PR 11866
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140}
1141
c06b7b0b
ILT
1142// Write out relocation data.
1143
1144template<int sh_type, bool dynamic, int size, bool big_endian>
1145void
1146Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148{
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
3a44184e 1153 if (this->sort_relocs())
d98bc257
ILT
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
c06b7b0b
ILT
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
a3ad94ed 1169 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175}
1176
6a74a719
ILT
1177// Class Output_relocatable_relocs.
1178
1179template<int sh_type, int size, bool big_endian>
1180void
1181Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182{
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185}
1186
1187// class Output_data_group.
1188
1189template<int size, bool big_endian>
1190Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
8825ac63
ILT
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1195 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1196 relobj_(relobj),
1197 flags_(flags)
6a74a719 1198{
8825ac63 1199 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1200}
1201
1202// Write out the section group, which means translating the section
1203// indexes to apply to the output file.
1204
1205template<int size, bool big_endian>
1206void
1207Output_data_group<size, big_endian>::do_write(Output_file* of)
1208{
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
6a74a719
ILT
1221 ++p, ++contents)
1222 {
ef9beddf 1223 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
8825ac63 1244 this->input_shndxes_.clear();
6a74a719
ILT
1245}
1246
dbe717ef 1247// Output_data_got::Got_entry methods.
ead1e424
ILT
1248
1249// Write out the entry.
1250
1251template<int size, bool big_endian>
1252void
7e1edb90 1253Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1254{
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
e8c846c3
ILT
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
ead1e424 1264 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
ead1e424
ILT
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
d1f003c6
ILT
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
e727fa71 1284 break;
ead1e424
ILT
1285 }
1286
a3ad94ed 1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1288}
1289
dbe717ef 1290// Output_data_got methods.
ead1e424 1291
dbe717ef
ILT
1292// Add an entry for a global symbol to the GOT. This returns true if
1293// this is a new GOT entry, false if the symbol already had a GOT
1294// entry.
1295
1296template<int size, bool big_endian>
1297bool
0a65a3a7
CC
1298Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
ead1e424 1301{
0a65a3a7 1302 if (gsym->has_got_offset(got_type))
dbe717ef 1303 return false;
ead1e424 1304
dbe717ef
ILT
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
0a65a3a7 1307 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1308 return true;
1309}
ead1e424 1310
7bf1f802
ILT
1311// Add an entry for a global symbol to the GOT, and add a dynamic
1312// relocation of type R_TYPE for the GOT entry.
1313template<int size, bool big_endian>
1314void
1315Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
0a65a3a7 1317 unsigned int got_type,
7bf1f802
ILT
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320{
0a65a3a7 1321 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
2ea97941
ILT
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1329}
1330
1331template<int size, bool big_endian>
1332void
1333Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
0a65a3a7 1335 unsigned int got_type,
7bf1f802
ILT
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
2ea97941
ILT
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1347}
1348
0a65a3a7
CC
1349// Add a pair of entries for a global symbol to the GOT, and add
1350// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1352template<int size, bool big_endian>
1353void
0a65a3a7
CC
1354Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
7bf1f802 1357 Rel_dyn* rel_dyn,
0a65a3a7
CC
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
7bf1f802 1360{
0a65a3a7 1361 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
2ea97941
ILT
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
2ea97941
ILT
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1374 }
1375
1376 this->set_got_size();
7bf1f802
ILT
1377}
1378
1379template<int size, bool big_endian>
1380void
0a65a3a7
CC
1381Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
7bf1f802 1384 Rela_dyn* rela_dyn,
0a65a3a7
CC
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
7bf1f802 1387{
0a65a3a7 1388 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
2ea97941
ILT
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
2ea97941
ILT
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1401 }
1402
1403 this->set_got_size();
7bf1f802
ILT
1404}
1405
0a65a3a7
CC
1406// Add an entry for a local symbol to the GOT. This returns true if
1407// this is a new GOT entry, false if the symbol already has a GOT
1408// entry.
07f397ab
ILT
1409
1410template<int size, bool big_endian>
1411bool
0a65a3a7
CC
1412Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
07f397ab 1416{
0a65a3a7 1417 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1418 return false;
1419
0a65a3a7 1420 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1421 this->set_got_size();
0a65a3a7 1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1423 return true;
1424}
1425
0a65a3a7
CC
1426// Add an entry for a local symbol to the GOT, and add a dynamic
1427// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1428template<int size, bool big_endian>
1429void
0a65a3a7
CC
1430Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
7bf1f802
ILT
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436{
0a65a3a7 1437 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
2ea97941
ILT
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1445}
1446
1447template<int size, bool big_endian>
1448void
0a65a3a7
CC
1449Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
7bf1f802
ILT
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455{
0a65a3a7 1456 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
2ea97941
ILT
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1464}
1465
0a65a3a7
CC
1466// Add a pair of entries for a local symbol to the GOT, and add
1467// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1469template<int size, bool big_endian>
1470void
0a65a3a7 1471Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
0a65a3a7 1475 unsigned int got_type,
7bf1f802 1476 Rel_dyn* rel_dyn,
0a65a3a7
CC
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
7bf1f802 1479{
0a65a3a7 1480 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
2ea97941
ILT
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1486 Output_section* os = object->output_section(shndx);
2ea97941 1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1488
0a65a3a7
CC
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
2ea97941
ILT
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1494 }
7bf1f802
ILT
1495
1496 this->set_got_size();
1497}
1498
1499template<int size, bool big_endian>
1500void
0a65a3a7 1501Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
0a65a3a7 1505 unsigned int got_type,
7bf1f802 1506 Rela_dyn* rela_dyn,
0a65a3a7
CC
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
7bf1f802 1509{
0a65a3a7 1510 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
2ea97941
ILT
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1516 Output_section* os = object->output_section(shndx);
2ea97941 1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1518
0a65a3a7
CC
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
2ea97941
ILT
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1524 }
7bf1f802
ILT
1525
1526 this->set_got_size();
1527}
1528
ead1e424
ILT
1529// Write out the GOT.
1530
1531template<int size, bool big_endian>
1532void
dbe717ef 1533Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1534{
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
c06b7b0b 1538 const off_t oview_size = this->data_size();
ead1e424
ILT
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
7e1edb90 1546 p->write(pov);
ead1e424
ILT
1547 pov += add;
1548 }
1549
a3ad94ed 1550 gold_assert(pov - oview == oview_size);
c06b7b0b 1551
ead1e424
ILT
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556}
1557
a3ad94ed
ILT
1558// Output_data_dynamic::Dynamic_entry methods.
1559
1560// Write out the entry.
1561
1562template<int size, bool big_endian>
1563void
1564Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
7d1a9ebb 1566 const Stringpool* pool) const
a3ad94ed
ILT
1567{
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1569 switch (this->offset_)
a3ad94ed
ILT
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
a3ad94ed 1575 case DYNAMIC_SECTION_SIZE:
16649710 1576 val = this->u_.od->data_size();
612a8d3d
DM
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
a3ad94ed
ILT
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
16649710
ILT
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
c2b45e22
CC
1594 val = this->u_.od->address() + this->offset_;
1595 break;
a3ad94ed
ILT
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601}
1602
1603// Output_data_dynamic methods.
1604
16649710
ILT
1605// Adjust the output section to set the entry size.
1606
1607void
1608Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609{
8851ecca 1610 if (parameters->target().get_size() == 32)
16649710 1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1612 else if (parameters->target().get_size() == 64)
16649710
ILT
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616}
1617
a3ad94ed
ILT
1618// Set the final data size.
1619
1620void
27bc2bce 1621Output_data_dynamic::set_final_data_size()
a3ad94ed 1622{
20e6d0d6
DK
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
a3ad94ed
ILT
1632
1633 int dyn_size;
8851ecca 1634 if (parameters->target().get_size() == 32)
a3ad94ed 1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1636 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641}
1642
1643// Write out the dynamic entries.
1644
1645void
1646Output_data_dynamic::do_write(Output_file* of)
1647{
8851ecca 1648 switch (parameters->size_and_endianness())
a3ad94ed 1649 {
9025d29d 1650#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
9025d29d 1654#endif
8851ecca
ILT
1655#ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
9025d29d 1659#endif
9025d29d 1660#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
9025d29d 1664#endif
8851ecca
ILT
1665#ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669#endif
1670 default:
1671 gold_unreachable();
a3ad94ed 1672 }
a3ad94ed
ILT
1673}
1674
1675template<int size, bool big_endian>
1676void
1677Output_data_dynamic::sized_write(Output_file* of)
1678{
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
2ea97941 1681 const off_t offset = this->offset();
a3ad94ed 1682 const off_t oview_size = this->data_size();
2ea97941 1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
7d1a9ebb 1690 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
2ea97941 1696 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700}
1701
d491d34e
ILT
1702// Class Output_symtab_xindex.
1703
1704void
1705Output_symtab_xindex::do_write(Output_file* of)
1706{
2ea97941 1707 const off_t offset = this->offset();
d491d34e 1708 const off_t oview_size = this->data_size();
2ea97941 1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
2ea97941 1718 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722}
1723
1724template<bool big_endian>
1725void
1726Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727{
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
20e6d0d6
DK
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
d491d34e
ILT
1736}
1737
ead1e424
ILT
1738// Output_section::Input_section methods.
1739
1740// Return the data size. For an input section we store the size here.
1741// For an Output_section_data, we have to ask it for the size.
1742
1743off_t
1744Output_section::Input_section::data_size() const
1745{
1746 if (this->is_input_section())
b8e6aad9 1747 return this->u1_.data_size;
ead1e424 1748 else
b8e6aad9 1749 return this->u2_.posd->data_size();
ead1e424
ILT
1750}
1751
0439c796
DK
1752// Return the object for an input section.
1753
1754Relobj*
1755Output_section::Input_section::relobj() const
1756{
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768}
1769
1770// Return the input section index for an input section.
1771
1772unsigned int
1773Output_section::Input_section::shndx() const
1774{
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786}
1787
ead1e424
ILT
1788// Set the address and file offset.
1789
1790void
96803768
ILT
1791Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
ead1e424
ILT
1795{
1796 if (this->is_input_section())
96803768
ILT
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
ead1e424 1799 else
96803768
ILT
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801}
1802
a445fddf
ILT
1803// Reset the address and file offset.
1804
1805void
1806Output_section::Input_section::reset_address_and_file_offset()
1807{
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810}
1811
96803768
ILT
1812// Finalize the data size.
1813
1814void
1815Output_section::Input_section::finalize_data_size()
1816{
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1819}
1820
1e983657
ILT
1821// Try to turn an input offset into an output offset. We want to
1822// return the output offset relative to the start of this
1823// Input_section in the output section.
b8e6aad9 1824
8f00aeb8 1825inline bool
8383303e
ILT
1826Output_section::Input_section::output_offset(
1827 const Relobj* object,
2ea97941
ILT
1828 unsigned int shndx,
1829 section_offset_type offset,
8383303e 1830 section_offset_type *poutput) const
b8e6aad9
ILT
1831{
1832 if (!this->is_input_section())
2ea97941 1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1834 else
1835 {
2ea97941 1836 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1837 return false;
2ea97941 1838 *poutput = offset;
b8e6aad9
ILT
1839 return true;
1840 }
ead1e424
ILT
1841}
1842
a9a60db6
ILT
1843// Return whether this is the merge section for the input section
1844// SHNDX in OBJECT.
1845
1846inline bool
1847Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1848 unsigned int shndx) const
a9a60db6
ILT
1849{
1850 if (this->is_input_section())
1851 return false;
2ea97941 1852 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1853}
1854
ead1e424
ILT
1855// Write out the data. We don't have to do anything for an input
1856// section--they are handled via Object::relocate--but this is where
1857// we write out the data for an Output_section_data.
1858
1859void
1860Output_section::Input_section::write(Output_file* of)
1861{
1862 if (!this->is_input_section())
b8e6aad9 1863 this->u2_.posd->write(of);
ead1e424
ILT
1864}
1865
96803768
ILT
1866// Write the data to a buffer. As for write(), we don't have to do
1867// anything for an input section.
1868
1869void
1870Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871{
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874}
1875
7d9e3d98
ILT
1876// Print to a map file.
1877
1878void
1879Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880{
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
20e6d0d6
DK
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
7d9e3d98
ILT
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901}
1902
a2fb1b05
ILT
1903// Output_section methods.
1904
1905// Construct an Output_section. NAME will point into a Stringpool.
1906
2ea97941
ILT
1907Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
a2fb1b05
ILT
1910 addralign_(0),
1911 entsize_(0),
a445fddf 1912 load_address_(0),
16649710 1913 link_section_(NULL),
a2fb1b05 1914 link_(0),
16649710 1915 info_section_(NULL),
6a74a719 1916 info_symndx_(NULL),
a2fb1b05 1917 info_(0),
2ea97941
ILT
1918 type_(type),
1919 flags_(flags),
91ea499d 1920 out_shndx_(-1U),
c06b7b0b
ILT
1921 symtab_index_(0),
1922 dynsym_index_(0),
ead1e424
ILT
1923 input_sections_(),
1924 first_input_offset_(0),
c51e6221 1925 fills_(),
96803768 1926 postprocessing_buffer_(NULL),
a3ad94ed 1927 needs_symtab_index_(false),
16649710
ILT
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
730cdc88 1930 should_link_to_dynsym_(false),
27bc2bce 1931 after_input_sections_(false),
7bf1f802 1932 requires_postprocessing_(false),
a445fddf
ILT
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
755ab8af 1935 info_uses_section_index_(false),
6e9ba2ca 1936 input_section_order_specified_(false),
2fd32231
ILT
1937 may_sort_attached_input_sections_(false),
1938 must_sort_attached_input_sections_(false),
1939 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1940 is_relro_(false),
1941 is_relro_local_(false),
1a2dff53
ILT
1942 is_last_relro_(false),
1943 is_first_non_relro_(false),
8a5e3e08
ILT
1944 is_small_section_(false),
1945 is_large_section_(false),
f5c870d2
ILT
1946 is_interp_(false),
1947 is_dynamic_linker_section_(false),
1948 generate_code_fills_at_write_(false),
e8cd95c7 1949 is_entsize_zero_(false),
8923b24c 1950 section_offsets_need_adjustment_(false),
1e5d2fb1 1951 is_noload_(false),
131687b4 1952 always_keeps_input_sections_(false),
20e6d0d6 1953 tls_offset_(0),
c0a62865 1954 checkpoint_(NULL),
0439c796 1955 lookup_maps_(new Output_section_lookup_maps)
a2fb1b05 1956{
27bc2bce
ILT
1957 // An unallocated section has no address. Forcing this means that
1958 // we don't need special treatment for symbols defined in debug
1959 // sections.
