* ldlang.c (load_symbols): Set whole_archive from entry when
[deliverable/binutils-gdb.git] / gold / output.cc
CommitLineData
a2fb1b05
ILT
1// output.cc -- manage the output file for gold
2
e29e076a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
a2fb1b05
ILT
23#include "gold.h"
24
25#include <cstdlib>
04bf7072 26#include <cstring>
61ba1cf9
ILT
27#include <cerrno>
28#include <fcntl.h>
29#include <unistd.h>
30#include <sys/mman.h>
4e9d8586 31#include <sys/stat.h>
75f65a3e 32#include <algorithm>
6a89f575 33#include "libiberty.h"
a2fb1b05 34
7e1edb90 35#include "parameters.h"
a2fb1b05 36#include "object.h"
ead1e424
ILT
37#include "symtab.h"
38#include "reloc.h"
b8e6aad9 39#include "merge.h"
2a00e4fb 40#include "descriptors.h"
a2fb1b05
ILT
41#include "output.h"
42
c420411f
ILT
43// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44#ifndef MAP_ANONYMOUS
45# define MAP_ANONYMOUS MAP_ANON
46#endif
47
9201d894
ILT
48#ifndef HAVE_POSIX_FALLOCATE
49// A dummy, non general, version of posix_fallocate. Here we just set
50// the file size and hope that there is enough disk space. FIXME: We
51// could allocate disk space by walking block by block and writing a
52// zero byte into each block.
53static int
54posix_fallocate(int o, off_t offset, off_t len)
55{
56 return ftruncate(o, offset + len);
57}
58#endif // !defined(HAVE_POSIX_FALLOCATE)
59
a2fb1b05
ILT
60namespace gold
61{
62
a3ad94ed
ILT
63// Output_data variables.
64
27bc2bce 65bool Output_data::allocated_sizes_are_fixed;
a3ad94ed 66
a2fb1b05
ILT
67// Output_data methods.
68
69Output_data::~Output_data()
70{
71}
72
730cdc88
ILT
73// Return the default alignment for the target size.
74
75uint64_t
76Output_data::default_alignment()
77{
8851ecca
ILT
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
730cdc88
ILT
80}
81
75f65a3e
ILT
82// Return the default alignment for a size--32 or 64.
83
84uint64_t
730cdc88 85Output_data::default_alignment_for_size(int size)
75f65a3e
ILT
86{
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
a3ad94ed 92 gold_unreachable();
75f65a3e
ILT
93}
94
75f65a3e
ILT
95// Output_section_header methods. This currently assumes that the
96// segment and section lists are complete at construction time.
97
98Output_section_headers::Output_section_headers(
16649710
ILT
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
6a74a719 101 const Layout::Section_list* section_list,
16649710 102 const Layout::Section_list* unattached_section_list,
d491d34e
ILT
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
9025d29d 105 : layout_(layout),
75f65a3e 106 segment_list_(segment_list),
6a74a719 107 section_list_(section_list),
a3ad94ed 108 unattached_section_list_(unattached_section_list),
d491d34e
ILT
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
20e6d0d6
DK
111{
112}
113
114// Compute the current data size.
115
116off_t
117Output_section_headers::do_size() const
75f65a3e 118{
61ba1cf9
ILT
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
8851ecca 121 if (!parameters->options().relocatable())
6a74a719 122 {
20e6d0d6
DK
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
6a74a719
ILT
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
20e6d0d6
DK
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
6a74a719
ILT
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
20e6d0d6 139 count += this->unattached_section_list_->size();
75f65a3e 140
8851ecca 141 const int size = parameters->target().get_size();
75f65a3e
ILT
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
a3ad94ed 148 gold_unreachable();
75f65a3e 149
20e6d0d6 150 return count * shdr_size;
75f65a3e
ILT
151}
152
61ba1cf9
ILT
153// Write out the section headers.
154
75f65a3e 155void
61ba1cf9 156Output_section_headers::do_write(Output_file* of)
a2fb1b05 157{
8851ecca 158 switch (parameters->size_and_endianness())
61ba1cf9 159 {
9025d29d 160#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
9025d29d 164#endif
8851ecca
ILT
165#ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
9025d29d 169#endif
9025d29d 170#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
9025d29d 174#endif
8851ecca
ILT
175#ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179#endif
180 default:
181 gold_unreachable();
61ba1cf9 182 }
61ba1cf9
ILT
183}
184
185template<int size, bool big_endian>
186void
187Output_section_headers::do_sized_write(Output_file* of)
188{
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
d491d34e
ILT
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
61ba1cf9
ILT
216 oshdr.put_sh_info(0);
217 oshdr.put_sh_addralign(0);
218 oshdr.put_sh_entsize(0);
219 }
220
221 v += shdr_size;
222
6a74a719 223 unsigned int shndx = 1;
8851ecca 224 if (!parameters->options().relocatable())
6a74a719
ILT
225 {
226 for (Layout::Segment_list::const_iterator p =
227 this->segment_list_->begin();
228 p != this->segment_list_->end();
229 ++p)
230 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
231 this->secnamepool_,
232 v,
233 &shndx);
234 }
235 else
236 {
237 for (Layout::Section_list::const_iterator p =
238 this->section_list_->begin();
239 p != this->section_list_->end();
240 ++p)
241 {
242 // We do unallocated sections below, except that group
243 // sections have to come first.
244 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
245 && (*p)->type() != elfcpp::SHT_GROUP)
246 continue;
247 gold_assert(shndx == (*p)->out_shndx());
248 elfcpp::Shdr_write<size, big_endian> oshdr(v);
249 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
250 v += shdr_size;
251 ++shndx;
252 }
253 }
254
a3ad94ed 255 for (Layout::Section_list::const_iterator p =
16649710
ILT
256 this->unattached_section_list_->begin();
257 p != this->unattached_section_list_->end();
61ba1cf9
ILT
258 ++p)
259 {
6a74a719
ILT
260 // For a relocatable link, we did unallocated group sections
261 // above, since they have to come first.
262 if ((*p)->type() == elfcpp::SHT_GROUP
8851ecca 263 && parameters->options().relocatable())
6a74a719 264 continue;
a3ad94ed 265 gold_assert(shndx == (*p)->out_shndx());
61ba1cf9 266 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 267 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
61ba1cf9 268 v += shdr_size;
ead1e424 269 ++shndx;
61ba1cf9
ILT
270 }
271
272 of->write_output_view(this->offset(), all_shdrs_size, view);
a2fb1b05
ILT
273}
274
54dc6425
ILT
275// Output_segment_header methods.
276
61ba1cf9 277Output_segment_headers::Output_segment_headers(
61ba1cf9 278 const Layout::Segment_list& segment_list)
9025d29d 279 : segment_list_(segment_list)
61ba1cf9 280{
61ba1cf9
ILT
281}
282
54dc6425 283void
61ba1cf9 284Output_segment_headers::do_write(Output_file* of)
75f65a3e 285{
8851ecca 286 switch (parameters->size_and_endianness())
61ba1cf9 287 {
9025d29d 288#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
289 case Parameters::TARGET_32_LITTLE:
290 this->do_sized_write<32, false>(of);
291 break;
9025d29d 292#endif
8851ecca
ILT
293#ifdef HAVE_TARGET_32_BIG
294 case Parameters::TARGET_32_BIG:
295 this->do_sized_write<32, true>(of);
296 break;
9025d29d 297#endif
9025d29d 298#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
299 case Parameters::TARGET_64_LITTLE:
300 this->do_sized_write<64, false>(of);
301 break;
9025d29d 302#endif
8851ecca
ILT
303#ifdef HAVE_TARGET_64_BIG
304 case Parameters::TARGET_64_BIG:
305 this->do_sized_write<64, true>(of);
306 break;
307#endif
308 default:
309 gold_unreachable();
61ba1cf9 310 }
61ba1cf9
ILT
311}
312
313template<int size, bool big_endian>
314void
315Output_segment_headers::do_sized_write(Output_file* of)
316{
317 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
318 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
a445fddf 319 gold_assert(all_phdrs_size == this->data_size());
61ba1cf9
ILT
320 unsigned char* view = of->get_output_view(this->offset(),
321 all_phdrs_size);
322 unsigned char* v = view;
323 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
324 p != this->segment_list_.end();
325 ++p)
326 {
327 elfcpp::Phdr_write<size, big_endian> ophdr(v);
328 (*p)->write_header(&ophdr);
329 v += phdr_size;
330 }
331
a445fddf
ILT
332 gold_assert(v - view == all_phdrs_size);
333
61ba1cf9 334 of->write_output_view(this->offset(), all_phdrs_size, view);
75f65a3e
ILT
335}
336
20e6d0d6
DK
337off_t
338Output_segment_headers::do_size() const
339{
340 const int size = parameters->target().get_size();
341 int phdr_size;
342 if (size == 32)
343 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
344 else if (size == 64)
345 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
346 else
347 gold_unreachable();
348
349 return this->segment_list_.size() * phdr_size;
350}
351
75f65a3e
ILT
352// Output_file_header methods.
353
9025d29d 354Output_file_header::Output_file_header(const Target* target,
75f65a3e 355 const Symbol_table* symtab,
d391083d
ILT
356 const Output_segment_headers* osh,
357 const char* entry)
9025d29d 358 : target_(target),
75f65a3e 359 symtab_(symtab),
61ba1cf9 360 segment_header_(osh),
75f65a3e 361 section_header_(NULL),
d391083d
ILT
362 shstrtab_(NULL),
363 entry_(entry)
75f65a3e 364{
20e6d0d6 365 this->set_data_size(this->do_size());
75f65a3e
ILT
366}
367
368// Set the section table information for a file header.
369
370void
371Output_file_header::set_section_info(const Output_section_headers* shdrs,
372 const Output_section* shstrtab)
373{
374 this->section_header_ = shdrs;
375 this->shstrtab_ = shstrtab;
376}
377
378// Write out the file header.
379
380void
61ba1cf9 381Output_file_header::do_write(Output_file* of)
54dc6425 382{
27bc2bce
ILT
383 gold_assert(this->offset() == 0);
384
8851ecca 385 switch (parameters->size_and_endianness())
61ba1cf9 386 {
9025d29d 387#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
388 case Parameters::TARGET_32_LITTLE:
389 this->do_sized_write<32, false>(of);
390 break;
9025d29d 391#endif
8851ecca
ILT
392#ifdef HAVE_TARGET_32_BIG
393 case Parameters::TARGET_32_BIG:
394 this->do_sized_write<32, true>(of);
395 break;
9025d29d 396#endif
9025d29d 397#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
398 case Parameters::TARGET_64_LITTLE:
399 this->do_sized_write<64, false>(of);
400 break;
9025d29d 401#endif
8851ecca
ILT
402#ifdef HAVE_TARGET_64_BIG
403 case Parameters::TARGET_64_BIG:
404 this->do_sized_write<64, true>(of);
405 break;
406#endif
407 default:
408 gold_unreachable();
61ba1cf9 409 }
61ba1cf9
ILT
410}
411
412// Write out the file header with appropriate size and endianess.
413
414template<int size, bool big_endian>
415void
416Output_file_header::do_sized_write(Output_file* of)
417{
a3ad94ed 418 gold_assert(this->offset() == 0);
61ba1cf9
ILT
419
420 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
421 unsigned char* view = of->get_output_view(0, ehdr_size);
422 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
423
424 unsigned char e_ident[elfcpp::EI_NIDENT];
425 memset(e_ident, 0, elfcpp::EI_NIDENT);
426 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
427 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
428 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
429 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
430 if (size == 32)
431 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
432 else if (size == 64)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
434 else
a3ad94ed 435 gold_unreachable();
61ba1cf9
ILT
436 e_ident[elfcpp::EI_DATA] = (big_endian
437 ? elfcpp::ELFDATA2MSB
438 : elfcpp::ELFDATA2LSB);
439 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
61ba1cf9
ILT
440 oehdr.put_e_ident(e_ident);
441
442 elfcpp::ET e_type;
8851ecca 443 if (parameters->options().relocatable())
61ba1cf9 444 e_type = elfcpp::ET_REL;
8851ecca 445 else if (parameters->options().shared())
436ca963 446 e_type = elfcpp::ET_DYN;
61ba1cf9
ILT
447 else
448 e_type = elfcpp::ET_EXEC;
449 oehdr.put_e_type(e_type);
450
451 oehdr.put_e_machine(this->target_->machine_code());
452 oehdr.put_e_version(elfcpp::EV_CURRENT);
453
d391083d 454 oehdr.put_e_entry(this->entry<size>());
61ba1cf9 455
6a74a719
ILT
456 if (this->segment_header_ == NULL)
457 oehdr.put_e_phoff(0);
458 else
459 oehdr.put_e_phoff(this->segment_header_->offset());
460
61ba1cf9
ILT
461 oehdr.put_e_shoff(this->section_header_->offset());
462
463 // FIXME: The target needs to set the flags.
464 oehdr.put_e_flags(0);
465
466 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
6a74a719
ILT
467
468 if (this->segment_header_ == NULL)
469 {
470 oehdr.put_e_phentsize(0);
471 oehdr.put_e_phnum(0);
472 }
473 else
474 {
475 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
476 oehdr.put_e_phnum(this->segment_header_->data_size()
477 / elfcpp::Elf_sizes<size>::phdr_size);
478 }
479
61ba1cf9 480 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
d491d34e
ILT
481 size_t section_count = (this->section_header_->data_size()
482 / elfcpp::Elf_sizes<size>::shdr_size);
483
484 if (section_count < elfcpp::SHN_LORESERVE)
485 oehdr.put_e_shnum(this->section_header_->data_size()
486 / elfcpp::Elf_sizes<size>::shdr_size);
487 else
488 oehdr.put_e_shnum(0);
489
490 unsigned int shstrndx = this->shstrtab_->out_shndx();
491 if (shstrndx < elfcpp::SHN_LORESERVE)
492 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
493 else
494 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
61ba1cf9 495
36959681
ILT
496 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
497 // the e_ident field.
498 parameters->target().adjust_elf_header(view, ehdr_size);
499
61ba1cf9 500 of->write_output_view(0, ehdr_size, view);
54dc6425
ILT
501}
502
d391083d
ILT
503// Return the value to use for the entry address. THIS->ENTRY_ is the
504// symbol specified on the command line, if any.
505
506template<int size>
507typename elfcpp::Elf_types<size>::Elf_Addr
508Output_file_header::entry()
509{
510 const bool should_issue_warning = (this->entry_ != NULL
8851ecca
ILT
511 && !parameters->options().relocatable()
512 && !parameters->options().shared());
d391083d
ILT
513
514 // FIXME: Need to support target specific entry symbol.
515 const char* entry = this->entry_;
516 if (entry == NULL)
517 entry = "_start";
518
519 Symbol* sym = this->symtab_->lookup(entry);
520
521 typename Sized_symbol<size>::Value_type v;
522 if (sym != NULL)
523 {
524 Sized_symbol<size>* ssym;
525 ssym = this->symtab_->get_sized_symbol<size>(sym);
526 if (!ssym->is_defined() && should_issue_warning)
527 gold_warning("entry symbol '%s' exists but is not defined", entry);
528 v = ssym->value();
529 }
530 else
531 {
532 // We couldn't find the entry symbol. See if we can parse it as
533 // a number. This supports, e.g., -e 0x1000.
534 char* endptr;
535 v = strtoull(entry, &endptr, 0);
536 if (*endptr != '\0')
537 {
538 if (should_issue_warning)
539 gold_warning("cannot find entry symbol '%s'", entry);
540 v = 0;
541 }
542 }
543
544 return v;
545}
546
20e6d0d6
DK
547// Compute the current data size.
548
549off_t
550Output_file_header::do_size() const
551{
552 const int size = parameters->target().get_size();
553 if (size == 32)
554 return elfcpp::Elf_sizes<32>::ehdr_size;
555 else if (size == 64)
556 return elfcpp::Elf_sizes<64>::ehdr_size;
557 else
558 gold_unreachable();
559}
560
dbe717ef
ILT
561// Output_data_const methods.
562
563void
a3ad94ed 564Output_data_const::do_write(Output_file* of)
dbe717ef 565{
a3ad94ed
ILT
566 of->write(this->offset(), this->data_.data(), this->data_.size());
567}
568
569// Output_data_const_buffer methods.
570
571void
572Output_data_const_buffer::do_write(Output_file* of)
573{
574 of->write(this->offset(), this->p_, this->data_size());
dbe717ef
ILT
575}
576
577// Output_section_data methods.
578
16649710
ILT
579// Record the output section, and set the entry size and such.
580
581void
582Output_section_data::set_output_section(Output_section* os)
583{
584 gold_assert(this->output_section_ == NULL);
585 this->output_section_ = os;
586 this->do_adjust_output_section(os);
587}
588
589// Return the section index of the output section.
590
dbe717ef
ILT
591unsigned int
592Output_section_data::do_out_shndx() const
593{
a3ad94ed 594 gold_assert(this->output_section_ != NULL);
dbe717ef
ILT
595 return this->output_section_->out_shndx();
596}
597
759b1a24
ILT
598// Set the alignment, which means we may need to update the alignment
599// of the output section.
600
601void
602Output_section_data::set_addralign(uint64_t addralign)
603{
604 this->addralign_ = addralign;
605 if (this->output_section_ != NULL
606 && this->output_section_->addralign() < addralign)
607 this->output_section_->set_addralign(addralign);
608}
609
a3ad94ed
ILT
610// Output_data_strtab methods.
611
27bc2bce 612// Set the final data size.
a3ad94ed
ILT
613
614void
27bc2bce 615Output_data_strtab::set_final_data_size()
a3ad94ed
ILT
616{
617 this->strtab_->set_string_offsets();
618 this->set_data_size(this->strtab_->get_strtab_size());
619}
620
621// Write out a string table.
622
623void
624Output_data_strtab::do_write(Output_file* of)
625{
626 this->strtab_->write(of, this->offset());
627}
628
c06b7b0b
ILT
629// Output_reloc methods.
630
7bf1f802
ILT
631// A reloc against a global symbol.
632
633template<bool dynamic, int size, bool big_endian>
634Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
635 Symbol* gsym,
636 unsigned int type,
637 Output_data* od,
e8c846c3
ILT
638 Address address,
639 bool is_relative)
7bf1f802 640 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 641 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
7bf1f802 642{
dceae3c1
ILT
643 // this->type_ is a bitfield; make sure TYPE fits.
