*** empty log message ***
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
7223e9ca 3// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
5696ab0b
ILT
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
61ba1cf9
ILT
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
6a74a719 225 unsigned int shndx = 1;
8851ecca 226 if (!parameters->options().relocatable())
6a74a719
ILT
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
a3ad94ed 257 for (Layout::Section_list::const_iterator p =
16649710
ILT
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
61ba1cf9
ILT
260 ++p)
261 {
6a74a719
ILT
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 265 && parameters->options().relocatable())
6a74a719 266 continue;
a3ad94ed 267 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 270 v += shdr_size;
ead1e424 271 ++shndx;
61ba1cf9
ILT
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
275}
276
54dc6425
ILT
277// Output_segment_header methods.
278
61ba1cf9 279Output_segment_headers::Output_segment_headers(
61ba1cf9 280 const Layout::Segment_list& segment_list)
9025d29d 281 : segment_list_(segment_list)
61ba1cf9 282{
61ba1cf9
ILT
283}
284
54dc6425 285void
61ba1cf9 286Output_segment_headers::do_write(Output_file* of)
75f65a3e 287{
8851ecca 288 switch (parameters->size_and_endianness())
61ba1cf9 289 {
9025d29d 290#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
9025d29d 294#endif
8851ecca
ILT
295#ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
9025d29d 299#endif
9025d29d 300#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
9025d29d 304#endif
8851ecca
ILT
305#ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309#endif
310 default:
311 gold_unreachable();
61ba1cf9 312 }
61ba1cf9
ILT
313}
314
315template<int size, bool big_endian>
316void
317Output_segment_headers::do_sized_write(Output_file* of)
318{
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 321 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
a445fddf
ILT
334 gold_assert(v - view == all_phdrs_size);
335
61ba1cf9 336 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
337}
338
20e6d0d6
DK
339off_t
340Output_segment_headers::do_size() const
341{
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352}
353
75f65a3e
ILT
354// Output_file_header methods.
355
9025d29d 356Output_file_header::Output_file_header(const Target* target,
75f65a3e 357 const Symbol_table* symtab,
d391083d 358 const Output_segment_headers* osh,
2ea97941 359 const char* entry)
9025d29d 360 : target_(target),
75f65a3e 361 symtab_(symtab),
61ba1cf9 362 segment_header_(osh),
75f65a3e 363 section_header_(NULL),
d391083d 364 shstrtab_(NULL),
2ea97941 365 entry_(entry)
75f65a3e 366{
20e6d0d6 367 this->set_data_size(this->do_size());
75f65a3e
ILT
368}
369
370// Set the section table information for a file header.
371
372void
373Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375{
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378}
379
380// Write out the file header.
381
382void
61ba1cf9 383Output_file_header::do_write(Output_file* of)
54dc6425 384{
27bc2bce
ILT
385 gold_assert(this->offset() == 0);
386
8851ecca 387 switch (parameters->size_and_endianness())
61ba1cf9 388 {
9025d29d 389#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
9025d29d 393#endif
8851ecca
ILT
394#ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
9025d29d 398#endif
9025d29d 399#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
9025d29d 403#endif
8851ecca
ILT
404#ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408#endif
409 default:
410 gold_unreachable();
61ba1cf9 411 }
61ba1cf9
ILT
412}
413
414// Write out the file header with appropriate size and endianess.
415
416template<int size, bool big_endian>
417void
418Output_file_header::do_sized_write(Output_file* of)
419{
a3ad94ed 420 gold_assert(this->offset() == 0);
61ba1cf9
ILT
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
a3ad94ed 437 gold_unreachable();
61ba1cf9
ILT
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
8851ecca 445 if (parameters->options().relocatable())
61ba1cf9 446 e_type = elfcpp::ET_REL;
374ad285 447 else if (parameters->options().output_is_position_independent())
436ca963 448 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
d391083d 456 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 457
6a74a719
ILT
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
61ba1cf9 463 oehdr.put_e_shoff(this->section_header_->offset());
d5b40221 464 oehdr.put_e_flags(this->target_->processor_specific_flags());
61ba1cf9 465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
5696ab0b
ILT
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
6a74a719
ILT
480 }
481
61ba1cf9 482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 497
36959681
ILT
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
61ba1cf9 502 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
503}
504
d391083d
ILT
505// Return the value to use for the entry address. THIS->ENTRY_ is the
506// symbol specified on the command line, if any.
507
508template<int size>
509typename elfcpp::Elf_types<size>::Elf_Addr
510Output_file_header::entry()
511{
512 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
d391083d
ILT
515
516 // FIXME: Need to support target specific entry symbol.
2ea97941
ILT
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
d391083d 520
2ea97941 521 Symbol* sym = this->symtab_->lookup(entry);
d391083d
ILT
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
2ea97941 529 gold_warning("entry symbol '%s' exists but is not defined", entry);
d391083d
ILT
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
2ea97941 537 v = strtoull(entry, &endptr, 0);
d391083d
ILT
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
2ea97941 541 gold_warning("cannot find entry symbol '%s'", entry);
d391083d
ILT
542 v = 0;
543 }
544 }
545
546 return v;
547}
548
20e6d0d6
DK
549// Compute the current data size.
550
551off_t
552Output_file_header::do_size() const
553{
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561}
562
dbe717ef
ILT
563// Output_data_const methods.
564
565void
a3ad94ed 566Output_data_const::do_write(Output_file* of)
dbe717ef 567{
a3ad94ed
ILT
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569}
570
571// Output_data_const_buffer methods.
572
573void
574Output_data_const_buffer::do_write(Output_file* of)
575{
576 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
577}
578
579// Output_section_data methods.
580
16649710
ILT
581// Record the output section, and set the entry size and such.
582
583void
584Output_section_data::set_output_section(Output_section* os)
585{
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589}
590
591// Return the section index of the output section.
592
dbe717ef
ILT
593unsigned int
594Output_section_data::do_out_shndx() const
595{
a3ad94ed 596 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
597 return this->output_section_->out_shndx();
598}
599
759b1a24
ILT
600// Set the alignment, which means we may need to update the alignment
601// of the output section.
602
603void
2ea97941 604Output_section_data::set_addralign(uint64_t addralign)
759b1a24 605{
2ea97941 606 this->addralign_ = addralign;
759b1a24 607 if (this->output_section_ != NULL
2ea97941
ILT
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
759b1a24
ILT
610}
611
a3ad94ed
ILT
612// Output_data_strtab methods.
613
27bc2bce 614// Set the final data size.
a3ad94ed
ILT
615
616void
27bc2bce 617Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
618{
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621}
622
623// Write out a string table.
624
625void
626Output_data_strtab::do_write(Output_file* of)
627{
628 this->strtab_->write(of, this->offset());
629}
630
c06b7b0b
ILT
631// Output_reloc methods.
632
7bf1f802
ILT
633// A reloc against a global symbol.
634
635template<bool dynamic, int size, bool big_endian>
636Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
e8c846c3 640 Address address,
0da6fa6c
DM
641 bool is_relative,
642 bool is_symbolless)
7bf1f802 643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 646{
dceae3c1
ILT
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
7bf1f802
ILT
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
dceae3c1
ILT
651 if (dynamic)
652 this->set_needs_dynsym_index();
7bf1f802
ILT
653}
654
655template<bool dynamic, int size, bool big_endian>
656Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
ef9beddf 659 Sized_relobj<size, big_endian>* relobj,
7bf1f802 660 unsigned int shndx,
e8c846c3 661 Address address,
0da6fa6c
DM
662 bool is_relative,
663 bool is_symbolless)
7bf1f802 664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
0da6fa6c
DM
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
667{
668 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
7bf1f802
ILT
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
dceae3c1
ILT
673 if (dynamic)
674 this->set_needs_dynsym_index();
7bf1f802
ILT
675}
676
677// A reloc against a local symbol.
678
679template<bool dynamic, int size, bool big_endian>
680Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
e8c846c3 685 Address address,
2ea97941 686 bool is_relative,
0da6fa6c 687 bool is_symbolless,
dceae3c1 688 bool is_section_symbol)
7bf1f802 689 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
7bf1f802
ILT
692{
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
7bf1f802
ILT
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
dceae3c1
ILT
699 if (dynamic)
700 this->set_needs_dynsym_index();
7bf1f802
ILT
701}
702
703template<bool dynamic, int size, bool big_endian>
704Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
e8c846c3 709 Address address,
2ea97941 710 bool is_relative,
0da6fa6c 711 bool is_symbolless,
dceae3c1 712 bool is_section_symbol)
7bf1f802 713 : address_(address), local_sym_index_(local_sym_index), type_(type),
0da6fa6c
DM
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
7bf1f802
ILT
716{
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
7bf1f802
ILT
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
dceae3c1
ILT
724 if (dynamic)
725 this->set_needs_dynsym_index();
7bf1f802
ILT
726}
727
728// A reloc against the STT_SECTION symbol of an output section.
729
730template<bool dynamic, int size, bool big_endian>
731Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 739{
dceae3c1
ILT
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
7bf1f802
ILT
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
dceae3c1
ILT
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
7bf1f802
ILT
748}
749
750template<bool dynamic, int size, bool big_endian>
751Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
ef9beddf 754 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
0da6fa6c
DM
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
760{
761 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
7bf1f802
ILT
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
dceae3c1
ILT
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770}
771
e291e7b9
ILT
772// An absolute relocation.
773
774template<bool dynamic, int size, bool big_endian>
775Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
782{
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787}
788
789template<bool dynamic, int size, bool big_endian>
790Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
0da6fa6c
DM
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
798{
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804}
805
806// A target specific relocation.
807
808template<bool dynamic, int size, bool big_endian>
809Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
e291e7b9
ILT
817{
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822}
823
824template<bool dynamic, int size, bool big_endian>
825Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
0da6fa6c
DM
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
e291e7b9
ILT
834{
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840}
841
dceae3c1
ILT
842// Record that we need a dynamic symbol index for this relocation.
843
844template<bool dynamic, int size, bool big_endian>
845void
846Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847set_needs_dynsym_index()
848{
0da6fa6c 849 if (this->is_symbolless_)
dceae3c1
ILT
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
e291e7b9
ILT
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
dceae3c1
ILT
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
ef9beddf 877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
878 }
879 break;
880 }
7bf1f802
ILT
881}
882
c06b7b0b
ILT
883// Get the symbol index of a relocation.
884
885template<bool dynamic, int size, bool big_endian>
886unsigned int
887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889{
890 unsigned int index;
0da6fa6c
DM
891 if (this->is_symbolless_)
892 return 0;
c06b7b0b
ILT
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
a3ad94ed 896 gold_unreachable();
c06b7b0b
ILT
897
898 case GSYM_CODE:
5a6f7e2d 899 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
900 index = 0;
901 else if (dynamic)
5a6f7e2d 902 index = this->u1_.gsym->dynsym_index();
c06b7b0b 903 else
5a6f7e2d 904 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
5a6f7e2d 909 index = this->u1_.os->dynsym_index();
c06b7b0b 910 else
5a6f7e2d 911 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
912 break;
913
e291e7b9
ILT
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
436ca963
ILT
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
c06b7b0b 924 default:
dceae3c1
ILT
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
ef9beddf 936 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
c06b7b0b
ILT
944 break;
945 }
a3ad94ed 946 gold_assert(index != -1U);
c06b7b0b
ILT
947 return index;
948}
949
624f8810
ILT
950// For a local section symbol, get the address of the offset ADDEND
951// within the input section.
dceae3c1
ILT
952
953template<bool dynamic, int size, bool big_endian>
ef9beddf 954typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 955Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 956 local_section_offset(Addend addend) const
dceae3c1 957{
624f8810
ILT
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
e291e7b9 960 && this->local_sym_index_ != TARGET_CODE
624f8810 961 && this->local_sym_index_ != INVALID_CODE
e291e7b9 962 && this->local_sym_index_ != 0
624f8810 963 && this->is_section_symbol_);
dceae3c1 964 const unsigned int lsi = this->local_sym_index_;
ef9beddf 965 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 966 gold_assert(os != NULL);
ef9beddf 967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 968 if (offset != invalid_address)
624f8810
ILT
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 972 gold_assert(offset != invalid_address);
dceae3c1
ILT
973 return offset;
974}
975
d98bc257 976// Get the output address of a relocation.
c06b7b0b
ILT
977
978template<bool dynamic, int size, bool big_endian>
a984ee1d 979typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 980Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 981{
a3ad94ed 982 Address address = this->address_;
5a6f7e2d
ILT
983 if (this->shndx_ != INVALID_CODE)
984 {
ef9beddf 985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 986 gold_assert(os != NULL);
ef9beddf 987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 988 if (off != invalid_address)
730cdc88
ILT
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
eff45813 994 gold_assert(address != invalid_address);
730cdc88 995 }
5a6f7e2d
ILT
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
d98bc257
ILT
999 return address;
1000}
1001
1002// Write out the offset and info fields of a Rel or Rela relocation
1003// entry.
1004
1005template<bool dynamic, int size, bool big_endian>
1006template<typename Write_rel>
1007void
1008Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010{
1011 wr->put_r_offset(this->get_address());
0da6fa6c 1012 unsigned int sym_index = this->get_symbol_index();
e8c846c3 1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
1014}
1015
1016// Write out a Rel relocation.
1017
1018template<bool dynamic, int size, bool big_endian>
1019void
1020Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022{
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025}
1026
e8c846c3
ILT
1027// Get the value of the symbol referred to by a Rel relocation.
1028
1029template<bool dynamic, int size, bool big_endian>
1030typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 1031Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 1032 Addend addend) const
e8c846c3
ILT
1033{
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 1038 return sym->value() + addend;
e8c846c3
ILT
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
e291e7b9 1041 && this->local_sym_index_ != TARGET_CODE
d1f003c6 1042 && this->local_sym_index_ != INVALID_CODE
e291e7b9 1043 && this->local_sym_index_ != 0
d1f003c6
ILT
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
1048}
1049
d98bc257
ILT
1050// Reloc comparison. This function sorts the dynamic relocs for the
1051// benefit of the dynamic linker. First we sort all relative relocs
1052// to the front. Among relative relocs, we sort by output address.
1053// Among non-relative relocs, we sort by symbol index, then by output
1054// address.
1055
1056template<bool dynamic, int size, bool big_endian>
1057int
1058Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061{
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099}
1100
c06b7b0b
ILT
1101// Write out a Rela relocation.
1102
1103template<bool dynamic, int size, bool big_endian>
1104void
1105Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107{
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
e8c846c3 1110 Addend addend = this->addend_;
e291e7b9
ILT
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
0da6fa6c 1114 else if (this->rel_.is_symbolless())
d1f003c6
ILT
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
624f8810 1117 addend = this->rel_.local_section_offset(addend);
e8c846c3 1118 orel.put_r_addend(addend);
c06b7b0b
ILT
1119}
1120
1121// Output_data_reloc_base methods.
1122
16649710
ILT
1123// Adjust the output section.
1124
1125template<int sh_type, bool dynamic, int size, bool big_endian>
1126void
1127Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129{
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
7223e9ca
ILT
1136
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1141 if (!dynamic)
16649710 1142 os->set_should_link_to_symtab();
7223e9ca
ILT
1143 else if (parameters->doing_static_link())
1144 ;
1145 else
1146 os->set_should_link_to_dynsym();
16649710
ILT
1147}
1148
c06b7b0b
ILT
1149// Write out relocation data.
1150
1151template<int sh_type, bool dynamic, int size, bool big_endian>
1152void
1153Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1154 Output_file* of)
1155{
1156 const off_t off = this->offset();
1157 const off_t oview_size = this->data_size();
1158 unsigned char* const oview = of->get_output_view(off, oview_size);
1159
3a44184e 1160 if (this->sort_relocs())
d98bc257
ILT
1161 {
1162 gold_assert(dynamic);
1163 std::sort(this->relocs_.begin(), this->relocs_.end(),
1164 Sort_relocs_comparison());
1165 }
1166
c06b7b0b
ILT
1167 unsigned char* pov = oview;
1168 for (typename Relocs::const_iterator p = this->relocs_.begin();
1169 p != this->relocs_.end();
1170 ++p)
1171 {
1172 p->write(pov);
1173 pov += reloc_size;
1174 }
1175
a3ad94ed 1176 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1177
1178 of->write_output_view(off, oview_size, oview);
1179
1180 // We no longer need the relocation entries.
1181 this->relocs_.clear();
1182}
1183
6a74a719
ILT
1184// Class Output_relocatable_relocs.
1185
1186template<int sh_type, int size, bool big_endian>
1187void
1188Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1189{
1190 this->set_data_size(this->rr_->output_reloc_count()
1191 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1192}
1193
1194// class Output_data_group.
1195
1196template<int size, bool big_endian>
1197Output_data_group<size, big_endian>::Output_data_group(
1198 Sized_relobj<size, big_endian>* relobj,
1199 section_size_type entry_count,
8825ac63
ILT
1200 elfcpp::Elf_Word flags,
1201 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1202 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1203 relobj_(relobj),
1204 flags_(flags)
6a74a719 1205{
8825ac63 1206 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1207}
1208
1209// Write out the section group, which means translating the section
1210// indexes to apply to the output file.
1211
1212template<int size, bool big_endian>
1213void
1214Output_data_group<size, big_endian>::do_write(Output_file* of)
1215{
1216 const off_t off = this->offset();
1217 const section_size_type oview_size =
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview = of->get_output_view(off, oview_size);
1220
1221 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1222 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1223 ++contents;
1224
1225 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1226 this->input_shndxes_.begin();
1227 p != this->input_shndxes_.end();
6a74a719
ILT
1228 ++p, ++contents)
1229 {
ef9beddf 1230 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1231
1232 unsigned int output_shndx;
1233 if (os != NULL)
1234 output_shndx = os->out_shndx();
1235 else
1236 {
1237 this->relobj_->error(_("section group retained but "
1238 "group element discarded"));
1239 output_shndx = 0;
1240 }
1241
1242 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1243 }
1244
1245 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1246 gold_assert(wrote == oview_size);
1247
1248 of->write_output_view(off, oview_size, oview);
1249
1250 // We no longer need this information.
