gdb/
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
88597d34 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
9201d894
ILT
114#ifndef HAVE_POSIX_FALLOCATE
115// A dummy, non general, version of posix_fallocate. Here we just set
116// the file size and hope that there is enough disk space. FIXME: We
117// could allocate disk space by walking block by block and writing a
118// zero byte into each block.
119static int
120posix_fallocate(int o, off_t offset, off_t len)
121{
122 return ftruncate(o, offset + len);
123}
124#endif // !defined(HAVE_POSIX_FALLOCATE)
125
d0a9ace3
ILT
126// Mingw does not have S_ISLNK.
127#ifndef S_ISLNK
128# define S_ISLNK(mode) 0
129#endif
130
a2fb1b05
ILT
131namespace gold
132{
133
a3ad94ed
ILT
134// Output_data variables.
135
27bc2bce 136bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 137
a2fb1b05
ILT
138// Output_data methods.
139
140Output_data::~Output_data()
141{
142}
143
730cdc88
ILT
144// Return the default alignment for the target size.
145
146uint64_t
147Output_data::default_alignment()
148{
8851ecca
ILT
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
730cdc88
ILT
151}
152
75f65a3e
ILT
153// Return the default alignment for a size--32 or 64.
154
155uint64_t
730cdc88 156Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
157{
158 if (size == 32)
159 return 4;
160 else if (size == 64)
161 return 8;
162 else
a3ad94ed 163 gold_unreachable();
75f65a3e
ILT
164}
165
75f65a3e
ILT
166// Output_section_header methods. This currently assumes that the
167// segment and section lists are complete at construction time.
168
169Output_section_headers::Output_section_headers(
16649710
ILT
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
6a74a719 172 const Layout::Section_list* section_list,
16649710 173 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
9025d29d 176 : layout_(layout),
75f65a3e 177 segment_list_(segment_list),
6a74a719 178 section_list_(section_list),
a3ad94ed 179 unattached_section_list_(unattached_section_list),
d491d34e
ILT
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
182{
183}
184
185// Compute the current data size.
186
187off_t
188Output_section_headers::do_size() const
75f65a3e 189{
61ba1cf9
ILT
190 // Count all the sections. Start with 1 for the null section.
191 off_t count = 1;
8851ecca 192 if (!parameters->options().relocatable())
6a74a719 193 {
20e6d0d6
DK
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
6a74a719
ILT
197 ++p)
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
200 }
201 else
202 {
20e6d0d6
DK
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
6a74a719
ILT
206 ++p)
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208 ++count;
209 }
20e6d0d6 210 count += this->unattached_section_list_->size();
75f65a3e 211
8851ecca 212 const int size = parameters->target().get_size();
75f65a3e
ILT
213 int shdr_size;
214 if (size == 32)
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216 else if (size == 64)
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218 else
a3ad94ed 219 gold_unreachable();
75f65a3e 220
20e6d0d6 221 return count * shdr_size;
75f65a3e
ILT
222}
223
61ba1cf9
ILT
224// Write out the section headers.
225
75f65a3e 226void
61ba1cf9 227Output_section_headers::do_write(Output_file* of)
a2fb1b05 228{
8851ecca 229 switch (parameters->size_and_endianness())
61ba1cf9 230 {
9025d29d 231#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
234 break;
9025d29d 235#endif
8851ecca
ILT
236#ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
239 break;
9025d29d 240#endif
9025d29d 241#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
244 break;
9025d29d 245#endif
8851ecca
ILT
246#ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
249 break;
250#endif
251 default:
252 gold_unreachable();
61ba1cf9 253 }
61ba1cf9
ILT
254}
255
256template<int size, bool big_endian>
257void
258Output_section_headers::do_sized_write(Output_file* of)
259{
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
265
266 {
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
d491d34e
ILT
273
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
278 else
279 oshdr.put_sh_size(section_count);
280
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
284 else
285 oshdr.put_sh_link(shstrndx);
286
5696ab0b
ILT
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
61ba1cf9
ILT
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
292 }
293
294 v += shdr_size;
295
6a74a719 296 unsigned int shndx = 1;
8851ecca 297 if (!parameters->options().relocatable())
6a74a719
ILT
298 {
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
302 ++p)
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304 this->secnamepool_,
305 v,
306 &shndx);
307 }
308 else
309 {
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
313 ++p)
314 {
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
319 continue;
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323 v += shdr_size;
324 ++shndx;
325 }
326 }
327
a3ad94ed 328 for (Layout::Section_list::const_iterator p =
16649710
ILT
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
61ba1cf9
ILT
331 ++p)
332 {
6a74a719
ILT
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 336 && parameters->options().relocatable())
6a74a719 337 continue;
a3ad94ed 338 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 341 v += shdr_size;
ead1e424 342 ++shndx;
61ba1cf9
ILT
343 }
344
345 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
346}
347
54dc6425
ILT
348// Output_segment_header methods.
349
61ba1cf9 350Output_segment_headers::Output_segment_headers(
61ba1cf9 351 const Layout::Segment_list& segment_list)
9025d29d 352 : segment_list_(segment_list)
61ba1cf9 353{
cdc29364 354 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
355}
356
54dc6425 357void
61ba1cf9 358Output_segment_headers::do_write(Output_file* of)
75f65a3e 359{
8851ecca 360 switch (parameters->size_and_endianness())
61ba1cf9 361 {
9025d29d 362#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
365 break;
9025d29d 366#endif
8851ecca
ILT
367#ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
370 break;
9025d29d 371#endif
9025d29d 372#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
375 break;
9025d29d 376#endif
8851ecca
ILT
377#ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
380 break;
381#endif
382 default:
383 gold_unreachable();
61ba1cf9 384 }
61ba1cf9
ILT
385}
386
387template<int size, bool big_endian>
388void
389Output_segment_headers::do_sized_write(Output_file* of)
390{
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 393 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
394 unsigned char* view = of->get_output_view(this->offset(),
395 all_phdrs_size);
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
399 ++p)
400 {
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
403 v += phdr_size;
404 }
405
a445fddf
ILT
406 gold_assert(v - view == all_phdrs_size);
407
61ba1cf9 408 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
409}
410
20e6d0d6
DK
411off_t
412Output_segment_headers::do_size() const
413{
414 const int size = parameters->target().get_size();
415 int phdr_size;
416 if (size == 32)
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418 else if (size == 64)
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420 else
421 gold_unreachable();
422
423 return this->segment_list_.size() * phdr_size;
424}
425
75f65a3e
ILT
426// Output_file_header methods.
427
9025d29d 428Output_file_header::Output_file_header(const Target* target,
75f65a3e 429 const Symbol_table* symtab,
a10ae760 430 const Output_segment_headers* osh)
9025d29d 431 : target_(target),
75f65a3e 432 symtab_(symtab),
61ba1cf9 433 segment_header_(osh),
75f65a3e 434 section_header_(NULL),
a10ae760 435 shstrtab_(NULL)
75f65a3e 436{
20e6d0d6 437 this->set_data_size(this->do_size());
75f65a3e
ILT
438}
439
440// Set the section table information for a file header.
441
442void
443Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
445{
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
448}
449
450// Write out the file header.
451
452void
61ba1cf9 453Output_file_header::do_write(Output_file* of)
54dc6425 454{
27bc2bce
ILT
455 gold_assert(this->offset() == 0);
456
8851ecca 457 switch (parameters->size_and_endianness())
61ba1cf9 458 {
9025d29d 459#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
462 break;
9025d29d 463#endif
8851ecca
ILT
464#ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
467 break;
9025d29d 468#endif
9025d29d 469#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
472 break;
9025d29d 473#endif
8851ecca
ILT
474#ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
477 break;
478#endif
479 default:
480 gold_unreachable();
61ba1cf9 481 }
61ba1cf9
ILT
482}
483
cc643b88 484// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
485
486template<int size, bool big_endian>
487void
488Output_file_header::do_sized_write(Output_file* of)
489{
a3ad94ed 490 gold_assert(this->offset() == 0);
61ba1cf9
ILT
491
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502 if (size == 32)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504 else if (size == 64)
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506 else
a3ad94ed 507 gold_unreachable();
61ba1cf9
ILT
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
512 oehdr.put_e_ident(e_ident);
513
514 elfcpp::ET e_type;
8851ecca 515 if (parameters->options().relocatable())
61ba1cf9 516 e_type = elfcpp::ET_REL;
374ad285 517 else if (parameters->options().output_is_position_independent())
436ca963 518 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
519 else
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
522
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
525
d391083d 526 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 527
6a74a719
ILT
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
530 else
531 oehdr.put_e_phoff(this->segment_header_->offset());
532
61ba1cf9 533 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 534 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
536
537 if (this->segment_header_ == NULL)
538 {
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
541 }
542 else
543 {
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
6a74a719
ILT
550 }
551
61ba1cf9 552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
555
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
559 else
560 oehdr.put_e_shnum(0);
561
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565 else
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 567
36959681
ILT
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
571
61ba1cf9 572 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
573}
574
a10ae760 575// Return the value to use for the entry address.
d391083d
ILT
576
577template<int size>
578typename elfcpp::Elf_types<size>::Elf_Addr
579Output_file_header::entry()
580{
a10ae760 581 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
a10ae760 584 const char* entry = parameters->entry();
2ea97941 585 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
586
587 typename Sized_symbol<size>::Value_type v;
588 if (sym != NULL)
589 {
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
2ea97941 593 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
594 v = ssym->value();
595 }
596 else
597 {
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
600 char* endptr;
2ea97941 601 v = strtoull(entry, &endptr, 0);
d391083d
ILT
602 if (*endptr != '\0')
603 {
604 if (should_issue_warning)
2ea97941 605 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
606 v = 0;
607 }
608 }
609
610 return v;
611}
612
20e6d0d6
DK
613// Compute the current data size.
614
615off_t
616Output_file_header::do_size() const
617{
618 const int size = parameters->target().get_size();
619 if (size == 32)
620 return elfcpp::Elf_sizes<32>::ehdr_size;
621 else if (size == 64)
622 return elfcpp::Elf_sizes<64>::ehdr_size;
623 else
624 gold_unreachable();
625}
626
dbe717ef
ILT
627// Output_data_const methods.
628
629void
a3ad94ed 630Output_data_const::do_write(Output_file* of)
dbe717ef 631{
a3ad94ed
ILT
632 of->write(this->offset(), this->data_.data(), this->data_.size());
633}
634
635// Output_data_const_buffer methods.
636
637void
638Output_data_const_buffer::do_write(Output_file* of)
639{
640 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
641}
642
643// Output_section_data methods.
644
16649710
ILT
645// Record the output section, and set the entry size and such.
646
647void
648Output_section_data::set_output_section(Output_section* os)
649{
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
653}
654
655// Return the section index of the output section.
656
dbe717ef
ILT
657unsigned int
658Output_section_data::do_out_shndx() const
659{
a3ad94ed 660 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
661 return this->output_section_->out_shndx();
662}
663
759b1a24
ILT
664// Set the alignment, which means we may need to update the alignment
665// of the output section.
666
667void
2ea97941 668Output_section_data::set_addralign(uint64_t addralign)
759b1a24 669{
2ea97941 670 this->addralign_ = addralign;
759b1a24 671 if (this->output_section_ != NULL
2ea97941
ILT
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
759b1a24
ILT
674}
675
a3ad94ed
ILT
676// Output_data_strtab methods.
677
27bc2bce 678// Set the final data size.
a3ad94ed
ILT
679
680void
27bc2bce 681Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
682{
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
685}
686
687// Write out a string table.
688
689void
690Output_data_strtab::do_write(Output_file* of)
691{
692 this->strtab_->write(of, this->offset());
693}
694
c06b7b0b
ILT
695// Output_reloc methods.
696
7bf1f802
ILT
697// A reloc against a global symbol.
698
699template<bool dynamic, int size, bool big_endian>
700Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701 Symbol* gsym,
702 unsigned int type,
703 Output_data* od,
e8c846c3 704 Address address,
0da6fa6c
DM
705 bool is_relative,
706 bool is_symbolless)
7bf1f802 707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
708 is_relative_(is_relative), is_symbolless_(is_symbolless),
709 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 710{
dceae3c1
ILT
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
7bf1f802
ILT
713 this->u1_.gsym = gsym;
714 this->u2_.od = od;
dceae3c1
ILT
715 if (dynamic)
716 this->set_needs_dynsym_index();
7bf1f802
ILT
717}
718
719template<bool dynamic, int size, bool big_endian>
720Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Symbol* gsym,
722 unsigned int type,
ef9beddf 723 Sized_relobj<size, big_endian>* relobj,
7bf1f802 724 unsigned int shndx,
e8c846c3 725 Address address,
0da6fa6c
DM
726 bool is_relative,
727 bool is_symbolless)
7bf1f802 728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
729 is_relative_(is_relative), is_symbolless_(is_symbolless),
730 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
731{
732 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
7bf1f802
ILT
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
dceae3c1
ILT
737 if (dynamic)
738 this->set_needs_dynsym_index();
7bf1f802
ILT
739}
740
741// A reloc against a local symbol.
742
743template<bool dynamic, int size, bool big_endian>
744Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
747 unsigned int type,
748 Output_data* od,
e8c846c3 749 Address address,
2ea97941 750 bool is_relative,
0da6fa6c 751 bool is_symbolless,
dceae3c1 752 bool is_section_symbol)
7bf1f802 753 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
754 is_relative_(is_relative), is_symbolless_(is_symbolless),
755 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
756{
757 gold_assert(local_sym_index != GSYM_CODE
758 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
759 // this->type_ is a bitfield; make sure TYPE fits.
760 gold_assert(this->type_ == type);
7bf1f802
ILT
761 this->u1_.relobj = relobj;
762 this->u2_.od = od;
dceae3c1
ILT
763 if (dynamic)
764 this->set_needs_dynsym_index();
7bf1f802
ILT
765}
766
767template<bool dynamic, int size, bool big_endian>
768Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769 Sized_relobj<size, big_endian>* relobj,
770 unsigned int local_sym_index,
771 unsigned int type,
772 unsigned int shndx,
e8c846c3 773 Address address,
2ea97941 774 bool is_relative,
0da6fa6c 775 bool is_symbolless,
dceae3c1 776 bool is_section_symbol)
7bf1f802 777 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
780{
781 gold_assert(local_sym_index != GSYM_CODE
782 && local_sym_index != INVALID_CODE);
783 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
7bf1f802
ILT
786 this->u1_.relobj = relobj;
787 this->u2_.relobj = relobj;
dceae3c1
ILT
788 if (dynamic)
789 this->set_needs_dynsym_index();
7bf1f802
ILT
790}
791
792// A reloc against the STT_SECTION symbol of an output section.
793
794template<bool dynamic, int size, bool big_endian>
795Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796 Output_section* os,
797 unsigned int type,
798 Output_data* od,
799 Address address)
800 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
801 is_relative_(false), is_symbolless_(false),
802 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 803{
dceae3c1
ILT
804 // this->type_ is a bitfield; make sure TYPE fits.
805 gold_assert(this->type_ == type);
7bf1f802
ILT
806 this->u1_.os = os;
807 this->u2_.od = od;
808 if (dynamic)
dceae3c1
ILT
809 this->set_needs_dynsym_index();
810 else
811 os->set_needs_symtab_index();
7bf1f802
ILT
812}
813
814template<bool dynamic, int size, bool big_endian>
815Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816 Output_section* os,
817 unsigned int type,
ef9beddf 818 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
819 unsigned int shndx,
820 Address address)
821 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
822 is_relative_(false), is_symbolless_(false),
823 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
824{
825 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
826 // this->type_ is a bitfield; make sure TYPE fits.
827 gold_assert(this->type_ == type);
7bf1f802
ILT
828 this->u1_.os = os;
829 this->u2_.relobj = relobj;
830 if (dynamic)
dceae3c1
ILT
831 this->set_needs_dynsym_index();
832 else
833 os->set_needs_symtab_index();
834}
835
e291e7b9
ILT
836// An absolute relocation.
837
838template<bool dynamic, int size, bool big_endian>
839Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840 unsigned int type,
841 Output_data* od,
842 Address address)
843 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
844 is_relative_(false), is_symbolless_(false),
845 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
846{
847 // this->type_ is a bitfield; make sure TYPE fits.
848 gold_assert(this->type_ == type);
849 this->u1_.relobj = NULL;
850 this->u2_.od = od;
851}
852
853template<bool dynamic, int size, bool big_endian>
854Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Sized_relobj<size, big_endian>* relobj,
857 unsigned int shndx,
858 Address address)
859 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
860 is_relative_(false), is_symbolless_(false),
861 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
862{
863 gold_assert(shndx != INVALID_CODE);
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.relobj = relobj;
868}
869
870// A target specific relocation.
871
872template<bool dynamic, int size, bool big_endian>
873Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 void* arg,
876 Output_data* od,
877 Address address)
878 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
879 is_relative_(false), is_symbolless_(false),
880 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
881{
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.arg = arg;
885 this->u2_.od = od;
886}
887
888template<bool dynamic, int size, bool big_endian>
889Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890 unsigned int type,
891 void* arg,
892 Sized_relobj<size, big_endian>* relobj,
893 unsigned int shndx,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
896 is_relative_(false), is_symbolless_(false),
897 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
898{
899 gold_assert(shndx != INVALID_CODE);
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.relobj = relobj;
904}
905
dceae3c1
ILT
906// Record that we need a dynamic symbol index for this relocation.
907
908template<bool dynamic, int size, bool big_endian>
909void
910Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911set_needs_dynsym_index()
912{
0da6fa6c 913 if (this->is_symbolless_)
dceae3c1
ILT
914 return;
915 switch (this->local_sym_index_)
916 {
917 case INVALID_CODE:
918 gold_unreachable();
919
920 case GSYM_CODE:
921 this->u1_.gsym->set_needs_dynsym_entry();
922 break;
923
924 case SECTION_CODE:
925 this->u1_.os->set_needs_dynsym_index();
926 break;
927
e291e7b9
ILT
928 case TARGET_CODE:
929 // The target must take care of this if necessary.
930 break;
931
dceae3c1
ILT
932 case 0:
933 break;
934
935 default:
936 {
937 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
938 Sized_relobj_file<size, big_endian>* relobj =
939 this->u1_.relobj->sized_relobj();
940 gold_assert(relobj != NULL);
dceae3c1 941 if (!this->is_section_symbol_)
6fa2a40b 942 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 943 else
6fa2a40b 944 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
945 }
946 break;
947 }
7bf1f802
ILT
948}
949
c06b7b0b
ILT
950// Get the symbol index of a relocation.
951
952template<bool dynamic, int size, bool big_endian>
953unsigned int
954Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955 const
956{
957 unsigned int index;
0da6fa6c
DM
958 if (this->is_symbolless_)
959 return 0;
c06b7b0b
ILT
960 switch (this->local_sym_index_)
961 {
962 case INVALID_CODE:
a3ad94ed 963 gold_unreachable();
c06b7b0b
ILT
964
965 case GSYM_CODE:
5a6f7e2d 966 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
967 index = 0;
968 else if (dynamic)
5a6f7e2d 969 index = this->u1_.gsym->dynsym_index();
c06b7b0b 970 else
5a6f7e2d 971 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
972 break;
973
974 case SECTION_CODE:
975 if (dynamic)
5a6f7e2d 976 index = this->u1_.os->dynsym_index();
c06b7b0b 977 else
5a6f7e2d 978 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
979 break;
980
e291e7b9
ILT
981 case TARGET_CODE:
982 index = parameters->target().reloc_symbol_index(this->u1_.arg,
983 this->type_);
984 break;
985
436ca963
ILT
986 case 0:
987 // Relocations without symbols use a symbol index of 0.
988 index = 0;
989 break;
990
c06b7b0b 991 default:
dceae3c1
ILT
992 {
993 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
994 Sized_relobj_file<size, big_endian>* relobj =
995 this->u1_.relobj->sized_relobj();
996 gold_assert(relobj != NULL);
dceae3c1
ILT
997 if (!this->is_section_symbol_)
998 {
999 if (dynamic)
6fa2a40b 1000 index = relobj->dynsym_index(lsi);
dceae3c1 1001 else
6fa2a40b 1002 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1003 }
1004 else
1005 {
6fa2a40b 1006 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1007 gold_assert(os != NULL);
1008 if (dynamic)
1009 index = os->dynsym_index();
1010 else
1011 index = os->symtab_index();
1012 }
1013 }
c06b7b0b
ILT
1014 break;
1015 }
a3ad94ed 1016 gold_assert(index != -1U);
c06b7b0b
ILT
1017 return index;
1018}
1019
624f8810
ILT
1020// For a local section symbol, get the address of the offset ADDEND
1021// within the input section.
dceae3c1
ILT
1022
1023template<bool dynamic, int size, bool big_endian>
ef9beddf 1024typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1025Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1026 local_section_offset(Addend addend) const
dceae3c1 1027{
624f8810
ILT
1028 gold_assert(this->local_sym_index_ != GSYM_CODE
1029 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1030 && this->local_sym_index_ != TARGET_CODE
624f8810 1031 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1032 && this->local_sym_index_ != 0
624f8810 1033 && this->is_section_symbol_);
dceae3c1 1034 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1035 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1036 gold_assert(os != NULL);
ef9beddf 1037 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1038 if (offset != invalid_address)
624f8810
ILT
1039 return offset + addend;
1040 // This is a merge section.
