list::iterator p = this->input_sections_.begin();
2328 p != this->input_sections_.end();
2329 ++p)
2330 {
2331 off = align_address(off, p->addralign());
2332 p->write_to_buffer(buffer + off);
2333 off += p->data_size();
2334 }
2335}
2336
a445fddf
ILT
2337// Get the input sections for linker script processing. We leave
2338// behind the Output_section_data entries. Note that this may be
2339// slightly incorrect for merge sections. We will leave them behind,
2340// but it is possible that the script says that they should follow
2341// some other input sections, as in:
2342// .rodata { *(.rodata) *(.rodata.cst*) }
2343// For that matter, we don't handle this correctly:
2344// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2345// With luck this will never matter.
2346
2347uint64_t
2348Output_section::get_input_sections(
2349 uint64_t address,
2350 const std::string& fill,
2351 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2352{
2353 uint64_t orig_address = address;
2354
2355 address = align_address(address, this->addralign());
2356
2357 Input_section_list remaining;
2358 for (Input_section_list::iterator p = this->input_sections_.begin();
2359 p != this->input_sections_.end();
2360 ++p)
2361 {
2362 if (p->is_input_section())
2363 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2364 else
2365 {
2366 uint64_t aligned_address = align_address(address, p->addralign());
2367 if (aligned_address != address && !fill.empty())
2368 {
2369 section_size_type length =
2370 convert_to_section_size_type(aligned_address - address);
2371 std::string this_fill;
2372 this_fill.reserve(length);
2373 while (this_fill.length() + fill.length() <= length)
2374 this_fill += fill;
2375 if (this_fill.length() < length)
2376 this_fill.append(fill, 0, length - this_fill.length());
2377
2378 Output_section_data* posd = new Output_data_const(this_fill, 0);
2379 remaining.push_back(Input_section(posd));
2380 }
2381 address = aligned_address;
2382
2383 remaining.push_back(*p);
2384
2385 p->finalize_data_size();
2386 address += p->data_size();
2387 }
2388 }
2389
2390 this->input_sections_.swap(remaining);
2391 this->first_input_offset_ = 0;
2392
2393 uint64_t data_size = address - orig_address;
2394 this->set_current_data_size_for_child(data_size);
2395 return data_size;
2396}
2397
2398// Add an input section from a script.
2399
2400void
2401Output_section::add_input_section_for_script(Relobj* object,
2402 unsigned int shndx,
2403 off_t data_size,
2404 uint64_t addralign)
2405{
2406 if (addralign > this->addralign_)
2407 this->addralign_ = addralign;
2408
2409 off_t offset_in_section = this->current_data_size_for_child();
2410 off_t aligned_offset_in_section = align_address(offset_in_section,
2411 addralign);
2412
2413 this->set_current_data_size_for_child(aligned_offset_in_section
2414 + data_size);
2415
2416 this->input_sections_.push_back(Input_section(object, shndx,
2417 data_size, addralign));
2418}
2419
38c5e8b4
ILT
2420// Print stats for merge sections to stderr.
2421
2422void
2423Output_section::print_merge_stats()
2424{
2425 Input_section_list::iterator p;
2426 for (p = this->input_sections_.begin();
2427 p != this->input_sections_.end();
2428 ++p)
2429 p->print_merge_stats(this->name_);
2430}
2431
a2fb1b05
ILT
2432// Output segment methods.
2433
2434Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2435 : output_data_(),
75f65a3e 2436 output_bss_(),
a2fb1b05
ILT
2437 vaddr_(0),
2438 paddr_(0),
2439 memsz_(0),
a445fddf
ILT
2440 max_align_(0),
2441 min_p_align_(0),
a2fb1b05
ILT
2442 offset_(0),
2443 filesz_(0),
2444 type_(type),
ead1e424 2445 flags_(flags),
a445fddf
ILT
2446 is_max_align_known_(false),
2447 are_addresses_set_(false)
a2fb1b05
ILT
2448{
2449}
2450
2451// Add an Output_section to an Output_segment.
2452
2453void
75f65a3e 2454Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
2455 elfcpp::Elf_Word seg_flags,
2456 bool front)
a2fb1b05 2457{
a3ad94ed 2458 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2459 gold_assert(!this->is_max_align_known_);
75f65a3e 2460
ead1e424 2461 // Update the segment flags.
