* gas/mips/ld.d: Spell out section offsets and addends
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
7223e9ca 3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
7223e9ca
ILT
1136
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1141 if (!dynamic)
16649710 1142 os->set_should_link_to_symtab();
7223e9ca
ILT
1143 else if (parameters->doing_static_link())
1144 ;
1145 else
1146 os->set_should_link_to_dynsym();
16649710
ILT
1147}
1148
c06b7b0b
ILT
1149// Write out relocation data.
1150
1151template<int sh_type, bool dynamic, int size, bool big_endian>
1152void
1153Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1154 Output_file* of)
1155{
1156 const off_t off = this->offset();
1157 const off_t oview_size = this->data_size();
1158 unsigned char* const oview = of->get_output_view(off, oview_size);
1159
3a44184e 1160 if (this->sort_relocs())
d98bc257
ILT
1161 {
1162 gold_assert(dynamic);
1163 std::sort(this->relocs_.begin(), this->relocs_.end(),
1164 Sort_relocs_comparison());
1165 }
1166
c06b7b0b
ILT
1167 unsigned char* pov = oview;
1168 for (typename Relocs::const_iterator p = this->relocs_.begin();
1169 p != this->relocs_.end();
1170 ++p)
1171 {
1172 p->write(pov);
1173 pov += reloc_size;
1174 }
1175
a3ad94ed 1176 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1177
1178 of->write_output_view(off, oview_size, oview);
1179
1180 // We no longer need the relocation entries.
1181 this->relocs_.clear();
1182}
1183
6a74a719
ILT
1184// Class Output_relocatable_relocs.
1185
1186template<int sh_type, int size, bool big_endian>
1187void
1188Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1189{
1190 this->set_data_size(this->rr_->output_reloc_count()
1191 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1192}
1193
1194// class Output_data_group.
1195
1196template<int size, bool big_endian>
1197Output_data_group<size, big_endian>::Output_data_group(
1198 Sized_relobj<size, big_endian>* relobj,
1199 section_size_type entry_count,
8825ac63
ILT
1200 elfcpp::Elf_Word flags,
1201 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1202 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1203 relobj_(relobj),
1204 flags_(flags)
6a74a719 1205{
8825ac63 1206 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1207}
1208
1209// Write out the section group, which means translating the section
1210// indexes to apply to the output file.
1211
1212template<int size, bool big_endian>
1213void
1214Output_data_group<size, big_endian>::do_write(Output_file* of)
1215{
1216 const off_t off = this->offset();
1217 const section_size_type oview_size =
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview = of->get_output_view(off, oview_size);
1220
1221 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1222 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1223 ++contents;
1224
1225 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1226 this->input_shndxes_.begin();
1227 p != this->input_shndxes_.end();
6a74a719
ILT
1228 ++p, ++contents)
1229 {
ef9beddf 1230 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1231
1232 unsigned int output_shndx;
1233 if (os != NULL)
1234 output_shndx = os->out_shndx();
1235 else
1236 {
1237 this->relobj_->error(_("section group retained but "
1238 "group element discarded"));
1239 output_shndx = 0;
1240 }
1241
1242 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1243 }
1244
1245 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1246 gold_assert(wrote == oview_size);
1247
1248 of->write_output_view(off, oview_size, oview);
1249
1250 // We no longer need this information.
8825ac63 1251 this->input_shndxes_.clear();
6a74a719
ILT
1252}
1253
dbe717ef 1254// Output_data_got::Got_entry methods.
ead1e424
ILT
1255
1256// Write out the entry.
1257
1258template<int size, bool big_endian>
1259void
7e1edb90 1260Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1261{
1262 Valtype val = 0;
1263
1264 switch (this->local_sym_index_)
1265 {
1266 case GSYM_CODE:
1267 {
e8c846c3
ILT
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
ead1e424 1271 Symbol* gsym = this->u_.gsym;
7223e9ca
ILT
1272 if (this->use_plt_offset_ && gsym->has_plt_offset())
1273 val = (parameters->target().plt_section_for_global(gsym)->address()
1274 + gsym->plt_offset());
1275 else
1276 {
1277 Sized_symbol<size>* sgsym;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1282 val = sgsym->value();
1283 }
ead1e424
ILT
1284 }
1285 break;
1286
1287 case CONSTANT_CODE:
1288 val = this->u_.constant;
1289 break;
1290
1291 default:
d1f003c6 1292 {
7223e9ca 1293 const Sized_relobj<size, big_endian>* object = this->u_.object;
d1f003c6 1294 const unsigned int lsi = this->local_sym_index_;
7223e9ca
ILT
1295 const Symbol_value<size>* symval = object->local_symbol(lsi);
1296 if (!this->use_plt_offset_)
1297 val = symval->value(this->u_.object, 0);
1298 else
1299 {
1300 const Output_data* plt =
1301 parameters->target().plt_section_for_local(object, lsi);
1302 val = plt->address() + object->local_plt_offset(lsi);
1303 }
d1f003c6 1304 }
e727fa71 1305 break;
ead1e424
ILT
1306 }
1307
a3ad94ed 1308 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1309}
1310
dbe717ef 1311// Output_data_got methods.
ead1e424 1312
dbe717ef
ILT
1313// Add an entry for a global symbol to the GOT. This returns true if
1314// this is a new GOT entry, false if the symbol already had a GOT
1315// entry.
1316
1317template<int size, bool big_endian>
1318bool
0a65a3a7
CC
1319Output_data_got<size, big_endian>::add_global(
1320 Symbol* gsym,
1321 unsigned int got_type)
ead1e424 1322{
0a65a3a7 1323 if (gsym->has_got_offset(got_type))
dbe717ef 1324 return false;
ead1e424 1325
7223e9ca
ILT
1326 this->entries_.push_back(Got_entry(gsym, false));
1327 this->set_got_size();
1328 gsym->set_got_offset(got_type, this->last_got_offset());
1329 return true;
1330}
1331
1332// Like add_global, but use the PLT offset.
1333
1334template<int size, bool big_endian>
1335bool
1336Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1337 unsigned int got_type)
1338{
1339 if (gsym->has_got_offset(got_type))
1340 return false;
1341
1342 this->entries_.push_back(Got_entry(gsym, true));
dbe717ef 1343 this->set_got_size();
0a65a3a7 1344 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1345 return true;
1346}
ead1e424 1347
7bf1f802
ILT
1348// Add an entry for a global symbol to the GOT, and add a dynamic
1349// relocation of type R_TYPE for the GOT entry.
7223e9ca 1350
7bf1f802
ILT
1351template<int size, bool big_endian>
1352void
1353Output_data_got<size, big_endian>::add_global_with_rel(
1354 Symbol* gsym,
0a65a3a7 1355 unsigned int got_type,
7bf1f802
ILT
1356 Rel_dyn* rel_dyn,
1357 unsigned int r_type)
1358{
0a65a3a7 1359 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1360 return;
1361
1362 this->entries_.push_back(Got_entry());
1363 this->set_got_size();
2ea97941
ILT
1364 unsigned int got_offset = this->last_got_offset();
1365 gsym->set_got_offset(got_type, got_offset);
1366 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1367}
1368
1369template<int size, bool big_endian>
1370void
1371Output_data_got<size, big_endian>::add_global_with_rela(
1372 Symbol* gsym,
0a65a3a7 1373 unsigned int got_type,
7bf1f802
ILT
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type)
1376{
0a65a3a7 1377 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1378 return;
1379
1380 this->entries_.push_back(Got_entry());
1381 this->set_got_size();
2ea97941
ILT
1382 unsigned int got_offset = this->last_got_offset();
1383 gsym->set_got_offset(got_type, got_offset);
1384 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1385}
1386
0a65a3a7
CC
1387// Add a pair of entries for a global symbol to the GOT, and add
1388// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1390template<int size, bool big_endian>
1391void
0a65a3a7
CC
1392Output_data_got<size, big_endian>::add_global_pair_with_rel(
1393 Symbol* gsym,
1394 unsigned int got_type,
7bf1f802 1395 Rel_dyn* rel_dyn,
0a65a3a7
CC
1396 unsigned int r_type_1,
1397 unsigned int r_type_2)
7bf1f802 1398{
0a65a3a7 1399 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1400 return;
1401
1402 this->entries_.push_back(Got_entry());
2ea97941
ILT
1403 unsigned int got_offset = this->last_got_offset();
1404 gsym->set_got_offset(got_type, got_offset);
1405 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1406
1407 this->entries_.push_back(Got_entry());
1408 if (r_type_2 != 0)
1409 {
2ea97941
ILT
1410 got_offset = this->last_got_offset();
1411 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1412 }
1413
1414 this->set_got_size();
7bf1f802
ILT
1415}
1416
1417template<int size, bool big_endian>
1418void
0a65a3a7
CC
1419Output_data_got<size, big_endian>::add_global_pair_with_rela(
1420 Symbol* gsym,
1421 unsigned int got_type,
7bf1f802 1422 Rela_dyn* rela_dyn,
0a65a3a7
CC
1423 unsigned int r_type_1,
1424 unsigned int r_type_2)
7bf1f802 1425{
0a65a3a7 1426 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1427 return;
1428
1429 this->entries_.push_back(Got_entry());
2ea97941
ILT
1430 unsigned int got_offset = this->last_got_offset();
1431 gsym->set_got_offset(got_type, got_offset);
1432 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1433
1434 this->entries_.push_back(Got_entry());
1435 if (r_type_2 != 0)
1436 {
2ea97941
ILT
1437 got_offset = this->last_got_offset();
1438 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1439 }
1440
1441 this->set_got_size();
7bf1f802
ILT
1442}
1443
0a65a3a7
CC
1444// Add an entry for a local symbol to the GOT. This returns true if
1445// this is a new GOT entry, false if the symbol already has a GOT
1446// entry.
07f397ab
ILT
1447
1448template<int size, bool big_endian>
1449bool
0a65a3a7
CC
1450Output_data_got<size, big_endian>::add_local(
1451 Sized_relobj<size, big_endian>* object,
1452 unsigned int symndx,
1453 unsigned int got_type)
07f397ab 1454{
0a65a3a7 1455 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1456 return false;
1457
7223e9ca
ILT
1458 this->entries_.push_back(Got_entry(object, symndx, false));
1459 this->set_got_size();
1460 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1461 return true;
1462}
1463
1464// Like add_local, but use the PLT offset.
1465
1466template<int size, bool big_endian>
1467bool
1468Output_data_got<size, big_endian>::add_local_plt(
1469 Sized_relobj<size, big_endian>* object,
1470 unsigned int symndx,
1471 unsigned int got_type)
1472{
1473 if (object->local_has_got_offset(symndx, got_type))
1474 return false;
1475
1476 this->entries_.push_back(Got_entry(object, symndx, true));
07f397ab 1477 this->set_got_size();
0a65a3a7 1478 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1479 return true;
1480}
1481
0a65a3a7
CC
1482// Add an entry for a local symbol to the GOT, and add a dynamic
1483// relocation of type R_TYPE for the GOT entry.
7223e9ca 1484
7bf1f802
ILT
1485template<int size, bool big_endian>
1486void
0a65a3a7
CC
1487Output_data_got<size, big_endian>::add_local_with_rel(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int got_type,
7bf1f802
ILT
1491 Rel_dyn* rel_dyn,
1492 unsigned int r_type)
1493{
0a65a3a7 1494 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1495 return;
1496
1497 this->entries_.push_back(Got_entry());
1498 this->set_got_size();
2ea97941
ILT
1499 unsigned int got_offset = this->last_got_offset();
1500 object->set_local_got_offset(symndx, got_type, got_offset);
1501 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1502}
1503
1504template<int size, bool big_endian>
1505void
0a65a3a7
CC
1506Output_data_got<size, big_endian>::add_local_with_rela(
1507 Sized_relobj<size, big_endian>* object,
1508 unsigned int symndx,
1509 unsigned int got_type,
7bf1f802
ILT
1510 Rela_dyn* rela_dyn,
1511 unsigned int r_type)
1512{
0a65a3a7 1513 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1514 return;
1515
1516 this->entries_.push_back(Got_entry());
1517 this->set_got_size();
2ea97941
ILT
1518 unsigned int got_offset = this->last_got_offset();
1519 object->set_local_got_offset(symndx, got_type, got_offset);
1520 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1521}
1522
0a65a3a7
CC
1523// Add a pair of entries for a local symbol to the GOT, and add
1524// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1526template<int size, bool big_endian>
1527void
0a65a3a7 1528Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1529 Sized_relobj<size, big_endian>* object,
1530 unsigned int symndx,
1531 unsigned int shndx,
0a65a3a7 1532 unsigned int got_type,
7bf1f802 1533 Rel_dyn* rel_dyn,
0a65a3a7
CC
1534 unsigned int r_type_1,
1535 unsigned int r_type_2)
7bf1f802 1536{
0a65a3a7 1537 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1538 return;
1539
1540 this->entries_.push_back(Got_entry());
2ea97941
ILT
1541 unsigned int got_offset = this->last_got_offset();
1542 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1543 Output_section* os = object->output_section(shndx);
2ea97941 1544 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1545
7223e9ca 1546 this->entries_.push_back(Got_entry(object, symndx, false));
0a65a3a7
CC
1547 if (r_type_2 != 0)
1548 {
2ea97941
ILT
1549 got_offset = this->last_got_offset();
1550 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1551 }
7bf1f802
ILT
1552
1553 this->set_got_size();
1554}
1555
1556template<int size, bool big_endian>
1557void
0a65a3a7 1558Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1559 Sized_relobj<size, big_endian>* object,
1560 unsigned int symndx,
1561 unsigned int shndx,
0a65a3a7 1562 unsigned int got_type,
7bf1f802 1563 Rela_dyn* rela_dyn,
0a65a3a7
CC
1564 unsigned int r_type_1,
1565 unsigned int r_type_2)
7bf1f802 1566{
0a65a3a7 1567 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1568 return;
1569
1570 this->entries_.push_back(Got_entry());
2ea97941
ILT
1571 unsigned int got_offset = this->last_got_offset();
1572 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1573 Output_section* os = object->output_section(shndx);
2ea97941 1574 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1575
7223e9ca 1576 this->entries_.push_back(Got_entry(object, symndx, false));
0a65a3a7
CC
1577 if (r_type_2 != 0)
1578 {
2ea97941
ILT
1579 got_offset = this->last_got_offset();
1580 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1581 }
7bf1f802
ILT
1582
1583 this->set_got_size();
1584}
1585
ead1e424
ILT
1586// Write out the GOT.