8825ac63 1251 this->input_shndxes_.clear();
6a74a719
ILT
1252}
1253
dbe717ef 1254// Output_data_got::Got_entry methods.
ead1e424
ILT
1255
1256// Write out the entry.
1257
1258template<int size, bool big_endian>
1259void
7e1edb90 1260Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1261{
1262 Valtype val = 0;
1263
1264 switch (this->local_sym_index_)
1265 {
1266 case GSYM_CODE:
1267 {
e8c846c3
ILT
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
ead1e424 1271 Symbol* gsym = this->u_.gsym;
7223e9ca
ILT
1272 if (this->use_plt_offset_ && gsym->has_plt_offset())
1273 val = (parameters->target().plt_section_for_global(gsym)->address()
1274 + gsym->plt_offset());
1275 else
1276 {
1277 Sized_symbol<size>* sgsym;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1282 val = sgsym->value();
1283 }
ead1e424
ILT
1284 }
1285 break;
1286
1287 case CONSTANT_CODE:
1288 val = this->u_.constant;
1289 break;
1290
1291 default:
d1f003c6 1292 {
7223e9ca 1293 const Sized_relobj<size, big_endian>* object = this->u_.object;
d1f003c6 1294 const unsigned int lsi = this->local_sym_index_;
7223e9ca
ILT
1295 const Symbol_value<size>* symval = object->local_symbol(lsi);
1296 if (!this->use_plt_offset_)
1297 val = symval->value(this->u_.object, 0);
1298 else
1299 {
1300 const Output_data* plt =
1301 parameters->target().plt_section_for_local(object, lsi);
1302 val = plt->address() + object->local_plt_offset(lsi);
1303 }
d1f003c6 1304 }
e727fa71 1305 break;
ead1e424
ILT
1306 }
1307
a3ad94ed 1308 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1309}
1310
dbe717ef 1311// Output_data_got methods.
ead1e424 1312
dbe717ef
ILT
1313// Add an entry for a global symbol to the GOT. This returns true if
1314// this is a new GOT entry, false if the symbol already had a GOT
1315// entry.
1316
1317template<int size, bool big_endian>
1318bool
0a65a3a7
CC
1319Output_data_got<size, big_endian>::add_global(
1320 Symbol* gsym,
1321 unsigned int got_type)
ead1e424 1322{
0a65a3a7 1323 if (gsym->has_got_offset(got_type))
dbe717ef 1324 return false;
ead1e424 1325
7223e9ca
ILT
1326 this->entries_.push_back(Got_entry(gsym, false));
1327 this->set_got_size();
1328 gsym->set_got_offset(got_type, this->last_got_offset());
1329 return true;
1330}
1331
1332// Like add_global, but use the PLT offset.
1333
1334template<int size, bool big_endian>
1335bool
1336Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1337 unsigned int got_type)
1338{
1339 if (gsym->has_got_offset(got_type))
1340 return false;
1341
1342 this->entries_.push_back(Got_entry(gsym, true));
dbe717ef 1343 this->set_got_size();
0a65a3a7 1344 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1345 return true;
1346}
ead1e424 1347
7bf1f802
ILT
1348// Add an entry for a global symbol to the GOT, and add a dynamic
1349// relocation of type R_TYPE for the GOT entry.
7223e9ca 1350
7bf1f802
ILT
1351template<int size, bool big_endian>
1352void
1353Output_data_got<size, big_endian>::add_global_with_rel(
1354 Symbol* gsym,
0a65a3a7 1355 unsigned int got_type,
7bf1f802
ILT
1356 Rel_dyn* rel_dyn,
1357 unsigned int r_type)
1358{
0a65a3a7 1359 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1360 return;
1361
1362 this->entries_.push_back(Got_entry());
1363 this->set_got_size();
2ea97941
ILT
1364 unsigned int got_offset = this->last_got_offset();
1365 gsym->set_got_offset(got_type, got_offset);
1366 rel_dyn->add_global(gsym, r_type, this, got_offset);
7bf1f802
ILT
1367}
1368
1369template<int size, bool big_endian>
1370void
1371Output_data_got<size, big_endian>::add_global_with_rela(
1372 Symbol* gsym,
0a65a3a7 1373 unsigned int got_type,
7bf1f802
ILT
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type)
1376{
0a65a3a7 1377 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1378 return;
1379
1380 this->entries_.push_back(Got_entry());
1381 this->set_got_size();
2ea97941
ILT
1382 unsigned int got_offset = this->last_got_offset();
1383 gsym->set_got_offset(got_type, got_offset);
1384 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
7bf1f802
ILT
1385}
1386
0a65a3a7
CC
1387// Add a pair of entries for a global symbol to the GOT, and add
1388// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1390template<int size, bool big_endian>
1391void
0a65a3a7
CC
1392Output_data_got<size, big_endian>::add_global_pair_with_rel(
1393 Symbol* gsym,
1394 unsigned int got_type,
7bf1f802 1395 Rel_dyn* rel_dyn,
0a65a3a7
CC
1396 unsigned int r_type_1,
1397 unsigned int r_type_2)
7bf1f802 1398{
0a65a3a7 1399 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1400 return;
1401
1402 this->entries_.push_back(Got_entry());
2ea97941
ILT
1403 unsigned int got_offset = this->last_got_offset();
1404 gsym->set_got_offset(got_type, got_offset);
1405 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
0a65a3a7
CC
1406
1407 this->entries_.push_back(Got_entry());
1408 if (r_type_2 != 0)
1409 {
2ea97941
ILT
1410 got_offset = this->last_got_offset();
1411 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
0a65a3a7
CC
1412 }
1413
1414 this->set_got_size();
7bf1f802
ILT
1415}
1416
1417template<int size, bool big_endian>
1418void
0a65a3a7
CC
1419Output_data_got<size, big_endian>::add_global_pair_with_rela(
1420 Symbol* gsym,
1421 unsigned int got_type,
7bf1f802 1422 Rela_dyn* rela_dyn,
0a65a3a7
CC
1423 unsigned int r_type_1,
1424 unsigned int r_type_2)
7bf1f802 1425{
0a65a3a7 1426 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1427 return;
1428
1429 this->entries_.push_back(Got_entry());
2ea97941
ILT
1430 unsigned int got_offset = this->last_got_offset();
1431 gsym->set_got_offset(got_type, got_offset);
1432 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
0a65a3a7
CC
1433
1434 this->entries_.push_back(Got_entry());
1435 if (r_type_2 != 0)
1436 {
2ea97941
ILT
1437 got_offset = this->last_got_offset();
1438 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
0a65a3a7
CC
1439 }
1440
1441 this->set_got_size();
7bf1f802
ILT
1442}
1443
0a65a3a7
CC
1444// Add an entry for a local symbol to the GOT. This returns true if
1445// this is a new GOT entry, false if the symbol already has a GOT
1446// entry.
07f397ab
ILT
1447
1448template<int size, bool big_endian>
1449bool
0a65a3a7
CC
1450Output_data_got<size, big_endian>::add_local(
1451 Sized_relobj<size, big_endian>* object,
1452 unsigned int symndx,
1453 unsigned int got_type)
07f397ab 1454{
0a65a3a7 1455 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1456 return false;
1457
7223e9ca
ILT
1458 this->entries_.push_back(Got_entry(object, symndx, false));
1459 this->set_got_size();
1460 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1461 return true;
1462}
1463
1464// Like add_local, but use the PLT offset.
1465
1466template<int size, bool big_endian>
1467bool
1468Output_data_got<size, big_endian>::add_local_plt(
1469 Sized_relobj<size, big_endian>* object,
1470 unsigned int symndx,
1471 unsigned int got_type)
1472{
1473 if (object->local_has_got_offset(symndx, got_type))
1474 return false;
1475
1476 this->entries_.push_back(Got_entry(object, symndx, true));
07f397ab 1477 this->set_got_size();
0a65a3a7 1478 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1479 return true;
1480}
1481
0a65a3a7
CC
1482// Add an entry for a local symbol to the GOT, and add a dynamic
1483// relocation of type R_TYPE for the GOT entry.
7223e9ca 1484
7bf1f802
ILT
1485template<int size, bool big_endian>
1486void
0a65a3a7
CC
1487Output_data_got<size, big_endian>::add_local_with_rel(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int got_type,
7bf1f802
ILT
1491 Rel_dyn* rel_dyn,
1492 unsigned int r_type)
1493{
0a65a3a7 1494 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1495 return;
1496
1497 this->entries_.push_back(Got_entry());
1498 this->set_got_size();
2ea97941
ILT
1499 unsigned int got_offset = this->last_got_offset();
1500 object->set_local_got_offset(symndx, got_type, got_offset);
1501 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1502}
1503
1504template<int size, bool big_endian>
1505void
0a65a3a7
CC
1506Output_data_got<size, big_endian>::add_local_with_rela(
1507 Sized_relobj<size, big_endian>* object,
1508 unsigned int symndx,
1509 unsigned int got_type,
7bf1f802
ILT
1510 Rela_dyn* rela_dyn,
1511 unsigned int r_type)
1512{
0a65a3a7 1513 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1514 return;
1515
1516 this->entries_.push_back(Got_entry());
1517 this->set_got_size();
2ea97941
ILT
1518 unsigned int got_offset = this->last_got_offset();
1519 object->set_local_got_offset(symndx, got_type, got_offset);
1520 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1521}
1522
0a65a3a7
CC
1523// Add a pair of entries for a local symbol to the GOT, and add
1524// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1526template<int size, bool big_endian>
1527void
0a65a3a7 1528Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1529 Sized_relobj<size, big_endian>* object,
1530 unsigned int symndx,
1531 unsigned int shndx,
0a65a3a7 1532 unsigned int got_type,
7bf1f802 1533 Rel_dyn* rel_dyn,
0a65a3a7
CC
1534 unsigned int r_type_1,
1535 unsigned int r_type_2)
7bf1f802 1536{
0a65a3a7 1537 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1538 return;
1539
1540 this->entries_.push_back(Got_entry());
2ea97941
ILT
1541 unsigned int got_offset = this->last_got_offset();
1542 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1543 Output_section* os = object->output_section(shndx);
2ea97941 1544 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1545
7223e9ca 1546 this->entries_.push_back(Got_entry(object, symndx, false));
0a65a3a7
CC
1547 if (r_type_2 != 0)
1548 {
2ea97941
ILT
1549 got_offset = this->last_got_offset();
1550 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
0a65a3a7 1551 }
7bf1f802
ILT
1552
1553 this->set_got_size();
1554}
1555
1556template<int size, bool big_endian>
1557void
0a65a3a7 1558Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1559 Sized_relobj<size, big_endian>* object,
1560 unsigned int symndx,
1561 unsigned int shndx,
0a65a3a7 1562 unsigned int got_type,
7bf1f802 1563 Rela_dyn* rela_dyn,
0a65a3a7
CC
1564 unsigned int r_type_1,
1565 unsigned int r_type_2)
7bf1f802 1566{
0a65a3a7 1567 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1568 return;
1569
1570 this->entries_.push_back(Got_entry());
2ea97941
ILT
1571 unsigned int got_offset = this->last_got_offset();
1572 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1573 Output_section* os = object->output_section(shndx);
2ea97941 1574 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1575
7223e9ca 1576 this->entries_.push_back(Got_entry(object, symndx, false));
0a65a3a7
CC
1577 if (r_type_2 != 0)
1578 {
2ea97941
ILT
1579 got_offset = this->last_got_offset();
1580 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
0a65a3a7 1581 }
7bf1f802
ILT
1582
1583 this->set_got_size();
1584}
1585
ead1e424
ILT
1586// Write out the GOT.
1587
1588template<int size, bool big_endian>
1589void
dbe717ef 1590Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1591{
1592 const int add = size / 8;
1593
1594 const off_t off = this->offset();
c06b7b0b 1595 const off_t oview_size = this->data_size();
ead1e424
ILT
1596 unsigned char* const oview = of->get_output_view(off, oview_size);
1597
1598 unsigned char* pov = oview;
1599 for (typename Got_entries::const_iterator p = this->entries_.begin();
1600 p != this->entries_.end();
1601 ++p)
1602 {
7e1edb90 1603 p->write(pov);
ead1e424
ILT
1604 pov += add;
1605 }
1606
a3ad94ed 1607 gold_assert(pov - oview == oview_size);
c06b7b0b 1608
ead1e424
ILT
1609 of->write_output_view(off, oview_size, oview);
1610
1611 // We no longer need the GOT entries.
1612 this->entries_.clear();
1613}
1614
a3ad94ed
ILT
1615// Output_data_dynamic::Dynamic_entry methods.
1616
1617// Write out the entry.
1618
1619template<int size, bool big_endian>
1620void
1621Output_data_dynamic::Dynamic_entry::write(
1622 unsigned char* pov,
7d1a9ebb 1623 const Stringpool* pool) const
a3ad94ed
ILT
1624{
1625 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1626 switch (this->offset_)
a3ad94ed
ILT
1627 {
1628 case DYNAMIC_NUMBER:
1629 val = this->u_.val;
1630 break;
1631
a3ad94ed 1632 case DYNAMIC_SECTION_SIZE:
16649710 1633 val = this->u_.od->data_size();
612a8d3d
DM
1634 if (this->od2 != NULL)
1635 val += this->od2->data_size();
a3ad94ed
ILT
1636 break;
1637
1638 case DYNAMIC_SYMBOL:
1639 {
16649710
ILT
1640 const Sized_symbol<size>* s =
1641 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1642 val = s->value();
1643 }
1644 break;
1645
1646 case DYNAMIC_STRING:
1647 val = pool->get_offset(this->u_.str);
1648 break;
1649
1650 default:
c2b45e22
CC
1651 val = this->u_.od->address() + this->offset_;
1652 break;
a3ad94ed
ILT
1653 }
1654
1655 elfcpp::Dyn_write<size, big_endian> dw(pov);
1656 dw.put_d_tag(this->tag_);
1657 dw.put_d_val(val);
1658}
1659
1660// Output_data_dynamic methods.
1661
16649710
ILT
1662// Adjust the output section to set the entry size.
1663
1664void
1665Output_data_dynamic::do_adjust_output_section(Output_section* os)
1666{
8851ecca 1667 if (parameters->target().get_size() == 32)
16649710 1668 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1669 else if (parameters->target().get_size() == 64)
16649710
ILT
1670 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1671 else
1672 gold_unreachable();
1673}
1674
a3ad94ed
ILT
1675// Set the final data size.
1676
1677void
27bc2bce 1678Output_data_dynamic::set_final_data_size()
a3ad94ed 1679{
20e6d0d6
DK
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
9e9e071b
ILT
1682 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1683 {
1684 int extra = parameters->options().spare_dynamic_tags();
1685 for (int i = 0; i < extra; ++i)
1686 this->add_constant(elfcpp::DT_NULL, 0);
1687 this->add_constant(elfcpp::DT_NULL, 0);
1688 }
a3ad94ed
ILT
1689
1690 int dyn_size;
8851ecca 1691 if (parameters->target().get_size() == 32)
a3ad94ed 1692 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1693 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1694 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1695 else
1696 gold_unreachable();
1697 this->set_data_size(this->entries_.size() * dyn_size);
1698}
1699
1700// Write out the dynamic entries.
1701
1702void
1703Output_data_dynamic::do_write(Output_file* of)
1704{
8851ecca 1705 switch (parameters->size_and_endianness())
a3ad94ed 1706 {
9025d29d 1707#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1708 case Parameters::TARGET_32_LITTLE:
1709 this->sized_write<32, false>(of);
1710 break;
9025d29d 1711#endif
8851ecca
ILT
1712#ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG:
1714 this->sized_write<32, true>(of);
1715 break;
9025d29d 1716#endif
9025d29d 1717#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1718 case Parameters::TARGET_64_LITTLE:
1719 this->sized_write<64, false>(of);
1720 break;
9025d29d 1721#endif
8851ecca
ILT
1722#ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG:
1724 this->sized_write<64, true>(of);
1725 break;
1726#endif
1727 default:
1728 gold_unreachable();
a3ad94ed 1729 }
a3ad94ed
ILT
1730}
1731
1732template<int size, bool big_endian>
1733void
1734Output_data_dynamic::sized_write(Output_file* of)
1735{
1736 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1737
2ea97941 1738 const off_t offset = this->offset();
a3ad94ed 1739 const off_t oview_size = this->data_size();
2ea97941 1740 unsigned char* const oview = of->get_output_view(offset, oview_size);
a3ad94ed
ILT
1741
1742 unsigned char* pov = oview;
1743 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1744 p != this->entries_.end();
1745 ++p)
1746 {
7d1a9ebb 1747 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1748 pov += dyn_size;
1749 }
1750
1751 gold_assert(pov - oview == oview_size);
1752
2ea97941 1753 of->write_output_view(offset, oview_size, oview);
a3ad94ed
ILT
1754
1755 // We no longer need the dynamic entries.
1756 this->entries_.clear();
1757}
1758
d491d34e
ILT
1759// Class Output_symtab_xindex.