644 gold_assert(this->type_ == type);
7bf1f802
ILT
645 this->u1_.gsym = gsym;
646 this->u2_.od = od;
dceae3c1
ILT
647 if (dynamic)
648 this->set_needs_dynsym_index();
7bf1f802
ILT
649}
650
651template<bool dynamic, int size, bool big_endian>
652Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
653 Symbol* gsym,
654 unsigned int type,
ef9beddf 655 Sized_relobj<size, big_endian>* relobj,
7bf1f802 656 unsigned int shndx,
e8c846c3
ILT
657 Address address,
658 bool is_relative)
7bf1f802 659 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
dceae3c1 660 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
7bf1f802
ILT
661{
662 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
663 // this->type_ is a bitfield; make sure TYPE fits.
664 gold_assert(this->type_ == type);
7bf1f802
ILT
665 this->u1_.gsym = gsym;
666 this->u2_.relobj = relobj;
dceae3c1
ILT
667 if (dynamic)
668 this->set_needs_dynsym_index();
7bf1f802
ILT
669}
670
671// A reloc against a local symbol.
672
673template<bool dynamic, int size, bool big_endian>
674Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
675 Sized_relobj<size, big_endian>* relobj,
676 unsigned int local_sym_index,
677 unsigned int type,
678 Output_data* od,
e8c846c3 679 Address address,
dceae3c1
ILT
680 bool is_relative,
681 bool is_section_symbol)
7bf1f802 682 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
683 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
684 shndx_(INVALID_CODE)
7bf1f802
ILT
685{
686 gold_assert(local_sym_index != GSYM_CODE
687 && local_sym_index != INVALID_CODE);
dceae3c1
ILT
688 // this->type_ is a bitfield; make sure TYPE fits.
689 gold_assert(this->type_ == type);
7bf1f802
ILT
690 this->u1_.relobj = relobj;
691 this->u2_.od = od;
dceae3c1
ILT
692 if (dynamic)
693 this->set_needs_dynsym_index();
7bf1f802
ILT
694}
695
696template<bool dynamic, int size, bool big_endian>
697Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
698 Sized_relobj<size, big_endian>* relobj,
699 unsigned int local_sym_index,
700 unsigned int type,
701 unsigned int shndx,
e8c846c3 702 Address address,
dceae3c1
ILT
703 bool is_relative,
704 bool is_section_symbol)
7bf1f802 705 : address_(address), local_sym_index_(local_sym_index), type_(type),
dceae3c1
ILT
706 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
707 shndx_(shndx)
7bf1f802
ILT
708{
709 gold_assert(local_sym_index != GSYM_CODE
710 && local_sym_index != INVALID_CODE);
711 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
712 // this->type_ is a bitfield; make sure TYPE fits.
713 gold_assert(this->type_ == type);
7bf1f802
ILT
714 this->u1_.relobj = relobj;
715 this->u2_.relobj = relobj;
dceae3c1
ILT
716 if (dynamic)
717 this->set_needs_dynsym_index();
7bf1f802
ILT
718}
719
720// A reloc against the STT_SECTION symbol of an output section.
721
722template<bool dynamic, int size, bool big_endian>
723Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
724 Output_section* os,
725 unsigned int type,
726 Output_data* od,
727 Address address)
728 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 729 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
7bf1f802 730{
dceae3c1
ILT
731 // this->type_ is a bitfield; make sure TYPE fits.
732 gold_assert(this->type_ == type);
7bf1f802
ILT
733 this->u1_.os = os;
734 this->u2_.od = od;
735 if (dynamic)
dceae3c1
ILT
736 this->set_needs_dynsym_index();
737 else
738 os->set_needs_symtab_index();
7bf1f802
ILT
739}
740
741template<bool dynamic, int size, bool big_endian>
742Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Output_section* os,
744 unsigned int type,
ef9beddf 745 Sized_relobj<size, big_endian>* relobj,
7bf1f802
ILT
746 unsigned int shndx,
747 Address address)
748 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
dceae3c1 749 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
7bf1f802
ILT
750{
751 gold_assert(shndx != INVALID_CODE);
dceae3c1
ILT
752 // this->type_ is a bitfield; make sure TYPE fits.
753 gold_assert(this->type_ == type);
7bf1f802
ILT
754 this->u1_.os = os;
755 this->u2_.relobj = relobj;
756 if (dynamic)
dceae3c1
ILT
757 this->set_needs_dynsym_index();
758 else
759 os->set_needs_symtab_index();
760}
761
762// Record that we need a dynamic symbol index for this relocation.
763
764template<bool dynamic, int size, bool big_endian>
765void
766Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
767set_needs_dynsym_index()
768{
769 if (this->is_relative_)
770 return;
771 switch (this->local_sym_index_)
772 {
773 case INVALID_CODE:
774 gold_unreachable();
775
776 case GSYM_CODE:
777 this->u1_.gsym->set_needs_dynsym_entry();
778 break;
779
780 case SECTION_CODE:
781 this->u1_.os->set_needs_dynsym_index();
782 break;
783
784 case 0:
785 break;
786
787 default:
788 {
789 const unsigned int lsi = this->local_sym_index_;
790 if (!this->is_section_symbol_)
791 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
792 else
ef9beddf 793 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
dceae3c1
ILT
794 }
795 break;
796 }
7bf1f802
ILT
797}
798
c06b7b0b
ILT
799// Get the symbol index of a relocation.
800
801template<bool dynamic, int size, bool big_endian>
802unsigned int
803Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
804 const
805{
806 unsigned int index;
807 switch (this->local_sym_index_)
808 {
809 case INVALID_CODE:
a3ad94ed 810 gold_unreachable();
c06b7b0b
ILT
811
812 case GSYM_CODE:
5a6f7e2d 813 if (this->u1_.gsym == NULL)
c06b7b0b
ILT
814 index = 0;
815 else if (dynamic)
5a6f7e2d 816 index = this->u1_.gsym->dynsym_index();
c06b7b0b 817 else
5a6f7e2d 818 index = this->u1_.gsym->symtab_index();
c06b7b0b
ILT
819 break;
820
821 case SECTION_CODE:
822 if (dynamic)
5a6f7e2d 823 index = this->u1_.os->dynsym_index();
c06b7b0b 824 else
5a6f7e2d 825 index = this->u1_.os->symtab_index();
c06b7b0b
ILT
826 break;
827
436ca963
ILT
828 case 0:
829 // Relocations without symbols use a symbol index of 0.
830 index = 0;
831 break;
832
c06b7b0b 833 default:
dceae3c1
ILT
834 {
835 const unsigned int lsi = this->local_sym_index_;
836 if (!this->is_section_symbol_)
837 {
838 if (dynamic)
839 index = this->u1_.relobj->dynsym_index(lsi);
840 else
841 index = this->u1_.relobj->symtab_index(lsi);
842 }
843 else
844 {
ef9beddf 845 Output_section* os = this->u1_.relobj->output_section(lsi);
dceae3c1
ILT
846 gold_assert(os != NULL);
847 if (dynamic)
848 index = os->dynsym_index();
849 else
850 index = os->symtab_index();
851 }
852 }
c06b7b0b
ILT
853 break;
854 }
a3ad94ed 855 gold_assert(index != -1U);
c06b7b0b
ILT
856 return index;
857}
858
624f8810
ILT
859// For a local section symbol, get the address of the offset ADDEND
860// within the input section.
dceae3c1
ILT
861
862template<bool dynamic, int size, bool big_endian>
ef9beddf 863typename elfcpp::Elf_types<size>::Elf_Addr
dceae3c1 864Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
624f8810 865 local_section_offset(Addend addend) const
dceae3c1 866{
624f8810
ILT
867 gold_assert(this->local_sym_index_ != GSYM_CODE
868 && this->local_sym_index_ != SECTION_CODE
869 && this->local_sym_index_ != INVALID_CODE
870 && this->is_section_symbol_);
dceae3c1 871 const unsigned int lsi = this->local_sym_index_;
ef9beddf 872 Output_section* os = this->u1_.relobj->output_section(lsi);
624f8810 873 gold_assert(os != NULL);
ef9beddf 874 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
eff45813 875 if (offset != invalid_address)
624f8810
ILT
876 return offset + addend;
877 // This is a merge section.
878 offset = os->output_address(this->u1_.relobj, lsi, addend);
eff45813 879 gold_assert(offset != invalid_address);
dceae3c1
ILT
880 return offset;
881}
882
d98bc257 883// Get the output address of a relocation.
c06b7b0b
ILT
884
885template<bool dynamic, int size, bool big_endian>
a984ee1d 886typename elfcpp::Elf_types<size>::Elf_Addr
d98bc257 887Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
c06b7b0b 888{
a3ad94ed 889 Address address = this->address_;
5a6f7e2d
ILT
890 if (this->shndx_ != INVALID_CODE)
891 {
ef9beddf 892 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
5a6f7e2d 893 gold_assert(os != NULL);
ef9beddf 894 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
eff45813 895 if (off != invalid_address)
730cdc88
ILT
896 address += os->address() + off;
897 else
898 {
899 address = os->output_address(this->u2_.relobj, this->shndx_,
900 address);
eff45813 901 gold_assert(address != invalid_address);
730cdc88 902 }
5a6f7e2d
ILT
903 }
904 else if (this->u2_.od != NULL)
905 address += this->u2_.od->address();
d98bc257
ILT
906 return address;
907}
908
909// Write out the offset and info fields of a Rel or Rela relocation
910// entry.
911
912template<bool dynamic, int size, bool big_endian>
913template<typename Write_rel>
914void
915Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
916 Write_rel* wr) const
917{
918 wr->put_r_offset(this->get_address());
e8c846c3
ILT
919 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
920 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
c06b7b0b
ILT
921}
922
923// Write out a Rel relocation.
924
925template<bool dynamic, int size, bool big_endian>
926void
927Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
928 unsigned char* pov) const
929{
930 elfcpp::Rel_write<size, big_endian> orel(pov);
931 this->write_rel(&orel);
932}
933
e8c846c3
ILT
934// Get the value of the symbol referred to by a Rel relocation.
935
936template<bool dynamic, int size, bool big_endian>
937typename elfcpp::Elf_types<size>::Elf_Addr
d1f003c6 938Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
624f8810 939 Addend addend) const
e8c846c3
ILT
940{
941 if (this->local_sym_index_ == GSYM_CODE)
942 {
943 const Sized_symbol<size>* sym;
944 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
d1f003c6 945 return sym->value() + addend;
e8c846c3
ILT
946 }
947 gold_assert(this->local_sym_index_ != SECTION_CODE
d1f003c6
ILT
948 && this->local_sym_index_ != INVALID_CODE
949 && !this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
952 return symval->value(this->u1_.relobj, addend);
e8c846c3
ILT
953}
954
d98bc257
ILT
955// Reloc comparison. This function sorts the dynamic relocs for the
956// benefit of the dynamic linker. First we sort all relative relocs
957// to the front. Among relative relocs, we sort by output address.
958// Among non-relative relocs, we sort by symbol index, then by output
959// address.
960
961template<bool dynamic, int size, bool big_endian>
962int
963Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
964 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
965 const
966{
967 if (this->is_relative_)
968 {
969 if (!r2.is_relative_)
970 return -1;
971 // Otherwise sort by reloc address below.
972 }
973 else if (r2.is_relative_)
974 return 1;
975 else
976 {
977 unsigned int sym1 = this->get_symbol_index();
978 unsigned int sym2 = r2.get_symbol_index();
979 if (sym1 < sym2)
980 return -1;
981 else if (sym1 > sym2)
982 return 1;
983 // Otherwise sort by reloc address.
984 }
985
986 section_offset_type addr1 = this->get_address();
987 section_offset_type addr2 = r2.get_address();
988 if (addr1 < addr2)
989 return -1;
990 else if (addr1 > addr2)
991 return 1;
992
993 // Final tie breaker, in order to generate the same output on any
994 // host: reloc type.
995 unsigned int type1 = this->type_;
996 unsigned int type2 = r2.type_;
997 if (type1 < type2)
998 return -1;
999 else if (type1 > type2)
1000 return 1;
1001
1002 // These relocs appear to be exactly the same.
1003 return 0;
1004}
1005
c06b7b0b
ILT
1006// Write out a Rela relocation.
1007
1008template<bool dynamic, int size, bool big_endian>
1009void
1010Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1011 unsigned char* pov) const
1012{
1013 elfcpp::Rela_write<size, big_endian> orel(pov);
1014 this->rel_.write_rel(&orel);
e8c846c3 1015 Addend addend = this->addend_;
dceae3c1 1016 if (this->rel_.is_relative())
d1f003c6
ILT
1017 addend = this->rel_.symbol_value(addend);
1018 else if (this->rel_.is_local_section_symbol())
624f8810 1019 addend = this->rel_.local_section_offset(addend);
e8c846c3 1020 orel.put_r_addend(addend);
c06b7b0b
ILT
1021}
1022
1023// Output_data_reloc_base methods.
1024
16649710
ILT
1025// Adjust the output section.
1026
1027template<int sh_type, bool dynamic, int size, bool big_endian>
1028void
1029Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1030 ::do_adjust_output_section(Output_section* os)
1031{
1032 if (sh_type == elfcpp::SHT_REL)
1033 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1034 else if (sh_type == elfcpp::SHT_RELA)
1035 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1036 else
1037 gold_unreachable();
1038 if (dynamic)
1039 os->set_should_link_to_dynsym();
1040 else
1041 os->set_should_link_to_symtab();
1042}
1043
c06b7b0b
ILT
1044// Write out relocation data.
1045
1046template<int sh_type, bool dynamic, int size, bool big_endian>
1047void
1048Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1049 Output_file* of)
1050{
1051 const off_t off = this->offset();
1052 const off_t oview_size = this->data_size();
1053 unsigned char* const oview = of->get_output_view(off, oview_size);
1054
d98bc257
ILT
1055 if (this->sort_relocs_)
1056 {
1057 gold_assert(dynamic);
1058 std::sort(this->relocs_.begin(), this->relocs_.end(),
1059 Sort_relocs_comparison());
1060 }
1061
c06b7b0b
ILT
1062 unsigned char* pov = oview;
1063 for (typename Relocs::const_iterator p = this->relocs_.begin();
1064 p != this->relocs_.end();
1065 ++p)
1066 {
1067 p->write(pov);
1068 pov += reloc_size;
1069 }
1070
a3ad94ed 1071 gold_assert(pov - oview == oview_size);
c06b7b0b
ILT
1072
1073 of->write_output_view(off, oview_size, oview);
1074
1075 // We no longer need the relocation entries.
1076 this->relocs_.clear();
1077}
1078
6a74a719
ILT
1079// Class Output_relocatable_relocs.
1080
1081template<int sh_type, int size, bool big_endian>
1082void
1083Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1084{
1085 this->set_data_size(this->rr_->output_reloc_count()
1086 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1087}
1088
1089// class Output_data_group.
1090
1091template<int size, bool big_endian>
1092Output_data_group<size, big_endian>::Output_data_group(
1093 Sized_relobj<size, big_endian>* relobj,
1094 section_size_type entry_count,
8825ac63
ILT
1095 elfcpp::Elf_Word flags,
1096 std::vector<unsigned int>* input_shndxes)
20e6d0d6 1097 : Output_section_data(entry_count * 4, 4, false),
8825ac63
ILT
1098 relobj_(relobj),
1099 flags_(flags)
6a74a719 1100{
8825ac63 1101 this->input_shndxes_.swap(*input_shndxes);
6a74a719
ILT
1102}
1103
1104// Write out the section group, which means translating the section
1105// indexes to apply to the output file.
1106
1107template<int size, bool big_endian>
1108void
1109Output_data_group<size, big_endian>::do_write(Output_file* of)
1110{
1111 const off_t off = this->offset();
1112 const section_size_type oview_size =
1113 convert_to_section_size_type(this->data_size());
1114 unsigned char* const oview = of->get_output_view(off, oview_size);
1115
1116 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1117 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1118 ++contents;
1119
1120 for (std::vector<unsigned int>::const_iterator p =
8825ac63
ILT
1121 this->input_shndxes_.begin();
1122 p != this->input_shndxes_.end();
6a74a719
ILT
1123 ++p, ++contents)
1124 {
ef9beddf 1125 Output_section* os = this->relobj_->output_section(*p);
6a74a719
ILT
1126
1127 unsigned int output_shndx;
1128 if (os != NULL)
1129 output_shndx = os->out_shndx();
1130 else
1131 {
1132 this->relobj_->error(_("section group retained but "
1133 "group element discarded"));
1134 output_shndx = 0;
1135 }
1136
1137 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1138 }
1139
1140 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1141 gold_assert(wrote == oview_size);
1142
1143 of->write_output_view(off, oview_size, oview);
1144
1145 // We no longer need this information.
8825ac63 1146 this->input_shndxes_.clear();
6a74a719
ILT
1147}
1148
dbe717ef 1149// Output_data_got::Got_entry methods.
ead1e424
ILT
1150
1151// Write out the entry.
1152
1153template<int size, bool big_endian>
1154void
7e1edb90 1155Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
ead1e424
ILT
1156{
1157 Valtype val = 0;
1158
1159 switch (this->local_sym_index_)
1160 {
1161 case GSYM_CODE:
1162 {
e8c846c3
ILT
1163 // If the symbol is resolved locally, we need to write out the
1164 // link-time value, which will be relocated dynamically by a
1165 // RELATIVE relocation.
ead1e424 1166 Symbol* gsym = this->u_.gsym;
e8c846c3
ILT
1167 Sized_symbol<size>* sgsym;
1168 // This cast is a bit ugly. We don't want to put a
1169 // virtual method in Symbol, because we want Symbol to be
1170 // as small as possible.
1171 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1172 val = sgsym->value();
ead1e424
ILT
1173 }
1174 break;
1175
1176 case CONSTANT_CODE:
1177 val = this->u_.constant;
1178 break;
1179
1180 default:
d1f003c6
ILT
1181 {
1182 const unsigned int lsi = this->local_sym_index_;
1183 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1184 val = symval->value(this->u_.object, 0);
1185 }
e727fa71 1186 break;
ead1e424
ILT
1187 }
1188
a3ad94ed 1189 elfcpp::Swap<size, big_endian>::writeval(pov, val);
ead1e424
ILT
1190}
1191
dbe717ef 1192// Output_data_got methods.
ead1e424 1193
dbe717ef
ILT
1194// Add an entry for a global symbol to the GOT. This returns true if
1195// this is a new GOT entry, false if the symbol already had a GOT
1196// entry.
