* dwarf2read.c (read_func_scope): Do not complain for
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140}
1141
c06b7b0b
ILT
1142// Write out relocation data.
1143
1144template<int sh_type, bool dynamic, int size, bool big_endian>
1145void
1146Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148{
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
3a44184e 1153 if (this->sort_relocs())
d98bc257
ILT
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
c06b7b0b
ILT
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
a3ad94ed 1169 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175}
1176
6a74a719
ILT
1177// Class Output_relocatable_relocs.
1178
1179template<int sh_type, int size, bool big_endian>
1180void
1181Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182{
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185}
1186
1187// class Output_data_group.
1188
1189template<int size, bool big_endian>
1190Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
8825ac63
ILT
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1195 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1196 relobj_(relobj),
1197 flags_(flags)
6a74a719 1198{
8825ac63 1199 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1200}
1201
1202// Write out the section group, which means translating the section
1203// indexes to apply to the output file.
1204
1205template<int size, bool big_endian>
1206void
1207Output_data_group<size, big_endian>::do_write(Output_file* of)
1208{
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
6a74a719
ILT
1221 ++p, ++contents)
1222 {
ef9beddf 1223 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
8825ac63 1244 this->input_shndxes_.clear();
6a74a719
ILT
1245}
1246
dbe717ef 1247// Output_data_got::Got_entry methods.
ead1e424
ILT
1248
1249// Write out the entry.
1250
1251template<int size, bool big_endian>
1252void
7e1edb90 1253Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1254{
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
e8c846c3
ILT
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
ead1e424 1264 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
ead1e424
ILT
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
d1f003c6
ILT
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
e727fa71 1284 break;
ead1e424
ILT
1285 }
1286
a3ad94ed 1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1288}
1289
dbe717ef 1290// Output_data_got methods.
ead1e424 1291
dbe717ef
ILT
1292// Add an entry for a global symbol to the GOT. This returns true if
1293// this is a new GOT entry, false if the symbol already had a GOT
1294// entry.
1295
1296template<int size, bool big_endian>
1297bool
0a65a3a7
CC
1298Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
ead1e424 1301{
0a65a3a7 1302 if (gsym->has_got_offset(got_type))
dbe717ef 1303 return false;
ead1e424 1304
dbe717ef
ILT
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
0a65a3a7 1307 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1308 return true;
1309}
ead1e424 1310
7bf1f802
ILT
1311// Add an entry for a global symbol to the GOT, and add a dynamic
1312// relocation of type R_TYPE for the GOT entry.
1313template<int size, bool big_endian>
1314void
1315Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
0a65a3a7 1317 unsigned int got_type,
7bf1f802
ILT
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320{
0a65a3a7 1321 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
2ea97941
ILT
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1329}
1330
1331template<int size, bool big_endian>
1332void
1333Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
0a65a3a7 1335 unsigned int got_type,
7bf1f802
ILT
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
2ea97941
ILT
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1347}
1348
0a65a3a7
CC
1349// Add a pair of entries for a global symbol to the GOT, and add
1350// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1352template<int size, bool big_endian>
1353void
0a65a3a7
CC
1354Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
7bf1f802 1357 Rel_dyn* rel_dyn,
0a65a3a7
CC
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
7bf1f802 1360{
0a65a3a7 1361 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
2ea97941
ILT
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
2ea97941
ILT
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1374 }
1375
1376 this->set_got_size();
7bf1f802
ILT
1377}
1378
1379template<int size, bool big_endian>
1380void
0a65a3a7
CC
1381Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
7bf1f802 1384 Rela_dyn* rela_dyn,
0a65a3a7
CC
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
7bf1f802 1387{
0a65a3a7 1388 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
2ea97941
ILT
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
2ea97941
ILT
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1401 }
1402
1403 this->set_got_size();
7bf1f802
ILT
1404}
1405
0a65a3a7
CC
1406// Add an entry for a local symbol to the GOT. This returns true if
1407// this is a new GOT entry, false if the symbol already has a GOT
1408// entry.
07f397ab
ILT
1409
1410template<int size, bool big_endian>
1411bool
0a65a3a7
CC
1412Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
07f397ab 1416{
0a65a3a7 1417 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1418 return false;
1419
0a65a3a7 1420 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1421 this->set_got_size();
0a65a3a7 1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1423 return true;
1424}
1425
0a65a3a7
CC
1426// Add an entry for a local symbol to the GOT, and add a dynamic
1427// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1428template<int size, bool big_endian>
1429void
0a65a3a7
CC
1430Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
7bf1f802
ILT
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436{
0a65a3a7 1437 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
2ea97941
ILT
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1445}
1446
1447template<int size, bool big_endian>
1448void
0a65a3a7
CC
1449Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
7bf1f802
ILT
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455{
0a65a3a7 1456 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
2ea97941
ILT
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1464}
1465
0a65a3a7
CC
1466// Add a pair of entries for a local symbol to the GOT, and add
1467// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1469template<int size, bool big_endian>
1470void
0a65a3a7 1471Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
0a65a3a7 1475 unsigned int got_type,
7bf1f802 1476 Rel_dyn* rel_dyn,
0a65a3a7
CC
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
7bf1f802 1479{
0a65a3a7 1480 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
2ea97941
ILT
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1486 Output_section* os = object->output_section(shndx);
2ea97941 1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1488
0a65a3a7
CC
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
2ea97941
ILT
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1494 }
7bf1f802
ILT
1495
1496 this->set_got_size();
1497}
1498
1499template<int size, bool big_endian>
1500void
0a65a3a7 1501Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
0a65a3a7 1505 unsigned int got_type,
7bf1f802 1506 Rela_dyn* rela_dyn,
0a65a3a7
CC
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
7bf1f802 1509{
0a65a3a7 1510 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
2ea97941
ILT
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1516 Output_section* os = object->output_section(shndx);
2ea97941 1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1518
0a65a3a7
CC
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
2ea97941
ILT
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1524 }
7bf1f802
ILT
1525
1526 this->set_got_size();
1527}
1528
ead1e424
ILT
1529// Write out the GOT.
1530
1531template<int size, bool big_endian>
1532void
dbe717ef 1533Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1534{
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
c06b7b0b 1538 const off_t oview_size = this->data_size();
ead1e424
ILT
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
7e1edb90 1546 p->write(pov);
ead1e424
ILT
1547 pov += add;
1548 }
1549
a3ad94ed 1550 gold_assert(pov - oview == oview_size);
c06b7b0b 1551
ead1e424
ILT
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556}
1557
a3ad94ed
ILT
1558// Output_data_dynamic::Dynamic_entry methods.
1559
1560// Write out the entry.
1561
1562template<int size, bool big_endian>
1563void
1564Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
7d1a9ebb 1566 const Stringpool* pool) const
a3ad94ed
ILT
1567{
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1569 switch (this->offset_)
a3ad94ed
ILT
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
a3ad94ed 1575 case DYNAMIC_SECTION_SIZE:
16649710 1576 val = this->u_.od->data_size();
612a8d3d
DM
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
a3ad94ed
ILT
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
16649710
ILT
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
c2b45e22
CC
1594 val = this->u_.od->address() + this->offset_;
1595 break;
a3ad94ed
ILT
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601}
1602
1603// Output_data_dynamic methods.
1604
16649710
ILT
1605// Adjust the output section to set the entry size.
1606
1607void
1608Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609{
8851ecca 1610 if (parameters->target().get_size() == 32)
16649710 1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1612 else if (parameters->target().get_size() == 64)
16649710
ILT
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616}
1617
a3ad94ed
ILT
1618// Set the final data size.
1619
1620void
27bc2bce 1621Output_data_dynamic::set_final_data_size()
a3ad94ed 1622{
20e6d0d6
DK
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
a3ad94ed
ILT
1632
1633 int dyn_size;
8851ecca 1634 if (parameters->target().get_size() == 32)
a3ad94ed 1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1636 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641}
1642
1643// Write out the dynamic entries.
1644
1645void
1646Output_data_dynamic::do_write(Output_file* of)
1647{
8851ecca 1648 switch (parameters->size_and_endianness())
a3ad94ed 1649 {
9025d29d 1650#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
9025d29d 1654#endif
8851ecca
ILT
1655#ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
9025d29d 1659#endif
9025d29d 1660#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
9025d29d 1664#endif
8851ecca
ILT
1665#ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669#endif
1670 default:
1671 gold_unreachable();
a3ad94ed 1672 }
a3ad94ed
ILT
1673}
1674
1675template<int size, bool big_endian>
1676void
1677Output_data_dynamic::sized_write(Output_file* of)
1678{
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
2ea97941 1681 const off_t offset = this->offset();
a3ad94ed 1682 const off_t oview_size = this->data_size();
2ea97941 1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
7d1a9ebb 1690 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
2ea97941 1696 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700}
1701
d491d34e
ILT
1702// Class Output_symtab_xindex.
1703
1704void
1705Output_symtab_xindex::do_write(Output_file* of)
1706{
2ea97941 1707 const off_t offset = this->offset();
d491d34e 1708 const off_t oview_size = this->data_size();
2ea97941 1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
2ea97941 1718 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722}
1723
1724template<bool big_endian>
1725void
1726Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727{
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
20e6d0d6
DK
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
d491d34e
ILT
1736}
1737
ead1e424
ILT
1738// Output_section::Input_section methods.
1739
1740// Return the data size. For an input section we store the size here.
1741// For an Output_section_data, we have to ask it for the size.
1742
1743off_t
1744Output_section::Input_section::data_size() const
1745{
1746 if (this->is_input_section())
b8e6aad9 1747 return this->u1_.data_size;
ead1e424 1748 else
b8e6aad9 1749 return this->u2_.posd->data_size();
ead1e424
ILT
1750}
1751
0439c796
DK
1752// Return the object for an input section.
1753
1754Relobj*
1755Output_section::Input_section::relobj() const
1756{
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768}
1769
1770// Return the input section index for an input section.
1771
1772unsigned int
1773Output_section::Input_section::shndx() const
1774{
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786}
1787
ead1e424
ILT
1788// Set the address and file offset.
1789
1790void
96803768
ILT
1791Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
ead1e424
ILT
1795{
1796 if (this->is_input_section())
96803768
ILT
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
ead1e424 1799 else
96803768
ILT
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801}
1802
a445fddf
ILT
1803// Reset the address and file offset.
1804
1805void
1806Output_section::Input_section::reset_address_and_file_offset()
1807{
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810}
1811
96803768
ILT
1812// Finalize the data size.
1813
1814void
1815Output_section::Input_section::finalize_data_size()
1816{
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1819}
1820
1e983657
ILT
1821// Try to turn an input offset into an output offset. We want to
1822// return the output offset relative to the start of this
1823// Input_section in the output section.
b8e6aad9 1824
8f00aeb8 1825inline bool
8383303e
ILT
1826Output_section::Input_section::output_offset(
1827 const Relobj* object,
2ea97941
ILT
1828 unsigned int shndx,
1829 section_offset_type offset,
8383303e 1830 section_offset_type *poutput) const
b8e6aad9
ILT
1831{
1832 if (!this->is_input_section())
2ea97941 1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1834 else
1835 {
2ea97941 1836 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1837 return false;
2ea97941 1838 *poutput = offset;
b8e6aad9
ILT
1839 return true;
1840 }
ead1e424
ILT
1841}
1842
a9a60db6
ILT
1843// Return whether this is the merge section for the input section
1844// SHNDX in OBJECT.
1845
1846inline bool
1847Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1848 unsigned int shndx) const
a9a60db6
ILT
1849{
1850 if (this->is_input_section())
1851 return false;
2ea97941 1852 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1853}
1854
ead1e424
ILT
1855// Write out the data. We don't have to do anything for an input
1856// section--they are handled via Object::relocate--but this is where
1857// we write out the data for an Output_section_data.
1858
1859void
1860Output_section::Input_section::write(Output_file* of)
1861{
1862 if (!this->is_input_section())
b8e6aad9 1863 this->u2_.posd->write(of);
ead1e424
ILT
1864}
1865
96803768
ILT
1866// Write the data to a buffer. As for write(), we don't have to do
1867// anything for an input section.
1868
1869void
1870Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871{
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874}
1875
7d9e3d98
ILT
1876// Print to a map file.
1877
1878void
1879Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880{
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
20e6d0d6
DK
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
7d9e3d98
ILT
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901}
1902
a2fb1b05
ILT
1903// Output_section methods.
1904
1905// Construct an Output_section. NAME will point into a Stringpool.
