sim: move from common.m4 to SIM_AC_COMMON
[deliverable/binutils-gdb.git] / gold / resolve.cc
CommitLineData
14bfc3f5
ILT
1// resolve.cc -- symbol resolution for gold
2
534b4e5f 3// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
89fc3421 29#include "plugin.h"
14bfc3f5
ILT
30
31namespace gold
32{
33
1564db8d
ILT
34// Symbol methods used in this file.
35
75517b77
ILT
36// This symbol is being overridden by another symbol whose version is
37// VERSION. Update the VERSION_ field accordingly.
38
39inline void
2ea97941 40Symbol::override_version(const char* version)
75517b77 41{
2ea97941 42 if (version == NULL)
75517b77
ILT
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
2ea97941 52 this->version_ = version;
75517b77
ILT
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
2ea97941
ILT
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
75517b77
ILT
63 }
64}
65
0602e05a
ILT
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69inline void
2ea97941 70Symbol::override_visibility(elfcpp::STV visibility)
0602e05a
ILT
71{
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
2ea97941 77 if (visibility != elfcpp::STV_DEFAULT)
0602e05a
ILT
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
2ea97941
ILT
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
0602e05a
ILT
83 }
84}
85
1564db8d
ILT
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 91 unsigned int st_shndx, bool is_ordinary,
2ea97941 92 Object* object, const char* version)
1564db8d 93{
a3ad94ed 94 gold_assert(this->source_ == FROM_OBJECT);
2ea97941
ILT
95 this->u_.from_object.object = object;
96 this->override_version(version);
d491d34e
ILT
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
1564db8d
ILT
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
0602e05a 101 this->override_visibility(sym.get_st_visibility());
ead1e424 102 this->nonvis_ = sym.get_st_nonvis();
2ea97941 103 if (object->is_dynamic())
0d4f1889
ILT
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
1564db8d
ILT
107}
108
109// Override the fields in Sized_symbol.
110
111template<int size>
112template<bool big_endian>
113void
114Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 115 unsigned st_shndx, bool is_ordinary,
2ea97941 116 Object* object, const char* version)
1564db8d 117{
2ea97941 118 this->override_base(sym, st_shndx, is_ordinary, object, version);
1564db8d 119 this->value_ = sym.get_st_value();
ead1e424 120 this->symsize_ = sym.get_st_size();
1564db8d
ILT
121}
122
aeddab66
ILT
123// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124// VERSION. This handles all aliases of TOSYM.
125
126template<int size, bool big_endian>
127void
128Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
d491d34e 130 unsigned int st_shndx, bool is_ordinary,
2ea97941 131 Object* object, const char* version)
aeddab66 132{
2ea97941 133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
7d1a9ebb 138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
139 do
140 {
2ea97941 141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
7d1a9ebb 144 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
145 }
146 while (ssym != tosym);
147 }
148}
149
86f2e683
ILT
150// The resolve functions build a little code for each symbol.
151// Bit 0: 0 for global, 1 for weak.
152// Bit 1: 0 for regular object, 1 for shared object
153// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154// This gives us values from 0 to 11.
155
156static const int global_or_weak_shift = 0;
157static const unsigned int global_flag = 0 << global_or_weak_shift;
158static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160static const int regular_or_dynamic_shift = 1;
161static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164static const int def_undef_or_common_shift = 2;
165static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
70e654ba
ILT
169// This convenience function combines all the flags based on facts
170// about the symbol.
171
172static unsigned int
173symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
d491d34e 174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
70e654ba
ILT
175{
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
adcf2816 181 case elfcpp::STB_GNU_UNIQUE:
70e654ba
ILT
182 bits = global_flag;
183 break;
184
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
188
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
194
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
ac897c20 198 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
70e654ba
ILT
199 bits = global_flag;
200 }
201
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
206
207 switch (shndx)
208 {
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
212
213 case elfcpp::SHN_COMMON:
d491d34e
ILT
214 if (!is_ordinary)
215 bits |= common_flag;
70e654ba
ILT
216 break;
217
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
8a5e3e08
ILT
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
70e654ba
ILT
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229}
230
14bfc3f5 231// Resolve a symbol. This is called the second and subsequent times
d491d34e
ILT
232// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233// section index for SYM, possibly adjusted for many sections.
234// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235// than a special code. ORIG_ST_SHNDX is the original section index,
236// before any munging because of discarded sections, except that all
95d14cd3 237// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
d491d34e 238// the version of SYM.