1197
1198template<int size, bool big_endian>
1199bool
0a65a3a7
CC
1200Output_data_got<size, big_endian>::add_global(
1201 Symbol* gsym,
1202 unsigned int got_type)
ead1e424 1203{
0a65a3a7 1204 if (gsym->has_got_offset(got_type))
dbe717ef 1205 return false;
ead1e424 1206
dbe717ef
ILT
1207 this->entries_.push_back(Got_entry(gsym));
1208 this->set_got_size();
0a65a3a7 1209 gsym->set_got_offset(got_type, this->last_got_offset());
dbe717ef
ILT
1210 return true;
1211}
ead1e424 1212
7bf1f802
ILT
1213// Add an entry for a global symbol to the GOT, and add a dynamic
1214// relocation of type R_TYPE for the GOT entry.
1215template<int size, bool big_endian>
1216void
1217Output_data_got<size, big_endian>::add_global_with_rel(
1218 Symbol* gsym,
0a65a3a7 1219 unsigned int got_type,
7bf1f802
ILT
1220 Rel_dyn* rel_dyn,
1221 unsigned int r_type)
1222{
0a65a3a7 1223 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1224 return;
1225
1226 this->entries_.push_back(Got_entry());
1227 this->set_got_size();
1228 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1229 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1230 rel_dyn->add_global(gsym, r_type, this, got_offset);
1231}
1232
1233template<int size, bool big_endian>
1234void
1235Output_data_got<size, big_endian>::add_global_with_rela(
1236 Symbol* gsym,
0a65a3a7 1237 unsigned int got_type,
7bf1f802
ILT
1238 Rela_dyn* rela_dyn,
1239 unsigned int r_type)
1240{
0a65a3a7 1241 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1242 return;
1243
1244 this->entries_.push_back(Got_entry());
1245 this->set_got_size();
1246 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1247 gsym->set_got_offset(got_type, got_offset);
7bf1f802
ILT
1248 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1249}
1250
0a65a3a7
CC
1251// Add a pair of entries for a global symbol to the GOT, and add
1252// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1253// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1254template<int size, bool big_endian>
1255void
0a65a3a7
CC
1256Output_data_got<size, big_endian>::add_global_pair_with_rel(
1257 Symbol* gsym,
1258 unsigned int got_type,
7bf1f802 1259 Rel_dyn* rel_dyn,
0a65a3a7
CC
1260 unsigned int r_type_1,
1261 unsigned int r_type_2)
7bf1f802 1262{
0a65a3a7 1263 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1264 return;
1265
1266 this->entries_.push_back(Got_entry());
7bf1f802 1267 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1268 gsym->set_got_offset(got_type, got_offset);
1269 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1270
1271 this->entries_.push_back(Got_entry());
1272 if (r_type_2 != 0)
1273 {
1274 got_offset = this->last_got_offset();
1275 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1276 }
1277
1278 this->set_got_size();
7bf1f802
ILT
1279}
1280
1281template<int size, bool big_endian>
1282void
0a65a3a7
CC
1283Output_data_got<size, big_endian>::add_global_pair_with_rela(
1284 Symbol* gsym,
1285 unsigned int got_type,
7bf1f802 1286 Rela_dyn* rela_dyn,
0a65a3a7
CC
1287 unsigned int r_type_1,
1288 unsigned int r_type_2)
7bf1f802 1289{
0a65a3a7 1290 if (gsym->has_got_offset(got_type))
7bf1f802
ILT
1291 return;
1292
1293 this->entries_.push_back(Got_entry());
7bf1f802 1294 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1295 gsym->set_got_offset(got_type, got_offset);
1296 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1297
1298 this->entries_.push_back(Got_entry());
1299 if (r_type_2 != 0)
1300 {
1301 got_offset = this->last_got_offset();
1302 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1303 }
1304
1305 this->set_got_size();
7bf1f802
ILT
1306}
1307
0a65a3a7
CC
1308// Add an entry for a local symbol to the GOT. This returns true if
1309// this is a new GOT entry, false if the symbol already has a GOT
1310// entry.
07f397ab
ILT
1311
1312template<int size, bool big_endian>
1313bool
0a65a3a7
CC
1314Output_data_got<size, big_endian>::add_local(
1315 Sized_relobj<size, big_endian>* object,
1316 unsigned int symndx,
1317 unsigned int got_type)
07f397ab 1318{
0a65a3a7 1319 if (object->local_has_got_offset(symndx, got_type))
07f397ab
ILT
1320 return false;
1321
0a65a3a7 1322 this->entries_.push_back(Got_entry(object, symndx));
07f397ab 1323 this->set_got_size();
0a65a3a7 1324 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
07f397ab
ILT
1325 return true;
1326}
1327
0a65a3a7
CC
1328// Add an entry for a local symbol to the GOT, and add a dynamic
1329// relocation of type R_TYPE for the GOT entry.
7bf1f802
ILT
1330template<int size, bool big_endian>
1331void
0a65a3a7
CC
1332Output_data_got<size, big_endian>::add_local_with_rel(
1333 Sized_relobj<size, big_endian>* object,
1334 unsigned int symndx,
1335 unsigned int got_type,
7bf1f802
ILT
1336 Rel_dyn* rel_dyn,
1337 unsigned int r_type)
1338{
0a65a3a7 1339 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1345 object->set_local_got_offset(symndx, got_type, got_offset);
1346 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
7bf1f802
ILT
1347}
1348
1349template<int size, bool big_endian>
1350void
0a65a3a7
CC
1351Output_data_got<size, big_endian>::add_local_with_rela(
1352 Sized_relobj<size, big_endian>* object,
1353 unsigned int symndx,
1354 unsigned int got_type,
7bf1f802
ILT
1355 Rela_dyn* rela_dyn,
1356 unsigned int r_type)
1357{
0a65a3a7 1358 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1359 return;
1360
1361 this->entries_.push_back(Got_entry());
1362 this->set_got_size();
1363 unsigned int got_offset = this->last_got_offset();
0a65a3a7
CC
1364 object->set_local_got_offset(symndx, got_type, got_offset);
1365 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
07f397ab
ILT
1366}
1367
0a65a3a7
CC
1368// Add a pair of entries for a local symbol to the GOT, and add
1369// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1370// If R_TYPE_2 == 0, add the second entry with no relocation.
7bf1f802
ILT
1371template<int size, bool big_endian>
1372void
0a65a3a7 1373Output_data_got<size, big_endian>::add_local_pair_with_rel(
7bf1f802
ILT
1374 Sized_relobj<size, big_endian>* object,
1375 unsigned int symndx,
1376 unsigned int shndx,
0a65a3a7 1377 unsigned int got_type,
7bf1f802 1378 Rel_dyn* rel_dyn,
0a65a3a7
CC
1379 unsigned int r_type_1,
1380 unsigned int r_type_2)
7bf1f802 1381{
0a65a3a7 1382 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1383 return;
1384
1385 this->entries_.push_back(Got_entry());
1386 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1387 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1388 Output_section* os = object->output_section(shndx);
0a65a3a7 1389 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
7bf1f802 1390
0a65a3a7
CC
1391 this->entries_.push_back(Got_entry(object, symndx));
1392 if (r_type_2 != 0)
1393 {
1394 got_offset = this->last_got_offset();
1395 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1396 }
7bf1f802
ILT
1397
1398 this->set_got_size();
1399}
1400
1401template<int size, bool big_endian>
1402void
0a65a3a7 1403Output_data_got<size, big_endian>::add_local_pair_with_rela(
7bf1f802
ILT
1404 Sized_relobj<size, big_endian>* object,
1405 unsigned int symndx,
1406 unsigned int shndx,
0a65a3a7 1407 unsigned int got_type,
7bf1f802 1408 Rela_dyn* rela_dyn,
0a65a3a7
CC
1409 unsigned int r_type_1,
1410 unsigned int r_type_2)
7bf1f802 1411{
0a65a3a7 1412 if (object->local_has_got_offset(symndx, got_type))
7bf1f802
ILT
1413 return;
1414
1415 this->entries_.push_back(Got_entry());
1416 unsigned int got_offset = this->last_got_offset();
0a65a3a7 1417 object->set_local_got_offset(symndx, got_type, got_offset);
ef9beddf 1418 Output_section* os = object->output_section(shndx);
0a65a3a7 1419 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
7bf1f802 1420
0a65a3a7
CC
1421 this->entries_.push_back(Got_entry(object, symndx));
1422 if (r_type_2 != 0)
1423 {
1424 got_offset = this->last_got_offset();
1425 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1426 }
7bf1f802
ILT
1427
1428 this->set_got_size();
1429}
1430
ead1e424
ILT
1431// Write out the GOT.
1432
1433template<int size, bool big_endian>
1434void
dbe717ef 1435Output_data_got<size, big_endian>::do_write(Output_file* of)
ead1e424
ILT
1436{
1437 const int add = size / 8;
1438
1439 const off_t off = this->offset();
c06b7b0b 1440 const off_t oview_size = this->data_size();
ead1e424
ILT
1441 unsigned char* const oview = of->get_output_view(off, oview_size);
1442
1443 unsigned char* pov = oview;
1444 for (typename Got_entries::const_iterator p = this->entries_.begin();
1445 p != this->entries_.end();
1446 ++p)
1447 {
7e1edb90 1448 p->write(pov);
ead1e424
ILT
1449 pov += add;
1450 }
1451
a3ad94ed 1452 gold_assert(pov - oview == oview_size);
c06b7b0b 1453
ead1e424
ILT
1454 of->write_output_view(off, oview_size, oview);
1455
1456 // We no longer need the GOT entries.
1457 this->entries_.clear();
1458}
1459
a3ad94ed
ILT
1460// Output_data_dynamic::Dynamic_entry methods.
1461
1462// Write out the entry.
1463
1464template<int size, bool big_endian>
1465void
1466Output_data_dynamic::Dynamic_entry::write(
1467 unsigned char* pov,
7d1a9ebb 1468 const Stringpool* pool) const
a3ad94ed
ILT
1469{
1470 typename elfcpp::Elf_types<size>::Elf_WXword val;
c2b45e22 1471 switch (this->offset_)
a3ad94ed
ILT
1472 {
1473 case DYNAMIC_NUMBER:
1474 val = this->u_.val;
1475 break;
1476
a3ad94ed 1477 case DYNAMIC_SECTION_SIZE:
16649710 1478 val = this->u_.od->data_size();
a3ad94ed
ILT
1479 break;
1480
1481 case DYNAMIC_SYMBOL:
1482 {
16649710
ILT
1483 const Sized_symbol<size>* s =
1484 static_cast<const Sized_symbol<size>*>(this->u_.sym);
a3ad94ed
ILT
1485 val = s->value();
1486 }
1487 break;
1488
1489 case DYNAMIC_STRING:
1490 val = pool->get_offset(this->u_.str);
1491 break;
1492
1493 default:
c2b45e22
CC
1494 val = this->u_.od->address() + this->offset_;
1495 break;
a3ad94ed
ILT
1496 }
1497
1498 elfcpp::Dyn_write<size, big_endian> dw(pov);
1499 dw.put_d_tag(this->tag_);
1500 dw.put_d_val(val);
1501}
1502
1503// Output_data_dynamic methods.
1504
16649710
ILT
1505// Adjust the output section to set the entry size.
1506
1507void
1508Output_data_dynamic::do_adjust_output_section(Output_section* os)
1509{
8851ecca 1510 if (parameters->target().get_size() == 32)
16649710 1511 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
8851ecca 1512 else if (parameters->target().get_size() == 64)
16649710
ILT
1513 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1514 else
1515 gold_unreachable();
1516}
1517
a3ad94ed
ILT
1518// Set the final data size.
1519
1520void
27bc2bce 1521Output_data_dynamic::set_final_data_size()
a3ad94ed 1522{
20e6d0d6
DK
1523 // Add the terminating entry if it hasn't been added.
1524 // Because of relaxation, we can run this multiple times.
1525 if (this->entries_.empty()
1526 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1527 this->add_constant(elfcpp::DT_NULL, 0);
a3ad94ed
ILT
1528
1529 int dyn_size;
8851ecca 1530 if (parameters->target().get_size() == 32)
a3ad94ed 1531 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
8851ecca 1532 else if (parameters->target().get_size() == 64)
a3ad94ed
ILT
1533 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1534 else
1535 gold_unreachable();
1536 this->set_data_size(this->entries_.size() * dyn_size);
1537}
1538
1539// Write out the dynamic entries.
1540
1541void
1542Output_data_dynamic::do_write(Output_file* of)
1543{
8851ecca 1544 switch (parameters->size_and_endianness())
a3ad94ed 1545 {
9025d29d 1546#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1547 case Parameters::TARGET_32_LITTLE:
1548 this->sized_write<32, false>(of);
1549 break;
9025d29d 1550#endif
8851ecca
ILT
1551#ifdef HAVE_TARGET_32_BIG
1552 case Parameters::TARGET_32_BIG:
1553 this->sized_write<32, true>(of);
1554 break;
9025d29d 1555#endif
9025d29d 1556#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1557 case Parameters::TARGET_64_LITTLE:
1558 this->sized_write<64, false>(of);
1559 break;
9025d29d 1560#endif
8851ecca
ILT
1561#ifdef HAVE_TARGET_64_BIG
1562 case Parameters::TARGET_64_BIG:
1563 this->sized_write<64, true>(of);
1564 break;
1565#endif
1566 default:
1567 gold_unreachable();
a3ad94ed 1568 }
a3ad94ed
ILT
1569}
1570
1571template<int size, bool big_endian>
1572void
1573Output_data_dynamic::sized_write(Output_file* of)
1574{
1575 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1576
1577 const off_t offset = this->offset();
1578 const off_t oview_size = this->data_size();
1579 unsigned char* const oview = of->get_output_view(offset, oview_size);
1580
1581 unsigned char* pov = oview;
1582 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1583 p != this->entries_.end();
1584 ++p)
1585 {
7d1a9ebb 1586 p->write<size, big_endian>(pov, this->pool_);
a3ad94ed
ILT
1587 pov += dyn_size;
1588 }
1589
1590 gold_assert(pov - oview == oview_size);
1591
1592 of->write_output_view(offset, oview_size, oview);
1593
1594 // We no longer need the dynamic entries.
1595 this->entries_.clear();
1596}
1597
d491d34e
ILT
1598// Class Output_symtab_xindex.
1599
1600void
1601Output_symtab_xindex::do_write(Output_file* of)
1602{
1603 const off_t offset = this->offset();
1604 const off_t oview_size = this->data_size();
1605 unsigned char* const oview = of->get_output_view(offset, oview_size);
1606
1607 memset(oview, 0, oview_size);
1608
1609 if (parameters->target().is_big_endian())
1610 this->endian_do_write<true>(oview);
1611 else
1612 this->endian_do_write<false>(oview);
1613
1614 of->write_output_view(offset, oview_size, oview);
1615
1616 // We no longer need the data.
1617 this->entries_.clear();
1618}
1619
1620template<bool big_endian>
1621void
1622Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1623{
1624 for (Xindex_entries::const_iterator p = this->entries_.begin();
1625 p != this->entries_.end();
1626 ++p)
20e6d0d6
DK
1627 {
1628 unsigned int symndx = p->first;
1629 gold_assert(symndx * 4 < this->data_size());
1630 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1631 }
d491d34e
ILT
1632}
1633
ead1e424
ILT
1634// Output_section::Input_section methods.
1635
1636// Return the data size. For an input section we store the size here.
1637// For an Output_section_data, we have to ask it for the size.
1638
1639off_t
1640Output_section::Input_section::data_size() const
1641{
1642 if (this->is_input_section())
b8e6aad9 1643 return this->u1_.data_size;
ead1e424 1644 else
b8e6aad9 1645 return this->u2_.posd->data_size();
ead1e424
ILT
1646}
1647
1648// Set the address and file offset.
1649
1650void
96803768
ILT
1651Output_section::Input_section::set_address_and_file_offset(
1652 uint64_t address,
1653 off_t file_offset,
1654 off_t section_file_offset)
ead1e424
ILT
1655{
1656 if (this->is_input_section())
96803768
ILT
1657 this->u2_.object->set_section_offset(this->shndx_,
1658 file_offset - section_file_offset);
ead1e424 1659 else
96803768
ILT
1660 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1661}
1662
a445fddf
ILT
1663// Reset the address and file offset.
1664
1665void
1666Output_section::Input_section::reset_address_and_file_offset()
1667{
1668 if (!this->is_input_section())
1669 this->u2_.posd->reset_address_and_file_offset();
1670}
1671
96803768
ILT
1672// Finalize the data size.
1673
1674void
1675Output_section::Input_section::finalize_data_size()
1676{
1677 if (!this->is_input_section())
1678 this->u2_.posd->finalize_data_size();
b8e6aad9
ILT
1679}
1680
1e983657
ILT
1681// Try to turn an input offset into an output offset. We want to
1682// return the output offset relative to the start of this
1683// Input_section in the output section.
b8e6aad9 1684
8f00aeb8 1685inline bool
8383303e
ILT
1686Output_section::Input_section::output_offset(
1687 const Relobj* object,
1688 unsigned int shndx,
1689 section_offset_type offset,
1690 section_offset_type *poutput) const
b8e6aad9
ILT
1691{
1692 if (!this->is_input_section())
730cdc88 1693 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
b8e6aad9
ILT
1694 else
1695 {
730cdc88 1696 if (this->shndx_ != shndx || this->u2_.object != object)
b8e6aad9 1697 return false;
1e983657 1698 *poutput = offset;
b8e6aad9
ILT
1699 return true;
1700 }
ead1e424
ILT
1701}
1702
a9a60db6
ILT
1703// Return whether this is the merge section for the input section
1704// SHNDX in OBJECT.
1705
1706inline bool
1707Output_section::Input_section::is_merge_section_for(const Relobj* object,
1708 unsigned int shndx) const
1709{
1710 if (this->is_input_section())
1711 return false;
1712 return this->u2_.posd->is_merge_section_for(object, shndx);
1713}
1714
ead1e424
ILT
1715// Write out the data. We don't have to do anything for an input
1716// section--they are handled via Object::relocate--but this is where
1717// we write out the data for an Output_section_data.
