Rename 32- and 64-bit Intel files from "i386" to "x86"
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
4b95cf5c 3// Copyright (C) 2006-2014 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
d0a9ace3
ILT
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
a2fb1b05
ILT
119namespace gold
120{
121
7c0640fa
CC
122// A wrapper around posix_fallocate. If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly. If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137#endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141}
142
a3ad94ed
ILT
143// Output_data variables.
144
27bc2bce 145bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 146
a2fb1b05
ILT
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
730cdc88
ILT
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
8851ecca
ILT
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
730cdc88
ILT
160}
161
75f65a3e
ILT
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
730cdc88 165Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
166{
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
a3ad94ed 172 gold_unreachable();
75f65a3e
ILT
173}
174
75f65a3e
ILT
175// Output_section_header methods. This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
16649710
ILT
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
6a74a719 181 const Layout::Section_list* section_list,
16649710 182 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
9025d29d 185 : layout_(layout),
75f65a3e 186 segment_list_(segment_list),
6a74a719 187 section_list_(section_list),
a3ad94ed 188 unattached_section_list_(unattached_section_list),
d491d34e
ILT
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
75f65a3e 198{
61ba1cf9
ILT
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
8851ecca 201 if (!parameters->options().relocatable())
6a74a719 202 {
20e6d0d6
DK
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
6a74a719
ILT
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
20e6d0d6
DK
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
6a74a719
ILT
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
20e6d0d6 219 count += this->unattached_section_list_->size();
75f65a3e 220
8851ecca 221 const int size = parameters->target().get_size();
75f65a3e
ILT
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
a3ad94ed 228 gold_unreachable();
75f65a3e 229
20e6d0d6 230 return count * shdr_size;
75f65a3e
ILT
231}
232
61ba1cf9
ILT
233// Write out the section headers.
234
75f65a3e 235void
61ba1cf9 236Output_section_headers::do_write(Output_file* of)
a2fb1b05 237{
8851ecca 238 switch (parameters->size_and_endianness())
61ba1cf9 239 {
9025d29d 240#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
9025d29d 249#endif
9025d29d 250#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
9025d29d 254#endif
8851ecca
ILT
255#ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259#endif
260 default:
261 gold_unreachable();
61ba1cf9 262 }
61ba1cf9
ILT
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
d491d34e
ILT
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
5696ab0b
ILT
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
61ba1cf9
ILT
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
6a74a719 305 unsigned int shndx = 1;
8851ecca 306 if (!parameters->options().relocatable())
6a74a719
ILT
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
a3ad94ed 337 for (Layout::Section_list::const_iterator p =
16649710
ILT
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
61ba1cf9
ILT
340 ++p)
341 {
6a74a719
ILT
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 345 && parameters->options().relocatable())
6a74a719 346 continue;
a3ad94ed 347 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 350 v += shdr_size;
ead1e424 351 ++shndx;
61ba1cf9
ILT
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
355}
356
54dc6425
ILT
357// Output_segment_header methods.
358
61ba1cf9 359Output_segment_headers::Output_segment_headers(
61ba1cf9 360 const Layout::Segment_list& segment_list)
9025d29d 361 : segment_list_(segment_list)
61ba1cf9 362{
cdc29364 363 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
364}
365
54dc6425 366void
61ba1cf9 367Output_segment_headers::do_write(Output_file* of)
75f65a3e 368{
8851ecca 369 switch (parameters->size_and_endianness())
61ba1cf9 370 {
9025d29d 371#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
9025d29d 380#endif
9025d29d 381#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
9025d29d 385#endif
8851ecca
ILT
386#ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390#endif
391 default:
392 gold_unreachable();
61ba1cf9 393 }
61ba1cf9
ILT
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 402 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
a445fddf
ILT
415 gold_assert(v - view == all_phdrs_size);
416
61ba1cf9 417 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
418}
419
20e6d0d6
DK
420off_t
421Output_segment_headers::do_size() const
422{
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433}
434
75f65a3e
ILT
435// Output_file_header methods.
436
cc84c10b 437Output_file_header::Output_file_header(Target* target,
75f65a3e 438 const Symbol_table* symtab,
a10ae760 439 const Output_segment_headers* osh)
9025d29d 440 : target_(target),
75f65a3e 441 symtab_(symtab),
61ba1cf9 442 segment_header_(osh),
75f65a3e 443 section_header_(NULL),
a10ae760 444 shstrtab_(NULL)
75f65a3e 445{
20e6d0d6 446 this->set_data_size(this->do_size());
75f65a3e
ILT
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454{
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
61ba1cf9 462Output_file_header::do_write(Output_file* of)
54dc6425 463{
27bc2bce
ILT
464 gold_assert(this->offset() == 0);
465
8851ecca 466 switch (parameters->size_and_endianness())
61ba1cf9 467 {
9025d29d 468#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
9025d29d 477#endif
9025d29d 478#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
9025d29d 482#endif
8851ecca
ILT
483#ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487#endif
488 default:
489 gold_unreachable();
61ba1cf9 490 }
61ba1cf9
ILT
491}
492
cc643b88 493// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
a3ad94ed 499 gold_assert(this->offset() == 0);
61ba1cf9
ILT
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
a3ad94ed 516 gold_unreachable();
61ba1cf9
ILT
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
8851ecca 524 if (parameters->options().relocatable())
61ba1cf9 525 e_type = elfcpp::ET_REL;
374ad285 526 else if (parameters->options().output_is_position_independent())
436ca963 527 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
d391083d 535 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 536
6a74a719
ILT
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
61ba1cf9 542 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 543 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
6a74a719
ILT
559 }
560
61ba1cf9 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 576
36959681
ILT
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
cc84c10b 579 this->target_->adjust_elf_header(view, ehdr_size);
36959681 580
61ba1cf9 581 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
582}
583
a10ae760 584// Return the value to use for the entry address.
d391083d
ILT
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
a10ae760 590 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca 591 && !parameters->options().relocatable()
eb426534 592 && !parameters->options().shared());
a10ae760 593 const char* entry = parameters->entry();
2ea97941 594 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
2ea97941 602 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
2ea97941 610 v = strtoull(entry, &endptr, 0);
d391083d
ILT
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
2ea97941 614 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
615 v = 0;
616 }
617 }
618
619 return v;
620}
621
20e6d0d6
DK
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634}
635
dbe717ef
ILT
636// Output_data_const methods.
637
638void
a3ad94ed 639Output_data_const::do_write(Output_file* of)
dbe717ef 640{
a3ad94ed
ILT
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
650}
651
652// Output_section_data methods.
653
16649710
ILT
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
dbe717ef
ILT
666unsigned int
667Output_section_data::do_out_shndx() const
668{
a3ad94ed 669 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
670 return this->output_section_->out_shndx();
671}
672
759b1a24
ILT
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
2ea97941 677Output_section_data::set_addralign(uint64_t addralign)
759b1a24 678{
2ea97941 679 this->addralign_ = addralign;
759b1a24 680 if (this->output_section_ != NULL
2ea97941
ILT
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
759b1a24
ILT
683}
684
a3ad94ed
ILT
685// Output_data_strtab methods.
686
27bc2bce 687// Set the final data size.
a3ad94ed
ILT
688
689void
27bc2bce 690Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
691{
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701 this->strtab_->write(of, this->offset());
702}
703
c06b7b0b
ILT
704// Output_reloc methods.
705
7bf1f802
ILT
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
e8c846c3 713 Address address,
0da6fa6c 714 bool is_relative,
13cf9988
DM
715 bool is_symbolless,
716 bool use_plt_offset)
7bf1f802 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 718 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 720{
dceae3c1
ILT
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
7bf1f802
ILT
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
dceae3c1
ILT
725 if (dynamic)
726 this->set_needs_dynsym_index();
7bf1f802
ILT
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
ef9beddf 733 Sized_relobj<size, big_endian>* relobj,
7bf1f802 734 unsigned int shndx,
e8c846c3 735 Address address,
0da6fa6c 736 bool is_relative,
13cf9988
DM
737 bool is_symbolless,
738 bool use_plt_offset)
7bf1f802 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 740 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
742{
743 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
7bf1f802
ILT
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
dceae3c1
ILT
748 if (dynamic)
749 this->set_needs_dynsym_index();
7bf1f802
ILT
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
e8c846c3 760 Address address,
2ea97941 761 bool is_relative,
0da6fa6c 762 bool is_symbolless,
397b129b
CC
763 bool is_section_symbol,
764 bool use_plt_offset)
7bf1f802 765 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 766 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
7bf1f802
ILT
769{
770 gold_assert(local_sym_index != GSYM_CODE
eb426534 771 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
7bf1f802
ILT
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
dceae3c1
ILT
776 if (dynamic)
777 this->set_needs_dynsym_index();
7bf1f802
ILT
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
e8c846c3 786 Address address,
2ea97941 787 bool is_relative,
0da6fa6c 788 bool is_symbolless,
397b129b
CC
789 bool is_section_symbol,
790 bool use_plt_offset)
7bf1f802 791 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 792 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
7bf1f802
ILT
795{
796 gold_assert(local_sym_index != GSYM_CODE
eb426534 797 && local_sym_index != INVALID_CODE);
7bf1f802 798 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
7bf1f802
ILT
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
dceae3c1
ILT
803 if (dynamic)
804 this->set_needs_dynsym_index();
7bf1f802
ILT
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
703d02da
AM
814 Address address,
815 bool is_relative)
7bf1f802 816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 817 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 819{
dceae3c1
ILT
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
7bf1f802
ILT
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
dceae3c1
ILT
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
7bf1f802
ILT
828}
829
830template<bool dynamic, int size, bool big_endian>
831Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
ef9beddf 834 Sized_relobj<size, big_endian>* relobj,
7bf1f802 835 unsigned int shndx,
703d02da
AM
836 Address address,
837 bool is_relative)
7bf1f802 838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 839 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
841{
842 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
7bf1f802
ILT
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
dceae3c1
ILT
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851}
852
ec661b9d 853// An absolute or relative relocation.
e291e7b9
ILT
854
855template<bool dynamic, int size, bool big_endian>
856Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
ec661b9d
AM
859 Address address,
860 bool is_relative)
e291e7b9 861 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 862 is_relative_(is_relative), is_symbolless_(false),
397b129b 863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
864{
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869}
870
871template<bool dynamic, int size, bool big_endian>
872Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
ec661b9d
AM
876 Address address,
877 bool is_relative)
e291e7b9 878 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 879 is_relative_(is_relative), is_symbolless_(false),
397b129b 880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
881{
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887}
888
889// A target specific relocation.
890
891template<bool dynamic, int size, bool big_endian>
892Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 898 is_relative_(false), is_symbolless_(false),
397b129b 899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
900{
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905}
906
907template<bool dynamic, int size, bool big_endian>
908Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 915 is_relative_(false), is_symbolless_(false),
397b129b 916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
917{
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923}
924
dceae3c1
ILT
925// Record that we need a dynamic symbol index for this relocation.
926
927template<bool dynamic, int size, bool big_endian>
928void
929Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930set_needs_dynsym_index()
931{
0da6fa6c 932 if (this->is_symbolless_)
dceae3c1
ILT
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
e291e7b9
ILT
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
dceae3c1
ILT
951 case 0:
952 break;
953
954 default:
955 {
eb426534 956 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
eb426534
RM
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
964 }
965 break;
966 }
7bf1f802
ILT
967}
968
c06b7b0b
ILT
969// Get the symbol index of a relocation.
970
971template<bool dynamic, int size, bool big_endian>
972unsigned int
973Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975{
976 unsigned int index;
0da6fa6c
DM
977 if (this->is_symbolless_)
978 return 0;
c06b7b0b
ILT
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
a3ad94ed 982 gold_unreachable();
c06b7b0b
ILT
983
984 case GSYM_CODE:
5a6f7e2d 985 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
986 index = 0;
987 else if (dynamic)
5a6f7e2d 988 index = this->u1_.gsym->dynsym_index();
c06b7b0b 989 else
5a6f7e2d 990 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
5a6f7e2d 995 index = this->u1_.os->dynsym_index();
c06b7b0b 996 else
5a6f7e2d 997 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
998 break;
999
e291e7b9
ILT
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
436ca963
ILT
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
c06b7b0b 1010 default:
dceae3c1 1011 {
eb426534 1012 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
eb426534
RM
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
dceae3c1 1032 }
c06b7b0b
ILT
1033 break;
1034 }
a3ad94ed 1035 gold_assert(index != -1U);
c06b7b0b
ILT
1036 return index;
1037}
1038
624f8810
ILT
1039// For a local section symbol, get the address of the offset ADDEND
1040// within the input section.
dceae3c1
ILT
1041
1042template<bool dynamic, int size, bool big_endian>
ef9beddf 1043typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1044Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1045 local_section_offset(Addend addend) const
dceae3c1 1046{
624f8810 1047 gold_assert(this->local_sym_index_ != GSYM_CODE
eb426534 1048 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1049 && this->local_sym_index_ != TARGET_CODE
eb426534 1050 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1051 && this->local_sym_index_ != 0
eb426534 1052 && this->is_section_symbol_);
dceae3c1 1053 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1054 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1055 gold_assert(os != NULL);
ef9beddf 1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1057 if (offset != invalid_address)
624f8810
ILT
1058 return offset + addend;
1059 // This is a merge section.
6fa2a40b
CC
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
eff45813 1064 gold_assert(offset != invalid_address);
dceae3c1
ILT
1065 return offset;
1066}
1067
d98bc257 1068// Get the output address of a relocation.
c06b7b0b
ILT
1069
1070template<bool dynamic, int size, bool big_endian>
a984ee1d 1071typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1072Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1073{
a3ad94ed 1074 Address address = this->address_;
5a6f7e2d
ILT
1075 if (this->shndx_ != INVALID_CODE)
1076 {
ef9beddf 1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1078 gold_assert(os != NULL);
ef9beddf 1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1080 if (off != invalid_address)
730cdc88
ILT
1081 address += os->address() + off;
1082 else
1083 {
6fa2a40b
CC
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
eff45813 1088 gold_assert(address != invalid_address);
730cdc88 1089 }
5a6f7e2d
ILT
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
d98bc257
ILT
1093 return address;
1094}
1095
1096// Write out the offset and info fields of a Rel or Rela relocation
1097// entry.
1098
1099template<bool dynamic, int size, bool big_endian>
1100template<typename Write_rel>
1101void
1102Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104{
1105 wr->put_r_offset(this->get_address());
0da6fa6c 1106 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1108}
1109
1110// Write out a Rel relocation.
1111
1112template<bool dynamic, int size, bool big_endian>
1113void
1114Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116{
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119}
1120
e8c846c3
ILT
1121// Get the value of the symbol referred to by a Rel relocation.
1122
1123template<bool dynamic, int size, bool big_endian>
1124typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1125Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1126 Addend addend) const
e8c846c3
ILT
1127{
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988 1132 if (this->use_plt_offset_ && sym->has_plt_offset())
19fec8c1 1133 return parameters->target().plt_address_for_global(sym);
13cf9988
DM
1134 else
1135 return sym->value() + addend;
e8c846c3 1136 }
703d02da
AM
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
eb426534 1143 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1144 && this->local_sym_index_ != 0
eb426534 1145 && !this->is_section_symbol_);
d1f003c6 1146 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
397b129b 1150 if (this->use_plt_offset_)
19fec8c1 1151 return parameters->target().plt_address_for_local(relobj, lsi);
6fa2a40b
CC
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
e8c846c3
ILT
1154}
1155
d98bc257
ILT
1156// Reloc comparison. This function sorts the dynamic relocs for the
1157// benefit of the dynamic linker. First we sort all relative relocs
1158// to the front. Among relative relocs, we sort by output address.
1159// Among non-relative relocs, we sort by symbol index, then by output
1160// address.
1161
1162template<bool dynamic, int size, bool big_endian>
1163int
1164Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167{
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205}
1206
c06b7b0b
ILT
1207// Write out a Rela relocation.
1208
1209template<bool dynamic, int size, bool big_endian>
1210void
1211Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213{
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
e8c846c3 1216 Addend addend = this->addend_;
e291e7b9
ILT
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
0da6fa6c 1220 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
624f8810 1223 addend = this->rel_.local_section_offset(addend);
e8c846c3 1224 orel.put_r_addend(addend);
c06b7b0b
ILT
1225}
1226
1227// Output_data_reloc_base methods.
1228
16649710
ILT
1229// Adjust the output section.
1230
1231template<int sh_type, bool dynamic, int size, bool big_endian>
1232void
1233Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235{
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
7223e9ca
ILT
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
16649710 1248 os->set_should_link_to_symtab();
7223e9ca
ILT
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
16649710
ILT
1253}
1254
c06b7b0b
ILT
1255// Write out relocation data.
1256
1257template<int sh_type, bool dynamic, int size, bool big_endian>
1258void
1259Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261{
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
3a44184e 1266 if (this->sort_relocs())
d98bc257
ILT
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
c06b7b0b
ILT
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
a3ad94ed 1282 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288}
1289
6a74a719
ILT
1290// Class Output_relocatable_relocs.
1291
1292template<int sh_type, int size, bool big_endian>
1293void
1294Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295{
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298}
1299
1300// class Output_data_group.
1301
1302template<int size, bool big_endian>
1303Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1304 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1305 section_size_type entry_count,
8825ac63
ILT
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1308 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1309 relobj_(relobj),
1310 flags_(flags)
6a74a719 1311{
8825ac63 1312 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1313}
1314
1315// Write out the section group, which means translating the section
1316// indexes to apply to the output file.
1317
1318template<int size, bool big_endian>
1319void
1320Output_data_group<size, big_endian>::do_write(Output_file* of)
1321{
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
6a74a719
ILT
1334 ++p, ++contents)
1335 {
ef9beddf 1336 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
8825ac63 1357 this->input_shndxes_.clear();
6a74a719
ILT
1358}
1359
dbe717ef 1360// Output_data_got::Got_entry methods.
ead1e424
ILT
1361
1362// Write out the entry.