75f65a3e 2462 this->flags_ |= seg_flags;
75f65a3e
ILT
2463
2464 Output_segment::Output_data_list* pdl;
2465 if (os->type() == elfcpp::SHT_NOBITS)
2466 pdl = &this->output_bss_;
2467 else
2468 pdl = &this->output_data_;
54dc6425 2469
a2fb1b05
ILT
2470 // So that PT_NOTE segments will work correctly, we need to ensure
2471 // that all SHT_NOTE sections are adjacent. This will normally
2472 // happen automatically, because all the SHT_NOTE input sections
2473 // will wind up in the same output section. However, it is possible
2474 // for multiple SHT_NOTE input sections to have different section
2475 // flags, and thus be in different output sections, but for the
2476 // different section flags to map into the same segment flags and
2477 // thus the same output segment.
54dc6425
ILT
2478
2479 // Note that while there may be many input sections in an output
2480 // section, there are normally only a few output sections in an
2481 // output segment. This loop is expected to be fast.
2482
61ba1cf9 2483 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2484 {
a3ad94ed 2485 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2486 do
54dc6425 2487 {
75f65a3e 2488 --p;
54dc6425
ILT
2489 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2490 {
dbe717ef 2491 // We don't worry about the FRONT parameter.
54dc6425 2492 ++p;
75f65a3e 2493 pdl->insert(p, os);
54dc6425
ILT
2494 return;
2495 }
2496 }
75f65a3e 2497 while (p != pdl->begin());
54dc6425
ILT
2498 }
2499
2500 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2501 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2502 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2503 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2504 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2505 // and the PT_TLS segment -- we do this grouping only for the
2506 // PT_LOAD segment.
2507 if (this->type_ != elfcpp::PT_TLS
2508 && (os->flags() & elfcpp::SHF_TLS) != 0
2509 && !this->output_data_.empty())
54dc6425 2510 {
75f65a3e
ILT
2511 pdl = &this->output_data_;
2512 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2513 bool sawtls = false;
a3ad94ed 2514 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2515 do
a2fb1b05 2516 {
75f65a3e 2517 --p;
ead1e424
ILT
2518 bool insert;
2519 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2520 {
2521 sawtls = true;
2522 // Put a NOBITS section after the first TLS section.
2523 // But a PROGBITS section after the first TLS/PROGBITS
2524 // section.
2525 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2526 }
2527 else
2528 {
2529 // If we've gone past the TLS sections, but we've seen a
2530 // TLS section, then we need to insert this section now.
2531 insert = sawtls;
2532 }
2533
2534 if (insert)
a2fb1b05 2535 {
dbe717ef 2536 // We don't worry about the FRONT parameter.
a2fb1b05 2537 ++p;
75f65a3e 2538 pdl->insert(p, os);
a2fb1b05
ILT
2539 return;
2540 }
2541 }
75f65a3e 2542 while (p != pdl->begin());
ead1e424 2543
dbe717ef
ILT
2544 // There are no TLS sections yet; put this one at the requested
2545 // location in the section list.
a2fb1b05
ILT
2546 }
2547
dbe717ef
ILT
2548 if (front)
2549 pdl->push_front(os);
2550 else
2551 pdl->push_back(os);
75f65a3e
ILT
2552}
2553
1650c4ff
ILT
2554// Remove an Output_section from this segment. It is an error if it
2555// is not present.
2556
2557void
2558Output_segment::remove_output_section(Output_section* os)
2559{
2560 // We only need this for SHT_PROGBITS.
2561 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2562 for (Output_data_list::iterator p = this->output_data_.begin();
2563 p != this->output_data_.end();
2564 ++p)
2565 {
2566 if (*p == os)
2567 {
2568 this->output_data_.erase(p);
2569 return;
2570 }
2571 }
2572 gold_unreachable();
2573}
2574
75f65a3e
ILT
2575// Add an Output_data (which is not an Output_section) to the start of
2576// a segment.