1906
2ea97941
ILT
1907Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
a2fb1b05
ILT
1910 addralign_(0),
1911 entsize_(0),
a445fddf 1912 load_address_(0),
16649710 1913 link_section_(NULL),
a2fb1b05 1914 link_(0),
16649710 1915 info_section_(NULL),
6a74a719 1916 info_symndx_(NULL),
a2fb1b05 1917 info_(0),
2ea97941
ILT
1918 type_(type),
1919 flags_(flags),
91ea499d 1920 out_shndx_(-1U),
c06b7b0b
ILT
1921 symtab_index_(0),
1922 dynsym_index_(0),
ead1e424
ILT
1923 input_sections_(),
1924 first_input_offset_(0),
c51e6221 1925 fills_(),
96803768 1926 postprocessing_buffer_(NULL),
a3ad94ed 1927 needs_symtab_index_(false),
16649710
ILT
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
730cdc88 1930 should_link_to_dynsym_(false),
27bc2bce 1931 after_input_sections_(false),
7bf1f802 1932 requires_postprocessing_(false),
a445fddf
ILT
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
755ab8af 1935 info_uses_section_index_(false),
2fd32231
ILT
1936 may_sort_attached_input_sections_(false),
1937 must_sort_attached_input_sections_(false),
1938 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1939 is_relro_(false),
1940 is_relro_local_(false),
1a2dff53
ILT
1941 is_last_relro_(false),
1942 is_first_non_relro_(false),
8a5e3e08
ILT
1943 is_small_section_(false),
1944 is_large_section_(false),
f5c870d2
ILT
1945 is_interp_(false),
1946 is_dynamic_linker_section_(false),
1947 generate_code_fills_at_write_(false),
e8cd95c7 1948 is_entsize_zero_(false),
8923b24c 1949 section_offsets_need_adjustment_(false),
1e5d2fb1 1950 is_noload_(false),
20e6d0d6 1951 tls_offset_(0),
c0a62865 1952 checkpoint_(NULL),
0439c796 1953 lookup_maps_(new Output_section_lookup_maps)
a2fb1b05 1954{
27bc2bce
ILT
1955 // An unallocated section has no address. Forcing this means that
1956 // we don't need special treatment for symbols defined in debug
1957 // sections.
2ea97941 1958 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 1959 this->set_address(0);
a2fb1b05
ILT
1960}
1961
54dc6425
ILT
1962Output_section::~Output_section()
1963{
20e6d0d6 1964 delete this->checkpoint_;
54dc6425
ILT
1965}
1966
16649710
ILT
1967// Set the entry size.
1968
1969void
1970Output_section::set_entsize(uint64_t v)
1971{
e8cd95c7
ILT
1972 if (this->is_entsize_zero_)
1973 ;
1974 else if (this->entsize_ == 0)
16649710 1975 this->entsize_ = v;
e8cd95c7
ILT
1976 else if (this->entsize_ != v)
1977 {
1978 this->entsize_ = 0;
1979 this->is_entsize_zero_ = 1;
1980 }
16649710
ILT
1981}
1982
ead1e424 1983// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1984// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1985// relocation section which applies to this section, or 0 if none, or
1986// -1U if more than one. Return the offset of the input section
1987// within the output section. Return -1 if the input section will
1988// receive special handling. In the normal case we don't always keep
1989// track of input sections for an Output_section. Instead, each
1990// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1991// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1992// track of input sections here; this is used when SECTIONS appears in
1993// a linker script.
a2fb1b05
ILT
1994
1995template<int size, bool big_endian>
1996off_t
730cdc88 1997Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
2ea97941 1998 unsigned int shndx,
ead1e424 1999 const char* secname,
730cdc88 2000 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2001 unsigned int reloc_shndx,
2002 bool have_sections_script)
a2fb1b05 2003{
2ea97941
ILT
2004 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2005 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2006 {
75f2446e 2007 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2008 static_cast<unsigned long>(addralign), secname);
2009 addralign = 1;
a2fb1b05 2010 }
a2fb1b05 2011
2ea97941
ILT
2012 if (addralign > this->addralign_)
2013 this->addralign_ = addralign;
a2fb1b05 2014
44a43cf9 2015 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2016 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2017
2018 // .debug_str is a mergeable string section, but is not always so
2019 // marked by compilers. Mark manually here so we can optimize.
2020 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2021 {
2022 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2023 entsize = 1;
4f833eee 2024 }
44a43cf9 2025
e8cd95c7
ILT
2026 this->update_flags_for_input_section(sh_flags);
2027 this->set_entsize(entsize);
2028
b8e6aad9 2029 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2030 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2031 // a section. We don't try to handle empty merge sections--they
2032 // mess up the mappings, and are useless anyhow.
44a43cf9 2033 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2034 && reloc_shndx == 0
2035 && shdr.get_sh_size() > 0)
b8e6aad9 2036 {
0439c796
DK
2037 // Keep information about merged input sections for rebuilding fast
2038 // lookup maps if we have sections-script or we do relaxation.
2039 bool keeps_input_sections =
2040 have_sections_script || parameters->target().may_relax();
2041 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2042 addralign, keeps_input_sections))
b8e6aad9
ILT
2043 {
2044 // Tell the relocation routines that they need to call the
730cdc88 2045 // output_offset method to determine the final address.
b8e6aad9
ILT
2046 return -1;
2047 }
2048 }
2049
27bc2bce 2050 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2051 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2052 addralign);
c51e6221 2053
c0a62865
DK
2054 // Determine if we want to delay code-fill generation until the output
2055 // section is written. When the target is relaxing, we want to delay fill
2056 // generating to avoid adjusting them during relaxation.
2057 if (!this->generate_code_fills_at_write_
2058 && !have_sections_script
2059 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2060 && parameters->target().has_code_fill()
2061 && parameters->target().may_relax())
2062 {
2063 gold_assert(this->fills_.empty());
2064 this->generate_code_fills_at_write_ = true;
2065 }
2066
c51e6221 2067 if (aligned_offset_in_section > offset_in_section
c0a62865 2068 && !this->generate_code_fills_at_write_
a445fddf 2069 && !have_sections_script
44a43cf9 2070 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2071 && parameters->target().has_code_fill())
c51e6221
ILT
2072 {
2073 // We need to add some fill data. Using fill_list_ when
2074 // possible is an optimization, since we will often have fill
2075 // sections without input sections.
2076 off_t fill_len = aligned_offset_in_section - offset_in_section;
2077 if (this->input_sections_.empty())
2078 this->fills_.push_back(Fill(offset_in_section, fill_len));
2079 else
2080 {
029ba973 2081 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2082 Output_data_const* odc = new Output_data_const(fill_data, 1);
2083 this->input_sections_.push_back(Input_section(odc));
2084 }
2085 }
2086
27bc2bce
ILT
2087 this->set_current_data_size_for_child(aligned_offset_in_section
2088 + shdr.get_sh_size());
a2fb1b05 2089
ead1e424 2090 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2091 // track of sections, or if we are relaxing. Also, if this is a
2092 // section which requires sorting, or which may require sorting in
20e6d0d6 2093 // the future, we keep track of the sections.
2fd32231
ILT
2094 if (have_sections_script
2095 || !this->input_sections_.empty()
2096 || this->may_sort_attached_input_sections()
7d9e3d98 2097 || this->must_sort_attached_input_sections()
20e6d0d6 2098 || parameters->options().user_set_Map()
029ba973 2099 || parameters->target().may_relax())
2ea97941 2100 this->input_sections_.push_back(Input_section(object, shndx,
ead1e424 2101 shdr.get_sh_size(),
2ea97941 2102 addralign));
54dc6425 2103
c51e6221 2104 return aligned_offset_in_section;
61ba1cf9
ILT
2105}
2106
ead1e424
ILT
2107// Add arbitrary data to an output section.
2108
2109void
2110Output_section::add_output_section_data(Output_section_data* posd)
2111{
b8e6aad9
ILT
2112 Input_section inp(posd);
2113 this->add_output_section_data(&inp);
a445fddf
ILT
2114
2115 if (posd->is_data_size_valid())
2116 {
2117 off_t offset_in_section = this->current_data_size_for_child();
2118 off_t aligned_offset_in_section = align_address(offset_in_section,
2119 posd->addralign());
2120 this->set_current_data_size_for_child(aligned_offset_in_section
2121 + posd->data_size());
2122 }
b8e6aad9
ILT
2123}
2124
c0a62865
DK
2125// Add a relaxed input section.
2126
2127void
2128Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2129{
2130 Input_section inp(poris);
2131 this->add_output_section_data(&inp);
0439c796
DK
2132 if (this->lookup_maps_->is_valid())
2133 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2134 poris->shndx(), poris);
c0a62865
DK
2135
2136 // For a relaxed section, we use the current data size. Linker scripts
2137 // get all the input sections, including relaxed one from an output
2138 // section and add them back to them same output section to compute the
2139 // output section size. If we do not account for sizes of relaxed input
2140 // sections, an output section would be incorrectly sized.
2141 off_t offset_in_section = this->current_data_size_for_child();
2142 off_t aligned_offset_in_section = align_address(offset_in_section,
2143 poris->addralign());
2144 this->set_current_data_size_for_child(aligned_offset_in_section
2145 + poris->current_data_size());
2146}
2147
b8e6aad9 2148// Add arbitrary data to an output section by Input_section.
c06b7b0b 2149
b8e6aad9
ILT
2150void
2151Output_section::add_output_section_data(Input_section* inp)
2152{
ead1e424 2153 if (this->input_sections_.empty())
27bc2bce 2154 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2155
b8e6aad9 2156 this->input_sections_.push_back(*inp);
c06b7b0b 2157
2ea97941
ILT
2158 uint64_t addralign = inp->addralign();
2159 if (addralign > this->addralign_)
2160 this->addralign_ = addralign;
c06b7b0b 2161
b8e6aad9
ILT
2162 inp->set_output_section(this);
2163}
2164
2165// Add a merge section to an output section.
2166
2167void
2168Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2169 bool is_string, uint64_t entsize)
b8e6aad9 2170{
2ea97941 2171 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2172 this->add_output_section_data(&inp);
2173}
2174
2175// Add an input section to a SHF_MERGE section.
2176
2177bool
2ea97941
ILT
2178Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2179 uint64_t flags, uint64_t entsize,
0439c796
DK
2180 uint64_t addralign,
2181 bool keeps_input_sections)
b8e6aad9 2182{
2ea97941 2183 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2184
2185 // We only merge strings if the alignment is not more than the
2186 // character size. This could be handled, but it's unusual.
2ea97941 2187 if (is_string && addralign > entsize)
b8e6aad9
ILT
2188 return false;
2189
20e6d0d6
DK
2190 // We cannot restore merged input section states.
2191 gold_assert(this->checkpoint_ == NULL);
2192
c0a62865 2193 // Look up merge sections by required properties.
0439c796
DK
2194 // Currently, we only invalidate the lookup maps in script processing
2195 // and relaxation. We should not have done either when we reach here.
2196 // So we assume that the lookup maps are valid to simply code.
2197 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2198 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2199 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2200 bool is_new = false;
2201 if (pomb != NULL)
c0a62865 2202 {
6bf924b0
DK
2203 gold_assert(pomb->is_string() == is_string
2204 && pomb->entsize() == entsize
2205 && pomb->addralign() == addralign);
c0a62865 2206 }
b8e6aad9
ILT
2207 else
2208 {
6bf924b0
DK
2209 // Create a new Output_merge_data or Output_merge_string_data.
2210 if (!is_string)
2211 pomb = new Output_merge_data(entsize, addralign);
2212 else
9a0910c3 2213 {
6bf924b0
DK
2214 switch (entsize)
2215 {
2216 case 1:
2217 pomb = new Output_merge_string<char>(addralign);
2218 break;
2219 case 2:
2220 pomb = new Output_merge_string<uint16_t>(addralign);
2221 break;
2222 case 4:
2223 pomb = new Output_merge_string<uint32_t>(addralign);
2224 break;
2225 default:
2226 return false;
2227 }
9a0910c3 2228 }
0439c796
DK
2229 // If we need to do script processing or relaxation, we need to keep
2230 // the original input sections to rebuild the fast lookup maps.
2231 if (keeps_input_sections)
2232 pomb->set_keeps_input_sections();
2233 is_new = true;
b8e6aad9
ILT
2234 }
2235
6bf924b0
DK
2236 if (pomb->add_input_section(object, shndx))
2237 {
0439c796
DK
2238 // Add new merge section to this output section and link merge
2239 // section properties to new merge section in map.
2240 if (is_new)
2241 {
2242 this->add_output_merge_section(pomb, is_string, entsize);
2243 this->lookup_maps_->add_merge_section(msp, pomb);
2244 }
2245
6bf924b0
DK
2246 // Add input section to new merge section and link input section to new
2247 // merge section in map.
0439c796 2248 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2249 return true;
2250 }
2251 else
0439c796
DK
2252 {
2253 // If add_input_section failed, delete new merge section to avoid
2254 // exporting empty merge sections in Output_section::get_input_section.
2255 if (is_new)
2256 delete pomb;
2257 return false;
2258 }
b8e6aad9
ILT
2259}
2260
c0a62865 2261// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2262// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2263
20e6d0d6 2264void
c0a62865 2265Output_section::build_relaxation_map(
2ea97941 2266 const Input_section_list& input_sections,
c0a62865
DK
2267 size_t limit,
2268 Relaxation_map* relaxation_map) const
20e6d0d6 2269{
c0a62865
DK
2270 for (size_t i = 0; i < limit; ++i)
2271 {
2ea97941 2272 const Input_section& is(input_sections[i]);
c0a62865
DK
2273 if (is.is_input_section() || is.is_relaxed_input_section())
2274 {
5ac169d4
DK
2275 Section_id sid(is.relobj(), is.shndx());
2276 (*relaxation_map)[sid] = i;
c0a62865
DK
2277 }
2278 }
2279}
2280
2281// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2282// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2283// indices of INPUT_SECTIONS.