1760
1761void
1762Output_symtab_xindex::do_write(Output_file* of)
1763{
2ea97941 1764 const off_t offset = this->offset();
d491d34e 1765 const off_t oview_size = this->data_size();
2ea97941 1766 unsigned char* const oview = of->get_output_view(offset, oview_size);
d491d34e
ILT
1767
1768 memset(oview, 0, oview_size);
1769
1770 if (parameters->target().is_big_endian())
1771 this->endian_do_write<true>(oview);
1772 else
1773 this->endian_do_write<false>(oview);
1774
2ea97941 1775 of->write_output_view(offset, oview_size, oview);
d491d34e
ILT
1776
1777 // We no longer need the data.
1778 this->entries_.clear();
1779}
1780
1781template<bool big_endian>
1782void
1783Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1784{
1785 for (Xindex_entries::const_iterator p = this->entries_.begin();
1786 p != this->entries_.end();
1787 ++p)
20e6d0d6
DK
1788 {
1789 unsigned int symndx = p->first;
1790 gold_assert(symndx * 4 < this->data_size());
1791 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1792 }
d491d34e
ILT
1793}
1794
ead1e424
ILT
1795// Output_section::Input_section methods.
1796
1797// Return the data size. For an input section we store the size here.
1798// For an Output_section_data, we have to ask it for the size.
1799
1800off_t
1801Output_section::Input_section::data_size() const
1802{
1803 if (this->is_input_section())
b8e6aad9 1804 return this->u1_.data_size;
ead1e424 1805 else
b8e6aad9 1806 return this->u2_.posd->data_size();
ead1e424
ILT
1807}
1808
0439c796
DK
1809// Return the object for an input section.
1810
1811Relobj*
1812Output_section::Input_section::relobj() const
1813{
1814 if (this->is_input_section())
1815 return this->u2_.object;
1816 else if (this->is_merge_section())
1817 {
1818 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1819 return this->u2_.pomb->first_relobj();
1820 }
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_.poris->relobj();
1823 else
1824 gold_unreachable();
1825}
1826
1827// Return the input section index for an input section.
1828
1829unsigned int
1830Output_section::Input_section::shndx() const
1831{
1832 if (this->is_input_section())
1833 return this->shndx_;
1834 else if (this->is_merge_section())
1835 {
1836 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1837 return this->u2_.pomb->first_shndx();
1838 }
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_.poris->shndx();
1841 else
1842 gold_unreachable();
1843}
1844
ead1e424
ILT
1845// Set the address and file offset.
1846
1847void
96803768
ILT
1848Output_section::Input_section::set_address_and_file_offset(
1849 uint64_t address,
1850 off_t file_offset,
1851 off_t section_file_offset)
ead1e424
ILT
1852{
1853 if (this->is_input_section())
96803768
ILT
1854 this->u2_.object->set_section_offset(this->shndx_,
1855 file_offset - section_file_offset);
ead1e424 1856 else
96803768
ILT
1857 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1858}
1859
a445fddf
ILT
1860// Reset the address and file offset.
1861
1862void
1863Output_section::Input_section::reset_address_and_file_offset()
1864{
1865 if (!this->is_input_section())
1866 this->u2_.posd->reset_address_and_file_offset();
1867}
1868
96803768
ILT
1869// Finalize the data size.
1870
1871void
1872Output_section::Input_section::finalize_data_size()
1873{
1874 if (!this->is_input_section())
1875 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1876}
1877
1e983657
ILT
1878// Try to turn an input offset into an output offset. We want to
1879// return the output offset relative to the start of this
1880// Input_section in the output section.
b8e6aad9 1881
8f00aeb8 1882inline bool
8383303e
ILT
1883Output_section::Input_section::output_offset(
1884 const Relobj* object,
2ea97941
ILT
1885 unsigned int shndx,
1886 section_offset_type offset,
ca09d69a 1887 section_offset_type* poutput) const
b8e6aad9
ILT
1888{
1889 if (!this->is_input_section())
2ea97941 1890 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1891 else
1892 {
2ea97941 1893 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1894 return false;
2ea97941 1895 *poutput = offset;
b8e6aad9
ILT
1896 return true;
1897 }
ead1e424
ILT
1898}
1899
a9a60db6
ILT
1900// Return whether this is the merge section for the input section
1901// SHNDX in OBJECT.
1902
1903inline bool
1904Output_section::Input_section::is_merge_section_for(const Relobj* object,
2ea97941 1905 unsigned int shndx) const
a9a60db6
ILT
1906{
1907 if (this->is_input_section())
1908 return false;
2ea97941 1909 return this->u2_.posd->is_merge_section_for(object, shndx);
a9a60db6
ILT
1910}
1911
ead1e424
ILT
1912// Write out the data. We don't have to do anything for an input
1913// section--they are handled via Object::relocate--but this is where
1914// we write out the data for an Output_section_data.
1915
1916void
1917Output_section::Input_section::write(Output_file* of)
1918{
1919 if (!this->is_input_section())
b8e6aad9 1920 this->u2_.posd->write(of);
ead1e424
ILT
1921}
1922
96803768
ILT
1923// Write the data to a buffer. As for write(), we don't have to do
1924// anything for an input section.
1925
1926void
1927Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1928{
1929 if (!this->is_input_section())
1930 this->u2_.posd->write_to_buffer(buffer);
1931}
1932
7d9e3d98
ILT
1933// Print to a map file.
1934
1935void
1936Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1937{
1938 switch (this->shndx_)
1939 {
1940 case OUTPUT_SECTION_CODE:
1941 case MERGE_DATA_SECTION_CODE:
1942 case MERGE_STRING_SECTION_CODE:
1943 this->u2_.posd->print_to_mapfile(mapfile);
1944 break;
1945
20e6d0d6
DK
1946 case RELAXED_INPUT_SECTION_CODE:
1947 {
1948 Output_relaxed_input_section* relaxed_section =
1949 this->relaxed_input_section();
1950 mapfile->print_input_section(relaxed_section->relobj(),
1951 relaxed_section->shndx());
1952 }
1953 break;
7d9e3d98
ILT
1954 default:
1955 mapfile->print_input_section(this->u2_.object, this->shndx_);
1956 break;
1957 }
1958}
1959
a2fb1b05
ILT
1960// Output_section methods.
1961
1962// Construct an Output_section. NAME will point into a Stringpool.
1963
2ea97941
ILT
1964Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1965 elfcpp::Elf_Xword flags)
1966 : name_(name),
a2fb1b05
ILT
1967 addralign_(0),
1968 entsize_(0),
a445fddf 1969 load_address_(0),
16649710 1970 link_section_(NULL),
a2fb1b05 1971 link_(0),
16649710 1972 info_section_(NULL),
6a74a719 1973 info_symndx_(NULL),
a2fb1b05 1974 info_(0),
2ea97941
ILT
1975 type_(type),
1976 flags_(flags),
22f0da72 1977 order_(ORDER_INVALID),
91ea499d 1978 out_shndx_(-1U),
c06b7b0b
ILT
1979 symtab_index_(0),
1980 dynsym_index_(0),
ead1e424
ILT
1981 input_sections_(),
1982 first_input_offset_(0),
c51e6221 1983 fills_(),
96803768 1984 postprocessing_buffer_(NULL),
a3ad94ed 1985 needs_symtab_index_(false),
16649710
ILT
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
730cdc88 1988 should_link_to_dynsym_(false),
27bc2bce 1989 after_input_sections_(false),
7bf1f802 1990 requires_postprocessing_(false),
a445fddf
ILT
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
755ab8af 1993 info_uses_section_index_(false),
6e9ba2ca 1994 input_section_order_specified_(false),
2fd32231
ILT
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
9f1d377b 1998 is_relro_(false),
8a5e3e08
ILT
1999 is_small_section_(false),
2000 is_large_section_(false),
f5c870d2 2001 generate_code_fills_at_write_(false),
e8cd95c7 2002 is_entsize_zero_(false),
8923b24c 2003 section_offsets_need_adjustment_(false),
1e5d2fb1 2004 is_noload_(false),
131687b4 2005 always_keeps_input_sections_(false),
20e6d0d6 2006 tls_offset_(0),
c0a62865 2007 checkpoint_(NULL),
0439c796 2008 lookup_maps_(new Output_section_lookup_maps)
a2fb1b05 2009{
27bc2bce
ILT
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2012 // sections.
2ea97941 2013 if ((flags & elfcpp::SHF_ALLOC) == 0)
27bc2bce 2014 this->set_address(0);
a2fb1b05
ILT
2015}
2016
54dc6425
ILT
2017Output_section::~Output_section()
2018{
20e6d0d6 2019 delete this->checkpoint_;
54dc6425
ILT
2020}
2021
16649710
ILT
2022// Set the entry size.
2023
2024void
2025Output_section::set_entsize(uint64_t v)
2026{
e8cd95c7
ILT
2027 if (this->is_entsize_zero_)
2028 ;
2029 else if (this->entsize_ == 0)
16649710 2030 this->entsize_ = v;
e8cd95c7
ILT
2031 else if (this->entsize_ != v)
2032 {
2033 this->entsize_ = 0;
2034 this->is_entsize_zero_ = 1;
2035 }
16649710
ILT
2036}
2037
ead1e424 2038// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
2039// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040// relocation section which applies to this section, or 0 if none, or
2041// -1U if more than one. Return the offset of the input section
2042// within the output section. Return -1 if the input section will
2043// receive special handling. In the normal case we don't always keep
2044// track of input sections for an Output_section. Instead, each
2045// Object keeps track of the Output_section for each of its input
a445fddf
ILT
2046// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047// track of input sections here; this is used when SECTIONS appears in
2048// a linker script.
a2fb1b05
ILT
2049
2050template<int size, bool big_endian>
2051off_t
6e9ba2ca
ST
2052Output_section::add_input_section(Layout* layout,
2053 Sized_relobj<size, big_endian>* object,
2ea97941 2054 unsigned int shndx,
ead1e424 2055 const char* secname,
730cdc88 2056 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
2057 unsigned int reloc_shndx,
2058 bool have_sections_script)
a2fb1b05 2059{
2ea97941
ILT
2060 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2061 if ((addralign & (addralign - 1)) != 0)
a2fb1b05 2062 {
75f2446e 2063 object->error(_("invalid alignment %lu for section \"%s\""),
2ea97941
ILT
2064 static_cast<unsigned long>(addralign), secname);
2065 addralign = 1;
a2fb1b05 2066 }
a2fb1b05 2067
2ea97941
ILT
2068 if (addralign > this->addralign_)
2069 this->addralign_ = addralign;
a2fb1b05 2070
44a43cf9 2071 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2ea97941 2072 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
2073
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
2077 {
2078 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2ea97941 2079 entsize = 1;
4f833eee 2080 }
44a43cf9 2081
e8cd95c7
ILT
2082 this->update_flags_for_input_section(sh_flags);
2083 this->set_entsize(entsize);
2084
b8e6aad9 2085 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 2086 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
44a43cf9 2089 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
2090 && reloc_shndx == 0
2091 && shdr.get_sh_size() > 0)
b8e6aad9 2092 {
0439c796
DK
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
131687b4
DK
2095 bool keeps_input_sections = (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters->target().may_relax());
2098
0439c796
DK
2099 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2100 addralign, keeps_input_sections))
b8e6aad9
ILT
2101 {
2102 // Tell the relocation routines that they need to call the
730cdc88 2103 // output_offset method to determine the final address.
b8e6aad9
ILT
2104 return -1;
2105 }
2106 }
2107
27bc2bce 2108 off_t offset_in_section = this->current_data_size_for_child();
c51e6221 2109 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 2110 addralign);
c51e6221 2111
c0a62865
DK
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
4cf7a849
ST
2114 // generating to avoid adjusting them during relaxation. Also, if we are
2115 // sorting input sections we must delay fill generation.
c0a62865
DK
2116 if (!this->generate_code_fills_at_write_
2117 && !have_sections_script
2118 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2119 && parameters->target().has_code_fill()
4cf7a849
ST
2120 && (parameters->target().may_relax()
2121 || parameters->options().section_ordering_file()))
c0a62865
DK
2122 {
2123 gold_assert(this->fills_.empty());
2124 this->generate_code_fills_at_write_ = true;
2125 }
2126
c51e6221 2127 if (aligned_offset_in_section > offset_in_section
c0a62865 2128 && !this->generate_code_fills_at_write_
a445fddf 2129 && !have_sections_script
44a43cf9 2130 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 2131 && parameters->target().has_code_fill())
c51e6221
ILT
2132 {
2133 // We need to add some fill data. Using fill_list_ when
2134 // possible is an optimization, since we will often have fill
2135 // sections without input sections.
2136 off_t fill_len = aligned_offset_in_section - offset_in_section;
2137 if (this->input_sections_.empty())
2138 this->fills_.push_back(Fill(offset_in_section, fill_len));
2139 else
2140 {
029ba973 2141 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
2142 Output_data_const* odc = new Output_data_const(fill_data, 1);
2143 this->input_sections_.push_back(Input_section(odc));
2144 }
2145 }
2146
a2e47362
CC
2147 section_size_type input_section_size = shdr.get_sh_size();
2148 section_size_type uncompressed_size;
2149 if (object->section_is_compressed(shndx, &uncompressed_size))
2150 input_section_size = uncompressed_size;
2151
27bc2bce 2152 this->set_current_data_size_for_child(aligned_offset_in_section
a2e47362 2153 + input_section_size);
a2fb1b05 2154
ead1e424 2155 // We need to keep track of this section if we are already keeping
2fd32231
ILT
2156 // track of sections, or if we are relaxing. Also, if this is a
2157 // section which requires sorting, or which may require sorting in
6e9ba2ca
ST
2158 // the future, we keep track of the sections. If the
2159 // --section-ordering-file option is used to specify the order of
2160 // sections, we need to keep track of sections.
131687b4
DK
2161 if (this->always_keeps_input_sections_
2162 || have_sections_script
2fd32231
ILT
2163 || !this->input_sections_.empty()
2164 || this->may_sort_attached_input_sections()
7d9e3d98 2165 || this->must_sort_attached_input_sections()
20e6d0d6 2166 || parameters->options().user_set_Map()
6e9ba2ca
ST
2167 || parameters->target().may_relax()
2168 || parameters->options().section_ordering_file())
2169 {
6fc6ea19 2170 Input_section isecn(object, shndx, input_section_size, addralign);
6e9ba2ca
ST
2171 if (parameters->options().section_ordering_file())
2172 {
2173 unsigned int section_order_index =
2174 layout->find_section_order_index(std::string(secname));
2175 if (section_order_index != 0)
2176 {
2177 isecn.set_section_order_index(section_order_index);
2178 this->set_input_section_order_specified();
2179 }
2180 }
2181 this->input_sections_.push_back(isecn);
2182 }
54dc6425 2183
c51e6221 2184 return aligned_offset_in_section;
61ba1cf9
ILT
2185}
2186
ead1e424
ILT
2187// Add arbitrary data to an output section.
2188
2189void
2190Output_section::add_output_section_data(Output_section_data* posd)
2191{
b8e6aad9
ILT
2192 Input_section inp(posd);
2193 this->add_output_section_data(&inp);
a445fddf
ILT
2194
2195 if (posd->is_data_size_valid())
2196 {
2197 off_t offset_in_section = this->current_data_size_for_child();
2198 off_t aligned_offset_in_section = align_address(offset_in_section,
2199 posd->addralign());
2200 this->set_current_data_size_for_child(aligned_offset_in_section
2201 + posd->data_size());
2202 }
b8e6aad9
ILT
2203}
2204
c0a62865
DK
2205// Add a relaxed input section.
2206
2207void
d06fb4d1
DK
2208Output_section::add_relaxed_input_section(Layout* layout,
2209 Output_relaxed_input_section* poris,
2210 const std::string& name)
c0a62865
DK
2211{
2212 Input_section inp(poris);
d06fb4d1
DK
2213
2214 // If the --section-ordering-file option is used to specify the order of
2215 // sections, we need to keep track of sections.
2216 if (parameters->options().section_ordering_file())
2217 {
2218 unsigned int section_order_index =
2219 layout->find_section_order_index(name);
2220 if (section_order_index != 0)
2221 {
2222 inp.set_section_order_index(section_order_index);
2223 this->set_input_section_order_specified();
2224 }
2225 }
2226
c0a62865 2227 this->add_output_section_data(&inp);
0439c796
DK
2228 if (this->lookup_maps_->is_valid())
2229 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2230 poris->shndx(), poris);
c0a62865
DK
2231
2232 // For a relaxed section, we use the current data size. Linker scripts
2233 // get all the input sections, including relaxed one from an output
2234 // section and add them back to them same output section to compute the
2235 // output section size. If we do not account for sizes of relaxed input
2236 // sections, an output section would be incorrectly sized.
2237 off_t offset_in_section = this->current_data_size_for_child();
2238 off_t aligned_offset_in_section = align_address(offset_in_section,
2239 poris->addralign());
2240 this->set_current_data_size_for_child(aligned_offset_in_section
2241 + poris->current_data_size());
2242}
2243
b8e6aad9 2244// Add arbitrary data to an output section by Input_section.
c06b7b0b 2245
b8e6aad9
ILT
2246void
2247Output_section::add_output_section_data(Input_section* inp)
2248{
ead1e424 2249 if (this->input_sections_.empty())
27bc2bce 2250 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2251
b8e6aad9 2252 this->input_sections_.push_back(*inp);
c06b7b0b 2253
2ea97941
ILT
2254 uint64_t addralign = inp->addralign();
2255 if (addralign > this->addralign_)
2256 this->addralign_ = addralign;
c06b7b0b 2257
b8e6aad9
ILT
2258 inp->set_output_section(this);
2259}
2260
2261// Add a merge section to an output section.
