* mi/mi-cmd-var.c (varobj_update_one): Print new
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
a2fb1b05
ILT
40#include "output.h"
41
c420411f
ILT
42// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43#ifndef MAP_ANONYMOUS
44# define MAP_ANONYMOUS MAP_ANON
45#endif
46
a2fb1b05
ILT
47namespace gold
48{
49
a3ad94ed
ILT
50// Output_data variables.
51
27bc2bce 52bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 53
a2fb1b05
ILT
54// Output_data methods.
55
56Output_data::~Output_data()
57{
58}
59
730cdc88
ILT
60// Return the default alignment for the target size.
61
62uint64_t
63Output_data::default_alignment()
64{
8851ecca
ILT
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
730cdc88
ILT
67}
68
75f65a3e
ILT
69// Return the default alignment for a size--32 or 64.
70
71uint64_t
730cdc88 72Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
73{
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
a3ad94ed 79 gold_unreachable();
75f65a3e
ILT
80}
81
75f65a3e
ILT
82// Output_section_header methods. This currently assumes that the
83// segment and section lists are complete at construction time.
84
85Output_section_headers::Output_section_headers(
16649710
ILT
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
6a74a719 88 const Layout::Section_list* section_list,
16649710 89 const Layout::Section_list* unattached_section_list,
61ba1cf9 90 const Stringpool* secnamepool)
9025d29d 91 : layout_(layout),
75f65a3e 92 segment_list_(segment_list),
6a74a719 93 section_list_(section_list),
a3ad94ed 94 unattached_section_list_(unattached_section_list),
61ba1cf9 95 secnamepool_(secnamepool)
75f65a3e 96{
61ba1cf9
ILT
97 // Count all the sections. Start with 1 for the null section.
98 off_t count = 1;
8851ecca 99 if (!parameters->options().relocatable())
6a74a719
ILT
100 {
101 for (Layout::Segment_list::const_iterator p = segment_list->begin();
102 p != segment_list->end();
103 ++p)
104 if ((*p)->type() == elfcpp::PT_LOAD)
105 count += (*p)->output_section_count();
106 }
107 else
108 {
109 for (Layout::Section_list::const_iterator p = section_list->begin();
110 p != section_list->end();
111 ++p)
112 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
113 ++count;
114 }
16649710 115 count += unattached_section_list->size();
75f65a3e 116
8851ecca 117 const int size = parameters->target().get_size();
75f65a3e
ILT
118 int shdr_size;
119 if (size == 32)
120 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
121 else if (size == 64)
122 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
123 else
a3ad94ed 124 gold_unreachable();
75f65a3e
ILT
125
126 this->set_data_size(count * shdr_size);
127}
128
61ba1cf9
ILT
129// Write out the section headers.
130
75f65a3e 131void
61ba1cf9 132Output_section_headers::do_write(Output_file* of)
a2fb1b05 133{
8851ecca 134 switch (parameters->size_and_endianness())
61ba1cf9 135 {
9025d29d 136#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
137 case Parameters::TARGET_32_LITTLE:
138 this->do_sized_write<32, false>(of);
139 break;
9025d29d 140#endif
8851ecca
ILT
141#ifdef HAVE_TARGET_32_BIG
142 case Parameters::TARGET_32_BIG:
143 this->do_sized_write<32, true>(of);
144 break;
9025d29d 145#endif
9025d29d 146#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
147 case Parameters::TARGET_64_LITTLE:
148 this->do_sized_write<64, false>(of);
149 break;
9025d29d 150#endif
8851ecca
ILT
151#ifdef HAVE_TARGET_64_BIG
152 case Parameters::TARGET_64_BIG:
153 this->do_sized_write<64, true>(of);
154 break;
155#endif
156 default:
157 gold_unreachable();
61ba1cf9 158 }
61ba1cf9
ILT
159}
160
161template<int size, bool big_endian>
162void
163Output_section_headers::do_sized_write(Output_file* of)
164{
165 off_t all_shdrs_size = this->data_size();
166 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
167
168 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
169 unsigned char* v = view;
170
171 {
172 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
173 oshdr.put_sh_name(0);
174 oshdr.put_sh_type(elfcpp::SHT_NULL);
175 oshdr.put_sh_flags(0);
176 oshdr.put_sh_addr(0);
177 oshdr.put_sh_offset(0);
178 oshdr.put_sh_size(0);
179 oshdr.put_sh_link(0);
180 oshdr.put_sh_info(0);
181 oshdr.put_sh_addralign(0);
182 oshdr.put_sh_entsize(0);
183 }
184
185 v += shdr_size;
186
6a74a719 187 unsigned int shndx = 1;
8851ecca 188 if (!parameters->options().relocatable())
6a74a719
ILT
189 {
190 for (Layout::Segment_list::const_iterator p =
191 this->segment_list_->begin();
192 p != this->segment_list_->end();
193 ++p)
194 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
195 this->secnamepool_,
196 v,
197 &shndx);
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 {
206 // We do unallocated sections below, except that group
207 // sections have to come first.
208 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
209 && (*p)->type() != elfcpp::SHT_GROUP)
210 continue;
211 gold_assert(shndx == (*p)->out_shndx());
212 elfcpp::Shdr_write<size, big_endian> oshdr(v);
213 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
214 v += shdr_size;
215 ++shndx;
216 }
217 }
218
a3ad94ed 219 for (Layout::Section_list::const_iterator p =
16649710
ILT
220 this->unattached_section_list_->begin();
221 p != this->unattached_section_list_->end();
61ba1cf9
ILT
222 ++p)
223 {
6a74a719
ILT
224 // For a relocatable link, we did unallocated group sections
225 // above, since they have to come first.
226 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 227 && parameters->options().relocatable())
6a74a719 228 continue;
a3ad94ed 229 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 231 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 232 v += shdr_size;
ead1e424 233 ++shndx;
61ba1cf9
ILT
234 }
235
236 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
237}
238
54dc6425
ILT
239// Output_segment_header methods.
240
61ba1cf9 241Output_segment_headers::Output_segment_headers(
61ba1cf9 242 const Layout::Segment_list& segment_list)
9025d29d 243 : segment_list_(segment_list)
61ba1cf9 244{
8851ecca 245 const int size = parameters->target().get_size();
61ba1cf9
ILT
246 int phdr_size;
247 if (size == 32)
248 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
249 else if (size == 64)
250 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
251 else
a3ad94ed 252 gold_unreachable();
61ba1cf9
ILT
253
254 this->set_data_size(segment_list.size() * phdr_size);
255}
256
54dc6425 257void
61ba1cf9 258Output_segment_headers::do_write(Output_file* of)
75f65a3e 259{
8851ecca 260 switch (parameters->size_and_endianness())
61ba1cf9 261 {
9025d29d 262#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
263 case Parameters::TARGET_32_LITTLE:
264 this->do_sized_write<32, false>(of);
265 break;
9025d29d 266#endif
8851ecca
ILT
267#ifdef HAVE_TARGET_32_BIG
268 case Parameters::TARGET_32_BIG:
269 this->do_sized_write<32, true>(of);
270 break;
9025d29d 271#endif
9025d29d 272#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
273 case Parameters::TARGET_64_LITTLE:
274 this->do_sized_write<64, false>(of);
275 break;
9025d29d 276#endif
8851ecca
ILT
277#ifdef HAVE_TARGET_64_BIG
278 case Parameters::TARGET_64_BIG:
279 this->do_sized_write<64, true>(of);
280 break;
281#endif
282 default:
283 gold_unreachable();
61ba1cf9 284 }
61ba1cf9
ILT
285}
286
287template<int size, bool big_endian>
288void
289Output_segment_headers::do_sized_write(Output_file* of)
290{
291 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
292 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 293 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
294 unsigned char* view = of->get_output_view(this->offset(),
295 all_phdrs_size);
296 unsigned char* v = view;
297 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
298 p != this->segment_list_.end();
299 ++p)
300 {
301 elfcpp::Phdr_write<size, big_endian> ophdr(v);
302 (*p)->write_header(&ophdr);
303 v += phdr_size;
304 }
305
a445fddf
ILT
306 gold_assert(v - view == all_phdrs_size);
307
61ba1cf9 308 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
309}
310
311// Output_file_header methods.
312
9025d29d 313Output_file_header::Output_file_header(const Target* target,
75f65a3e 314 const Symbol_table* symtab,
d391083d
ILT
315 const Output_segment_headers* osh,
316 const char* entry)
9025d29d 317 : target_(target),
75f65a3e 318 symtab_(symtab),
61ba1cf9 319 segment_header_(osh),
75f65a3e 320 section_header_(NULL),
d391083d
ILT
321 shstrtab_(NULL),
322 entry_(entry)
75f65a3e 323{
8851ecca 324 const int size = parameters->target().get_size();
61ba1cf9
ILT
325 int ehdr_size;
326 if (size == 32)
327 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
328 else if (size == 64)
329 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
330 else
a3ad94ed 331 gold_unreachable();
61ba1cf9
ILT
332
333 this->set_data_size(ehdr_size);
75f65a3e
ILT
334}
335
336// Set the section table information for a file header.
337
338void
339Output_file_header::set_section_info(const Output_section_headers* shdrs,
340 const Output_section* shstrtab)
341{
342 this->section_header_ = shdrs;
343 this->shstrtab_ = shstrtab;
344}
345
346// Write out the file header.
347
348void
61ba1cf9 349Output_file_header::do_write(Output_file* of)
54dc6425 350{
27bc2bce
ILT
351 gold_assert(this->offset() == 0);
352
8851ecca 353 switch (parameters->size_and_endianness())
61ba1cf9 354 {
9025d29d 355#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
356 case Parameters::TARGET_32_LITTLE:
357 this->do_sized_write<32, false>(of);
358 break;
9025d29d 359#endif
8851ecca
ILT
360#ifdef HAVE_TARGET_32_BIG
361 case Parameters::TARGET_32_BIG:
362 this->do_sized_write<32, true>(of);
363 break;
9025d29d 364#endif
9025d29d 365#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
366 case Parameters::TARGET_64_LITTLE:
367 this->do_sized_write<64, false>(of);
368 break;
9025d29d 369#endif
8851ecca
ILT
370#ifdef HAVE_TARGET_64_BIG
371 case Parameters::TARGET_64_BIG:
372 this->do_sized_write<64, true>(of);
373 break;
374#endif
375 default:
376 gold_unreachable();
61ba1cf9 377 }
61ba1cf9
ILT
378}
379
380// Write out the file header with appropriate size and endianess.
381
382template<int size, bool big_endian>
383void
384Output_file_header::do_sized_write(Output_file* of)
385{
a3ad94ed 386 gold_assert(this->offset() == 0);
61ba1cf9
ILT
387
388 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
389 unsigned char* view = of->get_output_view(0, ehdr_size);
390 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
391
392 unsigned char e_ident[elfcpp::EI_NIDENT];
393 memset(e_ident, 0, elfcpp::EI_NIDENT);
394 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
395 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
396 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
397 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
398 if (size == 32)
399 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
400 else if (size == 64)
401 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
402 else
a3ad94ed 403 gold_unreachable();
61ba1cf9
ILT
404 e_ident[elfcpp::EI_DATA] = (big_endian
405 ? elfcpp::ELFDATA2MSB
406 : elfcpp::ELFDATA2LSB);
407 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
408 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
409 oehdr.put_e_ident(e_ident);
410
411 elfcpp::ET e_type;
8851ecca 412 if (parameters->options().relocatable())
61ba1cf9 413 e_type = elfcpp::ET_REL;
8851ecca 414 else if (parameters->options().shared())
436ca963 415 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
416 else
417 e_type = elfcpp::ET_EXEC;
418 oehdr.put_e_type(e_type);
419
420 oehdr.put_e_machine(this->target_->machine_code());
421 oehdr.put_e_version(elfcpp::EV_CURRENT);
422
d391083d 423 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 424
6a74a719
ILT
425 if (this->segment_header_ == NULL)
426 oehdr.put_e_phoff(0);
427 else
428 oehdr.put_e_phoff(this->segment_header_->offset());
429
61ba1cf9
ILT
430 oehdr.put_e_shoff(this->section_header_->offset());
431
432 // FIXME: The target needs to set the flags.
433 oehdr.put_e_flags(0);
434
435 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
436
437 if (this->segment_header_ == NULL)
438 {
439 oehdr.put_e_phentsize(0);
440 oehdr.put_e_phnum(0);
441 }
442 else
443 {
444 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
445 oehdr.put_e_phnum(this->segment_header_->data_size()
446 / elfcpp::Elf_sizes<size>::phdr_size);
447 }
448
61ba1cf9
ILT
449 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
450 oehdr.put_e_shnum(this->section_header_->data_size()
451 / elfcpp::Elf_sizes<size>::shdr_size);
ead1e424 452 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
61ba1cf9
ILT
453
454 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
455}
456
d391083d
ILT
457// Return the value to use for the entry address. THIS->ENTRY_ is the
458// symbol specified on the command line, if any.
459
460template<int size>
461typename elfcpp::Elf_types<size>::Elf_Addr
462Output_file_header::entry()
463{
464 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
465 && !parameters->options().relocatable()
466 && !parameters->options().shared());
d391083d
ILT
467
468 // FIXME: Need to support target specific entry symbol.