2577
2578void
2579Output_segment::add_initial_output_data(Output_data* od)
2580{
a445fddf 2581 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2582 this->output_data_.push_front(od);
2583}
2584
2585// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2586
2587uint64_t
a445fddf 2588Output_segment::maximum_alignment()
75f65a3e 2589{
a445fddf 2590 if (!this->is_max_align_known_)
ead1e424
ILT
2591 {
2592 uint64_t addralign;
2593
a445fddf
ILT
2594 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2595 if (addralign > this->max_align_)
2596 this->max_align_ = addralign;
ead1e424 2597
a445fddf
ILT
2598 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2599 if (addralign > this->max_align_)
2600 this->max_align_ = addralign;
ead1e424 2601
a445fddf 2602 this->is_max_align_known_ = true;
ead1e424
ILT
2603 }
2604
a445fddf 2605 return this->max_align_;
75f65a3e
ILT
2606}
2607
ead1e424
ILT
2608// Return the maximum alignment of a list of Output_data.
2609
2610uint64_t
a445fddf 2611Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2612{
2613 uint64_t ret = 0;
2614 for (Output_data_list::const_iterator p = pdl->begin();
2615 p != pdl->end();
2616 ++p)
2617 {
2618 uint64_t addralign = (*p)->addralign();
2619 if (addralign > ret)
2620 ret = addralign;
2621 }
2622 return ret;
2623}
2624
4f4c5f80
ILT
2625// Return the number of dynamic relocs applied to this segment.
2626
2627unsigned int
2628Output_segment::dynamic_reloc_count() const
2629{
2630 return (this->dynamic_reloc_count_list(&this->output_data_)
2631 + this->dynamic_reloc_count_list(&this->output_bss_));
2632}
2633
2634// Return the number of dynamic relocs applied to an Output_data_list.
2635
2636unsigned int
2637Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2638{
2639 unsigned int count = 0;
2640 for (Output_data_list::const_iterator p = pdl->begin();
2641 p != pdl->end();
2642 ++p)
2643 count += (*p)->dynamic_reloc_count();
2644 return count;
2645}
2646
a445fddf
ILT
2647// Set the section addresses for an Output_segment. If RESET is true,
2648// reset the addresses first. ADDR is the address and *POFF is the
2649// file offset. Set the section indexes starting with *PSHNDX.
2650// Return the address of the immediately following segment. Update
2651// *POFF and *PSHNDX.
75f65a3e
ILT
2652
2653uint64_t
96a2b4e4
ILT
2654Output_segment::set_section_addresses(const Layout* layout, bool reset,
2655 uint64_t addr, off_t* poff,
ead1e424 2656 unsigned int* pshndx)
75f65a3e 2657{
a3ad94ed 2658 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2659
a445fddf
ILT
2660 if (!reset && this->are_addresses_set_)
2661 {
2662 gold_assert(this->paddr_ == addr);
2663 addr = this->vaddr_;
2664 }
2665 else
2666 {
2667 this->vaddr_ = addr;
2668 this->paddr_ = addr;
2669 this->are_addresses_set_ = true;
2670 }
75f65a3e 2671
96a2b4e4
ILT
2672 bool in_tls = false;
2673
75f65a3e
ILT
2674 off_t orig_off = *poff;
2675 this->offset_ = orig_off;
2676
96a2b4e4
ILT
2677 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2678 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
2679 this->filesz_ = *poff - orig_off;
2680
2681 off_t off = *poff;
2682
96a2b4e4
ILT
2683 uint64_t ret = this->set_section_list_addresses(layout, reset,
2684 &this->output_bss_,
2685 addr, poff, pshndx,
2686 &in_tls);
2687
2688 // If the last section was a TLS section, align upward to the
2689 // alignment of the TLS segment, so that the overall size of the TLS
2690 // segment is aligned.
2691 if (in_tls)
2692 {
2693 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2694 *poff = align_address(*poff, segment_align);
2695 }
2696
75f65a3e
ILT
2697 this->memsz_ = *poff - orig_off;
2698
2699 // Ignore the file offset adjustments made by the BSS Output_data
2700 // objects.
2701 *poff = off;
61ba1cf9
ILT
2702
2703 return ret;
75f65a3e
ILT
2704}
2705
b8e6aad9
ILT
2706// Set the addresses and file offsets in a list of Output_data
2707// structures.
