* symtab.c (find_function_start_sal): Never return SAL pointing
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140}
1141
c06b7b0b
ILT
1142// Write out relocation data.
1143
1144template<int sh_type, bool dynamic, int size, bool big_endian>
1145void
1146Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148{
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
3a44184e 1153 if (this->sort_relocs())
d98bc257
ILT
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
c06b7b0b
ILT
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
a3ad94ed 1169 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175}
1176
6a74a719
ILT
1177// Class Output_relocatable_relocs.
1178
1179template<int sh_type, int size, bool big_endian>
1180void
1181Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182{
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185}
1186
1187// class Output_data_group.
1188
1189template<int size, bool big_endian>
1190Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
8825ac63
ILT
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1195 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1196 relobj_(relobj),
1197 flags_(flags)
6a74a719 1198{
8825ac63 1199 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1200}
1201
1202// Write out the section group, which means translating the section
1203// indexes to apply to the output file.
1204
1205template<int size, bool big_endian>
1206void
1207Output_data_group<size, big_endian>::do_write(Output_file* of)
1208{
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
6a74a719
ILT
1221 ++p, ++contents)
1222 {
ef9beddf 1223 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
8825ac63 1244 this->input_shndxes_.clear();
6a74a719
ILT
1245}
1246
dbe717ef 1247// Output_data_got::Got_entry methods.
ead1e424
ILT
1248
1249// Write out the entry.
1250
1251template<int size, bool big_endian>
1252void
7e1edb90 1253Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1254{
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
e8c846c3
ILT
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
ead1e424 1264 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
ead1e424
ILT
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
d1f003c6
ILT
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
e727fa71 1284 break;
ead1e424
ILT
1285 }
1286
a3ad94ed 1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1288}
1289
dbe717ef 1290// Output_data_got methods.
ead1e424 1291
dbe717ef
ILT
1292// Add an entry for a global symbol to the GOT. This returns true if
1293// this is a new GOT entry, false if the symbol already had a GOT
1294// entry.
1295
1296template<int size, bool big_endian>
1297bool
0a65a3a7
CC
1298Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
ead1e424 1301{
0a65a3a7 1302 if (gsym->has_got_offset(got_type))
dbe717ef 1303 return false;
ead1e424 1304
dbe717ef
ILT
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
0a65a3a7 1307 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1308 return true;
1309}
ead1e424 1310
7bf1f802
ILT
1311// Add an entry for a global symbol to the GOT, and add a dynamic
1312// relocation of type R_TYPE for the GOT entry.
1313template<int size, bool big_endian>
1314void
1315Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
0a65a3a7 1317 unsigned int got_type,
7bf1f802
ILT
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320{
0a65a3a7 1321 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
2ea97941
ILT
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1329}
1330
1331template<int size, bool big_endian>
1332void
1333Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
0a65a3a7 1335 unsigned int got_type,
7bf1f802
ILT
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
2ea97941
ILT
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1347}
1348
0a65a3a7
CC
1349// Add a pair of entries for a global symbol to the GOT, and add
1350// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1352template<int size, bool big_endian>
1353void
0a65a3a7
CC
1354Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
7bf1f802 1357 Rel_dyn* rel_dyn,
0a65a3a7
CC
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
7bf1f802 1360{
0a65a3a7 1361 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
2ea97941
ILT
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
2ea97941
ILT
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1374 }
1375
1376 this->set_got_size();
7bf1f802
ILT
1377}
1378
1379template<int size, bool big_endian>
1380void
0a65a3a7
CC
1381Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
7bf1f802 1384 Rela_dyn* rela_dyn,
0a65a3a7
CC
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
7bf1f802 1387{
0a65a3a7 1388 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
2ea97941
ILT
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
2ea97941
ILT
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1401 }
1402
1403 this->set_got_size();
7bf1f802
ILT
1404}
1405
0a65a3a7
CC
1406// Add an entry for a local symbol to the GOT. This returns true if
1407// this is a new GOT entry, false if the symbol already has a GOT
1408// entry.
07f397ab
ILT
1409
1410template<int size, bool big_endian>
1411bool
0a65a3a7
CC
1412Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
07f397ab 1416{
0a65a3a7 1417 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1418 return false;
1419
0a65a3a7 1420 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1421 this->set_got_size();
0a65a3a7 1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1423 return true;
1424}
1425
0a65a3a7
CC
1426// Add an entry for a local symbol to the GOT, and add a dynamic
1427// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1428template<int size, bool big_endian>
1429void
0a65a3a7
CC
1430Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
7bf1f802
ILT
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436{
0a65a3a7 1437 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
2ea97941
ILT
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1445}
1446
1447template<int size, bool big_endian>
1448void
0a65a3a7
CC
1449Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
7bf1f802
ILT
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455{
0a65a3a7 1456 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
2ea97941
ILT
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1464}
1465
0a65a3a7
CC
1466// Add a pair of entries for a local symbol to the GOT, and add
1467// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1469template<int size, bool big_endian>
1470void
0a65a3a7 1471Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
0a65a3a7 1475 unsigned int got_type,
7bf1f802 1476 Rel_dyn* rel_dyn,
0a65a3a7
CC
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
7bf1f802 1479{
0a65a3a7 1480 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
2ea97941
ILT
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1486 Output_section* os = object->output_section(shndx);
2ea97941 1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1488
0a65a3a7
CC
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
2ea97941
ILT
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1494 }
7bf1f802
ILT
1495
1496 this->set_got_size();
1497}
1498
1499template<int size, bool big_endian>
1500void
0a65a3a7 1501Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
0a65a3a7 1505 unsigned int got_type,
7bf1f802 1506 Rela_dyn* rela_dyn,
0a65a3a7
CC
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
7bf1f802 1509{
0a65a3a7 1510 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
2ea97941
ILT
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1516 Output_section* os = object->output_section(shndx);
2ea97941 1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1518
0a65a3a7
CC
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
2ea97941
ILT
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1524 }
7bf1f802
ILT
1525
1526 this->set_got_size();
1527}
1528
ead1e424
ILT
1529// Write out the GOT.
1530
1531template<int size, bool big_endian>
1532void
dbe717ef 1533Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1534{
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
c06b7b0b 1538 const off_t oview_size = this->data_size();
ead1e424
ILT
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
7e1edb90 1546 p->write(pov);
ead1e424
ILT
1547 pov += add;
1548 }
1549
a3ad94ed 1550 gold_assert(pov - oview == oview_size);
c06b7b0b 1551
ead1e424
ILT
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556}
1557
a3ad94ed
ILT
1558// Output_data_dynamic::Dynamic_entry methods.
1559
1560// Write out the entry.
1561
1562template<int size, bool big_endian>
1563void
1564Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
7d1a9ebb 1566 const Stringpool* pool) const
a3ad94ed
ILT
1567{
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1569 switch (this->offset_)
a3ad94ed
ILT
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
a3ad94ed 1575 case DYNAMIC_SECTION_SIZE:
16649710 1576 val = this->u_.od->data_size();
612a8d3d
DM
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
a3ad94ed
ILT
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
16649710
ILT
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
c2b45e22
CC
1594 val = this->u_.od->address() + this->offset_;
1595 break;
a3ad94ed
ILT
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601}
1602
1603// Output_data_dynamic methods.
1604
16649710
ILT
1605// Adjust the output section to set the entry size.
1606
1607void
1608Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609{
8851ecca 1610 if (parameters->target().get_size() == 32)
16649710 1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1612 else if (parameters->target().get_size() == 64)
16649710
ILT
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616}
1617
a3ad94ed
ILT
1618// Set the final data size.
1619
1620void
27bc2bce 1621Output_data_dynamic::set_final_data_size()
a3ad94ed 1622{
20e6d0d6
DK
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
a3ad94ed
ILT
1632
1633 int dyn_size;
8851ecca 1634 if (parameters->target().get_size() == 32)
a3ad94ed 1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1636 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641}
1642
1643// Write out the dynamic entries.
1644
1645void
1646Output_data_dynamic::do_write(Output_file* of)
1647{
8851ecca 1648 switch (parameters->size_and_endianness())
a3ad94ed 1649 {
9025d29d 1650#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
9025d29d 1654#endif
8851ecca
ILT
1655#ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
9025d29d 1659#endif
9025d29d 1660#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
9025d29d 1664#endif
8851ecca
ILT
1665#ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669#endif
1670 default:
1671 gold_unreachable();
a3ad94ed 1672 }
a3ad94ed
ILT
1673}
1674
1675template<int size, bool big_endian>
1676void
1677Output_data_dynamic::sized_write(Output_file* of)
1678{
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
2ea97941 1681 const off_t offset = this->offset();
a3ad94ed 1682 const off_t oview_size = this->data_size();
2ea97941 1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
7d1a9ebb 1690 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
2ea97941 1696 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700}
1701
d491d34e
ILT
1702// Class Output_symtab_xindex.
1703
1704void
1705Output_symtab_xindex::do_write(Output_file* of)
1706{
2ea97941 1707 const off_t offset = this->offset();
d491d34e 1708 const off_t oview_size = this->data_size();
2ea97941 1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
2ea97941 1718 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722}
1723
1724template<bool big_endian>
1725void
1726Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727{
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
20e6d0d6
DK
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
d491d34e
ILT
1736}
1737
ead1e424
ILT
1738// Output_section::Input_section methods.
1739
1740// Return the data size. For an input section we store the size here.
1741// For an Output_section_data, we have to ask it for the size.
1742
1743off_t
1744Output_section::Input_section::data_size() const
1745{
1746 if (this->is_input_section())
b8e6aad9 1747 return this->u1_.data_size;
ead1e424 1748 else
b8e6aad9 1749 return this->u2_.posd->data_size();
ead1e424
ILT
1750}
1751
1752// Set the address and file offset.
1753
1754void
96803768
ILT
1755Output_section::Input_section::set_address_and_file_offset(
1756 uint64_t address,
1757 off_t file_offset,
1758 off_t section_file_offset)
ead1e424
ILT
1759{
1760 if (this->is_input_section())
96803768
ILT
1761 this->u2_.object->set_section_offset(this->shndx_,
1762 file_offset - section_file_offset);
ead1e424 1763 else
96803768
ILT
1764 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1765}
1766
a445fddf
ILT
1767// Reset the address and file offset.
1768
1769void
1770Output_section::Input_section::reset_address_and_file_offset()
1771{
1772 if (!this->is_input_section())
1773 this->u2_.posd->reset_address_and_file_offset();
1774}
1775
96803768
ILT
1776// Finalize the data size.
1777
1778void
1779Output_section::Input_section::finalize_data_size()
1780{
1781 if (!this->is_input_section())
1782 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1783}
1784
1e983657
ILT
1785// Try to turn an input offset into an output offset. We want to
1786// return the output offset relative to the start of this
1787// Input_section in the output section.
b8e6aad9 1788
8f00aeb8 1789inline bool
8383303e
ILT
1790Output_section::Input_section::output_offset(
1791 const Relobj* object,
2ea97941
ILT
1792 unsigned int shndx,
1793 section_offset_type offset,
8383303e 1794 section_offset_type *poutput) const
b8e6aad9
ILT
1795{
1796 if (!this->is_input_section())
2ea97941 1797 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1798 else
1799 {
2ea97941 1800 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1801 return false;
2ea97941 1802 *poutput = offset;
b8e6aad9
ILT
1803 return true;
1804 }
ead1e424
ILT
1805}
1806
a9a60db6
ILT
1807// Return whether this is the merge section for the input section
1808// SHNDX in OBJECT.
1809
1810inline bool
1811Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1812 unsigned int shndx) const
a9a60db6
ILT
1813{
1814 if (this->is_input_section())
1815 return false;
2ea97941 1816 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1817}
1818
ead1e424
ILT
1819// Write out the data. We don't have to do anything for an input
1820// section--they are handled via Object::relocate--but this is where
1821// we write out the data for an Output_section_data.
1822
1823void
1824Output_section::Input_section::write(Output_file* of)
1825{
1826 if (!this->is_input_section())
b8e6aad9 1827 this->u2_.posd->write(of);
ead1e424
ILT
1828}
1829
96803768
ILT
1830// Write the data to a buffer. As for write(), we don't have to do
1831// anything for an input section.
1832
1833void
1834Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1835{
1836 if (!this->is_input_section())
1837 this->u2_.posd->write_to_buffer(buffer);
1838}
1839
7d9e3d98
ILT
1840// Print to a map file.
1841
1842void
1843Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1844{
1845 switch (this->shndx_)
1846 {
1847 case OUTPUT_SECTION_CODE:
1848 case MERGE_DATA_SECTION_CODE:
1849 case MERGE_STRING_SECTION_CODE:
1850 this->u2_.posd->print_to_mapfile(mapfile);
1851 break;
1852
20e6d0d6
DK
1853 case RELAXED_INPUT_SECTION_CODE:
1854 {
1855 Output_relaxed_input_section* relaxed_section =
1856 this->relaxed_input_section();
1857 mapfile->print_input_section(relaxed_section->relobj(),
1858 relaxed_section->shndx());
1859 }
1860 break;
7d9e3d98
ILT
1861 default:
1862 mapfile->print_input_section(this->u2_.object, this->shndx_);
1863 break;
1864 }
1865}
1866
a2fb1b05
ILT
1867// Output_section methods.
