2008-05-21 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
ebdbb458 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
5ffcaa86 33#include "libiberty.h" // for unlink_if_ordinary()
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
a2fb1b05
ILT
40#include "output.h"
41
c420411f
ILT
42// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43#ifndef MAP_ANONYMOUS
44# define MAP_ANONYMOUS MAP_ANON
45#endif
46
a2fb1b05
ILT
47namespace gold
48{
49
a3ad94ed
ILT
50// Output_data variables.
51
27bc2bce 52bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 53
a2fb1b05
ILT
54// Output_data methods.
55
56Output_data::~Output_data()
57{
58}
59
730cdc88
ILT
60// Return the default alignment for the target size.
61
62uint64_t
63Output_data::default_alignment()
64{
8851ecca
ILT
65 return Output_data::default_alignment_for_size(
66 parameters->target().get_size());
730cdc88
ILT
67}
68
75f65a3e
ILT
69// Return the default alignment for a size--32 or 64.
70
71uint64_t
730cdc88 72Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
73{
74 if (size == 32)
75 return 4;
76 else if (size == 64)
77 return 8;
78 else
a3ad94ed 79 gold_unreachable();
75f65a3e
ILT
80}
81
75f65a3e
ILT
82// Output_section_header methods. This currently assumes that the
83// segment and section lists are complete at construction time.
84
85Output_section_headers::Output_section_headers(
16649710
ILT
86 const Layout* layout,
87 const Layout::Segment_list* segment_list,
6a74a719 88 const Layout::Section_list* section_list,
16649710 89 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
90 const Stringpool* secnamepool,
91 const Output_section* shstrtab_section)
9025d29d 92 : layout_(layout),
75f65a3e 93 segment_list_(segment_list),
6a74a719 94 section_list_(section_list),
a3ad94ed 95 unattached_section_list_(unattached_section_list),
d491d34e
ILT
96 secnamepool_(secnamepool),
97 shstrtab_section_(shstrtab_section)
75f65a3e 98{
61ba1cf9
ILT
99 // Count all the sections. Start with 1 for the null section.
100 off_t count = 1;
8851ecca 101 if (!parameters->options().relocatable())
6a74a719
ILT
102 {
103 for (Layout::Segment_list::const_iterator p = segment_list->begin();
104 p != segment_list->end();
105 ++p)
106 if ((*p)->type() == elfcpp::PT_LOAD)
107 count += (*p)->output_section_count();
108 }
109 else
110 {
111 for (Layout::Section_list::const_iterator p = section_list->begin();
112 p != section_list->end();
113 ++p)
114 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
115 ++count;
116 }
16649710 117 count += unattached_section_list->size();
75f65a3e 118
8851ecca 119 const int size = parameters->target().get_size();
75f65a3e
ILT
120 int shdr_size;
121 if (size == 32)
122 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
123 else if (size == 64)
124 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
125 else
a3ad94ed 126 gold_unreachable();
75f65a3e
ILT
127
128 this->set_data_size(count * shdr_size);
129}
130
61ba1cf9
ILT
131// Write out the section headers.
132
75f65a3e 133void
61ba1cf9 134Output_section_headers::do_write(Output_file* of)
a2fb1b05 135{
8851ecca 136 switch (parameters->size_and_endianness())
61ba1cf9 137 {
9025d29d 138#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
139 case Parameters::TARGET_32_LITTLE:
140 this->do_sized_write<32, false>(of);
141 break;
9025d29d 142#endif
8851ecca
ILT
143#ifdef HAVE_TARGET_32_BIG
144 case Parameters::TARGET_32_BIG:
145 this->do_sized_write<32, true>(of);
146 break;
9025d29d 147#endif
9025d29d 148#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
149 case Parameters::TARGET_64_LITTLE:
150 this->do_sized_write<64, false>(of);
151 break;
9025d29d 152#endif
8851ecca
ILT
153#ifdef HAVE_TARGET_64_BIG
154 case Parameters::TARGET_64_BIG:
155 this->do_sized_write<64, true>(of);
156 break;
157#endif
158 default:
159 gold_unreachable();
61ba1cf9 160 }
61ba1cf9
ILT
161}
162
163template<int size, bool big_endian>
164void
165Output_section_headers::do_sized_write(Output_file* of)
166{
167 off_t all_shdrs_size = this->data_size();
168 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
169
170 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
171 unsigned char* v = view;
172
173 {
174 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
175 oshdr.put_sh_name(0);
176 oshdr.put_sh_type(elfcpp::SHT_NULL);
177 oshdr.put_sh_flags(0);
178 oshdr.put_sh_addr(0);
179 oshdr.put_sh_offset(0);
d491d34e
ILT
180
181 size_t section_count = (this->data_size()
182 / elfcpp::Elf_sizes<size>::shdr_size);
183 if (section_count < elfcpp::SHN_LORESERVE)
184 oshdr.put_sh_size(0);
185 else
186 oshdr.put_sh_size(section_count);
187
188 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
189 if (shstrndx < elfcpp::SHN_LORESERVE)
190 oshdr.put_sh_link(0);
191 else
192 oshdr.put_sh_link(shstrndx);
193
61ba1cf9
ILT
194 oshdr.put_sh_info(0);
195 oshdr.put_sh_addralign(0);
196 oshdr.put_sh_entsize(0);
197 }
198
199 v += shdr_size;
200
6a74a719 201 unsigned int shndx = 1;
8851ecca 202 if (!parameters->options().relocatable())
6a74a719
ILT
203 {
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
207 ++p)
208 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
209 this->secnamepool_,
210 v,
211 &shndx);
212 }
213 else
214 {
215 for (Layout::Section_list::const_iterator p =
216 this->section_list_->begin();
217 p != this->section_list_->end();
218 ++p)
219 {
220 // We do unallocated sections below, except that group
221 // sections have to come first.
222 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
223 && (*p)->type() != elfcpp::SHT_GROUP)
224 continue;
225 gold_assert(shndx == (*p)->out_shndx());
226 elfcpp::Shdr_write<size, big_endian> oshdr(v);
227 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
228 v += shdr_size;
229 ++shndx;
230 }
231 }
232
a3ad94ed 233 for (Layout::Section_list::const_iterator p =
16649710
ILT
234 this->unattached_section_list_->begin();
235 p != this->unattached_section_list_->end();
61ba1cf9
ILT
236 ++p)
237 {
6a74a719
ILT
238 // For a relocatable link, we did unallocated group sections
239 // above, since they have to come first.
240 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 241 && parameters->options().relocatable())
6a74a719 242 continue;
a3ad94ed 243 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 244 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 245 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 246 v += shdr_size;
ead1e424 247 ++shndx;
61ba1cf9
ILT
248 }
249
250 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
251}
252
54dc6425
ILT
253// Output_segment_header methods.
254
61ba1cf9 255Output_segment_headers::Output_segment_headers(
61ba1cf9 256 const Layout::Segment_list& segment_list)
9025d29d 257 : segment_list_(segment_list)
61ba1cf9 258{
8851ecca 259 const int size = parameters->target().get_size();
61ba1cf9
ILT
260 int phdr_size;
261 if (size == 32)
262 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
263 else if (size == 64)
264 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
265 else
a3ad94ed 266 gold_unreachable();
61ba1cf9
ILT
267
268 this->set_data_size(segment_list.size() * phdr_size);
269}
270
54dc6425 271void
61ba1cf9 272Output_segment_headers::do_write(Output_file* of)
75f65a3e 273{
8851ecca 274 switch (parameters->size_and_endianness())
61ba1cf9 275 {
9025d29d 276#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
277 case Parameters::TARGET_32_LITTLE:
278 this->do_sized_write<32, false>(of);
279 break;
9025d29d 280#endif
8851ecca
ILT
281#ifdef HAVE_TARGET_32_BIG
282 case Parameters::TARGET_32_BIG:
283 this->do_sized_write<32, true>(of);
284 break;
9025d29d 285#endif
9025d29d 286#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
287 case Parameters::TARGET_64_LITTLE:
288 this->do_sized_write<64, false>(of);
289 break;
9025d29d 290#endif
8851ecca
ILT
291#ifdef HAVE_TARGET_64_BIG
292 case Parameters::TARGET_64_BIG:
293 this->do_sized_write<64, true>(of);
294 break;
295#endif
296 default:
297 gold_unreachable();
61ba1cf9 298 }
61ba1cf9
ILT
299}
300
301template<int size, bool big_endian>
302void
303Output_segment_headers::do_sized_write(Output_file* of)
304{
305 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
306 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 307 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
308 unsigned char* view = of->get_output_view(this->offset(),
309 all_phdrs_size);
310 unsigned char* v = view;
311 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
312 p != this->segment_list_.end();
313 ++p)
314 {
315 elfcpp::Phdr_write<size, big_endian> ophdr(v);
316 (*p)->write_header(&ophdr);
317 v += phdr_size;
318 }
319
a445fddf
ILT
320 gold_assert(v - view == all_phdrs_size);
321
61ba1cf9 322 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
323}
324
325// Output_file_header methods.
326
9025d29d 327Output_file_header::Output_file_header(const Target* target,
75f65a3e 328 const Symbol_table* symtab,
d391083d
ILT
329 const Output_segment_headers* osh,
330 const char* entry)
9025d29d 331 : target_(target),
75f65a3e 332 symtab_(symtab),
61ba1cf9 333 segment_header_(osh),
75f65a3e 334 section_header_(NULL),
d391083d
ILT
335 shstrtab_(NULL),
336 entry_(entry)
75f65a3e 337{
8851ecca 338 const int size = parameters->target().get_size();
61ba1cf9
ILT
339 int ehdr_size;
340 if (size == 32)
341 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
342 else if (size == 64)
343 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
344 else
a3ad94ed 345 gold_unreachable();
61ba1cf9
ILT
346
347 this->set_data_size(ehdr_size);
75f65a3e
ILT
348}
349
350// Set the section table information for a file header.
351
352void
353Output_file_header::set_section_info(const Output_section_headers* shdrs,
354 const Output_section* shstrtab)
355{
356 this->section_header_ = shdrs;
357 this->shstrtab_ = shstrtab;
358}
359
360// Write out the file header.
361
362void
61ba1cf9 363Output_file_header::do_write(Output_file* of)
54dc6425 364{
27bc2bce
ILT
365 gold_assert(this->offset() == 0);
366
8851ecca 367 switch (parameters->size_and_endianness())
61ba1cf9 368 {
9025d29d 369#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
370 case Parameters::TARGET_32_LITTLE:
371 this->do_sized_write<32, false>(of);
372 break;
9025d29d 373#endif
8851ecca
ILT
374#ifdef HAVE_TARGET_32_BIG
375 case Parameters::TARGET_32_BIG:
376 this->do_sized_write<32, true>(of);
377 break;
9025d29d 378#endif
9025d29d 379#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
380 case Parameters::TARGET_64_LITTLE:
381 this->do_sized_write<64, false>(of);
382 break;
9025d29d 383#endif
8851ecca
ILT
384#ifdef HAVE_TARGET_64_BIG
385 case Parameters::TARGET_64_BIG:
386 this->do_sized_write<64, true>(of);
387 break;
388#endif
389 default:
390 gold_unreachable();
61ba1cf9 391 }
61ba1cf9
ILT
392}
393
394// Write out the file header with appropriate size and endianess.
395
396template<int size, bool big_endian>
397void
398Output_file_header::do_sized_write(Output_file* of)
399{
a3ad94ed 400 gold_assert(this->offset() == 0);
61ba1cf9
ILT
401
402 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
403 unsigned char* view = of->get_output_view(0, ehdr_size);
404 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
405
406 unsigned char e_ident[elfcpp::EI_NIDENT];
407 memset(e_ident, 0, elfcpp::EI_NIDENT);
408 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
409 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
410 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
411 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
412 if (size == 32)
413 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
414 else if (size == 64)
415 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
416 else
a3ad94ed 417 gold_unreachable();
61ba1cf9
ILT
418 e_ident[elfcpp::EI_DATA] = (big_endian
419 ? elfcpp::ELFDATA2MSB
420 : elfcpp::ELFDATA2LSB);
421 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
422 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
423 oehdr.put_e_ident(e_ident);
424
425 elfcpp::ET e_type;
8851ecca 426 if (parameters->options().relocatable())
61ba1cf9 427 e_type = elfcpp::ET_REL;
8851ecca 428 else if (parameters->options().shared())
436ca963 429 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
430 else
431 e_type = elfcpp::ET_EXEC;
432 oehdr.put_e_type(e_type);
433
434 oehdr.put_e_machine(this->target_->machine_code());
435 oehdr.put_e_version(elfcpp::EV_CURRENT);
436
d391083d 437 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 438
6a74a719
ILT
439 if (this->segment_header_ == NULL)
440 oehdr.put_e_phoff(0);
441 else
442 oehdr.put_e_phoff(this->segment_header_->offset());
443
61ba1cf9
ILT
444 oehdr.put_e_shoff(this->section_header_->offset());
445
446 // FIXME: The target needs to set the flags.
447 oehdr.put_e_flags(0);
448
449 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
450
451 if (this->segment_header_ == NULL)
452 {
453 oehdr.put_e_phentsize(0);
454 oehdr.put_e_phnum(0);
455 }
456 else
457 {
458 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
459 oehdr.put_e_phnum(this->segment_header_->data_size()
460 / elfcpp::Elf_sizes<size>::phdr_size);
461 }
462
61ba1cf9 463 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
464 size_t section_count = (this->section_header_->data_size()
465 / elfcpp::Elf_sizes<size>::shdr_size);
466
467 if (section_count < elfcpp::SHN_LORESERVE)
468 oehdr.put_e_shnum(this->section_header_->data_size()
469 / elfcpp::Elf_sizes<size>::shdr_size);
470 else
471 oehdr.put_e_shnum(0);
472
473 unsigned int shstrndx = this->shstrtab_->out_shndx();
474 if (shstrndx < elfcpp::SHN_LORESERVE)
475 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
476 else
477 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9
ILT
478
479 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
480}
481
d391083d
ILT
482// Return the value to use for the entry address. THIS->ENTRY_ is the
483// symbol specified on the command line, if any.
484
485template<int size>
486typename elfcpp::Elf_types<size>::Elf_Addr
487Output_file_header::entry()
488{
489 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
490 && !parameters->options().relocatable()
491 && !parameters->options().shared());
d391083d
ILT
492
493 // FIXME: Need to support target specific entry symbol.