20e6d0d6 2284
c0a62865
DK
2285void
2286Output_section::convert_input_sections_in_list_to_relaxed_sections(
2287 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2288 const Relaxation_map& map,
2ea97941 2289 Input_section_list* input_sections)
c0a62865
DK
2290{
2291 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2292 {
2293 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2294 Section_id sid(poris->relobj(), poris->shndx());
2295 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2296 gold_assert(p != map.end());
2ea97941
ILT
2297 gold_assert((*input_sections)[p->second].is_input_section());
2298 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2299 }
2300}
2301
2302// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2303// is a vector of pointers to Output_relaxed_input_section or its derived
2304// classes. The relaxed sections must correspond to existing input sections.
2305
2306void
2307Output_section::convert_input_sections_to_relaxed_sections(
2308 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2309{
029ba973 2310 gold_assert(parameters->target().may_relax());
20e6d0d6 2311
c0a62865
DK
2312 // We want to make sure that restore_states does not undo the effect of
2313 // this. If there is no checkpoint active, just search the current
2314 // input section list and replace the sections there. If there is
2315 // a checkpoint, also replace the sections there.
2316
2317 // By default, we look at the whole list.
2318 size_t limit = this->input_sections_.size();
2319
2320 if (this->checkpoint_ != NULL)
20e6d0d6 2321 {
c0a62865
DK
2322 // Replace input sections with relaxed input section in the saved
2323 // copy of the input section list.
2324 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2325 {
c0a62865
DK
2326 Relaxation_map map;
2327 this->build_relaxation_map(
2328 *(this->checkpoint_->input_sections()),
2329 this->checkpoint_->input_sections()->size(),
2330 &map);
2331 this->convert_input_sections_in_list_to_relaxed_sections(
2332 relaxed_sections,
2333 map,
2334 this->checkpoint_->input_sections());
2335 }
2336 else
2337 {
2338 // We have not copied the input section list yet. Instead, just
2339 // look at the portion that would be saved.
2340 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2341 }
20e6d0d6 2342 }
c0a62865
DK
2343
2344 // Convert input sections in input_section_list.
2345 Relaxation_map map;
2346 this->build_relaxation_map(this->input_sections_, limit, &map);
2347 this->convert_input_sections_in_list_to_relaxed_sections(
2348 relaxed_sections,
2349 map,
2350 &this->input_sections_);
41263c05
DK
2351
2352 // Update fast look-up map.
0439c796 2353 if (this->lookup_maps_->is_valid())
41263c05
DK
2354 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2355 {
2356 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2357 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2358 poris->shndx(), poris);
41263c05 2359 }
20e6d0d6
DK
2360}
2361
9c547ec3
ILT
2362// Update the output section flags based on input section flags.
2363
2364void
2ea97941 2365Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2366{
2367 // If we created the section with SHF_ALLOC clear, we set the
2368 // address. If we are now setting the SHF_ALLOC flag, we need to
2369 // undo that.
2370 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2371 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2372 this->mark_address_invalid();
2373
2ea97941 2374 this->flags_ |= (flags
9c547ec3
ILT
2375 & (elfcpp::SHF_WRITE
2376 | elfcpp::SHF_ALLOC
2377 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2378
2379 if ((flags & elfcpp::SHF_MERGE) == 0)
2380 this->flags_ &=~ elfcpp::SHF_MERGE;
2381 else
2382 {
2383 if (this->current_data_size_for_child() == 0)
2384 this->flags_ |= elfcpp::SHF_MERGE;
2385 }
2386
2387 if ((flags & elfcpp::SHF_STRINGS) == 0)
2388 this->flags_ &=~ elfcpp::SHF_STRINGS;
2389 else
2390 {
2391 if (this->current_data_size_for_child() == 0)
2392 this->flags_ |= elfcpp::SHF_STRINGS;
2393 }
9c547ec3
ILT
2394}
2395
2ea97941 2396// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2397// OBJECT has been added. Return NULL if none found.
2398
2399Output_section_data*
2400Output_section::find_merge_section(const Relobj* object,
2ea97941 2401 unsigned int shndx) const
c0a62865 2402{
0439c796
DK
2403 if (!this->lookup_maps_->is_valid())
2404 this->build_lookup_maps();
2405 return this->lookup_maps_->find_merge_section(object, shndx);
2406}
2407
2408// Build the lookup maps for merge and relaxed sections. This is needs
2409// to be declared as a const methods so that it is callable with a const
2410// Output_section pointer. The method only updates states of the maps.
2411
2412void
2413Output_section::build_lookup_maps() const
2414{
2415 this->lookup_maps_->clear();
2416 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2417 p != this->input_sections_.end();
2418 ++p)
c0a62865 2419 {
0439c796
DK
2420 if (p->is_merge_section())
2421 {
2422 Output_merge_base* pomb = p->output_merge_base();
2423 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2424 pomb->addralign());
2425 this->lookup_maps_->add_merge_section(msp, pomb);
2426 for (Output_merge_base::Input_sections::const_iterator is =
2427 pomb->input_sections_begin();
2428 is != pomb->input_sections_end();
2429 ++is)
2430 {
2431 const Const_section_id& csid = *is;
2432 this->lookup_maps_->add_merge_input_section(csid.first,
2433 csid.second, pomb);
2434 }
2435
2436 }
2437 else if (p->is_relaxed_input_section())
2438 {
2439 Output_relaxed_input_section* poris = p->relaxed_input_section();
2440 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2441 poris->shndx(), poris);
2442 }
c0a62865 2443 }
c0a62865
DK
2444}
2445
2446// Find an relaxed input section corresponding to an input section
2ea97941 2447// in OBJECT with index SHNDX.
c0a62865 2448
d6344fb5 2449const Output_relaxed_input_section*
c0a62865 2450Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2451 unsigned int shndx) const
c0a62865 2452{
0439c796
DK
2453 if (!this->lookup_maps_->is_valid())
2454 this->build_lookup_maps();
2455 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2456}
2457
2ea97941
ILT
2458// Given an address OFFSET relative to the start of input section
2459// SHNDX in OBJECT, return whether this address is being included in
2460// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2461// a special mapping.
2462
2463bool
2464Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2465 unsigned int shndx,
2466 off_t offset) const
730cdc88 2467{
c0a62865 2468 // Look at the Output_section_data_maps first.
2ea97941 2469 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2470 if (posd == NULL)
2ea97941 2471 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2472
2473 if (posd != NULL)
2474 {
2ea97941
ILT
2475 section_offset_type output_offset;
2476 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2477 gold_assert(found);
2ea97941 2478 return output_offset != -1;
c0a62865
DK
2479 }
2480
2481 // Fall back to the slow look-up.
730cdc88
ILT
2482 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2483 p != this->input_sections_.end();
2484 ++p)
2485 {
2ea97941
ILT
2486 section_offset_type output_offset;
2487 if (p->output_offset(object, shndx, offset, &output_offset))
2488 return output_offset != -1;
730cdc88
ILT
2489 }
2490
2491 // By default we assume that the address is mapped. This should
2492 // only be called after we have passed all sections to Layout. At
2493 // that point we should know what we are discarding.
2494 return true;
2495}
2496
2ea97941
ILT
2497// Given an address OFFSET relative to the start of input section
2498// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2499// start of the input section in the output section. This should only
2ea97941 2500// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2501
8383303e 2502section_offset_type
2ea97941
ILT
2503Output_section::output_offset(const Relobj* object, unsigned int shndx,
2504 section_offset_type offset) const
730cdc88 2505{
c0a62865
DK
2506 // This can only be called meaningfully when we know the data size
2507 // of this.
2508 gold_assert(this->is_data_size_valid());
730cdc88 2509
c0a62865 2510 // Look at the Output_section_data_maps first.
2ea97941 2511 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2512 if (posd == NULL)
2ea97941 2513 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2514 if (posd != NULL)
2515 {
2ea97941
ILT
2516 section_offset_type output_offset;
2517 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2518 gold_assert(found);
2ea97941 2519 return output_offset;
c0a62865
DK
2520 }
2521
2522 // Fall back to the slow look-up.
730cdc88
ILT
2523 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2524 p != this->input_sections_.end();
2525 ++p)
2526 {
2ea97941
ILT
2527 section_offset_type output_offset;
2528 if (p->output_offset(object, shndx, offset, &output_offset))
2529 return output_offset;
730cdc88
ILT
2530 }
2531 gold_unreachable();
2532}
2533
2ea97941
ILT
2534// Return the output virtual address of OFFSET relative to the start
2535// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2536
2537uint64_t
2ea97941
ILT
2538Output_section::output_address(const Relobj* object, unsigned int shndx,
2539 off_t offset) const
b8e6aad9
ILT
2540{
2541 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2542
2543 // Look at the Output_section_data_maps first.
2ea97941 2544 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2545 if (posd == NULL)
2ea97941 2546 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2547 if (posd != NULL && posd->is_address_valid())
2548 {
2ea97941
ILT
2549 section_offset_type output_offset;
2550 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2551 gold_assert(found);
2ea97941 2552 return posd->address() + output_offset;
c0a62865
DK
2553 }
2554
2555 // Fall back to the slow look-up.
b8e6aad9
ILT
2556 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2557 p != this->input_sections_.end();
2558 ++p)
2559 {
2560 addr = align_address(addr, p->addralign());
2ea97941
ILT
2561 section_offset_type output_offset;
2562 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2563 {
2ea97941 2564 if (output_offset == -1)
eff45813 2565 return -1ULL;
2ea97941 2566 return addr + output_offset;
730cdc88 2567 }
b8e6aad9
ILT
2568 addr += p->data_size();
2569 }
2570
2571 // If we get here, it means that we don't know the mapping for this
2572 // input section. This might happen in principle if
2573 // add_input_section were called before add_output_section_data.
2574 // But it should never actually happen.
2575
2576 gold_unreachable();
ead1e424
ILT
2577}
2578
e29e076a 2579// Find the output address of the start of the merged section for
2ea97941 2580// input section SHNDX in object OBJECT.
a9a60db6 2581
e29e076a
ILT
2582bool
2583Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2584 unsigned int shndx,
e29e076a 2585 uint64_t* paddr) const
a9a60db6 2586{
c0a62865
DK
2587 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2588 // Looking up the merge section map does not always work as we sometimes
2589 // find a merge section without its address set.
a9a60db6
ILT
2590 uint64_t addr = this->address() + this->first_input_offset_;
2591 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2592 p != this->input_sections_.end();
2593 ++p)
2594 {
2595 addr = align_address(addr, p->addralign());
2596
2597 // It would be nice if we could use the existing output_offset
2598 // method to get the output offset of input offset 0.
2599 // Unfortunately we don't know for sure that input offset 0 is
2600 // mapped at all.
2ea97941 2601 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2602 {
2603 *paddr = addr;
2604 return true;
2605 }
a9a60db6
ILT
2606
2607 addr += p->data_size();
2608 }
e29e076a
ILT
2609
2610 // We couldn't find a merge output section for this input section.
2611 return false;
a9a60db6
ILT
2612}
2613
27bc2bce 2614// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2615// setting the addresses of any Output_section_data objects.
2616
2617void
27bc2bce 2618Output_section::set_final_data_size()
ead1e424
ILT
2619{
2620 if (this->input_sections_.empty())
27bc2bce
ILT
2621 {
2622 this->set_data_size(this->current_data_size_for_child());
2623 return;
2624 }
ead1e424 2625
2fd32231
ILT
2626 if (this->must_sort_attached_input_sections())
2627 this->sort_attached_input_sections();
2628
2ea97941 2629 uint64_t address = this->address();
27bc2bce 2630 off_t startoff = this->offset();
ead1e424
ILT
2631 off_t off = startoff + this->first_input_offset_;
2632 for (Input_section_list::iterator p = this->input_sections_.begin();
2633 p != this->input_sections_.end();
2634 ++p)
2635 {
2636 off = align_address(off, p->addralign());
2ea97941 2637 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2638 startoff);
ead1e424
ILT
2639 off += p->data_size();
2640 }
2641
2642 this->set_data_size(off - startoff);
2643}
9a0910c3 2644
a445fddf
ILT
2645// Reset the address and file offset.
2646
2647void
2648Output_section::do_reset_address_and_file_offset()
2649{
20e6d0d6
DK
2650 // An unallocated section has no address. Forcing this means that
2651 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2652 // sections. We do the same in the constructor. This does not
2653 // apply to NOLOAD sections though.
2654 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2655 this->set_address(0);
2656
a445fddf
ILT
2657 for (Input_section_list::iterator p = this->input_sections_.begin();
2658 p != this->input_sections_.end();
2659 ++p)
2660 p->reset_address_and_file_offset();
2661}
20e6d0d6
DK
2662
2663// Return true if address and file offset have the values after reset.
2664
2665bool
2666Output_section::do_address_and_file_offset_have_reset_values() const
2667{
2668 if (this->is_offset_valid())
2669 return false;
2670
2671 // An unallocated section has address 0 after its construction or a reset.
2672 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2673 return this->is_address_valid() && this->address() == 0;
2674 else
2675 return !this->is_address_valid();
2676}
a445fddf 2677
7bf1f802
ILT
2678// Set the TLS offset. Called only for SHT_TLS sections.