2262
2263void
2264Output_section::add_output_merge_section(Output_section_data* posd,
2ea97941 2265 bool is_string, uint64_t entsize)
b8e6aad9 2266{
2ea97941 2267 Input_section inp(posd, is_string, entsize);
b8e6aad9
ILT
2268 this->add_output_section_data(&inp);
2269}
2270
2271// Add an input section to a SHF_MERGE section.
2272
2273bool
2ea97941
ILT
2274Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2275 uint64_t flags, uint64_t entsize,
0439c796
DK
2276 uint64_t addralign,
2277 bool keeps_input_sections)
b8e6aad9 2278{
2ea97941 2279 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
87f95776
ILT
2280
2281 // We only merge strings if the alignment is not more than the
2282 // character size. This could be handled, but it's unusual.
2ea97941 2283 if (is_string && addralign > entsize)
b8e6aad9
ILT
2284 return false;
2285
20e6d0d6
DK
2286 // We cannot restore merged input section states.
2287 gold_assert(this->checkpoint_ == NULL);
2288
c0a62865 2289 // Look up merge sections by required properties.
0439c796
DK
2290 // Currently, we only invalidate the lookup maps in script processing
2291 // and relaxation. We should not have done either when we reach here.
2292 // So we assume that the lookup maps are valid to simply code.
2293 gold_assert(this->lookup_maps_->is_valid());
2ea97941 2294 Merge_section_properties msp(is_string, entsize, addralign);
0439c796
DK
2295 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2296 bool is_new = false;
2297 if (pomb != NULL)
c0a62865 2298 {
6bf924b0
DK
2299 gold_assert(pomb->is_string() == is_string
2300 && pomb->entsize() == entsize
2301 && pomb->addralign() == addralign);
c0a62865 2302 }
b8e6aad9
ILT
2303 else
2304 {
6bf924b0
DK
2305 // Create a new Output_merge_data or Output_merge_string_data.
2306 if (!is_string)
2307 pomb = new Output_merge_data(entsize, addralign);
2308 else
9a0910c3 2309 {
6bf924b0
DK
2310 switch (entsize)
2311 {
2312 case 1:
2313 pomb = new Output_merge_string<char>(addralign);
2314 break;
2315 case 2:
2316 pomb = new Output_merge_string<uint16_t>(addralign);
2317 break;
2318 case 4:
2319 pomb = new Output_merge_string<uint32_t>(addralign);
2320 break;
2321 default:
2322 return false;
2323 }
9a0910c3 2324 }
0439c796
DK
2325 // If we need to do script processing or relaxation, we need to keep
2326 // the original input sections to rebuild the fast lookup maps.
2327 if (keeps_input_sections)
2328 pomb->set_keeps_input_sections();
2329 is_new = true;
b8e6aad9
ILT
2330 }
2331
6bf924b0
DK
2332 if (pomb->add_input_section(object, shndx))
2333 {
0439c796
DK
2334 // Add new merge section to this output section and link merge
2335 // section properties to new merge section in map.
2336 if (is_new)
2337 {
2338 this->add_output_merge_section(pomb, is_string, entsize);
2339 this->lookup_maps_->add_merge_section(msp, pomb);
2340 }
2341
6bf924b0
DK
2342 // Add input section to new merge section and link input section to new
2343 // merge section in map.
0439c796 2344 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
6bf924b0
DK
2345 return true;
2346 }
2347 else
0439c796
DK
2348 {
2349 // If add_input_section failed, delete new merge section to avoid
2350 // exporting empty merge sections in Output_section::get_input_section.
2351 if (is_new)
2352 delete pomb;
2353 return false;
2354 }
b8e6aad9
ILT
2355}
2356
c0a62865 2357// Build a relaxation map to speed up relaxation of existing input sections.
2ea97941 2358// Look up to the first LIMIT elements in INPUT_SECTIONS.
c0a62865 2359
20e6d0d6 2360void
c0a62865 2361Output_section::build_relaxation_map(
2ea97941 2362 const Input_section_list& input_sections,
c0a62865
DK
2363 size_t limit,
2364 Relaxation_map* relaxation_map) const
20e6d0d6 2365{
c0a62865
DK
2366 for (size_t i = 0; i < limit; ++i)
2367 {
2ea97941 2368 const Input_section& is(input_sections[i]);
c0a62865
DK
2369 if (is.is_input_section() || is.is_relaxed_input_section())
2370 {
5ac169d4
DK
2371 Section_id sid(is.relobj(), is.shndx());
2372 (*relaxation_map)[sid] = i;
c0a62865
DK
2373 }
2374 }
2375}
2376
2377// Convert regular input sections in INPUT_SECTIONS into relaxed input
5ac169d4
DK
2378// sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2379// indices of INPUT_SECTIONS.
20e6d0d6 2380
c0a62865
DK
2381void
2382Output_section::convert_input_sections_in_list_to_relaxed_sections(
2383 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2384 const Relaxation_map& map,
2ea97941 2385 Input_section_list* input_sections)
c0a62865
DK
2386{
2387 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2388 {
2389 Output_relaxed_input_section* poris = relaxed_sections[i];
5ac169d4
DK
2390 Section_id sid(poris->relobj(), poris->shndx());
2391 Relaxation_map::const_iterator p = map.find(sid);
c0a62865 2392 gold_assert(p != map.end());
2ea97941 2393 gold_assert((*input_sections)[p->second].is_input_section());
d06fb4d1
DK
2394
2395 // Remember section order index of original input section
2396 // if it is set. Copy it to the relaxed input section.
2397 unsigned int soi =
2398 (*input_sections)[p->second].section_order_index();
2ea97941 2399 (*input_sections)[p->second] = Input_section(poris);
d06fb4d1 2400 (*input_sections)[p->second].set_section_order_index(soi);
c0a62865
DK
2401 }
2402}
2403
2404// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2405// is a vector of pointers to Output_relaxed_input_section or its derived
2406// classes. The relaxed sections must correspond to existing input sections.
2407
2408void
2409Output_section::convert_input_sections_to_relaxed_sections(
2410 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2411{
029ba973 2412 gold_assert(parameters->target().may_relax());
20e6d0d6 2413
c0a62865
DK
2414 // We want to make sure that restore_states does not undo the effect of
2415 // this. If there is no checkpoint active, just search the current
2416 // input section list and replace the sections there. If there is
2417 // a checkpoint, also replace the sections there.
2418
2419 // By default, we look at the whole list.
2420 size_t limit = this->input_sections_.size();
2421
2422 if (this->checkpoint_ != NULL)
20e6d0d6 2423 {
c0a62865
DK
2424 // Replace input sections with relaxed input section in the saved
2425 // copy of the input section list.
2426 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2427 {
c0a62865
DK
2428 Relaxation_map map;
2429 this->build_relaxation_map(
2430 *(this->checkpoint_->input_sections()),
2431 this->checkpoint_->input_sections()->size(),
2432 &map);
2433 this->convert_input_sections_in_list_to_relaxed_sections(
2434 relaxed_sections,
2435 map,
2436 this->checkpoint_->input_sections());
2437 }
2438 else
2439 {
2440 // We have not copied the input section list yet. Instead, just
2441 // look at the portion that would be saved.
2442 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2443 }
20e6d0d6 2444 }
c0a62865
DK
2445
2446 // Convert input sections in input_section_list.
2447 Relaxation_map map;
2448 this->build_relaxation_map(this->input_sections_, limit, &map);
2449 this->convert_input_sections_in_list_to_relaxed_sections(
2450 relaxed_sections,
2451 map,
2452 &this->input_sections_);
41263c05
DK
2453
2454 // Update fast look-up map.
0439c796 2455 if (this->lookup_maps_->is_valid())
41263c05
DK
2456 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2457 {
2458 Output_relaxed_input_section* poris = relaxed_sections[i];
0439c796
DK
2459 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2460 poris->shndx(), poris);
41263c05 2461 }
20e6d0d6
DK
2462}
2463
9c547ec3
ILT
2464// Update the output section flags based on input section flags.
2465
2466void
2ea97941 2467Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
9c547ec3
ILT
2468{
2469 // If we created the section with SHF_ALLOC clear, we set the
2470 // address. If we are now setting the SHF_ALLOC flag, we need to
2471 // undo that.
2472 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2ea97941 2473 && (flags & elfcpp::SHF_ALLOC) != 0)
9c547ec3
ILT
2474 this->mark_address_invalid();
2475
2ea97941 2476 this->flags_ |= (flags
9c547ec3
ILT
2477 & (elfcpp::SHF_WRITE
2478 | elfcpp::SHF_ALLOC
2479 | elfcpp::SHF_EXECINSTR));
e8cd95c7
ILT
2480
2481 if ((flags & elfcpp::SHF_MERGE) == 0)
2482 this->flags_ &=~ elfcpp::SHF_MERGE;
2483 else
2484 {
2485 if (this->current_data_size_for_child() == 0)
2486 this->flags_ |= elfcpp::SHF_MERGE;
2487 }
2488
2489 if ((flags & elfcpp::SHF_STRINGS) == 0)
2490 this->flags_ &=~ elfcpp::SHF_STRINGS;
2491 else
2492 {
2493 if (this->current_data_size_for_child() == 0)
2494 this->flags_ |= elfcpp::SHF_STRINGS;
2495 }
9c547ec3
ILT
2496}
2497
2ea97941 2498// Find the merge section into which an input section with index SHNDX in
c0a62865
DK
2499// OBJECT has been added. Return NULL if none found.
2500
2501Output_section_data*
2502Output_section::find_merge_section(const Relobj* object,
2ea97941 2503 unsigned int shndx) const
c0a62865 2504{
0439c796
DK
2505 if (!this->lookup_maps_->is_valid())
2506 this->build_lookup_maps();
2507 return this->lookup_maps_->find_merge_section(object, shndx);
2508}
2509
2510// Build the lookup maps for merge and relaxed sections. This is needs
2511// to be declared as a const methods so that it is callable with a const
2512// Output_section pointer. The method only updates states of the maps.
2513
2514void
2515Output_section::build_lookup_maps() const
2516{
2517 this->lookup_maps_->clear();
2518 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2519 p != this->input_sections_.end();
2520 ++p)
c0a62865 2521 {
0439c796
DK
2522 if (p->is_merge_section())
2523 {
2524 Output_merge_base* pomb = p->output_merge_base();
2525 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2526 pomb->addralign());
2527 this->lookup_maps_->add_merge_section(msp, pomb);
2528 for (Output_merge_base::Input_sections::const_iterator is =
2529 pomb->input_sections_begin();
2530 is != pomb->input_sections_end();
2531 ++is)
2532 {
2533 const Const_section_id& csid = *is;
2534 this->lookup_maps_->add_merge_input_section(csid.first,
2535 csid.second, pomb);
2536 }
2537
2538 }
2539 else if (p->is_relaxed_input_section())
2540 {
2541 Output_relaxed_input_section* poris = p->relaxed_input_section();
2542 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2543 poris->shndx(), poris);
2544 }
c0a62865 2545 }
c0a62865
DK
2546}
2547
2548// Find an relaxed input section corresponding to an input section
2ea97941 2549// in OBJECT with index SHNDX.
c0a62865 2550
d6344fb5 2551const Output_relaxed_input_section*
c0a62865 2552Output_section::find_relaxed_input_section(const Relobj* object,
2ea97941 2553 unsigned int shndx) const
c0a62865 2554{
0439c796
DK
2555 if (!this->lookup_maps_->is_valid())
2556 this->build_lookup_maps();
2557 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
c0a62865
DK
2558}
2559
2ea97941
ILT
2560// Given an address OFFSET relative to the start of input section
2561// SHNDX in OBJECT, return whether this address is being included in
2562// the final link. This should only be called if SHNDX in OBJECT has
730cdc88
ILT
2563// a special mapping.
2564
2565bool
2566Output_section::is_input_address_mapped(const Relobj* object,
2ea97941
ILT
2567 unsigned int shndx,
2568 off_t offset) const
730cdc88 2569{
c0a62865 2570 // Look at the Output_section_data_maps first.
2ea97941 2571 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2572 if (posd == NULL)
2ea97941 2573 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2574
2575 if (posd != NULL)
2576 {
2ea97941
ILT
2577 section_offset_type output_offset;
2578 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2579 gold_assert(found);
2ea97941 2580 return output_offset != -1;
c0a62865
DK
2581 }
2582
2583 // Fall back to the slow look-up.
730cdc88
ILT
2584 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2585 p != this->input_sections_.end();
2586 ++p)
2587 {
2ea97941
ILT
2588 section_offset_type output_offset;
2589 if (p->output_offset(object, shndx, offset, &output_offset))
2590 return output_offset != -1;
730cdc88
ILT
2591 }
2592
2593 // By default we assume that the address is mapped. This should
2594 // only be called after we have passed all sections to Layout. At
2595 // that point we should know what we are discarding.
2596 return true;
2597}
2598
2ea97941
ILT
2599// Given an address OFFSET relative to the start of input section
2600// SHNDX in object OBJECT, return the output offset relative to the
1e983657 2601// start of the input section in the output section. This should only
2ea97941 2602// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2603
8383303e 2604section_offset_type
2ea97941
ILT
2605Output_section::output_offset(const Relobj* object, unsigned int shndx,
2606 section_offset_type offset) const
730cdc88 2607{
c0a62865
DK
2608 // This can only be called meaningfully when we know the data size
2609 // of this.
2610 gold_assert(this->is_data_size_valid());
730cdc88 2611
c0a62865 2612 // Look at the Output_section_data_maps first.
2ea97941 2613 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2614 if (posd == NULL)
2ea97941 2615 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2616 if (posd != NULL)
2617 {
2ea97941
ILT
2618 section_offset_type output_offset;
2619 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2620 gold_assert(found);
2ea97941 2621 return output_offset;
c0a62865
DK
2622 }
2623
2624 // Fall back to the slow look-up.
730cdc88
ILT
2625 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2626 p != this->input_sections_.end();
2627 ++p)
2628 {
2ea97941
ILT
2629 section_offset_type output_offset;
2630 if (p->output_offset(object, shndx, offset, &output_offset))
2631 return output_offset;
730cdc88
ILT
2632 }
2633 gold_unreachable();
2634}
2635
2ea97941
ILT
2636// Return the output virtual address of OFFSET relative to the start
2637// of input section SHNDX in object OBJECT.
b8e6aad9
ILT
2638
2639uint64_t
2ea97941
ILT
2640Output_section::output_address(const Relobj* object, unsigned int shndx,
2641 off_t offset) const
b8e6aad9
ILT
2642{
2643 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2644
2645 // Look at the Output_section_data_maps first.
2ea97941 2646 const Output_section_data* posd = this->find_merge_section(object, shndx);
c0a62865 2647 if (posd == NULL)
2ea97941 2648 posd = this->find_relaxed_input_section(object, shndx);
c0a62865
DK
2649 if (posd != NULL && posd->is_address_valid())
2650 {
2ea97941
ILT
2651 section_offset_type output_offset;
2652 bool found = posd->output_offset(object, shndx, offset, &output_offset);
c0a62865 2653 gold_assert(found);
2ea97941 2654 return posd->address() + output_offset;
c0a62865
DK
2655 }
2656
2657 // Fall back to the slow look-up.
b8e6aad9
ILT
2658 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2659 p != this->input_sections_.end();
2660 ++p)
2661 {
2662 addr = align_address(addr, p->addralign());
2ea97941
ILT
2663 section_offset_type output_offset;
2664 if (p->output_offset(object, shndx, offset, &output_offset))
730cdc88 2665 {
2ea97941 2666 if (output_offset == -1)
eff45813 2667 return -1ULL;
2ea97941 2668 return addr + output_offset;
730cdc88 2669 }
b8e6aad9
ILT
2670 addr += p->data_size();
2671 }
2672
2673 // If we get here, it means that we don't know the mapping for this
2674 // input section. This might happen in principle if
2675 // add_input_section were called before add_output_section_data.
2676 // But it should never actually happen.
2677
2678 gold_unreachable();
ead1e424
ILT
2679}
2680
e29e076a 2681// Find the output address of the start of the merged section for
2ea97941 2682// input section SHNDX in object OBJECT.
a9a60db6 2683
e29e076a
ILT
2684bool
2685Output_section::find_starting_output_address(const Relobj* object,
2ea97941 2686 unsigned int shndx,
e29e076a 2687 uint64_t* paddr) const
a9a60db6 2688{
c0a62865
DK
2689 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2690 // Looking up the merge section map does not always work as we sometimes
2691 // find a merge section without its address set.
a9a60db6
ILT
2692 uint64_t addr = this->address() + this->first_input_offset_;
2693 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2694 p != this->input_sections_.end();
2695 ++p)
2696 {
2697 addr = align_address(addr, p->addralign());
2698
2699 // It would be nice if we could use the existing output_offset
2700 // method to get the output offset of input offset 0.
2701 // Unfortunately we don't know for sure that input offset 0 is
2702 // mapped at all.
2ea97941 2703 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2704 {
2705 *paddr = addr;
2706 return true;
2707 }
a9a60db6
ILT
2708
2709 addr += p->data_size();
2710 }
e29e076a
ILT
2711
2712 // We couldn't find a merge output section for this input section.
2713 return false;
a9a60db6
ILT
2714}
2715
27bc2bce 2716// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2717// setting the addresses of any Output_section_data objects.