494 const char* entry = this->entry_;
495 if (entry == NULL)
496 entry = "_start";
497
498 Symbol* sym = this->symtab_->lookup(entry);
499
500 typename Sized_symbol<size>::Value_type v;
501 if (sym != NULL)
502 {
503 Sized_symbol<size>* ssym;
504 ssym = this->symtab_->get_sized_symbol<size>(sym);
505 if (!ssym->is_defined() && should_issue_warning)
506 gold_warning("entry symbol '%s' exists but is not defined", entry);
507 v = ssym->value();
508 }
509 else
510 {
511 // We couldn't find the entry symbol. See if we can parse it as
512 // a number. This supports, e.g., -e 0x1000.
513 char* endptr;
514 v = strtoull(entry, &endptr, 0);
515 if (*endptr != '\0')
516 {
517 if (should_issue_warning)
518 gold_warning("cannot find entry symbol '%s'", entry);
519 v = 0;
520 }
521 }
522
523 return v;
524}
525
dbe717ef
ILT
526// Output_data_const methods.
527
528void
a3ad94ed 529Output_data_const::do_write(Output_file* of)
dbe717ef 530{
a3ad94ed
ILT
531 of->write(this->offset(), this->data_.data(), this->data_.size());
532}
533
534// Output_data_const_buffer methods.
535
536void
537Output_data_const_buffer::do_write(Output_file* of)
538{
539 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
540}
541
542// Output_section_data methods.
543
16649710
ILT
544// Record the output section, and set the entry size and such.
545
546void
547Output_section_data::set_output_section(Output_section* os)
548{
549 gold_assert(this->output_section_ == NULL);
550 this->output_section_ = os;
551 this->do_adjust_output_section(os);
552}
553
554// Return the section index of the output section.
555
dbe717ef
ILT
556unsigned int
557Output_section_data::do_out_shndx() const
558{
a3ad94ed 559 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
560 return this->output_section_->out_shndx();
561}
562
759b1a24
ILT
563// Set the alignment, which means we may need to update the alignment
564// of the output section.
565
566void
567Output_section_data::set_addralign(uint64_t addralign)
568{
569 this->addralign_ = addralign;
570 if (this->output_section_ != NULL
571 && this->output_section_->addralign() < addralign)
572 this->output_section_->set_addralign(addralign);
573}
574
a3ad94ed
ILT
575// Output_data_strtab methods.
576
27bc2bce 577// Set the final data size.
a3ad94ed
ILT
578
579void
27bc2bce 580Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
581{
582 this->strtab_->set_string_offsets();
583 this->set_data_size(this->strtab_->get_strtab_size());
584}
585
586// Write out a string table.
587
588void
589Output_data_strtab::do_write(Output_file* of)
590{
591 this->strtab_->write(of, this->offset());
592}
593
c06b7b0b
ILT
594// Output_reloc methods.
595
7bf1f802
ILT
596// A reloc against a global symbol.
597
598template<bool dynamic, int size, bool big_endian>
599Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
600 Symbol* gsym,
601 unsigned int type,
602 Output_data* od,
e8c846c3
ILT
603 Address address,
604 bool is_relative)
7bf1f802 605 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 606 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 607{
dceae3c1
ILT
608 // this->type_ is a bitfield; make sure TYPE fits.
609 gold_assert(this->type_ == type);
7bf1f802
ILT
610 this->u1_.gsym = gsym;
611 this->u2_.od = od;
dceae3c1
ILT
612 if (dynamic)
613 this->set_needs_dynsym_index();
7bf1f802
ILT
614}
615
616template<bool dynamic, int size, bool big_endian>
617Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
618 Symbol* gsym,
619 unsigned int type,
620 Relobj* relobj,
621 unsigned int shndx,
e8c846c3
ILT
622 Address address,
623 bool is_relative)
7bf1f802 624 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 625 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
626{
627 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
628 // this->type_ is a bitfield; make sure TYPE fits.
629 gold_assert(this->type_ == type);
7bf1f802
ILT
630 this->u1_.gsym = gsym;
631 this->u2_.relobj = relobj;
dceae3c1
ILT
632 if (dynamic)
633 this->set_needs_dynsym_index();
7bf1f802
ILT
634}
635
636// A reloc against a local symbol.
637
638template<bool dynamic, int size, bool big_endian>
639Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
640 Sized_relobj<size, big_endian>* relobj,
641 unsigned int local_sym_index,
642 unsigned int type,
643 Output_data* od,
e8c846c3 644 Address address,
dceae3c1
ILT
645 bool is_relative,
646 bool is_section_symbol)
7bf1f802 647 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
648 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
649 shndx_(INVALID_CODE)
7bf1f802
ILT
650{
651 gold_assert(local_sym_index != GSYM_CODE
652 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
653 // this->type_ is a bitfield; make sure TYPE fits.
654 gold_assert(this->type_ == type);
7bf1f802
ILT
655 this->u1_.relobj = relobj;
656 this->u2_.od = od;
dceae3c1
ILT
657 if (dynamic)
658 this->set_needs_dynsym_index();
7bf1f802
ILT
659}
660
661template<bool dynamic, int size, bool big_endian>
662Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
663 Sized_relobj<size, big_endian>* relobj,
664 unsigned int local_sym_index,
665 unsigned int type,
666 unsigned int shndx,
e8c846c3 667 Address address,
dceae3c1
ILT
668 bool is_relative,
669 bool is_section_symbol)
7bf1f802 670 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
671 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
672 shndx_(shndx)
7bf1f802
ILT
673{
674 gold_assert(local_sym_index != GSYM_CODE
675 && local_sym_index != INVALID_CODE);
676 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
677 // this->type_ is a bitfield; make sure TYPE fits.
678 gold_assert(this->type_ == type);
7bf1f802
ILT
679 this->u1_.relobj = relobj;
680 this->u2_.relobj = relobj;
dceae3c1
ILT
681 if (dynamic)
682 this->set_needs_dynsym_index();
7bf1f802
ILT
683}
684
685// A reloc against the STT_SECTION symbol of an output section.
686
687template<bool dynamic, int size, bool big_endian>
688Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
689 Output_section* os,
690 unsigned int type,
691 Output_data* od,
692 Address address)
693 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 694 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 695{
dceae3c1
ILT
696 // this->type_ is a bitfield; make sure TYPE fits.
697 gold_assert(this->type_ == type);
7bf1f802
ILT
698 this->u1_.os = os;
699 this->u2_.od = od;
700 if (dynamic)
dceae3c1
ILT
701 this->set_needs_dynsym_index();
702 else
703 os->set_needs_symtab_index();
7bf1f802
ILT
704}
705
706template<bool dynamic, int size, bool big_endian>
707Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
708 Output_section* os,
709 unsigned int type,
710 Relobj* relobj,
711 unsigned int shndx,
712 Address address)
713 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 714 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
715{
716 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
717 // this->type_ is a bitfield; make sure TYPE fits.
718 gold_assert(this->type_ == type);
7bf1f802
ILT
719 this->u1_.os = os;
720 this->u2_.relobj = relobj;
721 if (dynamic)
dceae3c1
ILT
722 this->set_needs_dynsym_index();
723 else
724 os->set_needs_symtab_index();
725}
726
727// Record that we need a dynamic symbol index for this relocation.
728
729template<bool dynamic, int size, bool big_endian>
730void
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
732set_needs_dynsym_index()
733{
734 if (this->is_relative_)
735 return;
736 switch (this->local_sym_index_)
737 {
738 case INVALID_CODE:
739 gold_unreachable();
740
741 case GSYM_CODE:
742 this->u1_.gsym->set_needs_dynsym_entry();
743 break;
744
745 case SECTION_CODE:
746 this->u1_.os->set_needs_dynsym_index();
747 break;
748
749 case 0:
750 break;
751
752 default:
753 {
754 const unsigned int lsi = this->local_sym_index_;
755 if (!this->is_section_symbol_)
756 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
757 else
758 {
759 section_offset_type dummy;
760 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
761 gold_assert(os != NULL);
762 os->set_needs_dynsym_index();
763 }
764 }
765 break;
766 }
7bf1f802
ILT
767}
768
c06b7b0b
ILT
769// Get the symbol index of a relocation.
770
771template<bool dynamic, int size, bool big_endian>
772unsigned int
773Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
774 const
775{
776 unsigned int index;
777 switch (this->local_sym_index_)
778 {
779 case INVALID_CODE:
a3ad94ed 780 gold_unreachable();
c06b7b0b
ILT
781
782 case GSYM_CODE:
5a6f7e2d 783 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
784 index = 0;
785 else if (dynamic)
5a6f7e2d 786 index = this->u1_.gsym->dynsym_index();
c06b7b0b 787 else
5a6f7e2d 788 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
789 break;
790
791 case SECTION_CODE:
792 if (dynamic)
5a6f7e2d 793 index = this->u1_.os->dynsym_index();
c06b7b0b 794 else
5a6f7e2d 795 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
796 break;
797
436ca963
ILT
798 case 0:
799 // Relocations without symbols use a symbol index of 0.
800 index = 0;
801 break;
802
c06b7b0b 803 default:
dceae3c1
ILT
804 {
805 const unsigned int lsi = this->local_sym_index_;
806 if (!this->is_section_symbol_)
807 {
808 if (dynamic)
809 index = this->u1_.relobj->dynsym_index(lsi);
810 else
811 index = this->u1_.relobj->symtab_index(lsi);
812 }
813 else
814 {
815 section_offset_type dummy;
816 Output_section* os = this->u1_.relobj->output_section(lsi, &dummy);
817 gold_assert(os != NULL);
818 if (dynamic)
819 index = os->dynsym_index();
820 else
821 index = os->symtab_index();
822 }
823 }
c06b7b0b
ILT
824 break;
825 }
a3ad94ed 826 gold_assert(index != -1U);
c06b7b0b
ILT
827 return index;
828}
829
624f8810
ILT
830// For a local section symbol, get the address of the offset ADDEND
831// within the input section.
dceae3c1
ILT
832
833template<bool dynamic, int size, bool big_endian>
834section_offset_type
835Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 836 local_section_offset(Addend addend) const
dceae3c1 837{
624f8810
ILT
838 gold_assert(this->local_sym_index_ != GSYM_CODE
839 && this->local_sym_index_ != SECTION_CODE
840 && this->local_sym_index_ != INVALID_CODE
841 && this->is_section_symbol_);
dceae3c1
ILT
842 const unsigned int lsi = this->local_sym_index_;
843 section_offset_type offset;
844 Output_section* os = this->u1_.relobj->output_section(lsi, &offset);
624f8810
ILT
845 gold_assert(os != NULL);
846 if (offset != -1)
847 return offset + addend;
848 // This is a merge section.
849 offset = os->output_address(this->u1_.relobj, lsi, addend);
850 gold_assert(offset != -1);
dceae3c1
ILT
851 return offset;
852}
853
d98bc257 854// Get the output address of a relocation.
c06b7b0b
ILT
855
856template<bool dynamic, int size, bool big_endian>
a984ee1d 857typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 858Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 859{
a3ad94ed 860 Address address = this->address_;
5a6f7e2d
ILT
861 if (this->shndx_ != INVALID_CODE)
862 {
8383303e 863 section_offset_type off;
5a6f7e2d
ILT
864 Output_section* os = this->u2_.relobj->output_section(this->shndx_,
865 &off);
866 gold_assert(os != NULL);
730cdc88
ILT
867 if (off != -1)
868 address += os->address() + off;
869 else
870 {
871 address = os->output_address(this->u2_.relobj, this->shndx_,
872 address);
873 gold_assert(address != -1U);
874 }
5a6f7e2d
ILT
875 }
876 else if (this->u2_.od != NULL)
877 address += this->u2_.od->address();
d98bc257
ILT
878 return address;
879}
880
881// Write out the offset and info fields of a Rel or Rela relocation
882// entry.
883
884template<bool dynamic, int size, bool big_endian>
885template<typename Write_rel>
886void
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
888 Write_rel* wr) const
889{
890 wr->put_r_offset(this->get_address());
e8c846c3
ILT
891 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
892 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
893}
894
895// Write out a Rel relocation.
896
897template<bool dynamic, int size, bool big_endian>
898void
899Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
900 unsigned char* pov) const
901{
902 elfcpp::Rel_write<size, big_endian> orel(pov);
903 this->write_rel(&orel);
904}
905
e8c846c3
ILT
906// Get the value of the symbol referred to by a Rel relocation.
907
908template<bool dynamic, int size, bool big_endian>
909typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 910Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 911 Addend addend) const
e8c846c3
ILT
912{
913 if (this->local_sym_index_ == GSYM_CODE)
914 {
915 const Sized_symbol<size>* sym;
916 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 917 return sym->value() + addend;
e8c846c3
ILT
918 }
919 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
920 && this->local_sym_index_ != INVALID_CODE
921 && !this->is_section_symbol_);
922 const unsigned int lsi = this->local_sym_index_;
923 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
924 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
925}
926
d98bc257
ILT
927// Reloc comparison. This function sorts the dynamic relocs for the
928// benefit of the dynamic linker. First we sort all relative relocs
929// to the front. Among relative relocs, we sort by output address.
930// Among non-relative relocs, we sort by symbol index, then by output
931// address.
932
933template<bool dynamic, int size, bool big_endian>
934int
935Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
936 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
937 const
938{
939 if (this->is_relative_)
940 {
941 if (!r2.is_relative_)
942 return -1;
943 // Otherwise sort by reloc address below.
944 }
945 else if (r2.is_relative_)
946 return 1;
947 else
948 {
949 unsigned int sym1 = this->get_symbol_index();
950 unsigned int sym2 = r2.get_symbol_index();
951 if (sym1 < sym2)
952 return -1;
953 else if (sym1 > sym2)
954 return 1;
955 // Otherwise sort by reloc address.
956 }
957
958 section_offset_type addr1 = this->get_address();
959 section_offset_type addr2 = r2.get_address();
960 if (addr1 < addr2)
961 return -1;
962 else if (addr1 > addr2)
963 return 1;
964
965 // Final tie breaker, in order to generate the same output on any
966 // host: reloc type.
967 unsigned int type1 = this->type_;
968 unsigned int type2 = r2.type_;
969 if (type1 < type2)
970 return -1;
971 else if (type1 > type2)
972 return 1;
973
974 // These relocs appear to be exactly the same.
