gas/
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
7e1edb90 39#include "parameters.h"
a2fb1b05 40#include "object.h"
ead1e424
ILT
41#include "symtab.h"
42#include "reloc.h"
b8e6aad9 43#include "merge.h"
2a00e4fb 44#include "descriptors.h"
5393d741 45#include "layout.h"
a2fb1b05
ILT
46#include "output.h"
47
88597d34
ILT
48// For systems without mmap support.
49#ifndef HAVE_MMAP
50# define mmap gold_mmap
51# define munmap gold_munmap
52# define mremap gold_mremap
53# ifndef MAP_FAILED
54# define MAP_FAILED (reinterpret_cast<void*>(-1))
55# endif
56# ifndef PROT_READ
57# define PROT_READ 0
58# endif
59# ifndef PROT_WRITE
60# define PROT_WRITE 0
61# endif
62# ifndef MAP_PRIVATE
63# define MAP_PRIVATE 0
64# endif
65# ifndef MAP_ANONYMOUS
66# define MAP_ANONYMOUS 0
67# endif
68# ifndef MAP_SHARED
69# define MAP_SHARED 0
70# endif
71
72# ifndef ENOSYS
73# define ENOSYS EINVAL
74# endif
75
76static void *
77gold_mmap(void *, size_t, int, int, int, off_t)
78{
79 errno = ENOSYS;
80 return MAP_FAILED;
81}
82
83static int
84gold_munmap(void *, size_t)
85{
86 errno = ENOSYS;
87 return -1;
88}
89
90static void *
91gold_mremap(void *, size_t, size_t, int)
92{
93 errno = ENOSYS;
94 return MAP_FAILED;
95}
96
97#endif
98
99#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
100# define mremap gold_mremap
101extern "C" void *gold_mremap(void *, size_t, size_t, int);
102#endif
103
c420411f
ILT
104// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
105#ifndef MAP_ANONYMOUS
106# define MAP_ANONYMOUS MAP_ANON
107#endif
108
88597d34
ILT
109#ifndef MREMAP_MAYMOVE
110# define MREMAP_MAYMOVE 1
111#endif
112
9201d894
ILT
113#ifndef HAVE_POSIX_FALLOCATE
114// A dummy, non general, version of posix_fallocate. Here we just set
115// the file size and hope that there is enough disk space. FIXME: We
116// could allocate disk space by walking block by block and writing a
117// zero byte into each block.
118static int
119posix_fallocate(int o, off_t offset, off_t len)
120{
121 return ftruncate(o, offset + len);
122}
123#endif // !defined(HAVE_POSIX_FALLOCATE)
124
d0a9ace3
ILT
125// Mingw does not have S_ISLNK.
126#ifndef S_ISLNK
127# define S_ISLNK(mode) 0
128#endif
129
a2fb1b05
ILT
130namespace gold
131{
132
a3ad94ed
ILT
133// Output_data variables.
134
27bc2bce 135bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 136
a2fb1b05
ILT
137// Output_data methods.
138
139Output_data::~Output_data()
140{
141}
142
730cdc88
ILT
143// Return the default alignment for the target size.
144
145uint64_t
146Output_data::default_alignment()
147{
8851ecca
ILT
148 return Output_data::default_alignment_for_size(
149 parameters->target().get_size());
730cdc88
ILT
150}
151
75f65a3e
ILT
152// Return the default alignment for a size--32 or 64.
153
154uint64_t
730cdc88 155Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
156{
157 if (size == 32)
158 return 4;
159 else if (size == 64)
160 return 8;
161 else
a3ad94ed 162 gold_unreachable();
75f65a3e
ILT
163}
164
75f65a3e
ILT
165// Output_section_header methods. This currently assumes that the
166// segment and section lists are complete at construction time.
167
168Output_section_headers::Output_section_headers(
16649710
ILT
169 const Layout* layout,
170 const Layout::Segment_list* segment_list,
6a74a719 171 const Layout::Section_list* section_list,
16649710 172 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
173 const Stringpool* secnamepool,
174 const Output_section* shstrtab_section)
9025d29d 175 : layout_(layout),
75f65a3e 176 segment_list_(segment_list),
6a74a719 177 section_list_(section_list),
a3ad94ed 178 unattached_section_list_(unattached_section_list),
d491d34e
ILT
179 secnamepool_(secnamepool),
180 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
181{
182}
183
184// Compute the current data size.
185
186off_t
187Output_section_headers::do_size() const
75f65a3e 188{
61ba1cf9
ILT
189 // Count all the sections. Start with 1 for the null section.
190 off_t count = 1;
8851ecca 191 if (!parameters->options().relocatable())
6a74a719 192 {
20e6d0d6
DK
193 for (Layout::Segment_list::const_iterator p =
194 this->segment_list_->begin();
195 p != this->segment_list_->end();
6a74a719
ILT
196 ++p)
197 if ((*p)->type() == elfcpp::PT_LOAD)
198 count += (*p)->output_section_count();
199 }
200 else
201 {
20e6d0d6
DK
202 for (Layout::Section_list::const_iterator p =
203 this->section_list_->begin();
204 p != this->section_list_->end();
6a74a719
ILT
205 ++p)
206 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
207 ++count;
208 }
20e6d0d6 209 count += this->unattached_section_list_->size();
75f65a3e 210
8851ecca 211 const int size = parameters->target().get_size();
75f65a3e
ILT
212 int shdr_size;
213 if (size == 32)
214 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
215 else if (size == 64)
216 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
217 else
a3ad94ed 218 gold_unreachable();
75f65a3e 219
20e6d0d6 220 return count * shdr_size;
75f65a3e
ILT
221}
222
61ba1cf9
ILT
223// Write out the section headers.
224
75f65a3e 225void
61ba1cf9 226Output_section_headers::do_write(Output_file* of)
a2fb1b05 227{
8851ecca 228 switch (parameters->size_and_endianness())
61ba1cf9 229 {
9025d29d 230#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
231 case Parameters::TARGET_32_LITTLE:
232 this->do_sized_write<32, false>(of);
233 break;
9025d29d 234#endif
8851ecca
ILT
235#ifdef HAVE_TARGET_32_BIG
236 case Parameters::TARGET_32_BIG:
237 this->do_sized_write<32, true>(of);
238 break;
9025d29d 239#endif
9025d29d 240#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_64_LITTLE:
242 this->do_sized_write<64, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_64_BIG
246 case Parameters::TARGET_64_BIG:
247 this->do_sized_write<64, true>(of);
248 break;
249#endif
250 default:
251 gold_unreachable();
61ba1cf9 252 }
61ba1cf9
ILT
253}
254
255template<int size, bool big_endian>
256void
257Output_section_headers::do_sized_write(Output_file* of)
258{
259 off_t all_shdrs_size = this->data_size();
260 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
261
262 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
263 unsigned char* v = view;
264
265 {
266 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
267 oshdr.put_sh_name(0);
268 oshdr.put_sh_type(elfcpp::SHT_NULL);
269 oshdr.put_sh_flags(0);
270 oshdr.put_sh_addr(0);
271 oshdr.put_sh_offset(0);
d491d34e
ILT
272
273 size_t section_count = (this->data_size()
274 / elfcpp::Elf_sizes<size>::shdr_size);
275 if (section_count < elfcpp::SHN_LORESERVE)
276 oshdr.put_sh_size(0);
277 else
278 oshdr.put_sh_size(section_count);
279
280 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
281 if (shstrndx < elfcpp::SHN_LORESERVE)
282 oshdr.put_sh_link(0);
283 else
284 oshdr.put_sh_link(shstrndx);
285
5696ab0b
ILT
286 size_t segment_count = this->segment_list_->size();
287 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
288
61ba1cf9
ILT
289 oshdr.put_sh_addralign(0);
290 oshdr.put_sh_entsize(0);
291 }
292
293 v += shdr_size;
294
6a74a719 295 unsigned int shndx = 1;
8851ecca 296 if (!parameters->options().relocatable())
6a74a719
ILT
297 {
298 for (Layout::Segment_list::const_iterator p =
299 this->segment_list_->begin();
300 p != this->segment_list_->end();
301 ++p)
302 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
303 this->secnamepool_,
304 v,
305 &shndx);
306 }
307 else
308 {
309 for (Layout::Section_list::const_iterator p =
310 this->section_list_->begin();
311 p != this->section_list_->end();
312 ++p)
313 {
314 // We do unallocated sections below, except that group
315 // sections have to come first.
316 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
317 && (*p)->type() != elfcpp::SHT_GROUP)
318 continue;
319 gold_assert(shndx == (*p)->out_shndx());
320 elfcpp::Shdr_write<size, big_endian> oshdr(v);
321 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
322 v += shdr_size;
323 ++shndx;
324 }
325 }
326
a3ad94ed 327 for (Layout::Section_list::const_iterator p =
16649710
ILT
328 this->unattached_section_list_->begin();
329 p != this->unattached_section_list_->end();
61ba1cf9
ILT
330 ++p)
331 {
6a74a719
ILT
332 // For a relocatable link, we did unallocated group sections
333 // above, since they have to come first.
334 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 335 && parameters->options().relocatable())
6a74a719 336 continue;
a3ad94ed 337 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 338 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 339 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 340 v += shdr_size;
ead1e424 341 ++shndx;
61ba1cf9
ILT
342 }
343
344 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
345}
346
54dc6425
ILT
347// Output_segment_header methods.
348
61ba1cf9 349Output_segment_headers::Output_segment_headers(
61ba1cf9 350 const Layout::Segment_list& segment_list)
9025d29d 351 : segment_list_(segment_list)
61ba1cf9 352{
cdc29364 353 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
354}
355
54dc6425 356void
61ba1cf9 357Output_segment_headers::do_write(Output_file* of)
75f65a3e 358{
8851ecca 359 switch (parameters->size_and_endianness())
61ba1cf9 360 {
9025d29d 361#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
362 case Parameters::TARGET_32_LITTLE:
363 this->do_sized_write<32, false>(of);
364 break;
9025d29d 365#endif
8851ecca
ILT
366#ifdef HAVE_TARGET_32_BIG
367 case Parameters::TARGET_32_BIG:
368 this->do_sized_write<32, true>(of);
369 break;
9025d29d 370#endif
9025d29d 371#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_64_LITTLE:
373 this->do_sized_write<64, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_64_BIG
377 case Parameters::TARGET_64_BIG:
378 this->do_sized_write<64, true>(of);
379 break;
380#endif
381 default:
382 gold_unreachable();
61ba1cf9 383 }
61ba1cf9
ILT
384}
385
386template<int size, bool big_endian>
387void
388Output_segment_headers::do_sized_write(Output_file* of)
389{
390 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
391 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 392 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
393 unsigned char* view = of->get_output_view(this->offset(),
394 all_phdrs_size);
395 unsigned char* v = view;
396 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
397 p != this->segment_list_.end();
398 ++p)
399 {
400 elfcpp::Phdr_write<size, big_endian> ophdr(v);
401 (*p)->write_header(&ophdr);
402 v += phdr_size;
403 }
404
a445fddf
ILT
405 gold_assert(v - view == all_phdrs_size);
406
61ba1cf9 407 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
408}
409
20e6d0d6
DK
410off_t
411Output_segment_headers::do_size() const
412{
413 const int size = parameters->target().get_size();
414 int phdr_size;
415 if (size == 32)
416 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
417 else if (size == 64)
418 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
419 else
420 gold_unreachable();
421
422 return this->segment_list_.size() * phdr_size;
423}
424
75f65a3e
ILT
425// Output_file_header methods.
426
9025d29d 427Output_file_header::Output_file_header(const Target* target,
75f65a3e 428 const Symbol_table* symtab,
a10ae760 429 const Output_segment_headers* osh)
9025d29d 430 : target_(target),
75f65a3e 431 symtab_(symtab),
61ba1cf9 432 segment_header_(osh),
75f65a3e 433 section_header_(NULL),
a10ae760 434 shstrtab_(NULL)
75f65a3e 435{
20e6d0d6 436 this->set_data_size(this->do_size());
75f65a3e
ILT
437}
438
439// Set the section table information for a file header.
440
441void
442Output_file_header::set_section_info(const Output_section_headers* shdrs,
443 const Output_section* shstrtab)
444{
445 this->section_header_ = shdrs;
446 this->shstrtab_ = shstrtab;
447}
448
449// Write out the file header.
450
451void
61ba1cf9 452Output_file_header::do_write(Output_file* of)
54dc6425 453{
27bc2bce
ILT
454 gold_assert(this->offset() == 0);
455
8851ecca 456 switch (parameters->size_and_endianness())
61ba1cf9 457 {
9025d29d 458#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
459 case Parameters::TARGET_32_LITTLE:
460 this->do_sized_write<32, false>(of);
461 break;
9025d29d 462#endif
8851ecca
ILT
463#ifdef HAVE_TARGET_32_BIG
464 case Parameters::TARGET_32_BIG:
465 this->do_sized_write<32, true>(of);
466 break;
9025d29d 467#endif
9025d29d 468#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_64_LITTLE:
470 this->do_sized_write<64, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_64_BIG
474 case Parameters::TARGET_64_BIG:
475 this->do_sized_write<64, true>(of);
476 break;
477#endif
478 default:
479 gold_unreachable();
61ba1cf9 480 }
61ba1cf9
ILT
481}
482
cc643b88 483// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
484
485template<int size, bool big_endian>
486void
487Output_file_header::do_sized_write(Output_file* of)
488{
a3ad94ed 489 gold_assert(this->offset() == 0);
61ba1cf9
ILT
490
491 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
492 unsigned char* view = of->get_output_view(0, ehdr_size);
493 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
494
495 unsigned char e_ident[elfcpp::EI_NIDENT];
496 memset(e_ident, 0, elfcpp::EI_NIDENT);
497 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
498 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
499 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
500 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
501 if (size == 32)
502 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
503 else if (size == 64)
504 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
505 else
a3ad94ed 506 gold_unreachable();
61ba1cf9
ILT
507 e_ident[elfcpp::EI_DATA] = (big_endian
508 ? elfcpp::ELFDATA2MSB
509 : elfcpp::ELFDATA2LSB);
510 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
511 oehdr.put_e_ident(e_ident);
512
513 elfcpp::ET e_type;
8851ecca 514 if (parameters->options().relocatable())
61ba1cf9 515 e_type = elfcpp::ET_REL;
374ad285 516 else if (parameters->options().output_is_position_independent())
436ca963 517 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
518 else
519 e_type = elfcpp::ET_EXEC;
520 oehdr.put_e_type(e_type);
521
522 oehdr.put_e_machine(this->target_->machine_code());
523 oehdr.put_e_version(elfcpp::EV_CURRENT);
524
d391083d 525 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 526
6a74a719
ILT
527 if (this->segment_header_ == NULL)
528 oehdr.put_e_phoff(0);
529 else
530 oehdr.put_e_phoff(this->segment_header_->offset());
531
61ba1cf9 532 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 533 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 534 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
535
536 if (this->segment_header_ == NULL)
537 {
538 oehdr.put_e_phentsize(0);
539 oehdr.put_e_phnum(0);
540 }
541 else
542 {
543 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
544 size_t phnum = (this->segment_header_->data_size()
545 / elfcpp::Elf_sizes<size>::phdr_size);
546 if (phnum > elfcpp::PN_XNUM)
547 phnum = elfcpp::PN_XNUM;
548 oehdr.put_e_phnum(phnum);
6a74a719
ILT
549 }
550
61ba1cf9 551 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
552 size_t section_count = (this->section_header_->data_size()
553 / elfcpp::Elf_sizes<size>::shdr_size);
554
555 if (section_count < elfcpp::SHN_LORESERVE)
556 oehdr.put_e_shnum(this->section_header_->data_size()
557 / elfcpp::Elf_sizes<size>::shdr_size);
558 else
559 oehdr.put_e_shnum(0);
560
561 unsigned int shstrndx = this->shstrtab_->out_shndx();
562 if (shstrndx < elfcpp::SHN_LORESERVE)
563 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
564 else
565 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 566
36959681
ILT
567 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
568 // the e_ident field.
569 parameters->target().adjust_elf_header(view, ehdr_size);
570
61ba1cf9 571 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
572}
573
a10ae760 574// Return the value to use for the entry address.
d391083d
ILT
575
576template<int size>
577typename elfcpp::Elf_types<size>::Elf_Addr
578Output_file_header::entry()
579{
a10ae760 580 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
581 && !parameters->options().relocatable()
582 && !parameters->options().shared());
a10ae760 583 const char* entry = parameters->entry();
2ea97941 584 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
585
586 typename Sized_symbol<size>::Value_type v;
587 if (sym != NULL)
588 {
589 Sized_symbol<size>* ssym;
590 ssym = this->symtab_->get_sized_symbol<size>(sym);
591 if (!ssym->is_defined() && should_issue_warning)
2ea97941 592 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
593 v = ssym->value();
594 }
595 else
596 {
597 // We couldn't find the entry symbol. See if we can parse it as
598 // a number. This supports, e.g., -e 0x1000.
599 char* endptr;
2ea97941 600 v = strtoull(entry, &endptr, 0);
d391083d
ILT
601 if (*endptr != '\0')
602 {
603 if (should_issue_warning)
2ea97941 604 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
605 v = 0;
606 }
607 }
608
609 return v;
610}
611
20e6d0d6
DK
612// Compute the current data size.
613
614off_t
615Output_file_header::do_size() const
616{
617 const int size = parameters->target().get_size();
618 if (size == 32)
619 return elfcpp::Elf_sizes<32>::ehdr_size;
620 else if (size == 64)
621 return elfcpp::Elf_sizes<64>::ehdr_size;
622 else
623 gold_unreachable();
624}
625
dbe717ef
ILT
626// Output_data_const methods.
627
628void
a3ad94ed 629Output_data_const::do_write(Output_file* of)
dbe717ef 630{
a3ad94ed
ILT
631 of->write(this->offset(), this->data_.data(), this->data_.size());
632}
633
634// Output_data_const_buffer methods.
635
636void
637Output_data_const_buffer::do_write(Output_file* of)
638{
639 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
640}
641
642// Output_section_data methods.
643
16649710
ILT
644// Record the output section, and set the entry size and such.
645
646void
647Output_section_data::set_output_section(Output_section* os)
648{
649 gold_assert(this->output_section_ == NULL);
650 this->output_section_ = os;
651 this->do_adjust_output_section(os);
652}
653
654// Return the section index of the output section.
655
dbe717ef
ILT
656unsigned int
657Output_section_data::do_out_shndx() const
658{
a3ad94ed 659 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
660 return this->output_section_->out_shndx();
661}
662
759b1a24
ILT
663// Set the alignment, which means we may need to update the alignment
664// of the output section.
665
666void
2ea97941 667Output_section_data::set_addralign(uint64_t addralign)
759b1a24 668{
2ea97941 669 this->addralign_ = addralign;
759b1a24 670 if (this->output_section_ != NULL
2ea97941
ILT
671 && this->output_section_->addralign() < addralign)
672 this->output_section_->set_addralign(addralign);
759b1a24
ILT
673}
674
a3ad94ed
ILT
675// Output_data_strtab methods.
676
27bc2bce 677// Set the final data size.
a3ad94ed
ILT
678
679void
27bc2bce 680Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
681{
682 this->strtab_->set_string_offsets();
683 this->set_data_size(this->strtab_->get_strtab_size());
684}
685
686// Write out a string table.
687
688void
689Output_data_strtab::do_write(Output_file* of)
690{
691 this->strtab_->write(of, this->offset());
692}
693
c06b7b0b
ILT
694// Output_reloc methods.
695
7bf1f802
ILT
696// A reloc against a global symbol.
697
698template<bool dynamic, int size, bool big_endian>
699Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Symbol* gsym,
701 unsigned int type,
702 Output_data* od,
e8c846c3 703 Address address,
0da6fa6c
DM
704 bool is_relative,
705 bool is_symbolless)
7bf1f802 706 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
707 is_relative_(is_relative), is_symbolless_(is_symbolless),
708 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 709{
dceae3c1
ILT
710 // this->type_ is a bitfield; make sure TYPE fits.
711 gold_assert(this->type_ == type);
7bf1f802
ILT
712 this->u1_.gsym = gsym;
713 this->u2_.od = od;
dceae3c1
ILT
714 if (dynamic)
715 this->set_needs_dynsym_index();
7bf1f802
ILT
716}
717
718template<bool dynamic, int size, bool big_endian>
719Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
720 Symbol* gsym,
721 unsigned int type,
ef9beddf 722 Sized_relobj<size, big_endian>* relobj,
7bf1f802 723 unsigned int shndx,
e8c846c3 724 Address address,
0da6fa6c
DM
725 bool is_relative,
726 bool is_symbolless)
7bf1f802 727 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
728 is_relative_(is_relative), is_symbolless_(is_symbolless),
729 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
730{
731 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
732 // this->type_ is a bitfield; make sure TYPE fits.