2ea97941 1960 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 1961 this->set_address(0);
a2fb1b05
ILT
1962}
1963
54dc6425
ILT
1964Output_section::~Output_section()
1965{
20e6d0d6 1966 delete this->checkpoint_;
54dc6425
ILT
1967}
1968
16649710
ILT
1969// Set the entry size.
1970
1971void
1972Output_section::set_entsize(uint64_t v)
1973{
e8cd95c7
ILT
1974 if (this->is_entsize_zero_)
1975 ;
1976 else if (this->entsize_ == 0)
16649710 1977 this->entsize_ = v;
e8cd95c7
ILT
1978 else if (this->entsize_ != v)
1979 {
1980 this->entsize_ = 0;
1981 this->is_entsize_zero_ = 1;
1982 }
16649710
ILT
1983}
1984
ead1e424 1985// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1986// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1987// relocation section which applies to this section, or 0 if none, or
1988// -1U if more than one. Return the offset of the input section
1989// within the output section. Return -1 if the input section will
1990// receive special handling. In the normal case we don't always keep
1991// track of input sections for an Output_section. Instead, each
1992// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1993// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1994// track of input sections here; this is used when SECTIONS appears in
1995// a linker script.
a2fb1b05
ILT
1996
1997template<int size, bool big_endian>
1998off_t
6e9ba2ca
ST
1999Output_section::add_input_section(Layout* layout,
2000 Sized_relobj<size, big_endian>* object,
2ea97941 2001 unsigned int shndx,
ead1e424 2002 const char* secname,
730cdc88 2003 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2004 unsigned int reloc_shndx,
2005 bool have_sections_script)
a2fb1b05 2006{
2ea97941
ILT
2007 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2008 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2009 {
75f2446e 2010 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2011 static_cast<unsigned long>(addralign), secname);
2012 addralign = 1;
a2fb1b05 2013 }
a2fb1b05 2014
2ea97941
ILT
2015 if (addralign > this->addralign_)
2016 this->addralign_ = addralign;
a2fb1b05 2017
44a43cf9 2018 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2019 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2020
2021 // .debug_str is a mergeable string section, but is not always so
2022 // marked by compilers. Mark manually here so we can optimize.
2023 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2024 {
2025 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2026 entsize = 1;
4f833eee 2027 }
44a43cf9 2028
e8cd95c7
ILT
2029 this->update_flags_for_input_section(sh_flags);
2030 this->set_entsize(entsize);
2031
b8e6aad9 2032 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2033 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2034 // a section. We don't try to handle empty merge sections--they
2035 // mess up the mappings, and are useless anyhow.
44a43cf9 2036 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2037 && reloc_shndx == 0
2038 && shdr.get_sh_size() > 0)
b8e6aad9 2039 {
0439c796
DK
2040 // Keep information about merged input sections for rebuilding fast
2041 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2042 bool keeps_input_sections = (this->always_keeps_input_sections_
2043 || have_sections_script
2044 || parameters->target().may_relax());
2045
0439c796
DK
2046 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2047 addralign, keeps_input_sections))
b8e6aad9
ILT
2048 {
2049 // Tell the relocation routines that they need to call the
730cdc88 2050 // output_offset method to determine the final address.
b8e6aad9
ILT
2051 return -1;
2052 }
2053 }
2054
27bc2bce 2055 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2056 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2057 addralign);
c51e6221 2058
c0a62865
DK
2059 // Determine if we want to delay code-fill generation until the output
2060 // section is written. When the target is relaxing, we want to delay fill
2061 // generating to avoid adjusting them during relaxation.
2062 if (!this->generate_code_fills_at_write_
2063 && !have_sections_script
2064 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2065 && parameters->target().has_code_fill()
2066 && parameters->target().may_relax())
2067 {
2068 gold_assert(this->fills_.empty());
2069 this->generate_code_fills_at_write_ = true;
2070 }
2071
c51e6221 2072 if (aligned_offset_in_section > offset_in_section
c0a62865 2073 && !this->generate_code_fills_at_write_
a445fddf 2074 && !have_sections_script
44a43cf9 2075 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2076 && parameters->target().has_code_fill())
c51e6221
ILT
2077 {
2078 // We need to add some fill data. Using fill_list_ when
2079 // possible is an optimization, since we will often have fill
2080 // sections without input sections.
2081 off_t fill_len = aligned_offset_in_section - offset_in_section;
2082 if (this->input_sections_.empty())
2083 this->fills_.push_back(Fill(offset_in_section, fill_len));
2084 else
2085 {
029ba973 2086 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2087 Output_data_const* odc = new Output_data_const(fill_data, 1);
2088 this->input_sections_.push_back(Input_section(odc));
2089 }
2090 }
2091
a2e47362
CC
2092 section_size_type input_section_size = shdr.get_sh_size();
2093 section_size_type uncompressed_size;
2094 if (object->section_is_compressed(shndx, &uncompressed_size))
2095 input_section_size = uncompressed_size;
2096
27bc2bce 2097 this->set_current_data_size_for_child(aligned_offset_in_section
a2e47362 2098 + input_section_size);
a2fb1b05 2099
ead1e424 2100 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2101 // track of sections, or if we are relaxing. Also, if this is a
2102 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2103 // the future, we keep track of the sections. If the
2104 // --section-ordering-file option is used to specify the order of
2105 // sections, we need to keep track of sections.
131687b4
DK
2106 if (this->always_keeps_input_sections_
2107 || have_sections_script
2fd32231
ILT
2108 || !this->input_sections_.empty()
2109 || this->may_sort_attached_input_sections()
7d9e3d98 2110 || this->must_sort_attached_input_sections()
20e6d0d6 2111 || parameters->options().user_set_Map()
6e9ba2ca
ST
2112 || parameters->target().may_relax()
2113 || parameters->options().section_ordering_file())
2114 {
2115 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2116 if (parameters->options().section_ordering_file())
2117 {
2118 unsigned int section_order_index =
2119 layout->find_section_order_index(std::string(secname));
2120 if (section_order_index != 0)
2121 {
2122 isecn.set_section_order_index(section_order_index);
2123 this->set_input_section_order_specified();
2124 }
2125 }
2126 this->input_sections_.push_back(isecn);
2127 }
54dc6425 2128
c51e6221 2129 return aligned_offset_in_section;
61ba1cf9
ILT
2130}
2131
ead1e424
ILT
2132// Add arbitrary data to an output section.
2133
2134void
2135Output_section::add_output_section_data(Output_section_data* posd)
2136{
b8e6aad9
ILT
2137 Input_section inp(posd);
2138 this->add_output_section_data(&inp);
a445fddf
ILT
2139
2140 if (posd->is_data_size_valid())
2141 {
2142 off_t offset_in_section = this->current_data_size_for_child();
2143 off_t aligned_offset_in_section = align_address(offset_in_section,
2144 posd->addralign());
2145 this->set_current_data_size_for_child(aligned_offset_in_section
2146 + posd->data_size());
2147 }
b8e6aad9
ILT
2148}
2149
c0a62865
DK
2150// Add a relaxed input section.
2151
2152void
2153Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2154{
2155 Input_section inp(poris);
2156 this->add_output_section_data(&inp);
0439c796
DK
2157 if (this->lookup_maps_->is_valid())
2158 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2159 poris->shndx(), poris);
c0a62865
DK
2160
2161 // For a relaxed section, we use the current data size. Linker scripts
2162 // get all the input sections, including relaxed one from an output
2163 // section and add them back to them same output section to compute the
2164 // output section size. If we do not account for sizes of relaxed input
2165 // sections, an output section would be incorrectly sized.
2166 off_t offset_in_section = this->current_data_size_for_child();
2167 off_t aligned_offset_in_section = align_address(offset_in_section,
2168 poris->addralign());
2169 this->set_current_data_size_for_child(aligned_offset_in_section
2170 + poris->current_data_size());
2171}
2172
b8e6aad9 2173// Add arbitrary data to an output section by Input_section.
c06b7b0b 2174
b8e6aad9
ILT
2175void
2176Output_section::add_output_section_data(Input_section* inp)
2177{
ead1e424 2178 if (this->input_sections_.empty())
27bc2bce 2179 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2180
b8e6aad9 2181 this->input_sections_.push_back(*inp);
c06b7b0b 2182
2ea97941
ILT
2183 uint64_t addralign = inp->addralign();
2184 if (addralign > this->addralign_)
2185 this->addralign_ = addralign;
c06b7b0b 2186
b8e6aad9
ILT
2187 inp->set_output_section(this);
2188}
2189
2190// Add a merge section to an output section.
2191
2192void
2193Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2194 bool is_string, uint64_t entsize)
b8e6aad9 2195{
2ea97941 2196 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2197 this->add_output_section_data(&inp);
2198}
2199
2200// Add an input section to a SHF_MERGE section.
2201
2202bool
2ea97941
ILT
2203Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2204 uint64_t flags, uint64_t entsize,
0439c796
DK
2205 uint64_t addralign,
2206 bool keeps_input_sections)
b8e6aad9 2207{
2ea97941 2208 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2209
2210 // We only merge strings if the alignment is not more than the
2211 // character size. This could be handled, but it's unusual.
2ea97941 2212 if (is_string && addralign > entsize)
b8e6aad9
ILT
2213 return false;
2214
20e6d0d6
DK
2215 // We cannot restore merged input section states.
2216 gold_assert(this->checkpoint_ == NULL);
2217
c0a62865 2218 // Look up merge sections by required properties.
0439c796
DK
2219 // Currently, we only invalidate the lookup maps in script processing
2220 // and relaxation. We should not have done either when we reach here.
2221 // So we assume that the lookup maps are valid to simply code.
2222 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2223 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2224 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2225 bool is_new = false;
2226 if (pomb != NULL)
c0a62865 2227 {
6bf924b0
DK
2228 gold_assert(pomb->is_string() == is_string
2229 && pomb->entsize() == entsize
2230 && pomb->addralign() == addralign);
c0a62865 2231 }
b8e6aad9
ILT
2232 else
2233 {
6bf924b0
DK
2234 // Create a new Output_merge_data or Output_merge_string_data.
2235 if (!is_string)
2236 pomb = new Output_merge_data(entsize, addralign);
2237 else
9a0910c3 2238 {
6bf924b0
DK
2239 switch (entsize)
2240 {
2241 case 1:
2242 pomb = new Output_merge_string<char>(addralign);
2243 break;
2244 case 2:
2245 pomb = new Output_merge_string<uint16_t>(addralign);
2246 break;
2247 case 4:
2248 pomb = new Output_merge_string<uint32_t>(addralign);
2249 break;
2250 default:
2251 return false;
2252 }
9a0910c3 2253 }
0439c796
DK
2254 // If we need to do script processing or relaxation, we need to keep
2255 // the original input sections to rebuild the fast lookup maps.
2256 if (keeps_input_sections)
2257 pomb->set_keeps_input_sections();
2258 is_new = true;
b8e6aad9
ILT
2259 }
2260
6bf924b0
DK
2261 if (pomb->add_input_section(object, shndx))
2262 {
0439c796
DK
2263 // Add new merge section to this output section and link merge
2264 // section properties to new merge section in map.
2265 if (is_new)
2266 {
2267 this->add_output_merge_section(pomb, is_string, entsize);
2268 this->lookup_maps_->add_merge_section(msp, pomb);
2269 }
2270
6bf924b0
DK
2271 // Add input section to new merge section and link input section to new
2272 // merge section in map.
0439c796 2273 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2274 return true;
2275 }
2276 else
0439c796
DK
2277 {
2278 // If add_input_section failed, delete new merge section to avoid
2279 // exporting empty merge sections in Output_section::get_input_section.
2280 if (is_new)
2281 delete pomb;
2282 return false;
2283 }
b8e6aad9
ILT
2284}
2285
c0a62865 2286// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2287// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2288
20e6d0d6 2289void
c0a62865 2290Output_section::build_relaxation_map(
2ea97941 2291 const Input_section_list& input_sections,
c0a62865
DK
2292 size_t limit,
2293 Relaxation_map* relaxation_map) const
20e6d0d6 2294{
c0a62865
DK
2295 for (size_t i = 0; i < limit; ++i)
2296 {
2ea97941 2297 const Input_section& is(input_sections[i]);
c0a62865
DK
2298 if (is.is_input_section() || is.is_relaxed_input_section())
2299 {
5ac169d4
DK
2300 Section_id sid(is.relobj(), is.shndx());
2301 (*relaxation_map)[sid] = i;
c0a62865
DK
2302 }
2303 }
2304}
2305
2306// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2307// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2308// indices of INPUT_SECTIONS.