1363
d77a0555 1364template<int got_size, bool big_endian>
ead1e424 1365void
d77a0555 1366Output_data_got<got_size, big_endian>::Got_entry::write(
bd73a62d
AM
1367 unsigned int got_indx,
1368 unsigned char* pov) const
ead1e424
ILT
1369{
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
e8c846c3
ILT
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
ead1e424 1379 Symbol* gsym = this->u_.gsym;
bd73a62d 1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
19fec8c1 1381 val = parameters->target().plt_address_for_global(gsym);
7223e9ca
ILT
1382 else
1383 {
d77a0555
ILT
1384 switch (parameters->size_and_endianness())
1385 {
1386#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398#endif
1399#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408#endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
bd73a62d
AM
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
7223e9ca 1416 }
ead1e424
ILT
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
4829d394
CC
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
eb426534 1427 return;
4829d394
CC
1428 val = this->u_.constant;
1429 break;
1430
ead1e424 1431 default:
d1f003c6 1432 {
d77a0555 1433 const Relobj* object = this->u_.object;
eb426534 1434 const unsigned int lsi = this->local_sym_index_;
d77a0555 1435 bool is_tls = object->local_is_tls(lsi);
bd73a62d 1436 if (this->use_plt_or_tls_offset_ && !is_tls)
19fec8c1 1437 val = parameters->target().plt_address_for_local(object, lsi);
bd73a62d
AM
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
d1f003c6 1446 }
e727fa71 1447 break;
ead1e424
ILT
1448 }
1449
d77a0555 1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
ead1e424
ILT
1451}
1452
dbe717ef 1453// Output_data_got methods.
ead1e424 1454
dbe717ef
ILT
1455// Add an entry for a global symbol to the GOT. This returns true if
1456// this is a new GOT entry, false if the symbol already had a GOT
1457// entry.
1458
d77a0555 1459template<int got_size, bool big_endian>
dbe717ef 1460bool
d77a0555 1461Output_data_got<got_size, big_endian>::add_global(
0a65a3a7
CC
1462 Symbol* gsym,
1463 unsigned int got_type)
ead1e424 1464{
0a65a3a7 1465 if (gsym->has_got_offset(got_type))
dbe717ef 1466 return false;
ead1e424 1467
4829d394
CC
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1470 return true;
1471}
1472
1473// Like add_global, but use the PLT offset.
1474
d77a0555 1475template<int got_size, bool big_endian>
7223e9ca 1476bool
d77a0555
ILT
1477Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
7223e9ca
ILT
1479{
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
4829d394
CC
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1485 return true;
1486}
ead1e424 1487
7bf1f802
ILT
1488// Add an entry for a global symbol to the GOT, and add a dynamic
1489// relocation of type R_TYPE for the GOT entry.
7223e9ca 1490
d77a0555 1491template<int got_size, bool big_endian>
7bf1f802 1492void
d77a0555 1493Output_data_got<got_size, big_endian>::add_global_with_rel(
7bf1f802 1494 Symbol* gsym,
0a65a3a7 1495 unsigned int got_type,
83896202 1496 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1497 unsigned int r_type)
1498{
0a65a3a7 1499 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1500 return;
1501
4829d394 1502 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1503 gsym->set_got_offset(got_type, got_offset);
83896202 1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1505}
1506
0a65a3a7
CC
1507// Add a pair of entries for a global symbol to the GOT, and add
1508// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509// If R_TYPE_2 == 0, add the second entry with no relocation.
d77a0555 1510template<int got_size, bool big_endian>
7bf1f802 1511void
d77a0555 1512Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
0a65a3a7
CC
1513 Symbol* gsym,
1514 unsigned int got_type,
83896202 1515 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
7bf1f802 1518{
0a65a3a7 1519 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1520 return;
1521
4829d394 1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1523 gsym->set_got_offset(got_type, got_offset);
83896202 1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1525
0a65a3a7 1526 if (r_type_2 != 0)
83896202 1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
d77a0555 1528 got_offset + got_size / 8, 0);
7bf1f802
ILT
1529}
1530
0a65a3a7
CC
1531// Add an entry for a local symbol to the GOT. This returns true if
1532// this is a new GOT entry, false if the symbol already has a GOT
1533// entry.
07f397ab 1534
d77a0555 1535template<int got_size, bool big_endian>
07f397ab 1536bool
d77a0555 1537Output_data_got<got_size, big_endian>::add_local(
83896202 1538 Relobj* object,
0a65a3a7
CC
1539 unsigned int symndx,
1540 unsigned int got_type)
07f397ab 1541{
0a65a3a7 1542 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1543 return false;
1544
4829d394
CC
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1548 return true;
1549}
1550
1551// Like add_local, but use the PLT offset.
1552
d77a0555 1553template<int got_size, bool big_endian>
7223e9ca 1554bool
d77a0555 1555Output_data_got<got_size, big_endian>::add_local_plt(
83896202 1556 Relobj* object,
7223e9ca
ILT
1557 unsigned int symndx,
1558 unsigned int got_type)
1559{
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
4829d394
CC
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1566 return true;
1567}
1568
0a65a3a7
CC
1569// Add an entry for a local symbol to the GOT, and add a dynamic
1570// relocation of type R_TYPE for the GOT entry.
7223e9ca 1571
d77a0555 1572template<int got_size, bool big_endian>
7bf1f802 1573void
d77a0555 1574Output_data_got<got_size, big_endian>::add_local_with_rel(
83896202 1575 Relobj* object,
0a65a3a7
CC
1576 unsigned int symndx,
1577 unsigned int got_type,
83896202 1578 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1579 unsigned int r_type)
1580{
0a65a3a7 1581 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1582 return;
1583
4829d394 1584 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1585 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1587}
1588
0a65a3a7 1589// Add a pair of entries for a local symbol to the GOT, and add
bd73a62d
AM
1590// a dynamic relocation of type R_TYPE using the section symbol of
1591// the output section to which input section SHNDX maps, on the first.
1592// The first got entry will have a value of zero, the second the
1593// value of the local symbol.
d77a0555 1594template<int got_size, bool big_endian>
7bf1f802 1595void
d77a0555 1596Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
83896202 1597 Relobj* object,
7bf1f802
ILT
1598 unsigned int symndx,
1599 unsigned int shndx,
0a65a3a7 1600 unsigned int got_type,
83896202 1601 Output_data_reloc_generic* rel_dyn,
bd73a62d 1602 unsigned int r_type)
7bf1f802 1603{
0a65a3a7 1604 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1605 return;
1606
4829d394
CC
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
2ea97941 1610 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1611 Output_section* os = object->output_section(shndx);
bd73a62d
AM
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613}
7bf1f802 1614
bd73a62d
AM
1615// Add a pair of entries for a local symbol to the GOT, and add
1616// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617// The first got entry will have a value of zero, the second the
1618// value of the local symbol offset by Target::tls_offset_for_local.
d77a0555 1619template<int got_size, bool big_endian>
bd73a62d 1620void
d77a0555 1621Output_data_got<got_size, big_endian>::add_local_tls_pair(
bd73a62d
AM
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627{
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
4829d394
CC
1636}
1637
1638// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
d77a0555 1640template<int got_size, bool big_endian>
4829d394 1641void
d77a0555 1642Output_data_got<got_size, big_endian>::reserve_local(
6fa2a40b 1643 unsigned int i,
83896202 1644 Relobj* object,
6fa2a40b
CC
1645 unsigned int sym_index,
1646 unsigned int got_type)
4829d394 1647{
dd74ae06 1648 this->do_reserve_slot(i);
6fa2a40b 1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1650}
7bf1f802 1651
4829d394
CC
1652// Reserve a slot in the GOT for a global symbol.
1653
d77a0555 1654template<int got_size, bool big_endian>
4829d394 1655void
d77a0555 1656Output_data_got<got_size, big_endian>::reserve_global(
4829d394
CC
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660{
dd74ae06 1661 this->do_reserve_slot(i);
4829d394 1662 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1663}
1664
ead1e424
ILT
1665// Write out the GOT.
1666
d77a0555 1667template<int got_size, bool big_endian>
ead1e424 1668void
d77a0555 1669Output_data_got<got_size, big_endian>::do_write(Output_file* of)
ead1e424 1670{
d77a0555 1671 const int add = got_size / 8;
ead1e424
ILT
1672
1673 const off_t off = this->offset();
c06b7b0b 1674 const off_t oview_size = this->data_size();
ead1e424
ILT
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
bd73a62d 1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
ead1e424 1679 {
bd73a62d 1680 this->entries_[i].write(i, pov);
ead1e424
ILT
1681 pov += add;
1682 }
1683
a3ad94ed 1684 gold_assert(pov - oview == oview_size);
c06b7b0b 1685
ead1e424
ILT
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690}
1691
4829d394
CC
1692// Create a new GOT entry and return its offset.
1693
d77a0555 1694template<int got_size, bool big_endian>
4829d394 1695unsigned int
d77a0555 1696Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
4829d394
CC
1697{
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
d77a0555
ILT
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
4829d394 1709 if (got_offset == -1)
e6455dfb
CC
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
d77a0555 1712 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717}
1718
1719// Create a pair of new GOT entries and return the offset of the first.
1720
d77a0555 1721template<int got_size, bool big_endian>
4829d394 1722unsigned int
d77a0555
ILT
1723Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
4829d394
CC
1726{
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
d77a0555
ILT
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
4829d394 1741 if (got_offset == -1)
e6455dfb
CC
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
d77a0555 1744 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750}
1751
cf43a2fe
AM
1752// Replace GOT entry I with a new value.
1753
d77a0555 1754template<int got_size, bool big_endian>
cf43a2fe 1755void
d77a0555 1756Output_data_got<got_size, big_endian>::replace_got_entry(
cf43a2fe
AM
1757 unsigned int i,
1758 Got_entry got_entry)
1759{
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762}
1763
a3ad94ed
ILT
1764// Output_data_dynamic::Dynamic_entry methods.
1765
1766// Write out the entry.
1767
1768template<int size, bool big_endian>
1769void
1770Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
7d1a9ebb 1772 const Stringpool* pool) const
a3ad94ed
ILT
1773{
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1775 switch (this->offset_)
a3ad94ed
ILT
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
a3ad94ed 1781 case DYNAMIC_SECTION_SIZE:
16649710 1782 val = this->u_.od->data_size();
612a8d3d
DM
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
a3ad94ed
ILT
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
16649710
ILT
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
918fc1f8
CC
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801 break;
1802
a3ad94ed 1803 default:
c2b45e22
CC
1804 val = this->u_.od->address() + this->offset_;
1805 break;
a3ad94ed
ILT
1806 }
1807
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1810 dw.put_d_val(val);
1811}
1812
1813// Output_data_dynamic methods.
1814
16649710
ILT
1815// Adjust the output section to set the entry size.
1816
1817void
1818Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819{
8851ecca 1820 if (parameters->target().get_size() == 32)
16649710 1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1822 else if (parameters->target().get_size() == 64)
16649710
ILT
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824 else
1825 gold_unreachable();
1826}
1827
a3ad94ed
ILT
1828// Set the final data size.
1829
1830void
27bc2bce 1831Output_data_dynamic::set_final_data_size()
a3ad94ed 1832{
20e6d0d6
DK
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836 {
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1841 }
a3ad94ed
ILT
1842
1843 int dyn_size;
8851ecca 1844 if (parameters->target().get_size() == 32)
a3ad94ed 1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1846 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848 else
1849 gold_unreachable();
1850 this->set_data_size(this->entries_.size() * dyn_size);
1851}
1852
1853// Write out the dynamic entries.
1854
1855void
1856Output_data_dynamic::do_write(Output_file* of)
1857{
8851ecca 1858 switch (parameters->size_and_endianness())
a3ad94ed 1859 {
9025d29d 1860#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1863 break;
9025d29d 1864#endif
8851ecca
ILT
1865#ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1868 break;
9025d29d 1869#endif
9025d29d 1870#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1873 break;
9025d29d 1874#endif
8851ecca
ILT
1875#ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1878 break;
1879#endif
1880 default:
1881 gold_unreachable();
a3ad94ed 1882 }
a3ad94ed
ILT
1883}
1884
1885template<int size, bool big_endian>
1886void
1887Output_data_dynamic::sized_write(Output_file* of)
1888{
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
2ea97941 1891 const off_t offset = this->offset();
a3ad94ed 1892 const off_t oview_size = this->data_size();
2ea97941 1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1894
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1898 ++p)
1899 {
7d1a9ebb 1900 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1901 pov += dyn_size;
1902 }
1903
1904 gold_assert(pov - oview == oview_size);
1905
2ea97941 1906 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1907
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1910}
1911
d491d34e
ILT
1912// Class Output_symtab_xindex.
1913
1914void
1915Output_symtab_xindex::do_write(Output_file* of)
1916{
2ea97941 1917 const off_t offset = this->offset();
d491d34e 1918 const off_t oview_size = this->data_size();
2ea97941 1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1920
1921 memset(oview, 0, oview_size);
1922
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1925 else
1926 this->endian_do_write<false>(oview);
1927
2ea97941 1928 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1929
1930 // We no longer need the data.
1931 this->entries_.clear();
1932}
1933
1934template<bool big_endian>
1935void
1936Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937{
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1940 ++p)
20e6d0d6
DK
1941 {
1942 unsigned int symndx = p->first;
50ed5eb1 1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
20e6d0d6
DK
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 }
d491d34e
ILT
1946}
1947
8ea8cd50
CC
1948// Output_fill_debug_info methods.
1949
1950// Return the minimum size needed for a dummy compilation unit header.
1951
1952size_t
1953Output_fill_debug_info::do_minimum_hole_size() const
1954{
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956 // address_size.
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1960 return len + 8 + 4;
1961 return len;
1962}
1963
1964// Write a dummy compilation unit header to fill a hole in the
1965// .debug_info or .debug_types section.
1966
1967void
1968Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969{
66570254
CC
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1972
1973 gold_assert(len >= this->do_minimum_hole_size());
1974
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1977
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1979 // address_size.
1980 if (this->is_big_endian())
1981 {
24c6c55a
DM
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1985 }
1986 else
1987 {
24c6c55a
DM
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1991 }
1992 pov += 4 + 2 + 4;
1993 *pov++ = 4;
1994
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1997
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2003
2004 of->write_output_view(off, len, oview);
2005}
2006
2007// Output_fill_debug_line methods.
2008
2009// Return the minimum size needed for a dummy line number program header.
2010
2011size_t
2012Output_fill_debug_line::do_minimum_hole_size() const
2013{
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2018 return len;
2019}
2020
2021// Write a dummy line number program header to fill a hole in the
2022// .debug_line section.
2023
2024void
2025Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026{
66570254
CC
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2041 {
24c6c55a
DM
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2045 }
2046 else
2047 {
24c6c55a
DM
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2051 }
2052 pov += 4 + 2 + 4;
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2072
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081 of->write_output_view(off, len, oview);
2082}
2083
ead1e424
ILT
2084// Output_section::Input_section methods.
2085
cdc29364
CC
2086// Return the current data size. For an input section we store the size here.
2087// For an Output_section_data, we have to ask it for the size.
2088
2089off_t
2090Output_section::Input_section::current_data_size() const
2091{
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2094 else
2095 {
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2098 }
2099}
2100
ead1e424
ILT
2101// Return the data size. For an input section we store the size here.
2102// For an Output_section_data, we have to ask it for the size.
2103
2104off_t
2105Output_section::Input_section::data_size() const
2106{
2107 if (this->is_input_section())
b8e6aad9 2108 return this->u1_.data_size;
ead1e424 2109 else
b8e6aad9 2110 return this->u2_.posd->data_size();
ead1e424
ILT
2111}
2112
0439c796
DK
2113// Return the object for an input section.
2114
2115Relobj*
2116Output_section::Input_section::relobj() const
2117{
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2127 else
2128 gold_unreachable();
2129}
2130
2131// Return the input section index for an input section.
2132
2133unsigned int
2134Output_section::Input_section::shndx() const
2135{
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2139 {
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2142 }
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2145 else
2146 gold_unreachable();
2147}
2148
ead1e424
ILT
2149// Set the address and file offset.
2150
2151void
96803768
ILT
2152Output_section::Input_section::set_address_and_file_offset(
2153 uint64_t address,
2154 off_t file_offset,
2155 off_t section_file_offset)
ead1e424
ILT
2156{
2157 if (this->is_input_section())
96803768
ILT
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
ead1e424 2160 else
96803768
ILT
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162}
2163
a445fddf
ILT
2164// Reset the address and file offset.
2165
2166void
2167Output_section::Input_section::reset_address_and_file_offset()
2168{
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2171}
2172
96803768
ILT
2173// Finalize the data size.
2174
2175void
2176Output_section::Input_section::finalize_data_size()
2177{
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2180}
2181
1e983657
ILT
2182// Try to turn an input offset into an output offset. We want to
2183// return the output offset relative to the start of this
2184// Input_section in the output section.
b8e6aad9 2185
8f00aeb8 2186inline bool
8383303e
ILT
2187Output_section::Input_section::output_offset(
2188 const Relobj* object,
2ea97941
ILT
2189 unsigned int shndx,
2190 section_offset_type offset,
ca09d69a 2191 section_offset_type* poutput) const
b8e6aad9
ILT
2192{
2193 if (!this->is_input_section())
2ea97941 2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2195 else
2196 {
2ea97941 2197 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2198 return false;
2ea97941 2199 *poutput = offset;
b8e6aad9
ILT
2200 return true;
2201 }
ead1e424
ILT
2202}
2203
a9a60db6
ILT
2204// Return whether this is the merge section for the input section
2205// SHNDX in OBJECT.
2206
2207inline bool
2208Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2209 unsigned int shndx) const
a9a60db6
ILT
2210{
2211 if (this->is_input_section())
2212 return false;
2ea97941 2213 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2214}
2215
ead1e424
ILT
2216// Write out the data. We don't have to do anything for an input
2217// section--they are handled via Object::relocate--but this is where
2218// we write out the data for an Output_section_data.
2219
2220void
2221Output_section::Input_section::write(Output_file* of)
2222{
2223 if (!this->is_input_section())
b8e6aad9 2224 this->u2_.posd->write(of);
ead1e424
ILT
2225}
2226
96803768
ILT
2227// Write the data to a buffer. As for write(), we don't have to do
2228// anything for an input section.
2229
2230void
2231Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2232{
2233 if (!this->is_input_section())
2234 this->u2_.posd->write_to_buffer(buffer);
2235}
2236
7d9e3d98
ILT
2237// Print to a map file.