733 gold_assert(this->type_ == type);
7bf1f802
ILT
734 this->u1_.gsym = gsym;
735 this->u2_.relobj = relobj;
dceae3c1
ILT
736 if (dynamic)
737 this->set_needs_dynsym_index();
7bf1f802
ILT
738}
739
740// A reloc against a local symbol.
741
742template<bool dynamic, int size, bool big_endian>
743Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
744 Sized_relobj<size, big_endian>* relobj,
745 unsigned int local_sym_index,
746 unsigned int type,
747 Output_data* od,
e8c846c3 748 Address address,
2ea97941 749 bool is_relative,
0da6fa6c 750 bool is_symbolless,
dceae3c1 751 bool is_section_symbol)
7bf1f802 752 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
753 is_relative_(is_relative), is_symbolless_(is_symbolless),
754 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
755{
756 gold_assert(local_sym_index != GSYM_CODE
757 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
758 // this->type_ is a bitfield; make sure TYPE fits.
759 gold_assert(this->type_ == type);
7bf1f802
ILT
760 this->u1_.relobj = relobj;
761 this->u2_.od = od;
dceae3c1
ILT
762 if (dynamic)
763 this->set_needs_dynsym_index();
7bf1f802
ILT
764}
765
766template<bool dynamic, int size, bool big_endian>
767Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 Sized_relobj<size, big_endian>* relobj,
769 unsigned int local_sym_index,
770 unsigned int type,
771 unsigned int shndx,
e8c846c3 772 Address address,
2ea97941 773 bool is_relative,
0da6fa6c 774 bool is_symbolless,
dceae3c1 775 bool is_section_symbol)
7bf1f802 776 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
777 is_relative_(is_relative), is_symbolless_(is_symbolless),
778 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
779{
780 gold_assert(local_sym_index != GSYM_CODE
781 && local_sym_index != INVALID_CODE);
782 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
7bf1f802
ILT
785 this->u1_.relobj = relobj;
786 this->u2_.relobj = relobj;
dceae3c1
ILT
787 if (dynamic)
788 this->set_needs_dynsym_index();
7bf1f802
ILT
789}
790
791// A reloc against the STT_SECTION symbol of an output section.
792
793template<bool dynamic, int size, bool big_endian>
794Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
795 Output_section* os,
796 unsigned int type,
797 Output_data* od,
798 Address address)
799 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
800 is_relative_(false), is_symbolless_(false),
801 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 802{
dceae3c1
ILT
803 // this->type_ is a bitfield; make sure TYPE fits.
804 gold_assert(this->type_ == type);
7bf1f802
ILT
805 this->u1_.os = os;
806 this->u2_.od = od;
807 if (dynamic)
dceae3c1
ILT
808 this->set_needs_dynsym_index();
809 else
810 os->set_needs_symtab_index();
7bf1f802
ILT
811}
812
813template<bool dynamic, int size, bool big_endian>
814Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 Output_section* os,
816 unsigned int type,
ef9beddf 817 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
821 is_relative_(false), is_symbolless_(false),
822 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
823{
824 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
825 // this->type_ is a bitfield; make sure TYPE fits.
826 gold_assert(this->type_ == type);
7bf1f802
ILT
827 this->u1_.os = os;
828 this->u2_.relobj = relobj;
829 if (dynamic)
dceae3c1
ILT
830 this->set_needs_dynsym_index();
831 else
832 os->set_needs_symtab_index();
833}
834
e291e7b9
ILT
835// An absolute relocation.
836
837template<bool dynamic, int size, bool big_endian>
838Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
839 unsigned int type,
840 Output_data* od,
841 Address address)
842 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
843 is_relative_(false), is_symbolless_(false),
844 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
845{
846 // this->type_ is a bitfield; make sure TYPE fits.
847 gold_assert(this->type_ == type);
848 this->u1_.relobj = NULL;
849 this->u2_.od = od;
850}
851
852template<bool dynamic, int size, bool big_endian>
853Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
854 unsigned int type,
855 Sized_relobj<size, big_endian>* relobj,
856 unsigned int shndx,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
859 is_relative_(false), is_symbolless_(false),
860 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
861{
862 gold_assert(shndx != INVALID_CODE);
863 // this->type_ is a bitfield; make sure TYPE fits.
864 gold_assert(this->type_ == type);
865 this->u1_.relobj = NULL;
866 this->u2_.relobj = relobj;
867}
868
869// A target specific relocation.
870
871template<bool dynamic, int size, bool big_endian>
872Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 void* arg,
875 Output_data* od,
876 Address address)
877 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
878 is_relative_(false), is_symbolless_(false),
879 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
880{
881 // this->type_ is a bitfield; make sure TYPE fits.
882 gold_assert(this->type_ == type);
883 this->u1_.arg = arg;
884 this->u2_.od = od;
885}
886
887template<bool dynamic, int size, bool big_endian>
888Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Sized_relobj<size, big_endian>* relobj,
892 unsigned int shndx,
893 Address address)
894 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
895 is_relative_(false), is_symbolless_(false),
896 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
897{
898 gold_assert(shndx != INVALID_CODE);
899 // this->type_ is a bitfield; make sure TYPE fits.
900 gold_assert(this->type_ == type);
901 this->u1_.arg = arg;
902 this->u2_.relobj = relobj;
903}
904
dceae3c1
ILT
905// Record that we need a dynamic symbol index for this relocation.
906
907template<bool dynamic, int size, bool big_endian>
908void
909Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
910set_needs_dynsym_index()
911{
0da6fa6c 912 if (this->is_symbolless_)
dceae3c1
ILT
913 return;
914 switch (this->local_sym_index_)
915 {
916 case INVALID_CODE:
917 gold_unreachable();
918
919 case GSYM_CODE:
920 this->u1_.gsym->set_needs_dynsym_entry();
921 break;
922
923 case SECTION_CODE:
924 this->u1_.os->set_needs_dynsym_index();
925 break;
926
e291e7b9
ILT
927 case TARGET_CODE:
928 // The target must take care of this if necessary.
929 break;
930
dceae3c1
ILT
931 case 0:
932 break;
933
934 default:
935 {
936 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
937 Sized_relobj_file<size, big_endian>* relobj =
938 this->u1_.relobj->sized_relobj();
939 gold_assert(relobj != NULL);
dceae3c1 940 if (!this->is_section_symbol_)
6fa2a40b 941 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 942 else
6fa2a40b 943 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
944 }
945 break;
946 }
7bf1f802
ILT
947}
948
c06b7b0b
ILT
949// Get the symbol index of a relocation.
950
951template<bool dynamic, int size, bool big_endian>
952unsigned int
953Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
954 const
955{
956 unsigned int index;
0da6fa6c
DM
957 if (this->is_symbolless_)
958 return 0;
c06b7b0b
ILT
959 switch (this->local_sym_index_)
960 {
961 case INVALID_CODE:
a3ad94ed 962 gold_unreachable();
c06b7b0b
ILT
963
964 case GSYM_CODE:
5a6f7e2d 965 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
966 index = 0;
967 else if (dynamic)
5a6f7e2d 968 index = this->u1_.gsym->dynsym_index();
c06b7b0b 969 else
5a6f7e2d 970 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
971 break;
972
973 case SECTION_CODE:
974 if (dynamic)
5a6f7e2d 975 index = this->u1_.os->dynsym_index();
c06b7b0b 976 else
5a6f7e2d 977 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
978 break;
979
e291e7b9
ILT
980 case TARGET_CODE:
981 index = parameters->target().reloc_symbol_index(this->u1_.arg,
982 this->type_);
983 break;
984
436ca963
ILT
985 case 0:
986 // Relocations without symbols use a symbol index of 0.
987 index = 0;
988 break;
989
c06b7b0b 990 default:
dceae3c1
ILT
991 {
992 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
993 Sized_relobj_file<size, big_endian>* relobj =
994 this->u1_.relobj->sized_relobj();
995 gold_assert(relobj != NULL);
dceae3c1
ILT
996 if (!this->is_section_symbol_)
997 {
998 if (dynamic)
6fa2a40b 999 index = relobj->dynsym_index(lsi);
dceae3c1 1000 else
6fa2a40b 1001 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1002 }
1003 else
1004 {
6fa2a40b 1005 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1006 gold_assert(os != NULL);
1007 if (dynamic)
1008 index = os->dynsym_index();
1009 else
1010 index = os->symtab_index();
1011 }
1012 }
c06b7b0b
ILT
1013 break;
1014 }
a3ad94ed 1015 gold_assert(index != -1U);
c06b7b0b
ILT
1016 return index;
1017}
1018
624f8810
ILT
1019// For a local section symbol, get the address of the offset ADDEND
1020// within the input section.
dceae3c1
ILT
1021
1022template<bool dynamic, int size, bool big_endian>
ef9beddf 1023typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1024Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1025 local_section_offset(Addend addend) const
dceae3c1 1026{
624f8810
ILT
1027 gold_assert(this->local_sym_index_ != GSYM_CODE
1028 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1029 && this->local_sym_index_ != TARGET_CODE
624f8810 1030 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1031 && this->local_sym_index_ != 0
624f8810 1032 && this->is_section_symbol_);
dceae3c1 1033 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1034 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1035 gold_assert(os != NULL);
ef9beddf 1036 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1037 if (offset != invalid_address)
624f8810
ILT
1038 return offset + addend;
1039 // This is a merge section.
6fa2a40b
CC
1040 Sized_relobj_file<size, big_endian>* relobj =
1041 this->u1_.relobj->sized_relobj();
1042 gold_assert(relobj != NULL);
1043 offset = os->output_address(relobj, lsi, addend);
eff45813 1044 gold_assert(offset != invalid_address);
dceae3c1
ILT
1045 return offset;
1046}
1047
d98bc257 1048// Get the output address of a relocation.
c06b7b0b
ILT
1049
1050template<bool dynamic, int size, bool big_endian>
a984ee1d 1051typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1052Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1053{
a3ad94ed 1054 Address address = this->address_;
5a6f7e2d
ILT
1055 if (this->shndx_ != INVALID_CODE)
1056 {
ef9beddf 1057 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1058 gold_assert(os != NULL);
ef9beddf 1059 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1060 if (off != invalid_address)
730cdc88
ILT
1061 address += os->address() + off;
1062 else
1063 {
6fa2a40b
CC
1064 Sized_relobj_file<size, big_endian>* relobj =
1065 this->u2_.relobj->sized_relobj();
1066 gold_assert(relobj != NULL);
1067 address = os->output_address(relobj, this->shndx_, address);
eff45813 1068 gold_assert(address != invalid_address);
730cdc88 1069 }
5a6f7e2d
ILT
1070 }
1071 else if (this->u2_.od != NULL)
1072 address += this->u2_.od->address();
d98bc257
ILT
1073 return address;
1074}
1075
1076// Write out the offset and info fields of a Rel or Rela relocation
1077// entry.
1078
1079template<bool dynamic, int size, bool big_endian>
1080template<typename Write_rel>
1081void
1082Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1083 Write_rel* wr) const
1084{
1085 wr->put_r_offset(this->get_address());
0da6fa6c 1086 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1087 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1088}
1089
1090// Write out a Rel relocation.
1091
1092template<bool dynamic, int size, bool big_endian>
1093void
1094Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1095 unsigned char* pov) const
1096{
1097 elfcpp::Rel_write<size, big_endian> orel(pov);
1098 this->write_rel(&orel);
1099}
1100
e8c846c3
ILT
1101// Get the value of the symbol referred to by a Rel relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1105Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1106 Addend addend) const
e8c846c3
ILT
1107{
1108 if (this->local_sym_index_ == GSYM_CODE)
1109 {
1110 const Sized_symbol<size>* sym;
1111 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1112 return sym->value() + addend;
e8c846c3
ILT
1113 }
1114 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1115 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1116 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1117 && this->local_sym_index_ != 0
d1f003c6
ILT
1118 && !this->is_section_symbol_);
1119 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1120 Sized_relobj_file<size, big_endian>* relobj =
1121 this->u1_.relobj->sized_relobj();
1122 gold_assert(relobj != NULL);
1123 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1124 return symval->value(relobj, addend);
e8c846c3
ILT
1125}
1126
d98bc257
ILT
1127// Reloc comparison. This function sorts the dynamic relocs for the
1128// benefit of the dynamic linker. First we sort all relative relocs
1129// to the front. Among relative relocs, we sort by output address.
1130// Among non-relative relocs, we sort by symbol index, then by output
1131// address.
1132
1133template<bool dynamic, int size, bool big_endian>
1134int
1135Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1136 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1137 const
1138{
1139 if (this->is_relative_)
1140 {
1141 if (!r2.is_relative_)
1142 return -1;
1143 // Otherwise sort by reloc address below.
1144 }
1145 else if (r2.is_relative_)
1146 return 1;
1147 else
1148 {
1149 unsigned int sym1 = this->get_symbol_index();
1150 unsigned int sym2 = r2.get_symbol_index();
1151 if (sym1 < sym2)
1152 return -1;
1153 else if (sym1 > sym2)
1154 return 1;
1155 // Otherwise sort by reloc address.
1156 }
1157
1158 section_offset_type addr1 = this->get_address();
1159 section_offset_type addr2 = r2.get_address();
1160 if (addr1 < addr2)
1161 return -1;
1162 else if (addr1 > addr2)
1163 return 1;
1164
1165 // Final tie breaker, in order to generate the same output on any
1166 // host: reloc type.
1167 unsigned int type1 = this->type_;
1168 unsigned int type2 = r2.type_;
1169 if (type1 < type2)
1170 return -1;
1171 else if (type1 > type2)
1172 return 1;
1173
1174 // These relocs appear to be exactly the same.
1175 return 0;
1176}
1177
c06b7b0b
ILT
1178// Write out a Rela relocation.
1179
1180template<bool dynamic, int size, bool big_endian>
1181void
1182Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1183 unsigned char* pov) const
1184{
1185 elfcpp::Rela_write<size, big_endian> orel(pov);
1186 this->rel_.write_rel(&orel);
e8c846c3 1187 Addend addend = this->addend_;
e291e7b9
ILT
1188 if (this->rel_.is_target_specific())
1189 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1190 this->rel_.type(), addend);
0da6fa6c 1191 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1192 addend = this->rel_.symbol_value(addend);
1193 else if (this->rel_.is_local_section_symbol())
624f8810 1194 addend = this->rel_.local_section_offset(addend);
e8c846c3 1195 orel.put_r_addend(addend);
c06b7b0b
ILT
1196}
1197
1198// Output_data_reloc_base methods.
1199
16649710
ILT
1200// Adjust the output section.
1201
1202template<int sh_type, bool dynamic, int size, bool big_endian>
1203void
1204Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1205 ::do_adjust_output_section(Output_section* os)
1206{
1207 if (sh_type == elfcpp::SHT_REL)
1208 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1209 else if (sh_type == elfcpp::SHT_RELA)
1210 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1211 else
1212 gold_unreachable();
7223e9ca
ILT
1213
1214 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1215 // static link. The backends will generate a dynamic reloc section
1216 // to hold this. In that case we don't want to link to the dynsym
1217 // section, because there isn't one.
1218 if (!dynamic)
16649710 1219 os->set_should_link_to_symtab();
7223e9ca
ILT
1220 else if (parameters->doing_static_link())
1221 ;
1222 else
1223 os->set_should_link_to_dynsym();
16649710
ILT
1224}
1225
c06b7b0b
ILT
1226// Write out relocation data.
1227
1228template<int sh_type, bool dynamic, int size, bool big_endian>
1229void
1230Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1231 Output_file* of)
1232{
1233 const off_t off = this->offset();
1234 const off_t oview_size = this->data_size();
1235 unsigned char* const oview = of->get_output_view(off, oview_size);
1236
3a44184e 1237 if (this->sort_relocs())
d98bc257
ILT
1238 {
1239 gold_assert(dynamic);
1240 std::sort(this->relocs_.begin(), this->relocs_.end(),
1241 Sort_relocs_comparison());
1242 }
1243
c06b7b0b
ILT
1244 unsigned char* pov = oview;
1245 for (typename Relocs::const_iterator p = this->relocs_.begin();
1246 p != this->relocs_.end();
1247 ++p)
1248 {
1249 p->write(pov);
1250 pov += reloc_size;
1251 }
1252
a3ad94ed 1253 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1254
1255 of->write_output_view(off, oview_size, oview);
1256
1257 // We no longer need the relocation entries.
1258 this->relocs_.clear();
1259}
1260
6a74a719
ILT
1261// Class Output_relocatable_relocs.
1262
1263template<int sh_type, int size, bool big_endian>
1264void
1265Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1266{
1267 this->set_data_size(this->rr_->output_reloc_count()
1268 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1269}
1270
1271// class Output_data_group.
1272
1273template<int size, bool big_endian>
1274Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1275 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1276 section_size_type entry_count,
8825ac63
ILT
1277 elfcpp::Elf_Word flags,
1278 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1279 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1280 relobj_(relobj),
1281 flags_(flags)
6a74a719 1282{
8825ac63 1283 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1284}
1285
1286// Write out the section group, which means translating the section
1287// indexes to apply to the output file.
1288
1289template<int size, bool big_endian>
1290void
1291Output_data_group<size, big_endian>::do_write(Output_file* of)
1292{
1293 const off_t off = this->offset();
1294 const section_size_type oview_size =
1295 convert_to_section_size_type(this->data_size());
1296 unsigned char* const oview = of->get_output_view(off, oview_size);
1297
1298 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1299 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1300 ++contents;
1301
1302 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1303 this->input_shndxes_.begin();
1304 p != this->input_shndxes_.end();
6a74a719
ILT
1305 ++p, ++contents)
1306 {
ef9beddf 1307 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1308
1309 unsigned int output_shndx;
1310 if (os != NULL)
1311 output_shndx = os->out_shndx();
1312 else
1313 {
1314 this->relobj_->error(_("section group retained but "
1315 "group element discarded"));
1316 output_shndx = 0;
1317 }
1318
1319 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1320 }
1321
1322 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1323 gold_assert(wrote == oview_size);
1324
1325 of->write_output_view(off, oview_size, oview);
1326
1327 // We no longer need this information.
8825ac63 1328 this->input_shndxes_.clear();
6a74a719
ILT
1329}
1330
dbe717ef 1331// Output_data_got::Got_entry methods.
ead1e424
ILT
1332
1333// Write out the entry.
1334
1335template<int size, bool big_endian>
1336void
7e1edb90 1337Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1338{
1339 Valtype val = 0;
1340
1341 switch (this->local_sym_index_)
1342 {
1343 case GSYM_CODE:
1344 {
e8c846c3
ILT
1345 // If the symbol is resolved locally, we need to write out the
1346 // link-time value, which will be relocated dynamically by a
1347 // RELATIVE relocation.
ead1e424 1348 Symbol* gsym = this->u_.gsym;
7223e9ca
ILT
1349 if (this->use_plt_offset_ && gsym->has_plt_offset())
1350 val = (parameters->target().plt_section_for_global(gsym)->address()
1351 + gsym->plt_offset());
1352 else
1353 {
1354 Sized_symbol<size>* sgsym;
1355 // This cast is a bit ugly. We don't want to put a
1356 // virtual method in Symbol, because we want Symbol to be
1357 // as small as possible.
1358 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1359 val = sgsym->value();
1360 }
ead1e424
ILT
1361 }
1362 break;
1363
1364 case CONSTANT_CODE:
1365 val = this->u_.constant;
1366 break;
1367
4829d394
CC
1368 case RESERVED_CODE:
1369 // If we're doing an incremental update, don't touch this GOT entry.
1370 if (parameters->incremental_update())
1371 return;
1372 val = this->u_.constant;
1373 break;
1374
ead1e424 1375 default:
d1f003c6 1376 {
6fa2a40b 1377 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
d1f003c6 1378 const unsigned int lsi = this->local_sym_index_;
7223e9ca
ILT
1379 const Symbol_value<size>* symval = object->local_symbol(lsi);
1380 if (!this->use_plt_offset_)
1381 val = symval->value(this->u_.object, 0);
1382 else
1383 {
1384 const Output_data* plt =
1385 parameters->target().plt_section_for_local(object, lsi);
1386 val = plt->address() + object->local_plt_offset(lsi);
1387 }
d1f003c6 1388 }
e727fa71 1389 break;
ead1e424
ILT
1390 }
1391
a3ad94ed 1392 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1393}
1394
dbe717ef 1395// Output_data_got methods.
ead1e424 1396
dbe717ef
ILT
1397// Add an entry for a global symbol to the GOT. This returns true if
1398// this is a new GOT entry, false if the symbol already had a GOT
1399// entry.
1400
1401template<int size, bool big_endian>
1402bool
0a65a3a7
CC
1403Output_data_got<size, big_endian>::add_global(
1404 Symbol* gsym,
1405 unsigned int got_type)
ead1e424 1406{
0a65a3a7 1407 if (gsym->has_got_offset(got_type))
dbe717ef 1408 return false;
ead1e424 1409
4829d394
CC
1410 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1411 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1412 return true;
1413}
1414
1415// Like add_global, but use the PLT offset.