975 return 0;
976}
977
c06b7b0b
ILT
978// Write out a Rela relocation.
979
980template<bool dynamic, int size, bool big_endian>
981void
982Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
983 unsigned char* pov) const
984{
985 elfcpp::Rela_write<size, big_endian> orel(pov);
986 this->rel_.write_rel(&orel);
e8c846c3 987 Addend addend = this->addend_;
dceae3c1 988 if (this->rel_.is_relative())
d1f003c6
ILT
989 addend = this->rel_.symbol_value(addend);
990 else if (this->rel_.is_local_section_symbol())
624f8810 991 addend = this->rel_.local_section_offset(addend);
e8c846c3 992 orel.put_r_addend(addend);
c06b7b0b
ILT
993}
994
995// Output_data_reloc_base methods.
996
16649710
ILT
997// Adjust the output section.
998
999template<int sh_type, bool dynamic, int size, bool big_endian>
1000void
1001Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1002 ::do_adjust_output_section(Output_section* os)
1003{
1004 if (sh_type == elfcpp::SHT_REL)
1005 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1006 else if (sh_type == elfcpp::SHT_RELA)
1007 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1008 else
1009 gold_unreachable();
1010 if (dynamic)
1011 os->set_should_link_to_dynsym();
1012 else
1013 os->set_should_link_to_symtab();
1014}
1015
c06b7b0b
ILT
1016// Write out relocation data.
1017
1018template<int sh_type, bool dynamic, int size, bool big_endian>
1019void
1020Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1021 Output_file* of)
1022{
1023 const off_t off = this->offset();
1024 const off_t oview_size = this->data_size();
1025 unsigned char* const oview = of->get_output_view(off, oview_size);
1026
d98bc257
ILT
1027 if (this->sort_relocs_)
1028 {
1029 gold_assert(dynamic);
1030 std::sort(this->relocs_.begin(), this->relocs_.end(),
1031 Sort_relocs_comparison());
1032 }
1033
c06b7b0b
ILT
1034 unsigned char* pov = oview;
1035 for (typename Relocs::const_iterator p = this->relocs_.begin();
1036 p != this->relocs_.end();
1037 ++p)
1038 {
1039 p->write(pov);
1040 pov += reloc_size;
1041 }
1042
a3ad94ed 1043 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1044
1045 of->write_output_view(off, oview_size, oview);
1046
1047 // We no longer need the relocation entries.
1048 this->relocs_.clear();
1049}
1050
6a74a719
ILT
1051// Class Output_relocatable_relocs.
1052
1053template<int sh_type, int size, bool big_endian>
1054void
1055Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1056{
1057 this->set_data_size(this->rr_->output_reloc_count()
1058 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1059}
1060
1061// class Output_data_group.
1062
1063template<int size, bool big_endian>
1064Output_data_group<size, big_endian>::Output_data_group(
1065 Sized_relobj<size, big_endian>* relobj,
1066 section_size_type entry_count,
8825ac63
ILT
1067 elfcpp::Elf_Word flags,
1068 std::vector<unsigned int>* input_shndxes)
6a74a719 1069 : Output_section_data(entry_count * 4, 4),
8825ac63
ILT
1070 relobj_(relobj),
1071 flags_(flags)
6a74a719 1072{
8825ac63 1073 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1074}
1075
1076// Write out the section group, which means translating the section
1077// indexes to apply to the output file.
1078
1079template<int size, bool big_endian>
1080void
1081Output_data_group<size, big_endian>::do_write(Output_file* of)
1082{
1083 const off_t off = this->offset();
1084 const section_size_type oview_size =
1085 convert_to_section_size_type(this->data_size());
1086 unsigned char* const oview = of->get_output_view(off, oview_size);
1087
1088 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1089 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1090 ++contents;
1091
1092 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1093 this->input_shndxes_.begin();
1094 p != this->input_shndxes_.end();
6a74a719
ILT
1095 ++p, ++contents)
1096 {
1097 section_offset_type dummy;
1098 Output_section* os = this->relobj_->output_section(*p, &dummy);
1099
1100 unsigned int output_shndx;
1101 if (os != NULL)
1102 output_shndx = os->out_shndx();
1103 else
1104 {
1105 this->relobj_->error(_("section group retained but "
1106 "group element discarded"));
1107 output_shndx = 0;
1108 }
1109
1110 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1111 }
1112
1113 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1114 gold_assert(wrote == oview_size);
1115
1116 of->write_output_view(off, oview_size, oview);
1117
1118 // We no longer need this information.
8825ac63 1119 this->input_shndxes_.clear();
6a74a719
ILT
1120}
1121
dbe717ef 1122// Output_data_got::Got_entry methods.
ead1e424
ILT
1123
1124// Write out the entry.
1125
1126template<int size, bool big_endian>
1127void
7e1edb90 1128Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1129{
1130 Valtype val = 0;
1131
1132 switch (this->local_sym_index_)
1133 {
1134 case GSYM_CODE:
1135 {
e8c846c3
ILT
1136 // If the symbol is resolved locally, we need to write out the
1137 // link-time value, which will be relocated dynamically by a
1138 // RELATIVE relocation.
ead1e424 1139 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1140 Sized_symbol<size>* sgsym;
1141 // This cast is a bit ugly. We don't want to put a
1142 // virtual method in Symbol, because we want Symbol to be
1143 // as small as possible.
1144 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1145 val = sgsym->value();
ead1e424
ILT
1146 }
1147 break;
1148
1149 case CONSTANT_CODE:
1150 val = this->u_.constant;
1151 break;
1152
1153 default:
d1f003c6
ILT
1154 {
1155 const unsigned int lsi = this->local_sym_index_;
1156 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1157 val = symval->value(this->u_.object, 0);
1158 }
e727fa71 1159 break;
ead1e424
ILT
1160 }
1161
a3ad94ed 1162 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1163}
1164
dbe717ef 1165// Output_data_got methods.
ead1e424 1166
dbe717ef
ILT
1167// Add an entry for a global symbol to the GOT. This returns true if
1168// this is a new GOT entry, false if the symbol already had a GOT
1169// entry.
1170
1171template<int size, bool big_endian>
1172bool
0a65a3a7
CC
1173Output_data_got<size, big_endian>::add_global(
1174 Symbol* gsym,
1175 unsigned int got_type)
ead1e424 1176{
0a65a3a7 1177 if (gsym->has_got_offset(got_type))
dbe717ef 1178 return false;
ead1e424 1179
dbe717ef
ILT
1180 this->entries_.push_back(Got_entry(gsym));
1181 this->set_got_size();
0a65a3a7 1182 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1183 return true;
1184}
ead1e424 1185
7bf1f802
ILT
1186// Add an entry for a global symbol to the GOT, and add a dynamic
1187// relocation of type R_TYPE for the GOT entry.
1188template<int size, bool big_endian>
1189void
1190Output_data_got<size, big_endian>::add_global_with_rel(
1191 Symbol* gsym,
0a65a3a7 1192 unsigned int got_type,
7bf1f802
ILT
1193 Rel_dyn* rel_dyn,
1194 unsigned int r_type)
1195{
0a65a3a7 1196 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1197 return;
1198
1199 this->entries_.push_back(Got_entry());
1200 this->set_got_size();
1201 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1202 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1203 rel_dyn->add_global(gsym, r_type, this, got_offset);
1204}
1205
1206template<int size, bool big_endian>
1207void
1208Output_data_got<size, big_endian>::add_global_with_rela(
1209 Symbol* gsym,
0a65a3a7 1210 unsigned int got_type,
7bf1f802
ILT
1211 Rela_dyn* rela_dyn,
1212 unsigned int r_type)
1213{
0a65a3a7 1214 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1215 return;
1216
1217 this->entries_.push_back(Got_entry());
1218 this->set_got_size();
1219 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1220 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1221 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1222}
1223
0a65a3a7
CC
1224// Add a pair of entries for a global symbol to the GOT, and add
1225// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1226// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1227template<int size, bool big_endian>
1228void
0a65a3a7
CC
1229Output_data_got<size, big_endian>::add_global_pair_with_rel(
1230 Symbol* gsym,
1231 unsigned int got_type,
7bf1f802 1232 Rel_dyn* rel_dyn,
0a65a3a7
CC
1233 unsigned int r_type_1,
1234 unsigned int r_type_2)
7bf1f802 1235{
0a65a3a7 1236 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1237 return;
1238
1239 this->entries_.push_back(Got_entry());
7bf1f802 1240 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1241 gsym->set_got_offset(got_type, got_offset);
1242 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1243
1244 this->entries_.push_back(Got_entry());
1245 if (r_type_2 != 0)
1246 {
1247 got_offset = this->last_got_offset();
1248 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1249 }
1250
1251 this->set_got_size();
7bf1f802
ILT
1252}
1253
1254template<int size, bool big_endian>
1255void
0a65a3a7
CC
1256Output_data_got<size, big_endian>::add_global_pair_with_rela(
1257 Symbol* gsym,
1258 unsigned int got_type,
7bf1f802 1259 Rela_dyn* rela_dyn,
0a65a3a7
CC
1260 unsigned int r_type_1,
1261 unsigned int r_type_2)
7bf1f802 1262{
0a65a3a7 1263 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1264 return;
1265
1266 this->entries_.push_back(Got_entry());
7bf1f802 1267 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1268 gsym->set_got_offset(got_type, got_offset);
1269 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1270
1271 this->entries_.push_back(Got_entry());
1272 if (r_type_2 != 0)
1273 {
1274 got_offset = this->last_got_offset();
1275 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1276 }
1277
1278 this->set_got_size();
7bf1f802
ILT
1279}
1280
0a65a3a7
CC
1281// Add an entry for a local symbol to the GOT. This returns true if
1282// this is a new GOT entry, false if the symbol already has a GOT
1283// entry.
07f397ab
ILT
1284
1285template<int size, bool big_endian>
1286bool
0a65a3a7
CC
1287Output_data_got<size, big_endian>::add_local(
1288 Sized_relobj<size, big_endian>* object,
1289 unsigned int symndx,
1290 unsigned int got_type)
07f397ab 1291{
0a65a3a7 1292 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1293 return false;
1294
0a65a3a7 1295 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1296 this->set_got_size();
0a65a3a7 1297 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1298 return true;
1299}
1300
0a65a3a7
CC
1301// Add an entry for a local symbol to the GOT, and add a dynamic
1302// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1303template<int size, bool big_endian>
1304void
0a65a3a7
CC
1305Output_data_got<size, big_endian>::add_local_with_rel(
1306 Sized_relobj<size, big_endian>* object,
1307 unsigned int symndx,
1308 unsigned int got_type,
7bf1f802
ILT
1309 Rel_dyn* rel_dyn,
1310 unsigned int r_type)
1311{
0a65a3a7 1312 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1313 return;
1314
1315 this->entries_.push_back(Got_entry());
1316 this->set_got_size();
1317 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1318 object->set_local_got_offset(symndx, got_type, got_offset);
1319 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1320}
1321
1322template<int size, bool big_endian>
1323void
0a65a3a7
CC
1324Output_data_got<size, big_endian>::add_local_with_rela(
1325 Sized_relobj<size, big_endian>* object,
1326 unsigned int symndx,
1327 unsigned int got_type,
7bf1f802
ILT
1328 Rela_dyn* rela_dyn,
1329 unsigned int r_type)
1330{
0a65a3a7 1331 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1332 return;
1333
1334 this->entries_.push_back(Got_entry());
1335 this->set_got_size();
1336 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1337 object->set_local_got_offset(symndx, got_type, got_offset);
1338 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1339}
1340
0a65a3a7
CC
1341// Add a pair of entries for a local symbol to the GOT, and add
1342// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1343// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1344template<int size, bool big_endian>
1345void
0a65a3a7 1346Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1347 Sized_relobj<size, big_endian>* object,
1348 unsigned int symndx,
1349 unsigned int shndx,
0a65a3a7 1350 unsigned int got_type,
7bf1f802 1351 Rel_dyn* rel_dyn,
0a65a3a7
CC
1352 unsigned int r_type_1,
1353 unsigned int r_type_2)
7bf1f802 1354{
0a65a3a7 1355 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1356 return;
1357
1358 this->entries_.push_back(Got_entry());
1359 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1360 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1361 section_offset_type off;
7bf1f802 1362 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1363 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1364
0a65a3a7
CC
1365 this->entries_.push_back(Got_entry(object, symndx));
1366 if (r_type_2 != 0)
1367 {
1368 got_offset = this->last_got_offset();
1369 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1370 }
7bf1f802
ILT
1371
1372 this->set_got_size();
1373}
1374
1375template<int size, bool big_endian>
1376void
0a65a3a7 1377Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1378 Sized_relobj<size, big_endian>* object,
1379 unsigned int symndx,
1380 unsigned int shndx,
0a65a3a7 1381 unsigned int got_type,
7bf1f802 1382 Rela_dyn* rela_dyn,
0a65a3a7
CC
1383 unsigned int r_type_1,
1384 unsigned int r_type_2)
7bf1f802 1385{
0a65a3a7 1386 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1387 return;
1388
1389 this->entries_.push_back(Got_entry());
1390 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1391 object->set_local_got_offset(symndx, got_type, got_offset);
8383303e 1392 section_offset_type off;
7bf1f802 1393 Output_section* os = object->output_section(shndx, &off);
0a65a3a7 1394 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1395
0a65a3a7
CC
1396 this->entries_.push_back(Got_entry(object, symndx));
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1401 }
7bf1f802
ILT
1402
1403 this->set_got_size();
1404}
1405
ead1e424
ILT
1406// Write out the GOT.
1407
1408template<int size, bool big_endian>
1409void
dbe717ef 1410Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1411{
1412 const int add = size / 8;
1413
1414 const off_t off = this->offset();
c06b7b0b 1415 const off_t oview_size = this->data_size();
ead1e424
ILT
1416 unsigned char* const oview = of->get_output_view(off, oview_size);
1417
1418 unsigned char* pov = oview;
1419 for (typename Got_entries::const_iterator p = this->entries_.begin();
1420 p != this->entries_.end();
1421 ++p)
1422 {
7e1edb90 1423 p->write(pov);
ead1e424
ILT
1424 pov += add;
1425 }
1426
a3ad94ed 1427 gold_assert(pov - oview == oview_size);
c06b7b0b 1428
ead1e424
ILT
1429 of->write_output_view(off, oview_size, oview);
1430
1431 // We no longer need the GOT entries.