469 const char* entry = this->entry_;
470 if (entry == NULL)
471 entry = "_start";
472
473 Symbol* sym = this->symtab_->lookup(entry);
474
475 typename Sized_symbol<size>::Value_type v;
476 if (sym != NULL)
477 {
478 Sized_symbol<size>* ssym;
479 ssym = this->symtab_->get_sized_symbol<size>(sym);
480 if (!ssym->is_defined() && should_issue_warning)
481 gold_warning("entry symbol '%s' exists but is not defined", entry);
482 v = ssym->value();
483 }
484 else
485 {
486 // We couldn't find the entry symbol. See if we can parse it as
487 // a number. This supports, e.g., -e 0x1000.
488 char* endptr;
489 v = strtoull(entry, &endptr, 0);
490 if (*endptr != '\0')
491 {
492 if (should_issue_warning)
493 gold_warning("cannot find entry symbol '%s'", entry);
494 v = 0;
495 }
496 }
497
498 return v;
499}
500
dbe717ef
ILT
501// Output_data_const methods.
502
503void
a3ad94ed 504Output_data_const::do_write(Output_file* of)
dbe717ef 505{
a3ad94ed
ILT
506 of->write(this->offset(), this->data_.data(), this->data_.size());
507}
508
509// Output_data_const_buffer methods.
510
511void
512Output_data_const_buffer::do_write(Output_file* of)
513{
514 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
515}
516
517// Output_section_data methods.
518
16649710
ILT
519// Record the output section, and set the entry size and such.
520
521void
522Output_section_data::set_output_section(Output_section* os)
523{
524 gold_assert(this->output_section_ == NULL);
525 this->output_section_ = os;
526 this->do_adjust_output_section(os);
527}
528
529// Return the section index of the output section.
530
dbe717ef
ILT
531unsigned int
532Output_section_data::do_out_shndx() const
533{
a3ad94ed 534 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
535 return this->output_section_->out_shndx();
536}
537
759b1a24
ILT
538// Set the alignment, which means we may need to update the alignment
539// of the output section.
540
541void
542Output_section_data::set_addralign(uint64_t addralign)
543{
544 this->addralign_ = addralign;
545 if (this->output_section_ != NULL
546 && this->output_section_->addralign() < addralign)
547 this->output_section_->set_addralign(addralign);
548}
549
a3ad94ed
ILT
550// Output_data_strtab methods.
551
27bc2bce 552// Set the final data size.
a3ad94ed
ILT
553
554void
27bc2bce 555Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
556{
557 this->strtab_->set_string_offsets();
558 this->set_data_size(this->strtab_->get_strtab_size());
559}
560
561// Write out a string table.
562
563void
564Output_data_strtab::do_write(Output_file* of)
565{
566 this->strtab_->write(of, this->offset());
567}
568
c06b7b0b
ILT
569// Output_reloc methods.
570
7bf1f802
ILT
571// A reloc against a global symbol.
572
573template<bool dynamic, int size, bool big_endian>
574Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
575 Symbol* gsym,
576 unsigned int type,
577 Output_data* od,
e8c846c3
ILT
578 Address address,
579 bool is_relative)
7bf1f802 580 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 581 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 582{
dceae3c1
ILT
583 // this->type_ is a bitfield; make sure TYPE fits.
584 gold_assert(this->type_ == type);
7bf1f802
ILT
585 this->u1_.gsym = gsym;
586 this->u2_.od = od;
dceae3c1
ILT
587 if (dynamic)
588 this->set_needs_dynsym_index();
7bf1f802
ILT
589}
590
591template<bool dynamic, int size, bool big_endian>
592Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
593 Symbol* gsym,
594 unsigned int type,
595 Relobj* relobj,
596 unsigned int shndx,
e8c846c3
ILT
597 Address address,
598 bool is_relative)
7bf1f802 599 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 600 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
601{
602 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
603 // this->type_ is a bitfield; make sure TYPE fits.
604 gold_assert(this->type_ == type);
7bf1f802
ILT
605 this->u1_.gsym = gsym;
606 this->u2_.relobj = relobj;
dceae3c1
ILT
607 if (dynamic)
608 this->set_needs_dynsym_index();
7bf1f802
ILT
609}
610
611// A reloc against a local symbol.
612
613template<bool dynamic, int size, bool big_endian>
614Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
615 Sized_relobj<size, big_endian>* relobj,
616 unsigned int local_sym_index,
617 unsigned int type,
618 Output_data* od,
e8c846c3 619 Address address,
dceae3c1
ILT
620 bool is_relative,
621 bool is_section_symbol)
7bf1f802 622 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
623 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
624 shndx_(INVALID_CODE)
7bf1f802
ILT
625{
626 gold_assert(local_sym_index != GSYM_CODE
627 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
628 // this->type_ is a bitfield; make sure TYPE fits.
629 gold_assert(this->type_ == type);
7bf1f802
ILT
630 this->u1_.relobj = relobj;
631 this->u2_.od = od;
dceae3c1
ILT
632 if (dynamic)
633 this->set_needs_dynsym_index();
7bf1f802
ILT
634}
635
636template<bool dynamic, int size, bool big_endian>
637Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
638 Sized_relobj<size, big_endian>* relobj,
639 unsigned int local_sym_index,
640 unsigned int type,
641 unsigned int shndx,
e8c846c3 642 Address address,
dceae3c1
ILT
643 bool is_relative,
644 bool is_section_symbol)
7bf1f802 645 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
646 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
647 shndx_(shndx)
7bf1f802
ILT
648{
649 gold_assert(local_sym_index != GSYM_CODE
650 && local_sym_index != INVALID_CODE);
651 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
652 // this->type_ is a bitfield; make sure TYPE fits.
653 gold_assert(this->type_ == type);
7bf1f802
ILT
654 this->u1_.relobj = relobj;
655 this->u2_.relobj = relobj;
dceae3c1
ILT
656 if (dynamic)
657 this->set_needs_dynsym_index();
7bf1f802
ILT
658}
659
660// A reloc against the STT_SECTION symbol of an output section.
661
662template<bool dynamic, int size, bool big_endian>
663Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
664 Output_section* os,
665 unsigned int type,
666 Output_data* od,
667 Address address)
668 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 669 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 670{
dceae3c1
ILT
671 // this->type_ is a bitfield; make sure TYPE fits.
672 gold_assert(this->type_ == type);
7bf1f802
ILT
673 this->u1_.os = os;
674 this->u2_.od = od;
675 if (dynamic)
dceae3c1
ILT
676 this->set_needs_dynsym_index();
677 else
678 os->set_needs_symtab_index();
7bf1f802
ILT
679}
680
681template<bool dynamic, int size, bool big_endian>
682Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
683 Output_section* os,
684 unsigned int type,
685 Relobj* relobj,
686 unsigned int shndx,
687 Address address)
688 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 689 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
690{
691 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
692 // this->type_ is a bitfield; make sure TYPE fits.
693 gold_assert(this->type_ == type);
7bf1f802
ILT
694 this->u1_.os = os;
695 this->u2_.relobj = relobj;
696 if (dynamic)
dceae3c1
ILT
697 this->set_needs_dynsym_index();
698 else
699 os->set_needs_symtab_index();
700}
701
702// Record that we need a dynamic symbol index for this relocation.
703
704template<bool dynamic, int size, bool big_endian>
705void
706Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
707set_needs_dynsym_index()
708{
709 if (this->is_relative_)
710 return;
711 switch (this->local_sym_index_)
712 {
713 case INVALID_CODE:
714 gold_unreachable();
715
716 case GSYM_CODE:
717 this->u1_.gsym->set_needs_dynsym_entry();
718 break;
719
720 case SECTION_CODE:
721 this->u1_.os->set_needs_dynsym_index();
722 break;
723
724 case 0:
725 break;
726
727 default:
728 {
729 const unsigned int lsi = this->local_sym_index_;
730 if (!this->is_section_symbol_)
731 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
732 else
733 {
734 section_offset_type dummy;
735 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
736 gold_assert(os != NULL);
737 os->set_needs_dynsym_index();
738 }
739 }
740 break;
741 }
7bf1f802
ILT
742}
743
c06b7b0b
ILT
744// Get the symbol index of a relocation.
745
746template<bool dynamic, int size, bool big_endian>
747unsigned int
748Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
749 const
750{
751 unsigned int index;
752 switch (this->local_sym_index_)
753 {
754 case INVALID_CODE:
a3ad94ed 755 gold_unreachable();
c06b7b0b
ILT
756
757 case GSYM_CODE:
5a6f7e2d 758 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
759 index = 0;
760 else if (dynamic)
5a6f7e2d 761 index = this->u1_.gsym->dynsym_index();
c06b7b0b 762 else
5a6f7e2d 763 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
764 break;
765
766 case SECTION_CODE:
767 if (dynamic)
5a6f7e2d 768 index = this->u1_.os->dynsym_index();
c06b7b0b 769 else
5a6f7e2d 770 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
771 break;
772
436ca963
ILT
773 case 0:
774 // Relocations without symbols use a symbol index of 0.
775 index = 0;
776 break;
777
c06b7b0b 778 default:
dceae3c1
ILT
779 {
780 const unsigned int lsi = this->local_sym_index_;
781 if (!this->is_section_symbol_)
782 {
783 if (dynamic)
784 index = this->u1_.relobj->dynsym_index(lsi);
785 else
786 index = this->u1_.relobj->symtab_index(lsi);
787 }
788 else
789 {
790 section_offset_type dummy;
791 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
792 gold_assert(os != NULL);
793 if (dynamic)
794 index = os->dynsym_index();
795 else
796 index = os->symtab_index();
797 }
798 }
c06b7b0b
ILT
799 break;
800 }
a3ad94ed 801 gold_assert(index != -1U);
c06b7b0b
ILT
802 return index;
803}
804
624f8810
ILT
805// For a local section symbol, get the address of the offset ADDEND
806// within the input section.
dceae3c1
ILT
807
808template<bool dynamic, int size, bool big_endian>
809section_offset_type
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 811 local_section_offset(Addend addend) const
dceae3c1 812{
624f8810
ILT
813 gold_assert(this->local_sym_index_ != GSYM_CODE
814 && this->local_sym_index_ != SECTION_CODE
815 && this->local_sym_index_ != INVALID_CODE
816 && this->is_section_symbol_);
dceae3c1
ILT
817 const unsigned int lsi = this->local_sym_index_;
818 section_offset_type offset;
819 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
624f8810
ILT
820 gold_assert(os != NULL);
821 if (offset != -1)
822 return offset + addend;
823 // This is a merge section.
824 offset = os->output_address(this->u1_.relobj, lsi, addend);
825 gold_assert(offset != -1);
dceae3c1
ILT
826 return offset;
827}
828
c06b7b0b
ILT
829// Write out the offset and info fields of a Rel or Rela relocation
830// entry.
831
832template<bool dynamic, int size, bool big_endian>
833template<typename Write_rel>
834void
835Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
836 Write_rel* wr) const
837{
a3ad94ed 838 Address address = this->address_;
5a6f7e2d
ILT
839 if (this->shndx_ != INVALID_CODE)
840 {
8383303e 841 section_offset_type off;
5a6f7e2d
ILT
842 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
843 &off);
844 gold_assert(os != NULL);
730cdc88
ILT
845 if (off != -1)
846 address += os->address() + off;
847 else
848 {
849 address = os->output_address(this->u2_.relobj, this->shndx_,
850 address);
851 gold_assert(address != -1U);
852 }
5a6f7e2d
ILT
853 }
854 else if (this->u2_.od != NULL)
855 address += this->u2_.od->address();
a3ad94ed 856 wr->put_r_offset(address);
e8c846c3
ILT
857 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
858 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
859}
860
861// Write out a Rel relocation.
862
863template<bool dynamic, int size, bool big_endian>
864void
865Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
866 unsigned char* pov) const
867{
868 elfcpp::Rel_write<size, big_endian> orel(pov);
869 this->write_rel(&orel);
870}
871
e8c846c3
ILT
872// Get the value of the symbol referred to by a Rel relocation.
873
874template<bool dynamic, int size, bool big_endian>
875typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 876Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 877 Addend addend) const
e8c846c3
ILT
878{
879 if (this->local_sym_index_ == GSYM_CODE)
880 {
881 const Sized_symbol<size>* sym;
882 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 883 return sym->value() + addend;
e8c846c3
ILT
884 }
885 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
886 && this->local_sym_index_ != INVALID_CODE
887 && !this->is_section_symbol_);
888 const unsigned int lsi = this->local_sym_index_;
889 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
890 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
891}
892
c06b7b0b
ILT
893// Write out a Rela relocation.
894
895template<bool dynamic, int size, bool big_endian>
896void
897Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
898 unsigned char* pov) const
899{
900 elfcpp::Rela_write<size, big_endian> orel(pov);
901 this->rel_.write_rel(&orel);
e8c846c3 902 Addend addend = this->addend_;
dceae3c1 903 if (this->rel_.is_relative())
d1f003c6
ILT
904 addend = this->rel_.symbol_value(addend);
905 else if (this->rel_.is_local_section_symbol())
624f8810 906 addend = this->rel_.local_section_offset(addend);
e8c846c3 907 orel.put_r_addend(addend);
c06b7b0b
ILT
908}
909
910// Output_data_reloc_base methods.
911
16649710
ILT
912// Adjust the output section.