1416
1417template<int size, bool big_endian>
1418bool
1419Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1420 unsigned int got_type)
1421{
1422 if (gsym->has_got_offset(got_type))
1423 return false;
1424
4829d394
CC
1425 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1426 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1427 return true;
1428}
ead1e424 1429
7bf1f802
ILT
1430// Add an entry for a global symbol to the GOT, and add a dynamic
1431// relocation of type R_TYPE for the GOT entry.
7223e9ca 1432
7bf1f802
ILT
1433template<int size, bool big_endian>
1434void
1435Output_data_got<size, big_endian>::add_global_with_rel(
1436 Symbol* gsym,
0a65a3a7 1437 unsigned int got_type,
7bf1f802
ILT
1438 Rel_dyn* rel_dyn,
1439 unsigned int r_type)
1440{
0a65a3a7 1441 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1442 return;
1443
4829d394 1444 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1445 gsym->set_got_offset(got_type, got_offset);
1446 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1447}
1448
1449template<int size, bool big_endian>
1450void
1451Output_data_got<size, big_endian>::add_global_with_rela(
1452 Symbol* gsym,
0a65a3a7 1453 unsigned int got_type,
7bf1f802
ILT
1454 Rela_dyn* rela_dyn,
1455 unsigned int r_type)
1456{
0a65a3a7 1457 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1458 return;
1459
4829d394 1460 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1461 gsym->set_got_offset(got_type, got_offset);
1462 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1463}
1464
0a65a3a7
CC
1465// Add a pair of entries for a global symbol to the GOT, and add
1466// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1467// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1468template<int size, bool big_endian>
1469void
0a65a3a7
CC
1470Output_data_got<size, big_endian>::add_global_pair_with_rel(
1471 Symbol* gsym,
1472 unsigned int got_type,
7bf1f802 1473 Rel_dyn* rel_dyn,
0a65a3a7
CC
1474 unsigned int r_type_1,
1475 unsigned int r_type_2)
7bf1f802 1476{
0a65a3a7 1477 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1478 return;
1479
4829d394 1480 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1481 gsym->set_got_offset(got_type, got_offset);
1482 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7 1483
0a65a3a7 1484 if (r_type_2 != 0)
4829d394 1485 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1486}
1487
1488template<int size, bool big_endian>
1489void
0a65a3a7
CC
1490Output_data_got<size, big_endian>::add_global_pair_with_rela(
1491 Symbol* gsym,
1492 unsigned int got_type,
7bf1f802 1493 Rela_dyn* rela_dyn,
0a65a3a7
CC
1494 unsigned int r_type_1,
1495 unsigned int r_type_2)
7bf1f802 1496{
0a65a3a7 1497 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1498 return;
1499
4829d394 1500 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1501 gsym->set_got_offset(got_type, got_offset);
1502 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1503
0a65a3a7 1504 if (r_type_2 != 0)
4829d394 1505 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
7bf1f802
ILT
1506}
1507
0a65a3a7
CC
1508// Add an entry for a local symbol to the GOT. This returns true if
1509// this is a new GOT entry, false if the symbol already has a GOT
1510// entry.
07f397ab
ILT
1511
1512template<int size, bool big_endian>
1513bool
0a65a3a7 1514Output_data_got<size, big_endian>::add_local(
6fa2a40b 1515 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1516 unsigned int symndx,
1517 unsigned int got_type)
07f397ab 1518{
0a65a3a7 1519 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1520 return false;
1521
4829d394
CC
1522 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1523 false));
1524 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1525 return true;
1526}
1527
1528// Like add_local, but use the PLT offset.
1529
1530template<int size, bool big_endian>
1531bool
1532Output_data_got<size, big_endian>::add_local_plt(
6fa2a40b 1533 Sized_relobj_file<size, big_endian>* object,
7223e9ca
ILT
1534 unsigned int symndx,
1535 unsigned int got_type)
1536{
1537 if (object->local_has_got_offset(symndx, got_type))
1538 return false;
1539
4829d394
CC
1540 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1541 true));
1542 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1543 return true;
1544}
1545
0a65a3a7
CC
1546// Add an entry for a local symbol to the GOT, and add a dynamic
1547// relocation of type R_TYPE for the GOT entry.
7223e9ca 1548
7bf1f802
ILT
1549template<int size, bool big_endian>
1550void
0a65a3a7 1551Output_data_got<size, big_endian>::add_local_with_rel(
6fa2a40b 1552 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1553 unsigned int symndx,
1554 unsigned int got_type,
7bf1f802
ILT
1555 Rel_dyn* rel_dyn,
1556 unsigned int r_type)
1557{
0a65a3a7 1558 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1559 return;
1560
4829d394 1561 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1562 object->set_local_got_offset(symndx, got_type, got_offset);
1563 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1564}
1565
1566template<int size, bool big_endian>
1567void
0a65a3a7 1568Output_data_got<size, big_endian>::add_local_with_rela(
6fa2a40b 1569 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1570 unsigned int symndx,
1571 unsigned int got_type,
7bf1f802
ILT
1572 Rela_dyn* rela_dyn,
1573 unsigned int r_type)
1574{
0a65a3a7 1575 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1576 return;
1577
4829d394 1578 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1579 object->set_local_got_offset(symndx, got_type, got_offset);
1580 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1581}
1582
0a65a3a7
CC
1583// Add a pair of entries for a local symbol to the GOT, and add
1584// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1585// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1586template<int size, bool big_endian>
1587void
0a65a3a7 1588Output_data_got<size, big_endian>::add_local_pair_with_rel(
6fa2a40b 1589 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1590 unsigned int symndx,
1591 unsigned int shndx,
0a65a3a7 1592 unsigned int got_type,
7bf1f802 1593 Rel_dyn* rel_dyn,
0a65a3a7
CC
1594 unsigned int r_type_1,
1595 unsigned int r_type_2)
7bf1f802 1596{
0a65a3a7 1597 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1598 return;
1599
4829d394
CC
1600 unsigned int got_offset =
1601 this->add_got_entry_pair(Got_entry(),
1602 Got_entry(object, symndx, false));
2ea97941 1603 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1604 Output_section* os = object->output_section(shndx);
2ea97941 1605 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1606
0a65a3a7 1607 if (r_type_2 != 0)
4829d394 1608 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1609}
1610
1611template<int size, bool big_endian>
1612void
0a65a3a7 1613Output_data_got<size, big_endian>::add_local_pair_with_rela(
6fa2a40b 1614 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1615 unsigned int symndx,
1616 unsigned int shndx,
0a65a3a7 1617 unsigned int got_type,
7bf1f802 1618 Rela_dyn* rela_dyn,
0a65a3a7
CC
1619 unsigned int r_type_1,
1620 unsigned int r_type_2)
7bf1f802 1621{
0a65a3a7 1622 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1623 return;
1624
4829d394
CC
1625 unsigned int got_offset =
1626 this->add_got_entry_pair(Got_entry(),
1627 Got_entry(object, symndx, false));
2ea97941 1628 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1629 Output_section* os = object->output_section(shndx);
2ea97941 1630 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1631
0a65a3a7 1632 if (r_type_2 != 0)
4829d394
CC
1633 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1634}
1635
1636// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1637
1638template<int size, bool big_endian>
1639void
6fa2a40b
CC
1640Output_data_got<size, big_endian>::reserve_local(
1641 unsigned int i,
1642 Sized_relobj<size, big_endian>* object,
1643 unsigned int sym_index,
1644 unsigned int got_type)
4829d394 1645{
6fa2a40b
CC
1646 this->reserve_slot(i);
1647 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1648}
7bf1f802 1649
4829d394
CC
1650// Reserve a slot in the GOT for a global symbol.
1651
1652template<int size, bool big_endian>
1653void
6fa2a40b 1654Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1655 unsigned int i,
1656 Symbol* gsym,
1657 unsigned int got_type)
1658{
6fa2a40b 1659 this->reserve_slot(i);
4829d394 1660 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1661}
1662
ead1e424
ILT
1663// Write out the GOT.
1664
1665template<int size, bool big_endian>
1666void
dbe717ef 1667Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1668{
1669 const int add = size / 8;
1670
1671 const off_t off = this->offset();
c06b7b0b 1672 const off_t oview_size = this->data_size();
ead1e424
ILT
1673 unsigned char* const oview = of->get_output_view(off, oview_size);
1674
1675 unsigned char* pov = oview;
1676 for (typename Got_entries::const_iterator p = this->entries_.begin();
1677 p != this->entries_.end();
1678 ++p)
1679 {
7e1edb90 1680 p->write(pov);
ead1e424
ILT
1681 pov += add;
1682 }
1683
a3ad94ed 1684 gold_assert(pov - oview == oview_size);
c06b7b0b 1685
ead1e424
ILT
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690}
1691
4829d394
CC
1692// Create a new GOT entry and return its offset.
1693
1694template<int size, bool big_endian>
1695unsigned int
1696Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1697{
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1708 if (got_offset == -1)
e6455dfb
CC
1709 gold_fallback(_("out of patch space (GOT);"
1710 " relink with --incremental-full"));
4829d394
CC
1711 unsigned int got_index = got_offset / (size / 8);
1712 gold_assert(got_index < this->entries_.size());
1713 this->entries_[got_index] = got_entry;
1714 return static_cast<unsigned int>(got_offset);
1715 }
1716}
1717
1718// Create a pair of new GOT entries and return the offset of the first.
1719
1720template<int size, bool big_endian>
1721unsigned int
1722Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1723 Got_entry got_entry_2)
1724{
1725 if (!this->is_data_size_valid())
1726 {
1727 unsigned int got_offset;
1728 this->entries_.push_back(got_entry_1);
1729 got_offset = this->last_got_offset();
1730 this->entries_.push_back(got_entry_2);
1731 this->set_got_size();
1732 return got_offset;
1733 }
1734 else
1735 {
1736 // For an incremental update, find an available pair of slots.
1737 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1738 if (got_offset == -1)
e6455dfb
CC
1739 gold_fallback(_("out of patch space (GOT);"
1740 " relink with --incremental-full"));
4829d394
CC
1741 unsigned int got_index = got_offset / (size / 8);
1742 gold_assert(got_index < this->entries_.size());
1743 this->entries_[got_index] = got_entry_1;
1744 this->entries_[got_index + 1] = got_entry_2;
1745 return static_cast<unsigned int>(got_offset);
1746 }
1747}
1748
a3ad94ed
ILT
1749// Output_data_dynamic::Dynamic_entry methods.
1750
1751// Write out the entry.
1752
1753template<int size, bool big_endian>
1754void
1755Output_data_dynamic::Dynamic_entry::write(
1756 unsigned char* pov,
7d1a9ebb 1757 const Stringpool* pool) const
a3ad94ed
ILT
1758{
1759 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1760 switch (this->offset_)
a3ad94ed
ILT
1761 {
1762 case DYNAMIC_NUMBER:
1763 val = this->u_.val;
1764 break;
1765
a3ad94ed 1766 case DYNAMIC_SECTION_SIZE:
16649710 1767 val = this->u_.od->data_size();
612a8d3d
DM
1768 if (this->od2 != NULL)
1769 val += this->od2->data_size();
a3ad94ed
ILT
1770 break;
1771
1772 case DYNAMIC_SYMBOL:
1773 {
16649710
ILT
1774 const Sized_symbol<size>* s =
1775 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1776 val = s->value();
1777 }
1778 break;
1779
1780 case DYNAMIC_STRING:
1781 val = pool->get_offset(this->u_.str);
1782 break;
1783
1784 default:
c2b45e22
CC
1785 val = this->u_.od->address() + this->offset_;
1786 break;
a3ad94ed
ILT
1787 }
1788
1789 elfcpp::Dyn_write<size, big_endian> dw(pov);
1790 dw.put_d_tag(this->tag_);
1791 dw.put_d_val(val);
1792}
1793
1794// Output_data_dynamic methods.
1795
16649710
ILT
1796// Adjust the output section to set the entry size.
1797
1798void
1799Output_data_dynamic::do_adjust_output_section(Output_section* os)
1800{
8851ecca 1801 if (parameters->target().get_size() == 32)
16649710 1802 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1803 else if (parameters->target().get_size() == 64)
16649710
ILT
1804 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1805 else
1806 gold_unreachable();
1807}
1808
a3ad94ed
ILT
1809// Set the final data size.
1810
1811void
27bc2bce 1812Output_data_dynamic::set_final_data_size()
a3ad94ed 1813{
20e6d0d6
DK
1814 // Add the terminating entry if it hasn't been added.
1815 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1816 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1817 {
1818 int extra = parameters->options().spare_dynamic_tags();
1819 for (int i = 0; i < extra; ++i)
1820 this->add_constant(elfcpp::DT_NULL, 0);
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 }
a3ad94ed
ILT
1823
1824 int dyn_size;
8851ecca 1825 if (parameters->target().get_size() == 32)
a3ad94ed 1826 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1827 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1828 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1829 else
1830 gold_unreachable();
1831 this->set_data_size(this->entries_.size() * dyn_size);
1832}
1833
1834// Write out the dynamic entries.
1835
1836void
1837Output_data_dynamic::do_write(Output_file* of)
1838{
8851ecca 1839 switch (parameters->size_and_endianness())
a3ad94ed 1840 {
9025d29d 1841#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1842 case Parameters::TARGET_32_LITTLE:
1843 this->sized_write<32, false>(of);
1844 break;
9025d29d 1845#endif
8851ecca
ILT
1846#ifdef HAVE_TARGET_32_BIG
1847 case Parameters::TARGET_32_BIG:
1848 this->sized_write<32, true>(of);
1849 break;
9025d29d 1850#endif
9025d29d 1851#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1852 case Parameters::TARGET_64_LITTLE:
1853 this->sized_write<64, false>(of);
1854 break;
9025d29d 1855#endif
8851ecca
ILT
1856#ifdef HAVE_TARGET_64_BIG
1857 case Parameters::TARGET_64_BIG:
1858 this->sized_write<64, true>(of);
1859 break;
1860#endif
1861 default:
1862 gold_unreachable();
a3ad94ed 1863 }
a3ad94ed
ILT
1864}
1865
1866template<int size, bool big_endian>
1867void
1868Output_data_dynamic::sized_write(Output_file* of)
1869{
1870 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1871
2ea97941 1872 const off_t offset = this->offset();
a3ad94ed 1873 const off_t oview_size = this->data_size();
2ea97941 1874 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1875
1876 unsigned char* pov = oview;
1877 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1878 p != this->entries_.end();
1879 ++p)
1880 {
7d1a9ebb 1881 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1882 pov += dyn_size;
1883 }
1884
1885 gold_assert(pov - oview == oview_size);
1886
2ea97941 1887 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1888
1889 // We no longer need the dynamic entries.
1890 this->entries_.clear();
1891}
1892
d491d34e
ILT
1893// Class Output_symtab_xindex.
1894
1895void
1896Output_symtab_xindex::do_write(Output_file* of)
1897{
2ea97941 1898 const off_t offset = this->offset();
d491d34e 1899 const off_t oview_size = this->data_size();
2ea97941 1900 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1901
1902 memset(oview, 0, oview_size);
1903
1904 if (parameters->target().is_big_endian())
1905 this->endian_do_write<true>(oview);
1906 else
1907 this->endian_do_write<false>(oview);
1908
2ea97941 1909 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1910
1911 // We no longer need the data.
1912 this->entries_.clear();
1913}
1914
1915template<bool big_endian>
1916void
1917Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1918{
1919 for (Xindex_entries::const_iterator p = this->entries_.begin();
1920 p != this->entries_.end();
1921 ++p)
20e6d0d6
DK
1922 {
1923 unsigned int symndx = p->first;
1924 gold_assert(symndx * 4 < this->data_size());
1925 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1926 }
d491d34e
ILT
1927}
1928
ead1e424
ILT
1929// Output_section::Input_section methods.
1930
cdc29364
CC
1931// Return the current data size. For an input section we store the size here.
1932// For an Output_section_data, we have to ask it for the size.
1933
1934off_t
1935Output_section::Input_section::current_data_size() const
1936{
1937 if (this->is_input_section())
1938 return this->u1_.data_size;
1939 else
1940 {
1941 this->u2_.posd->pre_finalize_data_size();
1942 return this->u2_.posd->current_data_size();
1943 }
1944}
1945
ead1e424
ILT
1946// Return the data size. For an input section we store the size here.
1947// For an Output_section_data, we have to ask it for the size.
1948
1949off_t
1950Output_section::Input_section::data_size() const
1951{
1952 if (this->is_input_section())
b8e6aad9 1953 return this->u1_.data_size;
ead1e424 1954 else
b8e6aad9 1955 return this->u2_.posd->data_size();
ead1e424
ILT
1956}
1957
0439c796
DK
1958// Return the object for an input section.
1959
1960Relobj*
1961Output_section::Input_section::relobj() const
1962{
1963 if (this->is_input_section())
1964 return this->u2_.object;
1965 else if (this->is_merge_section())
1966 {
1967 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1968 return this->u2_.pomb->first_relobj();
1969 }
1970 else if (this->is_relaxed_input_section())
1971 return this->u2_.poris->relobj();
1972 else
1973 gold_unreachable();
1974}
1975
1976// Return the input section index for an input section.
1977
1978unsigned int
1979Output_section::Input_section::shndx() const
1980{
1981 if (this->is_input_section())
1982 return this->shndx_;
1983 else if (this->is_merge_section())
1984 {
1985 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1986 return this->u2_.pomb->first_shndx();
1987 }
1988 else if (this->is_relaxed_input_section())
1989 return this->u2_.poris->shndx();
1990 else
1991 gold_unreachable();
1992}
1993
ead1e424
ILT
1994// Set the address and file offset.
1995
1996void
96803768
ILT
1997Output_section::Input_section::set_address_and_file_offset(
1998 uint64_t address,
1999 off_t file_offset,
2000 off_t section_file_offset)
ead1e424
ILT
2001{
2002 if (this->is_input_section())
96803768
ILT
2003 this->u2_.object->set_section_offset(this->shndx_,
2004 file_offset - section_file_offset);
ead1e424 2005 else
96803768
ILT
2006 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2007}
2008
a445fddf
ILT
2009// Reset the address and file offset.
2010
2011void
2012Output_section::Input_section::reset_address_and_file_offset()
2013{
2014 if (!this->is_input_section())
2015 this->u2_.posd->reset_address_and_file_offset();
2016}
2017
96803768
ILT
2018// Finalize the data size.
2019
2020void
2021Output_section::Input_section::finalize_data_size()
2022{
2023 if (!this->is_input_section())
2024 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2025}
2026
1e983657
ILT
2027// Try to turn an input offset into an output offset. We want to
2028// return the output offset relative to the start of this
2029// Input_section in the output section.
b8e6aad9 2030
8f00aeb8 2031inline bool
8383303e
ILT
2032Output_section::Input_section::output_offset(
2033 const Relobj* object,
2ea97941
ILT
2034 unsigned int shndx,
2035 section_offset_type offset,
ca09d69a 2036 section_offset_type* poutput) const
b8e6aad9
ILT
2037{
2038 if (!this->is_input_section())
2ea97941 2039 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2040 else
2041 {
2ea97941 2042 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2043 return false;
2ea97941 2044 *poutput = offset;
b8e6aad9
ILT
2045 return true;
2046 }
ead1e424
ILT
2047}
2048
a9a60db6
ILT
2049// Return whether this is the merge section for the input section
2050// SHNDX in OBJECT.
2051
2052inline bool
2053Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2054 unsigned int shndx) const
a9a60db6
ILT
2055{
2056 if (this->is_input_section())
2057 return false;
2ea97941 2058 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2059}
2060
ead1e424
ILT
2061// Write out the data. We don't have to do anything for an input
2062// section--they are handled via Object::relocate--but this is where
2063// we write out the data for an Output_section_data.
2064
2065void
2066Output_section::Input_section::write(Output_file* of)
2067{
2068 if (!this->is_input_section())
b8e6aad9 2069 this->u2_.posd->write(of);
ead1e424
ILT
2070}
2071
96803768
ILT
2072// Write the data to a buffer. As for write(), we don't have to do
2073// anything for an input section.
2074
2075void
2076Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2077{
2078 if (!this->is_input_section())
2079 this->u2_.posd->write_to_buffer(buffer);
2080}
2081
7d9e3d98
ILT
2082// Print to a map file.
2083
2084void
2085Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2086{
2087 switch (this->shndx_)
2088 {
2089 case OUTPUT_SECTION_CODE:
2090 case MERGE_DATA_SECTION_CODE:
2091 case MERGE_STRING_SECTION_CODE:
2092 this->u2_.posd->print_to_mapfile(mapfile);
2093 break;
2094
20e6d0d6
DK
2095 case RELAXED_INPUT_SECTION_CODE:
2096 {
2097 Output_relaxed_input_section* relaxed_section =
2098 this->relaxed_input_section();
2099 mapfile->print_input_section(relaxed_section->relobj(),
2100 relaxed_section->shndx());
2101 }
2102 break;
7d9e3d98
ILT
2103 default:
2104 mapfile->print_input_section(this->u2_.object, this->shndx_);
2105 break;
2106 }
2107}
2108
a2fb1b05
ILT
2109// Output_section methods.
