Incorporate ARI web page generator into GDB sources.
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
d77a0555
ILT
3// Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4// Free Software Foundation, Inc.
6cb15b7f
ILT
5// Written by Ian Lance Taylor <iant@google.com>.
6
7// This file is part of gold.
8
9// This program is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 3 of the License, or
12// (at your option) any later version.
13
14// This program is distributed in the hope that it will be useful,
15// but WITHOUT ANY WARRANTY; without even the implied warranty of
16// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17// GNU General Public License for more details.
18
19// You should have received a copy of the GNU General Public License
20// along with this program; if not, write to the Free Software
21// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22// MA 02110-1301, USA.
23
a2fb1b05
ILT
24#include "gold.h"
25
26#include <cstdlib>
04bf7072 27#include <cstring>
61ba1cf9
ILT
28#include <cerrno>
29#include <fcntl.h>
30#include <unistd.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
88597d34
ILT
33
34#ifdef HAVE_SYS_MMAN_H
35#include <sys/mman.h>
36#endif
37
6a89f575 38#include "libiberty.h"
a2fb1b05 39
8ea8cd50 40#include "dwarf.h"
7e1edb90 41#include "parameters.h"
a2fb1b05 42#include "object.h"
ead1e424
ILT
43#include "symtab.h"
44#include "reloc.h"
b8e6aad9 45#include "merge.h"
2a00e4fb 46#include "descriptors.h"
5393d741 47#include "layout.h"
a2fb1b05
ILT
48#include "output.h"
49
88597d34
ILT
50// For systems without mmap support.
51#ifndef HAVE_MMAP
52# define mmap gold_mmap
53# define munmap gold_munmap
54# define mremap gold_mremap
55# ifndef MAP_FAILED
56# define MAP_FAILED (reinterpret_cast<void*>(-1))
57# endif
58# ifndef PROT_READ
59# define PROT_READ 0
60# endif
61# ifndef PROT_WRITE
62# define PROT_WRITE 0
63# endif
64# ifndef MAP_PRIVATE
65# define MAP_PRIVATE 0
66# endif
67# ifndef MAP_ANONYMOUS
68# define MAP_ANONYMOUS 0
69# endif
70# ifndef MAP_SHARED
71# define MAP_SHARED 0
72# endif
73
74# ifndef ENOSYS
75# define ENOSYS EINVAL
76# endif
77
78static void *
79gold_mmap(void *, size_t, int, int, int, off_t)
80{
81 errno = ENOSYS;
82 return MAP_FAILED;
83}
84
85static int
86gold_munmap(void *, size_t)
87{
88 errno = ENOSYS;
89 return -1;
90}
91
92static void *
93gold_mremap(void *, size_t, size_t, int)
94{
95 errno = ENOSYS;
96 return MAP_FAILED;
97}
98
99#endif
100
101#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102# define mremap gold_mremap
103extern "C" void *gold_mremap(void *, size_t, size_t, int);
104#endif
105
c420411f
ILT
106// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107#ifndef MAP_ANONYMOUS
108# define MAP_ANONYMOUS MAP_ANON
109#endif
110
88597d34
ILT
111#ifndef MREMAP_MAYMOVE
112# define MREMAP_MAYMOVE 1
113#endif
114
d0a9ace3
ILT
115// Mingw does not have S_ISLNK.
116#ifndef S_ISLNK
117# define S_ISLNK(mode) 0
118#endif
119
a2fb1b05
ILT
120namespace gold
121{
122
7c0640fa
CC
123// A wrapper around posix_fallocate. If we don't have posix_fallocate,
124// or the --no-posix-fallocate option is set, we try the fallocate
125// system call directly. If that fails, we use ftruncate to set
126// the file size and hope that there is enough disk space.
127
128static int
129gold_fallocate(int o, off_t offset, off_t len)
130{
131#ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134#endif // defined(HAVE_POSIX_FALLOCATE)
135#ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138#endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142}
143
a3ad94ed
ILT
144// Output_data variables.
145
27bc2bce 146bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 147
a2fb1b05
ILT
148// Output_data methods.
149
150Output_data::~Output_data()
151{
152}
153
730cdc88
ILT
154// Return the default alignment for the target size.
155
156uint64_t
157Output_data::default_alignment()
158{
8851ecca
ILT
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
730cdc88
ILT
161}
162
75f65a3e
ILT
163// Return the default alignment for a size--32 or 64.
164
165uint64_t
730cdc88 166Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
167{
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
a3ad94ed 173 gold_unreachable();
75f65a3e
ILT
174}
175
75f65a3e
ILT
176// Output_section_header methods. This currently assumes that the
177// segment and section lists are complete at construction time.
178
179Output_section_headers::Output_section_headers(
16649710
ILT
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
6a74a719 182 const Layout::Section_list* section_list,
16649710 183 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
9025d29d 186 : layout_(layout),
75f65a3e 187 segment_list_(segment_list),
6a74a719 188 section_list_(section_list),
a3ad94ed 189 unattached_section_list_(unattached_section_list),
d491d34e
ILT
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
192{
193}
194
195// Compute the current data size.
196
197off_t
198Output_section_headers::do_size() const
75f65a3e 199{
61ba1cf9
ILT
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
8851ecca 202 if (!parameters->options().relocatable())
6a74a719 203 {
20e6d0d6
DK
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
6a74a719
ILT
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
20e6d0d6
DK
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
6a74a719
ILT
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
20e6d0d6 220 count += this->unattached_section_list_->size();
75f65a3e 221
8851ecca 222 const int size = parameters->target().get_size();
75f65a3e
ILT
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
a3ad94ed 229 gold_unreachable();
75f65a3e 230
20e6d0d6 231 return count * shdr_size;
75f65a3e
ILT
232}
233
61ba1cf9
ILT
234// Write out the section headers.
235
75f65a3e 236void
61ba1cf9 237Output_section_headers::do_write(Output_file* of)
a2fb1b05 238{
8851ecca 239 switch (parameters->size_and_endianness())
61ba1cf9 240 {
9025d29d 241#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
9025d29d 245#endif
8851ecca
ILT
246#ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
9025d29d 250#endif
9025d29d 251#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
9025d29d 255#endif
8851ecca
ILT
256#ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260#endif
261 default:
262 gold_unreachable();
61ba1cf9 263 }
61ba1cf9
ILT
264}
265
266template<int size, bool big_endian>
267void
268Output_section_headers::do_sized_write(Output_file* of)
269{
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
d491d34e
ILT
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
5696ab0b
ILT
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
61ba1cf9
ILT
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
6a74a719 306 unsigned int shndx = 1;
8851ecca 307 if (!parameters->options().relocatable())
6a74a719
ILT
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
a3ad94ed 338 for (Layout::Section_list::const_iterator p =
16649710
ILT
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
61ba1cf9
ILT
341 ++p)
342 {
6a74a719
ILT
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 346 && parameters->options().relocatable())
6a74a719 347 continue;
a3ad94ed 348 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 351 v += shdr_size;
ead1e424 352 ++shndx;
61ba1cf9
ILT
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
356}
357
54dc6425
ILT
358// Output_segment_header methods.
359
61ba1cf9 360Output_segment_headers::Output_segment_headers(
61ba1cf9 361 const Layout::Segment_list& segment_list)
9025d29d 362 : segment_list_(segment_list)
61ba1cf9 363{
cdc29364 364 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
365}
366
54dc6425 367void
61ba1cf9 368Output_segment_headers::do_write(Output_file* of)
75f65a3e 369{
8851ecca 370 switch (parameters->size_and_endianness())
61ba1cf9 371 {
9025d29d 372#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
9025d29d 376#endif
8851ecca
ILT
377#ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
9025d29d 381#endif
9025d29d 382#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
9025d29d 386#endif
8851ecca
ILT
387#ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391#endif
392 default:
393 gold_unreachable();
61ba1cf9 394 }
61ba1cf9
ILT
395}
396
397template<int size, bool big_endian>
398void
399Output_segment_headers::do_sized_write(Output_file* of)
400{
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 403 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
a445fddf
ILT
416 gold_assert(v - view == all_phdrs_size);
417
61ba1cf9 418 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
419}
420
20e6d0d6
DK
421off_t
422Output_segment_headers::do_size() const
423{
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434}
435
75f65a3e
ILT
436// Output_file_header methods.
437
9025d29d 438Output_file_header::Output_file_header(const Target* target,
75f65a3e 439 const Symbol_table* symtab,
a10ae760 440 const Output_segment_headers* osh)
9025d29d 441 : target_(target),
75f65a3e 442 symtab_(symtab),
61ba1cf9 443 segment_header_(osh),
75f65a3e 444 section_header_(NULL),
a10ae760 445 shstrtab_(NULL)
75f65a3e 446{
20e6d0d6 447 this->set_data_size(this->do_size());
75f65a3e
ILT
448}
449
450// Set the section table information for a file header.
451
452void
453Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455{
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458}
459
460// Write out the file header.
461
462void
61ba1cf9 463Output_file_header::do_write(Output_file* of)
54dc6425 464{
27bc2bce
ILT
465 gold_assert(this->offset() == 0);
466
8851ecca 467 switch (parameters->size_and_endianness())
61ba1cf9 468 {
9025d29d 469#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
9025d29d 473#endif
8851ecca
ILT
474#ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
9025d29d 478#endif
9025d29d 479#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
9025d29d 483#endif
8851ecca
ILT
484#ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488#endif
489 default:
490 gold_unreachable();
61ba1cf9 491 }
61ba1cf9
ILT
492}
493
cc643b88 494// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
495
496template<int size, bool big_endian>
497void
498Output_file_header::do_sized_write(Output_file* of)
499{
a3ad94ed 500 gold_assert(this->offset() == 0);
61ba1cf9
ILT
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
a3ad94ed 517 gold_unreachable();
61ba1cf9
ILT
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
8851ecca 525 if (parameters->options().relocatable())
61ba1cf9 526 e_type = elfcpp::ET_REL;
374ad285 527 else if (parameters->options().output_is_position_independent())
436ca963 528 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
d391083d 536 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 537
6a74a719
ILT
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
61ba1cf9 543 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 544 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
6a74a719
ILT
560 }
561
61ba1cf9 562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 577
36959681
ILT
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
61ba1cf9 582 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
583}
584
a10ae760 585// Return the value to use for the entry address.
d391083d
ILT
586
587template<int size>
588typename elfcpp::Elf_types<size>::Elf_Addr
589Output_file_header::entry()
590{
a10ae760 591 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca
ILT
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
a10ae760 594 const char* entry = parameters->entry();
2ea97941 595 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
2ea97941 603 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
2ea97941 611 v = strtoull(entry, &endptr, 0);
d391083d
ILT
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
2ea97941 615 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
616 v = 0;
617 }
618 }
619
620 return v;
621}
622
20e6d0d6
DK
623// Compute the current data size.
624
625off_t
626Output_file_header::do_size() const
627{
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635}
636
dbe717ef
ILT
637// Output_data_const methods.
638
639void
a3ad94ed 640Output_data_const::do_write(Output_file* of)
dbe717ef 641{
a3ad94ed
ILT
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643}
644
645// Output_data_const_buffer methods.
646
647void
648Output_data_const_buffer::do_write(Output_file* of)
649{
650 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
651}
652
653// Output_section_data methods.
654
16649710
ILT
655// Record the output section, and set the entry size and such.
656
657void
658Output_section_data::set_output_section(Output_section* os)
659{
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663}
664
665// Return the section index of the output section.
666
dbe717ef
ILT
667unsigned int
668Output_section_data::do_out_shndx() const
669{
a3ad94ed 670 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
671 return this->output_section_->out_shndx();
672}
673
759b1a24
ILT
674// Set the alignment, which means we may need to update the alignment
675// of the output section.
676
677void
2ea97941 678Output_section_data::set_addralign(uint64_t addralign)
759b1a24 679{
2ea97941 680 this->addralign_ = addralign;
759b1a24 681 if (this->output_section_ != NULL
2ea97941
ILT
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
759b1a24
ILT
684}
685
a3ad94ed
ILT
686// Output_data_strtab methods.
687
27bc2bce 688// Set the final data size.
a3ad94ed
ILT
689
690void
27bc2bce 691Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
692{
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695}
696
697// Write out a string table.
698
699void
700Output_data_strtab::do_write(Output_file* of)
701{
702 this->strtab_->write(of, this->offset());
703}
704
c06b7b0b
ILT
705// Output_reloc methods.
706
7bf1f802
ILT
707// A reloc against a global symbol.
708
709template<bool dynamic, int size, bool big_endian>
710Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
e8c846c3 714 Address address,
0da6fa6c 715 bool is_relative,
13cf9988
DM
716 bool is_symbolless,
717 bool use_plt_offset)
7bf1f802 718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 719 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 721{
dceae3c1
ILT
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
7bf1f802
ILT
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
dceae3c1
ILT
726 if (dynamic)
727 this->set_needs_dynsym_index();
7bf1f802
ILT
728}
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
ef9beddf 734 Sized_relobj<size, big_endian>* relobj,
7bf1f802 735 unsigned int shndx,
e8c846c3 736 Address address,
0da6fa6c 737 bool is_relative,
13cf9988
DM
738 bool is_symbolless,
739 bool use_plt_offset)
7bf1f802 740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 741 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
743{
744 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
7bf1f802
ILT
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
dceae3c1
ILT
749 if (dynamic)
750 this->set_needs_dynsym_index();
7bf1f802
ILT
751}
752
753// A reloc against a local symbol.
754
755template<bool dynamic, int size, bool big_endian>
756Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
e8c846c3 761 Address address,
2ea97941 762 bool is_relative,
0da6fa6c 763 bool is_symbolless,
397b129b
CC
764 bool is_section_symbol,
765 bool use_plt_offset)
7bf1f802 766 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 767 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
7bf1f802
ILT
770{
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
7bf1f802
ILT
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
dceae3c1
ILT
777 if (dynamic)
778 this->set_needs_dynsym_index();
7bf1f802
ILT
779}
780
781template<bool dynamic, int size, bool big_endian>
782Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
e8c846c3 787 Address address,
2ea97941 788 bool is_relative,
0da6fa6c 789 bool is_symbolless,
397b129b
CC
790 bool is_section_symbol,
791 bool use_plt_offset)
7bf1f802 792 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 793 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
7bf1f802
ILT
796{
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
7bf1f802
ILT
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
dceae3c1
ILT
804 if (dynamic)
805 this->set_needs_dynsym_index();
7bf1f802
ILT
806}
807
808// A reloc against the STT_SECTION symbol of an output section.
809
810template<bool dynamic, int size, bool big_endian>
811Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
703d02da
AM
815 Address address,
816 bool is_relative)
7bf1f802 817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 818 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 820{
dceae3c1
ILT
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
7bf1f802
ILT
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
dceae3c1
ILT
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
7bf1f802
ILT
829}
830
831template<bool dynamic, int size, bool big_endian>
832Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
ef9beddf 835 Sized_relobj<size, big_endian>* relobj,
7bf1f802 836 unsigned int shndx,
703d02da
AM
837 Address address,
838 bool is_relative)
7bf1f802 839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 840 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
842{
843 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
7bf1f802
ILT
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
dceae3c1
ILT
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852}
853
e291e7b9
ILT
854// An absolute relocation.
855
856template<bool dynamic, int size, bool big_endian>
857Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
860 Address address)
861 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 862 is_relative_(false), is_symbolless_(false),
397b129b 863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
864{
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869}
870
871template<bool dynamic, int size, bool big_endian>
872Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address)
877 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c 878 is_relative_(false), is_symbolless_(false),
397b129b 879 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
880{
881 gold_assert(shndx != INVALID_CODE);
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.relobj = NULL;
885 this->u2_.relobj = relobj;
886}
887
888// A target specific relocation.
889
890template<bool dynamic, int size, bool big_endian>
891Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
892 unsigned int type,
893 void* arg,
894 Output_data* od,
895 Address address)
896 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 897 is_relative_(false), is_symbolless_(false),
397b129b 898 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
899{
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.od = od;
904}
905
906template<bool dynamic, int size, bool big_endian>
907Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
908 unsigned int type,
909 void* arg,
910 Sized_relobj<size, big_endian>* relobj,
911 unsigned int shndx,
912 Address address)
913 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 914 is_relative_(false), is_symbolless_(false),
397b129b 915 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
916{
917 gold_assert(shndx != INVALID_CODE);
918 // this->type_ is a bitfield; make sure TYPE fits.
919 gold_assert(this->type_ == type);
920 this->u1_.arg = arg;
921 this->u2_.relobj = relobj;
922}
923
dceae3c1
ILT
924// Record that we need a dynamic symbol index for this relocation.
925
926template<bool dynamic, int size, bool big_endian>
927void
928Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
929set_needs_dynsym_index()
930{
0da6fa6c 931 if (this->is_symbolless_)
dceae3c1
ILT
932 return;
933 switch (this->local_sym_index_)
934 {
935 case INVALID_CODE:
936 gold_unreachable();
937
938 case GSYM_CODE:
939 this->u1_.gsym->set_needs_dynsym_entry();
940 break;
941
942 case SECTION_CODE:
943 this->u1_.os->set_needs_dynsym_index();
944 break;
945
e291e7b9
ILT
946 case TARGET_CODE:
947 // The target must take care of this if necessary.
948 break;
949
dceae3c1
ILT
950 case 0:
951 break;
952
953 default:
954 {
955 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
956 Sized_relobj_file<size, big_endian>* relobj =
957 this->u1_.relobj->sized_relobj();
958 gold_assert(relobj != NULL);
dceae3c1 959 if (!this->is_section_symbol_)
6fa2a40b 960 relobj->set_needs_output_dynsym_entry(lsi);
dceae3c1 961 else
6fa2a40b 962 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
963 }
964 break;
965 }
7bf1f802
ILT
966}
967
c06b7b0b
ILT
968// Get the symbol index of a relocation.
969
970template<bool dynamic, int size, bool big_endian>
971unsigned int
972Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973 const
974{
975 unsigned int index;
0da6fa6c
DM
976 if (this->is_symbolless_)
977 return 0;
c06b7b0b
ILT
978 switch (this->local_sym_index_)
979 {
980 case INVALID_CODE:
a3ad94ed 981 gold_unreachable();
c06b7b0b
ILT
982
983 case GSYM_CODE:
5a6f7e2d 984 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
985 index = 0;
986 else if (dynamic)
5a6f7e2d 987 index = this->u1_.gsym->dynsym_index();
c06b7b0b 988 else
5a6f7e2d 989 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
990 break;
991
992 case SECTION_CODE:
993 if (dynamic)
5a6f7e2d 994 index = this->u1_.os->dynsym_index();
c06b7b0b 995 else
5a6f7e2d 996 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
997 break;
998
e291e7b9
ILT
999 case TARGET_CODE:
1000 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1001 this->type_);
1002 break;
1003
436ca963
ILT
1004 case 0:
1005 // Relocations without symbols use a symbol index of 0.
1006 index = 0;
1007 break;
1008
c06b7b0b 1009 default:
dceae3c1
ILT
1010 {
1011 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1012 Sized_relobj_file<size, big_endian>* relobj =
1013 this->u1_.relobj->sized_relobj();
1014 gold_assert(relobj != NULL);
dceae3c1
ILT
1015 if (!this->is_section_symbol_)
1016 {
1017 if (dynamic)
6fa2a40b 1018 index = relobj->dynsym_index(lsi);
dceae3c1 1019 else
6fa2a40b 1020 index = relobj->symtab_index(lsi);
dceae3c1
ILT
1021 }
1022 else
1023 {
6fa2a40b 1024 Output_section* os = relobj->output_section(lsi);
dceae3c1
ILT
1025 gold_assert(os != NULL);
1026 if (dynamic)
1027 index = os->dynsym_index();
1028 else
1029 index = os->symtab_index();
1030 }
1031 }
c06b7b0b
ILT
1032 break;
1033 }
a3ad94ed 1034 gold_assert(index != -1U);
c06b7b0b
ILT
1035 return index;
1036}
1037
624f8810
ILT
1038// For a local section symbol, get the address of the offset ADDEND
1039// within the input section.
dceae3c1
ILT
1040
1041template<bool dynamic, int size, bool big_endian>
ef9beddf 1042typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1043Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1044 local_section_offset(Addend addend) const
dceae3c1 1045{
624f8810
ILT
1046 gold_assert(this->local_sym_index_ != GSYM_CODE
1047 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1048 && this->local_sym_index_ != TARGET_CODE
624f8810 1049 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1050 && this->local_sym_index_ != 0
624f8810 1051 && this->is_section_symbol_);
dceae3c1 1052 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1053 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1054 gold_assert(os != NULL);
ef9beddf 1055 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1056 if (offset != invalid_address)
624f8810
ILT
1057 return offset + addend;
1058 // This is a merge section.