2718
2719void
27bc2bce 2720Output_section::set_final_data_size()
ead1e424
ILT
2721{
2722 if (this->input_sections_.empty())
27bc2bce
ILT
2723 {
2724 this->set_data_size(this->current_data_size_for_child());
2725 return;
2726 }
ead1e424 2727
6e9ba2ca
ST
2728 if (this->must_sort_attached_input_sections()
2729 || this->input_section_order_specified())
2fd32231
ILT
2730 this->sort_attached_input_sections();
2731
2ea97941 2732 uint64_t address = this->address();
27bc2bce 2733 off_t startoff = this->offset();
ead1e424
ILT
2734 off_t off = startoff + this->first_input_offset_;
2735 for (Input_section_list::iterator p = this->input_sections_.begin();
2736 p != this->input_sections_.end();
2737 ++p)
2738 {
2739 off = align_address(off, p->addralign());
2ea97941 2740 p->set_address_and_file_offset(address + (off - startoff), off,
96803768 2741 startoff);
ead1e424
ILT
2742 off += p->data_size();
2743 }
2744
2745 this->set_data_size(off - startoff);
2746}
9a0910c3 2747
a445fddf
ILT
2748// Reset the address and file offset.
2749
2750void
2751Output_section::do_reset_address_and_file_offset()
2752{
20e6d0d6
DK
2753 // An unallocated section has no address. Forcing this means that
2754 // we don't need special treatment for symbols defined in debug
1e5d2fb1
DK
2755 // sections. We do the same in the constructor. This does not
2756 // apply to NOLOAD sections though.
2757 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
20e6d0d6
DK
2758 this->set_address(0);
2759
a445fddf
ILT
2760 for (Input_section_list::iterator p = this->input_sections_.begin();
2761 p != this->input_sections_.end();
2762 ++p)
2763 p->reset_address_and_file_offset();
2764}
20e6d0d6
DK
2765
2766// Return true if address and file offset have the values after reset.
2767
2768bool
2769Output_section::do_address_and_file_offset_have_reset_values() const
2770{
2771 if (this->is_offset_valid())
2772 return false;
2773
2774 // An unallocated section has address 0 after its construction or a reset.
2775 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2776 return this->is_address_valid() && this->address() == 0;
2777 else
2778 return !this->is_address_valid();
2779}
a445fddf 2780
7bf1f802
ILT
2781// Set the TLS offset. Called only for SHT_TLS sections.
2782
2783void
2784Output_section::do_set_tls_offset(uint64_t tls_base)
2785{
2786 this->tls_offset_ = this->address() - tls_base;
2787}
2788
2fd32231
ILT
2789// In a few cases we need to sort the input sections attached to an
2790// output section. This is used to implement the type of constructor
2791// priority ordering implemented by the GNU linker, in which the
2792// priority becomes part of the section name and the sections are
2793// sorted by name. We only do this for an output section if we see an
2794// attached input section matching ".ctor.*", ".dtor.*",
2795// ".init_array.*" or ".fini_array.*".
2796
2797class Output_section::Input_section_sort_entry
2798{
2799 public:
2800 Input_section_sort_entry()
2801 : input_section_(), index_(-1U), section_has_name_(false),
2802 section_name_()
2803 { }
2804
2ea97941 2805 Input_section_sort_entry(const Input_section& input_section,
6e9ba2ca
ST
2806 unsigned int index,
2807 bool must_sort_attached_input_sections)
2ea97941
ILT
2808 : input_section_(input_section), index_(index),
2809 section_has_name_(input_section.is_input_section()
2810 || input_section.is_relaxed_input_section())
2fd32231 2811 {
6e9ba2ca
ST
2812 if (this->section_has_name_
2813 && must_sort_attached_input_sections)
2fd32231
ILT
2814 {
2815 // This is only called single-threaded from Layout::finalize,
2816 // so it is OK to lock. Unfortunately we have no way to pass
2817 // in a Task token.
2818 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2ea97941
ILT
2819 Object* obj = (input_section.is_input_section()
2820 ? input_section.relobj()
2821 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2822 Task_lock_obj<Object> tl(dummy_task, obj);
2823
2824 // This is a slow operation, which should be cached in
2825 // Layout::layout if this becomes a speed problem.
2ea97941 2826 this->section_name_ = obj->section_name(input_section.shndx());
2fd32231
ILT
2827 }
2828 }
2829
2830 // Return the Input_section.
2831 const Input_section&
2832 input_section() const
2833 {
2834 gold_assert(this->index_ != -1U);
2835 return this->input_section_;
2836 }
2837
2838 // The index of this entry in the original list. This is used to
2839 // make the sort stable.
2840 unsigned int
2841 index() const
2842 {
2843 gold_assert(this->index_ != -1U);
2844 return this->index_;
2845 }
2846
2847 // Whether there is a section name.
2848 bool
2849 section_has_name() const
2850 { return this->section_has_name_; }
2851
2852 // The section name.
2853 const std::string&
2854 section_name() const
2855 {
2856 gold_assert(this->section_has_name_);
2857 return this->section_name_;
2858 }
2859
ab794b6b
ILT
2860 // Return true if the section name has a priority. This is assumed
2861 // to be true if it has a dot after the initial dot.
2fd32231 2862 bool
ab794b6b 2863 has_priority() const
2fd32231
ILT
2864 {
2865 gold_assert(this->section_has_name_);
2a0ff005 2866 return this->section_name_.find('.', 1) != std::string::npos;
2fd32231
ILT
2867 }
2868
ab794b6b
ILT
2869 // Return true if this an input file whose base name matches
2870 // FILE_NAME. The base name must have an extension of ".o", and
2871 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2872 // This is to match crtbegin.o as well as crtbeginS.o without
2873 // getting confused by other possibilities. Overall matching the
2874 // file name this way is a dreadful hack, but the GNU linker does it
2875 // in order to better support gcc, and we need to be compatible.
2fd32231 2876 bool
2ea97941 2877 match_file_name(const char* match_file_name) const
2fd32231 2878 {
2fd32231
ILT
2879 const std::string& file_name(this->input_section_.relobj()->name());
2880 const char* base_name = lbasename(file_name.c_str());
2ea97941
ILT
2881 size_t match_len = strlen(match_file_name);
2882 if (strncmp(base_name, match_file_name, match_len) != 0)
2fd32231
ILT
2883 return false;
2884 size_t base_len = strlen(base_name);
2885 if (base_len != match_len + 2 && base_len != match_len + 3)
2886 return false;
2887 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2888 }
2889
8fe2a369
ST
2890 // Returns 1 if THIS should appear before S in section order, -1 if S
2891 // appears before THIS and 0 if they are not comparable.
6e9ba2ca
ST
2892 int
2893 compare_section_ordering(const Input_section_sort_entry& s) const
2894 {
8fe2a369
ST
2895 unsigned int this_secn_index = this->input_section_.section_order_index();
2896 unsigned int s_secn_index = s.input_section().section_order_index();
2897 if (this_secn_index > 0 && s_secn_index > 0)
2898 {
2899 if (this_secn_index < s_secn_index)
2900 return 1;
2901 else if (this_secn_index > s_secn_index)
2902 return -1;
2903 }
2904 return 0;
6e9ba2ca
ST
2905 }
2906
2fd32231
ILT
2907 private:
2908 // The Input_section we are sorting.
2909 Input_section input_section_;
2910 // The index of this Input_section in the original list.
2911 unsigned int index_;
2912 // Whether this Input_section has a section name--it won't if this
2913 // is some random Output_section_data.
2914 bool section_has_name_;
2915 // The section name if there is one.
2916 std::string section_name_;
2917};
2918
2919// Return true if S1 should come before S2 in the output section.
2920
2921bool
2922Output_section::Input_section_sort_compare::operator()(
2923 const Output_section::Input_section_sort_entry& s1,
2924 const Output_section::Input_section_sort_entry& s2) const
2925{
ab794b6b
ILT
2926 // crtbegin.o must come first.
2927 bool s1_begin = s1.match_file_name("crtbegin");
2928 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2929 if (s1_begin || s2_begin)
2930 {
2931 if (!s1_begin)
2932 return false;
2933 if (!s2_begin)
2934 return true;
2935 return s1.index() < s2.index();
2936 }
2937
ab794b6b
ILT
2938 // crtend.o must come last.
2939 bool s1_end = s1.match_file_name("crtend");
2940 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2941 if (s1_end || s2_end)
2942 {
2943 if (!s1_end)
2944 return true;
2945 if (!s2_end)
2946 return false;
2947 return s1.index() < s2.index();
2948 }
2949
ab794b6b
ILT
2950 // We sort all the sections with no names to the end.
2951 if (!s1.section_has_name() || !s2.section_has_name())
2952 {
2953 if (s1.section_has_name())
2954 return true;
2955 if (s2.section_has_name())
2956 return false;
2957 return s1.index() < s2.index();
2958 }
2fd32231 2959
ab794b6b 2960 // A section with a priority follows a section without a priority.
ab794b6b
ILT
2961 bool s1_has_priority = s1.has_priority();
2962 bool s2_has_priority = s2.has_priority();
2963 if (s1_has_priority && !s2_has_priority)
2fd32231 2964 return false;
ab794b6b 2965 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2966 return true;
2967
6e9ba2ca
ST
2968 // Check if a section order exists for these sections through a section
2969 // ordering file. If sequence_num is 0, an order does not exist.
2970 int sequence_num = s1.compare_section_ordering(s2);
2971 if (sequence_num != 0)
2972 return sequence_num == 1;
2973
2fd32231
ILT
2974 // Otherwise we sort by name.
2975 int compare = s1.section_name().compare(s2.section_name());
2976 if (compare != 0)
2977 return compare < 0;
2978
2979 // Otherwise we keep the input order.
2980 return s1.index() < s2.index();
2981}
2982
2a0ff005
DK
2983// Return true if S1 should come before S2 in an .init_array or .fini_array
2984// output section.
2985
2986bool
2987Output_section::Input_section_sort_init_fini_compare::operator()(
2988 const Output_section::Input_section_sort_entry& s1,
2989 const Output_section::Input_section_sort_entry& s2) const
2990{
2991 // We sort all the sections with no names to the end.
2992 if (!s1.section_has_name() || !s2.section_has_name())
2993 {
2994 if (s1.section_has_name())
2995 return true;
2996 if (s2.section_has_name())
2997 return false;
2998 return s1.index() < s2.index();
2999 }
3000
3001 // A section without a priority follows a section with a priority.
3002 // This is the reverse of .ctors and .dtors sections.
3003 bool s1_has_priority = s1.has_priority();
3004 bool s2_has_priority = s2.has_priority();
3005 if (s1_has_priority && !s2_has_priority)
3006 return true;
3007 if (!s1_has_priority && s2_has_priority)
3008 return false;
3009
6e9ba2ca
ST
3010 // Check if a section order exists for these sections through a section
3011 // ordering file. If sequence_num is 0, an order does not exist.
3012 int sequence_num = s1.compare_section_ordering(s2);
3013 if (sequence_num != 0)
3014 return sequence_num == 1;
3015
2a0ff005
DK
3016 // Otherwise we sort by name.
3017 int compare = s1.section_name().compare(s2.section_name());
3018 if (compare != 0)
3019 return compare < 0;
3020
3021 // Otherwise we keep the input order.
3022 return s1.index() < s2.index();
3023}
3024
8fe2a369
ST
3025// Return true if S1 should come before S2. Sections that do not match
3026// any pattern in the section ordering file are placed ahead of the sections
3027// that match some pattern.
3028
6e9ba2ca
ST
3029bool
3030Output_section::Input_section_sort_section_order_index_compare::operator()(
3031 const Output_section::Input_section_sort_entry& s1,
3032 const Output_section::Input_section_sort_entry& s2) const
3033{
8fe2a369
ST
3034 unsigned int s1_secn_index = s1.input_section().section_order_index();
3035 unsigned int s2_secn_index = s2.input_section().section_order_index();
6e9ba2ca 3036
8fe2a369
ST
3037 // Keep input order if section ordering cannot determine order.
3038 if (s1_secn_index == s2_secn_index)
3039 return s1.index() < s2.index();
3040
3041 return s1_secn_index < s2_secn_index;
6e9ba2ca
ST
3042}
3043
2fd32231
ILT
3044// Sort the input sections attached to an output section.
3045
3046void
3047Output_section::sort_attached_input_sections()
3048{
3049 if (this->attached_input_sections_are_sorted_)
3050 return;
3051
20e6d0d6
DK
3052 if (this->checkpoint_ != NULL
3053 && !this->checkpoint_->input_sections_saved())
3054 this->checkpoint_->save_input_sections();
3055
2fd32231
ILT
3056 // The only thing we know about an input section is the object and
3057 // the section index. We need the section name. Recomputing this
3058 // is slow but this is an unusual case. If this becomes a speed
3059 // problem we can cache the names as required in Layout::layout.
3060
3061 // We start by building a larger vector holding a copy of each
3062 // Input_section, plus its current index in the list and its name.
3063 std::vector<Input_section_sort_entry> sort_list;
3064
3065 unsigned int i = 0;
3066 for (Input_section_list::iterator p = this->input_sections_.begin();
3067 p != this->input_sections_.end();
3068 ++p, ++i)
6e9ba2ca
ST
3069 sort_list.push_back(Input_section_sort_entry(*p, i,
3070 this->must_sort_attached_input_sections()));
2fd32231
ILT
3071
3072 // Sort the input sections.
6e9ba2ca
ST
3073 if (this->must_sort_attached_input_sections())
3074 {
3075 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3076 || this->type() == elfcpp::SHT_INIT_ARRAY
3077 || this->type() == elfcpp::SHT_FINI_ARRAY)
3078 std::sort(sort_list.begin(), sort_list.end(),
3079 Input_section_sort_init_fini_compare());
3080 else
3081 std::sort(sort_list.begin(), sort_list.end(),
3082 Input_section_sort_compare());
3083 }
2a0ff005 3084 else
6e9ba2ca
ST
3085 {
3086 gold_assert(parameters->options().section_ordering_file());
3087 std::sort(sort_list.begin(), sort_list.end(),
3088 Input_section_sort_section_order_index_compare());
3089 }
2fd32231
ILT
3090
3091 // Copy the sorted input sections back to our list.
3092 this->input_sections_.clear();
3093 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3094 p != sort_list.end();
3095 ++p)
3096 this->input_sections_.push_back(p->input_section());
6e9ba2ca 3097 sort_list.clear();
2fd32231
ILT
3098
3099 // Remember that we sorted the input sections, since we might get
3100 // called again.
3101 this->attached_input_sections_are_sorted_ = true;
3102}
3103
61ba1cf9
ILT
3104// Write the section header to *OSHDR.
3105
3106template<int size, bool big_endian>
3107void
16649710
ILT
3108Output_section::write_header(const Layout* layout,
3109 const Stringpool* secnamepool,
61ba1cf9
ILT
3110 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3111{
3112 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3113 oshdr->put_sh_type(this->type_);
6a74a719 3114
2ea97941 3115 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 3116 if (this->info_section_ != NULL && this->info_uses_section_index_)
2ea97941
ILT
3117 flags |= elfcpp::SHF_INFO_LINK;
3118 oshdr->put_sh_flags(flags);
6a74a719 3119
61ba1cf9
ILT
3120 oshdr->put_sh_addr(this->address());
3121 oshdr->put_sh_offset(this->offset());
3122 oshdr->put_sh_size(this->data_size());
16649710
ILT
3123 if (this->link_section_ != NULL)
3124 oshdr->put_sh_link(this->link_section_->out_shndx());
3125 else if (this->should_link_to_symtab_)
3126 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3127 else if (this->should_link_to_dynsym_)
3128 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3129 else
3130 oshdr->put_sh_link(this->link_);
755ab8af 3131
2ea97941 3132 elfcpp::Elf_Word info;
16649710 3133 if (this->info_section_ != NULL)
755ab8af
ILT
3134 {
3135 if (this->info_uses_section_index_)
2ea97941 3136 info = this->info_section_->out_shndx();
755ab8af 3137 else
2ea97941 3138 info = this->info_section_->symtab_index();
755ab8af 3139 }
6a74a719 3140 else if (this->info_symndx_ != NULL)
2ea97941 3141 info = this->info_symndx_->symtab_index();
16649710 3142 else
2ea97941
ILT
3143 info = this->info_;
3144 oshdr->put_sh_info(info);
755ab8af 3145
61ba1cf9
ILT
3146 oshdr->put_sh_addralign(this->addralign_);
3147 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
3148}
3149
ead1e424
ILT
3150// Write out the data. For input sections the data is written out by
3151// Object::relocate, but we have to handle Output_section_data objects
3152// here.
3153
3154void
3155Output_section::do_write(Output_file* of)
3156{
96803768
ILT
3157 gold_assert(!this->requires_postprocessing());
3158
c0a62865
DK
3159 // If the target performs relaxation, we delay filler generation until now.
3160 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3161
c51e6221
ILT
3162 off_t output_section_file_offset = this->offset();
3163 for (Fill_list::iterator p = this->fills_.begin();
3164 p != this->fills_.end();
3165 ++p)
3166 {
8851ecca 3167 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 3168 of->write(output_section_file_offset + p->section_offset(),
a445fddf 3169 fill_data.data(), fill_data.size());
c51e6221
ILT
3170 }
3171
c0a62865 3172 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
3173 for (Input_section_list::iterator p = this->input_sections_.begin();
3174 p != this->input_sections_.end();
3175 ++p)
c0a62865
DK
3176 {
3177 off_t aligned_off = align_address(off, p->addralign());
3178 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3179 {
3180 size_t fill_len = aligned_off - off;
3181 std::string fill_data(parameters->target().code_fill(fill_len));
3182 of->write(off, fill_data.data(), fill_data.size());
3183 }
3184
3185 p->write(of);
3186 off = aligned_off + p->data_size();
3187 }
ead1e424
ILT
3188}
3189
96803768
ILT
3190// If a section requires postprocessing, create the buffer to use.