75f65a3e
ILT
2708
2709uint64_t
96a2b4e4
ILT
2710Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2711 Output_data_list* pdl,
ead1e424 2712 uint64_t addr, off_t* poff,
96a2b4e4
ILT
2713 unsigned int* pshndx,
2714 bool* in_tls)
75f65a3e 2715{
ead1e424 2716 off_t startoff = *poff;
75f65a3e 2717
ead1e424 2718 off_t off = startoff;
75f65a3e
ILT
2719 for (Output_data_list::iterator p = pdl->begin();
2720 p != pdl->end();
2721 ++p)
2722 {
a445fddf
ILT
2723 if (reset)
2724 (*p)->reset_address_and_file_offset();
2725
2726 // When using a linker script the section will most likely
2727 // already have an address.
2728 if (!(*p)->is_address_valid())
3802b2dd 2729 {
96a2b4e4
ILT
2730 uint64_t align = (*p)->addralign();
2731
2732 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2733 {
2734 // Give the first TLS section the alignment of the
2735 // entire TLS segment. Otherwise the TLS segment as a
2736 // whole may be misaligned.
2737 if (!*in_tls)
2738 {
2739 Output_segment* tls_segment = layout->tls_segment();
2740 gold_assert(tls_segment != NULL);
2741 uint64_t segment_align = tls_segment->maximum_alignment();
2742 gold_assert(segment_align >= align);
2743 align = segment_align;
2744
2745 *in_tls = true;
2746 }
2747 }
2748 else
2749 {
2750 // If this is the first section after the TLS segment,
2751 // align it to at least the alignment of the TLS
2752 // segment, so that the size of the overall TLS segment
2753 // is aligned.
2754 if (*in_tls)
2755 {
2756 uint64_t segment_align =
2757 layout->tls_segment()->maximum_alignment();
2758 if (segment_align > align)
2759 align = segment_align;
2760
2761 *in_tls = false;
2762 }
2763 }
2764
2765 off = align_address(off, align);
3802b2dd
ILT
2766 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2767 }
a445fddf
ILT
2768 else
2769 {
2770 // The script may have inserted a skip forward, but it
2771 // better not have moved backward.
3802b2dd
ILT
2772 gold_assert((*p)->address() >= addr + (off - startoff));
2773 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2774 (*p)->set_file_offset(off);
2775 (*p)->finalize_data_size();
2776 }
ead1e424 2777
96a2b4e4
ILT
2778 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2779 // section. Such a section does not affect the size of a
2780 // PT_LOAD segment.
2781 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2782 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2783 off += (*p)->data_size();
75f65a3e 2784
ead1e424
ILT
2785 if ((*p)->is_section())
2786 {
2787 (*p)->set_out_shndx(*pshndx);
2788 ++*pshndx;
2789 }
75f65a3e
ILT
2790 }
2791
2792 *poff = off;
ead1e424 2793 return addr + (off - startoff);
75f65a3e
ILT
2794}
2795
2796// For a non-PT_LOAD segment, set the offset from the sections, if
2797// any.
2798
2799void
2800Output_segment::set_offset()
2801{
a3ad94ed 2802 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2803
a445fddf
ILT
2804 gold_assert(!this->are_addresses_set_);
2805
75f65a3e
ILT
2806 if (this->output_data_.empty() && this->output_bss_.empty())
2807 {
2808 this->vaddr_ = 0;
2809 this->paddr_ = 0;
a445fddf 2810 this->are_addresses_set_ = true;
75f65a3e 2811 this->memsz_ = 0;
a445fddf 2812 this->min_p_align_ = 0;
75f65a3e
ILT
2813 this->offset_ = 0;
2814 this->filesz_ = 0;
2815 return;
2816 }
2817
2818 const Output_data* first;
2819 if (this->output_data_.empty())
2820 first = this->output_bss_.front();
2821 else
2822 first = this->output_data_.front();
2823 this->vaddr_ = first->address();
a445fddf
ILT
2824 this->paddr_ = (first->has_load_address()
2825 ? first->load_address()
2826 : this->vaddr_);
2827 this->are_addresses_set_ = true;
75f65a3e
ILT
2828 this->offset_ = first->offset();
2829
2830 if (this->output_data_.empty())
2831 this->filesz_ = 0;
2832 else
2833 {
2834 const Output_data* last_data = this->output_data_.back();
2835 this->filesz_ = (last_data->address()
2836 + last_data->data_size()
2837 - this->vaddr_);
2838 }
2839
2840 const Output_data* last;
2841 if (this->output_bss_.empty())
2842 last = this->output_data_.back();
2843 else
2844 last = this->output_bss_.back();
2845 this->memsz_ = (last->address()
2846 + last->data_size()
2847 - this->vaddr_);
96a2b4e4
ILT
2848
2849 // If this is a TLS segment, align the memory size. The code in
2850 // set_section_list ensures that the section after the TLS segment
2851 // is aligned to give us room.