2679
2680void
2681Output_section::do_set_tls_offset(uint64_t tls_base)
2682{
2683 this->tls_offset_ = this->address() - tls_base;
2684}
2685
2fd32231
ILT
2686// In a few cases we need to sort the input sections attached to an
2687// output section. This is used to implement the type of constructor
2688// priority ordering implemented by the GNU linker, in which the
2689// priority becomes part of the section name and the sections are
2690// sorted by name. We only do this for an output section if we see an
2691// attached input section matching ".ctor.*", ".dtor.*",
2692// ".init_array.*" or ".fini_array.*".
2693
2694class Output_section::Input_section_sort_entry
2695{
2696 public:
2697 Input_section_sort_entry()
2698 : input_section_(), index_(-1U), section_has_name_(false),
2699 section_name_()
2700 { }
2701
2ea97941
ILT
2702 Input_section_sort_entry(const Input_section& input_section,
2703 unsigned int index)
2704 : input_section_(input_section), index_(index),
2705 section_has_name_(input_section.is_input_section()
2706 || input_section.is_relaxed_input_section())
2fd32231
ILT
2707 {
2708 if (this->section_has_name_)
2709 {
2710 // This is only called single-threaded from Layout::finalize,
2711 // so it is OK to lock. Unfortunately we have no way to pass
2712 // in a Task token.
2713 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2714 Object* obj = (input_section.is_input_section()
2715 ? input_section.relobj()
2716 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2717 Task_lock_obj<Object> tl(dummy_task, obj);
2718
2719 // This is a slow operation, which should be cached in
2720 // Layout::layout if this becomes a speed problem.
2ea97941 2721 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2722 }
2723 }
2724
2725 // Return the Input_section.
2726 const Input_section&
2727 input_section() const
2728 {
2729 gold_assert(this->index_ != -1U);
2730 return this->input_section_;
2731 }
2732
2733 // The index of this entry in the original list. This is used to
2734 // make the sort stable.
2735 unsigned int
2736 index() const
2737 {
2738 gold_assert(this->index_ != -1U);
2739 return this->index_;
2740 }
2741
2742 // Whether there is a section name.
2743 bool
2744 section_has_name() const
2745 { return this->section_has_name_; }
2746
2747 // The section name.
2748 const std::string&
2749 section_name() const
2750 {
2751 gold_assert(this->section_has_name_);
2752 return this->section_name_;
2753 }
2754
ab794b6b
ILT
2755 // Return true if the section name has a priority. This is assumed
2756 // to be true if it has a dot after the initial dot.
2fd32231 2757 bool
ab794b6b 2758 has_priority() const
2fd32231
ILT
2759 {
2760 gold_assert(this->section_has_name_);
2a0ff005 2761 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2762 }
2763
ab794b6b
ILT
2764 // Return true if this an input file whose base name matches
2765 // FILE_NAME. The base name must have an extension of ".o", and
2766 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2767 // This is to match crtbegin.o as well as crtbeginS.o without
2768 // getting confused by other possibilities. Overall matching the
2769 // file name this way is a dreadful hack, but the GNU linker does it
2770 // in order to better support gcc, and we need to be compatible.
2fd32231 2771 bool
2ea97941 2772 match_file_name(const char* match_file_name) const
2fd32231 2773 {
2fd32231
ILT
2774 const std::string& file_name(this->input_section_.relobj()->name());
2775 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2776 size_t match_len = strlen(match_file_name);
2777 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2778 return false;
2779 size_t base_len = strlen(base_name);
2780 if (base_len != match_len + 2 && base_len != match_len + 3)
2781 return false;
2782 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2783 }
2784
2785 private:
2786 // The Input_section we are sorting.
2787 Input_section input_section_;
2788 // The index of this Input_section in the original list.
2789 unsigned int index_;
2790 // Whether this Input_section has a section name--it won't if this
2791 // is some random Output_section_data.
2792 bool section_has_name_;
2793 // The section name if there is one.
2794 std::string section_name_;
2795};
2796
2797// Return true if S1 should come before S2 in the output section.
2798
2799bool
2800Output_section::Input_section_sort_compare::operator()(
2801 const Output_section::Input_section_sort_entry& s1,
2802 const Output_section::Input_section_sort_entry& s2) const
2803{
ab794b6b
ILT
2804 // crtbegin.o must come first.
2805 bool s1_begin = s1.match_file_name("crtbegin");
2806 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2807 if (s1_begin || s2_begin)
2808 {
2809 if (!s1_begin)
2810 return false;
2811 if (!s2_begin)
2812 return true;
2813 return s1.index() < s2.index();
2814 }
2815
ab794b6b
ILT
2816 // crtend.o must come last.
2817 bool s1_end = s1.match_file_name("crtend");
2818 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2819 if (s1_end || s2_end)
2820 {
2821 if (!s1_end)
2822 return true;
2823 if (!s2_end)
2824 return false;
2825 return s1.index() < s2.index();
2826 }
2827
ab794b6b
ILT
2828 // We sort all the sections with no names to the end.
2829 if (!s1.section_has_name() || !s2.section_has_name())
2830 {
2831 if (s1.section_has_name())
2832 return true;
2833 if (s2.section_has_name())
2834 return false;
2835 return s1.index() < s2.index();
2836 }
2fd32231 2837
ab794b6b 2838 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2839 bool s1_has_priority = s1.has_priority();
2840 bool s2_has_priority = s2.has_priority();
2841 if (s1_has_priority && !s2_has_priority)
2fd32231 2842 return false;
ab794b6b 2843 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2844 return true;
2845
2846 // Otherwise we sort by name.
2847 int compare = s1.section_name().compare(s2.section_name());
2848 if (compare != 0)
2849 return compare < 0;
2850
2851 // Otherwise we keep the input order.
2852 return s1.index() < s2.index();
2853}
2854
2a0ff005
DK
2855// Return true if S1 should come before S2 in an .init_array or .fini_array
2856// output section.
2857
2858bool
2859Output_section::Input_section_sort_init_fini_compare::operator()(
2860 const Output_section::Input_section_sort_entry& s1,
2861 const Output_section::Input_section_sort_entry& s2) const
2862{
2863 // We sort all the sections with no names to the end.
2864 if (!s1.section_has_name() || !s2.section_has_name())
2865 {
2866 if (s1.section_has_name())
2867 return true;
2868 if (s2.section_has_name())
2869 return false;
2870 return s1.index() < s2.index();
2871 }
2872
2873 // A section without a priority follows a section with a priority.
2874 // This is the reverse of .ctors and .dtors sections.
2875 bool s1_has_priority = s1.has_priority();
2876 bool s2_has_priority = s2.has_priority();
2877 if (s1_has_priority && !s2_has_priority)
2878 return true;
2879 if (!s1_has_priority && s2_has_priority)
2880 return false;
2881
2882 // Otherwise we sort by name.
2883 int compare = s1.section_name().compare(s2.section_name());
2884 if (compare != 0)
2885 return compare < 0;
2886
2887 // Otherwise we keep the input order.
2888 return s1.index() < s2.index();
2889}
2890
2fd32231
ILT
2891// Sort the input sections attached to an output section.
2892
2893void
2894Output_section::sort_attached_input_sections()
2895{
2896 if (this->attached_input_sections_are_sorted_)
2897 return;
2898
20e6d0d6
DK
2899 if (this->checkpoint_ != NULL
2900 && !this->checkpoint_->input_sections_saved())
2901 this->checkpoint_->save_input_sections();
2902
2fd32231
ILT
2903 // The only thing we know about an input section is the object and
2904 // the section index. We need the section name. Recomputing this
2905 // is slow but this is an unusual case. If this becomes a speed
2906 // problem we can cache the names as required in Layout::layout.
2907
2908 // We start by building a larger vector holding a copy of each
2909 // Input_section, plus its current index in the list and its name.
2910 std::vector<Input_section_sort_entry> sort_list;
2911
2912 unsigned int i = 0;
2913 for (Input_section_list::iterator p = this->input_sections_.begin();
2914 p != this->input_sections_.end();
2915 ++p, ++i)
2916 sort_list.push_back(Input_section_sort_entry(*p, i));
2917
2918 // Sort the input sections.
2a0ff005
DK
2919 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2920 || this->type() == elfcpp::SHT_INIT_ARRAY
2921 || this->type() == elfcpp::SHT_FINI_ARRAY)
2922 std::sort(sort_list.begin(), sort_list.end(),
2923 Input_section_sort_init_fini_compare());
2924 else
2925 std::sort(sort_list.begin(), sort_list.end(),
2926 Input_section_sort_compare());
2fd32231
ILT
2927
2928 // Copy the sorted input sections back to our list.
2929 this->input_sections_.clear();
2930 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2931 p != sort_list.end();
2932 ++p)
2933 this->input_sections_.push_back(p->input_section());
2934
2935 // Remember that we sorted the input sections, since we might get
2936 // called again.
2937 this->attached_input_sections_are_sorted_ = true;
2938}
2939
61ba1cf9
ILT
2940// Write the section header to *OSHDR.
2941
2942template<int size, bool big_endian>
2943void
16649710
ILT
2944Output_section::write_header(const Layout* layout,
2945 const Stringpool* secnamepool,
61ba1cf9
ILT
2946 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2947{
2948 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2949 oshdr->put_sh_type(this->type_);
6a74a719 2950
2ea97941 2951 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2952 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
2953 flags |= elfcpp::SHF_INFO_LINK;
2954 oshdr->put_sh_flags(flags);
6a74a719 2955
61ba1cf9
ILT
2956 oshdr->put_sh_addr(this->address());
2957 oshdr->put_sh_offset(this->offset());
2958 oshdr->put_sh_size(this->data_size());
16649710
ILT
2959 if (this->link_section_ != NULL)
2960 oshdr->put_sh_link(this->link_section_->out_shndx());
2961 else if (this->should_link_to_symtab_)
2962 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2963 else if (this->should_link_to_dynsym_)
2964 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2965 else
2966 oshdr->put_sh_link(this->link_);
755ab8af 2967
2ea97941 2968 elfcpp::Elf_Word info;
16649710 2969 if (this->info_section_ != NULL)
755ab8af
ILT
2970 {
2971 if (this->info_uses_section_index_)
2ea97941 2972 info = this->info_section_->out_shndx();
755ab8af 2973 else
2ea97941 2974 info = this->info_section_->symtab_index();
755ab8af 2975 }
6a74a719 2976 else if (this->info_symndx_ != NULL)
2ea97941 2977 info = this->info_symndx_->symtab_index();
16649710 2978 else
2ea97941
ILT
2979 info = this->info_;
2980 oshdr->put_sh_info(info);
755ab8af 2981
61ba1cf9
ILT
2982 oshdr->put_sh_addralign(this->addralign_);
2983 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2984}
2985
ead1e424
ILT
2986// Write out the data. For input sections the data is written out by
2987// Object::relocate, but we have to handle Output_section_data objects
2988// here.
2989
2990void
2991Output_section::do_write(Output_file* of)
2992{
96803768
ILT
2993 gold_assert(!this->requires_postprocessing());
2994
c0a62865
DK
2995 // If the target performs relaxation, we delay filler generation until now.
2996 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2997
c51e6221
ILT
2998 off_t output_section_file_offset = this->offset();
2999 for (Fill_list::iterator p = this->fills_.begin();
3000 p != this->fills_.end();
3001 ++p)
3002 {
8851ecca 3003 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3004 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3005 fill_data.data(), fill_data.size());
c51e6221
ILT
3006 }
3007
c0a62865 3008 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3009 for (Input_section_list::iterator p = this->input_sections_.begin();
3010 p != this->input_sections_.end();
3011 ++p)
c0a62865
DK
3012 {
3013 off_t aligned_off = align_address(off, p->addralign());
3014 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3015 {
3016 size_t fill_len = aligned_off - off;
3017 std::string fill_data(parameters->target().code_fill(fill_len));
3018 of->write(off, fill_data.data(), fill_data.size());
3019 }
3020
3021 p->write(of);
3022 off = aligned_off + p->data_size();
3023 }
ead1e424
ILT
3024}
3025
96803768
ILT
3026// If a section requires postprocessing, create the buffer to use.
3027
3028void
3029Output_section::create_postprocessing_buffer()
3030{
3031 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3032
3033 if (this->postprocessing_buffer_ != NULL)
3034 return;
96803768
ILT
3035
3036 if (!this->input_sections_.empty())
3037 {
3038 off_t off = this->first_input_offset_;
3039 for (Input_section_list::iterator p = this->input_sections_.begin();
3040 p != this->input_sections_.end();
3041 ++p)
3042 {
3043 off = align_address(off, p->addralign());
3044 p->finalize_data_size();
3045 off += p->data_size();
3046 }
3047 this->set_current_data_size_for_child(off);
3048 }
3049
3050 off_t buffer_size = this->current_data_size_for_child();
3051 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3052}
3053
3054// Write all the data of an Output_section into the postprocessing
3055// buffer. This is used for sections which require postprocessing,
3056// such as compression. Input sections are handled by
3057// Object::Relocate.
3058
3059void
3060Output_section::write_to_postprocessing_buffer()
3061{
3062 gold_assert(this->requires_postprocessing());
3063
c0a62865
DK
3064 // If the target performs relaxation, we delay filler generation until now.