1587
1588template<int size, bool big_endian>
1589void
dbe717ef 1590Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1591{
1592 const int add = size / 8;
1593
1594 const off_t off = this->offset();
c06b7b0b 1595 const off_t oview_size = this->data_size();
ead1e424
ILT
1596 unsigned char* const oview = of->get_output_view(off, oview_size);
1597
1598 unsigned char* pov = oview;
1599 for (typename Got_entries::const_iterator p = this->entries_.begin();
1600 p != this->entries_.end();
1601 ++p)
1602 {
7e1edb90 1603 p->write(pov);
ead1e424
ILT
1604 pov += add;
1605 }
1606
a3ad94ed 1607 gold_assert(pov - oview == oview_size);
c06b7b0b 1608
ead1e424
ILT
1609 of->write_output_view(off, oview_size, oview);
1610
1611 // We no longer need the GOT entries.
1612 this->entries_.clear();
1613}
1614
a3ad94ed
ILT
1615// Output_data_dynamic::Dynamic_entry methods.
1616
1617// Write out the entry.
1618
1619template<int size, bool big_endian>
1620void
1621Output_data_dynamic::Dynamic_entry::write(
1622 unsigned char* pov,
7d1a9ebb 1623 const Stringpool* pool) const
a3ad94ed
ILT
1624{
1625 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1626 switch (this->offset_)
a3ad94ed
ILT
1627 {
1628 case DYNAMIC_NUMBER:
1629 val = this->u_.val;
1630 break;
1631
a3ad94ed 1632 case DYNAMIC_SECTION_SIZE:
16649710 1633 val = this->u_.od->data_size();
612a8d3d
DM
1634 if (this->od2 != NULL)
1635 val += this->od2->data_size();
a3ad94ed
ILT
1636 break;
1637
1638 case DYNAMIC_SYMBOL:
1639 {
16649710
ILT
1640 const Sized_symbol<size>* s =
1641 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1642 val = s->value();
1643 }
1644 break;
1645
1646 case DYNAMIC_STRING:
1647 val = pool->get_offset(this->u_.str);
1648 break;
1649
1650 default:
c2b45e22
CC
1651 val = this->u_.od->address() + this->offset_;
1652 break;
a3ad94ed
ILT
1653 }
1654
1655 elfcpp::Dyn_write<size, big_endian> dw(pov);
1656 dw.put_d_tag(this->tag_);
1657 dw.put_d_val(val);
1658}
1659
1660// Output_data_dynamic methods.
1661
16649710
ILT
1662// Adjust the output section to set the entry size.
1663
1664void
1665Output_data_dynamic::do_adjust_output_section(Output_section* os)
1666{
8851ecca 1667 if (parameters->target().get_size() == 32)
16649710 1668 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1669 else if (parameters->target().get_size() == 64)
16649710
ILT
1670 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1671 else
1672 gold_unreachable();
1673}
1674
a3ad94ed
ILT
1675// Set the final data size.
1676
1677void
27bc2bce 1678Output_data_dynamic::set_final_data_size()
a3ad94ed 1679{
20e6d0d6
DK
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1682 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1683 {
1684 int extra = parameters->options().spare_dynamic_tags();
1685 for (int i = 0; i < extra; ++i)
1686 this->add_constant(elfcpp::DT_NULL, 0);
1687 this->add_constant(elfcpp::DT_NULL, 0);
1688 }
a3ad94ed
ILT
1689
1690 int dyn_size;
8851ecca 1691 if (parameters->target().get_size() == 32)
a3ad94ed 1692 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1693 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1694 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1695 else
1696 gold_unreachable();
1697 this->set_data_size(this->entries_.size() * dyn_size);
1698}
1699
1700// Write out the dynamic entries.
1701
1702void
1703Output_data_dynamic::do_write(Output_file* of)
1704{
8851ecca 1705 switch (parameters->size_and_endianness())
a3ad94ed 1706 {
9025d29d 1707#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1708 case Parameters::TARGET_32_LITTLE:
1709 this->sized_write<32, false>(of);
1710 break;
9025d29d 1711#endif
8851ecca
ILT
1712#ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG:
1714 this->sized_write<32, true>(of);
1715 break;
9025d29d 1716#endif
9025d29d 1717#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1718 case Parameters::TARGET_64_LITTLE:
1719 this->sized_write<64, false>(of);
1720 break;
9025d29d 1721#endif
8851ecca
ILT
1722#ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG:
1724 this->sized_write<64, true>(of);
1725 break;
1726#endif
1727 default:
1728 gold_unreachable();
a3ad94ed 1729 }
a3ad94ed
ILT
1730}
1731
1732template<int size, bool big_endian>
1733void
1734Output_data_dynamic::sized_write(Output_file* of)
1735{
1736 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1737
2ea97941 1738 const off_t offset = this->offset();
a3ad94ed 1739 const off_t oview_size = this->data_size();
2ea97941 1740 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1741
1742 unsigned char* pov = oview;
1743 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1744 p != this->entries_.end();
1745 ++p)
1746 {
7d1a9ebb 1747 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1748 pov += dyn_size;
1749 }
1750
1751 gold_assert(pov - oview == oview_size);
1752
2ea97941 1753 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1754
1755 // We no longer need the dynamic entries.
1756 this->entries_.clear();
1757}
1758
d491d34e
ILT
1759// Class Output_symtab_xindex.
1760
1761void
1762Output_symtab_xindex::do_write(Output_file* of)
1763{
2ea97941 1764 const off_t offset = this->offset();
d491d34e 1765 const off_t oview_size = this->data_size();
2ea97941 1766 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1767
1768 memset(oview, 0, oview_size);
1769
1770 if (parameters->target().is_big_endian())
1771 this->endian_do_write<true>(oview);
1772 else
1773 this->endian_do_write<false>(oview);
1774
2ea97941 1775 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1776
1777 // We no longer need the data.
1778 this->entries_.clear();
1779}
1780
1781template<bool big_endian>
1782void
1783Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1784{
1785 for (Xindex_entries::const_iterator p = this->entries_.begin();
1786 p != this->entries_.end();
1787 ++p)
20e6d0d6
DK
1788 {
1789 unsigned int symndx = p->first;
1790 gold_assert(symndx * 4 < this->data_size());
1791 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1792 }
d491d34e
ILT
1793}
1794
ead1e424
ILT
1795// Output_section::Input_section methods.
1796
1797// Return the data size. For an input section we store the size here.
1798// For an Output_section_data, we have to ask it for the size.
1799
1800off_t
1801Output_section::Input_section::data_size() const
1802{
1803 if (this->is_input_section())
b8e6aad9 1804 return this->u1_.data_size;
ead1e424 1805 else
b8e6aad9 1806 return this->u2_.posd->data_size();
ead1e424
ILT
1807}
1808
0439c796
DK
1809// Return the object for an input section.
1810
1811Relobj*
1812Output_section::Input_section::relobj() const
1813{
1814 if (this->is_input_section())
1815 return this->u2_.object;
1816 else if (this->is_merge_section())
1817 {
1818 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1819 return this->u2_.pomb->first_relobj();
1820 }
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_.poris->relobj();
1823 else
1824 gold_unreachable();
1825}
1826
1827// Return the input section index for an input section.
1828
1829unsigned int
1830Output_section::Input_section::shndx() const
1831{
1832 if (this->is_input_section())
1833 return this->shndx_;
1834 else if (this->is_merge_section())
1835 {
1836 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1837 return this->u2_.pomb->first_shndx();
1838 }
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_.poris->shndx();
1841 else
1842 gold_unreachable();
1843}
1844
ead1e424
ILT
1845// Set the address and file offset.
1846
1847void
96803768
ILT
1848Output_section::Input_section::set_address_and_file_offset(
1849 uint64_t address,
1850 off_t file_offset,
1851 off_t section_file_offset)
ead1e424
ILT
1852{
1853 if (this->is_input_section())
96803768
ILT
1854 this->u2_.object->set_section_offset(this->shndx_,
1855 file_offset - section_file_offset);
ead1e424 1856 else
96803768
ILT
1857 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1858}
1859
a445fddf
ILT
1860// Reset the address and file offset.
1861
1862void
1863Output_section::Input_section::reset_address_and_file_offset()
1864{
1865 if (!this->is_input_section())
1866 this->u2_.posd->reset_address_and_file_offset();
1867}
1868
96803768
ILT
1869// Finalize the data size.
1870
1871void
1872Output_section::Input_section::finalize_data_size()
1873{
1874 if (!this->is_input_section())
1875 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1876}
1877
1e983657
ILT
1878// Try to turn an input offset into an output offset. We want to
1879// return the output offset relative to the start of this
1880// Input_section in the output section.
b8e6aad9 1881
8f00aeb8 1882inline bool
8383303e
ILT
1883Output_section::Input_section::output_offset(
1884 const Relobj* object,
2ea97941
ILT
1885 unsigned int shndx,
1886 section_offset_type offset,
ca09d69a 1887 section_offset_type* poutput) const
b8e6aad9
ILT
1888{
1889 if (!this->is_input_section())
2ea97941 1890 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1891 else
1892 {
2ea97941 1893 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1894 return false;
2ea97941 1895 *poutput = offset;
b8e6aad9
ILT
1896 return true;
1897 }
ead1e424
ILT
1898}
1899
a9a60db6
ILT
1900// Return whether this is the merge section for the input section
1901// SHNDX in OBJECT.
1902
1903inline bool
1904Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1905 unsigned int shndx) const
a9a60db6
ILT
1906{
1907 if (this->is_input_section())
1908 return false;
2ea97941 1909 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1910}
1911
ead1e424
ILT
1912// Write out the data. We don't have to do anything for an input
1913// section--they are handled via Object::relocate--but this is where
1914// we write out the data for an Output_section_data.
1915
1916void
1917Output_section::Input_section::write(Output_file* of)
1918{
1919 if (!this->is_input_section())
b8e6aad9 1920 this->u2_.posd->write(of);
ead1e424
ILT
1921}
1922
96803768
ILT
1923// Write the data to a buffer. As for write(), we don't have to do
1924// anything for an input section.
1925
1926void
1927Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1928{
1929 if (!this->is_input_section())
1930 this->u2_.posd->write_to_buffer(buffer);
1931}
1932
7d9e3d98
ILT
1933// Print to a map file.
1934
1935void
1936Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1937{
1938 switch (this->shndx_)
1939 {
1940 case OUTPUT_SECTION_CODE:
1941 case MERGE_DATA_SECTION_CODE:
1942 case MERGE_STRING_SECTION_CODE:
1943 this->u2_.posd->print_to_mapfile(mapfile);
1944 break;
1945
20e6d0d6
DK
1946 case RELAXED_INPUT_SECTION_CODE:
1947 {
1948 Output_relaxed_input_section* relaxed_section =
1949 this->relaxed_input_section();
1950 mapfile->print_input_section(relaxed_section->relobj(),
1951 relaxed_section->shndx());
1952 }
1953 break;
7d9e3d98
ILT
1954 default:
1955 mapfile->print_input_section(this->u2_.object, this->shndx_);
1956 break;
1957 }
1958}
1959
a2fb1b05
ILT
1960// Output_section methods.
1961
1962// Construct an Output_section. NAME will point into a Stringpool.
1963
2ea97941
ILT
1964Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1965 elfcpp::Elf_Xword flags)
1966 : name_(name),
a2fb1b05
ILT
1967 addralign_(0),
1968 entsize_(0),
a445fddf 1969 load_address_(0),
16649710 1970 link_section_(NULL),
a2fb1b05 1971 link_(0),
16649710 1972 info_section_(NULL),
6a74a719 1973 info_symndx_(NULL),
a2fb1b05 1974 info_(0),
2ea97941
ILT
1975 type_(type),
1976 flags_(flags),
22f0da72 1977 order_(ORDER_INVALID),
91ea499d 1978 out_shndx_(-1U),
c06b7b0b
ILT
1979 symtab_index_(0),
1980 dynsym_index_(0),
ead1e424
ILT
1981 input_sections_(),
1982 first_input_offset_(0),
c51e6221 1983 fills_(),
96803768 1984 postprocessing_buffer_(NULL),
a3ad94ed 1985 needs_symtab_index_(false),
16649710
ILT
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
730cdc88 1988 should_link_to_dynsym_(false),
27bc2bce 1989 after_input_sections_(false),
7bf1f802 1990 requires_postprocessing_(false),
a445fddf
ILT
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
755ab8af 1993 info_uses_section_index_(false),
6e9ba2ca 1994 input_section_order_specified_(false),
2fd32231
ILT
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
9f1d377b 1998 is_relro_(false),
8a5e3e08
ILT
1999 is_small_section_(false),
2000 is_large_section_(false),
f5c870d2 2001 generate_code_fills_at_write_(false),
e8cd95c7 2002 is_entsize_zero_(false),
8923b24c 2003 section_offsets_need_adjustment_(false),
1e5d2fb1 2004 is_noload_(false),
131687b4 2005 always_keeps_input_sections_(false),
20e6d0d6 2006 tls_offset_(0),
c0a62865 2007 checkpoint_(NULL),
0439c796 2008 lookup_maps_(new Output_section_lookup_maps)
a2fb1b05 2009{
27bc2bce
ILT
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2012 // sections.
2ea97941 2013 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2014 this->set_address(0);
a2fb1b05
ILT
2015}
2016
54dc6425
ILT
2017Output_section::~Output_section()
2018{
20e6d0d6 2019 delete this->checkpoint_;
54dc6425
ILT
2020}
2021
16649710
ILT
2022// Set the entry size.
2023
2024void
2025Output_section::set_entsize(uint64_t v)
2026{
e8cd95c7
ILT
2027 if (this->is_entsize_zero_)
2028 ;
2029 else if (this->entsize_ == 0)
16649710 2030 this->entsize_ = v;
e8cd95c7
ILT
2031 else if (this->entsize_ != v)
2032 {
2033 this->entsize_ = 0;
2034 this->is_entsize_zero_ = 1;
2035 }
16649710
ILT
2036}
2037
ead1e424 2038// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2039// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040// relocation section which applies to this section, or 0 if none, or
2041// -1U if more than one. Return the offset of the input section
2042// within the output section. Return -1 if the input section will
2043// receive special handling. In the normal case we don't always keep
2044// track of input sections for an Output_section. Instead, each
2045// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2046// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047// track of input sections here; this is used when SECTIONS appears in
2048// a linker script.
a2fb1b05
ILT
2049
2050template<int size, bool big_endian>
2051off_t
6e9ba2ca
ST
2052Output_section::add_input_section(Layout* layout,
2053 Sized_relobj<size, big_endian>* object,
2ea97941 2054 unsigned int shndx,
ead1e424 2055 const char* secname,
730cdc88 2056 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2057 unsigned int reloc_shndx,
2058 bool have_sections_script)
a2fb1b05 2059{
2ea97941
ILT
2060 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2061 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2062 {
75f2446e 2063 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2064 static_cast<unsigned long>(addralign), secname);
2065 addralign = 1;
a2fb1b05 2066 }
a2fb1b05 2067
2ea97941
ILT
2068 if (addralign > this->addralign_)
2069 this->addralign_ = addralign;
a2fb1b05 2070
44a43cf9 2071 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2072 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2073
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2077 {
2078 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2079 entsize = 1;
4f833eee 2080 }
44a43cf9 2081
e8cd95c7
ILT
2082 this->update_flags_for_input_section(sh_flags);
2083 this->set_entsize(entsize);
2084
b8e6aad9 2085 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2086 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
44a43cf9 2089 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2090 && reloc_shndx == 0
2091 && shdr.get_sh_size() > 0)
b8e6aad9 2092 {
0439c796
DK
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2095 bool keeps_input_sections = (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters->target().may_relax());
2098
0439c796
DK
2099 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2100 addralign, keeps_input_sections))
b8e6aad9
ILT
2101 {
2102 // Tell the relocation routines that they need to call the
730cdc88 2103 // output_offset method to determine the final address.
b8e6aad9
ILT
2104 return -1;
2105 }
2106 }
2107
27bc2bce 2108 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2109 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2110 addralign);
c51e6221 2111
c0a62865
DK
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation.
