2009-08-19 Chris Demetriou <cgd@google.com>
[deliverable/binutils-gdb.git] / gold / resolve.cc
CommitLineData
14bfc3f5
ILT
1// resolve.cc -- symbol resolution for gold
2
0602e05a 3// Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
89fc3421 29#include "plugin.h"
14bfc3f5
ILT
30
31namespace gold
32{
33
1564db8d
ILT
34// Symbol methods used in this file.
35
75517b77
ILT
36// This symbol is being overridden by another symbol whose version is
37// VERSION. Update the VERSION_ field accordingly.
38
39inline void
40Symbol::override_version(const char* version)
41{
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64}
65
0602e05a
ILT
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69inline void
70Symbol::override_visibility(elfcpp::STV visibility)
71{
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84}
85
1564db8d
ILT
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 91 unsigned int st_shndx, bool is_ordinary,
14b31740 92 Object* object, const char* version)
1564db8d 93{
a3ad94ed 94 gold_assert(this->source_ == FROM_OBJECT);
ead1e424 95 this->u_.from_object.object = object;
75517b77 96 this->override_version(version);
d491d34e
ILT
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
1564db8d
ILT
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
0602e05a 101 this->override_visibility(sym.get_st_visibility());
ead1e424 102 this->nonvis_ = sym.get_st_nonvis();
0d4f1889
ILT
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
1564db8d
ILT
107}
108
109// Override the fields in Sized_symbol.
110
111template<int size>
112template<bool big_endian>
113void
114Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 115 unsigned st_shndx, bool is_ordinary,
14b31740 116 Object* object, const char* version)
1564db8d 117{
d491d34e 118 this->override_base(sym, st_shndx, is_ordinary, object, version);
1564db8d 119 this->value_ = sym.get_st_value();
ead1e424 120 this->symsize_ = sym.get_st_size();
1564db8d
ILT
121}
122
aeddab66
ILT
123// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124// VERSION. This handles all aliases of TOSYM.
125
126template<int size, bool big_endian>
127void
128Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
d491d34e 130 unsigned int st_shndx, bool is_ordinary,
aeddab66
ILT
131 Object* object, const char* version)
132{
d491d34e 133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
7d1a9ebb 138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
139 do
140 {
d491d34e 141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
7d1a9ebb 144 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
145 }
146 while (ssym != tosym);
147 }
148}
149
86f2e683
ILT
150// The resolve functions build a little code for each symbol.
151// Bit 0: 0 for global, 1 for weak.
152// Bit 1: 0 for regular object, 1 for shared object
153// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154// This gives us values from 0 to 11.
155
156static const int global_or_weak_shift = 0;
157static const unsigned int global_flag = 0 << global_or_weak_shift;
158static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160static const int regular_or_dynamic_shift = 1;
161static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164static const int def_undef_or_common_shift = 2;
165static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
70e654ba
ILT
169// This convenience function combines all the flags based on facts
170// about the symbol.
171
172static unsigned int
173symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
d491d34e 174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
70e654ba
ILT
175{
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
181 bits = global_flag;
182 break;
183
184 case elfcpp::STB_WEAK:
185 bits = weak_flag;
186 break;
187
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
190 // table.
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192 bits = global_flag;
193
194 default:
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
198 bits = global_flag;
199 }
200
201 if (is_dynamic)
202 bits |= dynamic_flag;
203 else
204 bits |= regular_flag;
205
206 switch (shndx)
207 {
208 case elfcpp::SHN_UNDEF:
209 bits |= undef_flag;
210 break;
211
212 case elfcpp::SHN_COMMON:
d491d34e
ILT
213 if (!is_ordinary)
214 bits |= common_flag;
70e654ba
ILT
215 break;
216
217 default:
218 if (type == elfcpp::STT_COMMON)
219 bits |= common_flag;
8a5e3e08
ILT
220 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
221 bits |= common_flag;
70e654ba
ILT
222 else
223 bits |= def_flag;
224 break;
225 }
226
227 return bits;
228}
229
14bfc3f5 230// Resolve a symbol. This is called the second and subsequent times
d491d34e
ILT
231// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232// section index for SYM, possibly adjusted for many sections.
233// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234// than a special code. ORIG_ST_SHNDX is the original section index,
235// before any munging because of discarded sections, except that all
95d14cd3 236// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
d491d34e 237// the version of SYM.
14bfc3f5
ILT
238
239template<int size, bool big_endian>
240void
1564db8d 241Symbol_table::resolve(Sized_symbol<size>* to,
14bfc3f5 242 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
243 unsigned int st_shndx, bool is_ordinary,
244 unsigned int orig_st_shndx,
14b31740 245 Object* object, const char* version)
14bfc3f5
ILT
246{
247 if (object->target()->has_resolve())
248 {
274e99f9 249 Sized_target<size, big_endian>* sized_target;
7d1a9ebb 250 sized_target = object->sized_target<size, big_endian>();
14b31740 251 sized_target->resolve(to, sym, object, version);
14bfc3f5
ILT
252 return;
253 }
254
86f2e683
ILT
255 if (!object->is_dynamic())
256 {
257 // Record that we've seen this symbol in a regular object.
258 to->set_in_reg();
259 }
645afe0c
CC
260 else if (to->visibility() == elfcpp::STV_HIDDEN
261 || to->visibility() == elfcpp::STV_INTERNAL)
262 {
263 // A dynamic object cannot reference a hidden or internal symbol
264 // defined in another object.
265 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
266 (to->visibility() == elfcpp::STV_HIDDEN
267 ? "hidden"
268 : "internal"),
269 to->demangled_name().c_str(),
270 to->object()->name().c_str(),
271 object->name().c_str());
272 return;
273 }
86f2e683
ILT
274 else
275 {
276 // Record that we've seen this symbol in a dynamic object.
277 to->set_in_dyn();
278 }
14bfc3f5 279
89fc3421
CC
280 // Record if we've seen this symbol in a real ELF object (i.e., the
281 // symbol is referenced from outside the world known to the plugin).
282 if (object->pluginobj() == NULL)
283 to->set_in_real_elf();
284
285 // If we're processing replacement files, allow new symbols to override
286 // the placeholders from the plugin objects.
287 if (to->source() == Symbol::FROM_OBJECT)
288 {
289 Pluginobj* obj = to->object()->pluginobj();
290 if (obj != NULL
291 && parameters->options().plugins()->in_replacement_phase())
292 {
293 this->override(to, sym, st_shndx, is_ordinary, object, version);
294 return;
295 }
296 }
297
70e654ba
ILT
298 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
299 object->is_dynamic(),
d491d34e 300 st_shndx, is_ordinary,
70e654ba 301 sym.get_st_type());
14bfc3f5 302
86f2e683 303 bool adjust_common_sizes;
d20222a1
ILT
304 if (Symbol_table::should_override(to, frombits, object,
305 &adjust_common_sizes))
86f2e683
ILT
306 {
307 typename Sized_symbol<size>::Size_type tosize = to->symsize();
308
d491d34e 309 this->override(to, sym, st_shndx, is_ordinary, object, version);
86f2e683
ILT
310
311 if (adjust_common_sizes && tosize > to->symsize())
312 to->set_symsize(tosize);
313 }
314 else
315 {
316 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
317 to->set_symsize(sym.get_st_size());
0602e05a
ILT
318 // The ELF ABI says that even for a reference to a symbol we
319 // merge the visibility.