1868
1869// Construct an Output_section. NAME will point into a Stringpool.
1870
2ea97941
ILT
1871Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1872 elfcpp::Elf_Xword flags)
1873 : name_(name),
a2fb1b05
ILT
1874 addralign_(0),
1875 entsize_(0),
a445fddf 1876 load_address_(0),
16649710 1877 link_section_(NULL),
a2fb1b05 1878 link_(0),
16649710 1879 info_section_(NULL),
6a74a719 1880 info_symndx_(NULL),
a2fb1b05 1881 info_(0),
2ea97941
ILT
1882 type_(type),
1883 flags_(flags),
91ea499d 1884 out_shndx_(-1U),
c06b7b0b
ILT
1885 symtab_index_(0),
1886 dynsym_index_(0),
ead1e424
ILT
1887 input_sections_(),
1888 first_input_offset_(0),
c51e6221 1889 fills_(),
96803768 1890 postprocessing_buffer_(NULL),
a3ad94ed 1891 needs_symtab_index_(false),
16649710
ILT
1892 needs_dynsym_index_(false),
1893 should_link_to_symtab_(false),
730cdc88 1894 should_link_to_dynsym_(false),
27bc2bce 1895 after_input_sections_(false),
7bf1f802 1896 requires_postprocessing_(false),
a445fddf
ILT
1897 found_in_sections_clause_(false),
1898 has_load_address_(false),
755ab8af 1899 info_uses_section_index_(false),
2fd32231
ILT
1900 may_sort_attached_input_sections_(false),
1901 must_sort_attached_input_sections_(false),
1902 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1903 is_relro_(false),
1904 is_relro_local_(false),
1a2dff53
ILT
1905 is_last_relro_(false),
1906 is_first_non_relro_(false),
8a5e3e08
ILT
1907 is_small_section_(false),
1908 is_large_section_(false),
f5c870d2
ILT
1909 is_interp_(false),
1910 is_dynamic_linker_section_(false),
1911 generate_code_fills_at_write_(false),
e8cd95c7 1912 is_entsize_zero_(false),
8923b24c 1913 section_offsets_need_adjustment_(false),
20e6d0d6 1914 tls_offset_(0),
c0a62865
DK
1915 checkpoint_(NULL),
1916 merge_section_map_(),
1917 merge_section_by_properties_map_(),
1918 relaxed_input_section_map_(),
f5c870d2 1919 is_relaxed_input_section_map_valid_(true)
a2fb1b05 1920{
27bc2bce
ILT
1921 // An unallocated section has no address. Forcing this means that
1922 // we don't need special treatment for symbols defined in debug
1923 // sections.
2ea97941 1924 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 1925 this->set_address(0);
a2fb1b05
ILT
1926}
1927
54dc6425
ILT
1928Output_section::~Output_section()
1929{
20e6d0d6 1930 delete this->checkpoint_;
54dc6425
ILT
1931}
1932
16649710
ILT
1933// Set the entry size.
1934
1935void
1936Output_section::set_entsize(uint64_t v)
1937{
e8cd95c7
ILT
1938 if (this->is_entsize_zero_)
1939 ;
1940 else if (this->entsize_ == 0)
16649710 1941 this->entsize_ = v;
e8cd95c7
ILT
1942 else if (this->entsize_ != v)
1943 {
1944 this->entsize_ = 0;
1945 this->is_entsize_zero_ = 1;
1946 }
16649710
ILT
1947}
1948
ead1e424 1949// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1950// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1951// relocation section which applies to this section, or 0 if none, or
1952// -1U if more than one. Return the offset of the input section
1953// within the output section. Return -1 if the input section will
1954// receive special handling. In the normal case we don't always keep
1955// track of input sections for an Output_section. Instead, each
1956// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1957// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1958// track of input sections here; this is used when SECTIONS appears in
1959// a linker script.
a2fb1b05
ILT
1960
1961template<int size, bool big_endian>
1962off_t
730cdc88 1963Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
2ea97941 1964 unsigned int shndx,
ead1e424 1965 const char* secname,
730cdc88 1966 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1967 unsigned int reloc_shndx,
1968 bool have_sections_script)
a2fb1b05 1969{
2ea97941
ILT
1970 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1971 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 1972 {
75f2446e 1973 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
1974 static_cast<unsigned long>(addralign), secname);
1975 addralign = 1;
a2fb1b05 1976 }
a2fb1b05 1977
2ea97941
ILT
1978 if (addralign > this->addralign_)
1979 this->addralign_ = addralign;
a2fb1b05 1980
44a43cf9 1981 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 1982 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1983
1984 // .debug_str is a mergeable string section, but is not always so
1985 // marked by compilers. Mark manually here so we can optimize.
1986 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1987 {
1988 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 1989 entsize = 1;
4f833eee 1990 }
44a43cf9 1991
e8cd95c7
ILT
1992 this->update_flags_for_input_section(sh_flags);
1993 this->set_entsize(entsize);
1994
b8e6aad9 1995 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 1996 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
1997 // a section. We don't try to handle empty merge sections--they
1998 // mess up the mappings, and are useless anyhow.
44a43cf9 1999 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2000 && reloc_shndx == 0
2001 && shdr.get_sh_size() > 0)
b8e6aad9 2002 {
2ea97941
ILT
2003 if (this->add_merge_input_section(object, shndx, sh_flags,
2004 entsize, addralign))
b8e6aad9
ILT
2005 {
2006 // Tell the relocation routines that they need to call the
730cdc88 2007 // output_offset method to determine the final address.
b8e6aad9
ILT
2008 return -1;
2009 }
2010 }
2011
27bc2bce 2012 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2013 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2014 addralign);
c51e6221 2015
c0a62865
DK
2016 // Determine if we want to delay code-fill generation until the output
2017 // section is written. When the target is relaxing, we want to delay fill
2018 // generating to avoid adjusting them during relaxation.
2019 if (!this->generate_code_fills_at_write_
2020 && !have_sections_script
2021 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2022 && parameters->target().has_code_fill()
2023 && parameters->target().may_relax())
2024 {
2025 gold_assert(this->fills_.empty());
2026 this->generate_code_fills_at_write_ = true;
2027 }
2028
c51e6221 2029 if (aligned_offset_in_section > offset_in_section
c0a62865 2030 && !this->generate_code_fills_at_write_
a445fddf 2031 && !have_sections_script
44a43cf9 2032 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2033 && parameters->target().has_code_fill())
c51e6221
ILT
2034 {
2035 // We need to add some fill data. Using fill_list_ when
2036 // possible is an optimization, since we will often have fill
2037 // sections without input sections.
2038 off_t fill_len = aligned_offset_in_section - offset_in_section;
2039 if (this->input_sections_.empty())
2040 this->fills_.push_back(Fill(offset_in_section, fill_len));
2041 else
2042 {
029ba973 2043 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2044 Output_data_const* odc = new Output_data_const(fill_data, 1);
2045 this->input_sections_.push_back(Input_section(odc));
2046 }
2047 }
2048
27bc2bce
ILT
2049 this->set_current_data_size_for_child(aligned_offset_in_section
2050 + shdr.get_sh_size());
a2fb1b05 2051
ead1e424 2052 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2053 // track of sections, or if we are relaxing. Also, if this is a
2054 // section which requires sorting, or which may require sorting in
20e6d0d6 2055 // the future, we keep track of the sections.
2fd32231
ILT
2056 if (have_sections_script
2057 || !this->input_sections_.empty()
2058 || this->may_sort_attached_input_sections()
7d9e3d98 2059 || this->must_sort_attached_input_sections()
20e6d0d6 2060 || parameters->options().user_set_Map()
029ba973 2061 || parameters->target().may_relax())
2ea97941 2062 this->input_sections_.push_back(Input_section(object, shndx,
ead1e424 2063 shdr.get_sh_size(),
2ea97941 2064 addralign));
54dc6425 2065
c51e6221 2066 return aligned_offset_in_section;
61ba1cf9
ILT
2067}
2068
ead1e424
ILT
2069// Add arbitrary data to an output section.
2070
2071void
2072Output_section::add_output_section_data(Output_section_data* posd)
2073{
b8e6aad9
ILT
2074 Input_section inp(posd);
2075 this->add_output_section_data(&inp);
a445fddf
ILT
2076
2077 if (posd->is_data_size_valid())
2078 {
2079 off_t offset_in_section = this->current_data_size_for_child();
2080 off_t aligned_offset_in_section = align_address(offset_in_section,
2081 posd->addralign());
2082 this->set_current_data_size_for_child(aligned_offset_in_section
2083 + posd->data_size());
2084 }
b8e6aad9
ILT
2085}
2086
c0a62865
DK
2087// Add a relaxed input section.
2088
2089void
2090Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2091{
2092 Input_section inp(poris);
2093 this->add_output_section_data(&inp);
2094 if (this->is_relaxed_input_section_map_valid_)
2095 {
5ac169d4
DK
2096 Const_section_id csid(poris->relobj(), poris->shndx());
2097 this->relaxed_input_section_map_[csid] = poris;
c0a62865
DK
2098 }
2099
2100 // For a relaxed section, we use the current data size. Linker scripts
2101 // get all the input sections, including relaxed one from an output
2102 // section and add them back to them same output section to compute the
2103 // output section size. If we do not account for sizes of relaxed input
2104 // sections, an output section would be incorrectly sized.
2105 off_t offset_in_section = this->current_data_size_for_child();
2106 off_t aligned_offset_in_section = align_address(offset_in_section,
2107 poris->addralign());
2108 this->set_current_data_size_for_child(aligned_offset_in_section
2109 + poris->current_data_size());
2110}
2111
b8e6aad9 2112// Add arbitrary data to an output section by Input_section.
c06b7b0b 2113
b8e6aad9
ILT
2114void
2115Output_section::add_output_section_data(Input_section* inp)
2116{
ead1e424 2117 if (this->input_sections_.empty())
27bc2bce 2118 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2119
b8e6aad9 2120 this->input_sections_.push_back(*inp);
c06b7b0b 2121
2ea97941
ILT
2122 uint64_t addralign = inp->addralign();
2123 if (addralign > this->addralign_)
2124 this->addralign_ = addralign;
c06b7b0b 2125
b8e6aad9
ILT
2126 inp->set_output_section(this);
2127}
2128
2129// Add a merge section to an output section.
2130
2131void
2132Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2133 bool is_string, uint64_t entsize)
b8e6aad9 2134{
2ea97941 2135 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2136 this->add_output_section_data(&inp);
2137}
2138
2139// Add an input section to a SHF_MERGE section.
2140
2141bool
2ea97941
ILT
2142Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2143 uint64_t flags, uint64_t entsize,
2144 uint64_t addralign)
b8e6aad9 2145{
2ea97941 2146 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2147
2148 // We only merge strings if the alignment is not more than the
2149 // character size. This could be handled, but it's unusual.
2ea97941 2150 if (is_string && addralign > entsize)
b8e6aad9
ILT
2151 return false;
2152
20e6d0d6
DK
2153 // We cannot restore merged input section states.
2154 gold_assert(this->checkpoint_ == NULL);
2155
c0a62865 2156 // Look up merge sections by required properties.
6bf924b0 2157 Output_merge_base* pomb;
2ea97941 2158 Merge_section_properties msp(is_string, entsize, addralign);
c0a62865
DK
2159 Merge_section_by_properties_map::const_iterator p =
2160 this->merge_section_by_properties_map_.find(msp);
2161 if (p != this->merge_section_by_properties_map_.end())
2162 {
6bf924b0
DK
2163 pomb = p->second;
2164 gold_assert(pomb->is_string() == is_string
2165 && pomb->entsize() == entsize
2166 && pomb->addralign() == addralign);
c0a62865 2167 }
b8e6aad9
ILT
2168 else
2169 {
6bf924b0
DK
2170 // Create a new Output_merge_data or Output_merge_string_data.
2171 if (!is_string)
2172 pomb = new Output_merge_data(entsize, addralign);
2173 else
9a0910c3 2174 {
6bf924b0
DK
2175 switch (entsize)
2176 {
2177 case 1:
2178 pomb = new Output_merge_string<char>(addralign);
2179 break;
2180 case 2:
2181 pomb = new Output_merge_string<uint16_t>(addralign);
2182 break;
2183 case 4:
2184 pomb = new Output_merge_string<uint32_t>(addralign);
2185 break;
2186 default:
2187 return false;
2188 }
9a0910c3 2189 }
6bf924b0
DK
2190 // Add new merge section to this output section and link merge
2191 // section properties to new merge section in map.
2192 this->add_output_merge_section(pomb, is_string, entsize);
2193 this->merge_section_by_properties_map_[msp] = pomb;
b8e6aad9
ILT
2194 }
2195
6bf924b0
DK
2196 if (pomb->add_input_section(object, shndx))
2197 {
2198 // Add input section to new merge section and link input section to new
2199 // merge section in map.