6fa2a40b
CC
1059 Sized_relobj_file<size, big_endian>* relobj =
1060 this->u1_.relobj->sized_relobj();
1061 gold_assert(relobj != NULL);
1062 offset = os->output_address(relobj, lsi, addend);
eff45813 1063 gold_assert(offset != invalid_address);
dceae3c1
ILT
1064 return offset;
1065}
1066
d98bc257 1067// Get the output address of a relocation.
c06b7b0b
ILT
1068
1069template<bool dynamic, int size, bool big_endian>
a984ee1d 1070typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1071Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1072{
a3ad94ed 1073 Address address = this->address_;
5a6f7e2d
ILT
1074 if (this->shndx_ != INVALID_CODE)
1075 {
ef9beddf 1076 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1077 gold_assert(os != NULL);
ef9beddf 1078 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1079 if (off != invalid_address)
730cdc88
ILT
1080 address += os->address() + off;
1081 else
1082 {
6fa2a40b
CC
1083 Sized_relobj_file<size, big_endian>* relobj =
1084 this->u2_.relobj->sized_relobj();
1085 gold_assert(relobj != NULL);
1086 address = os->output_address(relobj, this->shndx_, address);
eff45813 1087 gold_assert(address != invalid_address);
730cdc88 1088 }
5a6f7e2d
ILT
1089 }
1090 else if (this->u2_.od != NULL)
1091 address += this->u2_.od->address();
d98bc257
ILT
1092 return address;
1093}
1094
1095// Write out the offset and info fields of a Rel or Rela relocation
1096// entry.
1097
1098template<bool dynamic, int size, bool big_endian>
1099template<typename Write_rel>
1100void
1101Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1102 Write_rel* wr) const
1103{
1104 wr->put_r_offset(this->get_address());
0da6fa6c 1105 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1106 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1107}
1108
1109// Write out a Rel relocation.
1110
1111template<bool dynamic, int size, bool big_endian>
1112void
1113Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1114 unsigned char* pov) const
1115{
1116 elfcpp::Rel_write<size, big_endian> orel(pov);
1117 this->write_rel(&orel);
1118}
1119
e8c846c3
ILT
1120// Get the value of the symbol referred to by a Rel relocation.
1121
1122template<bool dynamic, int size, bool big_endian>
1123typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1124Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1125 Addend addend) const
e8c846c3
ILT
1126{
1127 if (this->local_sym_index_ == GSYM_CODE)
1128 {
1129 const Sized_symbol<size>* sym;
1130 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988 1131 if (this->use_plt_offset_ && sym->has_plt_offset())
19fec8c1 1132 return parameters->target().plt_address_for_global(sym);
13cf9988
DM
1133 else
1134 return sym->value() + addend;
e8c846c3 1135 }
703d02da
AM
1136 if (this->local_sym_index_ == SECTION_CODE)
1137 {
1138 gold_assert(!this->use_plt_offset_);
1139 return this->u1_.os->address() + addend;
1140 }
1141 gold_assert(this->local_sym_index_ != TARGET_CODE
d1f003c6 1142 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1143 && this->local_sym_index_ != 0
d1f003c6
ILT
1144 && !this->is_section_symbol_);
1145 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1146 Sized_relobj_file<size, big_endian>* relobj =
1147 this->u1_.relobj->sized_relobj();
1148 gold_assert(relobj != NULL);
397b129b 1149 if (this->use_plt_offset_)
19fec8c1 1150 return parameters->target().plt_address_for_local(relobj, lsi);
6fa2a40b
CC
1151 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1152 return symval->value(relobj, addend);
e8c846c3
ILT
1153}
1154
d98bc257
ILT
1155// Reloc comparison. This function sorts the dynamic relocs for the
1156// benefit of the dynamic linker. First we sort all relative relocs
1157// to the front. Among relative relocs, we sort by output address.
1158// Among non-relative relocs, we sort by symbol index, then by output
1159// address.
1160
1161template<bool dynamic, int size, bool big_endian>
1162int
1163Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1164 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1165 const
1166{
1167 if (this->is_relative_)
1168 {
1169 if (!r2.is_relative_)
1170 return -1;
1171 // Otherwise sort by reloc address below.
1172 }
1173 else if (r2.is_relative_)
1174 return 1;
1175 else
1176 {
1177 unsigned int sym1 = this->get_symbol_index();
1178 unsigned int sym2 = r2.get_symbol_index();
1179 if (sym1 < sym2)
1180 return -1;
1181 else if (sym1 > sym2)
1182 return 1;
1183 // Otherwise sort by reloc address.
1184 }
1185
1186 section_offset_type addr1 = this->get_address();
1187 section_offset_type addr2 = r2.get_address();
1188 if (addr1 < addr2)
1189 return -1;
1190 else if (addr1 > addr2)
1191 return 1;
1192
1193 // Final tie breaker, in order to generate the same output on any
1194 // host: reloc type.
1195 unsigned int type1 = this->type_;
1196 unsigned int type2 = r2.type_;
1197 if (type1 < type2)
1198 return -1;
1199 else if (type1 > type2)
1200 return 1;
1201
1202 // These relocs appear to be exactly the same.
1203 return 0;
1204}
1205
c06b7b0b
ILT
1206// Write out a Rela relocation.
1207
1208template<bool dynamic, int size, bool big_endian>
1209void
1210Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1211 unsigned char* pov) const
1212{
1213 elfcpp::Rela_write<size, big_endian> orel(pov);
1214 this->rel_.write_rel(&orel);
e8c846c3 1215 Addend addend = this->addend_;
e291e7b9
ILT
1216 if (this->rel_.is_target_specific())
1217 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1218 this->rel_.type(), addend);
0da6fa6c 1219 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1220 addend = this->rel_.symbol_value(addend);
1221 else if (this->rel_.is_local_section_symbol())
624f8810 1222 addend = this->rel_.local_section_offset(addend);
e8c846c3 1223 orel.put_r_addend(addend);
c06b7b0b
ILT
1224}
1225
1226// Output_data_reloc_base methods.
1227
16649710
ILT
1228// Adjust the output section.
1229
1230template<int sh_type, bool dynamic, int size, bool big_endian>
1231void
1232Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1233 ::do_adjust_output_section(Output_section* os)
1234{
1235 if (sh_type == elfcpp::SHT_REL)
1236 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1237 else if (sh_type == elfcpp::SHT_RELA)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1239 else
1240 gold_unreachable();
7223e9ca
ILT
1241
1242 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1243 // static link. The backends will generate a dynamic reloc section
1244 // to hold this. In that case we don't want to link to the dynsym
1245 // section, because there isn't one.
1246 if (!dynamic)
16649710 1247 os->set_should_link_to_symtab();
7223e9ca
ILT
1248 else if (parameters->doing_static_link())
1249 ;
1250 else
1251 os->set_should_link_to_dynsym();
16649710
ILT
1252}
1253
c06b7b0b
ILT
1254// Write out relocation data.
1255
1256template<int sh_type, bool dynamic, int size, bool big_endian>
1257void
1258Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1259 Output_file* of)
1260{
1261 const off_t off = this->offset();
1262 const off_t oview_size = this->data_size();
1263 unsigned char* const oview = of->get_output_view(off, oview_size);
1264
3a44184e 1265 if (this->sort_relocs())
d98bc257
ILT
1266 {
1267 gold_assert(dynamic);
1268 std::sort(this->relocs_.begin(), this->relocs_.end(),
1269 Sort_relocs_comparison());
1270 }
1271
c06b7b0b
ILT
1272 unsigned char* pov = oview;
1273 for (typename Relocs::const_iterator p = this->relocs_.begin();
1274 p != this->relocs_.end();
1275 ++p)
1276 {
1277 p->write(pov);
1278 pov += reloc_size;
1279 }
1280
a3ad94ed 1281 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1282
1283 of->write_output_view(off, oview_size, oview);
1284
1285 // We no longer need the relocation entries.
1286 this->relocs_.clear();
1287}
1288
6a74a719
ILT
1289// Class Output_relocatable_relocs.
1290
1291template<int sh_type, int size, bool big_endian>
1292void
1293Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1294{
1295 this->set_data_size(this->rr_->output_reloc_count()
1296 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1297}
1298
1299// class Output_data_group.
1300
1301template<int size, bool big_endian>
1302Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1303 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1304 section_size_type entry_count,
8825ac63
ILT
1305 elfcpp::Elf_Word flags,
1306 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1307 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1308 relobj_(relobj),
1309 flags_(flags)
6a74a719 1310{
8825ac63 1311 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1312}
1313
1314// Write out the section group, which means translating the section
1315// indexes to apply to the output file.
1316
1317template<int size, bool big_endian>
1318void
1319Output_data_group<size, big_endian>::do_write(Output_file* of)
1320{
1321 const off_t off = this->offset();
1322 const section_size_type oview_size =
1323 convert_to_section_size_type(this->data_size());
1324 unsigned char* const oview = of->get_output_view(off, oview_size);
1325
1326 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1327 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1328 ++contents;
1329
1330 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1331 this->input_shndxes_.begin();
1332 p != this->input_shndxes_.end();
6a74a719
ILT
1333 ++p, ++contents)
1334 {
ef9beddf 1335 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1336
1337 unsigned int output_shndx;
1338 if (os != NULL)
1339 output_shndx = os->out_shndx();
1340 else
1341 {
1342 this->relobj_->error(_("section group retained but "
1343 "group element discarded"));
1344 output_shndx = 0;
1345 }
1346
1347 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1348 }
1349
1350 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1351 gold_assert(wrote == oview_size);
1352
1353 of->write_output_view(off, oview_size, oview);
1354
1355 // We no longer need this information.
8825ac63 1356 this->input_shndxes_.clear();
6a74a719
ILT
1357}
1358
dbe717ef 1359// Output_data_got::Got_entry methods.
ead1e424
ILT
1360
1361// Write out the entry.
1362
d77a0555 1363template<int got_size, bool big_endian>
ead1e424 1364void
d77a0555 1365Output_data_got<got_size, big_endian>::Got_entry::write(
bd73a62d
AM
1366 unsigned int got_indx,
1367 unsigned char* pov) const
ead1e424
ILT
1368{
1369 Valtype val = 0;
1370
1371 switch (this->local_sym_index_)
1372 {
1373 case GSYM_CODE:
1374 {
e8c846c3
ILT
1375 // If the symbol is resolved locally, we need to write out the
1376 // link-time value, which will be relocated dynamically by a
1377 // RELATIVE relocation.
ead1e424 1378 Symbol* gsym = this->u_.gsym;
bd73a62d 1379 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
19fec8c1 1380 val = parameters->target().plt_address_for_global(gsym);
7223e9ca
ILT
1381 else
1382 {
d77a0555
ILT
1383 switch (parameters->size_and_endianness())
1384 {
1385#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1386 case Parameters::TARGET_32_LITTLE:
1387 case Parameters::TARGET_32_BIG:
1388 {
1389 // This cast is ugly. We don't want to put a
1390 // virtual method in Symbol, because we want Symbol
1391 // to be as small as possible.
1392 Sized_symbol<32>::Value_type v;
1393 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1394 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1395 }
1396 break;
1397#endif
1398#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1399 case Parameters::TARGET_64_LITTLE:
1400 case Parameters::TARGET_64_BIG:
1401 {
1402 Sized_symbol<64>::Value_type v;
1403 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1404 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1405 }
1406 break;
1407#endif
1408 default:
1409 gold_unreachable();
1410 }
1411 if (this->use_plt_or_tls_offset_
1412 && gsym->type() == elfcpp::STT_TLS)
bd73a62d
AM
1413 val += parameters->target().tls_offset_for_global(gsym,
1414 got_indx);
7223e9ca 1415 }
ead1e424
ILT
1416 }
1417 break;
1418
1419 case CONSTANT_CODE:
1420 val = this->u_.constant;
1421 break;
1422
4829d394
CC
1423 case RESERVED_CODE:
1424 // If we're doing an incremental update, don't touch this GOT entry.
1425 if (parameters->incremental_update())
1426 return;
1427 val = this->u_.constant;
1428 break;
1429
ead1e424 1430 default:
d1f003c6 1431 {
d77a0555 1432 const Relobj* object = this->u_.object;
d1f003c6 1433 const unsigned int lsi = this->local_sym_index_;
d77a0555 1434 bool is_tls = object->local_is_tls(lsi);
bd73a62d 1435 if (this->use_plt_or_tls_offset_ && !is_tls)
19fec8c1 1436 val = parameters->target().plt_address_for_local(object, lsi);
bd73a62d
AM
1437 else
1438 {
1439 uint64_t lval = object->local_symbol_value(lsi, 0);
1440 val = convert_types<Valtype, uint64_t>(lval);
1441 if (this->use_plt_or_tls_offset_ && is_tls)
1442 val += parameters->target().tls_offset_for_local(object, lsi,
1443 got_indx);
1444 }
d1f003c6 1445 }
e727fa71 1446 break;
ead1e424
ILT
1447 }
1448
d77a0555 1449 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
ead1e424
ILT
1450}
1451
dbe717ef 1452// Output_data_got methods.
ead1e424 1453
dbe717ef
ILT
1454// Add an entry for a global symbol to the GOT. This returns true if
1455// this is a new GOT entry, false if the symbol already had a GOT
1456// entry.
1457
d77a0555 1458template<int got_size, bool big_endian>
dbe717ef 1459bool
d77a0555 1460Output_data_got<got_size, big_endian>::add_global(
0a65a3a7
CC
1461 Symbol* gsym,
1462 unsigned int got_type)
ead1e424 1463{
0a65a3a7 1464 if (gsym->has_got_offset(got_type))
dbe717ef 1465 return false;
ead1e424 1466
4829d394
CC
1467 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1468 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1469 return true;
1470}
1471
1472// Like add_global, but use the PLT offset.
1473
d77a0555 1474template<int got_size, bool big_endian>
7223e9ca 1475bool
d77a0555
ILT
1476Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1477 unsigned int got_type)
7223e9ca
ILT
1478{
1479 if (gsym->has_got_offset(got_type))
1480 return false;
1481
4829d394
CC
1482 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1483 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1484 return true;
1485}
ead1e424 1486
7bf1f802
ILT
1487// Add an entry for a global symbol to the GOT, and add a dynamic
1488// relocation of type R_TYPE for the GOT entry.
7223e9ca 1489
d77a0555 1490template<int got_size, bool big_endian>
7bf1f802 1491void
d77a0555 1492Output_data_got<got_size, big_endian>::add_global_with_rel(
7bf1f802 1493 Symbol* gsym,
0a65a3a7 1494 unsigned int got_type,
83896202 1495 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1496 unsigned int r_type)
1497{
0a65a3a7 1498 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1499 return;
1500
4829d394 1501 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1502 gsym->set_got_offset(got_type, got_offset);
83896202 1503 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1504}
1505
0a65a3a7
CC
1506// Add a pair of entries for a global symbol to the GOT, and add
1507// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1508// If R_TYPE_2 == 0, add the second entry with no relocation.
d77a0555 1509template<int got_size, bool big_endian>
7bf1f802 1510void
d77a0555 1511Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
0a65a3a7
CC
1512 Symbol* gsym,
1513 unsigned int got_type,
83896202 1514 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1515 unsigned int r_type_1,
1516 unsigned int r_type_2)
7bf1f802 1517{
0a65a3a7 1518 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1519 return;
1520
4829d394 1521 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1522 gsym->set_got_offset(got_type, got_offset);
83896202 1523 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1524
0a65a3a7 1525 if (r_type_2 != 0)
83896202 1526 rel_dyn->add_global_generic(gsym, r_type_2, this,
d77a0555 1527 got_offset + got_size / 8, 0);
7bf1f802
ILT
1528}
1529
0a65a3a7
CC
1530// Add an entry for a local symbol to the GOT. This returns true if
1531// this is a new GOT entry, false if the symbol already has a GOT
1532// entry.
07f397ab 1533
d77a0555 1534template<int got_size, bool big_endian>
07f397ab 1535bool
d77a0555 1536Output_data_got<got_size, big_endian>::add_local(
83896202 1537 Relobj* object,
0a65a3a7
CC
1538 unsigned int symndx,
1539 unsigned int got_type)
07f397ab 1540{
0a65a3a7 1541 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1542 return false;
1543
4829d394
CC
1544 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1545 false));
1546 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1547 return true;
1548}
1549
1550// Like add_local, but use the PLT offset.
1551
d77a0555 1552template<int got_size, bool big_endian>
7223e9ca 1553bool
d77a0555 1554Output_data_got<got_size, big_endian>::add_local_plt(
83896202 1555 Relobj* object,
7223e9ca
ILT
1556 unsigned int symndx,
1557 unsigned int got_type)
1558{
1559 if (object->local_has_got_offset(symndx, got_type))
1560 return false;
1561
4829d394
CC
1562 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1563 true));
1564 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1565 return true;
1566}
1567
0a65a3a7
CC
1568// Add an entry for a local symbol to the GOT, and add a dynamic
1569// relocation of type R_TYPE for the GOT entry.
7223e9ca 1570
d77a0555 1571template<int got_size, bool big_endian>
7bf1f802 1572void
d77a0555 1573Output_data_got<got_size, big_endian>::add_local_with_rel(
83896202 1574 Relobj* object,
0a65a3a7
CC
1575 unsigned int symndx,
1576 unsigned int got_type,
83896202 1577 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1578 unsigned int r_type)
1579{
0a65a3a7 1580 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1581 return;
1582
4829d394 1583 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1584 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1585 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1586}
1587
0a65a3a7 1588// Add a pair of entries for a local symbol to the GOT, and add
bd73a62d
AM
1589// a dynamic relocation of type R_TYPE using the section symbol of
1590// the output section to which input section SHNDX maps, on the first.
1591// The first got entry will have a value of zero, the second the
1592// value of the local symbol.
d77a0555 1593template<int got_size, bool big_endian>
7bf1f802 1594void
d77a0555 1595Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
83896202 1596 Relobj* object,
7bf1f802
ILT
1597 unsigned int symndx,
1598 unsigned int shndx,
0a65a3a7 1599 unsigned int got_type,
83896202 1600 Output_data_reloc_generic* rel_dyn,
bd73a62d 1601 unsigned int r_type)
7bf1f802 1602{
0a65a3a7 1603 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1604 return;
1605
4829d394
CC
1606 unsigned int got_offset =
1607 this->add_got_entry_pair(Got_entry(),
1608 Got_entry(object, symndx, false));
2ea97941 1609 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1610 Output_section* os = object->output_section(shndx);
bd73a62d
AM
1611 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1612}
7bf1f802 1613
bd73a62d
AM
1614// Add a pair of entries for a local symbol to the GOT, and add
1615// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1616// The first got entry will have a value of zero, the second the
1617// value of the local symbol offset by Target::tls_offset_for_local.
d77a0555 1618template<int got_size, bool big_endian>
bd73a62d 1619void
d77a0555 1620Output_data_got<got_size, big_endian>::add_local_tls_pair(
bd73a62d
AM
1621 Relobj* object,
1622 unsigned int symndx,
1623 unsigned int got_type,
1624 Output_data_reloc_generic* rel_dyn,
1625 unsigned int r_type)
1626{
1627 if (object->local_has_got_offset(symndx, got_type))
1628 return;
1629
1630 unsigned int got_offset
1631 = this->add_got_entry_pair(Got_entry(),
1632 Got_entry(object, symndx, true));
1633 object->set_local_got_offset(symndx, got_type, got_offset);
1634 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
4829d394
CC
1635}
1636
1637// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
d77a0555 1639template<int got_size, bool big_endian>
4829d394 1640void
d77a0555 1641Output_data_got<got_size, big_endian>::reserve_local(
6fa2a40b 1642 unsigned int i,
83896202 1643 Relobj* object,
6fa2a40b
CC
1644 unsigned int sym_index,
1645 unsigned int got_type)
4829d394 1646{
dd74ae06 1647 this->do_reserve_slot(i);
6fa2a40b 1648 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1649}
7bf1f802 1650
4829d394
CC
1651// Reserve a slot in the GOT for a global symbol.
1652
d77a0555 1653template<int got_size, bool big_endian>
4829d394 1654void
d77a0555 1655Output_data_got<got_size, big_endian>::reserve_global(
4829d394
CC
1656 unsigned int i,
1657 Symbol* gsym,
1658 unsigned int got_type)
1659{
dd74ae06 1660 this->do_reserve_slot(i);
4829d394 1661 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1662}
1663
ead1e424
ILT
1664// Write out the GOT.
1665
d77a0555 1666template<int got_size, bool big_endian>
ead1e424 1667void
d77a0555 1668Output_data_got<got_size, big_endian>::do_write(Output_file* of)
ead1e424 1669{
d77a0555 1670 const int add = got_size / 8;
ead1e424
ILT
1671
1672 const off_t off = this->offset();
c06b7b0b 1673 const off_t oview_size = this->data_size();
ead1e424
ILT
1674 unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676 unsigned char* pov = oview;
bd73a62d 1677 for (unsigned int i = 0; i < this->entries_.size(); ++i)
ead1e424 1678 {
bd73a62d 1679 this->entries_[i].write(i, pov);
ead1e424
ILT
1680 pov += add;
1681 }
1682
a3ad94ed 1683 gold_assert(pov - oview == oview_size);
c06b7b0b 1684
ead1e424
ILT
1685 of->write_output_view(off, oview_size, oview);
1686
1687 // We no longer need the GOT entries.