320 to->override_visibility(sym.get_st_visibility());
86f2e683 321 }
70e654ba
ILT
322
323 // A new weak undefined reference, merging with an old weak
324 // reference, could be a One Definition Rule (ODR) violation --
325 // especially if the types or sizes of the references differ. We'll
326 // store such pairs and look them up later to make sure they
327 // actually refer to the same lines of code. (Note: not all ODR
328 // violations can be found this way, and not everything this finds
329 // is an ODR violation. But it's helpful to warn about.)
d491d34e 330 bool to_is_ordinary;
8851ecca 331 if (parameters->options().detect_odr_violations()
d491d34e 332 && sym.get_st_bind() == elfcpp::STB_WEAK
70e654ba 333 && to->binding() == elfcpp::STB_WEAK
d491d34e
ILT
334 && orig_st_shndx != elfcpp::SHN_UNDEF
335 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
336 && to_is_ordinary
337 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
70e654ba 338 && to->symsize() != 0
d491d34e
ILT
339 && (sym.get_st_type() != to->type()
340 || sym.get_st_size() != to->symsize())
70e654ba
ILT
341 // C does not have a concept of ODR, so we only need to do this
342 // on C++ symbols. These have (mangled) names starting with _Z.
343 && to->name()[0] == '_' && to->name()[1] == 'Z')
344 {
a2b1aa12 345 Symbol_location fromloc
d491d34e
ILT
346 = { object, orig_st_shndx, sym.get_st_value() };
347 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
348 to->value() };
a2b1aa12
ILT
349 this->candidate_odr_violations_[to->name()].insert(fromloc);
350 this->candidate_odr_violations_[to->name()].insert(toloc);
70e654ba 351 }
86f2e683
ILT
352}
353
354// Handle the core of symbol resolution. This is called with the
355// existing symbol, TO, and a bitflag describing the new symbol. This
356// returns true if we should override the existing symbol with the new
357// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
358// true if we should set the symbol size to the maximum of the TO and
359// FROM sizes. It handles error conditions.
360
361bool
362Symbol_table::should_override(const Symbol* to, unsigned int frombits,
d20222a1 363 Object* object, bool* adjust_common_sizes)
86f2e683
ILT
364{
365 *adjust_common_sizes = false;
366
e5756efb 367 unsigned int tobits;
f3e9c5c5
ILT
368 if (to->source() == Symbol::IS_UNDEFINED)
369 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
370 to->type());
371 else if (to->source() != Symbol::FROM_OBJECT)
d491d34e 372 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
e5756efb
ILT
373 to->type());
374 else
d491d34e
ILT
375 {
376 bool is_ordinary;
377 unsigned int shndx = to->shndx(&is_ordinary);
378 tobits = symbol_to_bits(to->binding(),
379 to->object()->is_dynamic(),
380 shndx,
381 is_ordinary,
382 to->type());
383 }
14bfc3f5 384
1564db8d
ILT
385 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
386
14bfc3f5
ILT
387 // We use a giant switch table for symbol resolution. This code is
388 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
389 // cases; 3) it is easy to change the handling of a particular case.
390 // The alternative would be a series of conditionals, but it is easy
391 // to get the ordering wrong. This could also be done as a table,
392 // but that is no easier to understand than this large switch
393 // statement.
394
86f2e683
ILT
395 // These are the values generated by the bit codes.
396 enum
397 {
398 DEF = global_flag | regular_flag | def_flag,
399 WEAK_DEF = weak_flag | regular_flag | def_flag,
400 DYN_DEF = global_flag | dynamic_flag | def_flag,
401 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
402 UNDEF = global_flag | regular_flag | undef_flag,
403 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
404 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
405 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
406 COMMON = global_flag | regular_flag | common_flag,
407 WEAK_COMMON = weak_flag | regular_flag | common_flag,
408 DYN_COMMON = global_flag | dynamic_flag | common_flag,
409 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
410 };
411
14bfc3f5
ILT
412 switch (tobits * 16 + frombits)
413 {
414 case DEF * 16 + DEF:
12e14209 415 // Two definitions of the same symbol.
878405a8
ILT
416
417 // If either symbol is defined by an object included using
418 // --just-symbols, then don't warn. This is for compatibility
419 // with the GNU linker. FIXME: This is a hack.
420 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
421 || object->just_symbols())
422 return false;
423
d20222a1
ILT
424 // FIXME: Do a better job of reporting locations.