2238
2239void
2240Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2241{
2242 switch (this->shndx_)
2243 {
2244 case OUTPUT_SECTION_CODE:
2245 case MERGE_DATA_SECTION_CODE:
2246 case MERGE_STRING_SECTION_CODE:
2247 this->u2_.posd->print_to_mapfile(mapfile);
2248 break;
2249
20e6d0d6
DK
2250 case RELAXED_INPUT_SECTION_CODE:
2251 {
eb426534 2252 Output_relaxed_input_section* relaxed_section =
20e6d0d6 2253 this->relaxed_input_section();
eb426534 2254 mapfile->print_input_section(relaxed_section->relobj(),
20e6d0d6
DK
2255 relaxed_section->shndx());
2256 }
2257 break;
7d9e3d98
ILT
2258 default:
2259 mapfile->print_input_section(this->u2_.object, this->shndx_);
2260 break;
2261 }
2262}
2263
a2fb1b05
ILT
2264// Output_section methods.
2265
2266// Construct an Output_section. NAME will point into a Stringpool.
2267
2ea97941
ILT
2268Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2269 elfcpp::Elf_Xword flags)
2270 : name_(name),
a2fb1b05
ILT
2271 addralign_(0),
2272 entsize_(0),
a445fddf 2273 load_address_(0),
16649710 2274 link_section_(NULL),
a2fb1b05 2275 link_(0),
16649710 2276 info_section_(NULL),
6a74a719 2277 info_symndx_(NULL),
a2fb1b05 2278 info_(0),
2ea97941
ILT
2279 type_(type),
2280 flags_(flags),
22f0da72 2281 order_(ORDER_INVALID),
91ea499d 2282 out_shndx_(-1U),
c06b7b0b
ILT
2283 symtab_index_(0),
2284 dynsym_index_(0),
ead1e424
ILT
2285 input_sections_(),
2286 first_input_offset_(0),
c51e6221 2287 fills_(),
96803768 2288 postprocessing_buffer_(NULL),
a3ad94ed 2289 needs_symtab_index_(false),
16649710
ILT
2290 needs_dynsym_index_(false),
2291 should_link_to_symtab_(false),
730cdc88 2292 should_link_to_dynsym_(false),
27bc2bce 2293 after_input_sections_(false),
7bf1f802 2294 requires_postprocessing_(false),
a445fddf
ILT
2295 found_in_sections_clause_(false),
2296 has_load_address_(false),
755ab8af 2297 info_uses_section_index_(false),
6e9ba2ca 2298 input_section_order_specified_(false),
2fd32231
ILT
2299 may_sort_attached_input_sections_(false),
2300 must_sort_attached_input_sections_(false),
2301 attached_input_sections_are_sorted_(false),
9f1d377b 2302 is_relro_(false),
8a5e3e08
ILT
2303 is_small_section_(false),
2304 is_large_section_(false),
f5c870d2 2305 generate_code_fills_at_write_(false),
e8cd95c7 2306 is_entsize_zero_(false),
8923b24c 2307 section_offsets_need_adjustment_(false),
1e5d2fb1 2308 is_noload_(false),
131687b4 2309 always_keeps_input_sections_(false),
cdc29364 2310 has_fixed_layout_(false),
9fbd3822 2311 is_patch_space_allowed_(false),
16164a6b 2312 is_unique_segment_(false),
20e6d0d6 2313 tls_offset_(0),
16164a6b
ST
2314 extra_segment_flags_(0),
2315 segment_alignment_(0),
c0a62865 2316 checkpoint_(NULL),
cdc29364 2317 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2318 free_list_(),
8ea8cd50 2319 free_space_fill_(NULL),
9fbd3822 2320 patch_space_(0)
a2fb1b05 2321{
27bc2bce
ILT
2322 // An unallocated section has no address. Forcing this means that
2323 // we don't need special treatment for symbols defined in debug
2324 // sections.
2ea97941 2325 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2326 this->set_address(0);
a2fb1b05
ILT
2327}
2328
54dc6425
ILT
2329Output_section::~Output_section()
2330{
20e6d0d6 2331 delete this->checkpoint_;
54dc6425
ILT
2332}
2333
16649710
ILT
2334// Set the entry size.
2335
2336void
2337Output_section::set_entsize(uint64_t v)
2338{
e8cd95c7
ILT
2339 if (this->is_entsize_zero_)
2340 ;
2341 else if (this->entsize_ == 0)
16649710 2342 this->entsize_ = v;
e8cd95c7
ILT
2343 else if (this->entsize_ != v)
2344 {
2345 this->entsize_ = 0;
2346 this->is_entsize_zero_ = 1;
2347 }
16649710
ILT
2348}
2349
ead1e424 2350// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2351// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2352// relocation section which applies to this section, or 0 if none, or
2353// -1U if more than one. Return the offset of the input section
2354// within the output section. Return -1 if the input section will
2355// receive special handling. In the normal case we don't always keep
2356// track of input sections for an Output_section. Instead, each
2357// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2358// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2359// track of input sections here; this is used when SECTIONS appears in
2360// a linker script.
a2fb1b05
ILT
2361
2362template<int size, bool big_endian>
2363off_t
6e9ba2ca 2364Output_section::add_input_section(Layout* layout,
6fa2a40b 2365 Sized_relobj_file<size, big_endian>* object,
2ea97941 2366 unsigned int shndx,
ead1e424 2367 const char* secname,
730cdc88 2368 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2369 unsigned int reloc_shndx,
2370 bool have_sections_script)
a2fb1b05 2371{
2ea97941
ILT
2372 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2373 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2374 {
75f2446e 2375 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2376 static_cast<unsigned long>(addralign), secname);
2377 addralign = 1;
a2fb1b05 2378 }
a2fb1b05 2379
2ea97941
ILT
2380 if (addralign > this->addralign_)
2381 this->addralign_ = addralign;
a2fb1b05 2382
44a43cf9 2383 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2384 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2385
2386 // .debug_str is a mergeable string section, but is not always so
2387 // marked by compilers. Mark manually here so we can optimize.
2388 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2389 {
2390 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2391 entsize = 1;
4f833eee 2392 }
44a43cf9 2393
e8cd95c7
ILT
2394 this->update_flags_for_input_section(sh_flags);
2395 this->set_entsize(entsize);
2396
b8e6aad9 2397 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2398 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2399 // a section. We don't try to handle empty merge sections--they
2400 // mess up the mappings, and are useless anyhow.
cdc29364 2401 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2402 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2403 && reloc_shndx == 0
cdc29364
CC
2404 && shdr.get_sh_size() > 0
2405 && !parameters->incremental())
b8e6aad9 2406 {
0439c796
DK
2407 // Keep information about merged input sections for rebuilding fast
2408 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2409 bool keeps_input_sections = (this->always_keeps_input_sections_
2410 || have_sections_script
2411 || parameters->target().may_relax());
2412
0439c796
DK
2413 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2414 addralign, keeps_input_sections))
b8e6aad9
ILT
2415 {
2416 // Tell the relocation routines that they need to call the
730cdc88 2417 // output_offset method to determine the final address.
b8e6aad9
ILT
2418 return -1;
2419 }
2420 }
2421
cdc29364
CC
2422 section_size_type input_section_size = shdr.get_sh_size();
2423 section_size_type uncompressed_size;
2424 if (object->section_is_compressed(shndx, &uncompressed_size))
2425 input_section_size = uncompressed_size;
2426
2427 off_t offset_in_section;
3136a00e 2428
cdc29364
CC
2429 if (this->has_fixed_layout())
2430 {
2431 // For incremental updates, find a chunk of unused space in the section.
2432 offset_in_section = this->free_list_.allocate(input_section_size,
2433 addralign, 0);
2434 if (offset_in_section == -1)
eb426534 2435 gold_fallback(_("out of patch space in section %s; "
9fbd3822
CC
2436 "relink with --incremental-full"),
2437 this->name());
3136a00e 2438 return offset_in_section;
cdc29364 2439 }
c51e6221 2440
3136a00e
CC
2441 offset_in_section = this->current_data_size_for_child();
2442 off_t aligned_offset_in_section = align_address(offset_in_section,
2443 addralign);
2444 this->set_current_data_size_for_child(aligned_offset_in_section
2445 + input_section_size);
2446
c0a62865
DK
2447 // Determine if we want to delay code-fill generation until the output
2448 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2449 // generating to avoid adjusting them during relaxation. Also, if we are
2450 // sorting input sections we must delay fill generation.
c0a62865
DK
2451 if (!this->generate_code_fills_at_write_
2452 && !have_sections_script
2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454 && parameters->target().has_code_fill()
4cf7a849 2455 && (parameters->target().may_relax()
eb426534 2456 || layout->is_section_ordering_specified()))
c0a62865
DK
2457 {
2458 gold_assert(this->fills_.empty());
2459 this->generate_code_fills_at_write_ = true;
2460 }
2461
c51e6221 2462 if (aligned_offset_in_section > offset_in_section
c0a62865 2463 && !this->generate_code_fills_at_write_
a445fddf 2464 && !have_sections_script
44a43cf9 2465 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2466 && parameters->target().has_code_fill())
c51e6221
ILT
2467 {
2468 // We need to add some fill data. Using fill_list_ when
2469 // possible is an optimization, since we will often have fill
2470 // sections without input sections.
2471 off_t fill_len = aligned_offset_in_section - offset_in_section;
2472 if (this->input_sections_.empty())
eb426534 2473 this->fills_.push_back(Fill(offset_in_section, fill_len));
c51e6221 2474 else
eb426534
RM
2475 {
2476 std::string fill_data(parameters->target().code_fill(fill_len));
2477 Output_data_const* odc = new Output_data_const(fill_data, 1);
2478 this->input_sections_.push_back(Input_section(odc));
2479 }
c51e6221
ILT
2480 }
2481
ead1e424 2482 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2483 // track of sections, or if we are relaxing. Also, if this is a
2484 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2485 // the future, we keep track of the sections. If the
2486 // --section-ordering-file option is used to specify the order of
2487 // sections, we need to keep track of sections.
131687b4
DK
2488 if (this->always_keeps_input_sections_
2489 || have_sections_script
2fd32231
ILT
2490 || !this->input_sections_.empty()
2491 || this->may_sort_attached_input_sections()
7d9e3d98 2492 || this->must_sort_attached_input_sections()
20e6d0d6 2493 || parameters->options().user_set_Map()
6e9ba2ca 2494 || parameters->target().may_relax()
edcac0c1 2495 || layout->is_section_ordering_specified())
6e9ba2ca 2496 {
6fc6ea19 2497 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2498 /* If section ordering is requested by specifying a ordering file,
2499 using --section-ordering-file, match the section name with
2500 a pattern. */
2501 if (parameters->options().section_ordering_file())
eb426534
RM
2502 {
2503 unsigned int section_order_index =
2504 layout->find_section_order_index(std::string(secname));
6e9ba2ca 2505 if (section_order_index != 0)
eb426534
RM
2506 {
2507 isecn.set_section_order_index(section_order_index);
2508 this->set_input_section_order_specified();
2509 }
2510 }
6e9ba2ca
ST
2511 this->input_sections_.push_back(isecn);
2512 }
54dc6425 2513
c51e6221 2514 return aligned_offset_in_section;
61ba1cf9
ILT
2515}
2516
ead1e424
ILT
2517// Add arbitrary data to an output section.
2518
2519void
2520Output_section::add_output_section_data(Output_section_data* posd)
2521{
b8e6aad9
ILT
2522 Input_section inp(posd);
2523 this->add_output_section_data(&inp);
a445fddf
ILT
2524
2525 if (posd->is_data_size_valid())
2526 {
cdc29364
CC
2527 off_t offset_in_section;
2528 if (this->has_fixed_layout())
2529 {
2530 // For incremental updates, find a chunk of unused space.
2531 offset_in_section = this->free_list_.allocate(posd->data_size(),
2532 posd->addralign(), 0);
2533 if (offset_in_section == -1)
9fbd3822
CC
2534 gold_fallback(_("out of patch space in section %s; "
2535 "relink with --incremental-full"),
2536 this->name());
cdc29364
CC
2537 // Finalize the address and offset now.
2538 uint64_t addr = this->address();
2539 off_t offset = this->offset();
2540 posd->set_address_and_file_offset(addr + offset_in_section,
2541 offset + offset_in_section);
2542 }
2543 else
2544 {
2545 offset_in_section = this->current_data_size_for_child();
2546 off_t aligned_offset_in_section = align_address(offset_in_section,
2547 posd->addralign());
2548 this->set_current_data_size_for_child(aligned_offset_in_section
2549 + posd->data_size());
2550 }
2551 }
2552 else if (this->has_fixed_layout())
2553 {
2554 // For incremental updates, arrange for the data to have a fixed layout.
2555 // This will mean that additions to the data must be allocated from
2556 // free space within the containing output section.
2557 uint64_t addr = this->address();
2558 posd->set_address(addr);
2559 posd->set_file_offset(0);
4829d394
CC
2560 // FIXME: This should eventually be unreachable.
2561 // gold_unreachable();
a445fddf 2562 }
b8e6aad9
ILT
2563}
2564
c0a62865
DK
2565// Add a relaxed input section.
2566
2567void
d06fb4d1
DK
2568Output_section::add_relaxed_input_section(Layout* layout,
2569 Output_relaxed_input_section* poris,
2570 const std::string& name)
c0a62865
DK
2571{
2572 Input_section inp(poris);
d06fb4d1
DK
2573
2574 // If the --section-ordering-file option is used to specify the order of
2575 // sections, we need to keep track of sections.
e9552f7e 2576 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2577 {
2578 unsigned int section_order_index =
eb426534 2579 layout->find_section_order_index(name);
d06fb4d1 2580 if (section_order_index != 0)
eb426534
RM
2581 {
2582 inp.set_section_order_index(section_order_index);
2583 this->set_input_section_order_specified();
2584 }
d06fb4d1
DK
2585 }
2586
c0a62865 2587 this->add_output_section_data(&inp);
0439c796
DK
2588 if (this->lookup_maps_->is_valid())
2589 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2590 poris->shndx(), poris);
c0a62865
DK
2591
2592 // For a relaxed section, we use the current data size. Linker scripts
2593 // get all the input sections, including relaxed one from an output
19fec8c1 2594 // section and add them back to the same output section to compute the
c0a62865 2595 // output section size. If we do not account for sizes of relaxed input
19fec8c1 2596 // sections, an output section would be incorrectly sized.
c0a62865
DK
2597 off_t offset_in_section = this->current_data_size_for_child();
2598 off_t aligned_offset_in_section = align_address(offset_in_section,
2599 poris->addralign());
2600 this->set_current_data_size_for_child(aligned_offset_in_section
2601 + poris->current_data_size());
2602}
2603
b8e6aad9 2604// Add arbitrary data to an output section by Input_section.
c06b7b0b 2605
b8e6aad9
ILT
2606void
2607Output_section::add_output_section_data(Input_section* inp)
2608{
ead1e424 2609 if (this->input_sections_.empty())
27bc2bce 2610 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2611
b8e6aad9 2612 this->input_sections_.push_back(*inp);
c06b7b0b 2613
2ea97941
ILT
2614 uint64_t addralign = inp->addralign();
2615 if (addralign > this->addralign_)
2616 this->addralign_ = addralign;
c06b7b0b 2617
b8e6aad9
ILT
2618 inp->set_output_section(this);
2619}
2620
2621// Add a merge section to an output section.
2622
2623void
2624Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2625 bool is_string, uint64_t entsize)
b8e6aad9 2626{
2ea97941 2627 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2628 this->add_output_section_data(&inp);
2629}
2630
2631// Add an input section to a SHF_MERGE section.
2632
2633bool
2ea97941
ILT
2634Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2635 uint64_t flags, uint64_t entsize,
0439c796
DK
2636 uint64_t addralign,
2637 bool keeps_input_sections)
b8e6aad9 2638{
2ea97941 2639 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776 2640
20e6d0d6
DK
2641 // We cannot restore merged input section states.
2642 gold_assert(this->checkpoint_ == NULL);
2643
c0a62865 2644 // Look up merge sections by required properties.
0439c796
DK
2645 // Currently, we only invalidate the lookup maps in script processing
2646 // and relaxation. We should not have done either when we reach here.
2647 // So we assume that the lookup maps are valid to simply code.
2648 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2649 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2650 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2651 bool is_new = false;
2652 if (pomb != NULL)
c0a62865 2653 {
6bf924b0
DK
2654 gold_assert(pomb->is_string() == is_string
2655 && pomb->entsize() == entsize
2656 && pomb->addralign() == addralign);
c0a62865 2657 }
b8e6aad9
ILT
2658 else
2659 {
6bf924b0
DK
2660 // Create a new Output_merge_data or Output_merge_string_data.
2661 if (!is_string)
2662 pomb = new Output_merge_data(entsize, addralign);
2663 else
9a0910c3 2664 {
6bf924b0
DK
2665 switch (entsize)
2666 {
2667 case 1:
2668 pomb = new Output_merge_string<char>(addralign);
2669 break;
2670 case 2:
2671 pomb = new Output_merge_string<uint16_t>(addralign);
2672 break;
2673 case 4:
2674 pomb = new Output_merge_string<uint32_t>(addralign);
2675 break;
2676 default:
2677 return false;
2678 }
9a0910c3 2679 }
0439c796
DK
2680 // If we need to do script processing or relaxation, we need to keep
2681 // the original input sections to rebuild the fast lookup maps.
2682 if (keeps_input_sections)
2683 pomb->set_keeps_input_sections();
2684 is_new = true;
b8e6aad9
ILT
2685 }
2686
6bf924b0
DK
2687 if (pomb->add_input_section(object, shndx))
2688 {
0439c796
DK
2689 // Add new merge section to this output section and link merge
2690 // section properties to new merge section in map.
2691 if (is_new)
2692 {
2693 this->add_output_merge_section(pomb, is_string, entsize);
2694 this->lookup_maps_->add_merge_section(msp, pomb);
2695 }
2696
6bf924b0
DK
2697 // Add input section to new merge section and link input section to new
2698 // merge section in map.
0439c796 2699 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2700 return true;
2701 }
2702 else
0439c796
DK
2703 {
2704 // If add_input_section failed, delete new merge section to avoid
2705 // exporting empty merge sections in Output_section::get_input_section.