1688 this->entries_.clear();
1689}
1690
4829d394
CC
1691// Create a new GOT entry and return its offset.
1692
d77a0555 1693template<int got_size, bool big_endian>
4829d394 1694unsigned int
d77a0555 1695Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
4829d394
CC
1696{
1697 if (!this->is_data_size_valid())
1698 {
1699 this->entries_.push_back(got_entry);
1700 this->set_got_size();
1701 return this->last_got_offset();
1702 }
1703 else
1704 {
1705 // For an incremental update, find an available slot.
d77a0555
ILT
1706 off_t got_offset = this->free_list_.allocate(got_size / 8,
1707 got_size / 8, 0);
4829d394 1708 if (got_offset == -1)
e6455dfb
CC
1709 gold_fallback(_("out of patch space (GOT);"
1710 " relink with --incremental-full"));
d77a0555 1711 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1712 gold_assert(got_index < this->entries_.size());
1713 this->entries_[got_index] = got_entry;
1714 return static_cast<unsigned int>(got_offset);
1715 }
1716}
1717
1718// Create a pair of new GOT entries and return the offset of the first.
1719
d77a0555 1720template<int got_size, bool big_endian>
4829d394 1721unsigned int
d77a0555
ILT
1722Output_data_got<got_size, big_endian>::add_got_entry_pair(
1723 Got_entry got_entry_1,
1724 Got_entry got_entry_2)
4829d394
CC
1725{
1726 if (!this->is_data_size_valid())
1727 {
1728 unsigned int got_offset;
1729 this->entries_.push_back(got_entry_1);
1730 got_offset = this->last_got_offset();
1731 this->entries_.push_back(got_entry_2);
1732 this->set_got_size();
1733 return got_offset;
1734 }
1735 else
1736 {
1737 // For an incremental update, find an available pair of slots.
d77a0555
ILT
1738 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1739 got_size / 8, 0);
4829d394 1740 if (got_offset == -1)
e6455dfb
CC
1741 gold_fallback(_("out of patch space (GOT);"
1742 " relink with --incremental-full"));
d77a0555 1743 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1744 gold_assert(got_index < this->entries_.size());
1745 this->entries_[got_index] = got_entry_1;
1746 this->entries_[got_index + 1] = got_entry_2;
1747 return static_cast<unsigned int>(got_offset);
1748 }
1749}
1750
cf43a2fe
AM
1751// Replace GOT entry I with a new value.
1752
d77a0555 1753template<int got_size, bool big_endian>
cf43a2fe 1754void
d77a0555 1755Output_data_got<got_size, big_endian>::replace_got_entry(
cf43a2fe
AM
1756 unsigned int i,
1757 Got_entry got_entry)
1758{
1759 gold_assert(i < this->entries_.size());
1760 this->entries_[i] = got_entry;
1761}
1762
a3ad94ed
ILT
1763// Output_data_dynamic::Dynamic_entry methods.
1764
1765// Write out the entry.
1766
1767template<int size, bool big_endian>
1768void
1769Output_data_dynamic::Dynamic_entry::write(
1770 unsigned char* pov,
7d1a9ebb 1771 const Stringpool* pool) const
a3ad94ed
ILT
1772{
1773 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1774 switch (this->offset_)
a3ad94ed
ILT
1775 {
1776 case DYNAMIC_NUMBER:
1777 val = this->u_.val;
1778 break;
1779
a3ad94ed 1780 case DYNAMIC_SECTION_SIZE:
16649710 1781 val = this->u_.od->data_size();
612a8d3d
DM
1782 if (this->od2 != NULL)
1783 val += this->od2->data_size();
a3ad94ed
ILT
1784 break;
1785
1786 case DYNAMIC_SYMBOL:
1787 {
16649710
ILT
1788 const Sized_symbol<size>* s =
1789 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1790 val = s->value();
1791 }
1792 break;
1793
1794 case DYNAMIC_STRING:
1795 val = pool->get_offset(this->u_.str);
1796 break;
1797
1798 default:
c2b45e22
CC
1799 val = this->u_.od->address() + this->offset_;
1800 break;
a3ad94ed
ILT
1801 }
1802
1803 elfcpp::Dyn_write<size, big_endian> dw(pov);
1804 dw.put_d_tag(this->tag_);
1805 dw.put_d_val(val);
1806}
1807
1808// Output_data_dynamic methods.
1809
16649710
ILT
1810// Adjust the output section to set the entry size.
1811
1812void
1813Output_data_dynamic::do_adjust_output_section(Output_section* os)
1814{
8851ecca 1815 if (parameters->target().get_size() == 32)
16649710 1816 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1817 else if (parameters->target().get_size() == 64)
16649710
ILT
1818 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1819 else
1820 gold_unreachable();
1821}
1822
a3ad94ed
ILT
1823// Set the final data size.
1824
1825void
27bc2bce 1826Output_data_dynamic::set_final_data_size()
a3ad94ed 1827{
20e6d0d6
DK
1828 // Add the terminating entry if it hasn't been added.
1829 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1830 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1831 {
1832 int extra = parameters->options().spare_dynamic_tags();
1833 for (int i = 0; i < extra; ++i)
1834 this->add_constant(elfcpp::DT_NULL, 0);
1835 this->add_constant(elfcpp::DT_NULL, 0);
1836 }
a3ad94ed
ILT
1837
1838 int dyn_size;
8851ecca 1839 if (parameters->target().get_size() == 32)
a3ad94ed 1840 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1841 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1842 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1843 else
1844 gold_unreachable();
1845 this->set_data_size(this->entries_.size() * dyn_size);
1846}
1847
1848// Write out the dynamic entries.
1849
1850void
1851Output_data_dynamic::do_write(Output_file* of)
1852{
8851ecca 1853 switch (parameters->size_and_endianness())
a3ad94ed 1854 {
9025d29d 1855#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1856 case Parameters::TARGET_32_LITTLE:
1857 this->sized_write<32, false>(of);
1858 break;
9025d29d 1859#endif
8851ecca
ILT
1860#ifdef HAVE_TARGET_32_BIG
1861 case Parameters::TARGET_32_BIG:
1862 this->sized_write<32, true>(of);
1863 break;
9025d29d 1864#endif
9025d29d 1865#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1866 case Parameters::TARGET_64_LITTLE:
1867 this->sized_write<64, false>(of);
1868 break;
9025d29d 1869#endif
8851ecca
ILT
1870#ifdef HAVE_TARGET_64_BIG
1871 case Parameters::TARGET_64_BIG:
1872 this->sized_write<64, true>(of);
1873 break;
1874#endif
1875 default:
1876 gold_unreachable();
a3ad94ed 1877 }
a3ad94ed
ILT
1878}
1879
1880template<int size, bool big_endian>
1881void
1882Output_data_dynamic::sized_write(Output_file* of)
1883{
1884 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1885
2ea97941 1886 const off_t offset = this->offset();
a3ad94ed 1887 const off_t oview_size = this->data_size();
2ea97941 1888 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1889
1890 unsigned char* pov = oview;
1891 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1892 p != this->entries_.end();
1893 ++p)
1894 {
7d1a9ebb 1895 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1896 pov += dyn_size;
1897 }
1898
1899 gold_assert(pov - oview == oview_size);
1900
2ea97941 1901 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1902
1903 // We no longer need the dynamic entries.
1904 this->entries_.clear();
1905}
1906
d491d34e
ILT
1907// Class Output_symtab_xindex.
1908
1909void
1910Output_symtab_xindex::do_write(Output_file* of)
1911{
2ea97941 1912 const off_t offset = this->offset();
d491d34e 1913 const off_t oview_size = this->data_size();
2ea97941 1914 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1915
1916 memset(oview, 0, oview_size);
1917
1918 if (parameters->target().is_big_endian())
1919 this->endian_do_write<true>(oview);
1920 else
1921 this->endian_do_write<false>(oview);
1922
2ea97941 1923 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1924
1925 // We no longer need the data.
1926 this->entries_.clear();
1927}
1928
1929template<bool big_endian>
1930void
1931Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1932{
1933 for (Xindex_entries::const_iterator p = this->entries_.begin();
1934 p != this->entries_.end();
1935 ++p)
20e6d0d6
DK
1936 {
1937 unsigned int symndx = p->first;
1938 gold_assert(symndx * 4 < this->data_size());
1939 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1940 }
d491d34e
ILT
1941}
1942
8ea8cd50
CC
1943// Output_fill_debug_info methods.
1944
1945// Return the minimum size needed for a dummy compilation unit header.
1946
1947size_t
1948Output_fill_debug_info::do_minimum_hole_size() const
1949{
1950 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1951 // address_size.
1952 const size_t len = 4 + 2 + 4 + 1;
1953 // For type units, add type_signature, type_offset.
1954 if (this->is_debug_types_)
1955 return len + 8 + 4;
1956 return len;
1957}
1958
1959// Write a dummy compilation unit header to fill a hole in the
1960// .debug_info or .debug_types section.
1961
1962void
1963Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1964{
66570254
CC
1965 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1966 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1967
1968 gold_assert(len >= this->do_minimum_hole_size());
1969
1970 unsigned char* const oview = of->get_output_view(off, len);
1971 unsigned char* pov = oview;
1972
1973 // Write header fields: unit_length, version, debug_abbrev_offset,
1974 // address_size.
1975 if (this->is_big_endian())
1976 {
24c6c55a
DM
1977 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1978 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1980 }
1981 else
1982 {
24c6c55a
DM
1983 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1984 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1986 }
1987 pov += 4 + 2 + 4;
1988 *pov++ = 4;
1989
1990 // For type units, the additional header fields -- type_signature,
1991 // type_offset -- can be filled with zeroes.
1992
1993 // Fill the remainder of the free space with zeroes. The first
1994 // zero should tell the consumer there are no DIEs to read in this
1995 // compilation unit.
1996 if (pov < oview + len)
1997 memset(pov, 0, oview + len - pov);
1998
1999 of->write_output_view(off, len, oview);
2000}
2001
2002// Output_fill_debug_line methods.
2003
2004// Return the minimum size needed for a dummy line number program header.
2005
2006size_t
2007Output_fill_debug_line::do_minimum_hole_size() const
2008{
2009 // Line number program header fields: unit_length, version, header_length,
2010 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2011 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2012 const size_t len = 4 + 2 + 4 + this->header_length;
2013 return len;
2014}
2015
2016// Write a dummy line number program header to fill a hole in the
2017// .debug_line section.
2018
2019void
2020Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2021{
66570254
CC
2022 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2023 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2024
2025 gold_assert(len >= this->do_minimum_hole_size());
2026
2027 unsigned char* const oview = of->get_output_view(off, len);
2028 unsigned char* pov = oview;
2029
2030 // Write header fields: unit_length, version, header_length,
2031 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2032 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2033 // We set the header_length field to cover the entire hole, so the
2034 // line number program is empty.
2035 if (this->is_big_endian())
2036 {
24c6c55a
DM
2037 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2038 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2040 }
2041 else
2042 {
24c6c55a
DM
2043 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2044 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2046 }
2047 pov += 4 + 2 + 4;
2048 *pov++ = 1; // minimum_instruction_length
2049 *pov++ = 0; // default_is_stmt
2050 *pov++ = 0; // line_base
2051 *pov++ = 5; // line_range
2052 *pov++ = 13; // opcode_base
2053 *pov++ = 0; // standard_opcode_lengths[1]
2054 *pov++ = 1; // standard_opcode_lengths[2]
2055 *pov++ = 1; // standard_opcode_lengths[3]
2056 *pov++ = 1; // standard_opcode_lengths[4]
2057 *pov++ = 1; // standard_opcode_lengths[5]
2058 *pov++ = 0; // standard_opcode_lengths[6]
2059 *pov++ = 0; // standard_opcode_lengths[7]
2060 *pov++ = 0; // standard_opcode_lengths[8]
2061 *pov++ = 1; // standard_opcode_lengths[9]
2062 *pov++ = 0; // standard_opcode_lengths[10]
2063 *pov++ = 0; // standard_opcode_lengths[11]
2064 *pov++ = 1; // standard_opcode_lengths[12]
2065 *pov++ = 0; // include_directories (empty)
2066 *pov++ = 0; // filenames (empty)
2067
2068 // Some consumers don't check the header_length field, and simply
2069 // start reading the line number program immediately following the
2070 // header. For those consumers, we fill the remainder of the free
2071 // space with DW_LNS_set_basic_block opcodes. These are effectively
2072 // no-ops: the resulting line table program will not create any rows.
2073 if (pov < oview + len)
2074 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2075
2076 of->write_output_view(off, len, oview);
2077}
2078
ead1e424
ILT
2079// Output_section::Input_section methods.
2080
cdc29364
CC
2081// Return the current data size. For an input section we store the size here.
2082// For an Output_section_data, we have to ask it for the size.
2083
2084off_t
2085Output_section::Input_section::current_data_size() const
2086{
2087 if (this->is_input_section())
2088 return this->u1_.data_size;
2089 else
2090 {
2091 this->u2_.posd->pre_finalize_data_size();
2092 return this->u2_.posd->current_data_size();
2093 }
2094}
2095
ead1e424
ILT
2096// Return the data size. For an input section we store the size here.
2097// For an Output_section_data, we have to ask it for the size.
2098
2099off_t
2100Output_section::Input_section::data_size() const
2101{
2102 if (this->is_input_section())
b8e6aad9 2103 return this->u1_.data_size;
ead1e424 2104 else
b8e6aad9 2105 return this->u2_.posd->data_size();
ead1e424
ILT
2106}
2107
0439c796
DK
2108// Return the object for an input section.
2109
2110Relobj*
2111Output_section::Input_section::relobj() const
2112{
2113 if (this->is_input_section())
2114 return this->u2_.object;
2115 else if (this->is_merge_section())
2116 {
2117 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2118 return this->u2_.pomb->first_relobj();
2119 }
2120 else if (this->is_relaxed_input_section())
2121 return this->u2_.poris->relobj();
2122 else
2123 gold_unreachable();
2124}
2125
2126// Return the input section index for an input section.
2127
2128unsigned int
2129Output_section::Input_section::shndx() const
2130{
2131 if (this->is_input_section())
2132 return this->shndx_;
2133 else if (this->is_merge_section())
2134 {
2135 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2136 return this->u2_.pomb->first_shndx();
2137 }
2138 else if (this->is_relaxed_input_section())
2139 return this->u2_.poris->shndx();
2140 else
2141 gold_unreachable();
2142}
2143
ead1e424
ILT
2144// Set the address and file offset.
2145
2146void
96803768
ILT
2147Output_section::Input_section::set_address_and_file_offset(
2148 uint64_t address,
2149 off_t file_offset,
2150 off_t section_file_offset)
ead1e424
ILT
2151{
2152 if (this->is_input_section())
96803768
ILT
2153 this->u2_.object->set_section_offset(this->shndx_,
2154 file_offset - section_file_offset);
ead1e424 2155 else
96803768
ILT
2156 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2157}
2158
a445fddf
ILT
2159// Reset the address and file offset.
2160
2161void
2162Output_section::Input_section::reset_address_and_file_offset()
2163{
2164 if (!this->is_input_section())
2165 this->u2_.posd->reset_address_and_file_offset();
2166}
2167
96803768
ILT
2168// Finalize the data size.
2169
2170void
2171Output_section::Input_section::finalize_data_size()
2172{
2173 if (!this->is_input_section())
2174 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2175}
2176
1e983657
ILT
2177// Try to turn an input offset into an output offset. We want to
2178// return the output offset relative to the start of this
2179// Input_section in the output section.
b8e6aad9 2180
8f00aeb8 2181inline bool
8383303e
ILT
2182Output_section::Input_section::output_offset(
2183 const Relobj* object,
2ea97941
ILT
2184 unsigned int shndx,
2185 section_offset_type offset,
ca09d69a 2186 section_offset_type* poutput) const
b8e6aad9
ILT
2187{
2188 if (!this->is_input_section())
2ea97941 2189 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2190 else
2191 {
2ea97941 2192 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2193 return false;
2ea97941 2194 *poutput = offset;
b8e6aad9
ILT
2195 return true;
2196 }
ead1e424
ILT
2197}
2198
a9a60db6
ILT
2199// Return whether this is the merge section for the input section
2200// SHNDX in OBJECT.
2201
2202inline bool
2203Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 2204 unsigned int shndx) const
a9a60db6
ILT
2205{
2206 if (this->is_input_section())
2207 return false;
2ea97941 2208 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
2209}
2210
ead1e424
ILT
2211// Write out the data. We don't have to do anything for an input
2212// section--they are handled via Object::relocate--but this is where
2213// we write out the data for an Output_section_data.
2214
2215void
2216Output_section::Input_section::write(Output_file* of)
2217{
2218 if (!this->is_input_section())
b8e6aad9 2219 this->u2_.posd->write(of);
ead1e424
ILT
2220}
2221
96803768
ILT
2222// Write the data to a buffer. As for write(), we don't have to do
2223// anything for an input section.
2224
2225void
2226Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2227{
2228 if (!this->is_input_section())
2229 this->u2_.posd->write_to_buffer(buffer);
2230}
2231
7d9e3d98
ILT
2232// Print to a map file.
2233
2234void
2235Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2236{
2237 switch (this->shndx_)
2238 {
2239 case OUTPUT_SECTION_CODE:
2240 case MERGE_DATA_SECTION_CODE:
2241 case MERGE_STRING_SECTION_CODE:
2242 this->u2_.posd->print_to_mapfile(mapfile);
2243 break;
2244
20e6d0d6
DK
2245 case RELAXED_INPUT_SECTION_CODE:
2246 {
2247 Output_relaxed_input_section* relaxed_section =
2248 this->relaxed_input_section();
2249 mapfile->print_input_section(relaxed_section->relobj(),
2250 relaxed_section->shndx());
2251 }
2252 break;
7d9e3d98
ILT
2253 default:
2254 mapfile->print_input_section(this->u2_.object, this->shndx_);
2255 break;
2256 }
2257}
2258
a2fb1b05
ILT
2259// Output_section methods.
2260
2261// Construct an Output_section. NAME will point into a Stringpool.
2262
2ea97941
ILT
2263Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2264 elfcpp::Elf_Xword flags)
2265 : name_(name),
a2fb1b05
ILT
2266 addralign_(0),
2267 entsize_(0),
a445fddf 2268 load_address_(0),
16649710 2269 link_section_(NULL),
a2fb1b05 2270 link_(0),
16649710 2271 info_section_(NULL),
6a74a719 2272 info_symndx_(NULL),
a2fb1b05 2273 info_(0),
2ea97941
ILT
2274 type_(type),
2275 flags_(flags),
22f0da72 2276 order_(ORDER_INVALID),
91ea499d 2277 out_shndx_(-1U),
c06b7b0b
ILT
2278 symtab_index_(0),
2279 dynsym_index_(0),
ead1e424
ILT
2280 input_sections_(),
2281 first_input_offset_(0),
c51e6221 2282 fills_(),
96803768 2283 postprocessing_buffer_(NULL),
a3ad94ed 2284 needs_symtab_index_(false),
16649710
ILT
2285 needs_dynsym_index_(false),
2286 should_link_to_symtab_(false),
730cdc88 2287 should_link_to_dynsym_(false),
27bc2bce 2288 after_input_sections_(false),
7bf1f802 2289 requires_postprocessing_(false),
a445fddf
ILT
2290 found_in_sections_clause_(false),
2291 has_load_address_(false),
755ab8af 2292 info_uses_section_index_(false),
6e9ba2ca 2293 input_section_order_specified_(false),
2fd32231
ILT
2294 may_sort_attached_input_sections_(false),
2295 must_sort_attached_input_sections_(false),
2296 attached_input_sections_are_sorted_(false),
9f1d377b 2297 is_relro_(false),
8a5e3e08
ILT
2298 is_small_section_(false),
2299 is_large_section_(false),
f5c870d2 2300 generate_code_fills_at_write_(false),
e8cd95c7 2301 is_entsize_zero_(false),
8923b24c 2302 section_offsets_need_adjustment_(false),
1e5d2fb1 2303 is_noload_(false),
131687b4 2304 always_keeps_input_sections_(false),
cdc29364 2305 has_fixed_layout_(false),
9fbd3822 2306 is_patch_space_allowed_(false),
16164a6b 2307 is_unique_segment_(false),
20e6d0d6 2308 tls_offset_(0),
16164a6b
ST
2309 extra_segment_flags_(0),
2310 segment_alignment_(0),
c0a62865 2311 checkpoint_(NULL),
cdc29364 2312 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2313 free_list_(),
8ea8cd50 2314 free_space_fill_(NULL),
9fbd3822 2315 patch_space_(0)
a2fb1b05 2316{
27bc2bce
ILT
2317 // An unallocated section has no address. Forcing this means that
2318 // we don't need special treatment for symbols defined in debug
2319 // sections.
2ea97941 2320 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2321 this->set_address(0);
a2fb1b05
ILT
2322}
2323
54dc6425
ILT
2324Output_section::~Output_section()
2325{
20e6d0d6 2326 delete this->checkpoint_;
54dc6425
ILT
2327}
2328
16649710
ILT
2329// Set the entry size.