425 gold_error(_("%s: multiple definition of %s"),
426 object != NULL ? object->name().c_str() : _("command line"),
a2b1aa12 427 to->demangled_name().c_str());
d20222a1
ILT
428 gold_error(_("%s: previous definition here"),
429 (to->source() == Symbol::FROM_OBJECT
430 ? to->object()->name().c_str()
431 : _("command line")));
86f2e683 432 return false;
14bfc3f5
ILT
433
434 case WEAK_DEF * 16 + DEF:
1564db8d
ILT
435 // We've seen a weak definition, and now we see a strong
436 // definition. In the original SVR4 linker, this was treated as
437 // a multiple definition error. In the Solaris linker and the
438 // GNU linker, a weak definition followed by a regular
439 // definition causes the weak definition to be overridden. We
440 // are currently compatible with the GNU linker. In the future
441 // we should add a target specific option to change this.
442 // FIXME.
86f2e683 443 return true;
14bfc3f5
ILT
444
445 case DYN_DEF * 16 + DEF:
446 case DYN_WEAK_DEF * 16 + DEF:
1564db8d
ILT
447 // We've seen a definition in a dynamic object, and now we see a
448 // definition in a regular object. The definition in the
449 // regular object overrides the definition in the dynamic
450 // object.
86f2e683 451 return true;
1564db8d 452
14bfc3f5
ILT
453 case UNDEF * 16 + DEF:
454 case WEAK_UNDEF * 16 + DEF:
455 case DYN_UNDEF * 16 + DEF:
456 case DYN_WEAK_UNDEF * 16 + DEF:
1564db8d
ILT
457 // We've seen an undefined reference, and now we see a
458 // definition. We use the definition.
86f2e683 459 return true;
1564db8d 460
14bfc3f5
ILT
461 case COMMON * 16 + DEF:
462 case WEAK_COMMON * 16 + DEF:
463 case DYN_COMMON * 16 + DEF:
464 case DYN_WEAK_COMMON * 16 + DEF:
1564db8d 465 // We've seen a common symbol and now we see a definition. The
14b31740 466 // definition overrides. FIXME: We should optionally issue, version a
1564db8d 467 // warning.
86f2e683 468 return true;
14bfc3f5
ILT
469
470 case DEF * 16 + WEAK_DEF:
471 case WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
472 // We've seen a definition and now we see a weak definition. We
473 // ignore the new weak definition.
86f2e683 474 return false;
1564db8d 475
14bfc3f5
ILT
476 case DYN_DEF * 16 + WEAK_DEF:
477 case DYN_WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
478 // We've seen a dynamic definition and now we see a regular weak
479 // definition. The regular weak definition overrides.
86f2e683 480 return true;
1564db8d 481
14bfc3f5
ILT
482 case UNDEF * 16 + WEAK_DEF:
483 case WEAK_UNDEF * 16 + WEAK_DEF:
484 case DYN_UNDEF * 16 + WEAK_DEF:
485 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
1564db8d 486 // A weak definition of a currently undefined symbol.
86f2e683 487 return true;
1564db8d 488
14bfc3f5
ILT
489 case COMMON * 16 + WEAK_DEF:
490 case WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 491 // A weak definition does not override a common definition.
86f2e683 492 return false;
1564db8d 493
14bfc3f5
ILT
494 case DYN_COMMON * 16 + WEAK_DEF:
495 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
1564db8d
ILT
496 // A weak definition does override a definition in a dynamic
497 // object. FIXME: We should optionally issue a warning.
86f2e683 498 return true;
14bfc3f5
ILT
499
500 case DEF * 16 + DYN_DEF:
501 case WEAK_DEF * 16 + DYN_DEF:
502 case DYN_DEF * 16 + DYN_DEF:
503 case DYN_WEAK_DEF * 16 + DYN_DEF:
1564db8d 504 // Ignore a dynamic definition if we already have a definition.
86f2e683 505 return false;
1564db8d 506
14bfc3f5
ILT
507 case UNDEF * 16 + DYN_DEF:
508 case WEAK_UNDEF * 16 + DYN_DEF:
509 case DYN_UNDEF * 16 + DYN_DEF:
510 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
1564db8d 511 // Use a dynamic definition if we have a reference.