20e6d0d6 2309
c0a62865
DK
2310void
2311Output_section::convert_input_sections_in_list_to_relaxed_sections(
2312 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2313 const Relaxation_map& map,
2ea97941 2314 Input_section_list* input_sections)
c0a62865
DK
2315{
2316 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2317 {
2318 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2319 Section_id sid(poris->relobj(), poris->shndx());
2320 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2321 gold_assert(p != map.end());
2ea97941
ILT
2322 gold_assert((*input_sections)[p->second].is_input_section());
2323 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2324 }
2325}
2326
2327// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2328// is a vector of pointers to Output_relaxed_input_section or its derived
2329// classes. The relaxed sections must correspond to existing input sections.
2330
2331void
2332Output_section::convert_input_sections_to_relaxed_sections(
2333 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2334{
029ba973 2335 gold_assert(parameters->target().may_relax());
20e6d0d6 2336
c0a62865
DK
2337 // We want to make sure that restore_states does not undo the effect of
2338 // this. If there is no checkpoint active, just search the current
2339 // input section list and replace the sections there. If there is
2340 // a checkpoint, also replace the sections there.
2341
2342 // By default, we look at the whole list.
2343 size_t limit = this->input_sections_.size();
2344
2345 if (this->checkpoint_ != NULL)
20e6d0d6 2346 {
c0a62865
DK
2347 // Replace input sections with relaxed input section in the saved
2348 // copy of the input section list.
2349 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2350 {
c0a62865
DK
2351 Relaxation_map map;
2352 this->build_relaxation_map(
2353 *(this->checkpoint_->input_sections()),
2354 this->checkpoint_->input_sections()->size(),
2355 &map);
2356 this->convert_input_sections_in_list_to_relaxed_sections(
2357 relaxed_sections,
2358 map,
2359 this->checkpoint_->input_sections());
2360 }
2361 else
2362 {
2363 // We have not copied the input section list yet. Instead, just
2364 // look at the portion that would be saved.
2365 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2366 }
20e6d0d6 2367 }
c0a62865
DK
2368
2369 // Convert input sections in input_section_list.
2370 Relaxation_map map;
2371 this->build_relaxation_map(this->input_sections_, limit, &map);
2372 this->convert_input_sections_in_list_to_relaxed_sections(
2373 relaxed_sections,
2374 map,
2375 &this->input_sections_);
41263c05
DK
2376
2377 // Update fast look-up map.
0439c796 2378 if (this->lookup_maps_->is_valid())
41263c05
DK
2379 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2380 {
2381 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2382 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2383 poris->shndx(), poris);
41263c05 2384 }
20e6d0d6
DK
2385}
2386
9c547ec3
ILT
2387// Update the output section flags based on input section flags.
2388
2389void
2ea97941 2390Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2391{
2392 // If we created the section with SHF_ALLOC clear, we set the
2393 // address. If we are now setting the SHF_ALLOC flag, we need to
2394 // undo that.
2395 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2396 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2397 this->mark_address_invalid();
2398
2ea97941 2399 this->flags_ |= (flags
9c547ec3
ILT
2400 & (elfcpp::SHF_WRITE
2401 | elfcpp::SHF_ALLOC
2402 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2403
2404 if ((flags & elfcpp::SHF_MERGE) == 0)
2405 this->flags_ &=~ elfcpp::SHF_MERGE;
2406 else
2407 {
2408 if (this->current_data_size_for_child() == 0)
2409 this->flags_ |= elfcpp::SHF_MERGE;
2410 }
2411
2412 if ((flags & elfcpp::SHF_STRINGS) == 0)
2413 this->flags_ &=~ elfcpp::SHF_STRINGS;
2414 else
2415 {
2416 if (this->current_data_size_for_child() == 0)
2417 this->flags_ |= elfcpp::SHF_STRINGS;
2418 }
9c547ec3
ILT
2419}
2420
2ea97941 2421// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2422// OBJECT has been added. Return NULL if none found.
2423
2424Output_section_data*
2425Output_section::find_merge_section(const Relobj* object,
2ea97941 2426 unsigned int shndx) const
c0a62865 2427{
0439c796
DK
2428 if (!this->lookup_maps_->is_valid())
2429 this->build_lookup_maps();
2430 return this->lookup_maps_->find_merge_section(object, shndx);
2431}
2432
2433// Build the lookup maps for merge and relaxed sections. This is needs
2434// to be declared as a const methods so that it is callable with a const
2435// Output_section pointer. The method only updates states of the maps.
2436
2437void
2438Output_section::build_lookup_maps() const
2439{
2440 this->lookup_maps_->clear();
2441 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2442 p != this->input_sections_.end();
2443 ++p)
c0a62865 2444 {
0439c796
DK
2445 if (p->is_merge_section())
2446 {
2447 Output_merge_base* pomb = p->output_merge_base();
2448 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2449 pomb->addralign());
2450 this->lookup_maps_->add_merge_section(msp, pomb);
2451 for (Output_merge_base::Input_sections::const_iterator is =
2452 pomb->input_sections_begin();
2453 is != pomb->input_sections_end();
2454 ++is)
2455 {
2456 const Const_section_id& csid = *is;
2457 this->lookup_maps_->add_merge_input_section(csid.first,
2458 csid.second, pomb);
2459 }
2460
2461 }
2462 else if (p->is_relaxed_input_section())
2463 {
2464 Output_relaxed_input_section* poris = p->relaxed_input_section();
2465 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2466 poris->shndx(), poris);
2467 }
c0a62865 2468 }
c0a62865
DK
2469}
2470
2471// Find an relaxed input section corresponding to an input section
2ea97941 2472// in OBJECT with index SHNDX.
c0a62865 2473
d6344fb5 2474const Output_relaxed_input_section*
c0a62865 2475Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2476 unsigned int shndx) const
c0a62865 2477{
0439c796
DK
2478 if (!this->lookup_maps_->is_valid())
2479 this->build_lookup_maps();
2480 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2481}
2482
2ea97941
ILT
2483// Given an address OFFSET relative to the start of input section
2484// SHNDX in OBJECT, return whether this address is being included in
2485// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2486// a special mapping.
2487
2488bool
2489Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2490 unsigned int shndx,
2491 off_t offset) const
730cdc88 2492{
c0a62865 2493 // Look at the Output_section_data_maps first.
2ea97941 2494 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2495 if (posd == NULL)
2ea97941 2496 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2497
2498 if (posd != NULL)
2499 {
2ea97941
ILT
2500 section_offset_type output_offset;
2501 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2502 gold_assert(found);
2ea97941 2503 return output_offset != -1;
c0a62865
DK
2504 }
2505
2506 // Fall back to the slow look-up.
730cdc88
ILT
2507 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2508 p != this->input_sections_.end();
2509 ++p)
2510 {
2ea97941
ILT
2511 section_offset_type output_offset;
2512 if (p->output_offset(object, shndx, offset, &output_offset))
2513 return output_offset != -1;
730cdc88
ILT
2514 }
2515
2516 // By default we assume that the address is mapped. This should
2517 // only be called after we have passed all sections to Layout. At
2518 // that point we should know what we are discarding.
2519 return true;
2520}
2521
2ea97941
ILT
2522// Given an address OFFSET relative to the start of input section
2523// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2524// start of the input section in the output section. This should only
2ea97941 2525// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2526
8383303e 2527section_offset_type
2ea97941
ILT
2528Output_section::output_offset(const Relobj* object, unsigned int shndx,
2529 section_offset_type offset) const
730cdc88 2530{
c0a62865
DK
2531 // This can only be called meaningfully when we know the data size
2532 // of this.
2533 gold_assert(this->is_data_size_valid());
730cdc88 2534
c0a62865 2535 // Look at the Output_section_data_maps first.
2ea97941 2536 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2537 if (posd == NULL)
2ea97941 2538 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2539 if (posd != NULL)
2540 {
2ea97941
ILT
2541 section_offset_type output_offset;
2542 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2543 gold_assert(found);
2ea97941 2544 return output_offset;
c0a62865
DK
2545 }
2546
2547 // Fall back to the slow look-up.
730cdc88
ILT
2548 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2549 p != this->input_sections_.end();
2550 ++p)
2551 {
2ea97941
ILT
2552 section_offset_type output_offset;
2553 if (p->output_offset(object, shndx, offset, &output_offset))
2554 return output_offset;
730cdc88
ILT
2555 }
2556 gold_unreachable();
2557}
2558
2ea97941
ILT
2559// Return the output virtual address of OFFSET relative to the start
2560// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2561
2562uint64_t
2ea97941
ILT
2563Output_section::output_address(const Relobj* object, unsigned int shndx,
2564 off_t offset) const
b8e6aad9
ILT
2565{
2566 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2567
2568 // Look at the Output_section_data_maps first.
2ea97941 2569 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2570 if (posd == NULL)
2ea97941 2571 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2572 if (posd != NULL && posd->is_address_valid())
2573 {
2ea97941
ILT
2574 section_offset_type output_offset;
2575 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2576 gold_assert(found);
2ea97941 2577 return posd->address() + output_offset;
c0a62865
DK
2578 }
2579
2580 // Fall back to the slow look-up.
b8e6aad9
ILT
2581 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2582 p != this->input_sections_.end();
2583 ++p)
2584 {
2585 addr = align_address(addr, p->addralign());
2ea97941
ILT
2586 section_offset_type output_offset;
2587 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2588 {
2ea97941 2589 if (output_offset == -1)
eff45813 2590 return -1ULL;
2ea97941 2591 return addr + output_offset;
730cdc88 2592 }
b8e6aad9
ILT
2593 addr += p->data_size();
2594 }
2595
2596 // If we get here, it means that we don't know the mapping for this
2597 // input section. This might happen in principle if
2598 // add_input_section were called before add_output_section_data.
2599 // But it should never actually happen.
2600
2601 gold_unreachable();
ead1e424
ILT
2602}
2603
e29e076a 2604// Find the output address of the start of the merged section for
2ea97941 2605// input section SHNDX in object OBJECT.
a9a60db6 2606
e29e076a
ILT
2607bool
2608Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2609 unsigned int shndx,
e29e076a 2610 uint64_t* paddr) const
a9a60db6 2611{
c0a62865
DK
2612 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2613 // Looking up the merge section map does not always work as we sometimes
2614 // find a merge section without its address set.
a9a60db6
ILT
2615 uint64_t addr = this->address() + this->first_input_offset_;
2616 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2617 p != this->input_sections_.end();
2618 ++p)
2619 {
2620 addr = align_address(addr, p->addralign());
2621
2622 // It would be nice if we could use the existing output_offset
2623 // method to get the output offset of input offset 0.
2624 // Unfortunately we don't know for sure that input offset 0 is
2625 // mapped at all.
2ea97941 2626 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2627 {
2628 *paddr = addr;
2629 return true;
2630 }
a9a60db6
ILT
2631
2632 addr += p->data_size();
2633 }
e29e076a
ILT
2634
2635 // We couldn't find a merge output section for this input section.
2636 return false;
a9a60db6
ILT
2637}
2638
27bc2bce 2639// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2640// setting the addresses of any Output_section_data objects.
2641
2642void
27bc2bce 2643Output_section::set_final_data_size()
ead1e424
ILT
2644{
2645 if (this->input_sections_.empty())
27bc2bce
ILT
2646 {
2647 this->set_data_size(this->current_data_size_for_child());
2648 return;
2649 }
ead1e424 2650
6e9ba2ca
ST
2651 if (this->must_sort_attached_input_sections()
2652 || this->input_section_order_specified())
2fd32231
ILT
2653 this->sort_attached_input_sections();
2654
2ea97941 2655 uint64_t address = this->address();
27bc2bce 2656 off_t startoff = this->offset();
ead1e424
ILT
2657 off_t off = startoff + this->first_input_offset_;
2658 for (Input_section_list::iterator p = this->input_sections_.begin();
2659 p != this->input_sections_.end();
2660 ++p)
2661 {
2662 off = align_address(off, p->addralign());
2ea97941 2663 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2664 startoff);
ead1e424
ILT
2665 off += p->data_size();
2666 }
2667
2668 this->set_data_size(off - startoff);
2669}
9a0910c3 2670
a445fddf
ILT
2671// Reset the address and file offset.
2672
2673void
2674Output_section::do_reset_address_and_file_offset()
2675{
20e6d0d6
DK
2676 // An unallocated section has no address. Forcing this means that
2677 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2678 // sections. We do the same in the constructor. This does not
2679 // apply to NOLOAD sections though.
2680 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2681 this->set_address(0);
2682
a445fddf
ILT
2683 for (Input_section_list::iterator p = this->input_sections_.begin();
2684 p != this->input_sections_.end();
2685 ++p)
2686 p->reset_address_and_file_offset();
2687}
20e6d0d6
DK
2688
2689// Return true if address and file offset have the values after reset.
2690
2691bool
2692Output_section::do_address_and_file_offset_have_reset_values() const
2693{
2694 if (this->is_offset_valid())
2695 return false;
2696
2697 // An unallocated section has address 0 after its construction or a reset.
2698 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2699 return this->is_address_valid() && this->address() == 0;
2700 else
2701 return !this->is_address_valid();
2702}
a445fddf 2703
7bf1f802
ILT
2704// Set the TLS offset. Called only for SHT_TLS sections.
2705
2706void
2707Output_section::do_set_tls_offset(uint64_t tls_base)
2708{
2709 this->tls_offset_ = this->address() - tls_base;
2710}
2711
2fd32231
ILT
2712// In a few cases we need to sort the input sections attached to an
2713// output section. This is used to implement the type of constructor
2714// priority ordering implemented by the GNU linker, in which the
2715// priority becomes part of the section name and the sections are
2716// sorted by name. We only do this for an output section if we see an
2717// attached input section matching ".ctor.*", ".dtor.*",
2718// ".init_array.*" or ".fini_array.*".