2852 if (this->type_ == elfcpp::PT_TLS)
2853 {
2854 uint64_t segment_align = this->maximum_alignment();
2855 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2856 this->memsz_ = align_address(this->memsz_, segment_align);
2857 }
75f65a3e
ILT
2858}
2859
7bf1f802
ILT
2860// Set the TLS offsets of the sections in the PT_TLS segment.
2861
2862void
2863Output_segment::set_tls_offsets()
2864{
2865 gold_assert(this->type_ == elfcpp::PT_TLS);
2866
2867 for (Output_data_list::iterator p = this->output_data_.begin();
2868 p != this->output_data_.end();
2869 ++p)
2870 (*p)->set_tls_offset(this->vaddr_);
2871
2872 for (Output_data_list::iterator p = this->output_bss_.begin();
2873 p != this->output_bss_.end();
2874 ++p)
2875 (*p)->set_tls_offset(this->vaddr_);
2876}
2877
a445fddf
ILT
2878// Return the address of the first section.
2879
2880uint64_t
2881Output_segment::first_section_load_address() const
2882{
2883 for (Output_data_list::const_iterator p = this->output_data_.begin();
2884 p != this->output_data_.end();
2885 ++p)
2886 if ((*p)->is_section())
2887 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2888
2889 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2890 p != this->output_bss_.end();
2891 ++p)
2892 if ((*p)->is_section())
2893 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2894
2895 gold_unreachable();
2896}
2897
75f65a3e
ILT
2898// Return the number of Output_sections in an Output_segment.
2899
2900unsigned int
2901Output_segment::output_section_count() const
2902{
2903 return (this->output_section_count_list(&this->output_data_)
2904 + this->output_section_count_list(&this->output_bss_));
2905}
2906
2907// Return the number of Output_sections in an Output_data_list.
2908
2909unsigned int
2910Output_segment::output_section_count_list(const Output_data_list* pdl) const
2911{
2912 unsigned int count = 0;
2913 for (Output_data_list::const_iterator p = pdl->begin();
2914 p != pdl->end();
2915 ++p)
2916 {
2917 if ((*p)->is_section())
2918 ++count;
2919 }
2920 return count;
a2fb1b05
ILT
2921}
2922
1c4f3631
ILT
2923// Return the section attached to the list segment with the lowest
2924// load address. This is used when handling a PHDRS clause in a
2925// linker script.
2926
2927Output_section*
2928Output_segment::section_with_lowest_load_address() const
2929{
2930 Output_section* found = NULL;
2931 uint64_t found_lma = 0;
2932 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2933
2934 Output_section* found_data = found;
2935 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2936 if (found != found_data && found_data != NULL)
2937 {
2938 gold_error(_("nobits section %s may not precede progbits section %s "
2939 "in same segment"),
2940 found->name(), found_data->name());
2941 return NULL;
2942 }
2943
2944 return found;
2945}
2946
2947// Look through a list for a section with a lower load address.
2948
2949void
2950Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2951 Output_section** found,
2952 uint64_t* found_lma) const
2953{
2954 for (Output_data_list::const_iterator p = pdl->begin();
2955 p != pdl->end();
2956 ++p)
2957 {
2958 if (!(*p)->is_section())
2959 continue;
2960 Output_section* os = static_cast<Output_section*>(*p);
2961 uint64_t lma = (os->has_load_address()
2962 ? os->load_address()
2963 : os->address());
2964 if (*found == NULL || lma < *found_lma)
2965 {
2966 *found = os;
2967 *found_lma = lma;
2968 }
2969 }
2970}
2971
61ba1cf9
ILT
2972// Write the segment data into *OPHDR.