2706 if (is_new)
2707 delete pomb;
2708 return false;
2709 }
b8e6aad9
ILT
2710}
2711
c0a62865 2712// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2713// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2714
20e6d0d6 2715void
c0a62865 2716Output_section::build_relaxation_map(
2ea97941 2717 const Input_section_list& input_sections,
c0a62865
DK
2718 size_t limit,
2719 Relaxation_map* relaxation_map) const
20e6d0d6 2720{
c0a62865
DK
2721 for (size_t i = 0; i < limit; ++i)
2722 {
2ea97941 2723 const Input_section& is(input_sections[i]);
c0a62865
DK
2724 if (is.is_input_section() || is.is_relaxed_input_section())
2725 {
5ac169d4
DK
2726 Section_id sid(is.relobj(), is.shndx());
2727 (*relaxation_map)[sid] = i;
c0a62865
DK
2728 }
2729 }
2730}
2731
2732// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2733// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2734// indices of INPUT_SECTIONS.
20e6d0d6 2735
c0a62865
DK
2736void
2737Output_section::convert_input_sections_in_list_to_relaxed_sections(
2738 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2739 const Relaxation_map& map,
2ea97941 2740 Input_section_list* input_sections)
c0a62865
DK
2741{
2742 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2743 {
2744 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2745 Section_id sid(poris->relobj(), poris->shndx());
2746 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2747 gold_assert(p != map.end());
2ea97941 2748 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2749
2750 // Remember section order index of original input section
2751 // if it is set. Copy it to the relaxed input section.
2752 unsigned int soi =
2753 (*input_sections)[p->second].section_order_index();
2ea97941 2754 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2755 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2756 }
2757}
50ed5eb1 2758
c0a62865
DK
2759// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2760// is a vector of pointers to Output_relaxed_input_section or its derived
2761// classes. The relaxed sections must correspond to existing input sections.
2762
2763void
2764Output_section::convert_input_sections_to_relaxed_sections(
2765 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2766{
029ba973 2767 gold_assert(parameters->target().may_relax());
20e6d0d6 2768
c0a62865
DK
2769 // We want to make sure that restore_states does not undo the effect of
2770 // this. If there is no checkpoint active, just search the current
2771 // input section list and replace the sections there. If there is
2772 // a checkpoint, also replace the sections there.
50ed5eb1 2773
c0a62865
DK
2774 // By default, we look at the whole list.
2775 size_t limit = this->input_sections_.size();
2776
2777 if (this->checkpoint_ != NULL)
20e6d0d6 2778 {
c0a62865
DK
2779 // Replace input sections with relaxed input section in the saved
2780 // copy of the input section list.
2781 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2782 {
c0a62865
DK
2783 Relaxation_map map;
2784 this->build_relaxation_map(
2785 *(this->checkpoint_->input_sections()),
2786 this->checkpoint_->input_sections()->size(),
2787 &map);
2788 this->convert_input_sections_in_list_to_relaxed_sections(
2789 relaxed_sections,
2790 map,
2791 this->checkpoint_->input_sections());
2792 }
2793 else
2794 {
2795 // We have not copied the input section list yet. Instead, just
2796 // look at the portion that would be saved.
2797 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2798 }
20e6d0d6 2799 }
c0a62865
DK
2800
2801 // Convert input sections in input_section_list.
2802 Relaxation_map map;
2803 this->build_relaxation_map(this->input_sections_, limit, &map);
2804 this->convert_input_sections_in_list_to_relaxed_sections(
2805 relaxed_sections,
2806 map,
2807 &this->input_sections_);
41263c05
DK
2808
2809 // Update fast look-up map.
0439c796 2810 if (this->lookup_maps_->is_valid())
41263c05
DK
2811 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2812 {
2813 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2814 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2815 poris->shndx(), poris);
41263c05 2816 }
20e6d0d6
DK
2817}
2818
9c547ec3
ILT
2819// Update the output section flags based on input section flags.
2820
2821void
2ea97941 2822Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2823{
2824 // If we created the section with SHF_ALLOC clear, we set the
2825 // address. If we are now setting the SHF_ALLOC flag, we need to
2826 // undo that.
2827 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2828 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2829 this->mark_address_invalid();
2830
2ea97941 2831 this->flags_ |= (flags
9c547ec3
ILT
2832 & (elfcpp::SHF_WRITE
2833 | elfcpp::SHF_ALLOC
2834 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2835
2836 if ((flags & elfcpp::SHF_MERGE) == 0)
2837 this->flags_ &=~ elfcpp::SHF_MERGE;
2838 else
2839 {
2840 if (this->current_data_size_for_child() == 0)
2841 this->flags_ |= elfcpp::SHF_MERGE;
2842 }
2843
2844 if ((flags & elfcpp::SHF_STRINGS) == 0)
2845 this->flags_ &=~ elfcpp::SHF_STRINGS;
2846 else
2847 {
2848 if (this->current_data_size_for_child() == 0)
2849 this->flags_ |= elfcpp::SHF_STRINGS;
2850 }
9c547ec3
ILT
2851}
2852
2ea97941 2853// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2854// OBJECT has been added. Return NULL if none found.
2855
2856Output_section_data*
2857Output_section::find_merge_section(const Relobj* object,
2ea97941 2858 unsigned int shndx) const
c0a62865 2859{
0439c796
DK
2860 if (!this->lookup_maps_->is_valid())
2861 this->build_lookup_maps();
2862 return this->lookup_maps_->find_merge_section(object, shndx);
2863}
2864
2865// Build the lookup maps for merge and relaxed sections. This is needs
2866// to be declared as a const methods so that it is callable with a const
2867// Output_section pointer. The method only updates states of the maps.
2868
2869void
2870Output_section::build_lookup_maps() const
2871{
2872 this->lookup_maps_->clear();
2873 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2874 p != this->input_sections_.end();
2875 ++p)
c0a62865 2876 {
0439c796
DK
2877 if (p->is_merge_section())
2878 {
2879 Output_merge_base* pomb = p->output_merge_base();
2880 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2881 pomb->addralign());
2882 this->lookup_maps_->add_merge_section(msp, pomb);
2883 for (Output_merge_base::Input_sections::const_iterator is =
2884 pomb->input_sections_begin();
2885 is != pomb->input_sections_end();
50ed5eb1 2886 ++is)
0439c796
DK
2887 {
2888 const Const_section_id& csid = *is;
2889 this->lookup_maps_->add_merge_input_section(csid.first,
2890 csid.second, pomb);
2891 }
50ed5eb1 2892
0439c796
DK
2893 }
2894 else if (p->is_relaxed_input_section())
2895 {
2896 Output_relaxed_input_section* poris = p->relaxed_input_section();
2897 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2898 poris->shndx(), poris);
2899 }
c0a62865 2900 }
c0a62865
DK
2901}
2902
2903// Find an relaxed input section corresponding to an input section
2ea97941 2904// in OBJECT with index SHNDX.
c0a62865 2905
d6344fb5 2906const Output_relaxed_input_section*
c0a62865 2907Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2908 unsigned int shndx) const
c0a62865 2909{
0439c796
DK
2910 if (!this->lookup_maps_->is_valid())
2911 this->build_lookup_maps();
2912 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2913}
2914
2ea97941
ILT
2915// Given an address OFFSET relative to the start of input section
2916// SHNDX in OBJECT, return whether this address is being included in
2917// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2918// a special mapping.
2919
2920bool
2921Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2922 unsigned int shndx,
2923 off_t offset) const
730cdc88 2924{
c0a62865 2925 // Look at the Output_section_data_maps first.
2ea97941 2926 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2927 if (posd == NULL)
2ea97941 2928 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2929
2930 if (posd != NULL)
2931 {
2ea97941
ILT
2932 section_offset_type output_offset;
2933 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2934 gold_assert(found);
2ea97941 2935 return output_offset != -1;
c0a62865
DK
2936 }
2937
2938 // Fall back to the slow look-up.
730cdc88
ILT
2939 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2940 p != this->input_sections_.end();
2941 ++p)
2942 {
2ea97941
ILT
2943 section_offset_type output_offset;
2944 if (p->output_offset(object, shndx, offset, &output_offset))
2945 return output_offset != -1;
730cdc88
ILT
2946 }
2947
2948 // By default we assume that the address is mapped. This should
2949 // only be called after we have passed all sections to Layout. At
2950 // that point we should know what we are discarding.
2951 return true;
2952}
2953
2ea97941
ILT
2954// Given an address OFFSET relative to the start of input section
2955// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2956// start of the input section in the output section. This should only
2ea97941 2957// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2958
8383303e 2959section_offset_type
2ea97941
ILT
2960Output_section::output_offset(const Relobj* object, unsigned int shndx,
2961 section_offset_type offset) const
730cdc88 2962{
c0a62865
DK
2963 // This can only be called meaningfully when we know the data size
2964 // of this.
2965 gold_assert(this->is_data_size_valid());
730cdc88 2966
c0a62865 2967 // Look at the Output_section_data_maps first.
2ea97941 2968 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 2969 if (posd == NULL)
2ea97941 2970 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2971 if (posd != NULL)
2972 {
2ea97941
ILT
2973 section_offset_type output_offset;
2974 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2975 gold_assert(found);
2ea97941 2976 return output_offset;
c0a62865
DK
2977 }
2978
2979 // Fall back to the slow look-up.
730cdc88
ILT
2980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2982 ++p)
2983 {
2ea97941
ILT
2984 section_offset_type output_offset;
2985 if (p->output_offset(object, shndx, offset, &output_offset))
2986 return output_offset;
730cdc88
ILT
2987 }
2988 gold_unreachable();
2989}
2990
2ea97941
ILT
2991// Return the output virtual address of OFFSET relative to the start
2992// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2993
2994uint64_t
2ea97941
ILT
2995Output_section::output_address(const Relobj* object, unsigned int shndx,
2996 off_t offset) const
b8e6aad9
ILT
2997{
2998 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2999
3000 // Look at the Output_section_data_maps first.
2ea97941 3001 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 3002 if (posd == NULL)
2ea97941 3003 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
3004 if (posd != NULL && posd->is_address_valid())
3005 {
2ea97941
ILT
3006 section_offset_type output_offset;
3007 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 3008 gold_assert(found);
2ea97941 3009 return posd->address() + output_offset;
c0a62865
DK
3010 }
3011
3012 // Fall back to the slow look-up.
b8e6aad9
ILT
3013 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3014 p != this->input_sections_.end();
3015 ++p)
3016 {
3017 addr = align_address(addr, p->addralign());
2ea97941
ILT
3018 section_offset_type output_offset;
3019 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3020 {
2ea97941 3021 if (output_offset == -1)
eff45813 3022 return -1ULL;
2ea97941 3023 return addr + output_offset;
730cdc88 3024 }
b8e6aad9
ILT
3025 addr += p->data_size();
3026 }
3027
3028 // If we get here, it means that we don't know the mapping for this
3029 // input section. This might happen in principle if
3030 // add_input_section were called before add_output_section_data.
3031 // But it should never actually happen.
3032
3033 gold_unreachable();
ead1e424
ILT
3034}
3035
e29e076a 3036// Find the output address of the start of the merged section for
2ea97941 3037// input section SHNDX in object OBJECT.
a9a60db6 3038
e29e076a
ILT
3039bool
3040Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3041 unsigned int shndx,
e29e076a 3042 uint64_t* paddr) const
a9a60db6 3043{
c0a62865
DK
3044 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3045 // Looking up the merge section map does not always work as we sometimes
3046 // find a merge section without its address set.
a9a60db6
ILT
3047 uint64_t addr = this->address() + this->first_input_offset_;
3048 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3049 p != this->input_sections_.end();
3050 ++p)
3051 {
3052 addr = align_address(addr, p->addralign());
3053
3054 // It would be nice if we could use the existing output_offset
3055 // method to get the output offset of input offset 0.
3056 // Unfortunately we don't know for sure that input offset 0 is
3057 // mapped at all.
2ea97941 3058 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3059 {
3060 *paddr = addr;
3061 return true;
3062 }
a9a60db6
ILT
3063
3064 addr += p->data_size();
3065 }
e29e076a
ILT
3066
3067 // We couldn't find a merge output section for this input section.
3068 return false;
a9a60db6
ILT
3069}
3070
cdc29364
CC
3071// Update the data size of an Output_section.
3072
3073void
3074Output_section::update_data_size()
3075{
3076 if (this->input_sections_.empty())
3077 return;
3078
3079 if (this->must_sort_attached_input_sections()
3080 || this->input_section_order_specified())
3081 this->sort_attached_input_sections();
3082
3083 off_t off = this->first_input_offset_;
3084 for (Input_section_list::iterator p = this->input_sections_.begin();
3085 p != this->input_sections_.end();
3086 ++p)
3087 {
3088 off = align_address(off, p->addralign());
3089 off += p->current_data_size();
3090 }
3091
3092 this->set_current_data_size_for_child(off);
3093}
3094
27bc2bce 3095// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3096// setting the addresses of any Output_section_data objects.
3097
3098void
27bc2bce 3099Output_section::set_final_data_size()
ead1e424 3100{
9fbd3822
CC
3101 off_t data_size;
3102
ead1e424 3103 if (this->input_sections_.empty())
9fbd3822
CC
3104 data_size = this->current_data_size_for_child();
3105 else
27bc2bce 3106 {
9fbd3822
CC
3107 if (this->must_sort_attached_input_sections()
3108 || this->input_section_order_specified())
3109 this->sort_attached_input_sections();
ead1e424 3110
9fbd3822
CC
3111 uint64_t address = this->address();
3112 off_t startoff = this->offset();
3113 off_t off = startoff + this->first_input_offset_;
3114 for (Input_section_list::iterator p = this->input_sections_.begin();
3115 p != this->input_sections_.end();
3116 ++p)
3117 {
3118 off = align_address(off, p->addralign());
3119 p->set_address_and_file_offset(address + (off - startoff), off,
3120 startoff);
3121 off += p->data_size();
3122 }
3123 data_size = off - startoff;
3124 }
2fd32231 3125
9fbd3822
CC
3126 // For full incremental links, we want to allocate some patch space
3127 // in most sections for subsequent incremental updates.
3128 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3129 {
9fbd3822 3130 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3131 size_t extra = static_cast<size_t>(data_size * pct);
3132 if (this->free_space_fill_ != NULL
eb426534 3133 && this->free_space_fill_->minimum_hole_size() > extra)
8ea8cd50 3134 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3135 off_t new_size = align_address(data_size + extra, this->addralign());
3136 this->patch_space_ = new_size - data_size;
3137 gold_debug(DEBUG_INCREMENTAL,
3138 "set_final_data_size: %08lx + %08lx: section %s",
3139 static_cast<long>(data_size),
3140 static_cast<long>(this->patch_space_),
3141 this->name());
3142 data_size = new_size;
ead1e424
ILT
3143 }
3144
9fbd3822 3145 this->set_data_size(data_size);
ead1e424 3146}
9a0910c3 3147
a445fddf
ILT
3148// Reset the address and file offset.
3149
3150void
3151Output_section::do_reset_address_and_file_offset()
3152{
20e6d0d6
DK
3153 // An unallocated section has no address. Forcing this means that
3154 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3155 // sections. We do the same in the constructor. This does not
3156 // apply to NOLOAD sections though.
3157 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3158 this->set_address(0);
3159
a445fddf
ILT
3160 for (Input_section_list::iterator p = this->input_sections_.begin();
3161 p != this->input_sections_.end();
3162 ++p)
3163 p->reset_address_and_file_offset();
9fbd3822
CC
3164
3165 // Remove any patch space that was added in set_final_data_size.
3166 if (this->patch_space_ > 0)
3167 {
3168 this->set_current_data_size_for_child(this->current_data_size_for_child()
3169 - this->patch_space_);
3170 this->patch_space_ = 0;
3171 }
a445fddf 3172}
9fbd3822 3173
20e6d0d6
DK
3174// Return true if address and file offset have the values after reset.
3175
3176bool
3177Output_section::do_address_and_file_offset_have_reset_values() const
3178{
3179 if (this->is_offset_valid())
3180 return false;
3181
3182 // An unallocated section has address 0 after its construction or a reset.
3183 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3184 return this->is_address_valid() && this->address() == 0;
3185 else
3186 return !this->is_address_valid();
3187}
a445fddf 3188
7bf1f802
ILT
3189// Set the TLS offset. Called only for SHT_TLS sections.
3190
3191void
3192Output_section::do_set_tls_offset(uint64_t tls_base)
3193{
3194 this->tls_offset_ = this->address() - tls_base;
3195}
3196
2fd32231
ILT
3197// In a few cases we need to sort the input sections attached to an
3198// output section. This is used to implement the type of constructor
3199// priority ordering implemented by the GNU linker, in which the
3200// priority becomes part of the section name and the sections are
3201// sorted by name. We only do this for an output section if we see an
5393d741 3202// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3203// ".init_array.*" or ".fini_array.*".
3204
3205class Output_section::Input_section_sort_entry
3206{
3207 public:
3208 Input_section_sort_entry()
3209 : input_section_(), index_(-1U), section_has_name_(false),
3210 section_name_()
3211 { }
3212
2ea97941 3213 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3214 unsigned int index,
3215 bool must_sort_attached_input_sections)
2ea97941
ILT
3216 : input_section_(input_section), index_(index),
3217 section_has_name_(input_section.is_input_section()
3218 || input_section.is_relaxed_input_section())
2fd32231 3219 {
6e9ba2ca 3220 if (this->section_has_name_
eb426534 3221 && must_sort_attached_input_sections)
2fd32231
ILT
3222 {
3223 // This is only called single-threaded from Layout::finalize,
3224 // so it is OK to lock. Unfortunately we have no way to pass
3225 // in a Task token.
3226 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3227 Object* obj = (input_section.is_input_section()
3228 ? input_section.relobj()
3229 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3230 Task_lock_obj<Object> tl(dummy_task, obj);
3231
3232 // This is a slow operation, which should be cached in
3233 // Layout::layout if this becomes a speed problem.
2ea97941 3234 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3235 }
3236 }
3237
3238 // Return the Input_section.
3239 const Input_section&
3240 input_section() const
3241 {
3242 gold_assert(this->index_ != -1U);
3243 return this->input_section_;
3244 }
3245
3246 // The index of this entry in the original list. This is used to
3247 // make the sort stable.