1432 this->entries_.clear();
1433}
1434
a3ad94ed
ILT
1435// Output_data_dynamic::Dynamic_entry methods.
1436
1437// Write out the entry.
1438
1439template<int size, bool big_endian>
1440void
1441Output_data_dynamic::Dynamic_entry::write(
1442 unsigned char* pov,
7d1a9ebb 1443 const Stringpool* pool) const
a3ad94ed
ILT
1444{
1445 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1446 switch (this->offset_)
a3ad94ed
ILT
1447 {
1448 case DYNAMIC_NUMBER:
1449 val = this->u_.val;
1450 break;
1451
a3ad94ed 1452 case DYNAMIC_SECTION_SIZE:
16649710 1453 val = this->u_.od->data_size();
a3ad94ed
ILT
1454 break;
1455
1456 case DYNAMIC_SYMBOL:
1457 {
16649710
ILT
1458 const Sized_symbol<size>* s =
1459 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1460 val = s->value();
1461 }
1462 break;
1463
1464 case DYNAMIC_STRING:
1465 val = pool->get_offset(this->u_.str);
1466 break;
1467
1468 default:
c2b45e22
CC
1469 val = this->u_.od->address() + this->offset_;
1470 break;
a3ad94ed
ILT
1471 }
1472
1473 elfcpp::Dyn_write<size, big_endian> dw(pov);
1474 dw.put_d_tag(this->tag_);
1475 dw.put_d_val(val);
1476}
1477
1478// Output_data_dynamic methods.
1479
16649710
ILT
1480// Adjust the output section to set the entry size.
1481
1482void
1483Output_data_dynamic::do_adjust_output_section(Output_section* os)
1484{
8851ecca 1485 if (parameters->target().get_size() == 32)
16649710 1486 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1487 else if (parameters->target().get_size() == 64)
16649710
ILT
1488 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1489 else
1490 gold_unreachable();
1491}
1492
a3ad94ed
ILT
1493// Set the final data size.
1494
1495void
27bc2bce 1496Output_data_dynamic::set_final_data_size()
a3ad94ed
ILT
1497{
1498 // Add the terminating entry.
1499 this->add_constant(elfcpp::DT_NULL, 0);
1500
1501 int dyn_size;
8851ecca 1502 if (parameters->target().get_size() == 32)
a3ad94ed 1503 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1504 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1505 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1506 else
1507 gold_unreachable();
1508 this->set_data_size(this->entries_.size() * dyn_size);
1509}
1510
1511// Write out the dynamic entries.
1512
1513void
1514Output_data_dynamic::do_write(Output_file* of)
1515{
8851ecca 1516 switch (parameters->size_and_endianness())
a3ad94ed 1517 {
9025d29d 1518#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1519 case Parameters::TARGET_32_LITTLE:
1520 this->sized_write<32, false>(of);
1521 break;
9025d29d 1522#endif
8851ecca
ILT
1523#ifdef HAVE_TARGET_32_BIG
1524 case Parameters::TARGET_32_BIG:
1525 this->sized_write<32, true>(of);
1526 break;
9025d29d 1527#endif
9025d29d 1528#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1529 case Parameters::TARGET_64_LITTLE:
1530 this->sized_write<64, false>(of);
1531 break;
9025d29d 1532#endif
8851ecca
ILT
1533#ifdef HAVE_TARGET_64_BIG
1534 case Parameters::TARGET_64_BIG:
1535 this->sized_write<64, true>(of);
1536 break;
1537#endif
1538 default:
1539 gold_unreachable();
a3ad94ed 1540 }
a3ad94ed
ILT
1541}
1542
1543template<int size, bool big_endian>
1544void
1545Output_data_dynamic::sized_write(Output_file* of)
1546{
1547 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1548
1549 const off_t offset = this->offset();
1550 const off_t oview_size = this->data_size();
1551 unsigned char* const oview = of->get_output_view(offset, oview_size);
1552
1553 unsigned char* pov = oview;
1554 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1555 p != this->entries_.end();
1556 ++p)
1557 {
7d1a9ebb 1558 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1559 pov += dyn_size;
1560 }
1561
1562 gold_assert(pov - oview == oview_size);
1563
1564 of->write_output_view(offset, oview_size, oview);
1565
1566 // We no longer need the dynamic entries.
1567 this->entries_.clear();
1568}
1569
d491d34e
ILT
1570// Class Output_symtab_xindex.
1571
1572void
1573Output_symtab_xindex::do_write(Output_file* of)
1574{
1575 const off_t offset = this->offset();
1576 const off_t oview_size = this->data_size();
1577 unsigned char* const oview = of->get_output_view(offset, oview_size);
1578
1579 memset(oview, 0, oview_size);
1580
1581 if (parameters->target().is_big_endian())
1582 this->endian_do_write<true>(oview);
1583 else
1584 this->endian_do_write<false>(oview);
1585
1586 of->write_output_view(offset, oview_size, oview);
1587
1588 // We no longer need the data.
1589 this->entries_.clear();
1590}
1591
1592template<bool big_endian>
1593void
1594Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1595{
1596 for (Xindex_entries::const_iterator p = this->entries_.begin();
1597 p != this->entries_.end();
1598 ++p)
1599 elfcpp::Swap<32, big_endian>::writeval(oview + p->first * 4, p->second);
1600}
1601
ead1e424
ILT
1602// Output_section::Input_section methods.
1603
1604// Return the data size. For an input section we store the size here.
1605// For an Output_section_data, we have to ask it for the size.
1606
1607off_t
1608Output_section::Input_section::data_size() const
1609{
1610 if (this->is_input_section())
b8e6aad9 1611 return this->u1_.data_size;
ead1e424 1612 else
b8e6aad9 1613 return this->u2_.posd->data_size();
ead1e424
ILT
1614}
1615
1616// Set the address and file offset.
1617
1618void
96803768
ILT
1619Output_section::Input_section::set_address_and_file_offset(
1620 uint64_t address,
1621 off_t file_offset,
1622 off_t section_file_offset)
ead1e424
ILT
1623{
1624 if (this->is_input_section())
96803768
ILT
1625 this->u2_.object->set_section_offset(this->shndx_,
1626 file_offset - section_file_offset);
ead1e424 1627 else
96803768
ILT
1628 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1629}
1630
a445fddf
ILT
1631// Reset the address and file offset.
1632
1633void
1634Output_section::Input_section::reset_address_and_file_offset()
1635{
1636 if (!this->is_input_section())
1637 this->u2_.posd->reset_address_and_file_offset();
1638}
1639
96803768
ILT
1640// Finalize the data size.
1641
1642void
1643Output_section::Input_section::finalize_data_size()
1644{
1645 if (!this->is_input_section())
1646 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1647}
1648
1e983657
ILT
1649// Try to turn an input offset into an output offset. We want to
1650// return the output offset relative to the start of this
1651// Input_section in the output section.
b8e6aad9 1652
8f00aeb8 1653inline bool
8383303e
ILT
1654Output_section::Input_section::output_offset(
1655 const Relobj* object,
1656 unsigned int shndx,
1657 section_offset_type offset,
1658 section_offset_type *poutput) const
b8e6aad9
ILT
1659{
1660 if (!this->is_input_section())
730cdc88 1661 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1662 else
1663 {
730cdc88 1664 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1665 return false;
1e983657 1666 *poutput = offset;
b8e6aad9
ILT
1667 return true;
1668 }
ead1e424
ILT
1669}
1670
a9a60db6
ILT
1671// Return whether this is the merge section for the input section
1672// SHNDX in OBJECT.
1673
1674inline bool
1675Output_section::Input_section::is_merge_section_for(const Relobj* object,
1676 unsigned int shndx) const
1677{
1678 if (this->is_input_section())
1679 return false;
1680 return this->u2_.posd->is_merge_section_for(object, shndx);
1681}
1682
ead1e424
ILT
1683// Write out the data. We don't have to do anything for an input
1684// section--they are handled via Object::relocate--but this is where
1685// we write out the data for an Output_section_data.
1686
1687void
1688Output_section::Input_section::write(Output_file* of)
1689{
1690 if (!this->is_input_section())
b8e6aad9 1691 this->u2_.posd->write(of);
ead1e424
ILT
1692}
1693
96803768
ILT
1694// Write the data to a buffer. As for write(), we don't have to do
1695// anything for an input section.
1696
1697void
1698Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1699{
1700 if (!this->is_input_section())
1701 this->u2_.posd->write_to_buffer(buffer);
1702}
1703
a2fb1b05
ILT
1704// Output_section methods.
1705
1706// Construct an Output_section. NAME will point into a Stringpool.
1707
96803768 1708Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1709 elfcpp::Elf_Xword flags)
96803768 1710 : name_(name),
a2fb1b05
ILT
1711 addralign_(0),
1712 entsize_(0),
a445fddf 1713 load_address_(0),
16649710 1714 link_section_(NULL),
a2fb1b05 1715 link_(0),
16649710 1716 info_section_(NULL),
6a74a719 1717 info_symndx_(NULL),
a2fb1b05
ILT
1718 info_(0),
1719 type_(type),
61ba1cf9 1720 flags_(flags),
91ea499d 1721 out_shndx_(-1U),
c06b7b0b
ILT
1722 symtab_index_(0),
1723 dynsym_index_(0),
ead1e424
ILT
1724 input_sections_(),
1725 first_input_offset_(0),
c51e6221 1726 fills_(),
96803768 1727 postprocessing_buffer_(NULL),
a3ad94ed 1728 needs_symtab_index_(false),
16649710
ILT
1729 needs_dynsym_index_(false),
1730 should_link_to_symtab_(false),
730cdc88 1731 should_link_to_dynsym_(false),
27bc2bce 1732 after_input_sections_(false),
7bf1f802 1733 requires_postprocessing_(false),
a445fddf
ILT
1734 found_in_sections_clause_(false),
1735 has_load_address_(false),
755ab8af 1736 info_uses_section_index_(false),
2fd32231
ILT
1737 may_sort_attached_input_sections_(false),
1738 must_sort_attached_input_sections_(false),
1739 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1740 is_relro_(false),
1741 is_relro_local_(false),
7bf1f802 1742 tls_offset_(0)
a2fb1b05 1743{
27bc2bce
ILT
1744 // An unallocated section has no address. Forcing this means that
1745 // we don't need special treatment for symbols defined in debug
1746 // sections.
1747 if ((flags & elfcpp::SHF_ALLOC) == 0)
1748 this->set_address(0);
a2fb1b05
ILT
1749}
1750
54dc6425
ILT
1751Output_section::~Output_section()
1752{
1753}
1754
16649710
ILT
1755// Set the entry size.
1756
1757void
1758Output_section::set_entsize(uint64_t v)
1759{
1760 if (this->entsize_ == 0)
1761 this->entsize_ = v;
1762 else
1763 gold_assert(this->entsize_ == v);
1764}
1765
ead1e424 1766// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1767// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1768// relocation section which applies to this section, or 0 if none, or
1769// -1U if more than one. Return the offset of the input section
1770// within the output section. Return -1 if the input section will
1771// receive special handling. In the normal case we don't always keep
1772// track of input sections for an Output_section. Instead, each
1773// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1774// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1775// track of input sections here; this is used when SECTIONS appears in
1776// a linker script.
a2fb1b05
ILT
1777
1778template<int size, bool big_endian>
1779off_t
730cdc88
ILT
1780Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1781 unsigned int shndx,
ead1e424 1782 const char* secname,
730cdc88 1783 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1784 unsigned int reloc_shndx,
1785 bool have_sections_script)
a2fb1b05
ILT
1786{
1787 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1788 if ((addralign & (addralign - 1)) != 0)
1789 {
75f2446e
ILT
1790 object->error(_("invalid alignment %lu for section \"%s\""),
1791 static_cast<unsigned long>(addralign), secname);
1792 addralign = 1;
a2fb1b05 1793 }
a2fb1b05
ILT
1794
1795 if (addralign > this->addralign_)
1796 this->addralign_ = addralign;
1797
44a43cf9 1798 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
154e0e9a 1799 this->update_flags_for_input_section(sh_flags);
a445fddf 1800
4f833eee 1801 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1802
1803 // .debug_str is a mergeable string section, but is not always so
1804 // marked by compilers. Mark manually here so we can optimize.
1805 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1806 {
1807 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1808 entsize = 1;
1809 }
44a43cf9 1810
b8e6aad9 1811 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88
ILT
1812 // a Output_data_merge. We don't try to handle relocations for such
1813 // a section.
44a43cf9 1814 if ((sh_flags & elfcpp::SHF_MERGE) != 0
730cdc88 1815 && reloc_shndx == 0)
b8e6aad9 1816 {
44a43cf9 1817 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1818 entsize, addralign))
b8e6aad9
ILT
1819 {
1820 // Tell the relocation routines that they need to call the
730cdc88 1821 // output_offset method to determine the final address.
b8e6aad9
ILT
1822 return -1;
1823 }
1824 }
1825
27bc2bce 1826 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1827 off_t aligned_offset_in_section = align_address(offset_in_section,
1828 addralign);
1829
1830 if (aligned_offset_in_section > offset_in_section
a445fddf 1831 && !have_sections_script
44a43cf9 1832 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
c51e6221
ILT
1833 && object->target()->has_code_fill())
1834 {
1835 // We need to add some fill data. Using fill_list_ when
1836 // possible is an optimization, since we will often have fill
1837 // sections without input sections.
1838 off_t fill_len = aligned_offset_in_section - offset_in_section;
1839 if (this->input_sections_.empty())
1840 this->fills_.push_back(Fill(offset_in_section, fill_len));
1841 else
1842 {
1843 // FIXME: When relaxing, the size needs to adjust to
1844 // maintain a constant alignment.
1845 std::string fill_data(object->target()->code_fill(fill_len));
1846 Output_data_const* odc = new Output_data_const(fill_data, 1);
1847 this->input_sections_.push_back(Input_section(odc));
1848 }
1849 }
1850
27bc2bce
ILT
1851 this->set_current_data_size_for_child(aligned_offset_in_section
1852 + shdr.get_sh_size());
a2fb1b05 1853
ead1e424 1854 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1855 // track of sections, or if we are relaxing. Also, if this is a
1856 // section which requires sorting, or which may require sorting in
1857 // the future, we keep track of the sections. FIXME: Add test for
ead1e424 1858 // relaxing.
