Remove duplicate arch/arm.h include in linux-arm-low.c.
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
b90efa5b 3// Copyright (C) 2006-2015 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
4e9d8586 30#include <sys/stat.h>
75f65a3e 31#include <algorithm>
88597d34
ILT
32
33#ifdef HAVE_SYS_MMAN_H
34#include <sys/mman.h>
35#endif
36
6a89f575 37#include "libiberty.h"
a2fb1b05 38
8ea8cd50 39#include "dwarf.h"
7e1edb90 40#include "parameters.h"
a2fb1b05 41#include "object.h"
ead1e424
ILT
42#include "symtab.h"
43#include "reloc.h"
b8e6aad9 44#include "merge.h"
2a00e4fb 45#include "descriptors.h"
5393d741 46#include "layout.h"
a2fb1b05
ILT
47#include "output.h"
48
88597d34
ILT
49// For systems without mmap support.
50#ifndef HAVE_MMAP
51# define mmap gold_mmap
52# define munmap gold_munmap
53# define mremap gold_mremap
54# ifndef MAP_FAILED
55# define MAP_FAILED (reinterpret_cast<void*>(-1))
56# endif
57# ifndef PROT_READ
58# define PROT_READ 0
59# endif
60# ifndef PROT_WRITE
61# define PROT_WRITE 0
62# endif
63# ifndef MAP_PRIVATE
64# define MAP_PRIVATE 0
65# endif
66# ifndef MAP_ANONYMOUS
67# define MAP_ANONYMOUS 0
68# endif
69# ifndef MAP_SHARED
70# define MAP_SHARED 0
71# endif
72
73# ifndef ENOSYS
74# define ENOSYS EINVAL
75# endif
76
77static void *
78gold_mmap(void *, size_t, int, int, int, off_t)
79{
80 errno = ENOSYS;
81 return MAP_FAILED;
82}
83
84static int
85gold_munmap(void *, size_t)
86{
87 errno = ENOSYS;
88 return -1;
89}
90
91static void *
92gold_mremap(void *, size_t, size_t, int)
93{
94 errno = ENOSYS;
95 return MAP_FAILED;
96}
97
98#endif
99
100#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101# define mremap gold_mremap
102extern "C" void *gold_mremap(void *, size_t, size_t, int);
103#endif
104
c420411f
ILT
105// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106#ifndef MAP_ANONYMOUS
107# define MAP_ANONYMOUS MAP_ANON
108#endif
109
88597d34
ILT
110#ifndef MREMAP_MAYMOVE
111# define MREMAP_MAYMOVE 1
112#endif
113
d0a9ace3
ILT
114// Mingw does not have S_ISLNK.
115#ifndef S_ISLNK
116# define S_ISLNK(mode) 0
117#endif
118
a2fb1b05
ILT
119namespace gold
120{
121
7c0640fa
CC
122// A wrapper around posix_fallocate. If we don't have posix_fallocate,
123// or the --no-posix-fallocate option is set, we try the fallocate
124// system call directly. If that fails, we use ftruncate to set
125// the file size and hope that there is enough disk space.
126
127static int
128gold_fallocate(int o, off_t offset, off_t len)
129{
130#ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133#endif // defined(HAVE_POSIX_FALLOCATE)
134#ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137#endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141}
142
a3ad94ed
ILT
143// Output_data variables.
144
27bc2bce 145bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 146
a2fb1b05
ILT
147// Output_data methods.
148
149Output_data::~Output_data()
150{
151}
152
730cdc88
ILT
153// Return the default alignment for the target size.
154
155uint64_t
156Output_data::default_alignment()
157{
8851ecca
ILT
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
730cdc88
ILT
160}
161
75f65a3e
ILT
162// Return the default alignment for a size--32 or 64.
163
164uint64_t
730cdc88 165Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
166{
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
a3ad94ed 172 gold_unreachable();
75f65a3e
ILT
173}
174
75f65a3e
ILT
175// Output_section_header methods. This currently assumes that the
176// segment and section lists are complete at construction time.
177
178Output_section_headers::Output_section_headers(
16649710
ILT
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
6a74a719 181 const Layout::Section_list* section_list,
16649710 182 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
9025d29d 185 : layout_(layout),
75f65a3e 186 segment_list_(segment_list),
6a74a719 187 section_list_(section_list),
a3ad94ed 188 unattached_section_list_(unattached_section_list),
d491d34e
ILT
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
191{
192}
193
194// Compute the current data size.
195
196off_t
197Output_section_headers::do_size() const
75f65a3e 198{
61ba1cf9
ILT
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
8851ecca 201 if (!parameters->options().relocatable())
6a74a719 202 {
20e6d0d6
DK
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
6a74a719
ILT
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
20e6d0d6
DK
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
6a74a719
ILT
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
20e6d0d6 219 count += this->unattached_section_list_->size();
75f65a3e 220
8851ecca 221 const int size = parameters->target().get_size();
75f65a3e
ILT
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
a3ad94ed 228 gold_unreachable();
75f65a3e 229
20e6d0d6 230 return count * shdr_size;
75f65a3e
ILT
231}
232
61ba1cf9
ILT
233// Write out the section headers.
234
75f65a3e 235void
61ba1cf9 236Output_section_headers::do_write(Output_file* of)
a2fb1b05 237{
8851ecca 238 switch (parameters->size_and_endianness())
61ba1cf9 239 {
9025d29d 240#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
9025d29d 244#endif
8851ecca
ILT
245#ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
9025d29d 249#endif
9025d29d 250#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
9025d29d 254#endif
8851ecca
ILT
255#ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259#endif
260 default:
261 gold_unreachable();
61ba1cf9 262 }
61ba1cf9
ILT
263}
264
265template<int size, bool big_endian>
266void
267Output_section_headers::do_sized_write(Output_file* of)
268{
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
d491d34e
ILT
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
5696ab0b
ILT
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
61ba1cf9
ILT
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
6a74a719 305 unsigned int shndx = 1;
8851ecca 306 if (!parameters->options().relocatable())
6a74a719
ILT
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
a3ad94ed 337 for (Layout::Section_list::const_iterator p =
16649710
ILT
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
61ba1cf9
ILT
340 ++p)
341 {
6a74a719
ILT
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 345 && parameters->options().relocatable())
6a74a719 346 continue;
a3ad94ed 347 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 350 v += shdr_size;
ead1e424 351 ++shndx;
61ba1cf9
ILT
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
355}
356
54dc6425
ILT
357// Output_segment_header methods.
358
61ba1cf9 359Output_segment_headers::Output_segment_headers(
61ba1cf9 360 const Layout::Segment_list& segment_list)
9025d29d 361 : segment_list_(segment_list)
61ba1cf9 362{
cdc29364 363 this->set_current_data_size_for_child(this->do_size());
61ba1cf9
ILT
364}
365
54dc6425 366void
61ba1cf9 367Output_segment_headers::do_write(Output_file* of)
75f65a3e 368{
8851ecca 369 switch (parameters->size_and_endianness())
61ba1cf9 370 {
9025d29d 371#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
9025d29d 375#endif
8851ecca
ILT
376#ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
9025d29d 380#endif
9025d29d 381#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
9025d29d 385#endif
8851ecca
ILT
386#ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390#endif
391 default:
392 gold_unreachable();
61ba1cf9 393 }
61ba1cf9
ILT
394}
395
396template<int size, bool big_endian>
397void
398Output_segment_headers::do_sized_write(Output_file* of)
399{
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 402 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
a445fddf
ILT
415 gold_assert(v - view == all_phdrs_size);
416
61ba1cf9 417 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
418}
419
20e6d0d6
DK
420off_t
421Output_segment_headers::do_size() const
422{
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433}
434
75f65a3e
ILT
435// Output_file_header methods.
436
cc84c10b 437Output_file_header::Output_file_header(Target* target,
75f65a3e 438 const Symbol_table* symtab,
a10ae760 439 const Output_segment_headers* osh)
9025d29d 440 : target_(target),
75f65a3e 441 symtab_(symtab),
61ba1cf9 442 segment_header_(osh),
75f65a3e 443 section_header_(NULL),
a10ae760 444 shstrtab_(NULL)
75f65a3e 445{
20e6d0d6 446 this->set_data_size(this->do_size());
75f65a3e
ILT
447}
448
449// Set the section table information for a file header.
450
451void
452Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454{
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457}
458
459// Write out the file header.
460
461void
61ba1cf9 462Output_file_header::do_write(Output_file* of)
54dc6425 463{
27bc2bce
ILT
464 gold_assert(this->offset() == 0);
465
8851ecca 466 switch (parameters->size_and_endianness())
61ba1cf9 467 {
9025d29d 468#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
9025d29d 472#endif
8851ecca
ILT
473#ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
9025d29d 477#endif
9025d29d 478#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
9025d29d 482#endif
8851ecca
ILT
483#ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487#endif
488 default:
489 gold_unreachable();
61ba1cf9 490 }
61ba1cf9
ILT
491}
492
cc643b88 493// Write out the file header with appropriate size and endianness.
61ba1cf9
ILT
494
495template<int size, bool big_endian>
496void
497Output_file_header::do_sized_write(Output_file* of)
498{
a3ad94ed 499 gold_assert(this->offset() == 0);
61ba1cf9
ILT
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
a3ad94ed 516 gold_unreachable();
61ba1cf9
ILT
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
8851ecca 524 if (parameters->options().relocatable())
61ba1cf9 525 e_type = elfcpp::ET_REL;
374ad285 526 else if (parameters->options().output_is_position_independent())
436ca963 527 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
d391083d 535 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 536
6a74a719
ILT
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
61ba1cf9 542 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 543 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
6a74a719
ILT
559 }
560
61ba1cf9 561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 576
36959681
ILT
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
cc84c10b 579 this->target_->adjust_elf_header(view, ehdr_size);
36959681 580
61ba1cf9 581 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
582}
583
a10ae760 584// Return the value to use for the entry address.
d391083d
ILT
585
586template<int size>
587typename elfcpp::Elf_types<size>::Elf_Addr
588Output_file_header::entry()
589{
a10ae760 590 const bool should_issue_warning = (parameters->options().entry() != NULL
8851ecca 591 && !parameters->options().relocatable()
eb426534 592 && !parameters->options().shared());
a10ae760 593 const char* entry = parameters->entry();
2ea97941 594 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
2ea97941 602 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
2ea97941 610 v = strtoull(entry, &endptr, 0);
d391083d
ILT
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
2ea97941 614 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
615 v = 0;
616 }
617 }
618
619 return v;
620}
621
20e6d0d6
DK
622// Compute the current data size.
623
624off_t
625Output_file_header::do_size() const
626{
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634}
635
dbe717ef
ILT
636// Output_data_const methods.
637
638void
a3ad94ed 639Output_data_const::do_write(Output_file* of)
dbe717ef 640{
a3ad94ed
ILT
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642}
643
644// Output_data_const_buffer methods.
645
646void
647Output_data_const_buffer::do_write(Output_file* of)
648{
649 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
650}
651
652// Output_section_data methods.
653
16649710
ILT
654// Record the output section, and set the entry size and such.
655
656void
657Output_section_data::set_output_section(Output_section* os)
658{
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662}
663
664// Return the section index of the output section.
665
dbe717ef
ILT
666unsigned int
667Output_section_data::do_out_shndx() const
668{
a3ad94ed 669 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
670 return this->output_section_->out_shndx();
671}
672
759b1a24
ILT
673// Set the alignment, which means we may need to update the alignment
674// of the output section.
675
676void
2ea97941 677Output_section_data::set_addralign(uint64_t addralign)
759b1a24 678{
2ea97941 679 this->addralign_ = addralign;
759b1a24 680 if (this->output_section_ != NULL
2ea97941
ILT
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
759b1a24
ILT
683}
684
a3ad94ed
ILT
685// Output_data_strtab methods.
686
27bc2bce 687// Set the final data size.
a3ad94ed
ILT
688
689void
27bc2bce 690Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
691{
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694}
695
696// Write out a string table.
697
698void
699Output_data_strtab::do_write(Output_file* of)
700{
701 this->strtab_->write(of, this->offset());
702}
703
c06b7b0b
ILT
704// Output_reloc methods.
705
7bf1f802
ILT
706// A reloc against a global symbol.
707
708template<bool dynamic, int size, bool big_endian>
709Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
e8c846c3 713 Address address,
0da6fa6c 714 bool is_relative,
13cf9988
DM
715 bool is_symbolless,
716 bool use_plt_offset)
7bf1f802 717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 718 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
7bf1f802 720{
dceae3c1
ILT
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
7bf1f802
ILT
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
dceae3c1
ILT
725 if (dynamic)
726 this->set_needs_dynsym_index();
7bf1f802
ILT
727}
728
729template<bool dynamic, int size, bool big_endian>
730Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
ef9beddf 733 Sized_relobj<size, big_endian>* relobj,
7bf1f802 734 unsigned int shndx,
e8c846c3 735 Address address,
0da6fa6c 736 bool is_relative,
13cf9988
DM
737 bool is_symbolless,
738 bool use_plt_offset)
7bf1f802 739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c 740 is_relative_(is_relative), is_symbolless_(is_symbolless),
13cf9988 741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
7bf1f802
ILT
742{
743 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
7bf1f802
ILT
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
dceae3c1
ILT
748 if (dynamic)
749 this->set_needs_dynsym_index();
7bf1f802
ILT
750}
751
752// A reloc against a local symbol.
753
754template<bool dynamic, int size, bool big_endian>
755Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
e8c846c3 760 Address address,
2ea97941 761 bool is_relative,
0da6fa6c 762 bool is_symbolless,
397b129b
CC
763 bool is_section_symbol,
764 bool use_plt_offset)
7bf1f802 765 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 766 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
7bf1f802
ILT
769{
770 gold_assert(local_sym_index != GSYM_CODE
eb426534 771 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
7bf1f802
ILT
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
dceae3c1
ILT
776 if (dynamic)
777 this->set_needs_dynsym_index();
7bf1f802
ILT
778}
779
780template<bool dynamic, int size, bool big_endian>
781Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
e8c846c3 786 Address address,
2ea97941 787 bool is_relative,
0da6fa6c 788 bool is_symbolless,
397b129b
CC
789 bool is_section_symbol,
790 bool use_plt_offset)
7bf1f802 791 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c 792 is_relative_(is_relative), is_symbolless_(is_symbolless),
397b129b
CC
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
7bf1f802
ILT
795{
796 gold_assert(local_sym_index != GSYM_CODE
eb426534 797 && local_sym_index != INVALID_CODE);
7bf1f802 798 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
7bf1f802
ILT
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
dceae3c1
ILT
803 if (dynamic)
804 this->set_needs_dynsym_index();
7bf1f802
ILT
805}
806
807// A reloc against the STT_SECTION symbol of an output section.
808
809template<bool dynamic, int size, bool big_endian>
810Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
703d02da
AM
814 Address address,
815 bool is_relative)
7bf1f802 816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 817 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
7bf1f802 819{
dceae3c1
ILT
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
7bf1f802
ILT
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
dceae3c1
ILT
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
7bf1f802
ILT
828}
829
830template<bool dynamic, int size, bool big_endian>
831Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
ef9beddf 834 Sized_relobj<size, big_endian>* relobj,
7bf1f802 835 unsigned int shndx,
703d02da
AM
836 Address address,
837 bool is_relative)
7bf1f802 838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
703d02da 839 is_relative_(is_relative), is_symbolless_(is_relative),
397b129b 840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
7bf1f802
ILT
841{
842 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
7bf1f802
ILT
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
dceae3c1
ILT
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851}
852
ec661b9d 853// An absolute or relative relocation.
e291e7b9
ILT
854
855template<bool dynamic, int size, bool big_endian>
856Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
ec661b9d
AM
859 Address address,
860 bool is_relative)
e291e7b9 861 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 862 is_relative_(is_relative), is_symbolless_(false),
397b129b 863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
864{
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869}
870
871template<bool dynamic, int size, bool big_endian>
872Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
ec661b9d
AM
876 Address address,
877 bool is_relative)
e291e7b9 878 : address_(address), local_sym_index_(0), type_(type),
ec661b9d 879 is_relative_(is_relative), is_symbolless_(false),
397b129b 880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
881{
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887}
888
889// A target specific relocation.
890
891template<bool dynamic, int size, bool big_endian>
892Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 898 is_relative_(false), is_symbolless_(false),
397b129b 899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
900{
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905}
906
907template<bool dynamic, int size, bool big_endian>
908Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c 915 is_relative_(false), is_symbolless_(false),
397b129b 916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
e291e7b9
ILT
917{
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923}
924
dceae3c1
ILT
925// Record that we need a dynamic symbol index for this relocation.
926
927template<bool dynamic, int size, bool big_endian>
928void
929Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930set_needs_dynsym_index()
931{
0da6fa6c 932 if (this->is_symbolless_)
dceae3c1
ILT
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
e291e7b9
ILT
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
dceae3c1
ILT
951 case 0:
952 break;
953
954 default:
955 {
eb426534 956 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
eb426534
RM
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
964 }
965 break;
966 }
7bf1f802
ILT
967}
968
c06b7b0b
ILT
969// Get the symbol index of a relocation.
970
971template<bool dynamic, int size, bool big_endian>
972unsigned int
973Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975{
976 unsigned int index;
0da6fa6c
DM
977 if (this->is_symbolless_)
978 return 0;
c06b7b0b
ILT
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
a3ad94ed 982 gold_unreachable();
c06b7b0b
ILT
983
984 case GSYM_CODE:
5a6f7e2d 985 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
986 index = 0;
987 else if (dynamic)
5a6f7e2d 988 index = this->u1_.gsym->dynsym_index();
c06b7b0b 989 else
5a6f7e2d 990 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
5a6f7e2d 995 index = this->u1_.os->dynsym_index();
c06b7b0b 996 else
5a6f7e2d 997 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
998 break;
999
e291e7b9
ILT
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
436ca963
ILT
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
c06b7b0b 1010 default:
dceae3c1 1011 {
eb426534 1012 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
eb426534
RM
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
dceae3c1 1032 }
c06b7b0b
ILT
1033 break;
1034 }
a3ad94ed 1035 gold_assert(index != -1U);
c06b7b0b
ILT
1036 return index;
1037}
1038
624f8810
ILT
1039// For a local section symbol, get the address of the offset ADDEND
1040// within the input section.
dceae3c1
ILT
1041
1042template<bool dynamic, int size, bool big_endian>
ef9beddf 1043typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 1044Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 1045 local_section_offset(Addend addend) const
dceae3c1 1046{
624f8810 1047 gold_assert(this->local_sym_index_ != GSYM_CODE
eb426534 1048 && this->local_sym_index_ != SECTION_CODE
e291e7b9 1049 && this->local_sym_index_ != TARGET_CODE
eb426534 1050 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1051 && this->local_sym_index_ != 0
eb426534 1052 && this->is_section_symbol_);
dceae3c1 1053 const unsigned int lsi = this->local_sym_index_;
ef9beddf 1054 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 1055 gold_assert(os != NULL);
ef9beddf 1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 1057 if (offset != invalid_address)
624f8810
ILT
1058 return offset + addend;
1059 // This is a merge section.