913
914template<int sh_type, bool dynamic, int size, bool big_endian>
915void
916Output_data_reloc_base<sh_type, dynamic, size, big_endian>
917 ::do_adjust_output_section(Output_section* os)
918{
919 if (sh_type == elfcpp::SHT_REL)
920 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
921 else if (sh_type == elfcpp::SHT_RELA)
922 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
923 else
924 gold_unreachable();
925 if (dynamic)
926 os->set_should_link_to_dynsym();
927 else
928 os->set_should_link_to_symtab();
929}
930
c06b7b0b
ILT
931// Write out relocation data.
932
933template<int sh_type, bool dynamic, int size, bool big_endian>
934void
935Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
936 Output_file* of)
937{
938 const off_t off = this->offset();
939 const off_t oview_size = this->data_size();
940 unsigned char* const oview = of->get_output_view(off, oview_size);
941
942 unsigned char* pov = oview;
943 for (typename Relocs::const_iterator p = this->relocs_.begin();
944 p != this->relocs_.end();
945 ++p)
946 {
947 p->write(pov);
948 pov += reloc_size;
949 }
950
a3ad94ed 951 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
952
953 of->write_output_view(off, oview_size, oview);
954
955 // We no longer need the relocation entries.
956 this->relocs_.clear();
957}
958
6a74a719
ILT
959// Class Output_relocatable_relocs.
960
961template<int sh_type, int size, bool big_endian>
962void
963Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
964{
965 this->set_data_size(this->rr_->output_reloc_count()
966 * Reloc_types<sh_type, size, big_endian>::reloc_size);
967}
968
969// class Output_data_group.
970
971template<int size, bool big_endian>
972Output_data_group<size, big_endian>::Output_data_group(
973 Sized_relobj<size, big_endian>* relobj,
974 section_size_type entry_count,
975 const elfcpp::Elf_Word* contents)
976 : Output_section_data(entry_count * 4, 4),
977 relobj_(relobj)
978{
979 this->flags_ = elfcpp::Swap<32, big_endian>::readval(contents);
980 for (section_size_type i = 1; i < entry_count; ++i)
981 {
982 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
983 this->input_sections_.push_back(shndx);
984 }
985}
986
987// Write out the section group, which means translating the section
988// indexes to apply to the output file.
989
990template<int size, bool big_endian>
991void
992Output_data_group<size, big_endian>::do_write(Output_file* of)
993{
994 const off_t off = this->offset();
995 const section_size_type oview_size =
996 convert_to_section_size_type(this->data_size());
997 unsigned char* const oview = of->get_output_view(off, oview_size);
998
999 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1000 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1001 ++contents;
1002
1003 for (std::vector<unsigned int>::const_iterator p =
1004 this->input_sections_.begin();
1005 p != this->input_sections_.end();
1006 ++p, ++contents)
1007 {
1008 section_offset_type dummy;
1009 Output_section* os = this->relobj_->output_section(*p, &dummy);
1010
1011 unsigned int output_shndx;
1012 if (os != NULL)
1013 output_shndx = os->out_shndx();
1014 else
1015 {
1016 this->relobj_->error(_("section group retained but "
1017 "group element discarded"));
1018 output_shndx = 0;
1019 }
1020
1021 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1022 }
1023
1024 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1025 gold_assert(wrote == oview_size);
1026
1027 of->write_output_view(off, oview_size, oview);
1028
1029 // We no longer need this information.
1030 this->input_sections_.clear();
1031}
1032
dbe717ef 1033// Output_data_got::Got_entry methods.
ead1e424
ILT
1034
1035// Write out the entry.
1036
1037template<int size, bool big_endian>
1038void
7e1edb90 1039Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1040{
1041 Valtype val = 0;
1042
1043 switch (this->local_sym_index_)
1044 {
1045 case GSYM_CODE:
1046 {
e8c846c3
ILT
1047 // If the symbol is resolved locally, we need to write out the
1048 // link-time value, which will be relocated dynamically by a
1049 // RELATIVE relocation.
ead1e424 1050 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1051 Sized_symbol<size>* sgsym;
1052 // This cast is a bit ugly. We don't want to put a
1053 // virtual method in Symbol, because we want Symbol to be
1054 // as small as possible.
1055 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1056 val = sgsym->value();
ead1e424
ILT
1057 }
1058 break;
1059
1060 case CONSTANT_CODE:
1061 val = this->u_.constant;
1062 break;
1063
1064 default:
d1f003c6
ILT
1065 {
1066 const unsigned int lsi = this->local_sym_index_;
1067 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1068 val = symval->value(this->u_.object, 0);
1069 }
e727fa71 1070 break;
ead1e424
ILT
1071 }
1072
a3ad94ed 1073 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1074}
1075
dbe717ef 1076// Output_data_got methods.
ead1e424 1077
dbe717ef
ILT
1078// Add an entry for a global symbol to the GOT. This returns true if
1079// this is a new GOT entry, false if the symbol already had a GOT
1080// entry.
1081
1082template<int size, bool big_endian>
1083bool
0a65a3a7
CC
1084Output_data_got<size, big_endian>::add_global(
1085 Symbol* gsym,
1086 unsigned int got_type)
ead1e424 1087{
0a65a3a7 1088 if (gsym->has_got_offset(got_type))
dbe717ef 1089 return false;
ead1e424 1090
dbe717ef
ILT
1091 this->entries_.push_back(Got_entry(gsym));
1092 this->set_got_size();
0a65a3a7 1093 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1094 return true;
1095}
ead1e424 1096
7bf1f802
ILT
1097// Add an entry for a global symbol to the GOT, and add a dynamic
1098// relocation of type R_TYPE for the GOT entry.
1099template<int size, bool big_endian>
1100void
1101Output_data_got<size, big_endian>::add_global_with_rel(
1102 Symbol* gsym,
0a65a3a7 1103 unsigned int got_type,
7bf1f802
ILT
1104 Rel_dyn* rel_dyn,
1105 unsigned int r_type)
1106{
0a65a3a7 1107 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1108 return;
1109
1110 this->entries_.push_back(Got_entry());
1111 this->set_got_size();
1112 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1113 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1114 rel_dyn->add_global(gsym, r_type, this, got_offset);
1115}
1116
1117template<int size, bool big_endian>
1118void
1119Output_data_got<size, big_endian>::add_global_with_rela(
1120 Symbol* gsym,
0a65a3a7 1121 unsigned int got_type,
7bf1f802
ILT
1122 Rela_dyn* rela_dyn,
1123 unsigned int r_type)
1124{
0a65a3a7 1125 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1126 return;
1127
1128 this->entries_.push_back(Got_entry());
1129 this->set_got_size();
1130 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1131 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1132 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1133}
1134
0a65a3a7
CC
1135// Add a pair of entries for a global symbol to the GOT, and add
1136// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1137// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1138template<int size, bool big_endian>
1139void
0a65a3a7
CC
1140Output_data_got<size, big_endian>::add_global_pair_with_rel(
1141 Symbol* gsym,
1142 unsigned int got_type,
7bf1f802 1143 Rel_dyn* rel_dyn,
0a65a3a7
CC
1144 unsigned int r_type_1,
1145 unsigned int r_type_2)
7bf1f802 1146{
0a65a3a7 1147 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1148 return;
1149
1150 this->entries_.push_back(Got_entry());
7bf1f802 1151 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1152 gsym->set_got_offset(got_type, got_offset);
1153 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1154
1155 this->entries_.push_back(Got_entry());
1156 if (r_type_2 != 0)
1157 {
1158 got_offset = this->last_got_offset();
1159 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1160 }
1161
1162 this->set_got_size();
7bf1f802
ILT
1163}
1164
1165template<int size, bool big_endian>
1166void
0a65a3a7
CC
1167Output_data_got<size, big_endian>::add_global_pair_with_rela(
1168 Symbol* gsym,
1169 unsigned int got_type,
7bf1f802 1170 Rela_dyn* rela_dyn,
0a65a3a7
CC
1171 unsigned int r_type_1,
1172 unsigned int r_type_2)
7bf1f802 1173{
0a65a3a7 1174 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1175 return;
1176
1177 this->entries_.push_back(Got_entry());
7bf1f802 1178 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1179 gsym->set_got_offset(got_type, got_offset);
1180 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1181
1182 this->entries_.push_back(Got_entry());
1183 if (r_type_2 != 0)
1184 {
1185 got_offset = this->last_got_offset();
1186 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1187 }
1188
1189 this->set_got_size();
7bf1f802
ILT
1190}
1191
0a65a3a7
CC
1192// Add an entry for a local symbol to the GOT. This returns true if
1193// this is a new GOT entry, false if the symbol already has a GOT
1194// entry.
07f397ab
ILT
1195
1196template<int size, bool big_endian>
1197bool
0a65a3a7
CC
1198Output_data_got<size, big_endian>::add_local(
1199 Sized_relobj<size, big_endian>* object,
1200 unsigned int symndx,
1201 unsigned int got_type)
07f397ab 1202{
0a65a3a7 1203 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1204 return false;
1205
0a65a3a7 1206 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1207 this->set_got_size();
0a65a3a7 1208 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1209 return true;
1210}
1211
0a65a3a7
CC
1212// Add an entry for a local symbol to the GOT, and add a dynamic
1213// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1214template<int size, bool big_endian>
1215void
0a65a3a7
CC
1216Output_data_got<size, big_endian>::add_local_with_rel(
1217 Sized_relobj<size, big_endian>* object,
1218 unsigned int symndx,
1219 unsigned int got_type,
7bf1f802
ILT
1220 Rel_dyn* rel_dyn,
1221 unsigned int r_type)
1222{
0a65a3a7 1223 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1224 return;
1225
1226 this->entries_.push_back(Got_entry());
1227 this->set_got_size();
1228 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1229 object->set_local_got_offset(symndx, got_type, got_offset);
1230 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1231}
1232
1233template<int size, bool big_endian>
1234void
0a65a3a7
CC
1235Output_data_got<size, big_endian>::add_local_with_rela(
1236 Sized_relobj<size, big_endian>* object,
1237 unsigned int symndx,
1238 unsigned int got_type,
7bf1f802
ILT
1239 Rela_dyn* rela_dyn,
1240 unsigned int r_type)
1241{
0a65a3a7 1242 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1243 return;
1244
1245 this->entries_.push_back(Got_entry());
1246 this->set_got_size();
1247 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1248 object->set_local_got_offset(symndx, got_type, got_offset);
1249 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1250}
1251
0a65a3a7
CC
1252// Add a pair of entries for a local symbol to the GOT, and add
1253// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1254// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1255template<int size, bool big_endian>
1256void
0a65a3a7 1257Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1258 Sized_relobj<size, big_endian>* object,
1259 unsigned int symndx,
1260 unsigned int shndx,
0a65a3a7 1261 unsigned int got_type,
7bf1f802 1262 Rel_dyn* rel_dyn,
0a65a3a7
CC
1263 unsigned int r_type_1,
1264 unsigned int r_type_2)
7bf1f802 1265{
0a65a3a7 1266 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1267 return;
1268
1269 this->entries_.push_back(Got_entry());
1270 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1271 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1272 section_offset_type off;
7bf1f802 1273 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1274 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1275
0a65a3a7
CC
1276 this->entries_.push_back(Got_entry(object, symndx));
1277 if (r_type_2 != 0)
1278 {
1279 got_offset = this->last_got_offset();
1280 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1281 }
7bf1f802
ILT
1282
1283 this->set_got_size();
1284}
1285
1286template<int size, bool big_endian>
1287void
0a65a3a7 1288Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1289 Sized_relobj<size, big_endian>* object,
1290 unsigned int symndx,
1291 unsigned int shndx,
0a65a3a7 1292 unsigned int got_type,
7bf1f802 1293 Rela_dyn* rela_dyn,
0a65a3a7
CC
1294 unsigned int r_type_1,
1295 unsigned int r_type_2)
7bf1f802 1296{
0a65a3a7 1297 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1298 return;
1299
1300 this->entries_.push_back(Got_entry());
1301 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1302 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1303 section_offset_type off;
7bf1f802 1304 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1305 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1306
0a65a3a7
CC
1307 this->entries_.push_back(Got_entry(object, symndx));
1308 if (r_type_2 != 0)
1309 {
1310 got_offset = this->last_got_offset();
1311 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1312 }
7bf1f802
ILT
1313
1314 this->set_got_size();
1315}
1316
ead1e424
ILT
1317// Write out the GOT.
1318
1319template<int size, bool big_endian>
1320void
dbe717ef 1321Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1322{
1323 const int add = size / 8;
1324
1325 const off_t off = this->offset();
c06b7b0b 1326 const off_t oview_size = this->data_size();
ead1e424
ILT
1327 unsigned char* const oview = of->get_output_view(off, oview_size);
1328
1329 unsigned char* pov = oview;
1330 for (typename Got_entries::const_iterator p = this->entries_.begin();
1331 p != this->entries_.end();
1332 ++p)
1333 {
7e1edb90 1334 p->write(pov);
ead1e424
ILT
1335 pov += add;
1336 }
1337
a3ad94ed 1338 gold_assert(pov - oview == oview_size);
c06b7b0b 1339
ead1e424
ILT
1340 of->write_output_view(off, oview_size, oview);
1341
1342 // We no longer need the GOT entries.
1343 this->entries_.clear();
1344}
1345
a3ad94ed
ILT
1346// Output_data_dynamic::Dynamic_entry methods.