3248 unsigned int
3249 index() const
3250 {
3251 gold_assert(this->index_ != -1U);
3252 return this->index_;
3253 }
3254
3255 // Whether there is a section name.
3256 bool
3257 section_has_name() const
3258 { return this->section_has_name_; }
3259
3260 // The section name.
3261 const std::string&
3262 section_name() const
3263 {
3264 gold_assert(this->section_has_name_);
3265 return this->section_name_;
3266 }
3267
ab794b6b
ILT
3268 // Return true if the section name has a priority. This is assumed
3269 // to be true if it has a dot after the initial dot.
2fd32231 3270 bool
ab794b6b 3271 has_priority() const
2fd32231
ILT
3272 {
3273 gold_assert(this->section_has_name_);
2a0ff005 3274 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3275 }
3276
5393d741
ILT
3277 // Return the priority. Believe it or not, gcc encodes the priority
3278 // differently for .ctors/.dtors and .init_array/.fini_array
3279 // sections.
3280 unsigned int
3281 get_priority() const
3282 {
3283 gold_assert(this->section_has_name_);
3284 bool is_ctors;
3285 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3286 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3287 is_ctors = true;
3288 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3289 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3290 is_ctors = false;
3291 else
3292 return 0;
3293 char* end;
3294 unsigned long prio = strtoul((this->section_name_.c_str()
3295 + (is_ctors ? 7 : 12)),
3296 &end, 10);
3297 if (*end != '\0')
3298 return 0;
3299 else if (is_ctors)
3300 return 65535 - prio;
3301 else
3302 return prio;
3303 }
3304
ab794b6b
ILT
3305 // Return true if this an input file whose base name matches
3306 // FILE_NAME. The base name must have an extension of ".o", and
3307 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3308 // This is to match crtbegin.o as well as crtbeginS.o without
3309 // getting confused by other possibilities. Overall matching the
3310 // file name this way is a dreadful hack, but the GNU linker does it
3311 // in order to better support gcc, and we need to be compatible.
2fd32231 3312 bool
5393d741 3313 match_file_name(const char* file_name) const
edcac0c1
ILT
3314 {
3315 if (this->input_section_.is_output_section_data())
3316 return false;
3317 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3318 }
2fd32231 3319
8fe2a369
ST
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3322 int
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3324 {
8fe2a369
ST
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3328 {
eb426534
RM
3329 if (this_secn_index < s_secn_index)
3330 return 1;
3331 else if (this_secn_index > s_secn_index)
3332 return -1;
8fe2a369
ST
3333 }
3334 return 0;
6e9ba2ca
ST
3335 }
3336
2fd32231
ILT
3337 private:
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3347};
3348
3349// Return true if S1 should come before S2 in the output section.
3350
3351bool
3352Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3355{
ab794b6b
ILT
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3359 if (s1_begin || s2_begin)
3360 {
3361 if (!s1_begin)
3362 return false;
3363 if (!s2_begin)
3364 return true;
3365 return s1.index() < s2.index();
3366 }
3367
ab794b6b
ILT
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3371 if (s1_end || s2_end)
3372 {
3373 if (!s1_end)
3374 return true;
3375 if (!s2_end)
3376 return false;
3377 return s1.index() < s2.index();
3378 }
3379
ab794b6b
ILT
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3382 {
3383 if (s1.section_has_name())
3384 return true;
3385 if (s2.section_has_name())
3386 return false;
3387 return s1.index() < s2.index();
3388 }
2fd32231 3389
ab794b6b 3390 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
2fd32231 3394 return false;
ab794b6b 3395 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3396 return true;
3397
6e9ba2ca
ST
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3403
2fd32231
ILT
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3406 if (compare != 0)
3407 return compare < 0;
3408
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3411}
3412
2a0ff005
DK
3413// Return true if S1 should come before S2 in an .init_array or .fini_array
3414// output section.
3415
3416bool
3417Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3420{
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3423 {
3424 if (s1.section_has_name())
3425 return true;
3426 if (s2.section_has_name())
3427 return false;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3436 return true;
3437 if (!s1_has_priority && s2_has_priority)
3438 return false;
3439
5393d741
ILT
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3445 return false;
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3449 return true;
3450
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3453 {
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3457 return true;
3458 else if (s1_prio > s2_prio)
3459 return false;
3460 }
3461
6e9ba2ca
ST
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3467
2a0ff005
DK
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3470 if (compare != 0)
3471 return compare < 0;
3472
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3475}
3476
8fe2a369
ST
3477// Return true if S1 should come before S2. Sections that do not match
3478// any pattern in the section ordering file are placed ahead of the sections
edcac0c1 3479// that match some pattern.
8fe2a369 3480
6e9ba2ca
ST
3481bool
3482Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3485{
8fe2a369
ST
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3488
edcac0c1
ILT
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
28f2a4ac 3491 return s1.index() < s2.index();
edcac0c1
ILT
3492
3493 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3494}
3495
c6ac678d
ST
3496// Return true if S1 should come before S2. This is the sort comparison
3497// function for .text to sort sections with prefixes
3498// .text.{unlikely,exit,startup,hot} before other sections.
6934001a 3499
c6ac678d 3500bool
6934001a 3501Output_section::Input_section_sort_section_prefix_special_ordering_compare
c6ac678d
ST
3502 ::operator()(
3503 const Output_section::Input_section_sort_entry& s1,
3504 const Output_section::Input_section_sort_entry& s2) const
3505{
3506 // We sort all the sections with no names to the end.
3507 if (!s1.section_has_name() || !s2.section_has_name())
3508 {
3509 if (s1.section_has_name())
3510 return true;
3511 if (s2.section_has_name())
3512 return false;
3513 return s1.index() < s2.index();
3514 }
6934001a 3515
c6ac678d
ST
3516 // Some input section names have special ordering requirements.
3517 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3518 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3519 if (o1 != o2)
3520 {
3521 if (o1 < 0)
3522 return false;
3523 else if (o2 < 0)
3524 return true;
3525 else
3526 return o1 < o2;
3527 }
3528
3529 // Keep input order otherwise.
6934001a
CC
3530 return s1.index() < s2.index();
3531}
3532
3533// Return true if S1 should come before S2. This is the sort comparison
3534// function for sections to sort them by name.
3535
3536bool
3537Output_section::Input_section_sort_section_name_compare
3538 ::operator()(
3539 const Output_section::Input_section_sort_entry& s1,
3540 const Output_section::Input_section_sort_entry& s2) const
3541{
3542 // We sort all the sections with no names to the end.
3543 if (!s1.section_has_name() || !s2.section_has_name())
3544 {
3545 if (s1.section_has_name())
3546 return true;
3547 if (s2.section_has_name())
3548 return false;
3549 return s1.index() < s2.index();
3550 }
3551
3552 // We sort by name.
3553 int compare = s1.section_name().compare(s2.section_name());
3554 if (compare != 0)
3555 return compare < 0;
3556
3557 // Keep input order otherwise.
3558 return s1.index() < s2.index();
c6ac678d
ST
3559}
3560
e9552f7e
ST
3561// This updates the section order index of input sections according to the
3562// the order specified in the mapping from Section id to order index.
3563
3564void
3565Output_section::update_section_layout(
f0558624 3566 const Section_layout_order* order_map)
e9552f7e
ST
3567{
3568 for (Input_section_list::iterator p = this->input_sections_.begin();
3569 p != this->input_sections_.end();
3570 ++p)
3571 {
3572 if (p->is_input_section()
3573 || p->is_relaxed_input_section())
eb426534 3574 {
e9552f7e
ST
3575 Object* obj = (p->is_input_section()
3576 ? p->relobj()
eb426534 3577 : p->relaxed_input_section()->relobj());
e9552f7e
ST
3578 unsigned int shndx = p->shndx();
3579 Section_layout_order::const_iterator it
f0558624
ST
3580 = order_map->find(Section_id(obj, shndx));
3581 if (it == order_map->end())
e9552f7e
ST
3582 continue;
3583 unsigned int section_order_index = it->second;
3584 if (section_order_index != 0)
eb426534
RM
3585 {
3586 p->set_section_order_index(section_order_index);
3587 this->set_input_section_order_specified();
e9552f7e 3588 }
eb426534 3589 }
e9552f7e
ST
3590 }
3591}
3592
2fd32231
ILT
3593// Sort the input sections attached to an output section.
3594
3595void
3596Output_section::sort_attached_input_sections()
3597{
3598 if (this->attached_input_sections_are_sorted_)
3599 return;
3600
20e6d0d6
DK
3601 if (this->checkpoint_ != NULL
3602 && !this->checkpoint_->input_sections_saved())
3603 this->checkpoint_->save_input_sections();
3604
2fd32231
ILT
3605 // The only thing we know about an input section is the object and
3606 // the section index. We need the section name. Recomputing this
3607 // is slow but this is an unusual case. If this becomes a speed
3608 // problem we can cache the names as required in Layout::layout.
3609
3610 // We start by building a larger vector holding a copy of each
3611 // Input_section, plus its current index in the list and its name.
3612 std::vector<Input_section_sort_entry> sort_list;
3613
3614 unsigned int i = 0;
3615 for (Input_section_list::iterator p = this->input_sections_.begin();
3616 p != this->input_sections_.end();
3617 ++p, ++i)
6e9ba2ca 3618 sort_list.push_back(Input_section_sort_entry(*p, i,
eb426534 3619 this->must_sort_attached_input_sections()));
2fd32231
ILT
3620
3621 // Sort the input sections.
6e9ba2ca
ST
3622 if (this->must_sort_attached_input_sections())
3623 {
3624 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
eb426534
RM
3625 || this->type() == elfcpp::SHT_INIT_ARRAY
3626 || this->type() == elfcpp::SHT_FINI_ARRAY)
3627 std::sort(sort_list.begin(), sort_list.end(),
3628 Input_section_sort_init_fini_compare());
6934001a
CC
3629 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3630 std::sort(sort_list.begin(), sort_list.end(),
3631 Input_section_sort_section_name_compare());
c6ac678d 3632 else if (strcmp(this->name(), ".text") == 0)
6934001a
CC
3633 std::sort(sort_list.begin(), sort_list.end(),
3634 Input_section_sort_section_prefix_special_ordering_compare());
6e9ba2ca 3635 else
eb426534
RM
3636 std::sort(sort_list.begin(), sort_list.end(),
3637 Input_section_sort_compare());
6e9ba2ca 3638 }
2a0ff005 3639 else
6e9ba2ca 3640 {
e9552f7e 3641 gold_assert(this->input_section_order_specified());
6e9ba2ca 3642 std::sort(sort_list.begin(), sort_list.end(),
eb426534 3643 Input_section_sort_section_order_index_compare());
6e9ba2ca 3644 }
2fd32231
ILT
3645
3646 // Copy the sorted input sections back to our list.
3647 this->input_sections_.clear();
3648 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3649 p != sort_list.end();
3650 ++p)
3651 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3652 sort_list.clear();
2fd32231
ILT
3653
3654 // Remember that we sorted the input sections, since we might get
3655 // called again.
3656 this->attached_input_sections_are_sorted_ = true;
3657}
3658
61ba1cf9
ILT
3659// Write the section header to *OSHDR.
3660
3661template<int size, bool big_endian>
3662void
16649710
ILT
3663Output_section::write_header(const Layout* layout,
3664 const Stringpool* secnamepool,
61ba1cf9
ILT
3665 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3666{
3667 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3668 oshdr->put_sh_type(this->type_);
6a74a719 3669
2ea97941 3670 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3671 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3672 flags |= elfcpp::SHF_INFO_LINK;
3673 oshdr->put_sh_flags(flags);
6a74a719 3674
61ba1cf9
ILT
3675 oshdr->put_sh_addr(this->address());
3676 oshdr->put_sh_offset(this->offset());
3677 oshdr->put_sh_size(this->data_size());
16649710
ILT
3678 if (this->link_section_ != NULL)
3679 oshdr->put_sh_link(this->link_section_->out_shndx());
3680 else if (this->should_link_to_symtab_)
886f533a 3681 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3682 else if (this->should_link_to_dynsym_)
3683 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3684 else
3685 oshdr->put_sh_link(this->link_);
755ab8af 3686
2ea97941 3687 elfcpp::Elf_Word info;
16649710 3688 if (this->info_section_ != NULL)
755ab8af
ILT
3689 {
3690 if (this->info_uses_section_index_)
2ea97941 3691 info = this->info_section_->out_shndx();
755ab8af 3692 else
2ea97941 3693 info = this->info_section_->symtab_index();
755ab8af 3694 }
6a74a719 3695 else if (this->info_symndx_ != NULL)
2ea97941 3696 info = this->info_symndx_->symtab_index();
16649710 3697 else
2ea97941
ILT
3698 info = this->info_;
3699 oshdr->put_sh_info(info);
755ab8af 3700
61ba1cf9
ILT
3701 oshdr->put_sh_addralign(this->addralign_);
3702 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3703}
3704
ead1e424
ILT
3705// Write out the data. For input sections the data is written out by
3706// Object::relocate, but we have to handle Output_section_data objects
3707// here.
3708
3709void
3710Output_section::do_write(Output_file* of)
3711{
96803768
ILT
3712 gold_assert(!this->requires_postprocessing());
3713
c0a62865
DK
3714 // If the target performs relaxation, we delay filler generation until now.
3715 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3716
c51e6221
ILT
3717 off_t output_section_file_offset = this->offset();
3718 for (Fill_list::iterator p = this->fills_.begin();
3719 p != this->fills_.end();
3720 ++p)
3721 {
8851ecca 3722 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3723 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3724 fill_data.data(), fill_data.size());
c51e6221
ILT
3725 }
3726
c0a62865 3727 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3728 for (Input_section_list::iterator p = this->input_sections_.begin();
3729 p != this->input_sections_.end();
3730 ++p)
c0a62865
DK
3731 {
3732 off_t aligned_off = align_address(off, p->addralign());
3733 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3734 {
3735 size_t fill_len = aligned_off - off;
3736 std::string fill_data(parameters->target().code_fill(fill_len));
3737 of->write(off, fill_data.data(), fill_data.size());
3738 }
3739
3740 p->write(of);
3741 off = aligned_off + p->data_size();
3742 }
8ea8cd50
CC
3743
3744 // For incremental links, fill in unused chunks in debug sections
3745 // with dummy compilation unit headers.
3746 if (this->free_space_fill_ != NULL)
3747 {
3748 for (Free_list::Const_iterator p = this->free_list_.begin();
3749 p != this->free_list_.end();
3750 ++p)
3751 {
3752 off_t off = p->start_;
3753 size_t len = p->end_ - off;
3754 this->free_space_fill_->write(of, this->offset() + off, len);
3755 }
3756 if (this->patch_space_ > 0)
3757 {
3758 off_t off = this->current_data_size_for_child() - this->patch_space_;
3759 this->free_space_fill_->write(of, this->offset() + off,
3760 this->patch_space_);
3761 }
3762 }
ead1e424
ILT
3763}
3764
96803768
ILT
3765// If a section requires postprocessing, create the buffer to use.
3766
3767void
3768Output_section::create_postprocessing_buffer()
3769{
3770 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3771
3772 if (this->postprocessing_buffer_ != NULL)
3773 return;
96803768
ILT
3774
3775 if (!this->input_sections_.empty())
3776 {
3777 off_t off = this->first_input_offset_;
3778 for (Input_section_list::iterator p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3780 ++p)
3781 {
3782 off = align_address(off, p->addralign());
3783 p->finalize_data_size();
3784 off += p->data_size();
3785 }
3786 this->set_current_data_size_for_child(off);
3787 }
3788
3789 off_t buffer_size = this->current_data_size_for_child();
3790 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3791}
3792
3793// Write all the data of an Output_section into the postprocessing
3794// buffer. This is used for sections which require postprocessing,
3795// such as compression. Input sections are handled by
3796// Object::Relocate.
3797
3798void
3799Output_section::write_to_postprocessing_buffer()
3800{
3801 gold_assert(this->requires_postprocessing());
3802
c0a62865
DK
3803 // If the target performs relaxation, we delay filler generation until now.
3804 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3805
96803768
ILT
3806 unsigned char* buffer = this->postprocessing_buffer();
3807 for (Fill_list::iterator p = this->fills_.begin();
3808 p != this->fills_.end();
3809 ++p)
3810 {
8851ecca 3811 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3812 memcpy(buffer + p->section_offset(), fill_data.data(),
3813 fill_data.size());
96803768
ILT
3814 }
3815
3816 off_t off = this->first_input_offset_;
3817 for (Input_section_list::iterator p = this->input_sections_.begin();
3818 p != this->input_sections_.end();
3819 ++p)
3820 {
c0a62865
DK
3821 off_t aligned_off = align_address(off, p->addralign());
3822 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3823 {
3824 size_t fill_len = aligned_off - off;
3825 std::string fill_data(parameters->target().code_fill(fill_len));
3826 memcpy(buffer + off, fill_data.data(), fill_data.size());
3827 }
3828
3829 p->write_to_buffer(buffer + aligned_off);
3830 off = aligned_off + p->data_size();
96803768
ILT
3831 }
3832}
3833
a445fddf
ILT
3834// Get the input sections for linker script processing. We leave
3835// behind the Output_section_data entries. Note that this may be
3836// slightly incorrect for merge sections. We will leave them behind,
3837// but it is possible that the script says that they should follow
3838// some other input sections, as in:
3839// .rodata { *(.rodata) *(.rodata.cst*) }
3840// For that matter, we don't handle this correctly:
3841// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3842// With luck this will never matter.
3843
3844uint64_t
3845Output_section::get_input_sections(
2ea97941 3846 uint64_t address,
a445fddf 3847 const std::string& fill,
6625d24e 3848 std::list<Input_section>* input_sections)
a445fddf 3849{
20e6d0d6
DK
3850 if (this->checkpoint_ != NULL
3851 && !this->checkpoint_->input_sections_saved())
3852 this->checkpoint_->save_input_sections();
3853
0439c796
DK
3854 // Invalidate fast look-up maps.