3065 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3066
96803768
ILT
3067 unsigned char* buffer = this->postprocessing_buffer();
3068 for (Fill_list::iterator p = this->fills_.begin();
3069 p != this->fills_.end();
3070 ++p)
3071 {
8851ecca 3072 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3073 memcpy(buffer + p->section_offset(), fill_data.data(),
3074 fill_data.size());
96803768
ILT
3075 }
3076
3077 off_t off = this->first_input_offset_;
3078 for (Input_section_list::iterator p = this->input_sections_.begin();
3079 p != this->input_sections_.end();
3080 ++p)
3081 {
c0a62865
DK
3082 off_t aligned_off = align_address(off, p->addralign());
3083 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3084 {
3085 size_t fill_len = aligned_off - off;
3086 std::string fill_data(parameters->target().code_fill(fill_len));
3087 memcpy(buffer + off, fill_data.data(), fill_data.size());
3088 }
3089
3090 p->write_to_buffer(buffer + aligned_off);
3091 off = aligned_off + p->data_size();
96803768
ILT
3092 }
3093}
3094
a445fddf
ILT
3095// Get the input sections for linker script processing. We leave
3096// behind the Output_section_data entries. Note that this may be
3097// slightly incorrect for merge sections. We will leave them behind,
3098// but it is possible that the script says that they should follow
3099// some other input sections, as in:
3100// .rodata { *(.rodata) *(.rodata.cst*) }
3101// For that matter, we don't handle this correctly:
3102// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3103// With luck this will never matter.
3104
3105uint64_t
3106Output_section::get_input_sections(
2ea97941 3107 uint64_t address,
a445fddf 3108 const std::string& fill,
6625d24e 3109 std::list<Input_section>* input_sections)
a445fddf 3110{
20e6d0d6
DK
3111 if (this->checkpoint_ != NULL
3112 && !this->checkpoint_->input_sections_saved())
3113 this->checkpoint_->save_input_sections();
3114
0439c796
DK
3115 // Invalidate fast look-up maps.
3116 this->lookup_maps_->invalidate();
c0a62865 3117
2ea97941 3118 uint64_t orig_address = address;
a445fddf 3119
2ea97941 3120 address = align_address(address, this->addralign());
a445fddf
ILT
3121
3122 Input_section_list remaining;
3123 for (Input_section_list::iterator p = this->input_sections_.begin();
3124 p != this->input_sections_.end();
3125 ++p)
3126 {
0439c796
DK
3127 if (p->is_input_section()
3128 || p->is_relaxed_input_section()
3129 || p->is_merge_section())
6625d24e 3130 input_sections->push_back(*p);
a445fddf
ILT
3131 else
3132 {
2ea97941
ILT
3133 uint64_t aligned_address = align_address(address, p->addralign());
3134 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3135 {
3136 section_size_type length =
2ea97941 3137 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3138 std::string this_fill;
3139 this_fill.reserve(length);
3140 while (this_fill.length() + fill.length() <= length)
3141 this_fill += fill;
3142 if (this_fill.length() < length)
3143 this_fill.append(fill, 0, length - this_fill.length());
3144
3145 Output_section_data* posd = new Output_data_const(this_fill, 0);
3146 remaining.push_back(Input_section(posd));
3147 }
2ea97941 3148 address = aligned_address;
a445fddf
ILT
3149
3150 remaining.push_back(*p);
3151
3152 p->finalize_data_size();
2ea97941 3153 address += p->data_size();
a445fddf
ILT
3154 }
3155 }
3156
3157 this->input_sections_.swap(remaining);
3158 this->first_input_offset_ = 0;
3159
2ea97941
ILT
3160 uint64_t data_size = address - orig_address;
3161 this->set_current_data_size_for_child(data_size);
3162 return data_size;
a445fddf
ILT
3163}
3164
6625d24e
DK
3165// Add a script input section. SIS is an Output_section::Input_section,
3166// which can be either a plain input section or a special input section like
3167// a relaxed input section. For a special input section, its size must be
3168// finalized.
a445fddf
ILT
3169
3170void
6625d24e 3171Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3172{
6625d24e
DK
3173 uint64_t data_size = sis.data_size();
3174 uint64_t addralign = sis.addralign();
2ea97941
ILT
3175 if (addralign > this->addralign_)
3176 this->addralign_ = addralign;
a445fddf
ILT
3177
3178 off_t offset_in_section = this->current_data_size_for_child();
3179 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3180 addralign);
a445fddf
ILT
3181
3182 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3183 + data_size);
a445fddf 3184
6625d24e 3185 this->input_sections_.push_back(sis);
0439c796
DK
3186
3187 // Update fast lookup maps if necessary.
3188 if (this->lookup_maps_->is_valid())
3189 {
3190 if (sis.is_merge_section())
3191 {
3192 Output_merge_base* pomb = sis.output_merge_base();
3193 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3194 pomb->addralign());
3195 this->lookup_maps_->add_merge_section(msp, pomb);
3196 for (Output_merge_base::Input_sections::const_iterator p =
3197 pomb->input_sections_begin();
3198 p != pomb->input_sections_end();
3199 ++p)
3200 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3201 pomb);
3202 }
3203 else if (sis.is_relaxed_input_section())
3204 {
3205 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3206 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3207 poris->shndx(), poris);
3208 }
3209 }
20e6d0d6
DK
3210}
3211
8923b24c 3212// Save states for relaxation.
20e6d0d6
DK
3213
3214void
3215Output_section::save_states()
3216{
3217 gold_assert(this->checkpoint_ == NULL);
3218 Checkpoint_output_section* checkpoint =
3219 new Checkpoint_output_section(this->addralign_, this->flags_,
3220 this->input_sections_,
3221 this->first_input_offset_,
3222 this->attached_input_sections_are_sorted_);
3223 this->checkpoint_ = checkpoint;
3224 gold_assert(this->fills_.empty());
3225}
3226
8923b24c
DK
3227void
3228Output_section::discard_states()
3229{
3230 gold_assert(this->checkpoint_ != NULL);
3231 delete this->checkpoint_;
3232 this->checkpoint_ = NULL;
3233 gold_assert(this->fills_.empty());
3234
0439c796
DK
3235 // Simply invalidate the fast lookup maps since we do not keep
3236 // track of them.
3237 this->lookup_maps_->invalidate();
8923b24c
DK
3238}
3239
20e6d0d6
DK
3240void
3241Output_section::restore_states()
3242{
3243 gold_assert(this->checkpoint_ != NULL);
3244 Checkpoint_output_section* checkpoint = this->checkpoint_;
3245
3246 this->addralign_ = checkpoint->addralign();
3247 this->flags_ = checkpoint->flags();
3248 this->first_input_offset_ = checkpoint->first_input_offset();
3249
3250 if (!checkpoint->input_sections_saved())
3251 {
3252 // If we have not copied the input sections, just resize it.
3253 size_t old_size = checkpoint->input_sections_size();
3254 gold_assert(this->input_sections_.size() >= old_size);
3255 this->input_sections_.resize(old_size);
3256 }
3257 else
3258 {
3259 // We need to copy the whole list. This is not efficient for
3260 // extremely large output with hundreads of thousands of input
3261 // objects. We may need to re-think how we should pass sections
3262 // to scripts.
c0a62865 3263 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3264 }
3265
3266 this->attached_input_sections_are_sorted_ =
3267 checkpoint->attached_input_sections_are_sorted();
c0a62865 3268
0439c796
DK
3269 // Simply invalidate the fast lookup maps since we do not keep
3270 // track of them.
3271 this->lookup_maps_->invalidate();
a445fddf
ILT
3272}
3273
8923b24c
DK
3274// Update the section offsets of input sections in this. This is required if
3275// relaxation causes some input sections to change sizes.
3276
3277void
3278Output_section::adjust_section_offsets()
3279{
3280 if (!this->section_offsets_need_adjustment_)
3281 return;
3282
3283 off_t off = 0;
3284 for (Input_section_list::iterator p = this->input_sections_.begin();
3285 p != this->input_sections_.end();
3286 ++p)
3287 {
3288 off = align_address(off, p->addralign());
3289 if (p->is_input_section())
3290 p->relobj()->set_section_offset(p->shndx(), off);
3291 off += p->data_size();
3292 }
3293
3294 this->section_offsets_need_adjustment_ = false;
3295}
3296
7d9e3d98
ILT
3297// Print to the map file.
3298
3299void
3300Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3301{
3302 mapfile->print_output_section(this);
3303
3304 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3305 p != this->input_sections_.end();
3306 ++p)
3307 p->print_to_mapfile(mapfile);
3308}
3309
38c5e8b4
ILT
3310// Print stats for merge sections to stderr.
3311
3312void
3313Output_section::print_merge_stats()
3314{
3315 Input_section_list::iterator p;
3316 for (p = this->input_sections_.begin();
3317 p != this->input_sections_.end();
3318 ++p)
3319 p->print_merge_stats(this->name_);
3320}
3321
a2fb1b05
ILT
3322// Output segment methods.
3323
2ea97941 3324Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3325 : output_data_(),
75f65a3e 3326 output_bss_(),
a2fb1b05
ILT
3327 vaddr_(0),
3328 paddr_(0),
3329 memsz_(0),
a445fddf
ILT
3330 max_align_(0),
3331 min_p_align_(0),
a2fb1b05
ILT
3332 offset_(0),
3333 filesz_(0),
2ea97941
ILT
3334 type_(type),
3335 flags_(flags),
a445fddf 3336 is_max_align_known_(false),
8a5e3e08
ILT
3337 are_addresses_set_(false),
3338 is_large_data_segment_(false)
a2fb1b05 3339{
bb321bb1
ILT
3340 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3341 // the flags.
3342 if (type == elfcpp::PT_TLS)
3343 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3344}
3345
3346// Add an Output_section to an Output_segment.
3347
3348void
75f65a3e 3349Output_segment::add_output_section(Output_section* os,
f5c870d2
ILT
3350 elfcpp::Elf_Word seg_flags,
3351 bool do_sort)
a2fb1b05 3352{
a3ad94ed 3353 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3354 gold_assert(!this->is_max_align_known_);
8a5e3e08 3355 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
96a0d71b 3356 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
75f65a3e 3357
a192ba05 3358 this->update_flags_for_output_section(seg_flags);
75f65a3e
ILT
3359
3360 Output_segment::Output_data_list* pdl;
3361 if (os->type() == elfcpp::SHT_NOBITS)
3362 pdl = &this->output_bss_;
3363 else
3364 pdl = &this->output_data_;
54dc6425 3365
f5c870d2
ILT
3366 // Note that while there may be many input sections in an output
3367 // section, there are normally only a few output sections in an
3368 // output segment. The loops below are expected to be fast.
3369
a2fb1b05 3370 // So that PT_NOTE segments will work correctly, we need to ensure
96a0d71b 3371 // that all SHT_NOTE sections are adjacent.
61ba1cf9 3372 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3373 {
a3ad94ed 3374 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3375 do
54dc6425 3376 {
75f65a3e 3377 --p;
54dc6425
ILT
3378 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3379 {
3380 ++p;
75f65a3e 3381 pdl->insert(p, os);
54dc6425
ILT
3382 return;
3383 }
3384 }
75f65a3e 3385 while (p != pdl->begin());
54dc6425
ILT
3386 }
3387
3388 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3389 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3390 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3391 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab 3392 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
f5c870d2
ILT
3393 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3394 // segment.
07f397ab 3395 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3396 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3397 {
75f65a3e 3398 pdl = &this->output_data_;
661be1e2 3399 if (!pdl->empty())
a2fb1b05 3400 {
661be1e2
ILT
3401 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3402 bool sawtls = false;
3403 Output_segment::Output_data_list::iterator p = pdl->end();
3404 gold_assert(p != pdl->begin());
3405 do
a2fb1b05 3406 {
661be1e2
ILT
3407 --p;
3408 bool insert;
3409 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3410 {
3411 sawtls = true;
3412 // Put a NOBITS section after the first TLS section.
3413 // Put a PROGBITS section after the first
3414 // TLS/PROGBITS section.
3415 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3416 }
3417 else
3418 {
3419 // If we've gone past the TLS sections, but we've
3420 // seen a TLS section, then we need to insert this
3421 // section now.
3422 insert = sawtls;
3423 }
3424
3425 if (insert)
3426 {
3427 ++p;
3428 pdl->insert(p, os);
3429 return;
3430 }
a2fb1b05 3431 }
661be1e2 3432 while (p != pdl->begin());
a2fb1b05 3433 }
ead1e424 3434
dbe717ef
ILT
3435 // There are no TLS sections yet; put this one at the requested
3436 // location in the section list.
a2fb1b05
ILT
3437 }
3438
1a2dff53 3439 if (do_sort)
9f1d377b 3440 {
1a2dff53
ILT
3441 // For the PT_GNU_RELRO segment, we need to group relro
3442 // sections, and we need to put them before any non-relro
3443 // sections. Any relro local sections go before relro non-local
3444 // sections. One section may be marked as the last relro
3445 // section.