1347
1348// Write out the entry.
1349
1350template<int size, bool big_endian>
1351void
1352Output_data_dynamic::Dynamic_entry::write(
1353 unsigned char* pov,
7d1a9ebb 1354 const Stringpool* pool) const
a3ad94ed
ILT
1355{
1356 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1357 switch (this->offset_)
a3ad94ed
ILT
1358 {
1359 case DYNAMIC_NUMBER:
1360 val = this->u_.val;
1361 break;
1362
a3ad94ed 1363 case DYNAMIC_SECTION_SIZE:
16649710 1364 val = this->u_.od->data_size();
a3ad94ed
ILT
1365 break;
1366
1367 case DYNAMIC_SYMBOL:
1368 {
16649710
ILT
1369 const Sized_symbol<size>* s =
1370 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1371 val = s->value();
1372 }
1373 break;
1374
1375 case DYNAMIC_STRING:
1376 val = pool->get_offset(this->u_.str);
1377 break;
1378
1379 default:
c2b45e22
CC
1380 val = this->u_.od->address() + this->offset_;
1381 break;
a3ad94ed
ILT
1382 }
1383
1384 elfcpp::Dyn_write<size, big_endian> dw(pov);
1385 dw.put_d_tag(this->tag_);
1386 dw.put_d_val(val);
1387}
1388
1389// Output_data_dynamic methods.
1390
16649710
ILT
1391// Adjust the output section to set the entry size.
1392
1393void
1394Output_data_dynamic::do_adjust_output_section(Output_section* os)
1395{
8851ecca 1396 if (parameters->target().get_size() == 32)
16649710 1397 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1398 else if (parameters->target().get_size() == 64)
16649710
ILT
1399 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1400 else
1401 gold_unreachable();
1402}
1403
a3ad94ed
ILT
1404// Set the final data size.
1405
1406void
27bc2bce 1407Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1408{
1409 // Add the terminating entry.
1410 this->add_constant(elfcpp::DT_NULL, 0);
1411
1412 int dyn_size;
8851ecca 1413 if (parameters->target().get_size() == 32)
a3ad94ed 1414 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1415 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1416 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1417 else
1418 gold_unreachable();
1419 this->set_data_size(this->entries_.size() * dyn_size);
1420}
1421
1422// Write out the dynamic entries.
1423
1424void
1425Output_data_dynamic::do_write(Output_file* of)
1426{
8851ecca 1427 switch (parameters->size_and_endianness())
a3ad94ed 1428 {
9025d29d 1429#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1430 case Parameters::TARGET_32_LITTLE:
1431 this->sized_write<32, false>(of);
1432 break;
9025d29d 1433#endif
8851ecca
ILT
1434#ifdef HAVE_TARGET_32_BIG
1435 case Parameters::TARGET_32_BIG:
1436 this->sized_write<32, true>(of);
1437 break;
9025d29d 1438#endif
9025d29d 1439#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1440 case Parameters::TARGET_64_LITTLE:
1441 this->sized_write<64, false>(of);
1442 break;
9025d29d 1443#endif
8851ecca
ILT
1444#ifdef HAVE_TARGET_64_BIG
1445 case Parameters::TARGET_64_BIG:
1446 this->sized_write<64, true>(of);
1447 break;
1448#endif
1449 default:
1450 gold_unreachable();
a3ad94ed 1451 }
a3ad94ed
ILT
1452}
1453
1454template<int size, bool big_endian>
1455void
1456Output_data_dynamic::sized_write(Output_file* of)
1457{
1458 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1459
1460 const off_t offset = this->offset();
1461 const off_t oview_size = this->data_size();
1462 unsigned char* const oview = of->get_output_view(offset, oview_size);
1463
1464 unsigned char* pov = oview;
1465 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1466 p != this->entries_.end();
1467 ++p)
1468 {
7d1a9ebb 1469 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1470 pov += dyn_size;
1471 }
1472
1473 gold_assert(pov - oview == oview_size);
1474
1475 of->write_output_view(offset, oview_size, oview);
1476
1477 // We no longer need the dynamic entries.
1478 this->entries_.clear();
1479}
1480
ead1e424
ILT
1481// Output_section::Input_section methods.
1482
1483// Return the data size. For an input section we store the size here.
1484// For an Output_section_data, we have to ask it for the size.
1485
1486off_t
1487Output_section::Input_section::data_size() const
1488{
1489 if (this->is_input_section())
b8e6aad9 1490 return this->u1_.data_size;
ead1e424 1491 else
b8e6aad9 1492 return this->u2_.posd->data_size();
ead1e424
ILT
1493}
1494
1495// Set the address and file offset.
1496
1497void
96803768
ILT
1498Output_section::Input_section::set_address_and_file_offset(
1499 uint64_t address,
1500 off_t file_offset,
1501 off_t section_file_offset)
ead1e424
ILT
1502{
1503 if (this->is_input_section())
96803768
ILT
1504 this->u2_.object->set_section_offset(this->shndx_,
1505 file_offset - section_file_offset);
ead1e424 1506 else
96803768
ILT
1507 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1508}
1509
a445fddf
ILT
1510// Reset the address and file offset.
1511
1512void
1513Output_section::Input_section::reset_address_and_file_offset()
1514{
1515 if (!this->is_input_section())
1516 this->u2_.posd->reset_address_and_file_offset();
1517}
1518
96803768
ILT
1519// Finalize the data size.
1520
1521void
1522Output_section::Input_section::finalize_data_size()
1523{
1524 if (!this->is_input_section())
1525 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1526}
1527
1e983657
ILT
1528// Try to turn an input offset into an output offset. We want to
1529// return the output offset relative to the start of this
1530// Input_section in the output section.
b8e6aad9 1531
8f00aeb8 1532inline bool
8383303e
ILT
1533Output_section::Input_section::output_offset(
1534 const Relobj* object,
1535 unsigned int shndx,
1536 section_offset_type offset,
1537 section_offset_type *poutput) const
b8e6aad9
ILT
1538{
1539 if (!this->is_input_section())
730cdc88 1540 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1541 else
1542 {
730cdc88 1543 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1544 return false;
1e983657 1545 *poutput = offset;
b8e6aad9
ILT
1546 return true;
1547 }
ead1e424
ILT
1548}
1549
a9a60db6
ILT
1550// Return whether this is the merge section for the input section
1551// SHNDX in OBJECT.
1552
1553inline bool
1554Output_section::Input_section::is_merge_section_for(const Relobj* object,
1555 unsigned int shndx) const
1556{
1557 if (this->is_input_section())
1558 return false;
1559 return this->u2_.posd->is_merge_section_for(object, shndx);
1560}
1561
ead1e424
ILT
1562// Write out the data. We don't have to do anything for an input
1563// section--they are handled via Object::relocate--but this is where
1564// we write out the data for an Output_section_data.
1565
1566void
1567Output_section::Input_section::write(Output_file* of)
1568{
1569 if (!this->is_input_section())
b8e6aad9 1570 this->u2_.posd->write(of);
ead1e424
ILT
1571}
1572
96803768
ILT
1573// Write the data to a buffer. As for write(), we don't have to do
1574// anything for an input section.
1575
1576void
1577Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1578{
1579 if (!this->is_input_section())
1580 this->u2_.posd->write_to_buffer(buffer);
1581}
1582
a2fb1b05
ILT
1583// Output_section methods.
1584
1585// Construct an Output_section. NAME will point into a Stringpool.
1586
96803768 1587Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1588 elfcpp::Elf_Xword flags)
96803768 1589 : name_(name),
a2fb1b05
ILT
1590 addralign_(0),
1591 entsize_(0),
a445fddf 1592 load_address_(0),
16649710 1593 link_section_(NULL),
a2fb1b05 1594 link_(0),
16649710 1595 info_section_(NULL),
6a74a719 1596 info_symndx_(NULL),
a2fb1b05
ILT
1597 info_(0),
1598 type_(type),
61ba1cf9 1599 flags_(flags),
91ea499d 1600 out_shndx_(-1U),
c06b7b0b
ILT
1601 symtab_index_(0),
1602 dynsym_index_(0),
ead1e424
ILT
1603 input_sections_(),
1604 first_input_offset_(0),
c51e6221 1605 fills_(),
96803768 1606 postprocessing_buffer_(NULL),
a3ad94ed 1607 needs_symtab_index_(false),
16649710
ILT
1608 needs_dynsym_index_(false),
1609 should_link_to_symtab_(false),
730cdc88 1610 should_link_to_dynsym_(false),
27bc2bce 1611 after_input_sections_(false),
7bf1f802 1612 requires_postprocessing_(false),
a445fddf
ILT
1613 found_in_sections_clause_(false),
1614 has_load_address_(false),
755ab8af 1615 info_uses_section_index_(false),
2fd32231
ILT
1616 may_sort_attached_input_sections_(false),
1617 must_sort_attached_input_sections_(false),
1618 attached_input_sections_are_sorted_(false),
7bf1f802 1619 tls_offset_(0)
a2fb1b05 1620{
27bc2bce
ILT
1621 // An unallocated section has no address. Forcing this means that
1622 // we don't need special treatment for symbols defined in debug
1623 // sections.
1624 if ((flags & elfcpp::SHF_ALLOC) == 0)
1625 this->set_address(0);
a2fb1b05
ILT
1626}
1627
54dc6425
ILT
1628Output_section::~Output_section()
1629{
1630}
1631
16649710
ILT
1632// Set the entry size.
1633
1634void
1635Output_section::set_entsize(uint64_t v)
1636{
1637 if (this->entsize_ == 0)
1638 this->entsize_ = v;
1639 else
1640 gold_assert(this->entsize_ == v);
1641}
1642
ead1e424 1643// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1644// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1645// relocation section which applies to this section, or 0 if none, or
1646// -1U if more than one. Return the offset of the input section
1647// within the output section. Return -1 if the input section will
1648// receive special handling. In the normal case we don't always keep
1649// track of input sections for an Output_section. Instead, each
1650// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1651// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1652// track of input sections here; this is used when SECTIONS appears in
1653// a linker script.
a2fb1b05
ILT
1654
1655template<int size, bool big_endian>
1656off_t
730cdc88
ILT
1657Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1658 unsigned int shndx,
ead1e424 1659 const char* secname,
730cdc88 1660 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1661 unsigned int reloc_shndx,
1662 bool have_sections_script)
a2fb1b05
ILT
1663{
1664 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1665 if ((addralign & (addralign - 1)) != 0)
1666 {
75f2446e
ILT
1667 object->error(_("invalid alignment %lu for section \"%s\""),
1668 static_cast<unsigned long>(addralign), secname);
1669 addralign = 1;
a2fb1b05 1670 }
a2fb1b05
ILT
1671
1672 if (addralign > this->addralign_)
1673 this->addralign_ = addralign;
1674
44a43cf9 1675 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
154e0e9a 1676 this->update_flags_for_input_section(sh_flags);
a445fddf 1677
4f833eee 1678 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1679
1680 // .debug_str is a mergeable string section, but is not always so
1681 // marked by compilers. Mark manually here so we can optimize.
1682 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1683 {
1684 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1685 entsize = 1;
1686 }
44a43cf9 1687
b8e6aad9 1688 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1689 // a Output_data_merge. We don't try to handle relocations for such
1690 // a section.
44a43cf9 1691 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1692 && reloc_shndx == 0)
b8e6aad9 1693 {
44a43cf9 1694 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1695 entsize, addralign))
b8e6aad9
ILT
1696 {
1697 // Tell the relocation routines that they need to call the
730cdc88 1698 // output_offset method to determine the final address.
b8e6aad9
ILT
1699 return -1;
1700 }
1701 }
1702
27bc2bce 1703 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1704 off_t aligned_offset_in_section = align_address(offset_in_section,
1705 addralign);
1706
1707 if (aligned_offset_in_section > offset_in_section
a445fddf 1708 && !have_sections_script
44a43cf9 1709 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1710 && object->target()->has_code_fill())
1711 {
1712 // We need to add some fill data. Using fill_list_ when
1713 // possible is an optimization, since we will often have fill
1714 // sections without input sections.
1715 off_t fill_len = aligned_offset_in_section - offset_in_section;
1716 if (this->input_sections_.empty())
1717 this->fills_.push_back(Fill(offset_in_section, fill_len));
1718 else
1719 {
1720 // FIXME: When relaxing, the size needs to adjust to
1721 // maintain a constant alignment.
1722 std::string fill_data(object->target()->code_fill(fill_len));
1723 Output_data_const* odc = new Output_data_const(fill_data, 1);
1724 this->input_sections_.push_back(Input_section(odc));
1725 }
1726 }
1727
27bc2bce
ILT
1728 this->set_current_data_size_for_child(aligned_offset_in_section
1729 + shdr.get_sh_size());
a2fb1b05 1730
ead1e424 1731 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1732 // track of sections, or if we are relaxing. Also, if this is a
1733 // section which requires sorting, or which may require sorting in
1734 // the future, we keep track of the sections. FIXME: Add test for
ead1e424 1735 // relaxing.