3855 this->lookup_maps_->invalidate();
c0a62865 3856
2ea97941 3857 uint64_t orig_address = address;
a445fddf 3858
2ea97941 3859 address = align_address(address, this->addralign());
a445fddf
ILT
3860
3861 Input_section_list remaining;
3862 for (Input_section_list::iterator p = this->input_sections_.begin();
3863 p != this->input_sections_.end();
3864 ++p)
3865 {
0439c796
DK
3866 if (p->is_input_section()
3867 || p->is_relaxed_input_section()
3868 || p->is_merge_section())
6625d24e 3869 input_sections->push_back(*p);
a445fddf
ILT
3870 else
3871 {
2ea97941
ILT
3872 uint64_t aligned_address = align_address(address, p->addralign());
3873 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3874 {
3875 section_size_type length =
2ea97941 3876 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3877 std::string this_fill;
3878 this_fill.reserve(length);
3879 while (this_fill.length() + fill.length() <= length)
3880 this_fill += fill;
3881 if (this_fill.length() < length)
3882 this_fill.append(fill, 0, length - this_fill.length());
3883
3884 Output_section_data* posd = new Output_data_const(this_fill, 0);
3885 remaining.push_back(Input_section(posd));
3886 }
2ea97941 3887 address = aligned_address;
a445fddf
ILT
3888
3889 remaining.push_back(*p);
3890
3891 p->finalize_data_size();
2ea97941 3892 address += p->data_size();
a445fddf
ILT
3893 }
3894 }
3895
3896 this->input_sections_.swap(remaining);
3897 this->first_input_offset_ = 0;
3898
2ea97941
ILT
3899 uint64_t data_size = address - orig_address;
3900 this->set_current_data_size_for_child(data_size);
3901 return data_size;
a445fddf
ILT
3902}
3903
6625d24e
DK
3904// Add a script input section. SIS is an Output_section::Input_section,
3905// which can be either a plain input section or a special input section like
3906// a relaxed input section. For a special input section, its size must be
3907// finalized.
a445fddf
ILT
3908
3909void
6625d24e 3910Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3911{
6625d24e
DK
3912 uint64_t data_size = sis.data_size();
3913 uint64_t addralign = sis.addralign();
2ea97941
ILT
3914 if (addralign > this->addralign_)
3915 this->addralign_ = addralign;
a445fddf
ILT
3916
3917 off_t offset_in_section = this->current_data_size_for_child();
3918 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3919 addralign);
a445fddf
ILT
3920
3921 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3922 + data_size);
a445fddf 3923
6625d24e 3924 this->input_sections_.push_back(sis);
0439c796 3925
50ed5eb1 3926 // Update fast lookup maps if necessary.
0439c796
DK
3927 if (this->lookup_maps_->is_valid())
3928 {
3929 if (sis.is_merge_section())
3930 {
3931 Output_merge_base* pomb = sis.output_merge_base();
3932 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3933 pomb->addralign());
3934 this->lookup_maps_->add_merge_section(msp, pomb);
3935 for (Output_merge_base::Input_sections::const_iterator p =
3936 pomb->input_sections_begin();
3937 p != pomb->input_sections_end();
3938 ++p)
3939 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3940 pomb);
3941 }
3942 else if (sis.is_relaxed_input_section())
3943 {
3944 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3945 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3946 poris->shndx(), poris);
3947 }
3948 }
20e6d0d6
DK
3949}
3950
8923b24c 3951// Save states for relaxation.
20e6d0d6
DK
3952
3953void
3954Output_section::save_states()
3955{
3956 gold_assert(this->checkpoint_ == NULL);
3957 Checkpoint_output_section* checkpoint =
3958 new Checkpoint_output_section(this->addralign_, this->flags_,
3959 this->input_sections_,
3960 this->first_input_offset_,
3961 this->attached_input_sections_are_sorted_);
3962 this->checkpoint_ = checkpoint;
3963 gold_assert(this->fills_.empty());
3964}
3965
8923b24c
DK
3966void
3967Output_section::discard_states()
3968{
3969 gold_assert(this->checkpoint_ != NULL);
3970 delete this->checkpoint_;
3971 this->checkpoint_ = NULL;
3972 gold_assert(this->fills_.empty());
3973
0439c796
DK
3974 // Simply invalidate the fast lookup maps since we do not keep
3975 // track of them.
3976 this->lookup_maps_->invalidate();
8923b24c
DK
3977}
3978
20e6d0d6
DK
3979void
3980Output_section::restore_states()
3981{
3982 gold_assert(this->checkpoint_ != NULL);
3983 Checkpoint_output_section* checkpoint = this->checkpoint_;
3984
3985 this->addralign_ = checkpoint->addralign();
3986 this->flags_ = checkpoint->flags();
3987 this->first_input_offset_ = checkpoint->first_input_offset();
3988
3989 if (!checkpoint->input_sections_saved())
3990 {
3991 // If we have not copied the input sections, just resize it.
3992 size_t old_size = checkpoint->input_sections_size();
3993 gold_assert(this->input_sections_.size() >= old_size);
3994 this->input_sections_.resize(old_size);
3995 }
3996 else
3997 {
3998 // We need to copy the whole list. This is not efficient for
3999 // extremely large output with hundreads of thousands of input
4000 // objects. We may need to re-think how we should pass sections
4001 // to scripts.
c0a62865 4002 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
4003 }
4004
4005 this->attached_input_sections_are_sorted_ =
4006 checkpoint->attached_input_sections_are_sorted();
c0a62865 4007
0439c796
DK
4008 // Simply invalidate the fast lookup maps since we do not keep
4009 // track of them.
4010 this->lookup_maps_->invalidate();
a445fddf
ILT
4011}
4012
8923b24c
DK
4013// Update the section offsets of input sections in this. This is required if
4014// relaxation causes some input sections to change sizes.
4015
4016void
4017Output_section::adjust_section_offsets()
4018{
4019 if (!this->section_offsets_need_adjustment_)
4020 return;
4021
4022 off_t off = 0;
4023 for (Input_section_list::iterator p = this->input_sections_.begin();
4024 p != this->input_sections_.end();
4025 ++p)
4026 {
4027 off = align_address(off, p->addralign());
4028 if (p->is_input_section())
4029 p->relobj()->set_section_offset(p->shndx(), off);
4030 off += p->data_size();
4031 }
4032
4033 this->section_offsets_need_adjustment_ = false;
4034}
4035
7d9e3d98
ILT
4036// Print to the map file.
4037
4038void
4039Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4040{
4041 mapfile->print_output_section(this);
4042
4043 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4044 p != this->input_sections_.end();
4045 ++p)
4046 p->print_to_mapfile(mapfile);
4047}
4048
38c5e8b4
ILT
4049// Print stats for merge sections to stderr.
4050
4051void
4052Output_section::print_merge_stats()
4053{
4054 Input_section_list::iterator p;
4055 for (p = this->input_sections_.begin();
4056 p != this->input_sections_.end();
4057 ++p)
4058 p->print_merge_stats(this->name_);
4059}
4060
cdc29364
CC
4061// Set a fixed layout for the section. Used for incremental update links.
4062
4063void
4064Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4065 off_t sh_size, uint64_t sh_addralign)
4066{
4067 this->addralign_ = sh_addralign;
4068 this->set_current_data_size(sh_size);
4069 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4070 this->set_address(sh_addr);
4071 this->set_file_offset(sh_offset);
4072 this->finalize_data_size();
4073 this->free_list_.init(sh_size, false);
4074 this->has_fixed_layout_ = true;
4075}
4076
4077// Reserve space within the fixed layout for the section. Used for
4078// incremental update links.
5146f448 4079
cdc29364
CC
4080void
4081Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4082{
4083 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4084}
4085
5146f448
CC
4086// Allocate space from the free list for the section. Used for
4087// incremental update links.
4088
4089off_t
4090Output_section::allocate(off_t len, uint64_t addralign)
4091{
4092 return this->free_list_.allocate(len, addralign, 0);
4093}
4094
a2fb1b05
ILT
4095// Output segment methods.
4096
2ea97941 4097Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4098 : vaddr_(0),
a2fb1b05
ILT
4099 paddr_(0),
4100 memsz_(0),
a445fddf
ILT
4101 max_align_(0),
4102 min_p_align_(0),
a2fb1b05
ILT
4103 offset_(0),
4104 filesz_(0),
2ea97941
ILT
4105 type_(type),
4106 flags_(flags),
a445fddf 4107 is_max_align_known_(false),
8a5e3e08 4108 are_addresses_set_(false),
16164a6b
ST
4109 is_large_data_segment_(false),
4110 is_unique_segment_(false)
a2fb1b05 4111{
bb321bb1
ILT
4112 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4113 // the flags.
4114 if (type == elfcpp::PT_TLS)
4115 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4116}
4117
22f0da72 4118// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4119
4120void
22f0da72
ILT
4121Output_segment::add_output_section_to_load(Layout* layout,
4122 Output_section* os,
4123 elfcpp::Elf_Word seg_flags)
a2fb1b05 4124{
22f0da72 4125 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4126 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4127 gold_assert(!this->is_max_align_known_);
8a5e3e08 4128 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4129
a192ba05 4130 this->update_flags_for_output_section(seg_flags);
75f65a3e 4131
22f0da72
ILT
4132 // We don't want to change the ordering if we have a linker script
4133 // with a SECTIONS clause.
4134 Output_section_order order = os->order();
4135 if (layout->script_options()->saw_sections_clause())
4136 order = static_cast<Output_section_order>(0);
75f65a3e 4137 else
22f0da72 4138 gold_assert(order != ORDER_INVALID);
54dc6425 4139
22f0da72
ILT
4140 this->output_lists_[order].push_back(os);
4141}
9f1d377b 4142
22f0da72 4143// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4144
22f0da72
ILT
4145void
4146Output_segment::add_output_section_to_nonload(Output_section* os,
4147 elfcpp::Elf_Word seg_flags)
4148{
4149 gold_assert(this->type() != elfcpp::PT_LOAD);
4150 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4151 gold_assert(!this->is_max_align_known_);
1a2dff53 4152
22f0da72 4153 this->update_flags_for_output_section(seg_flags);
9f1d377b 4154
22f0da72
ILT
4155 this->output_lists_[0].push_back(os);
4156}
8a5e3e08 4157
22f0da72
ILT
4158// Remove an Output_section from this segment. It is an error if it
4159// is not present.
8a5e3e08 4160
22f0da72
ILT
4161void
4162Output_segment::remove_output_section(Output_section* os)
4163{
4164 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4165 {
22f0da72
ILT
4166 Output_data_list* pdl = &this->output_lists_[i];
4167 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4168 {
22f0da72 4169 if (*p == os)
8a5e3e08 4170 {
22f0da72 4171 pdl->erase(p);
8a5e3e08
ILT
4172 return;
4173 }
4174 }
f5c870d2 4175 }
1650c4ff
ILT
4176 gold_unreachable();
4177}
4178
a192ba05
ILT
4179// Add an Output_data (which need not be an Output_section) to the
4180// start of a segment.
75f65a3e
ILT
4181
4182void
4183Output_segment::add_initial_output_data(Output_data* od)
4184{
a445fddf 4185 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4186 Output_data_list::iterator p = this->output_lists_[0].begin();
4187 this->output_lists_[0].insert(p, od);
4188}
4189
4190// Return true if this segment has any sections which hold actual
4191// data, rather than being a BSS section.
4192
4193bool
4194Output_segment::has_any_data_sections() const
4195{
4196 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4197 {
4198 const Output_data_list* pdl = &this->output_lists_[i];
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
4202 {
4203 if (!(*p)->is_section())
4204 return true;
4205 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4206 return true;
4207 }
4208 }
4209 return false;
75f65a3e
ILT
4210}
4211
5bc2f5be
CC
4212// Return whether the first data section (not counting TLS sections)
4213// is a relro section.
9f1d377b
ILT
4214
4215bool
4216Output_segment::is_first_section_relro() const
4217{
22f0da72
ILT
4218 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4219 {
5bc2f5be
CC
4220 if (i == static_cast<int>(ORDER_TLS_DATA)
4221 || i == static_cast<int>(ORDER_TLS_BSS))
4222 continue;
22f0da72
ILT
4223 const Output_data_list* pdl = &this->output_lists_[i];
4224 if (!pdl->empty())
4225 {
4226 Output_data* p = pdl->front();
4227 return p->is_section() && p->output_section()->is_relro();
4228 }
4229 }
4230 return false;
9f1d377b
ILT
4231}
4232
75f65a3e 4233// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4234
4235uint64_t
a445fddf 4236Output_segment::maximum_alignment()
75f65a3e 4237{
a445fddf 4238 if (!this->is_max_align_known_)
ead1e424 4239 {
22f0da72 4240 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
50ed5eb1 4241 {
22f0da72
ILT
4242 const Output_data_list* pdl = &this->output_lists_[i];
4243 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4244 if (addralign > this->max_align_)
4245 this->max_align_ = addralign;
4246 }
a445fddf 4247 this->is_max_align_known_ = true;
ead1e424
ILT
4248 }
4249
a445fddf 4250 return this->max_align_;
75f65a3e
ILT
4251}
4252
ead1e424
ILT
4253// Return the maximum alignment of a list of Output_data.
4254
4255uint64_t
a445fddf 4256Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4257{
4258 uint64_t ret = 0;
4259 for (Output_data_list::const_iterator p = pdl->begin();
4260 p != pdl->end();
4261 ++p)
4262 {
2ea97941
ILT
4263 uint64_t addralign = (*p)->addralign();
4264 if (addralign > ret)
4265 ret = addralign;
ead1e424
ILT
4266 }
4267 return ret;
4268}
4269
22f0da72 4270// Return whether this segment has any dynamic relocs.
4f4c5f80 4271
22f0da72
ILT
4272bool
4273Output_segment::has_dynamic_reloc() const
4f4c5f80 4274{
22f0da72
ILT
4275 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4276 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4277 return true;
4278 return false;
4f4c5f80
ILT
4279}
4280
22f0da72 4281// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4282
22f0da72
ILT
4283bool
4284Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4285{
4f4c5f80
ILT
4286 for (Output_data_list::const_iterator p = pdl->begin();
4287 p != pdl->end();
4288 ++p)
22f0da72
ILT
4289 if ((*p)->has_dynamic_reloc())
4290 return true;
4291 return false;
4f4c5f80
ILT
4292}
4293
a445fddf
ILT
4294// Set the section addresses for an Output_segment. If RESET is true,
4295// reset the addresses first. ADDR is the address and *POFF is the
4296// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4297// INCREASE_RELRO is the size of the portion of the first non-relro
4298// section that should be included in the PT_GNU_RELRO segment.
4299// If this segment has relro sections, and has been aligned for
4300// that purpose, set *HAS_RELRO to TRUE. Return the address of
4301// the immediately following segment. Update *HAS_RELRO, *POFF,
4302// and *PSHNDX.
75f65a3e
ILT
4303
4304uint64_t
eb426534
RM
4305Output_segment::set_section_addresses(const Target* target,
4306 Layout* layout, bool reset,
4307 uint64_t addr,
fd064a5b 4308 unsigned int* increase_relro,
fc497986 4309 bool* has_relro,
1a2dff53 4310 off_t* poff,
ead1e424 4311 unsigned int* pshndx)
75f65a3e 4312{
a3ad94ed 4313 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4314
fc497986 4315 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4316 off_t orig_off = *poff;
4317
5bc2f5be
CC
4318 bool in_tls = false;
4319
1a2dff53 4320 // If we have relro sections, we need to pad forward now so that the
815a1205 4321 // relro sections plus INCREASE_RELRO end on an abi page boundary.
1a2dff53
ILT
4322 if (parameters->options().relro()
4323 && this->is_first_section_relro()
4324 && (!this->are_addresses_set_ || reset))
4325 {
4326 uint64_t relro_size = 0;
4327 off_t off = *poff;
fc497986 4328 uint64_t max_align = 0;
5bc2f5be 4329 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4330 {
22f0da72
ILT
4331 Output_data_list* pdl = &this->output_lists_[i];
4332 Output_data_list::iterator p;
4333 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4334 {
22f0da72
ILT
4335 if (!(*p)->is_section())
4336 break;
fc497986
CC
4337 uint64_t align = (*p)->addralign();
4338 if (align > max_align)
4339 max_align = align;
5bc2f5be
CC
4340 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4341 in_tls = true;
4342 else if (in_tls)
4343 {
4344 // Align the first non-TLS section to the alignment
4345 // of the TLS segment.
4346 align = max_align;
4347 in_tls = false;
4348 }
fc497986 4349 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4350 // Ignore the size of the .tbss section.
4351 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4352 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4353 continue;
22f0da72
ILT
4354 if ((*p)->is_address_valid())
4355 relro_size += (*p)->data_size();
4356 else
4357 {
4358 // FIXME: This could be faster.
4359 (*p)->set_address_and_file_offset(addr + relro_size,
4360 off + relro_size);
4361 relro_size += (*p)->data_size();
4362 (*p)->reset_address_and_file_offset();
4363 }
1a2dff53 4364 }
22f0da72
ILT
4365 if (p != pdl->end())
4366 break;
1a2dff53 4367 }
fd064a5b 4368 relro_size += *increase_relro;
fc497986
CC
4369 // Pad the total relro size to a multiple of the maximum
4370 // section alignment seen.
4371 uint64_t aligned_size = align_address(relro_size, max_align);
4372 // Note the amount of padding added after the last relro section.
4373 last_relro_pad = aligned_size - relro_size;
fc497986 4374 *has_relro = true;
1a2dff53 4375
815a1205 4376 uint64_t page_align = parameters->target().abi_pagesize();
1a2dff53
ILT
4377
4378 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4379 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4380 if (desired_align < *poff % page_align)
4381 *poff += page_align - *poff % page_align;
4382 *poff += desired_align - *poff % page_align;
4383 addr += *poff - orig_off;
4384 orig_off = *poff;
4385 }
4386
a445fddf
ILT
4387 if (!reset && this->are_addresses_set_)
4388 {
4389 gold_assert(this->paddr_ == addr);
4390 addr = this->vaddr_;
4391 }
4392 else
4393 {
4394 this->vaddr_ = addr;
4395 this->paddr_ = addr;
4396 this->are_addresses_set_ = true;
4397 }
75f65a3e 4398
5bc2f5be 4399 in_tls = false;
96a2b4e4 4400
75f65a3e
ILT
4401 this->offset_ = orig_off;
4402
22f0da72
ILT
4403 off_t off = 0;
4404 uint64_t ret;
4405 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4406 {
fc497986
CC
4407 if (i == static_cast<int>(ORDER_RELRO_LAST))
4408 {
4409 *poff += last_relro_pad;
4410 addr += last_relro_pad;
fd064a5b
CC
4411 if (this->output_lists_[i].empty())
4412 {
4413 // If there is nothing in the ORDER_RELRO_LAST list,
4414 // the padding will occur at the end of the relro
4415 // segment, and we need to add it to *INCREASE_RELRO.