14bfc3f5
ILT
239
240template<int size, bool big_endian>
241void
1564db8d 242Symbol_table::resolve(Sized_symbol<size>* to,
14bfc3f5 243 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
14b31740 246 Object* object, const char* version)
14bfc3f5 247{
534b4e5f
ILT
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
262
029ba973 263 if (parameters->target().has_resolve())
14bfc3f5 264 {
274e99f9 265 Sized_target<size, big_endian>* sized_target;
029ba973 266 sized_target = parameters->sized_target<size, big_endian>();
14b31740 267 sized_target->resolve(to, sym, object, version);
14bfc3f5
ILT
268 return;
269 }
270
86f2e683
ILT
271 if (!object->is_dynamic())
272 {
273 // Record that we've seen this symbol in a regular object.
274 to->set_in_reg();
275 }
2da73f13
CC
276 else if (st_shndx == elfcpp::SHN_UNDEF
277 && (to->visibility() == elfcpp::STV_HIDDEN
278 || to->visibility() == elfcpp::STV_INTERNAL))
645afe0c
CC
279 {
280 // A dynamic object cannot reference a hidden or internal symbol
281 // defined in another object.
282 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
283 (to->visibility() == elfcpp::STV_HIDDEN
284 ? "hidden"
285 : "internal"),
286 to->demangled_name().c_str(),
287 to->object()->name().c_str(),
288 object->name().c_str());
289 return;
290 }
86f2e683
ILT
291 else
292 {
293 // Record that we've seen this symbol in a dynamic object.
294 to->set_in_dyn();
295 }
14bfc3f5 296
89fc3421
CC
297 // Record if we've seen this symbol in a real ELF object (i.e., the
298 // symbol is referenced from outside the world known to the plugin).
299 if (object->pluginobj() == NULL)
300 to->set_in_real_elf();
301
302 // If we're processing replacement files, allow new symbols to override
303 // the placeholders from the plugin objects.
304 if (to->source() == Symbol::FROM_OBJECT)
305 {
306 Pluginobj* obj = to->object()->pluginobj();
307 if (obj != NULL
308 && parameters->options().plugins()->in_replacement_phase())
309 {
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311 return;
312 }
313 }
314
ba4d53bf
ILT
315 // A new weak undefined reference, merging with an old weak
316 // reference, could be a One Definition Rule (ODR) violation --
317 // especially if the types or sizes of the references differ. We'll
318 // store such pairs and look them up later to make sure they
319 // actually refer to the same lines of code. We also check
320 // combinations of weak and strong, which might occur if one case is
321 // inline and the other is not. (Note: not all ODR violations can
322 // be found this way, and not everything this finds is an ODR
323 // violation. But it's helpful to warn about.)
ba4d53bf
ILT
324 if (parameters->options().detect_odr_violations()
325 && (sym.get_st_bind() == elfcpp::STB_WEAK
326 || to->binding() == elfcpp::STB_WEAK)
327 && orig_st_shndx != elfcpp::SHN_UNDEF
328 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
329 && to_is_ordinary
330 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
331 && to->symsize() != 0
332 && (sym.get_st_type() != to->type()
333 || sym.get_st_size() != to->symsize())
334 // C does not have a concept of ODR, so we only need to do this
335 // on C++ symbols. These have (mangled) names starting with _Z.
336 && to->name()[0] == '_' && to->name()[1] == 'Z')
337 {
338 Symbol_location fromloc
339 = { object, orig_st_shndx, sym.get_st_value() };
340 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
341 to->value() };
342 this->candidate_odr_violations_[to->name()].insert(fromloc);
343 this->candidate_odr_violations_[to->name()].insert(toloc);
344 }
345
70e654ba
ILT
346 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
347 object->is_dynamic(),
d491d34e 348 st_shndx, is_ordinary,
70e654ba 349 sym.get_st_type());
14bfc3f5 350
86f2e683 351 bool adjust_common_sizes;
ce279a62 352 bool adjust_dyndef;
1ae4d23b 353 typename Sized_symbol<size>::Size_type tosize = to->symsize();
62855347
ILT
354 if (Symbol_table::should_override(to, frombits, sym.get_st_type(), OBJECT,
355 object, &adjust_common_sizes,
ce279a62 356 &adjust_dyndef))
86f2e683 357 {
ce279a62 358 elfcpp::STB tobinding = to->binding();
d491d34e 359 this->override(to, sym, st_shndx, is_ordinary, object, version);
86f2e683
ILT
360 if (adjust_common_sizes && tosize > to->symsize())
361 to->set_symsize(tosize);
ce279a62
CC
362 if (adjust_dyndef)
363 {
364 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
365 // Remember which kind of UNDEF it was for future reference.
366 to->set_undef_binding(tobinding);
367 }
86f2e683
ILT
368 }
369 else
370 {
1ae4d23b 371 if (adjust_common_sizes && sym.get_st_size() > tosize)
86f2e683 372 to->set_symsize(sym.get_st_size());
ce279a62
CC
373 if (adjust_dyndef)
374 {
375 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
376 // Remember which kind of UNDEF it was.