2fd32231
ILT
1736 if (have_sections_script
1737 || !this->input_sections_.empty()
1738 || this->may_sort_attached_input_sections()
1739 || this->must_sort_attached_input_sections())
ead1e424
ILT
1740 this->input_sections_.push_back(Input_section(object, shndx,
1741 shdr.get_sh_size(),
1742 addralign));
54dc6425 1743
c51e6221 1744 return aligned_offset_in_section;
61ba1cf9
ILT
1745}
1746
ead1e424
ILT
1747// Add arbitrary data to an output section.
1748
1749void
1750Output_section::add_output_section_data(Output_section_data* posd)
1751{
b8e6aad9
ILT
1752 Input_section inp(posd);
1753 this->add_output_section_data(&inp);
a445fddf
ILT
1754
1755 if (posd->is_data_size_valid())
1756 {
1757 off_t offset_in_section = this->current_data_size_for_child();
1758 off_t aligned_offset_in_section = align_address(offset_in_section,
1759 posd->addralign());
1760 this->set_current_data_size_for_child(aligned_offset_in_section
1761 + posd->data_size());
1762 }
b8e6aad9
ILT
1763}
1764
1765// Add arbitrary data to an output section by Input_section.
c06b7b0b 1766
b8e6aad9
ILT
1767void
1768Output_section::add_output_section_data(Input_section* inp)
1769{
ead1e424 1770 if (this->input_sections_.empty())
27bc2bce 1771 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1772
b8e6aad9 1773 this->input_sections_.push_back(*inp);
c06b7b0b 1774
b8e6aad9 1775 uint64_t addralign = inp->addralign();
ead1e424
ILT
1776 if (addralign > this->addralign_)
1777 this->addralign_ = addralign;
c06b7b0b 1778
b8e6aad9
ILT
1779 inp->set_output_section(this);
1780}
1781
1782// Add a merge section to an output section.
1783
1784void
1785Output_section::add_output_merge_section(Output_section_data* posd,
1786 bool is_string, uint64_t entsize)
1787{
1788 Input_section inp(posd, is_string, entsize);
1789 this->add_output_section_data(&inp);
1790}
1791
1792// Add an input section to a SHF_MERGE section.
1793
1794bool
1795Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1796 uint64_t flags, uint64_t entsize,
96803768 1797 uint64_t addralign)
b8e6aad9 1798{
87f95776
ILT
1799 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1800
1801 // We only merge strings if the alignment is not more than the
1802 // character size. This could be handled, but it's unusual.
1803 if (is_string && addralign > entsize)
b8e6aad9
ILT
1804 return false;
1805
b8e6aad9
ILT
1806 Input_section_list::iterator p;
1807 for (p = this->input_sections_.begin();
1808 p != this->input_sections_.end();
1809 ++p)
87f95776 1810 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1811 {
1812 p->add_input_section(object, shndx);
1813 return true;
1814 }
b8e6aad9
ILT
1815
1816 // We handle the actual constant merging in Output_merge_data or
1817 // Output_merge_string_data.
9a0910c3
ILT
1818 Output_section_data* posd;
1819 if (!is_string)
1820 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1821 else
1822 {
9a0910c3
ILT
1823 switch (entsize)
1824 {
1825 case 1:
1826 posd = new Output_merge_string<char>(addralign);
1827 break;
1828 case 2:
1829 posd = new Output_merge_string<uint16_t>(addralign);
1830 break;
1831 case 4:
1832 posd = new Output_merge_string<uint32_t>(addralign);
1833 break;
1834 default:
1835 return false;
1836 }
b8e6aad9
ILT
1837 }
1838
9a0910c3
ILT
1839 this->add_output_merge_section(posd, is_string, entsize);
1840 posd->add_input_section(object, shndx);
1841
b8e6aad9
ILT
1842 return true;
1843}
1844
730cdc88
ILT
1845// Given an address OFFSET relative to the start of input section
1846// SHNDX in OBJECT, return whether this address is being included in
1847// the final link. This should only be called if SHNDX in OBJECT has
1848// a special mapping.
1849
1850bool
1851Output_section::is_input_address_mapped(const Relobj* object,
1852 unsigned int shndx,
1853 off_t offset) const
1854{
1855 gold_assert(object->is_section_specially_mapped(shndx));
1856
1857 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1858 p != this->input_sections_.end();
1859 ++p)
1860 {
8383303e 1861 section_offset_type output_offset;
730cdc88
ILT
1862 if (p->output_offset(object, shndx, offset, &output_offset))
1863 return output_offset != -1;
1864 }
1865
1866 // By default we assume that the address is mapped. This should
1867 // only be called after we have passed all sections to Layout. At
1868 // that point we should know what we are discarding.
1869 return true;
1870}
1871
1872// Given an address OFFSET relative to the start of input section
1873// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1874// start of the input section in the output section. This should only
1875// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1876
8383303e 1877section_offset_type
730cdc88 1878Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 1879 section_offset_type offset) const
730cdc88
ILT
1880{
1881 gold_assert(object->is_section_specially_mapped(shndx));
1882 // This can only be called meaningfully when layout is complete.
1883 gold_assert(Output_data::is_layout_complete());
1884
1885 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1886 p != this->input_sections_.end();
1887 ++p)
1888 {
8383303e 1889 section_offset_type output_offset;
730cdc88
ILT
1890 if (p->output_offset(object, shndx, offset, &output_offset))
1891 return output_offset;
1892 }
1893 gold_unreachable();
1894}
1895
b8e6aad9
ILT
1896// Return the output virtual address of OFFSET relative to the start
1897// of input section SHNDX in object OBJECT.
1898
1899uint64_t
1900Output_section::output_address(const Relobj* object, unsigned int shndx,
1901 off_t offset) const
1902{
730cdc88 1903 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 1904
b8e6aad9
ILT
1905 uint64_t addr = this->address() + this->first_input_offset_;
1906 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1907 p != this->input_sections_.end();
1908 ++p)
1909 {
1910 addr = align_address(addr, p->addralign());
8383303e 1911 section_offset_type output_offset;
730cdc88
ILT
1912 if (p->output_offset(object, shndx, offset, &output_offset))
1913 {
1914 if (output_offset == -1)
1915 return -1U;
1916 return addr + output_offset;
1917 }
b8e6aad9
ILT
1918 addr += p->data_size();
1919 }
1920
1921 // If we get here, it means that we don't know the mapping for this
1922 // input section. This might happen in principle if
1923 // add_input_section were called before add_output_section_data.
1924 // But it should never actually happen.
1925
1926 gold_unreachable();
ead1e424
ILT
1927}
1928
a9a60db6
ILT
1929// Return the output address of the start of the merged section for
1930// input section SHNDX in object OBJECT.
1931
1932uint64_t
1933Output_section::starting_output_address(const Relobj* object,
1934 unsigned int shndx) const
1935{
1936 gold_assert(object->is_section_specially_mapped(shndx));
1937
1938 uint64_t addr = this->address() + this->first_input_offset_;
1939 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1940 p != this->input_sections_.end();
1941 ++p)
1942 {
1943 addr = align_address(addr, p->addralign());
1944
1945 // It would be nice if we could use the existing output_offset
1946 // method to get the output offset of input offset 0.
1947 // Unfortunately we don't know for sure that input offset 0 is
1948 // mapped at all.
1949 if (p->is_merge_section_for(object, shndx))
1950 return addr;
1951
1952 addr += p->data_size();
1953 }
1954 gold_unreachable();
1955}
1956
27bc2bce 1957// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
1958// setting the addresses of any Output_section_data objects.
1959
1960void
27bc2bce 1961Output_section::set_final_data_size()
ead1e424
ILT
1962{
1963 if (this->input_sections_.empty())
27bc2bce
ILT
1964 {
1965 this->set_data_size(this->current_data_size_for_child());
1966 return;
1967 }
ead1e424 1968
2fd32231
ILT
1969 if (this->must_sort_attached_input_sections())
1970 this->sort_attached_input_sections();
1971
27bc2bce
ILT
1972 uint64_t address = this->address();
1973 off_t startoff = this->offset();
ead1e424
ILT
1974 off_t off = startoff + this->first_input_offset_;
1975 for (Input_section_list::iterator p = this->input_sections_.begin();
1976 p != this->input_sections_.end();
1977 ++p)
1978 {
1979 off = align_address(off, p->addralign());
96803768
ILT
1980 p->set_address_and_file_offset(address + (off - startoff), off,
1981 startoff);
ead1e424
ILT
1982 off += p->data_size();
1983 }
1984
1985 this->set_data_size(off - startoff);
1986}
9a0910c3 1987
a445fddf
ILT
1988// Reset the address and file offset.
1989
1990void
1991Output_section::do_reset_address_and_file_offset()
1992{
1993 for (Input_section_list::iterator p = this->input_sections_.begin();
1994 p != this->input_sections_.end();
1995 ++p)
1996 p->reset_address_and_file_offset();
1997}
1998
7bf1f802
ILT
1999// Set the TLS offset. Called only for SHT_TLS sections.
2000
2001void
2002Output_section::do_set_tls_offset(uint64_t tls_base)
2003{
2004 this->tls_offset_ = this->address() - tls_base;
2005}
2006
2fd32231
ILT
2007// In a few cases we need to sort the input sections attached to an
2008// output section. This is used to implement the type of constructor
2009// priority ordering implemented by the GNU linker, in which the
2010// priority becomes part of the section name and the sections are
2011// sorted by name. We only do this for an output section if we see an
2012// attached input section matching ".ctor.*", ".dtor.*",
2013// ".init_array.*" or ".fini_array.*".
2014
2015class Output_section::Input_section_sort_entry
2016{
2017 public:
2018 Input_section_sort_entry()
2019 : input_section_(), index_(-1U), section_has_name_(false),
2020 section_name_()
2021 { }
2022
2023 Input_section_sort_entry(const Input_section& input_section,
2024 unsigned int index)
2025 : input_section_(input_section), index_(index),
2026 section_has_name_(input_section.is_input_section())
2027 {
2028 if (this->section_has_name_)
2029 {
2030 // This is only called single-threaded from Layout::finalize,
2031 // so it is OK to lock. Unfortunately we have no way to pass
2032 // in a Task token.
2033 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2034 Object* obj = input_section.relobj();
2035 Task_lock_obj<Object> tl(dummy_task, obj);
2036
2037 // This is a slow operation, which should be cached in
2038 // Layout::layout if this becomes a speed problem.
2039 this->section_name_ = obj->section_name(input_section.shndx());
2040 }
2041 }
2042
2043 // Return the Input_section.
2044 const Input_section&
2045 input_section() const
2046 {
2047 gold_assert(this->index_ != -1U);
2048 return this->input_section_;
2049 }
2050
2051 // The index of this entry in the original list. This is used to
2052 // make the sort stable.
2053 unsigned int
2054 index() const
2055 {
2056 gold_assert(this->index_ != -1U);
2057 return this->index_;
2058 }
2059
2060 // Whether there is a section name.
2061 bool
2062 section_has_name() const
2063 { return this->section_has_name_; }
2064
2065 // The section name.
2066 const std::string&
2067 section_name() const
2068 {
2069 gold_assert(this->section_has_name_);
2070 return this->section_name_;
2071 }
2072
ab794b6b
ILT
2073 // Return true if the section name has a priority. This is assumed
2074 // to be true if it has a dot after the initial dot.
2fd32231 2075 bool
ab794b6b 2076 has_priority() const
2fd32231
ILT
2077 {
2078 gold_assert(this->section_has_name_);
ab794b6b 2079 return this->section_name_.find('.', 1);
2fd32231
ILT
2080 }
2081
ab794b6b
ILT
2082 // Return true if this an input file whose base name matches
2083 // FILE_NAME. The base name must have an extension of ".o", and
2084 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2085 // This is to match crtbegin.o as well as crtbeginS.o without
2086 // getting confused by other possibilities. Overall matching the
2087 // file name this way is a dreadful hack, but the GNU linker does it
2088 // in order to better support gcc, and we need to be compatible.
2fd32231 2089 bool
ab794b6b 2090 match_file_name(const char* match_file_name) const
2fd32231 2091 {
2fd32231
ILT
2092 const std::string& file_name(this->input_section_.relobj()->name());
2093 const char* base_name = lbasename(file_name.c_str());
2094 size_t match_len = strlen(match_file_name);
2095 if (strncmp(base_name, match_file_name, match_len) != 0)
2096 return false;
2097 size_t base_len = strlen(base_name);
2098 if (base_len != match_len + 2 && base_len != match_len + 3)
2099 return false;
2100 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2101 }
2102
2103 private:
2104 // The Input_section we are sorting.
2105 Input_section input_section_;
2106 // The index of this Input_section in the original list.
2107 unsigned int index_;
2108 // Whether this Input_section has a section name--it won't if this
2109 // is some random Output_section_data.
2110 bool section_has_name_;
2111 // The section name if there is one.
2112 std::string section_name_;
2113};
2114
2115// Return true if S1 should come before S2 in the output section.
2116
2117bool
2118Output_section::Input_section_sort_compare::operator()(
2119 const Output_section::Input_section_sort_entry& s1,
2120 const Output_section::Input_section_sort_entry& s2) const
2121{
ab794b6b
ILT
2122 // crtbegin.o must come first.
2123 bool s1_begin = s1.match_file_name("crtbegin");
2124 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2125 if (s1_begin || s2_begin)
2126 {
2127 if (!s1_begin)
2128 return false;
2129 if (!s2_begin)
2130 return true;
2131 return s1.index() < s2.index();
2132 }
2133
ab794b6b
ILT
2134 // crtend.o must come last.