4416 *increase_relro += last_relro_pad;
4417 }
fc497986 4418 }
5bc2f5be
CC
4419 addr = this->set_section_list_addresses(layout, reset,
4420 &this->output_lists_[i],
4421 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4422 if (i < static_cast<int>(ORDER_SMALL_BSS))
4423 {
4424 this->filesz_ = *poff - orig_off;
4425 off = *poff;
4426 }
75f65a3e 4427
22f0da72
ILT
4428 ret = addr;
4429 }
96a2b4e4
ILT
4430
4431 // If the last section was a TLS section, align upward to the
4432 // alignment of the TLS segment, so that the overall size of the TLS
4433 // segment is aligned.
4434 if (in_tls)
4435 {
4436 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4437 *poff = align_address(*poff, segment_align);
4438 }
4439
75f65a3e
ILT
4440 this->memsz_ = *poff - orig_off;
4441
4442 // Ignore the file offset adjustments made by the BSS Output_data
4443 // objects.
4444 *poff = off;
61ba1cf9 4445
eb426534
RM
4446 // If code segments must contain only code, and this code segment is
4447 // page-aligned in the file, then fill it out to a whole page with
4448 // code fill (the tail of the segment will not be within any section).
4449 // Thus the entire code segment can be mapped from the file as whole
4450 // pages and that mapping will contain only valid instructions.
4451 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4452 {
4453 uint64_t abi_pagesize = target->abi_pagesize();
4454 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4455 {
4456 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4457
4458 std::string fill_data;
4459 if (target->has_code_fill())
4460 fill_data = target->code_fill(fill_size);
4461 else
4462 fill_data.resize(fill_size); // Zero fill.
4463
4464 Output_data_const* fill = new Output_data_const(fill_data, 0);
4465 fill->set_address(this->vaddr_ + this->memsz_);
4466 fill->set_file_offset(off);
4467 layout->add_relax_output(fill);
4468
4469 off += fill_size;
4470 gold_assert(off % abi_pagesize == 0);
4471 ret += fill_size;
4472 gold_assert(ret % abi_pagesize == 0);
4473
4474 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4475 this->memsz_ = this->filesz_ += fill_size;
4476
4477 *poff = off;
4478 }
4479 }
4480
61ba1cf9 4481 return ret;
75f65a3e
ILT
4482}
4483
b8e6aad9
ILT
4484// Set the addresses and file offsets in a list of Output_data
4485// structures.
75f65a3e
ILT
4486
4487uint64_t
cdc29364 4488Output_segment::set_section_list_addresses(Layout* layout, bool reset,
eb426534 4489 Output_data_list* pdl,
ead1e424 4490 uint64_t addr, off_t* poff,
96a2b4e4 4491 unsigned int* pshndx,
eb426534 4492 bool* in_tls)
75f65a3e 4493{
ead1e424 4494 off_t startoff = *poff;
cdc29364
CC
4495 // For incremental updates, we may allocate non-fixed sections from
4496 // free space in the file. This keeps track of the high-water mark.
4497 off_t maxoff = startoff;
75f65a3e 4498
ead1e424 4499 off_t off = startoff;
75f65a3e
ILT
4500 for (Output_data_list::iterator p = pdl->begin();
4501 p != pdl->end();
4502 ++p)
4503 {
a445fddf
ILT
4504 if (reset)
4505 (*p)->reset_address_and_file_offset();
4506
cdc29364
CC
4507 // When doing an incremental update or when using a linker script,
4508 // the section will most likely already have an address.
a445fddf 4509 if (!(*p)->is_address_valid())
3802b2dd 4510 {
eb426534
RM
4511 uint64_t align = (*p)->addralign();
4512
4513 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4514 {
4515 // Give the first TLS section the alignment of the
4516 // entire TLS segment. Otherwise the TLS segment as a
4517 // whole may be misaligned.
4518 if (!*in_tls)
4519 {
4520 Output_segment* tls_segment = layout->tls_segment();
4521 gold_assert(tls_segment != NULL);
4522 uint64_t segment_align = tls_segment->maximum_alignment();
4523 gold_assert(segment_align >= align);
4524 align = segment_align;
4525
4526 *in_tls = true;
4527 }
4528 }
4529 else
4530 {
4531 // If this is the first section after the TLS segment,
4532 // align it to at least the alignment of the TLS
4533 // segment, so that the size of the overall TLS segment
4534 // is aligned.
4535 if (*in_tls)
4536 {
4537 uint64_t segment_align =
4538 layout->tls_segment()->maximum_alignment();
4539 if (segment_align > align)
4540 align = segment_align;
4541
4542 *in_tls = false;
4543 }
4544 }
96a2b4e4 4545
fb0e076f 4546 if (!parameters->incremental_update())
cdc29364
CC
4547 {
4548 off = align_address(off, align);
4549 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4550 }
4551 else
4552 {
4553 // Incremental update: allocate file space from free list.
4554 (*p)->pre_finalize_data_size();
4555 off_t current_size = (*p)->current_data_size();
4556 off = layout->allocate(current_size, align, startoff);
4557 if (off == -1)
eb426534 4558 {
cdc29364 4559 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4560 gold_fallback(_("out of patch space for section %s; "
4561 "relink with --incremental-full"),
4562 (*p)->output_section()->name());
eb426534 4563 }
cdc29364
CC
4564 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4565 if ((*p)->data_size() > current_size)
4566 {
4567 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4568 gold_fallback(_("%s: section changed size; "
4569 "relink with --incremental-full"),
4570 (*p)->output_section()->name());
cdc29364
CC
4571 }
4572 }
3802b2dd 4573 }
cdc29364 4574 else if (parameters->incremental_update())
eb426534
RM
4575 {
4576 // For incremental updates, use the fixed offset for the
4577 // high-water mark computation.
4578 off = (*p)->offset();
4579 }
a445fddf
ILT
4580 else
4581 {
4582 // The script may have inserted a skip forward, but it
4583 // better not have moved backward.
661be1e2
ILT
4584 if ((*p)->address() >= addr + (off - startoff))
4585 off += (*p)->address() - (addr + (off - startoff));
4586 else
4587 {
4588 if (!layout->script_options()->saw_sections_clause())
4589 gold_unreachable();
4590 else
4591 {
4592 Output_section* os = (*p)->output_section();
64b1ae37
DK
4593
4594 // Cast to unsigned long long to avoid format warnings.
4595 unsigned long long previous_dot =
4596 static_cast<unsigned long long>(addr + (off - startoff));
4597 unsigned long long dot =
4598 static_cast<unsigned long long>((*p)->address());
4599
661be1e2
ILT
4600 if (os == NULL)
4601 gold_error(_("dot moves backward in linker script "
64b1ae37 4602 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4603 else
4604 gold_error(_("address of section '%s' moves backward "
4605 "from 0x%llx to 0x%llx"),
64b1ae37 4606 os->name(), previous_dot, dot);
661be1e2
ILT
4607 }
4608 }
a445fddf
ILT
4609 (*p)->set_file_offset(off);
4610 (*p)->finalize_data_size();
4611 }
ead1e424 4612
9fbd3822
CC
4613 if (parameters->incremental_update())
4614 gold_debug(DEBUG_INCREMENTAL,
4615 "set_section_list_addresses: %08lx %08lx %s",
4616 static_cast<long>(off),
4617 static_cast<long>((*p)->data_size()),
4618 ((*p)->output_section() != NULL
4619 ? (*p)->output_section()->name() : "(special)"));
4620
4621 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4622 // section. Such a section does not affect the size of a
4623 // PT_LOAD segment.
4624 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4625 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4626 off += (*p)->data_size();
75f65a3e 4627
cdc29364 4628 if (off > maxoff)
eb426534 4629 maxoff = off;
cdc29364 4630
ead1e424
ILT
4631 if ((*p)->is_section())
4632 {
4633 (*p)->set_out_shndx(*pshndx);
4634 ++*pshndx;
4635 }
75f65a3e
ILT
4636 }
4637
cdc29364
CC
4638 *poff = maxoff;
4639 return addr + (maxoff - startoff);
75f65a3e
ILT
4640}
4641
4642// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4643// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4644
4645void
1a2dff53 4646Output_segment::set_offset(unsigned int increase)
75f65a3e 4647{
a3ad94ed 4648 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4649
a445fddf
ILT
4650 gold_assert(!this->are_addresses_set_);
4651
22f0da72
ILT
4652 // A non-load section only uses output_lists_[0].
4653
4654 Output_data_list* pdl = &this->output_lists_[0];
4655
4656 if (pdl->empty())
75f65a3e 4657 {
1a2dff53 4658 gold_assert(increase == 0);
75f65a3e
ILT
4659 this->vaddr_ = 0;
4660 this->paddr_ = 0;
a445fddf 4661 this->are_addresses_set_ = true;
75f65a3e 4662 this->memsz_ = 0;
a445fddf 4663 this->min_p_align_ = 0;
75f65a3e
ILT
4664 this->offset_ = 0;
4665 this->filesz_ = 0;
4666 return;
4667 }
4668
22f0da72 4669 // Find the first and last section by address.
5f1ab67a
ILT
4670 const Output_data* first = NULL;
4671 const Output_data* last_data = NULL;
4672 const Output_data* last_bss = NULL;
22f0da72
ILT
4673 for (Output_data_list::const_iterator p = pdl->begin();
4674 p != pdl->end();
4675 ++p)
4676 {
4677 if (first == NULL
4678 || (*p)->address() < first->address()
4679 || ((*p)->address() == first->address()
4680 && (*p)->data_size() < first->data_size()))
4681 first = *p;
4682 const Output_data** plast;
4683 if ((*p)->is_section()
4684 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4685 plast = &last_bss;
4686 else
4687 plast = &last_data;
4688 if (*plast == NULL
4689 || (*p)->address() > (*plast)->address()
4690 || ((*p)->address() == (*plast)->address()
4691 && (*p)->data_size() > (*plast)->data_size()))
4692 *plast = *p;
4693 }
5f1ab67a 4694
75f65a3e 4695 this->vaddr_ = first->address();
a445fddf
ILT
4696 this->paddr_ = (first->has_load_address()
4697 ? first->load_address()
4698 : this->vaddr_);
4699 this->are_addresses_set_ = true;
75f65a3e
ILT
4700 this->offset_ = first->offset();
4701
22f0da72 4702 if (last_data == NULL)
75f65a3e
ILT
4703 this->filesz_ = 0;
4704 else
5f1ab67a
ILT
4705 this->filesz_ = (last_data->address()
4706 + last_data->data_size()
4707 - this->vaddr_);
75f65a3e 4708
5f1ab67a 4709 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4710 this->memsz_ = (last->address()
4711 + last->data_size()
4712 - this->vaddr_);
96a2b4e4 4713
1a2dff53
ILT
4714 this->filesz_ += increase;
4715 this->memsz_ += increase;
4716
fd064a5b
CC
4717 // If this is a RELRO segment, verify that the segment ends at a
4718 // page boundary.
4719 if (this->type_ == elfcpp::PT_GNU_RELRO)
4720 {
815a1205 4721 uint64_t page_align = parameters->target().abi_pagesize();
fd064a5b 4722 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4723 if (parameters->incremental_update())
4724 {
4725 // The INCREASE_RELRO calculation is bypassed for an incremental
4726 // update, so we need to adjust the segment size manually here.
4727 segment_end = align_address(segment_end, page_align);
4728 this->memsz_ = segment_end - this->vaddr_;
4729 }
4730 else
4731 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4732 }
4733
96a2b4e4
ILT
4734 // If this is a TLS segment, align the memory size. The code in
4735 // set_section_list ensures that the section after the TLS segment
4736 // is aligned to give us room.
4737 if (this->type_ == elfcpp::PT_TLS)
4738 {
4739 uint64_t segment_align = this->maximum_alignment();
4740 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4741 this->memsz_ = align_address(this->memsz_, segment_align);
4742 }
75f65a3e
ILT
4743}
4744
7bf1f802
ILT
4745// Set the TLS offsets of the sections in the PT_TLS segment.
4746
4747void
4748Output_segment::set_tls_offsets()
4749{
4750 gold_assert(this->type_ == elfcpp::PT_TLS);
4751
22f0da72
ILT
4752 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4753 p != this->output_lists_[0].end();
7bf1f802
ILT
4754 ++p)
4755 (*p)->set_tls_offset(this->vaddr_);
4756}
4757
7404fe1b 4758// Return the first section.
a445fddf 4759
7404fe1b
AM
4760Output_section*
4761Output_segment::first_section() const
a445fddf 4762{
22f0da72
ILT
4763 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4764 {
4765 const Output_data_list* pdl = &this->output_lists_[i];
4766 for (Output_data_list::const_iterator p = pdl->begin();
4767 p != pdl->end();
4768 ++p)
4769 {
4770 if ((*p)->is_section())
7404fe1b 4771 return (*p)->output_section();
22f0da72
ILT
4772 }
4773 }
a445fddf
ILT
4774 gold_unreachable();
4775}
4776
75f65a3e
ILT
4777// Return the number of Output_sections in an Output_segment.
4778
4779unsigned int
4780Output_segment::output_section_count() const
4781{
22f0da72
ILT
4782 unsigned int ret = 0;
4783 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4784 ret += this->output_section_count_list(&this->output_lists_[i]);
4785 return ret;
75f65a3e
ILT
4786}
4787
4788// Return the number of Output_sections in an Output_data_list.
4789
4790unsigned int
4791Output_segment::output_section_count_list(const Output_data_list* pdl) const
4792{
4793 unsigned int count = 0;
4794 for (Output_data_list::const_iterator p = pdl->begin();
4795 p != pdl->end();
4796 ++p)
4797 {
4798 if ((*p)->is_section())
4799 ++count;
4800 }
4801 return count;
a2fb1b05
ILT
4802}
4803
1c4f3631
ILT
4804// Return the section attached to the list segment with the lowest
4805// load address. This is used when handling a PHDRS clause in a
4806// linker script.
4807
4808Output_section*
4809Output_segment::section_with_lowest_load_address() const
4810{
4811 Output_section* found = NULL;
4812 uint64_t found_lma = 0;
22f0da72
ILT
4813 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4814 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4815 &found_lma);
1c4f3631
ILT
4816 return found;
4817}
4818
4819// Look through a list for a section with a lower load address.
4820
4821void
4822Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4823 Output_section** found,
4824 uint64_t* found_lma) const
4825{
4826 for (Output_data_list::const_iterator p = pdl->begin();
4827 p != pdl->end();
4828 ++p)
4829 {
4830 if (!(*p)->is_section())
4831 continue;
4832 Output_section* os = static_cast<Output_section*>(*p);
4833 uint64_t lma = (os->has_load_address()
4834 ? os->load_address()
4835 : os->address());
4836 if (*found == NULL || lma < *found_lma)
4837 {
4838 *found = os;
4839 *found_lma = lma;
4840 }
4841 }
4842}
4843
61ba1cf9
ILT
4844// Write the segment data into *OPHDR.
4845
4846template<int size, bool big_endian>
4847void
ead1e424 4848Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4849{
4850 ophdr->put_p_type(this->type_);
4851 ophdr->put_p_offset(this->offset_);
4852 ophdr->put_p_vaddr(this->vaddr_);
4853 ophdr->put_p_paddr(this->paddr_);
4854 ophdr->put_p_filesz(this->filesz_);
4855 ophdr->put_p_memsz(this->memsz_);
4856 ophdr->put_p_flags(this->flags_);
a445fddf 4857 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4858}
4859
4860// Write the section headers into V.
4861
4862template<int size, bool big_endian>
4863unsigned char*
16649710
ILT
4864Output_segment::write_section_headers(const Layout* layout,
4865 const Stringpool* secnamepool,
ead1e424 4866 unsigned char* v,
ca09d69a 4867 unsigned int* pshndx) const
5482377d 4868{
ead1e424
ILT
4869 // Every section that is attached to a segment must be attached to a
4870 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4871 // segments.
4872 if (this->type_ != elfcpp::PT_LOAD)
4873 return v;
4874
22f0da72
ILT
4875 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4876 {
4877 const Output_data_list* pdl = &this->output_lists_[i];
4878 v = this->write_section_headers_list<size, big_endian>(layout,
4879 secnamepool,
4880 pdl,
4881 v, pshndx);
4882 }
4883
61ba1cf9
ILT
4884 return v;
4885}
4886
4887template<int size, bool big_endian>
4888unsigned char*
16649710
ILT
4889Output_segment::write_section_headers_list(const Layout* layout,
4890 const Stringpool* secnamepool,
61ba1cf9 4891 const Output_data_list* pdl,
ead1e424 4892 unsigned char* v,
7d1a9ebb 4893 unsigned int* pshndx) const
61ba1cf9
ILT
4894{
4895 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4896 for (Output_data_list::const_iterator p = pdl->begin();
4897 p != pdl->end();
4898 ++p)
4899 {
4900 if ((*p)->is_section())
4901 {
5482377d 4902 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4903 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4904 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4905 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4906 v += shdr_size;
ead1e424 4907 ++*pshndx;
61ba1cf9
ILT
4908 }
4909 }
4910 return v;
4911}
4912
7d9e3d98
ILT
4913// Print the output sections to the map file.
4914
4915void
4916Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4917{
4918 if (this->type() != elfcpp::PT_LOAD)
4919 return;
22f0da72
ILT
4920 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4921 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4922}
4923
4924// Print an output section list to the map file.
4925
4926void
4927Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4928 const Output_data_list* pdl) const
4929{
4930 for (Output_data_list::const_iterator p = pdl->begin();
4931 p != pdl->end();
4932 ++p)
4933 (*p)->print_to_mapfile(mapfile);
4934}
4935
a2fb1b05
ILT
4936// Output_file methods.