1718
1719void
1720Output_section::Input_section::write(Output_file* of)
1721{
1722 if (!this->is_input_section())
b8e6aad9 1723 this->u2_.posd->write(of);
ead1e424
ILT
1724}
1725
96803768
ILT
1726// Write the data to a buffer. As for write(), we don't have to do
1727// anything for an input section.
1728
1729void
1730Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1731{
1732 if (!this->is_input_section())
1733 this->u2_.posd->write_to_buffer(buffer);
1734}
1735
7d9e3d98
ILT
1736// Print to a map file.
1737
1738void
1739Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1740{
1741 switch (this->shndx_)
1742 {
1743 case OUTPUT_SECTION_CODE:
1744 case MERGE_DATA_SECTION_CODE:
1745 case MERGE_STRING_SECTION_CODE:
1746 this->u2_.posd->print_to_mapfile(mapfile);
1747 break;
1748
20e6d0d6
DK
1749 case RELAXED_INPUT_SECTION_CODE:
1750 {
1751 Output_relaxed_input_section* relaxed_section =
1752 this->relaxed_input_section();
1753 mapfile->print_input_section(relaxed_section->relobj(),
1754 relaxed_section->shndx());
1755 }
1756 break;
7d9e3d98
ILT
1757 default:
1758 mapfile->print_input_section(this->u2_.object, this->shndx_);
1759 break;
1760 }
1761}
1762
a2fb1b05
ILT
1763// Output_section methods.
1764
1765// Construct an Output_section. NAME will point into a Stringpool.
1766
96803768 1767Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
b8e6aad9 1768 elfcpp::Elf_Xword flags)
96803768 1769 : name_(name),
a2fb1b05
ILT
1770 addralign_(0),
1771 entsize_(0),
a445fddf 1772 load_address_(0),
16649710 1773 link_section_(NULL),
a2fb1b05 1774 link_(0),
16649710 1775 info_section_(NULL),
6a74a719 1776 info_symndx_(NULL),
a2fb1b05
ILT
1777 info_(0),
1778 type_(type),
61ba1cf9 1779 flags_(flags),
91ea499d 1780 out_shndx_(-1U),
c06b7b0b
ILT
1781 symtab_index_(0),
1782 dynsym_index_(0),
ead1e424
ILT
1783 input_sections_(),
1784 first_input_offset_(0),
c51e6221 1785 fills_(),
96803768 1786 postprocessing_buffer_(NULL),
a3ad94ed 1787 needs_symtab_index_(false),
16649710
ILT
1788 needs_dynsym_index_(false),
1789 should_link_to_symtab_(false),
730cdc88 1790 should_link_to_dynsym_(false),
27bc2bce 1791 after_input_sections_(false),
7bf1f802 1792 requires_postprocessing_(false),
a445fddf
ILT
1793 found_in_sections_clause_(false),
1794 has_load_address_(false),
755ab8af 1795 info_uses_section_index_(false),
2fd32231
ILT
1796 may_sort_attached_input_sections_(false),
1797 must_sort_attached_input_sections_(false),
1798 attached_input_sections_are_sorted_(false),
9f1d377b
ILT
1799 is_relro_(false),
1800 is_relro_local_(false),
8a5e3e08
ILT
1801 is_small_section_(false),
1802 is_large_section_(false),
20e6d0d6 1803 tls_offset_(0),
c0a62865
DK
1804 checkpoint_(NULL),
1805 merge_section_map_(),
1806 merge_section_by_properties_map_(),
1807 relaxed_input_section_map_(),
1808 is_relaxed_input_section_map_valid_(true),
1809 generate_code_fills_at_write_(false)
a2fb1b05 1810{
27bc2bce
ILT
1811 // An unallocated section has no address. Forcing this means that
1812 // we don't need special treatment for symbols defined in debug
1813 // sections.
1814 if ((flags & elfcpp::SHF_ALLOC) == 0)
1815 this->set_address(0);
a2fb1b05
ILT
1816}
1817
54dc6425
ILT
1818Output_section::~Output_section()
1819{
20e6d0d6 1820 delete this->checkpoint_;
54dc6425
ILT
1821}
1822
16649710
ILT
1823// Set the entry size.
1824
1825void
1826Output_section::set_entsize(uint64_t v)
1827{
1828 if (this->entsize_ == 0)
1829 this->entsize_ = v;
1830 else
1831 gold_assert(this->entsize_ == v);
1832}
1833
ead1e424 1834// Add the input section SHNDX, with header SHDR, named SECNAME, in
730cdc88
ILT
1835// OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1836// relocation section which applies to this section, or 0 if none, or
1837// -1U if more than one. Return the offset of the input section
1838// within the output section. Return -1 if the input section will
1839// receive special handling. In the normal case we don't always keep
1840// track of input sections for an Output_section. Instead, each
1841// Object keeps track of the Output_section for each of its input
a445fddf
ILT
1842// sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1843// track of input sections here; this is used when SECTIONS appears in
1844// a linker script.
a2fb1b05
ILT
1845
1846template<int size, bool big_endian>
1847off_t
730cdc88
ILT
1848Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1849 unsigned int shndx,
ead1e424 1850 const char* secname,
730cdc88 1851 const elfcpp::Shdr<size, big_endian>& shdr,
a445fddf
ILT
1852 unsigned int reloc_shndx,
1853 bool have_sections_script)
a2fb1b05
ILT
1854{
1855 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1856 if ((addralign & (addralign - 1)) != 0)
1857 {
75f2446e
ILT
1858 object->error(_("invalid alignment %lu for section \"%s\""),
1859 static_cast<unsigned long>(addralign), secname);
1860 addralign = 1;
a2fb1b05 1861 }
a2fb1b05
ILT
1862
1863 if (addralign > this->addralign_)
1864 this->addralign_ = addralign;
1865
44a43cf9 1866 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
154e0e9a 1867 this->update_flags_for_input_section(sh_flags);
a445fddf 1868
4f833eee 1869 uint64_t entsize = shdr.get_sh_entsize();
44a43cf9
ILT
1870
1871 // .debug_str is a mergeable string section, but is not always so
1872 // marked by compilers. Mark manually here so we can optimize.
1873 if (strcmp(secname, ".debug_str") == 0)
4f833eee
ILT
1874 {
1875 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1876 entsize = 1;
1877 }
44a43cf9 1878
b8e6aad9 1879 // If this is a SHF_MERGE section, we pass all the input sections to
730cdc88 1880 // a Output_data_merge. We don't try to handle relocations for such
e0b64032
ILT
1881 // a section. We don't try to handle empty merge sections--they
1882 // mess up the mappings, and are useless anyhow.
44a43cf9 1883 if ((sh_flags & elfcpp::SHF_MERGE) != 0
e0b64032
ILT
1884 && reloc_shndx == 0
1885 && shdr.get_sh_size() > 0)
b8e6aad9 1886 {
44a43cf9 1887 if (this->add_merge_input_section(object, shndx, sh_flags,
96803768 1888 entsize, addralign))
b8e6aad9
ILT
1889 {
1890 // Tell the relocation routines that they need to call the
730cdc88 1891 // output_offset method to determine the final address.
b8e6aad9
ILT
1892 return -1;
1893 }
1894 }
1895
27bc2bce 1896 off_t offset_in_section = this->current_data_size_for_child();
c51e6221
ILT
1897 off_t aligned_offset_in_section = align_address(offset_in_section,
1898 addralign);
1899
c0a62865
DK
1900 // Determine if we want to delay code-fill generation until the output
1901 // section is written. When the target is relaxing, we want to delay fill
1902 // generating to avoid adjusting them during relaxation.
1903 if (!this->generate_code_fills_at_write_
1904 && !have_sections_script
1905 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
1906 && parameters->target().has_code_fill()
1907 && parameters->target().may_relax())
1908 {
1909 gold_assert(this->fills_.empty());
1910 this->generate_code_fills_at_write_ = true;
1911 }
1912
c51e6221 1913 if (aligned_offset_in_section > offset_in_section
c0a62865 1914 && !this->generate_code_fills_at_write_
a445fddf 1915 && !have_sections_script
44a43cf9 1916 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
029ba973 1917 && parameters->target().has_code_fill())
c51e6221
ILT
1918 {
1919 // We need to add some fill data. Using fill_list_ when
1920 // possible is an optimization, since we will often have fill
1921 // sections without input sections.
1922 off_t fill_len = aligned_offset_in_section - offset_in_section;
1923 if (this->input_sections_.empty())
1924 this->fills_.push_back(Fill(offset_in_section, fill_len));
1925 else
1926 {
029ba973 1927 std::string fill_data(parameters->target().code_fill(fill_len));
c51e6221
ILT
1928 Output_data_const* odc = new Output_data_const(fill_data, 1);
1929 this->input_sections_.push_back(Input_section(odc));
1930 }
1931 }
1932
27bc2bce
ILT
1933 this->set_current_data_size_for_child(aligned_offset_in_section
1934 + shdr.get_sh_size());
a2fb1b05 1935
ead1e424 1936 // We need to keep track of this section if we are already keeping
2fd32231
ILT
1937 // track of sections, or if we are relaxing. Also, if this is a
1938 // section which requires sorting, or which may require sorting in
20e6d0d6 1939 // the future, we keep track of the sections.
2fd32231
ILT
1940 if (have_sections_script
1941 || !this->input_sections_.empty()
1942 || this->may_sort_attached_input_sections()
7d9e3d98 1943 || this->must_sort_attached_input_sections()
20e6d0d6 1944 || parameters->options().user_set_Map()
029ba973 1945 || parameters->target().may_relax())
ead1e424
ILT
1946 this->input_sections_.push_back(Input_section(object, shndx,
1947 shdr.get_sh_size(),
1948 addralign));
54dc6425 1949
c51e6221 1950 return aligned_offset_in_section;
61ba1cf9
ILT
1951}
1952
ead1e424
ILT
1953// Add arbitrary data to an output section.
1954
1955void
1956Output_section::add_output_section_data(Output_section_data* posd)
1957{
b8e6aad9
ILT
1958 Input_section inp(posd);
1959 this->add_output_section_data(&inp);
a445fddf
ILT
1960
1961 if (posd->is_data_size_valid())
1962 {
1963 off_t offset_in_section = this->current_data_size_for_child();
1964 off_t aligned_offset_in_section = align_address(offset_in_section,
1965 posd->addralign());
1966 this->set_current_data_size_for_child(aligned_offset_in_section
1967 + posd->data_size());
1968 }
b8e6aad9
ILT
1969}
1970
c0a62865
DK
1971// Add a relaxed input section.
1972
1973void
1974Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
1975{
1976 Input_section inp(poris);
1977 this->add_output_section_data(&inp);
1978 if (this->is_relaxed_input_section_map_valid_)
1979 {
1980 Input_section_specifier iss(poris->relobj(), poris->shndx());
1981 this->relaxed_input_section_map_[iss] = poris;
1982 }
1983
1984 // For a relaxed section, we use the current data size. Linker scripts
1985 // get all the input sections, including relaxed one from an output
1986 // section and add them back to them same output section to compute the
1987 // output section size. If we do not account for sizes of relaxed input
1988 // sections, an output section would be incorrectly sized.
1989 off_t offset_in_section = this->current_data_size_for_child();
1990 off_t aligned_offset_in_section = align_address(offset_in_section,
1991 poris->addralign());
1992 this->set_current_data_size_for_child(aligned_offset_in_section
1993 + poris->current_data_size());
1994}
1995
b8e6aad9 1996// Add arbitrary data to an output section by Input_section.
c06b7b0b 1997
b8e6aad9
ILT
1998void
1999Output_section::add_output_section_data(Input_section* inp)
2000{
ead1e424 2001 if (this->input_sections_.empty())
27bc2bce 2002 this->first_input_offset_ = this->current_data_size_for_child();
c06b7b0b 2003
b8e6aad9 2004 this->input_sections_.push_back(*inp);
c06b7b0b 2005
b8e6aad9 2006 uint64_t addralign = inp->addralign();
ead1e424
ILT
2007 if (addralign > this->addralign_)
2008 this->addralign_ = addralign;
c06b7b0b 2009
b8e6aad9
ILT
2010 inp->set_output_section(this);
2011}
2012
2013// Add a merge section to an output section.
2014
2015void
2016Output_section::add_output_merge_section(Output_section_data* posd,
2017 bool is_string, uint64_t entsize)
2018{
2019 Input_section inp(posd, is_string, entsize);
2020 this->add_output_section_data(&inp);
2021}
2022
2023// Add an input section to a SHF_MERGE section.
2024
2025bool
2026Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2027 uint64_t flags, uint64_t entsize,
96803768 2028 uint64_t addralign)
b8e6aad9 2029{
87f95776
ILT
2030 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2031
2032 // We only merge strings if the alignment is not more than the
2033 // character size. This could be handled, but it's unusual.
2034 if (is_string && addralign > entsize)
b8e6aad9
ILT
2035 return false;
2036
20e6d0d6
DK
2037 // We cannot restore merged input section states.
2038 gold_assert(this->checkpoint_ == NULL);
2039
c0a62865
DK
2040 // Look up merge sections by required properties.
2041 Merge_section_properties msp(is_string, entsize, addralign);
2042 Merge_section_by_properties_map::const_iterator p =
2043 this->merge_section_by_properties_map_.find(msp);
2044 if (p != this->merge_section_by_properties_map_.end())
2045 {
2046 Output_merge_base* merge_section = p->second;
2047 merge_section->add_input_section(object, shndx);
2048 gold_assert(merge_section->is_string() == is_string
2049 && merge_section->entsize() == entsize
2050 && merge_section->addralign() == addralign);
2051
2052 // Link input section to found merge section.
2053 Input_section_specifier iss(object, shndx);
2054 this->merge_section_map_[iss] = merge_section;
2055 return true;
2056 }
b8e6aad9
ILT
2057
2058 // We handle the actual constant merging in Output_merge_data or
2059 // Output_merge_string_data.
c0a62865 2060 Output_merge_base* pomb;
9a0910c3 2061 if (!is_string)
c0a62865 2062 pomb = new Output_merge_data(entsize, addralign);
b8e6aad9
ILT
2063 else
2064 {
9a0910c3
ILT
2065 switch (entsize)
2066 {
2067 case 1:
c0a62865 2068 pomb = new Output_merge_string<char>(addralign);
9a0910c3
ILT
2069 break;
2070 case 2:
c0a62865 2071 pomb = new Output_merge_string<uint16_t>(addralign);
9a0910c3
ILT
2072 break;
2073 case 4:
c0a62865 2074 pomb = new Output_merge_string<uint32_t>(addralign);
9a0910c3
ILT
2075 break;
2076 default:
2077 return false;
2078 }
b8e6aad9
ILT
2079 }
2080
c0a62865
DK
2081 // Add new merge section to this output section and link merge section
2082 // properties to new merge section in map.
2083 this->add_output_merge_section(pomb, is_string, entsize);
2084 this->merge_section_by_properties_map_[msp] = pomb;
2085
2086 // Add input section to new merge section and link input section to new
2087 // merge section in map.
2088 pomb->add_input_section(object, shndx);
2089 Input_section_specifier iss(object, shndx);
2090 this->merge_section_map_[iss] = pomb;
9a0910c3 2091
b8e6aad9
ILT
2092 return true;
2093}
2094
c0a62865
DK
2095// Build a relaxation map to speed up relaxation of existing input sections.
2096// Look up to the first LIMIT elements in INPUT_SECTIONS.
2097
20e6d0d6 2098void
c0a62865
DK
2099Output_section::build_relaxation_map(
2100 const Input_section_list& input_sections,
2101 size_t limit,
2102 Relaxation_map* relaxation_map) const
20e6d0d6 2103{
c0a62865
DK
2104 for (size_t i = 0; i < limit; ++i)
2105 {
2106 const Input_section& is(input_sections[i]);
2107 if (is.is_input_section() || is.is_relaxed_input_section())
2108 {
2109 Input_section_specifier iss(is.relobj(), is.shndx());
2110 (*relaxation_map)[iss] = i;
2111 }
2112 }
2113}
2114
2115// Convert regular input sections in INPUT_SECTIONS into relaxed input
2116// sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
2117// specifier to indices of INPUT_SECTIONS.
20e6d0d6 2118
c0a62865
DK
2119void
2120Output_section::convert_input_sections_in_list_to_relaxed_sections(
2121 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2122 const Relaxation_map& map,
2123 Input_section_list* input_sections)
2124{
2125 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2126 {
2127 Output_relaxed_input_section* poris = relaxed_sections[i];
2128 Input_section_specifier iss(poris->relobj(), poris->shndx());
2129 Relaxation_map::const_iterator p = map.find(iss);
2130 gold_assert(p != map.end());
2131 gold_assert((*input_sections)[p->second].is_input_section());
2132 (*input_sections)[p->second] = Input_section(poris);
2133 }
2134}
2135
2136// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2137// is a vector of pointers to Output_relaxed_input_section or its derived
2138// classes. The relaxed sections must correspond to existing input sections.
2139
2140void
2141Output_section::convert_input_sections_to_relaxed_sections(
2142 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2143{
029ba973 2144 gold_assert(parameters->target().may_relax());
20e6d0d6 2145
c0a62865
DK
2146 // We want to make sure that restore_states does not undo the effect of
2147 // this. If there is no checkpoint active, just search the current
2148 // input section list and replace the sections there. If there is
2149 // a checkpoint, also replace the sections there.
2150
2151 // By default, we look at the whole list.
2152 size_t limit = this->input_sections_.size();
2153
2154 if (this->checkpoint_ != NULL)
20e6d0d6 2155 {
c0a62865
DK
2156 // Replace input sections with relaxed input section in the saved
2157 // copy of the input section list.
2158 if (this->checkpoint_->input_sections_saved())
20e6d0d6 2159 {
c0a62865
DK
2160 Relaxation_map map;
2161 this->build_relaxation_map(
2162 *(this->checkpoint_->input_sections()),
2163 this->checkpoint_->input_sections()->size(),
2164 &map);
2165 this->convert_input_sections_in_list_to_relaxed_sections(
2166 relaxed_sections,
2167 map,
2168 this->checkpoint_->input_sections());
2169 }
2170 else
2171 {
2172 // We have not copied the input section list yet. Instead, just
2173 // look at the portion that would be saved.
2174 limit = this->checkpoint_->input_sections_size();
20e6d0d6 2175 }
20e6d0d6 2176 }
c0a62865
DK
2177
2178 // Convert input sections in input_section_list.