2fd32231
ILT
1859 if (have_sections_script
1860 || !this->input_sections_.empty()
1861 || this->may_sort_attached_input_sections()
1862 || this->must_sort_attached_input_sections())
ead1e424
ILT
1863 this->input_sections_.push_back(Input_section(object, shndx,
1864 shdr.get_sh_size(),
1865 addralign));
54dc6425 1866
c51e6221 1867 return aligned_offset_in_section;
61ba1cf9
ILT
1868}
1869
ead1e424
ILT
1870// Add arbitrary data to an output section.
1871
1872void
1873Output_section::add_output_section_data(Output_section_data* posd)
1874{
b8e6aad9
ILT
1875 Input_section inp(posd);
1876 this->add_output_section_data(&inp);
a445fddf
ILT
1877
1878 if (posd->is_data_size_valid())
1879 {
1880 off_t offset_in_section = this->current_data_size_for_child();
1881 off_t aligned_offset_in_section = align_address(offset_in_section,
1882 posd->addralign());
1883 this->set_current_data_size_for_child(aligned_offset_in_section
1884 + posd->data_size());
1885 }
b8e6aad9
ILT
1886}
1887
1888// Add arbitrary data to an output section by Input_section.
c06b7b0b 1889
b8e6aad9
ILT
1890void
1891Output_section::add_output_section_data(Input_section* inp)
1892{
ead1e424 1893 if (this->input_sections_.empty())
27bc2bce 1894 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 1895
b8e6aad9 1896 this->input_sections_.push_back(*inp);
c06b7b0b 1897
b8e6aad9 1898 uint64_t addralign = inp->addralign();
ead1e424
ILT
1899 if (addralign > this->addralign_)
1900 this->addralign_ = addralign;
c06b7b0b 1901
b8e6aad9
ILT
1902 inp->set_output_section(this);
1903}
1904
1905// Add a merge section to an output section.
1906
1907void
1908Output_section::add_output_merge_section(Output_section_data* posd,
1909 bool is_string, uint64_t entsize)
1910{
1911 Input_section inp(posd, is_string, entsize);
1912 this->add_output_section_data(&inp);
1913}
1914
1915// Add an input section to a SHF_MERGE section.
1916
1917bool
1918Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
1919 uint64_t flags, uint64_t entsize,
96803768 1920 uint64_t addralign)
b8e6aad9 1921{
87f95776
ILT
1922 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
1923
1924 // We only merge strings if the alignment is not more than the
1925 // character size. This could be handled, but it's unusual.
1926 if (is_string && addralign > entsize)
b8e6aad9
ILT
1927 return false;
1928
b8e6aad9
ILT
1929 Input_section_list::iterator p;
1930 for (p = this->input_sections_.begin();
1931 p != this->input_sections_.end();
1932 ++p)
87f95776 1933 if (p->is_merge_section(is_string, entsize, addralign))
9a0910c3
ILT
1934 {
1935 p->add_input_section(object, shndx);
1936 return true;
1937 }
b8e6aad9
ILT
1938
1939 // We handle the actual constant merging in Output_merge_data or
1940 // Output_merge_string_data.
9a0910c3
ILT
1941 Output_section_data* posd;
1942 if (!is_string)
1943 posd = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
1944 else
1945 {
9a0910c3
ILT
1946 switch (entsize)
1947 {
1948 case 1:
1949 posd = new Output_merge_string<char>(addralign);
1950 break;
1951 case 2:
1952 posd = new Output_merge_string<uint16_t>(addralign);
1953 break;
1954 case 4:
1955 posd = new Output_merge_string<uint32_t>(addralign);
1956 break;
1957 default:
1958 return false;
1959 }
b8e6aad9
ILT
1960 }
1961
9a0910c3
ILT
1962 this->add_output_merge_section(posd, is_string, entsize);
1963 posd->add_input_section(object, shndx);
1964
b8e6aad9
ILT
1965 return true;
1966}
1967
730cdc88
ILT
1968// Given an address OFFSET relative to the start of input section
1969// SHNDX in OBJECT, return whether this address is being included in
1970// the final link. This should only be called if SHNDX in OBJECT has
1971// a special mapping.
1972
1973bool
1974Output_section::is_input_address_mapped(const Relobj* object,
1975 unsigned int shndx,
1976 off_t offset) const
1977{
1978 gold_assert(object->is_section_specially_mapped(shndx));
1979
1980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
1981 p != this->input_sections_.end();
1982 ++p)
1983 {
8383303e 1984 section_offset_type output_offset;
730cdc88
ILT
1985 if (p->output_offset(object, shndx, offset, &output_offset))
1986 return output_offset != -1;
1987 }
1988
1989 // By default we assume that the address is mapped. This should
1990 // only be called after we have passed all sections to Layout. At
1991 // that point we should know what we are discarding.
1992 return true;
1993}
1994
1995// Given an address OFFSET relative to the start of input section
1996// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
1997// start of the input section in the output section. This should only
1998// be called if SHNDX in OBJECT has a special mapping.
730cdc88 1999
8383303e 2000section_offset_type
730cdc88 2001Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 2002 section_offset_type offset) const
730cdc88
ILT
2003{
2004 gold_assert(object->is_section_specially_mapped(shndx));
2005 // This can only be called meaningfully when layout is complete.
2006 gold_assert(Output_data::is_layout_complete());
2007
2008 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2009 p != this->input_sections_.end();
2010 ++p)
2011 {
8383303e 2012 section_offset_type output_offset;
730cdc88
ILT
2013 if (p->output_offset(object, shndx, offset, &output_offset))
2014 return output_offset;
2015 }
2016 gold_unreachable();
2017}
2018
b8e6aad9
ILT
2019// Return the output virtual address of OFFSET relative to the start
2020// of input section SHNDX in object OBJECT.
2021
2022uint64_t
2023Output_section::output_address(const Relobj* object, unsigned int shndx,
2024 off_t offset) const
2025{
730cdc88 2026 gold_assert(object->is_section_specially_mapped(shndx));
730cdc88 2027
b8e6aad9
ILT
2028 uint64_t addr = this->address() + this->first_input_offset_;
2029 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2030 p != this->input_sections_.end();
2031 ++p)
2032 {
2033 addr = align_address(addr, p->addralign());
8383303e 2034 section_offset_type output_offset;
730cdc88
ILT
2035 if (p->output_offset(object, shndx, offset, &output_offset))
2036 {
2037 if (output_offset == -1)
2038 return -1U;
2039 return addr + output_offset;
2040 }
b8e6aad9
ILT
2041 addr += p->data_size();
2042 }
2043
2044 // If we get here, it means that we don't know the mapping for this
2045 // input section. This might happen in principle if
2046 // add_input_section were called before add_output_section_data.
2047 // But it should never actually happen.
2048
2049 gold_unreachable();
ead1e424
ILT
2050}
2051
a9a60db6
ILT
2052// Return the output address of the start of the merged section for
2053// input section SHNDX in object OBJECT.
2054
2055uint64_t
2056Output_section::starting_output_address(const Relobj* object,
2057 unsigned int shndx) const
2058{
2059 gold_assert(object->is_section_specially_mapped(shndx));
2060
2061 uint64_t addr = this->address() + this->first_input_offset_;
2062 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2063 p != this->input_sections_.end();
2064 ++p)
2065 {
2066 addr = align_address(addr, p->addralign());
2067
2068 // It would be nice if we could use the existing output_offset
2069 // method to get the output offset of input offset 0.
2070 // Unfortunately we don't know for sure that input offset 0 is
2071 // mapped at all.
2072 if (p->is_merge_section_for(object, shndx))
2073 return addr;
2074
2075 addr += p->data_size();
2076 }
2077 gold_unreachable();
2078}
2079
27bc2bce 2080// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2081// setting the addresses of any Output_section_data objects.
2082
2083void
27bc2bce 2084Output_section::set_final_data_size()
ead1e424
ILT
2085{
2086 if (this->input_sections_.empty())
27bc2bce
ILT
2087 {
2088 this->set_data_size(this->current_data_size_for_child());
2089 return;
2090 }
ead1e424 2091
2fd32231
ILT
2092 if (this->must_sort_attached_input_sections())
2093 this->sort_attached_input_sections();
2094
27bc2bce
ILT
2095 uint64_t address = this->address();
2096 off_t startoff = this->offset();
ead1e424
ILT
2097 off_t off = startoff + this->first_input_offset_;
2098 for (Input_section_list::iterator p = this->input_sections_.begin();
2099 p != this->input_sections_.end();
2100 ++p)
2101 {
2102 off = align_address(off, p->addralign());
96803768
ILT
2103 p->set_address_and_file_offset(address + (off - startoff), off,
2104 startoff);
ead1e424
ILT
2105 off += p->data_size();
2106 }
2107
2108 this->set_data_size(off - startoff);
2109}
9a0910c3 2110
a445fddf
ILT
2111// Reset the address and file offset.
2112
2113void
2114Output_section::do_reset_address_and_file_offset()
2115{
2116 for (Input_section_list::iterator p = this->input_sections_.begin();
2117 p != this->input_sections_.end();
2118 ++p)
2119 p->reset_address_and_file_offset();
2120}
2121
7bf1f802
ILT
2122// Set the TLS offset. Called only for SHT_TLS sections.
2123
2124void
2125Output_section::do_set_tls_offset(uint64_t tls_base)
2126{
2127 this->tls_offset_ = this->address() - tls_base;
2128}
2129
2fd32231
ILT
2130// In a few cases we need to sort the input sections attached to an
2131// output section. This is used to implement the type of constructor
2132// priority ordering implemented by the GNU linker, in which the
2133// priority becomes part of the section name and the sections are
2134// sorted by name. We only do this for an output section if we see an
2135// attached input section matching ".ctor.*", ".dtor.*",
2136// ".init_array.*" or ".fini_array.*".
2137
2138class Output_section::Input_section_sort_entry
2139{
2140 public:
2141 Input_section_sort_entry()
2142 : input_section_(), index_(-1U), section_has_name_(false),
2143 section_name_()
2144 { }
2145
2146 Input_section_sort_entry(const Input_section& input_section,
2147 unsigned int index)
2148 : input_section_(input_section), index_(index),
2149 section_has_name_(input_section.is_input_section())
2150 {
2151 if (this->section_has_name_)
2152 {
2153 // This is only called single-threaded from Layout::finalize,
2154 // so it is OK to lock. Unfortunately we have no way to pass
2155 // in a Task token.
2156 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2157 Object* obj = input_section.relobj();
2158 Task_lock_obj<Object> tl(dummy_task, obj);
2159
2160 // This is a slow operation, which should be cached in
2161 // Layout::layout if this becomes a speed problem.
2162 this->section_name_ = obj->section_name(input_section.shndx());
2163 }
2164 }
2165
2166 // Return the Input_section.
2167 const Input_section&
2168 input_section() const
2169 {
2170 gold_assert(this->index_ != -1U);
2171 return this->input_section_;
2172 }
2173
2174 // The index of this entry in the original list. This is used to
2175 // make the sort stable.
2176 unsigned int
2177 index() const
2178 {
2179 gold_assert(this->index_ != -1U);
2180 return this->index_;
2181 }
2182
2183 // Whether there is a section name.
2184 bool
2185 section_has_name() const
2186 { return this->section_has_name_; }
2187
2188 // The section name.
2189 const std::string&
2190 section_name() const
2191 {
2192 gold_assert(this->section_has_name_);
2193 return this->section_name_;
2194 }
2195
ab794b6b
ILT
2196 // Return true if the section name has a priority. This is assumed
2197 // to be true if it has a dot after the initial dot.
2fd32231 2198 bool
ab794b6b 2199 has_priority() const
2fd32231
ILT
2200 {
2201 gold_assert(this->section_has_name_);
ab794b6b 2202 return this->section_name_.find('.', 1);
2fd32231
ILT
2203 }
2204
ab794b6b
ILT
2205 // Return true if this an input file whose base name matches
2206 // FILE_NAME. The base name must have an extension of ".o", and
2207 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2208 // This is to match crtbegin.o as well as crtbeginS.o without
2209 // getting confused by other possibilities. Overall matching the
2210 // file name this way is a dreadful hack, but the GNU linker does it
2211 // in order to better support gcc, and we need to be compatible.
2fd32231 2212 bool
ab794b6b 2213 match_file_name(const char* match_file_name) const
2fd32231 2214 {
2fd32231
ILT
2215 const std::string& file_name(this->input_section_.relobj()->name());
2216 const char* base_name = lbasename(file_name.c_str());
2217 size_t match_len = strlen(match_file_name);
2218 if (strncmp(base_name, match_file_name, match_len) != 0)
2219 return false;
2220 size_t base_len = strlen(base_name);
2221 if (base_len != match_len + 2 && base_len != match_len + 3)
2222 return false;
2223 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2224 }
2225
2226 private:
2227 // The Input_section we are sorting.
2228 Input_section input_section_;
2229 // The index of this Input_section in the original list.
2230 unsigned int index_;
2231 // Whether this Input_section has a section name--it won't if this
2232 // is some random Output_section_data.
2233 bool section_has_name_;
2234 // The section name if there is one.
2235 std::string section_name_;
2236};
2237
2238// Return true if S1 should come before S2 in the output section.
2239
2240bool
2241Output_section::Input_section_sort_compare::operator()(
2242 const Output_section::Input_section_sort_entry& s1,
2243 const Output_section::Input_section_sort_entry& s2) const
2244{
ab794b6b
ILT
2245 // crtbegin.o must come first.
2246 bool s1_begin = s1.match_file_name("crtbegin");
2247 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2248 if (s1_begin || s2_begin)
2249 {
2250 if (!s1_begin)
2251 return false;
2252 if (!s2_begin)
2253 return true;
2254 return s1.index() < s2.index();
2255 }
2256
ab794b6b
ILT
2257 // crtend.o must come last.
2258 bool s1_end = s1.match_file_name("crtend");
2259 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2260 if (s1_end || s2_end)
2261 {
2262 if (!s1_end)
2263 return true;
2264 if (!s2_end)
2265 return false;
2266 return s1.index() < s2.index();
2267 }
2268
ab794b6b
ILT
2269 // We sort all the sections with no names to the end.
2270 if (!s1.section_has_name() || !s2.section_has_name())
2271 {
2272 if (s1.section_has_name())
2273 return true;
2274 if (s2.section_has_name())
2275 return false;
2276 return s1.index() < s2.index();
2277 }
2fd32231 2278
ab794b6b
ILT
2279 // A section with a priority follows a section without a priority.