2200 Const_section_id csid(object, shndx);
2201 this->merge_section_map_[csid] = pomb;
2202 return true;
2203 }
2204 else
2205 return false;
b8e6aad9
ILT
2206}
2207
c0a62865 2208// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2209// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2210
20e6d0d6 2211void
c0a62865 2212Output_section::build_relaxation_map(
2ea97941 2213 const Input_section_list& input_sections,
c0a62865
DK
2214 size_t limit,
2215 Relaxation_map* relaxation_map) const
20e6d0d6 2216{
c0a62865
DK
2217 for (size_t i = 0; i < limit; ++i)
2218 {
2ea97941 2219 const Input_section& is(input_sections[i]);
c0a62865
DK
2220 if (is.is_input_section() || is.is_relaxed_input_section())
2221 {
5ac169d4
DK
2222 Section_id sid(is.relobj(), is.shndx());
2223 (*relaxation_map)[sid] = i;
c0a62865
DK
2224 }
2225 }
2226}
2227
2228// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2229// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2230// indices of INPUT_SECTIONS.
20e6d0d6 2231
c0a62865
DK
2232void
2233Output_section::convert_input_sections_in_list_to_relaxed_sections(
2234 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2235 const Relaxation_map& map,
2ea97941 2236 Input_section_list* input_sections)
c0a62865
DK
2237{
2238 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2239 {
2240 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2241 Section_id sid(poris->relobj(), poris->shndx());
2242 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2243 gold_assert(p != map.end());
2ea97941
ILT
2244 gold_assert((*input_sections)[p->second].is_input_section());
2245 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2246 }
2247}
2248
2249// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2250// is a vector of pointers to Output_relaxed_input_section or its derived
2251// classes. The relaxed sections must correspond to existing input sections.
2252
2253void
2254Output_section::convert_input_sections_to_relaxed_sections(
2255 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2256{
029ba973 2257 gold_assert(parameters->target().may_relax());
20e6d0d6 2258
c0a62865
DK
2259 // We want to make sure that restore_states does not undo the effect of
2260 // this. If there is no checkpoint active, just search the current
2261 // input section list and replace the sections there. If there is
2262 // a checkpoint, also replace the sections there.
2263
2264 // By default, we look at the whole list.
2265 size_t limit = this->input_sections_.size();
2266
2267 if (this->checkpoint_ != NULL)
20e6d0d6 2268 {
c0a62865
DK
2269 // Replace input sections with relaxed input section in the saved
2270 // copy of the input section list.
2271 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2272 {
c0a62865
DK
2273 Relaxation_map map;
2274 this->build_relaxation_map(
2275 *(this->checkpoint_->input_sections()),
2276 this->checkpoint_->input_sections()->size(),
2277 &map);
2278 this->convert_input_sections_in_list_to_relaxed_sections(
2279 relaxed_sections,
2280 map,
2281 this->checkpoint_->input_sections());
2282 }
2283 else
2284 {
2285 // We have not copied the input section list yet. Instead, just
2286 // look at the portion that would be saved.
2287 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2288 }
20e6d0d6 2289 }
c0a62865
DK
2290
2291 // Convert input sections in input_section_list.
2292 Relaxation_map map;
2293 this->build_relaxation_map(this->input_sections_, limit, &map);
2294 this->convert_input_sections_in_list_to_relaxed_sections(
2295 relaxed_sections,
2296 map,
2297 &this->input_sections_);
41263c05
DK
2298
2299 // Update fast look-up map.
2300 if (this->is_relaxed_input_section_map_valid_)
2301 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2302 {
2303 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2304 Const_section_id csid(poris->relobj(), poris->shndx());
2305 this->relaxed_input_section_map_[csid] = poris;
41263c05 2306 }
20e6d0d6
DK
2307}
2308
9c547ec3
ILT
2309// Update the output section flags based on input section flags.
2310
2311void
2ea97941 2312Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2313{
2314 // If we created the section with SHF_ALLOC clear, we set the
2315 // address. If we are now setting the SHF_ALLOC flag, we need to
2316 // undo that.
2317 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2318 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2319 this->mark_address_invalid();
2320
2ea97941 2321 this->flags_ |= (flags
9c547ec3
ILT
2322 & (elfcpp::SHF_WRITE
2323 | elfcpp::SHF_ALLOC
2324 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2325
2326 if ((flags & elfcpp::SHF_MERGE) == 0)
2327 this->flags_ &=~ elfcpp::SHF_MERGE;
2328 else
2329 {
2330 if (this->current_data_size_for_child() == 0)
2331 this->flags_ |= elfcpp::SHF_MERGE;
2332 }
2333
2334 if ((flags & elfcpp::SHF_STRINGS) == 0)
2335 this->flags_ &=~ elfcpp::SHF_STRINGS;
2336 else
2337 {
2338 if (this->current_data_size_for_child() == 0)
2339 this->flags_ |= elfcpp::SHF_STRINGS;
2340 }
9c547ec3
ILT
2341}
2342
2ea97941 2343// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2344// OBJECT has been added. Return NULL if none found.
2345
2346Output_section_data*
2347Output_section::find_merge_section(const Relobj* object,
2ea97941 2348 unsigned int shndx) const
c0a62865 2349{
5ac169d4 2350 Const_section_id csid(object, shndx);
c0a62865 2351 Output_section_data_by_input_section_map::const_iterator p =
5ac169d4 2352 this->merge_section_map_.find(csid);
c0a62865
DK
2353 if (p != this->merge_section_map_.end())
2354 {
2355 Output_section_data* posd = p->second;
2ea97941 2356 gold_assert(posd->is_merge_section_for(object, shndx));
c0a62865
DK
2357 return posd;
2358 }
2359 else
2360 return NULL;
2361}
2362
2363// Find an relaxed input section corresponding to an input section
2ea97941 2364// in OBJECT with index SHNDX.
c0a62865 2365
d6344fb5 2366const Output_relaxed_input_section*
c0a62865 2367Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2368 unsigned int shndx) const
c0a62865
DK
2369{
2370 // Be careful that the map may not be valid due to input section export
2371 // to scripts or a check-point restore.
2372 if (!this->is_relaxed_input_section_map_valid_)
2373 {
2374 // Rebuild the map as needed.
2375 this->relaxed_input_section_map_.clear();
2376 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2377 p != this->input_sections_.end();
2378 ++p)
2379 if (p->is_relaxed_input_section())
2380 {
5ac169d4
DK
2381 Const_section_id csid(p->relobj(), p->shndx());
2382 this->relaxed_input_section_map_[csid] =
c0a62865
DK
2383 p->relaxed_input_section();
2384 }
2385 this->is_relaxed_input_section_map_valid_ = true;
2386 }
2387
5ac169d4 2388 Const_section_id csid(object, shndx);
d6344fb5 2389 Output_relaxed_input_section_by_input_section_map::const_iterator p =
5ac169d4 2390 this->relaxed_input_section_map_.find(csid);
c0a62865
DK
2391 if (p != this->relaxed_input_section_map_.end())
2392 return p->second;
2393 else
2394 return NULL;
2395}
2396
2ea97941
ILT
2397// Given an address OFFSET relative to the start of input section
2398// SHNDX in OBJECT, return whether this address is being included in
2399// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2400// a special mapping.
2401
2402bool
2403Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2404 unsigned int shndx,
2405 off_t offset) const
730cdc88 2406{
c0a62865 2407 // Look at the Output_section_data_maps first.
2ea97941 2408 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2409 if (posd == NULL)
2ea97941 2410 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2411
2412 if (posd != NULL)
2413 {
2ea97941
ILT
2414 section_offset_type output_offset;
2415 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2416 gold_assert(found);
2ea97941 2417 return output_offset != -1;
c0a62865
DK
2418 }
2419
2420 // Fall back to the slow look-up.
730cdc88
ILT
2421 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2422 p != this->input_sections_.end();
2423 ++p)
2424 {
2ea97941
ILT
2425 section_offset_type output_offset;
2426 if (p->output_offset(object, shndx, offset, &output_offset))
2427 return output_offset != -1;
730cdc88
ILT
2428 }
2429
2430 // By default we assume that the address is mapped. This should
2431 // only be called after we have passed all sections to Layout. At
2432 // that point we should know what we are discarding.
2433 return true;
2434}
2435
2ea97941
ILT
2436// Given an address OFFSET relative to the start of input section
2437// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2438// start of the input section in the output section. This should only
2ea97941 2439// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2440
8383303e 2441section_offset_type
2ea97941
ILT
2442Output_section::output_offset(const Relobj* object, unsigned int shndx,
2443 section_offset_type offset) const
730cdc88 2444{
c0a62865
DK
2445 // This can only be called meaningfully when we know the data size
2446 // of this.
2447 gold_assert(this->is_data_size_valid());
730cdc88 2448
c0a62865 2449 // Look at the Output_section_data_maps first.
2ea97941 2450 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2451 if (posd == NULL)
2ea97941 2452 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2453 if (posd != NULL)
2454 {
2ea97941
ILT
2455 section_offset_type output_offset;
2456 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2457 gold_assert(found);
2ea97941 2458 return output_offset;
c0a62865
DK
2459 }
2460
2461 // Fall back to the slow look-up.
730cdc88
ILT
2462 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2463 p != this->input_sections_.end();
2464 ++p)
2465 {
2ea97941
ILT
2466 section_offset_type output_offset;
2467 if (p->output_offset(object, shndx, offset, &output_offset))
2468 return output_offset;
730cdc88
ILT
2469 }
2470 gold_unreachable();
2471}
2472
2ea97941
ILT
2473// Return the output virtual address of OFFSET relative to the start
2474// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2475
2476uint64_t
2ea97941
ILT
2477Output_section::output_address(const Relobj* object, unsigned int shndx,
2478 off_t offset) const
b8e6aad9
ILT
2479{
2480 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2481
2482 // Look at the Output_section_data_maps first.
2ea97941 2483 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2484 if (posd == NULL)
2ea97941 2485 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2486 if (posd != NULL && posd->is_address_valid())
2487 {
2ea97941
ILT
2488 section_offset_type output_offset;
2489 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2490 gold_assert(found);
2ea97941 2491 return posd->address() + output_offset;
c0a62865
DK
2492 }
2493
2494 // Fall back to the slow look-up.
b8e6aad9
ILT
2495 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2496 p != this->input_sections_.end();
2497 ++p)
2498 {
2499 addr = align_address(addr, p->addralign());
2ea97941
ILT
2500 section_offset_type output_offset;
2501 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2502 {
2ea97941 2503 if (output_offset == -1)
eff45813 2504 return -1ULL;
2ea97941 2505 return addr + output_offset;
730cdc88 2506 }
b8e6aad9
ILT
2507 addr += p->data_size();
2508 }
2509
2510 // If we get here, it means that we don't know the mapping for this
2511 // input section. This might happen in principle if
2512 // add_input_section were called before add_output_section_data.
2513 // But it should never actually happen.
2514
2515 gold_unreachable();
ead1e424
ILT
2516}
2517
e29e076a 2518// Find the output address of the start of the merged section for
2ea97941 2519// input section SHNDX in object OBJECT.
a9a60db6 2520
e29e076a
ILT
2521bool
2522Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2523 unsigned int shndx,
e29e076a 2524 uint64_t* paddr) const
a9a60db6 2525{
c0a62865
DK
2526 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2527 // Looking up the merge section map does not always work as we sometimes
2528 // find a merge section without its address set.
a9a60db6
ILT
2529 uint64_t addr = this->address() + this->first_input_offset_;
2530 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2531 p != this->input_sections_.end();
2532 ++p)
2533 {
2534 addr = align_address(addr, p->addralign());
2535
2536 // It would be nice if we could use the existing output_offset
2537 // method to get the output offset of input offset 0.
2538 // Unfortunately we don't know for sure that input offset 0 is
2539 // mapped at all.
2ea97941 2540 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2541 {
2542 *paddr = addr;
2543 return true;
2544 }
a9a60db6
ILT
2545
2546 addr += p->data_size();
2547 }
e29e076a
ILT
2548
2549 // We couldn't find a merge output section for this input section.
2550 return false;
a9a60db6
ILT
2551}
2552
27bc2bce 2553// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2554// setting the addresses of any Output_section_data objects.
2555
2556void
27bc2bce 2557Output_section::set_final_data_size()
ead1e424
ILT
2558{
2559 if (this->input_sections_.empty())
27bc2bce
ILT
2560 {
2561 this->set_data_size(this->current_data_size_for_child());
2562 return;
2563 }
ead1e424 2564
2fd32231
ILT
2565 if (this->must_sort_attached_input_sections())
2566 this->sort_attached_input_sections();
2567
2ea97941 2568 uint64_t address = this->address();
27bc2bce 2569 off_t startoff = this->offset();
ead1e424
ILT
2570 off_t off = startoff + this->first_input_offset_;
2571 for (Input_section_list::iterator p = this->input_sections_.begin();
2572 p != this->input_sections_.end();
2573 ++p)
2574 {
2575 off = align_address(off, p->addralign());
2ea97941 2576 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2577 startoff);
ead1e424
ILT
2578 off += p->data_size();
2579 }
2580
2581 this->set_data_size(off - startoff);
2582}
9a0910c3 2583
a445fddf
ILT
2584// Reset the address and file offset.
2585
2586void
2587Output_section::do_reset_address_and_file_offset()
2588{
20e6d0d6
DK
2589 // An unallocated section has no address. Forcing this means that
2590 // we don't need special treatment for symbols defined in debug
2591 // sections. We do the same in the constructor.
2592 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2593 this->set_address(0);
2594
a445fddf
ILT
2595 for (Input_section_list::iterator p = this->input_sections_.begin();
2596 p != this->input_sections_.end();
2597 ++p)
2598 p->reset_address_and_file_offset();
2599}
20e6d0d6
DK
2600
2601// Return true if address and file offset have the values after reset.