6fa2a40b
CC
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
eff45813 1064 gold_assert(offset != invalid_address);
dceae3c1
ILT
1065 return offset;
1066}
1067
d98bc257 1068// Get the output address of a relocation.
c06b7b0b
ILT
1069
1070template<bool dynamic, int size, bool big_endian>
a984ee1d 1071typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 1072Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 1073{
a3ad94ed 1074 Address address = this->address_;
5a6f7e2d
ILT
1075 if (this->shndx_ != INVALID_CODE)
1076 {
ef9beddf 1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 1078 gold_assert(os != NULL);
ef9beddf 1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 1080 if (off != invalid_address)
730cdc88
ILT
1081 address += os->address() + off;
1082 else
1083 {
6fa2a40b
CC
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
eff45813 1088 gold_assert(address != invalid_address);
730cdc88 1089 }
5a6f7e2d
ILT
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
d98bc257
ILT
1093 return address;
1094}
1095
1096// Write out the offset and info fields of a Rel or Rela relocation
1097// entry.
1098
1099template<bool dynamic, int size, bool big_endian>
1100template<typename Write_rel>
1101void
1102Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104{
1105 wr->put_r_offset(this->get_address());
0da6fa6c 1106 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1108}
1109
1110// Write out a Rel relocation.
1111
1112template<bool dynamic, int size, bool big_endian>
1113void
1114Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116{
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119}
1120
e8c846c3
ILT
1121// Get the value of the symbol referred to by a Rel relocation.
1122
1123template<bool dynamic, int size, bool big_endian>
1124typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1125Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1126 Addend addend) const
e8c846c3
ILT
1127{
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
13cf9988 1132 if (this->use_plt_offset_ && sym->has_plt_offset())
19fec8c1 1133 return parameters->target().plt_address_for_global(sym);
13cf9988
DM
1134 else
1135 return sym->value() + addend;
e8c846c3 1136 }
703d02da
AM
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
eb426534 1143 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1144 && this->local_sym_index_ != 0
eb426534 1145 && !this->is_section_symbol_);
d1f003c6 1146 const unsigned int lsi = this->local_sym_index_;
6fa2a40b
CC
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
397b129b 1150 if (this->use_plt_offset_)
19fec8c1 1151 return parameters->target().plt_address_for_local(relobj, lsi);
6fa2a40b
CC
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
e8c846c3
ILT
1154}
1155
d98bc257
ILT
1156// Reloc comparison. This function sorts the dynamic relocs for the
1157// benefit of the dynamic linker. First we sort all relative relocs
1158// to the front. Among relative relocs, we sort by output address.
1159// Among non-relative relocs, we sort by symbol index, then by output
1160// address.
1161
1162template<bool dynamic, int size, bool big_endian>
1163int
1164Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167{
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205}
1206
c06b7b0b
ILT
1207// Write out a Rela relocation.
1208
1209template<bool dynamic, int size, bool big_endian>
1210void
1211Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213{
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
e8c846c3 1216 Addend addend = this->addend_;
e291e7b9
ILT
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
0da6fa6c 1220 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
624f8810 1223 addend = this->rel_.local_section_offset(addend);
e8c846c3 1224 orel.put_r_addend(addend);
c06b7b0b
ILT
1225}
1226
1227// Output_data_reloc_base methods.
1228
16649710
ILT
1229// Adjust the output section.
1230
1231template<int sh_type, bool dynamic, int size, bool big_endian>
1232void
1233Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235{
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
7223e9ca
ILT
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
16649710 1248 os->set_should_link_to_symtab();
7223e9ca
ILT
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
16649710
ILT
1253}
1254
c06b7b0b
ILT
1255// Write out relocation data.
1256
1257template<int sh_type, bool dynamic, int size, bool big_endian>
1258void
1259Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261{
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
3a44184e 1266 if (this->sort_relocs())
d98bc257
ILT
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
c06b7b0b
ILT
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
a3ad94ed 1282 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288}
1289
6a74a719
ILT
1290// Class Output_relocatable_relocs.
1291
1292template<int sh_type, int size, bool big_endian>
1293void
1294Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295{
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298}
1299
1300// class Output_data_group.
1301
1302template<int size, bool big_endian>
1303Output_data_group<size, big_endian>::Output_data_group(
6fa2a40b 1304 Sized_relobj_file<size, big_endian>* relobj,
6a74a719 1305 section_size_type entry_count,
8825ac63
ILT
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1308 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1309 relobj_(relobj),
1310 flags_(flags)
6a74a719 1311{
8825ac63 1312 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1313}
1314
1315// Write out the section group, which means translating the section
1316// indexes to apply to the output file.
1317
1318template<int size, bool big_endian>
1319void
1320Output_data_group<size, big_endian>::do_write(Output_file* of)
1321{
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
6a74a719
ILT
1334 ++p, ++contents)
1335 {
ef9beddf 1336 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
8825ac63 1357 this->input_shndxes_.clear();
6a74a719
ILT
1358}
1359
dbe717ef 1360// Output_data_got::Got_entry methods.
ead1e424
ILT
1361
1362// Write out the entry.
1363
d77a0555 1364template<int got_size, bool big_endian>
ead1e424 1365void
d77a0555 1366Output_data_got<got_size, big_endian>::Got_entry::write(
bd73a62d
AM
1367 unsigned int got_indx,
1368 unsigned char* pov) const
ead1e424
ILT
1369{
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
e8c846c3
ILT
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
ead1e424 1379 Symbol* gsym = this->u_.gsym;
bd73a62d 1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
19fec8c1 1381 val = parameters->target().plt_address_for_global(gsym);
7223e9ca
ILT
1382 else
1383 {
d77a0555
ILT
1384 switch (parameters->size_and_endianness())
1385 {
1386#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398#endif
1399#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408#endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
bd73a62d
AM
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
7223e9ca 1416 }
ead1e424
ILT
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
4829d394
CC
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
eb426534 1427 return;
4829d394
CC
1428 val = this->u_.constant;
1429 break;
1430
ead1e424 1431 default:
d1f003c6 1432 {
d77a0555 1433 const Relobj* object = this->u_.object;
eb426534 1434 const unsigned int lsi = this->local_sym_index_;
d77a0555 1435 bool is_tls = object->local_is_tls(lsi);
bd73a62d 1436 if (this->use_plt_or_tls_offset_ && !is_tls)
19fec8c1 1437 val = parameters->target().plt_address_for_local(object, lsi);
bd73a62d
AM
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
d1f003c6 1446 }
e727fa71 1447 break;
ead1e424
ILT
1448 }
1449
d77a0555 1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
ead1e424
ILT
1451}
1452
dbe717ef 1453// Output_data_got methods.
ead1e424 1454
dbe717ef
ILT
1455// Add an entry for a global symbol to the GOT. This returns true if
1456// this is a new GOT entry, false if the symbol already had a GOT
1457// entry.
1458
d77a0555 1459template<int got_size, bool big_endian>
dbe717ef 1460bool
d77a0555 1461Output_data_got<got_size, big_endian>::add_global(
0a65a3a7
CC
1462 Symbol* gsym,
1463 unsigned int got_type)
ead1e424 1464{
0a65a3a7 1465 if (gsym->has_got_offset(got_type))
dbe717ef 1466 return false;
ead1e424 1467
4829d394
CC
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
7223e9ca
ILT
1470 return true;
1471}
1472
1473// Like add_global, but use the PLT offset.
1474
d77a0555 1475template<int got_size, bool big_endian>
7223e9ca 1476bool
d77a0555
ILT
1477Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
7223e9ca
ILT
1479{
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
4829d394
CC
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
dbe717ef
ILT
1485 return true;
1486}
ead1e424 1487
7bf1f802
ILT
1488// Add an entry for a global symbol to the GOT, and add a dynamic
1489// relocation of type R_TYPE for the GOT entry.
7223e9ca 1490
d77a0555 1491template<int got_size, bool big_endian>
7bf1f802 1492void
d77a0555 1493Output_data_got<got_size, big_endian>::add_global_with_rel(
7bf1f802 1494 Symbol* gsym,
0a65a3a7 1495 unsigned int got_type,
83896202 1496 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1497 unsigned int r_type)
1498{
0a65a3a7 1499 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1500 return;
1501
4829d394 1502 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1503 gsym->set_got_offset(got_type, got_offset);
83896202 1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1505}
1506
0a65a3a7
CC
1507// Add a pair of entries for a global symbol to the GOT, and add
1508// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509// If R_TYPE_2 == 0, add the second entry with no relocation.
d77a0555 1510template<int got_size, bool big_endian>
7bf1f802 1511void
d77a0555 1512Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
0a65a3a7
CC
1513 Symbol* gsym,
1514 unsigned int got_type,
83896202 1515 Output_data_reloc_generic* rel_dyn,
0a65a3a7
CC
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
7bf1f802 1518{
0a65a3a7 1519 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1520 return;
1521
4829d394 1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
2ea97941 1523 gsym->set_got_offset(got_type, got_offset);
83896202 1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
0a65a3a7 1525
0a65a3a7 1526 if (r_type_2 != 0)
83896202 1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
d77a0555 1528 got_offset + got_size / 8, 0);
7bf1f802
ILT
1529}
1530
0a65a3a7
CC
1531// Add an entry for a local symbol to the GOT. This returns true if
1532// this is a new GOT entry, false if the symbol already has a GOT
1533// entry.
07f397ab 1534
d77a0555 1535template<int got_size, bool big_endian>
07f397ab 1536bool
d77a0555 1537Output_data_got<got_size, big_endian>::add_local(
83896202 1538 Relobj* object,
0a65a3a7
CC
1539 unsigned int symndx,
1540 unsigned int got_type)
07f397ab 1541{
0a65a3a7 1542 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1543 return false;
1544
4829d394
CC
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
7223e9ca
ILT
1548 return true;
1549}
1550
1551// Like add_local, but use the PLT offset.
1552
d77a0555 1553template<int got_size, bool big_endian>
7223e9ca 1554bool
d77a0555 1555Output_data_got<got_size, big_endian>::add_local_plt(
83896202 1556 Relobj* object,
7223e9ca
ILT
1557 unsigned int symndx,
1558 unsigned int got_type)
1559{
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
4829d394
CC
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
07f397ab
ILT
1566 return true;
1567}
1568
0a65a3a7
CC
1569// Add an entry for a local symbol to the GOT, and add a dynamic
1570// relocation of type R_TYPE for the GOT entry.
7223e9ca 1571
d77a0555 1572template<int got_size, bool big_endian>
7bf1f802 1573void
d77a0555 1574Output_data_got<got_size, big_endian>::add_local_with_rel(
83896202 1575 Relobj* object,
0a65a3a7
CC
1576 unsigned int symndx,
1577 unsigned int got_type,
83896202 1578 Output_data_reloc_generic* rel_dyn,
7bf1f802
ILT
1579 unsigned int r_type)
1580{
0a65a3a7 1581 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1582 return;
1583
4829d394 1584 unsigned int got_offset = this->add_got_entry(Got_entry());
2ea97941 1585 object->set_local_got_offset(symndx, got_type, got_offset);
83896202 1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1587}
1588
0a65a3a7 1589// Add a pair of entries for a local symbol to the GOT, and add
bd73a62d
AM
1590// a dynamic relocation of type R_TYPE using the section symbol of
1591// the output section to which input section SHNDX maps, on the first.
1592// The first got entry will have a value of zero, the second the
1593// value of the local symbol.
d77a0555 1594template<int got_size, bool big_endian>
7bf1f802 1595void
d77a0555 1596Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
83896202 1597 Relobj* object,
7bf1f802
ILT
1598 unsigned int symndx,
1599 unsigned int shndx,
0a65a3a7 1600 unsigned int got_type,
83896202 1601 Output_data_reloc_generic* rel_dyn,
bd73a62d 1602 unsigned int r_type)
7bf1f802 1603{
0a65a3a7 1604 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1605 return;
1606
4829d394
CC
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
2ea97941 1610 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1611 Output_section* os = object->output_section(shndx);
bd73a62d
AM
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613}
7bf1f802 1614
bd73a62d
AM
1615// Add a pair of entries for a local symbol to the GOT, and add
1616// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617// The first got entry will have a value of zero, the second the
1618// value of the local symbol offset by Target::tls_offset_for_local.
d77a0555 1619template<int got_size, bool big_endian>
bd73a62d 1620void
d77a0555 1621Output_data_got<got_size, big_endian>::add_local_tls_pair(
bd73a62d
AM
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627{
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
4829d394
CC
1636}
1637
1638// Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
d77a0555 1640template<int got_size, bool big_endian>
4829d394 1641void
d77a0555 1642Output_data_got<got_size, big_endian>::reserve_local(
6fa2a40b 1643 unsigned int i,
83896202 1644 Relobj* object,
6fa2a40b
CC
1645 unsigned int sym_index,
1646 unsigned int got_type)
4829d394 1647{
dd74ae06 1648 this->do_reserve_slot(i);
6fa2a40b 1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
4829d394 1650}
7bf1f802 1651
4829d394
CC
1652// Reserve a slot in the GOT for a global symbol.
1653
d77a0555 1654template<int got_size, bool big_endian>
4829d394 1655void
d77a0555 1656Output_data_got<got_size, big_endian>::reserve_global(
4829d394
CC
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660{
dd74ae06 1661 this->do_reserve_slot(i);
4829d394 1662 gsym->set_got_offset(got_type, this->got_offset(i));
7bf1f802
ILT
1663}
1664
ead1e424
ILT
1665// Write out the GOT.
1666
d77a0555 1667template<int got_size, bool big_endian>
ead1e424 1668void
d77a0555 1669Output_data_got<got_size, big_endian>::do_write(Output_file* of)
ead1e424 1670{
d77a0555 1671 const int add = got_size / 8;
ead1e424
ILT
1672
1673 const off_t off = this->offset();
c06b7b0b 1674 const off_t oview_size = this->data_size();
ead1e424
ILT
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
bd73a62d 1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
ead1e424 1679 {
bd73a62d 1680 this->entries_[i].write(i, pov);
ead1e424
ILT
1681 pov += add;
1682 }
1683
a3ad94ed 1684 gold_assert(pov - oview == oview_size);
c06b7b0b 1685
ead1e424
ILT
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690}
1691
4829d394
CC
1692// Create a new GOT entry and return its offset.
1693
d77a0555 1694template<int got_size, bool big_endian>
4829d394 1695unsigned int
d77a0555 1696Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
4829d394
CC
1697{
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
d77a0555
ILT
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
4829d394 1709 if (got_offset == -1)
e6455dfb
CC
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
d77a0555 1712 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717}
1718
1719// Create a pair of new GOT entries and return the offset of the first.
1720
d77a0555 1721template<int got_size, bool big_endian>
4829d394 1722unsigned int
d77a0555
ILT
1723Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
4829d394
CC
1726{
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
d77a0555
ILT
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
4829d394 1741 if (got_offset == -1)
e6455dfb
CC
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
d77a0555 1744 unsigned int got_index = got_offset / (got_size / 8);
4829d394
CC
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750}
1751
cf43a2fe
AM
1752// Replace GOT entry I with a new value.
1753
d77a0555 1754template<int got_size, bool big_endian>
cf43a2fe 1755void
d77a0555 1756Output_data_got<got_size, big_endian>::replace_got_entry(
cf43a2fe
AM
1757 unsigned int i,
1758 Got_entry got_entry)
1759{
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762}
1763
a3ad94ed
ILT
1764// Output_data_dynamic::Dynamic_entry methods.
1765
1766// Write out the entry.
1767
1768template<int size, bool big_endian>
1769void
1770Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
7d1a9ebb 1772 const Stringpool* pool) const
a3ad94ed
ILT
1773{
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1775 switch (this->offset_)
a3ad94ed
ILT
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
a3ad94ed 1781 case DYNAMIC_SECTION_SIZE:
16649710 1782 val = this->u_.od->data_size();
612a8d3d
DM
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
a3ad94ed
ILT
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
16649710
ILT
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
918fc1f8
CC
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801 break;
1802
a3ad94ed 1803 default:
c2b45e22
CC
1804 val = this->u_.od->address() + this->offset_;
1805 break;
a3ad94ed
ILT
1806 }
1807
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1810 dw.put_d_val(val);
1811}
1812
1813// Output_data_dynamic methods.
1814
16649710
ILT
1815// Adjust the output section to set the entry size.
1816
1817void
1818Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819{
8851ecca 1820 if (parameters->target().get_size() == 32)
16649710 1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1822 else if (parameters->target().get_size() == 64)
16649710
ILT
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824 else
1825 gold_unreachable();
1826}
1827
a3ad94ed
ILT
1828// Set the final data size.
1829
1830void
27bc2bce 1831Output_data_dynamic::set_final_data_size()
a3ad94ed 1832{
20e6d0d6
DK
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836 {
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1841 }
a3ad94ed
ILT
1842
1843 int dyn_size;
8851ecca 1844 if (parameters->target().get_size() == 32)
a3ad94ed 1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1846 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848 else
1849 gold_unreachable();
1850 this->set_data_size(this->entries_.size() * dyn_size);
1851}
1852
1853// Write out the dynamic entries.
1854
1855void
1856Output_data_dynamic::do_write(Output_file* of)
1857{
8851ecca 1858 switch (parameters->size_and_endianness())
a3ad94ed 1859 {
9025d29d 1860#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1863 break;
9025d29d 1864#endif
8851ecca
ILT
1865#ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1868 break;
9025d29d 1869#endif
9025d29d 1870#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1873 break;
9025d29d 1874#endif
8851ecca
ILT
1875#ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1878 break;
1879#endif
1880 default:
1881 gold_unreachable();
a3ad94ed 1882 }
a3ad94ed
ILT
1883}
1884
1885template<int size, bool big_endian>
1886void
1887Output_data_dynamic::sized_write(Output_file* of)
1888{
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
2ea97941 1891 const off_t offset = this->offset();
a3ad94ed 1892 const off_t oview_size = this->data_size();
2ea97941 1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1894
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1898 ++p)
1899 {
7d1a9ebb 1900 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1901 pov += dyn_size;
1902 }
1903
1904 gold_assert(pov - oview == oview_size);
1905
2ea97941 1906 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1907
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1910}
1911
d491d34e
ILT
1912// Class Output_symtab_xindex.
1913
1914void
1915Output_symtab_xindex::do_write(Output_file* of)
1916{
2ea97941 1917 const off_t offset = this->offset();
d491d34e 1918 const off_t oview_size = this->data_size();
2ea97941 1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1920
1921 memset(oview, 0, oview_size);
1922
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1925 else
1926 this->endian_do_write<false>(oview);
1927
2ea97941 1928 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1929
1930 // We no longer need the data.
1931 this->entries_.clear();
1932}
1933
1934template<bool big_endian>
1935void
1936Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937{
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1940 ++p)
20e6d0d6
DK
1941 {
1942 unsigned int symndx = p->first;
50ed5eb1 1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
20e6d0d6
DK
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 }
d491d34e
ILT
1946}
1947
8ea8cd50
CC
1948// Output_fill_debug_info methods.
1949
1950// Return the minimum size needed for a dummy compilation unit header.
1951
1952size_t
1953Output_fill_debug_info::do_minimum_hole_size() const
1954{
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956 // address_size.
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1960 return len + 8 + 4;
1961 return len;
1962}
1963
1964// Write a dummy compilation unit header to fill a hole in the
1965// .debug_info or .debug_types section.
1966
1967void
1968Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969{
66570254
CC
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
1972
1973 gold_assert(len >= this->do_minimum_hole_size());
1974
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1977
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1979 // address_size.
1980 if (this->is_big_endian())
1981 {
24c6c55a
DM
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
8ea8cd50
CC
1985 }
1986 else
1987 {
24c6c55a
DM
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
8ea8cd50
CC
1991 }
1992 pov += 4 + 2 + 4;
1993 *pov++ = 4;
1994
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1997
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2003
2004 of->write_output_view(off, len, oview);
2005}
2006
2007// Output_fill_debug_line methods.
2008
2009// Return the minimum size needed for a dummy line number program header.