2115 if (!this->generate_code_fills_at_write_
2116 && !have_sections_script
2117 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2118 && parameters->target().has_code_fill()
2119 && parameters->target().may_relax())
2120 {
2121 gold_assert(this->fills_.empty());
2122 this->generate_code_fills_at_write_ = true;
2123 }
2124
c51e6221 2125 if (aligned_offset_in_section > offset_in_section
c0a62865 2126 && !this->generate_code_fills_at_write_
a445fddf 2127 && !have_sections_script
44a43cf9 2128 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2129 && parameters->target().has_code_fill())
c51e6221
ILT
2130 {
2131 // We need to add some fill data. Using fill_list_ when
2132 // possible is an optimization, since we will often have fill
2133 // sections without input sections.
2134 off_t fill_len = aligned_offset_in_section - offset_in_section;
2135 if (this->input_sections_.empty())
2136 this->fills_.push_back(Fill(offset_in_section, fill_len));
2137 else
2138 {
029ba973 2139 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2140 Output_data_const* odc = new Output_data_const(fill_data, 1);
2141 this->input_sections_.push_back(Input_section(odc));
2142 }
2143 }
2144
a2e47362
CC
2145 section_size_type input_section_size = shdr.get_sh_size();
2146 section_size_type uncompressed_size;
2147 if (object->section_is_compressed(shndx, &uncompressed_size))
2148 input_section_size = uncompressed_size;
2149
27bc2bce 2150 this->set_current_data_size_for_child(aligned_offset_in_section
a2e47362 2151 + input_section_size);
a2fb1b05 2152
ead1e424 2153 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2154 // track of sections, or if we are relaxing. Also, if this is a
2155 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2156 // the future, we keep track of the sections. If the
2157 // --section-ordering-file option is used to specify the order of
2158 // sections, we need to keep track of sections.
131687b4
DK
2159 if (this->always_keeps_input_sections_
2160 || have_sections_script
2fd32231
ILT
2161 || !this->input_sections_.empty()
2162 || this->may_sort_attached_input_sections()
7d9e3d98 2163 || this->must_sort_attached_input_sections()
20e6d0d6 2164 || parameters->options().user_set_Map()
6e9ba2ca
ST
2165 || parameters->target().may_relax()
2166 || parameters->options().section_ordering_file())
2167 {
2168 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2169 if (parameters->options().section_ordering_file())
2170 {
2171 unsigned int section_order_index =
2172 layout->find_section_order_index(std::string(secname));
2173 if (section_order_index != 0)
2174 {
2175 isecn.set_section_order_index(section_order_index);
2176 this->set_input_section_order_specified();
2177 }
2178 }
2179 this->input_sections_.push_back(isecn);
2180 }
54dc6425 2181
c51e6221 2182 return aligned_offset_in_section;
61ba1cf9
ILT
2183}
2184
ead1e424
ILT
2185// Add arbitrary data to an output section.
2186
2187void
2188Output_section::add_output_section_data(Output_section_data* posd)
2189{
b8e6aad9
ILT
2190 Input_section inp(posd);
2191 this->add_output_section_data(&inp);
a445fddf
ILT
2192
2193 if (posd->is_data_size_valid())
2194 {
2195 off_t offset_in_section = this->current_data_size_for_child();
2196 off_t aligned_offset_in_section = align_address(offset_in_section,
2197 posd->addralign());
2198 this->set_current_data_size_for_child(aligned_offset_in_section
2199 + posd->data_size());
2200 }
b8e6aad9
ILT
2201}
2202
c0a62865
DK
2203// Add a relaxed input section.
2204
2205void
2206Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2207{
2208 Input_section inp(poris);
2209 this->add_output_section_data(&inp);
0439c796
DK
2210 if (this->lookup_maps_->is_valid())
2211 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2212 poris->shndx(), poris);
c0a62865
DK
2213
2214 // For a relaxed section, we use the current data size. Linker scripts
2215 // get all the input sections, including relaxed one from an output
2216 // section and add them back to them same output section to compute the
2217 // output section size. If we do not account for sizes of relaxed input
2218 // sections, an output section would be incorrectly sized.
2219 off_t offset_in_section = this->current_data_size_for_child();
2220 off_t aligned_offset_in_section = align_address(offset_in_section,
2221 poris->addralign());
2222 this->set_current_data_size_for_child(aligned_offset_in_section
2223 + poris->current_data_size());
2224}
2225
b8e6aad9 2226// Add arbitrary data to an output section by Input_section.
c06b7b0b 2227
b8e6aad9
ILT
2228void
2229Output_section::add_output_section_data(Input_section* inp)
2230{
ead1e424 2231 if (this->input_sections_.empty())
27bc2bce 2232 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2233
b8e6aad9 2234 this->input_sections_.push_back(*inp);
c06b7b0b 2235
2ea97941
ILT
2236 uint64_t addralign = inp->addralign();
2237 if (addralign > this->addralign_)
2238 this->addralign_ = addralign;
c06b7b0b 2239
b8e6aad9
ILT
2240 inp->set_output_section(this);
2241}
2242
2243// Add a merge section to an output section.
2244
2245void
2246Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2247 bool is_string, uint64_t entsize)
b8e6aad9 2248{
2ea97941 2249 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2250 this->add_output_section_data(&inp);
2251}
2252
2253// Add an input section to a SHF_MERGE section.
2254
2255bool
2ea97941
ILT
2256Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2257 uint64_t flags, uint64_t entsize,
0439c796
DK
2258 uint64_t addralign,
2259 bool keeps_input_sections)
b8e6aad9 2260{
2ea97941 2261 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2262
2263 // We only merge strings if the alignment is not more than the
2264 // character size. This could be handled, but it's unusual.
2ea97941 2265 if (is_string && addralign > entsize)
b8e6aad9
ILT
2266 return false;
2267
20e6d0d6
DK
2268 // We cannot restore merged input section states.
2269 gold_assert(this->checkpoint_ == NULL);
2270
c0a62865 2271 // Look up merge sections by required properties.
0439c796
DK
2272 // Currently, we only invalidate the lookup maps in script processing
2273 // and relaxation. We should not have done either when we reach here.
2274 // So we assume that the lookup maps are valid to simply code.
2275 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2276 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2277 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2278 bool is_new = false;
2279 if (pomb != NULL)
c0a62865 2280 {
6bf924b0
DK
2281 gold_assert(pomb->is_string() == is_string
2282 && pomb->entsize() == entsize
2283 && pomb->addralign() == addralign);
c0a62865 2284 }
b8e6aad9
ILT
2285 else
2286 {
6bf924b0
DK
2287 // Create a new Output_merge_data or Output_merge_string_data.
2288 if (!is_string)
2289 pomb = new Output_merge_data(entsize, addralign);
2290 else
9a0910c3 2291 {
6bf924b0
DK
2292 switch (entsize)
2293 {
2294 case 1:
2295 pomb = new Output_merge_string<char>(addralign);
2296 break;
2297 case 2:
2298 pomb = new Output_merge_string<uint16_t>(addralign);
2299 break;
2300 case 4:
2301 pomb = new Output_merge_string<uint32_t>(addralign);
2302 break;
2303 default:
2304 return false;
2305 }
9a0910c3 2306 }
0439c796
DK
2307 // If we need to do script processing or relaxation, we need to keep
2308 // the original input sections to rebuild the fast lookup maps.
2309 if (keeps_input_sections)
2310 pomb->set_keeps_input_sections();
2311 is_new = true;
b8e6aad9
ILT
2312 }
2313
6bf924b0
DK
2314 if (pomb->add_input_section(object, shndx))
2315 {
0439c796
DK
2316 // Add new merge section to this output section and link merge
2317 // section properties to new merge section in map.
2318 if (is_new)
2319 {
2320 this->add_output_merge_section(pomb, is_string, entsize);
2321 this->lookup_maps_->add_merge_section(msp, pomb);
2322 }
2323
6bf924b0
DK
2324 // Add input section to new merge section and link input section to new
2325 // merge section in map.
0439c796 2326 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2327 return true;
2328 }
2329 else
0439c796
DK
2330 {
2331 // If add_input_section failed, delete new merge section to avoid
2332 // exporting empty merge sections in Output_section::get_input_section.
2333 if (is_new)
2334 delete pomb;
2335 return false;
2336 }
b8e6aad9
ILT
2337}
2338
c0a62865 2339// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2340// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2341
20e6d0d6 2342void
c0a62865 2343Output_section::build_relaxation_map(
2ea97941 2344 const Input_section_list& input_sections,
c0a62865
DK
2345 size_t limit,
2346 Relaxation_map* relaxation_map) const
20e6d0d6 2347{
c0a62865
DK
2348 for (size_t i = 0; i < limit; ++i)
2349 {
2ea97941 2350 const Input_section& is(input_sections[i]);
c0a62865
DK
2351 if (is.is_input_section() || is.is_relaxed_input_section())
2352 {
5ac169d4
DK
2353 Section_id sid(is.relobj(), is.shndx());
2354 (*relaxation_map)[sid] = i;
c0a62865
DK
2355 }
2356 }
2357}
2358
2359// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2360// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2361// indices of INPUT_SECTIONS.
20e6d0d6 2362
c0a62865
DK
2363void
2364Output_section::convert_input_sections_in_list_to_relaxed_sections(
2365 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2366 const Relaxation_map& map,
2ea97941 2367 Input_section_list* input_sections)
c0a62865
DK
2368{
2369 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2370 {
2371 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2372 Section_id sid(poris->relobj(), poris->shndx());
2373 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2374 gold_assert(p != map.end());
2ea97941
ILT
2375 gold_assert((*input_sections)[p->second].is_input_section());
2376 (*input_sections)[p->second] = Input_section(poris);
c0a62865
DK
2377 }
2378}
2379
2380// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2381// is a vector of pointers to Output_relaxed_input_section or its derived
2382// classes. The relaxed sections must correspond to existing input sections.
2383
2384void
2385Output_section::convert_input_sections_to_relaxed_sections(
2386 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2387{
029ba973 2388 gold_assert(parameters->target().may_relax());
20e6d0d6 2389
c0a62865
DK
2390 // We want to make sure that restore_states does not undo the effect of
2391 // this. If there is no checkpoint active, just search the current
2392 // input section list and replace the sections there. If there is
2393 // a checkpoint, also replace the sections there.
2394
2395 // By default, we look at the whole list.
2396 size_t limit = this->input_sections_.size();
2397
2398 if (this->checkpoint_ != NULL)
20e6d0d6 2399 {
c0a62865
DK
2400 // Replace input sections with relaxed input section in the saved
2401 // copy of the input section list.
2402 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2403 {
c0a62865
DK
2404 Relaxation_map map;
2405 this->build_relaxation_map(
2406 *(this->checkpoint_->input_sections()),
2407 this->checkpoint_->input_sections()->size(),
2408 &map);
2409 this->convert_input_sections_in_list_to_relaxed_sections(
2410 relaxed_sections,
2411 map,
2412 this->checkpoint_->input_sections());
2413 }
2414 else
2415 {
2416 // We have not copied the input section list yet. Instead, just
2417 // look at the portion that would be saved.
2418 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2419 }
20e6d0d6 2420 }
c0a62865
DK
2421
2422 // Convert input sections in input_section_list.
2423 Relaxation_map map;
2424 this->build_relaxation_map(this->input_sections_, limit, &map);
2425 this->convert_input_sections_in_list_to_relaxed_sections(
2426 relaxed_sections,
2427 map,
2428 &this->input_sections_);
41263c05
DK
2429
2430 // Update fast look-up map.
0439c796 2431 if (this->lookup_maps_->is_valid())
41263c05
DK
2432 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2433 {
2434 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2435 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2436 poris->shndx(), poris);
41263c05 2437 }
20e6d0d6
DK
2438}
2439
9c547ec3
ILT
2440// Update the output section flags based on input section flags.
2441
2442void
2ea97941 2443Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2444{
2445 // If we created the section with SHF_ALLOC clear, we set the
2446 // address. If we are now setting the SHF_ALLOC flag, we need to
2447 // undo that.
2448 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2449 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2450 this->mark_address_invalid();
2451
2ea97941 2452 this->flags_ |= (flags
9c547ec3
ILT
2453 & (elfcpp::SHF_WRITE
2454 | elfcpp::SHF_ALLOC
2455 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2456
2457 if ((flags & elfcpp::SHF_MERGE) == 0)
2458 this->flags_ &=~ elfcpp::SHF_MERGE;
2459 else
2460 {
2461 if (this->current_data_size_for_child() == 0)
2462 this->flags_ |= elfcpp::SHF_MERGE;
2463 }
2464
2465 if ((flags & elfcpp::SHF_STRINGS) == 0)
2466 this->flags_ &=~ elfcpp::SHF_STRINGS;
2467 else
2468 {
2469 if (this->current_data_size_for_child() == 0)
2470 this->flags_ |= elfcpp::SHF_STRINGS;
2471 }
9c547ec3
ILT
2472}
2473
2ea97941 2474// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2475// OBJECT has been added. Return NULL if none found.
2476
2477Output_section_data*
2478Output_section::find_merge_section(const Relobj* object,
2ea97941 2479 unsigned int shndx) const
c0a62865 2480{
0439c796
DK
2481 if (!this->lookup_maps_->is_valid())
2482 this->build_lookup_maps();
2483 return this->lookup_maps_->find_merge_section(object, shndx);
2484}
2485
2486// Build the lookup maps for merge and relaxed sections. This is needs
2487// to be declared as a const methods so that it is callable with a const
2488// Output_section pointer. The method only updates states of the maps.