377 to->set_undef_binding(sym.get_st_bind());
378 }
0602e05a
ILT
379 // The ELF ABI says that even for a reference to a symbol we
380 // merge the visibility.
381 to->override_visibility(sym.get_st_visibility());
86f2e683 382 }
70e654ba 383
1ae4d23b
ILT
384 if (adjust_common_sizes && parameters->options().warn_common())
385 {
386 if (tosize > sym.get_st_size())
387 Symbol_table::report_resolve_problem(false,
388 _("common of '%s' overriding "
389 "smaller common"),
99fff23b 390 to, OBJECT, object);
1ae4d23b
ILT
391 else if (tosize < sym.get_st_size())
392 Symbol_table::report_resolve_problem(false,
393 _("common of '%s' overidden by "
394 "larger common"),
99fff23b 395 to, OBJECT, object);
1ae4d23b
ILT
396 else
397 Symbol_table::report_resolve_problem(false,
398 _("multiple common of '%s'"),
99fff23b 399 to, OBJECT, object);
1ae4d23b 400 }
86f2e683
ILT
401}
402
403// Handle the core of symbol resolution. This is called with the
404// existing symbol, TO, and a bitflag describing the new symbol. This
405// returns true if we should override the existing symbol with the new
406// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
407// true if we should set the symbol size to the maximum of the TO and
408// FROM sizes. It handles error conditions.
409
410bool
411Symbol_table::should_override(const Symbol* to, unsigned int frombits,
62855347
ILT
412 elfcpp::STT fromtype, Defined defined,
413 Object* object, bool* adjust_common_sizes,
ce279a62 414 bool* adjust_dyndef)
86f2e683
ILT
415{
416 *adjust_common_sizes = false;
ce279a62 417 *adjust_dyndef = false;
86f2e683 418
e5756efb 419 unsigned int tobits;
f3e9c5c5
ILT
420 if (to->source() == Symbol::IS_UNDEFINED)
421 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
422 to->type());
423 else if (to->source() != Symbol::FROM_OBJECT)
d491d34e 424 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
e5756efb
ILT
425 to->type());
426 else
d491d34e
ILT
427 {
428 bool is_ordinary;
429 unsigned int shndx = to->shndx(&is_ordinary);
430 tobits = symbol_to_bits(to->binding(),
431 to->object()->is_dynamic(),
432 shndx,
433 is_ordinary,
434 to->type());
435 }
14bfc3f5 436
62855347
ILT
437 if (to->type() == elfcpp::STT_TLS
438 ? fromtype != elfcpp::STT_TLS
439 : fromtype == elfcpp::STT_TLS)
440 Symbol_table::report_resolve_problem(true,
441 _("symbol '%s' used as both __thread "
442 "and non-__thread"),
443 to, defined, object);
1564db8d 444
14bfc3f5
ILT
445 // We use a giant switch table for symbol resolution. This code is
446 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
447 // cases; 3) it is easy to change the handling of a particular case.
448 // The alternative would be a series of conditionals, but it is easy
449 // to get the ordering wrong. This could also be done as a table,
450 // but that is no easier to understand than this large switch
451 // statement.
452
86f2e683
ILT
453 // These are the values generated by the bit codes.
454 enum
455 {
456 DEF = global_flag | regular_flag | def_flag,
457 WEAK_DEF = weak_flag | regular_flag | def_flag,
458 DYN_DEF = global_flag | dynamic_flag | def_flag,
459 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
460 UNDEF = global_flag | regular_flag | undef_flag,
461 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
462 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
463 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
464 COMMON = global_flag | regular_flag | common_flag,
465 WEAK_COMMON = weak_flag | regular_flag | common_flag,
466 DYN_COMMON = global_flag | dynamic_flag | common_flag,
467 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
468 };
469
14bfc3f5
ILT
470 switch (tobits * 16 + frombits)
471 {
472 case DEF * 16 + DEF:
12e14209 473 // Two definitions of the same symbol.
878405a8
ILT
474
475 // If either symbol is defined by an object included using
476 // --just-symbols, then don't warn. This is for compatibility
477 // with the GNU linker. FIXME: This is a hack.
478 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
99fff23b 479 || (object != NULL && object->just_symbols()))
878405a8
ILT
480 return false;
481
9c4ae156 482 if (!parameters->options().muldefs())
30bc8c46
ILT
483 Symbol_table::report_resolve_problem(true,
484 _("multiple definition of '%s'"),
485 to, defined, object);
86f2e683 486 return false;
14bfc3f5
ILT
487
488 case WEAK_DEF * 16 + DEF:
1564db8d
ILT
489 // We've seen a weak definition, and now we see a strong
490 // definition. In the original SVR4 linker, this was treated as
491 // a multiple definition error. In the Solaris linker and the
492 // GNU linker, a weak definition followed by a regular
493 // definition causes the weak definition to be overridden. We
494 // are currently compatible with the GNU linker. In the future
495 // we should add a target specific option to change this.