2010
2011size_t
2012Output_fill_debug_line::do_minimum_hole_size() const
2013{
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2018 return len;
2019}
2020
2021// Write a dummy line number program header to fill a hole in the
2022// .debug_line section.
2023
2024void
2025Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026{
66570254
CC
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
8ea8cd50
CC
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2041 {
24c6c55a
DM
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2045 }
2046 else
2047 {
24c6c55a
DM
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
8ea8cd50
CC
2051 }
2052 pov += 4 + 2 + 4;
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2072
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081 of->write_output_view(off, len, oview);
2082}
2083
ead1e424
ILT
2084// Output_section::Input_section methods.
2085
cdc29364
CC
2086// Return the current data size. For an input section we store the size here.
2087// For an Output_section_data, we have to ask it for the size.
2088
2089off_t
2090Output_section::Input_section::current_data_size() const
2091{
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2094 else
2095 {
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2098 }
2099}
2100
ead1e424
ILT
2101// Return the data size. For an input section we store the size here.
2102// For an Output_section_data, we have to ask it for the size.
2103
2104off_t
2105Output_section::Input_section::data_size() const
2106{
2107 if (this->is_input_section())
b8e6aad9 2108 return this->u1_.data_size;
ead1e424 2109 else
b8e6aad9 2110 return this->u2_.posd->data_size();
ead1e424
ILT
2111}
2112
0439c796
DK
2113// Return the object for an input section.
2114
2115Relobj*
2116Output_section::Input_section::relobj() const
2117{
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2127 else
2128 gold_unreachable();
2129}
2130
2131// Return the input section index for an input section.
2132
2133unsigned int
2134Output_section::Input_section::shndx() const
2135{
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2139 {
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2142 }
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2145 else
2146 gold_unreachable();
2147}
2148
ead1e424
ILT
2149// Set the address and file offset.
2150
2151void
96803768
ILT
2152Output_section::Input_section::set_address_and_file_offset(
2153 uint64_t address,
2154 off_t file_offset,
2155 off_t section_file_offset)
ead1e424
ILT
2156{
2157 if (this->is_input_section())
96803768
ILT
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
ead1e424 2160 else
96803768
ILT
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162}
2163
a445fddf
ILT
2164// Reset the address and file offset.
2165
2166void
2167Output_section::Input_section::reset_address_and_file_offset()
2168{
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2171}
2172
96803768
ILT
2173// Finalize the data size.
2174
2175void
2176Output_section::Input_section::finalize_data_size()
2177{
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
2180}
2181
1e983657
ILT
2182// Try to turn an input offset into an output offset. We want to
2183// return the output offset relative to the start of this
2184// Input_section in the output section.
b8e6aad9 2185
8f00aeb8 2186inline bool
8383303e
ILT
2187Output_section::Input_section::output_offset(
2188 const Relobj* object,
2ea97941
ILT
2189 unsigned int shndx,
2190 section_offset_type offset,
ca09d69a 2191 section_offset_type* poutput) const
b8e6aad9
ILT
2192{
2193 if (!this->is_input_section())
2ea97941 2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
2195 else
2196 {
2ea97941 2197 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 2198 return false;
2ea97941 2199 *poutput = offset;
b8e6aad9
ILT
2200 return true;
2201 }
ead1e424
ILT
2202}
2203
2204// Write out the data. We don't have to do anything for an input
2205// section--they are handled via Object::relocate--but this is where
2206// we write out the data for an Output_section_data.
2207
2208void
2209Output_section::Input_section::write(Output_file* of)
2210{
2211 if (!this->is_input_section())
b8e6aad9 2212 this->u2_.posd->write(of);
ead1e424
ILT
2213}
2214
96803768
ILT
2215// Write the data to a buffer. As for write(), we don't have to do
2216// anything for an input section.
2217
2218void
2219Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2220{
2221 if (!this->is_input_section())
2222 this->u2_.posd->write_to_buffer(buffer);
2223}
2224
7d9e3d98
ILT
2225// Print to a map file.
2226
2227void
2228Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2229{
2230 switch (this->shndx_)
2231 {
2232 case OUTPUT_SECTION_CODE:
2233 case MERGE_DATA_SECTION_CODE:
2234 case MERGE_STRING_SECTION_CODE:
2235 this->u2_.posd->print_to_mapfile(mapfile);
2236 break;
2237
20e6d0d6
DK
2238 case RELAXED_INPUT_SECTION_CODE:
2239 {
eb426534 2240 Output_relaxed_input_section* relaxed_section =
20e6d0d6 2241 this->relaxed_input_section();
eb426534 2242 mapfile->print_input_section(relaxed_section->relobj(),
20e6d0d6
DK
2243 relaxed_section->shndx());
2244 }
2245 break;
7d9e3d98
ILT
2246 default:
2247 mapfile->print_input_section(this->u2_.object, this->shndx_);
2248 break;
2249 }
2250}
2251
a2fb1b05
ILT
2252// Output_section methods.
2253
2254// Construct an Output_section. NAME will point into a Stringpool.
2255
2ea97941
ILT
2256Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2257 elfcpp::Elf_Xword flags)
2258 : name_(name),
a2fb1b05
ILT
2259 addralign_(0),
2260 entsize_(0),
a445fddf 2261 load_address_(0),
16649710 2262 link_section_(NULL),
a2fb1b05 2263 link_(0),
16649710 2264 info_section_(NULL),
6a74a719 2265 info_symndx_(NULL),
a2fb1b05 2266 info_(0),
2ea97941
ILT
2267 type_(type),
2268 flags_(flags),
22f0da72 2269 order_(ORDER_INVALID),
91ea499d 2270 out_shndx_(-1U),
c06b7b0b
ILT
2271 symtab_index_(0),
2272 dynsym_index_(0),
ead1e424
ILT
2273 input_sections_(),
2274 first_input_offset_(0),
c51e6221 2275 fills_(),
96803768 2276 postprocessing_buffer_(NULL),
a3ad94ed 2277 needs_symtab_index_(false),
16649710
ILT
2278 needs_dynsym_index_(false),
2279 should_link_to_symtab_(false),
730cdc88 2280 should_link_to_dynsym_(false),
27bc2bce 2281 after_input_sections_(false),
7bf1f802 2282 requires_postprocessing_(false),
a445fddf
ILT
2283 found_in_sections_clause_(false),
2284 has_load_address_(false),
755ab8af 2285 info_uses_section_index_(false),
6e9ba2ca 2286 input_section_order_specified_(false),
2fd32231
ILT
2287 may_sort_attached_input_sections_(false),
2288 must_sort_attached_input_sections_(false),
2289 attached_input_sections_are_sorted_(false),
9f1d377b 2290 is_relro_(false),
8a5e3e08
ILT
2291 is_small_section_(false),
2292 is_large_section_(false),
f5c870d2 2293 generate_code_fills_at_write_(false),
e8cd95c7 2294 is_entsize_zero_(false),
8923b24c 2295 section_offsets_need_adjustment_(false),
1e5d2fb1 2296 is_noload_(false),
131687b4 2297 always_keeps_input_sections_(false),
cdc29364 2298 has_fixed_layout_(false),
9fbd3822 2299 is_patch_space_allowed_(false),
16164a6b 2300 is_unique_segment_(false),
20e6d0d6 2301 tls_offset_(0),
16164a6b
ST
2302 extra_segment_flags_(0),
2303 segment_alignment_(0),
c0a62865 2304 checkpoint_(NULL),
cdc29364 2305 lookup_maps_(new Output_section_lookup_maps),
9fbd3822 2306 free_list_(),
8ea8cd50 2307 free_space_fill_(NULL),
9fbd3822 2308 patch_space_(0)
a2fb1b05 2309{
27bc2bce
ILT
2310 // An unallocated section has no address. Forcing this means that
2311 // we don't need special treatment for symbols defined in debug
2312 // sections.
2ea97941 2313 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2314 this->set_address(0);
a2fb1b05
ILT
2315}
2316
54dc6425
ILT
2317Output_section::~Output_section()
2318{
20e6d0d6 2319 delete this->checkpoint_;
54dc6425
ILT
2320}
2321
16649710
ILT
2322// Set the entry size.
2323
2324void
2325Output_section::set_entsize(uint64_t v)
2326{
e8cd95c7
ILT
2327 if (this->is_entsize_zero_)
2328 ;
2329 else if (this->entsize_ == 0)
16649710 2330 this->entsize_ = v;
e8cd95c7
ILT
2331 else if (this->entsize_ != v)
2332 {
2333 this->entsize_ = 0;
2334 this->is_entsize_zero_ = 1;
2335 }
16649710
ILT
2336}
2337
ead1e424 2338// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2339// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2340// relocation section which applies to this section, or 0 if none, or
2341// -1U if more than one. Return the offset of the input section
2342// within the output section. Return -1 if the input section will
2343// receive special handling. In the normal case we don't always keep
2344// track of input sections for an Output_section. Instead, each
2345// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2346// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2347// track of input sections here; this is used when SECTIONS appears in
2348// a linker script.
a2fb1b05
ILT
2349
2350template<int size, bool big_endian>
2351off_t
6e9ba2ca 2352Output_section::add_input_section(Layout* layout,
6fa2a40b 2353 Sized_relobj_file<size, big_endian>* object,
2ea97941 2354 unsigned int shndx,
ead1e424 2355 const char* secname,
730cdc88 2356 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2357 unsigned int reloc_shndx,
2358 bool have_sections_script)
a2fb1b05 2359{
2ea97941
ILT
2360 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2361 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2362 {
75f2446e 2363 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2364 static_cast<unsigned long>(addralign), secname);
2365 addralign = 1;
a2fb1b05 2366 }
a2fb1b05 2367
2ea97941
ILT
2368 if (addralign > this->addralign_)
2369 this->addralign_ = addralign;
a2fb1b05 2370
44a43cf9 2371 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2372 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2373
2374 // .debug_str is a mergeable string section, but is not always so
2375 // marked by compilers. Mark manually here so we can optimize.
2376 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2377 {
2378 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2379 entsize = 1;
4f833eee 2380 }
44a43cf9 2381
e8cd95c7
ILT
2382 this->update_flags_for_input_section(sh_flags);
2383 this->set_entsize(entsize);
2384
b8e6aad9 2385 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2386 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2387 // a section. We don't try to handle empty merge sections--they
2388 // mess up the mappings, and are useless anyhow.
cdc29364 2389 // FIXME: Need to handle merge sections during incremental update.
44a43cf9 2390 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032 2391 && reloc_shndx == 0
cdc29364
CC
2392 && shdr.get_sh_size() > 0
2393 && !parameters->incremental())
b8e6aad9 2394 {
0439c796
DK
2395 // Keep information about merged input sections for rebuilding fast
2396 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2397 bool keeps_input_sections = (this->always_keeps_input_sections_
2398 || have_sections_script
2399 || parameters->target().may_relax());
2400
0439c796
DK
2401 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2402 addralign, keeps_input_sections))
b8e6aad9
ILT
2403 {
2404 // Tell the relocation routines that they need to call the
730cdc88 2405 // output_offset method to determine the final address.
b8e6aad9
ILT
2406 return -1;
2407 }
2408 }
2409
cdc29364
CC
2410 section_size_type input_section_size = shdr.get_sh_size();
2411 section_size_type uncompressed_size;
2412 if (object->section_is_compressed(shndx, &uncompressed_size))
2413 input_section_size = uncompressed_size;
2414
2415 off_t offset_in_section;
3136a00e 2416
cdc29364
CC
2417 if (this->has_fixed_layout())
2418 {
2419 // For incremental updates, find a chunk of unused space in the section.
2420 offset_in_section = this->free_list_.allocate(input_section_size,
2421 addralign, 0);
2422 if (offset_in_section == -1)
eb426534 2423 gold_fallback(_("out of patch space in section %s; "
9fbd3822
CC
2424 "relink with --incremental-full"),
2425 this->name());
3136a00e 2426 return offset_in_section;
cdc29364 2427 }
c51e6221 2428
3136a00e
CC
2429 offset_in_section = this->current_data_size_for_child();
2430 off_t aligned_offset_in_section = align_address(offset_in_section,
2431 addralign);
2432 this->set_current_data_size_for_child(aligned_offset_in_section
2433 + input_section_size);
2434
c0a62865
DK
2435 // Determine if we want to delay code-fill generation until the output
2436 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2437 // generating to avoid adjusting them during relaxation. Also, if we are
2438 // sorting input sections we must delay fill generation.
c0a62865
DK
2439 if (!this->generate_code_fills_at_write_
2440 && !have_sections_script
2441 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2442 && parameters->target().has_code_fill()
4cf7a849 2443 && (parameters->target().may_relax()
eb426534 2444 || layout->is_section_ordering_specified()))
c0a62865
DK
2445 {
2446 gold_assert(this->fills_.empty());
2447 this->generate_code_fills_at_write_ = true;
2448 }
2449
c51e6221 2450 if (aligned_offset_in_section > offset_in_section
c0a62865 2451 && !this->generate_code_fills_at_write_
a445fddf 2452 && !have_sections_script
44a43cf9 2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2454 && parameters->target().has_code_fill())
c51e6221
ILT
2455 {
2456 // We need to add some fill data. Using fill_list_ when
2457 // possible is an optimization, since we will often have fill
2458 // sections without input sections.
2459 off_t fill_len = aligned_offset_in_section - offset_in_section;
2460 if (this->input_sections_.empty())
eb426534 2461 this->fills_.push_back(Fill(offset_in_section, fill_len));
c51e6221 2462 else
eb426534
RM
2463 {
2464 std::string fill_data(parameters->target().code_fill(fill_len));
2465 Output_data_const* odc = new Output_data_const(fill_data, 1);
2466 this->input_sections_.push_back(Input_section(odc));
2467 }
c51e6221
ILT
2468 }
2469
ead1e424 2470 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2471 // track of sections, or if we are relaxing. Also, if this is a
2472 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2473 // the future, we keep track of the sections. If the
2474 // --section-ordering-file option is used to specify the order of
2475 // sections, we need to keep track of sections.
131687b4
DK
2476 if (this->always_keeps_input_sections_
2477 || have_sections_script
2fd32231
ILT
2478 || !this->input_sections_.empty()
2479 || this->may_sort_attached_input_sections()
7d9e3d98 2480 || this->must_sort_attached_input_sections()
20e6d0d6 2481 || parameters->options().user_set_Map()
6e9ba2ca 2482 || parameters->target().may_relax()
edcac0c1 2483 || layout->is_section_ordering_specified())
6e9ba2ca 2484 {
6fc6ea19 2485 Input_section isecn(object, shndx, input_section_size, addralign);
f0558624
ST
2486 /* If section ordering is requested by specifying a ordering file,
2487 using --section-ordering-file, match the section name with
2488 a pattern. */
2489 if (parameters->options().section_ordering_file())
eb426534
RM
2490 {
2491 unsigned int section_order_index =
2492 layout->find_section_order_index(std::string(secname));
6e9ba2ca 2493 if (section_order_index != 0)
eb426534
RM
2494 {
2495 isecn.set_section_order_index(section_order_index);
2496 this->set_input_section_order_specified();
2497 }
2498 }
6e9ba2ca
ST
2499 this->input_sections_.push_back(isecn);
2500 }
54dc6425 2501
c51e6221 2502 return aligned_offset_in_section;
61ba1cf9
ILT
2503}
2504
ead1e424
ILT
2505// Add arbitrary data to an output section.
2506
2507void
2508Output_section::add_output_section_data(Output_section_data* posd)
2509{
b8e6aad9
ILT
2510 Input_section inp(posd);
2511 this->add_output_section_data(&inp);
a445fddf
ILT
2512
2513 if (posd->is_data_size_valid())
2514 {
cdc29364
CC
2515 off_t offset_in_section;
2516 if (this->has_fixed_layout())
2517 {
2518 // For incremental updates, find a chunk of unused space.
2519 offset_in_section = this->free_list_.allocate(posd->data_size(),
2520 posd->addralign(), 0);
2521 if (offset_in_section == -1)
9fbd3822
CC
2522 gold_fallback(_("out of patch space in section %s; "
2523 "relink with --incremental-full"),
2524 this->name());
cdc29364
CC
2525 // Finalize the address and offset now.
2526 uint64_t addr = this->address();
2527 off_t offset = this->offset();
2528 posd->set_address_and_file_offset(addr + offset_in_section,
2529 offset + offset_in_section);
2530 }
2531 else
2532 {
2533 offset_in_section = this->current_data_size_for_child();
2534 off_t aligned_offset_in_section = align_address(offset_in_section,
2535 posd->addralign());
2536 this->set_current_data_size_for_child(aligned_offset_in_section
2537 + posd->data_size());
2538 }
2539 }
2540 else if (this->has_fixed_layout())
2541 {
2542 // For incremental updates, arrange for the data to have a fixed layout.
2543 // This will mean that additions to the data must be allocated from
2544 // free space within the containing output section.
2545 uint64_t addr = this->address();
2546 posd->set_address(addr);
2547 posd->set_file_offset(0);
4829d394
CC
2548 // FIXME: This should eventually be unreachable.
2549 // gold_unreachable();
a445fddf 2550 }
b8e6aad9
ILT
2551}
2552
c0a62865
DK
2553// Add a relaxed input section.
2554
2555void
d06fb4d1
DK
2556Output_section::add_relaxed_input_section(Layout* layout,
2557 Output_relaxed_input_section* poris,
2558 const std::string& name)
c0a62865
DK
2559{
2560 Input_section inp(poris);
d06fb4d1
DK
2561
2562 // If the --section-ordering-file option is used to specify the order of
2563 // sections, we need to keep track of sections.
e9552f7e 2564 if (layout->is_section_ordering_specified())
d06fb4d1
DK
2565 {
2566 unsigned int section_order_index =
eb426534 2567 layout->find_section_order_index(name);
d06fb4d1 2568 if (section_order_index != 0)
eb426534
RM
2569 {
2570 inp.set_section_order_index(section_order_index);
2571 this->set_input_section_order_specified();
2572 }
d06fb4d1
DK
2573 }
2574
c0a62865 2575 this->add_output_section_data(&inp);
0439c796
DK
2576 if (this->lookup_maps_->is_valid())
2577 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2578 poris->shndx(), poris);
c0a62865
DK
2579
2580 // For a relaxed section, we use the current data size. Linker scripts
2581 // get all the input sections, including relaxed one from an output
19fec8c1 2582 // section and add them back to the same output section to compute the
c0a62865 2583 // output section size. If we do not account for sizes of relaxed input
19fec8c1 2584 // sections, an output section would be incorrectly sized.
c0a62865
DK
2585 off_t offset_in_section = this->current_data_size_for_child();
2586 off_t aligned_offset_in_section = align_address(offset_in_section,
2587 poris->addralign());
2588 this->set_current_data_size_for_child(aligned_offset_in_section
2589 + poris->current_data_size());
2590}
2591
b8e6aad9 2592// Add arbitrary data to an output section by Input_section.
c06b7b0b 2593
b8e6aad9
ILT
2594void
2595Output_section::add_output_section_data(Input_section* inp)
2596{
ead1e424 2597 if (this->input_sections_.empty())
27bc2bce 2598 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2599
b8e6aad9 2600 this->input_sections_.push_back(*inp);
c06b7b0b 2601
2ea97941
ILT
2602 uint64_t addralign = inp->addralign();
2603 if (addralign > this->addralign_)
2604 this->addralign_ = addralign;
c06b7b0b 2605
b8e6aad9
ILT
2606 inp->set_output_section(this);
2607}
2608
2609// Add a merge section to an output section.
2610
2611void
2612Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2613 bool is_string, uint64_t entsize)
b8e6aad9 2614{
2ea97941 2615 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2616 this->add_output_section_data(&inp);
2617}
2618
2619// Add an input section to a SHF_MERGE section.