3191
3192void
3193Output_section::create_postprocessing_buffer()
3194{
3195 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
3196
3197 if (this->postprocessing_buffer_ != NULL)
3198 return;
96803768
ILT
3199
3200 if (!this->input_sections_.empty())
3201 {
3202 off_t off = this->first_input_offset_;
3203 for (Input_section_list::iterator p = this->input_sections_.begin();
3204 p != this->input_sections_.end();
3205 ++p)
3206 {
3207 off = align_address(off, p->addralign());
3208 p->finalize_data_size();
3209 off += p->data_size();
3210 }
3211 this->set_current_data_size_for_child(off);
3212 }
3213
3214 off_t buffer_size = this->current_data_size_for_child();
3215 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3216}
3217
3218// Write all the data of an Output_section into the postprocessing
3219// buffer. This is used for sections which require postprocessing,
3220// such as compression. Input sections are handled by
3221// Object::Relocate.
3222
3223void
3224Output_section::write_to_postprocessing_buffer()
3225{
3226 gold_assert(this->requires_postprocessing());
3227
c0a62865
DK
3228 // If the target performs relaxation, we delay filler generation until now.
3229 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3230
96803768
ILT
3231 unsigned char* buffer = this->postprocessing_buffer();
3232 for (Fill_list::iterator p = this->fills_.begin();
3233 p != this->fills_.end();
3234 ++p)
3235 {
8851ecca 3236 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
3237 memcpy(buffer + p->section_offset(), fill_data.data(),
3238 fill_data.size());
96803768
ILT
3239 }
3240
3241 off_t off = this->first_input_offset_;
3242 for (Input_section_list::iterator p = this->input_sections_.begin();
3243 p != this->input_sections_.end();
3244 ++p)
3245 {
c0a62865
DK
3246 off_t aligned_off = align_address(off, p->addralign());
3247 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3248 {
3249 size_t fill_len = aligned_off - off;
3250 std::string fill_data(parameters->target().code_fill(fill_len));
3251 memcpy(buffer + off, fill_data.data(), fill_data.size());
3252 }
3253
3254 p->write_to_buffer(buffer + aligned_off);
3255 off = aligned_off + p->data_size();
96803768
ILT
3256 }
3257}
3258
a445fddf
ILT
3259// Get the input sections for linker script processing. We leave
3260// behind the Output_section_data entries. Note that this may be
3261// slightly incorrect for merge sections. We will leave them behind,
3262// but it is possible that the script says that they should follow
3263// some other input sections, as in:
3264// .rodata { *(.rodata) *(.rodata.cst*) }
3265// For that matter, we don't handle this correctly:
3266// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3267// With luck this will never matter.
3268
3269uint64_t
3270Output_section::get_input_sections(
2ea97941 3271 uint64_t address,
a445fddf 3272 const std::string& fill,
6625d24e 3273 std::list<Input_section>* input_sections)
a445fddf 3274{
20e6d0d6
DK
3275 if (this->checkpoint_ != NULL
3276 && !this->checkpoint_->input_sections_saved())
3277 this->checkpoint_->save_input_sections();
3278
0439c796
DK
3279 // Invalidate fast look-up maps.
3280 this->lookup_maps_->invalidate();
c0a62865 3281
2ea97941 3282 uint64_t orig_address = address;
a445fddf 3283
2ea97941 3284 address = align_address(address, this->addralign());
a445fddf
ILT
3285
3286 Input_section_list remaining;
3287 for (Input_section_list::iterator p = this->input_sections_.begin();
3288 p != this->input_sections_.end();
3289 ++p)
3290 {
0439c796
DK
3291 if (p->is_input_section()
3292 || p->is_relaxed_input_section()
3293 || p->is_merge_section())
6625d24e 3294 input_sections->push_back(*p);
a445fddf
ILT
3295 else
3296 {
2ea97941
ILT
3297 uint64_t aligned_address = align_address(address, p->addralign());
3298 if (aligned_address != address && !fill.empty())
a445fddf
ILT
3299 {
3300 section_size_type length =
2ea97941 3301 convert_to_section_size_type(aligned_address - address);
a445fddf
ILT
3302 std::string this_fill;
3303 this_fill.reserve(length);
3304 while (this_fill.length() + fill.length() <= length)
3305 this_fill += fill;
3306 if (this_fill.length() < length)
3307 this_fill.append(fill, 0, length - this_fill.length());
3308
3309 Output_section_data* posd = new Output_data_const(this_fill, 0);
3310 remaining.push_back(Input_section(posd));
3311 }
2ea97941 3312 address = aligned_address;
a445fddf
ILT
3313
3314 remaining.push_back(*p);
3315
3316 p->finalize_data_size();
2ea97941 3317 address += p->data_size();
a445fddf
ILT
3318 }
3319 }
3320
3321 this->input_sections_.swap(remaining);
3322 this->first_input_offset_ = 0;
3323
2ea97941
ILT
3324 uint64_t data_size = address - orig_address;
3325 this->set_current_data_size_for_child(data_size);
3326 return data_size;
a445fddf
ILT
3327}
3328
6625d24e
DK
3329// Add a script input section. SIS is an Output_section::Input_section,
3330// which can be either a plain input section or a special input section like
3331// a relaxed input section. For a special input section, its size must be
3332// finalized.
a445fddf
ILT
3333
3334void
6625d24e 3335Output_section::add_script_input_section(const Input_section& sis)
a445fddf 3336{
6625d24e
DK
3337 uint64_t data_size = sis.data_size();
3338 uint64_t addralign = sis.addralign();
2ea97941
ILT
3339 if (addralign > this->addralign_)
3340 this->addralign_ = addralign;
a445fddf
ILT
3341
3342 off_t offset_in_section = this->current_data_size_for_child();
3343 off_t aligned_offset_in_section = align_address(offset_in_section,
2ea97941 3344 addralign);
a445fddf
ILT
3345
3346 this->set_current_data_size_for_child(aligned_offset_in_section
2ea97941 3347 + data_size);
a445fddf 3348
6625d24e 3349 this->input_sections_.push_back(sis);
0439c796
DK
3350
3351 // Update fast lookup maps if necessary.
3352 if (this->lookup_maps_->is_valid())
3353 {
3354 if (sis.is_merge_section())
3355 {
3356 Output_merge_base* pomb = sis.output_merge_base();
3357 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3358 pomb->addralign());
3359 this->lookup_maps_->add_merge_section(msp, pomb);
3360 for (Output_merge_base::Input_sections::const_iterator p =
3361 pomb->input_sections_begin();
3362 p != pomb->input_sections_end();
3363 ++p)
3364 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3365 pomb);
3366 }
3367 else if (sis.is_relaxed_input_section())
3368 {
3369 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3370 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3371 poris->shndx(), poris);
3372 }
3373 }
20e6d0d6
DK
3374}
3375
8923b24c 3376// Save states for relaxation.
20e6d0d6
DK
3377
3378void
3379Output_section::save_states()
3380{
3381 gold_assert(this->checkpoint_ == NULL);
3382 Checkpoint_output_section* checkpoint =
3383 new Checkpoint_output_section(this->addralign_, this->flags_,
3384 this->input_sections_,
3385 this->first_input_offset_,
3386 this->attached_input_sections_are_sorted_);
3387 this->checkpoint_ = checkpoint;
3388 gold_assert(this->fills_.empty());
3389}
3390
8923b24c
DK
3391void
3392Output_section::discard_states()
3393{
3394 gold_assert(this->checkpoint_ != NULL);
3395 delete this->checkpoint_;
3396 this->checkpoint_ = NULL;
3397 gold_assert(this->fills_.empty());
3398
0439c796
DK
3399 // Simply invalidate the fast lookup maps since we do not keep
3400 // track of them.
3401 this->lookup_maps_->invalidate();
8923b24c
DK
3402}
3403
20e6d0d6
DK
3404void
3405Output_section::restore_states()
3406{
3407 gold_assert(this->checkpoint_ != NULL);
3408 Checkpoint_output_section* checkpoint = this->checkpoint_;
3409
3410 this->addralign_ = checkpoint->addralign();
3411 this->flags_ = checkpoint->flags();
3412 this->first_input_offset_ = checkpoint->first_input_offset();
3413
3414 if (!checkpoint->input_sections_saved())
3415 {
3416 // If we have not copied the input sections, just resize it.
3417 size_t old_size = checkpoint->input_sections_size();
3418 gold_assert(this->input_sections_.size() >= old_size);
3419 this->input_sections_.resize(old_size);
3420 }
3421 else
3422 {
3423 // We need to copy the whole list. This is not efficient for
3424 // extremely large output with hundreads of thousands of input
3425 // objects. We may need to re-think how we should pass sections
3426 // to scripts.
c0a62865 3427 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
3428 }
3429
3430 this->attached_input_sections_are_sorted_ =
3431 checkpoint->attached_input_sections_are_sorted();
c0a62865 3432
0439c796
DK
3433 // Simply invalidate the fast lookup maps since we do not keep
3434 // track of them.
3435 this->lookup_maps_->invalidate();
a445fddf
ILT
3436}
3437
8923b24c
DK
3438// Update the section offsets of input sections in this. This is required if
3439// relaxation causes some input sections to change sizes.
3440
3441void
3442Output_section::adjust_section_offsets()
3443{
3444 if (!this->section_offsets_need_adjustment_)
3445 return;
3446
3447 off_t off = 0;
3448 for (Input_section_list::iterator p = this->input_sections_.begin();
3449 p != this->input_sections_.end();
3450 ++p)
3451 {
3452 off = align_address(off, p->addralign());
3453 if (p->is_input_section())
3454 p->relobj()->set_section_offset(p->shndx(), off);
3455 off += p->data_size();
3456 }
3457
3458 this->section_offsets_need_adjustment_ = false;
3459}
3460
7d9e3d98
ILT
3461// Print to the map file.
3462
3463void
3464Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3465{
3466 mapfile->print_output_section(this);
3467
3468 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3469 p != this->input_sections_.end();
3470 ++p)
3471 p->print_to_mapfile(mapfile);
3472}
3473
38c5e8b4
ILT
3474// Print stats for merge sections to stderr.
3475
3476void
3477Output_section::print_merge_stats()
3478{
3479 Input_section_list::iterator p;
3480 for (p = this->input_sections_.begin();
3481 p != this->input_sections_.end();
3482 ++p)
3483 p->print_merge_stats(this->name_);
3484}
3485
a2fb1b05
ILT
3486// Output segment methods.
3487
2ea97941 3488Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
22f0da72 3489 : vaddr_(0),
a2fb1b05
ILT
3490 paddr_(0),
3491 memsz_(0),
a445fddf
ILT
3492 max_align_(0),
3493 min_p_align_(0),
a2fb1b05
ILT
3494 offset_(0),
3495 filesz_(0),
2ea97941
ILT
3496 type_(type),
3497 flags_(flags),
a445fddf 3498 is_max_align_known_(false),
8a5e3e08
ILT
3499 are_addresses_set_(false),
3500 is_large_data_segment_(false)
a2fb1b05 3501{
bb321bb1
ILT
3502 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3503 // the flags.
3504 if (type == elfcpp::PT_TLS)
3505 this->flags_ = elfcpp::PF_R;
a2fb1b05
ILT
3506}
3507
22f0da72 3508// Add an Output_section to a PT_LOAD Output_segment.
a2fb1b05
ILT
3509
3510void
22f0da72
ILT
3511Output_segment::add_output_section_to_load(Layout* layout,
3512 Output_section* os,
3513 elfcpp::Elf_Word seg_flags)
a2fb1b05 3514{
22f0da72 3515 gold_assert(this->type() == elfcpp::PT_LOAD);
a3ad94ed 3516 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3517 gold_assert(!this->is_max_align_known_);
8a5e3e08 3518 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 3519
a192ba05 3520 this->update_flags_for_output_section(seg_flags);
75f65a3e 3521
22f0da72
ILT
3522 // We don't want to change the ordering if we have a linker script
3523 // with a SECTIONS clause.
3524 Output_section_order order = os->order();
3525 if (layout->script_options()->saw_sections_clause())
3526 order = static_cast<Output_section_order>(0);
75f65a3e 3527 else
22f0da72 3528 gold_assert(order != ORDER_INVALID);
54dc6425 3529
22f0da72
ILT
3530 this->output_lists_[order].push_back(os);
3531}
9f1d377b 3532
22f0da72 3533// Add an Output_section to a non-PT_LOAD Output_segment.
1a2dff53 3534
22f0da72
ILT
3535void
3536Output_segment::add_output_section_to_nonload(Output_section* os,
3537 elfcpp::Elf_Word seg_flags)
3538{
3539 gold_assert(this->type() != elfcpp::PT_LOAD);
3540 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3541 gold_assert(!this->is_max_align_known_);
1a2dff53 3542
22f0da72 3543 this->update_flags_for_output_section(seg_flags);
9f1d377b 3544
22f0da72
ILT
3545 this->output_lists_[0].push_back(os);
3546}
8a5e3e08 3547
22f0da72
ILT
3548// Remove an Output_section from this segment. It is an error if it
3549// is not present.
8a5e3e08 3550
22f0da72
ILT
3551void
3552Output_segment::remove_output_section(Output_section* os)
3553{
3554 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
8a5e3e08 3555 {
22f0da72
ILT
3556 Output_data_list* pdl = &this->output_lists_[i];
3557 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
8a5e3e08 3558 {
22f0da72 3559 if (*p == os)
8a5e3e08 3560 {
22f0da72 3561 pdl->erase(p);
8a5e3e08
ILT
3562 return;
3563 }
3564 }
f5c870d2 3565 }
1650c4ff
ILT
3566 gold_unreachable();
3567}
3568
a192ba05
ILT
3569// Add an Output_data (which need not be an Output_section) to the
3570// start of a segment.
75f65a3e
ILT
3571
3572void
3573Output_segment::add_initial_output_data(Output_data* od)
3574{
a445fddf 3575 gold_assert(!this->is_max_align_known_);
22f0da72
ILT
3576 Output_data_list::iterator p = this->output_lists_[0].begin();
3577 this->output_lists_[0].insert(p, od);
3578}
3579
3580// Return true if this segment has any sections which hold actual
3581// data, rather than being a BSS section.
3582
3583bool
3584Output_segment::has_any_data_sections() const
3585{
3586 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3587 {
3588 const Output_data_list* pdl = &this->output_lists_[i];
3589 for (Output_data_list::const_iterator p = pdl->begin();
3590 p != pdl->end();
3591 ++p)
3592 {
3593 if (!(*p)->is_section())
3594 return true;
3595 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3596 return true;
3597 }
3598 }
3599 return false;
75f65a3e
ILT
3600}
3601
5bc2f5be
CC
3602// Return whether the first data section (not counting TLS sections)
3603// is a relro section.
9f1d377b
ILT
3604
3605bool
3606Output_segment::is_first_section_relro() const
3607{
22f0da72
ILT
3608 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3609 {
5bc2f5be
CC
3610 if (i == static_cast<int>(ORDER_TLS_DATA)
3611 || i == static_cast<int>(ORDER_TLS_BSS))
3612 continue;
22f0da72
ILT
3613 const Output_data_list* pdl = &this->output_lists_[i];
3614 if (!pdl->empty())
3615 {
3616 Output_data* p = pdl->front();
3617 return p->is_section() && p->output_section()->is_relro();
3618 }
3619 }
3620 return false;
9f1d377b
ILT
3621}
3622
75f65a3e 3623// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3624
3625uint64_t
a445fddf 3626Output_segment::maximum_alignment()
75f65a3e 3627{
a445fddf 3628 if (!this->is_max_align_known_)
ead1e424 3629 {
22f0da72
ILT
3630 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3631 {
3632 const Output_data_list* pdl = &this->output_lists_[i];
3633 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3634 if (addralign > this->max_align_)
3635 this->max_align_ = addralign;
3636 }
a445fddf 3637 this->is_max_align_known_ = true;
ead1e424
ILT
3638 }
3639
a445fddf 3640 return this->max_align_;
75f65a3e
ILT
3641}
3642
ead1e424
ILT
3643// Return the maximum alignment of a list of Output_data.
3644
3645uint64_t
a445fddf 3646Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3647{
3648 uint64_t ret = 0;
3649 for (Output_data_list::const_iterator p = pdl->begin();
3650 p != pdl->end();
3651 ++p)
3652 {
2ea97941
ILT
3653 uint64_t addralign = (*p)->addralign();
3654 if (addralign > ret)
3655 ret = addralign;
ead1e424
ILT
3656 }
3657 return ret;
3658}
3659
22f0da72 3660// Return whether this segment has any dynamic relocs.
4f4c5f80 3661
22f0da72
ILT
3662bool
3663Output_segment::has_dynamic_reloc() const
4f4c5f80 3664{
22f0da72
ILT
3665 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3666 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3667 return true;
3668 return false;
4f4c5f80
ILT
3669}
3670
22f0da72 3671// Return whether this Output_data_list has any dynamic relocs.
4f4c5f80 3672
22f0da72
ILT
3673bool
3674Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4f4c5f80 3675{
4f4c5f80
ILT
3676 for (Output_data_list::const_iterator p = pdl->begin();
3677 p != pdl->end();
3678 ++p)
22f0da72
ILT
3679 if ((*p)->has_dynamic_reloc())
3680 return true;
3681 return false;
4f4c5f80
ILT
3682}
3683
a445fddf
ILT
3684// Set the section addresses for an Output_segment. If RESET is true,
3685// reset the addresses first. ADDR is the address and *POFF is the
3686// file offset. Set the section indexes starting with *PSHNDX.