6fa2a40b
CC
1041 Sized_relobj_file<size, big_endian>* relobj =
1042 this->u1_.relobj->sized_relobj();
1043 gold_assert(relobj != NULL);
1044 offset = os->output_address(relobj, lsi, addend);
eff45813 1045 gold_assert(offset != invalid_address);
dceae3c1
ILT
1046 return offset;
1047}
1048
d98bc257 1049// Get the output address of a relocation.
c06b7b0b
ILT
1050
1051template<bool dynamic, int size, bool big_endian>
a984ee1d 1052typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1053Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1054{
a3ad94ed 1055 Address address = this->address_;
5a6f7e2d
ILT
1056 if (this->shndx_ != INVALID_CODE)
1057 {
ef9beddf 1058 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1059 gold_assert(os != NULL);
ef9beddf 1060 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1061 if (off != invalid_address)
730cdc88
ILT
1062 address += os->address() + off;
1063 else
1064 {
6fa2a40b
CC
1065 Sized_relobj_file<size, big_endian>* relobj =
1066 this->u2_.relobj->sized_relobj();
1067 gold_assert(relobj != NULL);
1068 address = os->output_address(relobj, this->shndx_, address);
eff45813 1069 gold_assert(address != invalid_address);
730cdc88 1070 }
5a6f7e2d
ILT
1071 }
1072 else if (this->u2_.od != NULL)
1073 address += this->u2_.od->address();
d98bc257
ILT
1074 return address;
1075}
1076
1077// Write out the offset and info fields of a Rel or Rela relocation
1078// entry.
1079
1080template<bool dynamic, int size, bool big_endian>
1081template<typename Write_rel>
1082void
1083Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084 Write_rel* wr) const
1085{
1086 wr->put_r_offset(this->get_address());
0da6fa6c 1087 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1088 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1089}
1090
1091// Write out a Rel relocation.
1092
1093template<bool dynamic, int size, bool big_endian>
1094void
1095Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096 unsigned char* pov) const
1097{
1098 elfcpp::Rel_write<size, big_endian> orel(pov);
1099 this->write_rel(&orel);
1100}
1101
e8c846c3
ILT
1102// Get the value of the symbol referred to by a Rel relocation.
1103
1104template<bool dynamic, int size, bool big_endian>
1105typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1106Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1107 Addend addend) const
e8c846c3
ILT
1108{
1109 if (this->local_sym_index_ == GSYM_CODE)
1110 {
1111 const Sized_symbol<size>* sym;
1112 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1113 return sym->value() + addend;
e8c846c3
ILT
1114 }
1115 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1116 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1117 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1118 && this->local_sym_index_ != 0
d1f003c6
ILT
1119 && !this->is_section_symbol_);
1120 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1121 Sized_relobj_file<size, big_endian>* relobj =
1122 this->u1_.relobj->sized_relobj();
1123 gold_assert(relobj != NULL);
1124 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125 return symval->value(relobj, addend);
e8c846c3
ILT
1126}
1127
d98bc257
ILT
1128// Reloc comparison. This function sorts the dynamic relocs for the
1129// benefit of the dynamic linker. First we sort all relative relocs
1130// to the front. Among relative relocs, we sort by output address.
1131// Among non-relative relocs, we sort by symbol index, then by output
1132// address.
1133
1134template<bool dynamic, int size, bool big_endian>
1135int
1136Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138 const
1139{
1140 if (this->is_relative_)
1141 {
1142 if (!r2.is_relative_)
1143 return -1;
1144 // Otherwise sort by reloc address below.
1145 }
1146 else if (r2.is_relative_)
1147 return 1;
1148 else
1149 {
1150 unsigned int sym1 = this->get_symbol_index();
1151 unsigned int sym2 = r2.get_symbol_index();
1152 if (sym1 < sym2)
1153 return -1;
1154 else if (sym1 > sym2)
1155 return 1;
1156 // Otherwise sort by reloc address.
1157 }
1158
1159 section_offset_type addr1 = this->get_address();
1160 section_offset_type addr2 = r2.get_address();
1161 if (addr1 < addr2)
1162 return -1;
1163 else if (addr1 > addr2)
1164 return 1;
1165
1166 // Final tie breaker, in order to generate the same output on any
1167 // host: reloc type.
1168 unsigned int type1 = this->type_;
1169 unsigned int type2 = r2.type_;
1170 if (type1 < type2)
1171 return -1;
1172 else if (type1 > type2)
1173 return 1;
1174
1175 // These relocs appear to be exactly the same.
1176 return 0;
1177}
1178
c06b7b0b
ILT
1179// Write out a Rela relocation.
1180
1181template<bool dynamic, int size, bool big_endian>
1182void
1183Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184 unsigned char* pov) const
1185{
1186 elfcpp::Rela_write<size, big_endian> orel(pov);
1187 this->rel_.write_rel(&orel);
e8c846c3 1188 Addend addend = this->addend_;
e291e7b9
ILT
1189 if (this->rel_.is_target_specific())
1190 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191 this->rel_.type(), addend);
0da6fa6c 1192 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1193 addend = this->rel_.symbol_value(addend);
1194 else if (this->rel_.is_local_section_symbol())
624f8810 1195 addend = this->rel_.local_section_offset(addend);
e8c846c3 1196 orel.put_r_addend(addend);
c06b7b0b
ILT
1197}
1198
1199// Output_data_reloc_base methods.
1200
16649710
ILT
1201// Adjust the output section.
1202
1203template<int sh_type, bool dynamic, int size, bool big_endian>
1204void
1205Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206 ::do_adjust_output_section(Output_section* os)
1207{
1208 if (sh_type == elfcpp::SHT_REL)
1209 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210 else if (sh_type == elfcpp::SHT_RELA)
1211 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212 else
1213 gold_unreachable();
7223e9ca
ILT
1214
1215 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216 // static link. The backends will generate a dynamic reloc section
1217 // to hold this. In that case we don't want to link to the dynsym
1218 // section, because there isn't one.
1219 if (!dynamic)
16649710 1220 os->set_should_link_to_symtab();
7223e9ca
ILT
1221 else if (parameters->doing_static_link())
1222 ;
1223 else
1224 os->set_should_link_to_dynsym();
16649710
ILT
1225}
1226
c06b7b0b
ILT
1227// Write out relocation data.
1228
1229template<int sh_type, bool dynamic, int size, bool big_endian>
1230void
1231Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232 Output_file* of)
1233{
1234 const off_t off = this->offset();
1235 const off_t oview_size = this->data_size();
1236 unsigned char* const oview = of->get_output_view(off, oview_size);
1237
3a44184e 1238 if (this->sort_relocs())
d98bc257
ILT
1239 {
1240 gold_assert(dynamic);
1241 std::sort(this->relocs_.begin(), this->relocs_.end(),
1242 Sort_relocs_comparison());
1243 }
1244
c06b7b0b
ILT
1245 unsigned char* pov = oview;
1246 for (typename Relocs::const_iterator p = this->relocs_.begin();
1247 p != this->relocs_.end();
1248 ++p)
1249 {
1250 p->write(pov);
1251 pov += reloc_size;
1252 }
1253
a3ad94ed 1254 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1255
1256 of->write_output_view(off, oview_size, oview);
1257
1258 // We no longer need the relocation entries.
1259 this->relocs_.clear();
1260}
1261
6a74a719
ILT
1262// Class Output_relocatable_relocs.
1263
1264template<int sh_type, int size, bool big_endian>
1265void
1266Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267{
1268 this->set_data_size(this->rr_->output_reloc_count()
1269 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270}
1271
1272// class Output_data_group.
1273
1274template<int size, bool big_endian>
1275Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1276 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1277 section_size_type entry_count,
8825ac63
ILT
1278 elfcpp::Elf_Word flags,
1279 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1280 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1281 relobj_(relobj),
1282 flags_(flags)
6a74a719 1283{
8825ac63 1284 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1285}
1286
1287// Write out the section group, which means translating the section
1288// indexes to apply to the output file.
1289
1290template<int size, bool big_endian>
1291void
1292Output_data_group<size, big_endian>::do_write(Output_file* of)
1293{
1294 const off_t off = this->offset();
1295 const section_size_type oview_size =
1296 convert_to_section_size_type(this->data_size());
1297 unsigned char* const oview = of->get_output_view(off, oview_size);
1298
1299 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301 ++contents;
1302
1303 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1304 this->input_shndxes_.begin();
1305 p != this->input_shndxes_.end();
6a74a719
ILT
1306 ++p, ++contents)
1307 {
ef9beddf 1308 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1309
1310 unsigned int output_shndx;
1311 if (os != NULL)
1312 output_shndx = os->out_shndx();
1313 else
1314 {
1315 this->relobj_->error(_("section group retained but "
1316 "group element discarded"));
1317 output_shndx = 0;
1318 }
1319
1320 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321 }
1322
1323 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324 gold_assert(wrote == oview_size);
1325
1326 of->write_output_view(off, oview_size, oview);
1327
1328 // We no longer need this information.
8825ac63 1329 this->input_shndxes_.clear();
6a74a719
ILT
1330}
1331
dbe717ef 1332// Output_data_got::Got_entry methods.
ead1e424
ILT
1333
1334// Write out the entry.
1335
1336template<int size, bool big_endian>
1337void
7e1edb90 1338Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1339{
1340 Valtype val = 0;
1341
1342 switch (this->local_sym_index_)
1343 {
1344 case GSYM_CODE:
1345 {
e8c846c3
ILT
1346 // If the symbol is resolved locally, we need to write out the
1347 // link-time value, which will be relocated dynamically by a
1348 // RELATIVE relocation.
ead1e424 1349 Symbol* gsym = this->u_.gsym;
7223e9ca 1350 if (this->use_plt_offset_ && gsym->has_plt_offset())
67181c72 1351 val = (parameters->target().plt_address_for_global(gsym)
7223e9ca
ILT
1352 + gsym->plt_offset());
1353 else
1354 {
1355 Sized_symbol<size>* sgsym;
1356 // This cast is a bit ugly. We don't want to put a
1357 // virtual method in Symbol, because we want Symbol to be
1358 // as small as possible.
1359 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360 val = sgsym->value();
1361 }
ead1e424
ILT
1362 }
1363 break;
1364
1365 case CONSTANT_CODE:
1366 val = this->u_.constant;
1367 break;
1368
4829d394
CC
1369 case RESERVED_CODE:
1370 // If we're doing an incremental update, don't touch this GOT entry.
1371 if (parameters->incremental_update())
1372 return;
1373 val = this->u_.constant;
1374 break;
1375
ead1e424 1376 default:
d1f003c6 1377 {
6fa2a40b 1378 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
d1f003c6 1379 const unsigned int lsi = this->local_sym_index_;
7223e9ca
ILT
1380 const Symbol_value<size>* symval = object->local_symbol(lsi);
1381 if (!this->use_plt_offset_)
1382 val = symval->value(this->u_.object, 0);
1383 else
1384 {
67181c72
ILT
1385 uint64_t plt_address =
1386 parameters->target().plt_address_for_local(object, lsi);
1387 val = plt_address + object->local_plt_offset(lsi);
7223e9ca 1388 }
d1f003c6 1389 }
e727fa71 1390 break;
ead1e424
ILT
1391 }
1392
a3ad94ed 1393 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1394}
1395
dbe717ef 1396// Output_data_got methods.
ead1e424 1397
dbe717ef
ILT
1398// Add an entry for a global symbol to the GOT. This returns true if
1399// this is a new GOT entry, false if the symbol already had a GOT
1400// entry.
1401
1402template<int size, bool big_endian>
1403bool
0a65a3a7
CC
1404Output_data_got<size, big_endian>::add_global(
1405 Symbol* gsym,
1406 unsigned int got_type)
ead1e424 1407{
0a65a3a7 1408 if (gsym->has_got_offset(got_type))
dbe717ef 1409 return false;
ead1e424 1410
4829d394
CC
1411 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1413 return true;
1414}
1415
1416// Like add_global, but use the PLT offset.
1417
1418template<int size, bool big_endian>
1419bool
1420Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421 unsigned int got_type)
1422{
1423 if (gsym->has_got_offset(got_type))
1424 return false;
1425
4829d394
CC
1426 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1428 return true;
1429}
ead1e424 1430
7bf1f802
ILT
1431// Add an entry for a global symbol to the GOT, and add a dynamic
1432// relocation of type R_TYPE for the GOT entry.
7223e9ca 1433
7bf1f802
ILT
1434template<int size, bool big_endian>
1435void
1436Output_data_got<size, big_endian>::add_global_with_rel(
1437 Symbol* gsym,
0a65a3a7 1438 unsigned int got_type,
7bf1f802
ILT
1439 Rel_dyn* rel_dyn,
1440 unsigned int r_type)
1441{
0a65a3a7 1442 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1443 return;
1444
4829d394 1445 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1446 gsym->set_got_offset(got_type, got_offset);
1447 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1448}
1449
1450template<int size, bool big_endian>
1451void
1452Output_data_got<size, big_endian>::add_global_with_rela(
1453 Symbol* gsym,
0a65a3a7 1454 unsigned int got_type,
7bf1f802
ILT
1455 Rela_dyn* rela_dyn,
1456 unsigned int r_type)
1457{
0a65a3a7 1458 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1459 return;
1460
4829d394 1461 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1462 gsym->set_got_offset(got_type, got_offset);
1463 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1464}
1465
0a65a3a7
CC
1466// Add a pair of entries for a global symbol to the GOT, and add
1467// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1469template<int size, bool big_endian>
1470void
0a65a3a7
CC
1471Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472 Symbol* gsym,
1473 unsigned int got_type,
7bf1f802 1474 Rel_dyn* rel_dyn,
0a65a3a7
CC
1475 unsigned int r_type_1,
1476 unsigned int r_type_2)
7bf1f802 1477{
0a65a3a7 1478 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1479 return;
1480
4829d394 1481 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1482 gsym->set_got_offset(got_type, got_offset);
1483 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7 1484
0a65a3a7 1485 if (r_type_2 != 0)
4829d394 1486 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1487}
1488
1489template<int size, bool big_endian>
1490void
0a65a3a7
CC
1491Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492 Symbol* gsym,
1493 unsigned int got_type,
7bf1f802 1494 Rela_dyn* rela_dyn,
0a65a3a7
CC
1495 unsigned int r_type_1,
1496 unsigned int r_type_2)
7bf1f802 1497{
0a65a3a7 1498 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1499 return;
1500
4829d394 1501 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941
ILT
1502 gsym->set_got_offset(got_type, got_offset);
1503 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1504
0a65a3a7 1505 if (r_type_2 != 0)
4829d394 1506 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
7bf1f802
ILT
1507}
1508
0a65a3a7
CC
1509// Add an entry for a local symbol to the GOT. This returns true if
1510// this is a new GOT entry, false if the symbol already has a GOT
1511// entry.
07f397ab
ILT
1512
1513template<int size, bool big_endian>
1514bool
0a65a3a7 1515Output_data_got<size, big_endian>::add_local(
6fa2a40b 1516 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1517 unsigned int symndx,
1518 unsigned int got_type)
07f397ab 1519{
0a65a3a7 1520 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1521 return false;
1522
4829d394
CC
1523 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524 false));
1525 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1526 return true;
1527}
1528
1529// Like add_local, but use the PLT offset.
1530
1531template<int size, bool big_endian>
1532bool
1533Output_data_got<size, big_endian>::add_local_plt(
6fa2a40b 1534 Sized_relobj_file<size, big_endian>* object,
7223e9ca
ILT
1535 unsigned int symndx,
1536 unsigned int got_type)
1537{
1538 if (object->local_has_got_offset(symndx, got_type))
1539 return false;
1540
4829d394
CC
1541 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542 true));
1543 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1544 return true;
1545}
1546
0a65a3a7
CC
1547// Add an entry for a local symbol to the GOT, and add a dynamic
1548// relocation of type R_TYPE for the GOT entry.
7223e9ca 1549
7bf1f802
ILT
1550template<int size, bool big_endian>
1551void
0a65a3a7 1552Output_data_got<size, big_endian>::add_local_with_rel(
6fa2a40b 1553 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1554 unsigned int symndx,
1555 unsigned int got_type,
7bf1f802
ILT
1556 Rel_dyn* rel_dyn,
1557 unsigned int r_type)
1558{
0a65a3a7 1559 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1560 return;
1561
4829d394 1562 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1563 object->set_local_got_offset(symndx, got_type, got_offset);
1564 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1565}
1566
1567template<int size, bool big_endian>
1568void
0a65a3a7 1569Output_data_got<size, big_endian>::add_local_with_rela(
6fa2a40b 1570 Sized_relobj_file<size, big_endian>* object,
0a65a3a7
CC
1571 unsigned int symndx,
1572 unsigned int got_type,
7bf1f802
ILT
1573 Rela_dyn* rela_dyn,
1574 unsigned int r_type)
1575{
0a65a3a7 1576 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1577 return;
1578
4829d394 1579 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941
ILT
1580 object->set_local_got_offset(symndx, got_type, got_offset);
1581 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1582}
1583
0a65a3a7
CC
1584// Add a pair of entries for a local symbol to the GOT, and add
1585// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1587template<int size, bool big_endian>
1588void
0a65a3a7 1589Output_data_got<size, big_endian>::add_local_pair_with_rel(
6fa2a40b 1590 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1591 unsigned int symndx,
1592 unsigned int shndx,
0a65a3a7 1593 unsigned int got_type,
7bf1f802 1594 Rel_dyn* rel_dyn,
0a65a3a7
CC
1595 unsigned int r_type_1,
1596 unsigned int r_type_2)
7bf1f802 1597{
0a65a3a7 1598 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1599 return;
1600
4829d394
CC
1601 unsigned int got_offset =
1602 this->add_got_entry_pair(Got_entry(),
1603 Got_entry(object, symndx, false));
2ea97941 1604 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1605 Output_section* os = object->output_section(shndx);
2ea97941 1606 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1607
0a65a3a7 1608 if (r_type_2 != 0)
4829d394 1609 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
7bf1f802
ILT
1610}
1611
1612template<int size, bool big_endian>
1613void
0a65a3a7 1614Output_data_got<size, big_endian>::add_local_pair_with_rela(
6fa2a40b 1615 Sized_relobj_file<size, big_endian>* object,
7bf1f802
ILT
1616 unsigned int symndx,
1617 unsigned int shndx,
0a65a3a7 1618 unsigned int got_type,
7bf1f802 1619 Rela_dyn* rela_dyn,
0a65a3a7
CC
1620 unsigned int r_type_1,
1621 unsigned int r_type_2)
7bf1f802 1622{
0a65a3a7 1623 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1624 return;
1625
4829d394
CC
1626 unsigned int got_offset =
1627 this->add_got_entry_pair(Got_entry(),
1628 Got_entry(object, symndx, false));
2ea97941 1629 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1630 Output_section* os = object->output_section(shndx);
2ea97941 1631 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1632
0a65a3a7 1633 if (r_type_2 != 0)
4829d394
CC
1634 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635}
1636
1637// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639template<int size, bool big_endian>
1640void
6fa2a40b
CC
1641Output_data_got<size, big_endian>::reserve_local(
1642 unsigned int i,
1643 Sized_relobj<size, big_endian>* object,
1644 unsigned int sym_index,
1645 unsigned int got_type)
4829d394 1646{
6fa2a40b
CC
1647 this->reserve_slot(i);
1648 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1649}
7bf1f802 1650
4829d394
CC
1651// Reserve a slot in the GOT for a global symbol.
1652
1653template<int size, bool big_endian>
1654void
6fa2a40b 1655Output_data_got<size, big_endian>::reserve_global(
4829d394
CC
1656 unsigned int i,
1657 Symbol* gsym,
1658 unsigned int got_type)
1659{
6fa2a40b 1660 this->reserve_slot(i);
4829d394 1661 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1662}
1663
ead1e424
ILT
1664// Write out the GOT.