2620
2621bool
2ea97941
ILT
2622Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2623 uint64_t flags, uint64_t entsize,
0439c796
DK
2624 uint64_t addralign,
2625 bool keeps_input_sections)
b8e6aad9 2626{
2c7b626c
CC
2627 // We cannot merge sections with entsize == 0.
2628 if (entsize == 0)
2629 return false;
2630
2ea97941 2631 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776 2632
20e6d0d6
DK
2633 // We cannot restore merged input section states.
2634 gold_assert(this->checkpoint_ == NULL);
2635
c0a62865 2636 // Look up merge sections by required properties.
0439c796
DK
2637 // Currently, we only invalidate the lookup maps in script processing
2638 // and relaxation. We should not have done either when we reach here.
2639 // So we assume that the lookup maps are valid to simply code.
2640 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2641 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2642 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2643 bool is_new = false;
2644 if (pomb != NULL)
c0a62865 2645 {
6bf924b0
DK
2646 gold_assert(pomb->is_string() == is_string
2647 && pomb->entsize() == entsize
2648 && pomb->addralign() == addralign);
c0a62865 2649 }
b8e6aad9
ILT
2650 else
2651 {
6bf924b0
DK
2652 // Create a new Output_merge_data or Output_merge_string_data.
2653 if (!is_string)
2654 pomb = new Output_merge_data(entsize, addralign);
2655 else
9a0910c3 2656 {
6bf924b0
DK
2657 switch (entsize)
2658 {
2659 case 1:
2660 pomb = new Output_merge_string<char>(addralign);
2661 break;
2662 case 2:
2663 pomb = new Output_merge_string<uint16_t>(addralign);
2664 break;
2665 case 4:
2666 pomb = new Output_merge_string<uint32_t>(addralign);
2667 break;
2668 default:
2669 return false;
2670 }
9a0910c3 2671 }
0439c796
DK
2672 // If we need to do script processing or relaxation, we need to keep
2673 // the original input sections to rebuild the fast lookup maps.
2674 if (keeps_input_sections)
2675 pomb->set_keeps_input_sections();
2676 is_new = true;
b8e6aad9
ILT
2677 }
2678
6bf924b0
DK
2679 if (pomb->add_input_section(object, shndx))
2680 {
0439c796
DK
2681 // Add new merge section to this output section and link merge
2682 // section properties to new merge section in map.
2683 if (is_new)
2684 {
2685 this->add_output_merge_section(pomb, is_string, entsize);
2686 this->lookup_maps_->add_merge_section(msp, pomb);
2687 }
2688
6bf924b0
DK
2689 return true;
2690 }
2691 else
0439c796
DK
2692 {
2693 // If add_input_section failed, delete new merge section to avoid
2694 // exporting empty merge sections in Output_section::get_input_section.
2695 if (is_new)
2696 delete pomb;
2697 return false;
2698 }
b8e6aad9
ILT
2699}
2700
c0a62865 2701// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2702// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2703
20e6d0d6 2704void
c0a62865 2705Output_section::build_relaxation_map(
2ea97941 2706 const Input_section_list& input_sections,
c0a62865
DK
2707 size_t limit,
2708 Relaxation_map* relaxation_map) const
20e6d0d6 2709{
c0a62865
DK
2710 for (size_t i = 0; i < limit; ++i)
2711 {
2ea97941 2712 const Input_section& is(input_sections[i]);
c0a62865
DK
2713 if (is.is_input_section() || is.is_relaxed_input_section())
2714 {
5ac169d4
DK
2715 Section_id sid(is.relobj(), is.shndx());
2716 (*relaxation_map)[sid] = i;
c0a62865
DK
2717 }
2718 }
2719}
2720
2721// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2722// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2723// indices of INPUT_SECTIONS.
20e6d0d6 2724
c0a62865
DK
2725void
2726Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728 const Relaxation_map& map,
2ea97941 2729 Input_section_list* input_sections)
c0a62865
DK
2730{
2731 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732 {
2733 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2734 Section_id sid(poris->relobj(), poris->shndx());
2735 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2736 gold_assert(p != map.end());
2ea97941 2737 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2738
2739 // Remember section order index of original input section
2740 // if it is set. Copy it to the relaxed input section.
2741 unsigned int soi =
2742 (*input_sections)[p->second].section_order_index();
2ea97941 2743 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2744 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2745 }
2746}
50ed5eb1 2747
c0a62865
DK
2748// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749// is a vector of pointers to Output_relaxed_input_section or its derived
2750// classes. The relaxed sections must correspond to existing input sections.
2751
2752void
2753Output_section::convert_input_sections_to_relaxed_sections(
2754 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755{
029ba973 2756 gold_assert(parameters->target().may_relax());
20e6d0d6 2757
c0a62865
DK
2758 // We want to make sure that restore_states does not undo the effect of
2759 // this. If there is no checkpoint active, just search the current
2760 // input section list and replace the sections there. If there is
2761 // a checkpoint, also replace the sections there.
50ed5eb1 2762
c0a62865
DK
2763 // By default, we look at the whole list.
2764 size_t limit = this->input_sections_.size();
2765
2766 if (this->checkpoint_ != NULL)
20e6d0d6 2767 {
c0a62865
DK
2768 // Replace input sections with relaxed input section in the saved
2769 // copy of the input section list.
2770 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2771 {
c0a62865
DK
2772 Relaxation_map map;
2773 this->build_relaxation_map(
2774 *(this->checkpoint_->input_sections()),
2775 this->checkpoint_->input_sections()->size(),
2776 &map);
2777 this->convert_input_sections_in_list_to_relaxed_sections(
2778 relaxed_sections,
2779 map,
2780 this->checkpoint_->input_sections());
2781 }
2782 else
2783 {
2784 // We have not copied the input section list yet. Instead, just
2785 // look at the portion that would be saved.
2786 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2787 }
20e6d0d6 2788 }
c0a62865
DK
2789
2790 // Convert input sections in input_section_list.
2791 Relaxation_map map;
2792 this->build_relaxation_map(this->input_sections_, limit, &map);
2793 this->convert_input_sections_in_list_to_relaxed_sections(
2794 relaxed_sections,
2795 map,
2796 &this->input_sections_);
41263c05
DK
2797
2798 // Update fast look-up map.
0439c796 2799 if (this->lookup_maps_->is_valid())
41263c05
DK
2800 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801 {
2802 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2803 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804 poris->shndx(), poris);
41263c05 2805 }
20e6d0d6
DK
2806}
2807
9c547ec3
ILT
2808// Update the output section flags based on input section flags.
2809
2810void
2ea97941 2811Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2812{
2813 // If we created the section with SHF_ALLOC clear, we set the
2814 // address. If we are now setting the SHF_ALLOC flag, we need to
2815 // undo that.
2816 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2817 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2818 this->mark_address_invalid();
2819
2ea97941 2820 this->flags_ |= (flags
9c547ec3
ILT
2821 & (elfcpp::SHF_WRITE
2822 | elfcpp::SHF_ALLOC
2823 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2824
2825 if ((flags & elfcpp::SHF_MERGE) == 0)
2826 this->flags_ &=~ elfcpp::SHF_MERGE;
2827 else
2828 {
2829 if (this->current_data_size_for_child() == 0)
2830 this->flags_ |= elfcpp::SHF_MERGE;
2831 }
2832
2833 if ((flags & elfcpp::SHF_STRINGS) == 0)
2834 this->flags_ &=~ elfcpp::SHF_STRINGS;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_STRINGS;
2839 }
9c547ec3
ILT
2840}
2841
2ea97941 2842// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2843// OBJECT has been added. Return NULL if none found.
2844
67f95b96 2845const Output_section_data*
c0a62865 2846Output_section::find_merge_section(const Relobj* object,
2ea97941 2847 unsigned int shndx) const
c0a62865 2848{
67f95b96 2849 return object->find_merge_section(shndx);
0439c796
DK
2850}
2851
67f95b96
RÁE
2852// Build the lookup maps for relaxed sections. This needs
2853// to be declared as a const method so that it is callable with a const
0439c796
DK
2854// Output_section pointer. The method only updates states of the maps.
2855
2856void
2857Output_section::build_lookup_maps() const
2858{
2859 this->lookup_maps_->clear();
2860 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2861 p != this->input_sections_.end();
2862 ++p)
c0a62865 2863 {
67f95b96 2864 if (p->is_relaxed_input_section())
0439c796
DK
2865 {
2866 Output_relaxed_input_section* poris = p->relaxed_input_section();
2867 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2868 poris->shndx(), poris);
2869 }
c0a62865 2870 }
c0a62865
DK
2871}
2872
2873// Find an relaxed input section corresponding to an input section
2ea97941 2874// in OBJECT with index SHNDX.
c0a62865 2875
d6344fb5 2876const Output_relaxed_input_section*
c0a62865 2877Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2878 unsigned int shndx) const
c0a62865 2879{
0439c796
DK
2880 if (!this->lookup_maps_->is_valid())
2881 this->build_lookup_maps();
2882 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2883}
2884
2ea97941
ILT
2885// Given an address OFFSET relative to the start of input section
2886// SHNDX in OBJECT, return whether this address is being included in
2887// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2888// a special mapping.
2889
2890bool
2891Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2892 unsigned int shndx,
2893 off_t offset) const
730cdc88 2894{
c0a62865 2895 // Look at the Output_section_data_maps first.
2ea97941 2896 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2897 if (posd == NULL)
2ea97941 2898 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2899
2900 if (posd != NULL)
2901 {
2ea97941
ILT
2902 section_offset_type output_offset;
2903 bool found = posd->output_offset(object, shndx, offset, &output_offset);
cfbf0e3c
RÁE
2904 // By default we assume that the address is mapped. See comment at the
2905 // end.
67f95b96 2906 if (!found)
cfbf0e3c 2907 return true;
2ea97941 2908 return output_offset != -1;
c0a62865
DK
2909 }
2910
2911 // Fall back to the slow look-up.
730cdc88
ILT
2912 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2913 p != this->input_sections_.end();
2914 ++p)
2915 {
2ea97941
ILT
2916 section_offset_type output_offset;
2917 if (p->output_offset(object, shndx, offset, &output_offset))
2918 return output_offset != -1;
730cdc88
ILT
2919 }
2920
2921 // By default we assume that the address is mapped. This should
2922 // only be called after we have passed all sections to Layout. At
2923 // that point we should know what we are discarding.
2924 return true;
2925}
2926
2ea97941
ILT
2927// Given an address OFFSET relative to the start of input section
2928// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2929// start of the input section in the output section. This should only
2ea97941 2930// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2931
8383303e 2932section_offset_type
2ea97941
ILT
2933Output_section::output_offset(const Relobj* object, unsigned int shndx,
2934 section_offset_type offset) const
730cdc88 2935{
c0a62865
DK
2936 // This can only be called meaningfully when we know the data size
2937 // of this.
2938 gold_assert(this->is_data_size_valid());
730cdc88 2939
c0a62865 2940 // Look at the Output_section_data_maps first.
2ea97941 2941 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 2942 if (posd == NULL)
2ea97941 2943 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2944 if (posd != NULL)
2945 {
2ea97941
ILT
2946 section_offset_type output_offset;
2947 bool found = posd->output_offset(object, shndx, offset, &output_offset);
50ed5eb1 2948 gold_assert(found);
2ea97941 2949 return output_offset;
c0a62865
DK
2950 }
2951
2952 // Fall back to the slow look-up.
730cdc88
ILT
2953 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2954 p != this->input_sections_.end();
2955 ++p)
2956 {
2ea97941
ILT
2957 section_offset_type output_offset;
2958 if (p->output_offset(object, shndx, offset, &output_offset))
2959 return output_offset;
730cdc88
ILT
2960 }
2961 gold_unreachable();
2962}
2963
2ea97941
ILT
2964// Return the output virtual address of OFFSET relative to the start
2965// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2966
2967uint64_t
2ea97941
ILT
2968Output_section::output_address(const Relobj* object, unsigned int shndx,
2969 off_t offset) const
b8e6aad9
ILT
2970{
2971 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2972
2973 // Look at the Output_section_data_maps first.
2ea97941 2974 const Output_section_data* posd = this->find_merge_section(object, shndx);
50ed5eb1 2975 if (posd == NULL)
2ea97941 2976 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2977 if (posd != NULL && posd->is_address_valid())
2978 {
2ea97941
ILT
2979 section_offset_type output_offset;
2980 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2981 gold_assert(found);
2ea97941 2982 return posd->address() + output_offset;
c0a62865
DK
2983 }
2984
2985 // Fall back to the slow look-up.
b8e6aad9
ILT
2986 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2987 p != this->input_sections_.end();
2988 ++p)
2989 {
2990 addr = align_address(addr, p->addralign());
2ea97941
ILT
2991 section_offset_type output_offset;
2992 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2993 {
2ea97941 2994 if (output_offset == -1)
eff45813 2995 return -1ULL;
2ea97941 2996 return addr + output_offset;
730cdc88 2997 }
b8e6aad9
ILT
2998 addr += p->data_size();
2999 }
3000
3001 // If we get here, it means that we don't know the mapping for this
3002 // input section. This might happen in principle if
3003 // add_input_section were called before add_output_section_data.
3004 // But it should never actually happen.
3005
3006 gold_unreachable();
ead1e424
ILT
3007}
3008
e29e076a 3009// Find the output address of the start of the merged section for
2ea97941 3010// input section SHNDX in object OBJECT.
a9a60db6 3011
e29e076a
ILT
3012bool
3013Output_section::find_starting_output_address(const Relobj* object,
2ea97941 3014 unsigned int shndx,
e29e076a 3015 uint64_t* paddr) const
a9a60db6 3016{
67f95b96
RÁE
3017 const Output_section_data* data = this->find_merge_section(object, shndx);
3018 if (data == NULL)
3019 return false;
3020
c0a62865
DK
3021 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3022 // Looking up the merge section map does not always work as we sometimes
3023 // find a merge section without its address set.
a9a60db6
ILT
3024 uint64_t addr = this->address() + this->first_input_offset_;
3025 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3026 p != this->input_sections_.end();
3027 ++p)
3028 {
3029 addr = align_address(addr, p->addralign());
3030
3031 // It would be nice if we could use the existing output_offset
3032 // method to get the output offset of input offset 0.
3033 // Unfortunately we don't know for sure that input offset 0 is
3034 // mapped at all.
67f95b96 3035 if (!p->is_input_section() && p->output_section_data() == data)
e29e076a
ILT
3036 {
3037 *paddr = addr;
3038 return true;
3039 }
a9a60db6
ILT
3040
3041 addr += p->data_size();
3042 }
e29e076a
ILT
3043
3044 // We couldn't find a merge output section for this input section.
3045 return false;
a9a60db6
ILT
3046}
3047
cdc29364
CC
3048// Update the data size of an Output_section.
3049
3050void
3051Output_section::update_data_size()
3052{
3053 if (this->input_sections_.empty())
3054 return;
3055
3056 if (this->must_sort_attached_input_sections()
3057 || this->input_section_order_specified())
3058 this->sort_attached_input_sections();
3059
3060 off_t off = this->first_input_offset_;
3061 for (Input_section_list::iterator p = this->input_sections_.begin();
3062 p != this->input_sections_.end();
3063 ++p)
3064 {
3065 off = align_address(off, p->addralign());
3066 off += p->current_data_size();
3067 }
3068
3069 this->set_current_data_size_for_child(off);
3070}
3071
27bc2bce 3072// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
3073// setting the addresses of any Output_section_data objects.
3074
3075void
27bc2bce 3076Output_section::set_final_data_size()
ead1e424 3077{
9fbd3822
CC
3078 off_t data_size;
3079
ead1e424 3080 if (this->input_sections_.empty())
9fbd3822
CC
3081 data_size = this->current_data_size_for_child();
3082 else
27bc2bce 3083 {
9fbd3822
CC
3084 if (this->must_sort_attached_input_sections()
3085 || this->input_section_order_specified())
3086 this->sort_attached_input_sections();
ead1e424 3087
9fbd3822
CC
3088 uint64_t address = this->address();
3089 off_t startoff = this->offset();
3090 off_t off = startoff + this->first_input_offset_;
3091 for (Input_section_list::iterator p = this->input_sections_.begin();
3092 p != this->input_sections_.end();
3093 ++p)
3094 {
3095 off = align_address(off, p->addralign());
3096 p->set_address_and_file_offset(address + (off - startoff), off,
3097 startoff);
3098 off += p->data_size();
3099 }
3100 data_size = off - startoff;
3101 }
2fd32231 3102
9fbd3822
CC
3103 // For full incremental links, we want to allocate some patch space
3104 // in most sections for subsequent incremental updates.
3105 if (this->is_patch_space_allowed_ && parameters->incremental_full())
ead1e424 3106 {
9fbd3822 3107 double pct = parameters->options().incremental_patch();
8ea8cd50
CC
3108 size_t extra = static_cast<size_t>(data_size * pct);
3109 if (this->free_space_fill_ != NULL
eb426534 3110 && this->free_space_fill_->minimum_hole_size() > extra)
8ea8cd50 3111 extra = this->free_space_fill_->minimum_hole_size();
9fbd3822
CC
3112 off_t new_size = align_address(data_size + extra, this->addralign());
3113 this->patch_space_ = new_size - data_size;
3114 gold_debug(DEBUG_INCREMENTAL,
3115 "set_final_data_size: %08lx + %08lx: section %s",
3116 static_cast<long>(data_size),
3117 static_cast<long>(this->patch_space_),
3118 this->name());
3119 data_size = new_size;
ead1e424
ILT
3120 }
3121
9fbd3822 3122 this->set_data_size(data_size);
ead1e424 3123}
9a0910c3 3124
a445fddf
ILT
3125// Reset the address and file offset.
3126
3127void
3128Output_section::do_reset_address_and_file_offset()
3129{
20e6d0d6
DK
3130 // An unallocated section has no address. Forcing this means that
3131 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
3132 // sections. We do the same in the constructor. This does not
3133 // apply to NOLOAD sections though.
3134 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
3135 this->set_address(0);
3136
a445fddf
ILT
3137 for (Input_section_list::iterator p = this->input_sections_.begin();
3138 p != this->input_sections_.end();
3139 ++p)
3140 p->reset_address_and_file_offset();
9fbd3822
CC
3141
3142 // Remove any patch space that was added in set_final_data_size.
3143 if (this->patch_space_ > 0)
3144 {
3145 this->set_current_data_size_for_child(this->current_data_size_for_child()
3146 - this->patch_space_);
3147 this->patch_space_ = 0;
3148 }
a445fddf 3149}
9fbd3822 3150
20e6d0d6
DK
3151// Return true if address and file offset have the values after reset.
3152
3153bool
3154Output_section::do_address_and_file_offset_have_reset_values() const
3155{
3156 if (this->is_offset_valid())
3157 return false;
3158
3159 // An unallocated section has address 0 after its construction or a reset.
3160 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3161 return this->is_address_valid() && this->address() == 0;
3162 else
3163 return !this->is_address_valid();
3164}
a445fddf 3165
7bf1f802
ILT
3166// Set the TLS offset. Called only for SHT_TLS sections.
3167
3168void
3169Output_section::do_set_tls_offset(uint64_t tls_base)
3170{
3171 this->tls_offset_ = this->address() - tls_base;
3172}
3173
2fd32231
ILT
3174// In a few cases we need to sort the input sections attached to an
3175// output section. This is used to implement the type of constructor
3176// priority ordering implemented by the GNU linker, in which the
3177// priority becomes part of the section name and the sections are
3178// sorted by name. We only do this for an output section if we see an
5393d741 3179// attached input section matching ".ctors.*", ".dtors.*",
2fd32231
ILT
3180// ".init_array.*" or ".fini_array.*".