5bc2f5be
CC
3687// INCREASE_RELRO is the size of the portion of the first non-relro
3688// section that should be included in the PT_GNU_RELRO segment.
3689// If this segment has relro sections, and has been aligned for
3690// that purpose, set *HAS_RELRO to TRUE. Return the address of
3691// the immediately following segment. Update *HAS_RELRO, *POFF,
3692// and *PSHNDX.
75f65a3e
ILT
3693
3694uint64_t
96a2b4e4 3695Output_segment::set_section_addresses(const Layout* layout, bool reset,
1a2dff53 3696 uint64_t addr,
fd064a5b 3697 unsigned int* increase_relro,
fc497986 3698 bool* has_relro,
1a2dff53 3699 off_t* poff,
ead1e424 3700 unsigned int* pshndx)
75f65a3e 3701{
a3ad94ed 3702 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3703
fc497986 3704 uint64_t last_relro_pad = 0;
1a2dff53
ILT
3705 off_t orig_off = *poff;
3706
5bc2f5be
CC
3707 bool in_tls = false;
3708
1a2dff53
ILT
3709 // If we have relro sections, we need to pad forward now so that the
3710 // relro sections plus INCREASE_RELRO end on a common page boundary.
3711 if (parameters->options().relro()
3712 && this->is_first_section_relro()
3713 && (!this->are_addresses_set_ || reset))
3714 {
3715 uint64_t relro_size = 0;
3716 off_t off = *poff;
fc497986 3717 uint64_t max_align = 0;
5bc2f5be 3718 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
1a2dff53 3719 {
22f0da72
ILT
3720 Output_data_list* pdl = &this->output_lists_[i];
3721 Output_data_list::iterator p;
3722 for (p = pdl->begin(); p != pdl->end(); ++p)
1a2dff53 3723 {
22f0da72
ILT
3724 if (!(*p)->is_section())
3725 break;
fc497986
CC
3726 uint64_t align = (*p)->addralign();
3727 if (align > max_align)
3728 max_align = align;
5bc2f5be
CC
3729 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3730 in_tls = true;
3731 else if (in_tls)
3732 {
3733 // Align the first non-TLS section to the alignment
3734 // of the TLS segment.
3735 align = max_align;
3736 in_tls = false;
3737 }
fc497986 3738 relro_size = align_address(relro_size, align);
5bc2f5be
CC
3739 // Ignore the size of the .tbss section.
3740 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
3741 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
3742 continue;
22f0da72
ILT
3743 if ((*p)->is_address_valid())
3744 relro_size += (*p)->data_size();
3745 else
3746 {
3747 // FIXME: This could be faster.
3748 (*p)->set_address_and_file_offset(addr + relro_size,
3749 off + relro_size);
3750 relro_size += (*p)->data_size();
3751 (*p)->reset_address_and_file_offset();
3752 }
1a2dff53 3753 }
22f0da72
ILT
3754 if (p != pdl->end())
3755 break;
1a2dff53 3756 }
fd064a5b 3757 relro_size += *increase_relro;
fc497986
CC
3758 // Pad the total relro size to a multiple of the maximum
3759 // section alignment seen.
3760 uint64_t aligned_size = align_address(relro_size, max_align);
3761 // Note the amount of padding added after the last relro section.
3762 last_relro_pad = aligned_size - relro_size;
fc497986 3763 *has_relro = true;
1a2dff53
ILT
3764
3765 uint64_t page_align = parameters->target().common_pagesize();
3766
3767 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
fc497986 3768 uint64_t desired_align = page_align - (aligned_size % page_align);
1a2dff53
ILT
3769 if (desired_align < *poff % page_align)
3770 *poff += page_align - *poff % page_align;
3771 *poff += desired_align - *poff % page_align;
3772 addr += *poff - orig_off;
3773 orig_off = *poff;
3774 }
3775
a445fddf
ILT
3776 if (!reset && this->are_addresses_set_)
3777 {
3778 gold_assert(this->paddr_ == addr);
3779 addr = this->vaddr_;
3780 }
3781 else
3782 {
3783 this->vaddr_ = addr;
3784 this->paddr_ = addr;
3785 this->are_addresses_set_ = true;
3786 }
75f65a3e 3787
5bc2f5be 3788 in_tls = false;
96a2b4e4 3789
75f65a3e
ILT
3790 this->offset_ = orig_off;
3791
22f0da72
ILT
3792 off_t off = 0;
3793 uint64_t ret;
3794 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3795 {
fc497986
CC
3796 if (i == static_cast<int>(ORDER_RELRO_LAST))
3797 {
3798 *poff += last_relro_pad;
3799 addr += last_relro_pad;
fd064a5b
CC
3800 if (this->output_lists_[i].empty())
3801 {
3802 // If there is nothing in the ORDER_RELRO_LAST list,
3803 // the padding will occur at the end of the relro
3804 // segment, and we need to add it to *INCREASE_RELRO.
3805 *increase_relro += last_relro_pad;
3806 }
fc497986 3807 }
5bc2f5be
CC
3808 addr = this->set_section_list_addresses(layout, reset,
3809 &this->output_lists_[i],
3810 addr, poff, pshndx, &in_tls);
22f0da72
ILT
3811 if (i < static_cast<int>(ORDER_SMALL_BSS))
3812 {
3813 this->filesz_ = *poff - orig_off;
3814 off = *poff;
3815 }
75f65a3e 3816
22f0da72
ILT
3817 ret = addr;
3818 }
96a2b4e4
ILT
3819
3820 // If the last section was a TLS section, align upward to the
3821 // alignment of the TLS segment, so that the overall size of the TLS
3822 // segment is aligned.
3823 if (in_tls)
3824 {
3825 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3826 *poff = align_address(*poff, segment_align);
3827 }
3828
75f65a3e
ILT
3829 this->memsz_ = *poff - orig_off;
3830
3831 // Ignore the file offset adjustments made by the BSS Output_data
3832 // objects.
3833 *poff = off;
61ba1cf9
ILT
3834
3835 return ret;
75f65a3e
ILT
3836}
3837
b8e6aad9
ILT
3838// Set the addresses and file offsets in a list of Output_data
3839// structures.
75f65a3e
ILT
3840
3841uint64_t
96a2b4e4
ILT
3842Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3843 Output_data_list* pdl,
ead1e424 3844 uint64_t addr, off_t* poff,
96a2b4e4 3845 unsigned int* pshndx,
1a2dff53 3846 bool* in_tls)
75f65a3e 3847{
ead1e424 3848 off_t startoff = *poff;
75f65a3e 3849
ead1e424 3850 off_t off = startoff;
75f65a3e
ILT
3851 for (Output_data_list::iterator p = pdl->begin();
3852 p != pdl->end();
3853 ++p)
3854 {
a445fddf
ILT
3855 if (reset)
3856 (*p)->reset_address_and_file_offset();
3857
3858 // When using a linker script the section will most likely
3859 // already have an address.
3860 if (!(*p)->is_address_valid())
3802b2dd 3861 {
96a2b4e4
ILT
3862 uint64_t align = (*p)->addralign();
3863
3864 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3865 {
3866 // Give the first TLS section the alignment of the
3867 // entire TLS segment. Otherwise the TLS segment as a
3868 // whole may be misaligned.
3869 if (!*in_tls)
3870 {
3871 Output_segment* tls_segment = layout->tls_segment();
3872 gold_assert(tls_segment != NULL);
3873 uint64_t segment_align = tls_segment->maximum_alignment();
3874 gold_assert(segment_align >= align);
3875 align = segment_align;
3876
3877 *in_tls = true;
3878 }
3879 }
3880 else
3881 {
3882 // If this is the first section after the TLS segment,
3883 // align it to at least the alignment of the TLS
3884 // segment, so that the size of the overall TLS segment
3885 // is aligned.
3886 if (*in_tls)
3887 {
3888 uint64_t segment_align =
3889 layout->tls_segment()->maximum_alignment();
3890 if (segment_align > align)
3891 align = segment_align;
3892
3893 *in_tls = false;
3894 }
3895 }
3896
3897 off = align_address(off, align);
3802b2dd
ILT
3898 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3899 }
a445fddf
ILT
3900 else
3901 {
3902 // The script may have inserted a skip forward, but it
3903 // better not have moved backward.
661be1e2
ILT
3904 if ((*p)->address() >= addr + (off - startoff))
3905 off += (*p)->address() - (addr + (off - startoff));
3906 else
3907 {
3908 if (!layout->script_options()->saw_sections_clause())
3909 gold_unreachable();
3910 else
3911 {
3912 Output_section* os = (*p)->output_section();
64b1ae37
DK
3913
3914 // Cast to unsigned long long to avoid format warnings.
3915 unsigned long long previous_dot =
3916 static_cast<unsigned long long>(addr + (off - startoff));
3917 unsigned long long dot =
3918 static_cast<unsigned long long>((*p)->address());
3919
661be1e2
ILT
3920 if (os == NULL)
3921 gold_error(_("dot moves backward in linker script "
64b1ae37 3922 "from 0x%llx to 0x%llx"), previous_dot, dot);
661be1e2
ILT
3923 else
3924 gold_error(_("address of section '%s' moves backward "
3925 "from 0x%llx to 0x%llx"),
64b1ae37 3926 os->name(), previous_dot, dot);
661be1e2
ILT
3927 }
3928 }
a445fddf
ILT
3929 (*p)->set_file_offset(off);
3930 (*p)->finalize_data_size();
3931 }
ead1e424 3932
96a2b4e4
ILT
3933 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3934 // section. Such a section does not affect the size of a
3935 // PT_LOAD segment.
3936 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3937 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3938 off += (*p)->data_size();
75f65a3e 3939
ead1e424
ILT
3940 if ((*p)->is_section())
3941 {
3942 (*p)->set_out_shndx(*pshndx);
3943 ++*pshndx;
3944 }
75f65a3e
ILT
3945 }
3946
3947 *poff = off;
ead1e424 3948 return addr + (off - startoff);
75f65a3e
ILT
3949}
3950
3951// For a non-PT_LOAD segment, set the offset from the sections, if
1a2dff53 3952// any. Add INCREASE to the file size and the memory size.
75f65a3e
ILT
3953
3954void
1a2dff53 3955Output_segment::set_offset(unsigned int increase)
75f65a3e 3956{
a3ad94ed 3957 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3958
a445fddf
ILT
3959 gold_assert(!this->are_addresses_set_);
3960
22f0da72
ILT
3961 // A non-load section only uses output_lists_[0].
3962
3963 Output_data_list* pdl = &this->output_lists_[0];
3964
3965 if (pdl->empty())
75f65a3e 3966 {
1a2dff53 3967 gold_assert(increase == 0);
75f65a3e
ILT
3968 this->vaddr_ = 0;
3969 this->paddr_ = 0;
a445fddf 3970 this->are_addresses_set_ = true;
75f65a3e 3971 this->memsz_ = 0;
a445fddf 3972 this->min_p_align_ = 0;
75f65a3e
ILT
3973 this->offset_ = 0;
3974 this->filesz_ = 0;
3975 return;
3976 }
3977
22f0da72 3978 // Find the first and last section by address.
5f1ab67a
ILT
3979 const Output_data* first = NULL;
3980 const Output_data* last_data = NULL;
3981 const Output_data* last_bss = NULL;
22f0da72
ILT
3982 for (Output_data_list::const_iterator p = pdl->begin();
3983 p != pdl->end();
3984 ++p)
3985 {
3986 if (first == NULL
3987 || (*p)->address() < first->address()
3988 || ((*p)->address() == first->address()
3989 && (*p)->data_size() < first->data_size()))
3990 first = *p;
3991 const Output_data** plast;
3992 if ((*p)->is_section()
3993 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3994 plast = &last_bss;
3995 else
3996 plast = &last_data;
3997 if (*plast == NULL
3998 || (*p)->address() > (*plast)->address()
3999 || ((*p)->address() == (*plast)->address()
4000 && (*p)->data_size() > (*plast)->data_size()))
4001 *plast = *p;
4002 }
5f1ab67a 4003
75f65a3e 4004 this->vaddr_ = first->address();
a445fddf
ILT
4005 this->paddr_ = (first->has_load_address()
4006 ? first->load_address()
4007 : this->vaddr_);
4008 this->are_addresses_set_ = true;
75f65a3e
ILT
4009 this->offset_ = first->offset();
4010
22f0da72 4011 if (last_data == NULL)
75f65a3e
ILT
4012 this->filesz_ = 0;
4013 else
5f1ab67a
ILT
4014 this->filesz_ = (last_data->address()
4015 + last_data->data_size()
4016 - this->vaddr_);
75f65a3e 4017
5f1ab67a 4018 const Output_data* last = last_bss != NULL ? last_bss : last_data;
75f65a3e
ILT
4019 this->memsz_ = (last->address()
4020 + last->data_size()
4021 - this->vaddr_);
96a2b4e4 4022
1a2dff53
ILT
4023 this->filesz_ += increase;
4024 this->memsz_ += increase;
4025
fd064a5b
CC
4026 // If this is a RELRO segment, verify that the segment ends at a
4027 // page boundary.
4028 if (this->type_ == elfcpp::PT_GNU_RELRO)
4029 {
4030 uint64_t page_align = parameters->target().common_pagesize();
4031 uint64_t segment_end = this->vaddr_ + this->memsz_;
4032 gold_assert(segment_end == align_address(segment_end, page_align));
4033 }
4034
96a2b4e4
ILT
4035 // If this is a TLS segment, align the memory size. The code in
4036 // set_section_list ensures that the section after the TLS segment
4037 // is aligned to give us room.
4038 if (this->type_ == elfcpp::PT_TLS)
4039 {
4040 uint64_t segment_align = this->maximum_alignment();
4041 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4042 this->memsz_ = align_address(this->memsz_, segment_align);
4043 }
75f65a3e
ILT
4044}
4045
7bf1f802
ILT
4046// Set the TLS offsets of the sections in the PT_TLS segment.
4047
4048void
4049Output_segment::set_tls_offsets()
4050{
4051 gold_assert(this->type_ == elfcpp::PT_TLS);
4052
22f0da72
ILT
4053 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4054 p != this->output_lists_[0].end();
7bf1f802
ILT
4055 ++p)
4056 (*p)->set_tls_offset(this->vaddr_);
4057}
4058
22f0da72 4059// Return the load address of the first section.
a445fddf
ILT
4060
4061uint64_t
4062Output_segment::first_section_load_address() const
4063{
22f0da72
ILT
4064 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4065 {
4066 const Output_data_list* pdl = &this->output_lists_[i];
4067 for (Output_data_list::const_iterator p = pdl->begin();
4068 p != pdl->end();
4069 ++p)
4070 {
4071 if ((*p)->is_section())
4072 return ((*p)->has_load_address()
4073 ? (*p)->load_address()
4074 : (*p)->address());
4075 }
4076 }
a445fddf
ILT
4077 gold_unreachable();
4078}
4079
75f65a3e
ILT
4080// Return the number of Output_sections in an Output_segment.
4081
4082unsigned int
4083Output_segment::output_section_count() const
4084{
22f0da72
ILT
4085 unsigned int ret = 0;
4086 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4087 ret += this->output_section_count_list(&this->output_lists_[i]);
4088 return ret;
75f65a3e
ILT
4089}
4090
4091// Return the number of Output_sections in an Output_data_list.
4092
4093unsigned int
4094Output_segment::output_section_count_list(const Output_data_list* pdl) const
4095{
4096 unsigned int count = 0;
4097 for (Output_data_list::const_iterator p = pdl->begin();
4098 p != pdl->end();
4099 ++p)
4100 {
4101 if ((*p)->is_section())
4102 ++count;
4103 }
4104 return count;
a2fb1b05
ILT
4105}
4106
1c4f3631
ILT
4107// Return the section attached to the list segment with the lowest
4108// load address. This is used when handling a PHDRS clause in a
4109// linker script.
4110
4111Output_section*
4112Output_segment::section_with_lowest_load_address() const
4113{
4114 Output_section* found = NULL;
4115 uint64_t found_lma = 0;
22f0da72
ILT
4116 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4117 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4118 &found_lma);
1c4f3631
ILT
4119 return found;
4120}
4121
4122// Look through a list for a section with a lower load address.
4123
4124void
4125Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4126 Output_section** found,
4127 uint64_t* found_lma) const
4128{
4129 for (Output_data_list::const_iterator p = pdl->begin();
4130 p != pdl->end();
4131 ++p)
4132 {
4133 if (!(*p)->is_section())
4134 continue;
4135 Output_section* os = static_cast<Output_section*>(*p);
4136 uint64_t lma = (os->has_load_address()
4137 ? os->load_address()
4138 : os->address());
4139 if (*found == NULL || lma < *found_lma)
4140 {
4141 *found = os;
4142 *found_lma = lma;
4143 }
4144 }
4145}
4146
61ba1cf9
ILT
4147// Write the segment data into *OPHDR.
4148
4149template<int size, bool big_endian>
4150void
ead1e424 4151Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
4152{
4153 ophdr->put_p_type(this->type_);
4154 ophdr->put_p_offset(this->offset_);
4155 ophdr->put_p_vaddr(this->vaddr_);
4156 ophdr->put_p_paddr(this->paddr_);
4157 ophdr->put_p_filesz(this->filesz_);
4158 ophdr->put_p_memsz(this->memsz_);
4159 ophdr->put_p_flags(this->flags_);
a445fddf 4160 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
4161}
4162
4163// Write the section headers into V.
4164
4165template<int size, bool big_endian>
4166unsigned char*
16649710
ILT
4167Output_segment::write_section_headers(const Layout* layout,
4168 const Stringpool* secnamepool,
ead1e424 4169 unsigned char* v,
ca09d69a 4170 unsigned int* pshndx) const
5482377d 4171{
ead1e424
ILT
4172 // Every section that is attached to a segment must be attached to a
4173 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4174 // segments.