2973
2974template<int size, bool big_endian>
2975void
ead1e424 2976Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2977{
2978 ophdr->put_p_type(this->type_);
2979 ophdr->put_p_offset(this->offset_);
2980 ophdr->put_p_vaddr(this->vaddr_);
2981 ophdr->put_p_paddr(this->paddr_);
2982 ophdr->put_p_filesz(this->filesz_);
2983 ophdr->put_p_memsz(this->memsz_);
2984 ophdr->put_p_flags(this->flags_);
a445fddf 2985 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
2986}
2987
2988// Write the section headers into V.
2989
2990template<int size, bool big_endian>
2991unsigned char*
16649710
ILT
2992Output_segment::write_section_headers(const Layout* layout,
2993 const Stringpool* secnamepool,
ead1e424 2994 unsigned char* v,
7d1a9ebb 2995 unsigned int *pshndx) const
5482377d 2996{
ead1e424
ILT
2997 // Every section that is attached to a segment must be attached to a
2998 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2999 // segments.
3000 if (this->type_ != elfcpp::PT_LOAD)
3001 return v;
3002
7d1a9ebb
ILT
3003 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3004 &this->output_data_,
3005 v, pshndx);
3006 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3007 &this->output_bss_,
3008 v, pshndx);
61ba1cf9
ILT
3009 return v;
3010}
3011
3012template<int size, bool big_endian>
3013unsigned char*
16649710
ILT
3014Output_segment::write_section_headers_list(const Layout* layout,
3015 const Stringpool* secnamepool,
61ba1cf9 3016 const Output_data_list* pdl,
ead1e424 3017 unsigned char* v,
7d1a9ebb 3018 unsigned int* pshndx) const
61ba1cf9
ILT
3019{
3020 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3021 for (Output_data_list::const_iterator p = pdl->begin();
3022 p != pdl->end();
3023 ++p)
3024 {
3025 if ((*p)->is_section())
3026 {
5482377d 3027 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3028 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3029 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3030 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3031 v += shdr_size;
ead1e424 3032 ++*pshndx;
61ba1cf9
ILT
3033 }
3034 }
3035 return v;
3036}
3037
a2fb1b05
ILT
3038// Output_file methods.
3039
14144f39
ILT
3040Output_file::Output_file(const char* name)
3041 : name_(name),
61ba1cf9
ILT
3042 o_(-1),
3043 file_size_(0),
c420411f 3044 base_(NULL),
516cb3d0
ILT
3045 map_is_anonymous_(false),
3046 is_temporary_(false)
61ba1cf9
ILT
3047{
3048}
3049
3050// Open the output file.
3051
a2fb1b05 3052void
61ba1cf9 3053Output_file::open(off_t file_size)
a2fb1b05 3054{
61ba1cf9
ILT
3055 this->file_size_ = file_size;
3056
4e9d8586
ILT
3057 // Unlink the file first; otherwise the open() may fail if the file
3058 // is busy (e.g. it's an executable that's currently being executed).
3059 //
3060 // However, the linker may be part of a system where a zero-length
3061 // file is created for it to write to, with tight permissions (gcc
3062 // 2.95 did something like this). Unlinking the file would work
3063 // around those permission controls, so we only unlink if the file
3064 // has a non-zero size. We also unlink only regular files to avoid
3065 // trouble with directories/etc.
3066 //
3067 // If we fail, continue; this command is merely a best-effort attempt
3068 // to improve the odds for open().
3069
42a1b686 3070 // We let the name "-" mean "stdout"
516cb3d0 3071 if (!this->is_temporary_)
42a1b686 3072 {
516cb3d0
ILT
3073 if (strcmp(this->name_, "-") == 0)
3074 this->o_ = STDOUT_FILENO;
3075 else
3076 {
3077 struct stat s;
3078 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3079 unlink_if_ordinary(this->name_);
3080
8851ecca 3081 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
3082 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3083 if (o < 0)
3084 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3085 this->o_ = o;
3086 }
42a1b686 3087 }
61ba1cf9 3088
27bc2bce
ILT
3089 this->map();
3090}
3091
3092// Resize the output file.
3093
3094void
3095Output_file::resize(off_t file_size)
3096{
c420411f
ILT
3097 // If the mmap is mapping an anonymous memory buffer, this is easy:
3098 // just mremap to the new size. If it's mapping to a file, we want
3099 // to unmap to flush to the file, then remap after growing the file.