3181
3182class Output_section::Input_section_sort_entry
3183{
3184 public:
3185 Input_section_sort_entry()
9860cbcf 3186 : input_section_(), index_(-1U), section_name_()
2fd32231
ILT
3187 { }
3188
2ea97941 3189 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca 3190 unsigned int index,
9860cbcf
CC
3191 bool must_sort_attached_input_sections,
3192 const char* output_section_name)
3193 : input_section_(input_section), index_(index), section_name_()
2fd32231 3194 {
9860cbcf
CC
3195 if ((input_section.is_input_section()
3196 || input_section.is_relaxed_input_section())
eb426534 3197 && must_sort_attached_input_sections)
2fd32231
ILT
3198 {
3199 // This is only called single-threaded from Layout::finalize,
3200 // so it is OK to lock. Unfortunately we have no way to pass
3201 // in a Task token.
3202 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
3203 Object* obj = (input_section.is_input_section()
3204 ? input_section.relobj()
3205 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
3206 Task_lock_obj<Object> tl(dummy_task, obj);
3207
3208 // This is a slow operation, which should be cached in
3209 // Layout::layout if this becomes a speed problem.
2ea97941 3210 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231 3211 }
9860cbcf
CC
3212 else if (input_section.is_output_section_data()
3213 && must_sort_attached_input_sections)
3214 {
3215 // For linker-generated sections, use the output section name.
3216 this->section_name_.assign(output_section_name);
3217 }
2fd32231
ILT
3218 }
3219
3220 // Return the Input_section.
3221 const Input_section&
3222 input_section() const
3223 {
3224 gold_assert(this->index_ != -1U);
3225 return this->input_section_;
3226 }
3227
3228 // The index of this entry in the original list. This is used to
3229 // make the sort stable.
3230 unsigned int
3231 index() const
3232 {
3233 gold_assert(this->index_ != -1U);
3234 return this->index_;
3235 }
3236
2fd32231
ILT
3237 // The section name.
3238 const std::string&
3239 section_name() const
3240 {
2fd32231
ILT
3241 return this->section_name_;
3242 }
3243
ab794b6b
ILT
3244 // Return true if the section name has a priority. This is assumed
3245 // to be true if it has a dot after the initial dot.
2fd32231 3246 bool
ab794b6b 3247 has_priority() const
2fd32231 3248 {
2a0ff005 3249 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
3250 }
3251
5393d741
ILT
3252 // Return the priority. Believe it or not, gcc encodes the priority
3253 // differently for .ctors/.dtors and .init_array/.fini_array
3254 // sections.
3255 unsigned int
3256 get_priority() const
3257 {
5393d741
ILT
3258 bool is_ctors;
3259 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3260 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3261 is_ctors = true;
3262 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3263 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3264 is_ctors = false;
3265 else
3266 return 0;
3267 char* end;
3268 unsigned long prio = strtoul((this->section_name_.c_str()
3269 + (is_ctors ? 7 : 12)),
3270 &end, 10);
3271 if (*end != '\0')
3272 return 0;
3273 else if (is_ctors)
3274 return 65535 - prio;
3275 else
3276 return prio;
3277 }
3278
ab794b6b
ILT
3279 // Return true if this an input file whose base name matches
3280 // FILE_NAME. The base name must have an extension of ".o", and
3281 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3282 // This is to match crtbegin.o as well as crtbeginS.o without
3283 // getting confused by other possibilities. Overall matching the
3284 // file name this way is a dreadful hack, but the GNU linker does it
3285 // in order to better support gcc, and we need to be compatible.
2fd32231 3286 bool
5393d741 3287 match_file_name(const char* file_name) const
edcac0c1
ILT
3288 {
3289 if (this->input_section_.is_output_section_data())
3290 return false;
3291 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3292 }
2fd32231 3293
8fe2a369
ST
3294 // Returns 1 if THIS should appear before S in section order, -1 if S
3295 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
3296 int
3297 compare_section_ordering(const Input_section_sort_entry& s) const
3298 {
8fe2a369
ST
3299 unsigned int this_secn_index = this->input_section_.section_order_index();
3300 unsigned int s_secn_index = s.input_section().section_order_index();
3301 if (this_secn_index > 0 && s_secn_index > 0)
3302 {
eb426534
RM
3303 if (this_secn_index < s_secn_index)
3304 return 1;
3305 else if (this_secn_index > s_secn_index)
3306 return -1;
8fe2a369
ST
3307 }
3308 return 0;
6e9ba2ca
ST
3309 }
3310
2fd32231
ILT
3311 private:
3312 // The Input_section we are sorting.
3313 Input_section input_section_;
3314 // The index of this Input_section in the original list.
3315 unsigned int index_;
2fd32231
ILT
3316 // The section name if there is one.
3317 std::string section_name_;
3318};
3319
3320// Return true if S1 should come before S2 in the output section.
3321
3322bool
3323Output_section::Input_section_sort_compare::operator()(
3324 const Output_section::Input_section_sort_entry& s1,
3325 const Output_section::Input_section_sort_entry& s2) const
3326{
ab794b6b
ILT
3327 // crtbegin.o must come first.
3328 bool s1_begin = s1.match_file_name("crtbegin");
3329 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
3330 if (s1_begin || s2_begin)
3331 {
3332 if (!s1_begin)
3333 return false;
3334 if (!s2_begin)
3335 return true;
3336 return s1.index() < s2.index();
3337 }
3338
ab794b6b
ILT
3339 // crtend.o must come last.
3340 bool s1_end = s1.match_file_name("crtend");
3341 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
3342 if (s1_end || s2_end)
3343 {
3344 if (!s1_end)
3345 return true;
3346 if (!s2_end)
3347 return false;
3348 return s1.index() < s2.index();
3349 }
3350
ab794b6b 3351 // A section with a priority follows a section without a priority.
ab794b6b
ILT
3352 bool s1_has_priority = s1.has_priority();
3353 bool s2_has_priority = s2.has_priority();
3354 if (s1_has_priority && !s2_has_priority)
2fd32231 3355 return false;
ab794b6b 3356 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
3357 return true;
3358
6e9ba2ca
ST
3359 // Check if a section order exists for these sections through a section
3360 // ordering file. If sequence_num is 0, an order does not exist.
3361 int sequence_num = s1.compare_section_ordering(s2);
3362 if (sequence_num != 0)
3363 return sequence_num == 1;
3364
2fd32231
ILT
3365 // Otherwise we sort by name.
3366 int compare = s1.section_name().compare(s2.section_name());
3367 if (compare != 0)
3368 return compare < 0;
3369
3370 // Otherwise we keep the input order.
3371 return s1.index() < s2.index();
3372}
3373
2a0ff005
DK
3374// Return true if S1 should come before S2 in an .init_array or .fini_array
3375// output section.
3376
3377bool
3378Output_section::Input_section_sort_init_fini_compare::operator()(
3379 const Output_section::Input_section_sort_entry& s1,
3380 const Output_section::Input_section_sort_entry& s2) const
3381{
2a0ff005
DK
3382 // A section without a priority follows a section with a priority.
3383 // This is the reverse of .ctors and .dtors sections.
3384 bool s1_has_priority = s1.has_priority();
3385 bool s2_has_priority = s2.has_priority();
3386 if (s1_has_priority && !s2_has_priority)
3387 return true;
3388 if (!s1_has_priority && s2_has_priority)
3389 return false;
3390
5393d741
ILT
3391 // .ctors and .dtors sections without priority come after
3392 // .init_array and .fini_array sections without priority.
3393 if (!s1_has_priority
3394 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3395 && s1.section_name() != s2.section_name())
3396 return false;
3397 if (!s2_has_priority
3398 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3399 && s2.section_name() != s1.section_name())
3400 return true;
3401
3402 // Sort by priority if we can.
3403 if (s1_has_priority)
3404 {
3405 unsigned int s1_prio = s1.get_priority();
3406 unsigned int s2_prio = s2.get_priority();
3407 if (s1_prio < s2_prio)
3408 return true;
3409 else if (s1_prio > s2_prio)
3410 return false;
3411 }
3412
6e9ba2ca
ST
3413 // Check if a section order exists for these sections through a section
3414 // ordering file. If sequence_num is 0, an order does not exist.
3415 int sequence_num = s1.compare_section_ordering(s2);
3416 if (sequence_num != 0)
3417 return sequence_num == 1;
3418
2a0ff005
DK
3419 // Otherwise we sort by name.
3420 int compare = s1.section_name().compare(s2.section_name());
3421 if (compare != 0)
3422 return compare < 0;
3423
3424 // Otherwise we keep the input order.
3425 return s1.index() < s2.index();
3426}
3427
8fe2a369
ST
3428// Return true if S1 should come before S2. Sections that do not match
3429// any pattern in the section ordering file are placed ahead of the sections
edcac0c1 3430// that match some pattern.
8fe2a369 3431
6e9ba2ca
ST
3432bool
3433Output_section::Input_section_sort_section_order_index_compare::operator()(
3434 const Output_section::Input_section_sort_entry& s1,
3435 const Output_section::Input_section_sort_entry& s2) const
3436{
8fe2a369
ST
3437 unsigned int s1_secn_index = s1.input_section().section_order_index();
3438 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3439
edcac0c1
ILT
3440 // Keep input order if section ordering cannot determine order.
3441 if (s1_secn_index == s2_secn_index)
28f2a4ac 3442 return s1.index() < s2.index();
edcac0c1
ILT
3443
3444 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3445}
3446
c6ac678d
ST
3447// Return true if S1 should come before S2. This is the sort comparison
3448// function for .text to sort sections with prefixes
3449// .text.{unlikely,exit,startup,hot} before other sections.
6934001a 3450
c6ac678d 3451bool
6934001a 3452Output_section::Input_section_sort_section_prefix_special_ordering_compare
c6ac678d
ST
3453 ::operator()(
3454 const Output_section::Input_section_sort_entry& s1,
3455 const Output_section::Input_section_sort_entry& s2) const
3456{
c6ac678d
ST
3457 // Some input section names have special ordering requirements.
3458 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3459 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3460 if (o1 != o2)
3461 {
3462 if (o1 < 0)
3463 return false;
3464 else if (o2 < 0)
3465 return true;
3466 else
3467 return o1 < o2;
3468 }
3469
3470 // Keep input order otherwise.
6934001a
CC
3471 return s1.index() < s2.index();
3472}
3473
3474// Return true if S1 should come before S2. This is the sort comparison
3475// function for sections to sort them by name.
3476
3477bool
3478Output_section::Input_section_sort_section_name_compare
3479 ::operator()(
3480 const Output_section::Input_section_sort_entry& s1,
3481 const Output_section::Input_section_sort_entry& s2) const
3482{
6934001a
CC
3483 // We sort by name.
3484 int compare = s1.section_name().compare(s2.section_name());
3485 if (compare != 0)
3486 return compare < 0;
3487
3488 // Keep input order otherwise.
3489 return s1.index() < s2.index();
c6ac678d
ST
3490}
3491
e9552f7e
ST
3492// This updates the section order index of input sections according to the
3493// the order specified in the mapping from Section id to order index.
3494
3495void
3496Output_section::update_section_layout(
f0558624 3497 const Section_layout_order* order_map)
e9552f7e
ST
3498{
3499 for (Input_section_list::iterator p = this->input_sections_.begin();
3500 p != this->input_sections_.end();
3501 ++p)
3502 {
3503 if (p->is_input_section()
3504 || p->is_relaxed_input_section())
eb426534 3505 {
efc6fa12 3506 Relobj* obj = (p->is_input_section()
e9552f7e 3507 ? p->relobj()
eb426534 3508 : p->relaxed_input_section()->relobj());
e9552f7e
ST
3509 unsigned int shndx = p->shndx();
3510 Section_layout_order::const_iterator it
f0558624
ST
3511 = order_map->find(Section_id(obj, shndx));
3512 if (it == order_map->end())
e9552f7e
ST
3513 continue;
3514 unsigned int section_order_index = it->second;
3515 if (section_order_index != 0)
eb426534
RM
3516 {
3517 p->set_section_order_index(section_order_index);
3518 this->set_input_section_order_specified();
e9552f7e 3519 }
eb426534 3520 }
e9552f7e
ST
3521 }
3522}
3523
2fd32231
ILT
3524// Sort the input sections attached to an output section.
3525
3526void
3527Output_section::sort_attached_input_sections()
3528{
3529 if (this->attached_input_sections_are_sorted_)
3530 return;
3531
20e6d0d6
DK
3532 if (this->checkpoint_ != NULL
3533 && !this->checkpoint_->input_sections_saved())
3534 this->checkpoint_->save_input_sections();
3535
2fd32231
ILT
3536 // The only thing we know about an input section is the object and
3537 // the section index. We need the section name. Recomputing this
3538 // is slow but this is an unusual case. If this becomes a speed
3539 // problem we can cache the names as required in Layout::layout.
3540
3541 // We start by building a larger vector holding a copy of each
3542 // Input_section, plus its current index in the list and its name.
3543 std::vector<Input_section_sort_entry> sort_list;
3544
3545 unsigned int i = 0;
3546 for (Input_section_list::iterator p = this->input_sections_.begin();
3547 p != this->input_sections_.end();
3548 ++p, ++i)
6e9ba2ca 3549 sort_list.push_back(Input_section_sort_entry(*p, i,
9860cbcf
CC
3550 this->must_sort_attached_input_sections(),
3551 this->name()));
2fd32231
ILT
3552
3553 // Sort the input sections.
6e9ba2ca
ST
3554 if (this->must_sort_attached_input_sections())
3555 {
3556 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
eb426534
RM
3557 || this->type() == elfcpp::SHT_INIT_ARRAY
3558 || this->type() == elfcpp::SHT_FINI_ARRAY)
3559 std::sort(sort_list.begin(), sort_list.end(),
3560 Input_section_sort_init_fini_compare());
6934001a
CC
3561 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3562 std::sort(sort_list.begin(), sort_list.end(),
3563 Input_section_sort_section_name_compare());
c6ac678d 3564 else if (strcmp(this->name(), ".text") == 0)
6934001a
CC
3565 std::sort(sort_list.begin(), sort_list.end(),
3566 Input_section_sort_section_prefix_special_ordering_compare());
6e9ba2ca 3567 else
eb426534
RM
3568 std::sort(sort_list.begin(), sort_list.end(),
3569 Input_section_sort_compare());
6e9ba2ca 3570 }
2a0ff005 3571 else
6e9ba2ca 3572 {
e9552f7e 3573 gold_assert(this->input_section_order_specified());
6e9ba2ca 3574 std::sort(sort_list.begin(), sort_list.end(),
eb426534 3575 Input_section_sort_section_order_index_compare());
6e9ba2ca 3576 }
2fd32231
ILT
3577
3578 // Copy the sorted input sections back to our list.
3579 this->input_sections_.clear();
3580 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3581 p != sort_list.end();
3582 ++p)
3583 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3584 sort_list.clear();
2fd32231
ILT
3585
3586 // Remember that we sorted the input sections, since we might get
3587 // called again.
3588 this->attached_input_sections_are_sorted_ = true;
3589}
3590
61ba1cf9
ILT
3591// Write the section header to *OSHDR.
3592
3593template<int size, bool big_endian>
3594void
16649710
ILT
3595Output_section::write_header(const Layout* layout,
3596 const Stringpool* secnamepool,
61ba1cf9
ILT
3597 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3598{
3599 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3600 oshdr->put_sh_type(this->type_);
6a74a719 3601
2ea97941 3602 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3603 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3604 flags |= elfcpp::SHF_INFO_LINK;
3605 oshdr->put_sh_flags(flags);
6a74a719 3606
61ba1cf9
ILT
3607 oshdr->put_sh_addr(this->address());
3608 oshdr->put_sh_offset(this->offset());
3609 oshdr->put_sh_size(this->data_size());
16649710
ILT
3610 if (this->link_section_ != NULL)
3611 oshdr->put_sh_link(this->link_section_->out_shndx());
3612 else if (this->should_link_to_symtab_)
886f533a 3613 oshdr->put_sh_link(layout->symtab_section_shndx());
16649710
ILT
3614 else if (this->should_link_to_dynsym_)
3615 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3616 else
3617 oshdr->put_sh_link(this->link_);
755ab8af 3618
2ea97941 3619 elfcpp::Elf_Word info;
16649710 3620 if (this->info_section_ != NULL)
755ab8af
ILT
3621 {
3622 if (this->info_uses_section_index_)
2ea97941 3623 info = this->info_section_->out_shndx();
755ab8af 3624 else
2ea97941 3625 info = this->info_section_->symtab_index();
755ab8af 3626 }
6a74a719 3627 else if (this->info_symndx_ != NULL)
2ea97941 3628 info = this->info_symndx_->symtab_index();
16649710 3629 else
2ea97941
ILT
3630 info = this->info_;
3631 oshdr->put_sh_info(info);
755ab8af 3632
61ba1cf9
ILT
3633 oshdr->put_sh_addralign(this->addralign_);
3634 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3635}
3636
ead1e424
ILT
3637// Write out the data. For input sections the data is written out by
3638// Object::relocate, but we have to handle Output_section_data objects
3639// here.
3640
3641void
3642Output_section::do_write(Output_file* of)
3643{
96803768
ILT
3644 gold_assert(!this->requires_postprocessing());
3645
c0a62865
DK
3646 // If the target performs relaxation, we delay filler generation until now.
3647 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3648
c51e6221
ILT
3649 off_t output_section_file_offset = this->offset();
3650 for (Fill_list::iterator p = this->fills_.begin();
3651 p != this->fills_.end();
3652 ++p)
3653 {
8851ecca 3654 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3655 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3656 fill_data.data(), fill_data.size());
c51e6221
ILT
3657 }
3658
c0a62865 3659 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3660 for (Input_section_list::iterator p = this->input_sections_.begin();
3661 p != this->input_sections_.end();
3662 ++p)
c0a62865
DK
3663 {
3664 off_t aligned_off = align_address(off, p->addralign());
3665 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3666 {
3667 size_t fill_len = aligned_off - off;
3668 std::string fill_data(parameters->target().code_fill(fill_len));
3669 of->write(off, fill_data.data(), fill_data.size());
3670 }
3671
3672 p->write(of);
3673 off = aligned_off + p->data_size();
3674 }
8ea8cd50
CC
3675
3676 // For incremental links, fill in unused chunks in debug sections
3677 // with dummy compilation unit headers.
3678 if (this->free_space_fill_ != NULL)
3679 {
3680 for (Free_list::Const_iterator p = this->free_list_.begin();
3681 p != this->free_list_.end();
3682 ++p)
3683 {
3684 off_t off = p->start_;
3685 size_t len = p->end_ - off;
3686 this->free_space_fill_->write(of, this->offset() + off, len);
3687 }
3688 if (this->patch_space_ > 0)
3689 {
3690 off_t off = this->current_data_size_for_child() - this->patch_space_;
3691 this->free_space_fill_->write(of, this->offset() + off,
3692 this->patch_space_);
3693 }
3694 }
ead1e424
ILT
3695}
3696
96803768
ILT
3697// If a section requires postprocessing, create the buffer to use.