2330
2331void
2332Output_section::set_entsize(uint64_t v)
2333{
e8cd95c7
ILT
2334 if (this->is_entsize_zero_)
2335 ;
2336 else if (this->entsize_ == 0)
16649710 2337 this->entsize_ = v;
e8cd95c7
ILT
2338 else if (this->entsize_ != v)
2339 {
2340 this->entsize_ = 0;
2341 this->is_entsize_zero_ = 1;
2342 }
16649710
ILT
2343}
2344
ead1e424 2345// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2346// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2347// relocation section which applies to this section, or 0 if none, or
2348// -1U if more than one. Return the offset of the input section
2349// within the output section. Return -1 if the input section will
2350// receive special handling. In the normal case we don't always keep
2351// track of input sections for an Output_section. Instead, each
2352// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2353// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2354// track of input sections here; this is used when SECTIONS appears in
2355// a linker script.
a2fb1b05
ILT
2356
2357template<int size, bool big_endian>
2358off_t
6e9ba2ca 2359Output_section::add_input_section(Layout* layout,
6fa2a40b 2360 Sized_relobj_file<size, big_endian>* object,
2ea97941 2361 unsigned int shndx,
ead1e424 2362 const char* secname,
730cdc88 2363 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2364 unsigned int reloc_shndx,
2365 bool have_sections_script)
a2fb1b05 2366{
2ea97941
ILT
2367 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2368 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2369 {
75f2446e 2370 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2371 static_cast<unsigned long>(addralign), secname);
2372 addralign = 1;
a2fb1b05 2373 }
a2fb1b05 2374
2ea97941
ILT
2375 if (addralign > this->addralign_)
2376 this->addralign_ = addralign;
a2fb1b05 2377
44a43cf9 2378 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2379 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2380
2381 // .debug_str is a mergeable string section, but is not always so
2382 // marked by compilers. Mark manually here so we can optimize.
2383 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2384 {
2385 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2386 entsize = 1;
4f833eee 2387 }
44a43cf9 2388
e8cd95c7
ILT
2389 this->update_flags_for_input_section(sh_flags);
2390 this->set_entsize(entsize);
2391
b8e6aad9 2392 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2393 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2394 // a section. We don't try to handle empty merge sections--they
2395 // mess up the mappings, and are useless anyhow.
cdc29364 2396 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2397 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2398 && reloc_shndx == 0
cdc29364
CC
2399 && shdr.get_sh_size() > 0
2400 && !parameters->incremental())
b8e6aad9 2401 {
0439c796
DK
2402 // Keep information about merged input sections for rebuilding fast
2403 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2404 bool keeps_input_sections = (this->always_keeps_input_sections_
2405 || have_sections_script
2406 || parameters->target().may_relax());
2407
0439c796
DK
2408 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2409 addralign, keeps_input_sections))
b8e6aad9
ILT
2410 {
2411 // Tell the relocation routines that they need to call the
730cdc88 2412 // output_offset method to determine the final address.
b8e6aad9
ILT
2413 return -1;
2414 }
2415 }
2416
cdc29364
CC
2417 section_size_type input_section_size = shdr.get_sh_size();
2418 section_size_type uncompressed_size;
2419 if (object->section_is_compressed(shndx, &uncompressed_size))
2420 input_section_size = uncompressed_size;
2421
2422 off_t offset_in_section;
2423 off_t aligned_offset_in_section;
2424 if (this->has_fixed_layout())
2425 {
2426 // For incremental updates, find a chunk of unused space in the section.
2427 offset_in_section = this->free_list_.allocate(input_section_size,
2428 addralign, 0);
2429 if (offset_in_section == -1)
9fbd3822
CC
2430 gold_fallback(_("out of patch space in section %s; "
2431 "relink with --incremental-full"),
2432 this->name());
cdc29364
CC
2433 aligned_offset_in_section = offset_in_section;
2434 }
2435 else
2436 {
2437 offset_in_section = this->current_data_size_for_child();
2438 aligned_offset_in_section = align_address(offset_in_section,
2439 addralign);
2440 this->set_current_data_size_for_child(aligned_offset_in_section
2441 + input_section_size);
2442 }
c51e6221 2443
c0a62865
DK
2444 // Determine if we want to delay code-fill generation until the output
2445 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2446 // generating to avoid adjusting them during relaxation. Also, if we are
2447 // sorting input sections we must delay fill generation.
c0a62865
DK
2448 if (!this->generate_code_fills_at_write_
2449 && !have_sections_script
2450 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2451 && parameters->target().has_code_fill()
4cf7a849 2452 && (parameters->target().may_relax()
e9552f7e 2453 || layout->is_section_ordering_specified()))
c0a62865
DK
2454 {
2455 gold_assert(this->fills_.empty());
2456 this->generate_code_fills_at_write_ = true;
2457 }
2458
c51e6221 2459 if (aligned_offset_in_section > offset_in_section
c0a62865 2460 && !this->generate_code_fills_at_write_
a445fddf 2461 && !have_sections_script
44a43cf9 2462 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2463 && parameters->target().has_code_fill())
c51e6221
ILT
2464 {
2465 // We need to add some fill data. Using fill_list_ when
2466 // possible is an optimization, since we will often have fill
2467 // sections without input sections.
2468 off_t fill_len = aligned_offset_in_section - offset_in_section;
2469 if (this->input_sections_.empty())
2470 this->fills_.push_back(Fill(offset_in_section, fill_len));
2471 else
2472 {
029ba973 2473 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2474 Output_data_const* odc = new Output_data_const(fill_data, 1);
2475 this->input_sections_.push_back(Input_section(odc));
2476 }
2477 }
2478
ead1e424 2479 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2480 // track of sections, or if we are relaxing. Also, if this is a
2481 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2482 // the future, we keep track of the sections. If the
2483 // --section-ordering-file option is used to specify the order of
2484 // sections, we need to keep track of sections.
131687b4
DK
2485 if (this->always_keeps_input_sections_
2486 || have_sections_script
2fd32231
ILT
2487 || !this->input_sections_.empty()
2488 || this->may_sort_attached_input_sections()
7d9e3d98 2489 || this->must_sort_attached_input_sections()
20e6d0d6 2490 || parameters->options().user_set_Map()
6e9ba2ca 2491 || parameters->target().may_relax()
e9552f7e 2492 || layout->is_section_ordering_specified())
6e9ba2ca 2493 {
6fc6ea19 2494 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2495 /* If section ordering is requested by specifying a ordering file,
2496 using --section-ordering-file, match the section name with
2497 a pattern. */
2498 if (parameters->options().section_ordering_file())
6e9ba2ca
ST
2499 {
2500 unsigned int section_order_index =
2501 layout->find_section_order_index(std::string(secname));
2502 if (section_order_index != 0)
2503 {
2504 isecn.set_section_order_index(section_order_index);
2505 this->set_input_section_order_specified();
2506 }
2507 }
cdc29364
CC
2508 if (this->has_fixed_layout())
2509 {
2510 // For incremental updates, finalize the address and offset now.
2511 uint64_t addr = this->address();
2512 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2513 aligned_offset_in_section,
2514 this->offset());
2515 }
6e9ba2ca
ST
2516 this->input_sections_.push_back(isecn);
2517 }
54dc6425 2518
c51e6221 2519 return aligned_offset_in_section;
61ba1cf9
ILT
2520}
2521
ead1e424
ILT
2522// Add arbitrary data to an output section.
2523
2524void
2525Output_section::add_output_section_data(Output_section_data* posd)
2526{
b8e6aad9
ILT
2527 Input_section inp(posd);
2528 this->add_output_section_data(&inp);
a445fddf
ILT
2529
2530 if (posd->is_data_size_valid())
2531 {
cdc29364
CC
2532 off_t offset_in_section;
2533 if (this->has_fixed_layout())
2534 {
2535 // For incremental updates, find a chunk of unused space.
2536 offset_in_section = this->free_list_.allocate(posd->data_size(),
2537 posd->addralign(), 0);
2538 if (offset_in_section == -1)
9fbd3822
CC
2539 gold_fallback(_("out of patch space in section %s; "
2540 "relink with --incremental-full"),
2541 this->name());
cdc29364
CC
2542 // Finalize the address and offset now.
2543 uint64_t addr = this->address();
2544 off_t offset = this->offset();
2545 posd->set_address_and_file_offset(addr + offset_in_section,
2546 offset + offset_in_section);
2547 }
2548 else
2549 {
2550 offset_in_section = this->current_data_size_for_child();
2551 off_t aligned_offset_in_section = align_address(offset_in_section,
2552 posd->addralign());
2553 this->set_current_data_size_for_child(aligned_offset_in_section
2554 + posd->data_size());
2555 }
2556 }
2557 else if (this->has_fixed_layout())
2558 {
2559 // For incremental updates, arrange for the data to have a fixed layout.
2560 // This will mean that additions to the data must be allocated from
2561 // free space within the containing output section.
2562 uint64_t addr = this->address();
2563 posd->set_address(addr);
2564 posd->set_file_offset(0);
4829d394
CC
2565 // FIXME: This should eventually be unreachable.
2566 // gold_unreachable();
a445fddf 2567 }
b8e6aad9
ILT
2568}
2569
c0a62865
DK
2570// Add a relaxed input section.
2571
2572void
d06fb4d1
DK
2573Output_section::add_relaxed_input_section(Layout* layout,
2574 Output_relaxed_input_section* poris,
2575 const std::string& name)
c0a62865
DK
2576{
2577 Input_section inp(poris);
d06fb4d1
DK
2578
2579 // If the --section-ordering-file option is used to specify the order of
2580 // sections, we need to keep track of sections.
e9552f7e 2581 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2582 {
2583 unsigned int section_order_index =
2584 layout->find_section_order_index(name);
2585 if (section_order_index != 0)
2586 {
2587 inp.set_section_order_index(section_order_index);
2588 this->set_input_section_order_specified();
2589 }
2590 }
2591
c0a62865 2592 this->add_output_section_data(&inp);
0439c796
DK
2593 if (this->lookup_maps_->is_valid())
2594 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2595 poris->shndx(), poris);
c0a62865
DK
2596
2597 // For a relaxed section, we use the current data size. Linker scripts
2598 // get all the input sections, including relaxed one from an output
19fec8c1 2599 // section and add them back to the same output section to compute the
c0a62865 2600 // output section size. If we do not account for sizes of relaxed input
19fec8c1 2601 // sections, an output section would be incorrectly sized.
c0a62865
DK
2602 off_t offset_in_section = this->current_data_size_for_child();
2603 off_t aligned_offset_in_section = align_address(offset_in_section,
2604 poris->addralign());
2605 this->set_current_data_size_for_child(aligned_offset_in_section
2606 + poris->current_data_size());
2607}
2608
b8e6aad9 2609// Add arbitrary data to an output section by Input_section.
c06b7b0b 2610
b8e6aad9
ILT
2611void
2612Output_section::add_output_section_data(Input_section* inp)
2613{
ead1e424 2614 if (this->input_sections_.empty())
27bc2bce 2615 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2616
b8e6aad9 2617 this->input_sections_.push_back(*inp);
c06b7b0b 2618
2ea97941
ILT
2619 uint64_t addralign = inp->addralign();
2620 if (addralign > this->addralign_)
2621 this->addralign_ = addralign;
c06b7b0b 2622
b8e6aad9
ILT
2623 inp->set_output_section(this);
2624}
2625
2626// Add a merge section to an output section.
2627
2628void
2629Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2630 bool is_string, uint64_t entsize)
b8e6aad9 2631{
2ea97941 2632 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2633 this->add_output_section_data(&inp);
2634}
2635
2636// Add an input section to a SHF_MERGE section.
2637
2638bool
2ea97941
ILT
2639Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2640 uint64_t flags, uint64_t entsize,
0439c796
DK
2641 uint64_t addralign,
2642 bool keeps_input_sections)
b8e6aad9 2643{
2ea97941 2644 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2645
2646 // We only merge strings if the alignment is not more than the
2647 // character size. This could be handled, but it's unusual.
2ea97941 2648 if (is_string && addralign > entsize)
b8e6aad9
ILT
2649 return false;
2650
20e6d0d6
DK
2651 // We cannot restore merged input section states.
2652 gold_assert(this->checkpoint_ == NULL);
2653
c0a62865 2654 // Look up merge sections by required properties.
0439c796
DK
2655 // Currently, we only invalidate the lookup maps in script processing
2656 // and relaxation. We should not have done either when we reach here.
2657 // So we assume that the lookup maps are valid to simply code.
2658 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2659 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2660 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2661 bool is_new = false;
2662 if (pomb != NULL)
c0a62865 2663 {
6bf924b0
DK
2664 gold_assert(pomb->is_string() == is_string
2665 && pomb->entsize() == entsize
2666 && pomb->addralign() == addralign);
c0a62865 2667 }
b8e6aad9
ILT
2668 else
2669 {
6bf924b0
DK
2670 // Create a new Output_merge_data or Output_merge_string_data.
2671 if (!is_string)
2672 pomb = new Output_merge_data(entsize, addralign);
2673 else
9a0910c3 2674 {
6bf924b0
DK
2675 switch (entsize)
2676 {
2677 case 1:
2678 pomb = new Output_merge_string<char>(addralign);
2679 break;
2680 case 2:
2681 pomb = new Output_merge_string<uint16_t>(addralign);
2682 break;
2683 case 4:
2684 pomb = new Output_merge_string<uint32_t>(addralign);
2685 break;
2686 default:
2687 return false;
2688 }
9a0910c3 2689 }
0439c796
DK
2690 // If we need to do script processing or relaxation, we need to keep
2691 // the original input sections to rebuild the fast lookup maps.
2692 if (keeps_input_sections)
2693 pomb->set_keeps_input_sections();
2694 is_new = true;
b8e6aad9
ILT
2695 }
2696
6bf924b0
DK
2697 if (pomb->add_input_section(object, shndx))
2698 {
0439c796
DK
2699 // Add new merge section to this output section and link merge
2700 // section properties to new merge section in map.
2701 if (is_new)
2702 {
2703 this->add_output_merge_section(pomb, is_string, entsize);
2704 this->lookup_maps_->add_merge_section(msp, pomb);
2705 }
2706
6bf924b0
DK
2707 // Add input section to new merge section and link input section to new
2708 // merge section in map.
0439c796 2709 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2710 return true;
2711 }
2712 else
0439c796
DK
2713 {
2714 // If add_input_section failed, delete new merge section to avoid
2715 // exporting empty merge sections in Output_section::get_input_section.
2716 if (is_new)
2717 delete pomb;
2718 return false;
2719 }
b8e6aad9
ILT
2720}
2721
c0a62865 2722// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2723// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2724
20e6d0d6 2725void
c0a62865 2726Output_section::build_relaxation_map(
2ea97941 2727 const Input_section_list& input_sections,
c0a62865
DK
2728 size_t limit,
2729 Relaxation_map* relaxation_map) const
20e6d0d6 2730{
c0a62865
DK
2731 for (size_t i = 0; i < limit; ++i)
2732 {
2ea97941 2733 const Input_section& is(input_sections[i]);
c0a62865
DK
2734 if (is.is_input_section() || is.is_relaxed_input_section())
2735 {
5ac169d4
DK
2736 Section_id sid(is.relobj(), is.shndx());
2737 (*relaxation_map)[sid] = i;
c0a62865
DK
2738 }
2739 }
2740}
2741
2742// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2743// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2744// indices of INPUT_SECTIONS.
20e6d0d6 2745
c0a62865
DK
2746void
2747Output_section::convert_input_sections_in_list_to_relaxed_sections(
2748 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2749 const Relaxation_map& map,
2ea97941 2750 Input_section_list* input_sections)
c0a62865
DK
2751{
2752 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2753 {
2754 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2755 Section_id sid(poris->relobj(), poris->shndx());
2756 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2757 gold_assert(p != map.end());
2ea97941 2758 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2759
2760 // Remember section order index of original input section
2761 // if it is set. Copy it to the relaxed input section.
2762 unsigned int soi =
2763 (*input_sections)[p->second].section_order_index();
2ea97941 2764 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2765 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2766 }
2767}
2768
2769// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2770// is a vector of pointers to Output_relaxed_input_section or its derived
2771// classes. The relaxed sections must correspond to existing input sections.
2772
2773void
2774Output_section::convert_input_sections_to_relaxed_sections(
2775 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2776{
029ba973 2777 gold_assert(parameters->target().may_relax());
20e6d0d6 2778
c0a62865
DK
2779 // We want to make sure that restore_states does not undo the effect of
2780 // this. If there is no checkpoint active, just search the current
2781 // input section list and replace the sections there. If there is
2782 // a checkpoint, also replace the sections there.
2783
2784 // By default, we look at the whole list.
2785 size_t limit = this->input_sections_.size();
2786
2787 if (this->checkpoint_ != NULL)
20e6d0d6 2788 {
c0a62865
DK
2789 // Replace input sections with relaxed input section in the saved
2790 // copy of the input section list.
2791 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2792 {
c0a62865
DK
2793 Relaxation_map map;
2794 this->build_relaxation_map(
2795 *(this->checkpoint_->input_sections()),
2796 this->checkpoint_->input_sections()->size(),
2797 &map);
2798 this->convert_input_sections_in_list_to_relaxed_sections(
2799 relaxed_sections,
2800 map,
2801 this->checkpoint_->input_sections());
2802 }
2803 else
2804 {
2805 // We have not copied the input section list yet. Instead, just
2806 // look at the portion that would be saved.
2807 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2808 }
20e6d0d6 2809 }
c0a62865
DK
2810
2811 // Convert input sections in input_section_list.
2812 Relaxation_map map;
2813 this->build_relaxation_map(this->input_sections_, limit, &map);
2814 this->convert_input_sections_in_list_to_relaxed_sections(
2815 relaxed_sections,
2816 map,
2817 &this->input_sections_);
41263c05
DK
2818
2819 // Update fast look-up map.
0439c796 2820 if (this->lookup_maps_->is_valid())
41263c05
DK
2821 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2822 {
2823 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2824 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2825 poris->shndx(), poris);
41263c05 2826 }
20e6d0d6
DK
2827}
2828
9c547ec3
ILT
2829// Update the output section flags based on input section flags.
2830
2831void
2ea97941 2832Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2833{
2834 // If we created the section with SHF_ALLOC clear, we set the
2835 // address. If we are now setting the SHF_ALLOC flag, we need to
2836 // undo that.
2837 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2838 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2839 this->mark_address_invalid();
2840
2ea97941 2841 this->flags_ |= (flags
9c547ec3
ILT
2842 & (elfcpp::SHF_WRITE
2843 | elfcpp::SHF_ALLOC
2844 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2845
2846 if ((flags & elfcpp::SHF_MERGE) == 0)
2847 this->flags_ &=~ elfcpp::SHF_MERGE;
2848 else
2849 {
2850 if (this->current_data_size_for_child() == 0)
2851 this->flags_ |= elfcpp::SHF_MERGE;
2852 }
2853
2854 if ((flags & elfcpp::SHF_STRINGS) == 0)
2855 this->flags_ &=~ elfcpp::SHF_STRINGS;
2856 else
2857 {
2858 if (this->current_data_size_for_child() == 0)
2859 this->flags_ |= elfcpp::SHF_STRINGS;
2860 }
9c547ec3
ILT
2861}
2862
2ea97941 2863// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2864// OBJECT has been added. Return NULL if none found.
2865
2866Output_section_data*
2867Output_section::find_merge_section(const Relobj* object,
2ea97941 2868 unsigned int shndx) const
c0a62865 2869{
0439c796
DK
2870 if (!this->lookup_maps_->is_valid())
2871 this->build_lookup_maps();
2872 return this->lookup_maps_->find_merge_section(object, shndx);
2873}
2874
2875// Build the lookup maps for merge and relaxed sections. This is needs
2876// to be declared as a const methods so that it is callable with a const
2877// Output_section pointer. The method only updates states of the maps.
2878
2879void
2880Output_section::build_lookup_maps() const
2881{
2882 this->lookup_maps_->clear();
2883 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2884 p != this->input_sections_.end();
2885 ++p)
c0a62865 2886 {
0439c796
DK
2887 if (p->is_merge_section())
2888 {
2889 Output_merge_base* pomb = p->output_merge_base();
2890 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2891 pomb->addralign());
2892 this->lookup_maps_->add_merge_section(msp, pomb);
2893 for (Output_merge_base::Input_sections::const_iterator is =
2894 pomb->input_sections_begin();
2895 is != pomb->input_sections_end();
2896 ++is)
2897 {
2898 const Const_section_id& csid = *is;
2899 this->lookup_maps_->add_merge_input_section(csid.first,
2900 csid.second, pomb);
2901 }
2902
2903 }
2904 else if (p->is_relaxed_input_section())
2905 {
2906 Output_relaxed_input_section* poris = p->relaxed_input_section();
2907 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2908 poris->shndx(), poris);
2909 }
c0a62865 2910 }
c0a62865
DK
2911}
2912
2913// Find an relaxed input section corresponding to an input section
2ea97941 2914// in OBJECT with index SHNDX.
c0a62865 2915
d6344fb5 2916const Output_relaxed_input_section*
c0a62865 2917Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2918 unsigned int shndx) const
c0a62865 2919{
0439c796
DK
2920 if (!this->lookup_maps_->is_valid())
2921 this->build_lookup_maps();
2922 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2923}
2924
2ea97941
ILT
2925// Given an address OFFSET relative to the start of input section
2926// SHNDX in OBJECT, return whether this address is being included in
2927// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2928// a special mapping.