3100 if (this->map_is_anonymous_)
3101 {
3102 void* base = ::mremap(this->base_, this->file_size_, file_size,
3103 MREMAP_MAYMOVE);
3104 if (base == MAP_FAILED)
3105 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3106 this->base_ = static_cast<unsigned char*>(base);
3107 this->file_size_ = file_size;
3108 }
3109 else
3110 {
3111 this->unmap();
3112 this->file_size_ = file_size;
3113 this->map();
3114 }
27bc2bce
ILT
3115}
3116
3117// Map the file into memory.
3118
3119void
3120Output_file::map()
3121{
c420411f 3122 const int o = this->o_;
61ba1cf9 3123
c420411f
ILT
3124 // If the output file is not a regular file, don't try to mmap it;
3125 // instead, we'll mmap a block of memory (an anonymous buffer), and
3126 // then later write the buffer to the file.
3127 void* base;
3128 struct stat statbuf;
42a1b686
ILT
3129 if (o == STDOUT_FILENO || o == STDERR_FILENO
3130 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3131 || !S_ISREG(statbuf.st_mode)
3132 || this->is_temporary_)
c420411f
ILT
3133 {
3134 this->map_is_anonymous_ = true;
3135 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3136 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3137 }
3138 else
3139 {
3140 // Write out one byte to make the file the right size.
3141 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3142 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3143 char b = 0;
3144 if (::write(o, &b, 1) != 1)
3145 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3146
3147 // Map the file into memory.
3148 this->map_is_anonymous_ = false;
3149 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3150 MAP_SHARED, o, 0);
3151 }
61ba1cf9 3152 if (base == MAP_FAILED)
75f2446e 3153 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
3154 this->base_ = static_cast<unsigned char*>(base);
3155}
3156
c420411f 3157// Unmap the file from memory.
61ba1cf9
ILT
3158
3159void
c420411f 3160Output_file::unmap()
61ba1cf9
ILT
3161{
3162 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 3163 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 3164 this->base_ = NULL;
c420411f
ILT
3165}
3166
3167// Close the output file.
3168
3169void
3170Output_file::close()
3171{
3172 // If the map isn't file-backed, we need to write it now.
516cb3d0 3173 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
3174 {
3175 size_t bytes_to_write = this->file_size_;
3176 while (bytes_to_write > 0)
3177 {
3178 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3179 if (bytes_written == 0)
3180 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3181 else if (bytes_written < 0)
3182 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3183 else
3184 bytes_to_write -= bytes_written;
3185 }
3186 }
3187 this->unmap();
61ba1cf9 3188
42a1b686 3189 // We don't close stdout or stderr
516cb3d0
ILT
3190 if (this->o_ != STDOUT_FILENO
3191 && this->o_ != STDERR_FILENO
3192 && !this->is_temporary_)
42a1b686
ILT
3193 if (::close(this->o_) < 0)
3194 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 3195 this->o_ = -1;
a2fb1b05
ILT
3196}
3197
3198// Instantiate the templates we need. We could use the configure
3199// script to restrict this to only the ones for implemented targets.