2719
2720class Output_section::Input_section_sort_entry
2721{
2722 public:
2723 Input_section_sort_entry()
2724 : input_section_(), index_(-1U), section_has_name_(false),
2725 section_name_()
2726 { }
2727
2ea97941 2728 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
2729 unsigned int index,
2730 bool must_sort_attached_input_sections)
2ea97941
ILT
2731 : input_section_(input_section), index_(index),
2732 section_has_name_(input_section.is_input_section()
2733 || input_section.is_relaxed_input_section())
2fd32231 2734 {
6e9ba2ca
ST
2735 if (this->section_has_name_
2736 && must_sort_attached_input_sections)
2fd32231
ILT
2737 {
2738 // This is only called single-threaded from Layout::finalize,
2739 // so it is OK to lock. Unfortunately we have no way to pass
2740 // in a Task token.
2741 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2742 Object* obj = (input_section.is_input_section()
2743 ? input_section.relobj()
2744 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2745 Task_lock_obj<Object> tl(dummy_task, obj);
2746
2747 // This is a slow operation, which should be cached in
2748 // Layout::layout if this becomes a speed problem.
2ea97941 2749 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2750 }
2751 }
2752
2753 // Return the Input_section.
2754 const Input_section&
2755 input_section() const
2756 {
2757 gold_assert(this->index_ != -1U);
2758 return this->input_section_;
2759 }
2760
2761 // The index of this entry in the original list. This is used to
2762 // make the sort stable.
2763 unsigned int
2764 index() const
2765 {
2766 gold_assert(this->index_ != -1U);
2767 return this->index_;
2768 }
2769
2770 // Whether there is a section name.
2771 bool
2772 section_has_name() const
2773 { return this->section_has_name_; }
2774
2775 // The section name.
2776 const std::string&
2777 section_name() const
2778 {
2779 gold_assert(this->section_has_name_);
2780 return this->section_name_;
2781 }
2782
ab794b6b
ILT
2783 // Return true if the section name has a priority. This is assumed
2784 // to be true if it has a dot after the initial dot.
2fd32231 2785 bool
ab794b6b 2786 has_priority() const
2fd32231
ILT
2787 {
2788 gold_assert(this->section_has_name_);
2a0ff005 2789 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2790 }
2791
ab794b6b
ILT
2792 // Return true if this an input file whose base name matches
2793 // FILE_NAME. The base name must have an extension of ".o", and
2794 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2795 // This is to match crtbegin.o as well as crtbeginS.o without
2796 // getting confused by other possibilities. Overall matching the
2797 // file name this way is a dreadful hack, but the GNU linker does it
2798 // in order to better support gcc, and we need to be compatible.
2fd32231 2799 bool
2ea97941 2800 match_file_name(const char* match_file_name) const
2fd32231 2801 {
2fd32231
ILT
2802 const std::string& file_name(this->input_section_.relobj()->name());
2803 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2804 size_t match_len = strlen(match_file_name);
2805 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2806 return false;
2807 size_t base_len = strlen(base_name);
2808 if (base_len != match_len + 2 && base_len != match_len + 3)
2809 return false;
2810 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2811 }
2812
8fe2a369
ST
2813 // Returns 1 if THIS should appear before S in section order, -1 if S
2814 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
2815 int
2816 compare_section_ordering(const Input_section_sort_entry& s) const
2817 {
8fe2a369
ST
2818 unsigned int this_secn_index = this->input_section_.section_order_index();
2819 unsigned int s_secn_index = s.input_section().section_order_index();
2820 if (this_secn_index > 0 && s_secn_index > 0)
2821 {
2822 if (this_secn_index < s_secn_index)
2823 return 1;
2824 else if (this_secn_index > s_secn_index)
2825 return -1;
2826 }
2827 return 0;
6e9ba2ca
ST
2828 }
2829
2fd32231
ILT
2830 private:
2831 // The Input_section we are sorting.
2832 Input_section input_section_;
2833 // The index of this Input_section in the original list.
2834 unsigned int index_;
2835 // Whether this Input_section has a section name--it won't if this
2836 // is some random Output_section_data.
2837 bool section_has_name_;
2838 // The section name if there is one.
2839 std::string section_name_;
2840};
2841
2842// Return true if S1 should come before S2 in the output section.
2843
2844bool
2845Output_section::Input_section_sort_compare::operator()(
2846 const Output_section::Input_section_sort_entry& s1,
2847 const Output_section::Input_section_sort_entry& s2) const
2848{
ab794b6b
ILT
2849 // crtbegin.o must come first.
2850 bool s1_begin = s1.match_file_name("crtbegin");
2851 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2852 if (s1_begin || s2_begin)
2853 {
2854 if (!s1_begin)
2855 return false;
2856 if (!s2_begin)
2857 return true;
2858 return s1.index() < s2.index();
2859 }
2860
ab794b6b
ILT
2861 // crtend.o must come last.
2862 bool s1_end = s1.match_file_name("crtend");
2863 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2864 if (s1_end || s2_end)
2865 {
2866 if (!s1_end)
2867 return true;
2868 if (!s2_end)
2869 return false;
2870 return s1.index() < s2.index();
2871 }
2872
ab794b6b
ILT
2873 // We sort all the sections with no names to the end.
2874 if (!s1.section_has_name() || !s2.section_has_name())
2875 {
2876 if (s1.section_has_name())
2877 return true;
2878 if (s2.section_has_name())
2879 return false;
2880 return s1.index() < s2.index();
2881 }
2fd32231 2882
ab794b6b 2883 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2884 bool s1_has_priority = s1.has_priority();
2885 bool s2_has_priority = s2.has_priority();
2886 if (s1_has_priority && !s2_has_priority)
2fd32231 2887 return false;
ab794b6b 2888 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2889 return true;
2890
6e9ba2ca
ST
2891 // Check if a section order exists for these sections through a section
2892 // ordering file. If sequence_num is 0, an order does not exist.
2893 int sequence_num = s1.compare_section_ordering(s2);
2894 if (sequence_num != 0)
2895 return sequence_num == 1;
2896
2fd32231
ILT
2897 // Otherwise we sort by name.
2898 int compare = s1.section_name().compare(s2.section_name());
2899 if (compare != 0)
2900 return compare < 0;
2901
2902 // Otherwise we keep the input order.
2903 return s1.index() < s2.index();
2904}
2905
2a0ff005
DK
2906// Return true if S1 should come before S2 in an .init_array or .fini_array
2907// output section.
2908
2909bool
2910Output_section::Input_section_sort_init_fini_compare::operator()(
2911 const Output_section::Input_section_sort_entry& s1,
2912 const Output_section::Input_section_sort_entry& s2) const
2913{
2914 // We sort all the sections with no names to the end.
2915 if (!s1.section_has_name() || !s2.section_has_name())
2916 {
2917 if (s1.section_has_name())
2918 return true;
2919 if (s2.section_has_name())
2920 return false;
2921 return s1.index() < s2.index();
2922 }
2923
2924 // A section without a priority follows a section with a priority.
2925 // This is the reverse of .ctors and .dtors sections.
2926 bool s1_has_priority = s1.has_priority();
2927 bool s2_has_priority = s2.has_priority();
2928 if (s1_has_priority && !s2_has_priority)
2929 return true;
2930 if (!s1_has_priority && s2_has_priority)
2931 return false;
2932
6e9ba2ca
ST
2933 // Check if a section order exists for these sections through a section
2934 // ordering file. If sequence_num is 0, an order does not exist.
2935 int sequence_num = s1.compare_section_ordering(s2);
2936 if (sequence_num != 0)
2937 return sequence_num == 1;
2938
2a0ff005
DK
2939 // Otherwise we sort by name.
2940 int compare = s1.section_name().compare(s2.section_name());
2941 if (compare != 0)
2942 return compare < 0;
2943
2944 // Otherwise we keep the input order.
2945 return s1.index() < s2.index();
2946}
2947
8fe2a369
ST
2948// Return true if S1 should come before S2. Sections that do not match
2949// any pattern in the section ordering file are placed ahead of the sections
2950// that match some pattern.
2951
6e9ba2ca
ST
2952bool
2953Output_section::Input_section_sort_section_order_index_compare::operator()(
2954 const Output_section::Input_section_sort_entry& s1,
2955 const Output_section::Input_section_sort_entry& s2) const
2956{
8fe2a369
ST
2957 unsigned int s1_secn_index = s1.input_section().section_order_index();
2958 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 2959
8fe2a369
ST
2960 // Keep input order if section ordering cannot determine order.
2961 if (s1_secn_index == s2_secn_index)
2962 return s1.index() < s2.index();
2963
2964 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
2965}
2966
2fd32231
ILT
2967// Sort the input sections attached to an output section.
2968
2969void
2970Output_section::sort_attached_input_sections()
2971{
2972 if (this->attached_input_sections_are_sorted_)
2973 return;
2974
20e6d0d6
DK
2975 if (this->checkpoint_ != NULL
2976 && !this->checkpoint_->input_sections_saved())
2977 this->checkpoint_->save_input_sections();
2978
2fd32231
ILT
2979 // The only thing we know about an input section is the object and
2980 // the section index. We need the section name. Recomputing this
2981 // is slow but this is an unusual case. If this becomes a speed
2982 // problem we can cache the names as required in Layout::layout.
2983
2984 // We start by building a larger vector holding a copy of each
2985 // Input_section, plus its current index in the list and its name.
2986 std::vector<Input_section_sort_entry> sort_list;
2987
2988 unsigned int i = 0;
2989 for (Input_section_list::iterator p = this->input_sections_.begin();
2990 p != this->input_sections_.end();
2991 ++p, ++i)
6e9ba2ca
ST
2992 sort_list.push_back(Input_section_sort_entry(*p, i,
2993 this->must_sort_attached_input_sections()));
2fd32231
ILT
2994
2995 // Sort the input sections.
6e9ba2ca
ST
2996 if (this->must_sort_attached_input_sections())
2997 {
2998 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2999 || this->type() == elfcpp::SHT_INIT_ARRAY
3000 || this->type() == elfcpp::SHT_FINI_ARRAY)
3001 std::sort(sort_list.begin(), sort_list.end(),
3002 Input_section_sort_init_fini_compare());
3003 else
3004 std::sort(sort_list.begin(), sort_list.end(),
3005 Input_section_sort_compare());
3006 }
2a0ff005 3007 else
6e9ba2ca
ST
3008 {
3009 gold_assert(parameters->options().section_ordering_file());
3010 std::sort(sort_list.begin(), sort_list.end(),
3011 Input_section_sort_section_order_index_compare());
3012 }
2fd32231
ILT
3013
3014 // Copy the sorted input sections back to our list.
3015 this->input_sections_.clear();
3016 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3017 p != sort_list.end();
3018 ++p)
3019 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3020 sort_list.clear();
2fd32231
ILT
3021
3022 // Remember that we sorted the input sections, since we might get
3023 // called again.
3024 this->attached_input_sections_are_sorted_ = true;
3025}
3026
61ba1cf9
ILT
3027// Write the section header to *OSHDR.
3028
3029template<int size, bool big_endian>
3030void
16649710
ILT
3031Output_section::write_header(const Layout* layout,
3032 const Stringpool* secnamepool,
61ba1cf9
ILT
3033 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3034{
3035 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3036 oshdr->put_sh_type(this->type_);
6a74a719 3037
2ea97941 3038 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3039 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3040 flags |= elfcpp::SHF_INFO_LINK;
3041 oshdr->put_sh_flags(flags);
6a74a719 3042
61ba1cf9
ILT
3043 oshdr->put_sh_addr(this->address());
3044 oshdr->put_sh_offset(this->offset());
3045 oshdr->put_sh_size(this->data_size());
16649710
ILT
3046 if (this->link_section_ != NULL)
3047 oshdr->put_sh_link(this->link_section_->out_shndx());
3048 else if (this->should_link_to_symtab_)
3049 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3050 else if (this->should_link_to_dynsym_)
3051 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3052 else
3053 oshdr->put_sh_link(this->link_);
755ab8af 3054
2ea97941 3055 elfcpp::Elf_Word info;
16649710 3056 if (this->info_section_ != NULL)
755ab8af
ILT
3057 {
3058 if (this->info_uses_section_index_)
2ea97941 3059 info = this->info_section_->out_shndx();
755ab8af 3060 else
2ea97941 3061 info = this->info_section_->symtab_index();
755ab8af 3062 }
6a74a719 3063 else if (this->info_symndx_ != NULL)
2ea97941 3064 info = this->info_symndx_->symtab_index();
16649710 3065 else
2ea97941
ILT
3066 info = this->info_;
3067 oshdr->put_sh_info(info);
755ab8af 3068
61ba1cf9
ILT
3069 oshdr->put_sh_addralign(this->addralign_);
3070 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3071}
3072
ead1e424
ILT
3073// Write out the data. For input sections the data is written out by
3074// Object::relocate, but we have to handle Output_section_data objects
3075// here.
3076
3077void
3078Output_section::do_write(Output_file* of)
3079{
96803768
ILT
3080 gold_assert(!this->requires_postprocessing());
3081
c0a62865
DK
3082 // If the target performs relaxation, we delay filler generation until now.