2110
2111// Construct an Output_section. NAME will point into a Stringpool.
2112
2ea97941
ILT
2113Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2114 elfcpp::Elf_Xword flags)
2115 : name_(name),
a2fb1b05
ILT
2116 addralign_(0),
2117 entsize_(0),
a445fddf 2118 load_address_(0),
16649710 2119 link_section_(NULL),
a2fb1b05 2120 link_(0),
16649710 2121 info_section_(NULL),
6a74a719 2122 info_symndx_(NULL),
a2fb1b05 2123 info_(0),
2ea97941
ILT
2124 type_(type),
2125 flags_(flags),
22f0da72 2126 order_(ORDER_INVALID),
91ea499d 2127 out_shndx_(-1U),
c06b7b0b
ILT
2128 symtab_index_(0),
2129 dynsym_index_(0),
ead1e424
ILT
2130 input_sections_(),
2131 first_input_offset_(0),
c51e6221 2132 fills_(),
96803768 2133 postprocessing_buffer_(NULL),
a3ad94ed 2134 needs_symtab_index_(false),
16649710
ILT
2135 needs_dynsym_index_(false),
2136 should_link_to_symtab_(false),
730cdc88 2137 should_link_to_dynsym_(false),
27bc2bce 2138 after_input_sections_(false),
7bf1f802 2139 requires_postprocessing_(false),
a445fddf
ILT
2140 found_in_sections_clause_(false),
2141 has_load_address_(false),
755ab8af 2142 info_uses_section_index_(false),
6e9ba2ca 2143 input_section_order_specified_(false),
2fd32231
ILT
2144 may_sort_attached_input_sections_(false),
2145 must_sort_attached_input_sections_(false),
2146 attached_input_sections_are_sorted_(false),
9f1d377b 2147 is_relro_(false),
8a5e3e08
ILT
2148 is_small_section_(false),
2149 is_large_section_(false),
f5c870d2 2150 generate_code_fills_at_write_(false),
e8cd95c7 2151 is_entsize_zero_(false),
8923b24c 2152 section_offsets_need_adjustment_(false),
1e5d2fb1 2153 is_noload_(false),
131687b4 2154 always_keeps_input_sections_(false),
cdc29364 2155 has_fixed_layout_(false),
20e6d0d6 2156 tls_offset_(0),
c0a62865 2157 checkpoint_(NULL),
cdc29364
CC
2158 lookup_maps_(new Output_section_lookup_maps),
2159 free_list_()
a2fb1b05 2160{
27bc2bce
ILT
2161 // An unallocated section has no address. Forcing this means that
2162 // we don't need special treatment for symbols defined in debug
2163 // sections.
2ea97941 2164 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2165 this->set_address(0);
a2fb1b05
ILT
2166}
2167
54dc6425
ILT
2168Output_section::~Output_section()
2169{
20e6d0d6 2170 delete this->checkpoint_;
54dc6425
ILT
2171}
2172
16649710
ILT
2173// Set the entry size.
2174
2175void
2176Output_section::set_entsize(uint64_t v)
2177{
e8cd95c7
ILT
2178 if (this->is_entsize_zero_)
2179 ;
2180 else if (this->entsize_ == 0)
16649710 2181 this->entsize_ = v;
e8cd95c7
ILT
2182 else if (this->entsize_ != v)
2183 {
2184 this->entsize_ = 0;
2185 this->is_entsize_zero_ = 1;
2186 }
16649710
ILT
2187}
2188
ead1e424 2189// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2190// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2191// relocation section which applies to this section, or 0 if none, or
2192// -1U if more than one. Return the offset of the input section
2193// within the output section. Return -1 if the input section will
2194// receive special handling. In the normal case we don't always keep
2195// track of input sections for an Output_section. Instead, each
2196// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2197// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2198// track of input sections here; this is used when SECTIONS appears in
2199// a linker script.
a2fb1b05
ILT
2200
2201template<int size, bool big_endian>
2202off_t
6e9ba2ca 2203Output_section::add_input_section(Layout* layout,
6fa2a40b 2204 Sized_relobj_file<size, big_endian>* object,
2ea97941 2205 unsigned int shndx,
ead1e424 2206 const char* secname,
730cdc88 2207 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2208 unsigned int reloc_shndx,
2209 bool have_sections_script)
a2fb1b05 2210{
2ea97941
ILT
2211 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2212 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2213 {
75f2446e 2214 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2215 static_cast<unsigned long>(addralign), secname);
2216 addralign = 1;
a2fb1b05 2217 }
a2fb1b05 2218
2ea97941
ILT
2219 if (addralign > this->addralign_)
2220 this->addralign_ = addralign;
a2fb1b05 2221
44a43cf9 2222 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2223 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2224
2225 // .debug_str is a mergeable string section, but is not always so
2226 // marked by compilers. Mark manually here so we can optimize.
2227 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2228 {
2229 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2230 entsize = 1;
4f833eee 2231 }
44a43cf9 2232
e8cd95c7
ILT
2233 this->update_flags_for_input_section(sh_flags);
2234 this->set_entsize(entsize);
2235
b8e6aad9 2236 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2237 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2238 // a section. We don't try to handle empty merge sections--they
2239 // mess up the mappings, and are useless anyhow.
cdc29364 2240 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2241 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2242 && reloc_shndx == 0
cdc29364
CC
2243 && shdr.get_sh_size() > 0
2244 && !parameters->incremental())
b8e6aad9 2245 {
0439c796
DK
2246 // Keep information about merged input sections for rebuilding fast
2247 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2248 bool keeps_input_sections = (this->always_keeps_input_sections_
2249 || have_sections_script
2250 || parameters->target().may_relax());
2251
0439c796
DK
2252 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2253 addralign, keeps_input_sections))
b8e6aad9
ILT
2254 {
2255 // Tell the relocation routines that they need to call the
730cdc88 2256 // output_offset method to determine the final address.
b8e6aad9
ILT
2257 return -1;
2258 }
2259 }
2260
cdc29364
CC
2261 section_size_type input_section_size = shdr.get_sh_size();
2262 section_size_type uncompressed_size;
2263 if (object->section_is_compressed(shndx, &uncompressed_size))
2264 input_section_size = uncompressed_size;
2265
2266 off_t offset_in_section;
2267 off_t aligned_offset_in_section;
2268 if (this->has_fixed_layout())
2269 {
2270 // For incremental updates, find a chunk of unused space in the section.
2271 offset_in_section = this->free_list_.allocate(input_section_size,
2272 addralign, 0);
2273 if (offset_in_section == -1)
e6455dfb 2274 gold_fallback(_("out of patch space; relink with --incremental-full"));
cdc29364
CC
2275 aligned_offset_in_section = offset_in_section;
2276 }
2277 else
2278 {
2279 offset_in_section = this->current_data_size_for_child();
2280 aligned_offset_in_section = align_address(offset_in_section,
2281 addralign);
2282 this->set_current_data_size_for_child(aligned_offset_in_section
2283 + input_section_size);
2284 }
c51e6221 2285
c0a62865
DK
2286 // Determine if we want to delay code-fill generation until the output
2287 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2288 // generating to avoid adjusting them during relaxation. Also, if we are
2289 // sorting input sections we must delay fill generation.
c0a62865
DK
2290 if (!this->generate_code_fills_at_write_
2291 && !have_sections_script
2292 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2293 && parameters->target().has_code_fill()
4cf7a849
ST
2294 && (parameters->target().may_relax()
2295 || parameters->options().section_ordering_file()))
c0a62865
DK
2296 {
2297 gold_assert(this->fills_.empty());
2298 this->generate_code_fills_at_write_ = true;
2299 }
2300
c51e6221 2301 if (aligned_offset_in_section > offset_in_section
c0a62865 2302 && !this->generate_code_fills_at_write_
a445fddf 2303 && !have_sections_script
44a43cf9 2304 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2305 && parameters->target().has_code_fill())
c51e6221
ILT
2306 {
2307 // We need to add some fill data. Using fill_list_ when
2308 // possible is an optimization, since we will often have fill
2309 // sections without input sections.
2310 off_t fill_len = aligned_offset_in_section - offset_in_section;
2311 if (this->input_sections_.empty())
2312 this->fills_.push_back(Fill(offset_in_section, fill_len));
2313 else
2314 {
029ba973 2315 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2316 Output_data_const* odc = new Output_data_const(fill_data, 1);
2317 this->input_sections_.push_back(Input_section(odc));
2318 }
2319 }
2320
ead1e424 2321 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2322 // track of sections, or if we are relaxing. Also, if this is a
2323 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2324 // the future, we keep track of the sections. If the
2325 // --section-ordering-file option is used to specify the order of
2326 // sections, we need to keep track of sections.
131687b4
DK
2327 if (this->always_keeps_input_sections_
2328 || have_sections_script
2fd32231
ILT
2329 || !this->input_sections_.empty()
2330 || this->may_sort_attached_input_sections()
7d9e3d98 2331 || this->must_sort_attached_input_sections()
20e6d0d6 2332 || parameters->options().user_set_Map()
6e9ba2ca
ST
2333 || parameters->target().may_relax()
2334 || parameters->options().section_ordering_file())
2335 {
6fc6ea19 2336 Input_section isecn(object, shndx, input_section_size, addralign);
6e9ba2ca
ST
2337 if (parameters->options().section_ordering_file())
2338 {
2339 unsigned int section_order_index =
2340 layout->find_section_order_index(std::string(secname));
2341 if (section_order_index != 0)
2342 {
2343 isecn.set_section_order_index(section_order_index);
2344 this->set_input_section_order_specified();
2345 }
2346 }
cdc29364
CC
2347 if (this->has_fixed_layout())
2348 {
2349 // For incremental updates, finalize the address and offset now.
2350 uint64_t addr = this->address();
2351 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2352 aligned_offset_in_section,
2353 this->offset());
2354 }
6e9ba2ca
ST
2355 this->input_sections_.push_back(isecn);
2356 }
54dc6425 2357
c51e6221 2358 return aligned_offset_in_section;
61ba1cf9
ILT
2359}
2360
ead1e424
ILT
2361// Add arbitrary data to an output section.
2362
2363void
2364Output_section::add_output_section_data(Output_section_data* posd)
2365{
b8e6aad9
ILT
2366 Input_section inp(posd);
2367 this->add_output_section_data(&inp);
a445fddf
ILT
2368
2369 if (posd->is_data_size_valid())
2370 {
cdc29364
CC
2371 off_t offset_in_section;
2372 if (this->has_fixed_layout())
2373 {
2374 // For incremental updates, find a chunk of unused space.
2375 offset_in_section = this->free_list_.allocate(posd->data_size(),
2376 posd->addralign(), 0);
2377 if (offset_in_section == -1)
e6455dfb
CC
2378 gold_fallback(_("out of patch space; "
2379 "relink with --incremental-full"));
cdc29364
CC
2380 // Finalize the address and offset now.
2381 uint64_t addr = this->address();
2382 off_t offset = this->offset();
2383 posd->set_address_and_file_offset(addr + offset_in_section,
2384 offset + offset_in_section);
2385 }
2386 else
2387 {
2388 offset_in_section = this->current_data_size_for_child();
2389 off_t aligned_offset_in_section = align_address(offset_in_section,
2390 posd->addralign());
2391 this->set_current_data_size_for_child(aligned_offset_in_section
2392 + posd->data_size());
2393 }
2394 }
2395 else if (this->has_fixed_layout())
2396 {
2397 // For incremental updates, arrange for the data to have a fixed layout.
2398 // This will mean that additions to the data must be allocated from
2399 // free space within the containing output section.
2400 uint64_t addr = this->address();
2401 posd->set_address(addr);
2402 posd->set_file_offset(0);
4829d394
CC
2403 // FIXME: This should eventually be unreachable.
2404 // gold_unreachable();
a445fddf 2405 }
b8e6aad9
ILT
2406}
2407
c0a62865
DK
2408// Add a relaxed input section.
2409
2410void
d06fb4d1
DK
2411Output_section::add_relaxed_input_section(Layout* layout,
2412 Output_relaxed_input_section* poris,
2413 const std::string& name)
c0a62865
DK
2414{
2415 Input_section inp(poris);
d06fb4d1
DK
2416
2417 // If the --section-ordering-file option is used to specify the order of
2418 // sections, we need to keep track of sections.
2419 if (parameters->options().section_ordering_file())
2420 {
2421 unsigned int section_order_index =
2422 layout->find_section_order_index(name);
2423 if (section_order_index != 0)
2424 {
2425 inp.set_section_order_index(section_order_index);
2426 this->set_input_section_order_specified();
2427 }
2428 }
2429
c0a62865 2430 this->add_output_section_data(&inp);
0439c796
DK
2431 if (this->lookup_maps_->is_valid())
2432 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2433 poris->shndx(), poris);
c0a62865
DK
2434
2435 // For a relaxed section, we use the current data size. Linker scripts
2436 // get all the input sections, including relaxed one from an output
2437 // section and add them back to them same output section to compute the
2438 // output section size. If we do not account for sizes of relaxed input
2439 // sections, an output section would be incorrectly sized.
2440 off_t offset_in_section = this->current_data_size_for_child();
2441 off_t aligned_offset_in_section = align_address(offset_in_section,
2442 poris->addralign());
2443 this->set_current_data_size_for_child(aligned_offset_in_section
2444 + poris->current_data_size());
2445}
2446
b8e6aad9 2447// Add arbitrary data to an output section by Input_section.
c06b7b0b 2448
b8e6aad9
ILT
2449void
2450Output_section::add_output_section_data(Input_section* inp)
2451{
ead1e424 2452 if (this->input_sections_.empty())
27bc2bce 2453 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2454
b8e6aad9 2455 this->input_sections_.push_back(*inp);
c06b7b0b 2456
2ea97941
ILT
2457 uint64_t addralign = inp->addralign();
2458 if (addralign > this->addralign_)
2459 this->addralign_ = addralign;
c06b7b0b 2460
b8e6aad9
ILT
2461 inp->set_output_section(this);
2462}
2463
2464// Add a merge section to an output section.
2465
2466void
2467Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2468 bool is_string, uint64_t entsize)
b8e6aad9 2469{
2ea97941 2470 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2471 this->add_output_section_data(&inp);
2472}
2473
2474// Add an input section to a SHF_MERGE section.
2475
2476bool
2ea97941
ILT
2477Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2478 uint64_t flags, uint64_t entsize,
0439c796
DK
2479 uint64_t addralign,
2480 bool keeps_input_sections)
b8e6aad9 2481{
2ea97941 2482 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2483
2484 // We only merge strings if the alignment is not more than the
2485 // character size. This could be handled, but it's unusual.
2ea97941 2486 if (is_string && addralign > entsize)
b8e6aad9
ILT
2487 return false;
2488
20e6d0d6
DK
2489 // We cannot restore merged input section states.
2490 gold_assert(this->checkpoint_ == NULL);
2491
c0a62865 2492 // Look up merge sections by required properties.
0439c796
DK
2493 // Currently, we only invalidate the lookup maps in script processing
2494 // and relaxation. We should not have done either when we reach here.
2495 // So we assume that the lookup maps are valid to simply code.
2496 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2497 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2498 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2499 bool is_new = false;
2500 if (pomb != NULL)
c0a62865 2501 {
6bf924b0
DK
2502 gold_assert(pomb->is_string() == is_string
2503 && pomb->entsize() == entsize
2504 && pomb->addralign() == addralign);
c0a62865 2505 }
b8e6aad9
ILT
2506 else
2507 {
6bf924b0
DK
2508 // Create a new Output_merge_data or Output_merge_string_data.
2509 if (!is_string)
2510 pomb = new Output_merge_data(entsize, addralign);
2511 else
9a0910c3 2512 {
6bf924b0
DK
2513 switch (entsize)
2514 {
2515 case 1:
2516 pomb = new Output_merge_string<char>(addralign);
2517 break;
2518 case 2:
2519 pomb = new Output_merge_string<uint16_t>(addralign);
2520 break;
2521 case 4:
2522 pomb = new Output_merge_string<uint32_t>(addralign);
2523 break;
2524 default:
2525 return false;
2526 }
9a0910c3 2527 }
0439c796
DK
2528 // If we need to do script processing or relaxation, we need to keep
2529 // the original input sections to rebuild the fast lookup maps.
2530 if (keeps_input_sections)
2531 pomb->set_keeps_input_sections();
2532 is_new = true;
b8e6aad9
ILT
2533 }
2534
6bf924b0
DK
2535 if (pomb->add_input_section(object, shndx))
2536 {
0439c796
DK
2537 // Add new merge section to this output section and link merge
2538 // section properties to new merge section in map.
2539 if (is_new)
2540 {
2541 this->add_output_merge_section(pomb, is_string, entsize);
2542 this->lookup_maps_->add_merge_section(msp, pomb);
2543 }
2544
6bf924b0
DK
2545 // Add input section to new merge section and link input section to new
2546 // merge section in map.
0439c796 2547 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2548 return true;
2549 }
2550 else
0439c796
DK
2551 {
2552 // If add_input_section failed, delete new merge section to avoid
2553 // exporting empty merge sections in Output_section::get_input_section.
2554 if (is_new)
2555 delete pomb;
2556 return false;
2557 }
b8e6aad9
ILT
2558}
2559
c0a62865 2560// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2561// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2562
20e6d0d6 2563void
c0a62865 2564Output_section::build_relaxation_map(
2ea97941 2565 const Input_section_list& input_sections,
c0a62865
DK
2566 size_t limit,
2567 Relaxation_map* relaxation_map) const
20e6d0d6 2568{
c0a62865
DK
2569 for (size_t i = 0; i < limit; ++i)
2570 {
2ea97941 2571 const Input_section& is(input_sections[i]);
c0a62865
DK
2572 if (is.is_input_section() || is.is_relaxed_input_section())
2573 {
5ac169d4
DK
2574 Section_id sid(is.relobj(), is.shndx());
2575 (*relaxation_map)[sid] = i;
c0a62865
DK
2576 }
2577 }
2578}
2579
2580// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2581// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2582// indices of INPUT_SECTIONS.
20e6d0d6 2583
c0a62865
DK
2584void
2585Output_section::convert_input_sections_in_list_to_relaxed_sections(
2586 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2587 const Relaxation_map& map,
2ea97941 2588 Input_section_list* input_sections)
c0a62865
DK
2589{
2590 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2591 {
2592 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2593 Section_id sid(poris->relobj(), poris->shndx());
2594 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2595 gold_assert(p != map.end());
2ea97941 2596 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2597
2598 // Remember section order index of original input section
2599 // if it is set. Copy it to the relaxed input section.
2600 unsigned int soi =
2601 (*input_sections)[p->second].section_order_index();
2ea97941 2602 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2603 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2604 }
2605}
2606
2607// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2608// is a vector of pointers to Output_relaxed_input_section or its derived
2609// classes. The relaxed sections must correspond to existing input sections.
2610
2611void
2612Output_section::convert_input_sections_to_relaxed_sections(
2613 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2614{
029ba973 2615 gold_assert(parameters->target().may_relax());
20e6d0d6 2616
c0a62865
DK
2617 // We want to make sure that restore_states does not undo the effect of
2618 // this. If there is no checkpoint active, just search the current
2619 // input section list and replace the sections there. If there is
2620 // a checkpoint, also replace the sections there.
2621
2622 // By default, we look at the whole list.
2623 size_t limit = this->input_sections_.size();
2624
2625 if (this->checkpoint_ != NULL)
20e6d0d6 2626 {
c0a62865
DK
2627 // Replace input sections with relaxed input section in the saved
2628 // copy of the input section list.
2629 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2630 {
c0a62865
DK
2631 Relaxation_map map;
2632 this->build_relaxation_map(
2633 *(this->checkpoint_->input_sections()),
2634 this->checkpoint_->input_sections()->size(),
2635 &map);
2636 this->convert_input_sections_in_list_to_relaxed_sections(
2637 relaxed_sections,
2638 map,
2639 this->checkpoint_->input_sections());
2640 }
2641 else
2642 {
2643 // We have not copied the input section list yet. Instead, just
2644 // look at the portion that would be saved.
2645 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2646 }
20e6d0d6 2647 }
c0a62865
DK
2648
2649 // Convert input sections in input_section_list.
2650 Relaxation_map map;
2651 this->build_relaxation_map(this->input_sections_, limit, &map);
2652 this->convert_input_sections_in_list_to_relaxed_sections(
2653 relaxed_sections,
2654 map,
2655 &this->input_sections_);
41263c05
DK
2656
2657 // Update fast look-up map.