2489
2490void
2491Output_section::build_lookup_maps() const
2492{
2493 this->lookup_maps_->clear();
2494 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2495 p != this->input_sections_.end();
2496 ++p)
c0a62865 2497 {
0439c796
DK
2498 if (p->is_merge_section())
2499 {
2500 Output_merge_base* pomb = p->output_merge_base();
2501 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2502 pomb->addralign());
2503 this->lookup_maps_->add_merge_section(msp, pomb);
2504 for (Output_merge_base::Input_sections::const_iterator is =
2505 pomb->input_sections_begin();
2506 is != pomb->input_sections_end();
2507 ++is)
2508 {
2509 const Const_section_id& csid = *is;
2510 this->lookup_maps_->add_merge_input_section(csid.first,
2511 csid.second, pomb);
2512 }
2513
2514 }
2515 else if (p->is_relaxed_input_section())
2516 {
2517 Output_relaxed_input_section* poris = p->relaxed_input_section();
2518 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2519 poris->shndx(), poris);
2520 }
c0a62865 2521 }
c0a62865
DK
2522}
2523
2524// Find an relaxed input section corresponding to an input section
2ea97941 2525// in OBJECT with index SHNDX.
c0a62865 2526
d6344fb5 2527const Output_relaxed_input_section*
c0a62865 2528Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2529 unsigned int shndx) const
c0a62865 2530{
0439c796
DK
2531 if (!this->lookup_maps_->is_valid())
2532 this->build_lookup_maps();
2533 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2534}
2535
2ea97941
ILT
2536// Given an address OFFSET relative to the start of input section
2537// SHNDX in OBJECT, return whether this address is being included in
2538// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2539// a special mapping.
2540
2541bool
2542Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2543 unsigned int shndx,
2544 off_t offset) const
730cdc88 2545{
c0a62865 2546 // Look at the Output_section_data_maps first.
2ea97941 2547 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2548 if (posd == NULL)
2ea97941 2549 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2550
2551 if (posd != NULL)
2552 {
2ea97941
ILT
2553 section_offset_type output_offset;
2554 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2555 gold_assert(found);
2ea97941 2556 return output_offset != -1;
c0a62865
DK
2557 }
2558
2559 // Fall back to the slow look-up.
730cdc88
ILT
2560 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2561 p != this->input_sections_.end();
2562 ++p)
2563 {
2ea97941
ILT
2564 section_offset_type output_offset;
2565 if (p->output_offset(object, shndx, offset, &output_offset))
2566 return output_offset != -1;
730cdc88
ILT
2567 }
2568
2569 // By default we assume that the address is mapped. This should
2570 // only be called after we have passed all sections to Layout. At
2571 // that point we should know what we are discarding.
2572 return true;
2573}
2574
2ea97941
ILT
2575// Given an address OFFSET relative to the start of input section
2576// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2577// start of the input section in the output section. This should only
2ea97941 2578// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2579
8383303e 2580section_offset_type
2ea97941
ILT
2581Output_section::output_offset(const Relobj* object, unsigned int shndx,
2582 section_offset_type offset) const
730cdc88 2583{
c0a62865
DK
2584 // This can only be called meaningfully when we know the data size
2585 // of this.
2586 gold_assert(this->is_data_size_valid());
730cdc88 2587
c0a62865 2588 // Look at the Output_section_data_maps first.
2ea97941 2589 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2590 if (posd == NULL)
2ea97941 2591 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2592 if (posd != NULL)
2593 {
2ea97941
ILT
2594 section_offset_type output_offset;
2595 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2596 gold_assert(found);
2ea97941 2597 return output_offset;
c0a62865
DK
2598 }
2599
2600 // Fall back to the slow look-up.
730cdc88
ILT
2601 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2602 p != this->input_sections_.end();
2603 ++p)
2604 {
2ea97941
ILT
2605 section_offset_type output_offset;
2606 if (p->output_offset(object, shndx, offset, &output_offset))
2607 return output_offset;
730cdc88
ILT
2608 }
2609 gold_unreachable();
2610}
2611
2ea97941
ILT
2612// Return the output virtual address of OFFSET relative to the start
2613// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2614
2615uint64_t
2ea97941
ILT
2616Output_section::output_address(const Relobj* object, unsigned int shndx,
2617 off_t offset) const
b8e6aad9
ILT
2618{
2619 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2620
2621 // Look at the Output_section_data_maps first.
2ea97941 2622 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2623 if (posd == NULL)
2ea97941 2624 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2625 if (posd != NULL && posd->is_address_valid())
2626 {
2ea97941
ILT
2627 section_offset_type output_offset;
2628 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2629 gold_assert(found);
2ea97941 2630 return posd->address() + output_offset;
c0a62865
DK
2631 }
2632
2633 // Fall back to the slow look-up.
b8e6aad9
ILT
2634 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2635 p != this->input_sections_.end();
2636 ++p)
2637 {
2638 addr = align_address(addr, p->addralign());
2ea97941
ILT
2639 section_offset_type output_offset;
2640 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2641 {
2ea97941 2642 if (output_offset == -1)
eff45813 2643 return -1ULL;
2ea97941 2644 return addr + output_offset;
730cdc88 2645 }
b8e6aad9
ILT
2646 addr += p->data_size();
2647 }
2648
2649 // If we get here, it means that we don't know the mapping for this
2650 // input section. This might happen in principle if
2651 // add_input_section were called before add_output_section_data.
2652 // But it should never actually happen.
2653
2654 gold_unreachable();
ead1e424
ILT
2655}
2656
e29e076a 2657// Find the output address of the start of the merged section for
2ea97941 2658// input section SHNDX in object OBJECT.
a9a60db6 2659
e29e076a
ILT
2660bool
2661Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2662 unsigned int shndx,
e29e076a 2663 uint64_t* paddr) const
a9a60db6 2664{
c0a62865
DK
2665 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2666 // Looking up the merge section map does not always work as we sometimes
2667 // find a merge section without its address set.
a9a60db6
ILT
2668 uint64_t addr = this->address() + this->first_input_offset_;
2669 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2670 p != this->input_sections_.end();
2671 ++p)
2672 {
2673 addr = align_address(addr, p->addralign());
2674
2675 // It would be nice if we could use the existing output_offset
2676 // method to get the output offset of input offset 0.
2677 // Unfortunately we don't know for sure that input offset 0 is
2678 // mapped at all.
2ea97941 2679 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2680 {
2681 *paddr = addr;
2682 return true;
2683 }
a9a60db6
ILT
2684
2685 addr += p->data_size();
2686 }
e29e076a
ILT
2687
2688 // We couldn't find a merge output section for this input section.
2689 return false;
a9a60db6
ILT
2690}
2691
27bc2bce 2692// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2693// setting the addresses of any Output_section_data objects.
2694
2695void
27bc2bce 2696Output_section::set_final_data_size()
ead1e424
ILT
2697{
2698 if (this->input_sections_.empty())
27bc2bce
ILT
2699 {
2700 this->set_data_size(this->current_data_size_for_child());
2701 return;
2702 }
ead1e424 2703
6e9ba2ca
ST
2704 if (this->must_sort_attached_input_sections()
2705 || this->input_section_order_specified())
2fd32231
ILT
2706 this->sort_attached_input_sections();
2707
2ea97941 2708 uint64_t address = this->address();
27bc2bce 2709 off_t startoff = this->offset();
ead1e424
ILT
2710 off_t off = startoff + this->first_input_offset_;
2711 for (Input_section_list::iterator p = this->input_sections_.begin();
2712 p != this->input_sections_.end();
2713 ++p)
2714 {
2715 off = align_address(off, p->addralign());
2ea97941 2716 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2717 startoff);
ead1e424
ILT
2718 off += p->data_size();
2719 }
2720
2721 this->set_data_size(off - startoff);
2722}
9a0910c3 2723
a445fddf
ILT
2724// Reset the address and file offset.
2725
2726void
2727Output_section::do_reset_address_and_file_offset()
2728{
20e6d0d6
DK
2729 // An unallocated section has no address. Forcing this means that
2730 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2731 // sections. We do the same in the constructor. This does not
2732 // apply to NOLOAD sections though.
2733 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2734 this->set_address(0);
2735
a445fddf
ILT
2736 for (Input_section_list::iterator p = this->input_sections_.begin();
2737 p != this->input_sections_.end();
2738 ++p)
2739 p->reset_address_and_file_offset();
2740}
20e6d0d6
DK
2741
2742// Return true if address and file offset have the values after reset.
2743
2744bool
2745Output_section::do_address_and_file_offset_have_reset_values() const
2746{
2747 if (this->is_offset_valid())
2748 return false;
2749
2750 // An unallocated section has address 0 after its construction or a reset.
2751 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2752 return this->is_address_valid() && this->address() == 0;
2753 else
2754 return !this->is_address_valid();
2755}
a445fddf 2756
7bf1f802
ILT
2757// Set the TLS offset. Called only for SHT_TLS sections.
2758
2759void
2760Output_section::do_set_tls_offset(uint64_t tls_base)
2761{
2762 this->tls_offset_ = this->address() - tls_base;
2763}
2764
2fd32231
ILT
2765// In a few cases we need to sort the input sections attached to an
2766// output section. This is used to implement the type of constructor
2767// priority ordering implemented by the GNU linker, in which the
2768// priority becomes part of the section name and the sections are
2769// sorted by name. We only do this for an output section if we see an
2770// attached input section matching ".ctor.*", ".dtor.*",
2771// ".init_array.*" or ".fini_array.*".
2772
2773class Output_section::Input_section_sort_entry
2774{
2775 public:
2776 Input_section_sort_entry()
2777 : input_section_(), index_(-1U), section_has_name_(false),
2778 section_name_()
2779 { }
2780
2ea97941 2781 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
2782 unsigned int index,
2783 bool must_sort_attached_input_sections)
2ea97941
ILT
2784 : input_section_(input_section), index_(index),
2785 section_has_name_(input_section.is_input_section()
2786 || input_section.is_relaxed_input_section())
2fd32231 2787 {
6e9ba2ca
ST
2788 if (this->section_has_name_
2789 && must_sort_attached_input_sections)
2fd32231
ILT
2790 {
2791 // This is only called single-threaded from Layout::finalize,
2792 // so it is OK to lock. Unfortunately we have no way to pass
2793 // in a Task token.
2794 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2795 Object* obj = (input_section.is_input_section()
2796 ? input_section.relobj()
2797 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2798 Task_lock_obj<Object> tl(dummy_task, obj);
2799
2800 // This is a slow operation, which should be cached in
2801 // Layout::layout if this becomes a speed problem.
2ea97941 2802 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2803 }
2804 }
2805
2806 // Return the Input_section.
2807 const Input_section&
2808 input_section() const
2809 {
2810 gold_assert(this->index_ != -1U);
2811 return this->input_section_;
2812 }
2813
2814 // The index of this entry in the original list. This is used to
2815 // make the sort stable.
2816 unsigned int
2817 index() const
2818 {
2819 gold_assert(this->index_ != -1U);
2820 return this->index_;
2821 }
2822
2823 // Whether there is a section name.
2824 bool
2825 section_has_name() const
2826 { return this->section_has_name_; }
2827
2828 // The section name.
2829 const std::string&
2830 section_name() const
2831 {
2832 gold_assert(this->section_has_name_);
2833 return this->section_name_;
2834 }
2835
ab794b6b
ILT
2836 // Return true if the section name has a priority. This is assumed
2837 // to be true if it has a dot after the initial dot.
2fd32231 2838 bool
ab794b6b 2839 has_priority() const
2fd32231
ILT
2840 {
2841 gold_assert(this->section_has_name_);
2a0ff005 2842 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2843 }
2844
ab794b6b
ILT
2845 // Return true if this an input file whose base name matches
2846 // FILE_NAME. The base name must have an extension of ".o", and
2847 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2848 // This is to match crtbegin.o as well as crtbeginS.o without
2849 // getting confused by other possibilities. Overall matching the
2850 // file name this way is a dreadful hack, but the GNU linker does it
2851 // in order to better support gcc, and we need to be compatible.
2fd32231 2852 bool
2ea97941 2853 match_file_name(const char* match_file_name) const
2fd32231 2854 {
2fd32231
ILT
2855 const std::string& file_name(this->input_section_.relobj()->name());
2856 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2857 size_t match_len = strlen(match_file_name);
2858 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2859 return false;
2860 size_t base_len = strlen(base_name);
2861 if (base_len != match_len + 2 && base_len != match_len + 3)
2862 return false;
2863 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2864 }
2865
8fe2a369
ST
2866 // Returns 1 if THIS should appear before S in section order, -1 if S
2867 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
2868 int
2869 compare_section_ordering(const Input_section_sort_entry& s) const
2870 {
8fe2a369
ST
2871 unsigned int this_secn_index = this->input_section_.section_order_index();
2872 unsigned int s_secn_index = s.input_section().section_order_index();
2873 if (this_secn_index > 0 && s_secn_index > 0)
2874 {
2875 if (this_secn_index < s_secn_index)
2876 return 1;
2877 else if (this_secn_index > s_secn_index)
2878 return -1;
2879 }
2880 return 0;
6e9ba2ca
ST
2881 }
2882
2fd32231
ILT
2883 private:
2884 // The Input_section we are sorting.
2885 Input_section input_section_;
2886 // The index of this Input_section in the original list.
2887 unsigned int index_;
2888 // Whether this Input_section has a section name--it won't if this
2889 // is some random Output_section_data.
2890 bool section_has_name_;
2891 // The section name if there is one.
2892 std::string section_name_;
2893};
2894
2895// Return true if S1 should come before S2 in the output section.
2896
2897bool
2898Output_section::Input_section_sort_compare::operator()(
2899 const Output_section::Input_section_sort_entry& s1,
2900 const Output_section::Input_section_sort_entry& s2) const
2901{
ab794b6b
ILT
2902 // crtbegin.o must come first.
2903 bool s1_begin = s1.match_file_name("crtbegin");
2904 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2905 if (s1_begin || s2_begin)
2906 {
2907 if (!s1_begin)
2908 return false;
2909 if (!s2_begin)
2910 return true;
2911 return s1.index() < s2.index();
2912 }
2913
ab794b6b
ILT
2914 // crtend.o must come last.
2915 bool s1_end = s1.match_file_name("crtend");
2916 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2917 if (s1_end || s2_end)
2918 {
2919 if (!s1_end)
2920 return true;
2921 if (!s2_end)
2922 return false;
2923 return s1.index() < s2.index();
2924 }
2925
ab794b6b
ILT
2926 // We sort all the sections with no names to the end.