3698
3699void
3700Output_section::create_postprocessing_buffer()
3701{
3702 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3703
3704 if (this->postprocessing_buffer_ != NULL)
3705 return;
96803768
ILT
3706
3707 if (!this->input_sections_.empty())
3708 {
3709 off_t off = this->first_input_offset_;
3710 for (Input_section_list::iterator p = this->input_sections_.begin();
3711 p != this->input_sections_.end();
3712 ++p)
3713 {
3714 off = align_address(off, p->addralign());
3715 p->finalize_data_size();
3716 off += p->data_size();
3717 }
3718 this->set_current_data_size_for_child(off);
3719 }
3720
3721 off_t buffer_size = this->current_data_size_for_child();
3722 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3723}
3724
3725// Write all the data of an Output_section into the postprocessing
3726// buffer. This is used for sections which require postprocessing,
3727// such as compression. Input sections are handled by
3728// Object::Relocate.
3729
3730void
3731Output_section::write_to_postprocessing_buffer()
3732{
3733 gold_assert(this->requires_postprocessing());
3734
c0a62865
DK
3735 // If the target performs relaxation, we delay filler generation until now.
3736 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3737
96803768
ILT
3738 unsigned char* buffer = this->postprocessing_buffer();
3739 for (Fill_list::iterator p = this->fills_.begin();
3740 p != this->fills_.end();
3741 ++p)
3742 {
8851ecca 3743 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3744 memcpy(buffer + p->section_offset(), fill_data.data(),
3745 fill_data.size());
96803768
ILT
3746 }
3747
3748 off_t off = this->first_input_offset_;
3749 for (Input_section_list::iterator p = this->input_sections_.begin();
3750 p != this->input_sections_.end();
3751 ++p)
3752 {
c0a62865
DK
3753 off_t aligned_off = align_address(off, p->addralign());
3754 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3755 {
3756 size_t fill_len = aligned_off - off;
3757 std::string fill_data(parameters->target().code_fill(fill_len));
3758 memcpy(buffer + off, fill_data.data(), fill_data.size());
3759 }
3760
3761 p->write_to_buffer(buffer + aligned_off);
3762 off = aligned_off + p->data_size();
96803768
ILT
3763 }
3764}
3765
a445fddf
ILT
3766// Get the input sections for linker script processing. We leave
3767// behind the Output_section_data entries. Note that this may be
3768// slightly incorrect for merge sections. We will leave them behind,
3769// but it is possible that the script says that they should follow
3770// some other input sections, as in:
3771// .rodata { *(.rodata) *(.rodata.cst*) }
3772// For that matter, we don't handle this correctly:
3773// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3774// With luck this will never matter.
3775
3776uint64_t
3777Output_section::get_input_sections(
2ea97941 3778 uint64_t address,
a445fddf 3779 const std::string& fill,
6625d24e 3780 std::list<Input_section>* input_sections)
a445fddf 3781{
20e6d0d6
DK
3782 if (this->checkpoint_ != NULL
3783 && !this->checkpoint_->input_sections_saved())
3784 this->checkpoint_->save_input_sections();
3785
0439c796
DK
3786 // Invalidate fast look-up maps.
3787 this->lookup_maps_->invalidate();
c0a62865 3788
2ea97941 3789 uint64_t orig_address = address;
a445fddf 3790
2ea97941 3791 address = align_address(address, this->addralign());
a445fddf
ILT
3792
3793 Input_section_list remaining;
3794 for (Input_section_list::iterator p = this->input_sections_.begin();
3795 p != this->input_sections_.end();
3796 ++p)
3797 {
0439c796
DK
3798 if (p->is_input_section()
3799 || p->is_relaxed_input_section()
3800 || p->is_merge_section())
6625d24e 3801 input_sections->push_back(*p);
a445fddf
ILT
3802 else
3803 {
2ea97941
ILT
3804 uint64_t aligned_address = align_address(address, p->addralign());
3805 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3806 {
3807 section_size_type length =
2ea97941 3808 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3809 std::string this_fill;
3810 this_fill.reserve(length);
3811 while (this_fill.length() + fill.length() <= length)
3812 this_fill += fill;
3813 if (this_fill.length() < length)
3814 this_fill.append(fill, 0, length - this_fill.length());
3815
3816 Output_section_data* posd = new Output_data_const(this_fill, 0);
3817 remaining.push_back(Input_section(posd));
3818 }
2ea97941 3819 address = aligned_address;
a445fddf
ILT
3820
3821 remaining.push_back(*p);
3822
3823 p->finalize_data_size();
2ea97941 3824 address += p->data_size();
a445fddf
ILT
3825 }
3826 }
3827
3828 this->input_sections_.swap(remaining);
3829 this->first_input_offset_ = 0;
3830
2ea97941
ILT
3831 uint64_t data_size = address - orig_address;
3832 this->set_current_data_size_for_child(data_size);
3833 return data_size;
a445fddf
ILT
3834}
3835
6625d24e
DK
3836// Add a script input section. SIS is an Output_section::Input_section,
3837// which can be either a plain input section or a special input section like
3838// a relaxed input section. For a special input section, its size must be
3839// finalized.
a445fddf
ILT
3840
3841void
6625d24e 3842Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3843{
6625d24e
DK
3844 uint64_t data_size = sis.data_size();
3845 uint64_t addralign = sis.addralign();
2ea97941
ILT
3846 if (addralign > this->addralign_)
3847 this->addralign_ = addralign;
a445fddf
ILT
3848
3849 off_t offset_in_section = this->current_data_size_for_child();
3850 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3851 addralign);
a445fddf
ILT
3852
3853 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3854 + data_size);
a445fddf 3855
6625d24e 3856 this->input_sections_.push_back(sis);
0439c796 3857
50ed5eb1 3858 // Update fast lookup maps if necessary.
0439c796
DK
3859 if (this->lookup_maps_->is_valid())
3860 {
67f95b96 3861 if (sis.is_relaxed_input_section())
0439c796
DK
3862 {
3863 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3864 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3865 poris->shndx(), poris);
3866 }
3867 }
20e6d0d6
DK
3868}
3869
8923b24c 3870// Save states for relaxation.
20e6d0d6
DK
3871
3872void
3873Output_section::save_states()
3874{
3875 gold_assert(this->checkpoint_ == NULL);
3876 Checkpoint_output_section* checkpoint =
3877 new Checkpoint_output_section(this->addralign_, this->flags_,
3878 this->input_sections_,
3879 this->first_input_offset_,
3880 this->attached_input_sections_are_sorted_);
3881 this->checkpoint_ = checkpoint;
3882 gold_assert(this->fills_.empty());
3883}
3884
8923b24c
DK
3885void
3886Output_section::discard_states()
3887{
3888 gold_assert(this->checkpoint_ != NULL);
3889 delete this->checkpoint_;
3890 this->checkpoint_ = NULL;
3891 gold_assert(this->fills_.empty());
3892
0439c796
DK
3893 // Simply invalidate the fast lookup maps since we do not keep
3894 // track of them.
3895 this->lookup_maps_->invalidate();
8923b24c
DK
3896}
3897
20e6d0d6
DK
3898void
3899Output_section::restore_states()
3900{
3901 gold_assert(this->checkpoint_ != NULL);
3902 Checkpoint_output_section* checkpoint = this->checkpoint_;
3903
3904 this->addralign_ = checkpoint->addralign();
3905 this->flags_ = checkpoint->flags();
3906 this->first_input_offset_ = checkpoint->first_input_offset();
3907
3908 if (!checkpoint->input_sections_saved())
3909 {
3910 // If we have not copied the input sections, just resize it.
3911 size_t old_size = checkpoint->input_sections_size();
3912 gold_assert(this->input_sections_.size() >= old_size);
3913 this->input_sections_.resize(old_size);
3914 }
3915 else
3916 {
3917 // We need to copy the whole list. This is not efficient for
3918 // extremely large output with hundreads of thousands of input
3919 // objects. We may need to re-think how we should pass sections
3920 // to scripts.
c0a62865 3921 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3922 }
3923
3924 this->attached_input_sections_are_sorted_ =
3925 checkpoint->attached_input_sections_are_sorted();
c0a62865 3926
0439c796
DK
3927 // Simply invalidate the fast lookup maps since we do not keep
3928 // track of them.
3929 this->lookup_maps_->invalidate();
a445fddf
ILT
3930}
3931
8923b24c
DK
3932// Update the section offsets of input sections in this. This is required if
3933// relaxation causes some input sections to change sizes.
3934
3935void
3936Output_section::adjust_section_offsets()
3937{
3938 if (!this->section_offsets_need_adjustment_)
3939 return;
3940
3941 off_t off = 0;
3942 for (Input_section_list::iterator p = this->input_sections_.begin();
3943 p != this->input_sections_.end();
3944 ++p)
3945 {
3946 off = align_address(off, p->addralign());
3947 if (p->is_input_section())
3948 p->relobj()->set_section_offset(p->shndx(), off);
3949 off += p->data_size();
3950 }
3951
3952 this->section_offsets_need_adjustment_ = false;
3953}
3954
7d9e3d98
ILT
3955// Print to the map file.
3956
3957void
3958Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3959{
3960 mapfile->print_output_section(this);
3961
3962 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3963 p != this->input_sections_.end();
3964 ++p)
3965 p->print_to_mapfile(mapfile);
3966}
3967
38c5e8b4
ILT
3968// Print stats for merge sections to stderr.
3969
3970void
3971Output_section::print_merge_stats()
3972{
3973 Input_section_list::iterator p;
3974 for (p = this->input_sections_.begin();
3975 p != this->input_sections_.end();
3976 ++p)
3977 p->print_merge_stats(this->name_);
3978}
3979
cdc29364
CC
3980// Set a fixed layout for the section. Used for incremental update links.
3981
3982void
3983Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3984 off_t sh_size, uint64_t sh_addralign)
3985{
3986 this->addralign_ = sh_addralign;
3987 this->set_current_data_size(sh_size);
3988 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3989 this->set_address(sh_addr);
3990 this->set_file_offset(sh_offset);
3991 this->finalize_data_size();
3992 this->free_list_.init(sh_size, false);
3993 this->has_fixed_layout_ = true;
3994}
3995
3996// Reserve space within the fixed layout for the section. Used for
3997// incremental update links.
5146f448 3998
cdc29364
CC
3999void
4000Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4001{
4002 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4003}
4004
5146f448
CC
4005// Allocate space from the free list for the section. Used for
4006// incremental update links.
4007
4008off_t
4009Output_section::allocate(off_t len, uint64_t addralign)
4010{
4011 return this->free_list_.allocate(len, addralign, 0);
4012}
4013
a2fb1b05
ILT
4014// Output segment methods.
4015
2ea97941 4016Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 4017 : vaddr_(0),
a2fb1b05
ILT
4018 paddr_(0),
4019 memsz_(0),
a445fddf
ILT
4020 max_align_(0),
4021 min_p_align_(0),
a2fb1b05
ILT
4022 offset_(0),
4023 filesz_(0),
2ea97941
ILT
4024 type_(type),
4025 flags_(flags),
a445fddf 4026 is_max_align_known_(false),
8a5e3e08 4027 are_addresses_set_(false),
16164a6b
ST
4028 is_large_data_segment_(false),
4029 is_unique_segment_(false)
a2fb1b05 4030{
bb321bb1
ILT
4031 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4032 // the flags.
4033 if (type == elfcpp::PT_TLS)
4034 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
4035}
4036
22f0da72 4037// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
4038
4039void
22f0da72
ILT
4040Output_segment::add_output_section_to_load(Layout* layout,
4041 Output_section* os,
4042 elfcpp::Elf_Word seg_flags)
a2fb1b05 4043{
22f0da72 4044 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 4045 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 4046 gold_assert(!this->is_max_align_known_);
8a5e3e08 4047 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 4048
a192ba05 4049 this->update_flags_for_output_section(seg_flags);
75f65a3e 4050
22f0da72
ILT
4051 // We don't want to change the ordering if we have a linker script
4052 // with a SECTIONS clause.
4053 Output_section_order order = os->order();
4054 if (layout->script_options()->saw_sections_clause())
4055 order = static_cast<Output_section_order>(0);
75f65a3e 4056 else
22f0da72 4057 gold_assert(order != ORDER_INVALID);
54dc6425 4058
22f0da72
ILT
4059 this->output_lists_[order].push_back(os);
4060}
9f1d377b 4061
22f0da72 4062// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 4063
22f0da72
ILT
4064void
4065Output_segment::add_output_section_to_nonload(Output_section* os,
4066 elfcpp::Elf_Word seg_flags)
4067{
4068 gold_assert(this->type() != elfcpp::PT_LOAD);
4069 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4070 gold_assert(!this->is_max_align_known_);
1a2dff53 4071
22f0da72 4072 this->update_flags_for_output_section(seg_flags);
9f1d377b 4073
22f0da72
ILT
4074 this->output_lists_[0].push_back(os);
4075}
8a5e3e08 4076
22f0da72
ILT
4077// Remove an Output_section from this segment. It is an error if it
4078// is not present.
8a5e3e08 4079
22f0da72
ILT
4080void
4081Output_segment::remove_output_section(Output_section* os)
4082{
4083 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 4084 {
22f0da72
ILT
4085 Output_data_list* pdl = &this->output_lists_[i];
4086 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 4087 {
22f0da72 4088 if (*p == os)
8a5e3e08 4089 {
22f0da72 4090 pdl->erase(p);
8a5e3e08
ILT
4091 return;
4092 }
4093 }
f5c870d2 4094 }
1650c4ff
ILT
4095 gold_unreachable();
4096}
4097
a192ba05
ILT
4098// Add an Output_data (which need not be an Output_section) to the
4099// start of a segment.
75f65a3e
ILT
4100
4101void
4102Output_segment::add_initial_output_data(Output_data* od)
4103{
a445fddf 4104 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
4105 Output_data_list::iterator p = this->output_lists_[0].begin();
4106 this->output_lists_[0].insert(p, od);
4107}
4108
4109// Return true if this segment has any sections which hold actual
4110// data, rather than being a BSS section.
4111
4112bool
4113Output_segment::has_any_data_sections() const
4114{
4115 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4116 {
4117 const Output_data_list* pdl = &this->output_lists_[i];
4118 for (Output_data_list::const_iterator p = pdl->begin();
4119 p != pdl->end();
4120 ++p)
4121 {
4122 if (!(*p)->is_section())
4123 return true;
4124 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4125 return true;
4126 }
4127 }
4128 return false;
75f65a3e
ILT
4129}
4130
5bc2f5be
CC
4131// Return whether the first data section (not counting TLS sections)
4132// is a relro section.
9f1d377b
ILT
4133
4134bool
4135Output_segment::is_first_section_relro() const
4136{
22f0da72
ILT
4137 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4138 {
bccffdfd 4139 if (i == static_cast<int>(ORDER_TLS_BSS))
5bc2f5be 4140 continue;
22f0da72
ILT
4141 const Output_data_list* pdl = &this->output_lists_[i];
4142 if (!pdl->empty())
4143 {
4144 Output_data* p = pdl->front();
4145 return p->is_section() && p->output_section()->is_relro();
4146 }
4147 }
4148 return false;
9f1d377b
ILT
4149}
4150
75f65a3e 4151// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
4152
4153uint64_t
a445fddf 4154Output_segment::maximum_alignment()
75f65a3e 4155{
a445fddf 4156 if (!this->is_max_align_known_)
ead1e424 4157 {
22f0da72 4158 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
50ed5eb1 4159 {
22f0da72
ILT
4160 const Output_data_list* pdl = &this->output_lists_[i];
4161 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4162 if (addralign > this->max_align_)
4163 this->max_align_ = addralign;
4164 }
a445fddf 4165 this->is_max_align_known_ = true;
ead1e424
ILT
4166 }
4167
a445fddf 4168 return this->max_align_;
75f65a3e
ILT
4169}
4170
ead1e424
ILT
4171// Return the maximum alignment of a list of Output_data.
4172
4173uint64_t
a445fddf 4174Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
4175{
4176 uint64_t ret = 0;
4177 for (Output_data_list::const_iterator p = pdl->begin();
4178 p != pdl->end();
4179 ++p)
4180 {
2ea97941
ILT
4181 uint64_t addralign = (*p)->addralign();
4182 if (addralign > ret)
4183 ret = addralign;
ead1e424
ILT
4184 }
4185 return ret;
4186}
4187
22f0da72 4188// Return whether this segment has any dynamic relocs.
4f4c5f80 4189
22f0da72
ILT
4190bool
4191Output_segment::has_dynamic_reloc() const
4f4c5f80 4192{
22f0da72
ILT
4193 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4194 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4195 return true;
4196 return false;
4f4c5f80
ILT
4197}
4198
22f0da72 4199// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 4200
22f0da72
ILT
4201bool
4202Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 4203{
4f4c5f80
ILT
4204 for (Output_data_list::const_iterator p = pdl->begin();
4205 p != pdl->end();
4206 ++p)
22f0da72
ILT
4207 if ((*p)->has_dynamic_reloc())
4208 return true;
4209 return false;
4f4c5f80
ILT
4210}
4211
a445fddf
ILT
4212// Set the section addresses for an Output_segment. If RESET is true,
4213// reset the addresses first. ADDR is the address and *POFF is the
4214// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
4215// INCREASE_RELRO is the size of the portion of the first non-relro
4216// section that should be included in the PT_GNU_RELRO segment.
4217// If this segment has relro sections, and has been aligned for
4218// that purpose, set *HAS_RELRO to TRUE. Return the address of
4219// the immediately following segment. Update *HAS_RELRO, *POFF,
4220// and *PSHNDX.
75f65a3e
ILT
4221
4222uint64_t
eb426534
RM
4223Output_segment::set_section_addresses(const Target* target,
4224 Layout* layout, bool reset,
4225 uint64_t addr,
fd064a5b 4226 unsigned int* increase_relro,
fc497986 4227 bool* has_relro,
1a2dff53 4228 off_t* poff,
ead1e424 4229 unsigned int* pshndx)
75f65a3e 4230{
a3ad94ed 4231 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 4232
fc497986 4233 uint64_t last_relro_pad = 0;
1a2dff53
ILT
4234 off_t orig_off = *poff;
4235
5bc2f5be
CC
4236 bool in_tls = false;
4237
1a2dff53 4238 // If we have relro sections, we need to pad forward now so that the
815a1205 4239 // relro sections plus INCREASE_RELRO end on an abi page boundary.
1a2dff53
ILT
4240 if (parameters->options().relro()
4241 && this->is_first_section_relro()
4242 && (!this->are_addresses_set_ || reset))
4243 {
4244 uint64_t relro_size = 0;
4245 off_t off = *poff;
fc497986 4246 uint64_t max_align = 0;
5bc2f5be 4247 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 4248 {
22f0da72
ILT
4249 Output_data_list* pdl = &this->output_lists_[i];
4250 Output_data_list::iterator p;
4251 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 4252 {
22f0da72
ILT
4253 if (!(*p)->is_section())
4254 break;
fc497986
CC
4255 uint64_t align = (*p)->addralign();
4256 if (align > max_align)
4257 max_align = align;
5bc2f5be
CC
4258 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4259 in_tls = true;
4260 else if (in_tls)
4261 {
4262 // Align the first non-TLS section to the alignment
4263 // of the TLS segment.
4264 align = max_align;
4265 in_tls = false;
4266 }
5bc2f5be
CC
4267 // Ignore the size of the .tbss section.
4268 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4269 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4270 continue;
bccffdfd 4271 relro_size = align_address(relro_size, align);
22f0da72
ILT
4272 if ((*p)->is_address_valid())
4273 relro_size += (*p)->data_size();
4274 else
4275 {
4276 // FIXME: This could be faster.