4175 if (this->type_ != elfcpp::PT_LOAD)
4176 return v;
4177
22f0da72
ILT
4178 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4179 {
4180 const Output_data_list* pdl = &this->output_lists_[i];
4181 v = this->write_section_headers_list<size, big_endian>(layout,
4182 secnamepool,
4183 pdl,
4184 v, pshndx);
4185 }
4186
61ba1cf9
ILT
4187 return v;
4188}
4189
4190template<int size, bool big_endian>
4191unsigned char*
16649710
ILT
4192Output_segment::write_section_headers_list(const Layout* layout,
4193 const Stringpool* secnamepool,
61ba1cf9 4194 const Output_data_list* pdl,
ead1e424 4195 unsigned char* v,
7d1a9ebb 4196 unsigned int* pshndx) const
61ba1cf9
ILT
4197{
4198 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4199 for (Output_data_list::const_iterator p = pdl->begin();
4200 p != pdl->end();
4201 ++p)
4202 {
4203 if ((*p)->is_section())
4204 {
5482377d 4205 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 4206 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 4207 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 4208 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 4209 v += shdr_size;
ead1e424 4210 ++*pshndx;
61ba1cf9
ILT
4211 }
4212 }
4213 return v;
4214}
4215
7d9e3d98
ILT
4216// Print the output sections to the map file.
4217
4218void
4219Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4220{
4221 if (this->type() != elfcpp::PT_LOAD)
4222 return;
22f0da72
ILT
4223 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4224 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
7d9e3d98
ILT
4225}
4226
4227// Print an output section list to the map file.
4228
4229void
4230Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4231 const Output_data_list* pdl) const
4232{
4233 for (Output_data_list::const_iterator p = pdl->begin();
4234 p != pdl->end();
4235 ++p)
4236 (*p)->print_to_mapfile(mapfile);
4237}
4238
a2fb1b05
ILT
4239// Output_file methods.
4240
14144f39
ILT
4241Output_file::Output_file(const char* name)
4242 : name_(name),
61ba1cf9
ILT
4243 o_(-1),
4244 file_size_(0),
c420411f 4245 base_(NULL),
516cb3d0
ILT
4246 map_is_anonymous_(false),
4247 is_temporary_(false)
61ba1cf9
ILT
4248{
4249}
4250
404c2abb
ILT
4251// Try to open an existing file. Returns false if the file doesn't
4252// exist, has a size of 0 or can't be mmapped.
4253
4254bool
4255Output_file::open_for_modification()
4256{
4257 // The name "-" means "stdout".
4258 if (strcmp(this->name_, "-") == 0)
4259 return false;
4260
4261 // Don't bother opening files with a size of zero.
4262 struct stat s;
4263 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4264 return false;
4265
4266 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4267 if (o < 0)
4268 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4269 this->o_ = o;
4270 this->file_size_ = s.st_size;
4271
4272 // If the file can't be mmapped, copying the content to an anonymous
4273 // map will probably negate the performance benefits of incremental
4274 // linking. This could be helped by using views and loading only
4275 // the necessary parts, but this is not supported as of now.
4276 if (!this->map_no_anonymous())
4277 {
4278 release_descriptor(o, true);
4279 this->o_ = -1;
4280 this->file_size_ = 0;
4281 return false;
4282 }
4283
4284 return true;
4285}
4286
61ba1cf9
ILT
4287// Open the output file.
4288
a2fb1b05 4289void
61ba1cf9 4290Output_file::open(off_t file_size)
a2fb1b05 4291{
61ba1cf9
ILT
4292 this->file_size_ = file_size;
4293
4e9d8586
ILT
4294 // Unlink the file first; otherwise the open() may fail if the file
4295 // is busy (e.g. it's an executable that's currently being executed).
4296 //
4297 // However, the linker may be part of a system where a zero-length
4298 // file is created for it to write to, with tight permissions (gcc
4299 // 2.95 did something like this). Unlinking the file would work
4300 // around those permission controls, so we only unlink if the file
4301 // has a non-zero size. We also unlink only regular files to avoid
4302 // trouble with directories/etc.
4303 //
4304 // If we fail, continue; this command is merely a best-effort attempt
4305 // to improve the odds for open().
4306
42a1b686 4307 // We let the name "-" mean "stdout"
516cb3d0 4308 if (!this->is_temporary_)
42a1b686 4309 {
516cb3d0
ILT
4310 if (strcmp(this->name_, "-") == 0)
4311 this->o_ = STDOUT_FILENO;
4312 else
4313 {
4314 struct stat s;
6a89f575
CC
4315 if (::stat(this->name_, &s) == 0
4316 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4317 {
4318 if (s.st_size != 0)
4319 ::unlink(this->name_);
4320 else if (!parameters->options().relocatable())
4321 {
4322 // If we don't unlink the existing file, add execute
4323 // permission where read permissions already exist
4324 // and where the umask permits.
4325 int mask = ::umask(0);
4326 ::umask(mask);
4327 s.st_mode |= (s.st_mode & 0444) >> 2;
4328 ::chmod(this->name_, s.st_mode & ~mask);
4329 }
4330 }
516cb3d0 4331
8851ecca 4332 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
4333 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4334 mode);
516cb3d0
ILT
4335 if (o < 0)
4336 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4337 this->o_ = o;
4338 }
42a1b686 4339 }
61ba1cf9 4340
27bc2bce
ILT
4341 this->map();
4342}
4343
4344// Resize the output file.
4345
4346void
4347Output_file::resize(off_t file_size)
4348{
c420411f
ILT
4349 // If the mmap is mapping an anonymous memory buffer, this is easy:
4350 // just mremap to the new size. If it's mapping to a file, we want
4351 // to unmap to flush to the file, then remap after growing the file.
4352 if (this->map_is_anonymous_)
4353 {
4354 void* base = ::mremap(this->base_, this->file_size_, file_size,
4355 MREMAP_MAYMOVE);
4356 if (base == MAP_FAILED)
4357 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4358 this->base_ = static_cast<unsigned char*>(base);
4359 this->file_size_ = file_size;
4360 }
4361 else
4362 {
4363 this->unmap();
4364 this->file_size_ = file_size;
fdcac5af
ILT
4365 if (!this->map_no_anonymous())
4366 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 4367 }
27bc2bce
ILT
4368}
4369
404c2abb
ILT
4370// Map an anonymous block of memory which will later be written to the
4371// file. Return whether the map succeeded.
26736d8e 4372
404c2abb 4373bool
26736d8e
ILT
4374Output_file::map_anonymous()
4375{
404c2abb
ILT
4376 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4377 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4378 if (base != MAP_FAILED)
4379 {
4380 this->map_is_anonymous_ = true;
4381 this->base_ = static_cast<unsigned char*>(base);
4382 return true;
4383 }
4384 return false;
26736d8e
ILT
4385}
4386
404c2abb 4387// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 4388
404c2abb
ILT
4389bool
4390Output_file::map_no_anonymous()
27bc2bce 4391{
c420411f 4392 const int o = this->o_;
61ba1cf9 4393
c420411f
ILT
4394 // If the output file is not a regular file, don't try to mmap it;
4395 // instead, we'll mmap a block of memory (an anonymous buffer), and
4396 // then later write the buffer to the file.
4397 void* base;
4398 struct stat statbuf;
42a1b686
ILT
4399 if (o == STDOUT_FILENO || o == STDERR_FILENO
4400 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
4401 || !S_ISREG(statbuf.st_mode)
4402 || this->is_temporary_)
404c2abb
ILT
4403 return false;
4404
4405 // Ensure that we have disk space available for the file. If we
4406 // don't do this, it is possible that we will call munmap, close,
4407 // and exit with dirty buffers still in the cache with no assigned
4408 // disk blocks. If the disk is out of space at that point, the
4409 // output file will wind up incomplete, but we will have already
4410 // exited. The alternative to fallocate would be to use fdatasync,
4411 // but that would be a more significant performance hit.
4412 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4413 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4414
4415 // Map the file into memory.
4416 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4417 MAP_SHARED, o, 0);
4418
4419 // The mmap call might fail because of file system issues: the file
4420 // system might not support mmap at all, or it might not support
4421 // mmap with PROT_WRITE.
61ba1cf9 4422 if (base == MAP_FAILED)
404c2abb
ILT
4423 return false;
4424
4425 this->map_is_anonymous_ = false;
61ba1cf9 4426 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
4427 return true;
4428}
4429
4430// Map the file into memory.
4431
4432void
4433Output_file::map()
4434{
4435 if (this->map_no_anonymous())
4436 return;
4437
4438 // The mmap call might fail because of file system issues: the file
4439 // system might not support mmap at all, or it might not support
4440 // mmap with PROT_WRITE. I'm not sure which errno values we will
4441 // see in all cases, so if the mmap fails for any reason and we
4442 // don't care about file contents, try for an anonymous map.
4443 if (this->map_anonymous())
4444 return;
4445
4446 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4447 this->name_, static_cast<unsigned long>(this->file_size_),
4448 strerror(errno));
61ba1cf9
ILT
4449}
4450
c420411f 4451// Unmap the file from memory.
61ba1cf9
ILT
4452
4453void
c420411f 4454Output_file::unmap()
61ba1cf9
ILT
4455{
4456 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4457 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4458 this->base_ = NULL;
c420411f
ILT
4459}
4460
4461// Close the output file.
4462
4463void
4464Output_file::close()
4465{
4466 // If the map isn't file-backed, we need to write it now.
516cb3d0 4467 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4468 {
4469 size_t bytes_to_write = this->file_size_;
6d1e3092 4470 size_t offset = 0;
c420411f
ILT
4471 while (bytes_to_write > 0)
4472 {
6d1e3092
CD
4473 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4474 bytes_to_write);
c420411f
ILT
4475 if (bytes_written == 0)
4476 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4477 else if (bytes_written < 0)
4478 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4479 else
6d1e3092
CD
4480 {
4481 bytes_to_write -= bytes_written;
4482 offset += bytes_written;
4483 }
c420411f
ILT
4484 }
4485 }
4486 this->unmap();
61ba1cf9 4487
42a1b686 4488 // We don't close stdout or stderr
516cb3d0
ILT
4489 if (this->o_ != STDOUT_FILENO
4490 && this->o_ != STDERR_FILENO
4491 && !this->is_temporary_)
42a1b686
ILT
4492 if (::close(this->o_) < 0)
4493 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4494 this->o_ = -1;
a2fb1b05
ILT
4495}
4496
4497// Instantiate the templates we need. We could use the configure
4498// script to restrict this to only the ones for implemented targets.
4499
193a53d9 4500#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4501template
4502off_t
4503Output_section::add_input_section<32, false>(
6e9ba2ca 4504 Layout* layout,
730cdc88 4505 Sized_relobj<32, false>* object,
2ea97941 4506 unsigned int shndx,
a2fb1b05 4507 const char* secname,
730cdc88 4508 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4509 unsigned int reloc_shndx,
4510 bool have_sections_script);
193a53d9 4511#endif
a2fb1b05 4512
193a53d9 4513#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4514template
4515off_t
4516Output_section::add_input_section<32, true>(
6e9ba2ca 4517 Layout* layout,
730cdc88 4518 Sized_relobj<32, true>* object,
2ea97941 4519 unsigned int shndx,
a2fb1b05 4520 const char* secname,
730cdc88 4521 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4522 unsigned int reloc_shndx,
4523 bool have_sections_script);
193a53d9 4524#endif
a2fb1b05 4525
193a53d9 4526#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4527template
4528off_t
4529Output_section::add_input_section<64, false>(
6e9ba2ca 4530 Layout* layout,
730cdc88 4531 Sized_relobj<64, false>* object,
2ea97941 4532 unsigned int shndx,
a2fb1b05 4533 const char* secname,
730cdc88 4534 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4535 unsigned int reloc_shndx,
4536 bool have_sections_script);
193a53d9 4537#endif
a2fb1b05 4538
193a53d9 4539#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4540template
4541off_t
4542Output_section::add_input_section<64, true>(
6e9ba2ca 4543 Layout* layout,
730cdc88 4544 Sized_relobj<64, true>* object,
2ea97941 4545 unsigned int shndx,
a2fb1b05 4546 const char* secname,
730cdc88 4547 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4548 unsigned int reloc_shndx,
4549 bool have_sections_script);
193a53d9 4550#endif
a2fb1b05 4551
bbbfea06
CC
4552#ifdef HAVE_TARGET_32_LITTLE
4553template
4554class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4555#endif
4556
4557#ifdef HAVE_TARGET_32_BIG
4558template
4559class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4560#endif
4561
4562#ifdef HAVE_TARGET_64_LITTLE
4563template
4564class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4565#endif
4566
4567#ifdef HAVE_TARGET_64_BIG
4568template
4569class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4570#endif
4571
4572#ifdef HAVE_TARGET_32_LITTLE
4573template
4574class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4575#endif
4576
4577#ifdef HAVE_TARGET_32_BIG
4578template
4579class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4580#endif
4581
4582#ifdef HAVE_TARGET_64_LITTLE
4583template
4584class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4585#endif
4586
4587#ifdef HAVE_TARGET_64_BIG
4588template
4589class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4590#endif
4591
4592#ifdef HAVE_TARGET_32_LITTLE
4593template
4594class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4595#endif
4596
4597#ifdef HAVE_TARGET_32_BIG
4598template
4599class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4600#endif
4601
4602#ifdef HAVE_TARGET_64_LITTLE
4603template
4604class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4605#endif
4606
4607#ifdef HAVE_TARGET_64_BIG
4608template
4609class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4610#endif
4611
4612#ifdef HAVE_TARGET_32_LITTLE
4613template
4614class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4615#endif
4616
4617#ifdef HAVE_TARGET_32_BIG
4618template
4619class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4620#endif
4621
4622#ifdef HAVE_TARGET_64_LITTLE
4623template
4624class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4625#endif
4626
4627#ifdef HAVE_TARGET_64_BIG
4628template
4629class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4630#endif
4631
193a53d9 4632#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4633template
4634class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4635#endif
c06b7b0b 4636
193a53d9 4637#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4638template
4639class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4640#endif
c06b7b0b 4641
193a53d9 4642#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4643template
4644class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4645#endif
c06b7b0b 4646
193a53d9 4647#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4648template
4649class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4650#endif
c06b7b0b 4651
193a53d9 4652#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4653template
4654class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4655#endif
c06b7b0b 4656
193a53d9 4657#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4658template
4659class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4660#endif
c06b7b0b 4661
193a53d9 4662#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4663template
4664class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4665#endif
c06b7b0b 4666
193a53d9 4667#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4668template
4669class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4670#endif
c06b7b0b 4671
193a53d9 4672#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4673template
4674class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4675#endif
c06b7b0b 4676
193a53d9 4677#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4678template
4679class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4680#endif
c06b7b0b 4681
193a53d9 4682#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4683template
4684class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4685#endif
c06b7b0b 4686
193a53d9 4687#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4688template
4689class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4690#endif
c06b7b0b 4691
193a53d9 4692#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4693template
4694class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4695#endif
c06b7b0b 4696
193a53d9 4697#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4698template
4699class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4700#endif
c06b7b0b 4701
193a53d9 4702#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4703template
4704class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4705#endif
c06b7b0b 4706
193a53d9 4707#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4708template
4709class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4710#endif
c06b7b0b 4711
6a74a719
ILT
4712#ifdef HAVE_TARGET_32_LITTLE
4713template
4714class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4715#endif
4716
4717#ifdef HAVE_TARGET_32_BIG
4718template
4719class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4720#endif
4721
4722#ifdef HAVE_TARGET_64_LITTLE
4723template
4724class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4725#endif
4726
4727#ifdef HAVE_TARGET_64_BIG
4728template
4729class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4730#endif
4731
4732#ifdef HAVE_TARGET_32_LITTLE
4733template
4734class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4735#endif
4736
4737#ifdef HAVE_TARGET_32_BIG
4738template
4739class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4740#endif
4741
4742#ifdef HAVE_TARGET_64_LITTLE
4743template
4744class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4745#endif
4746
4747#ifdef HAVE_TARGET_64_BIG
4748template
4749class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4750#endif
4751
4752#ifdef HAVE_TARGET_32_LITTLE
4753template
4754class Output_data_group<32, false>;
4755#endif
4756
4757#ifdef HAVE_TARGET_32_BIG
4758template
4759class Output_data_group<32, true>;
4760#endif
4761
4762#ifdef HAVE_TARGET_64_LITTLE
4763template
4764class Output_data_group<64, false>;
4765#endif
4766
4767#ifdef HAVE_TARGET_64_BIG
4768template
4769class Output_data_group<64, true>;
4770#endif
4771
193a53d9 4772#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4773template
dbe717ef 4774class Output_data_got<32, false>;
193a53d9 4775#endif
ead1e424 4776
193a53d9 4777#ifdef HAVE_TARGET_32_BIG
ead1e424 4778template
dbe717ef 4779class Output_data_got<32, true>;
193a53d9 4780#endif
ead1e424 4781
193a53d9 4782#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4783template
dbe717ef 4784class Output_data_got<64, false>;
193a53d9 4785#endif
ead1e424 4786
193a53d9 4787#ifdef HAVE_TARGET_64_BIG
ead1e424 4788template
dbe717ef 4789class Output_data_got<64, true>;
193a53d9 4790#endif
ead1e424 4791
a2fb1b05 4792} // End namespace gold.
This page took 0.468063 seconds and 4 git commands to generate.