3200
193a53d9 3201#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
3202template
3203off_t
3204Output_section::add_input_section<32, false>(
730cdc88 3205 Sized_relobj<32, false>* object,
ead1e424 3206 unsigned int shndx,
a2fb1b05 3207 const char* secname,
730cdc88 3208 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
3209 unsigned int reloc_shndx,
3210 bool have_sections_script);
193a53d9 3211#endif
a2fb1b05 3212
193a53d9 3213#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
3214template
3215off_t
3216Output_section::add_input_section<32, true>(
730cdc88 3217 Sized_relobj<32, true>* object,
ead1e424 3218 unsigned int shndx,
a2fb1b05 3219 const char* secname,
730cdc88 3220 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
3221 unsigned int reloc_shndx,
3222 bool have_sections_script);
193a53d9 3223#endif
a2fb1b05 3224
193a53d9 3225#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3226template
3227off_t
3228Output_section::add_input_section<64, false>(
730cdc88 3229 Sized_relobj<64, false>* object,
ead1e424 3230 unsigned int shndx,
a2fb1b05 3231 const char* secname,
730cdc88 3232 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3233 unsigned int reloc_shndx,
3234 bool have_sections_script);
193a53d9 3235#endif
a2fb1b05 3236
193a53d9 3237#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3238template
3239off_t
3240Output_section::add_input_section<64, true>(
730cdc88 3241 Sized_relobj<64, true>* object,
ead1e424 3242 unsigned int shndx,
a2fb1b05 3243 const char* secname,
730cdc88 3244 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3245 unsigned int reloc_shndx,
3246 bool have_sections_script);
193a53d9 3247#endif
a2fb1b05 3248
193a53d9 3249#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3250template
3251class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3252#endif
c06b7b0b 3253
193a53d9 3254#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3255template
3256class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3257#endif
c06b7b0b 3258
193a53d9 3259#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3260template
3261class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3262#endif
c06b7b0b 3263
193a53d9 3264#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3265template
3266class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3267#endif
c06b7b0b 3268
193a53d9 3269#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3270template
3271class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3272#endif
c06b7b0b 3273
193a53d9 3274#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3275template
3276class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3277#endif
c06b7b0b 3278
193a53d9 3279#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3280template
3281class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3282#endif
c06b7b0b 3283
193a53d9 3284#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3285template
3286class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3287#endif
c06b7b0b 3288
193a53d9 3289#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3290template
3291class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3292#endif
c06b7b0b 3293
193a53d9 3294#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3295template
3296class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3297#endif
c06b7b0b 3298
193a53d9 3299#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3300template
3301class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3302#endif
c06b7b0b 3303
193a53d9 3304#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3305template
3306class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3307#endif
c06b7b0b 3308
193a53d9 3309#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3310template
3311class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3312#endif
c06b7b0b 3313
193a53d9 3314#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3315template
3316class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3317#endif
c06b7b0b 3318
193a53d9 3319#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3320template
3321class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3322#endif
c06b7b0b 3323
193a53d9 3324#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3325template
3326class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3327#endif
c06b7b0b 3328
6a74a719
ILT
3329#ifdef HAVE_TARGET_32_LITTLE
3330template
3331class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3332#endif
3333
3334#ifdef HAVE_TARGET_32_BIG
3335template
3336class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3337#endif
3338
3339#ifdef HAVE_TARGET_64_LITTLE
3340template
3341class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3342#endif
3343
3344#ifdef HAVE_TARGET_64_BIG
3345template
3346class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3347#endif
3348
3349#ifdef HAVE_TARGET_32_LITTLE
3350template
3351class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3352#endif
3353
3354#ifdef HAVE_TARGET_32_BIG
3355template
3356class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3357#endif
3358
3359#ifdef HAVE_TARGET_64_LITTLE
3360template
3361class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3362#endif
3363
3364#ifdef HAVE_TARGET_64_BIG
3365template
3366class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3367#endif
3368
3369#ifdef HAVE_TARGET_32_LITTLE
3370template
3371class Output_data_group<32, false>;
3372#endif
3373
3374#ifdef HAVE_TARGET_32_BIG
3375template
3376class Output_data_group<32, true>;
3377#endif
3378
3379#ifdef HAVE_TARGET_64_LITTLE
3380template
3381class Output_data_group<64, false>;
3382#endif
3383
3384#ifdef HAVE_TARGET_64_BIG
3385template
3386class Output_data_group<64, true>;
3387#endif
3388
193a53d9 3389#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3390template
dbe717ef 3391class Output_data_got<32, false>;
193a53d9 3392#endif
ead1e424 3393
193a53d9 3394#ifdef HAVE_TARGET_32_BIG
ead1e424 3395template
dbe717ef 3396class Output_data_got<32, true>;
193a53d9 3397#endif
ead1e424 3398
193a53d9 3399#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3400template
dbe717ef 3401class Output_data_got<64, false>;
193a53d9 3402#endif
ead1e424 3403
193a53d9 3404#ifdef HAVE_TARGET_64_BIG
ead1e424 3405template
dbe717ef 3406class Output_data_got<64, true>;
193a53d9 3407#endif
ead1e424 3408
a2fb1b05 3409} // End namespace gold.
This page took 0.277785 seconds and 4 git commands to generate.