1665
1666template<int size, bool big_endian>
1667void
dbe717ef 1668Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1669{
1670 const int add = size / 8;
1671
1672 const off_t off = this->offset();
c06b7b0b 1673 const off_t oview_size = this->data_size();
ead1e424
ILT
1674 unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676 unsigned char* pov = oview;
1677 for (typename Got_entries::const_iterator p = this->entries_.begin();
1678 p != this->entries_.end();
1679 ++p)
1680 {
7e1edb90 1681 p->write(pov);
ead1e424
ILT
1682 pov += add;
1683 }
1684
a3ad94ed 1685 gold_assert(pov - oview == oview_size);
c06b7b0b 1686
ead1e424
ILT
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691}
1692
4829d394
CC
1693// Create a new GOT entry and return its offset.
1694
1695template<int size, bool big_endian>
1696unsigned int
1697Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698{
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
1708 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709 if (got_offset == -1)
e6455dfb
CC
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
4829d394
CC
1712 unsigned int got_index = got_offset / (size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717}
1718
1719// Create a pair of new GOT entries and return the offset of the first.
1720
1721template<int size, bool big_endian>
1722unsigned int
1723Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724 Got_entry got_entry_2)
1725{
1726 if (!this->is_data_size_valid())
1727 {
1728 unsigned int got_offset;
1729 this->entries_.push_back(got_entry_1);
1730 got_offset = this->last_got_offset();
1731 this->entries_.push_back(got_entry_2);
1732 this->set_got_size();
1733 return got_offset;
1734 }
1735 else
1736 {
1737 // For an incremental update, find an available pair of slots.
1738 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739 if (got_offset == -1)
e6455dfb
CC
1740 gold_fallback(_("out of patch space (GOT);"
1741 " relink with --incremental-full"));
4829d394
CC
1742 unsigned int got_index = got_offset / (size / 8);
1743 gold_assert(got_index < this->entries_.size());
1744 this->entries_[got_index] = got_entry_1;
1745 this->entries_[got_index + 1] = got_entry_2;
1746 return static_cast<unsigned int>(got_offset);
1747 }
1748}
1749
a3ad94ed
ILT
1750// Output_data_dynamic::Dynamic_entry methods.
1751
1752// Write out the entry.
1753
1754template<int size, bool big_endian>
1755void
1756Output_data_dynamic::Dynamic_entry::write(
1757 unsigned char* pov,
7d1a9ebb 1758 const Stringpool* pool) const
a3ad94ed
ILT
1759{
1760 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1761 switch (this->offset_)
a3ad94ed
ILT
1762 {
1763 case DYNAMIC_NUMBER:
1764 val = this->u_.val;
1765 break;
1766
a3ad94ed 1767 case DYNAMIC_SECTION_SIZE:
16649710 1768 val = this->u_.od->data_size();
612a8d3d
DM
1769 if (this->od2 != NULL)
1770 val += this->od2->data_size();
a3ad94ed
ILT
1771 break;
1772
1773 case DYNAMIC_SYMBOL:
1774 {
16649710
ILT
1775 const Sized_symbol<size>* s =
1776 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1777 val = s->value();
1778 }
1779 break;
1780
1781 case DYNAMIC_STRING:
1782 val = pool->get_offset(this->u_.str);
1783 break;
1784
1785 default:
c2b45e22
CC
1786 val = this->u_.od->address() + this->offset_;
1787 break;
a3ad94ed
ILT
1788 }
1789
1790 elfcpp::Dyn_write<size, big_endian> dw(pov);
1791 dw.put_d_tag(this->tag_);
1792 dw.put_d_val(val);
1793}
1794
1795// Output_data_dynamic methods.
1796
16649710
ILT
1797// Adjust the output section to set the entry size.
1798
1799void
1800Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801{
8851ecca 1802 if (parameters->target().get_size() == 32)
16649710 1803 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1804 else if (parameters->target().get_size() == 64)
16649710
ILT
1805 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806 else
1807 gold_unreachable();
1808}
1809
a3ad94ed
ILT
1810// Set the final data size.
1811
1812void
27bc2bce 1813Output_data_dynamic::set_final_data_size()
a3ad94ed 1814{
20e6d0d6
DK
1815 // Add the terminating entry if it hasn't been added.
1816 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1817 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818 {
1819 int extra = parameters->options().spare_dynamic_tags();
1820 for (int i = 0; i < extra; ++i)
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 this->add_constant(elfcpp::DT_NULL, 0);
1823 }
a3ad94ed
ILT
1824
1825 int dyn_size;
8851ecca 1826 if (parameters->target().get_size() == 32)
a3ad94ed 1827 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1828 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1829 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830 else
1831 gold_unreachable();
1832 this->set_data_size(this->entries_.size() * dyn_size);
1833}
1834
1835// Write out the dynamic entries.
1836
1837void
1838Output_data_dynamic::do_write(Output_file* of)
1839{
8851ecca 1840 switch (parameters->size_and_endianness())
a3ad94ed 1841 {
9025d29d 1842#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1843 case Parameters::TARGET_32_LITTLE:
1844 this->sized_write<32, false>(of);
1845 break;
9025d29d 1846#endif
8851ecca
ILT
1847#ifdef HAVE_TARGET_32_BIG
1848 case Parameters::TARGET_32_BIG:
1849 this->sized_write<32, true>(of);
1850 break;
9025d29d 1851#endif
9025d29d 1852#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1853 case Parameters::TARGET_64_LITTLE:
1854 this->sized_write<64, false>(of);
1855 break;
9025d29d 1856#endif
8851ecca
ILT
1857#ifdef HAVE_TARGET_64_BIG
1858 case Parameters::TARGET_64_BIG:
1859 this->sized_write<64, true>(of);
1860 break;
1861#endif
1862 default:
1863 gold_unreachable();
a3ad94ed 1864 }
a3ad94ed
ILT
1865}
1866
1867template<int size, bool big_endian>
1868void
1869Output_data_dynamic::sized_write(Output_file* of)
1870{
1871 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
2ea97941 1873 const off_t offset = this->offset();
a3ad94ed 1874 const off_t oview_size = this->data_size();
2ea97941 1875 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1876
1877 unsigned char* pov = oview;
1878 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879 p != this->entries_.end();
1880 ++p)
1881 {
7d1a9ebb 1882 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1883 pov += dyn_size;
1884 }
1885
1886 gold_assert(pov - oview == oview_size);
1887
2ea97941 1888 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1889
1890 // We no longer need the dynamic entries.
1891 this->entries_.clear();
1892}
1893
d491d34e
ILT
1894// Class Output_symtab_xindex.
1895
1896void
1897Output_symtab_xindex::do_write(Output_file* of)
1898{
2ea97941 1899 const off_t offset = this->offset();
d491d34e 1900 const off_t oview_size = this->data_size();
2ea97941 1901 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1902
1903 memset(oview, 0, oview_size);
1904
1905 if (parameters->target().is_big_endian())
1906 this->endian_do_write<true>(oview);
1907 else
1908 this->endian_do_write<false>(oview);
1909
2ea97941 1910 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1911
1912 // We no longer need the data.
1913 this->entries_.clear();
1914}
1915
1916template<bool big_endian>
1917void
1918Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919{
1920 for (Xindex_entries::const_iterator p = this->entries_.begin();
1921 p != this->entries_.end();
1922 ++p)
20e6d0d6
DK
1923 {
1924 unsigned int symndx = p->first;
1925 gold_assert(symndx * 4 < this->data_size());
1926 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927 }
d491d34e
ILT
1928}
1929
8ea8cd50
CC
1930// Output_fill_debug_info methods.
1931
1932// Return the minimum size needed for a dummy compilation unit header.
1933
1934size_t
1935Output_fill_debug_info::do_minimum_hole_size() const
1936{
1937 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938 // address_size.
1939 const size_t len = 4 + 2 + 4 + 1;
1940 // For type units, add type_signature, type_offset.
1941 if (this->is_debug_types_)
1942 return len + 8 + 4;
1943 return len;
1944}
1945
1946// Write a dummy compilation unit header to fill a hole in the
1947// .debug_info or .debug_types section.
1948
1949void
1950Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951{
1952 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", off, len);
1953
1954 gold_assert(len >= this->do_minimum_hole_size());
1955
1956 unsigned char* const oview = of->get_output_view(off, len);
1957 unsigned char* pov = oview;
1958
1959 // Write header fields: unit_length, version, debug_abbrev_offset,
1960 // address_size.
1961 if (this->is_big_endian())
1962 {
1963 elfcpp::Swap<32, true>::writeval(pov, len - 4);
1964 elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
1965 elfcpp::Swap<32, true>::writeval(pov + 6, 0);
1966 }
1967 else
1968 {
1969 elfcpp::Swap<32, false>::writeval(pov, len - 4);
1970 elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
1971 elfcpp::Swap<32, false>::writeval(pov + 6, 0);
1972 }
1973 pov += 4 + 2 + 4;
1974 *pov++ = 4;
1975
1976 // For type units, the additional header fields -- type_signature,
1977 // type_offset -- can be filled with zeroes.
1978
1979 // Fill the remainder of the free space with zeroes. The first
1980 // zero should tell the consumer there are no DIEs to read in this
1981 // compilation unit.
1982 if (pov < oview + len)
1983 memset(pov, 0, oview + len - pov);
1984
1985 of->write_output_view(off, len, oview);
1986}
1987
1988// Output_fill_debug_line methods.
1989
1990// Return the minimum size needed for a dummy line number program header.
1991
1992size_t
1993Output_fill_debug_line::do_minimum_hole_size() const
1994{
1995 // Line number program header fields: unit_length, version, header_length,
1996 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1997 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1998 const size_t len = 4 + 2 + 4 + this->header_length;
1999 return len;
2000}
2001
2002// Write a dummy line number program header to fill a hole in the
2003// .debug_line section.
2004
2005void
2006Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2007{
2008 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", off, len);
2009
2010 gold_assert(len >= this->do_minimum_hole_size());
2011
2012 unsigned char* const oview = of->get_output_view(off, len);
2013 unsigned char* pov = oview;
2014
2015 // Write header fields: unit_length, version, header_length,
2016 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2017 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2018 // We set the header_length field to cover the entire hole, so the
2019 // line number program is empty.
2020 if (this->is_big_endian())
2021 {
2022 elfcpp::Swap<32, true>::writeval(pov, len - 4);
2023 elfcpp::Swap<16, true>::writeval(pov + 4, this->version);
2024 elfcpp::Swap<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2025 }
2026 else
2027 {
2028 elfcpp::Swap<32, false>::writeval(pov, len - 4);
2029 elfcpp::Swap<16, false>::writeval(pov + 4, this->version);
2030 elfcpp::Swap<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2031 }
2032 pov += 4 + 2 + 4;
2033 *pov++ = 1; // minimum_instruction_length
2034 *pov++ = 0; // default_is_stmt
2035 *pov++ = 0; // line_base
2036 *pov++ = 5; // line_range
2037 *pov++ = 13; // opcode_base
2038 *pov++ = 0; // standard_opcode_lengths[1]
2039 *pov++ = 1; // standard_opcode_lengths[2]
2040 *pov++ = 1; // standard_opcode_lengths[3]
2041 *pov++ = 1; // standard_opcode_lengths[4]
2042 *pov++ = 1; // standard_opcode_lengths[5]
2043 *pov++ = 0; // standard_opcode_lengths[6]
2044 *pov++ = 0; // standard_opcode_lengths[7]
2045 *pov++ = 0; // standard_opcode_lengths[8]
2046 *pov++ = 1; // standard_opcode_lengths[9]
2047 *pov++ = 0; // standard_opcode_lengths[10]
2048 *pov++ = 0; // standard_opcode_lengths[11]
2049 *pov++ = 1; // standard_opcode_lengths[12]
2050 *pov++ = 0; // include_directories (empty)
2051 *pov++ = 0; // filenames (empty)
2052
2053 // Some consumers don't check the header_length field, and simply
2054 // start reading the line number program immediately following the
2055 // header. For those consumers, we fill the remainder of the free
2056 // space with DW_LNS_set_basic_block opcodes. These are effectively
2057 // no-ops: the resulting line table program will not create any rows.
2058 if (pov < oview + len)
2059 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2060
2061 of->write_output_view(off, len, oview);
2062}
2063
ead1e424
ILT
2064// Output_section::Input_section methods.
2065
cdc29364
CC
2066// Return the current data size. For an input section we store the size here.
2067// For an Output_section_data, we have to ask it for the size.
2068
2069off_t
2070Output_section::Input_section::current_data_size() const
2071{
2072 if (this->is_input_section())
2073 return this->u1_.data_size;
2074 else
2075 {
2076 this->u2_.posd->pre_finalize_data_size();
2077 return this->u2_.posd->current_data_size();
2078 }
2079}
2080
ead1e424
ILT
2081// Return the data size. For an input section we store the size here.
2082// For an Output_section_data, we have to ask it for the size.
2083
2084off_t
2085Output_section::Input_section::data_size() const
2086{
2087 if (this->is_input_section())
b8e6aad9 2088 return this->u1_.data_size;
ead1e424 2089 else
b8e6aad9 2090 return this->u2_.posd->data_size();
ead1e424
ILT
2091}
2092
0439c796
DK
2093// Return the object for an input section.
2094
2095Relobj*
2096Output_section::Input_section::relobj() const
2097{
2098 if (this->is_input_section())
2099 return this->u2_.object;
2100 else if (this->is_merge_section())
2101 {
2102 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2103 return this->u2_.pomb->first_relobj();
2104 }
2105 else if (this->is_relaxed_input_section())
2106 return this->u2_.poris->relobj();
2107 else
2108 gold_unreachable();
2109}
2110
2111// Return the input section index for an input section.
2112
2113unsigned int
2114Output_section::Input_section::shndx() const
2115{
2116 if (this->is_input_section())
2117 return this->shndx_;
2118 else if (this->is_merge_section())
2119 {
2120 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2121 return this->u2_.pomb->first_shndx();
2122 }
2123 else if (this->is_relaxed_input_section())
2124 return this->u2_.poris->shndx();
2125 else
2126 gold_unreachable();
2127}
2128
ead1e424
ILT
2129// Set the address and file offset.
2130
2131void
96803768
ILT
2132Output_section::Input_section::set_address_and_file_offset(
2133 uint64_t address,
2134 off_t file_offset,
2135 off_t section_file_offset)
ead1e424
ILT
2136{
2137 if (this->is_input_section())
96803768
ILT
2138 this->u2_.object->set_section_offset(this->shndx_,
2139 file_offset - section_file_offset);
ead1e424 2140 else
96803768
ILT
2141 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2142}
2143
a445fddf
ILT
2144// Reset the address and file offset.
2145
2146void
2147Output_section::Input_section::reset_address_and_file_offset()
2148{
2149 if (!this->is_input_section())
2150 this->u2_.posd->reset_address_and_file_offset();
2151}
2152
96803768
ILT
2153// Finalize the data size.
2154
2155void
2156Output_section::Input_section::finalize_data_size()
2157{
2158 if (!this->is_input_section())
2159 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2160}
2161
1e983657
ILT
2162// Try to turn an input offset into an output offset. We want to
2163// return the output offset relative to the start of this
2164// Input_section in the output section.
b8e6aad9 2165
8f00aeb8 2166inline bool
8383303e
ILT
2167Output_section::Input_section::output_offset(
2168 const Relobj* object,
2ea97941
ILT
2169 unsigned int shndx,
2170 section_offset_type offset,
ca09d69a 2171 section_offset_type* poutput) const
b8e6aad9
ILT
2172{
2173 if (!this->is_input_section())
2ea97941 2174 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2175 else
2176 {
2ea97941 2177 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2178 return false;
2ea97941 2179 *poutput = offset;
b8e6aad9
ILT
2180 return true;
2181 }
ead1e424
ILT
2182}
2183
a9a60db6
ILT
2184// Return whether this is the merge section for the input section
2185// SHNDX in OBJECT.
2186
2187inline bool
2188Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2189 unsigned int shndx) const
a9a60db6
ILT
2190{
2191 if (this->is_input_section())
2192 return false;
2ea97941 2193 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2194}
2195
ead1e424
ILT
2196// Write out the data. We don't have to do anything for an input
2197// section--they are handled via Object::relocate--but this is where
2198// we write out the data for an Output_section_data.
2199
2200void
2201Output_section::Input_section::write(Output_file* of)
2202{
2203 if (!this->is_input_section())
b8e6aad9 2204 this->u2_.posd->write(of);
ead1e424
ILT
2205}
2206
96803768
ILT
2207// Write the data to a buffer. As for write(), we don't have to do
2208// anything for an input section.
2209
2210void
2211Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2212{
2213 if (!this->is_input_section())
2214 this->u2_.posd->write_to_buffer(buffer);
2215}
2216
7d9e3d98
ILT
2217// Print to a map file.
2218
2219void
2220Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2221{
2222 switch (this->shndx_)
2223 {
2224 case OUTPUT_SECTION_CODE:
2225 case MERGE_DATA_SECTION_CODE:
2226 case MERGE_STRING_SECTION_CODE:
2227 this->u2_.posd->print_to_mapfile(mapfile);
2228 break;
2229
20e6d0d6
DK
2230 case RELAXED_INPUT_SECTION_CODE:
2231 {
2232 Output_relaxed_input_section* relaxed_section =
2233 this->relaxed_input_section();
2234 mapfile->print_input_section(relaxed_section->relobj(),
2235 relaxed_section->shndx());
2236 }
2237 break;
7d9e3d98
ILT
2238 default:
2239 mapfile->print_input_section(this->u2_.object, this->shndx_);
2240 break;
2241 }
2242}
2243
a2fb1b05
ILT
2244// Output_section methods.
2245
2246// Construct an Output_section. NAME will point into a Stringpool.
2247
2ea97941
ILT
2248Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2249 elfcpp::Elf_Xword flags)
2250 : name_(name),
a2fb1b05
ILT
2251 addralign_(0),
2252 entsize_(0),
a445fddf 2253 load_address_(0),
16649710 2254 link_section_(NULL),
a2fb1b05 2255 link_(0),
16649710 2256 info_section_(NULL),
6a74a719 2257 info_symndx_(NULL),
a2fb1b05 2258 info_(0),
2ea97941
ILT
2259 type_(type),
2260 flags_(flags),
22f0da72 2261 order_(ORDER_INVALID),
91ea499d 2262 out_shndx_(-1U),
c06b7b0b
ILT
2263 symtab_index_(0),
2264 dynsym_index_(0),
ead1e424
ILT
2265 input_sections_(),
2266 first_input_offset_(0),
c51e6221 2267 fills_(),
96803768 2268 postprocessing_buffer_(NULL),
a3ad94ed 2269 needs_symtab_index_(false),
16649710
ILT
2270 needs_dynsym_index_(false),
2271 should_link_to_symtab_(false),
730cdc88 2272 should_link_to_dynsym_(false),
27bc2bce 2273 after_input_sections_(false),
7bf1f802 2274 requires_postprocessing_(false),
a445fddf
ILT
2275 found_in_sections_clause_(false),
2276 has_load_address_(false),
755ab8af 2277 info_uses_section_index_(false),
6e9ba2ca 2278 input_section_order_specified_(false),
2fd32231
ILT
2279 may_sort_attached_input_sections_(false),
2280 must_sort_attached_input_sections_(false),
2281 attached_input_sections_are_sorted_(false),
9f1d377b 2282 is_relro_(false),
8a5e3e08
ILT
2283 is_small_section_(false),
2284 is_large_section_(false),
f5c870d2 2285 generate_code_fills_at_write_(false),
e8cd95c7 2286 is_entsize_zero_(false),
8923b24c 2287 section_offsets_need_adjustment_(false),
1e5d2fb1 2288 is_noload_(false),
131687b4 2289 always_keeps_input_sections_(false),
cdc29364 2290 has_fixed_layout_(false),
9fbd3822 2291 is_patch_space_allowed_(false),
20e6d0d6 2292 tls_offset_(0),
c0a62865 2293 checkpoint_(NULL),
cdc29364 2294 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2295 free_list_(),
8ea8cd50 2296 free_space_fill_(NULL),
9fbd3822 2297 patch_space_(0)
a2fb1b05 2298{
27bc2bce
ILT
2299 // An unallocated section has no address. Forcing this means that
2300 // we don't need special treatment for symbols defined in debug
2301 // sections.
2ea97941 2302 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2303 this->set_address(0);
a2fb1b05
ILT
2304}
2305
54dc6425
ILT
2306Output_section::~Output_section()
2307{
20e6d0d6 2308 delete this->checkpoint_;
54dc6425
ILT
2309}
2310
16649710
ILT
2311// Set the entry size.