2929
2930bool
2931Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2932 unsigned int shndx,
2933 off_t offset) const
730cdc88 2934{
c0a62865 2935 // Look at the Output_section_data_maps first.
2ea97941 2936 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2937 if (posd == NULL)
2ea97941 2938 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2939
2940 if (posd != NULL)
2941 {
2ea97941
ILT
2942 section_offset_type output_offset;
2943 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2944 gold_assert(found);
2ea97941 2945 return output_offset != -1;
c0a62865
DK
2946 }
2947
2948 // Fall back to the slow look-up.
730cdc88
ILT
2949 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2950 p != this->input_sections_.end();
2951 ++p)
2952 {
2ea97941
ILT
2953 section_offset_type output_offset;
2954 if (p->output_offset(object, shndx, offset, &output_offset))
2955 return output_offset != -1;
730cdc88
ILT
2956 }
2957
2958 // By default we assume that the address is mapped. This should
2959 // only be called after we have passed all sections to Layout. At
2960 // that point we should know what we are discarding.
2961 return true;
2962}
2963
2ea97941
ILT
2964// Given an address OFFSET relative to the start of input section
2965// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2966// start of the input section in the output section. This should only
2ea97941 2967// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2968
8383303e 2969section_offset_type
2ea97941
ILT
2970Output_section::output_offset(const Relobj* object, unsigned int shndx,
2971 section_offset_type offset) const
730cdc88 2972{
c0a62865
DK
2973 // This can only be called meaningfully when we know the data size
2974 // of this.
2975 gold_assert(this->is_data_size_valid());
730cdc88 2976
c0a62865 2977 // Look at the Output_section_data_maps first.
2ea97941 2978 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2979 if (posd == NULL)
2ea97941 2980 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2981 if (posd != NULL)
2982 {
2ea97941
ILT
2983 section_offset_type output_offset;
2984 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2985 gold_assert(found);
2ea97941 2986 return output_offset;
c0a62865
DK
2987 }
2988
2989 // Fall back to the slow look-up.
730cdc88
ILT
2990 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991 p != this->input_sections_.end();
2992 ++p)
2993 {
2ea97941
ILT
2994 section_offset_type output_offset;
2995 if (p->output_offset(object, shndx, offset, &output_offset))
2996 return output_offset;
730cdc88
ILT
2997 }
2998 gold_unreachable();
2999}
3000
2ea97941
ILT
3001// Return the output virtual address of OFFSET relative to the start
3002// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
3003
3004uint64_t
2ea97941
ILT
3005Output_section::output_address(const Relobj* object, unsigned int shndx,
3006 off_t offset) const
b8e6aad9
ILT
3007{
3008 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
3009
3010 // Look at the Output_section_data_maps first.
2ea97941 3011 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 3012 if (posd == NULL)
2ea97941 3013 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
3014 if (posd != NULL && posd->is_address_valid())
3015 {
2ea97941
ILT
3016 section_offset_type output_offset;
3017 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 3018 gold_assert(found);
2ea97941 3019 return posd->address() + output_offset;
c0a62865
DK
3020 }
3021
3022 // Fall back to the slow look-up.
b8e6aad9
ILT
3023 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3024 p != this->input_sections_.end();
3025 ++p)
3026 {
3027 addr = align_address(addr, p->addralign());
2ea97941
ILT
3028 section_offset_type output_offset;
3029 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 3030 {
2ea97941 3031 if (output_offset == -1)
eff45813 3032 return -1ULL;
2ea97941 3033 return addr + output_offset;
730cdc88 3034 }
b8e6aad9
ILT
3035 addr += p->data_size();
3036 }
3037
3038 // If we get here, it means that we don't know the mapping for this
3039 // input section. This might happen in principle if
3040 // add_input_section were called before add_output_section_data.
3041 // But it should never actually happen.
3042
3043 gold_unreachable();
ead1e424
ILT
3044}
3045
e29e076a 3046// Find the output address of the start of the merged section for
2ea97941 3047// input section SHNDX in object OBJECT.
a9a60db6 3048
e29e076a
ILT
3049bool
3050Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3051 unsigned int shndx,
e29e076a 3052 uint64_t* paddr) const
a9a60db6 3053{
c0a62865
DK
3054 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3055 // Looking up the merge section map does not always work as we sometimes
3056 // find a merge section without its address set.
a9a60db6
ILT
3057 uint64_t addr = this->address() + this->first_input_offset_;
3058 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3059 p != this->input_sections_.end();
3060 ++p)
3061 {
3062 addr = align_address(addr, p->addralign());
3063
3064 // It would be nice if we could use the existing output_offset
3065 // method to get the output offset of input offset 0.
3066 // Unfortunately we don't know for sure that input offset 0 is
3067 // mapped at all.
2ea97941 3068 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
3069 {
3070 *paddr = addr;
3071 return true;
3072 }
a9a60db6
ILT
3073
3074 addr += p->data_size();
3075 }
e29e076a
ILT
3076
3077 // We couldn't find a merge output section for this input section.
3078 return false;
a9a60db6
ILT
3079}
3080
cdc29364
CC
3081// Update the data size of an Output_section.
3082
3083void
3084Output_section::update_data_size()
3085{
3086 if (this->input_sections_.empty())
3087 return;
3088
3089 if (this->must_sort_attached_input_sections()
3090 || this->input_section_order_specified())
3091 this->sort_attached_input_sections();
3092
3093 off_t off = this->first_input_offset_;
3094 for (Input_section_list::iterator p = this->input_sections_.begin();
3095 p != this->input_sections_.end();
3096 ++p)
3097 {
3098 off = align_address(off, p->addralign());
3099 off += p->current_data_size();
3100 }
3101
3102 this->set_current_data_size_for_child(off);
3103}
3104
27bc2bce 3105// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3106// setting the addresses of any Output_section_data objects.
3107
3108void
27bc2bce 3109Output_section::set_final_data_size()
ead1e424 3110{
9fbd3822
CC
3111 off_t data_size;
3112
ead1e424 3113 if (this->input_sections_.empty())
9fbd3822
CC
3114 data_size = this->current_data_size_for_child();
3115 else
27bc2bce 3116 {
9fbd3822
CC
3117 if (this->must_sort_attached_input_sections()
3118 || this->input_section_order_specified())
3119 this->sort_attached_input_sections();
ead1e424 3120
9fbd3822
CC
3121 uint64_t address = this->address();
3122 off_t startoff = this->offset();
3123 off_t off = startoff + this->first_input_offset_;
3124 for (Input_section_list::iterator p = this->input_sections_.begin();
3125 p != this->input_sections_.end();
3126 ++p)
3127 {
3128 off = align_address(off, p->addralign());
3129 p->set_address_and_file_offset(address + (off - startoff), off,
3130 startoff);
3131 off += p->data_size();
3132 }
3133 data_size = off - startoff;
3134 }
2fd32231 3135
9fbd3822
CC
3136 // For full incremental links, we want to allocate some patch space
3137 // in most sections for subsequent incremental updates.
3138 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3139 {
9fbd3822 3140 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3141 size_t extra = static_cast<size_t>(data_size * pct);
3142 if (this->free_space_fill_ != NULL
3143 && this->free_space_fill_->minimum_hole_size() > extra)
3144 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3145 off_t new_size = align_address(data_size + extra, this->addralign());
3146 this->patch_space_ = new_size - data_size;
3147 gold_debug(DEBUG_INCREMENTAL,
3148 "set_final_data_size: %08lx + %08lx: section %s",
3149 static_cast<long>(data_size),
3150 static_cast<long>(this->patch_space_),
3151 this->name());
3152 data_size = new_size;
ead1e424
ILT
3153 }
3154
9fbd3822 3155 this->set_data_size(data_size);
ead1e424 3156}
9a0910c3 3157
a445fddf
ILT
3158// Reset the address and file offset.
3159
3160void
3161Output_section::do_reset_address_and_file_offset()
3162{
20e6d0d6
DK
3163 // An unallocated section has no address. Forcing this means that
3164 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3165 // sections. We do the same in the constructor. This does not
3166 // apply to NOLOAD sections though.
3167 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3168 this->set_address(0);
3169
a445fddf
ILT
3170 for (Input_section_list::iterator p = this->input_sections_.begin();
3171 p != this->input_sections_.end();
3172 ++p)
3173 p->reset_address_and_file_offset();
9fbd3822
CC
3174
3175 // Remove any patch space that was added in set_final_data_size.
3176 if (this->patch_space_ > 0)
3177 {
3178 this->set_current_data_size_for_child(this->current_data_size_for_child()
3179 - this->patch_space_);
3180 this->patch_space_ = 0;
3181 }
a445fddf 3182}
9fbd3822 3183
20e6d0d6
DK
3184// Return true if address and file offset have the values after reset.
3185
3186bool
3187Output_section::do_address_and_file_offset_have_reset_values() const
3188{
3189 if (this->is_offset_valid())
3190 return false;
3191
3192 // An unallocated section has address 0 after its construction or a reset.
3193 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3194 return this->is_address_valid() && this->address() == 0;
3195 else
3196 return !this->is_address_valid();
3197}
a445fddf 3198
7bf1f802
ILT
3199// Set the TLS offset. Called only for SHT_TLS sections.
3200
3201void
3202Output_section::do_set_tls_offset(uint64_t tls_base)
3203{
3204 this->tls_offset_ = this->address() - tls_base;
3205}
3206
2fd32231
ILT
3207// In a few cases we need to sort the input sections attached to an
3208// output section. This is used to implement the type of constructor
3209// priority ordering implemented by the GNU linker, in which the
3210// priority becomes part of the section name and the sections are
3211// sorted by name. We only do this for an output section if we see an
5393d741 3212// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3213// ".init_array.*" or ".fini_array.*".
3214
3215class Output_section::Input_section_sort_entry
3216{
3217 public:
3218 Input_section_sort_entry()
3219 : input_section_(), index_(-1U), section_has_name_(false),
3220 section_name_()
3221 { }
3222
2ea97941 3223 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
3224 unsigned int index,
3225 bool must_sort_attached_input_sections)
2ea97941
ILT
3226 : input_section_(input_section), index_(index),
3227 section_has_name_(input_section.is_input_section()
3228 || input_section.is_relaxed_input_section())
2fd32231 3229 {
6e9ba2ca
ST
3230 if (this->section_has_name_
3231 && must_sort_attached_input_sections)
2fd32231
ILT
3232 {
3233 // This is only called single-threaded from Layout::finalize,
3234 // so it is OK to lock. Unfortunately we have no way to pass
3235 // in a Task token.
3236 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3237 Object* obj = (input_section.is_input_section()
3238 ? input_section.relobj()
3239 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3240 Task_lock_obj<Object> tl(dummy_task, obj);
3241
3242 // This is a slow operation, which should be cached in
3243 // Layout::layout if this becomes a speed problem.
2ea97941 3244 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
3245 }
3246 }
3247
3248 // Return the Input_section.
3249 const Input_section&
3250 input_section() const
3251 {
3252 gold_assert(this->index_ != -1U);
3253 return this->input_section_;
3254 }
3255
3256 // The index of this entry in the original list. This is used to
3257 // make the sort stable.
3258 unsigned int
3259 index() const
3260 {
3261 gold_assert(this->index_ != -1U);
3262 return this->index_;
3263 }
3264
3265 // Whether there is a section name.
3266 bool
3267 section_has_name() const
3268 { return this->section_has_name_; }
3269
3270 // The section name.
3271 const std::string&
3272 section_name() const
3273 {
3274 gold_assert(this->section_has_name_);
3275 return this->section_name_;
3276 }
3277
ab794b6b
ILT
3278 // Return true if the section name has a priority. This is assumed
3279 // to be true if it has a dot after the initial dot.
2fd32231 3280 bool
ab794b6b 3281 has_priority() const
2fd32231
ILT
3282 {
3283 gold_assert(this->section_has_name_);
2a0ff005 3284 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3285 }
3286
5393d741
ILT
3287 // Return the priority. Believe it or not, gcc encodes the priority
3288 // differently for .ctors/.dtors and .init_array/.fini_array
3289 // sections.
3290 unsigned int
3291 get_priority() const
3292 {
3293 gold_assert(this->section_has_name_);
3294 bool is_ctors;
3295 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3296 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3297 is_ctors = true;
3298 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3299 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3300 is_ctors = false;
3301 else
3302 return 0;
3303 char* end;
3304 unsigned long prio = strtoul((this->section_name_.c_str()
3305 + (is_ctors ? 7 : 12)),
3306 &end, 10);
3307 if (*end != '\0')
3308 return 0;
3309 else if (is_ctors)
3310 return 65535 - prio;
3311 else
3312 return prio;
3313 }
3314
ab794b6b
ILT
3315 // Return true if this an input file whose base name matches
3316 // FILE_NAME. The base name must have an extension of ".o", and
3317 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3318 // This is to match crtbegin.o as well as crtbeginS.o without
3319 // getting confused by other possibilities. Overall matching the
3320 // file name this way is a dreadful hack, but the GNU linker does it
3321 // in order to better support gcc, and we need to be compatible.
2fd32231 3322 bool
5393d741
ILT
3323 match_file_name(const char* file_name) const
3324 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
2fd32231 3325
8fe2a369
ST
3326 // Returns 1 if THIS should appear before S in section order, -1 if S
3327 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3328 int
3329 compare_section_ordering(const Input_section_sort_entry& s) const
3330 {
8fe2a369
ST
3331 unsigned int this_secn_index = this->input_section_.section_order_index();
3332 unsigned int s_secn_index = s.input_section().section_order_index();
3333 if (this_secn_index > 0 && s_secn_index > 0)
3334 {
3335 if (this_secn_index < s_secn_index)
3336 return 1;
3337 else if (this_secn_index > s_secn_index)
3338 return -1;
3339 }
3340 return 0;
6e9ba2ca
ST
3341 }
3342
2fd32231
ILT
3343 private:
3344 // The Input_section we are sorting.
3345 Input_section input_section_;
3346 // The index of this Input_section in the original list.
3347 unsigned int index_;
3348 // Whether this Input_section has a section name--it won't if this
3349 // is some random Output_section_data.
3350 bool section_has_name_;
3351 // The section name if there is one.
3352 std::string section_name_;
3353};
3354
3355// Return true if S1 should come before S2 in the output section.
3356
3357bool
3358Output_section::Input_section_sort_compare::operator()(
3359 const Output_section::Input_section_sort_entry& s1,
3360 const Output_section::Input_section_sort_entry& s2) const
3361{
ab794b6b
ILT
3362 // crtbegin.o must come first.
3363 bool s1_begin = s1.match_file_name("crtbegin");
3364 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3365 if (s1_begin || s2_begin)
3366 {
3367 if (!s1_begin)
3368 return false;
3369 if (!s2_begin)
3370 return true;
3371 return s1.index() < s2.index();
3372 }
3373
ab794b6b
ILT
3374 // crtend.o must come last.
3375 bool s1_end = s1.match_file_name("crtend");
3376 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3377 if (s1_end || s2_end)
3378 {
3379 if (!s1_end)
3380 return true;
3381 if (!s2_end)
3382 return false;
3383 return s1.index() < s2.index();
3384 }
3385
ab794b6b
ILT
3386 // We sort all the sections with no names to the end.
3387 if (!s1.section_has_name() || !s2.section_has_name())
3388 {
3389 if (s1.section_has_name())
3390 return true;
3391 if (s2.section_has_name())
3392 return false;
3393 return s1.index() < s2.index();
3394 }
2fd32231 3395
ab794b6b 3396 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3397 bool s1_has_priority = s1.has_priority();
3398 bool s2_has_priority = s2.has_priority();
3399 if (s1_has_priority && !s2_has_priority)
2fd32231 3400 return false;
ab794b6b 3401 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3402 return true;
3403
6e9ba2ca
ST
3404 // Check if a section order exists for these sections through a section
3405 // ordering file. If sequence_num is 0, an order does not exist.
3406 int sequence_num = s1.compare_section_ordering(s2);
3407 if (sequence_num != 0)
3408 return sequence_num == 1;
3409
2fd32231
ILT
3410 // Otherwise we sort by name.
3411 int compare = s1.section_name().compare(s2.section_name());
3412 if (compare != 0)
3413 return compare < 0;
3414
3415 // Otherwise we keep the input order.
3416 return s1.index() < s2.index();
3417}
3418
2a0ff005
DK
3419// Return true if S1 should come before S2 in an .init_array or .fini_array
3420// output section.
3421
3422bool
3423Output_section::Input_section_sort_init_fini_compare::operator()(
3424 const Output_section::Input_section_sort_entry& s1,
3425 const Output_section::Input_section_sort_entry& s2) const
3426{
3427 // We sort all the sections with no names to the end.
3428 if (!s1.section_has_name() || !s2.section_has_name())
3429 {
3430 if (s1.section_has_name())
3431 return true;
3432 if (s2.section_has_name())
3433 return false;
3434 return s1.index() < s2.index();
3435 }
3436
3437 // A section without a priority follows a section with a priority.
3438 // This is the reverse of .ctors and .dtors sections.
3439 bool s1_has_priority = s1.has_priority();
3440 bool s2_has_priority = s2.has_priority();
3441 if (s1_has_priority && !s2_has_priority)
3442 return true;
3443 if (!s1_has_priority && s2_has_priority)
3444 return false;
3445
5393d741
ILT
3446 // .ctors and .dtors sections without priority come after
3447 // .init_array and .fini_array sections without priority.
3448 if (!s1_has_priority
3449 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3450 && s1.section_name() != s2.section_name())
3451 return false;
3452 if (!s2_has_priority
3453 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3454 && s2.section_name() != s1.section_name())
3455 return true;
3456
3457 // Sort by priority if we can.
3458 if (s1_has_priority)
3459 {
3460 unsigned int s1_prio = s1.get_priority();
3461 unsigned int s2_prio = s2.get_priority();
3462 if (s1_prio < s2_prio)
3463 return true;
3464 else if (s1_prio > s2_prio)
3465 return false;
3466 }
3467
6e9ba2ca
ST
3468 // Check if a section order exists for these sections through a section
3469 // ordering file. If sequence_num is 0, an order does not exist.
3470 int sequence_num = s1.compare_section_ordering(s2);
3471 if (sequence_num != 0)
3472 return sequence_num == 1;
3473
2a0ff005
DK
3474 // Otherwise we sort by name.
3475 int compare = s1.section_name().compare(s2.section_name());
3476 if (compare != 0)
3477 return compare < 0;
3478
3479 // Otherwise we keep the input order.
3480 return s1.index() < s2.index();
3481}
3482
8fe2a369
ST
3483// Return true if S1 should come before S2. Sections that do not match
3484// any pattern in the section ordering file are placed ahead of the sections
3485// that match some pattern.
3486
6e9ba2ca
ST
3487bool
3488Output_section::Input_section_sort_section_order_index_compare::operator()(
3489 const Output_section::Input_section_sort_entry& s1,
3490 const Output_section::Input_section_sort_entry& s2) const
3491{
8fe2a369
ST
3492 unsigned int s1_secn_index = s1.input_section().section_order_index();
3493 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3494
8fe2a369
ST
3495 // Keep input order if section ordering cannot determine order.
3496 if (s1_secn_index == s2_secn_index)
3497 return s1.index() < s2.index();
3498
3499 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3500}
3501
e9552f7e
ST
3502// This updates the section order index of input sections according to the
3503// the order specified in the mapping from Section id to order index.
3504
3505void
3506Output_section::update_section_layout(
f0558624 3507 const Section_layout_order* order_map)
e9552f7e
ST
3508{
3509 for (Input_section_list::iterator p = this->input_sections_.begin();
3510 p != this->input_sections_.end();
3511 ++p)
3512 {
3513 if (p->is_input_section()
3514 || p->is_relaxed_input_section())
3515 {
3516 Object* obj = (p->is_input_section()
3517 ? p->relobj()
3518 : p->relaxed_input_section()->relobj());
3519 unsigned int shndx = p->shndx();
3520 Section_layout_order::const_iterator it
f0558624
ST
3521 = order_map->find(Section_id(obj, shndx));
3522 if (it == order_map->end())
e9552f7e
ST
3523 continue;
3524 unsigned int section_order_index = it->second;
3525 if (section_order_index != 0)
3526 {
3527 p->set_section_order_index(section_order_index);
3528 this->set_input_section_order_specified();
3529 }
3530 }
3531 }
3532}
3533
2fd32231
ILT
3534// Sort the input sections attached to an output section.