2280 // The GNU linker does this for all but .init_array sections; until
2281 // further notice we'll assume that that is an mistake.
2282 bool s1_has_priority = s1.has_priority();
2283 bool s2_has_priority = s2.has_priority();
2284 if (s1_has_priority && !s2_has_priority)
2fd32231 2285 return false;
ab794b6b 2286 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2287 return true;
2288
2289 // Otherwise we sort by name.
2290 int compare = s1.section_name().compare(s2.section_name());
2291 if (compare != 0)
2292 return compare < 0;
2293
2294 // Otherwise we keep the input order.
2295 return s1.index() < s2.index();
2296}
2297
2298// Sort the input sections attached to an output section.
2299
2300void
2301Output_section::sort_attached_input_sections()
2302{
2303 if (this->attached_input_sections_are_sorted_)
2304 return;
2305
2306 // The only thing we know about an input section is the object and
2307 // the section index. We need the section name. Recomputing this
2308 // is slow but this is an unusual case. If this becomes a speed
2309 // problem we can cache the names as required in Layout::layout.
2310
2311 // We start by building a larger vector holding a copy of each
2312 // Input_section, plus its current index in the list and its name.
2313 std::vector<Input_section_sort_entry> sort_list;
2314
2315 unsigned int i = 0;
2316 for (Input_section_list::iterator p = this->input_sections_.begin();
2317 p != this->input_sections_.end();
2318 ++p, ++i)
2319 sort_list.push_back(Input_section_sort_entry(*p, i));
2320
2321 // Sort the input sections.
2322 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2323
2324 // Copy the sorted input sections back to our list.
2325 this->input_sections_.clear();
2326 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2327 p != sort_list.end();
2328 ++p)
2329 this->input_sections_.push_back(p->input_section());
2330
2331 // Remember that we sorted the input sections, since we might get
2332 // called again.
2333 this->attached_input_sections_are_sorted_ = true;
2334}
2335
61ba1cf9
ILT
2336// Write the section header to *OSHDR.
2337
2338template<int size, bool big_endian>
2339void
16649710
ILT
2340Output_section::write_header(const Layout* layout,
2341 const Stringpool* secnamepool,
61ba1cf9
ILT
2342 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2343{
2344 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2345 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2346
2347 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2348 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2349 flags |= elfcpp::SHF_INFO_LINK;
2350 oshdr->put_sh_flags(flags);
2351
61ba1cf9
ILT
2352 oshdr->put_sh_addr(this->address());
2353 oshdr->put_sh_offset(this->offset());
2354 oshdr->put_sh_size(this->data_size());
16649710
ILT
2355 if (this->link_section_ != NULL)
2356 oshdr->put_sh_link(this->link_section_->out_shndx());
2357 else if (this->should_link_to_symtab_)
2358 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2359 else if (this->should_link_to_dynsym_)
2360 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2361 else
2362 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2363
2364 elfcpp::Elf_Word info;
16649710 2365 if (this->info_section_ != NULL)
755ab8af
ILT
2366 {
2367 if (this->info_uses_section_index_)
2368 info = this->info_section_->out_shndx();
2369 else
2370 info = this->info_section_->symtab_index();
2371 }
6a74a719 2372 else if (this->info_symndx_ != NULL)
755ab8af 2373 info = this->info_symndx_->symtab_index();
16649710 2374 else
755ab8af
ILT
2375 info = this->info_;
2376 oshdr->put_sh_info(info);
2377
61ba1cf9
ILT
2378 oshdr->put_sh_addralign(this->addralign_);
2379 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2380}
2381
ead1e424
ILT
2382// Write out the data. For input sections the data is written out by
2383// Object::relocate, but we have to handle Output_section_data objects
2384// here.
2385
2386void
2387Output_section::do_write(Output_file* of)
2388{
96803768
ILT
2389 gold_assert(!this->requires_postprocessing());
2390
c51e6221
ILT
2391 off_t output_section_file_offset = this->offset();
2392 for (Fill_list::iterator p = this->fills_.begin();
2393 p != this->fills_.end();
2394 ++p)
2395 {
8851ecca 2396 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2397 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2398 fill_data.data(), fill_data.size());
c51e6221
ILT
2399 }
2400
ead1e424
ILT
2401 for (Input_section_list::iterator p = this->input_sections_.begin();
2402 p != this->input_sections_.end();
2403 ++p)
2404 p->write(of);
2405}
2406
96803768
ILT
2407// If a section requires postprocessing, create the buffer to use.
2408
2409void
2410Output_section::create_postprocessing_buffer()
2411{
2412 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2413
2414 if (this->postprocessing_buffer_ != NULL)
2415 return;
96803768
ILT
2416
2417 if (!this->input_sections_.empty())
2418 {
2419 off_t off = this->first_input_offset_;
2420 for (Input_section_list::iterator p = this->input_sections_.begin();
2421 p != this->input_sections_.end();
2422 ++p)
2423 {
2424 off = align_address(off, p->addralign());
2425 p->finalize_data_size();
2426 off += p->data_size();
2427 }
2428 this->set_current_data_size_for_child(off);
2429 }
2430
2431 off_t buffer_size = this->current_data_size_for_child();
2432 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2433}
2434
2435// Write all the data of an Output_section into the postprocessing
2436// buffer. This is used for sections which require postprocessing,
2437// such as compression. Input sections are handled by
2438// Object::Relocate.
2439
2440void
2441Output_section::write_to_postprocessing_buffer()
2442{
2443 gold_assert(this->requires_postprocessing());
2444
96803768
ILT
2445 unsigned char* buffer = this->postprocessing_buffer();
2446 for (Fill_list::iterator p = this->fills_.begin();
2447 p != this->fills_.end();
2448 ++p)
2449 {
8851ecca 2450 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2451 memcpy(buffer + p->section_offset(), fill_data.data(),
2452 fill_data.size());
96803768
ILT
2453 }
2454
2455 off_t off = this->first_input_offset_;
2456 for (Input_section_list::iterator p = this->input_sections_.begin();
2457 p != this->input_sections_.end();
2458 ++p)
2459 {
2460 off = align_address(off, p->addralign());
2461 p->write_to_buffer(buffer + off);
2462 off += p->data_size();
2463 }
2464}
2465
a445fddf
ILT
2466// Get the input sections for linker script processing. We leave
2467// behind the Output_section_data entries. Note that this may be
2468// slightly incorrect for merge sections. We will leave them behind,
2469// but it is possible that the script says that they should follow
2470// some other input sections, as in:
2471// .rodata { *(.rodata) *(.rodata.cst*) }
2472// For that matter, we don't handle this correctly:
2473// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2474// With luck this will never matter.
2475
2476uint64_t
2477Output_section::get_input_sections(
2478 uint64_t address,
2479 const std::string& fill,
2480 std::list<std::pair<Relobj*, unsigned int> >* input_sections)
2481{
2482 uint64_t orig_address = address;
2483
2484 address = align_address(address, this->addralign());
2485
2486 Input_section_list remaining;
2487 for (Input_section_list::iterator p = this->input_sections_.begin();
2488 p != this->input_sections_.end();
2489 ++p)
2490 {
2491 if (p->is_input_section())
2492 input_sections->push_back(std::make_pair(p->relobj(), p->shndx()));
2493 else
2494 {
2495 uint64_t aligned_address = align_address(address, p->addralign());
2496 if (aligned_address != address && !fill.empty())
2497 {
2498 section_size_type length =
2499 convert_to_section_size_type(aligned_address - address);
2500 std::string this_fill;
2501 this_fill.reserve(length);
2502 while (this_fill.length() + fill.length() <= length)
2503 this_fill += fill;
2504 if (this_fill.length() < length)
2505 this_fill.append(fill, 0, length - this_fill.length());
2506
2507 Output_section_data* posd = new Output_data_const(this_fill, 0);
2508 remaining.push_back(Input_section(posd));
2509 }
2510 address = aligned_address;
2511
2512 remaining.push_back(*p);
2513
2514 p->finalize_data_size();
2515 address += p->data_size();
2516 }
2517 }
2518
2519 this->input_sections_.swap(remaining);
2520 this->first_input_offset_ = 0;
2521
2522 uint64_t data_size = address - orig_address;
2523 this->set_current_data_size_for_child(data_size);
2524 return data_size;
2525}
2526
2527// Add an input section from a script.
2528
2529void
2530Output_section::add_input_section_for_script(Relobj* object,
2531 unsigned int shndx,
2532 off_t data_size,
2533 uint64_t addralign)
2534{
2535 if (addralign > this->addralign_)
2536 this->addralign_ = addralign;
2537
2538 off_t offset_in_section = this->current_data_size_for_child();
2539 off_t aligned_offset_in_section = align_address(offset_in_section,
2540 addralign);
2541
2542 this->set_current_data_size_for_child(aligned_offset_in_section
2543 + data_size);
2544
2545 this->input_sections_.push_back(Input_section(object, shndx,
2546 data_size, addralign));
2547}
2548
38c5e8b4
ILT
2549// Print stats for merge sections to stderr.
2550
2551void
2552Output_section::print_merge_stats()
2553{
2554 Input_section_list::iterator p;
2555 for (p = this->input_sections_.begin();
2556 p != this->input_sections_.end();
2557 ++p)
2558 p->print_merge_stats(this->name_);
2559}
2560
a2fb1b05
ILT
2561// Output segment methods.
2562
2563Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 2564 : output_data_(),
75f65a3e 2565 output_bss_(),
a2fb1b05
ILT
2566 vaddr_(0),
2567 paddr_(0),
2568 memsz_(0),
a445fddf
ILT
2569 max_align_(0),
2570 min_p_align_(0),
a2fb1b05
ILT
2571 offset_(0),
2572 filesz_(0),
2573 type_(type),
ead1e424 2574 flags_(flags),
a445fddf
ILT
2575 is_max_align_known_(false),
2576 are_addresses_set_(false)
a2fb1b05
ILT
2577{
2578}
2579
2580// Add an Output_section to an Output_segment.
2581
2582void
75f65a3e 2583Output_segment::add_output_section(Output_section* os,
01676dcd 2584 elfcpp::Elf_Word seg_flags)
a2fb1b05 2585{
a3ad94ed 2586 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 2587 gold_assert(!this->is_max_align_known_);
75f65a3e 2588
ead1e424 2589 // Update the segment flags.
75f65a3e 2590 this->flags_ |= seg_flags;
75f65a3e
ILT
2591
2592 Output_segment::Output_data_list* pdl;
2593 if (os->type() == elfcpp::SHT_NOBITS)
2594 pdl = &this->output_bss_;
2595 else
2596 pdl = &this->output_data_;
54dc6425 2597
a2fb1b05
ILT
2598 // So that PT_NOTE segments will work correctly, we need to ensure
2599 // that all SHT_NOTE sections are adjacent. This will normally
2600 // happen automatically, because all the SHT_NOTE input sections
2601 // will wind up in the same output section. However, it is possible
2602 // for multiple SHT_NOTE input sections to have different section
2603 // flags, and thus be in different output sections, but for the
2604 // different section flags to map into the same segment flags and
2605 // thus the same output segment.
54dc6425
ILT
2606
2607 // Note that while there may be many input sections in an output
2608 // section, there are normally only a few output sections in an
2609 // output segment. This loop is expected to be fast.
2610
61ba1cf9 2611 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 2612 {
a3ad94ed 2613 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2614 do
54dc6425 2615 {
75f65a3e 2616 --p;
54dc6425
ILT
2617 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
2618 {
2619 ++p;
75f65a3e 2620 pdl->insert(p, os);
54dc6425
ILT
2621 return;
2622 }
2623 }
75f65a3e 2624 while (p != pdl->begin());
54dc6425
ILT
2625 }
2626
2627 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
2628 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2629 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2630 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
2631 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2632 // and the PT_TLS segment -- we do this grouping only for the
2633 // PT_LOAD segment.
2634 if (this->type_ != elfcpp::PT_TLS
2635 && (os->flags() & elfcpp::SHF_TLS) != 0
2636 && !this->output_data_.empty())
54dc6425 2637 {
75f65a3e
ILT
2638 pdl = &this->output_data_;
2639 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 2640 bool sawtls = false;
a3ad94ed 2641 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 2642 do
a2fb1b05 2643 {
75f65a3e 2644 --p;
ead1e424
ILT
2645 bool insert;
2646 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2647 {
2648 sawtls = true;
2649 // Put a NOBITS section after the first TLS section.
9f1d377b 2650 // Put a PROGBITS section after the first TLS/PROGBITS
ead1e424
ILT
2651 // section.
2652 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
2653 }
2654 else
2655 {
2656 // If we've gone past the TLS sections, but we've seen a
2657 // TLS section, then we need to insert this section now.
2658 insert = sawtls;
2659 }
2660
2661 if (insert)
a2fb1b05
ILT
2662 {
2663 ++p;
75f65a3e 2664 pdl->insert(p, os);
a2fb1b05
ILT
2665 return;
2666 }
2667 }
75f65a3e 2668 while (p != pdl->begin());
ead1e424 2669
dbe717ef
ILT
2670 // There are no TLS sections yet; put this one at the requested
2671 // location in the section list.
a2fb1b05
ILT
2672 }
2673
9f1d377b
ILT
2674 // For the PT_GNU_RELRO segment, we need to group relro sections,
2675 // and we need to put them before any non-relro sections. Also,
2676 // relro local sections go before relro non-local sections.
2677 if (parameters->options().relro() && os->is_relro())
2678 {
2679 gold_assert(pdl == &this->output_data_);
2680 Output_segment::Output_data_list::iterator p;
2681 for (p = pdl->begin(); p != pdl->end(); ++p)
2682 {
2683 if (!(*p)->is_section())
2684 break;
2685
2686 Output_section* pos = (*p)->output_section();
2687 if (!pos->is_relro()
2688 || (os->is_relro_local() && !pos->is_relro_local()))
2689 break;
2690 }
2691
2692 pdl->insert(p, os);
2693 return;
2694 }
2695
01676dcd 2696 pdl->push_back(os);
75f65a3e
ILT
2697}
2698
1650c4ff
ILT
2699// Remove an Output_section from this segment. It is an error if it
2700// is not present.