2179 Relaxation_map map;
2180 this->build_relaxation_map(this->input_sections_, limit, &map);
2181 this->convert_input_sections_in_list_to_relaxed_sections(
2182 relaxed_sections,
2183 map,
2184 &this->input_sections_);
20e6d0d6
DK
2185}
2186
9c547ec3
ILT
2187// Update the output section flags based on input section flags.
2188
2189void
2190Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2191{
2192 // If we created the section with SHF_ALLOC clear, we set the
2193 // address. If we are now setting the SHF_ALLOC flag, we need to
2194 // undo that.
2195 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2196 && (flags & elfcpp::SHF_ALLOC) != 0)
2197 this->mark_address_invalid();
2198
2199 this->flags_ |= (flags
2200 & (elfcpp::SHF_WRITE
2201 | elfcpp::SHF_ALLOC
2202 | elfcpp::SHF_EXECINSTR));
2203}
2204
c0a62865
DK
2205// Find the merge section into which an input section with index SHNDX in
2206// OBJECT has been added. Return NULL if none found.
2207
2208Output_section_data*
2209Output_section::find_merge_section(const Relobj* object,
2210 unsigned int shndx) const
2211{
2212 Input_section_specifier iss(object, shndx);
2213 Output_section_data_by_input_section_map::const_iterator p =
2214 this->merge_section_map_.find(iss);
2215 if (p != this->merge_section_map_.end())
2216 {
2217 Output_section_data* posd = p->second;
2218 gold_assert(posd->is_merge_section_for(object, shndx));
2219 return posd;
2220 }
2221 else
2222 return NULL;
2223}
2224
2225// Find an relaxed input section corresponding to an input section
2226// in OBJECT with index SHNDX.
2227
2228const Output_section_data*
2229Output_section::find_relaxed_input_section(const Relobj* object,
2230 unsigned int shndx) const
2231{
2232 // Be careful that the map may not be valid due to input section export
2233 // to scripts or a check-point restore.
2234 if (!this->is_relaxed_input_section_map_valid_)
2235 {
2236 // Rebuild the map as needed.
2237 this->relaxed_input_section_map_.clear();
2238 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2239 p != this->input_sections_.end();
2240 ++p)
2241 if (p->is_relaxed_input_section())
2242 {
2243 Input_section_specifier iss(p->relobj(), p->shndx());
2244 this->relaxed_input_section_map_[iss] =
2245 p->relaxed_input_section();
2246 }
2247 this->is_relaxed_input_section_map_valid_ = true;
2248 }
2249
2250 Input_section_specifier iss(object, shndx);
2251 Output_section_data_by_input_section_map::const_iterator p =
2252 this->relaxed_input_section_map_.find(iss);
2253 if (p != this->relaxed_input_section_map_.end())
2254 return p->second;
2255 else
2256 return NULL;
2257}
2258
730cdc88
ILT
2259// Given an address OFFSET relative to the start of input section
2260// SHNDX in OBJECT, return whether this address is being included in
2261// the final link. This should only be called if SHNDX in OBJECT has
2262// a special mapping.
2263
2264bool
2265Output_section::is_input_address_mapped(const Relobj* object,
2266 unsigned int shndx,
2267 off_t offset) const
2268{
c0a62865
DK
2269 // Look at the Output_section_data_maps first.
2270 const Output_section_data* posd = this->find_merge_section(object, shndx);
2271 if (posd == NULL)
2272 posd = this->find_relaxed_input_section(object, shndx);
2273
2274 if (posd != NULL)
2275 {
2276 section_offset_type output_offset;
2277 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2278 gold_assert(found);
2279 return output_offset != -1;
2280 }
2281
2282 // Fall back to the slow look-up.
730cdc88
ILT
2283 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2284 p != this->input_sections_.end();
2285 ++p)
2286 {
8383303e 2287 section_offset_type output_offset;
730cdc88
ILT
2288 if (p->output_offset(object, shndx, offset, &output_offset))
2289 return output_offset != -1;
2290 }
2291
2292 // By default we assume that the address is mapped. This should
2293 // only be called after we have passed all sections to Layout. At
2294 // that point we should know what we are discarding.
2295 return true;
2296}
2297
2298// Given an address OFFSET relative to the start of input section
2299// SHNDX in object OBJECT, return the output offset relative to the
1e983657
ILT
2300// start of the input section in the output section. This should only
2301// be called if SHNDX in OBJECT has a special mapping.
730cdc88 2302
8383303e 2303section_offset_type
730cdc88 2304Output_section::output_offset(const Relobj* object, unsigned int shndx,
8383303e 2305 section_offset_type offset) const
730cdc88 2306{
c0a62865
DK
2307 // This can only be called meaningfully when we know the data size
2308 // of this.
2309 gold_assert(this->is_data_size_valid());
730cdc88 2310
c0a62865
DK
2311 // Look at the Output_section_data_maps first.
2312 const Output_section_data* posd = this->find_merge_section(object, shndx);
2313 if (posd == NULL)
2314 posd = this->find_relaxed_input_section(object, shndx);
2315 if (posd != NULL)
2316 {
2317 section_offset_type output_offset;
2318 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2319 gold_assert(found);
2320 return output_offset;
2321 }
2322
2323 // Fall back to the slow look-up.
730cdc88
ILT
2324 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2325 p != this->input_sections_.end();
2326 ++p)
2327 {
8383303e 2328 section_offset_type output_offset;
730cdc88
ILT
2329 if (p->output_offset(object, shndx, offset, &output_offset))
2330 return output_offset;
2331 }
2332 gold_unreachable();
2333}
2334
b8e6aad9
ILT
2335// Return the output virtual address of OFFSET relative to the start
2336// of input section SHNDX in object OBJECT.
2337
2338uint64_t
2339Output_section::output_address(const Relobj* object, unsigned int shndx,
2340 off_t offset) const
2341{
2342 uint64_t addr = this->address() + this->first_input_offset_;
c0a62865
DK
2343
2344 // Look at the Output_section_data_maps first.
2345 const Output_section_data* posd = this->find_merge_section(object, shndx);
2346 if (posd == NULL)
2347 posd = this->find_relaxed_input_section(object, shndx);
2348 if (posd != NULL && posd->is_address_valid())
2349 {
2350 section_offset_type output_offset;
2351 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2352 gold_assert(found);
2353 return posd->address() + output_offset;
2354 }
2355
2356 // Fall back to the slow look-up.
b8e6aad9
ILT
2357 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2358 p != this->input_sections_.end();
2359 ++p)
2360 {
2361 addr = align_address(addr, p->addralign());
8383303e 2362 section_offset_type output_offset;
730cdc88
ILT
2363 if (p->output_offset(object, shndx, offset, &output_offset))
2364 {
2365 if (output_offset == -1)
eff45813 2366 return -1ULL;
730cdc88
ILT
2367 return addr + output_offset;
2368 }
b8e6aad9
ILT
2369 addr += p->data_size();
2370 }
2371
2372 // If we get here, it means that we don't know the mapping for this
2373 // input section. This might happen in principle if
2374 // add_input_section were called before add_output_section_data.
2375 // But it should never actually happen.
2376
2377 gold_unreachable();
ead1e424
ILT
2378}
2379
e29e076a 2380// Find the output address of the start of the merged section for
a9a60db6
ILT
2381// input section SHNDX in object OBJECT.
2382
e29e076a
ILT
2383bool
2384Output_section::find_starting_output_address(const Relobj* object,
2385 unsigned int shndx,
2386 uint64_t* paddr) const
a9a60db6 2387{
c0a62865
DK
2388 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2389 // Looking up the merge section map does not always work as we sometimes
2390 // find a merge section without its address set.
a9a60db6
ILT
2391 uint64_t addr = this->address() + this->first_input_offset_;
2392 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2393 p != this->input_sections_.end();
2394 ++p)
2395 {
2396 addr = align_address(addr, p->addralign());
2397
2398 // It would be nice if we could use the existing output_offset
2399 // method to get the output offset of input offset 0.
2400 // Unfortunately we don't know for sure that input offset 0 is
2401 // mapped at all.
2402 if (p->is_merge_section_for(object, shndx))
e29e076a
ILT
2403 {
2404 *paddr = addr;
2405 return true;
2406 }
a9a60db6
ILT
2407
2408 addr += p->data_size();
2409 }
e29e076a
ILT
2410
2411 // We couldn't find a merge output section for this input section.
2412 return false;
a9a60db6
ILT
2413}
2414
27bc2bce 2415// Set the data size of an Output_section. This is where we handle
ead1e424
ILT
2416// setting the addresses of any Output_section_data objects.
2417
2418void
27bc2bce 2419Output_section::set_final_data_size()
ead1e424
ILT
2420{
2421 if (this->input_sections_.empty())
27bc2bce
ILT
2422 {
2423 this->set_data_size(this->current_data_size_for_child());
2424 return;
2425 }
ead1e424 2426
2fd32231
ILT
2427 if (this->must_sort_attached_input_sections())
2428 this->sort_attached_input_sections();
2429
27bc2bce
ILT
2430 uint64_t address = this->address();
2431 off_t startoff = this->offset();
ead1e424
ILT
2432 off_t off = startoff + this->first_input_offset_;
2433 for (Input_section_list::iterator p = this->input_sections_.begin();
2434 p != this->input_sections_.end();
2435 ++p)
2436 {
2437 off = align_address(off, p->addralign());
96803768
ILT
2438 p->set_address_and_file_offset(address + (off - startoff), off,
2439 startoff);
ead1e424
ILT
2440 off += p->data_size();
2441 }
2442
2443 this->set_data_size(off - startoff);
2444}
9a0910c3 2445
a445fddf
ILT
2446// Reset the address and file offset.
2447
2448void
2449Output_section::do_reset_address_and_file_offset()
2450{
20e6d0d6
DK
2451 // An unallocated section has no address. Forcing this means that
2452 // we don't need special treatment for symbols defined in debug
2453 // sections. We do the same in the constructor.
2454 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2455 this->set_address(0);
2456
a445fddf
ILT
2457 for (Input_section_list::iterator p = this->input_sections_.begin();
2458 p != this->input_sections_.end();
2459 ++p)
2460 p->reset_address_and_file_offset();
2461}
20e6d0d6
DK
2462
2463// Return true if address and file offset have the values after reset.
2464
2465bool
2466Output_section::do_address_and_file_offset_have_reset_values() const
2467{
2468 if (this->is_offset_valid())
2469 return false;
2470
2471 // An unallocated section has address 0 after its construction or a reset.
2472 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2473 return this->is_address_valid() && this->address() == 0;
2474 else
2475 return !this->is_address_valid();
2476}
a445fddf 2477
7bf1f802
ILT
2478// Set the TLS offset. Called only for SHT_TLS sections.
2479
2480void
2481Output_section::do_set_tls_offset(uint64_t tls_base)
2482{
2483 this->tls_offset_ = this->address() - tls_base;
2484}
2485
2fd32231
ILT
2486// In a few cases we need to sort the input sections attached to an
2487// output section. This is used to implement the type of constructor
2488// priority ordering implemented by the GNU linker, in which the
2489// priority becomes part of the section name and the sections are
2490// sorted by name. We only do this for an output section if we see an
2491// attached input section matching ".ctor.*", ".dtor.*",
2492// ".init_array.*" or ".fini_array.*".
2493
2494class Output_section::Input_section_sort_entry
2495{
2496 public:
2497 Input_section_sort_entry()
2498 : input_section_(), index_(-1U), section_has_name_(false),
2499 section_name_()
2500 { }
2501
2502 Input_section_sort_entry(const Input_section& input_section,
2503 unsigned int index)
2504 : input_section_(input_section), index_(index),
20e6d0d6
DK
2505 section_has_name_(input_section.is_input_section()
2506 || input_section.is_relaxed_input_section())
2fd32231
ILT
2507 {
2508 if (this->section_has_name_)
2509 {
2510 // This is only called single-threaded from Layout::finalize,
2511 // so it is OK to lock. Unfortunately we have no way to pass
2512 // in a Task token.
2513 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
20e6d0d6
DK
2514 Object* obj = (input_section.is_input_section()
2515 ? input_section.relobj()
2516 : input_section.relaxed_input_section()->relobj());
2fd32231
ILT
2517 Task_lock_obj<Object> tl(dummy_task, obj);
2518
2519 // This is a slow operation, which should be cached in
2520 // Layout::layout if this becomes a speed problem.
2521 this->section_name_ = obj->section_name(input_section.shndx());
2522 }
2523 }
2524
2525 // Return the Input_section.
2526 const Input_section&
2527 input_section() const
2528 {
2529 gold_assert(this->index_ != -1U);
2530 return this->input_section_;
2531 }
2532
2533 // The index of this entry in the original list. This is used to
2534 // make the sort stable.
2535 unsigned int
2536 index() const
2537 {
2538 gold_assert(this->index_ != -1U);
2539 return this->index_;
2540 }
2541
2542 // Whether there is a section name.
2543 bool
2544 section_has_name() const
2545 { return this->section_has_name_; }
2546
2547 // The section name.
2548 const std::string&
2549 section_name() const
2550 {
2551 gold_assert(this->section_has_name_);
2552 return this->section_name_;
2553 }
2554
ab794b6b
ILT
2555 // Return true if the section name has a priority. This is assumed
2556 // to be true if it has a dot after the initial dot.
2fd32231 2557 bool
ab794b6b 2558 has_priority() const
2fd32231
ILT
2559 {
2560 gold_assert(this->section_has_name_);
ab794b6b 2561 return this->section_name_.find('.', 1);
2fd32231
ILT
2562 }
2563
ab794b6b
ILT
2564 // Return true if this an input file whose base name matches
2565 // FILE_NAME. The base name must have an extension of ".o", and
2566 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2567 // This is to match crtbegin.o as well as crtbeginS.o without
2568 // getting confused by other possibilities. Overall matching the
2569 // file name this way is a dreadful hack, but the GNU linker does it
2570 // in order to better support gcc, and we need to be compatible.
2fd32231 2571 bool
ab794b6b 2572 match_file_name(const char* match_file_name) const
2fd32231 2573 {
2fd32231
ILT
2574 const std::string& file_name(this->input_section_.relobj()->name());
2575 const char* base_name = lbasename(file_name.c_str());
2576 size_t match_len = strlen(match_file_name);
2577 if (strncmp(base_name, match_file_name, match_len) != 0)
2578 return false;
2579 size_t base_len = strlen(base_name);
2580 if (base_len != match_len + 2 && base_len != match_len + 3)
2581 return false;
2582 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2583 }
2584
2585 private:
2586 // The Input_section we are sorting.
2587 Input_section input_section_;
2588 // The index of this Input_section in the original list.
2589 unsigned int index_;
2590 // Whether this Input_section has a section name--it won't if this
2591 // is some random Output_section_data.
2592 bool section_has_name_;
2593 // The section name if there is one.
2594 std::string section_name_;
2595};
2596
2597// Return true if S1 should come before S2 in the output section.
2598
2599bool
2600Output_section::Input_section_sort_compare::operator()(
2601 const Output_section::Input_section_sort_entry& s1,
2602 const Output_section::Input_section_sort_entry& s2) const
2603{
ab794b6b
ILT
2604 // crtbegin.o must come first.
2605 bool s1_begin = s1.match_file_name("crtbegin");
2606 bool s2_begin = s2.match_file_name("crtbegin");
2fd32231
ILT
2607 if (s1_begin || s2_begin)
2608 {
2609 if (!s1_begin)
2610 return false;
2611 if (!s2_begin)
2612 return true;
2613 return s1.index() < s2.index();
2614 }
2615
ab794b6b
ILT
2616 // crtend.o must come last.
2617 bool s1_end = s1.match_file_name("crtend");
2618 bool s2_end = s2.match_file_name("crtend");
2fd32231
ILT
2619 if (s1_end || s2_end)
2620 {
2621 if (!s1_end)
2622 return true;
2623 if (!s2_end)
2624 return false;
2625 return s1.index() < s2.index();
2626 }
2627
ab794b6b
ILT
2628 // We sort all the sections with no names to the end.
2629 if (!s1.section_has_name() || !s2.section_has_name())
2630 {
2631 if (s1.section_has_name())
2632 return true;
2633 if (s2.section_has_name())
2634 return false;
2635 return s1.index() < s2.index();
2636 }
2fd32231 2637
ab794b6b
ILT
2638 // A section with a priority follows a section without a priority.
2639 // The GNU linker does this for all but .init_array sections; until
2640 // further notice we'll assume that that is an mistake.
2641 bool s1_has_priority = s1.has_priority();
2642 bool s2_has_priority = s2.has_priority();
2643 if (s1_has_priority && !s2_has_priority)
2fd32231 2644 return false;
ab794b6b 2645 if (!s1_has_priority && s2_has_priority)
2fd32231
ILT
2646 return true;
2647
2648 // Otherwise we sort by name.
2649 int compare = s1.section_name().compare(s2.section_name());
2650 if (compare != 0)
2651 return compare < 0;
2652
2653 // Otherwise we keep the input order.
2654 return s1.index() < s2.index();
2655}
2656
2657// Sort the input sections attached to an output section.
2658
2659void
2660Output_section::sort_attached_input_sections()
2661{
2662 if (this->attached_input_sections_are_sorted_)
2663 return;
2664
20e6d0d6
DK
2665 if (this->checkpoint_ != NULL
2666 && !this->checkpoint_->input_sections_saved())
2667 this->checkpoint_->save_input_sections();
2668
2fd32231
ILT
2669 // The only thing we know about an input section is the object and
2670 // the section index. We need the section name. Recomputing this
2671 // is slow but this is an unusual case. If this becomes a speed
2672 // problem we can cache the names as required in Layout::layout.
2673
2674 // We start by building a larger vector holding a copy of each
2675 // Input_section, plus its current index in the list and its name.
2676 std::vector<Input_section_sort_entry> sort_list;
2677
2678 unsigned int i = 0;
2679 for (Input_section_list::iterator p = this->input_sections_.begin();
2680 p != this->input_sections_.end();
2681 ++p, ++i)
2682 sort_list.push_back(Input_section_sort_entry(*p, i));
2683
2684 // Sort the input sections.
2685 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2686
2687 // Copy the sorted input sections back to our list.
2688 this->input_sections_.clear();
2689 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2690 p != sort_list.end();
2691 ++p)
2692 this->input_sections_.push_back(p->input_section());
2693
2694 // Remember that we sorted the input sections, since we might get
2695 // called again.
2696 this->attached_input_sections_are_sorted_ = true;
2697}
2698
61ba1cf9
ILT
2699// Write the section header to *OSHDR.