496 // FIXME.
86f2e683 497 return true;
14bfc3f5
ILT
498
499 case DYN_DEF * 16 + DEF:
500 case DYN_WEAK_DEF * 16 + DEF:
1564db8d
ILT
501 // We've seen a definition in a dynamic object, and now we see a
502 // definition in a regular object. The definition in the
503 // regular object overrides the definition in the dynamic
504 // object.
86f2e683 505 return true;
1564db8d 506
14bfc3f5
ILT
507 case UNDEF * 16 + DEF:
508 case WEAK_UNDEF * 16 + DEF:
509 case DYN_UNDEF * 16 + DEF:
510 case DYN_WEAK_UNDEF * 16 + DEF:
1564db8d
ILT
511 // We've seen an undefined reference, and now we see a
512 // definition. We use the definition.
86f2e683 513 return true;
1564db8d 514
14bfc3f5
ILT
515 case COMMON * 16 + DEF:
516 case WEAK_COMMON * 16 + DEF:
517 case DYN_COMMON * 16 + DEF:
518 case DYN_WEAK_COMMON * 16 + DEF:
1564db8d 519 // We've seen a common symbol and now we see a definition. The
1ae4d23b
ILT
520 // definition overrides.
521 if (parameters->options().warn_common())
522 Symbol_table::report_resolve_problem(false,
523 _("definition of '%s' overriding "
524 "common"),
99fff23b 525 to, defined, object);
86f2e683 526 return true;
14bfc3f5
ILT
527
528 case DEF * 16 + WEAK_DEF:
529 case WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
530 // We've seen a definition and now we see a weak definition. We
531 // ignore the new weak definition.
86f2e683 532 return false;
1564db8d 533
14bfc3f5
ILT
534 case DYN_DEF * 16 + WEAK_DEF:
535 case DYN_WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
536 // We've seen a dynamic definition and now we see a regular weak
537 // definition. The regular weak definition overrides.
86f2e683 538 return true;
1564db8d 539
14bfc3f5
ILT
540 case UNDEF * 16 + WEAK_DEF:
541 case WEAK_UNDEF * 16 + WEAK_DEF:
542 case DYN_UNDEF * 16 + WEAK_DEF:
543 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
1564db8d 544 // A weak definition of a currently undefined symbol.
86f2e683 545 return true;
1564db8d 546
14bfc3f5
ILT
547 case COMMON * 16 + WEAK_DEF:
548 case WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 549 // A weak definition does not override a common definition.
86f2e683 550 return false;
1564db8d 551
14bfc3f5
ILT
552 case DYN_COMMON * 16 + WEAK_DEF:
553 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 554 // A weak definition does override a definition in a dynamic
1ae4d23b
ILT
555 // object.
556 if (parameters->options().warn_common())
557 Symbol_table::report_resolve_problem(false,
558 _("definition of '%s' overriding "
559 "dynamic common definition"),
99fff23b 560 to, defined, object);
86f2e683 561 return true;
14bfc3f5
ILT
562
563 case DEF * 16 + DYN_DEF:
564 case WEAK_DEF * 16 + DYN_DEF:
565 case DYN_DEF * 16 + DYN_DEF:
566 case DYN_WEAK_DEF * 16 + DYN_DEF:
1564db8d 567 // Ignore a dynamic definition if we already have a definition.
86f2e683 568 return false;
1564db8d 569
14bfc3f5 570 case UNDEF * 16 + DYN_DEF:
14bfc3f5
ILT
571 case DYN_UNDEF * 16 + DYN_DEF:
572 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
1564db8d 573 // Use a dynamic definition if we have a reference.
86f2e683 574 return true;
1564db8d 575
ce279a62
CC
576 case WEAK_UNDEF * 16 + DYN_DEF:
577 // When overriding a weak undef by a dynamic definition,
578 // we need to remember that the original undef was weak.
579 *adjust_dyndef = true;
580 return true;
581
14bfc3f5
ILT
582 case COMMON * 16 + DYN_DEF:
583 case WEAK_COMMON * 16 + DYN_DEF:
584 case DYN_COMMON * 16 + DYN_DEF:
585 case DYN_WEAK_COMMON * 16 + DYN_DEF:
1564db8d
ILT
586 // Ignore a dynamic definition if we already have a common
587 // definition.
86f2e683 588 return false;
14bfc3f5
ILT
589
590 case DEF * 16 + DYN_WEAK_DEF:
591 case WEAK_DEF * 16 + DYN_WEAK_DEF:
592 case DYN_DEF * 16 + DYN_WEAK_DEF:
593 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
1564db8d
ILT
594 // Ignore a weak dynamic definition if we already have a
595 // definition.