2602
2603bool
2604Output_section::do_address_and_file_offset_have_reset_values() const
2605{
2606 if (this->is_offset_valid())
2607 return false;
2608
2609 // An unallocated section has address 0 after its construction or a reset.
2610 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2611 return this->is_address_valid() && this->address() == 0;
2612 else
2613 return !this->is_address_valid();
2614}
a445fddf 2615
7bf1f802
ILT
2616// Set the TLS offset. Called only for SHT_TLS sections.
2617
2618void
2619Output_section::do_set_tls_offset(uint64_t tls_base)
2620{
2621 this->tls_offset_ = this->address() - tls_base;
2622}
2623
2fd32231
ILT
2624// In a few cases we need to sort the input sections attached to an
2625// output section. This is used to implement the type of constructor
2626// priority ordering implemented by the GNU linker, in which the
2627// priority becomes part of the section name and the sections are
2628// sorted by name. We only do this for an output section if we see an
2629// attached input section matching ".ctor.*", ".dtor.*",
2630// ".init_array.*" or ".fini_array.*".
2631
2632class Output_section::Input_section_sort_entry
2633{
2634 public:
2635 Input_section_sort_entry()
2636 : input_section_(), index_(-1U), section_has_name_(false),
2637 section_name_()
2638 { }
2639
2ea97941
ILT
2640 Input_section_sort_entry(const Input_section& input_section,
2641 unsigned int index)
2642 : input_section_(input_section), index_(index),
2643 section_has_name_(input_section.is_input_section()
2644 || input_section.is_relaxed_input_section())
2fd32231
ILT
2645 {
2646 if (this->section_has_name_)
2647 {
2648 // This is only called single-threaded from Layout::finalize,
2649 // so it is OK to lock. Unfortunately we have no way to pass
2650 // in a Task token.
2651 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2652 Object* obj = (input_section.is_input_section()
2653 ? input_section.relobj()
2654 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2655 Task_lock_obj<Object> tl(dummy_task, obj);
2656
2657 // This is a slow operation, which should be cached in
2658 // Layout::layout if this becomes a speed problem.
2ea97941 2659 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2660 }
2661 }
2662
2663 // Return the Input_section.
2664 const Input_section&
2665 input_section() const
2666 {
2667 gold_assert(this->index_ != -1U);
2668 return this->input_section_;
2669 }
2670
2671 // The index of this entry in the original list. This is used to
2672 // make the sort stable.
2673 unsigned int
2674 index() const
2675 {
2676 gold_assert(this->index_ != -1U);
2677 return this->index_;
2678 }
2679
2680 // Whether there is a section name.
2681 bool
2682 section_has_name() const
2683 { return this->section_has_name_; }
2684
2685 // The section name.
2686 const std::string&
2687 section_name() const
2688 {
2689 gold_assert(this->section_has_name_);
2690 return this->section_name_;
2691 }
2692
ab794b6b
ILT
2693 // Return true if the section name has a priority. This is assumed
2694 // to be true if it has a dot after the initial dot.
2fd32231 2695 bool
ab794b6b 2696 has_priority() const
2fd32231
ILT
2697 {
2698 gold_assert(this->section_has_name_);
2a0ff005 2699 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2700 }
2701
ab794b6b
ILT
2702 // Return true if this an input file whose base name matches
2703 // FILE_NAME. The base name must have an extension of ".o", and
2704 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2705 // This is to match crtbegin.o as well as crtbeginS.o without
2706 // getting confused by other possibilities. Overall matching the
2707 // file name this way is a dreadful hack, but the GNU linker does it
2708 // in order to better support gcc, and we need to be compatible.
2fd32231 2709 bool
2ea97941 2710 match_file_name(const char* match_file_name) const
2fd32231 2711 {
2fd32231
ILT
2712 const std::string& file_name(this->input_section_.relobj()->name());
2713 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2714 size_t match_len = strlen(match_file_name);
2715 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2716 return false;
2717 size_t base_len = strlen(base_name);
2718 if (base_len != match_len + 2 && base_len != match_len + 3)
2719 return false;
2720 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2721 }
2722
2723 private:
2724 // The Input_section we are sorting.
2725 Input_section input_section_;
2726 // The index of this Input_section in the original list.
2727 unsigned int index_;
2728 // Whether this Input_section has a section name--it won't if this
2729 // is some random Output_section_data.
2730 bool section_has_name_;
2731 // The section name if there is one.
2732 std::string section_name_;
2733};
2734
2735// Return true if S1 should come before S2 in the output section.
2736
2737bool
2738Output_section::Input_section_sort_compare::operator()(
2739 const Output_section::Input_section_sort_entry& s1,
2740 const Output_section::Input_section_sort_entry& s2) const
2741{
ab794b6b
ILT
2742 // crtbegin.o must come first.
2743 bool s1_begin = s1.match_file_name("crtbegin");
2744 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2745 if (s1_begin || s2_begin)
2746 {
2747 if (!s1_begin)
2748 return false;
2749 if (!s2_begin)
2750 return true;
2751 return s1.index() < s2.index();
2752 }
2753
ab794b6b
ILT
2754 // crtend.o must come last.
2755 bool s1_end = s1.match_file_name("crtend");
2756 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2757 if (s1_end || s2_end)
2758 {
2759 if (!s1_end)
2760 return true;
2761 if (!s2_end)
2762 return false;
2763 return s1.index() < s2.index();
2764 }
2765
ab794b6b
ILT
2766 // We sort all the sections with no names to the end.
2767 if (!s1.section_has_name() || !s2.section_has_name())
2768 {
2769 if (s1.section_has_name())
2770 return true;
2771 if (s2.section_has_name())
2772 return false;
2773 return s1.index() < s2.index();
2774 }
2fd32231 2775
ab794b6b 2776 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2777 bool s1_has_priority = s1.has_priority();
2778 bool s2_has_priority = s2.has_priority();
2779 if (s1_has_priority && !s2_has_priority)
2fd32231 2780 return false;
ab794b6b 2781 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2782 return true;
2783
2784 // Otherwise we sort by name.
2785 int compare = s1.section_name().compare(s2.section_name());
2786 if (compare != 0)
2787 return compare < 0;
2788
2789 // Otherwise we keep the input order.
2790 return s1.index() < s2.index();
2791}
2792
2a0ff005
DK
2793// Return true if S1 should come before S2 in an .init_array or .fini_array
2794// output section.
2795
2796bool
2797Output_section::Input_section_sort_init_fini_compare::operator()(
2798 const Output_section::Input_section_sort_entry& s1,
2799 const Output_section::Input_section_sort_entry& s2) const
2800{
2801 // We sort all the sections with no names to the end.
2802 if (!s1.section_has_name() || !s2.section_has_name())
2803 {
2804 if (s1.section_has_name())
2805 return true;
2806 if (s2.section_has_name())
2807 return false;
2808 return s1.index() < s2.index();
2809 }
2810
2811 // A section without a priority follows a section with a priority.
2812 // This is the reverse of .ctors and .dtors sections.
2813 bool s1_has_priority = s1.has_priority();
2814 bool s2_has_priority = s2.has_priority();
2815 if (s1_has_priority && !s2_has_priority)
2816 return true;
2817 if (!s1_has_priority && s2_has_priority)
2818 return false;
2819
2820 // Otherwise we sort by name.
2821 int compare = s1.section_name().compare(s2.section_name());
2822 if (compare != 0)
2823 return compare < 0;
2824
2825 // Otherwise we keep the input order.
2826 return s1.index() < s2.index();
2827}
2828
2fd32231
ILT
2829// Sort the input sections attached to an output section.
2830
2831void
2832Output_section::sort_attached_input_sections()
2833{
2834 if (this->attached_input_sections_are_sorted_)
2835 return;
2836
20e6d0d6
DK
2837 if (this->checkpoint_ != NULL
2838 && !this->checkpoint_->input_sections_saved())
2839 this->checkpoint_->save_input_sections();
2840
2fd32231
ILT
2841 // The only thing we know about an input section is the object and
2842 // the section index. We need the section name. Recomputing this
2843 // is slow but this is an unusual case. If this becomes a speed
2844 // problem we can cache the names as required in Layout::layout.
2845
2846 // We start by building a larger vector holding a copy of each
2847 // Input_section, plus its current index in the list and its name.
2848 std::vector<Input_section_sort_entry> sort_list;
2849
2850 unsigned int i = 0;
2851 for (Input_section_list::iterator p = this->input_sections_.begin();
2852 p != this->input_sections_.end();
2853 ++p, ++i)
2854 sort_list.push_back(Input_section_sort_entry(*p, i));
2855
2856 // Sort the input sections.
2a0ff005
DK
2857 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2858 || this->type() == elfcpp::SHT_INIT_ARRAY
2859 || this->type() == elfcpp::SHT_FINI_ARRAY)
2860 std::sort(sort_list.begin(), sort_list.end(),
2861 Input_section_sort_init_fini_compare());
2862 else
2863 std::sort(sort_list.begin(), sort_list.end(),
2864 Input_section_sort_compare());
2fd32231
ILT
2865
2866 // Copy the sorted input sections back to our list.
2867 this->input_sections_.clear();
2868 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2869 p != sort_list.end();
2870 ++p)
2871 this->input_sections_.push_back(p->input_section());
2872
2873 // Remember that we sorted the input sections, since we might get
2874 // called again.
2875 this->attached_input_sections_are_sorted_ = true;
2876}
2877
61ba1cf9
ILT
2878// Write the section header to *OSHDR.
2879
2880template<int size, bool big_endian>
2881void
16649710
ILT
2882Output_section::write_header(const Layout* layout,
2883 const Stringpool* secnamepool,
61ba1cf9
ILT
2884 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2885{
2886 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2887 oshdr->put_sh_type(this->type_);
6a74a719 2888
2ea97941 2889 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2890 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
2891 flags |= elfcpp::SHF_INFO_LINK;
2892 oshdr->put_sh_flags(flags);
6a74a719 2893
61ba1cf9
ILT
2894 oshdr->put_sh_addr(this->address());
2895 oshdr->put_sh_offset(this->offset());
2896 oshdr->put_sh_size(this->data_size());
16649710
ILT
2897 if (this->link_section_ != NULL)
2898 oshdr->put_sh_link(this->link_section_->out_shndx());
2899 else if (this->should_link_to_symtab_)
2900 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2901 else if (this->should_link_to_dynsym_)
2902 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2903 else
2904 oshdr->put_sh_link(this->link_);
755ab8af 2905
2ea97941 2906 elfcpp::Elf_Word info;
16649710 2907 if (this->info_section_ != NULL)
755ab8af
ILT
2908 {
2909 if (this->info_uses_section_index_)
2ea97941 2910 info = this->info_section_->out_shndx();
755ab8af 2911 else
2ea97941 2912 info = this->info_section_->symtab_index();
755ab8af 2913 }
6a74a719 2914 else if (this->info_symndx_ != NULL)
2ea97941 2915 info = this->info_symndx_->symtab_index();
16649710 2916 else
2ea97941
ILT
2917 info = this->info_;
2918 oshdr->put_sh_info(info);
755ab8af 2919
61ba1cf9
ILT
2920 oshdr->put_sh_addralign(this->addralign_);
2921 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2922}
2923
ead1e424
ILT
2924// Write out the data. For input sections the data is written out by
2925// Object::relocate, but we have to handle Output_section_data objects
2926// here.
2927
2928void
2929Output_section::do_write(Output_file* of)
2930{
96803768
ILT
2931 gold_assert(!this->requires_postprocessing());
2932
c0a62865
DK
2933 // If the target performs relaxation, we delay filler generation until now.
2934 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2935
c51e6221
ILT
2936 off_t output_section_file_offset = this->offset();
2937 for (Fill_list::iterator p = this->fills_.begin();
2938 p != this->fills_.end();
2939 ++p)
2940 {
8851ecca 2941 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2942 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2943 fill_data.data(), fill_data.size());
c51e6221
ILT
2944 }
2945
c0a62865 2946 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
2947 for (Input_section_list::iterator p = this->input_sections_.begin();
2948 p != this->input_sections_.end();
2949 ++p)
c0a62865
DK
2950 {
2951 off_t aligned_off = align_address(off, p->addralign());
2952 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2953 {
2954 size_t fill_len = aligned_off - off;
2955 std::string fill_data(parameters->target().code_fill(fill_len));
2956 of->write(off, fill_data.data(), fill_data.size());
2957 }
2958
2959 p->write(of);
2960 off = aligned_off + p->data_size();
2961 }
ead1e424
ILT
2962}
2963
96803768
ILT
2964// If a section requires postprocessing, create the buffer to use.
2965
2966void
2967Output_section::create_postprocessing_buffer()
2968{
2969 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2970
2971 if (this->postprocessing_buffer_ != NULL)
2972 return;
96803768
ILT
2973
2974 if (!this->input_sections_.empty())
2975 {
2976 off_t off = this->first_input_offset_;
2977 for (Input_section_list::iterator p = this->input_sections_.begin();
2978 p != this->input_sections_.end();
2979 ++p)
2980 {
2981 off = align_address(off, p->addralign());
2982 p->finalize_data_size();
2983 off += p->data_size();
2984 }
2985 this->set_current_data_size_for_child(off);
2986 }
2987
2988 off_t buffer_size = this->current_data_size_for_child();
2989 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2990}
2991
2992// Write all the data of an Output_section into the postprocessing
2993// buffer. This is used for sections which require postprocessing,
2994// such as compression. Input sections are handled by
2995// Object::Relocate.