2927 if (!s1.section_has_name() || !s2.section_has_name())
2928 {
2929 if (s1.section_has_name())
2930 return true;
2931 if (s2.section_has_name())
2932 return false;
2933 return s1.index() < s2.index();
2934 }
2fd32231 2935
ab794b6b 2936 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2937 bool s1_has_priority = s1.has_priority();
2938 bool s2_has_priority = s2.has_priority();
2939 if (s1_has_priority && !s2_has_priority)
2fd32231 2940 return false;
ab794b6b 2941 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2942 return true;
2943
6e9ba2ca
ST
2944 // Check if a section order exists for these sections through a section
2945 // ordering file. If sequence_num is 0, an order does not exist.
2946 int sequence_num = s1.compare_section_ordering(s2);
2947 if (sequence_num != 0)
2948 return sequence_num == 1;
2949
2fd32231
ILT
2950 // Otherwise we sort by name.
2951 int compare = s1.section_name().compare(s2.section_name());
2952 if (compare != 0)
2953 return compare < 0;
2954
2955 // Otherwise we keep the input order.
2956 return s1.index() < s2.index();
2957}
2958
2a0ff005
DK
2959// Return true if S1 should come before S2 in an .init_array or .fini_array
2960// output section.
2961
2962bool
2963Output_section::Input_section_sort_init_fini_compare::operator()(
2964 const Output_section::Input_section_sort_entry& s1,
2965 const Output_section::Input_section_sort_entry& s2) const
2966{
2967 // We sort all the sections with no names to the end.
2968 if (!s1.section_has_name() || !s2.section_has_name())
2969 {
2970 if (s1.section_has_name())
2971 return true;
2972 if (s2.section_has_name())
2973 return false;
2974 return s1.index() < s2.index();
2975 }
2976
2977 // A section without a priority follows a section with a priority.
2978 // This is the reverse of .ctors and .dtors sections.
2979 bool s1_has_priority = s1.has_priority();
2980 bool s2_has_priority = s2.has_priority();
2981 if (s1_has_priority && !s2_has_priority)
2982 return true;
2983 if (!s1_has_priority && s2_has_priority)
2984 return false;
2985
6e9ba2ca
ST
2986 // Check if a section order exists for these sections through a section
2987 // ordering file. If sequence_num is 0, an order does not exist.
2988 int sequence_num = s1.compare_section_ordering(s2);
2989 if (sequence_num != 0)
2990 return sequence_num == 1;
2991
2a0ff005
DK
2992 // Otherwise we sort by name.
2993 int compare = s1.section_name().compare(s2.section_name());
2994 if (compare != 0)
2995 return compare < 0;
2996
2997 // Otherwise we keep the input order.
2998 return s1.index() < s2.index();
2999}
3000
8fe2a369
ST
3001// Return true if S1 should come before S2. Sections that do not match
3002// any pattern in the section ordering file are placed ahead of the sections
3003// that match some pattern.
3004
6e9ba2ca
ST
3005bool
3006Output_section::Input_section_sort_section_order_index_compare::operator()(
3007 const Output_section::Input_section_sort_entry& s1,
3008 const Output_section::Input_section_sort_entry& s2) const
3009{
8fe2a369
ST
3010 unsigned int s1_secn_index = s1.input_section().section_order_index();
3011 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3012
8fe2a369
ST
3013 // Keep input order if section ordering cannot determine order.
3014 if (s1_secn_index == s2_secn_index)
3015 return s1.index() < s2.index();
3016
3017 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3018}
3019
2fd32231
ILT
3020// Sort the input sections attached to an output section.
3021
3022void
3023Output_section::sort_attached_input_sections()
3024{
3025 if (this->attached_input_sections_are_sorted_)
3026 return;
3027
20e6d0d6
DK
3028 if (this->checkpoint_ != NULL
3029 && !this->checkpoint_->input_sections_saved())
3030 this->checkpoint_->save_input_sections();
3031
2fd32231
ILT
3032 // The only thing we know about an input section is the object and
3033 // the section index. We need the section name. Recomputing this
3034 // is slow but this is an unusual case. If this becomes a speed
3035 // problem we can cache the names as required in Layout::layout.
3036
3037 // We start by building a larger vector holding a copy of each
3038 // Input_section, plus its current index in the list and its name.
3039 std::vector<Input_section_sort_entry> sort_list;
3040
3041 unsigned int i = 0;
3042 for (Input_section_list::iterator p = this->input_sections_.begin();
3043 p != this->input_sections_.end();
3044 ++p, ++i)
6e9ba2ca
ST
3045 sort_list.push_back(Input_section_sort_entry(*p, i,
3046 this->must_sort_attached_input_sections()));
2fd32231
ILT
3047
3048 // Sort the input sections.
6e9ba2ca
ST
3049 if (this->must_sort_attached_input_sections())
3050 {
3051 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3052 || this->type() == elfcpp::SHT_INIT_ARRAY
3053 || this->type() == elfcpp::SHT_FINI_ARRAY)
3054 std::sort(sort_list.begin(), sort_list.end(),
3055 Input_section_sort_init_fini_compare());
3056 else
3057 std::sort(sort_list.begin(), sort_list.end(),
3058 Input_section_sort_compare());
3059 }
2a0ff005 3060 else
6e9ba2ca
ST
3061 {
3062 gold_assert(parameters->options().section_ordering_file());
3063 std::sort(sort_list.begin(), sort_list.end(),
3064 Input_section_sort_section_order_index_compare());
3065 }
2fd32231
ILT
3066
3067 // Copy the sorted input sections back to our list.
3068 this->input_sections_.clear();
3069 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3070 p != sort_list.end();
3071 ++p)
3072 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3073 sort_list.clear();
2fd32231
ILT
3074
3075 // Remember that we sorted the input sections, since we might get
3076 // called again.
3077 this->attached_input_sections_are_sorted_ = true;
3078}
3079
61ba1cf9
ILT
3080// Write the section header to *OSHDR.
3081
3082template<int size, bool big_endian>
3083void
16649710
ILT
3084Output_section::write_header(const Layout* layout,
3085 const Stringpool* secnamepool,
61ba1cf9
ILT
3086 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3087{
3088 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3089 oshdr->put_sh_type(this->type_);
6a74a719 3090
2ea97941 3091 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3092 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3093 flags |= elfcpp::SHF_INFO_LINK;
3094 oshdr->put_sh_flags(flags);
6a74a719 3095
61ba1cf9
ILT
3096 oshdr->put_sh_addr(this->address());
3097 oshdr->put_sh_offset(this->offset());
3098 oshdr->put_sh_size(this->data_size());
16649710
ILT
3099 if (this->link_section_ != NULL)
3100 oshdr->put_sh_link(this->link_section_->out_shndx());
3101 else if (this->should_link_to_symtab_)
3102 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3103 else if (this->should_link_to_dynsym_)
3104 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3105 else
3106 oshdr->put_sh_link(this->link_);
755ab8af 3107
2ea97941 3108 elfcpp::Elf_Word info;
16649710 3109 if (this->info_section_ != NULL)
755ab8af
ILT
3110 {
3111 if (this->info_uses_section_index_)
2ea97941 3112 info = this->info_section_->out_shndx();
755ab8af 3113 else
2ea97941 3114 info = this->info_section_->symtab_index();
755ab8af 3115 }
6a74a719 3116 else if (this->info_symndx_ != NULL)
2ea97941 3117 info = this->info_symndx_->symtab_index();
16649710 3118 else
2ea97941
ILT
3119 info = this->info_;
3120 oshdr->put_sh_info(info);
755ab8af 3121
61ba1cf9
ILT
3122 oshdr->put_sh_addralign(this->addralign_);
3123 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3124}
3125
ead1e424
ILT
3126// Write out the data. For input sections the data is written out by
3127// Object::relocate, but we have to handle Output_section_data objects
3128// here.
3129
3130void
3131Output_section::do_write(Output_file* of)
3132{
96803768
ILT
3133 gold_assert(!this->requires_postprocessing());
3134
c0a62865
DK
3135 // If the target performs relaxation, we delay filler generation until now.
3136 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3137
c51e6221
ILT
3138 off_t output_section_file_offset = this->offset();
3139 for (Fill_list::iterator p = this->fills_.begin();
3140 p != this->fills_.end();
3141 ++p)
3142 {
8851ecca 3143 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3144 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3145 fill_data.data(), fill_data.size());
c51e6221
ILT
3146 }
3147
c0a62865 3148 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3149 for (Input_section_list::iterator p = this->input_sections_.begin();
3150 p != this->input_sections_.end();
3151 ++p)
c0a62865
DK
3152 {
3153 off_t aligned_off = align_address(off, p->addralign());
3154 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3155 {
3156 size_t fill_len = aligned_off - off;
3157 std::string fill_data(parameters->target().code_fill(fill_len));
3158 of->write(off, fill_data.data(), fill_data.size());
3159 }
3160
3161 p->write(of);
3162 off = aligned_off + p->data_size();
3163 }
ead1e424
ILT
3164}
3165
96803768
ILT
3166// If a section requires postprocessing, create the buffer to use.
3167
3168void
3169Output_section::create_postprocessing_buffer()
3170{
3171 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3172
3173 if (this->postprocessing_buffer_ != NULL)
3174 return;
96803768
ILT
3175
3176 if (!this->input_sections_.empty())
3177 {
3178 off_t off = this->first_input_offset_;
3179 for (Input_section_list::iterator p = this->input_sections_.begin();
3180 p != this->input_sections_.end();
3181 ++p)
3182 {
3183 off = align_address(off, p->addralign());
3184 p->finalize_data_size();
3185 off += p->data_size();
3186 }
3187 this->set_current_data_size_for_child(off);
3188 }
3189
3190 off_t buffer_size = this->current_data_size_for_child();
3191 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3192}
3193
3194// Write all the data of an Output_section into the postprocessing
3195// buffer. This is used for sections which require postprocessing,
3196// such as compression. Input sections are handled by
3197// Object::Relocate.
3198
3199void
3200Output_section::write_to_postprocessing_buffer()
3201{
3202 gold_assert(this->requires_postprocessing());
3203
c0a62865
DK
3204 // If the target performs relaxation, we delay filler generation until now.
3205 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3206
96803768
ILT
3207 unsigned char* buffer = this->postprocessing_buffer();
3208 for (Fill_list::iterator p = this->fills_.begin();
3209 p != this->fills_.end();
3210 ++p)
3211 {
8851ecca 3212 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3213 memcpy(buffer + p->section_offset(), fill_data.data(),
3214 fill_data.size());
96803768
ILT
3215 }
3216
3217 off_t off = this->first_input_offset_;
3218 for (Input_section_list::iterator p = this->input_sections_.begin();
3219 p != this->input_sections_.end();
3220 ++p)
3221 {
c0a62865
DK
3222 off_t aligned_off = align_address(off, p->addralign());
3223 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3224 {
3225 size_t fill_len = aligned_off - off;
3226 std::string fill_data(parameters->target().code_fill(fill_len));
3227 memcpy(buffer + off, fill_data.data(), fill_data.size());
3228 }
3229
3230 p->write_to_buffer(buffer + aligned_off);
3231 off = aligned_off + p->data_size();
96803768
ILT
3232 }
3233}
3234
a445fddf
ILT
3235// Get the input sections for linker script processing. We leave
3236// behind the Output_section_data entries. Note that this may be
3237// slightly incorrect for merge sections. We will leave them behind,
3238// but it is possible that the script says that they should follow
3239// some other input sections, as in:
3240// .rodata { *(.rodata) *(.rodata.cst*) }
3241// For that matter, we don't handle this correctly:
3242// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3243// With luck this will never matter.
3244
3245uint64_t
3246Output_section::get_input_sections(
2ea97941 3247 uint64_t address,
a445fddf 3248 const std::string& fill,
6625d24e 3249 std::list<Input_section>* input_sections)
a445fddf 3250{
20e6d0d6
DK
3251 if (this->checkpoint_ != NULL
3252 && !this->checkpoint_->input_sections_saved())
3253 this->checkpoint_->save_input_sections();
3254
0439c796
DK
3255 // Invalidate fast look-up maps.
3256 this->lookup_maps_->invalidate();
c0a62865 3257
2ea97941 3258 uint64_t orig_address = address;
a445fddf 3259
2ea97941 3260 address = align_address(address, this->addralign());
a445fddf
ILT
3261
3262 Input_section_list remaining;
3263 for (Input_section_list::iterator p = this->input_sections_.begin();
3264 p != this->input_sections_.end();
3265 ++p)
3266 {
0439c796
DK
3267 if (p->is_input_section()
3268 || p->is_relaxed_input_section()
3269 || p->is_merge_section())
6625d24e 3270 input_sections->push_back(*p);
a445fddf
ILT
3271 else
3272 {
2ea97941
ILT
3273 uint64_t aligned_address = align_address(address, p->addralign());
3274 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3275 {
3276 section_size_type length =
2ea97941 3277 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3278 std::string this_fill;
3279 this_fill.reserve(length);
3280 while (this_fill.length() + fill.length() <= length)
3281 this_fill += fill;
3282 if (this_fill.length() < length)
3283 this_fill.append(fill, 0, length - this_fill.length());
3284
3285 Output_section_data* posd = new Output_data_const(this_fill, 0);
3286 remaining.push_back(Input_section(posd));
3287 }
2ea97941 3288 address = aligned_address;
a445fddf
ILT
3289
3290 remaining.push_back(*p);
3291
3292 p->finalize_data_size();
2ea97941 3293 address += p->data_size();
a445fddf
ILT
3294 }
3295 }
3296
3297 this->input_sections_.swap(remaining);
3298 this->first_input_offset_ = 0;
3299
2ea97941
ILT
3300 uint64_t data_size = address - orig_address;
3301 this->set_current_data_size_for_child(data_size);
3302 return data_size;
a445fddf
ILT
3303}
3304
6625d24e
DK
3305// Add a script input section. SIS is an Output_section::Input_section,
3306// which can be either a plain input section or a special input section like
3307// a relaxed input section. For a special input section, its size must be
3308// finalized.
a445fddf
ILT
3309
3310void
6625d24e 3311Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3312{
6625d24e
DK
3313 uint64_t data_size = sis.data_size();
3314 uint64_t addralign = sis.addralign();
2ea97941
ILT
3315 if (addralign > this->addralign_)
3316 this->addralign_ = addralign;
a445fddf
ILT
3317
3318 off_t offset_in_section = this->current_data_size_for_child();
3319 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3320 addralign);
a445fddf
ILT
3321
3322 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3323 + data_size);
a445fddf 3324
6625d24e 3325 this->input_sections_.push_back(sis);
0439c796
DK
3326
3327 // Update fast lookup maps if necessary.