4937
14144f39
ILT
4938Output_file::Output_file(const char* name)
4939 : name_(name),
61ba1cf9
ILT
4940 o_(-1),
4941 file_size_(0),
c420411f 4942 base_(NULL),
516cb3d0 4943 map_is_anonymous_(false),
88597d34 4944 map_is_allocated_(false),
516cb3d0 4945 is_temporary_(false)
61ba1cf9
ILT
4946{
4947}
4948
404c2abb 4949// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4950// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4951// NULL, open that file as the base for incremental linking, and
4952// copy its contents to the new output file. This routine can
4953// be called for incremental updates, in which case WRITABLE should
4954// be true, or by the incremental-dump utility, in which case
4955// WRITABLE should be false.
404c2abb
ILT
4956
4957bool
aa92d6ed 4958Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4959{
4960 // The name "-" means "stdout".
4961 if (strcmp(this->name_, "-") == 0)
4962 return false;
4963
aa92d6ed
CC
4964 bool use_base_file = base_name != NULL;
4965 if (!use_base_file)
4966 base_name = this->name_;
4967 else if (strcmp(base_name, this->name_) == 0)
4968 gold_fatal(_("%s: incremental base and output file name are the same"),
4969 base_name);
4970
404c2abb
ILT
4971 // Don't bother opening files with a size of zero.
4972 struct stat s;
aa92d6ed
CC
4973 if (::stat(base_name, &s) != 0)
4974 {
4975 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4976 return false;
4977 }
4978 if (s.st_size == 0)
4979 {
4980 gold_info(_("%s: incremental base file is empty"), base_name);
4981 return false;
4982 }
4983
4984 // If we're using a base file, we want to open it read-only.
4985 if (use_base_file)
4986 writable = false;
404c2abb 4987
aa92d6ed
CC
4988 int oflags = writable ? O_RDWR : O_RDONLY;
4989 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4990 if (o < 0)
aa92d6ed
CC
4991 {
4992 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4993 return false;
4994 }
4995
4996 // If the base file and the output file are different, open a
4997 // new output file and read the contents from the base file into
4998 // the newly-mapped region.
4999 if (use_base_file)
5000 {
5001 this->open(s.st_size);
dfb45471
CC
5002 ssize_t bytes_to_read = s.st_size;
5003 unsigned char* p = this->base_;
5004 while (bytes_to_read > 0)
5005 {
5006 ssize_t len = ::read(o, p, bytes_to_read);
5007 if (len < 0)
5008 {
5009 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5010 return false;
5011 }
5012 if (len == 0)
5013 {
5014 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5015 base_name,
5016 static_cast<long long>(s.st_size - bytes_to_read),
5017 static_cast<long long>(s.st_size));
5018 return false;
5019 }
5020 p += len;
5021 bytes_to_read -= len;
5022 }
aa92d6ed
CC
5023 ::close(o);
5024 return true;
5025 }
5026
404c2abb
ILT
5027 this->o_ = o;
5028 this->file_size_ = s.st_size;
5029
aa92d6ed 5030 if (!this->map_no_anonymous(writable))
404c2abb
ILT
5031 {
5032 release_descriptor(o, true);
5033 this->o_ = -1;
5034 this->file_size_ = 0;
5035 return false;
5036 }
5037
5038 return true;
5039}
5040
61ba1cf9
ILT
5041// Open the output file.
5042
a2fb1b05 5043void
61ba1cf9 5044Output_file::open(off_t file_size)
a2fb1b05 5045{
61ba1cf9
ILT
5046 this->file_size_ = file_size;
5047
4e9d8586
ILT
5048 // Unlink the file first; otherwise the open() may fail if the file
5049 // is busy (e.g. it's an executable that's currently being executed).
5050 //
5051 // However, the linker may be part of a system where a zero-length
5052 // file is created for it to write to, with tight permissions (gcc
5053 // 2.95 did something like this). Unlinking the file would work
5054 // around those permission controls, so we only unlink if the file
5055 // has a non-zero size. We also unlink only regular files to avoid
5056 // trouble with directories/etc.
5057 //
5058 // If we fail, continue; this command is merely a best-effort attempt
5059 // to improve the odds for open().
5060
42a1b686 5061 // We let the name "-" mean "stdout"
516cb3d0 5062 if (!this->is_temporary_)
42a1b686 5063 {
516cb3d0
ILT
5064 if (strcmp(this->name_, "-") == 0)
5065 this->o_ = STDOUT_FILENO;
5066 else
5067 {
5068 struct stat s;
6a89f575
CC
5069 if (::stat(this->name_, &s) == 0
5070 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5071 {
5072 if (s.st_size != 0)
5073 ::unlink(this->name_);
5074 else if (!parameters->options().relocatable())
5075 {
5076 // If we don't unlink the existing file, add execute
5077 // permission where read permissions already exist
5078 // and where the umask permits.
5079 int mask = ::umask(0);
5080 ::umask(mask);
5081 s.st_mode |= (s.st_mode & 0444) >> 2;
5082 ::chmod(this->name_, s.st_mode & ~mask);
5083 }
5084 }
516cb3d0 5085
8851ecca 5086 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
5087 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5088 mode);
516cb3d0
ILT
5089 if (o < 0)
5090 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5091 this->o_ = o;
5092 }
42a1b686 5093 }
61ba1cf9 5094
27bc2bce
ILT
5095 this->map();
5096}
5097
5098// Resize the output file.
5099
5100void
5101Output_file::resize(off_t file_size)
5102{
c420411f
ILT
5103 // If the mmap is mapping an anonymous memory buffer, this is easy:
5104 // just mremap to the new size. If it's mapping to a file, we want
5105 // to unmap to flush to the file, then remap after growing the file.
5106 if (this->map_is_anonymous_)
5107 {
88597d34
ILT
5108 void* base;
5109 if (!this->map_is_allocated_)
5110 {
5111 base = ::mremap(this->base_, this->file_size_, file_size,
5112 MREMAP_MAYMOVE);
5113 if (base == MAP_FAILED)
5114 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5115 }
5116 else
5117 {
5118 base = realloc(this->base_, file_size);
5119 if (base == NULL)
5120 gold_nomem();
5121 if (file_size > this->file_size_)
5122 memset(static_cast<char*>(base) + this->file_size_, 0,
5123 file_size - this->file_size_);
5124 }
c420411f
ILT
5125 this->base_ = static_cast<unsigned char*>(base);
5126 this->file_size_ = file_size;
5127 }
5128 else
5129 {
5130 this->unmap();
5131 this->file_size_ = file_size;
aa92d6ed 5132 if (!this->map_no_anonymous(true))
fdcac5af 5133 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5134 }
27bc2bce
ILT
5135}
5136
404c2abb
ILT
5137// Map an anonymous block of memory which will later be written to the
5138// file. Return whether the map succeeded.
26736d8e 5139
404c2abb 5140bool
26736d8e
ILT
5141Output_file::map_anonymous()
5142{
404c2abb
ILT
5143 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5144 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5145 if (base == MAP_FAILED)
404c2abb 5146 {
88597d34
ILT
5147 base = malloc(this->file_size_);
5148 if (base == NULL)
5149 return false;
5150 memset(base, 0, this->file_size_);
5151 this->map_is_allocated_ = true;
404c2abb 5152 }
88597d34
ILT
5153 this->base_ = static_cast<unsigned char*>(base);
5154 this->map_is_anonymous_ = true;
5155 return true;
26736d8e
ILT
5156}
5157
404c2abb 5158// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5159// If WRITABLE is true, map with write access.
27bc2bce 5160
404c2abb 5161bool
aa92d6ed 5162Output_file::map_no_anonymous(bool writable)
27bc2bce 5163{
c420411f 5164 const int o = this->o_;
61ba1cf9 5165
c420411f
ILT
5166 // If the output file is not a regular file, don't try to mmap it;
5167 // instead, we'll mmap a block of memory (an anonymous buffer), and
5168 // then later write the buffer to the file.
5169 void* base;
5170 struct stat statbuf;
42a1b686
ILT
5171 if (o == STDOUT_FILENO || o == STDERR_FILENO
5172 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5173 || !S_ISREG(statbuf.st_mode)
5174 || this->is_temporary_)
404c2abb
ILT
5175 return false;
5176
5177 // Ensure that we have disk space available for the file. If we
5178 // don't do this, it is possible that we will call munmap, close,
5179 // and exit with dirty buffers still in the cache with no assigned
5180 // disk blocks. If the disk is out of space at that point, the
5181 // output file will wind up incomplete, but we will have already
5182 // exited. The alternative to fallocate would be to use fdatasync,
5183 // but that would be a more significant performance hit.
bab9090f
CC
5184 if (writable)
5185 {
7c0640fa 5186 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5187 if (err != 0)
5188 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5189 }
404c2abb
ILT
5190
5191 // Map the file into memory.
aa92d6ed
CC
5192 int prot = PROT_READ;
5193 if (writable)
5194 prot |= PROT_WRITE;
5195 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5196
5197 // The mmap call might fail because of file system issues: the file
5198 // system might not support mmap at all, or it might not support
5199 // mmap with PROT_WRITE.
61ba1cf9 5200 if (base == MAP_FAILED)
404c2abb
ILT
5201 return false;
5202
5203 this->map_is_anonymous_ = false;
61ba1cf9 5204 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5205 return true;
5206}
5207
5208// Map the file into memory.
5209
5210void
5211Output_file::map()
5212{
7c0640fa
CC
5213 if (parameters->options().mmap_output_file()
5214 && this->map_no_anonymous(true))
404c2abb
ILT
5215 return;
5216
5217 // The mmap call might fail because of file system issues: the file
5218 // system might not support mmap at all, or it might not support
5219 // mmap with PROT_WRITE. I'm not sure which errno values we will
5220 // see in all cases, so if the mmap fails for any reason and we
5221 // don't care about file contents, try for an anonymous map.
5222 if (this->map_anonymous())
5223 return;
5224
5225 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
eb426534
RM
5226 this->name_, static_cast<unsigned long>(this->file_size_),
5227 strerror(errno));
61ba1cf9
ILT
5228}
5229
c420411f 5230// Unmap the file from memory.
61ba1cf9
ILT
5231
5232void
c420411f 5233Output_file::unmap()
61ba1cf9 5234{
88597d34
ILT
5235 if (this->map_is_anonymous_)
5236 {
5237 // We've already written out the data, so there is no reason to
5238 // waste time unmapping or freeing the memory.
5239 }
5240 else
5241 {
5242 if (::munmap(this->base_, this->file_size_) < 0)
5243 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5244 }
61ba1cf9 5245 this->base_ = NULL;
c420411f
ILT
5246}
5247
5248// Close the output file.
5249
5250void
5251Output_file::close()
5252{
5253 // If the map isn't file-backed, we need to write it now.
516cb3d0 5254 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5255 {
5256 size_t bytes_to_write = this->file_size_;
6d1e3092 5257 size_t offset = 0;
c420411f 5258 while (bytes_to_write > 0)
eb426534
RM
5259 {
5260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5261 bytes_to_write);
5262 if (bytes_written == 0)
5263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5264 else if (bytes_written < 0)
5265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5266 else
5267 {
5268 bytes_to_write -= bytes_written;
5269 offset += bytes_written;
5270 }
5271 }
c420411f
ILT
5272 }
5273 this->unmap();
61ba1cf9 5274
42a1b686 5275 // We don't close stdout or stderr
516cb3d0
ILT
5276 if (this->o_ != STDOUT_FILENO
5277 && this->o_ != STDERR_FILENO
5278 && !this->is_temporary_)
42a1b686
ILT
5279 if (::close(this->o_) < 0)
5280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5281 this->o_ = -1;
a2fb1b05
ILT
5282}
5283
5284// Instantiate the templates we need. We could use the configure
5285// script to restrict this to only the ones for implemented targets.
5286
193a53d9 5287#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5288template
5289off_t
5290Output_section::add_input_section<32, false>(
6e9ba2ca 5291 Layout* layout,
6fa2a40b 5292 Sized_relobj_file<32, false>* object,
2ea97941 5293 unsigned int shndx,
a2fb1b05 5294 const char* secname,
730cdc88 5295 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5296 unsigned int reloc_shndx,
5297 bool have_sections_script);
193a53d9 5298#endif
a2fb1b05 5299
193a53d9 5300#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5301template
5302off_t
5303Output_section::add_input_section<32, true>(
6e9ba2ca 5304 Layout* layout,
6fa2a40b 5305 Sized_relobj_file<32, true>* object,
2ea97941 5306 unsigned int shndx,
a2fb1b05 5307 const char* secname,
730cdc88 5308 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5309 unsigned int reloc_shndx,
5310 bool have_sections_script);
193a53d9 5311#endif
a2fb1b05 5312
193a53d9 5313#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5314template
5315off_t
5316Output_section::add_input_section<64, false>(
6e9ba2ca 5317 Layout* layout,
6fa2a40b 5318 Sized_relobj_file<64, false>* object,
2ea97941 5319 unsigned int shndx,
a2fb1b05 5320 const char* secname,
730cdc88 5321 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5322 unsigned int reloc_shndx,
5323 bool have_sections_script);
193a53d9 5324#endif
a2fb1b05 5325
193a53d9 5326#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5327template
5328off_t
5329Output_section::add_input_section<64, true>(
6e9ba2ca 5330 Layout* layout,
6fa2a40b 5331 Sized_relobj_file<64, true>* object,
2ea97941 5332 unsigned int shndx,
a2fb1b05 5333 const char* secname,
730cdc88 5334 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5335 unsigned int reloc_shndx,
5336 bool have_sections_script);
193a53d9 5337#endif
a2fb1b05 5338
bbbfea06
CC
5339#ifdef HAVE_TARGET_32_LITTLE
5340template
5341class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5342#endif
5343
5344#ifdef HAVE_TARGET_32_BIG
5345template
5346class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5347#endif
5348
5349#ifdef HAVE_TARGET_64_LITTLE
5350template
5351class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5352#endif
5353
5354#ifdef HAVE_TARGET_64_BIG
5355template
5356class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5357#endif
5358
5359#ifdef HAVE_TARGET_32_LITTLE
5360template
5361class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5362#endif
5363
5364#ifdef HAVE_TARGET_32_BIG
5365template
5366class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5367#endif
5368
5369#ifdef HAVE_TARGET_64_LITTLE
5370template
5371class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5372#endif
5373
5374#ifdef HAVE_TARGET_64_BIG
5375template
5376class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5377#endif
5378
5379#ifdef HAVE_TARGET_32_LITTLE
5380template
5381class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5382#endif
5383
5384#ifdef HAVE_TARGET_32_BIG
5385template
5386class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5387#endif
5388
5389#ifdef HAVE_TARGET_64_LITTLE
5390template
5391class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5392#endif
5393
5394#ifdef HAVE_TARGET_64_BIG
5395template
5396class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5397#endif
5398
5399#ifdef HAVE_TARGET_32_LITTLE
5400template
5401class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5402#endif
5403
5404#ifdef HAVE_TARGET_32_BIG
5405template
5406class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5407#endif
5408
5409#ifdef HAVE_TARGET_64_LITTLE
5410template
5411class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5412#endif
5413
5414#ifdef HAVE_TARGET_64_BIG
5415template
5416class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5417#endif
5418
193a53d9 5419#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5420template
5421class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5422#endif
c06b7b0b 5423
193a53d9 5424#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5425template
5426class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5427#endif
c06b7b0b 5428
193a53d9 5429#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5430template
5431class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5432#endif
c06b7b0b 5433
193a53d9 5434#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5435template
5436class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5437#endif
c06b7b0b 5438
193a53d9 5439#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5440template
5441class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5442#endif
c06b7b0b 5443
193a53d9 5444#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5445template
5446class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5447#endif
c06b7b0b 5448
193a53d9 5449#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5450template
5451class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5452#endif
c06b7b0b 5453
193a53d9 5454#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5455template
5456class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5457#endif
c06b7b0b 5458
193a53d9 5459#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5460template
5461class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5462#endif
c06b7b0b 5463
193a53d9 5464#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5465template
5466class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5467#endif
c06b7b0b 5468
193a53d9 5469#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5470template
5471class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5472#endif
c06b7b0b 5473
193a53d9 5474#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5475template
5476class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5477#endif
c06b7b0b 5478
193a53d9 5479#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5480template
5481class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5482#endif
c06b7b0b 5483
193a53d9 5484#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5485template
5486class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5487#endif
c06b7b0b 5488
193a53d9 5489#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5490template
5491class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5492#endif
c06b7b0b 5493
193a53d9 5494#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5495template
5496class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5497#endif
c06b7b0b 5498
6a74a719
ILT
5499#ifdef HAVE_TARGET_32_LITTLE
5500template
5501class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5502#endif
5503
5504#ifdef HAVE_TARGET_32_BIG
5505template
5506class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5507#endif
5508
5509#ifdef HAVE_TARGET_64_LITTLE
5510template
5511class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5512#endif
5513
5514#ifdef HAVE_TARGET_64_BIG
5515template
5516class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5517#endif
5518
5519#ifdef HAVE_TARGET_32_LITTLE
5520template
5521class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5522#endif
5523
5524#ifdef HAVE_TARGET_32_BIG
5525template
5526class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5527#endif
5528
5529#ifdef HAVE_TARGET_64_LITTLE
5530template
5531class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5532#endif
5533
5534#ifdef HAVE_TARGET_64_BIG
5535template
5536class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5537#endif
5538
5539#ifdef HAVE_TARGET_32_LITTLE
5540template
5541class Output_data_group<32, false>;
5542#endif
5543
5544#ifdef HAVE_TARGET_32_BIG
5545template
5546class Output_data_group<32, true>;
5547#endif
5548
5549#ifdef HAVE_TARGET_64_LITTLE
5550template
5551class Output_data_group<64, false>;
5552#endif
5553
5554#ifdef HAVE_TARGET_64_BIG
5555template
5556class Output_data_group<64, true>;
5557#endif
5558
ead1e424 5559template
dbe717ef 5560class Output_data_got<32, false>;
ead1e424
ILT
5561
5562template
dbe717ef 5563class Output_data_got<32, true>;
ead1e424
ILT
5564
5565template
dbe717ef 5566class Output_data_got<64, false>;
ead1e424
ILT
5567
5568template
dbe717ef 5569class Output_data_got<64, true>;
ead1e424 5570
a2fb1b05 5571} // End namespace gold.
This page took 0.661793 seconds and 4 git commands to generate.