2996
2997void
2998Output_section::write_to_postprocessing_buffer()
2999{
3000 gold_assert(this->requires_postprocessing());
3001
c0a62865
DK
3002 // If the target performs relaxation, we delay filler generation until now.
3003 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3004
96803768
ILT
3005 unsigned char* buffer = this->postprocessing_buffer();
3006 for (Fill_list::iterator p = this->fills_.begin();
3007 p != this->fills_.end();
3008 ++p)
3009 {
8851ecca 3010 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3011 memcpy(buffer + p->section_offset(), fill_data.data(),
3012 fill_data.size());
96803768
ILT
3013 }
3014
3015 off_t off = this->first_input_offset_;
3016 for (Input_section_list::iterator p = this->input_sections_.begin();
3017 p != this->input_sections_.end();
3018 ++p)
3019 {
c0a62865
DK
3020 off_t aligned_off = align_address(off, p->addralign());
3021 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3022 {
3023 size_t fill_len = aligned_off - off;
3024 std::string fill_data(parameters->target().code_fill(fill_len));
3025 memcpy(buffer + off, fill_data.data(), fill_data.size());
3026 }
3027
3028 p->write_to_buffer(buffer + aligned_off);
3029 off = aligned_off + p->data_size();
96803768
ILT
3030 }
3031}
3032
a445fddf
ILT
3033// Get the input sections for linker script processing. We leave
3034// behind the Output_section_data entries. Note that this may be
3035// slightly incorrect for merge sections. We will leave them behind,
3036// but it is possible that the script says that they should follow
3037// some other input sections, as in:
3038// .rodata { *(.rodata) *(.rodata.cst*) }
3039// For that matter, we don't handle this correctly:
3040// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3041// With luck this will never matter.
3042
3043uint64_t
3044Output_section::get_input_sections(
2ea97941 3045 uint64_t address,
a445fddf 3046 const std::string& fill,
2ea97941 3047 std::list<Simple_input_section>* input_sections)
a445fddf 3048{
20e6d0d6
DK
3049 if (this->checkpoint_ != NULL
3050 && !this->checkpoint_->input_sections_saved())
3051 this->checkpoint_->save_input_sections();
3052
c0a62865
DK
3053 // Invalidate the relaxed input section map.
3054 this->is_relaxed_input_section_map_valid_ = false;
3055
2ea97941 3056 uint64_t orig_address = address;
a445fddf 3057
2ea97941 3058 address = align_address(address, this->addralign());
a445fddf
ILT
3059
3060 Input_section_list remaining;
3061 for (Input_section_list::iterator p = this->input_sections_.begin();
3062 p != this->input_sections_.end();
3063 ++p)
3064 {
3065 if (p->is_input_section())
2ea97941 3066 input_sections->push_back(Simple_input_section(p->relobj(),
20e6d0d6
DK
3067 p->shndx()));
3068 else if (p->is_relaxed_input_section())
2ea97941 3069 input_sections->push_back(
20e6d0d6 3070 Simple_input_section(p->relaxed_input_section()));
a445fddf
ILT
3071 else
3072 {
2ea97941
ILT
3073 uint64_t aligned_address = align_address(address, p->addralign());
3074 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3075 {
3076 section_size_type length =
2ea97941 3077 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3078 std::string this_fill;
3079 this_fill.reserve(length);
3080 while (this_fill.length() + fill.length() <= length)
3081 this_fill += fill;
3082 if (this_fill.length() < length)
3083 this_fill.append(fill, 0, length - this_fill.length());
3084
3085 Output_section_data* posd = new Output_data_const(this_fill, 0);
3086 remaining.push_back(Input_section(posd));
3087 }
2ea97941 3088 address = aligned_address;
a445fddf
ILT
3089
3090 remaining.push_back(*p);
3091
3092 p->finalize_data_size();
2ea97941 3093 address += p->data_size();
a445fddf
ILT
3094 }
3095 }
3096
3097 this->input_sections_.swap(remaining);
3098 this->first_input_offset_ = 0;
3099
2ea97941
ILT
3100 uint64_t data_size = address - orig_address;
3101 this->set_current_data_size_for_child(data_size);
3102 return data_size;
a445fddf
ILT
3103}
3104
8923b24c 3105// Add an simple input section.
a445fddf
ILT
3106
3107void
8923b24c
DK
3108Output_section::add_simple_input_section(const Simple_input_section& sis,
3109 off_t data_size,
3110 uint64_t addralign)
a445fddf 3111{
2ea97941
ILT
3112 if (addralign > this->addralign_)
3113 this->addralign_ = addralign;
a445fddf
ILT
3114
3115 off_t offset_in_section = this->current_data_size_for_child();
3116 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3117 addralign);
a445fddf
ILT
3118
3119 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3120 + data_size);
a445fddf 3121
20e6d0d6
DK
3122 Input_section is =
3123 (sis.is_relaxed_input_section()
3124 ? Input_section(sis.relaxed_input_section())
2ea97941 3125 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
20e6d0d6
DK
3126 this->input_sections_.push_back(is);
3127}
3128
8923b24c 3129// Save states for relaxation.
20e6d0d6
DK
3130
3131void
3132Output_section::save_states()
3133{
3134 gold_assert(this->checkpoint_ == NULL);
3135 Checkpoint_output_section* checkpoint =
3136 new Checkpoint_output_section(this->addralign_, this->flags_,
3137 this->input_sections_,
3138 this->first_input_offset_,
3139 this->attached_input_sections_are_sorted_);
3140 this->checkpoint_ = checkpoint;
3141 gold_assert(this->fills_.empty());
3142}
3143
8923b24c
DK
3144void
3145Output_section::discard_states()
3146{
3147 gold_assert(this->checkpoint_ != NULL);
3148 delete this->checkpoint_;
3149 this->checkpoint_ = NULL;
3150 gold_assert(this->fills_.empty());
3151
3152 // Simply invalidate the relaxed input section map since we do not keep
3153 // track of it.
3154 this->is_relaxed_input_section_map_valid_ = false;
3155}
3156
20e6d0d6
DK
3157void
3158Output_section::restore_states()
3159{
3160 gold_assert(this->checkpoint_ != NULL);
3161 Checkpoint_output_section* checkpoint = this->checkpoint_;
3162
3163 this->addralign_ = checkpoint->addralign();
3164 this->flags_ = checkpoint->flags();
3165 this->first_input_offset_ = checkpoint->first_input_offset();
3166
3167 if (!checkpoint->input_sections_saved())
3168 {
3169 // If we have not copied the input sections, just resize it.
3170 size_t old_size = checkpoint->input_sections_size();
3171 gold_assert(this->input_sections_.size() >= old_size);
3172 this->input_sections_.resize(old_size);
3173 }
3174 else
3175 {
3176 // We need to copy the whole list. This is not efficient for
3177 // extremely large output with hundreads of thousands of input
3178 // objects. We may need to re-think how we should pass sections
3179 // to scripts.
c0a62865 3180 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3181 }
3182
3183 this->attached_input_sections_are_sorted_ =
3184 checkpoint->attached_input_sections_are_sorted();
c0a62865
DK
3185
3186 // Simply invalidate the relaxed input section map since we do not keep
3187 // track of it.
3188 this->is_relaxed_input_section_map_valid_ = false;
a445fddf
ILT
3189}
3190
8923b24c
DK
3191// Update the section offsets of input sections in this. This is required if
3192// relaxation causes some input sections to change sizes.
3193
3194void
3195Output_section::adjust_section_offsets()
3196{
3197 if (!this->section_offsets_need_adjustment_)
3198 return;
3199
3200 off_t off = 0;
3201 for (Input_section_list::iterator p = this->input_sections_.begin();
3202 p != this->input_sections_.end();
3203 ++p)
3204 {
3205 off = align_address(off, p->addralign());
3206 if (p->is_input_section())
3207 p->relobj()->set_section_offset(p->shndx(), off);
3208 off += p->data_size();
3209 }
3210
3211 this->section_offsets_need_adjustment_ = false;
3212}
3213
7d9e3d98
ILT
3214// Print to the map file.
3215
3216void
3217Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3218{
3219 mapfile->print_output_section(this);
3220
3221 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3222 p != this->input_sections_.end();
3223 ++p)
3224 p->print_to_mapfile(mapfile);
3225}
3226
38c5e8b4
ILT
3227// Print stats for merge sections to stderr.
3228
3229void
3230Output_section::print_merge_stats()
3231{
3232 Input_section_list::iterator p;
3233 for (p = this->input_sections_.begin();
3234 p != this->input_sections_.end();
3235 ++p)
3236 p->print_merge_stats(this->name_);
3237}
3238
a2fb1b05
ILT
3239// Output segment methods.
3240
2ea97941 3241Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3242 : output_data_(),
75f65a3e 3243 output_bss_(),
a2fb1b05
ILT
3244 vaddr_(0),
3245 paddr_(0),
3246 memsz_(0),
a445fddf
ILT
3247 max_align_(0),
3248 min_p_align_(0),
a2fb1b05
ILT
3249 offset_(0),
3250 filesz_(0),
2ea97941
ILT
3251 type_(type),
3252 flags_(flags),
a445fddf 3253 is_max_align_known_(false),
8a5e3e08
ILT
3254 are_addresses_set_(false),
3255 is_large_data_segment_(false)
a2fb1b05 3256{
bb321bb1
ILT
3257 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3258 // the flags.
3259 if (type == elfcpp::PT_TLS)
3260 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3261}
3262
3263// Add an Output_section to an Output_segment.
3264
3265void
75f65a3e 3266Output_segment::add_output_section(Output_section* os,
f5c870d2
ILT
3267 elfcpp::Elf_Word seg_flags,
3268 bool do_sort)
a2fb1b05 3269{
a3ad94ed 3270 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3271 gold_assert(!this->is_max_align_known_);
8a5e3e08 3272 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
96a0d71b 3273 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
75f65a3e 3274
a192ba05 3275 this->update_flags_for_output_section(seg_flags);
75f65a3e
ILT
3276
3277 Output_segment::Output_data_list* pdl;
3278 if (os->type() == elfcpp::SHT_NOBITS)
3279 pdl = &this->output_bss_;
3280 else
3281 pdl = &this->output_data_;
54dc6425 3282
f5c870d2
ILT
3283 // Note that while there may be many input sections in an output
3284 // section, there are normally only a few output sections in an
3285 // output segment. The loops below are expected to be fast.
3286
a2fb1b05 3287 // So that PT_NOTE segments will work correctly, we need to ensure
96a0d71b 3288 // that all SHT_NOTE sections are adjacent.
61ba1cf9 3289 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3290 {
a3ad94ed 3291 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3292 do
54dc6425 3293 {
75f65a3e 3294 --p;
54dc6425
ILT
3295 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3296 {
3297 ++p;
75f65a3e 3298 pdl->insert(p, os);
54dc6425
ILT
3299 return;
3300 }
3301 }
75f65a3e 3302 while (p != pdl->begin());
54dc6425
ILT
3303 }
3304
3305 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3306 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3307 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3308 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab 3309 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
f5c870d2
ILT
3310 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3311 // segment.
07f397ab 3312 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3313 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3314 {
75f65a3e 3315 pdl = &this->output_data_;
661be1e2 3316 if (!pdl->empty())
a2fb1b05 3317 {
661be1e2
ILT
3318 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3319 bool sawtls = false;
3320 Output_segment::Output_data_list::iterator p = pdl->end();
3321 gold_assert(p != pdl->begin());
3322 do
a2fb1b05 3323 {
661be1e2
ILT
3324 --p;
3325 bool insert;
3326 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3327 {
3328 sawtls = true;
3329 // Put a NOBITS section after the first TLS section.
3330 // Put a PROGBITS section after the first
3331 // TLS/PROGBITS section.
3332 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3333 }
3334 else
3335 {
3336 // If we've gone past the TLS sections, but we've
3337 // seen a TLS section, then we need to insert this
3338 // section now.
3339 insert = sawtls;
3340 }
3341
3342 if (insert)
3343 {
3344 ++p;
3345 pdl->insert(p, os);
3346 return;
3347 }
a2fb1b05 3348 }
661be1e2 3349 while (p != pdl->begin());
a2fb1b05 3350 }
ead1e424 3351
dbe717ef
ILT
3352 // There are no TLS sections yet; put this one at the requested
3353 // location in the section list.
a2fb1b05
ILT
3354 }
3355
1a2dff53 3356 if (do_sort)
9f1d377b 3357 {
1a2dff53
ILT
3358 // For the PT_GNU_RELRO segment, we need to group relro
3359 // sections, and we need to put them before any non-relro
3360 // sections. Any relro local sections go before relro non-local
3361 // sections. One section may be marked as the last relro
3362 // section.