3328 if (this->lookup_maps_->is_valid())
3329 {
3330 if (sis.is_merge_section())
3331 {
3332 Output_merge_base* pomb = sis.output_merge_base();
3333 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3334 pomb->addralign());
3335 this->lookup_maps_->add_merge_section(msp, pomb);
3336 for (Output_merge_base::Input_sections::const_iterator p =
3337 pomb->input_sections_begin();
3338 p != pomb->input_sections_end();
3339 ++p)
3340 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3341 pomb);
3342 }
3343 else if (sis.is_relaxed_input_section())
3344 {
3345 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3346 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3347 poris->shndx(), poris);
3348 }
3349 }
20e6d0d6
DK
3350}
3351
8923b24c 3352// Save states for relaxation.
20e6d0d6
DK
3353
3354void
3355Output_section::save_states()
3356{
3357 gold_assert(this->checkpoint_ == NULL);
3358 Checkpoint_output_section* checkpoint =
3359 new Checkpoint_output_section(this->addralign_, this->flags_,
3360 this->input_sections_,
3361 this->first_input_offset_,
3362 this->attached_input_sections_are_sorted_);
3363 this->checkpoint_ = checkpoint;
3364 gold_assert(this->fills_.empty());
3365}
3366
8923b24c
DK
3367void
3368Output_section::discard_states()
3369{
3370 gold_assert(this->checkpoint_ != NULL);
3371 delete this->checkpoint_;
3372 this->checkpoint_ = NULL;
3373 gold_assert(this->fills_.empty());
3374
0439c796
DK
3375 // Simply invalidate the fast lookup maps since we do not keep
3376 // track of them.
3377 this->lookup_maps_->invalidate();
8923b24c
DK
3378}
3379
20e6d0d6
DK
3380void
3381Output_section::restore_states()
3382{
3383 gold_assert(this->checkpoint_ != NULL);
3384 Checkpoint_output_section* checkpoint = this->checkpoint_;
3385
3386 this->addralign_ = checkpoint->addralign();
3387 this->flags_ = checkpoint->flags();
3388 this->first_input_offset_ = checkpoint->first_input_offset();
3389
3390 if (!checkpoint->input_sections_saved())
3391 {
3392 // If we have not copied the input sections, just resize it.
3393 size_t old_size = checkpoint->input_sections_size();
3394 gold_assert(this->input_sections_.size() >= old_size);
3395 this->input_sections_.resize(old_size);
3396 }
3397 else
3398 {
3399 // We need to copy the whole list. This is not efficient for
3400 // extremely large output with hundreads of thousands of input
3401 // objects. We may need to re-think how we should pass sections
3402 // to scripts.
c0a62865 3403 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3404 }
3405
3406 this->attached_input_sections_are_sorted_ =
3407 checkpoint->attached_input_sections_are_sorted();
c0a62865 3408
0439c796
DK
3409 // Simply invalidate the fast lookup maps since we do not keep
3410 // track of them.
3411 this->lookup_maps_->invalidate();
a445fddf
ILT
3412}
3413
8923b24c
DK
3414// Update the section offsets of input sections in this. This is required if
3415// relaxation causes some input sections to change sizes.
3416
3417void
3418Output_section::adjust_section_offsets()
3419{
3420 if (!this->section_offsets_need_adjustment_)
3421 return;
3422
3423 off_t off = 0;
3424 for (Input_section_list::iterator p = this->input_sections_.begin();
3425 p != this->input_sections_.end();
3426 ++p)
3427 {
3428 off = align_address(off, p->addralign());
3429 if (p->is_input_section())
3430 p->relobj()->set_section_offset(p->shndx(), off);
3431 off += p->data_size();
3432 }
3433
3434 this->section_offsets_need_adjustment_ = false;
3435}
3436
7d9e3d98
ILT
3437// Print to the map file.
3438
3439void
3440Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3441{
3442 mapfile->print_output_section(this);
3443
3444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3445 p != this->input_sections_.end();
3446 ++p)
3447 p->print_to_mapfile(mapfile);
3448}
3449
38c5e8b4
ILT
3450// Print stats for merge sections to stderr.
3451
3452void
3453Output_section::print_merge_stats()
3454{
3455 Input_section_list::iterator p;
3456 for (p = this->input_sections_.begin();
3457 p != this->input_sections_.end();
3458 ++p)
3459 p->print_merge_stats(this->name_);
3460}
3461
a2fb1b05
ILT
3462// Output segment methods.
3463
2ea97941 3464Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3465 : vaddr_(0),
a2fb1b05
ILT
3466 paddr_(0),
3467 memsz_(0),
a445fddf
ILT
3468 max_align_(0),
3469 min_p_align_(0),
a2fb1b05
ILT
3470 offset_(0),
3471 filesz_(0),
2ea97941
ILT
3472 type_(type),
3473 flags_(flags),
a445fddf 3474 is_max_align_known_(false),
8a5e3e08
ILT
3475 are_addresses_set_(false),
3476 is_large_data_segment_(false)
a2fb1b05 3477{
bb321bb1
ILT
3478 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3479 // the flags.
3480 if (type == elfcpp::PT_TLS)
3481 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3482}
3483
22f0da72 3484// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
3485
3486void
22f0da72
ILT
3487Output_segment::add_output_section_to_load(Layout* layout,
3488 Output_section* os,
3489 elfcpp::Elf_Word seg_flags)
a2fb1b05 3490{
22f0da72 3491 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 3492 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3493 gold_assert(!this->is_max_align_known_);
8a5e3e08 3494 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 3495
a192ba05 3496 this->update_flags_for_output_section(seg_flags);
75f65a3e 3497
22f0da72
ILT
3498 // We don't want to change the ordering if we have a linker script
3499 // with a SECTIONS clause.
3500 Output_section_order order = os->order();
3501 if (layout->script_options()->saw_sections_clause())
3502 order = static_cast<Output_section_order>(0);
75f65a3e 3503 else
22f0da72 3504 gold_assert(order != ORDER_INVALID);
54dc6425 3505
22f0da72
ILT
3506 this->output_lists_[order].push_back(os);
3507}
9f1d377b 3508
22f0da72 3509// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 3510
22f0da72
ILT
3511void
3512Output_segment::add_output_section_to_nonload(Output_section* os,
3513 elfcpp::Elf_Word seg_flags)
3514{
3515 gold_assert(this->type() != elfcpp::PT_LOAD);
3516 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3517 gold_assert(!this->is_max_align_known_);
1a2dff53 3518
22f0da72 3519 this->update_flags_for_output_section(seg_flags);
9f1d377b 3520
22f0da72
ILT
3521 this->output_lists_[0].push_back(os);
3522}
8a5e3e08 3523
22f0da72
ILT
3524// Remove an Output_section from this segment. It is an error if it
3525// is not present.
8a5e3e08 3526
22f0da72
ILT
3527void
3528Output_segment::remove_output_section(Output_section* os)
3529{
3530 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 3531 {
22f0da72
ILT
3532 Output_data_list* pdl = &this->output_lists_[i];
3533 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 3534 {
22f0da72 3535 if (*p == os)
8a5e3e08 3536 {
22f0da72 3537 pdl->erase(p);
8a5e3e08
ILT
3538 return;
3539 }
3540 }
f5c870d2 3541 }
1650c4ff
ILT
3542 gold_unreachable();
3543}
3544
a192ba05
ILT
3545// Add an Output_data (which need not be an Output_section) to the
3546// start of a segment.
75f65a3e
ILT
3547
3548void
3549Output_segment::add_initial_output_data(Output_data* od)
3550{
a445fddf 3551 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
3552 Output_data_list::iterator p = this->output_lists_[0].begin();
3553 this->output_lists_[0].insert(p, od);
3554}
3555
3556// Return true if this segment has any sections which hold actual
3557// data, rather than being a BSS section.
3558
3559bool
3560Output_segment::has_any_data_sections() const
3561{
3562 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3563 {
3564 const Output_data_list* pdl = &this->output_lists_[i];
3565 for (Output_data_list::const_iterator p = pdl->begin();
3566 p != pdl->end();
3567 ++p)
3568 {
3569 if (!(*p)->is_section())
3570 return true;
3571 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3572 return true;
3573 }
3574 }
3575 return false;
75f65a3e
ILT
3576}
3577
9f1d377b
ILT
3578// Return whether the first data section is a relro section.
3579
3580bool
3581Output_segment::is_first_section_relro() const
3582{
22f0da72
ILT
3583 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3584 {
3585 const Output_data_list* pdl = &this->output_lists_[i];
3586 if (!pdl->empty())
3587 {
3588 Output_data* p = pdl->front();
3589 return p->is_section() && p->output_section()->is_relro();
3590 }
3591 }
3592 return false;
9f1d377b
ILT
3593}
3594
75f65a3e 3595// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3596
3597uint64_t
a445fddf 3598Output_segment::maximum_alignment()
75f65a3e 3599{
a445fddf 3600 if (!this->is_max_align_known_)
ead1e424 3601 {
22f0da72
ILT
3602 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3603 {
3604 const Output_data_list* pdl = &this->output_lists_[i];
3605 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3606 if (addralign > this->max_align_)
3607 this->max_align_ = addralign;
3608 }
a445fddf 3609 this->is_max_align_known_ = true;
ead1e424
ILT
3610 }
3611
a445fddf 3612 return this->max_align_;
75f65a3e
ILT
3613}
3614
ead1e424
ILT
3615// Return the maximum alignment of a list of Output_data.
3616
3617uint64_t
a445fddf 3618Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3619{
3620 uint64_t ret = 0;
3621 for (Output_data_list::const_iterator p = pdl->begin();
3622 p != pdl->end();
3623 ++p)
3624 {
2ea97941
ILT
3625 uint64_t addralign = (*p)->addralign();
3626 if (addralign > ret)
3627 ret = addralign;
ead1e424
ILT
3628 }
3629 return ret;
3630}
3631
22f0da72 3632// Return whether this segment has any dynamic relocs.
4f4c5f80 3633
22f0da72
ILT
3634bool
3635Output_segment::has_dynamic_reloc() const
4f4c5f80 3636{
22f0da72
ILT
3637 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3638 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3639 return true;
3640 return false;
4f4c5f80
ILT
3641}
3642
22f0da72 3643// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 3644
22f0da72
ILT
3645bool
3646Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 3647{
4f4c5f80
ILT
3648 for (Output_data_list::const_iterator p = pdl->begin();
3649 p != pdl->end();
3650 ++p)
22f0da72
ILT
3651 if ((*p)->has_dynamic_reloc())
3652 return true;
3653 return false;
4f4c5f80
ILT
3654}
3655
a445fddf
ILT
3656// Set the section addresses for an Output_segment. If RESET is true,
3657// reset the addresses first. ADDR is the address and *POFF is the
3658// file offset. Set the section indexes starting with *PSHNDX.
fc497986
CC
3659// *PINCREASE_RELRO is the size of the portion of the first non-relro
3660// section that should be included in the PT_GNU_RELRO segment; if
3661// there is alignment padding between the last relro section and the
3662// next section, we add that padding to that size and return the
3663// updated value. If this segment has relro sections, and has been
3664// aligned for that purpose, set *HAS_RELRO to TRUE.
a445fddf 3665// Return the address of the immediately following segment. Update
fc497986 3666// *PINCREASE_RELRO, *HAS_RELRO, *POFF, and *PSHNDX.
75f65a3e
ILT
3667
3668uint64_t
96a2b4e4 3669Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53 3670 uint64_t addr,
fc497986
CC
3671 unsigned int* pincrease_relro,
3672 bool* has_relro,
1a2dff53 3673 off_t* poff,
ead1e424 3674 unsigned int* pshndx)
75f65a3e 3675{
a3ad94ed 3676 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3677
fc497986 3678 uint64_t last_relro_pad = 0;
1a2dff53
ILT
3679 off_t orig_off = *poff;
3680
3681 // If we have relro sections, we need to pad forward now so that the
3682 // relro sections plus INCREASE_RELRO end on a common page boundary.
3683 if (parameters->options().relro()
3684 && this->is_first_section_relro()
3685 && (!this->are_addresses_set_ || reset))
3686 {
3687 uint64_t relro_size = 0;
3688 off_t off = *poff;
fc497986 3689 uint64_t max_align = 0;
22f0da72 3690 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
1a2dff53 3691 {
22f0da72
ILT
3692 Output_data_list* pdl = &this->output_lists_[i];
3693 Output_data_list::iterator p;
3694 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 3695 {
22f0da72
ILT
3696 if (!(*p)->is_section())
3697 break;
3698 Output_section* pos = (*p)->output_section();
3699 if (!pos->is_relro())
3700 break;
fc497986
CC
3701 uint64_t align = (*p)->addralign();
3702 if (align > max_align)
3703 max_align = align;
3704 relro_size = align_address(relro_size, align);
22f0da72
ILT
3705 if ((*p)->is_address_valid())
3706 relro_size += (*p)->data_size();
3707 else
3708 {
3709 // FIXME: This could be faster.
3710 (*p)->set_address_and_file_offset(addr + relro_size,
3711 off + relro_size);
3712 relro_size += (*p)->data_size();
3713 (*p)->reset_address_and_file_offset();
3714 }
1a2dff53 3715 }
22f0da72
ILT
3716 if (p != pdl->end())
3717 break;
1a2dff53 3718 }
fc497986
CC
3719 relro_size += *pincrease_relro;
3720 // Pad the total relro size to a multiple of the maximum
3721 // section alignment seen.
3722 uint64_t aligned_size = align_address(relro_size, max_align);
3723 // Note the amount of padding added after the last relro section.
3724 last_relro_pad = aligned_size - relro_size;
3725 // Adjust *PINCREASE_RELRO to include the padding.
3726 *pincrease_relro += last_relro_pad;
3727 *has_relro = true;
1a2dff53
ILT
3728
3729 uint64_t page_align = parameters->target().common_pagesize();
3730
3731 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 3732 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
3733 if (desired_align < *poff % page_align)
3734 *poff += page_align - *poff % page_align;
3735 *poff += desired_align - *poff % page_align;
3736 addr += *poff - orig_off;
3737 orig_off = *poff;
3738 }
3739
a445fddf
ILT
3740 if (!reset && this->are_addresses_set_)
3741 {
3742 gold_assert(this->paddr_ == addr);
3743 addr = this->vaddr_;
3744 }
3745 else
3746 {
3747 this->vaddr_ = addr;
3748 this->paddr_ = addr;
3749 this->are_addresses_set_ = true;
3750 }
75f65a3e 3751
96a2b4e4
ILT
3752 bool in_tls = false;
3753
75f65a3e
ILT
3754 this->offset_ = orig_off;
3755
22f0da72
ILT
3756 off_t off = 0;
3757 uint64_t ret;
3758 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3759 {
3760 addr = this->set_section_list_addresses(layout, reset,
3761 &this->output_lists_[i],
3762 addr, poff, pshndx, &in_tls);
fc497986
CC
3763 if (i == static_cast<int>(ORDER_RELRO_LAST))
3764 {
3765 *poff += last_relro_pad;
3766 addr += last_relro_pad;
3767 }
22f0da72
ILT
3768 if (i < static_cast<int>(ORDER_SMALL_BSS))
3769 {
3770 this->filesz_ = *poff - orig_off;
3771 off = *poff;
3772 }
75f65a3e 3773
22f0da72
ILT
3774 ret = addr;
3775 }
96a2b4e4
ILT
3776
3777 // If the last section was a TLS section, align upward to the
3778 // alignment of the TLS segment, so that the overall size of the TLS
3779 // segment is aligned.