5485698a
CC
4277 (*p)->set_address_and_file_offset(relro_size,
4278 relro_size);
22f0da72
ILT
4279 relro_size += (*p)->data_size();
4280 (*p)->reset_address_and_file_offset();
4281 }
1a2dff53 4282 }
22f0da72
ILT
4283 if (p != pdl->end())
4284 break;
1a2dff53 4285 }
fd064a5b 4286 relro_size += *increase_relro;
fc497986
CC
4287 // Pad the total relro size to a multiple of the maximum
4288 // section alignment seen.
4289 uint64_t aligned_size = align_address(relro_size, max_align);
4290 // Note the amount of padding added after the last relro section.
4291 last_relro_pad = aligned_size - relro_size;
fc497986 4292 *has_relro = true;
1a2dff53 4293
815a1205 4294 uint64_t page_align = parameters->target().abi_pagesize();
1a2dff53
ILT
4295
4296 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 4297 uint64_t desired_align = page_align - (aligned_size % page_align);
5485698a
CC
4298 if (desired_align < off % page_align)
4299 off += page_align;
4300 off += desired_align - off % page_align;
4301 addr += off - orig_off;
4302 orig_off = off;
4303 *poff = off;
1a2dff53
ILT
4304 }
4305
a445fddf
ILT
4306 if (!reset && this->are_addresses_set_)
4307 {
4308 gold_assert(this->paddr_ == addr);
4309 addr = this->vaddr_;
4310 }
4311 else
4312 {
4313 this->vaddr_ = addr;
4314 this->paddr_ = addr;
4315 this->are_addresses_set_ = true;
4316 }
75f65a3e 4317
5bc2f5be 4318 in_tls = false;
96a2b4e4 4319
75f65a3e
ILT
4320 this->offset_ = orig_off;
4321
22f0da72
ILT
4322 off_t off = 0;
4323 uint64_t ret;
4324 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4325 {
fc497986
CC
4326 if (i == static_cast<int>(ORDER_RELRO_LAST))
4327 {
4328 *poff += last_relro_pad;
4329 addr += last_relro_pad;
fd064a5b
CC
4330 if (this->output_lists_[i].empty())
4331 {
4332 // If there is nothing in the ORDER_RELRO_LAST list,
4333 // the padding will occur at the end of the relro
4334 // segment, and we need to add it to *INCREASE_RELRO.
4335 *increase_relro += last_relro_pad;
4336 }
fc497986 4337 }
5bc2f5be
CC
4338 addr = this->set_section_list_addresses(layout, reset,
4339 &this->output_lists_[i],
4340 addr, poff, pshndx, &in_tls);
22f0da72
ILT
4341 if (i < static_cast<int>(ORDER_SMALL_BSS))
4342 {
4343 this->filesz_ = *poff - orig_off;
4344 off = *poff;
4345 }
75f65a3e 4346
22f0da72
ILT
4347 ret = addr;
4348 }
96a2b4e4
ILT
4349
4350 // If the last section was a TLS section, align upward to the
4351 // alignment of the TLS segment, so that the overall size of the TLS
4352 // segment is aligned.
4353 if (in_tls)
4354 {
4355 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4356 *poff = align_address(*poff, segment_align);
4357 }
4358
75f65a3e
ILT
4359 this->memsz_ = *poff - orig_off;
4360
4361 // Ignore the file offset adjustments made by the BSS Output_data
4362 // objects.
4363 *poff = off;
61ba1cf9 4364
eb426534
RM
4365 // If code segments must contain only code, and this code segment is
4366 // page-aligned in the file, then fill it out to a whole page with
4367 // code fill (the tail of the segment will not be within any section).
4368 // Thus the entire code segment can be mapped from the file as whole
4369 // pages and that mapping will contain only valid instructions.
4370 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4371 {
4372 uint64_t abi_pagesize = target->abi_pagesize();
4373 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4374 {
4375 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4376
4377 std::string fill_data;
4378 if (target->has_code_fill())
4379 fill_data = target->code_fill(fill_size);
4380 else
4381 fill_data.resize(fill_size); // Zero fill.
4382
4383 Output_data_const* fill = new Output_data_const(fill_data, 0);
4384 fill->set_address(this->vaddr_ + this->memsz_);
4385 fill->set_file_offset(off);
4386 layout->add_relax_output(fill);
4387
4388 off += fill_size;
4389 gold_assert(off % abi_pagesize == 0);
4390 ret += fill_size;
4391 gold_assert(ret % abi_pagesize == 0);
4392
4393 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4394 this->memsz_ = this->filesz_ += fill_size;
4395
4396 *poff = off;
4397 }
4398 }
4399
61ba1cf9 4400 return ret;
75f65a3e
ILT
4401}
4402
b8e6aad9
ILT
4403// Set the addresses and file offsets in a list of Output_data
4404// structures.
75f65a3e
ILT
4405
4406uint64_t
cdc29364 4407Output_segment::set_section_list_addresses(Layout* layout, bool reset,
eb426534 4408 Output_data_list* pdl,
ead1e424 4409 uint64_t addr, off_t* poff,
96a2b4e4 4410 unsigned int* pshndx,
eb426534 4411 bool* in_tls)
75f65a3e 4412{
ead1e424 4413 off_t startoff = *poff;
cdc29364
CC
4414 // For incremental updates, we may allocate non-fixed sections from
4415 // free space in the file. This keeps track of the high-water mark.
4416 off_t maxoff = startoff;
75f65a3e 4417
ead1e424 4418 off_t off = startoff;
75f65a3e
ILT
4419 for (Output_data_list::iterator p = pdl->begin();
4420 p != pdl->end();
4421 ++p)
4422 {
a445fddf
ILT
4423 if (reset)
4424 (*p)->reset_address_and_file_offset();
4425
cdc29364
CC
4426 // When doing an incremental update or when using a linker script,
4427 // the section will most likely already have an address.
a445fddf 4428 if (!(*p)->is_address_valid())
3802b2dd 4429 {
eb426534
RM
4430 uint64_t align = (*p)->addralign();
4431
4432 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4433 {
4434 // Give the first TLS section the alignment of the
4435 // entire TLS segment. Otherwise the TLS segment as a
4436 // whole may be misaligned.
4437 if (!*in_tls)
4438 {
4439 Output_segment* tls_segment = layout->tls_segment();
4440 gold_assert(tls_segment != NULL);
4441 uint64_t segment_align = tls_segment->maximum_alignment();
4442 gold_assert(segment_align >= align);
4443 align = segment_align;
4444
4445 *in_tls = true;
4446 }
4447 }
4448 else
4449 {
4450 // If this is the first section after the TLS segment,
4451 // align it to at least the alignment of the TLS
4452 // segment, so that the size of the overall TLS segment
4453 // is aligned.
4454 if (*in_tls)
4455 {
4456 uint64_t segment_align =
4457 layout->tls_segment()->maximum_alignment();
4458 if (segment_align > align)
4459 align = segment_align;
4460
4461 *in_tls = false;
4462 }
4463 }
96a2b4e4 4464
fb0e076f 4465 if (!parameters->incremental_update())
cdc29364
CC
4466 {
4467 off = align_address(off, align);
4468 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4469 }
4470 else
4471 {
4472 // Incremental update: allocate file space from free list.
4473 (*p)->pre_finalize_data_size();
4474 off_t current_size = (*p)->current_data_size();
4475 off = layout->allocate(current_size, align, startoff);
4476 if (off == -1)
eb426534 4477 {
cdc29364 4478 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4479 gold_fallback(_("out of patch space for section %s; "
4480 "relink with --incremental-full"),
4481 (*p)->output_section()->name());
eb426534 4482 }
cdc29364
CC
4483 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4484 if ((*p)->data_size() > current_size)
4485 {
4486 gold_assert((*p)->output_section() != NULL);
e6455dfb
CC
4487 gold_fallback(_("%s: section changed size; "
4488 "relink with --incremental-full"),
4489 (*p)->output_section()->name());
cdc29364
CC
4490 }
4491 }
3802b2dd 4492 }
cdc29364 4493 else if (parameters->incremental_update())
eb426534
RM
4494 {
4495 // For incremental updates, use the fixed offset for the
4496 // high-water mark computation.
4497 off = (*p)->offset();
4498 }
a445fddf
ILT
4499 else
4500 {
4501 // The script may have inserted a skip forward, but it
4502 // better not have moved backward.
661be1e2
ILT
4503 if ((*p)->address() >= addr + (off - startoff))
4504 off += (*p)->address() - (addr + (off - startoff));
4505 else
4506 {
4507 if (!layout->script_options()->saw_sections_clause())
4508 gold_unreachable();
4509 else
4510 {
4511 Output_section* os = (*p)->output_section();
64b1ae37
DK
4512
4513 // Cast to unsigned long long to avoid format warnings.
4514 unsigned long long previous_dot =
4515 static_cast<unsigned long long>(addr + (off - startoff));
4516 unsigned long long dot =
4517 static_cast<unsigned long long>((*p)->address());
4518
661be1e2
ILT
4519 if (os == NULL)
4520 gold_error(_("dot moves backward in linker script "
64b1ae37 4521 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
4522 else
4523 gold_error(_("address of section '%s' moves backward "
4524 "from 0x%llx to 0x%llx"),
64b1ae37 4525 os->name(), previous_dot, dot);
661be1e2
ILT
4526 }
4527 }
a445fddf
ILT
4528 (*p)->set_file_offset(off);
4529 (*p)->finalize_data_size();
4530 }
ead1e424 4531
9fbd3822
CC
4532 if (parameters->incremental_update())
4533 gold_debug(DEBUG_INCREMENTAL,
4534 "set_section_list_addresses: %08lx %08lx %s",
4535 static_cast<long>(off),
4536 static_cast<long>((*p)->data_size()),
4537 ((*p)->output_section() != NULL
4538 ? (*p)->output_section()->name() : "(special)"));
4539
4540 // We want to ignore the size of a SHF_TLS SHT_NOBITS
96a2b4e4
ILT
4541 // section. Such a section does not affect the size of a
4542 // PT_LOAD segment.
4543 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
4544 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4545 off += (*p)->data_size();
75f65a3e 4546
cdc29364 4547 if (off > maxoff)
eb426534 4548 maxoff = off;
cdc29364 4549
ead1e424
ILT
4550 if ((*p)->is_section())
4551 {
4552 (*p)->set_out_shndx(*pshndx);
4553 ++*pshndx;
4554 }
75f65a3e
ILT
4555 }
4556
cdc29364
CC
4557 *poff = maxoff;
4558 return addr + (maxoff - startoff);
75f65a3e
ILT
4559}
4560
4561// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 4562// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
4563
4564void
1a2dff53 4565Output_segment::set_offset(unsigned int increase)
75f65a3e 4566{
a3ad94ed 4567 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 4568
a445fddf
ILT
4569 gold_assert(!this->are_addresses_set_);
4570
22f0da72
ILT
4571 // A non-load section only uses output_lists_[0].
4572
4573 Output_data_list* pdl = &this->output_lists_[0];
4574
4575 if (pdl->empty())
75f65a3e 4576 {
1a2dff53 4577 gold_assert(increase == 0);
75f65a3e
ILT
4578 this->vaddr_ = 0;
4579 this->paddr_ = 0;
a445fddf 4580 this->are_addresses_set_ = true;
75f65a3e 4581 this->memsz_ = 0;
a445fddf 4582 this->min_p_align_ = 0;
75f65a3e
ILT
4583 this->offset_ = 0;
4584 this->filesz_ = 0;
4585 return;
4586 }
4587
22f0da72 4588 // Find the first and last section by address.
5f1ab67a
ILT
4589 const Output_data* first = NULL;
4590 const Output_data* last_data = NULL;
4591 const Output_data* last_bss = NULL;
22f0da72
ILT
4592 for (Output_data_list::const_iterator p = pdl->begin();
4593 p != pdl->end();
4594 ++p)
4595 {
4596 if (first == NULL
4597 || (*p)->address() < first->address()
4598 || ((*p)->address() == first->address()
4599 && (*p)->data_size() < first->data_size()))
4600 first = *p;
4601 const Output_data** plast;
4602 if ((*p)->is_section()
4603 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4604 plast = &last_bss;
4605 else
4606 plast = &last_data;
4607 if (*plast == NULL
4608 || (*p)->address() > (*plast)->address()
4609 || ((*p)->address() == (*plast)->address()
4610 && (*p)->data_size() > (*plast)->data_size()))
4611 *plast = *p;
4612 }
5f1ab67a 4613
75f65a3e 4614 this->vaddr_ = first->address();
a445fddf
ILT
4615 this->paddr_ = (first->has_load_address()
4616 ? first->load_address()
4617 : this->vaddr_);
4618 this->are_addresses_set_ = true;
75f65a3e
ILT
4619 this->offset_ = first->offset();
4620
22f0da72 4621 if (last_data == NULL)
75f65a3e
ILT
4622 this->filesz_ = 0;
4623 else
5f1ab67a
ILT
4624 this->filesz_ = (last_data->address()
4625 + last_data->data_size()
4626 - this->vaddr_);
75f65a3e 4627
5f1ab67a 4628 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4629 this->memsz_ = (last->address()
4630 + last->data_size()
4631 - this->vaddr_);
96a2b4e4 4632
1a2dff53
ILT
4633 this->filesz_ += increase;
4634 this->memsz_ += increase;
4635
fd064a5b
CC
4636 // If this is a RELRO segment, verify that the segment ends at a
4637 // page boundary.
4638 if (this->type_ == elfcpp::PT_GNU_RELRO)
4639 {
815a1205 4640 uint64_t page_align = parameters->target().abi_pagesize();
fd064a5b 4641 uint64_t segment_end = this->vaddr_ + this->memsz_;
cdc29364
CC
4642 if (parameters->incremental_update())
4643 {
4644 // The INCREASE_RELRO calculation is bypassed for an incremental
4645 // update, so we need to adjust the segment size manually here.
4646 segment_end = align_address(segment_end, page_align);
4647 this->memsz_ = segment_end - this->vaddr_;
4648 }
4649 else
4650 gold_assert(segment_end == align_address(segment_end, page_align));
fd064a5b
CC
4651 }
4652
96a2b4e4
ILT
4653 // If this is a TLS segment, align the memory size. The code in
4654 // set_section_list ensures that the section after the TLS segment
4655 // is aligned to give us room.
4656 if (this->type_ == elfcpp::PT_TLS)
4657 {
4658 uint64_t segment_align = this->maximum_alignment();
4659 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4660 this->memsz_ = align_address(this->memsz_, segment_align);
4661 }
75f65a3e
ILT
4662}
4663
7bf1f802
ILT
4664// Set the TLS offsets of the sections in the PT_TLS segment.
4665
4666void
4667Output_segment::set_tls_offsets()
4668{
4669 gold_assert(this->type_ == elfcpp::PT_TLS);
4670
22f0da72
ILT
4671 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4672 p != this->output_lists_[0].end();
7bf1f802
ILT
4673 ++p)
4674 (*p)->set_tls_offset(this->vaddr_);
4675}
4676
7404fe1b 4677// Return the first section.
a445fddf 4678
7404fe1b
AM
4679Output_section*
4680Output_segment::first_section() const
a445fddf 4681{
22f0da72
ILT
4682 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4683 {
4684 const Output_data_list* pdl = &this->output_lists_[i];
4685 for (Output_data_list::const_iterator p = pdl->begin();
4686 p != pdl->end();
4687 ++p)
4688 {
4689 if ((*p)->is_section())
7404fe1b 4690 return (*p)->output_section();
22f0da72
ILT
4691 }
4692 }
a445fddf
ILT
4693 gold_unreachable();
4694}
4695
75f65a3e
ILT
4696// Return the number of Output_sections in an Output_segment.
4697
4698unsigned int
4699Output_segment::output_section_count() const
4700{
22f0da72
ILT
4701 unsigned int ret = 0;
4702 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4703 ret += this->output_section_count_list(&this->output_lists_[i]);
4704 return ret;
75f65a3e
ILT
4705}
4706
4707// Return the number of Output_sections in an Output_data_list.
4708
4709unsigned int
4710Output_segment::output_section_count_list(const Output_data_list* pdl) const
4711{
4712 unsigned int count = 0;
4713 for (Output_data_list::const_iterator p = pdl->begin();
4714 p != pdl->end();
4715 ++p)
4716 {
4717 if ((*p)->is_section())
4718 ++count;
4719 }
4720 return count;
a2fb1b05
ILT
4721}
4722
1c4f3631
ILT
4723// Return the section attached to the list segment with the lowest
4724// load address. This is used when handling a PHDRS clause in a
4725// linker script.
4726
4727Output_section*
4728Output_segment::section_with_lowest_load_address() const
4729{
4730 Output_section* found = NULL;
4731 uint64_t found_lma = 0;
22f0da72
ILT
4732 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4733 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4734 &found_lma);
1c4f3631
ILT
4735 return found;
4736}
4737
4738// Look through a list for a section with a lower load address.
4739
4740void
4741Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4742 Output_section** found,
4743 uint64_t* found_lma) const
4744{
4745 for (Output_data_list::const_iterator p = pdl->begin();
4746 p != pdl->end();
4747 ++p)
4748 {
4749 if (!(*p)->is_section())
4750 continue;
4751 Output_section* os = static_cast<Output_section*>(*p);
4752 uint64_t lma = (os->has_load_address()
4753 ? os->load_address()
4754 : os->address());
4755 if (*found == NULL || lma < *found_lma)
4756 {
4757 *found = os;
4758 *found_lma = lma;
4759 }
4760 }
4761}
4762
61ba1cf9
ILT
4763// Write the segment data into *OPHDR.
4764
4765template<int size, bool big_endian>
4766void
ead1e424 4767Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4768{
4769 ophdr->put_p_type(this->type_);
4770 ophdr->put_p_offset(this->offset_);
4771 ophdr->put_p_vaddr(this->vaddr_);
4772 ophdr->put_p_paddr(this->paddr_);
4773 ophdr->put_p_filesz(this->filesz_);
4774 ophdr->put_p_memsz(this->memsz_);
4775 ophdr->put_p_flags(this->flags_);
a445fddf 4776 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4777}
4778
4779// Write the section headers into V.
4780
4781template<int size, bool big_endian>
4782unsigned char*
16649710
ILT
4783Output_segment::write_section_headers(const Layout* layout,
4784 const Stringpool* secnamepool,
ead1e424 4785 unsigned char* v,
ca09d69a 4786 unsigned int* pshndx) const
5482377d 4787{
ead1e424
ILT
4788 // Every section that is attached to a segment must be attached to a
4789 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4790 // segments.
4791 if (this->type_ != elfcpp::PT_LOAD)
4792 return v;
4793
22f0da72
ILT
4794 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4795 {
4796 const Output_data_list* pdl = &this->output_lists_[i];
4797 v = this->write_section_headers_list<size, big_endian>(layout,
4798 secnamepool,
4799 pdl,
4800 v, pshndx);
4801 }
4802
61ba1cf9
ILT
4803 return v;
4804}
4805
4806template<int size, bool big_endian>
4807unsigned char*
16649710
ILT
4808Output_segment::write_section_headers_list(const Layout* layout,
4809 const Stringpool* secnamepool,
61ba1cf9 4810 const Output_data_list* pdl,
ead1e424 4811 unsigned char* v,
7d1a9ebb 4812 unsigned int* pshndx) const
61ba1cf9
ILT
4813{
4814 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4815 for (Output_data_list::const_iterator p = pdl->begin();
4816 p != pdl->end();
4817 ++p)
4818 {
4819 if ((*p)->is_section())
4820 {
5482377d 4821 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4822 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4823 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4824 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4825 v += shdr_size;
ead1e424 4826 ++*pshndx;
61ba1cf9
ILT
4827 }
4828 }
4829 return v;
4830}
4831
7d9e3d98
ILT
4832// Print the output sections to the map file.