0439c796 2658 if (this->lookup_maps_->is_valid())
41263c05
DK
2659 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2660 {
2661 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2662 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2663 poris->shndx(), poris);
41263c05 2664 }
20e6d0d6
DK
2665}
2666
9c547ec3
ILT
2667// Update the output section flags based on input section flags.
2668
2669void
2ea97941 2670Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2671{
2672 // If we created the section with SHF_ALLOC clear, we set the
2673 // address. If we are now setting the SHF_ALLOC flag, we need to
2674 // undo that.
2675 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2676 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2677 this->mark_address_invalid();
2678
2ea97941 2679 this->flags_ |= (flags
9c547ec3
ILT
2680 & (elfcpp::SHF_WRITE
2681 | elfcpp::SHF_ALLOC
2682 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2683
2684 if ((flags & elfcpp::SHF_MERGE) == 0)
2685 this->flags_ &=~ elfcpp::SHF_MERGE;
2686 else
2687 {
2688 if (this->current_data_size_for_child() == 0)
2689 this->flags_ |= elfcpp::SHF_MERGE;
2690 }
2691
2692 if ((flags & elfcpp::SHF_STRINGS) == 0)
2693 this->flags_ &=~ elfcpp::SHF_STRINGS;
2694 else
2695 {
2696 if (this->current_data_size_for_child() == 0)
2697 this->flags_ |= elfcpp::SHF_STRINGS;
2698 }
9c547ec3
ILT
2699}
2700
2ea97941 2701// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2702// OBJECT has been added. Return NULL if none found.
2703
2704Output_section_data*
2705Output_section::find_merge_section(const Relobj* object,
2ea97941 2706 unsigned int shndx) const
c0a62865 2707{
0439c796
DK
2708 if (!this->lookup_maps_->is_valid())
2709 this->build_lookup_maps();
2710 return this->lookup_maps_->find_merge_section(object, shndx);
2711}
2712
2713// Build the lookup maps for merge and relaxed sections. This is needs
2714// to be declared as a const methods so that it is callable with a const
2715// Output_section pointer. The method only updates states of the maps.
2716
2717void
2718Output_section::build_lookup_maps() const
2719{
2720 this->lookup_maps_->clear();
2721 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2722 p != this->input_sections_.end();
2723 ++p)
c0a62865 2724 {
0439c796
DK
2725 if (p->is_merge_section())
2726 {
2727 Output_merge_base* pomb = p->output_merge_base();
2728 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2729 pomb->addralign());
2730 this->lookup_maps_->add_merge_section(msp, pomb);
2731 for (Output_merge_base::Input_sections::const_iterator is =
2732 pomb->input_sections_begin();
2733 is != pomb->input_sections_end();
2734 ++is)
2735 {
2736 const Const_section_id& csid = *is;
2737 this->lookup_maps_->add_merge_input_section(csid.first,
2738 csid.second, pomb);
2739 }
2740
2741 }
2742 else if (p->is_relaxed_input_section())
2743 {
2744 Output_relaxed_input_section* poris = p->relaxed_input_section();
2745 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2746 poris->shndx(), poris);
2747 }
c0a62865 2748 }
c0a62865
DK
2749}
2750
2751// Find an relaxed input section corresponding to an input section
2ea97941 2752// in OBJECT with index SHNDX.
c0a62865 2753
d6344fb5 2754const Output_relaxed_input_section*
c0a62865 2755Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2756 unsigned int shndx) const
c0a62865 2757{
0439c796
DK
2758 if (!this->lookup_maps_->is_valid())
2759 this->build_lookup_maps();
2760 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2761}
2762
2ea97941
ILT
2763// Given an address OFFSET relative to the start of input section
2764// SHNDX in OBJECT, return whether this address is being included in
2765// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2766// a special mapping.
2767
2768bool
2769Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2770 unsigned int shndx,
2771 off_t offset) const
730cdc88 2772{
c0a62865 2773 // Look at the Output_section_data_maps first.
2ea97941 2774 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2775 if (posd == NULL)
2ea97941 2776 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2777
2778 if (posd != NULL)
2779 {
2ea97941
ILT
2780 section_offset_type output_offset;
2781 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2782 gold_assert(found);
2ea97941 2783 return output_offset != -1;
c0a62865
DK
2784 }
2785
2786 // Fall back to the slow look-up.
730cdc88
ILT
2787 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2788 p != this->input_sections_.end();
2789 ++p)
2790 {
2ea97941
ILT
2791 section_offset_type output_offset;
2792 if (p->output_offset(object, shndx, offset, &output_offset))
2793 return output_offset != -1;
730cdc88
ILT
2794 }
2795
2796 // By default we assume that the address is mapped. This should
2797 // only be called after we have passed all sections to Layout. At
2798 // that point we should know what we are discarding.
2799 return true;
2800}
2801
2ea97941
ILT
2802// Given an address OFFSET relative to the start of input section
2803// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2804// start of the input section in the output section. This should only
2ea97941 2805// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2806
8383303e 2807section_offset_type
2ea97941
ILT
2808Output_section::output_offset(const Relobj* object, unsigned int shndx,
2809 section_offset_type offset) const
730cdc88 2810{
c0a62865
DK
2811 // This can only be called meaningfully when we know the data size
2812 // of this.
2813 gold_assert(this->is_data_size_valid());
730cdc88 2814
c0a62865 2815 // Look at the Output_section_data_maps first.
2ea97941 2816 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2817 if (posd == NULL)
2ea97941 2818 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2819 if (posd != NULL)
2820 {
2ea97941
ILT
2821 section_offset_type output_offset;
2822 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2823 gold_assert(found);
2ea97941 2824 return output_offset;
c0a62865
DK
2825 }
2826
2827 // Fall back to the slow look-up.
730cdc88
ILT
2828 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2829 p != this->input_sections_.end();
2830 ++p)
2831 {
2ea97941
ILT
2832 section_offset_type output_offset;
2833 if (p->output_offset(object, shndx, offset, &output_offset))
2834 return output_offset;
730cdc88
ILT
2835 }
2836 gold_unreachable();
2837}
2838
2ea97941
ILT
2839// Return the output virtual address of OFFSET relative to the start
2840// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2841
2842uint64_t
2ea97941
ILT
2843Output_section::output_address(const Relobj* object, unsigned int shndx,
2844 off_t offset) const
b8e6aad9
ILT
2845{
2846 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2847
2848 // Look at the Output_section_data_maps first.
2ea97941 2849 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2850 if (posd == NULL)
2ea97941 2851 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2852 if (posd != NULL && posd->is_address_valid())
2853 {
2ea97941
ILT
2854 section_offset_type output_offset;
2855 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2856 gold_assert(found);
2ea97941 2857 return posd->address() + output_offset;
c0a62865
DK
2858 }
2859
2860 // Fall back to the slow look-up.
b8e6aad9
ILT
2861 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2862 p != this->input_sections_.end();
2863 ++p)
2864 {
2865 addr = align_address(addr, p->addralign());
2ea97941
ILT
2866 section_offset_type output_offset;
2867 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2868 {
2ea97941 2869 if (output_offset == -1)
eff45813 2870 return -1ULL;
2ea97941 2871 return addr + output_offset;
730cdc88 2872 }
b8e6aad9
ILT
2873 addr += p->data_size();
2874 }
2875
2876 // If we get here, it means that we don't know the mapping for this
2877 // input section. This might happen in principle if
2878 // add_input_section were called before add_output_section_data.
2879 // But it should never actually happen.
2880
2881 gold_unreachable();
ead1e424
ILT
2882}
2883
e29e076a 2884// Find the output address of the start of the merged section for
2ea97941 2885// input section SHNDX in object OBJECT.
a9a60db6 2886
e29e076a
ILT
2887bool
2888Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2889 unsigned int shndx,
e29e076a 2890 uint64_t* paddr) const
a9a60db6 2891{
c0a62865
DK
2892 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2893 // Looking up the merge section map does not always work as we sometimes
2894 // find a merge section without its address set.
a9a60db6
ILT
2895 uint64_t addr = this->address() + this->first_input_offset_;
2896 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2897 p != this->input_sections_.end();
2898 ++p)
2899 {
2900 addr = align_address(addr, p->addralign());
2901
2902 // It would be nice if we could use the existing output_offset
2903 // method to get the output offset of input offset 0.
2904 // Unfortunately we don't know for sure that input offset 0 is
2905 // mapped at all.
2ea97941 2906 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2907 {
2908 *paddr = addr;
2909 return true;
2910 }
a9a60db6
ILT
2911
2912 addr += p->data_size();
2913 }
e29e076a
ILT
2914
2915 // We couldn't find a merge output section for this input section.
2916 return false;
a9a60db6
ILT
2917}
2918
cdc29364
CC
2919// Update the data size of an Output_section.
2920
2921void
2922Output_section::update_data_size()
2923{
2924 if (this->input_sections_.empty())
2925 return;
2926
2927 if (this->must_sort_attached_input_sections()
2928 || this->input_section_order_specified())
2929 this->sort_attached_input_sections();
2930
2931 off_t off = this->first_input_offset_;
2932 for (Input_section_list::iterator p = this->input_sections_.begin();
2933 p != this->input_sections_.end();
2934 ++p)
2935 {
2936 off = align_address(off, p->addralign());
2937 off += p->current_data_size();
2938 }
2939
2940 this->set_current_data_size_for_child(off);
2941}
2942
27bc2bce 2943// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2944// setting the addresses of any Output_section_data objects.
2945
2946void
27bc2bce 2947Output_section::set_final_data_size()
ead1e424
ILT
2948{
2949 if (this->input_sections_.empty())
27bc2bce
ILT
2950 {
2951 this->set_data_size(this->current_data_size_for_child());
2952 return;
2953 }
ead1e424 2954
6e9ba2ca
ST
2955 if (this->must_sort_attached_input_sections()
2956 || this->input_section_order_specified())
2fd32231
ILT
2957 this->sort_attached_input_sections();
2958
2ea97941 2959 uint64_t address = this->address();
27bc2bce 2960 off_t startoff = this->offset();
ead1e424
ILT
2961 off_t off = startoff + this->first_input_offset_;
2962 for (Input_section_list::iterator p = this->input_sections_.begin();
2963 p != this->input_sections_.end();
2964 ++p)
2965 {
2966 off = align_address(off, p->addralign());
2ea97941 2967 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2968 startoff);
ead1e424
ILT
2969 off += p->data_size();
2970 }
2971
2972 this->set_data_size(off - startoff);
2973}
9a0910c3 2974
a445fddf
ILT
2975// Reset the address and file offset.
2976
2977void
2978Output_section::do_reset_address_and_file_offset()
2979{
20e6d0d6
DK
2980 // An unallocated section has no address. Forcing this means that
2981 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2982 // sections. We do the same in the constructor. This does not
2983 // apply to NOLOAD sections though.
2984 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2985 this->set_address(0);
2986
a445fddf
ILT
2987 for (Input_section_list::iterator p = this->input_sections_.begin();
2988 p != this->input_sections_.end();
2989 ++p)
2990 p->reset_address_and_file_offset();
2991}
20e6d0d6
DK
2992
2993// Return true if address and file offset have the values after reset.
2994
2995bool
2996Output_section::do_address_and_file_offset_have_reset_values() const
2997{
2998 if (this->is_offset_valid())
2999 return false;
3000
3001 // An unallocated section has address 0 after its construction or a reset.
3002 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3003 return this->is_address_valid() && this->address() == 0;
3004 else
3005 return !this->is_address_valid();
3006}
a445fddf 3007
7bf1f802
ILT
3008// Set the TLS offset. Called only for SHT_TLS sections.
3009
3010void
3011Output_section::do_set_tls_offset(uint64_t tls_base)
3012{
3013 this->tls_offset_ = this->address() - tls_base;
3014}
3015
2fd32231
ILT
3016// In a few cases we need to sort the input sections attached to an
3017// output section. This is used to implement the type of constructor
3018// priority ordering implemented by the GNU linker, in which the
3019// priority becomes part of the section name and the sections are
3020// sorted by name. We only do this for an output section if we see an
5393d741 3021// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3022// ".init_array.*" or ".fini_array.*".
3023
3024class Output_section::Input_section_sort_entry
3025{
3026 public:
3027 Input_section_sort_entry()
3028 : input_section_(), index_(-1U), section_has_name_(false),
3029 section_name_()
3030 { }
3031
2ea97941 3032 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3033 unsigned int index,
3034 bool must_sort_attached_input_sections)
2ea97941
ILT
3035 : input_section_(input_section), index_(index),
3036 section_has_name_(input_section.is_input_section()
3037 || input_section.is_relaxed_input_section())
2fd32231 3038 {
6e9ba2ca
ST
3039 if (this->section_has_name_
3040 && must_sort_attached_input_sections)
2fd32231
ILT
3041 {
3042 // This is only called single-threaded from Layout::finalize,
3043 // so it is OK to lock. Unfortunately we have no way to pass
3044 // in a Task token.
3045 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3046 Object* obj = (input_section.is_input_section()
3047 ? input_section.relobj()
3048 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3049 Task_lock_obj<Object> tl(dummy_task, obj);
3050
3051 // This is a slow operation, which should be cached in
3052 // Layout::layout if this becomes a speed problem.
2ea97941 3053 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3054 }
3055 }
3056
3057 // Return the Input_section.
3058 const Input_section&
3059 input_section() const
3060 {
3061 gold_assert(this->index_ != -1U);
3062 return this->input_section_;
3063 }
3064
3065 // The index of this entry in the original list. This is used to
3066 // make the sort stable.
3067 unsigned int
3068 index() const
3069 {
3070 gold_assert(this->index_ != -1U);
3071 return this->index_;
3072 }
3073
3074 // Whether there is a section name.
3075 bool
3076 section_has_name() const
3077 { return this->section_has_name_; }
3078
3079 // The section name.
3080 const std::string&
3081 section_name() const
3082 {
3083 gold_assert(this->section_has_name_);
3084 return this->section_name_;
3085 }
3086
ab794b6b
ILT
3087 // Return true if the section name has a priority. This is assumed
3088 // to be true if it has a dot after the initial dot.
2fd32231 3089 bool
ab794b6b 3090 has_priority() const
2fd32231
ILT
3091 {
3092 gold_assert(this->section_has_name_);
2a0ff005 3093 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3094 }
3095
5393d741
ILT
3096 // Return the priority. Believe it or not, gcc encodes the priority
3097 // differently for .ctors/.dtors and .init_array/.fini_array
3098 // sections.
3099 unsigned int
3100 get_priority() const
3101 {
3102 gold_assert(this->section_has_name_);
3103 bool is_ctors;
3104 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3105 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3106 is_ctors = true;
3107 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3108 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3109 is_ctors = false;
3110 else
3111 return 0;
3112 char* end;
3113 unsigned long prio = strtoul((this->section_name_.c_str()
3114 + (is_ctors ? 7 : 12)),
3115 &end, 10);
3116 if (*end != '\0')
3117 return 0;
3118 else if (is_ctors)
3119 return 65535 - prio;
3120 else
3121 return prio;
3122 }
3123
ab794b6b
ILT
3124 // Return true if this an input file whose base name matches
3125 // FILE_NAME. The base name must have an extension of ".o", and
3126 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3127 // This is to match crtbegin.o as well as crtbeginS.o without
3128 // getting confused by other possibilities. Overall matching the
3129 // file name this way is a dreadful hack, but the GNU linker does it
3130 // in order to better support gcc, and we need to be compatible.
2fd32231 3131 bool
5393d741
ILT
3132 match_file_name(const char* file_name) const
3133 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3134
8fe2a369
ST
3135 // Returns 1 if THIS should appear before S in section order, -1 if S
3136 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3137 int
3138 compare_section_ordering(const Input_section_sort_entry& s) const
3139 {
8fe2a369
ST
3140 unsigned int this_secn_index = this->input_section_.section_order_index();
3141 unsigned int s_secn_index = s.input_section().section_order_index();
3142 if (this_secn_index > 0 && s_secn_index > 0)
3143 {
3144 if (this_secn_index < s_secn_index)
3145 return 1;
3146 else if (this_secn_index > s_secn_index)
3147 return -1;
3148 }
3149 return 0;
6e9ba2ca
ST
3150 }
3151
2fd32231
ILT
3152 private:
3153 // The Input_section we are sorting.
3154 Input_section input_section_;
3155 // The index of this Input_section in the original list.
3156 unsigned int index_;
3157 // Whether this Input_section has a section name--it won't if this
3158 // is some random Output_section_data.
3159 bool section_has_name_;
3160 // The section name if there is one.
3161 std::string section_name_;
3162};
3163
3164// Return true if S1 should come before S2 in the output section.
3165
3166bool
3167Output_section::Input_section_sort_compare::operator()(
3168 const Output_section::Input_section_sort_entry& s1,
3169 const Output_section::Input_section_sort_entry& s2) const
3170{
ab794b6b
ILT
3171 // crtbegin.o must come first.
3172 bool s1_begin = s1.match_file_name("crtbegin");
3173 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3174 if (s1_begin || s2_begin)
3175 {
3176 if (!s1_begin)
3177 return false;
3178 if (!s2_begin)
3179 return true;
3180 return s1.index() < s2.index();
3181 }
3182
ab794b6b
ILT
3183 // crtend.o must come last.
3184 bool s1_end = s1.match_file_name("crtend");
3185 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3186 if (s1_end || s2_end)
3187 {
3188 if (!s1_end)
3189 return true;
3190 if (!s2_end)
3191 return false;
3192 return s1.index() < s2.index();
3193 }
3194
ab794b6b
ILT
3195 // We sort all the sections with no names to the end.
3196 if (!s1.section_has_name() || !s2.section_has_name())
3197 {
3198 if (s1.section_has_name())
3199 return true;
3200 if (s2.section_has_name())
3201 return false;
3202 return s1.index() < s2.index();
3203 }
2fd32231 3204
ab794b6b 3205 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3206 bool s1_has_priority = s1.has_priority();
3207 bool s2_has_priority = s2.has_priority();
3208 if (s1_has_priority && !s2_has_priority)
2fd32231 3209 return false;
ab794b6b 3210 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3211 return true;
3212
6e9ba2ca
ST
3213 // Check if a section order exists for these sections through a section
3214 // ordering file. If sequence_num is 0, an order does not exist.
3215 int sequence_num = s1.compare_section_ordering(s2);
3216 if (sequence_num != 0)
3217 return sequence_num == 1;
3218
2fd32231
ILT
3219 // Otherwise we sort by name.
3220 int compare = s1.section_name().compare(s2.section_name());
3221 if (compare != 0)
3222 return compare < 0;
3223
3224 // Otherwise we keep the input order.
3225 return s1.index() < s2.index();
3226}
3227
2a0ff005
DK
3228// Return true if S1 should come before S2 in an .init_array or .fini_array
3229// output section.
3230
3231bool
3232Output_section::Input_section_sort_init_fini_compare::operator()(
3233 const Output_section::Input_section_sort_entry& s1,
3234 const Output_section::Input_section_sort_entry& s2) const
3235{
3236 // We sort all the sections with no names to the end.
3237 if (!s1.section_has_name() || !s2.section_has_name())
3238 {
3239 if (s1.section_has_name())
3240 return true;
3241 if (s2.section_has_name())
3242 return false;
3243 return s1.index() < s2.index();
3244 }
3245
3246 // A section without a priority follows a section with a priority.
3247 // This is the reverse of .ctors and .dtors sections.
3248 bool s1_has_priority = s1.has_priority();
3249 bool s2_has_priority = s2.has_priority();
3250 if (s1_has_priority && !s2_has_priority)
3251 return true;
3252 if (!s1_has_priority && s2_has_priority)
3253 return false;
3254
5393d741
ILT
3255 // .ctors and .dtors sections without priority come after
3256 // .init_array and .fini_array sections without priority.
3257 if (!s1_has_priority
3258 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3259 && s1.section_name() != s2.section_name())
3260 return false;
3261 if (!s2_has_priority
3262 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3263 && s2.section_name() != s1.section_name())
3264 return true;
3265
3266 // Sort by priority if we can.
3267 if (s1_has_priority)
3268 {
3269 unsigned int s1_prio = s1.get_priority();
3270 unsigned int s2_prio = s2.get_priority();
3271 if (s1_prio < s2_prio)
3272 return true;
3273 else if (s1_prio > s2_prio)
3274 return false;
3275 }
3276
6e9ba2ca
ST
3277 // Check if a section order exists for these sections through a section
3278 // ordering file. If sequence_num is 0, an order does not exist.
3279 int sequence_num = s1.compare_section_ordering(s2);
3280 if (sequence_num != 0)
3281 return sequence_num == 1;
3282
2a0ff005
DK
3283 // Otherwise we sort by name.
3284 int compare = s1.section_name().compare(s2.section_name());
3285 if (compare != 0)
3286 return compare < 0;
3287
3288 // Otherwise we keep the input order.