3446 if (os->is_relro())
9f1d377b 3447 {
1a2dff53
ILT
3448 gold_assert(pdl == &this->output_data_);
3449 Output_segment::Output_data_list::iterator p;
3450 for (p = pdl->begin(); p != pdl->end(); ++p)
3451 {
3452 if (!(*p)->is_section())
3453 break;
9f1d377b 3454
1a2dff53
ILT
3455 Output_section* pos = (*p)->output_section();
3456 if (!pos->is_relro()
3457 || (os->is_relro_local() && !pos->is_relro_local())
3458 || (!os->is_last_relro() && pos->is_last_relro()))
3459 break;
3460 }
3461
3462 pdl->insert(p, os);
3463 return;
9f1d377b
ILT
3464 }
3465
1a2dff53
ILT
3466 // One section may be marked as the first section which follows
3467 // the relro sections.
3468 if (os->is_first_non_relro())
3469 {
3470 gold_assert(pdl == &this->output_data_);
3471 Output_segment::Output_data_list::iterator p;
3472 for (p = pdl->begin(); p != pdl->end(); ++p)
3473 {
3474 if (!(*p)->is_section())
3475 break;
3476
3477 Output_section* pos = (*p)->output_section();
3478 if (!pos->is_relro())
3479 break;
3480 }
3481
3482 pdl->insert(p, os);
3483 return;
3484 }
9f1d377b
ILT
3485 }
3486
8a5e3e08
ILT
3487 // Small data sections go at the end of the list of data sections.
3488 // If OS is not small, and there are small sections, we have to
3489 // insert it before the first small section.
3490 if (os->type() != elfcpp::SHT_NOBITS
3491 && !os->is_small_section()
3492 && !pdl->empty()
3493 && pdl->back()->is_section()
3494 && pdl->back()->output_section()->is_small_section())
3495 {
3496 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3497 p != pdl->end();
3498 ++p)
3499 {
3500 if ((*p)->is_section()
3501 && (*p)->output_section()->is_small_section())
3502 {
3503 pdl->insert(p, os);
3504 return;
3505 }
3506 }
3507 gold_unreachable();
3508 }
3509
3510 // A small BSS section goes at the start of the BSS sections, after
3511 // other small BSS sections.
3512 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3513 {
3514 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3515 p != pdl->end();
3516 ++p)
3517 {
3518 if (!(*p)->is_section()
3519 || !(*p)->output_section()->is_small_section())
3520 {
3521 pdl->insert(p, os);
3522 return;
3523 }
3524 }
3525 }
3526
3527 // A large BSS section goes at the end of the BSS sections, which
3528 // means that one that is not large must come before the first large
3529 // one.
3530 if (os->type() == elfcpp::SHT_NOBITS
3531 && !os->is_large_section()
3532 && !pdl->empty()
3533 && pdl->back()->is_section()
3534 && pdl->back()->output_section()->is_large_section())
3535 {
3536 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3537 p != pdl->end();
3538 ++p)
3539 {
3540 if ((*p)->is_section()
3541 && (*p)->output_section()->is_large_section())
3542 {
3543 pdl->insert(p, os);
3544 return;
3545 }
3546 }
3547 gold_unreachable();
3548 }
3549
f5c870d2
ILT
3550 // We do some further output section sorting in order to make the
3551 // generated program run more efficiently. We should only do this
3552 // when not using a linker script, so it is controled by the DO_SORT
3553 // parameter.
3554 if (do_sort)
3555 {
3556 // FreeBSD requires the .interp section to be in the first page
3557 // of the executable. That is a more efficient location anyhow
3558 // for any OS, since it means that the kernel will have the data
3559 // handy after it reads the program headers.
3560 if (os->is_interp() && !pdl->empty())
3561 {
3562 pdl->insert(pdl->begin(), os);
3563 return;
3564 }
3565
3566 // Put loadable non-writable notes immediately after the .interp
3567 // sections, so that the PT_NOTE segment is on the first page of
3568 // the executable.
3569 if (os->type() == elfcpp::SHT_NOTE
3570 && (os->flags() & elfcpp::SHF_WRITE) == 0
3571 && !pdl->empty())
3572 {
3573 Output_segment::Output_data_list::iterator p = pdl->begin();
3574 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3575 ++p;
3576 pdl->insert(p, os);
96a0d71b 3577 return;
f5c870d2
ILT
3578 }
3579
3580 // If this section is used by the dynamic linker, and it is not
3581 // writable, then put it first, after the .interp section and
3582 // any loadable notes. This makes it more likely that the
3583 // dynamic linker will have to read less data from the disk.
3584 if (os->is_dynamic_linker_section()
3585 && !pdl->empty()
3586 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3587 {
3588 bool is_reloc = (os->type() == elfcpp::SHT_REL
3589 || os->type() == elfcpp::SHT_RELA);
3590 Output_segment::Output_data_list::iterator p = pdl->begin();
3591 while (p != pdl->end()
3592 && (*p)->is_section()
3593 && ((*p)->output_section()->is_dynamic_linker_section()
3594 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3595 {
3596 // Put reloc sections after the other ones. Putting the
3597 // dynamic reloc sections first confuses BFD, notably
3598 // objcopy and strip.
3599 if (!is_reloc
3600 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3601 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3602 break;
3603 ++p;
3604 }
3605 pdl->insert(p, os);
3606 return;
3607 }
3608 }
3609
3610 // If there were no constraints on the output section, just add it
3611 // to the end of the list.
01676dcd 3612 pdl->push_back(os);
75f65a3e
ILT
3613}
3614
1650c4ff
ILT
3615// Remove an Output_section from this segment. It is an error if it
3616// is not present.
3617
3618void
3619Output_segment::remove_output_section(Output_section* os)
3620{
3621 // We only need this for SHT_PROGBITS.
3622 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3623 for (Output_data_list::iterator p = this->output_data_.begin();
3624 p != this->output_data_.end();
3625 ++p)
3626 {
3627 if (*p == os)
3628 {
3629 this->output_data_.erase(p);
3630 return;
3631 }
3632 }
3633 gold_unreachable();
3634}
3635
a192ba05
ILT
3636// Add an Output_data (which need not be an Output_section) to the
3637// start of a segment.
75f65a3e
ILT
3638
3639void
3640Output_segment::add_initial_output_data(Output_data* od)
3641{
a445fddf 3642 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3643 this->output_data_.push_front(od);
3644}
3645
9f1d377b
ILT
3646// Return whether the first data section is a relro section.
3647
3648bool
3649Output_segment::is_first_section_relro() const
3650{
3651 return (!this->output_data_.empty()
3652 && this->output_data_.front()->is_section()
3653 && this->output_data_.front()->output_section()->is_relro());
3654}
3655
75f65a3e 3656// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3657
3658uint64_t
a445fddf 3659Output_segment::maximum_alignment()
75f65a3e 3660{
a445fddf 3661 if (!this->is_max_align_known_)
ead1e424 3662 {
2ea97941 3663 uint64_t addralign;
ead1e424 3664
2ea97941
ILT
3665 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3666 if (addralign > this->max_align_)
3667 this->max_align_ = addralign;
ead1e424 3668
2ea97941
ILT
3669 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3670 if (addralign > this->max_align_)
3671 this->max_align_ = addralign;
ead1e424 3672
a445fddf 3673 this->is_max_align_known_ = true;
ead1e424
ILT
3674 }
3675
a445fddf 3676 return this->max_align_;
75f65a3e
ILT
3677}
3678
ead1e424
ILT
3679// Return the maximum alignment of a list of Output_data.
3680
3681uint64_t
a445fddf 3682Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3683{
3684 uint64_t ret = 0;
3685 for (Output_data_list::const_iterator p = pdl->begin();
3686 p != pdl->end();
3687 ++p)
3688 {
2ea97941
ILT
3689 uint64_t addralign = (*p)->addralign();
3690 if (addralign > ret)
3691 ret = addralign;
ead1e424
ILT
3692 }
3693 return ret;
3694}
3695
4f4c5f80
ILT
3696// Return the number of dynamic relocs applied to this segment.
3697
3698unsigned int
3699Output_segment::dynamic_reloc_count() const
3700{
3701 return (this->dynamic_reloc_count_list(&this->output_data_)
3702 + this->dynamic_reloc_count_list(&this->output_bss_));
3703}
3704
3705// Return the number of dynamic relocs applied to an Output_data_list.
3706
3707unsigned int
3708Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3709{
3710 unsigned int count = 0;
3711 for (Output_data_list::const_iterator p = pdl->begin();
3712 p != pdl->end();
3713 ++p)
3714 count += (*p)->dynamic_reloc_count();
3715 return count;
3716}
3717
a445fddf
ILT
3718// Set the section addresses for an Output_segment. If RESET is true,
3719// reset the addresses first. ADDR is the address and *POFF is the
3720// file offset. Set the section indexes starting with *PSHNDX.
3721// Return the address of the immediately following segment. Update
3722// *POFF and *PSHNDX.
75f65a3e
ILT
3723
3724uint64_t
96a2b4e4 3725Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53
ILT
3726 uint64_t addr,
3727 unsigned int increase_relro,
3728 off_t* poff,
ead1e424 3729 unsigned int* pshndx)
75f65a3e 3730{
a3ad94ed 3731 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3732
1a2dff53
ILT
3733 off_t orig_off = *poff;
3734
3735 // If we have relro sections, we need to pad forward now so that the
3736 // relro sections plus INCREASE_RELRO end on a common page boundary.
3737 if (parameters->options().relro()
3738 && this->is_first_section_relro()
3739 && (!this->are_addresses_set_ || reset))
3740 {
3741 uint64_t relro_size = 0;
3742 off_t off = *poff;
3743 for (Output_data_list::iterator p = this->output_data_.begin();
3744 p != this->output_data_.end();
3745 ++p)
3746 {
3747 if (!(*p)->is_section())
3748 break;
3749 Output_section* pos = (*p)->output_section();
3750 if (!pos->is_relro())
3751 break;
3752 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3753 if ((*p)->is_address_valid())
3754 relro_size += (*p)->data_size();
3755 else
3756 {
3757 // FIXME: This could be faster.
3758 (*p)->set_address_and_file_offset(addr + relro_size,
3759 off + relro_size);
3760 relro_size += (*p)->data_size();
3761 (*p)->reset_address_and_file_offset();
3762 }
3763 }
3764 relro_size += increase_relro;
3765
3766 uint64_t page_align = parameters->target().common_pagesize();
3767
3768 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3769 uint64_t desired_align = page_align - (relro_size % page_align);
3770 if (desired_align < *poff % page_align)
3771 *poff += page_align - *poff % page_align;
3772 *poff += desired_align - *poff % page_align;
3773 addr += *poff - orig_off;
3774 orig_off = *poff;
3775 }
3776
a445fddf
ILT
3777 if (!reset && this->are_addresses_set_)
3778 {
3779 gold_assert(this->paddr_ == addr);
3780 addr = this->vaddr_;
3781 }
3782 else
3783 {
3784 this->vaddr_ = addr;
3785 this->paddr_ = addr;
3786 this->are_addresses_set_ = true;
3787 }
75f65a3e 3788
96a2b4e4
ILT
3789 bool in_tls = false;
3790
75f65a3e
ILT
3791 this->offset_ = orig_off;
3792
96a2b4e4 3793 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
1a2dff53 3794 addr, poff, pshndx, &in_tls);
75f65a3e
ILT
3795 this->filesz_ = *poff - orig_off;
3796
3797 off_t off = *poff;
3798
96a2b4e4
ILT
3799 uint64_t ret = this->set_section_list_addresses(layout, reset,
3800 &this->output_bss_,
3801 addr, poff, pshndx,
1a2dff53 3802 &in_tls);
96a2b4e4
ILT
3803
3804 // If the last section was a TLS section, align upward to the
3805 // alignment of the TLS segment, so that the overall size of the TLS
3806 // segment is aligned.
3807 if (in_tls)
3808 {
3809 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3810 *poff = align_address(*poff, segment_align);
3811 }
3812
75f65a3e
ILT
3813 this->memsz_ = *poff - orig_off;
3814
3815 // Ignore the file offset adjustments made by the BSS Output_data
3816 // objects.
3817 *poff = off;
61ba1cf9
ILT
3818
3819 return ret;
75f65a3e
ILT
3820}
3821
b8e6aad9
ILT
3822// Set the addresses and file offsets in a list of Output_data
3823// structures.
75f65a3e
ILT
3824
3825uint64_t
96a2b4e4
ILT
3826Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3827 Output_data_list* pdl,
ead1e424 3828 uint64_t addr, off_t* poff,
96a2b4e4 3829 unsigned int* pshndx,
1a2dff53 3830 bool* in_tls)
75f65a3e 3831{
ead1e424 3832 off_t startoff = *poff;
75f65a3e 3833
ead1e424 3834 off_t off = startoff;
75f65a3e
ILT
3835 for (Output_data_list::iterator p = pdl->begin();
3836 p != pdl->end();
3837 ++p)
3838 {
a445fddf
ILT
3839 if (reset)
3840 (*p)->reset_address_and_file_offset();
3841
3842 // When using a linker script the section will most likely
3843 // already have an address.
3844 if (!(*p)->is_address_valid())
3802b2dd 3845 {
96a2b4e4
ILT
3846 uint64_t align = (*p)->addralign();
3847
3848 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3849 {
3850 // Give the first TLS section the alignment of the
3851 // entire TLS segment. Otherwise the TLS segment as a
3852 // whole may be misaligned.