86f2e683 596 return false;
1564db8d 597
14bfc3f5 598 case UNDEF * 16 + DYN_WEAK_DEF:
74f67560
DK
599 // When overriding an undef by a dynamic weak definition,
600 // we need to remember that the original undef was not weak.
601 *adjust_dyndef = true;
602 return true;
603
14bfc3f5
ILT
604 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
605 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
1564db8d 606 // Use a weak dynamic definition if we have a reference.
86f2e683 607 return true;
1564db8d 608
ce279a62
CC
609 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
610 // When overriding a weak undef by a dynamic definition,
611 // we need to remember that the original undef was weak.
612 *adjust_dyndef = true;
613 return true;
614
14bfc3f5
ILT
615 case COMMON * 16 + DYN_WEAK_DEF:
616 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
617 case DYN_COMMON * 16 + DYN_WEAK_DEF:
618 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
1564db8d
ILT
619 // Ignore a weak dynamic definition if we already have a common
620 // definition.
86f2e683 621 return false;
14bfc3f5
ILT
622
623 case DEF * 16 + UNDEF:
624 case WEAK_DEF * 16 + UNDEF:
14bfc3f5 625 case UNDEF * 16 + UNDEF:
ead1e424 626 // A new undefined reference tells us nothing.
86f2e683 627 return false;
ead1e424 628
ce279a62
CC
629 case DYN_DEF * 16 + UNDEF:
630 case DYN_WEAK_DEF * 16 + UNDEF:
631 // For a dynamic def, we need to remember which kind of undef we see.
632 *adjust_dyndef = true;
633 return false;
634
14bfc3f5
ILT
635 case WEAK_UNDEF * 16 + UNDEF:
636 case DYN_UNDEF * 16 + UNDEF:
637 case DYN_WEAK_UNDEF * 16 + UNDEF:
ead1e424 638 // A strong undef overrides a dynamic or weak undef.
86f2e683 639 return true;
ead1e424 640
14bfc3f5
ILT
641 case COMMON * 16 + UNDEF:
642 case WEAK_COMMON * 16 + UNDEF:
643 case DYN_COMMON * 16 + UNDEF:
644 case DYN_WEAK_COMMON * 16 + UNDEF:
1564db8d 645 // A new undefined reference tells us nothing.
86f2e683 646 return false;
14bfc3f5
ILT
647
648 case DEF * 16 + WEAK_UNDEF:
649 case WEAK_DEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
650 case UNDEF * 16 + WEAK_UNDEF:
651 case WEAK_UNDEF * 16 + WEAK_UNDEF:
652 case DYN_UNDEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
653 case COMMON * 16 + WEAK_UNDEF:
654 case WEAK_COMMON * 16 + WEAK_UNDEF:
655 case DYN_COMMON * 16 + WEAK_UNDEF:
656 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
a4649286
DK
657 // A new weak undefined reference tells us nothing unless the
658 // exisiting symbol is a dynamic weak reference.
86f2e683 659 return false;
14bfc3f5 660
a4649286
DK
661 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
662 // A new weak reference overrides an existing dynamic weak reference.
663 // This is necessary because a dynamic weak reference remembers
664 // the old binding, which may not be weak. If we keeps the existing
665 // dynamic weak reference, the weakness may be dropped in the output.
666 return true;
667
ce279a62
CC
668 case DYN_DEF * 16 + WEAK_UNDEF:
669 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
670 // For a dynamic def, we need to remember which kind of undef we see.
671 *adjust_dyndef = true;
672 return false;
673
14bfc3f5
ILT
674 case DEF * 16 + DYN_UNDEF:
675 case WEAK_DEF * 16 + DYN_UNDEF:
676 case DYN_DEF * 16 + DYN_UNDEF:
677 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
678 case UNDEF * 16 + DYN_UNDEF:
679 case WEAK_UNDEF * 16 + DYN_UNDEF:
680 case DYN_UNDEF * 16 + DYN_UNDEF:
681 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
682 case COMMON * 16 + DYN_UNDEF:
683 case WEAK_COMMON * 16 + DYN_UNDEF:
684 case DYN_COMMON * 16 + DYN_UNDEF:
685 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
1564db8d 686 // A new dynamic undefined reference tells us nothing.
86f2e683 687 return false;
14bfc3f5
ILT
688
689 case DEF * 16 + DYN_WEAK_UNDEF:
690 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
691 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
692 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
693 case UNDEF * 16 + DYN_WEAK_UNDEF:
694 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
695 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
696 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
697 case COMMON * 16 + DYN_WEAK_UNDEF:
698 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
699 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
700 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
1564db8d 701 // A new weak dynamic undefined reference tells us nothing.
86f2e683 702 return false;
14bfc3f5
ILT
703
704 case DEF * 16 + COMMON:
1564db8d 705 // A common symbol does not override a definition.