3289 return s1.index() < s2.index();
3290}
3291
8fe2a369
ST
3292// Return true if S1 should come before S2. Sections that do not match
3293// any pattern in the section ordering file are placed ahead of the sections
3294// that match some pattern.
3295
6e9ba2ca
ST
3296bool
3297Output_section::Input_section_sort_section_order_index_compare::operator()(
3298 const Output_section::Input_section_sort_entry& s1,
3299 const Output_section::Input_section_sort_entry& s2) const
3300{
8fe2a369
ST
3301 unsigned int s1_secn_index = s1.input_section().section_order_index();
3302 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3303
8fe2a369
ST
3304 // Keep input order if section ordering cannot determine order.
3305 if (s1_secn_index == s2_secn_index)
3306 return s1.index() < s2.index();
3307
3308 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3309}
3310
2fd32231
ILT
3311// Sort the input sections attached to an output section.
3312
3313void
3314Output_section::sort_attached_input_sections()
3315{
3316 if (this->attached_input_sections_are_sorted_)
3317 return;
3318
20e6d0d6
DK
3319 if (this->checkpoint_ != NULL
3320 && !this->checkpoint_->input_sections_saved())
3321 this->checkpoint_->save_input_sections();
3322
2fd32231
ILT
3323 // The only thing we know about an input section is the object and
3324 // the section index. We need the section name. Recomputing this
3325 // is slow but this is an unusual case. If this becomes a speed
3326 // problem we can cache the names as required in Layout::layout.
3327
3328 // We start by building a larger vector holding a copy of each
3329 // Input_section, plus its current index in the list and its name.
3330 std::vector<Input_section_sort_entry> sort_list;
3331
3332 unsigned int i = 0;
3333 for (Input_section_list::iterator p = this->input_sections_.begin();
3334 p != this->input_sections_.end();
3335 ++p, ++i)
6e9ba2ca
ST
3336 sort_list.push_back(Input_section_sort_entry(*p, i,
3337 this->must_sort_attached_input_sections()));
2fd32231
ILT
3338
3339 // Sort the input sections.
6e9ba2ca
ST
3340 if (this->must_sort_attached_input_sections())
3341 {
3342 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3343 || this->type() == elfcpp::SHT_INIT_ARRAY
3344 || this->type() == elfcpp::SHT_FINI_ARRAY)
3345 std::sort(sort_list.begin(), sort_list.end(),
3346 Input_section_sort_init_fini_compare());
3347 else
3348 std::sort(sort_list.begin(), sort_list.end(),
3349 Input_section_sort_compare());
3350 }
2a0ff005 3351 else
6e9ba2ca
ST
3352 {
3353 gold_assert(parameters->options().section_ordering_file());
3354 std::sort(sort_list.begin(), sort_list.end(),
3355 Input_section_sort_section_order_index_compare());
3356 }
2fd32231
ILT
3357
3358 // Copy the sorted input sections back to our list.
3359 this->input_sections_.clear();
3360 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3361 p != sort_list.end();
3362 ++p)
3363 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3364 sort_list.clear();
2fd32231
ILT
3365
3366 // Remember that we sorted the input sections, since we might get
3367 // called again.
3368 this->attached_input_sections_are_sorted_ = true;
3369}
3370
61ba1cf9
ILT
3371// Write the section header to *OSHDR.
3372
3373template<int size, bool big_endian>
3374void
16649710
ILT
3375Output_section::write_header(const Layout* layout,
3376 const Stringpool* secnamepool,
61ba1cf9
ILT
3377 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3378{
3379 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3380 oshdr->put_sh_type(this->type_);
6a74a719 3381
2ea97941 3382 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3383 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3384 flags |= elfcpp::SHF_INFO_LINK;
3385 oshdr->put_sh_flags(flags);
6a74a719 3386
61ba1cf9
ILT
3387 oshdr->put_sh_addr(this->address());
3388 oshdr->put_sh_offset(this->offset());
3389 oshdr->put_sh_size(this->data_size());
16649710
ILT
3390 if (this->link_section_ != NULL)
3391 oshdr->put_sh_link(this->link_section_->out_shndx());
3392 else if (this->should_link_to_symtab_)
3393 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3394 else if (this->should_link_to_dynsym_)
3395 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3396 else
3397 oshdr->put_sh_link(this->link_);
755ab8af 3398
2ea97941 3399 elfcpp::Elf_Word info;
16649710 3400 if (this->info_section_ != NULL)
755ab8af
ILT
3401 {
3402 if (this->info_uses_section_index_)
2ea97941 3403 info = this->info_section_->out_shndx();
755ab8af 3404 else
2ea97941 3405 info = this->info_section_->symtab_index();
755ab8af 3406 }
6a74a719 3407 else if (this->info_symndx_ != NULL)
2ea97941 3408 info = this->info_symndx_->symtab_index();
16649710 3409 else
2ea97941
ILT
3410 info = this->info_;
3411 oshdr->put_sh_info(info);
755ab8af 3412
61ba1cf9
ILT
3413 oshdr->put_sh_addralign(this->addralign_);
3414 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3415}
3416
ead1e424
ILT
3417// Write out the data. For input sections the data is written out by
3418// Object::relocate, but we have to handle Output_section_data objects
3419// here.
3420
3421void
3422Output_section::do_write(Output_file* of)
3423{
96803768
ILT
3424 gold_assert(!this->requires_postprocessing());
3425
c0a62865
DK
3426 // If the target performs relaxation, we delay filler generation until now.
3427 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3428
c51e6221
ILT
3429 off_t output_section_file_offset = this->offset();
3430 for (Fill_list::iterator p = this->fills_.begin();
3431 p != this->fills_.end();
3432 ++p)
3433 {
8851ecca 3434 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3435 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3436 fill_data.data(), fill_data.size());
c51e6221
ILT
3437 }
3438
c0a62865 3439 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3440 for (Input_section_list::iterator p = this->input_sections_.begin();
3441 p != this->input_sections_.end();
3442 ++p)
c0a62865
DK
3443 {
3444 off_t aligned_off = align_address(off, p->addralign());
3445 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3446 {
3447 size_t fill_len = aligned_off - off;
3448 std::string fill_data(parameters->target().code_fill(fill_len));
3449 of->write(off, fill_data.data(), fill_data.size());
3450 }
3451
3452 p->write(of);
3453 off = aligned_off + p->data_size();
3454 }
ead1e424
ILT
3455}
3456
96803768
ILT
3457// If a section requires postprocessing, create the buffer to use.
3458
3459void
3460Output_section::create_postprocessing_buffer()
3461{
3462 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3463
3464 if (this->postprocessing_buffer_ != NULL)
3465 return;
96803768
ILT
3466
3467 if (!this->input_sections_.empty())
3468 {
3469 off_t off = this->first_input_offset_;
3470 for (Input_section_list::iterator p = this->input_sections_.begin();
3471 p != this->input_sections_.end();
3472 ++p)
3473 {
3474 off = align_address(off, p->addralign());
3475 p->finalize_data_size();
3476 off += p->data_size();
3477 }
3478 this->set_current_data_size_for_child(off);
3479 }
3480
3481 off_t buffer_size = this->current_data_size_for_child();
3482 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3483}
3484
3485// Write all the data of an Output_section into the postprocessing
3486// buffer. This is used for sections which require postprocessing,
3487// such as compression. Input sections are handled by
3488// Object::Relocate.
3489
3490void
3491Output_section::write_to_postprocessing_buffer()
3492{
3493 gold_assert(this->requires_postprocessing());
3494
c0a62865
DK
3495 // If the target performs relaxation, we delay filler generation until now.
3496 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3497
96803768
ILT
3498 unsigned char* buffer = this->postprocessing_buffer();
3499 for (Fill_list::iterator p = this->fills_.begin();
3500 p != this->fills_.end();
3501 ++p)
3502 {
8851ecca 3503 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3504 memcpy(buffer + p->section_offset(), fill_data.data(),
3505 fill_data.size());
96803768
ILT
3506 }
3507
3508 off_t off = this->first_input_offset_;
3509 for (Input_section_list::iterator p = this->input_sections_.begin();
3510 p != this->input_sections_.end();
3511 ++p)
3512 {
c0a62865
DK
3513 off_t aligned_off = align_address(off, p->addralign());
3514 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3515 {
3516 size_t fill_len = aligned_off - off;
3517 std::string fill_data(parameters->target().code_fill(fill_len));
3518 memcpy(buffer + off, fill_data.data(), fill_data.size());
3519 }
3520
3521 p->write_to_buffer(buffer + aligned_off);
3522 off = aligned_off + p->data_size();
96803768
ILT
3523 }
3524}
3525
a445fddf
ILT
3526// Get the input sections for linker script processing. We leave
3527// behind the Output_section_data entries. Note that this may be
3528// slightly incorrect for merge sections. We will leave them behind,
3529// but it is possible that the script says that they should follow
3530// some other input sections, as in:
3531// .rodata { *(.rodata) *(.rodata.cst*) }
3532// For that matter, we don't handle this correctly:
3533// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3534// With luck this will never matter.
3535
3536uint64_t
3537Output_section::get_input_sections(
2ea97941 3538 uint64_t address,
a445fddf 3539 const std::string& fill,
6625d24e 3540 std::list<Input_section>* input_sections)
a445fddf 3541{
20e6d0d6
DK
3542 if (this->checkpoint_ != NULL
3543 && !this->checkpoint_->input_sections_saved())
3544 this->checkpoint_->save_input_sections();
3545
0439c796
DK
3546 // Invalidate fast look-up maps.
3547 this->lookup_maps_->invalidate();
c0a62865 3548
2ea97941 3549 uint64_t orig_address = address;
a445fddf 3550
2ea97941 3551 address = align_address(address, this->addralign());
a445fddf
ILT
3552
3553 Input_section_list remaining;
3554 for (Input_section_list::iterator p = this->input_sections_.begin();
3555 p != this->input_sections_.end();
3556 ++p)
3557 {
0439c796
DK
3558 if (p->is_input_section()
3559 || p->is_relaxed_input_section()
3560 || p->is_merge_section())
6625d24e 3561 input_sections->push_back(*p);
a445fddf
ILT
3562 else
3563 {
2ea97941
ILT
3564 uint64_t aligned_address = align_address(address, p->addralign());
3565 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3566 {
3567 section_size_type length =
2ea97941 3568 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3569 std::string this_fill;
3570 this_fill.reserve(length);
3571 while (this_fill.length() + fill.length() <= length)
3572 this_fill += fill;
3573 if (this_fill.length() < length)
3574 this_fill.append(fill, 0, length - this_fill.length());
3575
3576 Output_section_data* posd = new Output_data_const(this_fill, 0);
3577 remaining.push_back(Input_section(posd));
3578 }
2ea97941 3579 address = aligned_address;
a445fddf
ILT
3580
3581 remaining.push_back(*p);
3582
3583 p->finalize_data_size();
2ea97941 3584 address += p->data_size();
a445fddf
ILT
3585 }
3586 }
3587
3588 this->input_sections_.swap(remaining);
3589 this->first_input_offset_ = 0;
3590
2ea97941
ILT
3591 uint64_t data_size = address - orig_address;
3592 this->set_current_data_size_for_child(data_size);
3593 return data_size;
a445fddf
ILT
3594}
3595
6625d24e
DK
3596// Add a script input section. SIS is an Output_section::Input_section,
3597// which can be either a plain input section or a special input section like
3598// a relaxed input section. For a special input section, its size must be
3599// finalized.
a445fddf
ILT
3600
3601void
6625d24e 3602Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3603{
6625d24e
DK
3604 uint64_t data_size = sis.data_size();
3605 uint64_t addralign = sis.addralign();
2ea97941
ILT
3606 if (addralign > this->addralign_)
3607 this->addralign_ = addralign;
a445fddf
ILT
3608
3609 off_t offset_in_section = this->current_data_size_for_child();
3610 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3611 addralign);
a445fddf
ILT
3612
3613 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3614 + data_size);
a445fddf 3615
6625d24e 3616 this->input_sections_.push_back(sis);
0439c796
DK
3617
3618 // Update fast lookup maps if necessary.
3619 if (this->lookup_maps_->is_valid())
3620 {
3621 if (sis.is_merge_section())
3622 {
3623 Output_merge_base* pomb = sis.output_merge_base();
3624 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3625 pomb->addralign());
3626 this->lookup_maps_->add_merge_section(msp, pomb);
3627 for (Output_merge_base::Input_sections::const_iterator p =
3628 pomb->input_sections_begin();
3629 p != pomb->input_sections_end();
3630 ++p)
3631 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3632 pomb);
3633 }
3634 else if (sis.is_relaxed_input_section())
3635 {
3636 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3637 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3638 poris->shndx(), poris);
3639 }
3640 }
20e6d0d6
DK
3641}
3642
8923b24c 3643// Save states for relaxation.
20e6d0d6
DK
3644
3645void
3646Output_section::save_states()
3647{
3648 gold_assert(this->checkpoint_ == NULL);
3649 Checkpoint_output_section* checkpoint =
3650 new Checkpoint_output_section(this->addralign_, this->flags_,
3651 this->input_sections_,
3652 this->first_input_offset_,
3653 this->attached_input_sections_are_sorted_);
3654 this->checkpoint_ = checkpoint;
3655 gold_assert(this->fills_.empty());
3656}
3657
8923b24c
DK
3658void
3659Output_section::discard_states()
3660{
3661 gold_assert(this->checkpoint_ != NULL);
3662 delete this->checkpoint_;
3663 this->checkpoint_ = NULL;
3664 gold_assert(this->fills_.empty());
3665
0439c796
DK
3666 // Simply invalidate the fast lookup maps since we do not keep
3667 // track of them.
3668 this->lookup_maps_->invalidate();
8923b24c
DK
3669}
3670
20e6d0d6
DK
3671void
3672Output_section::restore_states()
3673{
3674 gold_assert(this->checkpoint_ != NULL);
3675 Checkpoint_output_section* checkpoint = this->checkpoint_;
3676
3677 this->addralign_ = checkpoint->addralign();
3678 this->flags_ = checkpoint->flags();
3679 this->first_input_offset_ = checkpoint->first_input_offset();
3680
3681 if (!checkpoint->input_sections_saved())
3682 {
3683 // If we have not copied the input sections, just resize it.
3684 size_t old_size = checkpoint->input_sections_size();
3685 gold_assert(this->input_sections_.size() >= old_size);
3686 this->input_sections_.resize(old_size);
3687 }
3688 else
3689 {
3690 // We need to copy the whole list. This is not efficient for
3691 // extremely large output with hundreads of thousands of input
3692 // objects. We may need to re-think how we should pass sections
3693 // to scripts.
c0a62865 3694 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3695 }
3696
3697 this->attached_input_sections_are_sorted_ =
3698 checkpoint->attached_input_sections_are_sorted();
c0a62865 3699
0439c796
DK
3700 // Simply invalidate the fast lookup maps since we do not keep
3701 // track of them.
3702 this->lookup_maps_->invalidate();
a445fddf
ILT
3703}
3704
8923b24c
DK
3705// Update the section offsets of input sections in this. This is required if
3706// relaxation causes some input sections to change sizes.
3707
3708void
3709Output_section::adjust_section_offsets()
3710{
3711 if (!this->section_offsets_need_adjustment_)
3712 return;
3713
3714 off_t off = 0;
3715 for (Input_section_list::iterator p = this->input_sections_.begin();
3716 p != this->input_sections_.end();
3717 ++p)
3718 {
3719 off = align_address(off, p->addralign());
3720 if (p->is_input_section())
3721 p->relobj()->set_section_offset(p->shndx(), off);
3722 off += p->data_size();
3723 }
3724
3725 this->section_offsets_need_adjustment_ = false;
3726}
3727
7d9e3d98
ILT
3728// Print to the map file.
3729
3730void
3731Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3732{
3733 mapfile->print_output_section(this);
3734
3735 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3736 p != this->input_sections_.end();
3737 ++p)
3738 p->print_to_mapfile(mapfile);
3739}
3740
38c5e8b4
ILT
3741// Print stats for merge sections to stderr.
3742
3743void
3744Output_section::print_merge_stats()
3745{
3746 Input_section_list::iterator p;
3747 for (p = this->input_sections_.begin();
3748 p != this->input_sections_.end();
3749 ++p)
3750 p->print_merge_stats(this->name_);
3751}
3752
cdc29364
CC
3753// Set a fixed layout for the section. Used for incremental update links.
3754
3755void
3756Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3757 off_t sh_size, uint64_t sh_addralign)
3758{
3759 this->addralign_ = sh_addralign;
3760 this->set_current_data_size(sh_size);
3761 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3762 this->set_address(sh_addr);
3763 this->set_file_offset(sh_offset);
3764 this->finalize_data_size();
3765 this->free_list_.init(sh_size, false);
3766 this->has_fixed_layout_ = true;
3767}
3768
3769// Reserve space within the fixed layout for the section. Used for
3770// incremental update links.
5146f448 3771
cdc29364
CC
3772void
3773Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3774{
3775 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3776}
3777
5146f448
CC
3778// Allocate space from the free list for the section. Used for
3779// incremental update links.
3780
3781off_t
3782Output_section::allocate(off_t len, uint64_t addralign)
3783{
3784 return this->free_list_.allocate(len, addralign, 0);
3785}
3786
a2fb1b05
ILT
3787// Output segment methods.
3788
2ea97941 3789Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3790 : vaddr_(0),
a2fb1b05
ILT
3791 paddr_(0),
3792 memsz_(0),
a445fddf
ILT
3793 max_align_(0),
3794 min_p_align_(0),
a2fb1b05
ILT
3795 offset_(0),
3796 filesz_(0),
2ea97941
ILT
3797 type_(type),
3798 flags_(flags),
a445fddf 3799 is_max_align_known_(false),
8a5e3e08
ILT
3800 are_addresses_set_(false),
3801 is_large_data_segment_(false)
a2fb1b05 3802{
bb321bb1
ILT
3803 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3804 // the flags.
3805 if (type == elfcpp::PT_TLS)
3806 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3807}
3808
22f0da72 3809// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
3810
3811void
22f0da72
ILT
3812Output_segment::add_output_section_to_load(Layout* layout,
3813 Output_section* os,
3814 elfcpp::Elf_Word seg_flags)
a2fb1b05 3815{
22f0da72 3816 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 3817 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3818 gold_assert(!this->is_max_align_known_);
8a5e3e08 3819 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 3820
a192ba05 3821 this->update_flags_for_output_section(seg_flags);
75f65a3e 3822
22f0da72
ILT
3823 // We don't want to change the ordering if we have a linker script
3824 // with a SECTIONS clause.
3825 Output_section_order order = os->order();
3826 if (layout->script_options()->saw_sections_clause())
3827 order = static_cast<Output_section_order>(0);
75f65a3e 3828 else
22f0da72 3829 gold_assert(order != ORDER_INVALID);
54dc6425 3830
22f0da72
ILT
3831 this->output_lists_[order].push_back(os);
3832}
9f1d377b 3833
22f0da72 3834// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 3835
22f0da72
ILT
3836void
3837Output_segment::add_output_section_to_nonload(Output_section* os,
3838 elfcpp::Elf_Word seg_flags)
3839{
3840 gold_assert(this->type() != elfcpp::PT_LOAD);
3841 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3842 gold_assert(!this->is_max_align_known_);
1a2dff53 3843
22f0da72 3844 this->update_flags_for_output_section(seg_flags);
9f1d377b 3845
22f0da72
ILT
3846 this->output_lists_[0].push_back(os);
3847}
8a5e3e08 3848
22f0da72
ILT
3849// Remove an Output_section from this segment. It is an error if it
3850// is not present.
8a5e3e08 3851
22f0da72
ILT
3852void
3853Output_segment::remove_output_section(Output_section* os)
3854{
3855 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 3856 {
22f0da72
ILT
3857 Output_data_list* pdl = &this->output_lists_[i];
3858 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 3859 {
22f0da72 3860 if (*p == os)
8a5e3e08 3861 {
22f0da72 3862 pdl->erase(p);
8a5e3e08
ILT
3863 return;
3864 }
3865 }
f5c870d2 3866 }
1650c4ff
ILT
3867 gold_unreachable();
3868}
3869
a192ba05
ILT
3870// Add an Output_data (which need not be an Output_section) to the
3871// start of a segment.
75f65a3e
ILT
3872
3873void
3874Output_segment::add_initial_output_data(Output_data* od)
3875{
a445fddf 3876 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
3877 Output_data_list::iterator p = this->output_lists_[0].begin();
3878 this->output_lists_[0].insert(p, od);
3879}
3880
3881// Return true if this segment has any sections which hold actual
3882// data, rather than being a BSS section.
3883
3884bool
3885Output_segment::has_any_data_sections() const
3886{
3887 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3888 {
3889 const Output_data_list* pdl = &this->output_lists_[i];
3890 for (Output_data_list::const_iterator p = pdl->begin();
3891 p != pdl->end();
3892 ++p)
3893 {
3894 if (!(*p)->is_section())
3895 return true;
3896 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3897 return true;
3898 }
3899 }
3900 return false;
75f65a3e
ILT
3901}
3902
5bc2f5be
CC
3903// Return whether the first data section (not counting TLS sections)
3904// is a relro section.