3363 if (os->is_relro())
9f1d377b 3364 {
1a2dff53
ILT
3365 gold_assert(pdl == &this->output_data_);
3366 Output_segment::Output_data_list::iterator p;
3367 for (p = pdl->begin(); p != pdl->end(); ++p)
3368 {
3369 if (!(*p)->is_section())
3370 break;
9f1d377b 3371
1a2dff53
ILT
3372 Output_section* pos = (*p)->output_section();
3373 if (!pos->is_relro()
3374 || (os->is_relro_local() && !pos->is_relro_local())
3375 || (!os->is_last_relro() && pos->is_last_relro()))
3376 break;
3377 }
3378
3379 pdl->insert(p, os);
3380 return;
9f1d377b
ILT
3381 }
3382
1a2dff53
ILT
3383 // One section may be marked as the first section which follows
3384 // the relro sections.
3385 if (os->is_first_non_relro())
3386 {
3387 gold_assert(pdl == &this->output_data_);
3388 Output_segment::Output_data_list::iterator p;
3389 for (p = pdl->begin(); p != pdl->end(); ++p)
3390 {
3391 if (!(*p)->is_section())
3392 break;
3393
3394 Output_section* pos = (*p)->output_section();
3395 if (!pos->is_relro())
3396 break;
3397 }
3398
3399 pdl->insert(p, os);
3400 return;
3401 }
9f1d377b
ILT
3402 }
3403
8a5e3e08
ILT
3404 // Small data sections go at the end of the list of data sections.
3405 // If OS is not small, and there are small sections, we have to
3406 // insert it before the first small section.
3407 if (os->type() != elfcpp::SHT_NOBITS
3408 && !os->is_small_section()
3409 && !pdl->empty()
3410 && pdl->back()->is_section()
3411 && pdl->back()->output_section()->is_small_section())
3412 {
3413 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3414 p != pdl->end();
3415 ++p)
3416 {
3417 if ((*p)->is_section()
3418 && (*p)->output_section()->is_small_section())
3419 {
3420 pdl->insert(p, os);
3421 return;
3422 }
3423 }
3424 gold_unreachable();
3425 }
3426
3427 // A small BSS section goes at the start of the BSS sections, after
3428 // other small BSS sections.
3429 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3430 {
3431 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3432 p != pdl->end();
3433 ++p)
3434 {
3435 if (!(*p)->is_section()
3436 || !(*p)->output_section()->is_small_section())
3437 {
3438 pdl->insert(p, os);
3439 return;
3440 }
3441 }
3442 }
3443
3444 // A large BSS section goes at the end of the BSS sections, which
3445 // means that one that is not large must come before the first large
3446 // one.
3447 if (os->type() == elfcpp::SHT_NOBITS
3448 && !os->is_large_section()
3449 && !pdl->empty()
3450 && pdl->back()->is_section()
3451 && pdl->back()->output_section()->is_large_section())
3452 {
3453 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3454 p != pdl->end();
3455 ++p)
3456 {
3457 if ((*p)->is_section()
3458 && (*p)->output_section()->is_large_section())
3459 {
3460 pdl->insert(p, os);
3461 return;
3462 }
3463 }
3464 gold_unreachable();
3465 }
3466
f5c870d2
ILT
3467 // We do some further output section sorting in order to make the
3468 // generated program run more efficiently. We should only do this
3469 // when not using a linker script, so it is controled by the DO_SORT
3470 // parameter.
3471 if (do_sort)
3472 {
3473 // FreeBSD requires the .interp section to be in the first page
3474 // of the executable. That is a more efficient location anyhow
3475 // for any OS, since it means that the kernel will have the data
3476 // handy after it reads the program headers.
3477 if (os->is_interp() && !pdl->empty())
3478 {
3479 pdl->insert(pdl->begin(), os);
3480 return;
3481 }
3482
3483 // Put loadable non-writable notes immediately after the .interp
3484 // sections, so that the PT_NOTE segment is on the first page of
3485 // the executable.
3486 if (os->type() == elfcpp::SHT_NOTE
3487 && (os->flags() & elfcpp::SHF_WRITE) == 0
3488 && !pdl->empty())
3489 {
3490 Output_segment::Output_data_list::iterator p = pdl->begin();
3491 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3492 ++p;
3493 pdl->insert(p, os);
96a0d71b 3494 return;
f5c870d2
ILT
3495 }
3496
3497 // If this section is used by the dynamic linker, and it is not
3498 // writable, then put it first, after the .interp section and
3499 // any loadable notes. This makes it more likely that the
3500 // dynamic linker will have to read less data from the disk.
3501 if (os->is_dynamic_linker_section()
3502 && !pdl->empty()
3503 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3504 {
3505 bool is_reloc = (os->type() == elfcpp::SHT_REL
3506 || os->type() == elfcpp::SHT_RELA);
3507 Output_segment::Output_data_list::iterator p = pdl->begin();
3508 while (p != pdl->end()
3509 && (*p)->is_section()
3510 && ((*p)->output_section()->is_dynamic_linker_section()
3511 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3512 {
3513 // Put reloc sections after the other ones. Putting the
3514 // dynamic reloc sections first confuses BFD, notably
3515 // objcopy and strip.
3516 if (!is_reloc
3517 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3518 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3519 break;
3520 ++p;
3521 }
3522 pdl->insert(p, os);
3523 return;
3524 }
3525 }
3526
3527 // If there were no constraints on the output section, just add it
3528 // to the end of the list.
01676dcd 3529 pdl->push_back(os);
75f65a3e
ILT
3530}
3531
1650c4ff
ILT
3532// Remove an Output_section from this segment. It is an error if it
3533// is not present.
3534
3535void
3536Output_segment::remove_output_section(Output_section* os)
3537{
3538 // We only need this for SHT_PROGBITS.
3539 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3540 for (Output_data_list::iterator p = this->output_data_.begin();
3541 p != this->output_data_.end();
3542 ++p)
3543 {
3544 if (*p == os)
3545 {
3546 this->output_data_.erase(p);
3547 return;
3548 }
3549 }
3550 gold_unreachable();
3551}
3552
a192ba05
ILT
3553// Add an Output_data (which need not be an Output_section) to the
3554// start of a segment.
75f65a3e
ILT
3555
3556void
3557Output_segment::add_initial_output_data(Output_data* od)
3558{
a445fddf 3559 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3560 this->output_data_.push_front(od);
3561}
3562
9f1d377b
ILT
3563// Return whether the first data section is a relro section.
3564
3565bool
3566Output_segment::is_first_section_relro() const
3567{
3568 return (!this->output_data_.empty()
3569 && this->output_data_.front()->is_section()
3570 && this->output_data_.front()->output_section()->is_relro());
3571}
3572
75f65a3e 3573// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3574
3575uint64_t
a445fddf 3576Output_segment::maximum_alignment()
75f65a3e 3577{
a445fddf 3578 if (!this->is_max_align_known_)
ead1e424 3579 {
2ea97941 3580 uint64_t addralign;
ead1e424 3581
2ea97941
ILT
3582 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3583 if (addralign > this->max_align_)
3584 this->max_align_ = addralign;
ead1e424 3585
2ea97941
ILT
3586 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3587 if (addralign > this->max_align_)
3588 this->max_align_ = addralign;
ead1e424 3589
a445fddf 3590 this->is_max_align_known_ = true;
ead1e424
ILT
3591 }
3592
a445fddf 3593 return this->max_align_;
75f65a3e
ILT
3594}
3595
ead1e424
ILT
3596// Return the maximum alignment of a list of Output_data.
3597
3598uint64_t
a445fddf 3599Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3600{
3601 uint64_t ret = 0;
3602 for (Output_data_list::const_iterator p = pdl->begin();
3603 p != pdl->end();
3604 ++p)
3605 {
2ea97941
ILT
3606 uint64_t addralign = (*p)->addralign();
3607 if (addralign > ret)
3608 ret = addralign;
ead1e424
ILT
3609 }
3610 return ret;
3611}
3612
4f4c5f80
ILT
3613// Return the number of dynamic relocs applied to this segment.
3614
3615unsigned int
3616Output_segment::dynamic_reloc_count() const
3617{
3618 return (this->dynamic_reloc_count_list(&this->output_data_)
3619 + this->dynamic_reloc_count_list(&this->output_bss_));
3620}
3621
3622// Return the number of dynamic relocs applied to an Output_data_list.
3623
3624unsigned int
3625Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3626{
3627 unsigned int count = 0;
3628 for (Output_data_list::const_iterator p = pdl->begin();
3629 p != pdl->end();
3630 ++p)
3631 count += (*p)->dynamic_reloc_count();
3632 return count;
3633}
3634
a445fddf
ILT
3635// Set the section addresses for an Output_segment. If RESET is true,
3636// reset the addresses first. ADDR is the address and *POFF is the
3637// file offset. Set the section indexes starting with *PSHNDX.
3638// Return the address of the immediately following segment. Update
3639// *POFF and *PSHNDX.
75f65a3e
ILT
3640
3641uint64_t
96a2b4e4 3642Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53
ILT
3643 uint64_t addr,
3644 unsigned int increase_relro,
3645 off_t* poff,
ead1e424 3646 unsigned int* pshndx)
75f65a3e 3647{
a3ad94ed 3648 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3649
1a2dff53
ILT
3650 off_t orig_off = *poff;
3651
3652 // If we have relro sections, we need to pad forward now so that the
3653 // relro sections plus INCREASE_RELRO end on a common page boundary.
3654 if (parameters->options().relro()
3655 && this->is_first_section_relro()
3656 && (!this->are_addresses_set_ || reset))
3657 {
3658 uint64_t relro_size = 0;
3659 off_t off = *poff;
3660 for (Output_data_list::iterator p = this->output_data_.begin();
3661 p != this->output_data_.end();
3662 ++p)
3663 {
3664 if (!(*p)->is_section())
3665 break;
3666 Output_section* pos = (*p)->output_section();
3667 if (!pos->is_relro())
3668 break;
3669 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3670 if ((*p)->is_address_valid())
3671 relro_size += (*p)->data_size();
3672 else
3673 {
3674 // FIXME: This could be faster.
3675 (*p)->set_address_and_file_offset(addr + relro_size,
3676 off + relro_size);
3677 relro_size += (*p)->data_size();
3678 (*p)->reset_address_and_file_offset();
3679 }
3680 }
3681 relro_size += increase_relro;
3682
3683 uint64_t page_align = parameters->target().common_pagesize();
3684
3685 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3686 uint64_t desired_align = page_align - (relro_size % page_align);
3687 if (desired_align < *poff % page_align)
3688 *poff += page_align - *poff % page_align;
3689 *poff += desired_align - *poff % page_align;
3690 addr += *poff - orig_off;
3691 orig_off = *poff;
3692 }
3693
a445fddf
ILT
3694 if (!reset && this->are_addresses_set_)
3695 {
3696 gold_assert(this->paddr_ == addr);
3697 addr = this->vaddr_;
3698 }
3699 else
3700 {
3701 this->vaddr_ = addr;
3702 this->paddr_ = addr;
3703 this->are_addresses_set_ = true;
3704 }
75f65a3e 3705
96a2b4e4
ILT
3706 bool in_tls = false;
3707
75f65a3e
ILT
3708 this->offset_ = orig_off;
3709
96a2b4e4 3710 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
1a2dff53 3711 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
3712 this->filesz_ = *poff - orig_off;
3713
3714 off_t off = *poff;
3715
96a2b4e4
ILT
3716 uint64_t ret = this->set_section_list_addresses(layout, reset,
3717 &this->output_bss_,
3718 addr, poff, pshndx,
1a2dff53 3719 &in_tls);
96a2b4e4
ILT
3720
3721 // If the last section was a TLS section, align upward to the
3722 // alignment of the TLS segment, so that the overall size of the TLS
3723 // segment is aligned.
3724 if (in_tls)
3725 {
3726 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3727 *poff = align_address(*poff, segment_align);
3728 }
3729
75f65a3e
ILT
3730 this->memsz_ = *poff - orig_off;
3731
3732 // Ignore the file offset adjustments made by the BSS Output_data
3733 // objects.
3734 *poff = off;
61ba1cf9
ILT
3735
3736 return ret;
75f65a3e
ILT
3737}
3738
b8e6aad9
ILT
3739// Set the addresses and file offsets in a list of Output_data
3740// structures.
75f65a3e
ILT
3741
3742uint64_t
96a2b4e4
ILT
3743Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3744 Output_data_list* pdl,
ead1e424 3745 uint64_t addr, off_t* poff,
96a2b4e4 3746 unsigned int* pshndx,
1a2dff53 3747 bool* in_tls)
75f65a3e 3748{
ead1e424 3749 off_t startoff = *poff;
75f65a3e 3750
ead1e424 3751 off_t off = startoff;
75f65a3e
ILT
3752 for (Output_data_list::iterator p = pdl->begin();
3753 p != pdl->end();
3754 ++p)
3755 {
a445fddf
ILT
3756 if (reset)
3757 (*p)->reset_address_and_file_offset();
3758
3759 // When using a linker script the section will most likely
3760 // already have an address.
3761 if (!(*p)->is_address_valid())
3802b2dd 3762 {
96a2b4e4
ILT
3763 uint64_t align = (*p)->addralign();
3764
3765 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3766 {
3767 // Give the first TLS section the alignment of the
3768 // entire TLS segment. Otherwise the TLS segment as a
3769 // whole may be misaligned.