2701
2702void
2703Output_segment::remove_output_section(Output_section* os)
2704{
2705 // We only need this for SHT_PROGBITS.
2706 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
2707 for (Output_data_list::iterator p = this->output_data_.begin();
2708 p != this->output_data_.end();
2709 ++p)
2710 {
2711 if (*p == os)
2712 {
2713 this->output_data_.erase(p);
2714 return;
2715 }
2716 }
2717 gold_unreachable();
2718}
2719
75f65a3e
ILT
2720// Add an Output_data (which is not an Output_section) to the start of
2721// a segment.
2722
2723void
2724Output_segment::add_initial_output_data(Output_data* od)
2725{
a445fddf 2726 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
2727 this->output_data_.push_front(od);
2728}
2729
9f1d377b
ILT
2730// Return whether the first data section is a relro section.
2731
2732bool
2733Output_segment::is_first_section_relro() const
2734{
2735 return (!this->output_data_.empty()
2736 && this->output_data_.front()->is_section()
2737 && this->output_data_.front()->output_section()->is_relro());
2738}
2739
75f65a3e 2740// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
2741
2742uint64_t
a445fddf 2743Output_segment::maximum_alignment()
75f65a3e 2744{
a445fddf 2745 if (!this->is_max_align_known_)
ead1e424
ILT
2746 {
2747 uint64_t addralign;
2748
a445fddf
ILT
2749 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
2750 if (addralign > this->max_align_)
2751 this->max_align_ = addralign;
ead1e424 2752
a445fddf
ILT
2753 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
2754 if (addralign > this->max_align_)
2755 this->max_align_ = addralign;
ead1e424 2756
9f1d377b
ILT
2757 // If -z relro is in effect, and the first section in this
2758 // segment is a relro section, then the segment must be aligned
2759 // to at least the common page size. This ensures that the
2760 // PT_GNU_RELRO segment will start at a page boundary.
2761 if (parameters->options().relro() && this->is_first_section_relro())
2762 {
2763 addralign = parameters->target().common_pagesize();
2764 if (addralign > this->max_align_)
2765 this->max_align_ = addralign;
2766 }
2767
a445fddf 2768 this->is_max_align_known_ = true;
ead1e424
ILT
2769 }
2770
a445fddf 2771 return this->max_align_;
75f65a3e
ILT
2772}
2773
ead1e424
ILT
2774// Return the maximum alignment of a list of Output_data.
2775
2776uint64_t
a445fddf 2777Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
2778{
2779 uint64_t ret = 0;
2780 for (Output_data_list::const_iterator p = pdl->begin();
2781 p != pdl->end();
2782 ++p)
2783 {
2784 uint64_t addralign = (*p)->addralign();
2785 if (addralign > ret)
2786 ret = addralign;
2787 }
2788 return ret;
2789}
2790
4f4c5f80
ILT
2791// Return the number of dynamic relocs applied to this segment.
2792
2793unsigned int
2794Output_segment::dynamic_reloc_count() const
2795{
2796 return (this->dynamic_reloc_count_list(&this->output_data_)
2797 + this->dynamic_reloc_count_list(&this->output_bss_));
2798}
2799
2800// Return the number of dynamic relocs applied to an Output_data_list.
2801
2802unsigned int
2803Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
2804{
2805 unsigned int count = 0;
2806 for (Output_data_list::const_iterator p = pdl->begin();
2807 p != pdl->end();
2808 ++p)
2809 count += (*p)->dynamic_reloc_count();
2810 return count;
2811}
2812
a445fddf
ILT
2813// Set the section addresses for an Output_segment. If RESET is true,
2814// reset the addresses first. ADDR is the address and *POFF is the
2815// file offset. Set the section indexes starting with *PSHNDX.
2816// Return the address of the immediately following segment. Update
2817// *POFF and *PSHNDX.
75f65a3e
ILT
2818
2819uint64_t
96a2b4e4
ILT
2820Output_segment::set_section_addresses(const Layout* layout, bool reset,
2821 uint64_t addr, off_t* poff,
ead1e424 2822 unsigned int* pshndx)
75f65a3e 2823{
a3ad94ed 2824 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 2825
a445fddf
ILT
2826 if (!reset && this->are_addresses_set_)
2827 {
2828 gold_assert(this->paddr_ == addr);
2829 addr = this->vaddr_;
2830 }
2831 else
2832 {
2833 this->vaddr_ = addr;
2834 this->paddr_ = addr;
2835 this->are_addresses_set_ = true;
2836 }
75f65a3e 2837
96a2b4e4
ILT
2838 bool in_tls = false;
2839
9f1d377b
ILT
2840 bool in_relro = (parameters->options().relro()
2841 && this->is_first_section_relro());
2842
75f65a3e
ILT
2843 off_t orig_off = *poff;
2844 this->offset_ = orig_off;
2845
96a2b4e4 2846 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
9f1d377b
ILT
2847 addr, poff, pshndx, &in_tls,
2848 &in_relro);
75f65a3e
ILT
2849 this->filesz_ = *poff - orig_off;
2850
2851 off_t off = *poff;
2852
96a2b4e4
ILT
2853 uint64_t ret = this->set_section_list_addresses(layout, reset,
2854 &this->output_bss_,
2855 addr, poff, pshndx,
9f1d377b 2856 &in_tls, &in_relro);
96a2b4e4
ILT
2857
2858 // If the last section was a TLS section, align upward to the
2859 // alignment of the TLS segment, so that the overall size of the TLS
2860 // segment is aligned.
2861 if (in_tls)
2862 {
2863 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
2864 *poff = align_address(*poff, segment_align);
2865 }
2866
9f1d377b
ILT
2867 // If all the sections were relro sections, align upward to the
2868 // common page size.
2869 if (in_relro)
2870 {
2871 uint64_t page_align = parameters->target().common_pagesize();
2872 *poff = align_address(*poff, page_align);
2873 }
2874
75f65a3e
ILT
2875 this->memsz_ = *poff - orig_off;
2876
2877 // Ignore the file offset adjustments made by the BSS Output_data
2878 // objects.
2879 *poff = off;
61ba1cf9
ILT
2880
2881 return ret;
75f65a3e
ILT
2882}
2883
b8e6aad9
ILT
2884// Set the addresses and file offsets in a list of Output_data
2885// structures.
75f65a3e
ILT
2886
2887uint64_t
96a2b4e4
ILT
2888Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
2889 Output_data_list* pdl,
ead1e424 2890 uint64_t addr, off_t* poff,
96a2b4e4 2891 unsigned int* pshndx,
9f1d377b 2892 bool* in_tls, bool* in_relro)
75f65a3e 2893{
ead1e424 2894 off_t startoff = *poff;
75f65a3e 2895
ead1e424 2896 off_t off = startoff;
75f65a3e
ILT
2897 for (Output_data_list::iterator p = pdl->begin();
2898 p != pdl->end();
2899 ++p)
2900 {
a445fddf
ILT
2901 if (reset)
2902 (*p)->reset_address_and_file_offset();
2903
2904 // When using a linker script the section will most likely
2905 // already have an address.
2906 if (!(*p)->is_address_valid())
3802b2dd 2907 {
96a2b4e4
ILT
2908 uint64_t align = (*p)->addralign();
2909
2910 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
2911 {
2912 // Give the first TLS section the alignment of the
2913 // entire TLS segment. Otherwise the TLS segment as a
2914 // whole may be misaligned.
2915 if (!*in_tls)
2916 {
2917 Output_segment* tls_segment = layout->tls_segment();
2918 gold_assert(tls_segment != NULL);
2919 uint64_t segment_align = tls_segment->maximum_alignment();
2920 gold_assert(segment_align >= align);
2921 align = segment_align;
2922
2923 *in_tls = true;
2924 }
2925 }
2926 else
2927 {
2928 // If this is the first section after the TLS segment,
2929 // align it to at least the alignment of the TLS
2930 // segment, so that the size of the overall TLS segment
2931 // is aligned.
2932 if (*in_tls)
2933 {
2934 uint64_t segment_align =
2935 layout->tls_segment()->maximum_alignment();
2936 if (segment_align > align)
2937 align = segment_align;
2938
2939 *in_tls = false;
2940 }
2941 }
2942
9f1d377b
ILT
2943 // If this is a non-relro section after a relro section,
2944 // align it to a common page boundary so that the dynamic
2945 // linker has a page to mark as read-only.
2946 if (*in_relro
2947 && (!(*p)->is_section()
2948 || !(*p)->output_section()->is_relro()))
2949 {
2950 uint64_t page_align = parameters->target().common_pagesize();
2951 if (page_align > align)
2952 align = page_align;
2953 *in_relro = false;
2954 }
2955
96a2b4e4 2956 off = align_address(off, align);
3802b2dd
ILT
2957 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
2958 }
a445fddf
ILT
2959 else
2960 {
2961 // The script may have inserted a skip forward, but it
2962 // better not have moved backward.
3802b2dd
ILT
2963 gold_assert((*p)->address() >= addr + (off - startoff));
2964 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
2965 (*p)->set_file_offset(off);
2966 (*p)->finalize_data_size();
2967 }
ead1e424 2968
96a2b4e4
ILT
2969 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
2970 // section. Such a section does not affect the size of a
2971 // PT_LOAD segment.
2972 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
2973 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
2974 off += (*p)->data_size();
75f65a3e 2975
ead1e424
ILT
2976 if ((*p)->is_section())
2977 {
2978 (*p)->set_out_shndx(*pshndx);
2979 ++*pshndx;
2980 }
75f65a3e
ILT
2981 }
2982
2983 *poff = off;
ead1e424 2984 return addr + (off - startoff);
75f65a3e
ILT
2985}
2986
2987// For a non-PT_LOAD segment, set the offset from the sections, if
2988// any.
2989
2990void
2991Output_segment::set_offset()
2992{
a3ad94ed 2993 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 2994
a445fddf
ILT
2995 gold_assert(!this->are_addresses_set_);
2996
75f65a3e
ILT
2997 if (this->output_data_.empty() && this->output_bss_.empty())
2998 {
2999 this->vaddr_ = 0;
3000 this->paddr_ = 0;
a445fddf 3001 this->are_addresses_set_ = true;
75f65a3e 3002 this->memsz_ = 0;
a445fddf 3003 this->min_p_align_ = 0;
75f65a3e
ILT
3004 this->offset_ = 0;
3005 this->filesz_ = 0;
3006 return;
3007 }
3008
3009 const Output_data* first;
3010 if (this->output_data_.empty())
3011 first = this->output_bss_.front();
3012 else
3013 first = this->output_data_.front();
3014 this->vaddr_ = first->address();
a445fddf
ILT
3015 this->paddr_ = (first->has_load_address()
3016 ? first->load_address()
3017 : this->vaddr_);
3018 this->are_addresses_set_ = true;
75f65a3e
ILT
3019 this->offset_ = first->offset();
3020
3021 if (this->output_data_.empty())
3022 this->filesz_ = 0;
3023 else
3024 {
3025 const Output_data* last_data = this->output_data_.back();
3026 this->filesz_ = (last_data->address()
3027 + last_data->data_size()
3028 - this->vaddr_);
3029 }
3030
3031 const Output_data* last;
3032 if (this->output_bss_.empty())
3033 last = this->output_data_.back();
3034 else
3035 last = this->output_bss_.back();
3036 this->memsz_ = (last->address()
3037 + last->data_size()
3038 - this->vaddr_);
96a2b4e4
ILT
3039
3040 // If this is a TLS segment, align the memory size. The code in
3041 // set_section_list ensures that the section after the TLS segment
3042 // is aligned to give us room.
3043 if (this->type_ == elfcpp::PT_TLS)
3044 {
3045 uint64_t segment_align = this->maximum_alignment();
3046 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3047 this->memsz_ = align_address(this->memsz_, segment_align);
3048 }
9f1d377b
ILT
3049
3050 // If this is a RELRO segment, align the memory size. The code in
3051 // set_section_list ensures that the section after the RELRO segment
3052 // is aligned to give us room.
3053 if (this->type_ == elfcpp::PT_GNU_RELRO)
3054 {
3055 uint64_t page_align = parameters->target().common_pagesize();
3056 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3057 this->memsz_ = align_address(this->memsz_, page_align);
3058 }
75f65a3e
ILT
3059}
3060
7bf1f802
ILT
3061// Set the TLS offsets of the sections in the PT_TLS segment.
3062
3063void
3064Output_segment::set_tls_offsets()
3065{
3066 gold_assert(this->type_ == elfcpp::PT_TLS);
3067
3068 for (Output_data_list::iterator p = this->output_data_.begin();
3069 p != this->output_data_.end();
3070 ++p)
3071 (*p)->set_tls_offset(this->vaddr_);
3072
3073 for (Output_data_list::iterator p = this->output_bss_.begin();
3074 p != this->output_bss_.end();
3075 ++p)
3076 (*p)->set_tls_offset(this->vaddr_);
3077}
3078
a445fddf
ILT
3079// Return the address of the first section.
3080
3081uint64_t
3082Output_segment::first_section_load_address() const
3083{
3084 for (Output_data_list::const_iterator p = this->output_data_.begin();
3085 p != this->output_data_.end();
3086 ++p)
3087 if ((*p)->is_section())
3088 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3089
3090 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3091 p != this->output_bss_.end();
3092 ++p)
3093 if ((*p)->is_section())
3094 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3095
3096 gold_unreachable();
3097}
3098
75f65a3e
ILT
3099// Return the number of Output_sections in an Output_segment.
3100
3101unsigned int
3102Output_segment::output_section_count() const
3103{
3104 return (this->output_section_count_list(&this->output_data_)
3105 + this->output_section_count_list(&this->output_bss_));
3106}
3107
3108// Return the number of Output_sections in an Output_data_list.
3109
3110unsigned int
3111Output_segment::output_section_count_list(const Output_data_list* pdl) const
3112{
3113 unsigned int count = 0;
3114 for (Output_data_list::const_iterator p = pdl->begin();
3115 p != pdl->end();
3116 ++p)
3117 {
3118 if ((*p)->is_section())
3119 ++count;
3120 }
3121 return count;
a2fb1b05
ILT
3122}
3123
1c4f3631
ILT
3124// Return the section attached to the list segment with the lowest
3125// load address. This is used when handling a PHDRS clause in a
3126// linker script.