3780 if (in_tls)
3781 {
3782 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3783 *poff = align_address(*poff, segment_align);
3784 }
3785
75f65a3e
ILT
3786 this->memsz_ = *poff - orig_off;
3787
3788 // Ignore the file offset adjustments made by the BSS Output_data
3789 // objects.
3790 *poff = off;
61ba1cf9
ILT
3791
3792 return ret;
75f65a3e
ILT
3793}
3794
b8e6aad9
ILT
3795// Set the addresses and file offsets in a list of Output_data
3796// structures.
75f65a3e
ILT
3797
3798uint64_t
96a2b4e4
ILT
3799Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3800 Output_data_list* pdl,
ead1e424 3801 uint64_t addr, off_t* poff,
96a2b4e4 3802 unsigned int* pshndx,
1a2dff53 3803 bool* in_tls)
75f65a3e 3804{
ead1e424 3805 off_t startoff = *poff;
75f65a3e 3806
ead1e424 3807 off_t off = startoff;
75f65a3e
ILT
3808 for (Output_data_list::iterator p = pdl->begin();
3809 p != pdl->end();
3810 ++p)
3811 {
a445fddf
ILT
3812 if (reset)
3813 (*p)->reset_address_and_file_offset();
3814
3815 // When using a linker script the section will most likely
3816 // already have an address.
3817 if (!(*p)->is_address_valid())
3802b2dd 3818 {
96a2b4e4
ILT
3819 uint64_t align = (*p)->addralign();
3820
3821 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3822 {
3823 // Give the first TLS section the alignment of the
3824 // entire TLS segment. Otherwise the TLS segment as a
3825 // whole may be misaligned.
3826 if (!*in_tls)
3827 {
3828 Output_segment* tls_segment = layout->tls_segment();
3829 gold_assert(tls_segment != NULL);
3830 uint64_t segment_align = tls_segment->maximum_alignment();
3831 gold_assert(segment_align >= align);
3832 align = segment_align;
3833
3834 *in_tls = true;
3835 }
3836 }
3837 else
3838 {
3839 // If this is the first section after the TLS segment,
3840 // align it to at least the alignment of the TLS
3841 // segment, so that the size of the overall TLS segment
3842 // is aligned.
3843 if (*in_tls)
3844 {
3845 uint64_t segment_align =
3846 layout->tls_segment()->maximum_alignment();
3847 if (segment_align > align)
3848 align = segment_align;
3849
3850 *in_tls = false;
3851 }
3852 }
3853
3854 off = align_address(off, align);
3802b2dd
ILT
3855 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3856 }
a445fddf
ILT
3857 else
3858 {
3859 // The script may have inserted a skip forward, but it
3860 // better not have moved backward.
661be1e2
ILT
3861 if ((*p)->address() >= addr + (off - startoff))
3862 off += (*p)->address() - (addr + (off - startoff));
3863 else
3864 {
3865 if (!layout->script_options()->saw_sections_clause())
3866 gold_unreachable();
3867 else
3868 {
3869 Output_section* os = (*p)->output_section();
64b1ae37
DK
3870
3871 // Cast to unsigned long long to avoid format warnings.
3872 unsigned long long previous_dot =
3873 static_cast<unsigned long long>(addr + (off - startoff));
3874 unsigned long long dot =
3875 static_cast<unsigned long long>((*p)->address());
3876
661be1e2
ILT
3877 if (os == NULL)
3878 gold_error(_("dot moves backward in linker script "
64b1ae37 3879 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3880 else
3881 gold_error(_("address of section '%s' moves backward "
3882 "from 0x%llx to 0x%llx"),
64b1ae37 3883 os->name(), previous_dot, dot);
661be1e2
ILT
3884 }
3885 }
a445fddf
ILT
3886 (*p)->set_file_offset(off);
3887 (*p)->finalize_data_size();
3888 }
ead1e424 3889
96a2b4e4
ILT
3890 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3891 // section. Such a section does not affect the size of a
3892 // PT_LOAD segment.
3893 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3894 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3895 off += (*p)->data_size();
75f65a3e 3896
ead1e424
ILT
3897 if ((*p)->is_section())
3898 {
3899 (*p)->set_out_shndx(*pshndx);
3900 ++*pshndx;
3901 }
75f65a3e
ILT
3902 }
3903
3904 *poff = off;
ead1e424 3905 return addr + (off - startoff);
75f65a3e
ILT
3906}
3907
3908// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3909// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3910
3911void
1a2dff53 3912Output_segment::set_offset(unsigned int increase)
75f65a3e 3913{
a3ad94ed 3914 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3915
a445fddf
ILT
3916 gold_assert(!this->are_addresses_set_);
3917
22f0da72
ILT
3918 // A non-load section only uses output_lists_[0].
3919
3920 Output_data_list* pdl = &this->output_lists_[0];
3921
3922 if (pdl->empty())
75f65a3e 3923 {
1a2dff53 3924 gold_assert(increase == 0);
75f65a3e
ILT
3925 this->vaddr_ = 0;
3926 this->paddr_ = 0;
a445fddf 3927 this->are_addresses_set_ = true;
75f65a3e 3928 this->memsz_ = 0;
a445fddf 3929 this->min_p_align_ = 0;
75f65a3e
ILT
3930 this->offset_ = 0;
3931 this->filesz_ = 0;
3932 return;
3933 }
3934
22f0da72 3935 // Find the first and last section by address.
5f1ab67a
ILT
3936 const Output_data* first = NULL;
3937 const Output_data* last_data = NULL;
3938 const Output_data* last_bss = NULL;
22f0da72
ILT
3939 for (Output_data_list::const_iterator p = pdl->begin();
3940 p != pdl->end();
3941 ++p)
3942 {
3943 if (first == NULL
3944 || (*p)->address() < first->address()
3945 || ((*p)->address() == first->address()
3946 && (*p)->data_size() < first->data_size()))
3947 first = *p;
3948 const Output_data** plast;
3949 if ((*p)->is_section()
3950 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3951 plast = &last_bss;
3952 else
3953 plast = &last_data;
3954 if (*plast == NULL
3955 || (*p)->address() > (*plast)->address()
3956 || ((*p)->address() == (*plast)->address()
3957 && (*p)->data_size() > (*plast)->data_size()))
3958 *plast = *p;
3959 }
5f1ab67a 3960
75f65a3e 3961 this->vaddr_ = first->address();
a445fddf
ILT
3962 this->paddr_ = (first->has_load_address()
3963 ? first->load_address()
3964 : this->vaddr_);
3965 this->are_addresses_set_ = true;
75f65a3e
ILT
3966 this->offset_ = first->offset();
3967
22f0da72 3968 if (last_data == NULL)
75f65a3e
ILT
3969 this->filesz_ = 0;
3970 else
5f1ab67a
ILT
3971 this->filesz_ = (last_data->address()
3972 + last_data->data_size()
3973 - this->vaddr_);
75f65a3e 3974
5f1ab67a 3975 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
3976 this->memsz_ = (last->address()
3977 + last->data_size()
3978 - this->vaddr_);
96a2b4e4 3979
1a2dff53
ILT
3980 this->filesz_ += increase;
3981 this->memsz_ += increase;
3982
96a2b4e4
ILT
3983 // If this is a TLS segment, align the memory size. The code in
3984 // set_section_list ensures that the section after the TLS segment
3985 // is aligned to give us room.
3986 if (this->type_ == elfcpp::PT_TLS)
3987 {
3988 uint64_t segment_align = this->maximum_alignment();
3989 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3990 this->memsz_ = align_address(this->memsz_, segment_align);
3991 }
75f65a3e
ILT
3992}
3993
7bf1f802
ILT
3994// Set the TLS offsets of the sections in the PT_TLS segment.
3995
3996void
3997Output_segment::set_tls_offsets()
3998{
3999 gold_assert(this->type_ == elfcpp::PT_TLS);
4000
22f0da72
ILT
4001 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4002 p != this->output_lists_[0].end();
7bf1f802
ILT
4003 ++p)
4004 (*p)->set_tls_offset(this->vaddr_);
4005}
4006
22f0da72 4007// Return the load address of the first section.
a445fddf
ILT
4008
4009uint64_t
4010Output_segment::first_section_load_address() const
4011{
22f0da72
ILT
4012 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4013 {
4014 const Output_data_list* pdl = &this->output_lists_[i];
4015 for (Output_data_list::const_iterator p = pdl->begin();
4016 p != pdl->end();
4017 ++p)
4018 {
4019 if ((*p)->is_section())
4020 return ((*p)->has_load_address()
4021 ? (*p)->load_address()
4022 : (*p)->address());
4023 }
4024 }
a445fddf
ILT
4025 gold_unreachable();
4026}
4027
75f65a3e
ILT
4028// Return the number of Output_sections in an Output_segment.
4029
4030unsigned int
4031Output_segment::output_section_count() const
4032{
22f0da72
ILT
4033 unsigned int ret = 0;
4034 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4035 ret += this->output_section_count_list(&this->output_lists_[i]);
4036 return ret;
75f65a3e
ILT
4037}
4038
4039// Return the number of Output_sections in an Output_data_list.
4040
4041unsigned int
4042Output_segment::output_section_count_list(const Output_data_list* pdl) const
4043{
4044 unsigned int count = 0;
4045 for (Output_data_list::const_iterator p = pdl->begin();
4046 p != pdl->end();
4047 ++p)
4048 {
4049 if ((*p)->is_section())
4050 ++count;
4051 }
4052 return count;
a2fb1b05
ILT
4053}
4054
1c4f3631
ILT
4055// Return the section attached to the list segment with the lowest
4056// load address. This is used when handling a PHDRS clause in a
4057// linker script.
4058
4059Output_section*
4060Output_segment::section_with_lowest_load_address() const
4061{
4062 Output_section* found = NULL;
4063 uint64_t found_lma = 0;
22f0da72
ILT
4064 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4065 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4066 &found_lma);
1c4f3631
ILT
4067 return found;
4068}
4069
4070// Look through a list for a section with a lower load address.
4071
4072void
4073Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4074 Output_section** found,
4075 uint64_t* found_lma) const
4076{
4077 for (Output_data_list::const_iterator p = pdl->begin();
4078 p != pdl->end();
4079 ++p)
4080 {
4081 if (!(*p)->is_section())
4082 continue;
4083 Output_section* os = static_cast<Output_section*>(*p);
4084 uint64_t lma = (os->has_load_address()
4085 ? os->load_address()
4086 : os->address());
4087 if (*found == NULL || lma < *found_lma)
4088 {
4089 *found = os;
4090 *found_lma = lma;
4091 }
4092 }
4093}
4094
61ba1cf9
ILT
4095// Write the segment data into *OPHDR.
4096
4097template<int size, bool big_endian>
4098void
ead1e424 4099Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4100{
4101 ophdr->put_p_type(this->type_);
4102 ophdr->put_p_offset(this->offset_);
4103 ophdr->put_p_vaddr(this->vaddr_);
4104 ophdr->put_p_paddr(this->paddr_);
4105 ophdr->put_p_filesz(this->filesz_);
4106 ophdr->put_p_memsz(this->memsz_);
4107 ophdr->put_p_flags(this->flags_);
a445fddf 4108 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4109}
4110
4111// Write the section headers into V.
4112
4113template<int size, bool big_endian>
4114unsigned char*
16649710
ILT
4115Output_segment::write_section_headers(const Layout* layout,
4116 const Stringpool* secnamepool,
ead1e424 4117 unsigned char* v,
ca09d69a 4118 unsigned int* pshndx) const
5482377d 4119{
ead1e424
ILT
4120 // Every section that is attached to a segment must be attached to a
4121 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4122 // segments.
4123 if (this->type_ != elfcpp::PT_LOAD)
4124 return v;
4125
22f0da72
ILT
4126 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4127 {
4128 const Output_data_list* pdl = &this->output_lists_[i];
4129 v = this->write_section_headers_list<size, big_endian>(layout,
4130 secnamepool,
4131 pdl,
4132 v, pshndx);
4133 }
4134
61ba1cf9
ILT
4135 return v;
4136}
4137
4138template<int size, bool big_endian>
4139unsigned char*
16649710
ILT
4140Output_segment::write_section_headers_list(const Layout* layout,
4141 const Stringpool* secnamepool,
61ba1cf9 4142 const Output_data_list* pdl,
ead1e424 4143 unsigned char* v,
7d1a9ebb 4144 unsigned int* pshndx) const
61ba1cf9
ILT
4145{
4146 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4147 for (Output_data_list::const_iterator p = pdl->begin();
4148 p != pdl->end();
4149 ++p)
4150 {
4151 if ((*p)->is_section())
4152 {
5482377d 4153 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4154 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4155 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4156 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4157 v += shdr_size;
ead1e424 4158 ++*pshndx;
61ba1cf9
ILT
4159 }
4160 }
4161 return v;
4162}
4163
7d9e3d98
ILT
4164// Print the output sections to the map file.
4165
4166void
4167Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4168{
4169 if (this->type() != elfcpp::PT_LOAD)
4170 return;
22f0da72
ILT
4171 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4172 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4173}
4174
4175// Print an output section list to the map file.
4176
4177void
4178Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4179 const Output_data_list* pdl) const
4180{
4181 for (Output_data_list::const_iterator p = pdl->begin();
4182 p != pdl->end();
4183 ++p)
4184 (*p)->print_to_mapfile(mapfile);
4185}
4186
a2fb1b05
ILT
4187// Output_file methods.
4188
14144f39
ILT
4189Output_file::Output_file(const char* name)
4190 : name_(name),
61ba1cf9
ILT
4191 o_(-1),
4192 file_size_(0),
c420411f 4193 base_(NULL),
516cb3d0
ILT
4194 map_is_anonymous_(false),
4195 is_temporary_(false)
61ba1cf9
ILT
4196{
4197}
4198
404c2abb
ILT
4199// Try to open an existing file. Returns false if the file doesn't
4200// exist, has a size of 0 or can't be mmapped.
4201
4202bool
4203Output_file::open_for_modification()
4204{
4205 // The name "-" means "stdout".
4206 if (strcmp(this->name_, "-") == 0)
4207 return false;
4208
4209 // Don't bother opening files with a size of zero.