86f2e683 512 return true;
1564db8d 513
14bfc3f5
ILT
514 case COMMON * 16 + DYN_DEF:
515 case WEAK_COMMON * 16 + DYN_DEF:
516 case DYN_COMMON * 16 + DYN_DEF:
517 case DYN_WEAK_COMMON * 16 + DYN_DEF:
1564db8d
ILT
518 // Ignore a dynamic definition if we already have a common
519 // definition.
86f2e683 520 return false;
14bfc3f5
ILT
521
522 case DEF * 16 + DYN_WEAK_DEF:
523 case WEAK_DEF * 16 + DYN_WEAK_DEF:
524 case DYN_DEF * 16 + DYN_WEAK_DEF:
525 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
1564db8d
ILT
526 // Ignore a weak dynamic definition if we already have a
527 // definition.
86f2e683 528 return false;
1564db8d 529
14bfc3f5
ILT
530 case UNDEF * 16 + DYN_WEAK_DEF:
531 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
532 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
533 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
1564db8d 534 // Use a weak dynamic definition if we have a reference.
86f2e683 535 return true;
1564db8d 536
14bfc3f5
ILT
537 case COMMON * 16 + DYN_WEAK_DEF:
538 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
539 case DYN_COMMON * 16 + DYN_WEAK_DEF:
540 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
1564db8d
ILT
541 // Ignore a weak dynamic definition if we already have a common
542 // definition.
86f2e683 543 return false;
14bfc3f5
ILT
544
545 case DEF * 16 + UNDEF:
546 case WEAK_DEF * 16 + UNDEF:
547 case DYN_DEF * 16 + UNDEF:
548 case DYN_WEAK_DEF * 16 + UNDEF:
549 case UNDEF * 16 + UNDEF:
ead1e424 550 // A new undefined reference tells us nothing.
86f2e683 551 return false;
ead1e424 552
14bfc3f5
ILT
553 case WEAK_UNDEF * 16 + UNDEF:
554 case DYN_UNDEF * 16 + UNDEF:
555 case DYN_WEAK_UNDEF * 16 + UNDEF:
ead1e424 556 // A strong undef overrides a dynamic or weak undef.
86f2e683 557 return true;
ead1e424 558
14bfc3f5
ILT
559 case COMMON * 16 + UNDEF:
560 case WEAK_COMMON * 16 + UNDEF:
561 case DYN_COMMON * 16 + UNDEF:
562 case DYN_WEAK_COMMON * 16 + UNDEF:
1564db8d 563 // A new undefined reference tells us nothing.
86f2e683 564 return false;
14bfc3f5
ILT
565
566 case DEF * 16 + WEAK_UNDEF:
567 case WEAK_DEF * 16 + WEAK_UNDEF:
568 case DYN_DEF * 16 + WEAK_UNDEF:
569 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
570 case UNDEF * 16 + WEAK_UNDEF:
571 case WEAK_UNDEF * 16 + WEAK_UNDEF:
572 case DYN_UNDEF * 16 + WEAK_UNDEF:
573 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
574 case COMMON * 16 + WEAK_UNDEF:
575 case WEAK_COMMON * 16 + WEAK_UNDEF:
576 case DYN_COMMON * 16 + WEAK_UNDEF:
577 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
1564db8d 578 // A new weak undefined reference tells us nothing.
86f2e683 579 return false;
14bfc3f5
ILT
580
581 case DEF * 16 + DYN_UNDEF:
582 case WEAK_DEF * 16 + DYN_UNDEF:
583 case DYN_DEF * 16 + DYN_UNDEF:
584 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
585 case UNDEF * 16 + DYN_UNDEF:
586 case WEAK_UNDEF * 16 + DYN_UNDEF:
587 case DYN_UNDEF * 16 + DYN_UNDEF:
588 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
589 case COMMON * 16 + DYN_UNDEF:
590 case WEAK_COMMON * 16 + DYN_UNDEF:
591 case DYN_COMMON * 16 + DYN_UNDEF:
592 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
1564db8d 593 // A new dynamic undefined reference tells us nothing.