3083 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3084
c51e6221
ILT
3085 off_t output_section_file_offset = this->offset();
3086 for (Fill_list::iterator p = this->fills_.begin();
3087 p != this->fills_.end();
3088 ++p)
3089 {
8851ecca 3090 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3091 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3092 fill_data.data(), fill_data.size());
c51e6221
ILT
3093 }
3094
c0a62865 3095 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3096 for (Input_section_list::iterator p = this->input_sections_.begin();
3097 p != this->input_sections_.end();
3098 ++p)
c0a62865
DK
3099 {
3100 off_t aligned_off = align_address(off, p->addralign());
3101 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3102 {
3103 size_t fill_len = aligned_off - off;
3104 std::string fill_data(parameters->target().code_fill(fill_len));
3105 of->write(off, fill_data.data(), fill_data.size());
3106 }
3107
3108 p->write(of);
3109 off = aligned_off + p->data_size();
3110 }
ead1e424
ILT
3111}
3112
96803768
ILT
3113// If a section requires postprocessing, create the buffer to use.
3114
3115void
3116Output_section::create_postprocessing_buffer()
3117{
3118 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3119
3120 if (this->postprocessing_buffer_ != NULL)
3121 return;
96803768
ILT
3122
3123 if (!this->input_sections_.empty())
3124 {
3125 off_t off = this->first_input_offset_;
3126 for (Input_section_list::iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3128 ++p)
3129 {
3130 off = align_address(off, p->addralign());
3131 p->finalize_data_size();
3132 off += p->data_size();
3133 }
3134 this->set_current_data_size_for_child(off);
3135 }
3136
3137 off_t buffer_size = this->current_data_size_for_child();
3138 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3139}
3140
3141// Write all the data of an Output_section into the postprocessing
3142// buffer. This is used for sections which require postprocessing,
3143// such as compression. Input sections are handled by
3144// Object::Relocate.
3145
3146void
3147Output_section::write_to_postprocessing_buffer()
3148{
3149 gold_assert(this->requires_postprocessing());
3150
c0a62865
DK
3151 // If the target performs relaxation, we delay filler generation until now.
3152 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3153
96803768
ILT
3154 unsigned char* buffer = this->postprocessing_buffer();
3155 for (Fill_list::iterator p = this->fills_.begin();
3156 p != this->fills_.end();
3157 ++p)
3158 {
8851ecca 3159 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3160 memcpy(buffer + p->section_offset(), fill_data.data(),
3161 fill_data.size());
96803768
ILT
3162 }
3163
3164 off_t off = this->first_input_offset_;
3165 for (Input_section_list::iterator p = this->input_sections_.begin();
3166 p != this->input_sections_.end();
3167 ++p)
3168 {
c0a62865
DK
3169 off_t aligned_off = align_address(off, p->addralign());
3170 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3171 {
3172 size_t fill_len = aligned_off - off;
3173 std::string fill_data(parameters->target().code_fill(fill_len));
3174 memcpy(buffer + off, fill_data.data(), fill_data.size());
3175 }
3176
3177 p->write_to_buffer(buffer + aligned_off);
3178 off = aligned_off + p->data_size();
96803768
ILT
3179 }
3180}
3181
a445fddf
ILT
3182// Get the input sections for linker script processing. We leave
3183// behind the Output_section_data entries. Note that this may be
3184// slightly incorrect for merge sections. We will leave them behind,
3185// but it is possible that the script says that they should follow
3186// some other input sections, as in:
3187// .rodata { *(.rodata) *(.rodata.cst*) }
3188// For that matter, we don't handle this correctly:
3189// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3190// With luck this will never matter.
3191
3192uint64_t
3193Output_section::get_input_sections(
2ea97941 3194 uint64_t address,
a445fddf 3195 const std::string& fill,
6625d24e 3196 std::list<Input_section>* input_sections)
a445fddf 3197{
20e6d0d6
DK
3198 if (this->checkpoint_ != NULL
3199 && !this->checkpoint_->input_sections_saved())
3200 this->checkpoint_->save_input_sections();
3201
0439c796
DK
3202 // Invalidate fast look-up maps.
3203 this->lookup_maps_->invalidate();
c0a62865 3204
2ea97941 3205 uint64_t orig_address = address;
a445fddf 3206
2ea97941 3207 address = align_address(address, this->addralign());
a445fddf
ILT
3208
3209 Input_section_list remaining;
3210 for (Input_section_list::iterator p = this->input_sections_.begin();
3211 p != this->input_sections_.end();
3212 ++p)
3213 {
0439c796
DK
3214 if (p->is_input_section()
3215 || p->is_relaxed_input_section()
3216 || p->is_merge_section())
6625d24e 3217 input_sections->push_back(*p);
a445fddf
ILT
3218 else
3219 {
2ea97941
ILT
3220 uint64_t aligned_address = align_address(address, p->addralign());
3221 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3222 {
3223 section_size_type length =
2ea97941 3224 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3225 std::string this_fill;
3226 this_fill.reserve(length);
3227 while (this_fill.length() + fill.length() <= length)
3228 this_fill += fill;
3229 if (this_fill.length() < length)
3230 this_fill.append(fill, 0, length - this_fill.length());
3231
3232 Output_section_data* posd = new Output_data_const(this_fill, 0);
3233 remaining.push_back(Input_section(posd));
3234 }
2ea97941 3235 address = aligned_address;
a445fddf
ILT
3236
3237 remaining.push_back(*p);
3238
3239 p->finalize_data_size();
2ea97941 3240 address += p->data_size();
a445fddf
ILT
3241 }
3242 }
3243
3244 this->input_sections_.swap(remaining);
3245 this->first_input_offset_ = 0;
3246
2ea97941
ILT
3247 uint64_t data_size = address - orig_address;
3248 this->set_current_data_size_for_child(data_size);
3249 return data_size;
a445fddf
ILT
3250}
3251
6625d24e
DK
3252// Add a script input section. SIS is an Output_section::Input_section,
3253// which can be either a plain input section or a special input section like
3254// a relaxed input section. For a special input section, its size must be
3255// finalized.
a445fddf
ILT
3256
3257void
6625d24e 3258Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3259{
6625d24e
DK
3260 uint64_t data_size = sis.data_size();
3261 uint64_t addralign = sis.addralign();
2ea97941
ILT
3262 if (addralign > this->addralign_)
3263 this->addralign_ = addralign;
a445fddf
ILT
3264
3265 off_t offset_in_section = this->current_data_size_for_child();
3266 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3267 addralign);
a445fddf
ILT
3268
3269 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3270 + data_size);
a445fddf 3271
6625d24e 3272 this->input_sections_.push_back(sis);
0439c796
DK
3273
3274 // Update fast lookup maps if necessary.
3275 if (this->lookup_maps_->is_valid())
3276 {
3277 if (sis.is_merge_section())
3278 {
3279 Output_merge_base* pomb = sis.output_merge_base();
3280 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3281 pomb->addralign());
3282 this->lookup_maps_->add_merge_section(msp, pomb);
3283 for (Output_merge_base::Input_sections::const_iterator p =
3284 pomb->input_sections_begin();
3285 p != pomb->input_sections_end();
3286 ++p)
3287 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3288 pomb);
3289 }
3290 else if (sis.is_relaxed_input_section())
3291 {
3292 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3293 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3294 poris->shndx(), poris);
3295 }
3296 }
20e6d0d6
DK
3297}
3298
8923b24c 3299// Save states for relaxation.
20e6d0d6
DK
3300
3301void
3302Output_section::save_states()
3303{
3304 gold_assert(this->checkpoint_ == NULL);
3305 Checkpoint_output_section* checkpoint =
3306 new Checkpoint_output_section(this->addralign_, this->flags_,
3307 this->input_sections_,
3308 this->first_input_offset_,
3309 this->attached_input_sections_are_sorted_);
3310 this->checkpoint_ = checkpoint;
3311 gold_assert(this->fills_.empty());
3312}
3313
8923b24c
DK
3314void
3315Output_section::discard_states()
3316{
3317 gold_assert(this->checkpoint_ != NULL);
3318 delete this->checkpoint_;
3319 this->checkpoint_ = NULL;
3320 gold_assert(this->fills_.empty());
3321
0439c796
DK
3322 // Simply invalidate the fast lookup maps since we do not keep
3323 // track of them.
3324 this->lookup_maps_->invalidate();
8923b24c
DK
3325}
3326
20e6d0d6
DK
3327void
3328Output_section::restore_states()
3329{
3330 gold_assert(this->checkpoint_ != NULL);
3331 Checkpoint_output_section* checkpoint = this->checkpoint_;
3332
3333 this->addralign_ = checkpoint->addralign();
3334 this->flags_ = checkpoint->flags();
3335 this->first_input_offset_ = checkpoint->first_input_offset();
3336
3337 if (!checkpoint->input_sections_saved())
3338 {
3339 // If we have not copied the input sections, just resize it.
3340 size_t old_size = checkpoint->input_sections_size();
3341 gold_assert(this->input_sections_.size() >= old_size);
3342 this->input_sections_.resize(old_size);
3343 }
3344 else
3345 {
3346 // We need to copy the whole list. This is not efficient for
3347 // extremely large output with hundreads of thousands of input
3348 // objects. We may need to re-think how we should pass sections
3349 // to scripts.
c0a62865 3350 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3351 }
3352
3353 this->attached_input_sections_are_sorted_ =
3354 checkpoint->attached_input_sections_are_sorted();
c0a62865 3355
0439c796
DK
3356 // Simply invalidate the fast lookup maps since we do not keep
3357 // track of them.
3358 this->lookup_maps_->invalidate();
a445fddf
ILT
3359}
3360
8923b24c
DK
3361// Update the section offsets of input sections in this. This is required if
3362// relaxation causes some input sections to change sizes.
3363
3364void
3365Output_section::adjust_section_offsets()
3366{
3367 if (!this->section_offsets_need_adjustment_)
3368 return;
3369
3370 off_t off = 0;
3371 for (Input_section_list::iterator p = this->input_sections_.begin();
3372 p != this->input_sections_.end();
3373 ++p)
3374 {
3375 off = align_address(off, p->addralign());
3376 if (p->is_input_section())
3377 p->relobj()->set_section_offset(p->shndx(), off);
3378 off += p->data_size();
3379 }
3380
3381 this->section_offsets_need_adjustment_ = false;
3382}
3383
7d9e3d98
ILT
3384// Print to the map file.
3385
3386void
3387Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3388{
3389 mapfile->print_output_section(this);
3390
3391 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3392 p != this->input_sections_.end();
3393 ++p)
3394 p->print_to_mapfile(mapfile);
3395}
3396
38c5e8b4
ILT
3397// Print stats for merge sections to stderr.
3398
3399void
3400Output_section::print_merge_stats()
3401{
3402 Input_section_list::iterator p;
3403 for (p = this->input_sections_.begin();
3404 p != this->input_sections_.end();
3405 ++p)
3406 p->print_merge_stats(this->name_);
3407}
3408
a2fb1b05
ILT
3409// Output segment methods.
3410
2ea97941 3411Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3412 : output_data_(),
75f65a3e 3413 output_bss_(),
a2fb1b05
ILT
3414 vaddr_(0),
3415 paddr_(0),
3416 memsz_(0),
a445fddf
ILT
3417 max_align_(0),
3418 min_p_align_(0),
a2fb1b05
ILT
3419 offset_(0),
3420 filesz_(0),
2ea97941
ILT
3421 type_(type),
3422 flags_(flags),
a445fddf 3423 is_max_align_known_(false),
8a5e3e08
ILT
3424 are_addresses_set_(false),
3425 is_large_data_segment_(false)
a2fb1b05 3426{
bb321bb1
ILT
3427 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3428 // the flags.
3429 if (type == elfcpp::PT_TLS)
3430 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3431}
3432
3433// Add an Output_section to an Output_segment.
3434
3435void
75f65a3e 3436Output_segment::add_output_section(Output_section* os,
f5c870d2
ILT
3437 elfcpp::Elf_Word seg_flags,
3438 bool do_sort)
a2fb1b05 3439{
a3ad94ed 3440 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3441 gold_assert(!this->is_max_align_known_);
8a5e3e08 3442 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
96a0d71b 3443 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
75f65a3e 3444
a192ba05 3445 this->update_flags_for_output_section(seg_flags);
75f65a3e
ILT
3446
3447 Output_segment::Output_data_list* pdl;
3448 if (os->type() == elfcpp::SHT_NOBITS)
3449 pdl = &this->output_bss_;
3450 else
3451 pdl = &this->output_data_;
54dc6425 3452
f5c870d2
ILT
3453 // Note that while there may be many input sections in an output
3454 // section, there are normally only a few output sections in an
3455 // output segment. The loops below are expected to be fast.
3456
a2fb1b05 3457 // So that PT_NOTE segments will work correctly, we need to ensure
96a0d71b 3458 // that all SHT_NOTE sections are adjacent.
61ba1cf9 3459 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3460 {
a3ad94ed 3461 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3462 do
54dc6425 3463 {
75f65a3e 3464 --p;
54dc6425
ILT
3465 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3466 {
3467 ++p;
75f65a3e 3468 pdl->insert(p, os);
54dc6425
ILT
3469 return;
3470 }
3471 }
75f65a3e 3472 while (p != pdl->begin());
54dc6425
ILT
3473 }
3474
3475 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3476 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3477 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3478 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab 3479 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
f5c870d2
ILT
3480 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3481 // segment.
07f397ab 3482 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3483 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3484 {
75f65a3e 3485 pdl = &this->output_data_;
661be1e2 3486 if (!pdl->empty())
a2fb1b05 3487 {
661be1e2
ILT
3488 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3489 bool sawtls = false;
3490 Output_segment::Output_data_list::iterator p = pdl->end();
3491 gold_assert(p != pdl->begin());
3492 do
a2fb1b05 3493 {
661be1e2
ILT
3494 --p;
3495 bool insert;
3496 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3497 {
3498 sawtls = true;
3499 // Put a NOBITS section after the first TLS section.
3500 // Put a PROGBITS section after the first
3501 // TLS/PROGBITS section.