3535
3536void
3537Output_section::sort_attached_input_sections()
3538{
3539 if (this->attached_input_sections_are_sorted_)
3540 return;
3541
20e6d0d6
DK
3542 if (this->checkpoint_ != NULL
3543 && !this->checkpoint_->input_sections_saved())
3544 this->checkpoint_->save_input_sections();
3545
2fd32231
ILT
3546 // The only thing we know about an input section is the object and
3547 // the section index. We need the section name. Recomputing this
3548 // is slow but this is an unusual case. If this becomes a speed
3549 // problem we can cache the names as required in Layout::layout.
3550
3551 // We start by building a larger vector holding a copy of each
3552 // Input_section, plus its current index in the list and its name.
3553 std::vector<Input_section_sort_entry> sort_list;
3554
3555 unsigned int i = 0;
3556 for (Input_section_list::iterator p = this->input_sections_.begin();
3557 p != this->input_sections_.end();
3558 ++p, ++i)
6e9ba2ca
ST
3559 sort_list.push_back(Input_section_sort_entry(*p, i,
3560 this->must_sort_attached_input_sections()));
2fd32231
ILT
3561
3562 // Sort the input sections.
6e9ba2ca
ST
3563 if (this->must_sort_attached_input_sections())
3564 {
3565 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3566 || this->type() == elfcpp::SHT_INIT_ARRAY
3567 || this->type() == elfcpp::SHT_FINI_ARRAY)
3568 std::sort(sort_list.begin(), sort_list.end(),
3569 Input_section_sort_init_fini_compare());
3570 else
3571 std::sort(sort_list.begin(), sort_list.end(),
3572 Input_section_sort_compare());
3573 }
2a0ff005 3574 else
6e9ba2ca 3575 {
e9552f7e 3576 gold_assert(this->input_section_order_specified());
6e9ba2ca
ST
3577 std::sort(sort_list.begin(), sort_list.end(),
3578 Input_section_sort_section_order_index_compare());
3579 }
2fd32231
ILT
3580
3581 // Copy the sorted input sections back to our list.
3582 this->input_sections_.clear();
3583 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3584 p != sort_list.end();
3585 ++p)
3586 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3587 sort_list.clear();
2fd32231
ILT
3588
3589 // Remember that we sorted the input sections, since we might get
3590 // called again.
3591 this->attached_input_sections_are_sorted_ = true;
3592}
3593
61ba1cf9
ILT
3594// Write the section header to *OSHDR.
3595
3596template<int size, bool big_endian>
3597void
16649710
ILT
3598Output_section::write_header(const Layout* layout,
3599 const Stringpool* secnamepool,
61ba1cf9
ILT
3600 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3601{
3602 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3603 oshdr->put_sh_type(this->type_);
6a74a719 3604
2ea97941 3605 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3606 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3607 flags |= elfcpp::SHF_INFO_LINK;
3608 oshdr->put_sh_flags(flags);
6a74a719 3609
61ba1cf9
ILT
3610 oshdr->put_sh_addr(this->address());
3611 oshdr->put_sh_offset(this->offset());
3612 oshdr->put_sh_size(this->data_size());
16649710
ILT
3613 if (this->link_section_ != NULL)
3614 oshdr->put_sh_link(this->link_section_->out_shndx());
3615 else if (this->should_link_to_symtab_)
886f533a 3616 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3617 else if (this->should_link_to_dynsym_)
3618 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3619 else
3620 oshdr->put_sh_link(this->link_);
755ab8af 3621
2ea97941 3622 elfcpp::Elf_Word info;
16649710 3623 if (this->info_section_ != NULL)
755ab8af
ILT
3624 {
3625 if (this->info_uses_section_index_)
2ea97941 3626 info = this->info_section_->out_shndx();
755ab8af 3627 else
2ea97941 3628 info = this->info_section_->symtab_index();
755ab8af 3629 }
6a74a719 3630 else if (this->info_symndx_ != NULL)
2ea97941 3631 info = this->info_symndx_->symtab_index();
16649710 3632 else
2ea97941
ILT
3633 info = this->info_;
3634 oshdr->put_sh_info(info);
755ab8af 3635
61ba1cf9
ILT
3636 oshdr->put_sh_addralign(this->addralign_);
3637 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3638}
3639
ead1e424
ILT
3640// Write out the data. For input sections the data is written out by
3641// Object::relocate, but we have to handle Output_section_data objects
3642// here.
3643
3644void
3645Output_section::do_write(Output_file* of)
3646{
96803768
ILT
3647 gold_assert(!this->requires_postprocessing());
3648
c0a62865
DK
3649 // If the target performs relaxation, we delay filler generation until now.
3650 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3651
c51e6221
ILT
3652 off_t output_section_file_offset = this->offset();
3653 for (Fill_list::iterator p = this->fills_.begin();
3654 p != this->fills_.end();
3655 ++p)
3656 {
8851ecca 3657 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3658 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3659 fill_data.data(), fill_data.size());
c51e6221
ILT
3660 }
3661
c0a62865 3662 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3663 for (Input_section_list::iterator p = this->input_sections_.begin();
3664 p != this->input_sections_.end();
3665 ++p)
c0a62865
DK
3666 {
3667 off_t aligned_off = align_address(off, p->addralign());
3668 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3669 {
3670 size_t fill_len = aligned_off - off;
3671 std::string fill_data(parameters->target().code_fill(fill_len));
3672 of->write(off, fill_data.data(), fill_data.size());
3673 }
3674
3675 p->write(of);
3676 off = aligned_off + p->data_size();
3677 }
8ea8cd50
CC
3678
3679 // For incremental links, fill in unused chunks in debug sections
3680 // with dummy compilation unit headers.
3681 if (this->free_space_fill_ != NULL)
3682 {
3683 for (Free_list::Const_iterator p = this->free_list_.begin();
3684 p != this->free_list_.end();
3685 ++p)
3686 {
3687 off_t off = p->start_;
3688 size_t len = p->end_ - off;
3689 this->free_space_fill_->write(of, this->offset() + off, len);
3690 }
3691 if (this->patch_space_ > 0)
3692 {
3693 off_t off = this->current_data_size_for_child() - this->patch_space_;
3694 this->free_space_fill_->write(of, this->offset() + off,
3695 this->patch_space_);
3696 }
3697 }
ead1e424
ILT
3698}
3699
96803768
ILT
3700// If a section requires postprocessing, create the buffer to use.
3701
3702void
3703Output_section::create_postprocessing_buffer()
3704{
3705 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3706
3707 if (this->postprocessing_buffer_ != NULL)
3708 return;
96803768
ILT
3709
3710 if (!this->input_sections_.empty())
3711 {
3712 off_t off = this->first_input_offset_;
3713 for (Input_section_list::iterator p = this->input_sections_.begin();
3714 p != this->input_sections_.end();
3715 ++p)
3716 {
3717 off = align_address(off, p->addralign());
3718 p->finalize_data_size();
3719 off += p->data_size();
3720 }
3721 this->set_current_data_size_for_child(off);
3722 }
3723
3724 off_t buffer_size = this->current_data_size_for_child();
3725 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3726}
3727
3728// Write all the data of an Output_section into the postprocessing
3729// buffer. This is used for sections which require postprocessing,
3730// such as compression. Input sections are handled by
3731// Object::Relocate.
3732
3733void
3734Output_section::write_to_postprocessing_buffer()
3735{
3736 gold_assert(this->requires_postprocessing());
3737
c0a62865
DK
3738 // If the target performs relaxation, we delay filler generation until now.
3739 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3740
96803768
ILT
3741 unsigned char* buffer = this->postprocessing_buffer();
3742 for (Fill_list::iterator p = this->fills_.begin();
3743 p != this->fills_.end();
3744 ++p)
3745 {
8851ecca 3746 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3747 memcpy(buffer + p->section_offset(), fill_data.data(),
3748 fill_data.size());
96803768
ILT
3749 }
3750
3751 off_t off = this->first_input_offset_;
3752 for (Input_section_list::iterator p = this->input_sections_.begin();
3753 p != this->input_sections_.end();
3754 ++p)
3755 {
c0a62865
DK
3756 off_t aligned_off = align_address(off, p->addralign());
3757 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3758 {
3759 size_t fill_len = aligned_off - off;
3760 std::string fill_data(parameters->target().code_fill(fill_len));
3761 memcpy(buffer + off, fill_data.data(), fill_data.size());
3762 }
3763
3764 p->write_to_buffer(buffer + aligned_off);
3765 off = aligned_off + p->data_size();
96803768
ILT
3766 }
3767}
3768
a445fddf
ILT
3769// Get the input sections for linker script processing. We leave
3770// behind the Output_section_data entries. Note that this may be
3771// slightly incorrect for merge sections. We will leave them behind,
3772// but it is possible that the script says that they should follow
3773// some other input sections, as in:
3774// .rodata { *(.rodata) *(.rodata.cst*) }
3775// For that matter, we don't handle this correctly:
3776// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3777// With luck this will never matter.
3778
3779uint64_t
3780Output_section::get_input_sections(
2ea97941 3781 uint64_t address,
a445fddf 3782 const std::string& fill,
6625d24e 3783 std::list<Input_section>* input_sections)
a445fddf 3784{
20e6d0d6
DK
3785 if (this->checkpoint_ != NULL
3786 && !this->checkpoint_->input_sections_saved())
3787 this->checkpoint_->save_input_sections();
3788
0439c796
DK
3789 // Invalidate fast look-up maps.
3790 this->lookup_maps_->invalidate();
c0a62865 3791
2ea97941 3792 uint64_t orig_address = address;
a445fddf 3793
2ea97941 3794 address = align_address(address, this->addralign());
a445fddf
ILT
3795
3796 Input_section_list remaining;
3797 for (Input_section_list::iterator p = this->input_sections_.begin();
3798 p != this->input_sections_.end();
3799 ++p)
3800 {
0439c796
DK
3801 if (p->is_input_section()
3802 || p->is_relaxed_input_section()
3803 || p->is_merge_section())
6625d24e 3804 input_sections->push_back(*p);
a445fddf
ILT
3805 else
3806 {
2ea97941
ILT
3807 uint64_t aligned_address = align_address(address, p->addralign());
3808 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3809 {
3810 section_size_type length =
2ea97941 3811 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3812 std::string this_fill;
3813 this_fill.reserve(length);
3814 while (this_fill.length() + fill.length() <= length)
3815 this_fill += fill;
3816 if (this_fill.length() < length)
3817 this_fill.append(fill, 0, length - this_fill.length());
3818
3819 Output_section_data* posd = new Output_data_const(this_fill, 0);
3820 remaining.push_back(Input_section(posd));
3821 }
2ea97941 3822 address = aligned_address;
a445fddf
ILT
3823
3824 remaining.push_back(*p);
3825
3826 p->finalize_data_size();
2ea97941 3827 address += p->data_size();
a445fddf
ILT
3828 }
3829 }
3830
3831 this->input_sections_.swap(remaining);
3832 this->first_input_offset_ = 0;
3833
2ea97941
ILT
3834 uint64_t data_size = address - orig_address;
3835 this->set_current_data_size_for_child(data_size);
3836 return data_size;
a445fddf
ILT
3837}
3838
6625d24e
DK
3839// Add a script input section. SIS is an Output_section::Input_section,
3840// which can be either a plain input section or a special input section like
3841// a relaxed input section. For a special input section, its size must be
3842// finalized.
a445fddf
ILT
3843
3844void
6625d24e 3845Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3846{
6625d24e
DK
3847 uint64_t data_size = sis.data_size();
3848 uint64_t addralign = sis.addralign();
2ea97941
ILT
3849 if (addralign > this->addralign_)
3850 this->addralign_ = addralign;
a445fddf
ILT
3851
3852 off_t offset_in_section = this->current_data_size_for_child();
3853 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3854 addralign);
a445fddf
ILT
3855
3856 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3857 + data_size);
a445fddf 3858
6625d24e 3859 this->input_sections_.push_back(sis);
0439c796
DK
3860
3861 // Update fast lookup maps if necessary.
3862 if (this->lookup_maps_->is_valid())
3863 {
3864 if (sis.is_merge_section())
3865 {
3866 Output_merge_base* pomb = sis.output_merge_base();
3867 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3868 pomb->addralign());
3869 this->lookup_maps_->add_merge_section(msp, pomb);
3870 for (Output_merge_base::Input_sections::const_iterator p =
3871 pomb->input_sections_begin();
3872 p != pomb->input_sections_end();
3873 ++p)
3874 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3875 pomb);
3876 }
3877 else if (sis.is_relaxed_input_section())
3878 {
3879 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3880 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3881 poris->shndx(), poris);
3882 }
3883 }
20e6d0d6
DK
3884}
3885
8923b24c 3886// Save states for relaxation.
20e6d0d6
DK
3887
3888void
3889Output_section::save_states()
3890{
3891 gold_assert(this->checkpoint_ == NULL);
3892 Checkpoint_output_section* checkpoint =
3893 new Checkpoint_output_section(this->addralign_, this->flags_,
3894 this->input_sections_,
3895 this->first_input_offset_,
3896 this->attached_input_sections_are_sorted_);
3897 this->checkpoint_ = checkpoint;
3898 gold_assert(this->fills_.empty());
3899}
3900
8923b24c
DK
3901void
3902Output_section::discard_states()
3903{
3904 gold_assert(this->checkpoint_ != NULL);
3905 delete this->checkpoint_;
3906 this->checkpoint_ = NULL;
3907 gold_assert(this->fills_.empty());
3908
0439c796
DK
3909 // Simply invalidate the fast lookup maps since we do not keep
3910 // track of them.
3911 this->lookup_maps_->invalidate();
8923b24c
DK
3912}
3913
20e6d0d6
DK
3914void
3915Output_section::restore_states()
3916{
3917 gold_assert(this->checkpoint_ != NULL);
3918 Checkpoint_output_section* checkpoint = this->checkpoint_;
3919
3920 this->addralign_ = checkpoint->addralign();
3921 this->flags_ = checkpoint->flags();
3922 this->first_input_offset_ = checkpoint->first_input_offset();
3923
3924 if (!checkpoint->input_sections_saved())
3925 {
3926 // If we have not copied the input sections, just resize it.
3927 size_t old_size = checkpoint->input_sections_size();
3928 gold_assert(this->input_sections_.size() >= old_size);
3929 this->input_sections_.resize(old_size);
3930 }
3931 else
3932 {
3933 // We need to copy the whole list. This is not efficient for
3934 // extremely large output with hundreads of thousands of input
3935 // objects. We may need to re-think how we should pass sections
3936 // to scripts.
c0a62865 3937 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3938 }
3939
3940 this->attached_input_sections_are_sorted_ =
3941 checkpoint->attached_input_sections_are_sorted();
c0a62865 3942
0439c796
DK
3943 // Simply invalidate the fast lookup maps since we do not keep
3944 // track of them.
3945 this->lookup_maps_->invalidate();
a445fddf
ILT
3946}
3947
8923b24c
DK
3948// Update the section offsets of input sections in this. This is required if
3949// relaxation causes some input sections to change sizes.
3950
3951void
3952Output_section::adjust_section_offsets()
3953{
3954 if (!this->section_offsets_need_adjustment_)
3955 return;
3956
3957 off_t off = 0;
3958 for (Input_section_list::iterator p = this->input_sections_.begin();
3959 p != this->input_sections_.end();
3960 ++p)
3961 {
3962 off = align_address(off, p->addralign());
3963 if (p->is_input_section())
3964 p->relobj()->set_section_offset(p->shndx(), off);
3965 off += p->data_size();
3966 }
3967
3968 this->section_offsets_need_adjustment_ = false;
3969}
3970
7d9e3d98
ILT
3971// Print to the map file.
3972
3973void
3974Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3975{
3976 mapfile->print_output_section(this);
3977
3978 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3979 p != this->input_sections_.end();
3980 ++p)
3981 p->print_to_mapfile(mapfile);
3982}
3983
38c5e8b4
ILT
3984// Print stats for merge sections to stderr.
3985
3986void
3987Output_section::print_merge_stats()
3988{
3989 Input_section_list::iterator p;
3990 for (p = this->input_sections_.begin();
3991 p != this->input_sections_.end();
3992 ++p)
3993 p->print_merge_stats(this->name_);
3994}
3995
cdc29364
CC
3996// Set a fixed layout for the section. Used for incremental update links.
3997
3998void
3999Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4000 off_t sh_size, uint64_t sh_addralign)
4001{
4002 this->addralign_ = sh_addralign;
4003 this->set_current_data_size(sh_size);
4004 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4005 this->set_address(sh_addr);
4006 this->set_file_offset(sh_offset);
4007 this->finalize_data_size();
4008 this->free_list_.init(sh_size, false);
4009 this->has_fixed_layout_ = true;
4010}
4011
4012// Reserve space within the fixed layout for the section. Used for
4013// incremental update links.
5146f448 4014
cdc29364
CC
4015void
4016Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4017{
4018 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4019}
4020
5146f448
CC
4021// Allocate space from the free list for the section. Used for
4022// incremental update links.
4023
4024off_t
4025Output_section::allocate(off_t len, uint64_t addralign)
4026{
4027 return this->free_list_.allocate(len, addralign, 0);
4028}
4029
a2fb1b05
ILT
4030// Output segment methods.
4031
2ea97941 4032Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4033 : vaddr_(0),
a2fb1b05
ILT
4034 paddr_(0),
4035 memsz_(0),
a445fddf
ILT
4036 max_align_(0),
4037 min_p_align_(0),
a2fb1b05
ILT
4038 offset_(0),
4039 filesz_(0),
2ea97941
ILT
4040 type_(type),
4041 flags_(flags),
a445fddf 4042 is_max_align_known_(false),
8a5e3e08 4043 are_addresses_set_(false),
16164a6b
ST
4044 is_large_data_segment_(false),
4045 is_unique_segment_(false)
a2fb1b05 4046{
bb321bb1
ILT
4047 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4048 // the flags.
4049 if (type == elfcpp::PT_TLS)
4050 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4051}
4052
22f0da72 4053// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4054
4055void
22f0da72
ILT
4056Output_segment::add_output_section_to_load(Layout* layout,
4057 Output_section* os,
4058 elfcpp::Elf_Word seg_flags)
a2fb1b05 4059{
22f0da72 4060 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4061 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4062 gold_assert(!this->is_max_align_known_);
8a5e3e08 4063 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4064
a192ba05 4065 this->update_flags_for_output_section(seg_flags);
75f65a3e 4066
22f0da72
ILT
4067 // We don't want to change the ordering if we have a linker script
4068 // with a SECTIONS clause.
4069 Output_section_order order = os->order();
4070 if (layout->script_options()->saw_sections_clause())
4071 order = static_cast<Output_section_order>(0);
75f65a3e 4072 else
22f0da72 4073 gold_assert(order != ORDER_INVALID);
54dc6425 4074
22f0da72
ILT
4075 this->output_lists_[order].push_back(os);
4076}
9f1d377b 4077
22f0da72 4078// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4079
22f0da72
ILT
4080void
4081Output_segment::add_output_section_to_nonload(Output_section* os,
4082 elfcpp::Elf_Word seg_flags)
4083{
4084 gold_assert(this->type() != elfcpp::PT_LOAD);
4085 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4086 gold_assert(!this->is_max_align_known_);
1a2dff53 4087
22f0da72 4088 this->update_flags_for_output_section(seg_flags);
9f1d377b 4089
22f0da72
ILT
4090 this->output_lists_[0].push_back(os);
4091}
8a5e3e08 4092
22f0da72
ILT
4093// Remove an Output_section from this segment. It is an error if it
4094// is not present.
8a5e3e08 4095
22f0da72
ILT
4096void
4097Output_segment::remove_output_section(Output_section* os)
4098{
4099 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4100 {
22f0da72
ILT
4101 Output_data_list* pdl = &this->output_lists_[i];
4102 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4103 {
22f0da72 4104 if (*p == os)
8a5e3e08 4105 {
22f0da72 4106 pdl->erase(p);
8a5e3e08
ILT
4107 return;
4108 }
4109 }
f5c870d2 4110 }
1650c4ff
ILT
4111 gold_unreachable();
4112}
4113
a192ba05
ILT
4114// Add an Output_data (which need not be an Output_section) to the
4115// start of a segment.
75f65a3e
ILT
4116
4117void
4118Output_segment::add_initial_output_data(Output_data* od)
4119{
a445fddf 4120 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4121 Output_data_list::iterator p = this->output_lists_[0].begin();
4122 this->output_lists_[0].insert(p, od);
4123}
4124
4125// Return true if this segment has any sections which hold actual
4126// data, rather than being a BSS section.
4127
4128bool
4129Output_segment::has_any_data_sections() const
4130{
4131 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132 {
4133 const Output_data_list* pdl = &this->output_lists_[i];
4134 for (Output_data_list::const_iterator p = pdl->begin();
4135 p != pdl->end();
4136 ++p)
4137 {
4138 if (!(*p)->is_section())
4139 return true;
4140 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4141 return true;
4142 }
4143 }
4144 return false;
75f65a3e
ILT
4145}
4146
5bc2f5be
CC
4147// Return whether the first data section (not counting TLS sections)
4148// is a relro section.