2135 bool s1_end = s1.match_file_name("crtend");
2136 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2137 if (s1_end || s2_end)
2138 {
2139 if (!s1_end)
2140 return true;
2141 if (!s2_end)
2142 return false;
2143 return s1.index() < s2.index();
2144 }
2145
ab794b6b
ILT
2146 // We sort all the sections with no names to the end.
2147 if (!s1.section_has_name() || !s2.section_has_name())
2148 {
2149 if (s1.section_has_name())
2150 return true;
2151 if (s2.section_has_name())
2152 return false;
2153 return s1.index() < s2.index();
2154 }
2fd32231 2155
ab794b6b
ILT
2156 // A section with a priority follows a section without a priority.
2157 // The GNU linker does this for all but .init_array sections; until
2158 // further notice we'll assume that that is an mistake.
2159 bool s1_has_priority = s1.has_priority();
2160 bool s2_has_priority = s2.has_priority();
2161 if (s1_has_priority && !s2_has_priority)
2fd32231 2162 return false;
ab794b6b 2163 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2164 return true;
2165
2166 // Otherwise we sort by name.
2167 int compare = s1.section_name().compare(s2.section_name());
2168 if (compare != 0)
2169 return compare < 0;
2170
2171 // Otherwise we keep the input order.
2172 return s1.index() < s2.index();
2173}
2174
2175// Sort the input sections attached to an output section.
2176
2177void
2178Output_section::sort_attached_input_sections()
2179{
2180 if (this->attached_input_sections_are_sorted_)
2181 return;
2182
2183 // The only thing we know about an input section is the object and
2184 // the section index. We need the section name. Recomputing this
2185 // is slow but this is an unusual case. If this becomes a speed
2186 // problem we can cache the names as required in Layout::layout.
2187
2188 // We start by building a larger vector holding a copy of each
2189 // Input_section, plus its current index in the list and its name.
2190 std::vector<Input_section_sort_entry> sort_list;
2191
2192 unsigned int i = 0;
2193 for (Input_section_list::iterator p = this->input_sections_.begin();
2194 p != this->input_sections_.end();
2195 ++p, ++i)
2196 sort_list.push_back(Input_section_sort_entry(*p, i));
2197
2198 // Sort the input sections.
2199 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2200
2201 // Copy the sorted input sections back to our list.
2202 this->input_sections_.clear();
2203 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2204 p != sort_list.end();
2205 ++p)
2206 this->input_sections_.push_back(p->input_section());
2207
2208 // Remember that we sorted the input sections, since we might get
2209 // called again.
2210 this->attached_input_sections_are_sorted_ = true;
2211}
2212
61ba1cf9
ILT
2213// Write the section header to *OSHDR.
2214
2215template<int size, bool big_endian>
2216void
16649710
ILT
2217Output_section::write_header(const Layout* layout,
2218 const Stringpool* secnamepool,
61ba1cf9
ILT
2219 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2220{
2221 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2222 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2223
2224 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2225 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2226 flags |= elfcpp::SHF_INFO_LINK;
2227 oshdr->put_sh_flags(flags);
2228
61ba1cf9
ILT
2229 oshdr->put_sh_addr(this->address());
2230 oshdr->put_sh_offset(this->offset());
2231 oshdr->put_sh_size(this->data_size());
16649710
ILT
2232 if (this->link_section_ != NULL)
2233 oshdr->put_sh_link(this->link_section_->out_shndx());
2234 else if (this->should_link_to_symtab_)
2235 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2236 else if (this->should_link_to_dynsym_)
2237 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2238 else
2239 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2240
2241 elfcpp::Elf_Word info;
16649710 2242 if (this->info_section_ != NULL)
755ab8af
ILT
2243 {
2244 if (this->info_uses_section_index_)
2245 info = this->info_section_->out_shndx();
2246 else
2247 info = this->info_section_->symtab_index();
2248 }
6a74a719 2249 else if (this->info_symndx_ != NULL)
755ab8af 2250 info = this->info_symndx_->symtab_index();
16649710 2251 else
755ab8af
ILT
2252 info = this->info_;
2253 oshdr->put_sh_info(info);
2254
61ba1cf9
ILT
2255 oshdr->put_sh_addralign(this->addralign_);
2256 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2257}
2258
ead1e424
ILT
2259// Write out the data. For input sections the data is written out by
2260// Object::relocate, but we have to handle Output_section_data objects
2261// here.
2262
2263void
2264Output_section::do_write(Output_file* of)
2265{
96803768
ILT
2266 gold_assert(!this->requires_postprocessing());
2267
c51e6221
ILT
2268 off_t output_section_file_offset = this->offset();
2269 for (Fill_list::iterator p = this->fills_.begin();
2270 p != this->fills_.end();
2271 ++p)
2272 {
8851ecca 2273 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2274 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2275 fill_data.data(), fill_data.size());
c51e6221
ILT
2276 }
2277
ead1e424
ILT
2278 for (Input_section_list::iterator p = this->input_sections_.begin();
2279 p != this->input_sections_.end();
2280 ++p)
2281 p->write(of);
2282}
2283
96803768
ILT
2284// If a section requires postprocessing, create the buffer to use.
2285
2286void
2287Output_section::create_postprocessing_buffer()
2288{
2289 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2290
2291 if (this->postprocessing_buffer_ != NULL)
2292 return;
96803768
ILT
2293
2294 if (!this->input_sections_.empty())
2295 {
2296 off_t off = this->first_input_offset_;
2297 for (Input_section_list::iterator p = this->input_sections_.begin();
2298 p != this->input_sections_.end();
2299 ++p)
2300 {
2301 off = align_address(off, p->addralign());
2302 p->finalize_data_size();
2303 off += p->data_size();
2304 }
2305 this->set_current_data_size_for_child(off);
2306 }
2307
2308 off_t buffer_size = this->current_data_size_for_child();
2309 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2310}
2311
2312// Write all the data of an Output_section into the postprocessing
2313// buffer. This is used for sections which require postprocessing,
2314// such as compression. Input sections are handled by
2315// Object::Relocate.
2316
2317void
2318Output_section::write_to_postprocessing_buffer()
2319{
2320 gold_assert(this->requires_postprocessing());
2321
96803768
ILT
2322 unsigned char* buffer = this->postprocessing_buffer();
2323 for (Fill_list::iterator p = this->fills_.begin();
2324 p != this->fills_.end();
2325 ++p)
2326 {
8851ecca 2327 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2328 memcpy(buffer + p->section_offset(), fill_data.data(),
2329 fill_data.size());
96803768
ILT
2330 }
2331
2332 off_t off = this->first_input_offset_;
2333 for (Input_section_list::iterator p = this->input_sections_.begin();
2334 p != this->input_sections_.end();
2335 ++p)
2336 {
2337 off = align_address(off, p->addralign());
2338 p->write_to_buffer(buffer + off);
2339 off += p->data_size();
2340 }
2341}
2342
a445fddf
ILT
2343// Get the input sections for linker script processing. We leave
2344// behind the Output_section_data entries. Note that this may be
2345// slightly incorrect for merge sections. We will leave them behind,
2346// but it is possible that the script says that they should follow
2347// some other input sections, as in:
2348// .rodata { *(.rodata) *(.rodata.cst*) }
2349// For that matter, we don't handle this correctly:
2350// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2351// With luck this will never matter.
2352
2353uint64_t
2354Output_section::get_input_sections(
2355 uint64_t address,
2356 const std::string& fill,
2357 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2358{
2359 uint64_t orig_address = address;
2360
2361 address = align_address(address, this->addralign());
2362
2363 Input_section_list remaining;
2364 for (Input_section_list::iterator p = this->input_sections_.begin();
2365 p != this->input_sections_.end();
2366 ++p)
2367 {
2368 if (p->is_input_section())
2369 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2370 else
2371 {
2372 uint64_t aligned_address = align_address(address, p->addralign());
2373 if (aligned_address != address && !fill.empty())
2374 {
2375 section_size_type length =
2376 convert_to_section_size_type(aligned_address - address);
2377 std::string this_fill;
2378 this_fill.reserve(length);
2379 while (this_fill.length() + fill.length() <= length)
2380 this_fill += fill;
2381 if (this_fill.length() < length)
2382 this_fill.append(fill, 0, length - this_fill.length());
2383
2384 Output_section_data* posd = new Output_data_const(this_fill, 0);
2385 remaining.push_back(Input_section(posd));
2386 }
2387 address = aligned_address;
2388
2389 remaining.push_back(*p);
2390
2391 p->finalize_data_size();
2392 address += p->data_size();
2393 }
2394 }
2395
2396 this->input_sections_.swap(remaining);
2397 this->first_input_offset_ = 0;
2398
2399 uint64_t data_size = address - orig_address;
2400 this->set_current_data_size_for_child(data_size);
2401 return data_size;
2402}
2403
2404// Add an input section from a script.
2405
2406void
2407Output_section::add_input_section_for_script(Relobj* object,
2408 unsigned int shndx,
2409 off_t data_size,
2410 uint64_t addralign)
2411{
2412 if (addralign > this->addralign_)
2413 this->addralign_ = addralign;
2414
2415 off_t offset_in_section = this->current_data_size_for_child();
2416 off_t aligned_offset_in_section = align_address(offset_in_section,
2417 addralign);
2418
2419 this->set_current_data_size_for_child(aligned_offset_in_section
2420 + data_size);
2421
2422 this->input_sections_.push_back(Input_section(object, shndx,
2423 data_size, addralign));
2424}
2425
38c5e8b4
ILT
2426// Print stats for merge sections to stderr.
2427
2428void
2429Output_section::print_merge_stats()
2430{
2431 Input_section_list::iterator p;
2432 for (p = this->input_sections_.begin();
2433 p != this->input_sections_.end();
2434 ++p)
2435 p->print_merge_stats(this->name_);
2436}
2437
a2fb1b05
ILT
2438// Output segment methods.
2439
2440Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2441 : output_data_(),
75f65a3e 2442 output_bss_(),
a2fb1b05
ILT
2443 vaddr_(0),
2444 paddr_(0),
2445 memsz_(0),
a445fddf
ILT
2446 max_align_(0),
2447 min_p_align_(0),
a2fb1b05
ILT
2448 offset_(0),
2449 filesz_(0),
2450 type_(type),
ead1e424 2451 flags_(flags),
a445fddf
ILT
2452 is_max_align_known_(false),
2453 are_addresses_set_(false)
a2fb1b05
ILT
2454{
2455}
2456
2457// Add an Output_section to an Output_segment.
2458
2459void
75f65a3e 2460Output_segment::add_output_section(Output_section* os,
dbe717ef
ILT
2461 elfcpp::Elf_Word seg_flags,
2462 bool front)
a2fb1b05 2463{
a3ad94ed 2464 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2465 gold_assert(!this->is_max_align_known_);
75f65a3e 2466
ead1e424 2467 // Update the segment flags.
75f65a3e 2468 this->flags_ |= seg_flags;
75f65a3e
ILT
2469
2470 Output_segment::Output_data_list* pdl;
2471 if (os->type() == elfcpp::SHT_NOBITS)
2472 pdl = &this->output_bss_;
2473 else
2474 pdl = &this->output_data_;
54dc6425 2475
a2fb1b05
ILT
2476 // So that PT_NOTE segments will work correctly, we need to ensure
2477 // that all SHT_NOTE sections are adjacent. This will normally
2478 // happen automatically, because all the SHT_NOTE input sections
2479 // will wind up in the same output section. However, it is possible
2480 // for multiple SHT_NOTE input sections to have different section
2481 // flags, and thus be in different output sections, but for the
2482 // different section flags to map into the same segment flags and
2483 // thus the same output segment.
54dc6425
ILT
2484
2485 // Note that while there may be many input sections in an output
2486 // section, there are normally only a few output sections in an
2487 // output segment. This loop is expected to be fast.
2488
61ba1cf9 2489 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2490 {
a3ad94ed 2491 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2492 do
54dc6425 2493 {
75f65a3e 2494 --p;
54dc6425
ILT
2495 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2496 {
dbe717ef 2497 // We don't worry about the FRONT parameter.
54dc6425 2498 ++p;
75f65a3e 2499 pdl->insert(p, os);
54dc6425
ILT
2500 return;
2501 }
2502 }
75f65a3e 2503 while (p != pdl->begin());
54dc6425
ILT
2504 }
2505
2506 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2507 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2508 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2509 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2510 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2511 // and the PT_TLS segment -- we do this grouping only for the
2512 // PT_LOAD segment.
2513 if (this->type_ != elfcpp::PT_TLS
2514 && (os->flags() & elfcpp::SHF_TLS) != 0
2515 && !this->output_data_.empty())
54dc6425 2516 {
75f65a3e
ILT
2517 pdl = &this->output_data_;
2518 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2519 bool sawtls = false;
a3ad94ed 2520 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2521 do
a2fb1b05 2522 {
75f65a3e 2523 --p;
ead1e424
ILT
2524 bool insert;
2525 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2526 {
2527 sawtls = true;
2528 // Put a NOBITS section after the first TLS section.
2529 // But a PROGBITS section after the first TLS/PROGBITS
2530 // section.
2531 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2532 }
2533 else
2534 {
2535 // If we've gone past the TLS sections, but we've seen a
2536 // TLS section, then we need to insert this section now.