9f1d377b
ILT
3905
3906bool
3907Output_segment::is_first_section_relro() const
3908{
22f0da72
ILT
3909 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3910 {
5bc2f5be
CC
3911 if (i == static_cast<int>(ORDER_TLS_DATA)
3912 || i == static_cast<int>(ORDER_TLS_BSS))
3913 continue;
22f0da72
ILT
3914 const Output_data_list* pdl = &this->output_lists_[i];
3915 if (!pdl->empty())
3916 {
3917 Output_data* p = pdl->front();
3918 return p->is_section() && p->output_section()->is_relro();
3919 }
3920 }
3921 return false;
9f1d377b
ILT
3922}
3923
75f65a3e 3924// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3925
3926uint64_t
a445fddf 3927Output_segment::maximum_alignment()
75f65a3e 3928{
a445fddf 3929 if (!this->is_max_align_known_)
ead1e424 3930 {
22f0da72
ILT
3931 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3932 {
3933 const Output_data_list* pdl = &this->output_lists_[i];
3934 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3935 if (addralign > this->max_align_)
3936 this->max_align_ = addralign;
3937 }
a445fddf 3938 this->is_max_align_known_ = true;
ead1e424
ILT
3939 }
3940
a445fddf 3941 return this->max_align_;
75f65a3e
ILT
3942}
3943
ead1e424
ILT
3944// Return the maximum alignment of a list of Output_data.
3945
3946uint64_t
a445fddf 3947Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3948{
3949 uint64_t ret = 0;
3950 for (Output_data_list::const_iterator p = pdl->begin();
3951 p != pdl->end();
3952 ++p)
3953 {
2ea97941
ILT
3954 uint64_t addralign = (*p)->addralign();
3955 if (addralign > ret)
3956 ret = addralign;
ead1e424
ILT
3957 }
3958 return ret;
3959}
3960
22f0da72 3961// Return whether this segment has any dynamic relocs.
4f4c5f80 3962
22f0da72
ILT
3963bool
3964Output_segment::has_dynamic_reloc() const
4f4c5f80 3965{
22f0da72
ILT
3966 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3967 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3968 return true;
3969 return false;
4f4c5f80
ILT
3970}
3971
22f0da72 3972// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 3973
22f0da72
ILT
3974bool
3975Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 3976{
4f4c5f80
ILT
3977 for (Output_data_list::const_iterator p = pdl->begin();
3978 p != pdl->end();
3979 ++p)
22f0da72
ILT
3980 if ((*p)->has_dynamic_reloc())
3981 return true;
3982 return false;
4f4c5f80
ILT
3983}
3984
a445fddf
ILT
3985// Set the section addresses for an Output_segment. If RESET is true,
3986// reset the addresses first. ADDR is the address and *POFF is the
3987// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
3988// INCREASE_RELRO is the size of the portion of the first non-relro
3989// section that should be included in the PT_GNU_RELRO segment.
3990// If this segment has relro sections, and has been aligned for
3991// that purpose, set *HAS_RELRO to TRUE. Return the address of
3992// the immediately following segment. Update *HAS_RELRO, *POFF,
3993// and *PSHNDX.
75f65a3e
ILT
3994
3995uint64_t
cdc29364 3996Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 3997 uint64_t addr,
fd064a5b 3998 unsigned int* increase_relro,
fc497986 3999 bool* has_relro,
1a2dff53 4000 off_t* poff,
ead1e424 4001 unsigned int* pshndx)
75f65a3e 4002{
a3ad94ed 4003 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4004
fc497986 4005 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4006 off_t orig_off = *poff;
4007
5bc2f5be
CC
4008 bool in_tls = false;
4009
1a2dff53
ILT
4010 // If we have relro sections, we need to pad forward now so that the
4011 // relro sections plus INCREASE_RELRO end on a common page boundary.
4012 if (parameters->options().relro()
4013 && this->is_first_section_relro()
4014 && (!this->are_addresses_set_ || reset))
4015 {
4016 uint64_t relro_size = 0;
4017 off_t off = *poff;
fc497986 4018 uint64_t max_align = 0;
5bc2f5be 4019 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4020 {
22f0da72
ILT
4021 Output_data_list* pdl = &this->output_lists_[i];
4022 Output_data_list::iterator p;
4023 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4024 {
22f0da72
ILT
4025 if (!(*p)->is_section())
4026 break;
fc497986
CC
4027 uint64_t align = (*p)->addralign();
4028 if (align > max_align)
4029 max_align = align;
5bc2f5be
CC
4030 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4031 in_tls = true;
4032 else if (in_tls)
4033 {
4034 // Align the first non-TLS section to the alignment
4035 // of the TLS segment.
4036 align = max_align;
4037 in_tls = false;
4038 }
fc497986 4039 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4040 // Ignore the size of the .tbss section.
4041 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4042 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4043 continue;
22f0da72
ILT
4044 if ((*p)->is_address_valid())
4045 relro_size += (*p)->data_size();
4046 else
4047 {
4048 // FIXME: This could be faster.
4049 (*p)->set_address_and_file_offset(addr + relro_size,
4050 off + relro_size);
4051 relro_size += (*p)->data_size();
4052 (*p)->reset_address_and_file_offset();
4053 }
1a2dff53 4054 }
22f0da72
ILT
4055 if (p != pdl->end())
4056 break;
1a2dff53 4057 }
fd064a5b 4058 relro_size += *increase_relro;
fc497986
CC
4059 // Pad the total relro size to a multiple of the maximum
4060 // section alignment seen.
4061 uint64_t aligned_size = align_address(relro_size, max_align);
4062 // Note the amount of padding added after the last relro section.
4063 last_relro_pad = aligned_size - relro_size;
fc497986 4064 *has_relro = true;
1a2dff53
ILT
4065
4066 uint64_t page_align = parameters->target().common_pagesize();
4067
4068 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4069 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4070 if (desired_align < *poff % page_align)
4071 *poff += page_align - *poff % page_align;
4072 *poff += desired_align - *poff % page_align;
4073 addr += *poff - orig_off;
4074 orig_off = *poff;
4075 }
4076
a445fddf
ILT
4077 if (!reset && this->are_addresses_set_)
4078 {
4079 gold_assert(this->paddr_ == addr);
4080 addr = this->vaddr_;
4081 }
4082 else
4083 {
4084 this->vaddr_ = addr;
4085 this->paddr_ = addr;
4086 this->are_addresses_set_ = true;
4087 }
75f65a3e 4088
5bc2f5be 4089 in_tls = false;
96a2b4e4 4090
75f65a3e
ILT
4091 this->offset_ = orig_off;
4092
22f0da72
ILT
4093 off_t off = 0;
4094 uint64_t ret;
4095 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4096 {
fc497986
CC
4097 if (i == static_cast<int>(ORDER_RELRO_LAST))
4098 {
4099 *poff += last_relro_pad;
4100 addr += last_relro_pad;
fd064a5b
CC
4101 if (this->output_lists_[i].empty())
4102 {
4103 // If there is nothing in the ORDER_RELRO_LAST list,
4104 // the padding will occur at the end of the relro
4105 // segment, and we need to add it to *INCREASE_RELRO.
4106 *increase_relro += last_relro_pad;
4107 }
fc497986 4108 }
5bc2f5be
CC
4109 addr = this->set_section_list_addresses(layout, reset,
4110 &this->output_lists_[i],
4111 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4112 if (i < static_cast<int>(ORDER_SMALL_BSS))
4113 {
4114 this->filesz_ = *poff - orig_off;
4115 off = *poff;
4116 }
75f65a3e 4117
22f0da72
ILT
4118 ret = addr;
4119 }
96a2b4e4
ILT
4120
4121 // If the last section was a TLS section, align upward to the
4122 // alignment of the TLS segment, so that the overall size of the TLS
4123 // segment is aligned.
4124 if (in_tls)
4125 {
4126 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4127 *poff = align_address(*poff, segment_align);
4128 }
4129
75f65a3e
ILT
4130 this->memsz_ = *poff - orig_off;
4131
4132 // Ignore the file offset adjustments made by the BSS Output_data
4133 // objects.
4134 *poff = off;
61ba1cf9
ILT
4135
4136 return ret;
75f65a3e
ILT
4137}
4138
b8e6aad9
ILT
4139// Set the addresses and file offsets in a list of Output_data
4140// structures.
75f65a3e
ILT
4141
4142uint64_t
cdc29364 4143Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4144 Output_data_list* pdl,
ead1e424 4145 uint64_t addr, off_t* poff,
96a2b4e4 4146 unsigned int* pshndx,
1a2dff53 4147 bool* in_tls)
75f65a3e 4148{
ead1e424 4149 off_t startoff = *poff;
cdc29364
CC
4150 // For incremental updates, we may allocate non-fixed sections from
4151 // free space in the file. This keeps track of the high-water mark.
4152 off_t maxoff = startoff;
75f65a3e 4153
ead1e424 4154 off_t off = startoff;
75f65a3e
ILT
4155 for (Output_data_list::iterator p = pdl->begin();
4156 p != pdl->end();
4157 ++p)
4158 {
a445fddf
ILT
4159 if (reset)
4160 (*p)->reset_address_and_file_offset();
4161
cdc29364
CC
4162 // When doing an incremental update or when using a linker script,
4163 // the section will most likely already have an address.
a445fddf 4164 if (!(*p)->is_address_valid())
3802b2dd 4165 {
96a2b4e4
ILT
4166 uint64_t align = (*p)->addralign();
4167
4168 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4169 {
4170 // Give the first TLS section the alignment of the
4171 // entire TLS segment. Otherwise the TLS segment as a
4172 // whole may be misaligned.
4173 if (!*in_tls)
4174 {
4175 Output_segment* tls_segment = layout->tls_segment();
4176 gold_assert(tls_segment != NULL);
4177 uint64_t segment_align = tls_segment->maximum_alignment();
4178 gold_assert(segment_align >= align);
4179 align = segment_align;
4180
4181 *in_tls = true;
4182 }
4183 }
4184 else
4185 {
4186 // If this is the first section after the TLS segment,
4187 // align it to at least the alignment of the TLS
4188 // segment, so that the size of the overall TLS segment
4189 // is aligned.
4190 if (*in_tls)
4191 {
4192 uint64_t segment_align =
4193 layout->tls_segment()->maximum_alignment();
4194 if (segment_align > align)
4195 align = segment_align;
4196
4197 *in_tls = false;
4198 }
4199 }
4200
fb0e076f 4201 if (!parameters->incremental_update())
cdc29364
CC
4202 {
4203 off = align_address(off, align);
4204 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4205 }
4206 else
4207 {
4208 // Incremental update: allocate file space from free list.
4209 (*p)->pre_finalize_data_size();
4210 off_t current_size = (*p)->current_data_size();
4211 off = layout->allocate(current_size, align, startoff);
4212 if (off == -1)
4213 {
4214 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4215 gold_fallback(_("out of patch space for section %s; "
4216 "relink with --incremental-full"),
4217 (*p)->output_section()->name());
cdc29364
CC
4218 }
4219 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4220 if ((*p)->data_size() > current_size)
4221 {
4222 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4223 gold_fallback(_("%s: section changed size; "
4224 "relink with --incremental-full"),
4225 (*p)->output_section()->name());
cdc29364
CC
4226 }
4227 }
3802b2dd 4228 }
cdc29364
CC
4229 else if (parameters->incremental_update())
4230 {
4231 // For incremental updates, use the fixed offset for the
4232 // high-water mark computation.
4233 off = (*p)->offset();
4234 }
a445fddf
ILT
4235 else
4236 {
4237 // The script may have inserted a skip forward, but it
4238 // better not have moved backward.
661be1e2
ILT
4239 if ((*p)->address() >= addr + (off - startoff))
4240 off += (*p)->address() - (addr + (off - startoff));
4241 else
4242 {
4243 if (!layout->script_options()->saw_sections_clause())
4244 gold_unreachable();
4245 else
4246 {
4247 Output_section* os = (*p)->output_section();
64b1ae37
DK
4248
4249 // Cast to unsigned long long to avoid format warnings.
4250 unsigned long long previous_dot =
4251 static_cast<unsigned long long>(addr + (off - startoff));
4252 unsigned long long dot =
4253 static_cast<unsigned long long>((*p)->address());
4254
661be1e2
ILT
4255 if (os == NULL)
4256 gold_error(_("dot moves backward in linker script "
64b1ae37 4257 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4258 else
4259 gold_error(_("address of section '%s' moves backward "
4260 "from 0x%llx to 0x%llx"),
64b1ae37 4261 os->name(), previous_dot, dot);
661be1e2
ILT
4262 }
4263 }
a445fddf
ILT
4264 (*p)->set_file_offset(off);
4265 (*p)->finalize_data_size();
4266 }
ead1e424 4267
cdc29364
CC
4268 gold_debug(DEBUG_INCREMENTAL,
4269 "set_section_list_addresses: %08lx %08lx %s",
4270 static_cast<long>(off),
4271 static_cast<long>((*p)->data_size()),
4272 ((*p)->output_section() != NULL
4273 ? (*p)->output_section()->name() : "(special)"));
4274
96a2b4e4
ILT
4275 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4276 // section. Such a section does not affect the size of a
4277 // PT_LOAD segment.
4278 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4279 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4280 off += (*p)->data_size();
75f65a3e 4281
cdc29364
CC
4282 if (off > maxoff)
4283 maxoff = off;
4284
ead1e424
ILT
4285 if ((*p)->is_section())
4286 {
4287 (*p)->set_out_shndx(*pshndx);
4288 ++*pshndx;
4289 }
75f65a3e
ILT
4290 }
4291
cdc29364
CC
4292 *poff = maxoff;
4293 return addr + (maxoff - startoff);
75f65a3e
ILT
4294}
4295
4296// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4297// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4298
4299void
1a2dff53 4300Output_segment::set_offset(unsigned int increase)
75f65a3e 4301{
a3ad94ed 4302 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4303
a445fddf
ILT
4304 gold_assert(!this->are_addresses_set_);
4305
22f0da72
ILT
4306 // A non-load section only uses output_lists_[0].
4307
4308 Output_data_list* pdl = &this->output_lists_[0];
4309
4310 if (pdl->empty())
75f65a3e 4311 {
1a2dff53 4312 gold_assert(increase == 0);
75f65a3e
ILT
4313 this->vaddr_ = 0;
4314 this->paddr_ = 0;
a445fddf 4315 this->are_addresses_set_ = true;
75f65a3e 4316 this->memsz_ = 0;
a445fddf 4317 this->min_p_align_ = 0;
75f65a3e
ILT
4318 this->offset_ = 0;
4319 this->filesz_ = 0;
4320 return;
4321 }
4322
22f0da72 4323 // Find the first and last section by address.
5f1ab67a
ILT
4324 const Output_data* first = NULL;
4325 const Output_data* last_data = NULL;
4326 const Output_data* last_bss = NULL;
22f0da72
ILT
4327 for (Output_data_list::const_iterator p = pdl->begin();
4328 p != pdl->end();
4329 ++p)
4330 {
4331 if (first == NULL
4332 || (*p)->address() < first->address()
4333 || ((*p)->address() == first->address()
4334 && (*p)->data_size() < first->data_size()))
4335 first = *p;
4336 const Output_data** plast;
4337 if ((*p)->is_section()
4338 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4339 plast = &last_bss;
4340 else
4341 plast = &last_data;
4342 if (*plast == NULL
4343 || (*p)->address() > (*plast)->address()
4344 || ((*p)->address() == (*plast)->address()
4345 && (*p)->data_size() > (*plast)->data_size()))
4346 *plast = *p;
4347 }
5f1ab67a 4348
75f65a3e 4349 this->vaddr_ = first->address();
a445fddf
ILT
4350 this->paddr_ = (first->has_load_address()
4351 ? first->load_address()
4352 : this->vaddr_);
4353 this->are_addresses_set_ = true;
75f65a3e
ILT
4354 this->offset_ = first->offset();
4355
22f0da72 4356 if (last_data == NULL)
75f65a3e
ILT
4357 this->filesz_ = 0;
4358 else
5f1ab67a
ILT
4359 this->filesz_ = (last_data->address()
4360 + last_data->data_size()
4361 - this->vaddr_);
75f65a3e 4362
5f1ab67a 4363 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4364 this->memsz_ = (last->address()
4365 + last->data_size()
4366 - this->vaddr_);
96a2b4e4 4367
1a2dff53
ILT
4368 this->filesz_ += increase;
4369 this->memsz_ += increase;
4370
fd064a5b
CC
4371 // If this is a RELRO segment, verify that the segment ends at a
4372 // page boundary.
4373 if (this->type_ == elfcpp::PT_GNU_RELRO)
4374 {
4375 uint64_t page_align = parameters->target().common_pagesize();
4376 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4377 if (parameters->incremental_update())
4378 {
4379 // The INCREASE_RELRO calculation is bypassed for an incremental
4380 // update, so we need to adjust the segment size manually here.
4381 segment_end = align_address(segment_end, page_align);
4382 this->memsz_ = segment_end - this->vaddr_;
4383 }
4384 else
4385 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4386 }
4387
96a2b4e4
ILT
4388 // If this is a TLS segment, align the memory size. The code in
4389 // set_section_list ensures that the section after the TLS segment
4390 // is aligned to give us room.
4391 if (this->type_ == elfcpp::PT_TLS)
4392 {
4393 uint64_t segment_align = this->maximum_alignment();
4394 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4395 this->memsz_ = align_address(this->memsz_, segment_align);
4396 }
75f65a3e
ILT
4397}
4398
7bf1f802
ILT
4399// Set the TLS offsets of the sections in the PT_TLS segment.
4400
4401void
4402Output_segment::set_tls_offsets()
4403{
4404 gold_assert(this->type_ == elfcpp::PT_TLS);
4405
22f0da72
ILT
4406 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4407 p != this->output_lists_[0].end();
7bf1f802
ILT
4408 ++p)
4409 (*p)->set_tls_offset(this->vaddr_);
4410}
4411
22f0da72 4412// Return the load address of the first section.
a445fddf
ILT
4413
4414uint64_t
4415Output_segment::first_section_load_address() const
4416{
22f0da72
ILT
4417 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4418 {
4419 const Output_data_list* pdl = &this->output_lists_[i];
4420 for (Output_data_list::const_iterator p = pdl->begin();
4421 p != pdl->end();
4422 ++p)
4423 {
4424 if ((*p)->is_section())
4425 return ((*p)->has_load_address()
4426 ? (*p)->load_address()
4427 : (*p)->address());
4428 }
4429 }
a445fddf
ILT
4430 gold_unreachable();
4431}
4432
75f65a3e
ILT
4433// Return the number of Output_sections in an Output_segment.
4434
4435unsigned int
4436Output_segment::output_section_count() const
4437{
22f0da72
ILT
4438 unsigned int ret = 0;
4439 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4440 ret += this->output_section_count_list(&this->output_lists_[i]);
4441 return ret;
75f65a3e
ILT
4442}
4443
4444// Return the number of Output_sections in an Output_data_list.
4445
4446unsigned int
4447Output_segment::output_section_count_list(const Output_data_list* pdl) const
4448{
4449 unsigned int count = 0;
4450 for (Output_data_list::const_iterator p = pdl->begin();
4451 p != pdl->end();
4452 ++p)
4453 {
4454 if ((*p)->is_section())
4455 ++count;
4456 }
4457 return count;
a2fb1b05
ILT
4458}
4459
1c4f3631
ILT
4460// Return the section attached to the list segment with the lowest
4461// load address. This is used when handling a PHDRS clause in a
4462// linker script.
4463
4464Output_section*
4465Output_segment::section_with_lowest_load_address() const
4466{
4467 Output_section* found = NULL;
4468 uint64_t found_lma = 0;
22f0da72
ILT
4469 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4470 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4471 &found_lma);
1c4f3631
ILT
4472 return found;
4473}
4474
4475// Look through a list for a section with a lower load address.
4476
4477void
4478Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4479 Output_section** found,
4480 uint64_t* found_lma) const
4481{
4482 for (Output_data_list::const_iterator p = pdl->begin();
4483 p != pdl->end();
4484 ++p)
4485 {
4486 if (!(*p)->is_section())
4487 continue;
4488 Output_section* os = static_cast<Output_section*>(*p);
4489 uint64_t lma = (os->has_load_address()
4490 ? os->load_address()
4491 : os->address());
4492 if (*found == NULL || lma < *found_lma)
4493 {
4494 *found = os;
4495 *found_lma = lma;
4496 }
4497 }
4498}
4499
61ba1cf9
ILT
4500// Write the segment data into *OPHDR.