86f2e683 594 return false;
14bfc3f5
ILT
595
596 case DEF * 16 + DYN_WEAK_UNDEF:
597 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
598 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
599 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
600 case UNDEF * 16 + DYN_WEAK_UNDEF:
601 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
602 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
603 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
604 case COMMON * 16 + DYN_WEAK_UNDEF:
605 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
606 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
607 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
1564db8d 608 // A new weak dynamic undefined reference tells us nothing.
86f2e683 609 return false;
14bfc3f5
ILT
610
611 case DEF * 16 + COMMON:
1564db8d 612 // A common symbol does not override a definition.
86f2e683 613 return false;
1564db8d 614
14bfc3f5
ILT
615 case WEAK_DEF * 16 + COMMON:
616 case DYN_DEF * 16 + COMMON:
617 case DYN_WEAK_DEF * 16 + COMMON:
1564db8d
ILT
618 // A common symbol does override a weak definition or a dynamic
619 // definition.
86f2e683 620 return true;
1564db8d 621
14bfc3f5
ILT
622 case UNDEF * 16 + COMMON:
623 case WEAK_UNDEF * 16 + COMMON:
624 case DYN_UNDEF * 16 + COMMON:
625 case DYN_WEAK_UNDEF * 16 + COMMON:
1564db8d 626 // A common symbol is a definition for a reference.
86f2e683 627 return true;
1564db8d 628
14bfc3f5 629 case COMMON * 16 + COMMON:
ead1e424 630 // Set the size to the maximum.
86f2e683
ILT
631 *adjust_common_sizes = true;
632 return false;
ead1e424 633
14bfc3f5 634 case WEAK_COMMON * 16 + COMMON:
ead1e424
ILT
635 // I'm not sure just what a weak common symbol means, but
636 // presumably it can be overridden by a regular common symbol.
86f2e683 637 return true;
ead1e424 638
14bfc3f5
ILT
639 case DYN_COMMON * 16 + COMMON:
640 case DYN_WEAK_COMMON * 16 + COMMON:
86f2e683
ILT
641 // Use the real common symbol, but adjust the size if necessary.
642 *adjust_common_sizes = true;
643 return true;
14bfc3f5
ILT
644
645 case DEF * 16 + WEAK_COMMON:
646 case WEAK_DEF * 16 + WEAK_COMMON:
647 case DYN_DEF * 16 + WEAK_COMMON:
648 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
ead1e424
ILT
649 // Whatever a weak common symbol is, it won't override a
650 // definition.
86f2e683 651 return false;
ead1e424 652
14bfc3f5
ILT
653 case UNDEF * 16 + WEAK_COMMON:
654 case WEAK_UNDEF * 16 + WEAK_COMMON:
655 case DYN_UNDEF * 16 + WEAK_COMMON:
656 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
ead1e424 657 // A weak common symbol is better than an undefined symbol.
86f2e683 658 return true;
ead1e424 659
14bfc3f5
ILT
660 case COMMON * 16 + WEAK_COMMON:
661 case WEAK_COMMON * 16 + WEAK_COMMON:
662 case DYN_COMMON * 16 + WEAK_COMMON:
663 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
ead1e424
ILT
664 // Ignore a weak common symbol in the presence of a real common
665 // symbol.
86f2e683 666 return false;
14bfc3f5
ILT
667
668 case DEF * 16 + DYN_COMMON:
669 case WEAK_DEF * 16 + DYN_COMMON:
670 case DYN_DEF * 16 + DYN_COMMON:
671 case DYN_WEAK_DEF * 16 + DYN_COMMON:
ead1e424
ILT
672 // Ignore a dynamic common symbol in the presence of a
673 // definition.
86f2e683 674 return false;
ead1e424 675
14bfc3f5
ILT
676 case UNDEF * 16 + DYN_COMMON:
677 case WEAK_UNDEF * 16 + DYN_COMMON:
678 case DYN_UNDEF * 16 + DYN_COMMON:
679 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
ead1e424 680 // A dynamic common symbol is a definition of sorts.