2537 insert = sawtls;
2538 }
2539
2540 if (insert)
a2fb1b05 2541 {
dbe717ef 2542 // We don't worry about the FRONT parameter.
a2fb1b05 2543 ++p;
75f65a3e 2544 pdl->insert(p, os);
a2fb1b05
ILT
2545 return;
2546 }
2547 }
75f65a3e 2548 while (p != pdl->begin());
ead1e424 2549
dbe717ef
ILT
2550 // There are no TLS sections yet; put this one at the requested
2551 // location in the section list.
a2fb1b05
ILT
2552 }
2553
dbe717ef
ILT
2554 if (front)
2555 pdl->push_front(os);
2556 else
2557 pdl->push_back(os);
75f65a3e
ILT
2558}
2559
1650c4ff
ILT
2560// Remove an Output_section from this segment. It is an error if it
2561// is not present.
2562
2563void
2564Output_segment::remove_output_section(Output_section* os)
2565{
2566 // We only need this for SHT_PROGBITS.
2567 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2568 for (Output_data_list::iterator p = this->output_data_.begin();
2569 p != this->output_data_.end();
2570 ++p)
2571 {
2572 if (*p == os)
2573 {
2574 this->output_data_.erase(p);
2575 return;
2576 }
2577 }
2578 gold_unreachable();
2579}
2580
75f65a3e
ILT
2581// Add an Output_data (which is not an Output_section) to the start of
2582// a segment.
2583
2584void
2585Output_segment::add_initial_output_data(Output_data* od)
2586{
a445fddf 2587 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2588 this->output_data_.push_front(od);
2589}
2590
2591// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2592
2593uint64_t
a445fddf 2594Output_segment::maximum_alignment()
75f65a3e 2595{
a445fddf 2596 if (!this->is_max_align_known_)
ead1e424
ILT
2597 {
2598 uint64_t addralign;
2599
a445fddf
ILT
2600 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2601 if (addralign > this->max_align_)
2602 this->max_align_ = addralign;
ead1e424 2603
a445fddf
ILT
2604 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2605 if (addralign > this->max_align_)
2606 this->max_align_ = addralign;
ead1e424 2607
a445fddf 2608 this->is_max_align_known_ = true;
ead1e424
ILT
2609 }
2610
a445fddf 2611 return this->max_align_;
75f65a3e
ILT
2612}
2613
ead1e424
ILT
2614// Return the maximum alignment of a list of Output_data.
2615
2616uint64_t
a445fddf 2617Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2618{
2619 uint64_t ret = 0;
2620 for (Output_data_list::const_iterator p = pdl->begin();
2621 p != pdl->end();
2622 ++p)
2623 {
2624 uint64_t addralign = (*p)->addralign();
2625 if (addralign > ret)
2626 ret = addralign;
2627 }
2628 return ret;
2629}
2630
4f4c5f80
ILT
2631// Return the number of dynamic relocs applied to this segment.
2632
2633unsigned int
2634Output_segment::dynamic_reloc_count() const
2635{
2636 return (this->dynamic_reloc_count_list(&this->output_data_)
2637 + this->dynamic_reloc_count_list(&this->output_bss_));
2638}
2639
2640// Return the number of dynamic relocs applied to an Output_data_list.
2641
2642unsigned int
2643Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2644{
2645 unsigned int count = 0;
2646 for (Output_data_list::const_iterator p = pdl->begin();
2647 p != pdl->end();
2648 ++p)
2649 count += (*p)->dynamic_reloc_count();
2650 return count;
2651}
2652
a445fddf
ILT
2653// Set the section addresses for an Output_segment. If RESET is true,
2654// reset the addresses first. ADDR is the address and *POFF is the
2655// file offset. Set the section indexes starting with *PSHNDX.
2656// Return the address of the immediately following segment. Update
2657// *POFF and *PSHNDX.
75f65a3e
ILT
2658
2659uint64_t
96a2b4e4
ILT
2660Output_segment::set_section_addresses(const Layout* layout, bool reset,
2661 uint64_t addr, off_t* poff,
ead1e424 2662 unsigned int* pshndx)
75f65a3e 2663{
a3ad94ed 2664 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2665
a445fddf
ILT
2666 if (!reset && this->are_addresses_set_)
2667 {
2668 gold_assert(this->paddr_ == addr);
2669 addr = this->vaddr_;
2670 }
2671 else
2672 {
2673 this->vaddr_ = addr;
2674 this->paddr_ = addr;
2675 this->are_addresses_set_ = true;
2676 }
75f65a3e 2677
96a2b4e4
ILT
2678 bool in_tls = false;
2679
75f65a3e
ILT
2680 off_t orig_off = *poff;
2681 this->offset_ = orig_off;
2682
96a2b4e4
ILT
2683 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
2684 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
2685 this->filesz_ = *poff - orig_off;
2686
2687 off_t off = *poff;
2688
96a2b4e4
ILT
2689 uint64_t ret = this->set_section_list_addresses(layout, reset,
2690 &this->output_bss_,
2691 addr, poff, pshndx,
2692 &in_tls);
2693
2694 // If the last section was a TLS section, align upward to the
2695 // alignment of the TLS segment, so that the overall size of the TLS
2696 // segment is aligned.
2697 if (in_tls)
2698 {
2699 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2700 *poff = align_address(*poff, segment_align);
2701 }
2702
75f65a3e
ILT
2703 this->memsz_ = *poff - orig_off;
2704
2705 // Ignore the file offset adjustments made by the BSS Output_data
2706 // objects.
2707 *poff = off;
61ba1cf9
ILT
2708
2709 return ret;
75f65a3e
ILT
2710}
2711
b8e6aad9
ILT
2712// Set the addresses and file offsets in a list of Output_data
2713// structures.
75f65a3e
ILT
2714
2715uint64_t
96a2b4e4
ILT
2716Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2717 Output_data_list* pdl,
ead1e424 2718 uint64_t addr, off_t* poff,
96a2b4e4
ILT
2719 unsigned int* pshndx,
2720 bool* in_tls)
75f65a3e 2721{
ead1e424 2722 off_t startoff = *poff;
75f65a3e 2723
ead1e424 2724 off_t off = startoff;
75f65a3e
ILT
2725 for (Output_data_list::iterator p = pdl->begin();
2726 p != pdl->end();
2727 ++p)
2728 {
a445fddf
ILT
2729 if (reset)
2730 (*p)->reset_address_and_file_offset();
2731
2732 // When using a linker script the section will most likely
2733 // already have an address.
2734 if (!(*p)->is_address_valid())
3802b2dd 2735 {
96a2b4e4
ILT
2736 uint64_t align = (*p)->addralign();
2737
2738 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2739 {
2740 // Give the first TLS section the alignment of the
2741 // entire TLS segment. Otherwise the TLS segment as a
2742 // whole may be misaligned.
2743 if (!*in_tls)
2744 {
2745 Output_segment* tls_segment = layout->tls_segment();
2746 gold_assert(tls_segment != NULL);
2747 uint64_t segment_align = tls_segment->maximum_alignment();
2748 gold_assert(segment_align >= align);
2749 align = segment_align;
2750
2751 *in_tls = true;
2752 }
2753 }
2754 else
2755 {
2756 // If this is the first section after the TLS segment,
2757 // align it to at least the alignment of the TLS
2758 // segment, so that the size of the overall TLS segment
2759 // is aligned.
2760 if (*in_tls)
2761 {
2762 uint64_t segment_align =
2763 layout->tls_segment()->maximum_alignment();
2764 if (segment_align > align)
2765 align = segment_align;
2766
2767 *in_tls = false;
2768 }
2769 }
2770
2771 off = align_address(off, align);
3802b2dd
ILT
2772 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2773 }
a445fddf
ILT
2774 else
2775 {
2776 // The script may have inserted a skip forward, but it
2777 // better not have moved backward.
3802b2dd
ILT
2778 gold_assert((*p)->address() >= addr + (off - startoff));
2779 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2780 (*p)->set_file_offset(off);
2781 (*p)->finalize_data_size();
2782 }
ead1e424 2783
96a2b4e4
ILT
2784 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2785 // section. Such a section does not affect the size of a
2786 // PT_LOAD segment.
2787 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2788 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2789 off += (*p)->data_size();
75f65a3e 2790
ead1e424
ILT
2791 if ((*p)->is_section())
2792 {
2793 (*p)->set_out_shndx(*pshndx);
2794 ++*pshndx;
2795 }
75f65a3e
ILT
2796 }
2797
2798 *poff = off;
ead1e424 2799 return addr + (off - startoff);
75f65a3e
ILT
2800}
2801
2802// For a non-PT_LOAD segment, set the offset from the sections, if
2803// any.
2804
2805void
2806Output_segment::set_offset()
2807{
a3ad94ed 2808 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2809
a445fddf
ILT
2810 gold_assert(!this->are_addresses_set_);
2811
75f65a3e
ILT
2812 if (this->output_data_.empty() && this->output_bss_.empty())
2813 {
2814 this->vaddr_ = 0;
2815 this->paddr_ = 0;
a445fddf 2816 this->are_addresses_set_ = true;
75f65a3e 2817 this->memsz_ = 0;
a445fddf 2818 this->min_p_align_ = 0;
75f65a3e
ILT
2819 this->offset_ = 0;
2820 this->filesz_ = 0;
2821 return;
2822 }
2823
2824 const Output_data* first;
2825 if (this->output_data_.empty())
2826 first = this->output_bss_.front();
2827 else
2828 first = this->output_data_.front();
2829 this->vaddr_ = first->address();
a445fddf
ILT
2830 this->paddr_ = (first->has_load_address()
2831 ? first->load_address()
2832 : this->vaddr_);
2833 this->are_addresses_set_ = true;
75f65a3e
ILT
2834 this->offset_ = first->offset();
2835
2836 if (this->output_data_.empty())
2837 this->filesz_ = 0;
2838 else
2839 {
2840 const Output_data* last_data = this->output_data_.back();
2841 this->filesz_ = (last_data->address()
2842 + last_data->data_size()
2843 - this->vaddr_);
2844 }
2845
2846 const Output_data* last;
2847 if (this->output_bss_.empty())
2848 last = this->output_data_.back();
2849 else
2850 last = this->output_bss_.back();
2851 this->memsz_ = (last->address()
2852 + last->data_size()
2853 - this->vaddr_);
96a2b4e4
ILT
2854
2855 // If this is a TLS segment, align the memory size. The code in
2856 // set_section_list ensures that the section after the TLS segment
2857 // is aligned to give us room.
2858 if (this->type_ == elfcpp::PT_TLS)
2859 {
2860 uint64_t segment_align = this->maximum_alignment();
2861 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
2862 this->memsz_ = align_address(this->memsz_, segment_align);
2863 }
75f65a3e
ILT
2864}
2865
7bf1f802
ILT
2866// Set the TLS offsets of the sections in the PT_TLS segment.
2867
2868void
2869Output_segment::set_tls_offsets()
2870{
2871 gold_assert(this->type_ == elfcpp::PT_TLS);
2872
2873 for (Output_data_list::iterator p = this->output_data_.begin();
2874 p != this->output_data_.end();
2875 ++p)
2876 (*p)->set_tls_offset(this->vaddr_);
2877
2878 for (Output_data_list::iterator p = this->output_bss_.begin();
2879 p != this->output_bss_.end();
2880 ++p)
2881 (*p)->set_tls_offset(this->vaddr_);
2882}
2883
a445fddf
ILT
2884// Return the address of the first section.
2885
2886uint64_t
2887Output_segment::first_section_load_address() const
2888{
2889 for (Output_data_list::const_iterator p = this->output_data_.begin();
2890 p != this->output_data_.end();
2891 ++p)
2892 if ((*p)->is_section())
2893 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2894
2895 for (Output_data_list::const_iterator p = this->output_bss_.begin();
2896 p != this->output_bss_.end();
2897 ++p)
2898 if ((*p)->is_section())
2899 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
2900
2901 gold_unreachable();
2902}
2903
75f65a3e
ILT
2904// Return the number of Output_sections in an Output_segment.
2905
2906unsigned int
2907Output_segment::output_section_count() const
2908{
2909 return (this->output_section_count_list(&this->output_data_)
2910 + this->output_section_count_list(&this->output_bss_));
2911}
2912
2913// Return the number of Output_sections in an Output_data_list.
2914
2915unsigned int
2916Output_segment::output_section_count_list(const Output_data_list* pdl) const
2917{
2918 unsigned int count = 0;
2919 for (Output_data_list::const_iterator p = pdl->begin();
2920 p != pdl->end();
2921 ++p)
2922 {
2923 if ((*p)->is_section())
2924 ++count;
2925 }
2926 return count;
a2fb1b05
ILT
2927}
2928
1c4f3631
ILT
2929// Return the section attached to the list segment with the lowest
2930// load address. This is used when handling a PHDRS clause in a
2931// linker script.
2932
2933Output_section*
2934Output_segment::section_with_lowest_load_address() const
2935{
2936 Output_section* found = NULL;
2937 uint64_t found_lma = 0;
2938 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
2939
2940 Output_section* found_data = found;
2941 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
2942 if (found != found_data && found_data != NULL)
2943 {
2944 gold_error(_("nobits section %s may not precede progbits section %s "
2945 "in same segment"),
2946 found->name(), found_data->name());
2947 return NULL;
2948 }
2949
2950 return found;
2951}
2952
2953// Look through a list for a section with a lower load address.