2312
2313void
2314Output_section::set_entsize(uint64_t v)
2315{
e8cd95c7
ILT
2316 if (this->is_entsize_zero_)
2317 ;
2318 else if (this->entsize_ == 0)
16649710 2319 this->entsize_ = v;
e8cd95c7
ILT
2320 else if (this->entsize_ != v)
2321 {
2322 this->entsize_ = 0;
2323 this->is_entsize_zero_ = 1;
2324 }
16649710
ILT
2325}
2326
ead1e424 2327// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2328// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2329// relocation section which applies to this section, or 0 if none, or
2330// -1U if more than one. Return the offset of the input section
2331// within the output section. Return -1 if the input section will
2332// receive special handling. In the normal case we don't always keep
2333// track of input sections for an Output_section. Instead, each
2334// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2335// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2336// track of input sections here; this is used when SECTIONS appears in
2337// a linker script.
a2fb1b05
ILT
2338
2339template<int size, bool big_endian>
2340off_t
6e9ba2ca 2341Output_section::add_input_section(Layout* layout,
6fa2a40b 2342 Sized_relobj_file<size, big_endian>* object,
2ea97941 2343 unsigned int shndx,
ead1e424 2344 const char* secname,
730cdc88 2345 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2346 unsigned int reloc_shndx,
2347 bool have_sections_script)
a2fb1b05 2348{
2ea97941
ILT
2349 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2350 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2351 {
75f2446e 2352 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2353 static_cast<unsigned long>(addralign), secname);
2354 addralign = 1;
a2fb1b05 2355 }
a2fb1b05 2356
2ea97941
ILT
2357 if (addralign > this->addralign_)
2358 this->addralign_ = addralign;
a2fb1b05 2359
44a43cf9 2360 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2361 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2362
2363 // .debug_str is a mergeable string section, but is not always so
2364 // marked by compilers. Mark manually here so we can optimize.
2365 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2366 {
2367 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2368 entsize = 1;
4f833eee 2369 }
44a43cf9 2370
e8cd95c7
ILT
2371 this->update_flags_for_input_section(sh_flags);
2372 this->set_entsize(entsize);
2373
b8e6aad9 2374 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2375 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2376 // a section. We don't try to handle empty merge sections--they
2377 // mess up the mappings, and are useless anyhow.
cdc29364 2378 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2379 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2380 && reloc_shndx == 0
cdc29364
CC
2381 && shdr.get_sh_size() > 0
2382 && !parameters->incremental())
b8e6aad9 2383 {
0439c796
DK
2384 // Keep information about merged input sections for rebuilding fast
2385 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2386 bool keeps_input_sections = (this->always_keeps_input_sections_
2387 || have_sections_script
2388 || parameters->target().may_relax());
2389
0439c796
DK
2390 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2391 addralign, keeps_input_sections))
b8e6aad9
ILT
2392 {
2393 // Tell the relocation routines that they need to call the
730cdc88 2394 // output_offset method to determine the final address.
b8e6aad9
ILT
2395 return -1;
2396 }
2397 }
2398
cdc29364
CC
2399 section_size_type input_section_size = shdr.get_sh_size();
2400 section_size_type uncompressed_size;
2401 if (object->section_is_compressed(shndx, &uncompressed_size))
2402 input_section_size = uncompressed_size;
2403
2404 off_t offset_in_section;
2405 off_t aligned_offset_in_section;
2406 if (this->has_fixed_layout())
2407 {
2408 // For incremental updates, find a chunk of unused space in the section.
2409 offset_in_section = this->free_list_.allocate(input_section_size,
2410 addralign, 0);
2411 if (offset_in_section == -1)
9fbd3822
CC
2412 gold_fallback(_("out of patch space in section %s; "
2413 "relink with --incremental-full"),
2414 this->name());
cdc29364
CC
2415 aligned_offset_in_section = offset_in_section;
2416 }
2417 else
2418 {
2419 offset_in_section = this->current_data_size_for_child();
2420 aligned_offset_in_section = align_address(offset_in_section,
2421 addralign);
2422 this->set_current_data_size_for_child(aligned_offset_in_section
2423 + input_section_size);
2424 }
c51e6221 2425
c0a62865
DK
2426 // Determine if we want to delay code-fill generation until the output
2427 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2428 // generating to avoid adjusting them during relaxation. Also, if we are
2429 // sorting input sections we must delay fill generation.
c0a62865
DK
2430 if (!this->generate_code_fills_at_write_
2431 && !have_sections_script
2432 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2433 && parameters->target().has_code_fill()
4cf7a849 2434 && (parameters->target().may_relax()
e9552f7e 2435 || layout->is_section_ordering_specified()))
c0a62865
DK
2436 {
2437 gold_assert(this->fills_.empty());
2438 this->generate_code_fills_at_write_ = true;
2439 }
2440
c51e6221 2441 if (aligned_offset_in_section > offset_in_section
c0a62865 2442 && !this->generate_code_fills_at_write_
a445fddf 2443 && !have_sections_script
44a43cf9 2444 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2445 && parameters->target().has_code_fill())
c51e6221
ILT
2446 {
2447 // We need to add some fill data. Using fill_list_ when
2448 // possible is an optimization, since we will often have fill
2449 // sections without input sections.
2450 off_t fill_len = aligned_offset_in_section - offset_in_section;
2451 if (this->input_sections_.empty())
2452 this->fills_.push_back(Fill(offset_in_section, fill_len));
2453 else
2454 {
029ba973 2455 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2456 Output_data_const* odc = new Output_data_const(fill_data, 1);
2457 this->input_sections_.push_back(Input_section(odc));
2458 }
2459 }
2460
ead1e424 2461 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2462 // track of sections, or if we are relaxing. Also, if this is a
2463 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2464 // the future, we keep track of the sections. If the
2465 // --section-ordering-file option is used to specify the order of
2466 // sections, we need to keep track of sections.
131687b4
DK
2467 if (this->always_keeps_input_sections_
2468 || have_sections_script
2fd32231
ILT
2469 || !this->input_sections_.empty()
2470 || this->may_sort_attached_input_sections()
7d9e3d98 2471 || this->must_sort_attached_input_sections()
20e6d0d6 2472 || parameters->options().user_set_Map()
6e9ba2ca 2473 || parameters->target().may_relax()
e9552f7e 2474 || layout->is_section_ordering_specified())
6e9ba2ca 2475 {
6fc6ea19 2476 Input_section isecn(object, shndx, input_section_size, addralign);
e9552f7e 2477 if (layout->is_section_ordering_specified())
6e9ba2ca
ST
2478 {
2479 unsigned int section_order_index =
2480 layout->find_section_order_index(std::string(secname));
2481 if (section_order_index != 0)
2482 {
2483 isecn.set_section_order_index(section_order_index);
2484 this->set_input_section_order_specified();
2485 }
2486 }
cdc29364
CC
2487 if (this->has_fixed_layout())
2488 {
2489 // For incremental updates, finalize the address and offset now.
2490 uint64_t addr = this->address();
2491 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2492 aligned_offset_in_section,
2493 this->offset());
2494 }
6e9ba2ca
ST
2495 this->input_sections_.push_back(isecn);
2496 }
54dc6425 2497
c51e6221 2498 return aligned_offset_in_section;
61ba1cf9
ILT
2499}
2500
ead1e424
ILT
2501// Add arbitrary data to an output section.
2502
2503void
2504Output_section::add_output_section_data(Output_section_data* posd)
2505{
b8e6aad9
ILT
2506 Input_section inp(posd);
2507 this->add_output_section_data(&inp);
a445fddf
ILT
2508
2509 if (posd->is_data_size_valid())
2510 {
cdc29364
CC
2511 off_t offset_in_section;
2512 if (this->has_fixed_layout())
2513 {
2514 // For incremental updates, find a chunk of unused space.
2515 offset_in_section = this->free_list_.allocate(posd->data_size(),
2516 posd->addralign(), 0);
2517 if (offset_in_section == -1)
9fbd3822
CC
2518 gold_fallback(_("out of patch space in section %s; "
2519 "relink with --incremental-full"),
2520 this->name());
cdc29364
CC
2521 // Finalize the address and offset now.
2522 uint64_t addr = this->address();
2523 off_t offset = this->offset();
2524 posd->set_address_and_file_offset(addr + offset_in_section,
2525 offset + offset_in_section);
2526 }
2527 else
2528 {
2529 offset_in_section = this->current_data_size_for_child();
2530 off_t aligned_offset_in_section = align_address(offset_in_section,
2531 posd->addralign());
2532 this->set_current_data_size_for_child(aligned_offset_in_section
2533 + posd->data_size());
2534 }
2535 }
2536 else if (this->has_fixed_layout())
2537 {
2538 // For incremental updates, arrange for the data to have a fixed layout.
2539 // This will mean that additions to the data must be allocated from
2540 // free space within the containing output section.
2541 uint64_t addr = this->address();
2542 posd->set_address(addr);
2543 posd->set_file_offset(0);
4829d394
CC
2544 // FIXME: This should eventually be unreachable.
2545 // gold_unreachable();
a445fddf 2546 }
b8e6aad9
ILT
2547}
2548
c0a62865
DK
2549// Add a relaxed input section.
2550
2551void
d06fb4d1
DK
2552Output_section::add_relaxed_input_section(Layout* layout,
2553 Output_relaxed_input_section* poris,
2554 const std::string& name)
c0a62865
DK
2555{
2556 Input_section inp(poris);
d06fb4d1
DK
2557
2558 // If the --section-ordering-file option is used to specify the order of
2559 // sections, we need to keep track of sections.
e9552f7e 2560 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2561 {
2562 unsigned int section_order_index =
2563 layout->find_section_order_index(name);
2564 if (section_order_index != 0)
2565 {
2566 inp.set_section_order_index(section_order_index);
2567 this->set_input_section_order_specified();
2568 }
2569 }
2570
c0a62865 2571 this->add_output_section_data(&inp);
0439c796
DK
2572 if (this->lookup_maps_->is_valid())
2573 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2574 poris->shndx(), poris);
c0a62865
DK
2575
2576 // For a relaxed section, we use the current data size. Linker scripts
2577 // get all the input sections, including relaxed one from an output
2578 // section and add them back to them same output section to compute the
2579 // output section size. If we do not account for sizes of relaxed input
2580 // sections, an output section would be incorrectly sized.
2581 off_t offset_in_section = this->current_data_size_for_child();
2582 off_t aligned_offset_in_section = align_address(offset_in_section,
2583 poris->addralign());
2584 this->set_current_data_size_for_child(aligned_offset_in_section
2585 + poris->current_data_size());
2586}
2587
b8e6aad9 2588// Add arbitrary data to an output section by Input_section.
c06b7b0b 2589
b8e6aad9
ILT
2590void
2591Output_section::add_output_section_data(Input_section* inp)
2592{
ead1e424 2593 if (this->input_sections_.empty())
27bc2bce 2594 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2595
b8e6aad9 2596 this->input_sections_.push_back(*inp);
c06b7b0b 2597
2ea97941
ILT
2598 uint64_t addralign = inp->addralign();
2599 if (addralign > this->addralign_)
2600 this->addralign_ = addralign;
c06b7b0b 2601
b8e6aad9
ILT
2602 inp->set_output_section(this);
2603}
2604
2605// Add a merge section to an output section.
2606
2607void
2608Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2609 bool is_string, uint64_t entsize)
b8e6aad9 2610{
2ea97941 2611 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2612 this->add_output_section_data(&inp);
2613}
2614
2615// Add an input section to a SHF_MERGE section.
2616
2617bool
2ea97941
ILT
2618Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2619 uint64_t flags, uint64_t entsize,
0439c796
DK
2620 uint64_t addralign,
2621 bool keeps_input_sections)
b8e6aad9 2622{
2ea97941 2623 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2624
2625 // We only merge strings if the alignment is not more than the
2626 // character size. This could be handled, but it's unusual.
2ea97941 2627 if (is_string && addralign > entsize)
b8e6aad9
ILT
2628 return false;
2629
20e6d0d6
DK
2630 // We cannot restore merged input section states.
2631 gold_assert(this->checkpoint_ == NULL);
2632
c0a62865 2633 // Look up merge sections by required properties.
0439c796
DK
2634 // Currently, we only invalidate the lookup maps in script processing
2635 // and relaxation. We should not have done either when we reach here.
2636 // So we assume that the lookup maps are valid to simply code.
2637 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2638 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2639 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2640 bool is_new = false;
2641 if (pomb != NULL)
c0a62865 2642 {
6bf924b0
DK
2643 gold_assert(pomb->is_string() == is_string
2644 && pomb->entsize() == entsize
2645 && pomb->addralign() == addralign);
c0a62865 2646 }
b8e6aad9
ILT
2647 else
2648 {
6bf924b0
DK
2649 // Create a new Output_merge_data or Output_merge_string_data.
2650 if (!is_string)
2651 pomb = new Output_merge_data(entsize, addralign);
2652 else
9a0910c3 2653 {
6bf924b0
DK
2654 switch (entsize)
2655 {
2656 case 1:
2657 pomb = new Output_merge_string<char>(addralign);
2658 break;
2659 case 2:
2660 pomb = new Output_merge_string<uint16_t>(addralign);
2661 break;
2662 case 4:
2663 pomb = new Output_merge_string<uint32_t>(addralign);
2664 break;
2665 default:
2666 return false;
2667 }
9a0910c3 2668 }
0439c796
DK
2669 // If we need to do script processing or relaxation, we need to keep
2670 // the original input sections to rebuild the fast lookup maps.
2671 if (keeps_input_sections)
2672 pomb->set_keeps_input_sections();
2673 is_new = true;
b8e6aad9
ILT
2674 }
2675
6bf924b0
DK
2676 if (pomb->add_input_section(object, shndx))
2677 {
0439c796
DK
2678 // Add new merge section to this output section and link merge
2679 // section properties to new merge section in map.
2680 if (is_new)
2681 {
2682 this->add_output_merge_section(pomb, is_string, entsize);
2683 this->lookup_maps_->add_merge_section(msp, pomb);
2684 }
2685
6bf924b0
DK
2686 // Add input section to new merge section and link input section to new
2687 // merge section in map.
0439c796 2688 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2689 return true;
2690 }
2691 else
0439c796
DK
2692 {
2693 // If add_input_section failed, delete new merge section to avoid
2694 // exporting empty merge sections in Output_section::get_input_section.
2695 if (is_new)
2696 delete pomb;
2697 return false;
2698 }
b8e6aad9
ILT
2699}
2700
c0a62865 2701// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2702// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2703
20e6d0d6 2704void
c0a62865 2705Output_section::build_relaxation_map(
2ea97941 2706 const Input_section_list& input_sections,
c0a62865
DK
2707 size_t limit,
2708 Relaxation_map* relaxation_map) const
20e6d0d6 2709{
c0a62865
DK
2710 for (size_t i = 0; i < limit; ++i)
2711 {
2ea97941 2712 const Input_section& is(input_sections[i]);
c0a62865
DK
2713 if (is.is_input_section() || is.is_relaxed_input_section())
2714 {
5ac169d4
DK
2715 Section_id sid(is.relobj(), is.shndx());
2716 (*relaxation_map)[sid] = i;
c0a62865
DK
2717 }
2718 }
2719}
2720
2721// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2722// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2723// indices of INPUT_SECTIONS.
20e6d0d6 2724
c0a62865
DK
2725void
2726Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728 const Relaxation_map& map,
2ea97941 2729 Input_section_list* input_sections)
c0a62865
DK
2730{
2731 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732 {
2733 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2734 Section_id sid(poris->relobj(), poris->shndx());
2735 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2736 gold_assert(p != map.end());
2ea97941 2737 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2738
2739 // Remember section order index of original input section
2740 // if it is set. Copy it to the relaxed input section.
2741 unsigned int soi =
2742 (*input_sections)[p->second].section_order_index();
2ea97941 2743 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2744 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2745 }
2746}
2747
2748// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749// is a vector of pointers to Output_relaxed_input_section or its derived
2750// classes. The relaxed sections must correspond to existing input sections.
2751
2752void
2753Output_section::convert_input_sections_to_relaxed_sections(
2754 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755{
029ba973 2756 gold_assert(parameters->target().may_relax());
20e6d0d6 2757
c0a62865
DK
2758 // We want to make sure that restore_states does not undo the effect of
2759 // this. If there is no checkpoint active, just search the current
2760 // input section list and replace the sections there. If there is
2761 // a checkpoint, also replace the sections there.
2762
2763 // By default, we look at the whole list.
2764 size_t limit = this->input_sections_.size();
2765
2766 if (this->checkpoint_ != NULL)
20e6d0d6 2767 {
c0a62865
DK
2768 // Replace input sections with relaxed input section in the saved
2769 // copy of the input section list.
2770 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2771 {
c0a62865
DK
2772 Relaxation_map map;
2773 this->build_relaxation_map(
2774 *(this->checkpoint_->input_sections()),
2775 this->checkpoint_->input_sections()->size(),
2776 &map);
2777 this->convert_input_sections_in_list_to_relaxed_sections(
2778 relaxed_sections,
2779 map,
2780 this->checkpoint_->input_sections());
2781 }
2782 else
2783 {
2784 // We have not copied the input section list yet. Instead, just
2785 // look at the portion that would be saved.
2786 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2787 }
20e6d0d6 2788 }
c0a62865
DK
2789
2790 // Convert input sections in input_section_list.
2791 Relaxation_map map;
2792 this->build_relaxation_map(this->input_sections_, limit, &map);
2793 this->convert_input_sections_in_list_to_relaxed_sections(
2794 relaxed_sections,
2795 map,
2796 &this->input_sections_);
41263c05
DK
2797
2798 // Update fast look-up map.
0439c796 2799 if (this->lookup_maps_->is_valid())
41263c05
DK
2800 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801 {
2802 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2803 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804 poris->shndx(), poris);
41263c05 2805 }
20e6d0d6
DK
2806}
2807
9c547ec3
ILT
2808// Update the output section flags based on input section flags.
2809
2810void
2ea97941 2811Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2812{
2813 // If we created the section with SHF_ALLOC clear, we set the
2814 // address. If we are now setting the SHF_ALLOC flag, we need to
2815 // undo that.
2816 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2817 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2818 this->mark_address_invalid();
2819
2ea97941 2820 this->flags_ |= (flags
9c547ec3
ILT
2821 & (elfcpp::SHF_WRITE
2822 | elfcpp::SHF_ALLOC
2823 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2824
2825 if ((flags & elfcpp::SHF_MERGE) == 0)
2826 this->flags_ &=~ elfcpp::SHF_MERGE;
2827 else
2828 {
2829 if (this->current_data_size_for_child() == 0)
2830 this->flags_ |= elfcpp::SHF_MERGE;
2831 }
2832
2833 if ((flags & elfcpp::SHF_STRINGS) == 0)
2834 this->flags_ &=~ elfcpp::SHF_STRINGS;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_STRINGS;
2839 }
9c547ec3
ILT
2840}
2841
2ea97941 2842// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2843// OBJECT has been added. Return NULL if none found.
2844
2845Output_section_data*
2846Output_section::find_merge_section(const Relobj* object,
2ea97941 2847 unsigned int shndx) const
c0a62865 2848{
0439c796
DK
2849 if (!this->lookup_maps_->is_valid())
2850 this->build_lookup_maps();
2851 return this->lookup_maps_->find_merge_section(object, shndx);
2852}
2853
2854// Build the lookup maps for merge and relaxed sections. This is needs
2855// to be declared as a const methods so that it is callable with a const
2856// Output_section pointer. The method only updates states of the maps.
2857
2858void
2859Output_section::build_lookup_maps() const
2860{
2861 this->lookup_maps_->clear();
2862 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2863 p != this->input_sections_.end();
2864 ++p)
c0a62865 2865 {
0439c796
DK
2866 if (p->is_merge_section())
2867 {
2868 Output_merge_base* pomb = p->output_merge_base();
2869 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2870 pomb->addralign());
2871 this->lookup_maps_->add_merge_section(msp, pomb);
2872 for (Output_merge_base::Input_sections::const_iterator is =
2873 pomb->input_sections_begin();
2874 is != pomb->input_sections_end();
2875 ++is)
2876 {
2877 const Const_section_id& csid = *is;
2878 this->lookup_maps_->add_merge_input_section(csid.first,
2879 csid.second, pomb);
2880 }
2881
2882 }
2883 else if (p->is_relaxed_input_section())
2884 {
2885 Output_relaxed_input_section* poris = p->relaxed_input_section();
2886 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2887 poris->shndx(), poris);
2888 }
c0a62865 2889 }
c0a62865
DK
2890}
2891
2892// Find an relaxed input section corresponding to an input section
2ea97941 2893// in OBJECT with index SHNDX.
c0a62865 2894
d6344fb5 2895const Output_relaxed_input_section*
c0a62865 2896Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2897 unsigned int shndx) const
c0a62865 2898{
0439c796
DK
2899 if (!this->lookup_maps_->is_valid())
2900 this->build_lookup_maps();
2901 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2902}
2903
2ea97941
ILT
2904// Given an address OFFSET relative to the start of input section
2905// SHNDX in OBJECT, return whether this address is being included in
2906// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2907// a special mapping.