4501
4502template<int size, bool big_endian>
4503void
ead1e424 4504Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4505{
4506 ophdr->put_p_type(this->type_);
4507 ophdr->put_p_offset(this->offset_);
4508 ophdr->put_p_vaddr(this->vaddr_);
4509 ophdr->put_p_paddr(this->paddr_);
4510 ophdr->put_p_filesz(this->filesz_);
4511 ophdr->put_p_memsz(this->memsz_);
4512 ophdr->put_p_flags(this->flags_);
a445fddf 4513 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4514}
4515
4516// Write the section headers into V.
4517
4518template<int size, bool big_endian>
4519unsigned char*
16649710
ILT
4520Output_segment::write_section_headers(const Layout* layout,
4521 const Stringpool* secnamepool,
ead1e424 4522 unsigned char* v,
ca09d69a 4523 unsigned int* pshndx) const
5482377d 4524{
ead1e424
ILT
4525 // Every section that is attached to a segment must be attached to a
4526 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4527 // segments.
4528 if (this->type_ != elfcpp::PT_LOAD)
4529 return v;
4530
22f0da72
ILT
4531 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4532 {
4533 const Output_data_list* pdl = &this->output_lists_[i];
4534 v = this->write_section_headers_list<size, big_endian>(layout,
4535 secnamepool,
4536 pdl,
4537 v, pshndx);
4538 }
4539
61ba1cf9
ILT
4540 return v;
4541}
4542
4543template<int size, bool big_endian>
4544unsigned char*
16649710
ILT
4545Output_segment::write_section_headers_list(const Layout* layout,
4546 const Stringpool* secnamepool,
61ba1cf9 4547 const Output_data_list* pdl,
ead1e424 4548 unsigned char* v,
7d1a9ebb 4549 unsigned int* pshndx) const
61ba1cf9
ILT
4550{
4551 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4552 for (Output_data_list::const_iterator p = pdl->begin();
4553 p != pdl->end();
4554 ++p)
4555 {
4556 if ((*p)->is_section())
4557 {
5482377d 4558 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4559 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4560 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4561 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4562 v += shdr_size;
ead1e424 4563 ++*pshndx;
61ba1cf9
ILT
4564 }
4565 }
4566 return v;
4567}
4568
7d9e3d98
ILT
4569// Print the output sections to the map file.
4570
4571void
4572Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4573{
4574 if (this->type() != elfcpp::PT_LOAD)
4575 return;
22f0da72
ILT
4576 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4577 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4578}
4579
4580// Print an output section list to the map file.
4581
4582void
4583Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4584 const Output_data_list* pdl) const
4585{
4586 for (Output_data_list::const_iterator p = pdl->begin();
4587 p != pdl->end();
4588 ++p)
4589 (*p)->print_to_mapfile(mapfile);
4590}
4591
a2fb1b05
ILT
4592// Output_file methods.
4593
14144f39
ILT
4594Output_file::Output_file(const char* name)
4595 : name_(name),
61ba1cf9
ILT
4596 o_(-1),
4597 file_size_(0),
c420411f 4598 base_(NULL),
516cb3d0 4599 map_is_anonymous_(false),
88597d34 4600 map_is_allocated_(false),
516cb3d0 4601 is_temporary_(false)
61ba1cf9
ILT
4602{
4603}
4604
404c2abb 4605// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4606// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4607// NULL, open that file as the base for incremental linking, and
4608// copy its contents to the new output file. This routine can
4609// be called for incremental updates, in which case WRITABLE should
4610// be true, or by the incremental-dump utility, in which case
4611// WRITABLE should be false.
404c2abb
ILT
4612
4613bool
aa92d6ed 4614Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4615{
4616 // The name "-" means "stdout".
4617 if (strcmp(this->name_, "-") == 0)
4618 return false;
4619
aa92d6ed
CC
4620 bool use_base_file = base_name != NULL;
4621 if (!use_base_file)
4622 base_name = this->name_;
4623 else if (strcmp(base_name, this->name_) == 0)
4624 gold_fatal(_("%s: incremental base and output file name are the same"),
4625 base_name);
4626
404c2abb
ILT
4627 // Don't bother opening files with a size of zero.
4628 struct stat s;
aa92d6ed
CC
4629 if (::stat(base_name, &s) != 0)
4630 {
4631 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4632 return false;
4633 }
4634 if (s.st_size == 0)
4635 {
4636 gold_info(_("%s: incremental base file is empty"), base_name);
4637 return false;
4638 }
4639
4640 // If we're using a base file, we want to open it read-only.
4641 if (use_base_file)
4642 writable = false;
404c2abb 4643
aa92d6ed
CC
4644 int oflags = writable ? O_RDWR : O_RDONLY;
4645 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4646 if (o < 0)
aa92d6ed
CC
4647 {
4648 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4649 return false;
4650 }
4651
4652 // If the base file and the output file are different, open a
4653 // new output file and read the contents from the base file into
4654 // the newly-mapped region.
4655 if (use_base_file)
4656 {
4657 this->open(s.st_size);
4658 ssize_t len = ::read(o, this->base_, s.st_size);
4659 if (len < 0)
4660 {
4661 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4662 return false;
4663 }
4664 if (len < s.st_size)
4665 {
4666 gold_info(_("%s: file too short"), base_name);
4667 return false;
4668 }
4669 ::close(o);
4670 return true;
4671 }
4672
404c2abb
ILT
4673 this->o_ = o;
4674 this->file_size_ = s.st_size;
4675
aa92d6ed 4676 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4677 {
4678 release_descriptor(o, true);
4679 this->o_ = -1;
4680 this->file_size_ = 0;
4681 return false;
4682 }
4683
4684 return true;
4685}
4686
61ba1cf9
ILT
4687// Open the output file.
4688
a2fb1b05 4689void
61ba1cf9 4690Output_file::open(off_t file_size)
a2fb1b05 4691{
61ba1cf9
ILT
4692 this->file_size_ = file_size;
4693
4e9d8586
ILT
4694 // Unlink the file first; otherwise the open() may fail if the file
4695 // is busy (e.g. it's an executable that's currently being executed).
4696 //
4697 // However, the linker may be part of a system where a zero-length
4698 // file is created for it to write to, with tight permissions (gcc
4699 // 2.95 did something like this). Unlinking the file would work
4700 // around those permission controls, so we only unlink if the file
4701 // has a non-zero size. We also unlink only regular files to avoid
4702 // trouble with directories/etc.
4703 //
4704 // If we fail, continue; this command is merely a best-effort attempt
4705 // to improve the odds for open().
4706
42a1b686 4707 // We let the name "-" mean "stdout"
516cb3d0 4708 if (!this->is_temporary_)
42a1b686 4709 {
516cb3d0
ILT
4710 if (strcmp(this->name_, "-") == 0)
4711 this->o_ = STDOUT_FILENO;
4712 else
4713 {
4714 struct stat s;
6a89f575
CC
4715 if (::stat(this->name_, &s) == 0
4716 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4717 {
4718 if (s.st_size != 0)
4719 ::unlink(this->name_);
4720 else if (!parameters->options().relocatable())
4721 {
4722 // If we don't unlink the existing file, add execute
4723 // permission where read permissions already exist
4724 // and where the umask permits.
4725 int mask = ::umask(0);
4726 ::umask(mask);
4727 s.st_mode |= (s.st_mode & 0444) >> 2;
4728 ::chmod(this->name_, s.st_mode & ~mask);
4729 }
4730 }
516cb3d0 4731
8851ecca 4732 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4733 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4734 mode);
516cb3d0
ILT
4735 if (o < 0)
4736 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4737 this->o_ = o;
4738 }
42a1b686 4739 }
61ba1cf9 4740
27bc2bce
ILT
4741 this->map();
4742}
4743
4744// Resize the output file.
4745
4746void
4747Output_file::resize(off_t file_size)
4748{
c420411f
ILT
4749 // If the mmap is mapping an anonymous memory buffer, this is easy:
4750 // just mremap to the new size. If it's mapping to a file, we want
4751 // to unmap to flush to the file, then remap after growing the file.
4752 if (this->map_is_anonymous_)
4753 {
88597d34
ILT
4754 void* base;
4755 if (!this->map_is_allocated_)
4756 {
4757 base = ::mremap(this->base_, this->file_size_, file_size,
4758 MREMAP_MAYMOVE);
4759 if (base == MAP_FAILED)
4760 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4761 }
4762 else
4763 {
4764 base = realloc(this->base_, file_size);
4765 if (base == NULL)
4766 gold_nomem();
4767 if (file_size > this->file_size_)
4768 memset(static_cast<char*>(base) + this->file_size_, 0,
4769 file_size - this->file_size_);
4770 }
c420411f
ILT
4771 this->base_ = static_cast<unsigned char*>(base);
4772 this->file_size_ = file_size;
4773 }
4774 else
4775 {
4776 this->unmap();
4777 this->file_size_ = file_size;
aa92d6ed 4778 if (!this->map_no_anonymous(true))
fdcac5af 4779 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4780 }
27bc2bce
ILT
4781}
4782
404c2abb
ILT
4783// Map an anonymous block of memory which will later be written to the
4784// file. Return whether the map succeeded.
26736d8e 4785
404c2abb 4786bool
26736d8e
ILT
4787Output_file::map_anonymous()
4788{
404c2abb
ILT
4789 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4790 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 4791 if (base == MAP_FAILED)
404c2abb 4792 {
88597d34
ILT
4793 base = malloc(this->file_size_);
4794 if (base == NULL)
4795 return false;
4796 memset(base, 0, this->file_size_);
4797 this->map_is_allocated_ = true;
404c2abb 4798 }
88597d34
ILT
4799 this->base_ = static_cast<unsigned char*>(base);
4800 this->map_is_anonymous_ = true;
4801 return true;
26736d8e
ILT
4802}
4803
404c2abb 4804// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 4805// If WRITABLE is true, map with write access.
27bc2bce 4806
404c2abb 4807bool
aa92d6ed 4808Output_file::map_no_anonymous(bool writable)
27bc2bce 4809{
c420411f 4810 const int o = this->o_;
61ba1cf9 4811
c420411f
ILT
4812 // If the output file is not a regular file, don't try to mmap it;
4813 // instead, we'll mmap a block of memory (an anonymous buffer), and
4814 // then later write the buffer to the file.
4815 void* base;
4816 struct stat statbuf;
42a1b686
ILT
4817 if (o == STDOUT_FILENO || o == STDERR_FILENO
4818 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4819 || !S_ISREG(statbuf.st_mode)
4820 || this->is_temporary_)
404c2abb
ILT
4821 return false;
4822
4823 // Ensure that we have disk space available for the file. If we
4824 // don't do this, it is possible that we will call munmap, close,
4825 // and exit with dirty buffers still in the cache with no assigned
4826 // disk blocks. If the disk is out of space at that point, the
4827 // output file will wind up incomplete, but we will have already
4828 // exited. The alternative to fallocate would be to use fdatasync,
4829 // but that would be a more significant performance hit.
aa92d6ed 4830 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
404c2abb
ILT
4831 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4832
4833 // Map the file into memory.
aa92d6ed
CC
4834 int prot = PROT_READ;
4835 if (writable)
4836 prot |= PROT_WRITE;
4837 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
4838
4839 // The mmap call might fail because of file system issues: the file
4840 // system might not support mmap at all, or it might not support
4841 // mmap with PROT_WRITE.
61ba1cf9 4842 if (base == MAP_FAILED)
404c2abb
ILT
4843 return false;
4844
4845 this->map_is_anonymous_ = false;
61ba1cf9 4846 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4847 return true;
4848}
4849
4850// Map the file into memory.
4851
4852void
4853Output_file::map()
4854{
aa92d6ed 4855 if (this->map_no_anonymous(true))
404c2abb
ILT
4856 return;
4857
4858 // The mmap call might fail because of file system issues: the file
4859 // system might not support mmap at all, or it might not support
4860 // mmap with PROT_WRITE. I'm not sure which errno values we will
4861 // see in all cases, so if the mmap fails for any reason and we
4862 // don't care about file contents, try for an anonymous map.
4863 if (this->map_anonymous())
4864 return;
4865
4866 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4867 this->name_, static_cast<unsigned long>(this->file_size_),
4868 strerror(errno));
61ba1cf9
ILT
4869}
4870
c420411f 4871// Unmap the file from memory.
61ba1cf9
ILT
4872
4873void
c420411f 4874Output_file::unmap()
61ba1cf9 4875{
88597d34
ILT
4876 if (this->map_is_anonymous_)
4877 {
4878 // We've already written out the data, so there is no reason to
4879 // waste time unmapping or freeing the memory.
4880 }
4881 else
4882 {
4883 if (::munmap(this->base_, this->file_size_) < 0)
4884 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4885 }
61ba1cf9 4886 this->base_ = NULL;
c420411f
ILT
4887}
4888
4889// Close the output file.
4890
4891void
4892Output_file::close()
4893{
4894 // If the map isn't file-backed, we need to write it now.
516cb3d0 4895 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4896 {
4897 size_t bytes_to_write = this->file_size_;
6d1e3092 4898 size_t offset = 0;
c420411f
ILT
4899 while (bytes_to_write > 0)
4900 {
6d1e3092
CD
4901 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4902 bytes_to_write);
c420411f
ILT
4903 if (bytes_written == 0)
4904 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4905 else if (bytes_written < 0)
4906 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4907 else
6d1e3092
CD
4908 {
4909 bytes_to_write -= bytes_written;
4910 offset += bytes_written;
4911 }
c420411f
ILT
4912 }
4913 }
4914 this->unmap();
61ba1cf9 4915
42a1b686 4916 // We don't close stdout or stderr
516cb3d0
ILT
4917 if (this->o_ != STDOUT_FILENO
4918 && this->o_ != STDERR_FILENO
4919 && !this->is_temporary_)
42a1b686
ILT
4920 if (::close(this->o_) < 0)
4921 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4922 this->o_ = -1;
a2fb1b05
ILT
4923}
4924
4925// Instantiate the templates we need. We could use the configure
4926// script to restrict this to only the ones for implemented targets.
4927
193a53d9 4928#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4929template
4930off_t
4931Output_section::add_input_section<32, false>(
6e9ba2ca 4932 Layout* layout,
6fa2a40b 4933 Sized_relobj_file<32, false>* object,
2ea97941 4934 unsigned int shndx,
a2fb1b05 4935 const char* secname,
730cdc88 4936 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4937 unsigned int reloc_shndx,
4938 bool have_sections_script);
193a53d9 4939#endif
a2fb1b05 4940
193a53d9 4941#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4942template
4943off_t
4944Output_section::add_input_section<32, true>(
6e9ba2ca 4945 Layout* layout,
6fa2a40b 4946 Sized_relobj_file<32, true>* object,
2ea97941 4947 unsigned int shndx,
a2fb1b05 4948 const char* secname,
730cdc88 4949 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4950 unsigned int reloc_shndx,
4951 bool have_sections_script);
193a53d9 4952#endif
a2fb1b05 4953
193a53d9 4954#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4955template
4956off_t
4957Output_section::add_input_section<64, false>(
6e9ba2ca 4958 Layout* layout,
6fa2a40b 4959 Sized_relobj_file<64, false>* object,
2ea97941 4960 unsigned int shndx,
a2fb1b05 4961 const char* secname,
730cdc88 4962 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4963 unsigned int reloc_shndx,
4964 bool have_sections_script);
193a53d9 4965#endif
a2fb1b05 4966
193a53d9 4967#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4968template
4969off_t
4970Output_section::add_input_section<64, true>(
6e9ba2ca 4971 Layout* layout,
6fa2a40b 4972 Sized_relobj_file<64, true>* object,
2ea97941 4973 unsigned int shndx,
a2fb1b05 4974 const char* secname,
730cdc88 4975 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4976 unsigned int reloc_shndx,
4977 bool have_sections_script);
193a53d9 4978#endif
a2fb1b05 4979
bbbfea06
CC
4980#ifdef HAVE_TARGET_32_LITTLE
4981template
4982class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4983#endif
4984
4985#ifdef HAVE_TARGET_32_BIG
4986template
4987class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4988#endif
4989
4990#ifdef HAVE_TARGET_64_LITTLE
4991template
4992class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4993#endif
4994
4995#ifdef HAVE_TARGET_64_BIG
4996template
4997class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4998#endif
4999
5000#ifdef HAVE_TARGET_32_LITTLE
5001template
5002class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5003#endif
5004
5005#ifdef HAVE_TARGET_32_BIG
5006template
5007class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5008#endif
5009
5010#ifdef HAVE_TARGET_64_LITTLE
5011template
5012class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5013#endif
5014
5015#ifdef HAVE_TARGET_64_BIG
5016template
5017class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5018#endif
5019
5020#ifdef HAVE_TARGET_32_LITTLE
5021template
5022class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5023#endif
5024
5025#ifdef HAVE_TARGET_32_BIG
5026template
5027class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5028#endif
5029
5030#ifdef HAVE_TARGET_64_LITTLE
5031template
5032class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5033#endif
5034
5035#ifdef HAVE_TARGET_64_BIG
5036template
5037class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5038#endif
5039
5040#ifdef HAVE_TARGET_32_LITTLE
5041template
5042class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5043#endif
5044
5045#ifdef HAVE_TARGET_32_BIG
5046template
5047class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5048#endif
5049
5050#ifdef HAVE_TARGET_64_LITTLE
5051template
5052class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5053#endif
5054
5055#ifdef HAVE_TARGET_64_BIG
5056template
5057class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5058#endif
5059
193a53d9 5060#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5061template
5062class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5063#endif
c06b7b0b 5064
193a53d9 5065#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5066template
5067class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5068#endif
c06b7b0b 5069
193a53d9 5070#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5071template
5072class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5073#endif
c06b7b0b 5074
193a53d9 5075#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5076template
5077class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5078#endif
c06b7b0b 5079
193a53d9 5080#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5081template
5082class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5083#endif
c06b7b0b 5084
193a53d9 5085#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5086template
5087class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5088#endif
c06b7b0b 5089
193a53d9 5090#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5091template
5092class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5093#endif
c06b7b0b 5094
193a53d9 5095#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5096template
5097class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5098#endif
c06b7b0b 5099
193a53d9 5100#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5101template
5102class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5103#endif
c06b7b0b 5104
193a53d9 5105#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5106template
5107class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5108#endif
c06b7b0b 5109
193a53d9 5110#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5111template
5112class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5113#endif
c06b7b0b 5114
193a53d9 5115#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5116template
5117class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5118#endif
c06b7b0b 5119
193a53d9 5120#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5121template
5122class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5123#endif
c06b7b0b 5124
193a53d9 5125#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5126template
5127class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5128#endif
c06b7b0b 5129
193a53d9 5130#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5131template
5132class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5133#endif
c06b7b0b 5134
193a53d9 5135#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5136template
5137class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5138#endif
c06b7b0b 5139
6a74a719
ILT
5140#ifdef HAVE_TARGET_32_LITTLE
5141template
5142class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5143#endif
5144
5145#ifdef HAVE_TARGET_32_BIG
5146template
5147class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5148#endif
5149
5150#ifdef HAVE_TARGET_64_LITTLE
5151template
5152class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5153#endif
5154
5155#ifdef HAVE_TARGET_64_BIG
5156template
5157class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5158#endif
5159
5160#ifdef HAVE_TARGET_32_LITTLE
5161template
5162class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5163#endif
5164
5165#ifdef HAVE_TARGET_32_BIG
5166template
5167class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5168#endif
5169
5170#ifdef HAVE_TARGET_64_LITTLE
5171template
5172class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5173#endif
5174
5175#ifdef HAVE_TARGET_64_BIG
5176template
5177class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5178#endif
5179
5180#ifdef HAVE_TARGET_32_LITTLE
5181template
5182class Output_data_group<32, false>;
5183#endif
5184
5185#ifdef HAVE_TARGET_32_BIG
5186template
5187class Output_data_group<32, true>;
5188#endif
5189
5190#ifdef HAVE_TARGET_64_LITTLE
5191template
5192class Output_data_group<64, false>;
5193#endif
5194
5195#ifdef HAVE_TARGET_64_BIG
5196template
5197class Output_data_group<64, true>;
5198#endif
5199
193a53d9 5200#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5201template
dbe717ef 5202class Output_data_got<32, false>;
193a53d9 5203#endif
ead1e424 5204
193a53d9 5205#ifdef HAVE_TARGET_32_BIG
ead1e424 5206template
dbe717ef 5207class Output_data_got<32, true>;
193a53d9 5208#endif
ead1e424 5209
193a53d9 5210#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5211template
dbe717ef 5212class Output_data_got<64, false>;
193a53d9 5213#endif
ead1e424 5214
193a53d9 5215#ifdef HAVE_TARGET_64_BIG
ead1e424 5216template
dbe717ef 5217class Output_data_got<64, true>;
193a53d9 5218#endif
ead1e424 5219
a2fb1b05 5220} // End namespace gold.
This page took 0.525746 seconds and 4 git commands to generate.