2700
2701template<int size, bool big_endian>
2702void
16649710
ILT
2703Output_section::write_header(const Layout* layout,
2704 const Stringpool* secnamepool,
61ba1cf9
ILT
2705 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2706{
2707 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2708 oshdr->put_sh_type(this->type_);
6a74a719
ILT
2709
2710 elfcpp::Elf_Xword flags = this->flags_;
755ab8af 2711 if (this->info_section_ != NULL && this->info_uses_section_index_)
6a74a719
ILT
2712 flags |= elfcpp::SHF_INFO_LINK;
2713 oshdr->put_sh_flags(flags);
2714
61ba1cf9
ILT
2715 oshdr->put_sh_addr(this->address());
2716 oshdr->put_sh_offset(this->offset());
2717 oshdr->put_sh_size(this->data_size());
16649710
ILT
2718 if (this->link_section_ != NULL)
2719 oshdr->put_sh_link(this->link_section_->out_shndx());
2720 else if (this->should_link_to_symtab_)
2721 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2722 else if (this->should_link_to_dynsym_)
2723 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2724 else
2725 oshdr->put_sh_link(this->link_);
755ab8af
ILT
2726
2727 elfcpp::Elf_Word info;
16649710 2728 if (this->info_section_ != NULL)
755ab8af
ILT
2729 {
2730 if (this->info_uses_section_index_)
2731 info = this->info_section_->out_shndx();
2732 else
2733 info = this->info_section_->symtab_index();
2734 }
6a74a719 2735 else if (this->info_symndx_ != NULL)
755ab8af 2736 info = this->info_symndx_->symtab_index();
16649710 2737 else
755ab8af
ILT
2738 info = this->info_;
2739 oshdr->put_sh_info(info);
2740
61ba1cf9
ILT
2741 oshdr->put_sh_addralign(this->addralign_);
2742 oshdr->put_sh_entsize(this->entsize_);
a2fb1b05
ILT
2743}
2744
ead1e424
ILT
2745// Write out the data. For input sections the data is written out by
2746// Object::relocate, but we have to handle Output_section_data objects
2747// here.
2748
2749void
2750Output_section::do_write(Output_file* of)
2751{
96803768
ILT
2752 gold_assert(!this->requires_postprocessing());
2753
c0a62865
DK
2754 // If the target performs relaxation, we delay filler generation until now.
2755 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2756
c51e6221
ILT
2757 off_t output_section_file_offset = this->offset();
2758 for (Fill_list::iterator p = this->fills_.begin();
2759 p != this->fills_.end();
2760 ++p)
2761 {
8851ecca 2762 std::string fill_data(parameters->target().code_fill(p->length()));
c51e6221 2763 of->write(output_section_file_offset + p->section_offset(),
a445fddf 2764 fill_data.data(), fill_data.size());
c51e6221
ILT
2765 }
2766
c0a62865 2767 off_t off = this->offset() + this->first_input_offset_;
ead1e424
ILT
2768 for (Input_section_list::iterator p = this->input_sections_.begin();
2769 p != this->input_sections_.end();
2770 ++p)
c0a62865
DK
2771 {
2772 off_t aligned_off = align_address(off, p->addralign());
2773 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2774 {
2775 size_t fill_len = aligned_off - off;
2776 std::string fill_data(parameters->target().code_fill(fill_len));
2777 of->write(off, fill_data.data(), fill_data.size());
2778 }
2779
2780 p->write(of);
2781 off = aligned_off + p->data_size();
2782 }
ead1e424
ILT
2783}
2784
96803768
ILT
2785// If a section requires postprocessing, create the buffer to use.
2786
2787void
2788Output_section::create_postprocessing_buffer()
2789{
2790 gold_assert(this->requires_postprocessing());
1bedcac5
ILT
2791
2792 if (this->postprocessing_buffer_ != NULL)
2793 return;
96803768
ILT
2794
2795 if (!this->input_sections_.empty())
2796 {
2797 off_t off = this->first_input_offset_;
2798 for (Input_section_list::iterator p = this->input_sections_.begin();
2799 p != this->input_sections_.end();
2800 ++p)
2801 {
2802 off = align_address(off, p->addralign());
2803 p->finalize_data_size();
2804 off += p->data_size();
2805 }
2806 this->set_current_data_size_for_child(off);
2807 }
2808
2809 off_t buffer_size = this->current_data_size_for_child();
2810 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2811}
2812
2813// Write all the data of an Output_section into the postprocessing
2814// buffer. This is used for sections which require postprocessing,
2815// such as compression. Input sections are handled by
2816// Object::Relocate.
2817
2818void
2819Output_section::write_to_postprocessing_buffer()
2820{
2821 gold_assert(this->requires_postprocessing());
2822
c0a62865
DK
2823 // If the target performs relaxation, we delay filler generation until now.
2824 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2825
96803768
ILT
2826 unsigned char* buffer = this->postprocessing_buffer();
2827 for (Fill_list::iterator p = this->fills_.begin();
2828 p != this->fills_.end();
2829 ++p)
2830 {
8851ecca 2831 std::string fill_data(parameters->target().code_fill(p->length()));
a445fddf
ILT
2832 memcpy(buffer + p->section_offset(), fill_data.data(),
2833 fill_data.size());
96803768
ILT
2834 }
2835
2836 off_t off = this->first_input_offset_;
2837 for (Input_section_list::iterator p = this->input_sections_.begin();
2838 p != this->input_sections_.end();
2839 ++p)
2840 {
c0a62865
DK
2841 off_t aligned_off = align_address(off, p->addralign());
2842 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2843 {
2844 size_t fill_len = aligned_off - off;
2845 std::string fill_data(parameters->target().code_fill(fill_len));
2846 memcpy(buffer + off, fill_data.data(), fill_data.size());
2847 }
2848
2849 p->write_to_buffer(buffer + aligned_off);
2850 off = aligned_off + p->data_size();
96803768
ILT
2851 }
2852}
2853
a445fddf
ILT
2854// Get the input sections for linker script processing. We leave
2855// behind the Output_section_data entries. Note that this may be
2856// slightly incorrect for merge sections. We will leave them behind,
2857// but it is possible that the script says that they should follow
2858// some other input sections, as in:
2859// .rodata { *(.rodata) *(.rodata.cst*) }
2860// For that matter, we don't handle this correctly:
2861// .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2862// With luck this will never matter.
2863
2864uint64_t
2865Output_section::get_input_sections(
2866 uint64_t address,
2867 const std::string& fill,
20e6d0d6 2868 std::list<Simple_input_section>* input_sections)
a445fddf 2869{
20e6d0d6
DK
2870 if (this->checkpoint_ != NULL
2871 && !this->checkpoint_->input_sections_saved())
2872 this->checkpoint_->save_input_sections();
2873
c0a62865
DK
2874 // Invalidate the relaxed input section map.
2875 this->is_relaxed_input_section_map_valid_ = false;
2876
a445fddf
ILT
2877 uint64_t orig_address = address;
2878
2879 address = align_address(address, this->addralign());
2880
2881 Input_section_list remaining;
2882 for (Input_section_list::iterator p = this->input_sections_.begin();
2883 p != this->input_sections_.end();
2884 ++p)
2885 {
2886 if (p->is_input_section())
20e6d0d6
DK
2887 input_sections->push_back(Simple_input_section(p->relobj(),
2888 p->shndx()));
2889 else if (p->is_relaxed_input_section())
2890 input_sections->push_back(
2891 Simple_input_section(p->relaxed_input_section()));
a445fddf
ILT
2892 else
2893 {
2894 uint64_t aligned_address = align_address(address, p->addralign());
2895 if (aligned_address != address && !fill.empty())
2896 {
2897 section_size_type length =
2898 convert_to_section_size_type(aligned_address - address);
2899 std::string this_fill;
2900 this_fill.reserve(length);
2901 while (this_fill.length() + fill.length() <= length)
2902 this_fill += fill;
2903 if (this_fill.length() < length)
2904 this_fill.append(fill, 0, length - this_fill.length());
2905
2906 Output_section_data* posd = new Output_data_const(this_fill, 0);
2907 remaining.push_back(Input_section(posd));
2908 }
2909 address = aligned_address;
2910
2911 remaining.push_back(*p);
2912
2913 p->finalize_data_size();
2914 address += p->data_size();
2915 }
2916 }
2917
2918 this->input_sections_.swap(remaining);
2919 this->first_input_offset_ = 0;
2920
2921 uint64_t data_size = address - orig_address;
2922 this->set_current_data_size_for_child(data_size);
2923 return data_size;
2924}
2925
2926// Add an input section from a script.
2927
2928void
20e6d0d6 2929Output_section::add_input_section_for_script(const Simple_input_section& sis,
a445fddf
ILT
2930 off_t data_size,
2931 uint64_t addralign)
2932{
2933 if (addralign > this->addralign_)
2934 this->addralign_ = addralign;
2935
2936 off_t offset_in_section = this->current_data_size_for_child();
2937 off_t aligned_offset_in_section = align_address(offset_in_section,
2938 addralign);
2939
2940 this->set_current_data_size_for_child(aligned_offset_in_section
2941 + data_size);
2942
20e6d0d6
DK
2943 Input_section is =
2944 (sis.is_relaxed_input_section()
2945 ? Input_section(sis.relaxed_input_section())
2946 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
2947 this->input_sections_.push_back(is);
2948}
2949
2950//
2951
2952void
2953Output_section::save_states()
2954{
2955 gold_assert(this->checkpoint_ == NULL);
2956 Checkpoint_output_section* checkpoint =
2957 new Checkpoint_output_section(this->addralign_, this->flags_,
2958 this->input_sections_,
2959 this->first_input_offset_,
2960 this->attached_input_sections_are_sorted_);
2961 this->checkpoint_ = checkpoint;
2962 gold_assert(this->fills_.empty());
2963}
2964
2965void
2966Output_section::restore_states()
2967{
2968 gold_assert(this->checkpoint_ != NULL);
2969 Checkpoint_output_section* checkpoint = this->checkpoint_;
2970
2971 this->addralign_ = checkpoint->addralign();
2972 this->flags_ = checkpoint->flags();
2973 this->first_input_offset_ = checkpoint->first_input_offset();
2974
2975 if (!checkpoint->input_sections_saved())
2976 {
2977 // If we have not copied the input sections, just resize it.
2978 size_t old_size = checkpoint->input_sections_size();
2979 gold_assert(this->input_sections_.size() >= old_size);
2980 this->input_sections_.resize(old_size);
2981 }
2982 else
2983 {
2984 // We need to copy the whole list. This is not efficient for
2985 // extremely large output with hundreads of thousands of input
2986 // objects. We may need to re-think how we should pass sections
2987 // to scripts.
c0a62865 2988 this->input_sections_ = *checkpoint->input_sections();
20e6d0d6
DK
2989 }
2990
2991 this->attached_input_sections_are_sorted_ =
2992 checkpoint->attached_input_sections_are_sorted();
c0a62865
DK
2993
2994 // Simply invalidate the relaxed input section map since we do not keep
2995 // track of it.
2996 this->is_relaxed_input_section_map_valid_ = false;
a445fddf
ILT
2997}
2998
7d9e3d98
ILT
2999// Print to the map file.
3000
3001void
3002Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3003{
3004 mapfile->print_output_section(this);
3005
3006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007 p != this->input_sections_.end();
3008 ++p)
3009 p->print_to_mapfile(mapfile);
3010}
3011
38c5e8b4
ILT
3012// Print stats for merge sections to stderr.
3013
3014void
3015Output_section::print_merge_stats()
3016{
3017 Input_section_list::iterator p;
3018 for (p = this->input_sections_.begin();
3019 p != this->input_sections_.end();
3020 ++p)
3021 p->print_merge_stats(this->name_);
3022}
3023
a2fb1b05
ILT
3024// Output segment methods.
3025
3026Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
54dc6425 3027 : output_data_(),
75f65a3e 3028 output_bss_(),
a2fb1b05
ILT
3029 vaddr_(0),
3030 paddr_(0),
3031 memsz_(0),
a445fddf
ILT
3032 max_align_(0),
3033 min_p_align_(0),
a2fb1b05
ILT
3034 offset_(0),
3035 filesz_(0),
3036 type_(type),
ead1e424 3037 flags_(flags),
a445fddf 3038 is_max_align_known_(false),
8a5e3e08
ILT
3039 are_addresses_set_(false),
3040 is_large_data_segment_(false)
a2fb1b05
ILT
3041{
3042}
3043
3044// Add an Output_section to an Output_segment.
3045
3046void
75f65a3e 3047Output_segment::add_output_section(Output_section* os,
01676dcd 3048 elfcpp::Elf_Word seg_flags)
a2fb1b05 3049{
a3ad94ed 3050 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
a445fddf 3051 gold_assert(!this->is_max_align_known_);
8a5e3e08 3052 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
75f65a3e 3053
ead1e424 3054 // Update the segment flags.
75f65a3e 3055 this->flags_ |= seg_flags;
75f65a3e
ILT
3056
3057 Output_segment::Output_data_list* pdl;
3058 if (os->type() == elfcpp::SHT_NOBITS)
3059 pdl = &this->output_bss_;
3060 else
3061 pdl = &this->output_data_;
54dc6425 3062
a2fb1b05
ILT
3063 // So that PT_NOTE segments will work correctly, we need to ensure
3064 // that all SHT_NOTE sections are adjacent. This will normally
3065 // happen automatically, because all the SHT_NOTE input sections
3066 // will wind up in the same output section. However, it is possible
3067 // for multiple SHT_NOTE input sections to have different section
3068 // flags, and thus be in different output sections, but for the
3069 // different section flags to map into the same segment flags and
3070 // thus the same output segment.
54dc6425
ILT
3071
3072 // Note that while there may be many input sections in an output
3073 // section, there are normally only a few output sections in an
3074 // output segment. This loop is expected to be fast.
3075
61ba1cf9 3076 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
a2fb1b05 3077 {
a3ad94ed 3078 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3079 do
54dc6425 3080 {
75f65a3e 3081 --p;
54dc6425
ILT
3082 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3083 {
3084 ++p;
75f65a3e 3085 pdl->insert(p, os);
54dc6425
ILT
3086 return;
3087 }
3088 }
75f65a3e 3089 while (p != pdl->begin());
54dc6425
ILT
3090 }
3091
3092 // Similarly, so that PT_TLS segments will work, we need to group
75f65a3e
ILT
3093 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3094 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3095 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
07f397ab
ILT
3096 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3097 // and the PT_TLS segment -- we do this grouping only for the
3098 // PT_LOAD segment.
3099 if (this->type_ != elfcpp::PT_TLS
2d924fd9 3100 && (os->flags() & elfcpp::SHF_TLS) != 0)
54dc6425 3101 {
75f65a3e
ILT
3102 pdl = &this->output_data_;
3103 bool nobits = os->type() == elfcpp::SHT_NOBITS;
ead1e424 3104 bool sawtls = false;
a3ad94ed 3105 Output_segment::Output_data_list::iterator p = pdl->end();
75f65a3e 3106 do
a2fb1b05 3107 {
75f65a3e 3108 --p;
ead1e424
ILT
3109 bool insert;
3110 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3111 {
3112 sawtls = true;
3113 // Put a NOBITS section after the first TLS section.
9f1d377b 3114 // Put a PROGBITS section after the first TLS/PROGBITS
ead1e424
ILT
3115 // section.
3116 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3117 }
3118 else
3119 {
3120 // If we've gone past the TLS sections, but we've seen a
3121 // TLS section, then we need to insert this section now.
3122 insert = sawtls;
3123 }
3124
3125 if (insert)
a2fb1b05
ILT
3126 {
3127 ++p;
75f65a3e 3128 pdl->insert(p, os);
a2fb1b05
ILT
3129 return;
3130 }
3131 }
75f65a3e 3132 while (p != pdl->begin());
ead1e424 3133
dbe717ef
ILT
3134 // There are no TLS sections yet; put this one at the requested
3135 // location in the section list.
a2fb1b05
ILT
3136 }
3137
9f1d377b
ILT
3138 // For the PT_GNU_RELRO segment, we need to group relro sections,
3139 // and we need to put them before any non-relro sections. Also,
3140 // relro local sections go before relro non-local sections.
3141 if (parameters->options().relro() && os->is_relro())
3142 {
3143 gold_assert(pdl == &this->output_data_);
3144 Output_segment::Output_data_list::iterator p;
3145 for (p = pdl->begin(); p != pdl->end(); ++p)
3146 {
3147 if (!(*p)->is_section())
3148 break;
3149
3150 Output_section* pos = (*p)->output_section();
3151 if (!pos->is_relro()
3152 || (os->is_relro_local() && !pos->is_relro_local()))
3153 break;
3154 }
3155
3156 pdl->insert(p, os);
3157 return;
3158 }
3159
8a5e3e08
ILT
3160 // Small data sections go at the end of the list of data sections.
3161 // If OS is not small, and there are small sections, we have to
3162 // insert it before the first small section.
3163 if (os->type() != elfcpp::SHT_NOBITS
3164 && !os->is_small_section()
3165 && !pdl->empty()
3166 && pdl->back()->is_section()
3167 && pdl->back()->output_section()->is_small_section())
3168 {
3169 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3170 p != pdl->end();
3171 ++p)
3172 {
3173 if ((*p)->is_section()
3174 && (*p)->output_section()->is_small_section())
3175 {
3176 pdl->insert(p, os);
3177 return;
3178 }
3179 }
3180 gold_unreachable();
3181 }
3182
3183 // A small BSS section goes at the start of the BSS sections, after
3184 // other small BSS sections.
3185 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3186 {
3187 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3188 p != pdl->end();
3189 ++p)
3190 {
3191 if (!(*p)->is_section()
3192 || !(*p)->output_section()->is_small_section())
3193 {
3194 pdl->insert(p, os);
3195 return;
3196 }
3197 }
3198 }
3199
3200 // A large BSS section goes at the end of the BSS sections, which
3201 // means that one that is not large must come before the first large
3202 // one.
3203 if (os->type() == elfcpp::SHT_NOBITS
3204 && !os->is_large_section()
3205 && !pdl->empty()
3206 && pdl->back()->is_section()
3207 && pdl->back()->output_section()->is_large_section())
3208 {
3209 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3210 p != pdl->end();
3211 ++p)
3212 {
3213 if ((*p)->is_section()
3214 && (*p)->output_section()->is_large_section())
3215 {
3216 pdl->insert(p, os);
3217 return;
3218 }
3219 }
3220 gold_unreachable();
3221 }
3222
01676dcd 3223 pdl->push_back(os);
75f65a3e
ILT
3224}
3225
1650c4ff
ILT
3226// Remove an Output_section from this segment. It is an error if it
3227// is not present.