2908
2909bool
2910Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2911 unsigned int shndx,
2912 off_t offset) const
730cdc88 2913{
c0a62865 2914 // Look at the Output_section_data_maps first.
2ea97941 2915 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2916 if (posd == NULL)
2ea97941 2917 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2918
2919 if (posd != NULL)
2920 {
2ea97941
ILT
2921 section_offset_type output_offset;
2922 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2923 gold_assert(found);
2ea97941 2924 return output_offset != -1;
c0a62865
DK
2925 }
2926
2927 // Fall back to the slow look-up.
730cdc88
ILT
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2930 ++p)
2931 {
2ea97941
ILT
2932 section_offset_type output_offset;
2933 if (p->output_offset(object, shndx, offset, &output_offset))
2934 return output_offset != -1;
730cdc88
ILT
2935 }
2936
2937 // By default we assume that the address is mapped. This should
2938 // only be called after we have passed all sections to Layout. At
2939 // that point we should know what we are discarding.
2940 return true;
2941}
2942
2ea97941
ILT
2943// Given an address OFFSET relative to the start of input section
2944// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2945// start of the input section in the output section. This should only
2ea97941 2946// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2947
8383303e 2948section_offset_type
2ea97941
ILT
2949Output_section::output_offset(const Relobj* object, unsigned int shndx,
2950 section_offset_type offset) const
730cdc88 2951{
c0a62865
DK
2952 // This can only be called meaningfully when we know the data size
2953 // of this.
2954 gold_assert(this->is_data_size_valid());
730cdc88 2955
c0a62865 2956 // Look at the Output_section_data_maps first.
2ea97941 2957 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2958 if (posd == NULL)
2ea97941 2959 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2960 if (posd != NULL)
2961 {
2ea97941
ILT
2962 section_offset_type output_offset;
2963 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2964 gold_assert(found);
2ea97941 2965 return output_offset;
c0a62865
DK
2966 }
2967
2968 // Fall back to the slow look-up.
730cdc88
ILT
2969 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2970 p != this->input_sections_.end();
2971 ++p)
2972 {
2ea97941
ILT
2973 section_offset_type output_offset;
2974 if (p->output_offset(object, shndx, offset, &output_offset))
2975 return output_offset;
730cdc88
ILT
2976 }
2977 gold_unreachable();
2978}
2979
2ea97941
ILT
2980// Return the output virtual address of OFFSET relative to the start
2981// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2982
2983uint64_t
2ea97941
ILT
2984Output_section::output_address(const Relobj* object, unsigned int shndx,
2985 off_t offset) const
b8e6aad9
ILT
2986{
2987 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2988
2989 // Look at the Output_section_data_maps first.
2ea97941 2990 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2991 if (posd == NULL)
2ea97941 2992 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2993 if (posd != NULL && posd->is_address_valid())
2994 {
2ea97941
ILT
2995 section_offset_type output_offset;
2996 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2997 gold_assert(found);
2ea97941 2998 return posd->address() + output_offset;
c0a62865
DK
2999 }
3000
3001 // Fall back to the slow look-up.
b8e6aad9
ILT
3002 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3004 ++p)
3005 {
3006 addr = align_address(addr, p->addralign());
2ea97941
ILT
3007 section_offset_type output_offset;
3008 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3009 {
2ea97941 3010 if (output_offset == -1)
eff45813 3011 return -1ULL;
2ea97941 3012 return addr + output_offset;
730cdc88 3013 }
b8e6aad9
ILT
3014 addr += p->data_size();
3015 }
3016
3017 // If we get here, it means that we don't know the mapping for this
3018 // input section. This might happen in principle if
3019 // add_input_section were called before add_output_section_data.
3020 // But it should never actually happen.
3021
3022 gold_unreachable();
ead1e424
ILT
3023}
3024
e29e076a 3025// Find the output address of the start of the merged section for
2ea97941 3026// input section SHNDX in object OBJECT.
a9a60db6 3027
e29e076a
ILT
3028bool
3029Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3030 unsigned int shndx,
e29e076a 3031 uint64_t* paddr) const
a9a60db6 3032{
c0a62865
DK
3033 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3034 // Looking up the merge section map does not always work as we sometimes
3035 // find a merge section without its address set.
a9a60db6
ILT
3036 uint64_t addr = this->address() + this->first_input_offset_;
3037 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3038 p != this->input_sections_.end();
3039 ++p)
3040 {
3041 addr = align_address(addr, p->addralign());
3042
3043 // It would be nice if we could use the existing output_offset
3044 // method to get the output offset of input offset 0.
3045 // Unfortunately we don't know for sure that input offset 0 is
3046 // mapped at all.
2ea97941 3047 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3048 {
3049 *paddr = addr;
3050 return true;
3051 }
a9a60db6
ILT
3052
3053 addr += p->data_size();
3054 }
e29e076a
ILT
3055
3056 // We couldn't find a merge output section for this input section.
3057 return false;
a9a60db6
ILT
3058}
3059
cdc29364
CC
3060// Update the data size of an Output_section.
3061
3062void
3063Output_section::update_data_size()
3064{
3065 if (this->input_sections_.empty())
3066 return;
3067
3068 if (this->must_sort_attached_input_sections()
3069 || this->input_section_order_specified())
3070 this->sort_attached_input_sections();
3071
3072 off_t off = this->first_input_offset_;
3073 for (Input_section_list::iterator p = this->input_sections_.begin();
3074 p != this->input_sections_.end();
3075 ++p)
3076 {
3077 off = align_address(off, p->addralign());
3078 off += p->current_data_size();
3079 }
3080
3081 this->set_current_data_size_for_child(off);
3082}
3083
27bc2bce 3084// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3085// setting the addresses of any Output_section_data objects.
3086
3087void
27bc2bce 3088Output_section::set_final_data_size()
ead1e424 3089{
9fbd3822
CC
3090 off_t data_size;
3091
ead1e424 3092 if (this->input_sections_.empty())
9fbd3822
CC
3093 data_size = this->current_data_size_for_child();
3094 else
27bc2bce 3095 {
9fbd3822
CC
3096 if (this->must_sort_attached_input_sections()
3097 || this->input_section_order_specified())
3098 this->sort_attached_input_sections();
ead1e424 3099
9fbd3822
CC
3100 uint64_t address = this->address();
3101 off_t startoff = this->offset();
3102 off_t off = startoff + this->first_input_offset_;
3103 for (Input_section_list::iterator p = this->input_sections_.begin();
3104 p != this->input_sections_.end();
3105 ++p)
3106 {
3107 off = align_address(off, p->addralign());
3108 p->set_address_and_file_offset(address + (off - startoff), off,
3109 startoff);
3110 off += p->data_size();
3111 }
3112 data_size = off - startoff;
3113 }
2fd32231 3114
9fbd3822
CC
3115 // For full incremental links, we want to allocate some patch space
3116 // in most sections for subsequent incremental updates.
3117 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3118 {
9fbd3822 3119 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3120 size_t extra = static_cast<size_t>(data_size * pct);
3121 if (this->free_space_fill_ != NULL
3122 && this->free_space_fill_->minimum_hole_size() > extra)
3123 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3124 off_t new_size = align_address(data_size + extra, this->addralign());
3125 this->patch_space_ = new_size - data_size;
3126 gold_debug(DEBUG_INCREMENTAL,
3127 "set_final_data_size: %08lx + %08lx: section %s",
3128 static_cast<long>(data_size),
3129 static_cast<long>(this->patch_space_),
3130 this->name());
3131 data_size = new_size;
ead1e424
ILT
3132 }
3133
9fbd3822 3134 this->set_data_size(data_size);
ead1e424 3135}
9a0910c3 3136
a445fddf
ILT
3137// Reset the address and file offset.
3138
3139void
3140Output_section::do_reset_address_and_file_offset()
3141{
20e6d0d6
DK
3142 // An unallocated section has no address. Forcing this means that
3143 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3144 // sections. We do the same in the constructor. This does not
3145 // apply to NOLOAD sections though.
3146 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3147 this->set_address(0);
3148
a445fddf
ILT
3149 for (Input_section_list::iterator p = this->input_sections_.begin();
3150 p != this->input_sections_.end();
3151 ++p)
3152 p->reset_address_and_file_offset();
9fbd3822
CC
3153
3154 // Remove any patch space that was added in set_final_data_size.
3155 if (this->patch_space_ > 0)
3156 {
3157 this->set_current_data_size_for_child(this->current_data_size_for_child()
3158 - this->patch_space_);
3159 this->patch_space_ = 0;
3160 }
a445fddf 3161}
9fbd3822 3162
20e6d0d6
DK
3163// Return true if address and file offset have the values after reset.
3164
3165bool
3166Output_section::do_address_and_file_offset_have_reset_values() const
3167{
3168 if (this->is_offset_valid())
3169 return false;
3170
3171 // An unallocated section has address 0 after its construction or a reset.
3172 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3173 return this->is_address_valid() && this->address() == 0;
3174 else
3175 return !this->is_address_valid();
3176}
a445fddf 3177
7bf1f802
ILT
3178// Set the TLS offset. Called only for SHT_TLS sections.
3179
3180void
3181Output_section::do_set_tls_offset(uint64_t tls_base)
3182{
3183 this->tls_offset_ = this->address() - tls_base;
3184}
3185
2fd32231
ILT
3186// In a few cases we need to sort the input sections attached to an
3187// output section. This is used to implement the type of constructor
3188// priority ordering implemented by the GNU linker, in which the
3189// priority becomes part of the section name and the sections are
3190// sorted by name. We only do this for an output section if we see an
5393d741 3191// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3192// ".init_array.*" or ".fini_array.*".
3193
3194class Output_section::Input_section_sort_entry
3195{
3196 public:
3197 Input_section_sort_entry()
3198 : input_section_(), index_(-1U), section_has_name_(false),
3199 section_name_()
3200 { }
3201
2ea97941 3202 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3203 unsigned int index,
3204 bool must_sort_attached_input_sections)
2ea97941
ILT
3205 : input_section_(input_section), index_(index),
3206 section_has_name_(input_section.is_input_section()
3207 || input_section.is_relaxed_input_section())
2fd32231 3208 {
6e9ba2ca
ST
3209 if (this->section_has_name_
3210 && must_sort_attached_input_sections)
2fd32231
ILT
3211 {
3212 // This is only called single-threaded from Layout::finalize,
3213 // so it is OK to lock. Unfortunately we have no way to pass
3214 // in a Task token.
3215 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3216 Object* obj = (input_section.is_input_section()
3217 ? input_section.relobj()
3218 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3219 Task_lock_obj<Object> tl(dummy_task, obj);
3220
3221 // This is a slow operation, which should be cached in
3222 // Layout::layout if this becomes a speed problem.
2ea97941 3223 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3224 }
3225 }
3226
3227 // Return the Input_section.
3228 const Input_section&
3229 input_section() const
3230 {
3231 gold_assert(this->index_ != -1U);
3232 return this->input_section_;
3233 }
3234
3235 // The index of this entry in the original list. This is used to
3236 // make the sort stable.
3237 unsigned int
3238 index() const
3239 {
3240 gold_assert(this->index_ != -1U);
3241 return this->index_;
3242 }
3243
3244 // Whether there is a section name.
3245 bool
3246 section_has_name() const
3247 { return this->section_has_name_; }
3248
3249 // The section name.
3250 const std::string&
3251 section_name() const
3252 {
3253 gold_assert(this->section_has_name_);
3254 return this->section_name_;
3255 }
3256
ab794b6b
ILT
3257 // Return true if the section name has a priority. This is assumed
3258 // to be true if it has a dot after the initial dot.
2fd32231 3259 bool
ab794b6b 3260 has_priority() const
2fd32231
ILT
3261 {
3262 gold_assert(this->section_has_name_);
2a0ff005 3263 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3264 }
3265
5393d741
ILT
3266 // Return the priority. Believe it or not, gcc encodes the priority
3267 // differently for .ctors/.dtors and .init_array/.fini_array
3268 // sections.
3269 unsigned int
3270 get_priority() const
3271 {
3272 gold_assert(this->section_has_name_);
3273 bool is_ctors;
3274 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3275 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3276 is_ctors = true;
3277 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3278 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3279 is_ctors = false;
3280 else
3281 return 0;
3282 char* end;
3283 unsigned long prio = strtoul((this->section_name_.c_str()
3284 + (is_ctors ? 7 : 12)),
3285 &end, 10);
3286 if (*end != '\0')
3287 return 0;
3288 else if (is_ctors)
3289 return 65535 - prio;
3290 else
3291 return prio;
3292 }
3293
ab794b6b
ILT
3294 // Return true if this an input file whose base name matches
3295 // FILE_NAME. The base name must have an extension of ".o", and
3296 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3297 // This is to match crtbegin.o as well as crtbeginS.o without
3298 // getting confused by other possibilities. Overall matching the
3299 // file name this way is a dreadful hack, but the GNU linker does it
3300 // in order to better support gcc, and we need to be compatible.
2fd32231 3301 bool
5393d741
ILT
3302 match_file_name(const char* file_name) const
3303 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3304
8fe2a369
ST
3305 // Returns 1 if THIS should appear before S in section order, -1 if S
3306 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3307 int
3308 compare_section_ordering(const Input_section_sort_entry& s) const
3309 {
8fe2a369
ST
3310 unsigned int this_secn_index = this->input_section_.section_order_index();
3311 unsigned int s_secn_index = s.input_section().section_order_index();
3312 if (this_secn_index > 0 && s_secn_index > 0)
3313 {
3314 if (this_secn_index < s_secn_index)
3315 return 1;
3316 else if (this_secn_index > s_secn_index)
3317 return -1;
3318 }
3319 return 0;
6e9ba2ca
ST
3320 }
3321
2fd32231
ILT
3322 private:
3323 // The Input_section we are sorting.
3324 Input_section input_section_;
3325 // The index of this Input_section in the original list.
3326 unsigned int index_;
3327 // Whether this Input_section has a section name--it won't if this
3328 // is some random Output_section_data.
3329 bool section_has_name_;
3330 // The section name if there is one.
3331 std::string section_name_;
3332};
3333
3334// Return true if S1 should come before S2 in the output section.
3335
3336bool
3337Output_section::Input_section_sort_compare::operator()(
3338 const Output_section::Input_section_sort_entry& s1,
3339 const Output_section::Input_section_sort_entry& s2) const
3340{
ab794b6b
ILT
3341 // crtbegin.o must come first.
3342 bool s1_begin = s1.match_file_name("crtbegin");
3343 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3344 if (s1_begin || s2_begin)
3345 {
3346 if (!s1_begin)
3347 return false;
3348 if (!s2_begin)
3349 return true;
3350 return s1.index() < s2.index();
3351 }
3352
ab794b6b
ILT
3353 // crtend.o must come last.
3354 bool s1_end = s1.match_file_name("crtend");
3355 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3356 if (s1_end || s2_end)
3357 {
3358 if (!s1_end)
3359 return true;
3360 if (!s2_end)
3361 return false;
3362 return s1.index() < s2.index();
3363 }
3364
ab794b6b
ILT
3365 // We sort all the sections with no names to the end.
3366 if (!s1.section_has_name() || !s2.section_has_name())
3367 {
3368 if (s1.section_has_name())
3369 return true;
3370 if (s2.section_has_name())
3371 return false;
3372 return s1.index() < s2.index();
3373 }
2fd32231 3374
ab794b6b 3375 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3376 bool s1_has_priority = s1.has_priority();
3377 bool s2_has_priority = s2.has_priority();
3378 if (s1_has_priority && !s2_has_priority)
2fd32231 3379 return false;
ab794b6b 3380 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3381 return true;
3382
6e9ba2ca
ST
3383 // Check if a section order exists for these sections through a section
3384 // ordering file. If sequence_num is 0, an order does not exist.
3385 int sequence_num = s1.compare_section_ordering(s2);
3386 if (sequence_num != 0)
3387 return sequence_num == 1;
3388
2fd32231
ILT
3389 // Otherwise we sort by name.
3390 int compare = s1.section_name().compare(s2.section_name());
3391 if (compare != 0)
3392 return compare < 0;
3393
3394 // Otherwise we keep the input order.
3395 return s1.index() < s2.index();
3396}
3397
2a0ff005
DK
3398// Return true if S1 should come before S2 in an .init_array or .fini_array
3399// output section.
3400
3401bool
3402Output_section::Input_section_sort_init_fini_compare::operator()(
3403 const Output_section::Input_section_sort_entry& s1,
3404 const Output_section::Input_section_sort_entry& s2) const
3405{
3406 // We sort all the sections with no names to the end.
3407 if (!s1.section_has_name() || !s2.section_has_name())
3408 {
3409 if (s1.section_has_name())
3410 return true;
3411 if (s2.section_has_name())
3412 return false;
3413 return s1.index() < s2.index();
3414 }
3415
3416 // A section without a priority follows a section with a priority.
3417 // This is the reverse of .ctors and .dtors sections.
3418 bool s1_has_priority = s1.has_priority();
3419 bool s2_has_priority = s2.has_priority();
3420 if (s1_has_priority && !s2_has_priority)
3421 return true;
3422 if (!s1_has_priority && s2_has_priority)
3423 return false;
3424
5393d741
ILT
3425 // .ctors and .dtors sections without priority come after
3426 // .init_array and .fini_array sections without priority.
3427 if (!s1_has_priority
3428 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3429 && s1.section_name() != s2.section_name())
3430 return false;
3431 if (!s2_has_priority
3432 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3433 && s2.section_name() != s1.section_name())
3434 return true;
3435
3436 // Sort by priority if we can.
3437 if (s1_has_priority)
3438 {
3439 unsigned int s1_prio = s1.get_priority();
3440 unsigned int s2_prio = s2.get_priority();
3441 if (s1_prio < s2_prio)
3442 return true;
3443 else if (s1_prio > s2_prio)
3444 return false;
3445 }
3446
6e9ba2ca
ST
3447 // Check if a section order exists for these sections through a section
3448 // ordering file. If sequence_num is 0, an order does not exist.
3449 int sequence_num = s1.compare_section_ordering(s2);
3450 if (sequence_num != 0)
3451 return sequence_num == 1;
3452
2a0ff005
DK
3453 // Otherwise we sort by name.
3454 int compare = s1.section_name().compare(s2.section_name());
3455 if (compare != 0)
3456 return compare < 0;
3457
3458 // Otherwise we keep the input order.
3459 return s1.index() < s2.index();
3460}
3461
8fe2a369
ST
3462// Return true if S1 should come before S2. Sections that do not match
3463// any pattern in the section ordering file are placed ahead of the sections
3464// that match some pattern.
3465
6e9ba2ca
ST
3466bool
3467Output_section::Input_section_sort_section_order_index_compare::operator()(
3468 const Output_section::Input_section_sort_entry& s1,
3469 const Output_section::Input_section_sort_entry& s2) const
3470{
8fe2a369
ST
3471 unsigned int s1_secn_index = s1.input_section().section_order_index();
3472 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3473
8fe2a369
ST
3474 // Keep input order if section ordering cannot determine order.
3475 if (s1_secn_index == s2_secn_index)
3476 return s1.index() < s2.index();
3477
3478 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3479}
3480
e9552f7e
ST
3481// This updates the section order index of input sections according to the
3482// the order specified in the mapping from Section id to order index.
3483
3484void
3485Output_section::update_section_layout(
3486 const Section_layout_order& order_map)
3487{
3488 for (Input_section_list::iterator p = this->input_sections_.begin();
3489 p != this->input_sections_.end();
3490 ++p)
3491 {
3492 if (p->is_input_section()
3493 || p->is_relaxed_input_section())
3494 {
3495 Object* obj = (p->is_input_section()
3496 ? p->relobj()
3497 : p->relaxed_input_section()->relobj());
3498 unsigned int shndx = p->shndx();
3499 Section_layout_order::const_iterator it
3500 = order_map.find(Section_id(obj, shndx));
3501 if (it == order_map.end())
3502 continue;
3503 unsigned int section_order_index = it->second;
3504 if (section_order_index != 0)
3505 {
3506 p->set_section_order_index(section_order_index);
3507 this->set_input_section_order_specified();
3508 }
3509 }
3510 }
3511}
3512
2fd32231
ILT
3513// Sort the input sections attached to an output section.
3514
3515void
3516Output_section::sort_attached_input_sections()
3517{
3518 if (this->attached_input_sections_are_sorted_)
3519 return;
3520
20e6d0d6
DK
3521 if (this->checkpoint_ != NULL
3522 && !this->checkpoint_->input_sections_saved())
3523 this->checkpoint_->save_input_sections();
3524
2fd32231
ILT
3525 // The only thing we know about an input section is the object and
3526 // the section index. We need the section name. Recomputing this
3527 // is slow but this is an unusual case. If this becomes a speed
3528 // problem we can cache the names as required in Layout::layout.