4210 struct stat s;
4211 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4212 return false;
4213
4214 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4215 if (o < 0)
4216 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4217 this->o_ = o;
4218 this->file_size_ = s.st_size;
4219
4220 // If the file can't be mmapped, copying the content to an anonymous
4221 // map will probably negate the performance benefits of incremental
4222 // linking. This could be helped by using views and loading only
4223 // the necessary parts, but this is not supported as of now.
4224 if (!this->map_no_anonymous())
4225 {
4226 release_descriptor(o, true);
4227 this->o_ = -1;
4228 this->file_size_ = 0;
4229 return false;
4230 }
4231
4232 return true;
4233}
4234
61ba1cf9
ILT
4235// Open the output file.
4236
a2fb1b05 4237void
61ba1cf9 4238Output_file::open(off_t file_size)
a2fb1b05 4239{
61ba1cf9
ILT
4240 this->file_size_ = file_size;
4241
4e9d8586
ILT
4242 // Unlink the file first; otherwise the open() may fail if the file
4243 // is busy (e.g. it's an executable that's currently being executed).
4244 //
4245 // However, the linker may be part of a system where a zero-length
4246 // file is created for it to write to, with tight permissions (gcc
4247 // 2.95 did something like this). Unlinking the file would work
4248 // around those permission controls, so we only unlink if the file
4249 // has a non-zero size. We also unlink only regular files to avoid
4250 // trouble with directories/etc.
4251 //
4252 // If we fail, continue; this command is merely a best-effort attempt
4253 // to improve the odds for open().
4254
42a1b686 4255 // We let the name "-" mean "stdout"
516cb3d0 4256 if (!this->is_temporary_)
42a1b686 4257 {
516cb3d0
ILT
4258 if (strcmp(this->name_, "-") == 0)
4259 this->o_ = STDOUT_FILENO;
4260 else
4261 {
4262 struct stat s;
6a89f575
CC
4263 if (::stat(this->name_, &s) == 0
4264 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4265 {
4266 if (s.st_size != 0)
4267 ::unlink(this->name_);
4268 else if (!parameters->options().relocatable())
4269 {
4270 // If we don't unlink the existing file, add execute
4271 // permission where read permissions already exist
4272 // and where the umask permits.
4273 int mask = ::umask(0);
4274 ::umask(mask);
4275 s.st_mode |= (s.st_mode & 0444) >> 2;
4276 ::chmod(this->name_, s.st_mode & ~mask);
4277 }
4278 }
516cb3d0 4279
8851ecca 4280 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4281 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4282 mode);
516cb3d0
ILT
4283 if (o < 0)
4284 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4285 this->o_ = o;
4286 }
42a1b686 4287 }
61ba1cf9 4288
27bc2bce
ILT
4289 this->map();
4290}
4291
4292// Resize the output file.
4293
4294void
4295Output_file::resize(off_t file_size)
4296{
c420411f
ILT
4297 // If the mmap is mapping an anonymous memory buffer, this is easy:
4298 // just mremap to the new size. If it's mapping to a file, we want
4299 // to unmap to flush to the file, then remap after growing the file.
4300 if (this->map_is_anonymous_)
4301 {
4302 void* base = ::mremap(this->base_, this->file_size_, file_size,
4303 MREMAP_MAYMOVE);
4304 if (base == MAP_FAILED)
4305 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4306 this->base_ = static_cast<unsigned char*>(base);
4307 this->file_size_ = file_size;
4308 }
4309 else
4310 {
4311 this->unmap();
4312 this->file_size_ = file_size;
fdcac5af
ILT
4313 if (!this->map_no_anonymous())
4314 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4315 }
27bc2bce
ILT
4316}
4317
404c2abb
ILT
4318// Map an anonymous block of memory which will later be written to the
4319// file. Return whether the map succeeded.
26736d8e 4320
404c2abb 4321bool
26736d8e
ILT
4322Output_file::map_anonymous()
4323{
404c2abb
ILT
4324 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4325 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4326 if (base != MAP_FAILED)
4327 {
4328 this->map_is_anonymous_ = true;
4329 this->base_ = static_cast<unsigned char*>(base);
4330 return true;
4331 }
4332 return false;
26736d8e
ILT
4333}
4334
404c2abb 4335// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4336
404c2abb
ILT
4337bool
4338Output_file::map_no_anonymous()
27bc2bce 4339{
c420411f 4340 const int o = this->o_;
61ba1cf9 4341
c420411f
ILT
4342 // If the output file is not a regular file, don't try to mmap it;
4343 // instead, we'll mmap a block of memory (an anonymous buffer), and
4344 // then later write the buffer to the file.
4345 void* base;
4346 struct stat statbuf;
42a1b686
ILT
4347 if (o == STDOUT_FILENO || o == STDERR_FILENO
4348 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4349 || !S_ISREG(statbuf.st_mode)
4350 || this->is_temporary_)
404c2abb
ILT
4351 return false;
4352
4353 // Ensure that we have disk space available for the file. If we
4354 // don't do this, it is possible that we will call munmap, close,
4355 // and exit with dirty buffers still in the cache with no assigned
4356 // disk blocks. If the disk is out of space at that point, the
4357 // output file will wind up incomplete, but we will have already
4358 // exited. The alternative to fallocate would be to use fdatasync,
4359 // but that would be a more significant performance hit.
4360 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4361 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4362
4363 // Map the file into memory.
4364 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4365 MAP_SHARED, o, 0);
4366
4367 // The mmap call might fail because of file system issues: the file
4368 // system might not support mmap at all, or it might not support
4369 // mmap with PROT_WRITE.
61ba1cf9 4370 if (base == MAP_FAILED)
404c2abb
ILT
4371 return false;
4372
4373 this->map_is_anonymous_ = false;
61ba1cf9 4374 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4375 return true;
4376}
4377
4378// Map the file into memory.
4379
4380void
4381Output_file::map()
4382{
4383 if (this->map_no_anonymous())
4384 return;
4385
4386 // The mmap call might fail because of file system issues: the file
4387 // system might not support mmap at all, or it might not support
4388 // mmap with PROT_WRITE. I'm not sure which errno values we will
4389 // see in all cases, so if the mmap fails for any reason and we
4390 // don't care about file contents, try for an anonymous map.
4391 if (this->map_anonymous())
4392 return;
4393
4394 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4395 this->name_, static_cast<unsigned long>(this->file_size_),
4396 strerror(errno));
61ba1cf9
ILT
4397}
4398
c420411f 4399// Unmap the file from memory.
61ba1cf9
ILT
4400
4401void
c420411f 4402Output_file::unmap()
61ba1cf9
ILT
4403{
4404 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4405 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4406 this->base_ = NULL;
c420411f
ILT
4407}
4408
4409// Close the output file.
4410
4411void
4412Output_file::close()
4413{
4414 // If the map isn't file-backed, we need to write it now.
516cb3d0 4415 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4416 {
4417 size_t bytes_to_write = this->file_size_;
6d1e3092 4418 size_t offset = 0;
c420411f
ILT
4419 while (bytes_to_write > 0)
4420 {
6d1e3092
CD
4421 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4422 bytes_to_write);
c420411f
ILT
4423 if (bytes_written == 0)
4424 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4425 else if (bytes_written < 0)
4426 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4427 else
6d1e3092
CD
4428 {
4429 bytes_to_write -= bytes_written;
4430 offset += bytes_written;
4431 }
c420411f
ILT
4432 }
4433 }
4434 this->unmap();
61ba1cf9 4435
42a1b686 4436 // We don't close stdout or stderr
516cb3d0
ILT
4437 if (this->o_ != STDOUT_FILENO
4438 && this->o_ != STDERR_FILENO
4439 && !this->is_temporary_)
42a1b686
ILT
4440 if (::close(this->o_) < 0)
4441 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4442 this->o_ = -1;
a2fb1b05
ILT
4443}
4444
4445// Instantiate the templates we need. We could use the configure
4446// script to restrict this to only the ones for implemented targets.
4447
193a53d9 4448#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4449template
4450off_t
4451Output_section::add_input_section<32, false>(
6e9ba2ca 4452 Layout* layout,
730cdc88 4453 Sized_relobj<32, false>* object,
2ea97941 4454 unsigned int shndx,
a2fb1b05 4455 const char* secname,
730cdc88 4456 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4457 unsigned int reloc_shndx,
4458 bool have_sections_script);
193a53d9 4459#endif
a2fb1b05 4460
193a53d9 4461#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4462template
4463off_t
4464Output_section::add_input_section<32, true>(
6e9ba2ca 4465 Layout* layout,
730cdc88 4466 Sized_relobj<32, true>* object,
2ea97941 4467 unsigned int shndx,
a2fb1b05 4468 const char* secname,
730cdc88 4469 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4470 unsigned int reloc_shndx,
4471 bool have_sections_script);
193a53d9 4472#endif
a2fb1b05 4473
193a53d9 4474#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4475template
4476off_t
4477Output_section::add_input_section<64, false>(
6e9ba2ca 4478 Layout* layout,
730cdc88 4479 Sized_relobj<64, false>* object,
2ea97941 4480 unsigned int shndx,
a2fb1b05 4481 const char* secname,
730cdc88 4482 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4483 unsigned int reloc_shndx,
4484 bool have_sections_script);
193a53d9 4485#endif
a2fb1b05 4486
193a53d9 4487#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4488template
4489off_t
4490Output_section::add_input_section<64, true>(
6e9ba2ca 4491 Layout* layout,
730cdc88 4492 Sized_relobj<64, true>* object,
2ea97941 4493 unsigned int shndx,
a2fb1b05 4494 const char* secname,
730cdc88 4495 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4496 unsigned int reloc_shndx,
4497 bool have_sections_script);
193a53d9 4498#endif
a2fb1b05 4499
bbbfea06
CC
4500#ifdef HAVE_TARGET_32_LITTLE
4501template
4502class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4503#endif
4504
4505#ifdef HAVE_TARGET_32_BIG
4506template
4507class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4508#endif
4509
4510#ifdef HAVE_TARGET_64_LITTLE
4511template
4512class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4513#endif
4514
4515#ifdef HAVE_TARGET_64_BIG
4516template
4517class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4518#endif
4519
4520#ifdef HAVE_TARGET_32_LITTLE
4521template
4522class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4523#endif
4524
4525#ifdef HAVE_TARGET_32_BIG
4526template
4527class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4528#endif
4529
4530#ifdef HAVE_TARGET_64_LITTLE
4531template
4532class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4533#endif
4534
4535#ifdef HAVE_TARGET_64_BIG
4536template
4537class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4538#endif
4539
4540#ifdef HAVE_TARGET_32_LITTLE
4541template
4542class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4543#endif
4544
4545#ifdef HAVE_TARGET_32_BIG
4546template
4547class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4548#endif
4549
4550#ifdef HAVE_TARGET_64_LITTLE
4551template
4552class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4553#endif
4554
4555#ifdef HAVE_TARGET_64_BIG
4556template
4557class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4558#endif
4559
4560#ifdef HAVE_TARGET_32_LITTLE
4561template
4562class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4563#endif
4564
4565#ifdef HAVE_TARGET_32_BIG
4566template
4567class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4568#endif
4569
4570#ifdef HAVE_TARGET_64_LITTLE
4571template
4572class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4573#endif
4574
4575#ifdef HAVE_TARGET_64_BIG
4576template
4577class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4578#endif
4579
193a53d9 4580#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4581template
4582class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4583#endif
c06b7b0b 4584
193a53d9 4585#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4586template
4587class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4588#endif
c06b7b0b 4589
193a53d9 4590#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4591template
4592class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4593#endif
c06b7b0b 4594
193a53d9 4595#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4596template
4597class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4598#endif
c06b7b0b 4599
193a53d9 4600#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4601template
4602class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4603#endif
c06b7b0b 4604
193a53d9 4605#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4606template
4607class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4608#endif
c06b7b0b 4609
193a53d9 4610#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4611template
4612class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4613#endif
c06b7b0b 4614
193a53d9 4615#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4616template
4617class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4618#endif
c06b7b0b 4619
193a53d9 4620#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4621template
4622class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4623#endif
c06b7b0b 4624
193a53d9 4625#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4626template
4627class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4628#endif
c06b7b0b 4629
193a53d9 4630#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4631template
4632class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4633#endif
c06b7b0b 4634
193a53d9 4635#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4636template
4637class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4638#endif
c06b7b0b 4639
193a53d9 4640#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4641template
4642class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4643#endif
c06b7b0b 4644
193a53d9 4645#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4646template
4647class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4648#endif
c06b7b0b 4649
193a53d9 4650#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4651template
4652class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4653#endif
c06b7b0b 4654
193a53d9 4655#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4656template
4657class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4658#endif
c06b7b0b 4659
6a74a719
ILT
4660#ifdef HAVE_TARGET_32_LITTLE
4661template
4662class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4663#endif
4664
4665#ifdef HAVE_TARGET_32_BIG
4666template
4667class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4668#endif
4669
4670#ifdef HAVE_TARGET_64_LITTLE
4671template
4672class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4673#endif
4674
4675#ifdef HAVE_TARGET_64_BIG
4676template
4677class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4678#endif
4679
4680#ifdef HAVE_TARGET_32_LITTLE
4681template
4682class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4683#endif
4684
4685#ifdef HAVE_TARGET_32_BIG
4686template
4687class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4688#endif
4689
4690#ifdef HAVE_TARGET_64_LITTLE
4691template
4692class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4693#endif
4694
4695#ifdef HAVE_TARGET_64_BIG
4696template
4697class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4698#endif
4699
4700#ifdef HAVE_TARGET_32_LITTLE
4701template
4702class Output_data_group<32, false>;
4703#endif
4704
4705#ifdef HAVE_TARGET_32_BIG
4706template
4707class Output_data_group<32, true>;
4708#endif
4709
4710#ifdef HAVE_TARGET_64_LITTLE
4711template
4712class Output_data_group<64, false>;
4713#endif
4714
4715#ifdef HAVE_TARGET_64_BIG
4716template
4717class Output_data_group<64, true>;
4718#endif
4719
193a53d9 4720#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4721template
dbe717ef 4722class Output_data_got<32, false>;
193a53d9 4723#endif
ead1e424 4724
193a53d9 4725#ifdef HAVE_TARGET_32_BIG
ead1e424 4726template
dbe717ef 4727class Output_data_got<32, true>;
193a53d9 4728#endif
ead1e424 4729
193a53d9 4730#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4731template
dbe717ef 4732class Output_data_got<64, false>;
193a53d9 4733#endif
ead1e424 4734
193a53d9 4735#ifdef HAVE_TARGET_64_BIG
ead1e424 4736template
dbe717ef 4737class Output_data_got<64, true>;
193a53d9 4738#endif
ead1e424 4739
a2fb1b05 4740} // End namespace gold.
This page took 0.432894 seconds and 4 git commands to generate.