3770 if (!*in_tls)
3771 {
3772 Output_segment* tls_segment = layout->tls_segment();
3773 gold_assert(tls_segment != NULL);
3774 uint64_t segment_align = tls_segment->maximum_alignment();
3775 gold_assert(segment_align >= align);
3776 align = segment_align;
3777
3778 *in_tls = true;
3779 }
3780 }
3781 else
3782 {
3783 // If this is the first section after the TLS segment,
3784 // align it to at least the alignment of the TLS
3785 // segment, so that the size of the overall TLS segment
3786 // is aligned.
3787 if (*in_tls)
3788 {
3789 uint64_t segment_align =
3790 layout->tls_segment()->maximum_alignment();
3791 if (segment_align > align)
3792 align = segment_align;
3793
3794 *in_tls = false;
3795 }
3796 }
3797
3798 off = align_address(off, align);
3802b2dd
ILT
3799 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3800 }
a445fddf
ILT
3801 else
3802 {
3803 // The script may have inserted a skip forward, but it
3804 // better not have moved backward.
661be1e2
ILT
3805 if ((*p)->address() >= addr + (off - startoff))
3806 off += (*p)->address() - (addr + (off - startoff));
3807 else
3808 {
3809 if (!layout->script_options()->saw_sections_clause())
3810 gold_unreachable();
3811 else
3812 {
3813 Output_section* os = (*p)->output_section();
64b1ae37
DK
3814
3815 // Cast to unsigned long long to avoid format warnings.
3816 unsigned long long previous_dot =
3817 static_cast<unsigned long long>(addr + (off - startoff));
3818 unsigned long long dot =
3819 static_cast<unsigned long long>((*p)->address());
3820
661be1e2
ILT
3821 if (os == NULL)
3822 gold_error(_("dot moves backward in linker script "
64b1ae37 3823 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3824 else
3825 gold_error(_("address of section '%s' moves backward "
3826 "from 0x%llx to 0x%llx"),
64b1ae37 3827 os->name(), previous_dot, dot);
661be1e2
ILT
3828 }
3829 }
a445fddf
ILT
3830 (*p)->set_file_offset(off);
3831 (*p)->finalize_data_size();
3832 }
ead1e424 3833
96a2b4e4
ILT
3834 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3835 // section. Such a section does not affect the size of a
3836 // PT_LOAD segment.
3837 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3838 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3839 off += (*p)->data_size();
75f65a3e 3840
ead1e424
ILT
3841 if ((*p)->is_section())
3842 {
3843 (*p)->set_out_shndx(*pshndx);
3844 ++*pshndx;
3845 }
75f65a3e
ILT
3846 }
3847
3848 *poff = off;
ead1e424 3849 return addr + (off - startoff);
75f65a3e
ILT
3850}
3851
3852// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3853// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3854
3855void
1a2dff53 3856Output_segment::set_offset(unsigned int increase)
75f65a3e 3857{
a3ad94ed 3858 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3859
a445fddf
ILT
3860 gold_assert(!this->are_addresses_set_);
3861
75f65a3e
ILT
3862 if (this->output_data_.empty() && this->output_bss_.empty())
3863 {
1a2dff53 3864 gold_assert(increase == 0);
75f65a3e
ILT
3865 this->vaddr_ = 0;
3866 this->paddr_ = 0;
a445fddf 3867 this->are_addresses_set_ = true;
75f65a3e 3868 this->memsz_ = 0;
a445fddf 3869 this->min_p_align_ = 0;
75f65a3e
ILT
3870 this->offset_ = 0;
3871 this->filesz_ = 0;
3872 return;
3873 }
3874
3875 const Output_data* first;
3876 if (this->output_data_.empty())
3877 first = this->output_bss_.front();
3878 else
3879 first = this->output_data_.front();
3880 this->vaddr_ = first->address();
a445fddf
ILT
3881 this->paddr_ = (first->has_load_address()
3882 ? first->load_address()
3883 : this->vaddr_);
3884 this->are_addresses_set_ = true;
75f65a3e
ILT
3885 this->offset_ = first->offset();
3886
3887 if (this->output_data_.empty())
3888 this->filesz_ = 0;
3889 else
3890 {
3891 const Output_data* last_data = this->output_data_.back();
3892 this->filesz_ = (last_data->address()
3893 + last_data->data_size()
3894 - this->vaddr_);
3895 }
3896
3897 const Output_data* last;
3898 if (this->output_bss_.empty())
3899 last = this->output_data_.back();
3900 else
3901 last = this->output_bss_.back();
3902 this->memsz_ = (last->address()
3903 + last->data_size()
3904 - this->vaddr_);
96a2b4e4 3905
1a2dff53
ILT
3906 this->filesz_ += increase;
3907 this->memsz_ += increase;
3908
96a2b4e4
ILT
3909 // If this is a TLS segment, align the memory size. The code in
3910 // set_section_list ensures that the section after the TLS segment
3911 // is aligned to give us room.
3912 if (this->type_ == elfcpp::PT_TLS)
3913 {
3914 uint64_t segment_align = this->maximum_alignment();
3915 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3916 this->memsz_ = align_address(this->memsz_, segment_align);
3917 }
75f65a3e
ILT
3918}
3919
7bf1f802
ILT
3920// Set the TLS offsets of the sections in the PT_TLS segment.
3921
3922void
3923Output_segment::set_tls_offsets()
3924{
3925 gold_assert(this->type_ == elfcpp::PT_TLS);
3926
3927 for (Output_data_list::iterator p = this->output_data_.begin();
3928 p != this->output_data_.end();
3929 ++p)
3930 (*p)->set_tls_offset(this->vaddr_);
3931
3932 for (Output_data_list::iterator p = this->output_bss_.begin();
3933 p != this->output_bss_.end();
3934 ++p)
3935 (*p)->set_tls_offset(this->vaddr_);
3936}
3937
a445fddf
ILT
3938// Return the address of the first section.
3939
3940uint64_t
3941Output_segment::first_section_load_address() const
3942{
3943 for (Output_data_list::const_iterator p = this->output_data_.begin();
3944 p != this->output_data_.end();
3945 ++p)
3946 if ((*p)->is_section())
3947 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3948
3949 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3950 p != this->output_bss_.end();
3951 ++p)
3952 if ((*p)->is_section())
3953 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3954
3955 gold_unreachable();
3956}
3957
75f65a3e
ILT
3958// Return the number of Output_sections in an Output_segment.
3959
3960unsigned int
3961Output_segment::output_section_count() const
3962{
3963 return (this->output_section_count_list(&this->output_data_)
3964 + this->output_section_count_list(&this->output_bss_));
3965}
3966
3967// Return the number of Output_sections in an Output_data_list.
3968
3969unsigned int
3970Output_segment::output_section_count_list(const Output_data_list* pdl) const
3971{
3972 unsigned int count = 0;
3973 for (Output_data_list::const_iterator p = pdl->begin();
3974 p != pdl->end();
3975 ++p)
3976 {
3977 if ((*p)->is_section())
3978 ++count;
3979 }
3980 return count;
a2fb1b05
ILT
3981}
3982
1c4f3631
ILT
3983// Return the section attached to the list segment with the lowest
3984// load address. This is used when handling a PHDRS clause in a
3985// linker script.
3986
3987Output_section*
3988Output_segment::section_with_lowest_load_address() const
3989{
3990 Output_section* found = NULL;
3991 uint64_t found_lma = 0;
3992 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3993
3994 Output_section* found_data = found;
3995 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3996 if (found != found_data && found_data != NULL)
3997 {
3998 gold_error(_("nobits section %s may not precede progbits section %s "
3999 "in same segment"),
4000 found->name(), found_data->name());
4001 return NULL;
4002 }
4003
4004 return found;
4005}
4006
4007// Look through a list for a section with a lower load address.
4008
4009void
4010Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4011 Output_section** found,
4012 uint64_t* found_lma) const
4013{
4014 for (Output_data_list::const_iterator p = pdl->begin();
4015 p != pdl->end();
4016 ++p)
4017 {
4018 if (!(*p)->is_section())
4019 continue;
4020 Output_section* os = static_cast<Output_section*>(*p);
4021 uint64_t lma = (os->has_load_address()
4022 ? os->load_address()
4023 : os->address());
4024 if (*found == NULL || lma < *found_lma)
4025 {
4026 *found = os;
4027 *found_lma = lma;
4028 }
4029 }
4030}
4031
61ba1cf9
ILT
4032// Write the segment data into *OPHDR.
4033
4034template<int size, bool big_endian>
4035void
ead1e424 4036Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4037{
4038 ophdr->put_p_type(this->type_);
4039 ophdr->put_p_offset(this->offset_);
4040 ophdr->put_p_vaddr(this->vaddr_);
4041 ophdr->put_p_paddr(this->paddr_);
4042 ophdr->put_p_filesz(this->filesz_);
4043 ophdr->put_p_memsz(this->memsz_);
4044 ophdr->put_p_flags(this->flags_);
a445fddf 4045 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4046}
4047
4048// Write the section headers into V.
4049
4050template<int size, bool big_endian>
4051unsigned char*
16649710
ILT
4052Output_segment::write_section_headers(const Layout* layout,
4053 const Stringpool* secnamepool,
ead1e424 4054 unsigned char* v,
7d1a9ebb 4055 unsigned int *pshndx) const
5482377d 4056{
ead1e424
ILT
4057 // Every section that is attached to a segment must be attached to a
4058 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4059 // segments.
4060 if (this->type_ != elfcpp::PT_LOAD)
4061 return v;
4062
7d1a9ebb
ILT
4063 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4064 &this->output_data_,
4065 v, pshndx);
4066 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4067 &this->output_bss_,
4068 v, pshndx);
61ba1cf9
ILT
4069 return v;
4070}
4071
4072template<int size, bool big_endian>
4073unsigned char*
16649710
ILT
4074Output_segment::write_section_headers_list(const Layout* layout,
4075 const Stringpool* secnamepool,
61ba1cf9 4076 const Output_data_list* pdl,
ead1e424 4077 unsigned char* v,
7d1a9ebb 4078 unsigned int* pshndx) const
61ba1cf9
ILT
4079{
4080 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4081 for (Output_data_list::const_iterator p = pdl->begin();
4082 p != pdl->end();
4083 ++p)
4084 {
4085 if ((*p)->is_section())
4086 {
5482377d 4087 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4088 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4089 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4090 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4091 v += shdr_size;
ead1e424 4092 ++*pshndx;
61ba1cf9
ILT
4093 }
4094 }
4095 return v;
4096}
4097
7d9e3d98
ILT
4098// Print the output sections to the map file.
4099
4100void
4101Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4102{
4103 if (this->type() != elfcpp::PT_LOAD)
4104 return;
4105 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4106 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4107}
4108
4109// Print an output section list to the map file.
4110
4111void
4112Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4113 const Output_data_list* pdl) const
4114{
4115 for (Output_data_list::const_iterator p = pdl->begin();
4116 p != pdl->end();
4117 ++p)
4118 (*p)->print_to_mapfile(mapfile);
4119}
4120
a2fb1b05
ILT
4121// Output_file methods.
4122
14144f39
ILT
4123Output_file::Output_file(const char* name)
4124 : name_(name),
61ba1cf9
ILT
4125 o_(-1),
4126 file_size_(0),
c420411f 4127 base_(NULL),
516cb3d0
ILT
4128 map_is_anonymous_(false),
4129 is_temporary_(false)
61ba1cf9
ILT
4130{
4131}
4132
404c2abb
ILT
4133// Try to open an existing file. Returns false if the file doesn't
4134// exist, has a size of 0 or can't be mmapped.
4135
4136bool
4137Output_file::open_for_modification()
4138{
4139 // The name "-" means "stdout".
4140 if (strcmp(this->name_, "-") == 0)
4141 return false;
4142
4143 // Don't bother opening files with a size of zero.
4144 struct stat s;
4145 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4146 return false;
4147
4148 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4149 if (o < 0)
4150 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4151 this->o_ = o;
4152 this->file_size_ = s.st_size;
4153
4154 // If the file can't be mmapped, copying the content to an anonymous
4155 // map will probably negate the performance benefits of incremental
4156 // linking. This could be helped by using views and loading only
4157 // the necessary parts, but this is not supported as of now.
4158 if (!this->map_no_anonymous())
4159 {
4160 release_descriptor(o, true);
4161 this->o_ = -1;
4162 this->file_size_ = 0;
4163 return false;
4164 }
4165
4166 return true;
4167}
4168
61ba1cf9
ILT
4169// Open the output file.
4170
a2fb1b05 4171void
61ba1cf9 4172Output_file::open(off_t file_size)
a2fb1b05 4173{
61ba1cf9
ILT
4174 this->file_size_ = file_size;
4175
4e9d8586
ILT
4176 // Unlink the file first; otherwise the open() may fail if the file
4177 // is busy (e.g. it's an executable that's currently being executed).
4178 //
4179 // However, the linker may be part of a system where a zero-length
4180 // file is created for it to write to, with tight permissions (gcc
4181 // 2.95 did something like this). Unlinking the file would work
4182 // around those permission controls, so we only unlink if the file
4183 // has a non-zero size. We also unlink only regular files to avoid
4184 // trouble with directories/etc.