9f1d377b
ILT
4149
4150bool
4151Output_segment::is_first_section_relro() const
4152{
22f0da72
ILT
4153 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154 {
5bc2f5be
CC
4155 if (i == static_cast<int>(ORDER_TLS_DATA)
4156 || i == static_cast<int>(ORDER_TLS_BSS))
4157 continue;
22f0da72
ILT
4158 const Output_data_list* pdl = &this->output_lists_[i];
4159 if (!pdl->empty())
4160 {
4161 Output_data* p = pdl->front();
4162 return p->is_section() && p->output_section()->is_relro();
4163 }
4164 }
4165 return false;
9f1d377b
ILT
4166}
4167
75f65a3e 4168// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4169
4170uint64_t
a445fddf 4171Output_segment::maximum_alignment()
75f65a3e 4172{
a445fddf 4173 if (!this->is_max_align_known_)
ead1e424 4174 {
22f0da72
ILT
4175 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4176 {
4177 const Output_data_list* pdl = &this->output_lists_[i];
4178 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4179 if (addralign > this->max_align_)
4180 this->max_align_ = addralign;
4181 }
a445fddf 4182 this->is_max_align_known_ = true;
ead1e424
ILT
4183 }
4184
a445fddf 4185 return this->max_align_;
75f65a3e
ILT
4186}
4187
ead1e424
ILT
4188// Return the maximum alignment of a list of Output_data.
4189
4190uint64_t
a445fddf 4191Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4192{
4193 uint64_t ret = 0;
4194 for (Output_data_list::const_iterator p = pdl->begin();
4195 p != pdl->end();
4196 ++p)
4197 {
2ea97941
ILT
4198 uint64_t addralign = (*p)->addralign();
4199 if (addralign > ret)
4200 ret = addralign;
ead1e424
ILT
4201 }
4202 return ret;
4203}
4204
22f0da72 4205// Return whether this segment has any dynamic relocs.
4f4c5f80 4206
22f0da72
ILT
4207bool
4208Output_segment::has_dynamic_reloc() const
4f4c5f80 4209{
22f0da72
ILT
4210 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4211 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4212 return true;
4213 return false;
4f4c5f80
ILT
4214}
4215
22f0da72 4216// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4217
22f0da72
ILT
4218bool
4219Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4220{
4f4c5f80
ILT
4221 for (Output_data_list::const_iterator p = pdl->begin();
4222 p != pdl->end();
4223 ++p)
22f0da72
ILT
4224 if ((*p)->has_dynamic_reloc())
4225 return true;
4226 return false;
4f4c5f80
ILT
4227}
4228
a445fddf
ILT
4229// Set the section addresses for an Output_segment. If RESET is true,
4230// reset the addresses first. ADDR is the address and *POFF is the
4231// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4232// INCREASE_RELRO is the size of the portion of the first non-relro
4233// section that should be included in the PT_GNU_RELRO segment.
4234// If this segment has relro sections, and has been aligned for
4235// that purpose, set *HAS_RELRO to TRUE. Return the address of
4236// the immediately following segment. Update *HAS_RELRO, *POFF,
4237// and *PSHNDX.
75f65a3e
ILT
4238
4239uint64_t
cdc29364 4240Output_segment::set_section_addresses(Layout* layout, bool reset,
1a2dff53 4241 uint64_t addr,
fd064a5b 4242 unsigned int* increase_relro,
fc497986 4243 bool* has_relro,
1a2dff53 4244 off_t* poff,
ead1e424 4245 unsigned int* pshndx)
75f65a3e 4246{
a3ad94ed 4247 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4248
fc497986 4249 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4250 off_t orig_off = *poff;
4251
5bc2f5be
CC
4252 bool in_tls = false;
4253
1a2dff53 4254 // If we have relro sections, we need to pad forward now so that the
815a1205 4255 // relro sections plus INCREASE_RELRO end on an abi page boundary.
1a2dff53
ILT
4256 if (parameters->options().relro()
4257 && this->is_first_section_relro()
4258 && (!this->are_addresses_set_ || reset))
4259 {
4260 uint64_t relro_size = 0;
4261 off_t off = *poff;
fc497986 4262 uint64_t max_align = 0;
5bc2f5be 4263 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4264 {
22f0da72
ILT
4265 Output_data_list* pdl = &this->output_lists_[i];
4266 Output_data_list::iterator p;
4267 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4268 {
22f0da72
ILT
4269 if (!(*p)->is_section())
4270 break;
fc497986
CC
4271 uint64_t align = (*p)->addralign();
4272 if (align > max_align)
4273 max_align = align;
5bc2f5be
CC
4274 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4275 in_tls = true;
4276 else if (in_tls)
4277 {
4278 // Align the first non-TLS section to the alignment
4279 // of the TLS segment.
4280 align = max_align;
4281 in_tls = false;
4282 }
fc497986 4283 relro_size = align_address(relro_size, align);
5bc2f5be
CC
4284 // Ignore the size of the .tbss section.
4285 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4286 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4287 continue;
22f0da72
ILT
4288 if ((*p)->is_address_valid())
4289 relro_size += (*p)->data_size();
4290 else
4291 {
4292 // FIXME: This could be faster.
4293 (*p)->set_address_and_file_offset(addr + relro_size,
4294 off + relro_size);
4295 relro_size += (*p)->data_size();
4296 (*p)->reset_address_and_file_offset();
4297 }
1a2dff53 4298 }
22f0da72
ILT
4299 if (p != pdl->end())
4300 break;
1a2dff53 4301 }
fd064a5b 4302 relro_size += *increase_relro;
fc497986
CC
4303 // Pad the total relro size to a multiple of the maximum
4304 // section alignment seen.
4305 uint64_t aligned_size = align_address(relro_size, max_align);
4306 // Note the amount of padding added after the last relro section.
4307 last_relro_pad = aligned_size - relro_size;
fc497986 4308 *has_relro = true;
1a2dff53 4309
815a1205 4310 uint64_t page_align = parameters->target().abi_pagesize();
1a2dff53
ILT
4311
4312 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4313 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
4314 if (desired_align < *poff % page_align)
4315 *poff += page_align - *poff % page_align;
4316 *poff += desired_align - *poff % page_align;
4317 addr += *poff - orig_off;
4318 orig_off = *poff;
4319 }
4320
a445fddf
ILT
4321 if (!reset && this->are_addresses_set_)
4322 {
4323 gold_assert(this->paddr_ == addr);
4324 addr = this->vaddr_;
4325 }
4326 else
4327 {
4328 this->vaddr_ = addr;
4329 this->paddr_ = addr;
4330 this->are_addresses_set_ = true;
4331 }
75f65a3e 4332
5bc2f5be 4333 in_tls = false;
96a2b4e4 4334
75f65a3e
ILT
4335 this->offset_ = orig_off;
4336
22f0da72
ILT
4337 off_t off = 0;
4338 uint64_t ret;
4339 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4340 {
fc497986
CC
4341 if (i == static_cast<int>(ORDER_RELRO_LAST))
4342 {
4343 *poff += last_relro_pad;
4344 addr += last_relro_pad;
fd064a5b
CC
4345 if (this->output_lists_[i].empty())
4346 {
4347 // If there is nothing in the ORDER_RELRO_LAST list,
4348 // the padding will occur at the end of the relro
4349 // segment, and we need to add it to *INCREASE_RELRO.
4350 *increase_relro += last_relro_pad;
4351 }
fc497986 4352 }
5bc2f5be
CC
4353 addr = this->set_section_list_addresses(layout, reset,
4354 &this->output_lists_[i],
4355 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4356 if (i < static_cast<int>(ORDER_SMALL_BSS))
4357 {
4358 this->filesz_ = *poff - orig_off;
4359 off = *poff;
4360 }
75f65a3e 4361
22f0da72
ILT
4362 ret = addr;
4363 }
96a2b4e4
ILT
4364
4365 // If the last section was a TLS section, align upward to the
4366 // alignment of the TLS segment, so that the overall size of the TLS
4367 // segment is aligned.
4368 if (in_tls)
4369 {
4370 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4371 *poff = align_address(*poff, segment_align);
4372 }
4373
75f65a3e
ILT
4374 this->memsz_ = *poff - orig_off;
4375
4376 // Ignore the file offset adjustments made by the BSS Output_data
4377 // objects.
4378 *poff = off;
61ba1cf9
ILT
4379
4380 return ret;
75f65a3e
ILT
4381}
4382
b8e6aad9
ILT
4383// Set the addresses and file offsets in a list of Output_data
4384// structures.
75f65a3e
ILT
4385
4386uint64_t
cdc29364 4387Output_segment::set_section_list_addresses(Layout* layout, bool reset,
96a2b4e4 4388 Output_data_list* pdl,
ead1e424 4389 uint64_t addr, off_t* poff,
96a2b4e4 4390 unsigned int* pshndx,
1a2dff53 4391 bool* in_tls)
75f65a3e 4392{
ead1e424 4393 off_t startoff = *poff;
cdc29364
CC
4394 // For incremental updates, we may allocate non-fixed sections from
4395 // free space in the file. This keeps track of the high-water mark.
4396 off_t maxoff = startoff;
75f65a3e 4397
ead1e424 4398 off_t off = startoff;
75f65a3e
ILT
4399 for (Output_data_list::iterator p = pdl->begin();
4400 p != pdl->end();
4401 ++p)
4402 {
a445fddf
ILT
4403 if (reset)
4404 (*p)->reset_address_and_file_offset();
4405
cdc29364
CC
4406 // When doing an incremental update or when using a linker script,
4407 // the section will most likely already have an address.
a445fddf 4408 if (!(*p)->is_address_valid())
3802b2dd 4409 {
96a2b4e4
ILT
4410 uint64_t align = (*p)->addralign();
4411
4412 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4413 {
4414 // Give the first TLS section the alignment of the
4415 // entire TLS segment. Otherwise the TLS segment as a
4416 // whole may be misaligned.
4417 if (!*in_tls)
4418 {
4419 Output_segment* tls_segment = layout->tls_segment();
4420 gold_assert(tls_segment != NULL);
4421 uint64_t segment_align = tls_segment->maximum_alignment();
4422 gold_assert(segment_align >= align);
4423 align = segment_align;
4424
4425 *in_tls = true;
4426 }
4427 }
4428 else
4429 {
4430 // If this is the first section after the TLS segment,
4431 // align it to at least the alignment of the TLS
4432 // segment, so that the size of the overall TLS segment
4433 // is aligned.
4434 if (*in_tls)
4435 {
4436 uint64_t segment_align =
4437 layout->tls_segment()->maximum_alignment();
4438 if (segment_align > align)
4439 align = segment_align;
4440
4441 *in_tls = false;
4442 }
4443 }
4444
fb0e076f 4445 if (!parameters->incremental_update())
cdc29364
CC
4446 {
4447 off = align_address(off, align);
4448 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4449 }
4450 else
4451 {
4452 // Incremental update: allocate file space from free list.
4453 (*p)->pre_finalize_data_size();
4454 off_t current_size = (*p)->current_data_size();
4455 off = layout->allocate(current_size, align, startoff);
4456 if (off == -1)
4457 {
4458 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4459 gold_fallback(_("out of patch space for section %s; "
4460 "relink with --incremental-full"),
4461 (*p)->output_section()->name());
cdc29364
CC
4462 }
4463 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4464 if ((*p)->data_size() > current_size)
4465 {
4466 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4467 gold_fallback(_("%s: section changed size; "
4468 "relink with --incremental-full"),
4469 (*p)->output_section()->name());
cdc29364
CC
4470 }
4471 }
3802b2dd 4472 }
cdc29364
CC
4473 else if (parameters->incremental_update())
4474 {
4475 // For incremental updates, use the fixed offset for the
4476 // high-water mark computation.
4477 off = (*p)->offset();
4478 }
a445fddf
ILT
4479 else
4480 {
4481 // The script may have inserted a skip forward, but it
4482 // better not have moved backward.
661be1e2
ILT
4483 if ((*p)->address() >= addr + (off - startoff))
4484 off += (*p)->address() - (addr + (off - startoff));
4485 else
4486 {
4487 if (!layout->script_options()->saw_sections_clause())
4488 gold_unreachable();
4489 else
4490 {
4491 Output_section* os = (*p)->output_section();
64b1ae37
DK
4492
4493 // Cast to unsigned long long to avoid format warnings.
4494 unsigned long long previous_dot =
4495 static_cast<unsigned long long>(addr + (off - startoff));
4496 unsigned long long dot =
4497 static_cast<unsigned long long>((*p)->address());
4498
661be1e2
ILT
4499 if (os == NULL)
4500 gold_error(_("dot moves backward in linker script "
64b1ae37 4501 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4502 else
4503 gold_error(_("address of section '%s' moves backward "
4504 "from 0x%llx to 0x%llx"),
64b1ae37 4505 os->name(), previous_dot, dot);
661be1e2
ILT
4506 }
4507 }
a445fddf
ILT
4508 (*p)->set_file_offset(off);
4509 (*p)->finalize_data_size();
4510 }
ead1e424 4511
9fbd3822
CC
4512 if (parameters->incremental_update())
4513 gold_debug(DEBUG_INCREMENTAL,
4514 "set_section_list_addresses: %08lx %08lx %s",
4515 static_cast<long>(off),
4516 static_cast<long>((*p)->data_size()),
4517 ((*p)->output_section() != NULL
4518 ? (*p)->output_section()->name() : "(special)"));
4519
4520 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4521 // section. Such a section does not affect the size of a
4522 // PT_LOAD segment.
4523 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4524 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4525 off += (*p)->data_size();
75f65a3e 4526
cdc29364
CC
4527 if (off > maxoff)
4528 maxoff = off;
4529
ead1e424
ILT
4530 if ((*p)->is_section())
4531 {
4532 (*p)->set_out_shndx(*pshndx);
4533 ++*pshndx;
4534 }
75f65a3e
ILT
4535 }
4536
cdc29364
CC
4537 *poff = maxoff;
4538 return addr + (maxoff - startoff);
75f65a3e
ILT
4539}
4540
4541// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4542// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4543
4544void
1a2dff53 4545Output_segment::set_offset(unsigned int increase)
75f65a3e 4546{
a3ad94ed 4547 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4548
a445fddf
ILT
4549 gold_assert(!this->are_addresses_set_);
4550
22f0da72
ILT
4551 // A non-load section only uses output_lists_[0].
4552
4553 Output_data_list* pdl = &this->output_lists_[0];
4554
4555 if (pdl->empty())
75f65a3e 4556 {
1a2dff53 4557 gold_assert(increase == 0);
75f65a3e
ILT
4558 this->vaddr_ = 0;
4559 this->paddr_ = 0;
a445fddf 4560 this->are_addresses_set_ = true;
75f65a3e 4561 this->memsz_ = 0;
a445fddf 4562 this->min_p_align_ = 0;
75f65a3e
ILT
4563 this->offset_ = 0;
4564 this->filesz_ = 0;
4565 return;
4566 }
4567
22f0da72 4568 // Find the first and last section by address.
5f1ab67a
ILT
4569 const Output_data* first = NULL;
4570 const Output_data* last_data = NULL;
4571 const Output_data* last_bss = NULL;
22f0da72
ILT
4572 for (Output_data_list::const_iterator p = pdl->begin();
4573 p != pdl->end();
4574 ++p)
4575 {
4576 if (first == NULL
4577 || (*p)->address() < first->address()
4578 || ((*p)->address() == first->address()
4579 && (*p)->data_size() < first->data_size()))
4580 first = *p;
4581 const Output_data** plast;
4582 if ((*p)->is_section()
4583 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4584 plast = &last_bss;
4585 else
4586 plast = &last_data;
4587 if (*plast == NULL
4588 || (*p)->address() > (*plast)->address()
4589 || ((*p)->address() == (*plast)->address()
4590 && (*p)->data_size() > (*plast)->data_size()))
4591 *plast = *p;
4592 }
5f1ab67a 4593
75f65a3e 4594 this->vaddr_ = first->address();
a445fddf
ILT
4595 this->paddr_ = (first->has_load_address()
4596 ? first->load_address()
4597 : this->vaddr_);
4598 this->are_addresses_set_ = true;
75f65a3e
ILT
4599 this->offset_ = first->offset();
4600
22f0da72 4601 if (last_data == NULL)
75f65a3e
ILT
4602 this->filesz_ = 0;
4603 else
5f1ab67a
ILT
4604 this->filesz_ = (last_data->address()
4605 + last_data->data_size()
4606 - this->vaddr_);
75f65a3e 4607
5f1ab67a 4608 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4609 this->memsz_ = (last->address()
4610 + last->data_size()
4611 - this->vaddr_);
96a2b4e4 4612
1a2dff53
ILT
4613 this->filesz_ += increase;
4614 this->memsz_ += increase;
4615
fd064a5b
CC
4616 // If this is a RELRO segment, verify that the segment ends at a
4617 // page boundary.
4618 if (this->type_ == elfcpp::PT_GNU_RELRO)
4619 {
815a1205 4620 uint64_t page_align = parameters->target().abi_pagesize();
fd064a5b 4621 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4622 if (parameters->incremental_update())
4623 {
4624 // The INCREASE_RELRO calculation is bypassed for an incremental
4625 // update, so we need to adjust the segment size manually here.
4626 segment_end = align_address(segment_end, page_align);
4627 this->memsz_ = segment_end - this->vaddr_;
4628 }
4629 else
4630 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4631 }
4632
96a2b4e4
ILT
4633 // If this is a TLS segment, align the memory size. The code in
4634 // set_section_list ensures that the section after the TLS segment
4635 // is aligned to give us room.
4636 if (this->type_ == elfcpp::PT_TLS)
4637 {
4638 uint64_t segment_align = this->maximum_alignment();
4639 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4640 this->memsz_ = align_address(this->memsz_, segment_align);
4641 }
75f65a3e
ILT
4642}
4643
7bf1f802
ILT
4644// Set the TLS offsets of the sections in the PT_TLS segment.
4645
4646void
4647Output_segment::set_tls_offsets()
4648{
4649 gold_assert(this->type_ == elfcpp::PT_TLS);
4650
22f0da72
ILT
4651 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4652 p != this->output_lists_[0].end();
7bf1f802
ILT
4653 ++p)
4654 (*p)->set_tls_offset(this->vaddr_);
4655}
4656
7404fe1b 4657// Return the first section.
a445fddf 4658
7404fe1b
AM
4659Output_section*
4660Output_segment::first_section() const
a445fddf 4661{
22f0da72
ILT
4662 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663 {
4664 const Output_data_list* pdl = &this->output_lists_[i];
4665 for (Output_data_list::const_iterator p = pdl->begin();
4666 p != pdl->end();
4667 ++p)
4668 {
4669 if ((*p)->is_section())
7404fe1b 4670 return (*p)->output_section();
22f0da72
ILT
4671 }
4672 }
a445fddf
ILT
4673 gold_unreachable();
4674}
4675
75f65a3e
ILT
4676// Return the number of Output_sections in an Output_segment.
4677
4678unsigned int
4679Output_segment::output_section_count() const
4680{
22f0da72
ILT
4681 unsigned int ret = 0;
4682 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4683 ret += this->output_section_count_list(&this->output_lists_[i]);
4684 return ret;
75f65a3e
ILT
4685}
4686
4687// Return the number of Output_sections in an Output_data_list.
4688
4689unsigned int
4690Output_segment::output_section_count_list(const Output_data_list* pdl) const
4691{
4692 unsigned int count = 0;
4693 for (Output_data_list::const_iterator p = pdl->begin();
4694 p != pdl->end();
4695 ++p)
4696 {
4697 if ((*p)->is_section())
4698 ++count;
4699 }
4700 return count;
a2fb1b05
ILT
4701}
4702
1c4f3631
ILT
4703// Return the section attached to the list segment with the lowest
4704// load address. This is used when handling a PHDRS clause in a
4705// linker script.
4706
4707Output_section*
4708Output_segment::section_with_lowest_load_address() const
4709{
4710 Output_section* found = NULL;
4711 uint64_t found_lma = 0;
22f0da72
ILT
4712 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4713 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4714 &found_lma);
1c4f3631
ILT
4715 return found;
4716}
4717
4718// Look through a list for a section with a lower load address.
4719
4720void
4721Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4722 Output_section** found,
4723 uint64_t* found_lma) const
4724{
4725 for (Output_data_list::const_iterator p = pdl->begin();
4726 p != pdl->end();
4727 ++p)
4728 {
4729 if (!(*p)->is_section())
4730 continue;
4731 Output_section* os = static_cast<Output_section*>(*p);
4732 uint64_t lma = (os->has_load_address()
4733 ? os->load_address()
4734 : os->address());
4735 if (*found == NULL || lma < *found_lma)
4736 {
4737 *found = os;
4738 *found_lma = lma;
4739 }
4740 }
4741}
4742
61ba1cf9
ILT
4743// Write the segment data into *OPHDR.