3529
3530 // We start by building a larger vector holding a copy of each
3531 // Input_section, plus its current index in the list and its name.
3532 std::vector<Input_section_sort_entry> sort_list;
3533
3534 unsigned int i = 0;
3535 for (Input_section_list::iterator p = this->input_sections_.begin();
3536 p != this->input_sections_.end();
3537 ++p, ++i)
6e9ba2ca
ST
3538 sort_list.push_back(Input_section_sort_entry(*p, i,
3539 this->must_sort_attached_input_sections()));
2fd32231
ILT
3540
3541 // Sort the input sections.
6e9ba2ca
ST
3542 if (this->must_sort_attached_input_sections())
3543 {
3544 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3545 || this->type() == elfcpp::SHT_INIT_ARRAY
3546 || this->type() == elfcpp::SHT_FINI_ARRAY)
3547 std::sort(sort_list.begin(), sort_list.end(),
3548 Input_section_sort_init_fini_compare());
3549 else
3550 std::sort(sort_list.begin(), sort_list.end(),
3551 Input_section_sort_compare());
3552 }
2a0ff005 3553 else
6e9ba2ca 3554 {
e9552f7e 3555 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3556 std::sort(sort_list.begin(), sort_list.end(),
3557 Input_section_sort_section_order_index_compare());
3558 }
2fd32231
ILT
3559
3560 // Copy the sorted input sections back to our list.
3561 this->input_sections_.clear();
3562 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3563 p != sort_list.end();
3564 ++p)
3565 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3566 sort_list.clear();
2fd32231
ILT
3567
3568 // Remember that we sorted the input sections, since we might get
3569 // called again.
3570 this->attached_input_sections_are_sorted_ = true;
3571}
3572
61ba1cf9
ILT
3573// Write the section header to *OSHDR.
3574
3575template<int size, bool big_endian>
3576void
16649710
ILT
3577Output_section::write_header(const Layout* layout,
3578 const Stringpool* secnamepool,
61ba1cf9
ILT
3579 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3580{
3581 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3582 oshdr->put_sh_type(this->type_);
6a74a719 3583
2ea97941 3584 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3585 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3586 flags |= elfcpp::SHF_INFO_LINK;
3587 oshdr->put_sh_flags(flags);
6a74a719 3588
61ba1cf9
ILT
3589 oshdr->put_sh_addr(this->address());
3590 oshdr->put_sh_offset(this->offset());
3591 oshdr->put_sh_size(this->data_size());
16649710
ILT
3592 if (this->link_section_ != NULL)
3593 oshdr->put_sh_link(this->link_section_->out_shndx());
3594 else if (this->should_link_to_symtab_)
886f533a 3595 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3596 else if (this->should_link_to_dynsym_)
3597 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3598 else
3599 oshdr->put_sh_link(this->link_);
755ab8af 3600
2ea97941 3601 elfcpp::Elf_Word info;
16649710 3602 if (this->info_section_ != NULL)
755ab8af
ILT
3603 {
3604 if (this->info_uses_section_index_)
2ea97941 3605 info = this->info_section_->out_shndx();
755ab8af 3606 else
2ea97941 3607 info = this->info_section_->symtab_index();
755ab8af 3608 }
6a74a719 3609 else if (this->info_symndx_ != NULL)
2ea97941 3610 info = this->info_symndx_->symtab_index();
16649710 3611 else
2ea97941
ILT
3612 info = this->info_;
3613 oshdr->put_sh_info(info);
755ab8af 3614
61ba1cf9
ILT
3615 oshdr->put_sh_addralign(this->addralign_);
3616 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3617}
3618
ead1e424
ILT
3619// Write out the data. For input sections the data is written out by
3620// Object::relocate, but we have to handle Output_section_data objects
3621// here.
3622
3623void
3624Output_section::do_write(Output_file* of)
3625{
96803768
ILT
3626 gold_assert(!this->requires_postprocessing());
3627
c0a62865
DK
3628 // If the target performs relaxation, we delay filler generation until now.
3629 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3630
c51e6221
ILT
3631 off_t output_section_file_offset = this->offset();
3632 for (Fill_list::iterator p = this->fills_.begin();
3633 p != this->fills_.end();
3634 ++p)
3635 {
8851ecca 3636 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3637 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3638 fill_data.data(), fill_data.size());
c51e6221
ILT
3639 }
3640
c0a62865 3641 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3642 for (Input_section_list::iterator p = this->input_sections_.begin();
3643 p != this->input_sections_.end();
3644 ++p)
c0a62865
DK
3645 {
3646 off_t aligned_off = align_address(off, p->addralign());
3647 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3648 {
3649 size_t fill_len = aligned_off - off;
3650 std::string fill_data(parameters->target().code_fill(fill_len));
3651 of->write(off, fill_data.data(), fill_data.size());
3652 }
3653
3654 p->write(of);
3655 off = aligned_off + p->data_size();
3656 }
8ea8cd50
CC
3657
3658 // For incremental links, fill in unused chunks in debug sections
3659 // with dummy compilation unit headers.
3660 if (this->free_space_fill_ != NULL)
3661 {
3662 for (Free_list::Const_iterator p = this->free_list_.begin();
3663 p != this->free_list_.end();
3664 ++p)
3665 {
3666 off_t off = p->start_;
3667 size_t len = p->end_ - off;
3668 this->free_space_fill_->write(of, this->offset() + off, len);
3669 }
3670 if (this->patch_space_ > 0)
3671 {
3672 off_t off = this->current_data_size_for_child() - this->patch_space_;
3673 this->free_space_fill_->write(of, this->offset() + off,
3674 this->patch_space_);
3675 }
3676 }
ead1e424
ILT
3677}
3678
96803768
ILT
3679// If a section requires postprocessing, create the buffer to use.
3680
3681void
3682Output_section::create_postprocessing_buffer()
3683{
3684 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3685
3686 if (this->postprocessing_buffer_ != NULL)
3687 return;
96803768
ILT
3688
3689 if (!this->input_sections_.empty())
3690 {
3691 off_t off = this->first_input_offset_;
3692 for (Input_section_list::iterator p = this->input_sections_.begin();
3693 p != this->input_sections_.end();
3694 ++p)
3695 {
3696 off = align_address(off, p->addralign());
3697 p->finalize_data_size();
3698 off += p->data_size();
3699 }
3700 this->set_current_data_size_for_child(off);
3701 }
3702
3703 off_t buffer_size = this->current_data_size_for_child();
3704 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3705}
3706
3707// Write all the data of an Output_section into the postprocessing
3708// buffer. This is used for sections which require postprocessing,
3709// such as compression. Input sections are handled by
3710// Object::Relocate.
3711
3712void
3713Output_section::write_to_postprocessing_buffer()
3714{
3715 gold_assert(this->requires_postprocessing());
3716
c0a62865
DK
3717 // If the target performs relaxation, we delay filler generation until now.
3718 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3719
96803768
ILT
3720 unsigned char* buffer = this->postprocessing_buffer();
3721 for (Fill_list::iterator p = this->fills_.begin();
3722 p != this->fills_.end();
3723 ++p)
3724 {
8851ecca 3725 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3726 memcpy(buffer + p->section_offset(), fill_data.data(),
3727 fill_data.size());
96803768
ILT
3728 }
3729
3730 off_t off = this->first_input_offset_;
3731 for (Input_section_list::iterator p = this->input_sections_.begin();
3732 p != this->input_sections_.end();
3733 ++p)
3734 {
c0a62865
DK
3735 off_t aligned_off = align_address(off, p->addralign());
3736 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3737 {
3738 size_t fill_len = aligned_off - off;
3739 std::string fill_data(parameters->target().code_fill(fill_len));
3740 memcpy(buffer + off, fill_data.data(), fill_data.size());
3741 }
3742
3743 p->write_to_buffer(buffer + aligned_off);
3744 off = aligned_off + p->data_size();
96803768
ILT
3745 }
3746}
3747
a445fddf
ILT
3748// Get the input sections for linker script processing. We leave
3749// behind the Output_section_data entries. Note that this may be
3750// slightly incorrect for merge sections. We will leave them behind,
3751// but it is possible that the script says that they should follow
3752// some other input sections, as in:
3753// .rodata { *(.rodata) *(.rodata.cst*) }
3754// For that matter, we don't handle this correctly:
3755// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3756// With luck this will never matter.
3757
3758uint64_t
3759Output_section::get_input_sections(
2ea97941 3760 uint64_t address,
a445fddf 3761 const std::string& fill,
6625d24e 3762 std::list<Input_section>* input_sections)
a445fddf 3763{
20e6d0d6
DK
3764 if (this->checkpoint_ != NULL
3765 && !this->checkpoint_->input_sections_saved())
3766 this->checkpoint_->save_input_sections();
3767
0439c796
DK
3768 // Invalidate fast look-up maps.
3769 this->lookup_maps_->invalidate();
c0a62865 3770
2ea97941 3771 uint64_t orig_address = address;
a445fddf 3772
2ea97941 3773 address = align_address(address, this->addralign());
a445fddf
ILT
3774
3775 Input_section_list remaining;
3776 for (Input_section_list::iterator p = this->input_sections_.begin();
3777 p != this->input_sections_.end();
3778 ++p)
3779 {
0439c796
DK
3780 if (p->is_input_section()
3781 || p->is_relaxed_input_section()
3782 || p->is_merge_section())
6625d24e 3783 input_sections->push_back(*p);
a445fddf
ILT
3784 else
3785 {
2ea97941
ILT
3786 uint64_t aligned_address = align_address(address, p->addralign());
3787 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3788 {
3789 section_size_type length =
2ea97941 3790 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3791 std::string this_fill;
3792 this_fill.reserve(length);
3793 while (this_fill.length() + fill.length() <= length)
3794 this_fill += fill;
3795 if (this_fill.length() < length)
3796 this_fill.append(fill, 0, length - this_fill.length());
3797
3798 Output_section_data* posd = new Output_data_const(this_fill, 0);
3799 remaining.push_back(Input_section(posd));
3800 }
2ea97941 3801 address = aligned_address;
a445fddf
ILT
3802
3803 remaining.push_back(*p);
3804
3805 p->finalize_data_size();
2ea97941 3806 address += p->data_size();
a445fddf
ILT
3807 }
3808 }
3809
3810 this->input_sections_.swap(remaining);
3811 this->first_input_offset_ = 0;
3812
2ea97941
ILT
3813 uint64_t data_size = address - orig_address;
3814 this->set_current_data_size_for_child(data_size);
3815 return data_size;
a445fddf
ILT
3816}
3817
6625d24e
DK
3818// Add a script input section. SIS is an Output_section::Input_section,
3819// which can be either a plain input section or a special input section like
3820// a relaxed input section. For a special input section, its size must be
3821// finalized.
a445fddf
ILT
3822
3823void
6625d24e 3824Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3825{
6625d24e
DK
3826 uint64_t data_size = sis.data_size();
3827 uint64_t addralign = sis.addralign();
2ea97941
ILT
3828 if (addralign > this->addralign_)
3829 this->addralign_ = addralign;
a445fddf
ILT
3830
3831 off_t offset_in_section = this->current_data_size_for_child();
3832 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3833 addralign);
a445fddf
ILT
3834
3835 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3836 + data_size);
a445fddf 3837
6625d24e 3838 this->input_sections_.push_back(sis);
0439c796
DK
3839
3840 // Update fast lookup maps if necessary.
3841 if (this->lookup_maps_->is_valid())
3842 {
3843 if (sis.is_merge_section())
3844 {
3845 Output_merge_base* pomb = sis.output_merge_base();
3846 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3847 pomb->addralign());
3848 this->lookup_maps_->add_merge_section(msp, pomb);
3849 for (Output_merge_base::Input_sections::const_iterator p =
3850 pomb->input_sections_begin();
3851 p != pomb->input_sections_end();
3852 ++p)
3853 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3854 pomb);
3855 }
3856 else if (sis.is_relaxed_input_section())
3857 {
3858 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3859 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3860 poris->shndx(), poris);
3861 }
3862 }
20e6d0d6
DK
3863}
3864
8923b24c 3865// Save states for relaxation.
20e6d0d6
DK
3866
3867void
3868Output_section::save_states()
3869{
3870 gold_assert(this->checkpoint_ == NULL);
3871 Checkpoint_output_section* checkpoint =
3872 new Checkpoint_output_section(this->addralign_, this->flags_,
3873 this->input_sections_,
3874 this->first_input_offset_,
3875 this->attached_input_sections_are_sorted_);
3876 this->checkpoint_ = checkpoint;
3877 gold_assert(this->fills_.empty());
3878}
3879
8923b24c
DK
3880void
3881Output_section::discard_states()
3882{
3883 gold_assert(this->checkpoint_ != NULL);
3884 delete this->checkpoint_;
3885 this->checkpoint_ = NULL;
3886 gold_assert(this->fills_.empty());
3887
0439c796
DK
3888 // Simply invalidate the fast lookup maps since we do not keep
3889 // track of them.
3890 this->lookup_maps_->invalidate();
8923b24c
DK
3891}
3892
20e6d0d6
DK
3893void
3894Output_section::restore_states()
3895{
3896 gold_assert(this->checkpoint_ != NULL);
3897 Checkpoint_output_section* checkpoint = this->checkpoint_;
3898
3899 this->addralign_ = checkpoint->addralign();
3900 this->flags_ = checkpoint->flags();
3901 this->first_input_offset_ = checkpoint->first_input_offset();
3902
3903 if (!checkpoint->input_sections_saved())
3904 {
3905 // If we have not copied the input sections, just resize it.
3906 size_t old_size = checkpoint->input_sections_size();
3907 gold_assert(this->input_sections_.size() >= old_size);
3908 this->input_sections_.resize(old_size);
3909 }
3910 else
3911 {
3912 // We need to copy the whole list. This is not efficient for
3913 // extremely large output with hundreads of thousands of input
3914 // objects. We may need to re-think how we should pass sections
3915 // to scripts.
c0a62865 3916 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3917 }
3918
3919 this->attached_input_sections_are_sorted_ =
3920 checkpoint->attached_input_sections_are_sorted();
c0a62865 3921
0439c796
DK
3922 // Simply invalidate the fast lookup maps since we do not keep
3923 // track of them.
3924 this->lookup_maps_->invalidate();
a445fddf
ILT
3925}
3926
8923b24c
DK
3927// Update the section offsets of input sections in this. This is required if
3928// relaxation causes some input sections to change sizes.
3929
3930void
3931Output_section::adjust_section_offsets()
3932{
3933 if (!this->section_offsets_need_adjustment_)
3934 return;
3935
3936 off_t off = 0;
3937 for (Input_section_list::iterator p = this->input_sections_.begin();
3938 p != this->input_sections_.end();
3939 ++p)
3940 {
3941 off = align_address(off, p->addralign());
3942 if (p->is_input_section())
3943 p->relobj()->set_section_offset(p->shndx(), off);
3944 off += p->data_size();
3945 }
3946
3947 this->section_offsets_need_adjustment_ = false;
3948}
3949
7d9e3d98
ILT
3950// Print to the map file.
3951
3952void
3953Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3954{
3955 mapfile->print_output_section(this);
3956
3957 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3958 p != this->input_sections_.end();
3959 ++p)
3960 p->print_to_mapfile(mapfile);
3961}
3962
38c5e8b4
ILT
3963// Print stats for merge sections to stderr.
3964
3965void
3966Output_section::print_merge_stats()
3967{
3968 Input_section_list::iterator p;
3969 for (p = this->input_sections_.begin();
3970 p != this->input_sections_.end();
3971 ++p)
3972 p->print_merge_stats(this->name_);
3973}
3974
cdc29364
CC
3975// Set a fixed layout for the section. Used for incremental update links.
3976
3977void
3978Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3979 off_t sh_size, uint64_t sh_addralign)
3980{
3981 this->addralign_ = sh_addralign;
3982 this->set_current_data_size(sh_size);
3983 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3984 this->set_address(sh_addr);
3985 this->set_file_offset(sh_offset);
3986 this->finalize_data_size();
3987 this->free_list_.init(sh_size, false);
3988 this->has_fixed_layout_ = true;
3989}
3990
3991// Reserve space within the fixed layout for the section. Used for
3992// incremental update links.
5146f448 3993
cdc29364
CC
3994void
3995Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3996{
3997 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3998}
3999
5146f448
CC
4000// Allocate space from the free list for the section. Used for
4001// incremental update links.
4002
4003off_t
4004Output_section::allocate(off_t len, uint64_t addralign)
4005{
4006 return this->free_list_.allocate(len, addralign, 0);
4007}
4008
a2fb1b05
ILT
4009// Output segment methods.
4010
2ea97941 4011Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4012 : vaddr_(0),
a2fb1b05
ILT
4013 paddr_(0),
4014 memsz_(0),
a445fddf
ILT
4015 max_align_(0),
4016 min_p_align_(0),
a2fb1b05
ILT
4017 offset_(0),
4018 filesz_(0),
2ea97941
ILT
4019 type_(type),
4020 flags_(flags),
a445fddf 4021 is_max_align_known_(false),
8a5e3e08
ILT
4022 are_addresses_set_(false),
4023 is_large_data_segment_(false)
a2fb1b05 4024{
bb321bb1
ILT
4025 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4026 // the flags.
4027 if (type == elfcpp::PT_TLS)
4028 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4029}
4030
22f0da72 4031// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4032
4033void
22f0da72
ILT
4034Output_segment::add_output_section_to_load(Layout* layout,
4035 Output_section* os,
4036 elfcpp::Elf_Word seg_flags)
a2fb1b05 4037{
22f0da72 4038 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4039 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4040 gold_assert(!this->is_max_align_known_);
8a5e3e08 4041 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4042
a192ba05 4043 this->update_flags_for_output_section(seg_flags);
75f65a3e 4044
22f0da72
ILT
4045 // We don't want to change the ordering if we have a linker script
4046 // with a SECTIONS clause.
4047 Output_section_order order = os->order();
4048 if (layout->script_options()->saw_sections_clause())
4049 order = static_cast<Output_section_order>(0);
75f65a3e 4050 else
22f0da72 4051 gold_assert(order != ORDER_INVALID);
54dc6425 4052
22f0da72
ILT
4053 this->output_lists_[order].push_back(os);
4054}
9f1d377b 4055
22f0da72 4056// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4057
22f0da72
ILT
4058void
4059Output_segment::add_output_section_to_nonload(Output_section* os,
4060 elfcpp::Elf_Word seg_flags)
4061{
4062 gold_assert(this->type() != elfcpp::PT_LOAD);
4063 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4064 gold_assert(!this->is_max_align_known_);
1a2dff53 4065
22f0da72 4066 this->update_flags_for_output_section(seg_flags);
9f1d377b 4067
22f0da72
ILT
4068 this->output_lists_[0].push_back(os);
4069}
8a5e3e08 4070
22f0da72
ILT
4071// Remove an Output_section from this segment. It is an error if it
4072// is not present.
8a5e3e08 4073
22f0da72
ILT
4074void
4075Output_segment::remove_output_section(Output_section* os)
4076{
4077 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4078 {
22f0da72
ILT
4079 Output_data_list* pdl = &this->output_lists_[i];
4080 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4081 {
22f0da72 4082 if (*p == os)
8a5e3e08 4083 {
22f0da72 4084 pdl->erase(p);
8a5e3e08
ILT
4085 return;
4086 }
4087 }
f5c870d2 4088 }
1650c4ff
ILT
4089 gold_unreachable();
4090}
4091
a192ba05
ILT
4092// Add an Output_data (which need not be an Output_section) to the
4093// start of a segment.
75f65a3e
ILT
4094
4095void
4096Output_segment::add_initial_output_data(Output_data* od)
4097{
a445fddf 4098 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4099 Output_data_list::iterator p = this->output_lists_[0].begin();
4100 this->output_lists_[0].insert(p, od);
4101}
4102
4103// Return true if this segment has any sections which hold actual
4104// data, rather than being a BSS section.
4105
4106bool
4107Output_segment::has_any_data_sections() const
4108{
4109 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4110 {
4111 const Output_data_list* pdl = &this->output_lists_[i];
4112 for (Output_data_list::const_iterator p = pdl->begin();
4113 p != pdl->end();
4114 ++p)
4115 {
4116 if (!(*p)->is_section())
4117 return true;
4118 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4119 return true;
4120 }
4121 }
4122 return false;
75f65a3e
ILT
4123}
4124
5bc2f5be
CC
4125// Return whether the first data section (not counting TLS sections)
4126// is a relro section.