4833
4834void
4835Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4836{
4837 if (this->type() != elfcpp::PT_LOAD)
4838 return;
22f0da72
ILT
4839 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4840 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4841}
4842
4843// Print an output section list to the map file.
4844
4845void
4846Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4847 const Output_data_list* pdl) const
4848{
4849 for (Output_data_list::const_iterator p = pdl->begin();
4850 p != pdl->end();
4851 ++p)
4852 (*p)->print_to_mapfile(mapfile);
4853}
4854
a2fb1b05
ILT
4855// Output_file methods.
4856
14144f39
ILT
4857Output_file::Output_file(const char* name)
4858 : name_(name),
61ba1cf9
ILT
4859 o_(-1),
4860 file_size_(0),
c420411f 4861 base_(NULL),
516cb3d0 4862 map_is_anonymous_(false),
88597d34 4863 map_is_allocated_(false),
516cb3d0 4864 is_temporary_(false)
61ba1cf9
ILT
4865{
4866}
4867
404c2abb 4868// Try to open an existing file. Returns false if the file doesn't
aa92d6ed
CC
4869// exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4870// NULL, open that file as the base for incremental linking, and
4871// copy its contents to the new output file. This routine can
4872// be called for incremental updates, in which case WRITABLE should
4873// be true, or by the incremental-dump utility, in which case
4874// WRITABLE should be false.
404c2abb
ILT
4875
4876bool
aa92d6ed 4877Output_file::open_base_file(const char* base_name, bool writable)
404c2abb
ILT
4878{
4879 // The name "-" means "stdout".
4880 if (strcmp(this->name_, "-") == 0)
4881 return false;
4882
aa92d6ed
CC
4883 bool use_base_file = base_name != NULL;
4884 if (!use_base_file)
4885 base_name = this->name_;
4886 else if (strcmp(base_name, this->name_) == 0)
4887 gold_fatal(_("%s: incremental base and output file name are the same"),
4888 base_name);
4889
404c2abb
ILT
4890 // Don't bother opening files with a size of zero.
4891 struct stat s;
aa92d6ed
CC
4892 if (::stat(base_name, &s) != 0)
4893 {
4894 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4895 return false;
4896 }
4897 if (s.st_size == 0)
4898 {
4899 gold_info(_("%s: incremental base file is empty"), base_name);
4900 return false;
4901 }
4902
4903 // If we're using a base file, we want to open it read-only.
4904 if (use_base_file)
4905 writable = false;
404c2abb 4906
aa92d6ed
CC
4907 int oflags = writable ? O_RDWR : O_RDONLY;
4908 int o = open_descriptor(-1, base_name, oflags, 0);
404c2abb 4909 if (o < 0)
aa92d6ed
CC
4910 {
4911 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4912 return false;
4913 }
4914
4915 // If the base file and the output file are different, open a
4916 // new output file and read the contents from the base file into
4917 // the newly-mapped region.
4918 if (use_base_file)
4919 {
4920 this->open(s.st_size);
dfb45471
CC
4921 ssize_t bytes_to_read = s.st_size;
4922 unsigned char* p = this->base_;
4923 while (bytes_to_read > 0)
4924 {
4925 ssize_t len = ::read(o, p, bytes_to_read);
4926 if (len < 0)
4927 {
4928 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4929 return false;
4930 }
4931 if (len == 0)
4932 {
4933 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4934 base_name,
4935 static_cast<long long>(s.st_size - bytes_to_read),
4936 static_cast<long long>(s.st_size));
4937 return false;
4938 }
4939 p += len;
4940 bytes_to_read -= len;
4941 }
aa92d6ed
CC
4942 ::close(o);
4943 return true;
4944 }
4945
404c2abb
ILT
4946 this->o_ = o;
4947 this->file_size_ = s.st_size;
4948
aa92d6ed 4949 if (!this->map_no_anonymous(writable))
404c2abb
ILT
4950 {
4951 release_descriptor(o, true);
4952 this->o_ = -1;
4953 this->file_size_ = 0;
4954 return false;
4955 }
4956
4957 return true;
4958}
4959
61ba1cf9
ILT
4960// Open the output file.
4961
a2fb1b05 4962void
61ba1cf9 4963Output_file::open(off_t file_size)
a2fb1b05 4964{
61ba1cf9
ILT
4965 this->file_size_ = file_size;
4966
4e9d8586
ILT
4967 // Unlink the file first; otherwise the open() may fail if the file
4968 // is busy (e.g. it's an executable that's currently being executed).
4969 //
4970 // However, the linker may be part of a system where a zero-length
4971 // file is created for it to write to, with tight permissions (gcc
4972 // 2.95 did something like this). Unlinking the file would work
4973 // around those permission controls, so we only unlink if the file
4974 // has a non-zero size. We also unlink only regular files to avoid
4975 // trouble with directories/etc.
4976 //
4977 // If we fail, continue; this command is merely a best-effort attempt
4978 // to improve the odds for open().
4979
42a1b686 4980 // We let the name "-" mean "stdout"
516cb3d0 4981 if (!this->is_temporary_)
42a1b686 4982 {
516cb3d0
ILT
4983 if (strcmp(this->name_, "-") == 0)
4984 this->o_ = STDOUT_FILENO;
4985 else
4986 {
4987 struct stat s;
6a89f575
CC
4988 if (::stat(this->name_, &s) == 0
4989 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4990 {
4991 if (s.st_size != 0)
4992 ::unlink(this->name_);
4993 else if (!parameters->options().relocatable())
4994 {
4995 // If we don't unlink the existing file, add execute
4996 // permission where read permissions already exist
4997 // and where the umask permits.
4998 int mask = ::umask(0);
4999 ::umask(mask);
5000 s.st_mode |= (s.st_mode & 0444) >> 2;
5001 ::chmod(this->name_, s.st_mode & ~mask);
5002 }
5003 }
516cb3d0 5004
8851ecca 5005 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
5006 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5007 mode);
516cb3d0
ILT
5008 if (o < 0)
5009 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5010 this->o_ = o;
5011 }
42a1b686 5012 }
61ba1cf9 5013
27bc2bce
ILT
5014 this->map();
5015}
5016
5017// Resize the output file.
5018
5019void
5020Output_file::resize(off_t file_size)
5021{
c420411f
ILT
5022 // If the mmap is mapping an anonymous memory buffer, this is easy:
5023 // just mremap to the new size. If it's mapping to a file, we want
5024 // to unmap to flush to the file, then remap after growing the file.
5025 if (this->map_is_anonymous_)
5026 {
88597d34
ILT
5027 void* base;
5028 if (!this->map_is_allocated_)
5029 {
5030 base = ::mremap(this->base_, this->file_size_, file_size,
5031 MREMAP_MAYMOVE);
5032 if (base == MAP_FAILED)
5033 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5034 }
5035 else
5036 {
5037 base = realloc(this->base_, file_size);
5038 if (base == NULL)
5039 gold_nomem();
5040 if (file_size > this->file_size_)
5041 memset(static_cast<char*>(base) + this->file_size_, 0,
5042 file_size - this->file_size_);
5043 }
c420411f
ILT
5044 this->base_ = static_cast<unsigned char*>(base);
5045 this->file_size_ = file_size;
5046 }
5047 else
5048 {
5049 this->unmap();
5050 this->file_size_ = file_size;
aa92d6ed 5051 if (!this->map_no_anonymous(true))
fdcac5af 5052 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 5053 }
27bc2bce
ILT
5054}
5055
404c2abb
ILT
5056// Map an anonymous block of memory which will later be written to the
5057// file. Return whether the map succeeded.
26736d8e 5058
404c2abb 5059bool
26736d8e
ILT
5060Output_file::map_anonymous()
5061{
404c2abb
ILT
5062 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5063 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
88597d34 5064 if (base == MAP_FAILED)
404c2abb 5065 {
88597d34
ILT
5066 base = malloc(this->file_size_);
5067 if (base == NULL)
5068 return false;
5069 memset(base, 0, this->file_size_);
5070 this->map_is_allocated_ = true;
404c2abb 5071 }
88597d34
ILT
5072 this->base_ = static_cast<unsigned char*>(base);
5073 this->map_is_anonymous_ = true;
5074 return true;
26736d8e
ILT
5075}
5076
404c2abb 5077// Map the file into memory. Return whether the mapping succeeded.
aa92d6ed 5078// If WRITABLE is true, map with write access.
27bc2bce 5079
404c2abb 5080bool
aa92d6ed 5081Output_file::map_no_anonymous(bool writable)
27bc2bce 5082{
c420411f 5083 const int o = this->o_;
61ba1cf9 5084
c420411f
ILT
5085 // If the output file is not a regular file, don't try to mmap it;
5086 // instead, we'll mmap a block of memory (an anonymous buffer), and
5087 // then later write the buffer to the file.
5088 void* base;
5089 struct stat statbuf;
42a1b686
ILT
5090 if (o == STDOUT_FILENO || o == STDERR_FILENO
5091 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
5092 || !S_ISREG(statbuf.st_mode)
5093 || this->is_temporary_)
404c2abb
ILT
5094 return false;
5095
5096 // Ensure that we have disk space available for the file. If we
5097 // don't do this, it is possible that we will call munmap, close,
5098 // and exit with dirty buffers still in the cache with no assigned
5099 // disk blocks. If the disk is out of space at that point, the
5100 // output file will wind up incomplete, but we will have already
5101 // exited. The alternative to fallocate would be to use fdatasync,
5102 // but that would be a more significant performance hit.
bab9090f
CC
5103 if (writable)
5104 {
7c0640fa 5105 int err = gold_fallocate(o, 0, this->file_size_);
bab9090f
CC
5106 if (err != 0)
5107 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5108 }
404c2abb
ILT
5109
5110 // Map the file into memory.
aa92d6ed
CC
5111 int prot = PROT_READ;
5112 if (writable)
5113 prot |= PROT_WRITE;
5114 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
404c2abb
ILT
5115
5116 // The mmap call might fail because of file system issues: the file
5117 // system might not support mmap at all, or it might not support
5118 // mmap with PROT_WRITE.
61ba1cf9 5119 if (base == MAP_FAILED)
404c2abb
ILT
5120 return false;
5121
5122 this->map_is_anonymous_ = false;
61ba1cf9 5123 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
5124 return true;
5125}
5126
5127// Map the file into memory.
5128
5129void
5130Output_file::map()
5131{
7c0640fa
CC
5132 if (parameters->options().mmap_output_file()
5133 && this->map_no_anonymous(true))
404c2abb
ILT
5134 return;
5135
5136 // The mmap call might fail because of file system issues: the file
5137 // system might not support mmap at all, or it might not support
5138 // mmap with PROT_WRITE. I'm not sure which errno values we will
5139 // see in all cases, so if the mmap fails for any reason and we
5140 // don't care about file contents, try for an anonymous map.
5141 if (this->map_anonymous())
5142 return;
5143
5144 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
eb426534
RM
5145 this->name_, static_cast<unsigned long>(this->file_size_),
5146 strerror(errno));
61ba1cf9
ILT
5147}
5148
c420411f 5149// Unmap the file from memory.
61ba1cf9
ILT
5150
5151void
c420411f 5152Output_file::unmap()
61ba1cf9 5153{
88597d34
ILT
5154 if (this->map_is_anonymous_)
5155 {
5156 // We've already written out the data, so there is no reason to
5157 // waste time unmapping or freeing the memory.
5158 }
5159 else
5160 {
5161 if (::munmap(this->base_, this->file_size_) < 0)
5162 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5163 }
61ba1cf9 5164 this->base_ = NULL;
c420411f
ILT
5165}
5166
5167// Close the output file.
5168
5169void
5170Output_file::close()
5171{
5172 // If the map isn't file-backed, we need to write it now.
516cb3d0 5173 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
5174 {
5175 size_t bytes_to_write = this->file_size_;
6d1e3092 5176 size_t offset = 0;
c420411f 5177 while (bytes_to_write > 0)
eb426534
RM
5178 {
5179 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5180 bytes_to_write);
5181 if (bytes_written == 0)
5182 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5183 else if (bytes_written < 0)
5184 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5185 else
5186 {
5187 bytes_to_write -= bytes_written;
5188 offset += bytes_written;
5189 }
5190 }
c420411f
ILT
5191 }
5192 this->unmap();
61ba1cf9 5193
42a1b686 5194 // We don't close stdout or stderr
516cb3d0
ILT
5195 if (this->o_ != STDOUT_FILENO
5196 && this->o_ != STDERR_FILENO
5197 && !this->is_temporary_)
42a1b686
ILT
5198 if (::close(this->o_) < 0)
5199 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 5200 this->o_ = -1;
a2fb1b05
ILT
5201}
5202
5203// Instantiate the templates we need. We could use the configure
5204// script to restrict this to only the ones for implemented targets.
5205
193a53d9 5206#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
5207template
5208off_t
5209Output_section::add_input_section<32, false>(
6e9ba2ca 5210 Layout* layout,
6fa2a40b 5211 Sized_relobj_file<32, false>* object,
2ea97941 5212 unsigned int shndx,
a2fb1b05 5213 const char* secname,
730cdc88 5214 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
5215 unsigned int reloc_shndx,
5216 bool have_sections_script);
193a53d9 5217#endif
a2fb1b05 5218
193a53d9 5219#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
5220template
5221off_t
5222Output_section::add_input_section<32, true>(
6e9ba2ca 5223 Layout* layout,
6fa2a40b 5224 Sized_relobj_file<32, true>* object,
2ea97941 5225 unsigned int shndx,
a2fb1b05 5226 const char* secname,
730cdc88 5227 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
5228 unsigned int reloc_shndx,
5229 bool have_sections_script);
193a53d9 5230#endif
a2fb1b05 5231
193a53d9 5232#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
5233template
5234off_t
5235Output_section::add_input_section<64, false>(
6e9ba2ca 5236 Layout* layout,
6fa2a40b 5237 Sized_relobj_file<64, false>* object,
2ea97941 5238 unsigned int shndx,
a2fb1b05 5239 const char* secname,
730cdc88 5240 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
5241 unsigned int reloc_shndx,
5242 bool have_sections_script);
193a53d9 5243#endif
a2fb1b05 5244
193a53d9 5245#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
5246template
5247off_t
5248Output_section::add_input_section<64, true>(
6e9ba2ca 5249 Layout* layout,
6fa2a40b 5250 Sized_relobj_file<64, true>* object,
2ea97941 5251 unsigned int shndx,
a2fb1b05 5252 const char* secname,
730cdc88 5253 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
5254 unsigned int reloc_shndx,
5255 bool have_sections_script);
193a53d9 5256#endif
a2fb1b05 5257
bbbfea06
CC
5258#ifdef HAVE_TARGET_32_LITTLE
5259template
5260class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5261#endif
5262
5263#ifdef HAVE_TARGET_32_BIG
5264template
5265class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5266#endif
5267
5268#ifdef HAVE_TARGET_64_LITTLE
5269template
5270class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5271#endif
5272
5273#ifdef HAVE_TARGET_64_BIG
5274template
5275class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5276#endif
5277
5278#ifdef HAVE_TARGET_32_LITTLE
5279template
5280class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5281#endif
5282
5283#ifdef HAVE_TARGET_32_BIG
5284template
5285class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5286#endif
5287
5288#ifdef HAVE_TARGET_64_LITTLE
5289template
5290class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5291#endif
5292
5293#ifdef HAVE_TARGET_64_BIG
5294template
5295class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5296#endif
5297
5298#ifdef HAVE_TARGET_32_LITTLE
5299template
5300class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5301#endif
5302
5303#ifdef HAVE_TARGET_32_BIG
5304template
5305class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5306#endif
5307
5308#ifdef HAVE_TARGET_64_LITTLE
5309template
5310class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5311#endif
5312
5313#ifdef HAVE_TARGET_64_BIG
5314template
5315class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5316#endif
5317
5318#ifdef HAVE_TARGET_32_LITTLE
5319template
5320class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5321#endif
5322
5323#ifdef HAVE_TARGET_32_BIG
5324template
5325class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5326#endif
5327
5328#ifdef HAVE_TARGET_64_LITTLE
5329template
5330class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5331#endif
5332
5333#ifdef HAVE_TARGET_64_BIG
5334template
5335class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5336#endif
5337
193a53d9 5338#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5339template
5340class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 5341#endif
c06b7b0b 5342
193a53d9 5343#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5344template
5345class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 5346#endif
c06b7b0b 5347
193a53d9 5348#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5349template
5350class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 5351#endif
c06b7b0b 5352
193a53d9 5353#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5354template
5355class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 5356#endif
c06b7b0b 5357
193a53d9 5358#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5359template
5360class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 5361#endif
c06b7b0b 5362
193a53d9 5363#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5364template
5365class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 5366#endif
c06b7b0b 5367
193a53d9 5368#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5369template
5370class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 5371#endif
c06b7b0b 5372
193a53d9 5373#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5374template
5375class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 5376#endif
c06b7b0b 5377
193a53d9 5378#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5379template
5380class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 5381#endif
c06b7b0b 5382
193a53d9 5383#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5384template
5385class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 5386#endif
c06b7b0b 5387
193a53d9 5388#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5389template
5390class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 5391#endif
c06b7b0b 5392
193a53d9 5393#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5394template
5395class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 5396#endif
c06b7b0b 5397
193a53d9 5398#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
5399template
5400class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 5401#endif
c06b7b0b 5402
193a53d9 5403#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
5404template
5405class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 5406#endif
c06b7b0b 5407
193a53d9 5408#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
5409template
5410class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 5411#endif
c06b7b0b 5412
193a53d9 5413#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
5414template
5415class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 5416#endif
c06b7b0b 5417
6a74a719
ILT
5418#ifdef HAVE_TARGET_32_LITTLE
5419template
5420class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5421#endif
5422
5423#ifdef HAVE_TARGET_32_BIG
5424template
5425class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5426#endif
5427
5428#ifdef HAVE_TARGET_64_LITTLE
5429template
5430class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5431#endif
5432
5433#ifdef HAVE_TARGET_64_BIG
5434template
5435class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5436#endif
5437
5438#ifdef HAVE_TARGET_32_LITTLE
5439template
5440class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5441#endif
5442
5443#ifdef HAVE_TARGET_32_BIG
5444template
5445class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5446#endif
5447
5448#ifdef HAVE_TARGET_64_LITTLE
5449template
5450class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5451#endif
5452
5453#ifdef HAVE_TARGET_64_BIG
5454template
5455class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5456#endif
5457
5458#ifdef HAVE_TARGET_32_LITTLE
5459template
5460class Output_data_group<32, false>;
5461#endif
5462
5463#ifdef HAVE_TARGET_32_BIG
5464template
5465class Output_data_group<32, true>;
5466#endif
5467
5468#ifdef HAVE_TARGET_64_LITTLE
5469template
5470class Output_data_group<64, false>;
5471#endif
5472
5473#ifdef HAVE_TARGET_64_BIG
5474template
5475class Output_data_group<64, true>;
5476#endif
5477
ead1e424 5478template
dbe717ef 5479class Output_data_got<32, false>;
ead1e424
ILT
5480
5481template
dbe717ef 5482class Output_data_got<32, true>;
ead1e424
ILT
5483
5484template
dbe717ef 5485class Output_data_got<64, false>;
ead1e424
ILT
5486
5487template
dbe717ef 5488class Output_data_got<64, true>;
ead1e424 5489
a2fb1b05 5490} // End namespace gold.
This page took 0.740594 seconds and 4 git commands to generate.