86f2e683 681 return true;
ead1e424 682
14bfc3f5
ILT
683 case COMMON * 16 + DYN_COMMON:
684 case WEAK_COMMON * 16 + DYN_COMMON:
685 case DYN_COMMON * 16 + DYN_COMMON:
686 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
ead1e424 687 // Set the size to the maximum.
86f2e683
ILT
688 *adjust_common_sizes = true;
689 return false;
14bfc3f5
ILT
690
691 case DEF * 16 + DYN_WEAK_COMMON:
692 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
693 case DYN_DEF * 16 + DYN_WEAK_COMMON:
694 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
ead1e424 695 // A common symbol is ignored in the face of a definition.
86f2e683 696 return false;
ead1e424 697
14bfc3f5
ILT
698 case UNDEF * 16 + DYN_WEAK_COMMON:
699 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
700 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
701 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
ead1e424 702 // I guess a weak common symbol is better than a definition.
86f2e683 703 return true;
ead1e424 704
14bfc3f5
ILT
705 case COMMON * 16 + DYN_WEAK_COMMON:
706 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
707 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
708 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
ead1e424 709 // Set the size to the maximum.
86f2e683
ILT
710 *adjust_common_sizes = true;
711 return false;
1564db8d
ILT
712
713 default:
a3ad94ed 714 gold_unreachable();
14bfc3f5
ILT
715 }
716}
717
86f2e683
ILT
718// A special case of should_override which is only called for a strong
719// defined symbol from a regular object file. This is used when
720// defining special symbols.
721
722bool
723Symbol_table::should_override_with_special(const Symbol* to)
724{
725 bool adjust_common_sizes;
726 unsigned int frombits = global_flag | regular_flag | def_flag;
d20222a1
ILT
727 bool ret = Symbol_table::should_override(to, frombits, NULL,
728 &adjust_common_sizes);
86f2e683
ILT
729 gold_assert(!adjust_common_sizes);
730 return ret;
731}
732
733// Override symbol base with a special symbol.
734
735void
736Symbol::override_base_with_special(const Symbol* from)
737{
46fe1623
ILT
738 gold_assert(this->name_ == from->name_ || this->has_alias());
739
86f2e683
ILT
740 this->source_ = from->source_;
741 switch (from->source_)
742 {
743 case FROM_OBJECT:
744 this->u_.from_object = from->u_.from_object;
745 break;
746 case IN_OUTPUT_DATA:
747 this->u_.in_output_data = from->u_.in_output_data;
748 break;
749 case IN_OUTPUT_SEGMENT:
750 this->u_.in_output_segment = from->u_.in_output_segment;
751 break;
f3e9c5c5
ILT
752 case IS_CONSTANT:
753 case IS_UNDEFINED:
86f2e683
ILT
754 break;
755 default:
756 gold_unreachable();
757 break;
758 }
759
75517b77 760 this->override_version(from->version_);
86f2e683
ILT
761 this->type_ = from->type_;
762 this->binding_ = from->binding_;
0602e05a 763 this->override_visibility(from->visibility_);
86f2e683
ILT
764 this->nonvis_ = from->nonvis_;
765
766 // Special symbols are always considered to be regular symbols.
767 this->in_reg_ = true;
46fe1623
ILT
768
769 if (from->needs_dynsym_entry_)
770 this->needs_dynsym_entry_ = true;
771 if (from->needs_dynsym_value_)
772 this->needs_dynsym_value_ = true;
773
774 // We shouldn't see these flags. If we do, we need to handle them
775 // somehow.
776 gold_assert(!from->is_target_special_ || this->is_target_special_);
777 gold_assert(!from->is_forwarder_);
46fe1623
ILT
778 gold_assert(!from->has_plt_offset_);
779 gold_assert(!from->has_warning_);
780 gold_assert(!from->is_copied_from_dynobj_);
55a93433 781 gold_assert(!from->is_forced_local_);
86f2e683
ILT
782}
783
784// Override a symbol with a special symbol.