4744
4745template<int size, bool big_endian>
4746void
ead1e424 4747Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4748{
4749 ophdr->put_p_type(this->type_);
4750 ophdr->put_p_offset(this->offset_);
4751 ophdr->put_p_vaddr(this->vaddr_);
4752 ophdr->put_p_paddr(this->paddr_);
4753 ophdr->put_p_filesz(this->filesz_);
4754 ophdr->put_p_memsz(this->memsz_);
4755 ophdr->put_p_flags(this->flags_);
a445fddf 4756 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4757}
4758
4759// Write the section headers into V.
4760
4761template<int size, bool big_endian>
4762unsigned char*
16649710
ILT
4763Output_segment::write_section_headers(const Layout* layout,
4764 const Stringpool* secnamepool,
ead1e424 4765 unsigned char* v,
ca09d69a 4766 unsigned int* pshndx) const
5482377d 4767{
ead1e424
ILT
4768 // Every section that is attached to a segment must be attached to a
4769 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4770 // segments.
4771 if (this->type_ != elfcpp::PT_LOAD)
4772 return v;
4773
22f0da72
ILT
4774 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4775 {
4776 const Output_data_list* pdl = &this->output_lists_[i];
4777 v = this->write_section_headers_list<size, big_endian>(layout,
4778 secnamepool,
4779 pdl,
4780 v, pshndx);
4781 }
4782
61ba1cf9
ILT
4783 return v;
4784}
4785
4786template<int size, bool big_endian>
4787unsigned char*
16649710
ILT
4788Output_segment::write_section_headers_list(const Layout* layout,
4789 const Stringpool* secnamepool,
61ba1cf9 4790 const Output_data_list* pdl,
ead1e424 4791 unsigned char* v,
7d1a9ebb 4792 unsigned int* pshndx) const
61ba1cf9
ILT
4793{
4794 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4795 for (Output_data_list::const_iterator p = pdl->begin();
4796 p != pdl->end();
4797 ++p)
4798 {
4799 if ((*p)->is_section())
4800 {
5482377d 4801 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4802 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4803 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4804 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4805 v += shdr_size;
ead1e424 4806 ++*pshndx;
61ba1cf9
ILT
4807 }
4808 }
4809 return v;
4810}
4811
7d9e3d98
ILT
4812// Print the output sections to the map file.
4813
4814void
4815Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4816{
4817 if (this->type() != elfcpp::PT_LOAD)
4818 return;
22f0da72
ILT
4819 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4820 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4821}
4822
4823// Print an output section list to the map file.
4824
4825void
4826Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4827 const Output_data_list* pdl) const
4828{
4829 for (Output_data_list::const_iterator p = pdl->begin();
4830 p != pdl->end();
4831 ++p)
4832 (*p)->print_to_mapfile(mapfile);
4833}
4834
a2fb1b05
ILT
4835// Output_file methods.
4836
14144f39
ILT
4837Output_file::Output_file(const char* name)
4838 : name_(name),
61ba1cf9
ILT
4839 o_(-1),
4840 file_size_(0),
c420411f 4841 base_(NULL),
516cb3d0 4842 map_is_anonymous_(false),
88597d34 4843 map_is_allocated_(false),
516cb3d0 4844 is_temporary_(false)
61ba1cf9
ILT
4845{
4846}
4847
404c2abb 4848// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4849// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4850// NULL, open that file as the base for incremental linking, and
4851// copy its contents to the new output file. This routine can
4852// be called for incremental updates, in which case WRITABLE should
4853// be true, or by the incremental-dump utility, in which case
4854// WRITABLE should be false.
404c2abb
ILT
4855
4856bool
aa92d6ed 4857Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4858{
4859 // The name "-" means "stdout".
4860 if (strcmp(this->name_, "-") == 0)
4861 return false;
4862
aa92d6ed
CC
4863 bool use_base_file = base_name != NULL;
4864 if (!use_base_file)
4865 base_name = this->name_;
4866 else if (strcmp(base_name, this->name_) == 0)
4867 gold_fatal(_("%s: incremental base and output file name are the same"),
4868 base_name);
4869
404c2abb
ILT
4870 // Don't bother opening files with a size of zero.
4871 struct stat s;
aa92d6ed
CC
4872 if (::stat(base_name, &s) != 0)
4873 {
4874 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4875 return false;
4876 }
4877 if (s.st_size == 0)
4878 {
4879 gold_info(_("%s: incremental base file is empty"), base_name);
4880 return false;
4881 }
4882
4883 // If we're using a base file, we want to open it read-only.
4884 if (use_base_file)
4885 writable = false;
404c2abb 4886
aa92d6ed
CC
4887 int oflags = writable ? O_RDWR : O_RDONLY;
4888 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4889 if (o < 0)
aa92d6ed
CC
4890 {
4891 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4892 return false;
4893 }
4894
4895 // If the base file and the output file are different, open a
4896 // new output file and read the contents from the base file into
4897 // the newly-mapped region.
4898 if (use_base_file)
4899 {
4900 this->open(s.st_size);
dfb45471
CC
4901 ssize_t bytes_to_read = s.st_size;
4902 unsigned char* p = this->base_;
4903 while (bytes_to_read > 0)
4904 {
4905 ssize_t len = ::read(o, p, bytes_to_read);
4906 if (len < 0)
4907 {
4908 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4909 return false;
4910 }
4911 if (len == 0)
4912 {
4913 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4914 base_name,
4915 static_cast<long long>(s.st_size - bytes_to_read),
4916 static_cast<long long>(s.st_size));
4917 return false;
4918 }
4919 p += len;
4920 bytes_to_read -= len;
4921 }
aa92d6ed
CC
4922 ::close(o);
4923 return true;
4924 }
4925
404c2abb
ILT
4926 this->o_ = o;
4927 this->file_size_ = s.st_size;
4928
aa92d6ed 4929 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4930 {
4931 release_descriptor(o, true);
4932 this->o_ = -1;
4933 this->file_size_ = 0;
4934 return false;
4935 }
4936
4937 return true;
4938}
4939
61ba1cf9
ILT
4940// Open the output file.
4941
a2fb1b05 4942void
61ba1cf9 4943Output_file::open(off_t file_size)
a2fb1b05 4944{
61ba1cf9
ILT
4945 this->file_size_ = file_size;
4946
4e9d8586
ILT
4947 // Unlink the file first; otherwise the open() may fail if the file
4948 // is busy (e.g. it's an executable that's currently being executed).
4949 //
4950 // However, the linker may be part of a system where a zero-length
4951 // file is created for it to write to, with tight permissions (gcc
4952 // 2.95 did something like this). Unlinking the file would work
4953 // around those permission controls, so we only unlink if the file
4954 // has a non-zero size. We also unlink only regular files to avoid
4955 // trouble with directories/etc.
4956 //
4957 // If we fail, continue; this command is merely a best-effort attempt
4958 // to improve the odds for open().
4959
42a1b686 4960 // We let the name "-" mean "stdout"
516cb3d0 4961 if (!this->is_temporary_)
42a1b686 4962 {
516cb3d0
ILT
4963 if (strcmp(this->name_, "-") == 0)
4964 this->o_ = STDOUT_FILENO;
4965 else
4966 {
4967 struct stat s;
6a89f575
CC
4968 if (::stat(this->name_, &s) == 0
4969 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4970 {
4971 if (s.st_size != 0)
4972 ::unlink(this->name_);
4973 else if (!parameters->options().relocatable())
4974 {
4975 // If we don't unlink the existing file, add execute
4976 // permission where read permissions already exist
4977 // and where the umask permits.
4978 int mask = ::umask(0);
4979 ::umask(mask);
4980 s.st_mode |= (s.st_mode & 0444) >> 2;
4981 ::chmod(this->name_, s.st_mode & ~mask);
4982 }
4983 }
516cb3d0 4984
8851ecca 4985 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4986 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4987 mode);
516cb3d0
ILT
4988 if (o < 0)
4989 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4990 this->o_ = o;
4991 }
42a1b686 4992 }
61ba1cf9 4993
27bc2bce
ILT
4994 this->map();
4995}
4996
4997// Resize the output file.
4998
4999void
5000Output_file::resize(off_t file_size)
5001{
c420411f
ILT
5002 // If the mmap is mapping an anonymous memory buffer, this is easy:
5003 // just mremap to the new size. If it's mapping to a file, we want
5004 // to unmap to flush to the file, then remap after growing the file.
5005 if (this->map_is_anonymous_)
5006 {
88597d34
ILT
5007 void* base;
5008 if (!this->map_is_allocated_)
5009 {
5010 base = ::mremap(this->base_, this->file_size_, file_size,
5011 MREMAP_MAYMOVE);
5012 if (base == MAP_FAILED)
5013 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5014 }
5015 else
5016 {
5017 base = realloc(this->base_, file_size);
5018 if (base == NULL)
5019 gold_nomem();
5020 if (file_size > this->file_size_)
5021 memset(static_cast<char*>(base) + this->file_size_, 0,
5022 file_size - this->file_size_);
5023 }
c420411f
ILT
5024 this->base_ = static_cast<unsigned char*>(base);
5025 this->file_size_ = file_size;
5026 }
5027 else
5028 {
5029 this->unmap();
5030 this->file_size_ = file_size;
aa92d6ed 5031 if (!this->map_no_anonymous(true))
fdcac5af 5032 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5033 }
27bc2bce
ILT
5034}
5035
404c2abb
ILT
5036// Map an anonymous block of memory which will later be written to the
5037// file. Return whether the map succeeded.
26736d8e 5038
404c2abb 5039bool
26736d8e
ILT
5040Output_file::map_anonymous()
5041{
404c2abb
ILT
5042 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5043 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5044 if (base == MAP_FAILED)
404c2abb 5045 {
88597d34
ILT
5046 base = malloc(this->file_size_);
5047 if (base == NULL)
5048 return false;
5049 memset(base, 0, this->file_size_);
5050 this->map_is_allocated_ = true;
404c2abb 5051 }
88597d34
ILT
5052 this->base_ = static_cast<unsigned char*>(base);
5053 this->map_is_anonymous_ = true;
5054 return true;
26736d8e
ILT
5055}
5056
404c2abb 5057// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5058// If WRITABLE is true, map with write access.
27bc2bce 5059
404c2abb 5060bool
aa92d6ed 5061Output_file::map_no_anonymous(bool writable)
27bc2bce 5062{
c420411f 5063 const int o = this->o_;
61ba1cf9 5064
c420411f
ILT
5065 // If the output file is not a regular file, don't try to mmap it;
5066 // instead, we'll mmap a block of memory (an anonymous buffer), and
5067 // then later write the buffer to the file.
5068 void* base;
5069 struct stat statbuf;
42a1b686
ILT
5070 if (o == STDOUT_FILENO || o == STDERR_FILENO
5071 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5072 || !S_ISREG(statbuf.st_mode)
5073 || this->is_temporary_)
404c2abb
ILT
5074 return false;
5075
5076 // Ensure that we have disk space available for the file. If we
5077 // don't do this, it is possible that we will call munmap, close,
5078 // and exit with dirty buffers still in the cache with no assigned
5079 // disk blocks. If the disk is out of space at that point, the
5080 // output file will wind up incomplete, but we will have already
5081 // exited. The alternative to fallocate would be to use fdatasync,
5082 // but that would be a more significant performance hit.
bab9090f
CC
5083 if (writable)
5084 {
7c0640fa 5085 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5086 if (err != 0)
5087 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5088 }
404c2abb
ILT
5089
5090 // Map the file into memory.
aa92d6ed
CC
5091 int prot = PROT_READ;
5092 if (writable)
5093 prot |= PROT_WRITE;
5094 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5095
5096 // The mmap call might fail because of file system issues: the file
5097 // system might not support mmap at all, or it might not support
5098 // mmap with PROT_WRITE.
61ba1cf9 5099 if (base == MAP_FAILED)
404c2abb
ILT
5100 return false;
5101
5102 this->map_is_anonymous_ = false;
61ba1cf9 5103 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5104 return true;
5105}
5106
5107// Map the file into memory.
5108
5109void
5110Output_file::map()
5111{
7c0640fa
CC
5112 if (parameters->options().mmap_output_file()
5113 && this->map_no_anonymous(true))
404c2abb
ILT
5114 return;
5115
5116 // The mmap call might fail because of file system issues: the file
5117 // system might not support mmap at all, or it might not support
5118 // mmap with PROT_WRITE. I'm not sure which errno values we will
5119 // see in all cases, so if the mmap fails for any reason and we
5120 // don't care about file contents, try for an anonymous map.
5121 if (this->map_anonymous())
5122 return;
5123
5124 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5125 this->name_, static_cast<unsigned long>(this->file_size_),
5126 strerror(errno));
61ba1cf9
ILT
5127}
5128
c420411f 5129// Unmap the file from memory.
61ba1cf9
ILT
5130
5131void
c420411f 5132Output_file::unmap()
61ba1cf9 5133{
88597d34
ILT
5134 if (this->map_is_anonymous_)
5135 {
5136 // We've already written out the data, so there is no reason to
5137 // waste time unmapping or freeing the memory.
5138 }
5139 else
5140 {
5141 if (::munmap(this->base_, this->file_size_) < 0)
5142 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5143 }
61ba1cf9 5144 this->base_ = NULL;
c420411f
ILT
5145}
5146
5147// Close the output file.
5148
5149void
5150Output_file::close()
5151{
5152 // If the map isn't file-backed, we need to write it now.
516cb3d0 5153 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5154 {
5155 size_t bytes_to_write = this->file_size_;
6d1e3092 5156 size_t offset = 0;
c420411f
ILT
5157 while (bytes_to_write > 0)
5158 {
6d1e3092
CD
5159 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5160 bytes_to_write);
c420411f
ILT
5161 if (bytes_written == 0)
5162 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5163 else if (bytes_written < 0)
5164 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5165 else
6d1e3092
CD
5166 {
5167 bytes_to_write -= bytes_written;
5168 offset += bytes_written;
5169 }
c420411f
ILT
5170 }
5171 }
5172 this->unmap();
61ba1cf9 5173
42a1b686 5174 // We don't close stdout or stderr
516cb3d0
ILT
5175 if (this->o_ != STDOUT_FILENO
5176 && this->o_ != STDERR_FILENO
5177 && !this->is_temporary_)
42a1b686
ILT
5178 if (::close(this->o_) < 0)
5179 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5180 this->o_ = -1;
a2fb1b05
ILT
5181}
5182
5183// Instantiate the templates we need. We could use the configure
5184// script to restrict this to only the ones for implemented targets.
5185
193a53d9 5186#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5187template
5188off_t
5189Output_section::add_input_section<32, false>(
6e9ba2ca 5190 Layout* layout,
6fa2a40b 5191 Sized_relobj_file<32, false>* object,
2ea97941 5192 unsigned int shndx,
a2fb1b05 5193 const char* secname,
730cdc88 5194 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5195 unsigned int reloc_shndx,
5196 bool have_sections_script);
193a53d9 5197#endif
a2fb1b05 5198
193a53d9 5199#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5200template
5201off_t
5202Output_section::add_input_section<32, true>(
6e9ba2ca 5203 Layout* layout,
6fa2a40b 5204 Sized_relobj_file<32, true>* object,
2ea97941 5205 unsigned int shndx,
a2fb1b05 5206 const char* secname,
730cdc88 5207 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5208 unsigned int reloc_shndx,
5209 bool have_sections_script);
193a53d9 5210#endif
a2fb1b05 5211
193a53d9 5212#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5213template
5214off_t
5215Output_section::add_input_section<64, false>(
6e9ba2ca 5216 Layout* layout,
6fa2a40b 5217 Sized_relobj_file<64, false>* object,
2ea97941 5218 unsigned int shndx,
a2fb1b05 5219 const char* secname,
730cdc88 5220 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5221 unsigned int reloc_shndx,
5222 bool have_sections_script);
193a53d9 5223#endif
a2fb1b05 5224
193a53d9 5225#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5226template
5227off_t
5228Output_section::add_input_section<64, true>(
6e9ba2ca 5229 Layout* layout,
6fa2a40b 5230 Sized_relobj_file<64, true>* object,
2ea97941 5231 unsigned int shndx,
a2fb1b05 5232 const char* secname,
730cdc88 5233 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5234 unsigned int reloc_shndx,
5235 bool have_sections_script);
193a53d9 5236#endif
a2fb1b05 5237
bbbfea06
CC
5238#ifdef HAVE_TARGET_32_LITTLE
5239template
5240class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5241#endif
5242
5243#ifdef HAVE_TARGET_32_BIG
5244template
5245class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5246#endif
5247
5248#ifdef HAVE_TARGET_64_LITTLE
5249template
5250class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5251#endif
5252
5253#ifdef HAVE_TARGET_64_BIG
5254template
5255class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5256#endif
5257
5258#ifdef HAVE_TARGET_32_LITTLE
5259template
5260class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5261#endif
5262
5263#ifdef HAVE_TARGET_32_BIG
5264template
5265class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5266#endif
5267
5268#ifdef HAVE_TARGET_64_LITTLE
5269template
5270class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5271#endif
5272
5273#ifdef HAVE_TARGET_64_BIG
5274template
5275class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5276#endif
5277
5278#ifdef HAVE_TARGET_32_LITTLE
5279template
5280class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5281#endif
5282
5283#ifdef HAVE_TARGET_32_BIG
5284template
5285class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5286#endif
5287
5288#ifdef HAVE_TARGET_64_LITTLE
5289template
5290class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5291#endif
5292
5293#ifdef HAVE_TARGET_64_BIG
5294template
5295class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5296#endif
5297
5298#ifdef HAVE_TARGET_32_LITTLE
5299template
5300class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5301#endif
5302
5303#ifdef HAVE_TARGET_32_BIG
5304template
5305class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5306#endif
5307
5308#ifdef HAVE_TARGET_64_LITTLE
5309template
5310class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5311#endif
5312
5313#ifdef HAVE_TARGET_64_BIG
5314template
5315class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5316#endif
5317
193a53d9 5318#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5319template
5320class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5321#endif
c06b7b0b 5322
193a53d9 5323#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5324template
5325class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5326#endif
c06b7b0b 5327
193a53d9 5328#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5329template
5330class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5331#endif
c06b7b0b 5332
193a53d9 5333#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5334template
5335class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5336#endif
c06b7b0b 5337
193a53d9 5338#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5339template
5340class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5341#endif
c06b7b0b 5342
193a53d9 5343#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5344template
5345class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5346#endif
c06b7b0b 5347
193a53d9 5348#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5349template
5350class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5351#endif
c06b7b0b 5352
193a53d9 5353#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5354template
5355class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5356#endif
c06b7b0b 5357
193a53d9 5358#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5359template
5360class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5361#endif
c06b7b0b 5362
193a53d9 5363#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5364template
5365class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5366#endif
c06b7b0b 5367
193a53d9 5368#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5369template
5370class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5371#endif
c06b7b0b 5372
193a53d9 5373#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5374template
5375class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5376#endif
c06b7b0b 5377
193a53d9 5378#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5379template
5380class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5381#endif
c06b7b0b 5382
193a53d9 5383#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5384template
5385class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5386#endif
c06b7b0b 5387
193a53d9 5388#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5389template
5390class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5391#endif
c06b7b0b 5392
193a53d9 5393#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5394template
5395class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5396#endif
c06b7b0b 5397
6a74a719
ILT
5398#ifdef HAVE_TARGET_32_LITTLE
5399template
5400class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5401#endif
5402
5403#ifdef HAVE_TARGET_32_BIG
5404template
5405class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5406#endif
5407
5408#ifdef HAVE_TARGET_64_LITTLE
5409template
5410class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5411#endif
5412
5413#ifdef HAVE_TARGET_64_BIG
5414template
5415class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5416#endif
5417
5418#ifdef HAVE_TARGET_32_LITTLE
5419template
5420class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5421#endif
5422
5423#ifdef HAVE_TARGET_32_BIG
5424template
5425class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5426#endif
5427
5428#ifdef HAVE_TARGET_64_LITTLE
5429template
5430class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5431#endif
5432
5433#ifdef HAVE_TARGET_64_BIG
5434template
5435class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5436#endif
5437
5438#ifdef HAVE_TARGET_32_LITTLE
5439template
5440class Output_data_group<32, false>;
5441#endif
5442
5443#ifdef HAVE_TARGET_32_BIG
5444template
5445class Output_data_group<32, true>;
5446#endif
5447
5448#ifdef HAVE_TARGET_64_LITTLE
5449template
5450class Output_data_group<64, false>;
5451#endif
5452
5453#ifdef HAVE_TARGET_64_BIG
5454template
5455class Output_data_group<64, true>;
5456#endif
5457
ead1e424 5458template
dbe717ef 5459class Output_data_got<32, false>;
ead1e424
ILT
5460
5461template
dbe717ef 5462class Output_data_got<32, true>;
ead1e424
ILT
5463
5464template
dbe717ef 5465class Output_data_got<64, false>;
ead1e424
ILT
5466
5467template
dbe717ef 5468class Output_data_got<64, true>;
ead1e424 5469
a2fb1b05 5470} // End namespace gold.
This page took 0.604461 seconds and 4 git commands to generate.