9f1d377b
ILT
4127
4128bool
4129Output_segment::is_first_section_relro() const
4130{
22f0da72
ILT
4131 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132 {
5bc2f5be
CC
4133 if (i == static_cast<int>(ORDER_TLS_DATA)
4134 || i == static_cast<int>(ORDER_TLS_BSS))
4135 continue;
22f0da72
ILT
4136 const Output_data_list* pdl = &this->output_lists_[i];
4137 if (!pdl->empty())
4138 {
4139 Output_data* p = pdl->front();
4140 return p->is_section() && p->output_section()->is_relro();
4141 }
4142 }
4143 return false;
9f1d377b
ILT
4144}
4145
75f65a3e 4146// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4147
4148uint64_t
a445fddf 4149Output_segment::maximum_alignment()
75f65a3e 4150{
a445fddf 4151 if (!this->is_max_align_known_)
ead1e424 4152 {
22f0da72
ILT
4153 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154 {
4155 const Output_data_list* pdl = &this->output_lists_[i];
4156 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4157 if (addralign > this->max_align_)
4158 this->max_align_ = addralign;
4159 }
a445fddf 4160 this->is_max_align_known_ = true;
ead1e424
ILT
4161 }
4162
a445fddf 4163 return this->max_align_;
75f65a3e
ILT
4164}
4165
ead1e424
ILT
4166// Return the maximum alignment of a list of Output_data.
4167
4168uint64_t
a445fddf 4169Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4170{
4171 uint64_t ret = 0;
4172 for (Output_data_list::const_iterator p = pdl->begin();
4173 p != pdl->end();
4174 ++p)
4175 {
2ea97941
ILT
4176 uint64_t addralign = (*p)->addralign();
4177 if (addralign > ret)
4178 ret = addralign;
ead1e424
ILT
4179 }
4180 return ret;
4181}
4182
22f0da72 4183// Return whether this segment has any dynamic relocs.
4f4c5f80 4184
22f0da72
ILT
4185bool
4186Output_segment::has_dynamic_reloc() const
4f4c5f80 4187{
22f0da72
ILT
4188 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4189 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4190 return true;
4191 return false;
4f4c5f80
ILT
4192}
4193
22f0da72 4194// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4195
22f0da72
ILT
4196bool
4197Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4198{
4f4c5f80
ILT
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
22f0da72
ILT
4202 if ((*p)->has_dynamic_reloc())
4203 return true;
4204 return false;
4f4c5f80
ILT
4205}
4206
a445fddf
ILT
4207// Set the section addresses for an Output_segment. If RESET is true,
4208// reset the addresses first. ADDR is the address and *POFF is the
4209// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4210// INCREASE_RELRO is the size of the portion of the first non-relro
4211// section that should be included in the PT_GNU_RELRO segment.
4212// If this segment has relro sections, and has been aligned for
4213// that purpose, set *HAS_RELRO to TRUE. Return the address of
4214// the immediately following segment. Update *HAS_RELRO, *POFF,
4215// and *PSHNDX.
75f65a3e
ILT
4216
4217uint64_t
cdc29364 4218Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4219 uint64_t addr,
fd064a5b 4220 unsigned int* increase_relro,
fc497986 4221 bool* has_relro,
1a2dff53 4222 off_t* poff,
ead1e424 4223 unsigned int* pshndx)
75f65a3e 4224{
a3ad94ed 4225 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4226
fc497986 4227 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4228 off_t orig_off = *poff;
4229
5bc2f5be
CC
4230 bool in_tls = false;
4231
1a2dff53
ILT
4232 // If we have relro sections, we need to pad forward now so that the
4233 // relro sections plus INCREASE_RELRO end on a common page boundary.
4234 if (parameters->options().relro()
4235 && this->is_first_section_relro()
4236 && (!this->are_addresses_set_ || reset))
4237 {
4238 uint64_t relro_size = 0;
4239 off_t off = *poff;
fc497986 4240 uint64_t max_align = 0;
5bc2f5be 4241 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4242 {
22f0da72
ILT
4243 Output_data_list* pdl = &this->output_lists_[i];
4244 Output_data_list::iterator p;
4245 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4246 {
22f0da72
ILT
4247 if (!(*p)->is_section())
4248 break;
fc497986
CC
4249 uint64_t align = (*p)->addralign();
4250 if (align > max_align)
4251 max_align = align;
5bc2f5be
CC
4252 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4253 in_tls = true;
4254 else if (in_tls)
4255 {
4256 // Align the first non-TLS section to the alignment
4257 // of the TLS segment.
4258 align = max_align;
4259 in_tls = false;
4260 }
fc497986 4261 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4262 // Ignore the size of the .tbss section.
4263 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4264 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4265 continue;
22f0da72
ILT
4266 if ((*p)->is_address_valid())
4267 relro_size += (*p)->data_size();
4268 else
4269 {
4270 // FIXME: This could be faster.
4271 (*p)->set_address_and_file_offset(addr + relro_size,
4272 off + relro_size);
4273 relro_size += (*p)->data_size();
4274 (*p)->reset_address_and_file_offset();
4275 }
1a2dff53 4276 }
22f0da72
ILT
4277 if (p != pdl->end())
4278 break;
1a2dff53 4279 }
fd064a5b 4280 relro_size += *increase_relro;
fc497986
CC
4281 // Pad the total relro size to a multiple of the maximum
4282 // section alignment seen.
4283 uint64_t aligned_size = align_address(relro_size, max_align);
4284 // Note the amount of padding added after the last relro section.
4285 last_relro_pad = aligned_size - relro_size;
fc497986 4286 *has_relro = true;
1a2dff53
ILT
4287
4288 uint64_t page_align = parameters->target().common_pagesize();
4289
4290 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4291 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4292 if (desired_align < *poff % page_align)
4293 *poff += page_align - *poff % page_align;
4294 *poff += desired_align - *poff % page_align;
4295 addr += *poff - orig_off;
4296 orig_off = *poff;
4297 }
4298
a445fddf
ILT
4299 if (!reset && this->are_addresses_set_)
4300 {
4301 gold_assert(this->paddr_ == addr);
4302 addr = this->vaddr_;
4303 }
4304 else
4305 {
4306 this->vaddr_ = addr;
4307 this->paddr_ = addr;
4308 this->are_addresses_set_ = true;
4309 }
75f65a3e 4310
5bc2f5be 4311 in_tls = false;
96a2b4e4 4312
75f65a3e
ILT
4313 this->offset_ = orig_off;
4314
22f0da72
ILT
4315 off_t off = 0;
4316 uint64_t ret;
4317 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4318 {
fc497986
CC
4319 if (i == static_cast<int>(ORDER_RELRO_LAST))
4320 {
4321 *poff += last_relro_pad;
4322 addr += last_relro_pad;
fd064a5b
CC
4323 if (this->output_lists_[i].empty())
4324 {
4325 // If there is nothing in the ORDER_RELRO_LAST list,
4326 // the padding will occur at the end of the relro
4327 // segment, and we need to add it to *INCREASE_RELRO.
4328 *increase_relro += last_relro_pad;
4329 }
fc497986 4330 }
5bc2f5be
CC
4331 addr = this->set_section_list_addresses(layout, reset,
4332 &this->output_lists_[i],
4333 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4334 if (i < static_cast<int>(ORDER_SMALL_BSS))
4335 {
4336 this->filesz_ = *poff - orig_off;
4337 off = *poff;
4338 }
75f65a3e 4339
22f0da72
ILT
4340 ret = addr;
4341 }
96a2b4e4
ILT
4342
4343 // If the last section was a TLS section, align upward to the
4344 // alignment of the TLS segment, so that the overall size of the TLS
4345 // segment is aligned.
4346 if (in_tls)
4347 {
4348 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4349 *poff = align_address(*poff, segment_align);
4350 }
4351
75f65a3e
ILT
4352 this->memsz_ = *poff - orig_off;
4353
4354 // Ignore the file offset adjustments made by the BSS Output_data
4355 // objects.
4356 *poff = off;
61ba1cf9
ILT
4357
4358 return ret;
75f65a3e
ILT
4359}
4360
b8e6aad9
ILT
4361// Set the addresses and file offsets in a list of Output_data
4362// structures.
75f65a3e
ILT
4363
4364uint64_t
cdc29364 4365Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4366 Output_data_list* pdl,
ead1e424 4367 uint64_t addr, off_t* poff,
96a2b4e4 4368 unsigned int* pshndx,
1a2dff53 4369 bool* in_tls)
75f65a3e 4370{
ead1e424 4371 off_t startoff = *poff;
cdc29364
CC
4372 // For incremental updates, we may allocate non-fixed sections from
4373 // free space in the file. This keeps track of the high-water mark.
4374 off_t maxoff = startoff;
75f65a3e 4375
ead1e424 4376 off_t off = startoff;
75f65a3e
ILT
4377 for (Output_data_list::iterator p = pdl->begin();
4378 p != pdl->end();
4379 ++p)
4380 {
a445fddf
ILT
4381 if (reset)
4382 (*p)->reset_address_and_file_offset();
4383
cdc29364
CC
4384 // When doing an incremental update or when using a linker script,
4385 // the section will most likely already have an address.
a445fddf 4386 if (!(*p)->is_address_valid())
3802b2dd 4387 {
96a2b4e4
ILT
4388 uint64_t align = (*p)->addralign();
4389
4390 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4391 {
4392 // Give the first TLS section the alignment of the
4393 // entire TLS segment. Otherwise the TLS segment as a
4394 // whole may be misaligned.
4395 if (!*in_tls)
4396 {
4397 Output_segment* tls_segment = layout->tls_segment();
4398 gold_assert(tls_segment != NULL);
4399 uint64_t segment_align = tls_segment->maximum_alignment();
4400 gold_assert(segment_align >= align);
4401 align = segment_align;
4402
4403 *in_tls = true;
4404 }
4405 }
4406 else
4407 {
4408 // If this is the first section after the TLS segment,
4409 // align it to at least the alignment of the TLS
4410 // segment, so that the size of the overall TLS segment
4411 // is aligned.
4412 if (*in_tls)
4413 {
4414 uint64_t segment_align =
4415 layout->tls_segment()->maximum_alignment();
4416 if (segment_align > align)
4417 align = segment_align;
4418
4419 *in_tls = false;
4420 }
4421 }
4422
fb0e076f 4423 if (!parameters->incremental_update())
cdc29364
CC
4424 {
4425 off = align_address(off, align);
4426 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4427 }
4428 else
4429 {
4430 // Incremental update: allocate file space from free list.
4431 (*p)->pre_finalize_data_size();
4432 off_t current_size = (*p)->current_data_size();
4433 off = layout->allocate(current_size, align, startoff);
4434 if (off == -1)
4435 {
4436 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4437 gold_fallback(_("out of patch space for section %s; "
4438 "relink with --incremental-full"),
4439 (*p)->output_section()->name());
cdc29364
CC
4440 }
4441 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442 if ((*p)->data_size() > current_size)
4443 {
4444 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4445 gold_fallback(_("%s: section changed size; "
4446 "relink with --incremental-full"),
4447 (*p)->output_section()->name());
cdc29364
CC
4448 }
4449 }
3802b2dd 4450 }
cdc29364
CC
4451 else if (parameters->incremental_update())
4452 {
4453 // For incremental updates, use the fixed offset for the
4454 // high-water mark computation.
4455 off = (*p)->offset();
4456 }
a445fddf
ILT
4457 else
4458 {
4459 // The script may have inserted a skip forward, but it
4460 // better not have moved backward.
661be1e2
ILT
4461 if ((*p)->address() >= addr + (off - startoff))
4462 off += (*p)->address() - (addr + (off - startoff));
4463 else
4464 {
4465 if (!layout->script_options()->saw_sections_clause())
4466 gold_unreachable();
4467 else
4468 {
4469 Output_section* os = (*p)->output_section();
64b1ae37
DK
4470
4471 // Cast to unsigned long long to avoid format warnings.
4472 unsigned long long previous_dot =
4473 static_cast<unsigned long long>(addr + (off - startoff));
4474 unsigned long long dot =
4475 static_cast<unsigned long long>((*p)->address());
4476
661be1e2
ILT
4477 if (os == NULL)
4478 gold_error(_("dot moves backward in linker script "
64b1ae37 4479 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4480 else
4481 gold_error(_("address of section '%s' moves backward "
4482 "from 0x%llx to 0x%llx"),
64b1ae37 4483 os->name(), previous_dot, dot);
661be1e2
ILT
4484 }
4485 }
a445fddf
ILT
4486 (*p)->set_file_offset(off);
4487 (*p)->finalize_data_size();
4488 }
ead1e424 4489
9fbd3822
CC
4490 if (parameters->incremental_update())
4491 gold_debug(DEBUG_INCREMENTAL,
4492 "set_section_list_addresses: %08lx %08lx %s",
4493 static_cast<long>(off),
4494 static_cast<long>((*p)->data_size()),
4495 ((*p)->output_section() != NULL
4496 ? (*p)->output_section()->name() : "(special)"));
4497
4498 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4499 // section. Such a section does not affect the size of a
4500 // PT_LOAD segment.
4501 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4502 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4503 off += (*p)->data_size();
75f65a3e 4504
cdc29364
CC
4505 if (off > maxoff)
4506 maxoff = off;
4507
ead1e424
ILT
4508 if ((*p)->is_section())
4509 {
4510 (*p)->set_out_shndx(*pshndx);
4511 ++*pshndx;
4512 }
75f65a3e
ILT
4513 }
4514
cdc29364
CC
4515 *poff = maxoff;
4516 return addr + (maxoff - startoff);
75f65a3e
ILT
4517}
4518
4519// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4520// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4521
4522void
1a2dff53 4523Output_segment::set_offset(unsigned int increase)
75f65a3e 4524{
a3ad94ed 4525 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4526
a445fddf
ILT
4527 gold_assert(!this->are_addresses_set_);
4528
22f0da72
ILT
4529 // A non-load section only uses output_lists_[0].
4530
4531 Output_data_list* pdl = &this->output_lists_[0];
4532
4533 if (pdl->empty())
75f65a3e 4534 {
1a2dff53 4535 gold_assert(increase == 0);
75f65a3e
ILT
4536 this->vaddr_ = 0;
4537 this->paddr_ = 0;
a445fddf 4538 this->are_addresses_set_ = true;
75f65a3e 4539 this->memsz_ = 0;
a445fddf 4540 this->min_p_align_ = 0;
75f65a3e
ILT
4541 this->offset_ = 0;
4542 this->filesz_ = 0;
4543 return;
4544 }
4545
22f0da72 4546 // Find the first and last section by address.
5f1ab67a
ILT
4547 const Output_data* first = NULL;
4548 const Output_data* last_data = NULL;
4549 const Output_data* last_bss = NULL;
22f0da72
ILT
4550 for (Output_data_list::const_iterator p = pdl->begin();
4551 p != pdl->end();
4552 ++p)
4553 {
4554 if (first == NULL
4555 || (*p)->address() < first->address()
4556 || ((*p)->address() == first->address()
4557 && (*p)->data_size() < first->data_size()))
4558 first = *p;
4559 const Output_data** plast;
4560 if ((*p)->is_section()
4561 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4562 plast = &last_bss;
4563 else
4564 plast = &last_data;
4565 if (*plast == NULL
4566 || (*p)->address() > (*plast)->address()
4567 || ((*p)->address() == (*plast)->address()
4568 && (*p)->data_size() > (*plast)->data_size()))
4569 *plast = *p;
4570 }
5f1ab67a 4571
75f65a3e 4572 this->vaddr_ = first->address();
a445fddf
ILT
4573 this->paddr_ = (first->has_load_address()
4574 ? first->load_address()
4575 : this->vaddr_);
4576 this->are_addresses_set_ = true;
75f65a3e
ILT
4577 this->offset_ = first->offset();
4578
22f0da72 4579 if (last_data == NULL)
75f65a3e
ILT
4580 this->filesz_ = 0;
4581 else
5f1ab67a
ILT
4582 this->filesz_ = (last_data->address()
4583 + last_data->data_size()
4584 - this->vaddr_);
75f65a3e 4585
5f1ab67a 4586 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4587 this->memsz_ = (last->address()
4588 + last->data_size()
4589 - this->vaddr_);
96a2b4e4 4590
1a2dff53
ILT
4591 this->filesz_ += increase;
4592 this->memsz_ += increase;
4593
fd064a5b
CC
4594 // If this is a RELRO segment, verify that the segment ends at a
4595 // page boundary.
4596 if (this->type_ == elfcpp::PT_GNU_RELRO)
4597 {
4598 uint64_t page_align = parameters->target().common_pagesize();
4599 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4600 if (parameters->incremental_update())
4601 {
4602 // The INCREASE_RELRO calculation is bypassed for an incremental
4603 // update, so we need to adjust the segment size manually here.
4604 segment_end = align_address(segment_end, page_align);
4605 this->memsz_ = segment_end - this->vaddr_;
4606 }
4607 else
4608 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4609 }
4610
96a2b4e4
ILT
4611 // If this is a TLS segment, align the memory size. The code in
4612 // set_section_list ensures that the section after the TLS segment
4613 // is aligned to give us room.
4614 if (this->type_ == elfcpp::PT_TLS)
4615 {
4616 uint64_t segment_align = this->maximum_alignment();
4617 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4618 this->memsz_ = align_address(this->memsz_, segment_align);
4619 }
75f65a3e
ILT
4620}
4621
7bf1f802
ILT
4622// Set the TLS offsets of the sections in the PT_TLS segment.
4623
4624void
4625Output_segment::set_tls_offsets()
4626{
4627 gold_assert(this->type_ == elfcpp::PT_TLS);
4628
22f0da72
ILT
4629 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4630 p != this->output_lists_[0].end();
7bf1f802
ILT
4631 ++p)
4632 (*p)->set_tls_offset(this->vaddr_);
4633}
4634
22f0da72 4635// Return the load address of the first section.
a445fddf
ILT
4636
4637uint64_t
4638Output_segment::first_section_load_address() const
4639{
22f0da72
ILT
4640 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4641 {
4642 const Output_data_list* pdl = &this->output_lists_[i];
4643 for (Output_data_list::const_iterator p = pdl->begin();
4644 p != pdl->end();
4645 ++p)
4646 {
4647 if ((*p)->is_section())
4648 return ((*p)->has_load_address()
4649 ? (*p)->load_address()
4650 : (*p)->address());
4651 }
4652 }
a445fddf
ILT
4653 gold_unreachable();
4654}
4655
75f65a3e
ILT
4656// Return the number of Output_sections in an Output_segment.
4657
4658unsigned int
4659Output_segment::output_section_count() const
4660{
22f0da72
ILT
4661 unsigned int ret = 0;
4662 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663 ret += this->output_section_count_list(&this->output_lists_[i]);
4664 return ret;
75f65a3e
ILT
4665}
4666
4667// Return the number of Output_sections in an Output_data_list.
4668
4669unsigned int
4670Output_segment::output_section_count_list(const Output_data_list* pdl) const
4671{
4672 unsigned int count = 0;
4673 for (Output_data_list::const_iterator p = pdl->begin();
4674 p != pdl->end();
4675 ++p)
4676 {
4677 if ((*p)->is_section())
4678 ++count;
4679 }
4680 return count;
a2fb1b05
ILT
4681}
4682
1c4f3631
ILT
4683// Return the section attached to the list segment with the lowest
4684// load address. This is used when handling a PHDRS clause in a
4685// linker script.
4686
4687Output_section*
4688Output_segment::section_with_lowest_load_address() const
4689{
4690 Output_section* found = NULL;
4691 uint64_t found_lma = 0;
22f0da72
ILT
4692 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4693 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4694 &found_lma);
1c4f3631
ILT
4695 return found;
4696}
4697
4698// Look through a list for a section with a lower load address.
4699
4700void
4701Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4702 Output_section** found,
4703 uint64_t* found_lma) const
4704{
4705 for (Output_data_list::const_iterator p = pdl->begin();
4706 p != pdl->end();
4707 ++p)
4708 {
4709 if (!(*p)->is_section())
4710 continue;
4711 Output_section* os = static_cast<Output_section*>(*p);
4712 uint64_t lma = (os->has_load_address()
4713 ? os->load_address()
4714 : os->address());
4715 if (*found == NULL || lma < *found_lma)
4716 {
4717 *found = os;
4718 *found_lma = lma;
4719 }
4720 }
4721}
4722
61ba1cf9
ILT
4723// Write the segment data into *OPHDR.
4724
4725template<int size, bool big_endian>
4726void
ead1e424 4727Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4728{
4729 ophdr->put_p_type(this->type_);
4730 ophdr->put_p_offset(this->offset_);
4731 ophdr->put_p_vaddr(this->vaddr_);
4732 ophdr->put_p_paddr(this->paddr_);
4733 ophdr->put_p_filesz(this->filesz_);
4734 ophdr->put_p_memsz(this->memsz_);
4735 ophdr->put_p_flags(this->flags_);
a445fddf 4736 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4737}
4738
4739// Write the section headers into V.