3502 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3503 }
3504 else
3505 {
3506 // If we've gone past the TLS sections, but we've
3507 // seen a TLS section, then we need to insert this
3508 // section now.
3509 insert = sawtls;
3510 }
3511
3512 if (insert)
3513 {
3514 ++p;
3515 pdl->insert(p, os);
3516 return;
3517 }
a2fb1b05 3518 }
661be1e2 3519 while (p != pdl->begin());
a2fb1b05 3520 }
ead1e424 3521
dbe717ef
ILT
3522 // There are no TLS sections yet; put this one at the requested
3523 // location in the section list.
a2fb1b05
ILT
3524 }
3525
1a2dff53 3526 if (do_sort)
9f1d377b 3527 {
1a2dff53
ILT
3528 // For the PT_GNU_RELRO segment, we need to group relro
3529 // sections, and we need to put them before any non-relro
3530 // sections. Any relro local sections go before relro non-local
3531 // sections. One section may be marked as the last relro
3532 // section.
3533 if (os->is_relro())
9f1d377b 3534 {
1a2dff53
ILT
3535 gold_assert(pdl == &this->output_data_);
3536 Output_segment::Output_data_list::iterator p;
3537 for (p = pdl->begin(); p != pdl->end(); ++p)
3538 {
3539 if (!(*p)->is_section())
3540 break;
9f1d377b 3541
1a2dff53
ILT
3542 Output_section* pos = (*p)->output_section();
3543 if (!pos->is_relro()
3544 || (os->is_relro_local() && !pos->is_relro_local())
3545 || (!os->is_last_relro() && pos->is_last_relro()))
3546 break;
3547 }
3548
3549 pdl->insert(p, os);
3550 return;
9f1d377b
ILT
3551 }
3552
1a2dff53
ILT
3553 // One section may be marked as the first section which follows
3554 // the relro sections.
3555 if (os->is_first_non_relro())
3556 {
3557 gold_assert(pdl == &this->output_data_);
3558 Output_segment::Output_data_list::iterator p;
3559 for (p = pdl->begin(); p != pdl->end(); ++p)
3560 {
3561 if (!(*p)->is_section())
3562 break;
3563
3564 Output_section* pos = (*p)->output_section();
3565 if (!pos->is_relro())
3566 break;
3567 }
3568
3569 pdl->insert(p, os);
3570 return;
3571 }
9f1d377b
ILT
3572 }
3573
8a5e3e08
ILT
3574 // Small data sections go at the end of the list of data sections.
3575 // If OS is not small, and there are small sections, we have to
3576 // insert it before the first small section.
3577 if (os->type() != elfcpp::SHT_NOBITS
3578 && !os->is_small_section()
3579 && !pdl->empty()
3580 && pdl->back()->is_section()
3581 && pdl->back()->output_section()->is_small_section())
3582 {
3583 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3584 p != pdl->end();
3585 ++p)
3586 {
3587 if ((*p)->is_section()
3588 && (*p)->output_section()->is_small_section())
3589 {
3590 pdl->insert(p, os);
3591 return;
3592 }
3593 }
3594 gold_unreachable();
3595 }
3596
3597 // A small BSS section goes at the start of the BSS sections, after
3598 // other small BSS sections.
3599 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3600 {
3601 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3602 p != pdl->end();
3603 ++p)
3604 {
3605 if (!(*p)->is_section()
3606 || !(*p)->output_section()->is_small_section())
3607 {
3608 pdl->insert(p, os);
3609 return;
3610 }
3611 }
3612 }
3613
3614 // A large BSS section goes at the end of the BSS sections, which
3615 // means that one that is not large must come before the first large
3616 // one.
3617 if (os->type() == elfcpp::SHT_NOBITS
3618 && !os->is_large_section()
3619 && !pdl->empty()
3620 && pdl->back()->is_section()
3621 && pdl->back()->output_section()->is_large_section())
3622 {
3623 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3624 p != pdl->end();
3625 ++p)
3626 {
3627 if ((*p)->is_section()
3628 && (*p)->output_section()->is_large_section())
3629 {
3630 pdl->insert(p, os);
3631 return;
3632 }
3633 }
3634 gold_unreachable();
3635 }
3636
f5c870d2
ILT
3637 // We do some further output section sorting in order to make the
3638 // generated program run more efficiently. We should only do this
3639 // when not using a linker script, so it is controled by the DO_SORT
3640 // parameter.
3641 if (do_sort)
3642 {
3643 // FreeBSD requires the .interp section to be in the first page
3644 // of the executable. That is a more efficient location anyhow
3645 // for any OS, since it means that the kernel will have the data
3646 // handy after it reads the program headers.
3647 if (os->is_interp() && !pdl->empty())
3648 {
3649 pdl->insert(pdl->begin(), os);
3650 return;
3651 }
3652
3653 // Put loadable non-writable notes immediately after the .interp
3654 // sections, so that the PT_NOTE segment is on the first page of
3655 // the executable.
3656 if (os->type() == elfcpp::SHT_NOTE
3657 && (os->flags() & elfcpp::SHF_WRITE) == 0
3658 && !pdl->empty())
3659 {
3660 Output_segment::Output_data_list::iterator p = pdl->begin();
3661 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3662 ++p;
3663 pdl->insert(p, os);
96a0d71b 3664 return;
f5c870d2
ILT
3665 }
3666
3667 // If this section is used by the dynamic linker, and it is not
3668 // writable, then put it first, after the .interp section and
3669 // any loadable notes. This makes it more likely that the
3670 // dynamic linker will have to read less data from the disk.
3671 if (os->is_dynamic_linker_section()
3672 && !pdl->empty()
3673 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3674 {
3675 bool is_reloc = (os->type() == elfcpp::SHT_REL
3676 || os->type() == elfcpp::SHT_RELA);
3677 Output_segment::Output_data_list::iterator p = pdl->begin();
3678 while (p != pdl->end()
3679 && (*p)->is_section()
3680 && ((*p)->output_section()->is_dynamic_linker_section()
3681 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3682 {
3683 // Put reloc sections after the other ones. Putting the
3684 // dynamic reloc sections first confuses BFD, notably
3685 // objcopy and strip.
3686 if (!is_reloc
3687 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3688 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3689 break;
3690 ++p;
3691 }
3692 pdl->insert(p, os);
3693 return;
3694 }
3695 }
3696
3697 // If there were no constraints on the output section, just add it
3698 // to the end of the list.
01676dcd 3699 pdl->push_back(os);
75f65a3e
ILT
3700}
3701
1650c4ff
ILT
3702// Remove an Output_section from this segment. It is an error if it
3703// is not present.
3704
3705void
3706Output_segment::remove_output_section(Output_section* os)
3707{
3708 // We only need this for SHT_PROGBITS.
3709 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3710 for (Output_data_list::iterator p = this->output_data_.begin();
3711 p != this->output_data_.end();
3712 ++p)
3713 {
3714 if (*p == os)
3715 {
3716 this->output_data_.erase(p);
3717 return;
3718 }
3719 }
3720 gold_unreachable();
3721}
3722
a192ba05
ILT
3723// Add an Output_data (which need not be an Output_section) to the
3724// start of a segment.
75f65a3e
ILT
3725
3726void
3727Output_segment::add_initial_output_data(Output_data* od)
3728{
a445fddf 3729 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3730 this->output_data_.push_front(od);
3731}
3732
9f1d377b
ILT
3733// Return whether the first data section is a relro section.
3734
3735bool
3736Output_segment::is_first_section_relro() const
3737{
3738 return (!this->output_data_.empty()
3739 && this->output_data_.front()->is_section()
3740 && this->output_data_.front()->output_section()->is_relro());
3741}
3742
75f65a3e 3743// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3744
3745uint64_t
a445fddf 3746Output_segment::maximum_alignment()
75f65a3e 3747{
a445fddf 3748 if (!this->is_max_align_known_)
ead1e424 3749 {
2ea97941 3750 uint64_t addralign;
ead1e424 3751
2ea97941
ILT
3752 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3753 if (addralign > this->max_align_)
3754 this->max_align_ = addralign;
ead1e424 3755
2ea97941
ILT
3756 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3757 if (addralign > this->max_align_)
3758 this->max_align_ = addralign;
ead1e424 3759
a445fddf 3760 this->is_max_align_known_ = true;
ead1e424
ILT
3761 }
3762
a445fddf 3763 return this->max_align_;
75f65a3e
ILT
3764}
3765
ead1e424
ILT
3766// Return the maximum alignment of a list of Output_data.
3767
3768uint64_t
a445fddf 3769Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3770{
3771 uint64_t ret = 0;
3772 for (Output_data_list::const_iterator p = pdl->begin();
3773 p != pdl->end();
3774 ++p)
3775 {
2ea97941
ILT
3776 uint64_t addralign = (*p)->addralign();
3777 if (addralign > ret)
3778 ret = addralign;
ead1e424
ILT
3779 }
3780 return ret;
3781}
3782
4f4c5f80
ILT
3783// Return the number of dynamic relocs applied to this segment.
3784
3785unsigned int
3786Output_segment::dynamic_reloc_count() const
3787{
3788 return (this->dynamic_reloc_count_list(&this->output_data_)
3789 + this->dynamic_reloc_count_list(&this->output_bss_));
3790}
3791
3792// Return the number of dynamic relocs applied to an Output_data_list.
3793
3794unsigned int
3795Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3796{
3797 unsigned int count = 0;
3798 for (Output_data_list::const_iterator p = pdl->begin();
3799 p != pdl->end();
3800 ++p)
3801 count += (*p)->dynamic_reloc_count();
3802 return count;
3803}
3804
a445fddf
ILT
3805// Set the section addresses for an Output_segment. If RESET is true,
3806// reset the addresses first. ADDR is the address and *POFF is the
3807// file offset. Set the section indexes starting with *PSHNDX.
3808// Return the address of the immediately following segment. Update
3809// *POFF and *PSHNDX.
75f65a3e
ILT
3810
3811uint64_t
96a2b4e4 3812Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53
ILT
3813 uint64_t addr,
3814 unsigned int increase_relro,
3815 off_t* poff,
ead1e424 3816 unsigned int* pshndx)
75f65a3e 3817{
a3ad94ed 3818 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3819
1a2dff53
ILT
3820 off_t orig_off = *poff;
3821
3822 // If we have relro sections, we need to pad forward now so that the
3823 // relro sections plus INCREASE_RELRO end on a common page boundary.
3824 if (parameters->options().relro()
3825 && this->is_first_section_relro()
3826 && (!this->are_addresses_set_ || reset))
3827 {
3828 uint64_t relro_size = 0;
3829 off_t off = *poff;
3830 for (Output_data_list::iterator p = this->output_data_.begin();
3831 p != this->output_data_.end();
3832 ++p)
3833 {
3834 if (!(*p)->is_section())
3835 break;
3836 Output_section* pos = (*p)->output_section();
3837 if (!pos->is_relro())
3838 break;
3839 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3840 if ((*p)->is_address_valid())
3841 relro_size += (*p)->data_size();
3842 else
3843 {
3844 // FIXME: This could be faster.
3845 (*p)->set_address_and_file_offset(addr + relro_size,
3846 off + relro_size);
3847 relro_size += (*p)->data_size();
3848 (*p)->reset_address_and_file_offset();
3849 }
3850 }
3851 relro_size += increase_relro;
3852
3853 uint64_t page_align = parameters->target().common_pagesize();
3854
3855 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3856 uint64_t desired_align = page_align - (relro_size % page_align);
3857 if (desired_align < *poff % page_align)
3858 *poff += page_align - *poff % page_align;
3859 *poff += desired_align - *poff % page_align;
3860 addr += *poff - orig_off;
3861 orig_off = *poff;
3862 }
3863
a445fddf
ILT
3864 if (!reset && this->are_addresses_set_)
3865 {
3866 gold_assert(this->paddr_ == addr);
3867 addr = this->vaddr_;
3868 }
3869 else
3870 {
3871 this->vaddr_ = addr;
3872 this->paddr_ = addr;
3873 this->are_addresses_set_ = true;
3874 }
75f65a3e 3875
96a2b4e4
ILT
3876 bool in_tls = false;
3877
75f65a3e
ILT
3878 this->offset_ = orig_off;
3879
96a2b4e4 3880 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
1a2dff53 3881 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
3882 this->filesz_ = *poff - orig_off;
3883
3884 off_t off = *poff;
3885
96a2b4e4
ILT
3886 uint64_t ret = this->set_section_list_addresses(layout, reset,
3887 &this->output_bss_,
3888 addr, poff, pshndx,
1a2dff53 3889 &in_tls);
96a2b4e4
ILT
3890
3891 // If the last section was a TLS section, align upward to the
3892 // alignment of the TLS segment, so that the overall size of the TLS
3893 // segment is aligned.
3894 if (in_tls)
3895 {
3896 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3897 *poff = align_address(*poff, segment_align);
3898 }
3899
75f65a3e
ILT
3900 this->memsz_ = *poff - orig_off;
3901
3902 // Ignore the file offset adjustments made by the BSS Output_data
3903 // objects.
3904 *poff = off;
61ba1cf9
ILT
3905
3906 return ret;
75f65a3e
ILT
3907}
3908
b8e6aad9
ILT
3909// Set the addresses and file offsets in a list of Output_data
3910// structures.
75f65a3e
ILT
3911
3912uint64_t
96a2b4e4
ILT
3913Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3914 Output_data_list* pdl,
ead1e424 3915 uint64_t addr, off_t* poff,
96a2b4e4 3916 unsigned int* pshndx,
1a2dff53 3917 bool* in_tls)
75f65a3e 3918{
ead1e424 3919 off_t startoff = *poff;
75f65a3e 3920
ead1e424 3921 off_t off = startoff;
75f65a3e
ILT
3922 for (Output_data_list::iterator p = pdl->begin();
3923 p != pdl->end();
3924 ++p)
3925 {
a445fddf
ILT
3926 if (reset)
3927 (*p)->reset_address_and_file_offset();
3928
3929 // When using a linker script the section will most likely
3930 // already have an address.