3127
3128Output_section*
3129Output_segment::section_with_lowest_load_address() const
3130{
3131 Output_section* found = NULL;
3132 uint64_t found_lma = 0;
3133 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3134
3135 Output_section* found_data = found;
3136 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3137 if (found != found_data && found_data != NULL)
3138 {
3139 gold_error(_("nobits section %s may not precede progbits section %s "
3140 "in same segment"),
3141 found->name(), found_data->name());
3142 return NULL;
3143 }
3144
3145 return found;
3146}
3147
3148// Look through a list for a section with a lower load address.
3149
3150void
3151Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3152 Output_section** found,
3153 uint64_t* found_lma) const
3154{
3155 for (Output_data_list::const_iterator p = pdl->begin();
3156 p != pdl->end();
3157 ++p)
3158 {
3159 if (!(*p)->is_section())
3160 continue;
3161 Output_section* os = static_cast<Output_section*>(*p);
3162 uint64_t lma = (os->has_load_address()
3163 ? os->load_address()
3164 : os->address());
3165 if (*found == NULL || lma < *found_lma)
3166 {
3167 *found = os;
3168 *found_lma = lma;
3169 }
3170 }
3171}
3172
61ba1cf9
ILT
3173// Write the segment data into *OPHDR.
3174
3175template<int size, bool big_endian>
3176void
ead1e424 3177Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
3178{
3179 ophdr->put_p_type(this->type_);
3180 ophdr->put_p_offset(this->offset_);
3181 ophdr->put_p_vaddr(this->vaddr_);
3182 ophdr->put_p_paddr(this->paddr_);
3183 ophdr->put_p_filesz(this->filesz_);
3184 ophdr->put_p_memsz(this->memsz_);
3185 ophdr->put_p_flags(this->flags_);
a445fddf 3186 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
3187}
3188
3189// Write the section headers into V.
3190
3191template<int size, bool big_endian>
3192unsigned char*
16649710
ILT
3193Output_segment::write_section_headers(const Layout* layout,
3194 const Stringpool* secnamepool,
ead1e424 3195 unsigned char* v,
7d1a9ebb 3196 unsigned int *pshndx) const
5482377d 3197{
ead1e424
ILT
3198 // Every section that is attached to a segment must be attached to a
3199 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3200 // segments.
3201 if (this->type_ != elfcpp::PT_LOAD)
3202 return v;
3203
7d1a9ebb
ILT
3204 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3205 &this->output_data_,
3206 v, pshndx);
3207 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3208 &this->output_bss_,
3209 v, pshndx);
61ba1cf9
ILT
3210 return v;
3211}
3212
3213template<int size, bool big_endian>
3214unsigned char*
16649710
ILT
3215Output_segment::write_section_headers_list(const Layout* layout,
3216 const Stringpool* secnamepool,
61ba1cf9 3217 const Output_data_list* pdl,
ead1e424 3218 unsigned char* v,
7d1a9ebb 3219 unsigned int* pshndx) const
61ba1cf9
ILT
3220{
3221 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3222 for (Output_data_list::const_iterator p = pdl->begin();
3223 p != pdl->end();
3224 ++p)
3225 {
3226 if ((*p)->is_section())
3227 {
5482377d 3228 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3229 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3230 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3231 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3232 v += shdr_size;
ead1e424 3233 ++*pshndx;
61ba1cf9
ILT
3234 }
3235 }
3236 return v;
3237}
3238
a2fb1b05
ILT
3239// Output_file methods.
3240
14144f39
ILT
3241Output_file::Output_file(const char* name)
3242 : name_(name),
61ba1cf9
ILT
3243 o_(-1),
3244 file_size_(0),
c420411f 3245 base_(NULL),
516cb3d0
ILT
3246 map_is_anonymous_(false),
3247 is_temporary_(false)
61ba1cf9
ILT
3248{
3249}
3250
3251// Open the output file.
3252
a2fb1b05 3253void
61ba1cf9 3254Output_file::open(off_t file_size)
a2fb1b05 3255{
61ba1cf9
ILT
3256 this->file_size_ = file_size;
3257
4e9d8586
ILT
3258 // Unlink the file first; otherwise the open() may fail if the file
3259 // is busy (e.g. it's an executable that's currently being executed).
3260 //
3261 // However, the linker may be part of a system where a zero-length
3262 // file is created for it to write to, with tight permissions (gcc
3263 // 2.95 did something like this). Unlinking the file would work
3264 // around those permission controls, so we only unlink if the file
3265 // has a non-zero size. We also unlink only regular files to avoid
3266 // trouble with directories/etc.
3267 //
3268 // If we fail, continue; this command is merely a best-effort attempt
3269 // to improve the odds for open().
3270
42a1b686 3271 // We let the name "-" mean "stdout"
516cb3d0 3272 if (!this->is_temporary_)
42a1b686 3273 {
516cb3d0
ILT
3274 if (strcmp(this->name_, "-") == 0)
3275 this->o_ = STDOUT_FILENO;
3276 else
3277 {
3278 struct stat s;
3279 if (::stat(this->name_, &s) == 0 && s.st_size != 0)
3280 unlink_if_ordinary(this->name_);
3281
8851ecca 3282 int mode = parameters->options().relocatable() ? 0666 : 0777;
516cb3d0
ILT
3283 int o = ::open(this->name_, O_RDWR | O_CREAT | O_TRUNC, mode);
3284 if (o < 0)
3285 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3286 this->o_ = o;
3287 }
42a1b686 3288 }
61ba1cf9 3289
27bc2bce
ILT
3290 this->map();
3291}
3292
3293// Resize the output file.
3294
3295void
3296Output_file::resize(off_t file_size)
3297{
c420411f
ILT
3298 // If the mmap is mapping an anonymous memory buffer, this is easy:
3299 // just mremap to the new size. If it's mapping to a file, we want
3300 // to unmap to flush to the file, then remap after growing the file.
3301 if (this->map_is_anonymous_)
3302 {
3303 void* base = ::mremap(this->base_, this->file_size_, file_size,
3304 MREMAP_MAYMOVE);
3305 if (base == MAP_FAILED)
3306 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3307 this->base_ = static_cast<unsigned char*>(base);
3308 this->file_size_ = file_size;
3309 }
3310 else
3311 {
3312 this->unmap();
3313 this->file_size_ = file_size;
3314 this->map();
3315 }
27bc2bce
ILT
3316}
3317
3318// Map the file into memory.
3319
3320void
3321Output_file::map()
3322{
c420411f 3323 const int o = this->o_;
61ba1cf9 3324
c420411f
ILT
3325 // If the output file is not a regular file, don't try to mmap it;
3326 // instead, we'll mmap a block of memory (an anonymous buffer), and
3327 // then later write the buffer to the file.
3328 void* base;
3329 struct stat statbuf;
42a1b686
ILT
3330 if (o == STDOUT_FILENO || o == STDERR_FILENO
3331 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3332 || !S_ISREG(statbuf.st_mode)
3333 || this->is_temporary_)
c420411f
ILT
3334 {
3335 this->map_is_anonymous_ = true;
3336 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3337 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3338 }
3339 else
3340 {
3341 // Write out one byte to make the file the right size.
3342 if (::lseek(o, this->file_size_ - 1, SEEK_SET) < 0)
3343 gold_fatal(_("%s: lseek: %s"), this->name_, strerror(errno));
3344 char b = 0;
3345 if (::write(o, &b, 1) != 1)
3346 gold_fatal(_("%s: write: %s"), this->name_, strerror(errno));
3347
3348 // Map the file into memory.
3349 this->map_is_anonymous_ = false;
3350 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3351 MAP_SHARED, o, 0);
3352 }
61ba1cf9 3353 if (base == MAP_FAILED)
75f2446e 3354 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
61ba1cf9
ILT
3355 this->base_ = static_cast<unsigned char*>(base);
3356}
3357
c420411f 3358// Unmap the file from memory.
61ba1cf9
ILT
3359
3360void
c420411f 3361Output_file::unmap()
61ba1cf9
ILT
3362{
3363 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 3364 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 3365 this->base_ = NULL;
c420411f
ILT
3366}
3367
3368// Close the output file.
3369
3370void
3371Output_file::close()
3372{
3373 // If the map isn't file-backed, we need to write it now.
516cb3d0 3374 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
3375 {
3376 size_t bytes_to_write = this->file_size_;
3377 while (bytes_to_write > 0)
3378 {
3379 ssize_t bytes_written = ::write(this->o_, this->base_, bytes_to_write);
3380 if (bytes_written == 0)
3381 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
3382 else if (bytes_written < 0)
3383 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
3384 else
3385 bytes_to_write -= bytes_written;
3386 }
3387 }
3388 this->unmap();
61ba1cf9 3389
42a1b686 3390 // We don't close stdout or stderr
516cb3d0
ILT
3391 if (this->o_ != STDOUT_FILENO
3392 && this->o_ != STDERR_FILENO
3393 && !this->is_temporary_)
42a1b686
ILT
3394 if (::close(this->o_) < 0)
3395 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 3396 this->o_ = -1;
a2fb1b05
ILT
3397}
3398
3399// Instantiate the templates we need. We could use the configure
3400// script to restrict this to only the ones for implemented targets.
3401
193a53d9 3402#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
3403template
3404off_t
3405Output_section::add_input_section<32, false>(
730cdc88 3406 Sized_relobj<32, false>* object,
ead1e424 3407 unsigned int shndx,
a2fb1b05 3408 const char* secname,
730cdc88 3409 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
3410 unsigned int reloc_shndx,
3411 bool have_sections_script);
193a53d9 3412#endif
a2fb1b05 3413
193a53d9 3414#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
3415template
3416off_t
3417Output_section::add_input_section<32, true>(
730cdc88 3418 Sized_relobj<32, true>* object,
ead1e424 3419 unsigned int shndx,
a2fb1b05 3420 const char* secname,
730cdc88 3421 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
3422 unsigned int reloc_shndx,
3423 bool have_sections_script);
193a53d9 3424#endif
a2fb1b05 3425
193a53d9 3426#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
3427template
3428off_t
3429Output_section::add_input_section<64, false>(
730cdc88 3430 Sized_relobj<64, false>* object,
ead1e424 3431 unsigned int shndx,
a2fb1b05 3432 const char* secname,
730cdc88 3433 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
3434 unsigned int reloc_shndx,
3435 bool have_sections_script);
193a53d9 3436#endif
a2fb1b05 3437
193a53d9 3438#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
3439template
3440off_t
3441Output_section::add_input_section<64, true>(
730cdc88 3442 Sized_relobj<64, true>* object,
ead1e424 3443 unsigned int shndx,
a2fb1b05 3444 const char* secname,
730cdc88 3445 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
3446 unsigned int reloc_shndx,
3447 bool have_sections_script);
193a53d9 3448#endif
a2fb1b05 3449
193a53d9 3450#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3451template
3452class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 3453#endif
c06b7b0b 3454
193a53d9 3455#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3456template
3457class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 3458#endif
c06b7b0b 3459
193a53d9 3460#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3461template
3462class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 3463#endif
c06b7b0b 3464
193a53d9 3465#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3466template
3467class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 3468#endif
c06b7b0b 3469
193a53d9 3470#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3471template
3472class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 3473#endif
c06b7b0b 3474
193a53d9 3475#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3476template
3477class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 3478#endif
c06b7b0b 3479
193a53d9 3480#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3481template
3482class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 3483#endif
c06b7b0b 3484
193a53d9 3485#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3486template
3487class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 3488#endif
c06b7b0b 3489
193a53d9 3490#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3491template
3492class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 3493#endif
c06b7b0b 3494
193a53d9 3495#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3496template
3497class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 3498#endif
c06b7b0b 3499
193a53d9 3500#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3501template
3502class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 3503#endif
c06b7b0b 3504
193a53d9 3505#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3506template
3507class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 3508#endif
c06b7b0b 3509
193a53d9 3510#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
3511template
3512class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 3513#endif
c06b7b0b 3514
193a53d9 3515#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
3516template
3517class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 3518#endif
c06b7b0b 3519
193a53d9 3520#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
3521template
3522class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 3523#endif
c06b7b0b 3524
193a53d9 3525#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
3526template
3527class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 3528#endif
c06b7b0b 3529
6a74a719
ILT
3530#ifdef HAVE_TARGET_32_LITTLE
3531template
3532class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
3533#endif
3534
3535#ifdef HAVE_TARGET_32_BIG
3536template
3537class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
3538#endif
3539
3540#ifdef HAVE_TARGET_64_LITTLE
3541template
3542class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
3543#endif
3544
3545#ifdef HAVE_TARGET_64_BIG
3546template
3547class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
3548#endif
3549
3550#ifdef HAVE_TARGET_32_LITTLE
3551template
3552class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
3553#endif
3554
3555#ifdef HAVE_TARGET_32_BIG
3556template
3557class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
3558#endif
3559
3560#ifdef HAVE_TARGET_64_LITTLE
3561template
3562class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
3563#endif
3564
3565#ifdef HAVE_TARGET_64_BIG
3566template
3567class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
3568#endif
3569
3570#ifdef HAVE_TARGET_32_LITTLE
3571template
3572class Output_data_group<32, false>;
3573#endif
3574
3575#ifdef HAVE_TARGET_32_BIG
3576template
3577class Output_data_group<32, true>;
3578#endif
3579
3580#ifdef HAVE_TARGET_64_LITTLE
3581template
3582class Output_data_group<64, false>;
3583#endif
3584
3585#ifdef HAVE_TARGET_64_BIG
3586template
3587class Output_data_group<64, true>;
3588#endif
3589
193a53d9 3590#ifdef HAVE_TARGET_32_LITTLE
ead1e424 3591template
dbe717ef 3592class Output_data_got<32, false>;
193a53d9 3593#endif
ead1e424 3594
193a53d9 3595#ifdef HAVE_TARGET_32_BIG
ead1e424 3596template
dbe717ef 3597class Output_data_got<32, true>;
193a53d9 3598#endif
ead1e424 3599
193a53d9 3600#ifdef HAVE_TARGET_64_LITTLE
ead1e424 3601template
dbe717ef 3602class Output_data_got<64, false>;
193a53d9 3603#endif
ead1e424 3604
193a53d9 3605#ifdef HAVE_TARGET_64_BIG
ead1e424 3606template
dbe717ef 3607class Output_data_got<64, true>;
193a53d9 3608#endif
ead1e424 3609
a2fb1b05 3610} // End namespace gold.
This page took 0.277804 seconds and 4 git commands to generate.