1ae4d23b
ILT
706 if (parameters->options().warn_common())
707 Symbol_table::report_resolve_problem(false,
708 _("common '%s' overridden by "
709 "previous definition"),
99fff23b 710 to, defined, object);
86f2e683 711 return false;
1564db8d 712
14bfc3f5
ILT
713 case WEAK_DEF * 16 + COMMON:
714 case DYN_DEF * 16 + COMMON:
715 case DYN_WEAK_DEF * 16 + COMMON:
1564db8d
ILT
716 // A common symbol does override a weak definition or a dynamic
717 // definition.
86f2e683 718 return true;
1564db8d 719
14bfc3f5
ILT
720 case UNDEF * 16 + COMMON:
721 case WEAK_UNDEF * 16 + COMMON:
722 case DYN_UNDEF * 16 + COMMON:
723 case DYN_WEAK_UNDEF * 16 + COMMON:
1564db8d 724 // A common symbol is a definition for a reference.
86f2e683 725 return true;
1564db8d 726
14bfc3f5 727 case COMMON * 16 + COMMON:
ead1e424 728 // Set the size to the maximum.
86f2e683
ILT
729 *adjust_common_sizes = true;
730 return false;
ead1e424 731
14bfc3f5 732 case WEAK_COMMON * 16 + COMMON:
ead1e424
ILT
733 // I'm not sure just what a weak common symbol means, but
734 // presumably it can be overridden by a regular common symbol.
86f2e683 735 return true;
ead1e424 736
14bfc3f5
ILT
737 case DYN_COMMON * 16 + COMMON:
738 case DYN_WEAK_COMMON * 16 + COMMON:
86f2e683
ILT
739 // Use the real common symbol, but adjust the size if necessary.
740 *adjust_common_sizes = true;
741 return true;
14bfc3f5
ILT
742
743 case DEF * 16 + WEAK_COMMON:
744 case WEAK_DEF * 16 + WEAK_COMMON:
745 case DYN_DEF * 16 + WEAK_COMMON:
746 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
ead1e424
ILT
747 // Whatever a weak common symbol is, it won't override a
748 // definition.
86f2e683 749 return false;
ead1e424 750
14bfc3f5
ILT
751 case UNDEF * 16 + WEAK_COMMON:
752 case WEAK_UNDEF * 16 + WEAK_COMMON:
753 case DYN_UNDEF * 16 + WEAK_COMMON:
754 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
ead1e424 755 // A weak common symbol is better than an undefined symbol.
86f2e683 756 return true;
ead1e424 757
14bfc3f5
ILT
758 case COMMON * 16 + WEAK_COMMON:
759 case WEAK_COMMON * 16 + WEAK_COMMON:
760 case DYN_COMMON * 16 + WEAK_COMMON:
761 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
ead1e424
ILT
762 // Ignore a weak common symbol in the presence of a real common
763 // symbol.
86f2e683 764 return false;
14bfc3f5
ILT
765
766 case DEF * 16 + DYN_COMMON:
767 case WEAK_DEF * 16 + DYN_COMMON:
768 case DYN_DEF * 16 + DYN_COMMON:
769 case DYN_WEAK_DEF * 16 + DYN_COMMON:
ead1e424
ILT
770 // Ignore a dynamic common symbol in the presence of a
771 // definition.
86f2e683 772 return false;
ead1e424 773
14bfc3f5
ILT
774 case UNDEF * 16 + DYN_COMMON:
775 case WEAK_UNDEF * 16 + DYN_COMMON:
776 case DYN_UNDEF * 16 + DYN_COMMON:
777 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
ead1e424 778 // A dynamic common symbol is a definition of sorts.
86f2e683 779 return true;
ead1e424 780
14bfc3f5
ILT
781 case COMMON * 16 + DYN_COMMON:
782 case WEAK_COMMON * 16 + DYN_COMMON:
783 case DYN_COMMON * 16 + DYN_COMMON:
784 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
ead1e424 785 // Set the size to the maximum.
86f2e683
ILT
786 *adjust_common_sizes = true;
787 return false;
14bfc3f5
ILT
788
789 case DEF * 16 + DYN_WEAK_COMMON:
790 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
791 case DYN_DEF * 16 + DYN_WEAK_COMMON:
792 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
ead1e424 793 // A common symbol is ignored in the face of a definition.
86f2e683 794 return false;
ead1e424 795
14bfc3f5
ILT
796 case UNDEF * 16 + DYN_WEAK_COMMON:
797 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
798 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
799 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
ead1e424 800 // I guess a weak common symbol is better than a definition.
86f2e683 801 return true;
ead1e424 802
14bfc3f5
ILT
803 case COMMON * 16 + DYN_WEAK_COMMON:
804 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
805 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
806 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
ead1e424 807 // Set the size to the maximum.