3853 if (!*in_tls)
3854 {
3855 Output_segment* tls_segment = layout->tls_segment();
3856 gold_assert(tls_segment != NULL);
3857 uint64_t segment_align = tls_segment->maximum_alignment();
3858 gold_assert(segment_align >= align);
3859 align = segment_align;
3860
3861 *in_tls = true;
3862 }
3863 }
3864 else
3865 {
3866 // If this is the first section after the TLS segment,
3867 // align it to at least the alignment of the TLS
3868 // segment, so that the size of the overall TLS segment
3869 // is aligned.
3870 if (*in_tls)
3871 {
3872 uint64_t segment_align =
3873 layout->tls_segment()->maximum_alignment();
3874 if (segment_align > align)
3875 align = segment_align;
3876
3877 *in_tls = false;
3878 }
3879 }
3880
3881 off = align_address(off, align);
3802b2dd
ILT
3882 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3883 }
a445fddf
ILT
3884 else
3885 {
3886 // The script may have inserted a skip forward, but it
3887 // better not have moved backward.
661be1e2
ILT
3888 if ((*p)->address() >= addr + (off - startoff))
3889 off += (*p)->address() - (addr + (off - startoff));
3890 else
3891 {
3892 if (!layout->script_options()->saw_sections_clause())
3893 gold_unreachable();
3894 else
3895 {
3896 Output_section* os = (*p)->output_section();
64b1ae37
DK
3897
3898 // Cast to unsigned long long to avoid format warnings.
3899 unsigned long long previous_dot =
3900 static_cast<unsigned long long>(addr + (off - startoff));
3901 unsigned long long dot =
3902 static_cast<unsigned long long>((*p)->address());
3903
661be1e2
ILT
3904 if (os == NULL)
3905 gold_error(_("dot moves backward in linker script "
64b1ae37 3906 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3907 else
3908 gold_error(_("address of section '%s' moves backward "
3909 "from 0x%llx to 0x%llx"),
64b1ae37 3910 os->name(), previous_dot, dot);
661be1e2
ILT
3911 }
3912 }
a445fddf
ILT
3913 (*p)->set_file_offset(off);
3914 (*p)->finalize_data_size();
3915 }
ead1e424 3916
96a2b4e4
ILT
3917 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3918 // section. Such a section does not affect the size of a
3919 // PT_LOAD segment.
3920 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3921 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3922 off += (*p)->data_size();
75f65a3e 3923
ead1e424
ILT
3924 if ((*p)->is_section())
3925 {
3926 (*p)->set_out_shndx(*pshndx);
3927 ++*pshndx;
3928 }
75f65a3e
ILT
3929 }
3930
3931 *poff = off;
ead1e424 3932 return addr + (off - startoff);
75f65a3e
ILT
3933}
3934
3935// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3936// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3937
3938void
1a2dff53 3939Output_segment::set_offset(unsigned int increase)
75f65a3e 3940{
a3ad94ed 3941 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3942
a445fddf
ILT
3943 gold_assert(!this->are_addresses_set_);
3944
75f65a3e
ILT
3945 if (this->output_data_.empty() && this->output_bss_.empty())
3946 {
1a2dff53 3947 gold_assert(increase == 0);
75f65a3e
ILT
3948 this->vaddr_ = 0;
3949 this->paddr_ = 0;
a445fddf 3950 this->are_addresses_set_ = true;
75f65a3e 3951 this->memsz_ = 0;
a445fddf 3952 this->min_p_align_ = 0;
75f65a3e
ILT
3953 this->offset_ = 0;
3954 this->filesz_ = 0;
3955 return;
3956 }
3957
3958 const Output_data* first;
3959 if (this->output_data_.empty())
3960 first = this->output_bss_.front();
3961 else
3962 first = this->output_data_.front();
3963 this->vaddr_ = first->address();
a445fddf
ILT
3964 this->paddr_ = (first->has_load_address()
3965 ? first->load_address()
3966 : this->vaddr_);
3967 this->are_addresses_set_ = true;
75f65a3e
ILT
3968 this->offset_ = first->offset();
3969
3970 if (this->output_data_.empty())
3971 this->filesz_ = 0;
3972 else
3973 {
3974 const Output_data* last_data = this->output_data_.back();
3975 this->filesz_ = (last_data->address()
3976 + last_data->data_size()
3977 - this->vaddr_);
3978 }
3979
3980 const Output_data* last;
3981 if (this->output_bss_.empty())
3982 last = this->output_data_.back();
3983 else
3984 last = this->output_bss_.back();
3985 this->memsz_ = (last->address()
3986 + last->data_size()
3987 - this->vaddr_);
96a2b4e4 3988
1a2dff53
ILT
3989 this->filesz_ += increase;
3990 this->memsz_ += increase;
3991
96a2b4e4
ILT
3992 // If this is a TLS segment, align the memory size. The code in
3993 // set_section_list ensures that the section after the TLS segment
3994 // is aligned to give us room.
3995 if (this->type_ == elfcpp::PT_TLS)
3996 {
3997 uint64_t segment_align = this->maximum_alignment();
3998 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3999 this->memsz_ = align_address(this->memsz_, segment_align);
4000 }
75f65a3e
ILT
4001}
4002
7bf1f802
ILT
4003// Set the TLS offsets of the sections in the PT_TLS segment.
4004
4005void
4006Output_segment::set_tls_offsets()
4007{
4008 gold_assert(this->type_ == elfcpp::PT_TLS);
4009
4010 for (Output_data_list::iterator p = this->output_data_.begin();
4011 p != this->output_data_.end();
4012 ++p)
4013 (*p)->set_tls_offset(this->vaddr_);
4014
4015 for (Output_data_list::iterator p = this->output_bss_.begin();
4016 p != this->output_bss_.end();
4017 ++p)
4018 (*p)->set_tls_offset(this->vaddr_);
4019}
4020
a445fddf
ILT
4021// Return the address of the first section.
4022
4023uint64_t
4024Output_segment::first_section_load_address() const
4025{
4026 for (Output_data_list::const_iterator p = this->output_data_.begin();
4027 p != this->output_data_.end();
4028 ++p)
4029 if ((*p)->is_section())
4030 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4031
4032 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4033 p != this->output_bss_.end();
4034 ++p)
4035 if ((*p)->is_section())
4036 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4037
4038 gold_unreachable();
4039}
4040
75f65a3e
ILT
4041// Return the number of Output_sections in an Output_segment.
4042
4043unsigned int
4044Output_segment::output_section_count() const
4045{
4046 return (this->output_section_count_list(&this->output_data_)
4047 + this->output_section_count_list(&this->output_bss_));
4048}
4049
4050// Return the number of Output_sections in an Output_data_list.
4051
4052unsigned int
4053Output_segment::output_section_count_list(const Output_data_list* pdl) const
4054{
4055 unsigned int count = 0;
4056 for (Output_data_list::const_iterator p = pdl->begin();
4057 p != pdl->end();
4058 ++p)
4059 {
4060 if ((*p)->is_section())
4061 ++count;
4062 }
4063 return count;
a2fb1b05
ILT
4064}
4065
1c4f3631
ILT
4066// Return the section attached to the list segment with the lowest
4067// load address. This is used when handling a PHDRS clause in a
4068// linker script.
4069
4070Output_section*
4071Output_segment::section_with_lowest_load_address() const
4072{
4073 Output_section* found = NULL;
4074 uint64_t found_lma = 0;
4075 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4076
4077 Output_section* found_data = found;
4078 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4079 if (found != found_data && found_data != NULL)
4080 {
4081 gold_error(_("nobits section %s may not precede progbits section %s "
4082 "in same segment"),
4083 found->name(), found_data->name());
4084 return NULL;
4085 }
4086
4087 return found;
4088}
4089
4090// Look through a list for a section with a lower load address.
4091
4092void
4093Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4094 Output_section** found,
4095 uint64_t* found_lma) const
4096{
4097 for (Output_data_list::const_iterator p = pdl->begin();
4098 p != pdl->end();
4099 ++p)
4100 {
4101 if (!(*p)->is_section())
4102 continue;
4103 Output_section* os = static_cast<Output_section*>(*p);
4104 uint64_t lma = (os->has_load_address()
4105 ? os->load_address()
4106 : os->address());
4107 if (*found == NULL || lma < *found_lma)
4108 {
4109 *found = os;
4110 *found_lma = lma;
4111 }
4112 }
4113}
4114
61ba1cf9
ILT
4115// Write the segment data into *OPHDR.
4116
4117template<int size, bool big_endian>
4118void
ead1e424 4119Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4120{
4121 ophdr->put_p_type(this->type_);
4122 ophdr->put_p_offset(this->offset_);
4123 ophdr->put_p_vaddr(this->vaddr_);
4124 ophdr->put_p_paddr(this->paddr_);
4125 ophdr->put_p_filesz(this->filesz_);
4126 ophdr->put_p_memsz(this->memsz_);
4127 ophdr->put_p_flags(this->flags_);
a445fddf 4128 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4129}
4130
4131// Write the section headers into V.
4132
4133template<int size, bool big_endian>
4134unsigned char*
16649710
ILT
4135Output_segment::write_section_headers(const Layout* layout,
4136 const Stringpool* secnamepool,
ead1e424 4137 unsigned char* v,
7d1a9ebb 4138 unsigned int *pshndx) const
5482377d 4139{
ead1e424
ILT
4140 // Every section that is attached to a segment must be attached to a
4141 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4142 // segments.
4143 if (this->type_ != elfcpp::PT_LOAD)
4144 return v;
4145
7d1a9ebb
ILT
4146 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4147 &this->output_data_,
4148 v, pshndx);
4149 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4150 &this->output_bss_,
4151 v, pshndx);
61ba1cf9
ILT
4152 return v;
4153}
4154
4155template<int size, bool big_endian>
4156unsigned char*
16649710
ILT
4157Output_segment::write_section_headers_list(const Layout* layout,
4158 const Stringpool* secnamepool,
61ba1cf9 4159 const Output_data_list* pdl,
ead1e424 4160 unsigned char* v,
7d1a9ebb 4161 unsigned int* pshndx) const
61ba1cf9
ILT
4162{
4163 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4164 for (Output_data_list::const_iterator p = pdl->begin();
4165 p != pdl->end();
4166 ++p)
4167 {
4168 if ((*p)->is_section())
4169 {
5482377d 4170 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4171 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4172 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4173 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4174 v += shdr_size;
ead1e424 4175 ++*pshndx;
61ba1cf9
ILT
4176 }
4177 }
4178 return v;
4179}
4180
7d9e3d98
ILT
4181// Print the output sections to the map file.
4182
4183void
4184Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4185{
4186 if (this->type() != elfcpp::PT_LOAD)
4187 return;
4188 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4189 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4190}
4191
4192// Print an output section list to the map file.
4193
4194void
4195Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4196 const Output_data_list* pdl) const
4197{
4198 for (Output_data_list::const_iterator p = pdl->begin();
4199 p != pdl->end();
4200 ++p)
4201 (*p)->print_to_mapfile(mapfile);
4202}
4203
a2fb1b05
ILT
4204// Output_file methods.
4205
14144f39
ILT
4206Output_file::Output_file(const char* name)
4207 : name_(name),
61ba1cf9
ILT
4208 o_(-1),
4209 file_size_(0),
c420411f 4210 base_(NULL),
516cb3d0
ILT
4211 map_is_anonymous_(false),
4212 is_temporary_(false)
61ba1cf9
ILT
4213{
4214}
4215
404c2abb
ILT
4216// Try to open an existing file. Returns false if the file doesn't
4217// exist, has a size of 0 or can't be mmapped.
4218
4219bool
4220Output_file::open_for_modification()
4221{
4222 // The name "-" means "stdout".
4223 if (strcmp(this->name_, "-") == 0)
4224 return false;
4225
4226 // Don't bother opening files with a size of zero.
4227 struct stat s;
4228 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4229 return false;
4230
4231 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4232 if (o < 0)
4233 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4234 this->o_ = o;
4235 this->file_size_ = s.st_size;
4236
4237 // If the file can't be mmapped, copying the content to an anonymous
4238 // map will probably negate the performance benefits of incremental
4239 // linking. This could be helped by using views and loading only
4240 // the necessary parts, but this is not supported as of now.
4241 if (!this->map_no_anonymous())
4242 {
4243 release_descriptor(o, true);
4244 this->o_ = -1;
4245 this->file_size_ = 0;
4246 return false;
4247 }
4248
4249 return true;
4250}
4251
61ba1cf9
ILT
4252// Open the output file.
4253
a2fb1b05 4254void
61ba1cf9 4255Output_file::open(off_t file_size)
a2fb1b05 4256{
61ba1cf9
ILT
4257 this->file_size_ = file_size;
4258
4e9d8586
ILT
4259 // Unlink the file first; otherwise the open() may fail if the file
4260 // is busy (e.g. it's an executable that's currently being executed).
4261 //
4262 // However, the linker may be part of a system where a zero-length
4263 // file is created for it to write to, with tight permissions (gcc
4264 // 2.95 did something like this). Unlinking the file would work
4265 // around those permission controls, so we only unlink if the file
4266 // has a non-zero size. We also unlink only regular files to avoid
4267 // trouble with directories/etc.
4268 //
4269 // If we fail, continue; this command is merely a best-effort attempt
4270 // to improve the odds for open().