3228
3229void
3230Output_segment::remove_output_section(Output_section* os)
3231{
3232 // We only need this for SHT_PROGBITS.
3233 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3234 for (Output_data_list::iterator p = this->output_data_.begin();
3235 p != this->output_data_.end();
3236 ++p)
3237 {
3238 if (*p == os)
3239 {
3240 this->output_data_.erase(p);
3241 return;
3242 }
3243 }
3244 gold_unreachable();
3245}
3246
75f65a3e
ILT
3247// Add an Output_data (which is not an Output_section) to the start of
3248// a segment.
3249
3250void
3251Output_segment::add_initial_output_data(Output_data* od)
3252{
a445fddf 3253 gold_assert(!this->is_max_align_known_);
75f65a3e
ILT
3254 this->output_data_.push_front(od);
3255}
3256
9f1d377b
ILT
3257// Return whether the first data section is a relro section.
3258
3259bool
3260Output_segment::is_first_section_relro() const
3261{
3262 return (!this->output_data_.empty()
3263 && this->output_data_.front()->is_section()
3264 && this->output_data_.front()->output_section()->is_relro());
3265}
3266
75f65a3e 3267// Return the maximum alignment of the Output_data in Output_segment.
75f65a3e
ILT
3268
3269uint64_t
a445fddf 3270Output_segment::maximum_alignment()
75f65a3e 3271{
a445fddf 3272 if (!this->is_max_align_known_)
ead1e424
ILT
3273 {
3274 uint64_t addralign;
3275
a445fddf
ILT
3276 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3277 if (addralign > this->max_align_)
3278 this->max_align_ = addralign;
ead1e424 3279
a445fddf
ILT
3280 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3281 if (addralign > this->max_align_)
3282 this->max_align_ = addralign;
ead1e424 3283
9f1d377b
ILT
3284 // If -z relro is in effect, and the first section in this
3285 // segment is a relro section, then the segment must be aligned
3286 // to at least the common page size. This ensures that the
3287 // PT_GNU_RELRO segment will start at a page boundary.
2d924fd9
ILT
3288 if (this->type_ == elfcpp::PT_LOAD
3289 && parameters->options().relro()
3290 && this->is_first_section_relro())
9f1d377b
ILT
3291 {
3292 addralign = parameters->target().common_pagesize();
3293 if (addralign > this->max_align_)
3294 this->max_align_ = addralign;
3295 }
3296
a445fddf 3297 this->is_max_align_known_ = true;
ead1e424
ILT
3298 }
3299
a445fddf 3300 return this->max_align_;
75f65a3e
ILT
3301}
3302
ead1e424
ILT
3303// Return the maximum alignment of a list of Output_data.
3304
3305uint64_t
a445fddf 3306Output_segment::maximum_alignment_list(const Output_data_list* pdl)
ead1e424
ILT
3307{
3308 uint64_t ret = 0;
3309 for (Output_data_list::const_iterator p = pdl->begin();
3310 p != pdl->end();
3311 ++p)
3312 {
3313 uint64_t addralign = (*p)->addralign();
3314 if (addralign > ret)
3315 ret = addralign;
3316 }
3317 return ret;
3318}
3319
4f4c5f80
ILT
3320// Return the number of dynamic relocs applied to this segment.
3321
3322unsigned int
3323Output_segment::dynamic_reloc_count() const
3324{
3325 return (this->dynamic_reloc_count_list(&this->output_data_)
3326 + this->dynamic_reloc_count_list(&this->output_bss_));
3327}
3328
3329// Return the number of dynamic relocs applied to an Output_data_list.
3330
3331unsigned int
3332Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3333{
3334 unsigned int count = 0;
3335 for (Output_data_list::const_iterator p = pdl->begin();
3336 p != pdl->end();
3337 ++p)
3338 count += (*p)->dynamic_reloc_count();
3339 return count;
3340}
3341
a445fddf
ILT
3342// Set the section addresses for an Output_segment. If RESET is true,
3343// reset the addresses first. ADDR is the address and *POFF is the
3344// file offset. Set the section indexes starting with *PSHNDX.
3345// Return the address of the immediately following segment. Update
3346// *POFF and *PSHNDX.
75f65a3e
ILT
3347
3348uint64_t
96a2b4e4
ILT
3349Output_segment::set_section_addresses(const Layout* layout, bool reset,
3350 uint64_t addr, off_t* poff,
ead1e424 3351 unsigned int* pshndx)
75f65a3e 3352{
a3ad94ed 3353 gold_assert(this->type_ == elfcpp::PT_LOAD);
75f65a3e 3354
a445fddf
ILT
3355 if (!reset && this->are_addresses_set_)
3356 {
3357 gold_assert(this->paddr_ == addr);
3358 addr = this->vaddr_;
3359 }
3360 else
3361 {
3362 this->vaddr_ = addr;
3363 this->paddr_ = addr;
3364 this->are_addresses_set_ = true;
3365 }
75f65a3e 3366
96a2b4e4
ILT
3367 bool in_tls = false;
3368
9f1d377b
ILT
3369 bool in_relro = (parameters->options().relro()
3370 && this->is_first_section_relro());
3371
75f65a3e
ILT
3372 off_t orig_off = *poff;
3373 this->offset_ = orig_off;
3374
96a2b4e4 3375 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
9f1d377b
ILT
3376 addr, poff, pshndx, &in_tls,
3377 &in_relro);
75f65a3e
ILT
3378 this->filesz_ = *poff - orig_off;
3379
3380 off_t off = *poff;
3381
96a2b4e4
ILT
3382 uint64_t ret = this->set_section_list_addresses(layout, reset,
3383 &this->output_bss_,
3384 addr, poff, pshndx,
9f1d377b 3385 &in_tls, &in_relro);
96a2b4e4
ILT
3386
3387 // If the last section was a TLS section, align upward to the
3388 // alignment of the TLS segment, so that the overall size of the TLS
3389 // segment is aligned.
3390 if (in_tls)
3391 {
3392 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3393 *poff = align_address(*poff, segment_align);
3394 }
3395
9f1d377b
ILT
3396 // If all the sections were relro sections, align upward to the
3397 // common page size.
3398 if (in_relro)
3399 {
3400 uint64_t page_align = parameters->target().common_pagesize();
3401 *poff = align_address(*poff, page_align);
3402 }
3403
75f65a3e
ILT
3404 this->memsz_ = *poff - orig_off;
3405
3406 // Ignore the file offset adjustments made by the BSS Output_data
3407 // objects.
3408 *poff = off;
61ba1cf9
ILT
3409
3410 return ret;
75f65a3e
ILT
3411}
3412
b8e6aad9
ILT
3413// Set the addresses and file offsets in a list of Output_data
3414// structures.
75f65a3e
ILT
3415
3416uint64_t
96a2b4e4
ILT
3417Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3418 Output_data_list* pdl,
ead1e424 3419 uint64_t addr, off_t* poff,
96a2b4e4 3420 unsigned int* pshndx,
9f1d377b 3421 bool* in_tls, bool* in_relro)
75f65a3e 3422{
ead1e424 3423 off_t startoff = *poff;
75f65a3e 3424
ead1e424 3425 off_t off = startoff;
75f65a3e
ILT
3426 for (Output_data_list::iterator p = pdl->begin();
3427 p != pdl->end();
3428 ++p)
3429 {
a445fddf
ILT
3430 if (reset)
3431 (*p)->reset_address_and_file_offset();
3432
3433 // When using a linker script the section will most likely
3434 // already have an address.
3435 if (!(*p)->is_address_valid())
3802b2dd 3436 {
96a2b4e4
ILT
3437 uint64_t align = (*p)->addralign();
3438
3439 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3440 {
3441 // Give the first TLS section the alignment of the
3442 // entire TLS segment. Otherwise the TLS segment as a
3443 // whole may be misaligned.
3444 if (!*in_tls)
3445 {
3446 Output_segment* tls_segment = layout->tls_segment();
3447 gold_assert(tls_segment != NULL);
3448 uint64_t segment_align = tls_segment->maximum_alignment();
3449 gold_assert(segment_align >= align);
3450 align = segment_align;
3451
3452 *in_tls = true;
3453 }
3454 }
3455 else
3456 {
3457 // If this is the first section after the TLS segment,
3458 // align it to at least the alignment of the TLS
3459 // segment, so that the size of the overall TLS segment
3460 // is aligned.
3461 if (*in_tls)
3462 {
3463 uint64_t segment_align =
3464 layout->tls_segment()->maximum_alignment();
3465 if (segment_align > align)
3466 align = segment_align;
3467
3468 *in_tls = false;
3469 }
3470 }
3471
9f1d377b
ILT
3472 // If this is a non-relro section after a relro section,
3473 // align it to a common page boundary so that the dynamic
3474 // linker has a page to mark as read-only.
3475 if (*in_relro
3476 && (!(*p)->is_section()
3477 || !(*p)->output_section()->is_relro()))
3478 {
3479 uint64_t page_align = parameters->target().common_pagesize();
3480 if (page_align > align)
3481 align = page_align;
3482 *in_relro = false;
3483 }
3484
96a2b4e4 3485 off = align_address(off, align);
3802b2dd
ILT
3486 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3487 }
a445fddf
ILT
3488 else
3489 {
3490 // The script may have inserted a skip forward, but it
3491 // better not have moved backward.
3802b2dd
ILT
3492 gold_assert((*p)->address() >= addr + (off - startoff));
3493 off += (*p)->address() - (addr + (off - startoff));
a445fddf
ILT
3494 (*p)->set_file_offset(off);
3495 (*p)->finalize_data_size();
3496 }
ead1e424 3497
96a2b4e4
ILT
3498 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3499 // section. Such a section does not affect the size of a
3500 // PT_LOAD segment.
3501 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
ead1e424
ILT
3502 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3503 off += (*p)->data_size();
75f65a3e 3504
ead1e424
ILT
3505 if ((*p)->is_section())
3506 {
3507 (*p)->set_out_shndx(*pshndx);
3508 ++*pshndx;
3509 }
75f65a3e
ILT
3510 }
3511
3512 *poff = off;
ead1e424 3513 return addr + (off - startoff);
75f65a3e
ILT
3514}
3515
3516// For a non-PT_LOAD segment, set the offset from the sections, if
3517// any.
3518
3519void
3520Output_segment::set_offset()
3521{
a3ad94ed 3522 gold_assert(this->type_ != elfcpp::PT_LOAD);
75f65a3e 3523
a445fddf
ILT
3524 gold_assert(!this->are_addresses_set_);
3525
75f65a3e
ILT
3526 if (this->output_data_.empty() && this->output_bss_.empty())
3527 {
3528 this->vaddr_ = 0;
3529 this->paddr_ = 0;
a445fddf 3530 this->are_addresses_set_ = true;
75f65a3e 3531 this->memsz_ = 0;
a445fddf 3532 this->min_p_align_ = 0;
75f65a3e
ILT
3533 this->offset_ = 0;
3534 this->filesz_ = 0;
3535 return;
3536 }
3537
3538 const Output_data* first;
3539 if (this->output_data_.empty())
3540 first = this->output_bss_.front();
3541 else
3542 first = this->output_data_.front();
3543 this->vaddr_ = first->address();
a445fddf
ILT
3544 this->paddr_ = (first->has_load_address()
3545 ? first->load_address()
3546 : this->vaddr_);
3547 this->are_addresses_set_ = true;
75f65a3e
ILT
3548 this->offset_ = first->offset();
3549
3550 if (this->output_data_.empty())
3551 this->filesz_ = 0;
3552 else
3553 {
3554 const Output_data* last_data = this->output_data_.back();
3555 this->filesz_ = (last_data->address()
3556 + last_data->data_size()
3557 - this->vaddr_);
3558 }
3559
3560 const Output_data* last;
3561 if (this->output_bss_.empty())
3562 last = this->output_data_.back();
3563 else
3564 last = this->output_bss_.back();
3565 this->memsz_ = (last->address()
3566 + last->data_size()
3567 - this->vaddr_);
96a2b4e4
ILT
3568
3569 // If this is a TLS segment, align the memory size. The code in
3570 // set_section_list ensures that the section after the TLS segment
3571 // is aligned to give us room.
3572 if (this->type_ == elfcpp::PT_TLS)
3573 {
3574 uint64_t segment_align = this->maximum_alignment();
3575 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3576 this->memsz_ = align_address(this->memsz_, segment_align);
3577 }
9f1d377b
ILT
3578
3579 // If this is a RELRO segment, align the memory size. The code in
3580 // set_section_list ensures that the section after the RELRO segment
3581 // is aligned to give us room.
3582 if (this->type_ == elfcpp::PT_GNU_RELRO)
3583 {
3584 uint64_t page_align = parameters->target().common_pagesize();
3585 gold_assert(this->vaddr_ == align_address(this->vaddr_, page_align));
3586 this->memsz_ = align_address(this->memsz_, page_align);
3587 }
75f65a3e
ILT
3588}
3589
7bf1f802
ILT
3590// Set the TLS offsets of the sections in the PT_TLS segment.
3591
3592void
3593Output_segment::set_tls_offsets()
3594{
3595 gold_assert(this->type_ == elfcpp::PT_TLS);
3596
3597 for (Output_data_list::iterator p = this->output_data_.begin();
3598 p != this->output_data_.end();
3599 ++p)
3600 (*p)->set_tls_offset(this->vaddr_);
3601
3602 for (Output_data_list::iterator p = this->output_bss_.begin();
3603 p != this->output_bss_.end();
3604 ++p)
3605 (*p)->set_tls_offset(this->vaddr_);
3606}
3607
a445fddf
ILT
3608// Return the address of the first section.
3609
3610uint64_t
3611Output_segment::first_section_load_address() const
3612{
3613 for (Output_data_list::const_iterator p = this->output_data_.begin();
3614 p != this->output_data_.end();
3615 ++p)
3616 if ((*p)->is_section())
3617 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3618
3619 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3620 p != this->output_bss_.end();
3621 ++p)
3622 if ((*p)->is_section())
3623 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3624
3625 gold_unreachable();
3626}
3627
75f65a3e
ILT
3628// Return the number of Output_sections in an Output_segment.
3629
3630unsigned int
3631Output_segment::output_section_count() const
3632{
3633 return (this->output_section_count_list(&this->output_data_)
3634 + this->output_section_count_list(&this->output_bss_));
3635}
3636
3637// Return the number of Output_sections in an Output_data_list.
3638
3639unsigned int
3640Output_segment::output_section_count_list(const Output_data_list* pdl) const
3641{
3642 unsigned int count = 0;
3643 for (Output_data_list::const_iterator p = pdl->begin();
3644 p != pdl->end();
3645 ++p)
3646 {
3647 if ((*p)->is_section())
3648 ++count;
3649 }
3650 return count;
a2fb1b05
ILT
3651}
3652
1c4f3631
ILT
3653// Return the section attached to the list segment with the lowest
3654// load address. This is used when handling a PHDRS clause in a
3655// linker script.
3656
3657Output_section*
3658Output_segment::section_with_lowest_load_address() const
3659{
3660 Output_section* found = NULL;
3661 uint64_t found_lma = 0;
3662 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3663
3664 Output_section* found_data = found;
3665 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3666 if (found != found_data && found_data != NULL)
3667 {
3668 gold_error(_("nobits section %s may not precede progbits section %s "
3669 "in same segment"),
3670 found->name(), found_data->name());
3671 return NULL;
3672 }
3673
3674 return found;
3675}
3676
3677// Look through a list for a section with a lower load address.
3678
3679void
3680Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3681 Output_section** found,
3682 uint64_t* found_lma) const
3683{
3684 for (Output_data_list::const_iterator p = pdl->begin();
3685 p != pdl->end();
3686 ++p)
3687 {
3688 if (!(*p)->is_section())
3689 continue;
3690 Output_section* os = static_cast<Output_section*>(*p);
3691 uint64_t lma = (os->has_load_address()
3692 ? os->load_address()
3693 : os->address());
3694 if (*found == NULL || lma < *found_lma)
3695 {
3696 *found = os;
3697 *found_lma = lma;
3698 }
3699 }
3700}
3701
61ba1cf9
ILT
3702// Write the segment data into *OPHDR.
3703
3704template<int size, bool big_endian>
3705void
ead1e424 3706Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
61ba1cf9
ILT
3707{
3708 ophdr->put_p_type(this->type_);
3709 ophdr->put_p_offset(this->offset_);
3710 ophdr->put_p_vaddr(this->vaddr_);
3711 ophdr->put_p_paddr(this->paddr_);
3712 ophdr->put_p_filesz(this->filesz_);
3713 ophdr->put_p_memsz(this->memsz_);
3714 ophdr->put_p_flags(this->flags_);
a445fddf 3715 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
61ba1cf9
ILT
3716}
3717
3718// Write the section headers into V.
3719
3720template<int size, bool big_endian>
3721unsigned char*
16649710
ILT
3722Output_segment::write_section_headers(const Layout* layout,
3723 const Stringpool* secnamepool,
ead1e424 3724 unsigned char* v,
7d1a9ebb 3725 unsigned int *pshndx) const
5482377d 3726{
ead1e424
ILT
3727 // Every section that is attached to a segment must be attached to a
3728 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3729 // segments.
3730 if (this->type_ != elfcpp::PT_LOAD)
3731 return v;
3732
7d1a9ebb
ILT
3733 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3734 &this->output_data_,
3735 v, pshndx);
3736 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3737 &this->output_bss_,
3738 v, pshndx);
61ba1cf9
ILT
3739 return v;
3740}
3741
3742template<int size, bool big_endian>
3743unsigned char*
16649710
ILT
3744Output_segment::write_section_headers_list(const Layout* layout,
3745 const Stringpool* secnamepool,
61ba1cf9 3746 const Output_data_list* pdl,
ead1e424 3747 unsigned char* v,
7d1a9ebb 3748 unsigned int* pshndx) const
61ba1cf9
ILT
3749{
3750 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3751 for (Output_data_list::const_iterator p = pdl->begin();
3752 p != pdl->end();
3753 ++p)
3754 {
3755 if ((*p)->is_section())
3756 {
5482377d 3757 const Output_section* ps = static_cast<const Output_section*>(*p);
a3ad94ed 3758 gold_assert(*pshndx == ps->out_shndx());
61ba1cf9 3759 elfcpp::Shdr_write<size, big_endian> oshdr(v);
16649710 3760 ps->write_header(layout, secnamepool, &oshdr);
61ba1cf9 3761 v += shdr_size;
ead1e424 3762 ++*pshndx;
61ba1cf9
ILT
3763 }
3764 }
3765 return v;
3766}
3767
7d9e3d98
ILT
3768// Print the output sections to the map file.