86f2e683
ILT
808 *adjust_common_sizes = true;
809 return false;
1564db8d
ILT
810
811 default:
a3ad94ed 812 gold_unreachable();
14bfc3f5
ILT
813 }
814}
815
1ae4d23b
ILT
816// Issue an error or warning due to symbol resolution. IS_ERROR
817// indicates an error rather than a warning. MSG is the error
818// message; it is expected to have a %s for the symbol name. TO is
99fff23b
ILT
819// the existing symbol. DEFINED/OBJECT is where the new symbol was
820// found.
1ae4d23b
ILT
821
822// FIXME: We should have better location information here. When the
823// symbol is defined, we should be able to pull the location from the
824// debug info if there is any.
825
826void
827Symbol_table::report_resolve_problem(bool is_error, const char* msg,
99fff23b
ILT
828 const Symbol* to, Defined defined,
829 Object* object)
1ae4d23b
ILT
830{
831 std::string demangled(to->demangled_name());
832 size_t len = strlen(msg) + demangled.length() + 10;
833 char* buf = new char[len];
834 snprintf(buf, len, msg, demangled.c_str());
835
836 const char* objname;
99fff23b
ILT
837 switch (defined)
838 {
839 case OBJECT:
840 objname = object->name().c_str();
841 break;
842 case COPY:
843 objname = _("COPY reloc");
844 break;
845 case DEFSYM:
846 case UNDEFINED:
847 objname = _("command line");
848 break;
849 case SCRIPT:
850 objname = _("linker script");
851 break;
852 case PREDEFINED:
5146f448 853 case INCREMENTAL_BASE:
99fff23b
ILT
854 objname = _("linker defined");
855 break;
856 default:
857 gold_unreachable();
858 }
1ae4d23b
ILT
859
860 if (is_error)
861 gold_error("%s: %s", objname, buf);
862 else
863 gold_warning("%s: %s", objname, buf);
864
865 delete[] buf;
866
867 if (to->source() == Symbol::FROM_OBJECT)
868 objname = to->object()->name().c_str();
869 else
870 objname = _("command line");
871 gold_info("%s: %s: previous definition here", program_name, objname);
872}
873
86f2e683
ILT
874// A special case of should_override which is only called for a strong
875// defined symbol from a regular object file. This is used when
876// defining special symbols.
877
878bool
62855347
ILT
879Symbol_table::should_override_with_special(const Symbol* to,
880 elfcpp::STT fromtype,
881 Defined defined)
86f2e683
ILT
882{
883 bool adjust_common_sizes;
ce279a62 884 bool adjust_dyn_def;
86f2e683 885 unsigned int frombits = global_flag | regular_flag | def_flag;
62855347
ILT
886 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
887 NULL, &adjust_common_sizes,
ce279a62
CC
888 &adjust_dyn_def);
889 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
86f2e683
ILT
890 return ret;
891}
892
893// Override symbol base with a special symbol.
894
895void
896Symbol::override_base_with_special(const Symbol* from)
897{
21131061
ILT
898 bool same_name = this->name_ == from->name_;
899 gold_assert(same_name || this->has_alias());
46fe1623 900
86f2e683
ILT
901 this->source_ = from->source_;
902 switch (from->source_)
903 {
904 case FROM_OBJECT:
905 this->u_.from_object = from->u_.from_object;
906 break;
907 case IN_OUTPUT_DATA:
908 this->u_.in_output_data = from->u_.in_output_data;
909 break;
910 case IN_OUTPUT_SEGMENT:
911 this->u_.in_output_segment = from->u_.in_output_segment;
912 break;
f3e9c5c5
ILT
913 case IS_CONSTANT:
914 case IS_UNDEFINED:
86f2e683
ILT
915 break;
916 default:
917 gold_unreachable();
918 break;
919 }
920
21131061 921 if (same_name)
24d47b34
ILT
922 {
923 // When overriding a versioned symbol with a special symbol, we
924 // may be changing the version. This will happen if we see a
925 // special symbol such as "_end" defined in a shared object with
926 // one version (from a version script), but we want to define it
927 // here with a different version (from a different version
928 // script).
929 this->version_ = from->version_;
930 }
86f2e683
ILT
931 this->type_ = from->type_;
932 this->binding_ = from->binding_;
0602e05a 933 this->override_visibility(from->visibility_);
86f2e683
ILT
934 this->nonvis_ = from->nonvis_;
935
936 // Special symbols are always considered to be regular symbols.
937 this->in_reg_ = true;
46fe1623
ILT
938
939 if (from->needs_dynsym_entry_)
940 this->needs_dynsym_entry_ = true;
941 if (from->needs_dynsym_value_)
942 this->needs_dynsym_value_ = true;
943
5146f448
CC
944 this->is_predefined_ = from->is_predefined_;
945
46fe1623
ILT
946 // We shouldn't see these flags. If we do, we need to handle them
947 // somehow.