4271
42a1b686 4272 // We let the name "-" mean "stdout"
516cb3d0 4273 if (!this->is_temporary_)
42a1b686 4274 {
516cb3d0
ILT
4275 if (strcmp(this->name_, "-") == 0)
4276 this->o_ = STDOUT_FILENO;
4277 else
4278 {
4279 struct stat s;
6a89f575
CC
4280 if (::stat(this->name_, &s) == 0
4281 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4282 {
4283 if (s.st_size != 0)
4284 ::unlink(this->name_);
4285 else if (!parameters->options().relocatable())
4286 {
4287 // If we don't unlink the existing file, add execute
4288 // permission where read permissions already exist
4289 // and where the umask permits.
4290 int mask = ::umask(0);
4291 ::umask(mask);
4292 s.st_mode |= (s.st_mode & 0444) >> 2;
4293 ::chmod(this->name_, s.st_mode & ~mask);
4294 }
4295 }
516cb3d0 4296
8851ecca 4297 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4298 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4299 mode);
516cb3d0
ILT
4300 if (o < 0)
4301 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4302 this->o_ = o;
4303 }
42a1b686 4304 }
61ba1cf9 4305
27bc2bce
ILT
4306 this->map();
4307}
4308
4309// Resize the output file.
4310
4311void
4312Output_file::resize(off_t file_size)
4313{
c420411f
ILT
4314 // If the mmap is mapping an anonymous memory buffer, this is easy:
4315 // just mremap to the new size. If it's mapping to a file, we want
4316 // to unmap to flush to the file, then remap after growing the file.
4317 if (this->map_is_anonymous_)
4318 {
4319 void* base = ::mremap(this->base_, this->file_size_, file_size,
4320 MREMAP_MAYMOVE);
4321 if (base == MAP_FAILED)
4322 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4323 this->base_ = static_cast<unsigned char*>(base);
4324 this->file_size_ = file_size;
4325 }
4326 else
4327 {
4328 this->unmap();
4329 this->file_size_ = file_size;
fdcac5af
ILT
4330 if (!this->map_no_anonymous())
4331 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4332 }
27bc2bce
ILT
4333}
4334
404c2abb
ILT
4335// Map an anonymous block of memory which will later be written to the
4336// file. Return whether the map succeeded.
26736d8e 4337
404c2abb 4338bool
26736d8e
ILT
4339Output_file::map_anonymous()
4340{
404c2abb
ILT
4341 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4342 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4343 if (base != MAP_FAILED)
4344 {
4345 this->map_is_anonymous_ = true;
4346 this->base_ = static_cast<unsigned char*>(base);
4347 return true;
4348 }
4349 return false;
26736d8e
ILT
4350}
4351
404c2abb 4352// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4353
404c2abb
ILT
4354bool
4355Output_file::map_no_anonymous()
27bc2bce 4356{
c420411f 4357 const int o = this->o_;
61ba1cf9 4358
c420411f
ILT
4359 // If the output file is not a regular file, don't try to mmap it;
4360 // instead, we'll mmap a block of memory (an anonymous buffer), and
4361 // then later write the buffer to the file.
4362 void* base;
4363 struct stat statbuf;
42a1b686
ILT
4364 if (o == STDOUT_FILENO || o == STDERR_FILENO
4365 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4366 || !S_ISREG(statbuf.st_mode)
4367 || this->is_temporary_)
404c2abb
ILT
4368 return false;
4369
4370 // Ensure that we have disk space available for the file. If we
4371 // don't do this, it is possible that we will call munmap, close,
4372 // and exit with dirty buffers still in the cache with no assigned
4373 // disk blocks. If the disk is out of space at that point, the
4374 // output file will wind up incomplete, but we will have already
4375 // exited. The alternative to fallocate would be to use fdatasync,
4376 // but that would be a more significant performance hit.
4377 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4378 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4379
4380 // Map the file into memory.
4381 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4382 MAP_SHARED, o, 0);
4383
4384 // The mmap call might fail because of file system issues: the file
4385 // system might not support mmap at all, or it might not support
4386 // mmap with PROT_WRITE.
61ba1cf9 4387 if (base == MAP_FAILED)
404c2abb
ILT
4388 return false;
4389
4390 this->map_is_anonymous_ = false;
61ba1cf9 4391 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4392 return true;
4393}
4394
4395// Map the file into memory.
4396
4397void
4398Output_file::map()
4399{
4400 if (this->map_no_anonymous())
4401 return;
4402
4403 // The mmap call might fail because of file system issues: the file
4404 // system might not support mmap at all, or it might not support
4405 // mmap with PROT_WRITE. I'm not sure which errno values we will
4406 // see in all cases, so if the mmap fails for any reason and we
4407 // don't care about file contents, try for an anonymous map.
4408 if (this->map_anonymous())
4409 return;
4410
4411 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4412 this->name_, static_cast<unsigned long>(this->file_size_),
4413 strerror(errno));
61ba1cf9
ILT
4414}
4415
c420411f 4416// Unmap the file from memory.
61ba1cf9
ILT
4417
4418void
c420411f 4419Output_file::unmap()
61ba1cf9
ILT
4420{
4421 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4422 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4423 this->base_ = NULL;
c420411f
ILT
4424}
4425
4426// Close the output file.
4427
4428void
4429Output_file::close()
4430{
4431 // If the map isn't file-backed, we need to write it now.
516cb3d0 4432 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4433 {
4434 size_t bytes_to_write = this->file_size_;
6d1e3092 4435 size_t offset = 0;
c420411f
ILT
4436 while (bytes_to_write > 0)
4437 {
6d1e3092
CD
4438 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4439 bytes_to_write);
c420411f
ILT
4440 if (bytes_written == 0)
4441 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4442 else if (bytes_written < 0)
4443 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4444 else
6d1e3092
CD
4445 {
4446 bytes_to_write -= bytes_written;
4447 offset += bytes_written;
4448 }
c420411f
ILT
4449 }
4450 }
4451 this->unmap();
61ba1cf9 4452
42a1b686 4453 // We don't close stdout or stderr
516cb3d0
ILT
4454 if (this->o_ != STDOUT_FILENO
4455 && this->o_ != STDERR_FILENO
4456 && !this->is_temporary_)
42a1b686
ILT
4457 if (::close(this->o_) < 0)
4458 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4459 this->o_ = -1;
a2fb1b05
ILT
4460}
4461
4462// Instantiate the templates we need. We could use the configure
4463// script to restrict this to only the ones for implemented targets.
4464
193a53d9 4465#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4466template
4467off_t
4468Output_section::add_input_section<32, false>(
730cdc88 4469 Sized_relobj<32, false>* object,
2ea97941 4470 unsigned int shndx,
a2fb1b05 4471 const char* secname,
730cdc88 4472 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4473 unsigned int reloc_shndx,
4474 bool have_sections_script);
193a53d9 4475#endif
a2fb1b05 4476
193a53d9 4477#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4478template
4479off_t
4480Output_section::add_input_section<32, true>(
730cdc88 4481 Sized_relobj<32, true>* object,
2ea97941 4482 unsigned int shndx,
a2fb1b05 4483 const char* secname,
730cdc88 4484 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4485 unsigned int reloc_shndx,
4486 bool have_sections_script);
193a53d9 4487#endif
a2fb1b05 4488
193a53d9 4489#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4490template
4491off_t
4492Output_section::add_input_section<64, false>(
730cdc88 4493 Sized_relobj<64, false>* object,
2ea97941 4494 unsigned int shndx,
a2fb1b05 4495 const char* secname,
730cdc88 4496 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4497 unsigned int reloc_shndx,
4498 bool have_sections_script);
193a53d9 4499#endif
a2fb1b05 4500
193a53d9 4501#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4502template
4503off_t
4504Output_section::add_input_section<64, true>(
730cdc88 4505 Sized_relobj<64, true>* object,
2ea97941 4506 unsigned int shndx,
a2fb1b05 4507 const char* secname,
730cdc88 4508 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4509 unsigned int reloc_shndx,
4510 bool have_sections_script);
193a53d9 4511#endif
a2fb1b05 4512
bbbfea06
CC
4513#ifdef HAVE_TARGET_32_LITTLE
4514template
4515class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4516#endif
4517
4518#ifdef HAVE_TARGET_32_BIG
4519template
4520class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4521#endif
4522
4523#ifdef HAVE_TARGET_64_LITTLE
4524template
4525class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4526#endif
4527
4528#ifdef HAVE_TARGET_64_BIG
4529template
4530class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4531#endif
4532
4533#ifdef HAVE_TARGET_32_LITTLE
4534template
4535class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4536#endif
4537
4538#ifdef HAVE_TARGET_32_BIG
4539template
4540class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4541#endif
4542
4543#ifdef HAVE_TARGET_64_LITTLE
4544template
4545class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4546#endif
4547
4548#ifdef HAVE_TARGET_64_BIG
4549template
4550class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4551#endif
4552
4553#ifdef HAVE_TARGET_32_LITTLE
4554template
4555class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4556#endif
4557
4558#ifdef HAVE_TARGET_32_BIG
4559template
4560class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4561#endif
4562
4563#ifdef HAVE_TARGET_64_LITTLE
4564template
4565class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4566#endif
4567
4568#ifdef HAVE_TARGET_64_BIG
4569template
4570class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4571#endif
4572
4573#ifdef HAVE_TARGET_32_LITTLE
4574template
4575class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4576#endif
4577
4578#ifdef HAVE_TARGET_32_BIG
4579template
4580class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4581#endif
4582
4583#ifdef HAVE_TARGET_64_LITTLE
4584template
4585class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4586#endif
4587
4588#ifdef HAVE_TARGET_64_BIG
4589template
4590class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4591#endif
4592
193a53d9 4593#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4594template
4595class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4596#endif
c06b7b0b 4597
193a53d9 4598#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4599template
4600class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4601#endif
c06b7b0b 4602
193a53d9 4603#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4604template
4605class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4606#endif
c06b7b0b 4607
193a53d9 4608#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4609template
4610class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4611#endif
c06b7b0b 4612
193a53d9 4613#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4614template
4615class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4616#endif
c06b7b0b 4617
193a53d9 4618#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4619template
4620class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4621#endif
c06b7b0b 4622
193a53d9 4623#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4624template
4625class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4626#endif
c06b7b0b 4627
193a53d9 4628#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4629template
4630class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4631#endif
c06b7b0b 4632
193a53d9 4633#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4634template
4635class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4636#endif
c06b7b0b 4637
193a53d9 4638#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4639template
4640class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4641#endif
c06b7b0b 4642
193a53d9 4643#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4644template
4645class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4646#endif
c06b7b0b 4647
193a53d9 4648#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4649template
4650class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4651#endif
c06b7b0b 4652
193a53d9 4653#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4654template
4655class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4656#endif
c06b7b0b 4657
193a53d9 4658#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4659template
4660class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4661#endif
c06b7b0b 4662
193a53d9 4663#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4664template
4665class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4666#endif
c06b7b0b 4667
193a53d9 4668#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4669template
4670class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4671#endif
c06b7b0b 4672
6a74a719
ILT
4673#ifdef HAVE_TARGET_32_LITTLE
4674template
4675class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4676#endif
4677
4678#ifdef HAVE_TARGET_32_BIG
4679template
4680class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4681#endif
4682
4683#ifdef HAVE_TARGET_64_LITTLE
4684template
4685class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4686#endif
4687
4688#ifdef HAVE_TARGET_64_BIG
4689template
4690class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4691#endif
4692
4693#ifdef HAVE_TARGET_32_LITTLE
4694template
4695class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4696#endif
4697
4698#ifdef HAVE_TARGET_32_BIG
4699template
4700class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4701#endif
4702
4703#ifdef HAVE_TARGET_64_LITTLE
4704template
4705class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4706#endif
4707
4708#ifdef HAVE_TARGET_64_BIG
4709template
4710class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4711#endif
4712
4713#ifdef HAVE_TARGET_32_LITTLE
4714template
4715class Output_data_group<32, false>;
4716#endif
4717
4718#ifdef HAVE_TARGET_32_BIG
4719template
4720class Output_data_group<32, true>;
4721#endif
4722
4723#ifdef HAVE_TARGET_64_LITTLE
4724template
4725class Output_data_group<64, false>;
4726#endif
4727
4728#ifdef HAVE_TARGET_64_BIG
4729template
4730class Output_data_group<64, true>;
4731#endif
4732
193a53d9 4733#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4734template
dbe717ef 4735class Output_data_got<32, false>;
193a53d9 4736#endif
ead1e424 4737
193a53d9 4738#ifdef HAVE_TARGET_32_BIG
ead1e424 4739template
dbe717ef 4740class Output_data_got<32, true>;
193a53d9 4741#endif
ead1e424 4742
193a53d9 4743#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4744template
dbe717ef 4745class Output_data_got<64, false>;
193a53d9 4746#endif
ead1e424 4747
193a53d9 4748#ifdef HAVE_TARGET_64_BIG
ead1e424 4749template
dbe717ef 4750class Output_data_got<64, true>;
193a53d9 4751#endif
ead1e424 4752
a2fb1b05 4753} // End namespace gold.
This page took 0.429862 seconds and 4 git commands to generate.