4740
4741template<int size, bool big_endian>
4742unsigned char*
16649710
ILT
4743Output_segment::write_section_headers(const Layout* layout,
4744 const Stringpool* secnamepool,
ead1e424 4745 unsigned char* v,
ca09d69a 4746 unsigned int* pshndx) const
5482377d 4747{
ead1e424
ILT
4748 // Every section that is attached to a segment must be attached to a
4749 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4750 // segments.
4751 if (this->type_ != elfcpp::PT_LOAD)
4752 return v;
4753
22f0da72
ILT
4754 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4755 {
4756 const Output_data_list* pdl = &this->output_lists_[i];
4757 v = this->write_section_headers_list<size, big_endian>(layout,
4758 secnamepool,
4759 pdl,
4760 v, pshndx);
4761 }
4762
61ba1cf9
ILT
4763 return v;
4764}
4765
4766template<int size, bool big_endian>
4767unsigned char*
16649710
ILT
4768Output_segment::write_section_headers_list(const Layout* layout,
4769 const Stringpool* secnamepool,
61ba1cf9 4770 const Output_data_list* pdl,
ead1e424 4771 unsigned char* v,
7d1a9ebb 4772 unsigned int* pshndx) const
61ba1cf9
ILT
4773{
4774 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4775 for (Output_data_list::const_iterator p = pdl->begin();
4776 p != pdl->end();
4777 ++p)
4778 {
4779 if ((*p)->is_section())
4780 {
5482377d 4781 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4782 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4783 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4784 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4785 v += shdr_size;
ead1e424 4786 ++*pshndx;
61ba1cf9
ILT
4787 }
4788 }
4789 return v;
4790}
4791
7d9e3d98
ILT
4792// Print the output sections to the map file.
4793
4794void
4795Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4796{
4797 if (this->type() != elfcpp::PT_LOAD)
4798 return;
22f0da72
ILT
4799 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4800 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4801}
4802
4803// Print an output section list to the map file.
4804
4805void
4806Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4807 const Output_data_list* pdl) const
4808{
4809 for (Output_data_list::const_iterator p = pdl->begin();
4810 p != pdl->end();
4811 ++p)
4812 (*p)->print_to_mapfile(mapfile);
4813}
4814
a2fb1b05
ILT
4815// Output_file methods.
4816
14144f39
ILT
4817Output_file::Output_file(const char* name)
4818 : name_(name),
61ba1cf9
ILT
4819 o_(-1),
4820 file_size_(0),
c420411f 4821 base_(NULL),
516cb3d0 4822 map_is_anonymous_(false),
88597d34 4823 map_is_allocated_(false),
516cb3d0 4824 is_temporary_(false)
61ba1cf9
ILT
4825{
4826}
4827
404c2abb 4828// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4829// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4830// NULL, open that file as the base for incremental linking, and
4831// copy its contents to the new output file. This routine can
4832// be called for incremental updates, in which case WRITABLE should
4833// be true, or by the incremental-dump utility, in which case
4834// WRITABLE should be false.
404c2abb
ILT
4835
4836bool
aa92d6ed 4837Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4838{
4839 // The name "-" means "stdout".
4840 if (strcmp(this->name_, "-") == 0)
4841 return false;
4842
aa92d6ed
CC
4843 bool use_base_file = base_name != NULL;
4844 if (!use_base_file)
4845 base_name = this->name_;
4846 else if (strcmp(base_name, this->name_) == 0)
4847 gold_fatal(_("%s: incremental base and output file name are the same"),
4848 base_name);
4849
404c2abb
ILT
4850 // Don't bother opening files with a size of zero.
4851 struct stat s;
aa92d6ed
CC
4852 if (::stat(base_name, &s) != 0)
4853 {
4854 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4855 return false;
4856 }
4857 if (s.st_size == 0)
4858 {
4859 gold_info(_("%s: incremental base file is empty"), base_name);
4860 return false;
4861 }
4862
4863 // If we're using a base file, we want to open it read-only.
4864 if (use_base_file)
4865 writable = false;
404c2abb 4866
aa92d6ed
CC
4867 int oflags = writable ? O_RDWR : O_RDONLY;
4868 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4869 if (o < 0)
aa92d6ed
CC
4870 {
4871 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4872 return false;
4873 }
4874
4875 // If the base file and the output file are different, open a
4876 // new output file and read the contents from the base file into
4877 // the newly-mapped region.
4878 if (use_base_file)
4879 {
4880 this->open(s.st_size);
4881 ssize_t len = ::read(o, this->base_, s.st_size);
4882 if (len < 0)
4883 {
4884 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4885 return false;
4886 }
4887 if (len < s.st_size)
4888 {
4889 gold_info(_("%s: file too short"), base_name);
4890 return false;
4891 }
4892 ::close(o);
4893 return true;
4894 }
4895
404c2abb
ILT
4896 this->o_ = o;
4897 this->file_size_ = s.st_size;
4898
aa92d6ed 4899 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4900 {
4901 release_descriptor(o, true);
4902 this->o_ = -1;
4903 this->file_size_ = 0;
4904 return false;
4905 }
4906
4907 return true;
4908}
4909
61ba1cf9
ILT
4910// Open the output file.
4911
a2fb1b05 4912void
61ba1cf9 4913Output_file::open(off_t file_size)
a2fb1b05 4914{
61ba1cf9
ILT
4915 this->file_size_ = file_size;
4916
4e9d8586
ILT
4917 // Unlink the file first; otherwise the open() may fail if the file
4918 // is busy (e.g. it's an executable that's currently being executed).
4919 //
4920 // However, the linker may be part of a system where a zero-length
4921 // file is created for it to write to, with tight permissions (gcc
4922 // 2.95 did something like this). Unlinking the file would work
4923 // around those permission controls, so we only unlink if the file
4924 // has a non-zero size. We also unlink only regular files to avoid
4925 // trouble with directories/etc.
4926 //
4927 // If we fail, continue; this command is merely a best-effort attempt
4928 // to improve the odds for open().
4929
42a1b686 4930 // We let the name "-" mean "stdout"
516cb3d0 4931 if (!this->is_temporary_)
42a1b686 4932 {
516cb3d0
ILT
4933 if (strcmp(this->name_, "-") == 0)
4934 this->o_ = STDOUT_FILENO;
4935 else
4936 {
4937 struct stat s;
6a89f575
CC
4938 if (::stat(this->name_, &s) == 0
4939 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4940 {
4941 if (s.st_size != 0)
4942 ::unlink(this->name_);
4943 else if (!parameters->options().relocatable())
4944 {
4945 // If we don't unlink the existing file, add execute
4946 // permission where read permissions already exist
4947 // and where the umask permits.
4948 int mask = ::umask(0);
4949 ::umask(mask);
4950 s.st_mode |= (s.st_mode & 0444) >> 2;
4951 ::chmod(this->name_, s.st_mode & ~mask);
4952 }
4953 }
516cb3d0 4954
8851ecca 4955 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4956 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4957 mode);
516cb3d0
ILT
4958 if (o < 0)
4959 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4960 this->o_ = o;
4961 }
42a1b686 4962 }
61ba1cf9 4963
27bc2bce
ILT
4964 this->map();
4965}
4966
4967// Resize the output file.
4968
4969void
4970Output_file::resize(off_t file_size)
4971{
c420411f
ILT
4972 // If the mmap is mapping an anonymous memory buffer, this is easy:
4973 // just mremap to the new size. If it's mapping to a file, we want
4974 // to unmap to flush to the file, then remap after growing the file.
4975 if (this->map_is_anonymous_)
4976 {
88597d34
ILT
4977 void* base;
4978 if (!this->map_is_allocated_)
4979 {
4980 base = ::mremap(this->base_, this->file_size_, file_size,
4981 MREMAP_MAYMOVE);
4982 if (base == MAP_FAILED)
4983 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4984 }
4985 else
4986 {
4987 base = realloc(this->base_, file_size);
4988 if (base == NULL)
4989 gold_nomem();
4990 if (file_size > this->file_size_)
4991 memset(static_cast<char*>(base) + this->file_size_, 0,
4992 file_size - this->file_size_);
4993 }
c420411f
ILT
4994 this->base_ = static_cast<unsigned char*>(base);
4995 this->file_size_ = file_size;
4996 }
4997 else
4998 {
4999 this->unmap();
5000 this->file_size_ = file_size;
aa92d6ed 5001 if (!this->map_no_anonymous(true))
fdcac5af 5002 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5003 }
27bc2bce
ILT
5004}
5005
404c2abb
ILT
5006// Map an anonymous block of memory which will later be written to the
5007// file. Return whether the map succeeded.
26736d8e 5008
404c2abb 5009bool
26736d8e
ILT
5010Output_file::map_anonymous()
5011{
404c2abb
ILT
5012 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5013 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5014 if (base == MAP_FAILED)
404c2abb 5015 {
88597d34
ILT
5016 base = malloc(this->file_size_);
5017 if (base == NULL)
5018 return false;
5019 memset(base, 0, this->file_size_);
5020 this->map_is_allocated_ = true;
404c2abb 5021 }
88597d34
ILT
5022 this->base_ = static_cast<unsigned char*>(base);
5023 this->map_is_anonymous_ = true;
5024 return true;
26736d8e
ILT
5025}
5026
404c2abb 5027// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5028// If WRITABLE is true, map with write access.
27bc2bce 5029
404c2abb 5030bool
aa92d6ed 5031Output_file::map_no_anonymous(bool writable)
27bc2bce 5032{
c420411f 5033 const int o = this->o_;
61ba1cf9 5034
c420411f
ILT
5035 // If the output file is not a regular file, don't try to mmap it;
5036 // instead, we'll mmap a block of memory (an anonymous buffer), and
5037 // then later write the buffer to the file.
5038 void* base;
5039 struct stat statbuf;
42a1b686
ILT
5040 if (o == STDOUT_FILENO || o == STDERR_FILENO
5041 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5042 || !S_ISREG(statbuf.st_mode)
5043 || this->is_temporary_)
404c2abb
ILT
5044 return false;
5045
5046 // Ensure that we have disk space available for the file. If we
5047 // don't do this, it is possible that we will call munmap, close,
5048 // and exit with dirty buffers still in the cache with no assigned
5049 // disk blocks. If the disk is out of space at that point, the
5050 // output file will wind up incomplete, but we will have already
5051 // exited. The alternative to fallocate would be to use fdatasync,
5052 // but that would be a more significant performance hit.
aa92d6ed 5053 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
404c2abb
ILT
5054 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5055
5056 // Map the file into memory.
aa92d6ed
CC
5057 int prot = PROT_READ;
5058 if (writable)
5059 prot |= PROT_WRITE;
5060 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5061
5062 // The mmap call might fail because of file system issues: the file
5063 // system might not support mmap at all, or it might not support
5064 // mmap with PROT_WRITE.
61ba1cf9 5065 if (base == MAP_FAILED)
404c2abb
ILT
5066 return false;
5067
5068 this->map_is_anonymous_ = false;
61ba1cf9 5069 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5070 return true;
5071}
5072
5073// Map the file into memory.
5074
5075void
5076Output_file::map()
5077{
aa92d6ed 5078 if (this->map_no_anonymous(true))
404c2abb
ILT
5079 return;
5080
5081 // The mmap call might fail because of file system issues: the file
5082 // system might not support mmap at all, or it might not support
5083 // mmap with PROT_WRITE. I'm not sure which errno values we will
5084 // see in all cases, so if the mmap fails for any reason and we
5085 // don't care about file contents, try for an anonymous map.
5086 if (this->map_anonymous())
5087 return;
5088
5089 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5090 this->name_, static_cast<unsigned long>(this->file_size_),
5091 strerror(errno));
61ba1cf9
ILT
5092}
5093
c420411f 5094// Unmap the file from memory.
61ba1cf9
ILT
5095
5096void
c420411f 5097Output_file::unmap()
61ba1cf9 5098{
88597d34
ILT
5099 if (this->map_is_anonymous_)
5100 {
5101 // We've already written out the data, so there is no reason to
5102 // waste time unmapping or freeing the memory.
5103 }
5104 else
5105 {
5106 if (::munmap(this->base_, this->file_size_) < 0)
5107 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5108 }
61ba1cf9 5109 this->base_ = NULL;
c420411f
ILT
5110}
5111
5112// Close the output file.
5113
5114void
5115Output_file::close()
5116{
5117 // If the map isn't file-backed, we need to write it now.
516cb3d0 5118 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5119 {
5120 size_t bytes_to_write = this->file_size_;
6d1e3092 5121 size_t offset = 0;
c420411f
ILT
5122 while (bytes_to_write > 0)
5123 {
6d1e3092
CD
5124 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5125 bytes_to_write);
c420411f
ILT
5126 if (bytes_written == 0)
5127 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5128 else if (bytes_written < 0)
5129 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5130 else
6d1e3092
CD
5131 {
5132 bytes_to_write -= bytes_written;
5133 offset += bytes_written;
5134 }
c420411f
ILT
5135 }
5136 }
5137 this->unmap();
61ba1cf9 5138
42a1b686 5139 // We don't close stdout or stderr
516cb3d0
ILT
5140 if (this->o_ != STDOUT_FILENO
5141 && this->o_ != STDERR_FILENO
5142 && !this->is_temporary_)
42a1b686
ILT
5143 if (::close(this->o_) < 0)
5144 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5145 this->o_ = -1;
a2fb1b05
ILT
5146}
5147
5148// Instantiate the templates we need. We could use the configure
5149// script to restrict this to only the ones for implemented targets.
5150
193a53d9 5151#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5152template
5153off_t
5154Output_section::add_input_section<32, false>(
6e9ba2ca 5155 Layout* layout,
6fa2a40b 5156 Sized_relobj_file<32, false>* object,
2ea97941 5157 unsigned int shndx,
a2fb1b05 5158 const char* secname,
730cdc88 5159 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5160 unsigned int reloc_shndx,
5161 bool have_sections_script);
193a53d9 5162#endif
a2fb1b05 5163
193a53d9 5164#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5165template
5166off_t
5167Output_section::add_input_section<32, true>(
6e9ba2ca 5168 Layout* layout,
6fa2a40b 5169 Sized_relobj_file<32, true>* object,
2ea97941 5170 unsigned int shndx,
a2fb1b05 5171 const char* secname,
730cdc88 5172 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5173 unsigned int reloc_shndx,
5174 bool have_sections_script);
193a53d9 5175#endif
a2fb1b05 5176
193a53d9 5177#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5178template
5179off_t
5180Output_section::add_input_section<64, false>(
6e9ba2ca 5181 Layout* layout,
6fa2a40b 5182 Sized_relobj_file<64, false>* object,
2ea97941 5183 unsigned int shndx,
a2fb1b05 5184 const char* secname,
730cdc88 5185 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5186 unsigned int reloc_shndx,
5187 bool have_sections_script);
193a53d9 5188#endif
a2fb1b05 5189
193a53d9 5190#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5191template
5192off_t
5193Output_section::add_input_section<64, true>(
6e9ba2ca 5194 Layout* layout,
6fa2a40b 5195 Sized_relobj_file<64, true>* object,
2ea97941 5196 unsigned int shndx,
a2fb1b05 5197 const char* secname,
730cdc88 5198 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5199 unsigned int reloc_shndx,
5200 bool have_sections_script);
193a53d9 5201#endif
a2fb1b05 5202
bbbfea06
CC
5203#ifdef HAVE_TARGET_32_LITTLE
5204template
5205class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5206#endif
5207
5208#ifdef HAVE_TARGET_32_BIG
5209template
5210class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5211#endif
5212
5213#ifdef HAVE_TARGET_64_LITTLE
5214template
5215class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5216#endif
5217
5218#ifdef HAVE_TARGET_64_BIG
5219template
5220class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5221#endif
5222
5223#ifdef HAVE_TARGET_32_LITTLE
5224template
5225class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5226#endif
5227
5228#ifdef HAVE_TARGET_32_BIG
5229template
5230class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5231#endif
5232
5233#ifdef HAVE_TARGET_64_LITTLE
5234template
5235class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5236#endif
5237
5238#ifdef HAVE_TARGET_64_BIG
5239template
5240class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5241#endif
5242
5243#ifdef HAVE_TARGET_32_LITTLE
5244template
5245class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5246#endif
5247
5248#ifdef HAVE_TARGET_32_BIG
5249template
5250class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5251#endif
5252
5253#ifdef HAVE_TARGET_64_LITTLE
5254template
5255class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5256#endif
5257
5258#ifdef HAVE_TARGET_64_BIG
5259template
5260class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5261#endif
5262
5263#ifdef HAVE_TARGET_32_LITTLE
5264template
5265class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5266#endif
5267
5268#ifdef HAVE_TARGET_32_BIG
5269template
5270class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5271#endif
5272
5273#ifdef HAVE_TARGET_64_LITTLE
5274template
5275class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5276#endif
5277
5278#ifdef HAVE_TARGET_64_BIG
5279template
5280class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5281#endif
5282
193a53d9 5283#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5284template
5285class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5286#endif
c06b7b0b 5287
193a53d9 5288#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5289template
5290class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5291#endif
c06b7b0b 5292
193a53d9 5293#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5294template
5295class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5296#endif
c06b7b0b 5297
193a53d9 5298#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5299template
5300class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5301#endif
c06b7b0b 5302
193a53d9 5303#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5304template
5305class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5306#endif
c06b7b0b 5307
193a53d9 5308#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5309template
5310class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5311#endif
c06b7b0b 5312
193a53d9 5313#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5314template
5315class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5316#endif
c06b7b0b 5317
193a53d9 5318#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5319template
5320class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5321#endif
c06b7b0b 5322
193a53d9 5323#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5324template
5325class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5326#endif
c06b7b0b 5327
193a53d9 5328#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5329template
5330class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5331#endif
c06b7b0b 5332
193a53d9 5333#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5334template
5335class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5336#endif
c06b7b0b 5337
193a53d9 5338#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5339template
5340class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5341#endif
c06b7b0b 5342
193a53d9 5343#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5344template
5345class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5346#endif
c06b7b0b 5347
193a53d9 5348#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5349template
5350class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5351#endif
c06b7b0b 5352
193a53d9 5353#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5354template
5355class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5356#endif
c06b7b0b 5357
193a53d9 5358#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5359template
5360class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5361#endif
c06b7b0b 5362
6a74a719
ILT
5363#ifdef HAVE_TARGET_32_LITTLE
5364template
5365class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5366#endif
5367
5368#ifdef HAVE_TARGET_32_BIG
5369template
5370class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5371#endif
5372
5373#ifdef HAVE_TARGET_64_LITTLE
5374template
5375class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5376#endif
5377
5378#ifdef HAVE_TARGET_64_BIG
5379template
5380class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5381#endif
5382
5383#ifdef HAVE_TARGET_32_LITTLE
5384template
5385class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5386#endif
5387
5388#ifdef HAVE_TARGET_32_BIG
5389template
5390class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5391#endif
5392
5393#ifdef HAVE_TARGET_64_LITTLE
5394template
5395class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5396#endif
5397
5398#ifdef HAVE_TARGET_64_BIG
5399template
5400class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5401#endif
5402
5403#ifdef HAVE_TARGET_32_LITTLE
5404template
5405class Output_data_group<32, false>;
5406#endif
5407
5408#ifdef HAVE_TARGET_32_BIG
5409template
5410class Output_data_group<32, true>;
5411#endif
5412
5413#ifdef HAVE_TARGET_64_LITTLE
5414template
5415class Output_data_group<64, false>;
5416#endif
5417
5418#ifdef HAVE_TARGET_64_BIG
5419template
5420class Output_data_group<64, true>;
5421#endif
5422
193a53d9 5423#ifdef HAVE_TARGET_32_LITTLE
ead1e424 5424template
dbe717ef 5425class Output_data_got<32, false>;
193a53d9 5426#endif
ead1e424 5427
193a53d9 5428#ifdef HAVE_TARGET_32_BIG
ead1e424 5429template
dbe717ef 5430class Output_data_got<32, true>;
193a53d9 5431#endif
ead1e424 5432
193a53d9 5433#ifdef HAVE_TARGET_64_LITTLE
ead1e424 5434template
dbe717ef 5435class Output_data_got<64, false>;
193a53d9 5436#endif
ead1e424 5437
193a53d9 5438#ifdef HAVE_TARGET_64_BIG
ead1e424 5439template
dbe717ef 5440class Output_data_got<64, true>;
193a53d9 5441#endif
ead1e424 5442
a2fb1b05 5443} // End namespace gold.
This page took 0.516108 seconds and 4 git commands to generate.