46fe1623 948 gold_assert(!from->is_forwarder_);
880cd20d 949 gold_assert(!from->has_plt_offset());
46fe1623
ILT
950 gold_assert(!from->has_warning_);
951 gold_assert(!from->is_copied_from_dynobj_);
55a93433 952 gold_assert(!from->is_forced_local_);
86f2e683
ILT
953}
954
955// Override a symbol with a special symbol.
956
957template<int size>
958void
959Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
960{
961 this->override_base_with_special(from);
962 this->value_ = from->value_;
963 this->symsize_ = from->symsize_;
964}
965
aeddab66
ILT
966// Override TOSYM with the special symbol FROMSYM. This handles all
967// aliases of TOSYM.
968
969template<int size>
970void
971Symbol_table::override_with_special(Sized_symbol<size>* tosym,
972 const Sized_symbol<size>* fromsym)
973{
974 tosym->override_with_special(fromsym);
975 if (tosym->has_alias())
976 {
977 Symbol* sym = this->weak_aliases_[tosym];
978 gold_assert(sym != NULL);
7d1a9ebb 979 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
980 do
981 {
982 ssym->override_with_special(fromsym);
983 sym = this->weak_aliases_[ssym];
984 gold_assert(sym != NULL);
7d1a9ebb 985 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
986 }
987 while (ssym != tosym);
988 }
0602e05a
ILT
989 if (tosym->binding() == elfcpp::STB_LOCAL
990 || ((tosym->visibility() == elfcpp::STV_HIDDEN
991 || tosym->visibility() == elfcpp::STV_INTERNAL)
992 && (tosym->binding() == elfcpp::STB_GLOBAL
adcf2816 993 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
0602e05a
ILT
994 || tosym->binding() == elfcpp::STB_WEAK)
995 && !parameters->options().relocatable()))
55a93433 996 this->force_local(tosym);
aeddab66
ILT
997}
998
14bfc3f5
ILT
999// Instantiate the templates we need. We could use the configure
1000// script to restrict this to only the ones needed for implemented
1001// targets.
1002
6cfaf60b
DK
1003// We have to instantiate both big and little endian versions because
1004// these are used by other templates that depends on size only.
1005
1006#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
14bfc3f5
ILT
1007template
1008void
193a53d9 1009Symbol_table::resolve<32, false>(
1564db8d 1010 Sized_symbol<32>* to,
193a53d9 1011 const elfcpp::Sym<32, false>& sym,
d491d34e
ILT
1012 unsigned int st_shndx,
1013 bool is_ordinary,
1014 unsigned int orig_st_shndx,
14b31740
ILT
1015 Object* object,
1016 const char* version);
14bfc3f5
ILT
1017
1018template
1019void
193a53d9 1020Symbol_table::resolve<32, true>(
1564db8d 1021 Sized_symbol<32>* to,
193a53d9 1022 const elfcpp::Sym<32, true>& sym,
d491d34e
ILT
1023 unsigned int st_shndx,
1024 bool is_ordinary,
1025 unsigned int orig_st_shndx,
14b31740
ILT
1026 Object* object,
1027 const char* version);
193a53d9 1028#endif
14bfc3f5 1029
6cfaf60b 1030#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
14bfc3f5
ILT
1031template
1032void
193a53d9 1033Symbol_table::resolve<64, false>(
1564db8d 1034 Sized_symbol<64>* to,
193a53d9 1035 const elfcpp::Sym<64, false>& sym,
d491d34e
ILT
1036 unsigned int st_shndx,
1037 bool is_ordinary,
1038 unsigned int orig_st_shndx,
14b31740
ILT
1039 Object* object,
1040 const char* version);
14bfc3f5
ILT
1041
1042template
1043void
193a53d9 1044Symbol_table::resolve<64, true>(
1564db8d 1045 Sized_symbol<64>* to,
193a53d9 1046 const elfcpp::Sym<64, true>& sym,
d491d34e
ILT
1047 unsigned int st_shndx,
1048 bool is_ordinary,
1049 unsigned int orig_st_shndx,
14b31740
ILT
1050 Object* object,
1051 const char* version);
193a53d9 1052#endif
14bfc3f5 1053
86f2e683
ILT
1054#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1055template
1056void
aeddab66
ILT
1057Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1058 const Sized_symbol<32>*);
86f2e683
ILT
1059#endif
1060
1061#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1062template
1063void
aeddab66
ILT
1064Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1065 const Sized_symbol<64>*);
86f2e683
ILT
1066#endif
1067
14bfc3f5 1068} // End namespace gold.
This page took 0.269365 seconds and 4 git commands to generate.