3769
3770void
3771Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
3772{
3773 if (this->type() != elfcpp::PT_LOAD)
3774 return;
3775 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
3776 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
3777}
3778
3779// Print an output section list to the map file.
3780
3781void
3782Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
3783 const Output_data_list* pdl) const
3784{
3785 for (Output_data_list::const_iterator p = pdl->begin();
3786 p != pdl->end();
3787 ++p)
3788 (*p)->print_to_mapfile(mapfile);
3789}
3790
a2fb1b05
ILT
3791// Output_file methods.
3792
14144f39
ILT
3793Output_file::Output_file(const char* name)
3794 : name_(name),
61ba1cf9
ILT
3795 o_(-1),
3796 file_size_(0),
c420411f 3797 base_(NULL),
516cb3d0
ILT
3798 map_is_anonymous_(false),
3799 is_temporary_(false)
61ba1cf9
ILT
3800{
3801}
3802
404c2abb
ILT
3803// Try to open an existing file. Returns false if the file doesn't
3804// exist, has a size of 0 or can't be mmapped.
3805
3806bool
3807Output_file::open_for_modification()
3808{
3809 // The name "-" means "stdout".
3810 if (strcmp(this->name_, "-") == 0)
3811 return false;
3812
3813 // Don't bother opening files with a size of zero.
3814 struct stat s;
3815 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
3816 return false;
3817
3818 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
3819 if (o < 0)
3820 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3821 this->o_ = o;
3822 this->file_size_ = s.st_size;
3823
3824 // If the file can't be mmapped, copying the content to an anonymous
3825 // map will probably negate the performance benefits of incremental
3826 // linking. This could be helped by using views and loading only
3827 // the necessary parts, but this is not supported as of now.
3828 if (!this->map_no_anonymous())
3829 {
3830 release_descriptor(o, true);
3831 this->o_ = -1;
3832 this->file_size_ = 0;
3833 return false;
3834 }
3835
3836 return true;
3837}
3838
61ba1cf9
ILT
3839// Open the output file.
3840
a2fb1b05 3841void
61ba1cf9 3842Output_file::open(off_t file_size)
a2fb1b05 3843{
61ba1cf9
ILT
3844 this->file_size_ = file_size;
3845
4e9d8586
ILT
3846 // Unlink the file first; otherwise the open() may fail if the file
3847 // is busy (e.g. it's an executable that's currently being executed).
3848 //
3849 // However, the linker may be part of a system where a zero-length
3850 // file is created for it to write to, with tight permissions (gcc
3851 // 2.95 did something like this). Unlinking the file would work
3852 // around those permission controls, so we only unlink if the file
3853 // has a non-zero size. We also unlink only regular files to avoid
3854 // trouble with directories/etc.
3855 //
3856 // If we fail, continue; this command is merely a best-effort attempt
3857 // to improve the odds for open().
3858
42a1b686 3859 // We let the name "-" mean "stdout"
516cb3d0 3860 if (!this->is_temporary_)
42a1b686 3861 {
516cb3d0
ILT
3862 if (strcmp(this->name_, "-") == 0)
3863 this->o_ = STDOUT_FILENO;
3864 else
3865 {
3866 struct stat s;
6a89f575
CC
3867 if (::stat(this->name_, &s) == 0
3868 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
3869 {
3870 if (s.st_size != 0)
3871 ::unlink(this->name_);
3872 else if (!parameters->options().relocatable())
3873 {
3874 // If we don't unlink the existing file, add execute
3875 // permission where read permissions already exist
3876 // and where the umask permits.
3877 int mask = ::umask(0);
3878 ::umask(mask);
3879 s.st_mode |= (s.st_mode & 0444) >> 2;
3880 ::chmod(this->name_, s.st_mode & ~mask);
3881 }
3882 }
516cb3d0 3883
8851ecca 3884 int mode = parameters->options().relocatable() ? 0666 : 0777;
2a00e4fb
ILT
3885 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
3886 mode);
516cb3d0
ILT
3887 if (o < 0)
3888 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
3889 this->o_ = o;
3890 }
42a1b686 3891 }
61ba1cf9 3892
27bc2bce
ILT
3893 this->map();
3894}
3895
3896// Resize the output file.
3897
3898void
3899Output_file::resize(off_t file_size)
3900{
c420411f
ILT
3901 // If the mmap is mapping an anonymous memory buffer, this is easy:
3902 // just mremap to the new size. If it's mapping to a file, we want
3903 // to unmap to flush to the file, then remap after growing the file.
3904 if (this->map_is_anonymous_)
3905 {
3906 void* base = ::mremap(this->base_, this->file_size_, file_size,
3907 MREMAP_MAYMOVE);
3908 if (base == MAP_FAILED)
3909 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
3910 this->base_ = static_cast<unsigned char*>(base);
3911 this->file_size_ = file_size;
3912 }
3913 else
3914 {
3915 this->unmap();
3916 this->file_size_ = file_size;
fdcac5af
ILT
3917 if (!this->map_no_anonymous())
3918 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
c420411f 3919 }
27bc2bce
ILT
3920}
3921
404c2abb
ILT
3922// Map an anonymous block of memory which will later be written to the
3923// file. Return whether the map succeeded.
26736d8e 3924
404c2abb 3925bool
26736d8e
ILT
3926Output_file::map_anonymous()
3927{
404c2abb
ILT
3928 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3929 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3930 if (base != MAP_FAILED)
3931 {
3932 this->map_is_anonymous_ = true;
3933 this->base_ = static_cast<unsigned char*>(base);
3934 return true;
3935 }
3936 return false;
26736d8e
ILT
3937}
3938
404c2abb 3939// Map the file into memory. Return whether the mapping succeeded.
27bc2bce 3940
404c2abb
ILT
3941bool
3942Output_file::map_no_anonymous()
27bc2bce 3943{
c420411f 3944 const int o = this->o_;
61ba1cf9 3945
c420411f
ILT
3946 // If the output file is not a regular file, don't try to mmap it;
3947 // instead, we'll mmap a block of memory (an anonymous buffer), and
3948 // then later write the buffer to the file.
3949 void* base;
3950 struct stat statbuf;
42a1b686
ILT
3951 if (o == STDOUT_FILENO || o == STDERR_FILENO
3952 || ::fstat(o, &statbuf) != 0
516cb3d0
ILT
3953 || !S_ISREG(statbuf.st_mode)
3954 || this->is_temporary_)
404c2abb
ILT
3955 return false;
3956
3957 // Ensure that we have disk space available for the file. If we
3958 // don't do this, it is possible that we will call munmap, close,
3959 // and exit with dirty buffers still in the cache with no assigned
3960 // disk blocks. If the disk is out of space at that point, the
3961 // output file will wind up incomplete, but we will have already
3962 // exited. The alternative to fallocate would be to use fdatasync,
3963 // but that would be a more significant performance hit.
3964 if (::posix_fallocate(o, 0, this->file_size_) < 0)
3965 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
3966
3967 // Map the file into memory.
3968 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
3969 MAP_SHARED, o, 0);
3970
3971 // The mmap call might fail because of file system issues: the file
3972 // system might not support mmap at all, or it might not support
3973 // mmap with PROT_WRITE.
61ba1cf9 3974 if (base == MAP_FAILED)
404c2abb
ILT
3975 return false;
3976
3977 this->map_is_anonymous_ = false;
61ba1cf9 3978 this->base_ = static_cast<unsigned char*>(base);
404c2abb
ILT
3979 return true;
3980}
3981
3982// Map the file into memory.
3983
3984void
3985Output_file::map()
3986{
3987 if (this->map_no_anonymous())
3988 return;
3989
3990 // The mmap call might fail because of file system issues: the file
3991 // system might not support mmap at all, or it might not support
3992 // mmap with PROT_WRITE. I'm not sure which errno values we will
3993 // see in all cases, so if the mmap fails for any reason and we
3994 // don't care about file contents, try for an anonymous map.
3995 if (this->map_anonymous())
3996 return;
3997
3998 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
3999 this->name_, static_cast<unsigned long>(this->file_size_),
4000 strerror(errno));
61ba1cf9
ILT
4001}
4002
c420411f 4003// Unmap the file from memory.
61ba1cf9
ILT
4004
4005void
c420411f 4006Output_file::unmap()
61ba1cf9
ILT
4007{
4008 if (::munmap(this->base_, this->file_size_) < 0)
a0c4fb0a 4009 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
61ba1cf9 4010 this->base_ = NULL;
c420411f
ILT
4011}
4012
4013// Close the output file.
4014
4015void
4016Output_file::close()
4017{
4018 // If the map isn't file-backed, we need to write it now.
516cb3d0 4019 if (this->map_is_anonymous_ && !this->is_temporary_)
c420411f
ILT
4020 {
4021 size_t bytes_to_write = this->file_size_;
6d1e3092 4022 size_t offset = 0;
c420411f
ILT
4023 while (bytes_to_write > 0)
4024 {
6d1e3092
CD
4025 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4026 bytes_to_write);
c420411f
ILT
4027 if (bytes_written == 0)
4028 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4029 else if (bytes_written < 0)
4030 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4031 else
6d1e3092
CD
4032 {
4033 bytes_to_write -= bytes_written;
4034 offset += bytes_written;
4035 }
c420411f
ILT
4036 }
4037 }
4038 this->unmap();
61ba1cf9 4039
42a1b686 4040 // We don't close stdout or stderr
516cb3d0
ILT
4041 if (this->o_ != STDOUT_FILENO
4042 && this->o_ != STDERR_FILENO
4043 && !this->is_temporary_)
42a1b686
ILT
4044 if (::close(this->o_) < 0)
4045 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
61ba1cf9 4046 this->o_ = -1;
a2fb1b05
ILT
4047}
4048
4049// Instantiate the templates we need. We could use the configure
4050// script to restrict this to only the ones for implemented targets.
4051
193a53d9 4052#ifdef HAVE_TARGET_32_LITTLE
a2fb1b05
ILT
4053template
4054off_t
4055Output_section::add_input_section<32, false>(
730cdc88 4056 Sized_relobj<32, false>* object,
ead1e424 4057 unsigned int shndx,
a2fb1b05 4058 const char* secname,
730cdc88 4059 const elfcpp::Shdr<32, false>& shdr,
a445fddf
ILT
4060 unsigned int reloc_shndx,
4061 bool have_sections_script);
193a53d9 4062#endif
a2fb1b05 4063
193a53d9 4064#ifdef HAVE_TARGET_32_BIG
a2fb1b05
ILT
4065template
4066off_t
4067Output_section::add_input_section<32, true>(
730cdc88 4068 Sized_relobj<32, true>* object,
ead1e424 4069 unsigned int shndx,
a2fb1b05 4070 const char* secname,
730cdc88 4071 const elfcpp::Shdr<32, true>& shdr,
a445fddf
ILT
4072 unsigned int reloc_shndx,
4073 bool have_sections_script);
193a53d9 4074#endif
a2fb1b05 4075
193a53d9 4076#ifdef HAVE_TARGET_64_LITTLE
a2fb1b05
ILT
4077template
4078off_t
4079Output_section::add_input_section<64, false>(
730cdc88 4080 Sized_relobj<64, false>* object,
ead1e424 4081 unsigned int shndx,
a2fb1b05 4082 const char* secname,
730cdc88 4083 const elfcpp::Shdr<64, false>& shdr,
a445fddf
ILT
4084 unsigned int reloc_shndx,
4085 bool have_sections_script);
193a53d9 4086#endif
a2fb1b05 4087
193a53d9 4088#ifdef HAVE_TARGET_64_BIG
a2fb1b05
ILT
4089template
4090off_t
4091Output_section::add_input_section<64, true>(
730cdc88 4092 Sized_relobj<64, true>* object,
ead1e424 4093 unsigned int shndx,
a2fb1b05 4094 const char* secname,
730cdc88 4095 const elfcpp::Shdr<64, true>& shdr,
a445fddf
ILT
4096 unsigned int reloc_shndx,
4097 bool have_sections_script);
193a53d9 4098#endif
a2fb1b05 4099
bbbfea06
CC
4100#ifdef HAVE_TARGET_32_LITTLE
4101template
4102class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4103#endif
4104
4105#ifdef HAVE_TARGET_32_BIG
4106template
4107class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4108#endif
4109
4110#ifdef HAVE_TARGET_64_LITTLE
4111template
4112class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4113#endif
4114
4115#ifdef HAVE_TARGET_64_BIG
4116template
4117class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4118#endif
4119
4120#ifdef HAVE_TARGET_32_LITTLE
4121template
4122class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4123#endif
4124
4125#ifdef HAVE_TARGET_32_BIG
4126template
4127class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4128#endif
4129
4130#ifdef HAVE_TARGET_64_LITTLE
4131template
4132class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4133#endif
4134
4135#ifdef HAVE_TARGET_64_BIG
4136template
4137class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4138#endif
4139
4140#ifdef HAVE_TARGET_32_LITTLE
4141template
4142class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4143#endif
4144
4145#ifdef HAVE_TARGET_32_BIG
4146template
4147class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4148#endif
4149
4150#ifdef HAVE_TARGET_64_LITTLE
4151template
4152class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4153#endif
4154
4155#ifdef HAVE_TARGET_64_BIG
4156template
4157class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4158#endif
4159
4160#ifdef HAVE_TARGET_32_LITTLE
4161template
4162class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4163#endif
4164
4165#ifdef HAVE_TARGET_32_BIG
4166template
4167class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4168#endif
4169
4170#ifdef HAVE_TARGET_64_LITTLE
4171template
4172class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4173#endif
4174
4175#ifdef HAVE_TARGET_64_BIG
4176template
4177class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4178#endif
4179
193a53d9 4180#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4181template
4182class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
193a53d9 4183#endif
c06b7b0b 4184
193a53d9 4185#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4186template
4187class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
193a53d9 4188#endif
c06b7b0b 4189
193a53d9 4190#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4191template
4192class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
193a53d9 4193#endif
c06b7b0b 4194
193a53d9 4195#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4196template
4197class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
193a53d9 4198#endif
c06b7b0b 4199
193a53d9 4200#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4201template
4202class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
193a53d9 4203#endif
c06b7b0b 4204
193a53d9 4205#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4206template
4207class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
193a53d9 4208#endif
c06b7b0b 4209
193a53d9 4210#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4211template
4212class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
193a53d9 4213#endif
c06b7b0b 4214
193a53d9 4215#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4216template
4217class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
193a53d9 4218#endif
c06b7b0b 4219
193a53d9 4220#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4221template
4222class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
193a53d9 4223#endif
c06b7b0b 4224
193a53d9 4225#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4226template
4227class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
193a53d9 4228#endif
c06b7b0b 4229
193a53d9 4230#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4231template
4232class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
193a53d9 4233#endif
c06b7b0b 4234
193a53d9 4235#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4236template
4237class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
193a53d9 4238#endif
c06b7b0b 4239
193a53d9 4240#ifdef HAVE_TARGET_32_LITTLE
c06b7b0b
ILT
4241template
4242class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
193a53d9 4243#endif
c06b7b0b 4244
193a53d9 4245#ifdef HAVE_TARGET_32_BIG
c06b7b0b
ILT
4246template
4247class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
193a53d9 4248#endif
c06b7b0b 4249
193a53d9 4250#ifdef HAVE_TARGET_64_LITTLE
c06b7b0b
ILT
4251template
4252class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
193a53d9 4253#endif
c06b7b0b 4254
193a53d9 4255#ifdef HAVE_TARGET_64_BIG
c06b7b0b
ILT
4256template
4257class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
193a53d9 4258#endif
c06b7b0b 4259
6a74a719
ILT
4260#ifdef HAVE_TARGET_32_LITTLE
4261template
4262class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4263#endif
4264
4265#ifdef HAVE_TARGET_32_BIG
4266template
4267class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4268#endif
4269
4270#ifdef HAVE_TARGET_64_LITTLE
4271template
4272class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4273#endif
4274
4275#ifdef HAVE_TARGET_64_BIG
4276template
4277class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4278#endif
4279
4280#ifdef HAVE_TARGET_32_LITTLE
4281template
4282class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4283#endif
4284
4285#ifdef HAVE_TARGET_32_BIG
4286template
4287class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4288#endif
4289
4290#ifdef HAVE_TARGET_64_LITTLE
4291template
4292class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4293#endif
4294
4295#ifdef HAVE_TARGET_64_BIG
4296template
4297class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4298#endif
4299
4300#ifdef HAVE_TARGET_32_LITTLE
4301template
4302class Output_data_group<32, false>;
4303#endif
4304
4305#ifdef HAVE_TARGET_32_BIG
4306template
4307class Output_data_group<32, true>;
4308#endif
4309
4310#ifdef HAVE_TARGET_64_LITTLE
4311template
4312class Output_data_group<64, false>;
4313#endif
4314
4315#ifdef HAVE_TARGET_64_BIG
4316template
4317class Output_data_group<64, true>;
4318#endif
4319
193a53d9 4320#ifdef HAVE_TARGET_32_LITTLE
ead1e424 4321template
dbe717ef 4322class Output_data_got<32, false>;
193a53d9 4323#endif
ead1e424 4324
193a53d9 4325#ifdef HAVE_TARGET_32_BIG
ead1e424 4326template
dbe717ef 4327class Output_data_got<32, true>;
193a53d9 4328#endif
ead1e424 4329
193a53d9 4330#ifdef HAVE_TARGET_64_LITTLE
ead1e424 4331template
dbe717ef 4332class Output_data_got<64, false>;
193a53d9 4333#endif
ead1e424 4334
193a53d9 4335#ifdef HAVE_TARGET_64_BIG
ead1e424 4336template
dbe717ef 4337class Output_data_got<64, true>;
193a53d9 4338#endif
ead1e424 4339
a2fb1b05 4340} // End namespace gold.
This page took 0.446122 seconds and 4 git commands to generate.