4185 //
4186 // If we fail, continue; this command is merely a best-effort attempt
4187 // to improve the odds for open().
4188
42a1b686 4189 // We let the name "-" mean "stdout"
516cb3d0 4190 if (!this->is_temporary_)
42a1b686 4191 {
516cb3d0
ILT
4192 if (strcmp(this->name_, "-") == 0)
4193 this->o_ = STDOUT_FILENO;
4194 else
4195 {
4196 struct stat s;
6a89f575
CC
4197 if (::stat(this->name_, &s) == 0
4198 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4199 {
4200 if (s.st_size != 0)
4201 ::unlink(this->name_);
4202 else if (!parameters->options().relocatable())
4203 {
4204 // If we don't unlink the existing file, add execute
4205 // permission where read permissions already exist
4206 // and where the umask permits.
4207 int mask = ::umask(0);
4208 ::umask(mask);
4209 s.st_mode |= (s.st_mode & 0444) >> 2;
4210 ::chmod(this->name_, s.st_mode & ~mask);
4211 }
4212 }
516cb3d0 4213
8851ecca 4214 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4215 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4216 mode);
516cb3d0
ILT
4217 if (o < 0)
4218 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4219 this->o_ = o;
4220 }
42a1b686 4221 }
61ba1cf9 4222
27bc2bce
ILT
4223 this->map();
4224}
4225
4226// Resize the output file.
4227
4228void
4229Output_file::resize(off_t file_size)
4230{
c420411f
ILT
4231 // If the mmap is mapping an anonymous memory buffer, this is easy:
4232 // just mremap to the new size. If it's mapping to a file, we want
4233 // to unmap to flush to the file, then remap after growing the file.
4234 if (this->map_is_anonymous_)
4235 {
4236 void* base = ::mremap(this->base_, this->file_size_, file_size,
4237 MREMAP_MAYMOVE);
4238 if (base == MAP_FAILED)
4239 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4240 this->base_ = static_cast<unsigned char*>(base);
4241 this->file_size_ = file_size;
4242 }
4243 else
4244 {
4245 this->unmap();
4246 this->file_size_ = file_size;
fdcac5af
ILT
4247 if (!this->map_no_anonymous())
4248 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4249 }
27bc2bce
ILT
4250}
4251
404c2abb
ILT
4252// Map an anonymous block of memory which will later be written to the
4253// file. Return whether the map succeeded.
26736d8e 4254
404c2abb 4255bool
26736d8e
ILT
4256Output_file::map_anonymous()
4257{
404c2abb
ILT
4258 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4259 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4260 if (base != MAP_FAILED)
4261 {
4262 this->map_is_anonymous_ = true;
4263 this->base_ = static_cast<unsigned char*>(base);
4264 return true;
4265 }
4266 return false;
26736d8e
ILT
4267}
4268
404c2abb 4269// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4270
404c2abb
ILT
4271bool
4272Output_file::map_no_anonymous()
27bc2bce 4273{
c420411f 4274 const int o = this->o_;
61ba1cf9 4275
c420411f
ILT
4276 // If the output file is not a regular file, don't try to mmap it;
4277 // instead, we'll mmap a block of memory (an anonymous buffer), and
4278 // then later write the buffer to the file.
4279 void* base;
4280 struct stat statbuf;
42a1b686
ILT
4281 if (o == STDOUT_FILENO || o == STDERR_FILENO
4282 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4283 || !S_ISREG(statbuf.st_mode)
4284 || this->is_temporary_)
404c2abb
ILT
4285 return false;
4286
4287 // Ensure that we have disk space available for the file. If we
4288 // don't do this, it is possible that we will call munmap, close,
4289 // and exit with dirty buffers still in the cache with no assigned
4290 // disk blocks. If the disk is out of space at that point, the
4291 // output file will wind up incomplete, but we will have already
4292 // exited. The alternative to fallocate would be to use fdatasync,
4293 // but that would be a more significant performance hit.
4294 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4295 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4296
4297 // Map the file into memory.
4298 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4299 MAP_SHARED, o, 0);
4300
4301 // The mmap call might fail because of file system issues: the file
4302 // system might not support mmap at all, or it might not support
4303 // mmap with PROT_WRITE.
61ba1cf9 4304 if (base == MAP_FAILED)
404c2abb
ILT
4305 return false;
4306
4307 this->map_is_anonymous_ = false;
61ba1cf9 4308 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4309 return true;
4310}
4311
4312// Map the file into memory.
4313
4314void
4315Output_file::map()
4316{
4317 if (this->map_no_anonymous())
4318 return;
4319
4320 // The mmap call might fail because of file system issues: the file
4321 // system might not support mmap at all, or it might not support
4322 // mmap with PROT_WRITE. I'm not sure which errno values we will
4323 // see in all cases, so if the mmap fails for any reason and we
4324 // don't care about file contents, try for an anonymous map.
4325 if (this->map_anonymous())
4326 return;
4327
4328 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4329 this->name_, static_cast<unsigned long>(this->file_size_),
4330 strerror(errno));
61ba1cf9
ILT
4331}
4332
c420411f 4333// Unmap the file from memory.
61ba1cf9
ILT
4334
4335void
c420411f 4336Output_file::unmap()
61ba1cf9
ILT
4337{
4338 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4339 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4340 this->base_ = NULL;
c420411f
ILT
4341}
4342
4343// Close the output file.
4344
4345void
4346Output_file::close()
4347{
4348 // If the map isn't file-backed, we need to write it now.
516cb3d0 4349 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4350 {
4351 size_t bytes_to_write = this->file_size_;
6d1e3092 4352 size_t offset = 0;
c420411f
ILT
4353 while (bytes_to_write > 0)
4354 {
6d1e3092
CD
4355 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4356 bytes_to_write);
c420411f
ILT
4357 if (bytes_written == 0)
4358 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4359 else if (bytes_written < 0)
4360 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4361 else
6d1e3092
CD
4362 {
4363 bytes_to_write -= bytes_written;
4364 offset += bytes_written;
4365 }
c420411f
ILT
4366 }
4367 }
4368 this->unmap();
61ba1cf9 4369
42a1b686 4370 // We don't close stdout or stderr
516cb3d0
ILT
4371 if (this->o_ != STDOUT_FILENO
4372 && this->o_ != STDERR_FILENO
4373 && !this->is_temporary_)
42a1b686
ILT
4374 if (::close(this->o_) < 0)
4375 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4376 this->o_ = -1;
a2fb1b05
ILT
4377}
4378
4379// Instantiate the templates we need. We could use the configure
4380// script to restrict this to only the ones for implemented targets.
4381
193a53d9 4382#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4383template
4384off_t
4385Output_section::add_input_section<32, false>(
730cdc88 4386 Sized_relobj<32, false>* object,
2ea97941 4387 unsigned int shndx,
a2fb1b05 4388 const char* secname,
730cdc88 4389 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4390 unsigned int reloc_shndx,
4391 bool have_sections_script);
193a53d9 4392#endif
a2fb1b05 4393
193a53d9 4394#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4395template
4396off_t
4397Output_section::add_input_section<32, true>(
730cdc88 4398 Sized_relobj<32, true>* object,
2ea97941 4399 unsigned int shndx,
a2fb1b05 4400 const char* secname,
730cdc88 4401 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4402 unsigned int reloc_shndx,
4403 bool have_sections_script);
193a53d9 4404#endif
a2fb1b05 4405
193a53d9 4406#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4407template
4408off_t
4409Output_section::add_input_section<64, false>(
730cdc88 4410 Sized_relobj<64, false>* object,
2ea97941 4411 unsigned int shndx,
a2fb1b05 4412 const char* secname,
730cdc88 4413 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4414 unsigned int reloc_shndx,
4415 bool have_sections_script);
193a53d9 4416#endif
a2fb1b05 4417
193a53d9 4418#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4419template
4420off_t
4421Output_section::add_input_section<64, true>(
730cdc88 4422 Sized_relobj<64, true>* object,
2ea97941 4423 unsigned int shndx,
a2fb1b05 4424 const char* secname,
730cdc88 4425 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4426 unsigned int reloc_shndx,
4427 bool have_sections_script);
193a53d9 4428#endif
a2fb1b05 4429
bbbfea06
CC
4430#ifdef HAVE_TARGET_32_LITTLE
4431template
4432class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4433#endif
4434
4435#ifdef HAVE_TARGET_32_BIG
4436template
4437class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4438#endif
4439
4440#ifdef HAVE_TARGET_64_LITTLE
4441template
4442class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4443#endif
4444
4445#ifdef HAVE_TARGET_64_BIG
4446template
4447class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4448#endif
4449
4450#ifdef HAVE_TARGET_32_LITTLE
4451template
4452class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4453#endif
4454
4455#ifdef HAVE_TARGET_32_BIG
4456template
4457class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4458#endif
4459
4460#ifdef HAVE_TARGET_64_LITTLE
4461template
4462class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4463#endif
4464
4465#ifdef HAVE_TARGET_64_BIG
4466template
4467class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4468#endif
4469
4470#ifdef HAVE_TARGET_32_LITTLE
4471template
4472class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4473#endif
4474
4475#ifdef HAVE_TARGET_32_BIG
4476template
4477class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4478#endif
4479
4480#ifdef HAVE_TARGET_64_LITTLE
4481template
4482class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4483#endif
4484
4485#ifdef HAVE_TARGET_64_BIG
4486template
4487class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4488#endif
4489
4490#ifdef HAVE_TARGET_32_LITTLE
4491template
4492class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4493#endif
4494
4495#ifdef HAVE_TARGET_32_BIG
4496template
4497class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4498#endif
4499
4500#ifdef HAVE_TARGET_64_LITTLE
4501template
4502class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4503#endif
4504
4505#ifdef HAVE_TARGET_64_BIG
4506template
4507class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4508#endif
4509
193a53d9 4510#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4511template
4512class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4513#endif
c06b7b0b 4514
193a53d9 4515#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4516template
4517class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4518#endif
c06b7b0b 4519
193a53d9 4520#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4521template
4522class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4523#endif
c06b7b0b 4524
193a53d9 4525#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4526template
4527class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4528#endif
c06b7b0b 4529
193a53d9 4530#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4531template
4532class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4533#endif
c06b7b0b 4534
193a53d9 4535#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4536template
4537class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4538#endif
c06b7b0b 4539
193a53d9 4540#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4541template
4542class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4543#endif
c06b7b0b 4544
193a53d9 4545#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4546template
4547class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4548#endif
c06b7b0b 4549
193a53d9 4550#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4551template
4552class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4553#endif
c06b7b0b 4554
193a53d9 4555#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4556template
4557class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4558#endif
c06b7b0b 4559
193a53d9 4560#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4561template
4562class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4563#endif
c06b7b0b 4564
193a53d9 4565#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4566template
4567class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4568#endif
c06b7b0b 4569
193a53d9 4570#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4571template
4572class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4573#endif
c06b7b0b 4574
193a53d9 4575#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4576template
4577class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4578#endif
c06b7b0b 4579
193a53d9 4580#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4581template
4582class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4583#endif
c06b7b0b 4584
193a53d9 4585#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4586template
4587class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4588#endif
c06b7b0b 4589
6a74a719
ILT
4590#ifdef HAVE_TARGET_32_LITTLE
4591template
4592class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4593#endif
4594
4595#ifdef HAVE_TARGET_32_BIG
4596template
4597class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4598#endif
4599
4600#ifdef HAVE_TARGET_64_LITTLE
4601template
4602class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4603#endif
4604
4605#ifdef HAVE_TARGET_64_BIG
4606template
4607class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4608#endif
4609
4610#ifdef HAVE_TARGET_32_LITTLE
4611template
4612class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4613#endif
4614
4615#ifdef HAVE_TARGET_32_BIG
4616template
4617class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4618#endif
4619
4620#ifdef HAVE_TARGET_64_LITTLE
4621template
4622class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4623#endif
4624
4625#ifdef HAVE_TARGET_64_BIG
4626template
4627class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4628#endif
4629
4630#ifdef HAVE_TARGET_32_LITTLE
4631template
4632class Output_data_group<32, false>;
4633#endif
4634
4635#ifdef HAVE_TARGET_32_BIG
4636template
4637class Output_data_group<32, true>;
4638#endif
4639
4640#ifdef HAVE_TARGET_64_LITTLE
4641template
4642class Output_data_group<64, false>;
4643#endif
4644
4645#ifdef HAVE_TARGET_64_BIG
4646template
4647class Output_data_group<64, true>;
4648#endif
4649
193a53d9 4650#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4651template
dbe717ef 4652class Output_data_got<32, false>;
193a53d9 4653#endif
ead1e424 4654
193a53d9 4655#ifdef HAVE_TARGET_32_BIG
ead1e424 4656template
dbe717ef 4657class Output_data_got<32, true>;
193a53d9 4658#endif
ead1e424 4659
193a53d9 4660#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4661template
dbe717ef 4662class Output_data_got<64, false>;
193a53d9 4663#endif
ead1e424 4664
193a53d9 4665#ifdef HAVE_TARGET_64_BIG
ead1e424 4666template
dbe717ef 4667class Output_data_got<64, true>;
193a53d9 4668#endif
ead1e424 4669
a2fb1b05 4670} // End namespace gold.
This page took 0.408477 seconds and 4 git commands to generate.