3931 if (!(*p)->is_address_valid())
3802b2dd 3932 {
96a2b4e4
ILT
3933 uint64_t align = (*p)->addralign();
3934
3935 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3936 {
3937 // Give the first TLS section the alignment of the
3938 // entire TLS segment. Otherwise the TLS segment as a
3939 // whole may be misaligned.
3940 if (!*in_tls)
3941 {
3942 Output_segment* tls_segment = layout->tls_segment();
3943 gold_assert(tls_segment != NULL);
3944 uint64_t segment_align = tls_segment->maximum_alignment();
3945 gold_assert(segment_align >= align);
3946 align = segment_align;
3947
3948 *in_tls = true;
3949 }
3950 }
3951 else
3952 {
3953 // If this is the first section after the TLS segment,
3954 // align it to at least the alignment of the TLS
3955 // segment, so that the size of the overall TLS segment
3956 // is aligned.
3957 if (*in_tls)
3958 {
3959 uint64_t segment_align =
3960 layout->tls_segment()->maximum_alignment();
3961 if (segment_align > align)
3962 align = segment_align;
3963
3964 *in_tls = false;
3965 }
3966 }
3967
3968 off = align_address(off, align);
3802b2dd
ILT
3969 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3970 }
a445fddf
ILT
3971 else
3972 {
3973 // The script may have inserted a skip forward, but it
3974 // better not have moved backward.
661be1e2
ILT
3975 if ((*p)->address() >= addr + (off - startoff))
3976 off += (*p)->address() - (addr + (off - startoff));
3977 else
3978 {
3979 if (!layout->script_options()->saw_sections_clause())
3980 gold_unreachable();
3981 else
3982 {
3983 Output_section* os = (*p)->output_section();
64b1ae37
DK
3984
3985 // Cast to unsigned long long to avoid format warnings.
3986 unsigned long long previous_dot =
3987 static_cast<unsigned long long>(addr + (off - startoff));
3988 unsigned long long dot =
3989 static_cast<unsigned long long>((*p)->address());
3990
661be1e2
ILT
3991 if (os == NULL)
3992 gold_error(_("dot moves backward in linker script "
64b1ae37 3993 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3994 else
3995 gold_error(_("address of section '%s' moves backward "
3996 "from 0x%llx to 0x%llx"),
64b1ae37 3997 os->name(), previous_dot, dot);
661be1e2
ILT
3998 }
3999 }
a445fddf
ILT
4000 (*p)->set_file_offset(off);
4001 (*p)->finalize_data_size();
4002 }
ead1e424 4003
96a2b4e4
ILT
4004 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4005 // section. Such a section does not affect the size of a
4006 // PT_LOAD segment.
4007 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4008 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4009 off += (*p)->data_size();
75f65a3e 4010
ead1e424
ILT
4011 if ((*p)->is_section())
4012 {
4013 (*p)->set_out_shndx(*pshndx);
4014 ++*pshndx;
4015 }
75f65a3e
ILT
4016 }
4017
4018 *poff = off;
ead1e424 4019 return addr + (off - startoff);
75f65a3e
ILT
4020}
4021
4022// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4023// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4024
4025void
1a2dff53 4026Output_segment::set_offset(unsigned int increase)
75f65a3e 4027{
a3ad94ed 4028 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4029
a445fddf
ILT
4030 gold_assert(!this->are_addresses_set_);
4031
75f65a3e
ILT
4032 if (this->output_data_.empty() && this->output_bss_.empty())
4033 {
1a2dff53 4034 gold_assert(increase == 0);
75f65a3e
ILT
4035 this->vaddr_ = 0;
4036 this->paddr_ = 0;
a445fddf 4037 this->are_addresses_set_ = true;
75f65a3e 4038 this->memsz_ = 0;
a445fddf 4039 this->min_p_align_ = 0;
75f65a3e
ILT
4040 this->offset_ = 0;
4041 this->filesz_ = 0;
4042 return;
4043 }
4044
4045 const Output_data* first;
4046 if (this->output_data_.empty())
4047 first = this->output_bss_.front();
4048 else
4049 first = this->output_data_.front();
4050 this->vaddr_ = first->address();
a445fddf
ILT
4051 this->paddr_ = (first->has_load_address()
4052 ? first->load_address()
4053 : this->vaddr_);
4054 this->are_addresses_set_ = true;
75f65a3e
ILT
4055 this->offset_ = first->offset();
4056
4057 if (this->output_data_.empty())
4058 this->filesz_ = 0;
4059 else
4060 {
4061 const Output_data* last_data = this->output_data_.back();
4062 this->filesz_ = (last_data->address()
4063 + last_data->data_size()
4064 - this->vaddr_);
4065 }
4066
4067 const Output_data* last;
4068 if (this->output_bss_.empty())
4069 last = this->output_data_.back();
4070 else
4071 last = this->output_bss_.back();
4072 this->memsz_ = (last->address()
4073 + last->data_size()
4074 - this->vaddr_);
96a2b4e4 4075
1a2dff53
ILT
4076 this->filesz_ += increase;
4077 this->memsz_ += increase;
4078
96a2b4e4
ILT
4079 // If this is a TLS segment, align the memory size. The code in
4080 // set_section_list ensures that the section after the TLS segment
4081 // is aligned to give us room.
4082 if (this->type_ == elfcpp::PT_TLS)
4083 {
4084 uint64_t segment_align = this->maximum_alignment();
4085 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4086 this->memsz_ = align_address(this->memsz_, segment_align);
4087 }
75f65a3e
ILT
4088}
4089
7bf1f802
ILT
4090// Set the TLS offsets of the sections in the PT_TLS segment.
4091
4092void
4093Output_segment::set_tls_offsets()
4094{
4095 gold_assert(this->type_ == elfcpp::PT_TLS);
4096
4097 for (Output_data_list::iterator p = this->output_data_.begin();
4098 p != this->output_data_.end();
4099 ++p)
4100 (*p)->set_tls_offset(this->vaddr_);
4101
4102 for (Output_data_list::iterator p = this->output_bss_.begin();
4103 p != this->output_bss_.end();
4104 ++p)
4105 (*p)->set_tls_offset(this->vaddr_);
4106}
4107
a445fddf
ILT
4108// Return the address of the first section.
4109
4110uint64_t
4111Output_segment::first_section_load_address() const
4112{
4113 for (Output_data_list::const_iterator p = this->output_data_.begin();
4114 p != this->output_data_.end();
4115 ++p)
4116 if ((*p)->is_section())
4117 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4118
4119 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4120 p != this->output_bss_.end();
4121 ++p)
4122 if ((*p)->is_section())
4123 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4124
4125 gold_unreachable();
4126}
4127
75f65a3e
ILT
4128// Return the number of Output_sections in an Output_segment.
4129
4130unsigned int
4131Output_segment::output_section_count() const
4132{
4133 return (this->output_section_count_list(&this->output_data_)
4134 + this->output_section_count_list(&this->output_bss_));
4135}
4136
4137// Return the number of Output_sections in an Output_data_list.
4138
4139unsigned int
4140Output_segment::output_section_count_list(const Output_data_list* pdl) const
4141{
4142 unsigned int count = 0;
4143 for (Output_data_list::const_iterator p = pdl->begin();
4144 p != pdl->end();
4145 ++p)
4146 {
4147 if ((*p)->is_section())
4148 ++count;
4149 }
4150 return count;
a2fb1b05
ILT
4151}
4152
1c4f3631
ILT
4153// Return the section attached to the list segment with the lowest
4154// load address. This is used when handling a PHDRS clause in a
4155// linker script.
4156
4157Output_section*
4158Output_segment::section_with_lowest_load_address() const
4159{
4160 Output_section* found = NULL;
4161 uint64_t found_lma = 0;
4162 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4163
4164 Output_section* found_data = found;
4165 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4166 if (found != found_data && found_data != NULL)
4167 {
4168 gold_error(_("nobits section %s may not precede progbits section %s "
4169 "in same segment"),
4170 found->name(), found_data->name());
4171 return NULL;
4172 }
4173
4174 return found;
4175}
4176
4177// Look through a list for a section with a lower load address.
4178
4179void
4180Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4181 Output_section** found,
4182 uint64_t* found_lma) const
4183{
4184 for (Output_data_list::const_iterator p = pdl->begin();
4185 p != pdl->end();
4186 ++p)
4187 {
4188 if (!(*p)->is_section())
4189 continue;
4190 Output_section* os = static_cast<Output_section*>(*p);
4191 uint64_t lma = (os->has_load_address()
4192 ? os->load_address()
4193 : os->address());
4194 if (*found == NULL || lma < *found_lma)
4195 {
4196 *found = os;
4197 *found_lma = lma;
4198 }
4199 }
4200}
4201
61ba1cf9
ILT
4202// Write the segment data into *OPHDR.
4203
4204template<int size, bool big_endian>
4205void
ead1e424 4206Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4207{
4208 ophdr->put_p_type(this->type_);
4209 ophdr->put_p_offset(this->offset_);
4210 ophdr->put_p_vaddr(this->vaddr_);
4211 ophdr->put_p_paddr(this->paddr_);
4212 ophdr->put_p_filesz(this->filesz_);
4213 ophdr->put_p_memsz(this->memsz_);
4214 ophdr->put_p_flags(this->flags_);
a445fddf 4215 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4216}
4217
4218// Write the section headers into V.
4219
4220template<int size, bool big_endian>
4221unsigned char*
16649710
ILT
4222Output_segment::write_section_headers(const Layout* layout,
4223 const Stringpool* secnamepool,
ead1e424 4224 unsigned char* v,
7d1a9ebb 4225 unsigned int *pshndx) const
5482377d 4226{
ead1e424
ILT
4227 // Every section that is attached to a segment must be attached to a
4228 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4229 // segments.
4230 if (this->type_ != elfcpp::PT_LOAD)
4231 return v;
4232
7d1a9ebb
ILT
4233 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4234 &this->output_data_,
4235 v, pshndx);
4236 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4237 &this->output_bss_,
4238 v, pshndx);
61ba1cf9
ILT
4239 return v;
4240}
4241
4242template<int size, bool big_endian>
4243unsigned char*
16649710
ILT
4244Output_segment::write_section_headers_list(const Layout* layout,
4245 const Stringpool* secnamepool,
61ba1cf9 4246 const Output_data_list* pdl,
ead1e424 4247 unsigned char* v,
7d1a9ebb 4248 unsigned int* pshndx) const
61ba1cf9
ILT
4249{
4250 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4251 for (Output_data_list::const_iterator p = pdl->begin();
4252 p != pdl->end();
4253 ++p)
4254 {
4255 if ((*p)->is_section())
4256 {
5482377d 4257 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4258 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4259 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4260 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4261 v += shdr_size;
ead1e424 4262 ++*pshndx;
61ba1cf9
ILT
4263 }
4264 }
4265 return v;
4266}
4267
7d9e3d98
ILT
4268// Print the output sections to the map file.
4269
4270void
4271Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4272{
4273 if (this->type() != elfcpp::PT_LOAD)
4274 return;
4275 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4276 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4277}
4278
4279// Print an output section list to the map file.
4280
4281void
4282Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4283 const Output_data_list* pdl) const
4284{
4285 for (Output_data_list::const_iterator p = pdl->begin();
4286 p != pdl->end();
4287 ++p)
4288 (*p)->print_to_mapfile(mapfile);
4289}
4290
a2fb1b05
ILT
4291// Output_file methods.
4292
14144f39
ILT
4293Output_file::Output_file(const char* name)
4294 : name_(name),
61ba1cf9
ILT
4295 o_(-1),
4296 file_size_(0),
c420411f 4297 base_(NULL),
516cb3d0
ILT
4298 map_is_anonymous_(false),
4299 is_temporary_(false)
61ba1cf9
ILT
4300{
4301}
4302
404c2abb
ILT
4303// Try to open an existing file. Returns false if the file doesn't
4304// exist, has a size of 0 or can't be mmapped.
4305
4306bool
4307Output_file::open_for_modification()
4308{
4309 // The name "-" means "stdout".
4310 if (strcmp(this->name_, "-") == 0)
4311 return false;
4312
4313 // Don't bother opening files with a size of zero.
4314 struct stat s;
4315 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4316 return false;
4317
4318 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4319 if (o < 0)
4320 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4321 this->o_ = o;
4322 this->file_size_ = s.st_size;
4323
4324 // If the file can't be mmapped, copying the content to an anonymous
4325 // map will probably negate the performance benefits of incremental
4326 // linking. This could be helped by using views and loading only
4327 // the necessary parts, but this is not supported as of now.
4328 if (!this->map_no_anonymous())
4329 {
4330 release_descriptor(o, true);
4331 this->o_ = -1;
4332 this->file_size_ = 0;
4333 return false;
4334 }
4335
4336 return true;
4337}
4338
61ba1cf9
ILT
4339// Open the output file.
4340
a2fb1b05 4341void
61ba1cf9 4342Output_file::open(off_t file_size)
a2fb1b05 4343{
61ba1cf9
ILT
4344 this->file_size_ = file_size;
4345
4e9d8586
ILT
4346 // Unlink the file first; otherwise the open() may fail if the file
4347 // is busy (e.g. it's an executable that's currently being executed).