785
786template<int size>
787void
788Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
789{
790 this->override_base_with_special(from);
791 this->value_ = from->value_;
792 this->symsize_ = from->symsize_;
793}
794
aeddab66
ILT
795// Override TOSYM with the special symbol FROMSYM. This handles all
796// aliases of TOSYM.
797
798template<int size>
799void
800Symbol_table::override_with_special(Sized_symbol<size>* tosym,
801 const Sized_symbol<size>* fromsym)
802{
803 tosym->override_with_special(fromsym);
804 if (tosym->has_alias())
805 {
806 Symbol* sym = this->weak_aliases_[tosym];
807 gold_assert(sym != NULL);
7d1a9ebb 808 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
809 do
810 {
811 ssym->override_with_special(fromsym);
812 sym = this->weak_aliases_[ssym];
813 gold_assert(sym != NULL);
7d1a9ebb 814 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
815 }
816 while (ssym != tosym);
817 }
0602e05a
ILT
818 if (tosym->binding() == elfcpp::STB_LOCAL
819 || ((tosym->visibility() == elfcpp::STV_HIDDEN
820 || tosym->visibility() == elfcpp::STV_INTERNAL)
821 && (tosym->binding() == elfcpp::STB_GLOBAL
822 || tosym->binding() == elfcpp::STB_WEAK)
823 && !parameters->options().relocatable()))
55a93433 824 this->force_local(tosym);
aeddab66
ILT
825}
826
14bfc3f5
ILT
827// Instantiate the templates we need. We could use the configure
828// script to restrict this to only the ones needed for implemented
829// targets.
830
193a53d9 831#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
832template
833void
193a53d9 834Symbol_table::resolve<32, false>(
1564db8d 835 Sized_symbol<32>* to,
193a53d9 836 const elfcpp::Sym<32, false>& sym,
d491d34e
ILT
837 unsigned int st_shndx,
838 bool is_ordinary,
839 unsigned int orig_st_shndx,
14b31740
ILT
840 Object* object,
841 const char* version);
193a53d9 842#endif
14bfc3f5 843
193a53d9 844#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
845template
846void
193a53d9 847Symbol_table::resolve<32, true>(
1564db8d 848 Sized_symbol<32>* to,
193a53d9 849 const elfcpp::Sym<32, true>& sym,
d491d34e
ILT
850 unsigned int st_shndx,
851 bool is_ordinary,
852 unsigned int orig_st_shndx,
14b31740
ILT
853 Object* object,
854 const char* version);
193a53d9 855#endif
14bfc3f5 856
193a53d9 857#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
858template
859void
193a53d9 860Symbol_table::resolve<64, false>(
1564db8d 861 Sized_symbol<64>* to,
193a53d9 862 const elfcpp::Sym<64, false>& sym,
d491d34e
ILT
863 unsigned int st_shndx,
864 bool is_ordinary,
865 unsigned int orig_st_shndx,
14b31740
ILT
866 Object* object,
867 const char* version);
193a53d9 868#endif
14bfc3f5 869
193a53d9 870#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
871template
872void
193a53d9 873Symbol_table::resolve<64, true>(
1564db8d 874 Sized_symbol<64>* to,
193a53d9 875 const elfcpp::Sym<64, true>& sym,
d491d34e
ILT
876 unsigned int st_shndx,
877 bool is_ordinary,
878 unsigned int orig_st_shndx,
14b31740
ILT
879 Object* object,
880 const char* version);
193a53d9 881#endif
14bfc3f5 882
86f2e683
ILT
883#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
884template
885void
aeddab66
ILT
886Symbol_table::override_with_special<32>(Sized_symbol<32>*,
887 const Sized_symbol<32>*);
86f2e683
ILT
888#endif
889
890#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
891template
892void
aeddab66
ILT
893Symbol_table::override_with_special<64>(Sized_symbol<64>*,
894 const Sized_symbol<64>*);
86f2e683
ILT
895#endif
896
14bfc3f5 897} // End namespace gold.
This page took 0.171028 seconds and 4 git commands to generate.