2954
2955void
2956Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
2957 Output_section** found,
2958 uint64_t* found_lma) const
2959{
2960 for (Output_data_list::const_iterator p = pdl->begin();
2961 p != pdl->end();
2962 ++p)
2963 {
2964 if (!(*p)->is_section())
2965 continue;
2966 Output_section* os = static_cast<Output_section*>(*p);
2967 uint64_t lma = (os->has_load_address()
2968 ? os->load_address()
2969 : os->address());
2970 if (*found == NULL || lma < *found_lma)
2971 {
2972 *found = os;
2973 *found_lma = lma;
2974 }
2975 }
2976}
2977
61ba1cf9
ILT
2978// Write the segment data into *OPHDR.
2979
2980template<int size, bool big_endian>
2981void
ead1e424 2982Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
2983{
2984 ophdr->put_p_type(this->type_);
2985 ophdr->put_p_offset(this->offset_);
2986 ophdr->put_p_vaddr(this->vaddr_);
2987 ophdr->put_p_paddr(this->paddr_);
2988 ophdr->put_p_filesz(this->filesz_);
2989 ophdr->put_p_memsz(this->memsz_);
2990 ophdr->put_p_flags(this->flags_);
a445fddf 2991 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
2992}
2993
2994// Write the section headers into V.
2995
2996template<int size, bool big_endian>
2997unsigned char*
16649710
ILT
2998Output_segment::write_section_headers(const Layout* layout,
2999 const Stringpool* secnamepool,
ead1e424 3000 unsigned char* v,
7d1a9ebb 3001 unsigned int *pshndx) const
5482377d 3002{
ead1e424
ILT
3003 // Every section that is attached to a segment must be attached to a
3004 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3005 // segments.
3006 if (this->type_ != elfcpp::PT_LOAD)
3007 return v;
3008
7d1a9ebb
ILT
3009 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3010 &this->output_data_,
3011 v, pshndx);
3012 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3013 &this->output_bss_,
3014 v, pshndx);
61ba1cf9
ILT
3015 return v;
3016}
3017
3018template<int size, bool big_endian>
3019unsigned char*
16649710
ILT
3020Output_segment::write_section_headers_list(const Layout* layout,
3021 const Stringpool* secnamepool,
61ba1cf9 3022 const Output_data_list* pdl,
ead1e424 3023 unsigned char* v,
7d1a9ebb 3024 unsigned int* pshndx) const
61ba1cf9
ILT
3025{
3026 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3027 for (Output_data_list::const_iterator p = pdl->begin();
3028 p != pdl->end();
3029 ++p)
3030 {
3031 if ((*p)->is_section())
3032 {
5482377d 3033 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3034 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3035 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3036 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3037 v += shdr_size;
ead1e424 3038 ++*pshndx;
61ba1cf9
ILT
3039 }
3040 }
3041 return v;
3042}
3043
a2fb1b05
ILT
3044// Output_file methods.
3045
14144f39
ILT
3046Output_file::Output_file(const char* name)
3047 : name_(name),
61ba1cf9
ILT
3048 o_(-1),
3049 file_size_(0),
c420411f 3050 base_(NULL),
516cb3d0
ILT
3051 map_is_anonymous_(false),
3052 is_temporary_(false)
61ba1cf9
ILT
3053{
3054}
3055
3056// Open the output file.
3057
a2fb1b05 3058void
61ba1cf9 3059Output_file::open(off_t file_size)
a2fb1b05 3060{
61ba1cf9
ILT
3061 this->file_size_ = file_size;
3062
4e9d8586
ILT
3063 // Unlink the file first; otherwise the open() may fail if the file
3064 // is busy (e.g. it's an executable that's currently being executed).
3065 //
3066 // However, the linker may be part of a system where a zero-length
3067 // file is created for it to write to, with tight permissions (gcc
3068 // 2.95 did something like this). Unlinking the file would work
3069 // around those permission controls, so we only unlink if the file
3070 // has a non-zero size. We also unlink only regular files to avoid
3071 // trouble with directories/etc.
3072 //
3073 // If we fail, continue; this command is merely a best-effort attempt
3074 // to improve the odds for open().
3075
42a1b686 3076 // We let the name "-" mean "stdout"
516cb3d0 3077 if (!this->is_temporary_)
42a1b686 3078 {
516cb3d0
ILT
3079 if (strcmp(this->name_, "-") == 0)
3080 this->o_ = STDOUT_FILENO;
3081 else
3082 {
3083 struct stat s;
3084 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3085 unlink_if_ordinary(this->name_);
3086
8851ecca 3087 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
3088 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3089 if (o < 0)
3090 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3091 this->o_ = o;
3092 }
42a1b686 3093 }
61ba1cf9 3094
27bc2bce
ILT
3095 this->map();
3096}
3097
3098// Resize the output file.
3099
3100void
3101Output_file::resize(off_t file_size)
3102{
c420411f
ILT
3103 // If the mmap is mapping an anonymous memory buffer, this is easy:
3104 // just mremap to the new size. If it's mapping to a file, we want
3105 // to unmap to flush to the file, then remap after growing the file.
3106 if (this->map_is_anonymous_)
3107 {
3108 void* base = ::mremap(this->base_, this->file_size_, file_size,
3109 MREMAP_MAYMOVE);
3110 if (base == MAP_FAILED)
3111 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3112 this->base_ = static_cast<unsigned char*>(base);
3113 this->file_size_ = file_size;
3114 }
3115 else
3116 {
3117 this->unmap();
3118 this->file_size_ = file_size;
3119 this->map();
3120 }
27bc2bce
ILT
3121}
3122
3123// Map the file into memory.
3124
3125void
3126Output_file::map()
3127{
c420411f 3128 const int o = this->o_;
61ba1cf9 3129
c420411f
ILT
3130 // If the output file is not a regular file, don't try to mmap it;
3131 // instead, we'll mmap a block of memory (an anonymous buffer), and
3132 // then later write the buffer to the file.
3133 void* base;
3134 struct stat statbuf;
42a1b686
ILT
3135 if (o == STDOUT_FILENO || o == STDERR_FILENO
3136 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3137 || !S_ISREG(statbuf.st_mode)
3138 || this->is_temporary_)
c420411f
ILT
3139 {
3140 this->map_is_anonymous_ = true;
3141 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3142 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3143 }
3144 else
3145 {
3146 // Write out one byte to make the file the right size.
3147 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3148 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3149 char b = 0;
3150 if (::write(o, &b, 1) != 1)
3151 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3152
3153 // Map the file into memory.
3154 this->map_is_anonymous_ = false;
3155 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3156 MAP_SHARED, o, 0);
3157 }
61ba1cf9 3158 if (base == MAP_FAILED)
75f2446e 3159 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
3160 this->base_ = static_cast<unsigned char*>(base);
3161}
3162
c420411f 3163// Unmap the file from memory.
61ba1cf9
ILT
3164
3165void
c420411f 3166Output_file::unmap()
61ba1cf9
ILT
3167{
3168 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 3169 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 3170 this->base_ = NULL;
c420411f
ILT
3171}
3172
3173// Close the output file.
3174
3175void
3176Output_file::close()
3177{
3178 // If the map isn't file-backed, we need to write it now.
516cb3d0 3179 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
3180 {
3181 size_t bytes_to_write = this->file_size_;
3182 while (bytes_to_write > 0)
3183 {
3184 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3185 if (bytes_written == 0)
3186 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3187 else if (bytes_written < 0)
3188 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3189 else
3190 bytes_to_write -= bytes_written;
3191 }
3192 }
3193 this->unmap();
61ba1cf9 3194
42a1b686 3195 // We don't close stdout or stderr
516cb3d0
ILT
3196 if (this->o_ != STDOUT_FILENO
3197 && this->o_ != STDERR_FILENO
3198 && !this->is_temporary_)
42a1b686
ILT
3199 if (::close(this->o_) < 0)
3200 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 3201 this->o_ = -1;
a2fb1b05
ILT
3202}
3203
3204// Instantiate the templates we need. We could use the configure
3205// script to restrict this to only the ones for implemented targets.
3206
193a53d9 3207#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
3208template
3209off_t
3210Output_section::add_input_section<32, false>(
730cdc88 3211 Sized_relobj<32, false>* object,
ead1e424 3212 unsigned int shndx,
a2fb1b05 3213 const char* secname,
730cdc88 3214 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
3215 unsigned int reloc_shndx,
3216 bool have_sections_script);
193a53d9 3217#endif
a2fb1b05 3218
193a53d9 3219#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
3220template
3221off_t
3222Output_section::add_input_section<32, true>(
730cdc88 3223 Sized_relobj<32, true>* object,
ead1e424 3224 unsigned int shndx,
a2fb1b05 3225 const char* secname,
730cdc88 3226 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
3227 unsigned int reloc_shndx,
3228 bool have_sections_script);
193a53d9 3229#endif
a2fb1b05 3230
193a53d9 3231#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3232template
3233off_t
3234Output_section::add_input_section<64, false>(
730cdc88 3235 Sized_relobj<64, false>* object,
ead1e424 3236 unsigned int shndx,
a2fb1b05 3237 const char* secname,
730cdc88 3238 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3239 unsigned int reloc_shndx,
3240 bool have_sections_script);
193a53d9 3241#endif
a2fb1b05 3242
193a53d9 3243#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3244template
3245off_t
3246Output_section::add_input_section<64, true>(
730cdc88 3247 Sized_relobj<64, true>* object,
ead1e424 3248 unsigned int shndx,
a2fb1b05 3249 const char* secname,
730cdc88 3250 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3251 unsigned int reloc_shndx,
3252 bool have_sections_script);
193a53d9 3253#endif
a2fb1b05 3254
193a53d9 3255#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3256template
3257class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3258#endif
c06b7b0b 3259
193a53d9 3260#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3261template
3262class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3263#endif
c06b7b0b 3264
193a53d9 3265#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3266template
3267class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3268#endif
c06b7b0b 3269
193a53d9 3270#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3271template
3272class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3273#endif
c06b7b0b 3274
193a53d9 3275#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3276template
3277class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3278#endif
c06b7b0b 3279
193a53d9 3280#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3281template
3282class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3283#endif
c06b7b0b 3284
193a53d9 3285#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3286template
3287class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3288#endif
c06b7b0b 3289
193a53d9 3290#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3291template
3292class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3293#endif
c06b7b0b 3294
193a53d9 3295#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3296template
3297class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3298#endif
c06b7b0b 3299
193a53d9 3300#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3301template
3302class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3303#endif
c06b7b0b 3304
193a53d9 3305#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3306template
3307class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3308#endif
c06b7b0b 3309
193a53d9 3310#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3311template
3312class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3313#endif
c06b7b0b 3314
193a53d9 3315#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3316template
3317class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3318#endif
c06b7b0b 3319
193a53d9 3320#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3321template
3322class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3323#endif
c06b7b0b 3324
193a53d9 3325#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3326template
3327class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3328#endif
c06b7b0b 3329
193a53d9 3330#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3331template
3332class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3333#endif
c06b7b0b 3334
6a74a719
ILT
3335#ifdef HAVE_TARGET_32_LITTLE
3336template
3337class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3338#endif
3339
3340#ifdef HAVE_TARGET_32_BIG
3341template
3342class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3343#endif
3344
3345#ifdef HAVE_TARGET_64_LITTLE
3346template
3347class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3348#endif
3349
3350#ifdef HAVE_TARGET_64_BIG
3351template
3352class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3353#endif
3354
3355#ifdef HAVE_TARGET_32_LITTLE
3356template
3357class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3358#endif
3359
3360#ifdef HAVE_TARGET_32_BIG
3361template
3362class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3363#endif
3364
3365#ifdef HAVE_TARGET_64_LITTLE
3366template
3367class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3368#endif
3369
3370#ifdef HAVE_TARGET_64_BIG
3371template
3372class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3373#endif
3374
3375#ifdef HAVE_TARGET_32_LITTLE
3376template
3377class Output_data_group<32, false>;
3378#endif
3379
3380#ifdef HAVE_TARGET_32_BIG
3381template
3382class Output_data_group<32, true>;
3383#endif
3384
3385#ifdef HAVE_TARGET_64_LITTLE
3386template
3387class Output_data_group<64, false>;
3388#endif
3389
3390#ifdef HAVE_TARGET_64_BIG
3391template
3392class Output_data_group<64, true>;
3393#endif
3394
193a53d9 3395#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3396template
dbe717ef 3397class Output_data_got<32, false>;
193a53d9 3398#endif
ead1e424 3399
193a53d9 3400#ifdef HAVE_TARGET_32_BIG
ead1e424 3401template
dbe717ef 3402class Output_data_got<32, true>;
193a53d9 3403#endif
ead1e424 3404
193a53d9 3405#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3406template
dbe717ef 3407class Output_data_got<64, false>;
193a53d9 3408#endif
ead1e424 3409
193a53d9 3410#ifdef HAVE_TARGET_64_BIG
ead1e424 3411template
dbe717ef 3412class Output_data_got<64, true>;
193a53d9 3413#endif
ead1e424 3414
a2fb1b05 3415} // End namespace gold.
This page took 0.287485 seconds and 4 git commands to generate.