4348 //
4349 // However, the linker may be part of a system where a zero-length
4350 // file is created for it to write to, with tight permissions (gcc
4351 // 2.95 did something like this). Unlinking the file would work
4352 // around those permission controls, so we only unlink if the file
4353 // has a non-zero size. We also unlink only regular files to avoid
4354 // trouble with directories/etc.
4355 //
4356 // If we fail, continue; this command is merely a best-effort attempt
4357 // to improve the odds for open().
4358
42a1b686 4359 // We let the name "-" mean "stdout"
516cb3d0 4360 if (!this->is_temporary_)
42a1b686 4361 {
516cb3d0
ILT
4362 if (strcmp(this->name_, "-") == 0)
4363 this->o_ = STDOUT_FILENO;
4364 else
4365 {
4366 struct stat s;
6a89f575
CC
4367 if (::stat(this->name_, &s) == 0
4368 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4369 {
4370 if (s.st_size != 0)
4371 ::unlink(this->name_);
4372 else if (!parameters->options().relocatable())
4373 {
4374 // If we don't unlink the existing file, add execute
4375 // permission where read permissions already exist
4376 // and where the umask permits.
4377 int mask = ::umask(0);
4378 ::umask(mask);
4379 s.st_mode |= (s.st_mode & 0444) >> 2;
4380 ::chmod(this->name_, s.st_mode & ~mask);
4381 }
4382 }
516cb3d0 4383
8851ecca 4384 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4385 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4386 mode);
516cb3d0
ILT
4387 if (o < 0)
4388 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4389 this->o_ = o;
4390 }
42a1b686 4391 }
61ba1cf9 4392
27bc2bce
ILT
4393 this->map();
4394}
4395
4396// Resize the output file.
4397
4398void
4399Output_file::resize(off_t file_size)
4400{
c420411f
ILT
4401 // If the mmap is mapping an anonymous memory buffer, this is easy:
4402 // just mremap to the new size. If it's mapping to a file, we want
4403 // to unmap to flush to the file, then remap after growing the file.
4404 if (this->map_is_anonymous_)
4405 {
4406 void* base = ::mremap(this->base_, this->file_size_, file_size,
4407 MREMAP_MAYMOVE);
4408 if (base == MAP_FAILED)
4409 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4410 this->base_ = static_cast<unsigned char*>(base);
4411 this->file_size_ = file_size;
4412 }
4413 else
4414 {
4415 this->unmap();
4416 this->file_size_ = file_size;
fdcac5af
ILT
4417 if (!this->map_no_anonymous())
4418 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4419 }
27bc2bce
ILT
4420}
4421
404c2abb
ILT
4422// Map an anonymous block of memory which will later be written to the
4423// file. Return whether the map succeeded.
26736d8e 4424
404c2abb 4425bool
26736d8e
ILT
4426Output_file::map_anonymous()
4427{
404c2abb
ILT
4428 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4429 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4430 if (base != MAP_FAILED)
4431 {
4432 this->map_is_anonymous_ = true;
4433 this->base_ = static_cast<unsigned char*>(base);
4434 return true;
4435 }
4436 return false;
26736d8e
ILT
4437}
4438
404c2abb 4439// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4440
404c2abb
ILT
4441bool
4442Output_file::map_no_anonymous()
27bc2bce 4443{
c420411f 4444 const int o = this->o_;
61ba1cf9 4445
c420411f
ILT
4446 // If the output file is not a regular file, don't try to mmap it;
4447 // instead, we'll mmap a block of memory (an anonymous buffer), and
4448 // then later write the buffer to the file.
4449 void* base;
4450 struct stat statbuf;
42a1b686
ILT
4451 if (o == STDOUT_FILENO || o == STDERR_FILENO
4452 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4453 || !S_ISREG(statbuf.st_mode)
4454 || this->is_temporary_)
404c2abb
ILT
4455 return false;
4456
4457 // Ensure that we have disk space available for the file. If we
4458 // don't do this, it is possible that we will call munmap, close,
4459 // and exit with dirty buffers still in the cache with no assigned
4460 // disk blocks. If the disk is out of space at that point, the
4461 // output file will wind up incomplete, but we will have already
4462 // exited. The alternative to fallocate would be to use fdatasync,
4463 // but that would be a more significant performance hit.
4464 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4465 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4466
4467 // Map the file into memory.
4468 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4469 MAP_SHARED, o, 0);
4470
4471 // The mmap call might fail because of file system issues: the file
4472 // system might not support mmap at all, or it might not support
4473 // mmap with PROT_WRITE.
61ba1cf9 4474 if (base == MAP_FAILED)
404c2abb
ILT
4475 return false;
4476
4477 this->map_is_anonymous_ = false;
61ba1cf9 4478 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4479 return true;
4480}
4481
4482// Map the file into memory.
4483
4484void
4485Output_file::map()
4486{
4487 if (this->map_no_anonymous())
4488 return;
4489
4490 // The mmap call might fail because of file system issues: the file
4491 // system might not support mmap at all, or it might not support
4492 // mmap with PROT_WRITE. I'm not sure which errno values we will
4493 // see in all cases, so if the mmap fails for any reason and we
4494 // don't care about file contents, try for an anonymous map.
4495 if (this->map_anonymous())
4496 return;
4497
4498 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4499 this->name_, static_cast<unsigned long>(this->file_size_),
4500 strerror(errno));
61ba1cf9
ILT
4501}
4502
c420411f 4503// Unmap the file from memory.
61ba1cf9
ILT
4504
4505void
c420411f 4506Output_file::unmap()
61ba1cf9
ILT
4507{
4508 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4509 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4510 this->base_ = NULL;
c420411f
ILT
4511}
4512
4513// Close the output file.
4514
4515void
4516Output_file::close()
4517{
4518 // If the map isn't file-backed, we need to write it now.
516cb3d0 4519 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4520 {
4521 size_t bytes_to_write = this->file_size_;
6d1e3092 4522 size_t offset = 0;
c420411f
ILT
4523 while (bytes_to_write > 0)
4524 {
6d1e3092
CD
4525 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4526 bytes_to_write);
c420411f
ILT
4527 if (bytes_written == 0)
4528 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4529 else if (bytes_written < 0)
4530 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4531 else
6d1e3092
CD
4532 {
4533 bytes_to_write -= bytes_written;
4534 offset += bytes_written;
4535 }
c420411f
ILT
4536 }
4537 }
4538 this->unmap();
61ba1cf9 4539
42a1b686 4540 // We don't close stdout or stderr
516cb3d0
ILT
4541 if (this->o_ != STDOUT_FILENO
4542 && this->o_ != STDERR_FILENO
4543 && !this->is_temporary_)
42a1b686
ILT
4544 if (::close(this->o_) < 0)
4545 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4546 this->o_ = -1;
a2fb1b05
ILT
4547}
4548
4549// Instantiate the templates we need. We could use the configure
4550// script to restrict this to only the ones for implemented targets.
4551
193a53d9 4552#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4553template
4554off_t
4555Output_section::add_input_section<32, false>(
6e9ba2ca 4556 Layout* layout,
730cdc88 4557 Sized_relobj<32, false>* object,
2ea97941 4558 unsigned int shndx,
a2fb1b05 4559 const char* secname,
730cdc88 4560 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4561 unsigned int reloc_shndx,
4562 bool have_sections_script);
193a53d9 4563#endif
a2fb1b05 4564
193a53d9 4565#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4566template
4567off_t
4568Output_section::add_input_section<32, true>(
6e9ba2ca 4569 Layout* layout,
730cdc88 4570 Sized_relobj<32, true>* object,
2ea97941 4571 unsigned int shndx,
a2fb1b05 4572 const char* secname,
730cdc88 4573 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4574 unsigned int reloc_shndx,
4575 bool have_sections_script);
193a53d9 4576#endif
a2fb1b05 4577
193a53d9 4578#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4579template
4580off_t
4581Output_section::add_input_section<64, false>(
6e9ba2ca 4582 Layout* layout,
730cdc88 4583 Sized_relobj<64, false>* object,
2ea97941 4584 unsigned int shndx,
a2fb1b05 4585 const char* secname,
730cdc88 4586 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4587 unsigned int reloc_shndx,
4588 bool have_sections_script);
193a53d9 4589#endif
a2fb1b05 4590
193a53d9 4591#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4592template
4593off_t
4594Output_section::add_input_section<64, true>(
6e9ba2ca 4595 Layout* layout,
730cdc88 4596 Sized_relobj<64, true>* object,
2ea97941 4597 unsigned int shndx,
a2fb1b05 4598 const char* secname,
730cdc88 4599 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4600 unsigned int reloc_shndx,
4601 bool have_sections_script);
193a53d9 4602#endif
a2fb1b05 4603
bbbfea06
CC
4604#ifdef HAVE_TARGET_32_LITTLE
4605template
4606class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4607#endif
4608
4609#ifdef HAVE_TARGET_32_BIG
4610template
4611class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4612#endif
4613
4614#ifdef HAVE_TARGET_64_LITTLE
4615template
4616class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4617#endif
4618
4619#ifdef HAVE_TARGET_64_BIG
4620template
4621class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4622#endif
4623
4624#ifdef HAVE_TARGET_32_LITTLE
4625template
4626class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4627#endif
4628
4629#ifdef HAVE_TARGET_32_BIG
4630template
4631class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4632#endif
4633
4634#ifdef HAVE_TARGET_64_LITTLE
4635template
4636class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4637#endif
4638
4639#ifdef HAVE_TARGET_64_BIG
4640template
4641class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4642#endif
4643
4644#ifdef HAVE_TARGET_32_LITTLE
4645template
4646class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4647#endif
4648
4649#ifdef HAVE_TARGET_32_BIG
4650template
4651class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4652#endif
4653
4654#ifdef HAVE_TARGET_64_LITTLE
4655template
4656class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4657#endif
4658
4659#ifdef HAVE_TARGET_64_BIG
4660template
4661class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4662#endif
4663
4664#ifdef HAVE_TARGET_32_LITTLE
4665template
4666class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4667#endif
4668
4669#ifdef HAVE_TARGET_32_BIG
4670template
4671class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4672#endif
4673
4674#ifdef HAVE_TARGET_64_LITTLE
4675template
4676class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4677#endif
4678
4679#ifdef HAVE_TARGET_64_BIG
4680template
4681class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4682#endif
4683
193a53d9 4684#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4685template
4686class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4687#endif
c06b7b0b 4688
193a53d9 4689#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4690template
4691class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4692#endif
c06b7b0b 4693
193a53d9 4694#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4695template
4696class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4697#endif
c06b7b0b 4698
193a53d9 4699#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4700template
4701class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4702#endif
c06b7b0b 4703
193a53d9 4704#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4705template
4706class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4707#endif
c06b7b0b 4708
193a53d9 4709#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4710template
4711class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4712#endif
c06b7b0b 4713
193a53d9 4714#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4715template
4716class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4717#endif
c06b7b0b 4718
193a53d9 4719#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4720template
4721class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4722#endif
c06b7b0b 4723
193a53d9 4724#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4725template
4726class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4727#endif
c06b7b0b 4728
193a53d9 4729#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4730template
4731class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4732#endif
c06b7b0b 4733
193a53d9 4734#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4735template
4736class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4737#endif
c06b7b0b 4738
193a53d9 4739#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4740template
4741class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4742#endif
c06b7b0b 4743
193a53d9 4744#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4745template
4746class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4747#endif
c06b7b0b 4748
193a53d9 4749#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4750template
4751class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4752#endif
c06b7b0b 4753
193a53d9 4754#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4755template
4756class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4757#endif
c06b7b0b 4758
193a53d9 4759#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4760template
4761class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4762#endif
c06b7b0b 4763
6a74a719
ILT
4764#ifdef HAVE_TARGET_32_LITTLE
4765template
4766class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4767#endif
4768
4769#ifdef HAVE_TARGET_32_BIG
4770template
4771class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4772#endif
4773
4774#ifdef HAVE_TARGET_64_LITTLE
4775template
4776class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4777#endif
4778
4779#ifdef HAVE_TARGET_64_BIG
4780template
4781class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4782#endif
4783
4784#ifdef HAVE_TARGET_32_LITTLE
4785template
4786class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4787#endif
4788
4789#ifdef HAVE_TARGET_32_BIG
4790template
4791class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4792#endif
4793
4794#ifdef HAVE_TARGET_64_LITTLE
4795template
4796class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4797#endif
4798
4799#ifdef HAVE_TARGET_64_BIG
4800template
4801class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4802#endif
4803
4804#ifdef HAVE_TARGET_32_LITTLE
4805template
4806class Output_data_group<32, false>;
4807#endif
4808
4809#ifdef HAVE_TARGET_32_BIG
4810template
4811class Output_data_group<32, true>;
4812#endif
4813
4814#ifdef HAVE_TARGET_64_LITTLE
4815template
4816class Output_data_group<64, false>;
4817#endif
4818
4819#ifdef HAVE_TARGET_64_BIG
4820template
4821class Output_data_group<64, true>;
4822#endif
4823
193a53d9 4824#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4825template
dbe717ef 4826class Output_data_got<32, false>;
193a53d9 4827#endif
ead1e424 4828
193a53d9 4829#ifdef HAVE_TARGET_32_BIG
ead1e424 4830template
dbe717ef 4831class Output_data_got<32, true>;
193a53d9 4832#endif
ead1e424 4833
193a53d9 4834#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4835template
dbe717ef 4836class Output_data_got<64, false>;
193a53d9 4837#endif
ead1e424 4838
193a53d9 4839#ifdef HAVE_TARGET_64_BIG
ead1e424 4840template
dbe717ef 4841class Output_data_got<64, true>;
193a53d9 4842#endif
ead1e424 4843
a2fb1b05 4844} // End namespace gold.
This page took 0.429771 seconds and 4 git commands to generate.